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Preface

This volume contains the papers presented at ICALP 2018, the 45th edition of the Inter-
national Colloquium on Automata, Languages and Programming, held in Prague, Czech
Republic during July 9–13, 2018. ICALP is a series of annual conferences of the European
Association for Theoretical Computer Science (EATCS), which first took place in 1972. This
year, the ICALP program consisted of three tracks:

Track A: Algorithms, Complexity, and Games,
Track B: Logic, Semantics, Automata and Theory of Programming,
Track C: Foundations of Networked Computation: Models, Algorithms, and Information
Management.

In response to the call for papers, a total 502 submissions were received: 346 for track A,
96 for track B, and 60 for track C. Each submission was assigned to at least three Program
Committee members, aided by many subreviewers. Out of these, the committee decided
to accept 147 papers for inclusion in the scientific program: 98 papers for Track A, 30 for
Track B, and 19 for Track C. The selection was made by the Program Committees based
on originality, quality, and relevance to theoretical computer science. The quality of the
manuscripts was very high, and many deserving papers could not be selected.

This year ICALP also solicitated brief announcements of work in progress with substantial
interest for the community. In total 14 brief announcements were accepted for publication:
10 for Track A and 4 for Track C. The selection of the brief announcements was made by the
Program Committees.

The EATCS sponsored awards for both a best paper and a best student paper for each of
the three tracks, selected by the Program Committees.

The best paper awards were given to the following papers:

Track A: Heng Guo and Mark Jerrum. “A polynomial-time approximation algorithm for
all-terminal network reliability”.
Track B: Dirk Nowotka and Aleksi Saarela. “An optimal bound on the solution sets of
one-variable word equations and its consequences”.
Track C: Dariusz Kowalski and Miguel A. Mosteiro. “Polynomial Counting in Anonymous
Dynamic Networks with Applications to Anonymous Dynamic Algebraic Computations”.

The best student paper awards, for papers that are solely authored by students, were
given to the following papers:

Track A: Shashwat Garg. “Quasi-PTAS for Scheduling with Precedences using LP
Hierarchies”.
Track B: Sarah Winter. “Uniformization problems for synchronizations of automatic
relations on words”.

Apart from the contributed talks and the brief announcements, ICALP 2018 included
invited presentations by Jaroslav Nešetřil, Alexander Schwarzmann, Sam Staton and Ryan
Williams. This volume of the proceedings contains all contributed papers and brief announce-
ments presented at the conference together with the papers and abstracts of the invited
speakers.

The program of ICALP 2018 also included presentation of the EATCS Award 2018 to
Noam Nisan, the Gödel Prize 2018 to Oded Regev, the Presburger Award 2018 to Aleksander
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Mądry, and the EATCS Distinguished Dissertation Award to Bas Ketsman, Ilya Razenshteyn
and Aviad Rubinstein.

The program also included a memorial session for Maurice Nivat, the founder of ICALP
and EATCS, who passed away in September 2017.

Six satellite events of ICALP were held on 9 July, 2018:

Modern Online Algorithms (MOLI)
Game Solving: Theory and Practice
Parameterized Approximation Algorithms Workshop (PAAW)
Infinity
Algorithmic Aspects of Temporal Graphs
Constrained Recognition Problems

The Summer School on Algorithms and Lower Bounds was organized immediately before
ICALP during 6-9 July, 2018, with a follow-up workshop on Monday afternoon. The workshop
was a satellite ICALP workshop devoted to presentations by selected participants of the
school.

The Summer School on Discrete Mathematics was organized after the conference during
16-20 July, 2018. The event was organized by the Institute of Mathematics of the Czech
Academy of Sciences and the Computer Science Institute of Charles University.

We wish to thank all authors who submitted extended abstracts for consideration, the
Program Committees for their scholarly effort, and all referees who assisted the Program
Committees in the evaluation process. We are also grateful to Anna Kotěšovcová from
CONFORG and to Jiří Sgall, Andreas Emil Feldmann, Tomáš Masařík, Michal Opler, Jiří
Fiala and Jan Musílek and all the support staff of the Organizing Committee from Charles
University for organizing ICALP 2018.

We are grateful for generous support from AVAST and RSJ companies which included
both travel grants for young women researchers and students and a direct support of the
conference. We thank the School of Computer Science (Charles University, Faculty of
Mathematics and Physics) and Center of Excellence - Institute for Theoretical Computer
Science (project P202/12/G061 of Czech Science Foundation) for their support.

We would like to thank Jiří Sgall for his continuous support and Paul Spirakis, the
president of EATCS, for his generous advice on the organization of the conference.

July 2018 Ioannis Chatzigiannakis
Christos Kaklamanis
Dániel Marx
Donald Sannella
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Abstract
Reading, ’Riting, and ’Rithmetic, the three R’s underlying much of human intellectual activity,

not surprisingly, also stand as a venerable foundation of modern computing technology. Indeed,
both the Turing machine and von Neumann machine models operate by reading, writing, and
computing, and all practical uniprocessor implementations are based on performing activities
structured in terms of the three R’s. With the advance of networking technology, communica-
tion became an additional major systemic activity. However, at a high level of abstraction, it
is apparently still more natural to think in terms of reading, writing, and computing. While
it is hard to imagine distributed systems—such as those implementing the World-Wide Web—
without communication, we often imagine browser-based applications that operate by retrieving
(i.e., reading) data, performing computation, and storing (i.e., writing) the results. In this art-
icle, we deal with the storage of shared readable and writable data in distributed systems that
are subject to perturbations in the underlying distributed platforms composed of computers and
networks that interconnect them. The perturbations may include permanent failures (or crashes)
of individual computers, transient failures, and delays in the communication medium. The focus
of this paper is on the implementations of distributed atomic memory services. Atomicity is
a venerable notion of consistency, introduced in 1979 by Lamport [35]. To this day atomicity
remains the most natural type of consistency because it provides an illusion of equivalence with
the serial object type that software designers expect. We define the overall setting, models of
computation, definition of atomic consistency, and measures of efficiency. We then present al-
gorithms for single-writer settings in the static models. Then we move to presenting algorithms
for multi-writer settings. For both static settings we discuss design issues, correctness, efficiency,
and trade-offs. Lastly we survey the implementation issues in dynamic settings, where the uni-
verse of participants may completely change over time. Here the expectation is that solutions are
found by integrating static algorithms with a reconfiguration framework so that during periods of
relative stability one benefits from the efficiency of static algorithms, and where during the more
turbulent times performance degrades gracefully when reconfigurations are needed. We describe
the most important approaches and provide examples.
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1 Introduction

Shared storage services are located at the core of most information-age systems. Shared
memory systems surveyed in this work provide objects that support two different access
operations. That is, a read, that obtains the current value of the object, and a write that
replaces the old value of the object with a new one. To be useful, such objects need to be
resilient to failures and perturbations in the underlying computing medium, and must be
consistent in that there are guarantees regarding relationships between previously written
values and the values read by subsequent read operations. Such resilient and consistent object
are also called registers. Here we focus on read/write objects, however for objects with more
complicated semantics, such as transactions or read-modify-write operations, there exist
common implementation challenges that any distributed storage system faces and needs to
resolve. Imagine a storage system that is implemented as a central server. The server accepts
client requests to perform operations on its data objects and returns responses. Conceptually,
this approach is simple, however, two major problems can already be observed. The first is
that the central server is a performance bottleneck. The second is that the server is a single
point of failure. The quality of service in such an implementation degrades rapidly as the
number of clients grows, and the service becomes unavailable if the server crashes (imagine
how inadequate a web news service would be were it implemented as a central server). Thus
the system must be available. This means it must provide its services despite failures within
the scope of its specification, for example, the system must be able to mask certain server
and communication failures. The system must also support multiple concurrent accesses
without imposing unreasonable degradation in performance. The only way to guarantee
availability is through redundancy, that is, by using multiple servers and by replicating the
contents of objects among these servers.

Replication introduces the challenge of ensuring consistency. How does the system record
new values so that consequently the it can find and return the latest value of a replicated
object? This problem was not present with a central server implementation: the server
always contains the latest value. In a replicated implementation, one may attempt to consult
all replicas in search of the latest value, but this approach is expensive and not fault-tolerant
as it assumes that all replicas are accessible. A trivial solution would be in each operation to
consult all replicas servers in search of the latest value, however, this is not fault-tolerant (as
it assumes all replicas are accessible) and expensive. In any case, none of the implementation
issues should be a concern for the clients of the distributed memory service. What the clients
should expect to see is the illusion of a single-copy object that serializes all accesses so that
each read operation returns the value of the preceding write operation, and that this value is
at least as recent as that returned by any preceding read. More generally, the behavior of
the object, as observed externally, must be consistent with the abstract sequential data type
of the object, and in developing applications that use such objects the clients must be able
to rely on the abstract data type of the object. This notion of consistency is formalized as
atomicity [35] for read/write objects, and equivalently, as linearizability [32] that extends
atomicity to arbitrary data types. While there is no argument that atomicity is the most
convenient notion of consistency, we note that weaker notions have also been proposed and
implemented, motivated primarily by efficiency considerations. Atomicity provides strong
guarantees, making it more expensive to provide than weaker consistency guarantees [7].
We take the view that it is nevertheless important to provide simple and intuitive, be it
more expensive, atomic consistency. Barbara Liskov, a Turing Prize laureate, in a keynote
address (at [37]) remarked that atomicity is not cheap, however, if we do not guarantee it,
this creates headaches for developers.
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Contemporary storage systems may also provide more complex data access primitives
implementing atomic read-modify-write operations. Such access primitives are much stronger
than separate read and write primitives we consider in this work. Implementing such opera-
tions is expensive, and at its core requires atomic updates that in practice are implemented
by reducing parts of the system to a single-writer model (ex., Microsoft’s Azure [10]), by
depending on clock synchronization hardware (ex., Google’s Spanner [13]), or by relying
on complex mechanisms for resolving event ordering such as vector clocks (ex., Amazon’s
Dynamo [15]). Our exposition of atomic read/write storage illustrates challenges that are
common to all distributed storage systems.

Document structure. Section 2 describes the general distributed setting for implementing
consistent shared memory services, defines atomic conistency, and describes the measures
of efficiency. In Sections 3 and 4 we present several approaches that implement consistent
shared memory in static services for the SWMR and the MWMR setting respectively. Lastly,
we survey several approaches for providing consistent shared memory in dynamic systems in
Section 5. We conclude with a discussion in Section 6.

2 Distribution and Consistency

We now describe a general distributed setting for implementing consistent shared memory
services.

Modeling distributed platforms. We model the system as a collection of interconnected
computers, or nodes, that communicate by sending point-to-point messages. Each node
has a unique identifier from some well-ordered set I, local storage, and it can perform
local computation. A node may fail by crashing at any point of the computation. The
time of failure is chosen by and adversary that has knowledge of the past computation and
the algorithms implementing a particular distributed service. Any node that crashes stops
operating: it does not perform any local computation, it does not send any messages, and
any messages sent to it are not delivered. Common approaches to implementing resilient in
the face of failures algorithm specify failure models that provide qualitative or quantitative
restrictions on the power of adversaries, e.g., by limiting the adversary to causing at most f
crashes for some algorithm-specific parameter f .

The system is asynchronous, and the nodes have no access to a global clock or synchroniz-
ation mechanisms. This means that relative processing speeds at the nodes can be arbitrary,
and that the nodes do not know the upper bound on time that it takes to perform a local
computation. The message delays can also be arbitrary, and the nodes do not know bounds
on message latency (although such bounds may exist). Thus algorithms may not rely on
assumptions about global time or delays.

We assume that messages can be reordered in transit, however, the messages cannot be
corrupted, duplicated, or generated spontaneously. If a message is received then it must
have been previously sent. The messages are not lost, but message loss can be modeled as
long delays (we do not address techniques for constructing more dependable communication
services, e.g., by using retransmission or gossip).

The nodes with ids in the set I include a set of writers W , a set of readers R, and a set
of replica servers S. These sets need not be disjoint, but it is helpful to view separately the
roles a participant in the service can play. We categorize a distributed networked system as
either static or dynamic as follows. In the static system the set of participating nodes is fixed,

ICALP 2018
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and each node may know the identity of all participants; crashes (or voluntary departures)
may remove nodes from the system. Static algorithms are commonly designed to tolerate up
to f < |S|/2 server crashes and arbitrary number of crashes among readers and writers. In
the dynamic system the set of nodes may be unbounded, and the set of participating nodes
may completely change over time as the result of crashes, departures, and new nodes joining.
The failure models considered in dynamic settings are much more complicated, given the
systems may dramatically evolve over time.

Distributed shared memory and consistency. A distributed shared memory service emu-
lates a shared memory space comprised of readable and writable objects, often called registers,
over a networked platform that where distributed nodes communicate by message passing.
Service implementations use replication to ensure survivability and availability of the objects,
but the service makes this invisible to the clients. The contents of each object is replicated
across several servers or replica hosts. Clients invoke read and write operations on the objects,
where the clients that perform read operations are called readers, and those that perform
write operations are called writers (a client may be both a reader and a writer).

In response to client requests the service invokes a protocol that involves communication
with the replica hosts. This protocol implements and determines the consistency guarantees
of the memory system. Atomic consistency definition involves “shrinking” the duration
of each operation in any execution to a chosen serialization point between the operation’s
invocation and response, and requiring that the ordering of the operations according to the
serialization points preserves their real-time ordering, and the resulting behavior of the object
is consistent with its sequential specification. In particular, if a read is invoked after a write
completes, then the read is guaranteed to return either the value of that write, or a value
written by subsequent write that precedes the read. Additionally, if a read is invoked after
another read completes, it returns the same or a “newer” value than the preceding read.

Whereas atomicity is often defined in terms of an equivalence with a serial memory, the
definition given below implies this equivalence (as shown in in Lemma 13.16 in [39]), and is
more convenient to use because it provides a usable recipe for proving atomic consistency.

I Definition 1 (Atomicity, [39]). An implementation of an object is atomic, if for any
execution if all the read and write operations that are invoked on an object complete, then
the read and write operations for the object can be partially ordered by an ordering ≺, so
that the following conditions are satisfied:
A1. The partial order is consistent with the external order of invocations and responses,

that is, there do not exist read or write operations π1 and π2 such that π1 completes
before π2 starts, yet π2 ≺ π1.

A2. All write operations are totally ordered and every read operation is ordered with respect
to all the writes.

A3. Every read operation ordered after any writes returns the value of the last write preceding
it in the partial order; any read operation ordered before all writes returns the initial
value.

Efficiency, Rounds and Message Exchanges. In assessing the efficiency of read and write
operations of an implementation, we measure communication latency, local computation time,
and message complexity of operations.

Communication latency of an operation is measured in terms of communication rounds or
communication exchanges. The protocol implementing each operation involves a collection of
sends of typed messages and the corresponding receives. A communication round is defined
following [17].
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I Definition 2 (Communication Round, [17]). A process p performs a communication round
during an operation π in an execution of an implementation A if all the following hold:
1. process p sends message(s) for operation π to a set of processes Z ⊆ I,
2. upon the delivery of the message for π to process q, q ∈ Z, q sends a reply for π to p

without waiting for any other messages, and
3. when p receives the collection of replies that is deemed sufficient by the implementation,

it terminates the round. After this either p starts a new round or π completes.

A communication exchange is defined in [30].

I Definition 3 (Communication Exchange, [30]). Within an execution of an implementation
A, a communication exchange is the set of sends and corresponding matching receives for a
specific type of message within the protocol.

We can observe that a round in Definition 2 is composed of two exchanges: the first is
comprised of sends in item (1) and the corresponding receives in item (2), and the second is
comprised of the reply sends in item (2) and the corresponding receives in item (3). Thus, in
essence each exchange constitutes “one half” of a round. Traditional implementations in the
style of ABD are structured in terms of communication rounds, cf. [5, 26], each consisting
of two exchanges. The first is a broadcast from a reader or writer process to the servers,
and the second is a convergecast in which the servers send corresponding responses to the
initiating process.

Computation time accounts for all local computation within an operation; here time
complexity of local computation may be significant. When local computation is not more
than a constant time per each message send and receive, we consider this to be insignificant
relative to the communication latency of an operation. Otherwise, computation time needs
to be assessed in addition to communication latency.

Message complexity of an operation is determined by the worst case number of messages
sent during the operation.

3 SWMR Implementations

Algorithms designed for single-writer static settings assume a fixed set known participants
and accommodate some dynamic behaviors, such as asynchrony, transient failures, and
permanent crashes within certain limits. A summary of the most relevant results for this
setting is given in the first part of Table 1.

We commence by presenting the the seminal work of Attiya, Bar-Noy, and Dolev [5]
that provides an algorithm, colloquially referred to as ABD, that implements SWMR atomic
objects in message-passing crash-prone asynchronous environments. This work won the
Dijkstra Prize in 2011. In ABD replication helps achieve fault-tolerance and availability, and
the implementation replicates objects at nodes in the set S, called servers, and it tolerates f
replica servers crashes, provided a majority of replicas do not fail, i.e., |S| > 2f . Read and
write operations are ordered using logical timestamps associated with each written value.
These timestamps totally order write operations, and therefore determine the values that
read operations return. All operations terminate provided a majority of replicas do not crash.

A pseudocode for ABD is given in Algorithm 1; in referring to the numbered lines of code
we use the prefix “L” to stand for “line”. Write operations involve a single communication
round-trip consisting of two communication exchanges. The writer broadcasts its request to
all replica servers during the first exchange and terminates once it collects acknowledgments
from some majority of servers in the second exchange (L19-23). Each read operation takes
two rounds involving in four communication exchanges. The reader broadcasts a read request

ICALP 2018
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Table 1 Model, Communication Exchanges, Message Complexities, Participation Bounds, and
Predicate Computational Class.

Write Read Wrt Msg Rd Msg Client Local
Algorithm Model Exch. Exch. Comp Comp Participation Complexity

ABD [5] SWMR 2 4 2|S| 4|S| Unbounded Constant
Fast [17] SWMR 2 2 2|S| 2|S| |R| < |S|

f
− 2 NP-Hard

Sf [26] SWMR 2 2 or 4 2|S| 4|S| |V| < |S|
f
− 1 NP-Hard

Sliq [25] SWMR 2 2 or 4 2|S| 4|S| Unbounded Constant
ccFast [4] SWMR 2 2 2|S| 2|S| |R| < |S|

f
− 2 Polynomial

OhSam [30] SWMR 2 3 2|S| 2|S|+ |S|2 Unbounded Constant
OhSam′ [30] SWMR 2 2 or 3 2|S| 3|S|+ |S|2 Unbounded Constant
ccHybrid [3] SWMR 2 2 or 4 2|S| 4|S| Unbounded Polynomial
OhFast [3] SWMR 2 2 or 3 2|S| |S|2 Unbounded Polynomial

MR [41] SWMR 2 2 or 3 or 4 |S|2 4|S| Unbounded Constant
Erato [21] SWMR 2 2 or 3 2|S| 3|S|+ |S|2 Unbounded Constant

ABD-mw [5, 40] MWMR 4 4 4|S| 4|S| Unbounded Constant
Sfw [18] MWMR 2 or 4 2 or 4 4|S| 4|S| Unbounded NP-Hard

CwFr [24] MWMR 4 2 or 4 4|S| 4|S| Unbounded Constant
OhMam [30] MWMR 4 3 4|S| 2|S|+ |S|2 Unbounded Constant
OhMam′ [30] MWMR 4 2 or 3 4|S| 3|S|+ |S|2 Unbounded Constant

Erato-mw [21] MWMR 4 2 or 3 4|S| 3|S|+ |S|2 Unbounded Constant

to all replica servers in the first exchange, collects acknowledgments from some majority
of servers in the second exchange, and it discovers the maximum timestamp (L3-7). In
order to ensure that any subsequent read will return a value associated with a timestamp
at least as high as the discovered maximum, the reader propagates the value associated
with the maximum timestamp to at least a majority of servers before completion (L8-11).
The correctness of this implementation, that is, atomicity, relies on the fact that any two
majorities have a non-empty intersection. The local computation at readers, writers and
servers in ABD incurs insignificant computational overhead.

Following ABD, a folklore belief developed that in atomic memory implementations,
“reads must write.” The work by Dutta et al. [17] refuted this belief by presenting an algorithm,
called Fast, in which all read and write operations involve only two communication exchanges.
Such operations are called fast. To avoid the second round in read operations, Fast uses
two mechanisms: (i) a recording mechanism at the servers, and (ii) a predicate that uses the
server records at the readers. Here, each server records in a set all processes that witness its
local timestamp and resets it whenever it learns a new timestamp. Each reader explores the
sets from the different server replies to determine whether “enough” processes witnessed the
maximum observed timestamp. If the predicate holds, the reader returns the value associated
with the maximum timestamp. Otherwise it returns the value associated with the previous
timestamp. The predicate takes in account which processes witnessed the latest timestamp
as it examines the intersection of the received sets.

It was also shown in [17] that atomic memory implementations are only possible when
the number of readers is constrained in with respect to the number of replicas servers and in
inverse proportion to the number of crashes as stated in the following theorem.

I Theorem 4 ([17]). Let f ≥ 1, |W| = 1 and |R| ≥ 2. If |R| ≥ |S|f − 2, then there is no fast
atomic register implementation.
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Algorithm 1 Reader, Writer, and Server Protocols for SWMR algorithm ABD

1: At each reader r
2: function Read(v: output)
3: Get: broadcast 〈get, i〉 to all replica servers
4: await responses 〈get-ack, v′, ts′〉
5: from some majority of servers
6: Let v be the value associated with the
7: maximum timestamp maxts received
8: Put: broadcast 〈put, v, maxts, i〉 to all servers
9: await responses 〈put-ack〉

10: from some majority of servers
11: return(v)

12: At each server s
13: State v init ⊥, ts init 0
14: Upon receive 〈get, j〉
15: send 〈get-ack, v, ts〉 to j

16: At each writer w
17: State ts init 0
18: function Write(v: input)
19: Put: ts← ts + 1
20: broadcast 〈put, v, ts, i〉 to all servers
21: await responses 〈put-ack〉
22: from some majority of servers
23: return()

24: At each server s
25: Upon receive 〈put, v′, ts′, j〉
26: if ts′ > ts then
27: (ts, v)← (ts′, v′)
28: send 〈put-ack〉 to j

A recent work by Fernández Anta, Nicolaou, and Popa [4], has shown that, although the
result in [17] is efficient in terms of communication, it requires reader processes to evaluate
a computationally hard predicate. The authors abstracted the predicate used in Fast as
a computational problem that they show to be NP-hard via a reduction from the decision
version of the Maximum Edge Biclique Problem [43], which is NP-Complete. This suggest
the existence of a trade-off between communication efficiency and computational overhead in
atomic memory implementations.

Given the inherent limitation on the number of readers in fast single-writer implement-
ations, Georgiou et al. [26] sought a solution that would remove the limit on the number
of readers, in exchange for slowing down some operations, i.e., the goal is to enable fast
operations, but allow slower operations, taking more than two communication exchanges,
when this is unavoidable. They provided a SWMR algorithm, named Sf, that adopts an
approach to implementing readers similar to the one in [17], but uses a polynomial time
predicate to determine whether it is safe for a read operation to terminate after two exchanges.
In order not to place bounds on the number of readers, the authors group readers into abstract
entities, called virtual nodes, serving as enclosures for multiple readers. This refinement has
a non-trivial challenge of maintaining consistency among readers within the same virtual
node. This solution trades communication for the scalability in the number of participating
readers. In Sf significant computational overheads incur in order to determine the speed of
an operation (to evaluate the mentioned predicate). At most a single complete read operation
performs four exchanges for each write operation. Writes and any read operation that pre-
cedes or succeeds a four exchange read, is fast. This development motivated creating a new
class of implementations, called semifast implementations. Informally, an implementation is
semifast if either all reads are fast or all write operations fast. Algorithm Sf becomes fast
(same as [17]) when each virtual node contains one reader.

Georgiou et al. [25] showed that fast and semifast quorum-based SWMR implementations
are possible iff a common intersection exists among all quorums. Because a single point of
failure exists in such solutions (i.e., any server in the common intersection), this renders such
implementations not fault-tolerant. The same work introduced Quorum Views, client-side
tools that examine the distribution of the latest value among the replicas in order to enable
fast read operations (two exchanges) under read and write operation concurrency. The
authors derived a a SWMR algorithm, called Sliq, that requires at least one single slow read
per any write operation, and where all writes are fast. No bound is placed on the number
of readers. Sliq trades communication for the scalability in the number of participating
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readers. Here only insignificant computation effort is needed to examine the distribution of
object values among the replicas that the reader receives during the read operation.

Another algorithm, called ccFast, with a new predicate, is given by Fernández Anta et
al. [4], that allows the operations to be fast with only polynomial computation overhead. The
idea of the new predicate is to examine the replies received in the first communication round
of a read operation and determine how many (instead of which [17]) processes witnessed
the maximum timestamp among those replies. With this modification, the predicate takes
polynomial time to decide the value to be returned and it reduces the size of each message
sent by the replica nodes. Algorithm ccFast is more practical than [17], but it has the same
constraint on the number of readers.

Previous works dealt with algorithms that used only communication between clients
(readers and writers) and the replica servers. Hadjistasi, Nicolaou and Schwarzmann [30]
explored another approach that exploits server-to-server communication. In particular,
they showed that atomic operations do not need to involve complete communication round
trips between clients and servers. The authors focused on the gap between one-round and
two-round algorithms, seeking implementations where operations can take “one and a half
rounds,” i.e., be able to complete in three exchanges. They presented a SWMR algorithm,
called OhSam, which stands for One and a Half Rounds Single-writer Atomic Memory. Here
reads take three exchanges: the first from the client to the servers, the second is server-to-
server, and the third is from the servers to the client. Such implementations trade latency
for message complexity: the latency is reduced to three exchanges, while server-to-server
exchange has quadratic message complexity in the number of servers. A key idea of the
algorithm is that the reader returns the value that is associated with the minimum timestamp
that corresponds to the last complete write operation (cf. the observation in [17]).

In the same work [30], authors revised the protocol implementing read operations of
algorithm OhSam to yield a protocol that implements read operations that terminate in
either two or three communication exchanges, OhSam′. The idea here is to let the reader
determine “quickly” that a majority of servers hold the same timestamp (or tag) and its
associated value. This is done by having the servers send relay messages to each other as
well as to the readers. While a reader collects the relays and the read acknowledgments, if it
observes in the set of the received relay messages that a majority of servers holds the same
timestamp, then it safely returns the associated value and the read operation terminates
in two exchanges. If that is not the case, then the reader proceeds similarly to algorithm
OhSam and terminates in three communication exchanges. Algorithms OhSam and OhSam′
do not impose constraints on reader participation and perform a modest amount of local
computation, resulting in negligible computation overhead.

Fernández Anta et al. [3] introduced a “multi-speed” algorithm, named ccHybrid that
allows operations to terminate in either two or four communication exchanges. Algorithm
ccHybrid does not impose any bounds on the number of the participating readers. ccHybrid
uses the polynomial predicate introduced in [4] to determine the speed of a read operation,
and it requires at most one complete slow operation per written value. This is similar to the
semifast algorithm Sf [26]. However, in contrast with Sf, in which processes have to decide
NP-hard predicates, ccHybrid performs only linear computation.

The same work [3] explores the idea of combining the polynomial predicate with the three
communication exchanges read protocol of algorithm OhSam [30]. The resulting “multi-speed”
algorithm, called OhFast, allows one and one-and-a-half round-trip operations, equivalent
two or three communication exchanges. In algorithm OhFast, the decision of whether the
read operation must be slow is moved to the replica servers. When replica servers determine
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that a slow read is necessary, they perform a relay phase to inform other servers before
replying to the requesting reader. It is interesting that in OhFast not all servers uniformly
perform a relay for a particular read operation. Some servers may be replying directly to the
requesting reader, whereas others may perform a relay phase. Thus, it is possible for a read
operation to terminate before receiving a reply from the server that initiates the relay.

A recent work by Mostefaoui and Raynal [41] defines what a time-efficient implementation
of atomic registers is based on two different synchrony assumptions. The first assumes bounded
message delays and is expressed in terms of delays, and the second assumes round-based
synchrony. Authors then present a time-efficient implementation of atomic registers while
trying to keep its design spirit as close as possible to ABD. We refer to this solution as
algorithm MR. In the algorithm a write operation takes two communication exchanges and
a read operation takes two, or three, or four exchanges. The heart of the given algorithm
is the wait predicate that takes place on the servers side and it is associated with write
operations. The wait predicate ensures both atomicity and the fact that the implementation
is time-efficient. The trade-off between ABD and this implementation lies in the message
complexity of write operations, which for ABD is linear and for MR is quadratic in to the
number of replica servers. Algorithm MR is particularly interesting for registers used in
read-dominated applications.

Lastly, Georgiou et al. [21] presented algorithm Erato, which stands for Efficient Reads
for ATomic Objects. The algorithm improves the three-exchange read protocol of OhSam [30]
to allow reads to terminate in either two or three exchanges using client-side tools, Quorum
Views, introduced in algorithm Sliq [25]. The three exchanges of the new read protocol are
as follows: (1) reader broadcasts a request to servers; (2) the servers share this information
among themselves, including the reader, and (3) once this is “sufficiently” done, servers reply
to the reader. During the second exchange, the reader uses Quorum Views [25] to categorize
the distribution of timestamps, and determines whether it is able to complete the read. If
not, it awaits “enough” messages from the third exchange before completion. Here, the idea
of the algorithm is that when the reader is “slow” it returns the value associated with the
minimum timestamp, i.e., the value of the previous write that is guaranteed to be complete
(cf. [30] and [17]). Similarly to ABD, write operations take two exchanges.

4 MWMR Implementations

We now turn out attention to the multi-writer/multi-reader (MWMR) implementations of
atomic memory. Whereas logical timestamps alone are sufficient to order write operations in
the single-writer algorithms, the existence of multiple writers requires a somewhat different
approach. The simplest approach is instead of a timestamp to use pairs consisting of a
timestamp and processor id to order the written values. Such a pair is termed a tag. When
a writer performs a write operation it associates the value with a tag 〈ts, id〉, where ts is
a logical timestamp, and id is the writer’s unique id that distinguishes the current write
operation from all others. Tags are ordered lexicographically in establishing an order on the
operations. A summary of the most relevant results for this setting is given in the second
part of Table 1.

The work of Lynch and Schwarzmann [40] presented a multi-writer extension of algorithm
ABD (and also introduced the notion of reconfigurable memory, where the set of replica
servers can be dynamically reconfigured). The static version of their MWMR implementation,
that we call ABD-mw, is given in Algorithm 2. In contrast with ABD, where the sole writer
generates new timestamps without any communication, the writers in ABD-mw start a
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Algorithm 2 Reader, Writer, and Server Protocols for MWMR algorithm ABD-mw

1: At each reader r
2: function Read(v: output)
3: Get: broadcast 〈get, i〉 to all replica servers
4: await responses 〈get-ack, v′, tag′〉
5: from some majority of servers
6: Let v be the value associated with the
7: maximum tag maxtag received
8: Put: broadcast 〈put, v, maxtag, r〉 to all servers
9: await responses 〈put-ack〉

10: from some majority of servers
11: return(v)

12: At each server s
13: State v init ⊥, tag init 〈0,⊥〉
14: Upon receive 〈get, j〉
15: send 〈get-ack, v, tag〉 to j

16: At each writer w
17: function Write(v: input)
18: Get: broadcast 〈get, i〉 to all replica servers
19: await responses 〈get-ack, v′, tag′〉
20: from some majority of servers
21: Let maxtag = 〈ts, pid〉 be the max tag
22: Let newtag = 〈ts + 1, w〉
23: Put: broadcast 〈put, v, newtag, w〉 to all servers
24: await responses 〈put-ack〉
25: from some majority of servers
26: return()

27: At each server s
28: Upon receive 〈put, v′, tag′, j〉
29: if tag′ > tag then
30: (tag, v)← (tag′, v′)
31: send 〈put-ack〉 to j

write operation by performing an additional round in which the replica servers are queried
for their latest tags. Once tags are received from a majority of servers, the writer increments
the timestamp of the highest detected timestamp to produce its new tag. The the second
round is performed as in ABD.

In more detail, the writer performs the “Get” round, broadcasting its request to the
servers in the first exchange (L18). Servers reply with their latest timestamps in the second
exchange (L18-22 and L12-15). The writer determines the highest timestamp among the
replies, increments it, produces a new tag that includes its id, and then performs the “Put”
round in which it in the third exchange broadcasts the new tag and the new value to all
servers (L23-26). On the server side, if the incoming message contains a higher tag, then the
server update its local information and send an acknowledgment in the fourth communication
exchange (L27-31). The write protocol completes once the writer collects acknowledgments
from a majority of servers. The first two exchanges ensure that the writer produces a tag
that is higher than that of any preceding write. Thus a write operation for ABD-mw takes
four exchanges in comparison with the two exchanges in ABD. The read protocol is identical
to the four-exchange protocol in ABD, the only difference being that tags are used instead
of timestamps. The correctness (atomicity) of this implementation, relies on the fact that
any two majorities have a non-empty intersection and that in each round, the read and write
protocols await responses from at least a majority of servers.

This algorithm places no constrains on the number of readers and writers, and it performs
a modest amount of local computation, resulting in negligible computation overhead. This
algorithm can also be used used with quorum systems instead of majorities [40, 44], because
the only property of majorities that is used is that any two majorities have a non-empty
intersection, just like any two quorums. The failure model for the quorum based solution is
that any pattern of crashes is tolerated, provided that the servers in at least one quorums do
not crash.

Algorithm ABD-mw established that two rounds are sufficient to implement atomic
read and write operations. The question of whether fast (single round) implementations
are possible was answered in the negative in [17], where it was shown that fast reads are
possible only in the single-writer model SWMR. In particular, fast MWMR implementations
are impossible when the set of readers R and the set of writers W contain more than two
nodes each.

I Theorem 5 ([17]). Let |W| ≥ 2, |R| ≥ 2, and f ≥ 1. Any atomic register implementation
has a run in which some complete read or write operation is not fast.
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Moreover, Georgiou et al. [26] showed that semifast implementations (recall from Section 3
that in a semifast implementation either all reads are fast or all the write operations fast)
are impossible in the MWMR setting.

I Theorem 6 ([26]). If |W| ≥ 2, |R| ≥ 2, and the number of server crashes f ≥ 1, then
semifast atomic register implementation is impossible.

These impossibility results motivated the development of algorithms that allow some
operations to complete in less than two rounds or in less than four communication exchanges.
The work from Englert et al. [18] proposed hybrid approaches where some operations complete
in two and other in four communication exchanges. Their algorithm Sfw uses quorum
systems and enables some reads and writes to be fast. In order to decide whether an operation
can terminate after its first round, the algorithm employs two specialized predicates. However,
the predicates are computationally hard (NP-hard), and fast write operations are enabled
only if the quorum system satisfies certain quorum intersection properties, rendering the
algorithm impractical.

Georgiou et al. [24] presented a MWMR algorithm, called CwFr, that allows fast read
operations. The algorithm uses a generalization of client-side decision tools, Quorum Views,
developed for the SWMR setting [25], to analyze the distribution of a value within a quorum
of replies from servers to determine whether fast termination is safe. Since multiple writes can
occur concurrently, an iterative technique is used to discover the latest potentially complete
write operation. Here read operations terminate in either two or four communication
exchanges. The write protocol is essentially the same as in ABD-mw, taking four exchanges
to complete. Algorithm CwFr does not impose constrains on participation and it performs
a modest amount of local computation, resulting in negligible computation overhead.

Hadjistasi et al. [30] sought a MWMR solution that involves three or four communication
exchanges per operation, and developed algorithm OhMam, which stands for One and a
Half Rounds Multi-writer Atomic Memory. The authors adopted the three-exchange protocol
from the SWMR algorithm OhSam to the MWMR setting. The read protocol of OhMam
differs in that it uses tags instead of timestamps. The write protocol is identical to the one
that ABD-mw uses and completes in four communication exchanges.

The authors then revised the protocol implementing read operations of algorithm OhMam
to yield a protocol that implements read operations that terminate in either two or three
communication exchanges, the resulting algorithm is called OhMam′. The idea here is
to expedite the reader’s determination that a majority of servers hold the same tag and
its associated value. This is achieved by having the servers send relay messages to each
other as well as to the requesting reader. While a reader collects the relays and the read
acknowledgments, if it observes in the set of the received relay messages that a majority
of servers holds the same timestamp, then it safely returns the associated value, thus
terminating in two exchanges. If that is not the case, then the reader proceeds similarly
to algorithm OhMam and terminates in three communication exchanges. The operations
perform insignificant amount of local computation.

Lastly, Georgiou et al. [21], using the SWMR algorithm Erato as the basis, developed
a MWMR algorithm, Erato-mw. In adopting the single-writer algorithm, the challenge is
that the read protocol cannot be used directly because it relies on the fact that if a write
is in progress, then the preceding write is complete. Instead the algorithm implements
a three-exchange read protocol based on [30] in combination with the iterative technique
using Quorum Views as in [24]. This technique determines the completion status of a write
operation, and also detects the last potentially complete write operation. Read operations
complete in either two or three exchanges. Writes are similar to ABD-mw and take four
communication exchanges. This algorithm also has a negligible computation overhead.
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5 Shared Memory in Dynamic Settings

Additional challenges arise when a shared memory system must be long-lived and must
ensure data longevity. A storage system may be able to tolerate failures of some servers,
but over a long period it is conceivable that all servers may need to be replaced, because no
servers are infallible, and also due to unavoidable changes or planned upgrades. Additionally,
in mobile settings, e.g., remote search-and-rescue or military operations, it may be necessary
to provide migration of data from one collection of servers to another, so that the data can
move as the needs dictate. Whether our concern is data longevity or mobility, the storage
system must provide seamless runtime migration of data: one cannot stop the world and
reconfigure the system in response to failures and changing environment.

We now survey several approaches for providing consistent shared memory in more
dynamic systems, that is, where nodes may not only crash or depart voluntarily, but where
new nodes may join the service, and where the entire collection of servers need to be replaced.
In general, the set of object replicas can substantially evolve over time, ultimately migrating
to a completely different set of replica hosts. Thus, an implementation designed for static
settings, e.g., algorithm ABD, cannot be used directly in dynamic settings because it relies
on the majority of original replica hosts to always be available. In order to use an ABD-like
approach in dynamic settings, one must provide some means for managing the collections of
replica hosts, and to ensure that readers and writers contact suitable such collections.

It is noteworthy that dealing with dynamic settings and managing collections of nodes
does not directly address the provision of consistency in memory services. Instead, these
issues are representative of the broader challenges present in the realm of dynamic distributed
computing. It is illustrative that implementations of consistent shared memory services
can sometimes be constructed using distributed building blocks, such as those designed for
managing collections of participating nodes, for providing suitable communication primitives,
and for reaching agreement (consensus) in dynamic distributed settings. A tutorial covering
several of these topics is presented by Aguilera et al. [2].

We start by presenting the consensus problem because it provides a natural basis for
implementing an atomic memory service by establishing an agreed-upon order of operations,
and because consensus is used in other ways in atomic memory implementations. Next
we present group communication services (GCS) solutions that use strong communication
primitives, such as totally ordered broadcast, to order operations. Finally we focus on
approaches that extend the ideas of algorithm ABD to dynamic settings with explicit
management of the evolving collections of replica hosts.

Consensus. Reaching agreement in distributed settings is a fundamental problem of com-
puter science. The agreement problem in distributed settings is called consensus. Here a
collection of processes need to agree on a value, where each process may propose a value
for consideration. Any solution must satisfy the following properties: Agreement: no two
processes decide on different values; Validity: the value decided was proposed by some
process; Termination: all correct processes reach a decision. Consensus is a powerful tool
in designing distributed services [39], however, consensus is a notoriously difficult problem
to solve in asynchronous systems, where termination cannot be guaranteed in the presence
of even a single process crash [20] (this is the seminal FLP impossibility result of Fischer,
Lynch, and Paterson); thus consensus must be used with care.

Consensus algorithms can be used directly to implement an atomic data service by
enabling the participants to agree on a global total ordering of all operations [36]. The
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correctness (atomicity) here is guaranteed regardless of the choice of a specific consensus
implementation, but the understanding of the underlying platform characteristics can guide
the choice of the implementation for the benefit of system performance (for a tour de force of
implementations see [39]). Nevertheless, using consensus for each operation is a heavy-handed
approach, especially given that perturbations may delay or even prevent termination. Thus,
when using consensus, one must avoid invoking it in conjunction with individual memory
operations, and make operations independent of the termination of consensus.

We note that achieving consensus is a more difficult problem than implementing atomic
read/write objects. In particular, consensus cannot be solved for two or more processes by
using atomic read/write registers [31, 38].

Group communication services. Among the most important building blocks for distributed
systems are group communication services (GCS) [8]. GCSs enable processes at different
nodes of a network to operate collectively as a group by means of multicast services that
deliver messages to the members of the group, and offer various guarantees about the
order and reliability of delivery. The basis of a GCS is a group membership service. Each
process, at any time, has a unique view of the group that includes a list of the processes in
the group. Views can change over time, and may become different at different processes.
Another important concept introduced by the GCS approach is virtual synchrony, where
an essential requirement is that processes that proceed together through two consecutive
views deliver the same set of messages between these views. This allows the recipients to
take coordinated action based on the message, the membership set, and the rules prescribed
by the application [8].

GCSs offer one approach for implementing shared memory. For example, one can
implement a global totally ordered multicast service on top of a view-synchronous GCS [19].
The ordered multicast is used to impose an order on the memory access operations, yielding
atomic memory. The main disadvantage in such solutions is that in GCS implementations,
forming a new view takes time, and client memory operations are delayed (or aborted) during
the view-formation period.

Another approach is to integrate a GCS with algorithm ABD as done in the dynamic
primary configuration GCS of [14] that implements atomic memory by using techniques of [6]
within each configuration, where configurations include a group view and a quorum system.

A general methodology for dynamic service replication is presented in [9]. This reconfig-
uration model unifies the virtual synchrony approach with state machine replication, as used
in consensus solutions, in particular, Paxos [36].

DynaStore Algorithm. DynaStore [1] is an implementation of a dynamic atomic memory
service for multi-writer/multi-reader objects. The participants start with a default local
configuration, that is, some common set of replica hosts. The algorithm supports three kinds
of operations: read, write, and reconfig. The read and write operations involve two phases,
and in the absence of reconfigurations, the protocol is similar to ABD. If a participant wishes
to change its current configuration, it uses the reconfig operation and supplies with it a set
of incremental changes.

The implementation of reconfig involves traversals of dag’s representing possible sequences
of changed configurations. In each traversal the dag may be revised to reflect multiple
changes to the same configuration. The assumption that a majority of the involved hosts are
not removed and do not crash ensures that there is a path through the dag that is guaranteed
to be common among all hosts. The traversal terminates when a sink node is reached. The
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reconfig protocol involves two phases. The goal of the first phase is similar to the Get phase
of ABD: discover the latest value-tag pair for the object. The goal of the second phase is
similar to the Put phase of ABD: convey the latest value-tag pair to a suitable majority of
replica hosts. The main difference is that these two phases are performed in the context of
applying the incremental changes to the configuration, while at the same time discovering
the changes submitted by other participants. This “bootstraps" possible new configurations.
Given that all of this is done by traversing all possible paths—and thus configurations—in
the dag’s ensures that the common path is also traversed.

The read follows the implementation of reconfig, with the differences being: (a) the set of
configuration changes is empty, and (b) the discovered value is returned to the client. The
write also follows the implementation of reconfig, with the differences being: (a) the set of
changes is empty, (b) a new, higher tag is produced upon the completion of the first phase,
and (c) the new value-tag pair is propagated in the second phase.

We note that DynaStore implementation does not incorporate consensus for reconfig-
uration. On the other hand, reconfigurations are accomplished by additions and removals
of individual nodes and this may lead to larger overheads as compared to approaches that
evolve the system by replacing a complete configuration with another. Thus the latency of
read and write operations are more dependent on the rate of reconfigurations. Finally, in
order to guarantee termination, DynaStore assumes that reconfigurations eventually subside.

Rambo Framework. Rambo is a dynamic memory service supporting MWMR objects [28];
Rambo stands for Reconfigurable Atomic Memory for Basic Objects. This algorithm uses
configurations, each consisting of a set of replica hosts plus a quorum system defined over these
hosts, and supports reconfiguration, by which configurations can be replaced. Notably, any
quorum configuration may be installed at any time, and quorums from distinct configurations
are not required to have non-empty intersections. The algorithm ensures atomicity in all
executions. During quiescent periods when there are no reconfigurations, the algorithm
operates similarly to algorithm ABD [6, 40]. To enable long-term operation of the service,
quorum configurations can be reconfigured. Reconfigurations are performed concurrently with
any ongoing read and write operations, and do not directly affect such operations. Additionally,
multiple reconfigurations may be in progress concurrently. Reconfiguration involves two
decoupled protocols: (1) introduction of a new configuration by the component called Recon,
and (2) upgrade to the new configuration and garbage collection of obsolete configuration(s).
Recon always emits a unique new configuration. Different reconfiguration proposals are
reconciled by executing consensus among the members of an existing configuration. Note that
termination of read and write operations does not depend on termination of reconfiguration.
It is the duty of a decoupled upgrade protocol to garbage collect old configurations and
propagate the information about the object to the latest locally-known configuration. The
main algorithm performs read and write operations using a two-phase strategy. The first
phase gathers information from the quorums of active configurations, then the second phase
propagates information to the quorums of active configurations. Note that during each phase
new configurations may be discovered. To handle this each phase is terminated by a fixed
point condition that involves a quorum from each active configuration.

Lastly, Rambo is used as a framework for refinements and optimizations, and several
subsequent works focused on practical considerations [29, 12, 22, 23, 33]. GeoQuorums [16]
is an approach to implementing atomic shared memory on top of a physical platform that is
based on mobile nodes moving in arbitrary patterns. The algorithm simplifies reconfiguration
of Rambo by using a finite set of possible configurations, and as the result it avoids the use
of consensus. Here it is sufficient for a mobile node to discover the latest configuration, and
contact and propagate the latest register information to all configurations.
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6 Discussion

We presented several approaches for implement atomically consistent memory services in
distributed message-passing systems. Our focus is on atomic consistency because it is an
intuitive notion that hides the complexities of underlying implementations, presenting a
convenient abstraction to the software builders. This is particularly valuable because of
the common perception that the shared-memory paradigm is easier to deal with than the
message-passing paradigm in designing distributed algorithms. The solutions presented in this
work are representative of the different design choices available for implementing distributed
memory services, and we emphasized the trade-offs present in different approaches.

We discussed in detail the issues of resilience and efficiency in the single-writer and
multi-writer models in static settings. We then surveyed several approaches that implement
consistent shared memory in these settings. In the established implementations frameworks
some open problems remain regarding out ability to further improve the efficiency of services
that use variable number of exchanges (two, three, and four) in implementing read and
write operations. We also anticipate that additional lower bounds will be established to
help better understand limitations on efficient implementations. For the static setting, it
is also interesting to investigate the possibility of devising consistent implementations with
zero-delay operations. That is, where operations are able to complete without additional
communication, perhaps only relying on the knowledge obtain through prior communications.
If the answer is in the negative, then it will still be interesting to understand the possibility
of obtaining such implementations for notions of consistency weaker than atomicity, e.g.,
eventual consistency, or by weakening the power of adversity. As an example of this direction,
the work of Chandra et al. [11] assumes a partially synchronous system using synchronized
local clocks. Such solutions are particularly interesting for applications that are either read
or write dominated.

The algorithms that we surveyed for the static settings may have difference fault-tolerance
guarantees and be subject to efficiency trade-offs. This prompted researchers to perform
empirical studies of their proposed algorithms [25, 24, 4, 3, 30, 21]. Here a goal is to
understand how the analytical results are are reflected in practical efficiency. In addition to
simulations, full scale cloud-based experimental evaluations will be certain to yield valuable
observations in realistic settings.

In this paper we also surveyed several approaches for providing consistent shared memory
in more dynamic systems, that is, where nodes may not only crash or depart voluntarily, but
where new nodes may join, and where servers in one configurations can be replaced with
entirely new configurations. Providing efficient atomic implementations remains challenging
for dynamic settings. Here the expectation is that solutions are found by integrating static
algorithms with a reconfiguration framework so that during periods of relative stability one
benefits from the efficiency of static algorithms, and where during the more turbulent times
performance degrades gracefully when reconfigurations are needed. One of the open questions
here is whether consensus is truly necessary for implementing consistent memory services for
long-lived dynamic systems.

The technical challenges and performance overheads in the dynamic setting may be the
reasons why the existing distributed storage solutions shy away from atomic consistency
guarantees. Commercial solutions, such as Google’s File System (GFS) [27], Amazon’s
Dynamo [15], and Facebook’s Cassandra [34], provide less-than-intuitive, unproved guarantees.
The concepts discussed in section 5 are echoed in the design decisions of production systems.
For instance, consensus is used in GFS [27] to ensure agreement on system configuration as it
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is done in Rambo; global time is used in Spanner [13] as it is done in GeoQuorums; replica
access protocols in Dynamo [15] use quorums as in some approaches surveyed here. These
examples provide motivation for pursuing rigorous algorithmic approaches in the study of
consistent data services for dynamic networked systems. For a more detailed discussion, we
direct the interested reader to related work that surveys atomic shared implementations for
dynamic settings [42].

Consistent storage systems continues to be an area of active research and advanced
development, and there are good reasons to believe that as high performance memory
systems with superior fault-tolerance become available, they will play a significant role in
the construction of sophisticated distributed applications. The demand for implementations
providing atomic read/write memory will ultimately be driven by the needs of distributed
applications that require provable consistency and performance guarantees.
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problems which seem to be otherwise complex. The recently developed theory of sparse classes
of graphs (and structures) formalizes this. Particularly the dichotomy Nowhere vs Somewhere
Dense presents a very robust tool to study and design algorithms and algorithmic metatheorems.
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Abstract
We consider the classic d-choice paradigm of Azar et al. [STOC’94] in which m balls are put into
n bins sequentially as follows: For each ball we are given a choice of d bins chosen according to
d hash functions and the ball is placed in the least loaded of these bins, breaking ties arbitrarily.
The interest is in the number of balls in the fullest bin after all balls have been placed.

In this paper we suppose that the d hash functions are simple tabulation hash functions which
are easy to implement and can be evaluated in constant time. Generalising a result by Dahlgaard
et al. [SODA’16] we show that for an arbitrary constant d ≥ 2 the expected maximum load is at
most lg lgn

lg d +O(1). We further show that by using a simple tie-breaking algorithm introduced by
Vöcking [J.ACM’03] the expected maximum load is reduced to lg lgn

d lgϕd
+O(1) where ϕd is the rate

of growth of the d-ary Fibonacci numbers. Both of these expected bounds match those known
from the fully random setting.

The analysis by Dahlgaard et al. relies on a proof by Pătraşcu and Thorup [J.ACM’11]
concerning the use of simple tabulation for cuckoo hashing. We require a generalisation to d > 2
hash functions, but the original proof is an 8-page tour de force of ad-hoc arguments that do not
appear to generalise. Our main technical contribution is a shorter, simpler and more accessible
proof of the result by Pătraşcu and Thorup, where the relevant parts generalise nicely to the
analysis of d choices.
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5:2 Power of d Choices with Simple Tabulation

1 Introduction

Suppose that we are to place m = O(n) balls sequentially into n bins. If the positions of the
balls are chosen independently and uniformly at random it is well-known that the maximum
load of any bin is2 Θ(log n/ log log n) whp (i.e. with probability 1−O(n−γ) for arbitrarily
large fixed γ). See for example [10] for a precise analysis.

Another allocation scheme is the d-choice paradigm (also called the d-choice balanced
allocation scheme) first studied by Azar et al. [2]: The balls are inserted sequentially by for
each ball choosing d bins, according to d hash functions h1, . . . , hd and placing the ball in
the one of these d bins with the least load, breaking ties arbitrarily. Azar et al. [2] showed
that using independent and fully random hash functions the maximum load surprisingly
drops to at most log logn

log d +O(1) whp. This result triggered an extensive study of this and
related types of load balancing schemes. Currently the paper by Azar et al. has more than
700 citations by theoreticians and practitioners alike. The reader is referred to the text
book [13] or the recent survey [21] for thorough discussions. Applications are numerous and
are surveyed in [11, 12].

An interesting variant was introduced by Vöcking [20]. Here the bins are divided into
d groups each of size g = n/d and for each ball we choose a single bin from each group.
The balls are inserted using the d-choice paradigm but in case of ties we always choose the
leftmost of the relevant bins i.e. the one in the group of the smalles index. Vöcking proved
that in this case the maximum load drops further to log logn

d logϕd
+O(1) whp.

In this paper we study the use of simple tabulation hashing in the load balancing schemes
by Azar et al. and by Vöcking.

1.1 Simple tabulation hashing
Recall that a hash function h is a map from a key universe U to a range R chosen with
respect to some probability distribution on RU . If the distribution is uniform we say that h
is fully random but we may impose any probability distribution on RU .

Simple tabulation hashing was first introduced by Zobrist [23]. In simple tabulation
hashing U = [u] = {0, 1, . . . , u − 1} and R = [2r] for some r. We identify R with the
Z2-vector space (Z2)r. The keys x ∈ U are viewed as vectors consisting of c > 1 characters
x = (x[0], . . . , x[c− 1]) with each x[i] ∈ Σ def= [u1/c]. We always assume that c = O(1). The
simple tabulation hash function h is defined by

h(x) =
c−1⊕
i=0

hi(x[i])

where h0, . . . , hc−1 : Σ → R are chosen independently and uniformly at random from RΣ.
Here ⊕ denotes the addition in R which can in turn be interpreted as the bit-wise XOR of
the elements hi(x[i]) when viewed as bit-strings of length r.

Simple tabulation is trivial to implement, and very efficient as the character tables
h0, . . . , hc−1 fit in fast cache. Pătraşcu and Thorup [15] considered the hashing of 32-bit keys
divided into 4 8-bit characters, and found it to be as fast as two 64-bit multiplications. On
computers with larger cache, it may be faster to use 16-bit characters. We note that the c
character table lookups can be done in parallel and that character tables are never changed
once initialised.

2 All logarithms in this paper are binary.
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In the d-choice paradigm, it is very convenient that all the output bits of simple tabulation
are completely independent (the jth bit of h(x) is the XOR of the jth bit of each hi(x[i])).
Using (dr)-bit hash values, can therefore be viewed as using d independent r-bit hash values,
and the d choices can thus be computed using a single simple tabulation hash function and
therefore only c lookups.

1.2 Main results
We will study the maximum load when the elements of a fixed set X ⊂ U with |X| = m are
distributed into d groups of bins G1, . . . , Gd each of size g = n/d using the d-choice paradigm
with independent simple tabulation hash functions h1, . . . , hd : U → [n/d]. The d choices
thus consist of a single bin from each group as in the scheme by Vöcking but for x ∈ X we
may identify hi(x) with (hi(x), i) ∈ [n/d] × [d] and thus think of all hi as mapping to the
same set of bins like in the scheme by Azar et al.

Dahlgaard et al. [7] analysed the case d = 2 proving that if m = O(n) balls are distributed
into two tables each consisting of n/2 bins according to the two choice paradigm using two
independently chosen simple tabulation hash functions, the maximum load of any bin is
O(log log n) whp. For k = O(1) they further provided an example where the maximum
load is at least bkc−1/2c log log n−O(1) with probability Ω(n−2(k−1)(c−1)). Their example
generalises to arbitrary fixed d ≥ 2 so we cannot hope for a maximum load of (1+o(1)) log logn

log d
or even 100× log log n whp when d is constant. However, as we show in the full version of
this paper [1], their result implies that even with d = O(1) choices the maximum load is
O(log log n) whp.

Dahlgaard et al. also proved that the expected maximum load is at most log log n+O(1)
when d = 2. We prove the following result which generalises this to arbitrary d = O(1).

I Theorem 1. Let d > 1 be a fixed constant. Assume m = O(n) balls are distributed into
d tables each of size n/d according to the d-choice paradigm using d independent simple
tabulation hash functions h1, . . . , hd : U → [n/d]. Then the expected maximum load is at
most log logn

log d +O(1).

When in the d-choice paradigm we sometimes encounter ties when placing a ball — several
bins among the d choices may have the same minimum load. As observed by Vöcking [20]
the choice of tie breaking algorithm is of subtle importance to the maximum load. In the
fully random setting, he showed that if we use the Always-Go-Left algorithm which in
case of ties places the ball in the leftmost of the relevant bins, i.e. in the bin in the group of
the smallest index, the maximum load drops to log logn

d logϕd
+O(1) whp. Here ϕd is the unique

positive real solution to the equation xd = xd−1 + · · ·+ x+ 1. We prove that his result holds
in expectation when using simple tabulation hashing.

I Theorem 2. Suppose that we in the setting of Theorem 1 use the Always-Go-Left algorithm
for tie-breaking. Then the expected maximum load of any bin is at most log logn

d logϕd
+O(1).

Note that ϕd is the rate of growth of the so called d-ary Fibonacci numbers for example
defined by Fd(k) = 0 for k ≤ 0, Fd(1) = 1 and finally Fd(k) = Fd(k − 1) + · · ·+ Fd(k − d)
when k > 1. With this definition we can write ϕd = limk→∞

k
√
Fd(k). It is easy to check

that (ϕd)d>1 is an increasing sequence converging to 2.

1.3 Technical contributions
In proving Theorem 1 we would ideally like to follow the approach by Dahlgaard et al. [7]
for the case d = 2 as close as possible. They show that if some bin gets load k + 1 then
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5:4 Power of d Choices with Simple Tabulation

either the hash graph (informally, the d-uniform hypergraph with an edge {h1(x), . . . , hd(x)}
for each x ∈ X) contains a subgraph of size O(k) with more edges than nodes or a certain
kind of “witness tree” Tk. They then bound the probability that either of these events occur
when k = log log n+ r for some sufficiently large constant r. Putting k = log logn

log d + r for a
sufficiently large constant r we similarly have three tasks:
(1) Define the d-ary witness trees and argue that if some bin gets load k+ 1 then either (A):

the hash graph contains a such, or (B): it contains a subgraph G = (V,E) of size O(k)
with |V | ≤ (d− 1)|E| − 1.

(2) Bound the probability of (A).
(3) Bound the probability of (B).

Step (1) and (2) require intricate arguments but the techniques are reminiscent to those
used by Dahlgaard et al. in [7] and it is not surprising that their arguments generalise to our
setting. Due to space limitations this part of our analysis can be found in the full version of
this paper [1].

Our main technical contribution is our work on step (3) as we now describe. Dealing
with step (3) in the case d = 2 Dahlgaard et al. used the proof by Pătraşcu and Thorup [15]
of the result below concerning the use of simple tabulation for cuckoo hashing3.

I Theorem 3 (Pătraşcu and Thorup [15]). Fix ε > 0. Let X ⊂ U be any set of m keys. Let
n be such that n > 2(1 + ε)m. With probability 1 − O(n−1/3) the keys of X can be placed
in two tables of size n/2 with cuckoo hashing using two independent simple tabulation hash
functions h0 and h1.

Unfortunately for us, the original proof of Theorem 3 consists of 8 pages of intricate
ad-hoc arguments that do not seem to generalise to the d-choice setting. Thus we have
had to develop an alternative technique for dealing with step (3) As an extra reward this
technique gives a new proof of Theorem 3 which is shorter, simpler and more readable and
we believe it to be our main contribution and of independent interest4.

1.4 Alternatives
We have shown that balanced allocation with d choices with simple tabulation gives the same
expected maximum load as with fully-random hashing. Simple tabulation uses c lookups
in tables of size u1/c and c− 1 bit-wise XOR. The experiments from [15], with u = 232 and
c = 4, indicate this to be about as fast as two multiplications.

Before comparing with alternative hash functions, we note that we may assume that
u ≤ n2. If u is larger, we can first apply a universal hash function [3] from [u] to [n2]. This
yields an expected number of

(
n
2
)
/n2 < 1/2 collisions. We can now apply any hash function,

e.g., simple tabulation, to the reduced keys in [n2]. Each of the duplicate keys can increase
the maximum load by at most one, so the expected maximum load increases by at most 1/2.
If u = 2w, we can use the extremely simple universal hash function from [8], multiplying the
key by a random odd w-bit number and performing a right-shift.

Looking for alternative hash functions, it can be checked that O(log n)-independence
suffices to get the same maximum load bounds as with full randomness even with high

3 Recall that in cuckoo hashing, as introduced by Pagh and Rodler [14], we are in the 2-choice paradigm
but we require that no two balls collide. However, we are allowed to rearrange the balls at any point
and so the feasibility does only depend on the choices of the balls.

4 We mention in passing that Theorem 3 is best possible: There exists a set X of m keys such that with
probability Ω(n−1/3) cuckoo hashing is forced to rehash (see [15]).
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probability. High independence hash functions were pioneered by Siegel [17] and the most
efficient construction is the double tabulation of Thorup [18]. It gives independence uΩ(1/c2)

using space O(cu1/c) in time O(c). With c a constant this would suffice for our purposes.
However, looking into the constants suggested in [18], with 16-bit characters for 32-bit keys,
we have 11 times as many character table lookups with double tabulation as with simple
tabulation and we loose the same factor in space, so this is not nearly as efficient.

Another approach was given by Woelfel [22] using the hash functions he earlier developed
with Dietzfelbinger [9]. He analysed Vöcking’s Always-Go-Left algorithm, bounding the error
probability that the maximum load exceeded log logn

d logϕd
+O(1). Slightly simplified and translated

to match our notation, using d+ 1 k-independent hash functions and d lookups in tables of
size n2/c, the error probability is n1+o(1)−k/c. Recall that we may assume n2/c ≥ u1/c, so
this matches the space of simple tabulation with c characters. With, say, c = 4, he needs
5-independent hashing to get any non-trivial bound, but the fastest 5-independent hashing is
the tabulation scheme of Thorup and Zhang [19], which according to the experiments in [15]
is at least twice as slow as simple tabulation, and much more complicated to implement.

A final alternative is to compromise with the constant evaluation time. Reingold et al. [16]
have shown that using the hash functions from [4] yields a maximum load of O(log log n) whp.
The functions use O(log n log log n) random bits and can be evaluated in time O((log log n)2).
Very recently Chen [5] used a refinement of the hash family from [4] giving a maximum load of
at most log logn

log d +O(1) whp and log logn
d logϕd

+O(1) whp using the Always-Go-Left algorithm. His
functions require O(log n log log n) random bits and can be evaluated in time O((log log n)4).
We are not so concerned with the number of random bits. Our main interest in simple
tabulation is in the constant evaluation time with a very low constant.

1.5 Structure of the paper
In Section 2 we provide a few preliminaries for the proofs of our main results. In Section 3
we deal with step (3) described under Technical contributions. To provide some intuition we
first provide the new proof of Theorem 3. Finally, we show how to proceed for general d. For
step (1) and (2) as well as the final deduction of Theorem 1 and Theorem 2 the reader is
referred to the full version of this paper [1].

2 Preliminaries

First, recall the definition of a hypergraph:

I Definition 4. A hypergraph is a pair G = (V,E) where V is a set and E is a multiset
consisting of elements from P(V ). The elements of V are called vertices and the elements
of E are called edges. We say that G is d-uniform if |e| = d for all e ∈ E.

When using the d-choice paradigm to distribute a set of keys X there is a natural d-uniform
hypergraph associated with the keys of X.

I Definition 5. Given a set of keys X ⊂ U the hash graph is the d-uniform hypergraph
on [n/d]× [d] with an edge {(h1(x), 1), . . . , (hd(x), d)} for each x ∈ X.

When working with the hash graph we will hardly ever distinguish between a key x and
the corresponding edge, since it is tedious to write {(hi(x), i)}1≤i≤d. Statements such as
“P = (x1, . . . , xt) is a path” or “The keys x1 and x2 are adjacent in the hash graph” are
examples of this abuse of notation.
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5:6 Power of d Choices with Simple Tabulation

Figure 1 Double cycles - the minimal obstructions for cuckoo hashing.

Now we discuss the independence of simple tabulation. First recall that a position
character is an element (j, α) ∈ [c]× Σ. With this definition a key x ∈ U can be viewed as
the set of position characters {(i, x[i])}c−1

i=0 but it is sensible to define h(S) =
⊕k

i=1 hji(αi)
for any set S = {(j1, α1), . . . , (jk, αk)} of position characters.

In the classical notion of independence of Carter and Wegman [3] simple tabulation is
not even 4-independent. In fact, the keys (a0, b0), (a0, b1), (a1, b0) and (a1, b1) are dependent,
the issue being that each position character appears an even number of times and so the
bitwise XOR of the hash values will be the zero string. As proved by Thorup and Zhang [19]
this property in a sense characterises dependence of keys.

I Lemma 6 (Thorup and Zhang [19]). The keys x1, . . . , xk ∈ U are dependent if and only if
there exists a non-empty subset I ⊂ {1, . . . , k} such that each position character in (xi)i∈I
appears an even number of times. In this case we have that

⊕
i∈I h(xi) = 0.

When each position character appears an even number of times in (xi)i∈I we will write⊕
i∈I xi = ∅ which is natural when we think of a key as a set of position characters and ⊕ as

the symmetric difference. As shown by Dahlgaard et al. [6] the characterisation in Lemma 6
can be used to bound the independence of simple tabulation.

I Lemma 7 (Dahlgaard et al. [6]). Let A1, . . . , A2t ⊂ U . The number of 2t-tuples (x1, . . . , x2t)
∈ A1 × · · · × A2t such that x1 ⊕ · · · ⊕ x2t = ∅ is at most5 ((2t− 1)!!)c

∏2t
i=1
√
|Ai|.

This lemma will be of extreme importance to us. In the full version of this paper [1] proofs
of both Lemma 6 and Lemma 7 can be found.

3 Cuckoo hashing and generalisations

The following result is a key ingredient in the proofs of Theorem 1 and Theorem 2.

I Theorem 8. Suppose that we are in the setting of Theorem 1 i.e. d > 1 is a fixed constant,
X ⊂ U with |X| = m = O(n) and h1, . . . , hd : U → [n/d] are independent simple tabulation
hash functions. The probability that the hash graph contains a subgraph G = (V,E) of size
|E| = O(log log n) with |V | ≤ (d− 1)|E| − 1 is at most n−1/3+o(1).

Before giving the full proof however we provide the new proof of Theorem 3 which is more
readable and illustrates nearly all the main ideas.

Proof of Theorem 3. It is well known that cuckoo hashing is possible if and only if the hash
graph contains no subgraph with more edges than nodes. A minimal such graph is called a
double cycle and consists of two cycles connected by a path or two vertices connected by

5 Recall the double factorial notation: If a is a positive integer we write a!! for the product of all the
positive integers between 1 and a that have the same parity as a.
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Figure 2 Non-black edges: Two tridents and a lasso. Black edges: Keys that are each dependent
on the set of coloured keys.

three disjoint paths (see Figure 1). Hence, it suffices to bound the probability that the hash
graph contains a double cycle by O(n−1/3).

We denote by g the number of bins in each of the two groups. Thus in this setting
g = n/2 ≥ (1 + ε)m. First of all, we argue that we may assume that the hash graph contains
no trail of length at least ` = 4

3
logn

log(1+ε) consisting of independent. Indeed, the keys of a
such can be chosen in at most m` ways and since we require ` − 1 equations of the form
hi(x) = hi(y), i ∈ {1, 2} to be satisfied and since these events are independent the probability
that the hash graph contains such a trail is by a union bound at most

2m`

g`−1 ≤
n

(1 + ε)` = n−1/3.

Now we return to the double cycles. Let A` denote the event that the hash graph contains
a double cycle of size ` consisting of independent keys. The graph structure of a such can
be chosen in O(`2) ways and the keys (including their positions) in at most m` ways. Since
there are `+ 1 equations of the form hi(x) = hi(y), i ∈ {1, 2} to be satisfied the probability
that the hash graph contains a double cycle consisting of independent keys is at most

m∑
`=3

P(A`) = O

(
m∑
`=3

`2
m`

g`+1

)
= O

(
1
n

m∑
`=3

`2

(1 + ε)`

)
= O(n−1).

The argument above is the same as in the fully random setting. We now turn to the issue of
dependencies in the double cycle starting with the following definition.

I Definition 9. We say that a graph is a trident if it consists of three paths P1, P2, P3 of
non-zero lengths meeting at a single vertex v. (see the non-black part of Figure 2).

We say that a graph is a lasso if it consists of a path that has one end attached to a
cycle (see the non-black part of Figure 2).

We claim that in any double cycle D consisting of dependent keys we can find one of the
following structures (see Figure 2):

S1: A lasso L consisting of independent keys together with a key x not on L and incident
to the degree 1 vertex of L such that x is dependent on the keys of L.
S2: A trident T consisting of independent keys together with 3 (not necessarily distinct)
keys x, y, z not on T but each dependent on the keys of T and incident to the 3 vertices
of degree 1 on T

To see this suppose first that one of the cycles C of D consists of independent keys. In
this case any maximal lasso of independent keys in D containing the edges of C is an S1.
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5:8 Power of d Choices with Simple Tabulation

On the other hand if all cycles contained in D consist of dependent keys we pick a vertex
of D of degree at least 3 and 3 incident edges. These 3 edges form an independent trident
(simple tabulation is 3-independent) and any maximal independent trident contained in D
and containing these edges forms an S2.

Our final step is thus to show that the probability that these structures appear in the
hash graph is O(n−1/3)

The lasso (S1):

Since the edges of the lasso form an independent trail it by the initial observation suffices to
bound the probability that the hash graph contains an S1 of size ` for any ` = O(log n).

Fix the size ` of the lasso. The number of ways to choose the graph structure of the lasso
is `− 2 < `. Denote the set of independent keys of the lasso by S = {x1, . . . , x`} and let x be
the dependent key in S1. By Lemma 6 we may write x =

⊕
i∈I xi for some I ⊂ {1, . . . , `}.

Fix the size |I| = t ≥ 3 (which is necessarily odd). By Lemma 7 the number of ways to choose
the keys of (xi)i∈I (including their order) is at most (t!!)cm(t+1)/2 and the number of ways to
choose their positions in the lasso is

(
`
t

)
. The number of ways to choose the remaining keys

of S is trivially bounded by m`−t and the probability that the choice of independent keys
hash to the correct positions in the lasso is at most 2/g`. By a union bound the probability
that the hash graph contains an S1 for fixed values of ` and t is at most

`(t!!)cm(t+1)/2m`−t
(
`

t

)
2
g`
.

This is maximised for t = 3. In fact, when ` ≤ m1/(c+2) and t ≤ `− 2 we have that

((t+ 2)!!)cm(t+3)/2m`−t−2( `
t+2
)

(t!!)cm(t+1)/2m`−t
(
`
t

) = (t+ 2)c

m

(
`−t
2
)(

t+2
2
) ≤ `c+2

m
≤ 1.

Thus the probability that the hash graph contains an S1 of size O(log n) is at most

O(logn)∑
`=3

∑̀
t=3

`3c
(
`

3

)
2m`−1

g`
= O

O(logn)∑
`=3

`5

n(1 + ε)`−1

 = O(n−1).

The trident (S2):

Fix the size ` of the trident. The number of ways to choose the structure of the trident is
bounded by `2 (once we choose the lengths of two of the paths the length of the third becomes
fixed). Let P1 = (x1, . . . , xt1), P2 = (y1, . . . , yt2) and P3 = (z1, . . . , zt3) be the three paths of
the trident meeting in xt1 ∩yt2 ∩ zt3 . As before we may assume that each has length O(log n).
Let S denote the keys of the trident and enumerate S = {w1, . . . , w`} in some order. Write
x =

⊕
i∈I wi, y =

⊕
j∈J wj and z =

⊕
k∈K wk for some I, J,K ⊂ {1, . . . , `}. By a proof

almost identical to that given for the lasso we may assume that |I| = |J | = |K| = 3. Indeed,
if for example |I| ≥ 5 we by Lemma 7 save a factor of nearly m2 when choosing the keys
of S and this makes up for the fact that the trident contains no cycles and hence that the
probability of a fixed set of independent keys hashing to it is a factor of g larger.

The next observation is that we may assume that |I ∩ J |, |J ∩K|, |K ∩ I| ≥ 2. Again the
argument is of the same flavour as the one given above. If for example |I ∩ J | = 1 we by
an application of Lemma 7 obtain that the number of ways to choose the keys of (wi)i∈I is
O(m2). Conditioned on this, the number of ways to choose the keys (wj)j∈J is O(m3/2) by
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another application of Lemma 7 with one of the Ai’s a singleton. Thus we save a factor of
m3/2 when choosing the keys of S which will again suffice. The bound gets even better when
|I ∩ J | = 0 where we save a factor of m2.

Suppose now that x1 is not a summand of
⊕

i∈I wi. Write x = wa ⊕ wb ⊕ wc and let A
be the event that the independent keys of S hash to the trident (with the equation involving
x1 and x2 being h2(x1) = h2(x2) without loss of generality). Then P(A) = 1

g`−1 . We observe
that

P(h1(x) = h1(x1) |A) = P(h1(x1) = h1(wa)⊕ h1(wb)⊕ h1(wc) |A) = g−1

since A is a conjunction of events of the form {hi(w) = hi(w′)} none of them involving
h1(x1)6. A union bound then gives that the probability that this can happen is at most

O(logn)∑
`=3

`2
(
`

3

)
(3!!)cm2m`−3

(
1
g

)`
= O

(
1
n

∞∑
`=3

`5

(1 + ε)`−1

)
= O(n−1).

Thus we may assume that x1 is a summand of
⊕

i∈I wi and by similar arguments that y1 is
a summand of

⊕
j∈J wj and that z1 is a summand of

⊕
k∈K wk.

To complete the proof we need one final observation. We can define an equivalence
relation on X ×X by (a, b) ∼ (c, d) if a⊕ b = c⊕ d. Denote by C = {C1, . . . , Cr} the set of
equivalence classes. One of them, say C1, consists of the elements (x, x)x∈X . We will say
that the equivalence class Ci is large if |Ci| ≥ m2/3 and small otherwise. Note that

r∑
i=1
|Ci|2 = |{(a, b, c, d) ∈ X4 : a⊕ b⊕ c⊕ d = ∅}| ≤ 3cm2

by Lemma 7. In particular the number of large equivalence classes is O(m2/3).
If h is a simple tabulation hash function we can well-define a map h̃ : C → R by

h̃(a, b) = h(a)⊕h(b). Since the number of large equivalence classes is O(m2/3) the probability
that h̃i(C) = 0 for some large C ∈ C\{C1} and some i ∈ {1, 2} is O(m2/3/n) = O(n−1/3)
and we may thus assume this does not happen.

In particular, we may assume that (x, x1), (y, y1) and (z, z1) each represent small equival-
ence classes as they are adjacent in the hash graph. Now suppose that y1 is not a summand
in x =

⊕
i∈I wi. The number of ways to pick (xi)i∈I is at most 3cm2 by Lemma 7. By doing

so we fix the equivalence class of (y, y1) but not y1 so conditioned on this the number of
ways to pick (yj)j∈J is at most m2/3. The number of ways to choose the remaining keys is
bounded by m`−4 and a union bound gives that the probability of having such a trident is at
most

O(logn)∑
`=3

`23
(
`

2

)
3cm2m2/3m`−4

(
1
g

)`−1
= O

(
n−1/3

∞∑
`=3

`4

(1 + ε)`−4/3

)
= O(n−1/3),

which suffices.
We may thus assume that y1 is a summand in

⊕
i∈I wi and by an identical argument that

z1 is a summand in
⊕

i∈I wi and hence x = x1 ⊕ y1 ⊕ z1. But the same arguments apply to
y and z reducing to the case when x = y = z = x1 ⊕ y1 ⊕ z1 which is clearly impossible. J

6 If x1 = wa, say, we don’t necessarily get the probability g−1. In this case the probability is P(h1(wb) =
h1(wc) | A) and the event {h(wb) = h(wc)} might actually be included in A in which case the probability
is 1. This can of course only happen if the keys wb and wc are adjacent in the trident so we could
impose even further restrictions on the dependencies in S2.
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3.1 Proving Theorem 8
Now we will explain how to prove Theorem 8 proceeding much like we did for Theorem 3.
Let us say that a d-uniform hypergraph G = (V,E) is tight if |V | ≤ (d− 1)|E| − 1. With
this terminology Theorem 8 states that the probability that the hash graph contains a tight
subgraph of size O(log log n) is at most n−1/3+o(1). It clearly suffices to bound the probability
of the existence of a connected tight subgraph of size O(log log n).

We start with the following two lemmas. The counterparts in the proof of Theorem 3 are
the bounds on the probability of respectively an independent double cycle and an independent
lasso with a dependent key attached.

I Lemma 10. Let A1 denote the event that the hash graph contains a tight subgraph
G = (V,E) of size O(log log n) consisting of independent keys. Then P(A1) ≤ n−1+o(1).

Proof. Let ` = |E| be fixed. The number of ways to choose the keys of E is trivially bounded
by m` and the number of ways to choose the set of nodes V in the hash graph is

(
n

(d−1)`−1
)
.

For such a choice of nodes let ai denote the number of nodes of V in the i’th group. The
probability that one of the keys hash to V is then

d∏
i=1

dai
n
≤
(
a1 + · · ·+ ad

n

)d
≤
(
d`

n

)d
.

By the independence of the keys and a union bound we thus have that

P(A1) ≤
O(log logn)∑

`=2
m`

(
n

(d− 1)`− 1

)(
d`

n

)d`
≤
O(log logn)∑

`=2

1
n

(m
n

)`
(d`)d` = n−1+o(1),

as desired. J

I Lemma 11. Let A2 be the event that the hash graph contains a subgraph G = (V,E) with
|V | ≤ (d − 1)|E| and |E| = O(log log n) such that the keys of E are independent but such
that there exists a key y /∈ E dependent on the keys of E. Then P(A2) ≤ n−1+o(1).

Proof. Let |E| = ` be fixed and write E = {x1, . . . , x`} . We want to bound the number of
ways to choose the keys of E. By Lemma 6, y =

⊕
i∈I xi for some I ⊂ {1, . . . , `} with |I| = r

for some odd r ≥ 3. Let r be fixed for now. Using Lemma 7, we see that the number of ways
to choose the keys of E is no more than (r!!)cm r+1

2 m`−r. For fixed ` and r the probability is
thus bounded by

(r!!)cm`− r−1
2

(
n

`(d− 1)

)(
d`

n

)d`
= n−1+o(1)

and a union bound over all ` = O(log log n) and r ≤ ` suffices. J

We now generalise the notion of a double cycle starting with the following definition.

I Definition 12. Let G = (V,E) be a d-uniform hypergraph. We say that a sequence of
edges P = (e1, . . . , et) of G is a path if |ei ∩ ei+1| = 1 for 1 ≤ i ≤ t− 1 and ei ∩ ej = ∅ when
i < j − 1.

We say that C = (e1, . . . , et) is a cycle if t ≥ 3, |ei ∩ ei+1| = 1 for all i (mod t) and
ei ∩ ej = ∅ when i 6= j ± 1 (mod t).

Next comes the natural extension of the definition of double cycles to d-uniform hypergraphs.
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Figure 3 Double cycles in the case d = 3. The triangles represent edges of the graph and the
corners represent the vertices.

I Definition 13. A d-uniform hypergraph G is called a double cycle if it has either of the
following forms (see Figure 3).

D1: It consists of of two vertex disjoint cycles C1 and C2 connected by a path P =
(x1, . . . , xt) such that |x1∩V (C1)| = |xt∩V (C2)| = 1 and xi+1∩V (C1) = xi∩V (C2) = ∅
for 1 ≤ i ≤ t− 1 . We also allow P to have zero length and |V (C1) ∩ V (C2)| = 1.
D2: It consist of a cycle C and a path P = (x1, . . . , xt) of length t ≥ 2 such that
|x1 ∩ V (C)| = |xt ∩ V (C)| = 1 and xi ∩ V (C) = ∅ for 2 ≤ i ≤ t− 1. We also allow t = 1
and |x1 ∩ C| = 2.

Note that a double cycle always has |V | = (d− 1)|E| − 1.
Now assume that the hash graph contains a connected tight subgraph G = (V,E) of size

O(log log n) but that neither of the events of Lemma 10 and 11 has occurred. In particular
no two edges e1, e2 of G has |e1 ∩ e2| ≥ 2 and no cycle consists of independent keys.

It is easy to check that under this assumption G contains at least two cycles. Now pick a
cycle C1 of least possible length. Since simple tabulation is 3-independent the cycle consists
of at least 4 edges. If there exists an edge x not part of C1 with |x ∩ V (C1)| = 2 we get a
double cycle of type D2. If |x ∩ V (C1)| ≥ 3 we can use x to obtain a shorter cycle than C1
which is a contradiction7. Using this observation we see that if there is a cycle C2 6= C1 such
that |V (C1) ∩ V (C2)| ≥ 2 then we can find a D2 in the hash graph. Thus we may assume
that any cycle C2 6= C1 satisfies |V (C2) ∩ V (C1)| ≤ 1.

Now pick a cycle C2 different from C1 of least possible length. As before we may argue
that any edge x not part of C2 satisfies that |x ∩ V (C2)| ≤ 1. Picking a shortest path
connecting C1 and C2 (possibly the length is zero) gives a double cycle of type D1.

Next we define tridents (see the non-grey part of Figure 4).

I Definition 14. We call a d-uniform hypergraph T a trident if it consists of paths
P1 = (x1, . . . , xt1), P2 = (y1, . . . , yt2) and P3 = (z1, . . . , zt3) of non-zero length such that
either:

There is a vertex v such that xt1 ∩ yt2 ∩ zt3 = {v}, v is contained in no other edge of T
and no vertex different from v is contained in more than one of the three paths.
P1, P2 and P3\{zt3} = (z2, . . . , zt3) are vertex disjoint and (x1, . . . , xt1 , zt3 , yt2 , . . . , y1) is
a path.

Like in the proof of of Theorem 3 the existence of a double cycle not containing a cycle
of independent keys implies the existence of the following structure (see Figure 4):

7 Here we use that the length of C1 is at least 4. If C1 has length t the fact that x contains three nodes
of C1 only guarantees a cycle of length at most 3 + b t−3

3 c.
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Figure 4 The case d = 3. Non-grey edges: Tridents. Grey edges: Keys that are each dependent
on the set of non-black keys.

S1: A trident consisting of three paths P1 = (x1, . . . , xt1), P2 = (y1, . . . , yt2) and
P3 = (z1, . . . , zt3) such that the keys of the trident are independent and such that there
are, not necessarily distinct, keys x, y, z not in the trident extending the paths P1, P2
and P3 away from their common meeting point such that x, y and z are each dependent
on the keys in the trident.

We can bound the probability of this event almost identically to how we proceeded in
the proof of Theorem 3. The only difference is that when making the ultimate reduction to
the case where x = y = z = x1 ⊕ y1 ⊕ z1 this event is in fact possible (see Figure 4). In this
case however, there are three different hash function hx, hy and hz such that hx(x1) = hx(x),
hy(y1) = hy(x) and hz(z1) = hz(x). However, it is easy to bound the probability that this
occur: The number of ways to choose the keys (x, x1, y1, z1) is at most 3cm2 by Lemma 7.
The number of ways to choose the hash functions is upper bounded by d3. Since the hash
functions h1, . . . , hd are independent the probability that this can happen in the hash graph
is by a union bound at most

d33cm2
(
d

n

)3
= O(n−1)

which suffices to complete the proof of Theorem 8.

Summing up
For now we have spent most of our energy proving Theorem 8. At this point it is perhaps
not clear to the reader why it is important so let us again highlight the steps to Theorem 1.
First of all let k = log logn

log d + r for r a sufficiently large constant. The steps are:

(1) Show that if some bin has load k then either the hash graph contains a tight subgraph
of size O(k) or a certain kind of witness tree Tk.

(2) Bound the probability that the hash graph contains a Tk by O((log log n)−1).
(3) Bound the probability that the hash graph contains a tight subgraph of size O(k) by

O((log log n)−1).

We can now cross (3) of the list. In fact, we have a much stronger bound than we require.
The remaining steps as well as the final proofs of Theorem 1 and Theorem 2 are dealt with
in the full version of this paper [1]. As already mentioned the proofs of all the above steps
(except step (3)) are intricate but straightforward generalisations of the methods in [7].
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Abstract
Given a graph, does there exist an orientation of the edges such that the resulting directed graph
is strongly connected? Robbins’ theorem [Robbins, Am. Math. Monthly, 1939] asserts that such
an orientation exists if and only if the graph is 2-edge connected. A natural extension of this
problem is the following: Suppose that the edges of the graph are partitioned into trails. Can
the trails be oriented consistently such that the resulting directed graph is strongly connected?

We show that 2-edge connectivity is again a sufficient condition and we provide a linear time
algorithm for finding such an orientation.

The generalised Robbins’ theorem [Boesch, Am. Math. Monthly, 1980] for mixed multigraphs
asserts that the undirected edges of a mixed multigraph can be oriented to make the resulting
directed graph strongly connected exactly when the mixed graph is strongly connected and the
underlying graph is bridgeless.

We consider the natural extension where the undirected edges of a mixed multigraph are
partitioned into trails. It turns out that in this case the condition of the generalised Robbin’s
Theorem is not sufficient. However, we show that as long as each cut either contains at least 2
undirected edges or directed edges in both directions, there exists an orientation of the trails such
that the resulting directed graph is strongly connected. Moreover, if the condition is satisfied, we
may start by orienting an arbitrary trail in an arbitrary direction. Using this result one obtains
a very simple polynomial time algorithm for finding a strong trail orientation if it exists, both in
the undirected and the mixed setting.
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1 Introduction and motivation

Suppose that the mayor of a small town decides to make all the streets one-way such that
it is possible to get from any place to any other place without violating the orientations
of the streets5. If all the streets are initially two-way then Robbins’ theorem [10] asserts
that this can be done exactly when the corresponding graph is 2-edge connected. If, on the
other hand some of the streets were already one-way in the beginning then the generalised
Robbins’ theorem by Boesch [1] states that it can be done exactly when the corresponding
“mixed” graph is strongly connected and the underlying graph is bridgeless.

However, the proofs of both of these results assume that every street of the city corresponds
to exactly one edge in the graph. This assumption hardly holds in any city in the world and
therefore a more natural assumption is that every street corresponds to a trail (informally, a
potentially self-crossing path) in the graph and that the edges of each trail must be oriented
consistently6.

In this paper we consider such graphs having their edges partitioned into trails. We
prove that the trails can be oriented to make the resulting directed graph strongly connected
exactly if the initial graph is 2-edge connected (note that this is precisely the condition of
Robbins’ theorem).

Not only do we show that the strong trail orientation problem in undirected 2-edge
connected graphs always has a solution, we also provide a linear time algorithm for finding
such an orientation. In doing so, we use an interesting combination of techniques that allow
us to reduce to a graph with a number of 3-edge connected components that is linear in the
number of edges. Using that the average size of these components is constant and that we
can piece together solutions for the individual components we obtain an efficient algorithm.

Finally, we will consider the generalised Robbins’ theorem in this new setting by allowing
some edges to be oriented initially and supposing that the remaining edges are partitioned
into trails. We will show that if each cut (V1, V2) in the graph has either at least 2 undirected
edges going between V1 and V2 or at least 1 directed edge in each direction then it is possible
to orient the trails making the resulting graph strongly connected. In fact, we show that if
this condition is satisfied we may start by orienting an arbitrary trail in an arbitrary direction.
Although this condition is not necessary it does give a simple algorithm for finding a trail
orientation if it exists. Indeed, initially the graph may contain undirected edges that are
forced in one direction by some cut. For finding a trail orientation if it exists we can thus
orient forced trails in the forced direction. If there are no forced trails we orient any trail
arbitrarily.

5 The motivation for doing so is that the streets of the town are very narrow and thus it is a great hassle
when two cars unexpectedly meet.

6 This version of the problem was given to us through personal communication with Professor Robert E.
Tarjan.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.6
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Figure 1 The graph is strongly connected and the underlying graph is 2-edge connected, but
irrespective of the choice of orientation of the red trail, the graph will no longer be strongly connected.

Note that in the mixed setting the feasibility depends on the trail decomposition which is
not the case for the other results. That the condition from the generalised Robbins’ theorem
is not sufficient can be seen from Figure 1.

Earlier methods

Several methods have already been applied for solving orientation problems in graphs where
the goal is to make the resulting graph strongly connected.

One approach used by Robbins [10] is to use that a 2-edge connected graph has an
ear-decomposition. An ear decomposition of a graph is a partition of the set of edges into
a cycle C and paths P1, . . . , Pt such that Pi has its two endpoints but none of its internal
vertices on C∪

(⋃i−1
j=1 Pj

)
. Given the existence of an ear decomposition of a 2-edge connected

graph it is easy to prove Robbins’ theorem. Indeed, any choice of consistent orientations of
the paths and the cycle gives a strongly connected graph.

A second approach introduced by Tarjan [4] gives another simple proof of Robbins’
theorem. One can create a DFS tree in the graph rooted at a vertex v and orient all edges in
the DFS tree away from v. The remaining edges are all back edges (see [4]) and are oriented
towards v. It is easily verified that this gives a strong orientation if the graph is 2-edge
connected. A similar approach was used by Chung et al. [2] in the context of the generalized
Robbins’ theorem for mixed multigraphs.

The above methods not only prove Robbins’ theorem, they also provide linear time
algorithms for finding strong orientations of undirected or mixed multigraphs.

However, none of the above methods have proven fruitful in our case. In case of the ear
decomposition we would need one that is somehow compatible with the partitioning into trails,
and this seems hard to guarantee. Similar problems appear when trying a DFS-approach.
Neither does the proof by Boesch [1] of Robbins’ theorem for mixed multigraphs generalise
to prove our result. Most importantly, the corresponding theorem would no longer be true
for trail orientations as is shown by the example in Figure 1.

Since the classical linear time algorithms rely on ear-decompositions and DFS searches,
and since these approaches do not immediately work for trail partitions, our linear time
algorithm will be a completely new approach to solving orientation problems.

Structure of the paper

The structure of this paper is as follows. In section 3 we prove our generalisation of Robbins’
theorem for undirected graphs partitioned into trails. In section 4 we study the case of mixed
graphs. Finally in section 5 we provide our linear time algorithm for trail orientation in an
undirected graph.

ICALP 2018
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2 Preliminaries

Let us briefly review the concepts from graph theory that we will need.
A graph having some subset of its edges oriented is said to be a mixed graph. We will

write {u, v} for an undirected edge between u and v and (u, v) for an edge directed from u

to v.
A walk in a graph is an alternating sequence of vertices and edges v0, e1, v1, e2, . . . , vk,

such that for 1 ≤ i ≤ k the edge ei has vi−1 and vi as its two endpoints. In a directed or
mixed graph we further require that either ei be undirected or directed from vi−1 to vi

A trail is a walk without repeated edges. A path is a trail without repeated vertices
(except possibly v0 = vk). Finally, a cycle is a path for which v0 = vk.

Next, a mixed multigraph G = (V, E) is called strongly connected if for each pair of
vertices u, v ∈ V there exists a walk from u to v. In case the graph is undirected this is
equivalent to saying that it consists of exactly one connected component. If A ⊆ V we will
say that A is strongly connected in G if for each pair of vertices u, v ∈ A there is a walk in G

from u to v.
A cut or edge-cut (V1, V2) in a graph is a partition of its vertices into two non-empty

subsets V1, V2. We recall the definition of k-edge connectivity. A graph G = (V, E) is said to
be k-edge connected if and only if G′ = (V, E−X) is connected for all X ⊆ E where |X| < k.
A trivially equivalent condition is that each cut (V1, V2) in the graph has at least k edges
going between V1 and V2.

Finally, if G = (V, E) is a mixed multigraph and A ⊆ V we define G/A to be the graph
obtained by contracting A to a single vertex (maintaining duplicate edges and self-loops)
and G[A] to be the subgraph of G induced by A. The following simple observation will be
used repeatedly in this paper.

I Observation 2.1. If G = (V, E) is k-edge connected and A ⊆ V then G/A is k-edge
connected. Also, if G is a strongly connected mixed multigraph then G/A is too.

3 Robbins Theorem Revisited

We are now ready to state and prove our generalisation of Robbins’ theorem.

I Theorem 3.1. Let G = (V, E) be an undirected multigraph with E partitioned into trails.
An orientation of each trail such that the resulting directed graph is strongly connected exists
if and only if G is 2-edge connected.

We note that this theorem could also be proven using a general result from Király and
Szigeti [6] which relies on theorems by Nash-Willams [9]. However, our proof is significantly
simpler (in fact we believe that restating the theorem by Király and Szigeti and explaining
the reduction would be more cumbersome) and more suitable for constructing algorithms.

Proof. If G is not 2-edge connected, such an orientation obviously doesn’t exist, so we only
need to prove the converse. Suppose therefore that G is 2-edge connected.

Our proof is by induction on the number of edges in G. If there are no edges, the graph
consists of a single vertex, and the statement is obviously true. Assume now the statement
holds for all graphs with strictly fewer edges than G. Pick an arbitrary edge e that sits at
the end of its corresponding trail.

If G−e is 2-edge connected, then by the induction hypothesis there is a strong orientation
of G− e that respects the trails of G. Such an orientation clearly extends to the required
orientation of G.
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V1 V2
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Figure 2 A 2-edge cut and the two graphs G1 = G[V1] ∪ {{u1, w1}} and G2 = G[V2] ∪ {{u2, w2}}.
The orientations of the two new edges are obtained from the strong trail orientations of G1 and G2.

If G − e is not 2-edge connected, there exists a bridge b in G − e (see Figure 2). Let
V1, V2 be the two connected components of G−{e, b}, and let e = {u1, u2} and b = {w1, w2}
such that for i ∈ {1, 2}, ui, wi ∈ Vi (note that we don’t necessarily have that ui and wi are
distinct for i ∈ {1, 2}).

Now for i ∈ {1, 2} construct the graph Gi = G[Vi] ∪ {{ui, wi}} (note that {ui, wi} might
be a self-loop but this causes no problems for the argument), and define the trails in Gi to
be the trails of G that are completely contained in Gi, together with a single trail combined
from the (possibly empty) partial trail of e contained in Gi and ending at ui, followed by the
edge {ui, wi}, followed by the (possibly empty) partial trail of b contained in Gi starting at
wi. Both G1 and G2 are 2-edge connected since they can each be obtained as contractions of
G with some self-loops deleted. Furthermore, they each have strictly fewer edges than G,
so inductively each has a strong orientation that respects the given trails. Further, we can
assume that the orientations are such that the new edges are oriented (u1, w1) and (w2, u2) by
flipping the orientation of all edges in either graph if necessary. We claim that this orientation,
together with e oriented as (u1, u2) and b oriented as (w2, w1), is the required orientation
of G. To see this first note that (by our choice of flips) this orientation respects the trails.
Secondly, suppose v1 ∈ V1 and v2 ∈ V2 are arbitrary. Since G1 is strongly connected G[V1]
contains a directed path from v1 to u1. Similarly, G[V2] contains a directed path from u2 to
v2. Thus G contains a directed path from v1 to v2. A similar argument gives a directed path
from v2 to v1 and since v1 and v2 were arbitrary this proves that G is strongly connected
and our induction is complete. J

The construction in the proof can be interpreted as a naive algorithm for finding the
required orientation when it exists.

I Corollary 3.2. The one-way trail orientation problem on a graph with n vertices and m

edges can be solved in O(n + m · f(m, n)) time, where f(m, n) is the time per operation for
fully dynamic bridge finding (a.k.a. 2-edge connectivity).

At the time of this writing [3], this is O(n + m(log n log log n)2). In Section 5 we will provide
a less naive algorithm which runs in linear time.

4 Extension to Mixed graphs

Now we will extend our result to the case of mixed graphs. We are going to prove the
following.

I Theorem 4.1. Let G = (V, E) be a strongly connected mixed multigraph. Then G− e is
strongly connected for all undirected e ∈ E if and only if for any partition P of the undirected
edges of G into trails, and any T ∈ P, any orientation of T can be extended to a strong trail
orientation of (G,P).
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Algorithm 1: Algorithm for mixed graphs.
Input: A mixed multigraph G and a partition P of the undirected edges of G into

trails.
Output: True if (G,P) has a strong trail orientation, otherwise false. If G has a

bridge or is not strongly connected, G is left unmodified. Otherwise G is
modified, either to have such a strong trail orientation, or to a forced graph
that is not strongly connected.

1 if G has a bridge or is not strongly connected then
2 return false
3 end
4 while |P| > 0 do
5 if for some undirected edge e, G− e is not strongly connected then
6 Let T ∈ P be the trail containing e.
7 if some orientation of T leaves G strongly connected then
8 Apply such an orientation of T to G

9 else
10 return false
11 end
12 else
13 Let T ∈ P be arbitrary.
14 Update G by orienting T in an arbitrary direction.
15 end
16 Remove T from P.
17 end
18 return true

Suppose G = (V, E) is as in the theorem. We will say that e ∈ E is forced if it is undirected
and satisfies that G − e is not strongly connected. This terminology is natural as it is
equivalent to saying that there exists a cut (V1, V2) in G such that e is the only undirected
edge in this cut and such that all the directed edges go from V1 to V2. If we want an
orientation of the trails making the graph strongly connected we are clearly forced to orient
e from V2 to V1.

Theorem 4.1 is a proper extension of Theorem 3.1 since if G is undirected and 2-edge
connected then no e ∈ E is forced. Furthermore, the theorem suggests a very simple
polynomial time algorithm (see Algorithm 1) for finding a strong orientation of the trails if it
exists. Indeed, if the mixed graph contains forced edges we direct the corresponding trails in
the forced direction. If there are no forced edges then either the graph is no longer strongly
connected in which case we know that a strong trail orientation doesn’t exist. Otherwise, we
may by Theorem 4.1 orient any trail in an arbitrary direction.

For proving Theorem 4.1 we will need the following lemma.

I Lemma 4.2. Let G be a directed graph, and let (A, B) be a cut with exactly one edge
crossing from A to B. Then G is strongly connected if and only if G/A and G/B are.

Proof. Strong connectivity is preserved by contractions, so if G is strongly connected then
G/A and G/B both are. For the other direction, let (a1, b1) be the edge going from A to B.
As G/A is strongly connected and (a1, b1) is the only edge going from A to B we can for
any edge (b2, a2) going from B to A find a path from b1 to b2 that stays in B. Since G/B is
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A B
T

T ′
A

b
TA

Figure 3 A cut with two undirected edges and all directed edges going from A to B followed by
a contraction of B.

strongly connected, it follows that A is strongly connected in G. By a symmetric argument,
B is also strongly connected in G and since the cut has edges in both directions (as e.g. G/A

is strongly connected), G must be strongly connected. J

Now we provide the proof of Theorem 4.1.

Proof of Theorem 4.1. If there exists an undirected edge e such that G− e is not strongly
connected, then the trail T containing e can at most be directed one way since e is forced, so
there is an orientation of T that does not extend to a strong trail orientation of (G,P). To
prove the converse suppose G− e is strongly connected for all undirected e ∈ E.

The proof is by induction on |P|. If |P| = 0 the result is trivial. So suppose |P| ≥ 1 and
that the theorem holds for all (G′,P ′) with |P ′| < |P|.

Consider the chosen trail T ∈ P. If both orientations of T leave a graph where the
condition in the theorem is still satisfied we are home by induction. Otherwise, there must
exist a cut (A, B) of the following form: (1) T crosses the cut exactly once, (2) exactly
one undirected edge from a different undirected trail T ′ ∈ P crosses the cut and (3) every
directed edge crossing the cut goes from A to B.

Now suppose there is such a cut (A, B) (see Figure 3). Consider the graph G/B and let b

be the node corresponding to B in G/B. Let PA consist of all trails in P that are completely
contained in A, together with a single trail TA combined from the (possibly empty) fragments
of T and T ′, joined at b. Since any cut in G/B corresponds to a cut in G, G/B is strongly
connected and remains so after deletion of any single undirected edge. By construction
|PA| ≤ |P| − 1, so by induction any orientation of TA in G/B extends to a strong orientation
of (G/B,PA). Let G/A, a, PB and TB be defined symmetrically, then by the same argument
any orientation of TB in G/A extends to a strong orientation of (G/A,PB). Now for any
orientation of T , we can choose orientations of TA and TB that are compatible. The result
then follows by Lemma 4.2. J

Theorem 4.1 gives a sufficient condition for the existence of a strong orientation and
we deal with the other cases by first orienting all forced edges. However, the generalised
Robbins’ theorem provides a simple equivalent condition, which we lack. Finding such an
equivalent condition in our setting is an essential open problem for strong trail orientations.
As seen by the example of Figure 1 such a condition will necessarily have to depend on the
structure of the trail partition.

5 Linear time algorithm

In this section we provide our linear time algorithm for solving the trail orientation problem
in undirected graphs. For this, we make two crucial observations. First, we show that there
is an easy linear time reduction from general graphs or multigraphs to cubic multigraphs.
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v

Figure 4 A node of degree 5 turns into a cycle of length 5.

Second, we show that in a cubic multigraph with n vertices, we can in linear time find and
delete a set of edges that are at the end of their trails, such that the resulting graph has
Ω(n) 3-edge connected components. We further show that we can compute the required
orientation recursively from an orientation of each 3-edge connected component together with
the cactus graph of 3-edge connected components. Since the average size of these components
is constant, we can compute the orientations of most of them in constant time individually
and thus in linear time taken together. The rest contains at most a constant fraction of the
vertices, and so a simple geometric sum argument tells us that the total time is also linear.

We start out by making the following reduction.

I Lemma 5.1. The one-way trail problem on a 2-edge connected graph or multigraph with n

vertices and m edges, reduces in O(m + n) time to the same problem on a 2-edge connected
cubic multigraph with 2m vertices and 3m edges.

Proof. Cyclically order the edges adjacent to each vertex such that two edges that are
adjacent on the same trail are consecutive in the order. Replace each single vertex v with a
cycle of length deg(v), with each vertex of the new cycle inheriting a corresponding neighbour
of v such that the order of the vertices on the cycle corresponds to the cyclic ordering (see
Figure 4). Note that for a vertex of degree 2, this creates a pair of parallel edges, so the
result may be a multigraph. By the choice of cyclic ordering, we can make the cycle-edge
between the two vertices on the same trail belong to that trail. The rest of the cycle edges
form new length 1 trails. Clearly the new graph is also 2-edge connected so by Theorem 3.1
it has a strong trail orientation, and any strong trail orientation on this graph translates to a
strong trail orientation of the original graph. The new graph has exactly 2m vertices and
3m edges, and is constructed in O(m + n) time. J

Recall now that a multigraph C is called a cactus if it is connected and each edge is contained
in at most one cycle. If G is any connected graph we let C1, . . . , Ck be its 3-edge connected
components. It is well known that if we contract each of these we obtain a cactus graph. For
a proof of this result see section 2.3.5 of [8]. As the cuts in a contracted graph are also cuts
in the original graph we have that if G is 2-edge connected then the cactus graph is 2-edge
connected. The edges of the cactus are exactly the edges of G which are part of a 2-edge cut.
We will call these edges 2-edge critical.

It is easy to check that if a cactus has m edges and n vertices then m ≤ 2(n− 1). We
will be using this result in the proof of the following lemma.
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I Lemma 5.2. Let G = (V, E) be a cubic 2-edge connected multigraph, let X ⊆ E, and let
F ⊆ E with F ⊇ E \X minimal (w.r.t inclusion) such that H = (V, F ) is 2-edge connected.
Then H has at least 2

5 |X| distinct 3-edge connected components.

Proof. Let Xdel = X \ F be the set of edges deleted from G to obtain H, and let Xkeep =
X \Xdel be the remaining edges in X.

By minimality of H there are at least |Xkeep| 2-edge-critical edges in H i.e. edges of the
corresponding cactus, and thus, if |Xkeep| ≥ 4

5 |X|, there are at least 1
2 |Xkeep|+ 1 ≥ 2

5 |X|+ 1
distinct 3-edge connected components.

If |Xkeep| ≤ 4
5 |X| then |Xdel| ≥ 1

5 |X|, and since G is cubic and the removal of each edge
creates two vertices of degree 2 we must have that H has at least 2 |Xdel| ≥ 2

5 |X| distinct
3-edge connected components. J

I Lemma 5.3. Let G = (V, E) be a connected cubic multigraph with E partitioned into trails.
Then G has a spanning tree that contains all edges that are not at the end of their trail.

Proof. Let F be the set of edges that are not at the end of their trail. Since G is cubic, the
graph (V, F ) is a collection of vertex-disjoint paths, and in particular it is acyclic. Since G is
connected, F can be extended to a spanning tree. J

Note that we can find this spanning tree in linear time e.g. by contracting all edges
internal to a trail, finding a spanning tree of the resulting graph, and adding the internal
trail edges to the edges of this spanning tree.

I Lemma 5.4. Let G = (V, E) be a cubic 2-edge connected multigraph with E partitioned
into trails. Let T be a spanning tree of G containing all edges that are not at the end of
their trail. Let H be a minimal subgraph of G (w.r.t inclusion) that contains T and is 2-edge
connected. Then for any k ≥ 5, less than 4

5
k

k−1 |V | of the vertices in H are in a 3-edge
connected component with at least k vertices.

Proof. Let X be the set of edges that are not in T . Since G is cubic, |X| = 1
2 |V |+ 1. By

Lemma 5.2 H has at least 2
5 |X| >

1
5 |V | 3-edge connected components. Each such component

contains at least one vertex, so the total number of vertices in components of size at least k

is less than k
k−1

(
|V | − 1

5 |V |
)

= 4
5

k
k−1 |V |. J

I Definition 5.5. Let C be a 3-edge connected component of some 2-edge connected graph
H, whose edges are partitioned into trails. Define ΓH(C) to be the 3-edge connected graph
obtained from C by inserting a new edge {e1, f1} for each min-cut {e, f} where e = {e1, e2}
and f = {f1, f2} and e1, f1 ∈ C. Define the corresponding partition of the edges of ΓH(C)
into trails by taking every trail that is completely contained in C, together with new trails
combined from the fragments of the trails that were broken by the min-cuts together with
the new edges that replaced them. See Figure 5.

At this point the idea of the algorithm can be explained. We remove as many of the edges
that sit at the end of their trails as possible, while maintaining that the graph is 2-edge
connected. Lemma 5.4 guarantees that we obtain a graph H with Ω(|V |) many 3-edge
connected components of size O(1). We solve the problem for each ΓH(C) for every 3-edge
connected component. Finally, we combine the solutions for the different components like in
the proof of Theorem 3.1.

I Theorem 5.6. The one-way trail orientation problem can be solved in O(m + n) time on
any 2-edge connected undirected graph or multigraph with n vertices and m edges.
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C ΓH(C)

Figure 5 The 3-edge connected components of a 2-edge connected graph. Notice that every
edge leaving a 3-edge connected component C becomes part of a cycle if all 3-edge components are
contracted. The right hand side shows ΓH(C) where C is the component in the middle.

Proof. By Lemma 5.1, we can assume the graph is cubic. For the algorithm we will use two
subroutines. First of all, when we have found a minimum spanning tree T containing the
edges that are not on the end of their trail we can use the algorithm of Kelsen et al. [5] to, in
linear time, find a minimal (w.r.t. inclusion) subgraph H of G that contains T and is 2-edge
connected. Secondly, we will use the algorithm by Mehlhorn et al. [7] to, in linear time, build
the cactus graph of 3-edge connected components. The algorithm runs as follows:
1. Construct a spanning tree T of G that contains all edges that are not at the end of their

trail.
2. Construct a minimal subgraph H of G that contains T and is 2-edge connected7.
3. Find the cactus of 3-edge connected components of8 H.
4. For each 3-edge connected component Ci, construct ΓH(Ci).
5. Recursively compute an orientation for each9 ΓH(Ci).
6. Combine the orientations from each component to a strong trail orientation of H . A such

is also a strong trail orientation of G.
First we will show correctness and then we will determine the running time.

Recall that we can flip the orientation in each ΓH(Ci) and still obtain a strongly connected
graph respecting the trails in ΓH(Ci). The way we construct the orientation of the edges of
G is by flipping the orientation of each ΓH(Ci) in such a way that each cycle in the cactus
graph becomes a directed cycle10. This can be done exactly because no edge of the cactus is
contained in two cycles. By construction this orientation respects the trails so we need to
argue that it gives a strongly connected graph.

For showing that the resulting graph is strongly connected, consider the graph in which
every 3-edge connected component is contracted to a single point. This is exactly the cactus
of 3-edge connected component of G which is strongly connected as the cycles of the cactus

7 See Kelsen [5].
8 See Mehlhorn [7].
9 Note that ΓH(Ci) is cubic unless it consists of exactly one node. In this case however we don’t need to

do anything.
10 In practice this is done by making a DFS (or any other search tree one likes) of the cactus and repeatedly

orienting each component in a way consistent with the previous ones.
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C

C

Figure 6 Before and after uncontracting component C. The blue edges are the edges of the
cactus i.e. the 2-edge critical edges of H. The red edges are the ones obtained from the 2-edge cuts
of H as described in the construction of the ΓH(Ci).

graph have become directed cycles. Now assume inductively that we have uncontracted some
of the 3-edge connected components obtaining a graph G1 which is strongly connected. We
then uncontract another component C (see Figure 6) and obtain a new graph G2 which we
will show is strongly connected. If u, v ∈ C, then since ΓH(C) is strongly connected there
is a path from u to v in ΓH(C). If this path only contains edges which are edges of C it
will also exist in G2. If the path uses one of the added (now oriented) edges (e1, f1), it is
because there are edges (e1, e2) and (f2, f1) forming a cut and thus being part of a cycle
in the cactus. In this case we use edge (e1, e2) to leave component C and then go from e2
back to component C which is possible since G1 was strongly connected. When we get back
to the component C we must arrive at f1 since otherwise there would be two cycles in the
cactus containing the edge (e1, e2). Hence we succeeded in disposing of the edge (e1, f1) with
a directed path in G2. This argument can be used for any of the edges of ΓH(C) that are not
in C and thus C is strongly connected in G2. Since G1 was strongly connected this suffices
to show that G2 is strongly connected. By induction this implies that after uncontracting all
components the resulting graph is strongly connected.

Now for the running time. By Lemma 5.4 each level of recursion reduces the number
of vertices in “large” components by a constant fraction, for instance for k = 10 we reduce
the number of vertices in components of size at least 10 by a factor of 8

9 . Let f(n) be the
worst case running time with n nodes for a cubic graph, and pick c large enough such that
cn is larger than the time it takes to go through steps 1-4 and 6 as well as computing the
orientations in the “small” components. This includes the linear time needed to construct
the new set of trails (in 4), and the linear time to reassemble the directed trails (in 6). Let
a1, . . . , ak be the number of vertices in the “large” 3-edge connected components. Then∑

i ai ≤ 8n
9 and

f(n) ≤ cn +
∑

i

f(ai).

Inductively, we may assume that f(ai) ≤ 9cn and thus obtain

f(n) ≤ cn +
∑

i

f(ai) ≤ cn +
∑

i

9cai = cn + 8cn = 9cn

proving that f(n) ≤ 9cn for all n. J
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Algorithm 2: Linear time algorithm for cubic graphs.
Input: A 2-edge connected undirected cubic multigraph G and a partition P of the

edges of G into trails.
Output: G is modified to a strong trail orientation of (G,P).

1 Construct a spanning tree T of G that contains all edges that are not at the end of
their trail.

2 Construct a minimal subgraph H of G that contains T and is 2-edge connected.
3 Find the cactus C of 3-edge connected components of H.
4 for each 3-edge connected component Ci in C in DFS preorder do
5 Construct Gi = ΓH(Ci).
6 Recursively compute an orientation for Gi.
7 if the orientation of Gi is not compatible with its DFS parent then
8 Flip orientation of Gi

9 end
10 end
11 for each edge e deleted from G to create H do
12 if no edge on the trail of e has been oriented yet then
13 Pick an arbitrary orientation for e.
14 else
15 Set the orientation of e to follow the trail.
16 end
17 end

6 Open problems

We here mention two problems concerning trail orientations which remain open.
First of all, our linear time algorithm for finding trail orientations only works for undirected

graphs and it doesn’t seem to generalise to the trail orientation problem for mixed graphs.
It would be interesting to know whether there also exists a linear time algorithm working for
mixed graphs. If so it would complete the picture of how fast an algorithm we can obtain for
any variant of the trail orientation problem.

Secondly, our sufficient condition for when it is possible to solve the trail orientation
problem for mixed multigraphs is clearly not necessary. It would be interesting to know
whether there is a simple necessary and sufficient condition like there is in the undirected
case. Since in the mixed case the answer to the problem actually depends on the given trail
decomposition and not just on the structure of the mixed graph it is harder to provide such
a condition. One can however give the following condition. It is possible to orient the trails
making the resulting graph strongly connected if and only if when we repeatedly direct the
forced trails end up with a graph satisfying our condition in Theorem 4.1. This condition is
not simple and is not easy to check directly. Is there a more natural condition?
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7:2 Dynamic Matching

1 Introduction

The maximum matching problem is one of the most widely-studied problems in computer
science and operations research, with a long history and theory [5, 38]. On n-vertex and
m-edge graphs, the state-of-the art maximum matching algorithms require O(m

√
n) and

O(nω) time [40, 41] (here ω < 2.37 is the matrix multiplication exponent [54]). For bipartite
graphs, simpler algorithms with the same asymptotic running times are known [34, 41],
as well as a faster, O(m10/7 · poly(log n))-time algorithm, due to the recent breakthrough
of Mądry[39] for the maximum flow problem. For approximate matchings, it is long- and
well-known that a matching admitting no augmenting paths of length O(1/ε) forms a (1 + ε)-
approximate maximum matching (see [34]). The linear-time “blocking flow” subroutines of
[34, 40] therefore result in an O(m/ε)-time (1 + ε)-approximate maximum matching.

The maximum weight matching (MWM) problem has also garnered much interest over
the years. For general weights, the seminal work of Edmonds [22] shows how to reduce the
problem on bipartite graphs to the solution of n non-negative single-source shortest path
instances. Relying on Fibonacci Heaps of Fredman and Tarjan [23], this approach yields
the current fastest strongly-polynomial running time for the problem, O(n(m + n log n)).
Gabow [24] later showed how to obtain the same running time for general graphs. For integer
weights w : E → {0, 1, 2, . . . , N}, algorithms nearly matching the state-of-of-the-art for the
unweighted problem, with either logarithmic or linear dependence on N , are known.3 These
include an O(m

√
n log(nN))-time algorithm [25], an O(Nnω)-time algorithm [48] and a recent

O(m10/7 · poly(log n) · logN)-time algorithm for bipartite graphs [17]. For approximation
algorithms, an algorithm nearly matching the unweighted problem’s guarantees is known,
yielding a (1 + ε)-approximate maximum weight matching in O((m/ε) log(1/ε)) time, [21].

All of the above results pertain to the static problem; i.e., where the input is given and
we only need to compute a maximum matching on this given input. However, in many
applications the graphs considered are inherently dynamic, with edges removed or added over
time. One could of course address such changes by recomputing a solution from scratch, but
this could be wasteful and time-consuming, and such applications may require immediately
updating the solution given, as having users wait on a solution to be recomputed may likely
be unsatisfactory. Consider for example point to point shortest path computation, a problem
routinely solved by navigation systems: for such an application, the temporary closure of
some road due to construction should not result in unresponsive GPS applications, busy
re-computing the relevant data structures (see e.g.,[7, 36, 33, 19, 20, 51, 52, 10, 26, 28, 2, 31,
29, 30, 32, 3, 4]). Therefore, for such applications we want to update our solution quickly for
every update, using fast worst-case (rather than amortized) update time.

Returning to the maximum matching problem, we note that a maximum matching can
be trivially updated in O(m) time. Sankowski [47] showed how to maintain the value of the
maximum matching in O(n1.495) update time.4 On the other hand, Abboud and Vassilevska
Williams [1] and Kopelowitz et al. [37] presented lower bounds based on long-standing
conjectures, showing that even maintaining the maximum matching value likely requires
Ω(mc) update time for some constant c ≥ 1

3 .
Given these hardness results for exact solutions, one is naturally inclined to consider

fast approximate solutions. Trivially updating a maximal matching (and therefore a 2-

3 Indeed, a black-box reduction of Pettie [46] from maximum weight matching to the maximum matching
problem shows that a linear dependence in N is the largest possible gap between these two problems.

4 We emphasize that this algorithm does not maintain an actual matching, but only the optimal value,
and it seems unlikely to obtain such update times for maintaining a matching of this value.
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approximate maximum matching) can be done using O(n) worst-case update time. The goal
is to obtain sublinear update times – ideally polylogarithmic (or even constant) – with as
low an approximation ratio as possible.

The first non-trivial result for fully-dynamic maximum matching is due to Ivkovic and
Lloyd [35], who presented a maximal matching algorithm with O((m+ n)1/

√
2) amortized

update time. Note that this bound is sublinear only for sufficiently sparse graphs. The problem
of approximate maximum matchings remained largely overlooked until 2010, when Onak
and Rubinfeld [44] presented a fully-dynamic constant-approximate O(log2 n) (amortized)
update time algorithm. Additional results followed in quick succession.

Baswana et al. [8] showed how to maintain a maximal matching in O(log n) expected
update time, and O(log2 n) update time w.h.p. This was recently improved by Solomon
[49] who presented a maximal matching algorithm using O(1) update time w.h.p. For
deterministic algorithms, Neiman and Solomon [42] showed how to maintain 3/2-approximate
matchings deterministically in O(

√
m) update time, a result later improved by Gupta and

Peng [27] to obtain (1 + ε)-approximate matchings in O(
√
m/ε2). This result was in turn

refined by Peleg and Solomon [45], who obtained the same approximation ratio and update
time as [27] with

√
m replaced by the maximum arboricity of the graph α (which is always at

most α = O(
√
m)). Bernstein and Stein [11, 12] and Bhattacharya et al. [13] presented faster

polynomial update time algorithms (with higher approximation ratios), and Bhattacharya et
al. [14] presented a (2 + ε)-approximate algorithm with poly(log n, ε−1) update time. See
Table 1 for an in-depth tabular exposition of previous work and our results.5 In §5 we discuss
our results for MWM, also widely studied in the dynamic setting (see, e.g. [8, 27, 49, 50]).

Note that in the previous paragraph we did not state whether the update times of
the discussed algorithms were worst case or amortized. We now address this point. As
evidenced by Table 1, previous fully-dynamic matching algorithms can be broadly divided
into two classes according to their update times: polynomial update time algorithms and
polylogarithmic amortized update time algorithms. The only related polylogarithmic worst-
case update time algorithms known to date were fractional matching algorithms, due to
Bhattacharya et al. [15]. We bridge this gap by presenting the first fully-dynamic integral
matching (and weighted matching) algorithm with polylogarithmic worst-case update times
and constant approximation ratio. In particular, our approach yields a (2 + ε)-approximate
algorithm, within the Oε(log3 n) time bound of [15], but for integral matching.6

1.1 Our Contribution
Our main technical result requires the following natural definition of (c, d)-approximately-
maximal fractional matchings.

I Definition 1.1 (Approximately-Maximal Fractional Matching). We say that a fractional
matching w : E → R+ is (c, d)-approximately-maximal if every edge e ∈ E either has
fractional value we ≥ 1/d or has one endpoint v with sum of incident edges’ weights at least
Wv ,

∑
e3v we ≥ 1/c and moreover all edges e′ incident on this v have we′ ≤ 1/d.

5 For the sake of simplicity we only list bounds here given in terms of n and m. In particular, we do not
state the results for arboricity-bounded graphs, which in the worst case (when the arboricity of a graph
is α = Θ(

√
m)) are all outperformed by algorithms in this table, with the aforementioned algorithm of

Peleg and Solomon [45] being the lone exception to this rule.
6 Independently of our work, and using a different approach, Charikar and Solomon [16] obtained a

(2 + ε)-approximate dynamic matching algorithm with Oε(log7 n) worst-case update time. For fixed ε
their algorithm is slower than ours, and is arguably more complicated than our approach.
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Table 1 Our Results and Previous Results for Fully-Dynamic Matching.
(All references are to the latest publication, with the first publication venue in parentheses.)

Approx. Update Time det. w.c. notes reference

O(1) O(log2 n) 7 7 Onak and Rubinfeld (STOC ’10) [44]

4 + ε O(m1/3/ε2) 3 3 Bhattacharya et al. (SODA ’15) [13]

3 + ε O(
√
n/ε) 3 7 Bhattacharya et al. (SODA ’15) [13]

2 + ε poly(log n, 1/ε) 3 7 Bhattacharya et al. (STOC ’16) [14]
2 + ε poly(log n, 1/ε) 7 3 w.h.p This work6

2 O((m+ n)1/
√

2) 3 7 Ivković and Lloyd (WG ’93) [35]

2 O(log n) 7 7 O(log2 n) w.h.p Baswana et al. (FOCS ’11) [9]

2 O(1) 7 7 w.h.p Solomon (FOCS ’16) [49]

3/2 + ε O( 4√m/ε2.5) 3 3 bipartite only Bernstein and Stein (ICALP ’15) [11]

3/2 + ε O( 4√m/ε2.5) 3 7 Bernstein and Stein (SODA ’16) [12]

3/2 O(
√
m) 3 3 Neiman and Solomon (STOC ’13) [43]

1 + ε O(
√
m/ε2) 3 3 Gupta and Peng (FOCS ’13) [27]

Note that this definition generalizes maximal fractional matchings (for which c = d = 1).
The second condition required of v above (i.e., having no incident edges e′ with we′ > 1/d)
may seem a little puzzling, but will prove important later; it can be safely ignored until §2.1
and §3.

Our main qualitative result, underlying our quantitative result, is the following black-box
reduction from integral matching algorithms to approximately-maximal fractional matching
algorithms, as stated in the following theorem.

I Theorem 1.2. Let A be a fully-dynamic (c, d)-approximately-maximal fractional matching
algorithm whose update time T (n,m) and which changes at most C(n,m) edge weights per
update, for some c ≥ 1, d ≥ 6c·ln(max{n,1/ε})

ε2 , with ε ≤ 1
2 . Then, there exists a randomized

fully-dynamic integral 2c(1 + O(ε))-approximate matching algorithm A′ (with this bound
holding both w.h.p and in expectation) with update time T (n,m)+O(C(n,m)·d/ε2). Moreover,
if T (n,m) and C(n,m) are worst-case bounds, so is the update time of Algorithm A′.

Now, one may wonder whether fully-dynamic (c, d)-approximately-maximal fractional
matching algorithms with low worst-case update time and few edge weight changes exist for
any non-trivial values of c and d. Indeed, the recent algorithm of Bhattacharya et al. [15] is
such an algorithm, as the following lemma asserts.

I Lemma 1.3 ([15]). For all ε ≤ 1
2 , there is a fully-dynamic (1+2ε,max{54 log n/ε3, (3/ε)21})-

approximately-maximal fractional matching algorithm with T (n,m) = O(log3 n/ε7) worst-case
update time, using at most C(n,m) = O(log n/ε2) edge weight changes per update in the
worst case.

We highlight the general approach of the algorithm of Bhattacharya et al. [15] in §2.1 to
substantiate the bounds given in Lemma 1.3. Plugging the values of c, T (n,m) and C(n,m)
of Lemma 1.3 into Theorem 1.2 immediately yields our result, given in the following theorem.
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I Theorem 1.4. For all ε ≤ 1
2 , there exists a randomized fully-dynamic (2 + O(ε))-

approximate integral matching algorithm (w.h.p and in expectation) with worst-case update
time O(log3 n/ε7 + log(max{n, 1/ε})/ε2 ·max{log n/ε3, (3/ε)21}) = Oε(log3 n).

We recall that until now (barring the aforementioned independent result of Charikar
and Solomon [16]), for worst-case polylog update times only fractional dynamic algorithms –
algorithms which only approximate the value of the maximum matching – were known for
this problem.

Finally, combined with the recent black-box reduction of Stubbs and Vassilevska Williams
[50] from the weighted to the unweighted matching problem, our algorithm also yields
the first fully-dynamic constant-approximate maximum weight matching algorithm with
polylogarithmic worst-case update time.

I Theorem 1.5. For all ε ≤ 1
2 , there exists a randomized fully-dynamic (4+O(ε))-approximate

maximum weight matching algorithm with poly(log n, 1/ε) worst-case update time. The
approximation guarantee holds with high probability and in expectation.

1.2 Our Techniques

Our framework yielding our main result combines three ingredients: approximately-maximal
fractional matchings, kernels and fast (1 + ε) matching algorithms for bounded-degree graphs.
We give a short exposition of these ingredients and conclude with how we combine all three.

Approximately-Maximal Fractional Matchings. The first ingredient we rely on is (c, d)-
approximately-maximal fractional matchings, introduced in the previous section. Recalling
that for such solutions, each edge has value at least 1/d or one of its endpoints has sum
of incident edge values at least 1/c. This approximate maximality condition implies this
fractional matching has high value compared to the maximum matching size; specifically, this
fractional matching’s size is at least a 1/2 max{c, d} fraction of this value (easily verifiable
using LP duality). As we shall show, approximate maximality also allows one to use these
fractional values to sample a subgraph in the support of this fractional matching which
contains a large integral matching compared to G, with high probability. We discuss the
dynamic fractional matching algorithm of Bhattacharya et al. [15] and show that it maintains
an approximately-maximal fractional matching in §2.1.

Kernels. The second ingredient we rely on is the notion of kernels, introduced by [13].
Roughly speaking, a kernel is a low-degree subgraph H of G such that each edge of G not
taken into H has at least one endpoint whose degree in H is at least 1/c times the maximum
degree in H. Relying on Vizing’s Theorem [53], we show in §2.2 that such a graph has
maximum matching size µ(H) at least 1/(2c + ε) of the matching size of G, previously
only known for kernels of bipartite graphs, where this is easily verifiable via LP duality.7
Efficiently maintaining a large matching can therefore be reduced to maintaining a low-degree
kernel, given the last ingredient of our approach.

7 As a byproduct of our proof, we show how the algorithms of Bhattacharya et al. [13] can be made
(2 + ε)-approximate within the same time bounds. As this is tangential to our main result, we do not
elaborate on this.
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Bounded-Degree (1 + ε)-matching. The final ingredient we rely on for our framework is
(1 + ε) matching algorithms with worst-case update time bounded by the graph’s maximum
degree, such as the algorithms of Gupta and Peng [27] and Peleg and Solomon [45].

Our approach in a nutshell

Given the above ingredients, our framework is a simple and natural one. Throughout our
algorithm’s run, we run a fully-dynamic (c, d)-approximately-maximal fractional matching
algorithm with efficient worst-case update. Sampling edges independently according to this
fractional value (times some logarithmic term in n, to guarantee concentration) allows us
to sample a kernel of logarithmic maximum degree, with each non-sampled edge having
at least one endpoint with degree at least 1/c times the maximum subgraph degree, with
high probability. As the obtained subgraph H therefore has a maximum matching of size at
least ≈ 1/2c times the maximum matching in G, a (1 + ε)-matching algorithm in H yields a
≈ 2c + O(ε) matching in G. We then maintain a (1 + ε)-matching in H (which by virtue
of H’s bounded degree we can do in logarithmic worst-case time) following each update to
H incurred by a change of some edge’s fractional value by the dynamic fractional matching
algorithm. The obtained integral algorithm’s update time is dominated by two terms: the
running time of the fractional algorithm, and the number of edge weight changes per update,
times O(log n). This concludes the high-level analysis of the obtained approximation ratio
and update time of our approach, as given in Theorem 1.2.

Wider applicability

We stress that our framework is general, and can use any approximately-maximal fractional
matching algorithm. Consequently, any improvement on the running time and number of
edge value changes for maintaining approximately-maximal fractional matchings would yield
a faster worst-case update time.

2 Preliminaries

In this section we introduce some previous results which we will rely on in our algorithm
and its analysis. We start by reviewing the approach of Bhattacharya et al. [15] to obtain
efficient fractional algorithms in §2.1. We then discuss the bounded-degree subgraphs we will
consider, also known as kernels, in §2.2. Finally, we briefly outline the (1 + ε)-approximate
O(∆/ε2) worst case update time algorithms we will rely on for our algorithm, in §2.3.

2.1 Hierarchical Partitions
In this section we review the approximately-maximal fractional matchings maintained by
Bhattacharya et al. [15]. At a high level, this algorithm relies on the notion hierarchical
partitions, in which vertices are assigned some level (the partition here is given by the level
sets), and edges are assigned a fractional value based on their endpoints’ levels. Specifically,
an edge is assigned a value exponentially small in its vertices’ maximum level. The levels
(and therefore the edge weights) are updated in a way as to guarantee feasibility, as well as
guaranteeing that a vertex v of high level has high sum of incident edge weights, Wv. These
conditions are sufficient to guarantee approximate maximality, as we shall soon show.
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The hierarchical partitions considered by Bhattacharya et al. [15], termed simply nice
partitions, is described as follows. In the definition constants β,K,L and a function f(β) =
1− 3/β are used, satisfying the following.

β ≥ 5, K = 20, f(β) = 1− 3/β, L = dlogβ ne. (1)

In our case, for some ε ≤ 1
2 , we will let β = 3

ε (≥ 5). As we will be shooting for O(1)-
approximation algorithms with polylogarithmic update time and our reduction’s update
time has polynomial dependence on ε−1, we will assume without loss of generality that
ε = Ω( 3

20√n ), and so for n large enough, we have K ≤ L.

I Definition 2.1 (A nice partition [15]). In a nice partition of a graph G = (V,E), each
vertex v is assigned an integral level `(v) in the set {K,K + 1, . . . , L}. In addition, for each
vertex v ∈ V and edge e 3 v the shadow-level of v with respect to e, denoted by `v(e), is a
(positive) integer satisfying `(v)− 1 ≤ `v(e) ≤ `(v) + 1. Moreover, for each vertex v, we have

max
e3v

`v(e)−min
e3v

`v(e) ≤ 1. (2)

The level of an edge e = (u, v) is taken to be the maximum shadow-level of an endpoint of e
with respect to e; i.e., `(u, v) = max{`u(e), `v(e)}. Let Wv =

∑
e∈v we be the sum of weights

of edges incident on a vertex v. Then,
1. For every edge e ∈ E, it holds that we = β−`(e).
2. For every node v ∈ V , it holds that Wv < 1.
3. For every node v ∈ V with level `(v) > K, it holds that Wv ≥ f(β).
The intuition behind this definition in Bhattacharya et al. [15] is to mimic the hierarchical par-
tition of Bhattacharya et al. [13], termed (α, β)-decompositions there. (α, β)-decompositions
are the special case of nice partitions where the shadow-level of a vertex v with respect to
each edge e 3 v is precisely equal to the vertex’s level; i.e, `v(e) = `(v) (with α denoting
f(β)/β). The advantage of this more relaxed notion of shadow-level is to allow a vertex to
move between levels “slowly”, only notifying part of its incident edges of its level change
between updates, and therefore only updating some of its edges’ weights. This allows for
maintaining this partition with fast worst-case update time, as shown in Bhattacharya et
al. [15] (more on this below).

This above intuition concerning nice partitions will not prove important for our analysis.
The crucial property we will rely on is given by the following lemma, which asserts that the
fractional matching associated with a nice partition is approximately-maximal.

I Lemma 2.2. Let ε ≤ 1
2 . Consider a nice partition with parameter β = 3/ε ≥ 6 ≥ 5,

and so f(β) = 1 − ε. Then, the fractional matching associated with this nice partition is
(1 + 2ε,max{54 logn/ε3, (3/ε)21})-approximately-maximal.

Proof. Let K ′ = max{dlogβ(18c log n/ε2)e,K+ 1} and d = βK
′ ≤ max{54 log n/ε3, (3/ε)21}.

For any edge e, if `(e) = maxv∈e{`v(e)} ≤ K ′, then by definition we = β−`(e) ≥ β−K′ = 1
d .

Alternatively, if we < 1
d then `(e) > K ′ and therefore by integrality of `(e), we have

`(e) ≥ K ′ + 1. Now, let v be arg maxv∈e{`v(e)} ≥ K ′ + 1. Then, by definition of shadow-
levels and K ′ > K, we have `(v) ≥ `v(e) − 1 ≥ K ′ > K and so by Property 3 of a nice
partition we have Wv > f(β) = 1 − ε ≥ 1

1+2ε (as ε ≤ 1
2 ). But on the other hand, by

Equation (2), we also know that for every edge e′ 3 v,

`v(e′) ≥ min
e′3v

`v(e′) ≥ max
e′3v

`v(e′)− 1 ≥ `v(e)− 1 ≥ K ′ > K.

Therefore, by definition of the edge weights, each edge e′ 3 v satisfies we′ ≤ β−K′ ≤ 1
d . J
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The recent result of Bhattacharya et al. [15] for maintaining nice partitions in polylogar-
ithmic worst-case update time together with Lemma 2.2 immediately implies Lemma 1.3,
restated below. We substantiate these bounds with the dependence on ε stated explicitly
in the full version of this paper [6], as Bhattacharya et al. [15] had ε = O(1) and so their
results do not state these dependencies explicitly.

I Lemma 1.3 ([15]). For all ε ≤ 1
2 , there is a fully-dynamic (1+2ε,max{54 log n/ε3, (3/ε)21})-

approximately-maximal fractional matching algorithm with T (n,m) = O(log3 n/ε7) worst-case
update time, using at most C(n,m) = O(log n/ε2) edge weight changes per update in the
worst case.

As we shall show, approximately-maximal fractional matchings allow us to sample a
bounded-degree subgraph H of G containing a large matching compared to the maximum
matching size in G, µ(G). For this we will require the notion of kernels, defined in §2.2.

2.2 Kernels
In this section we review the concept of kernels, first introduced by Bhattacharya et al. [13].

I Definition 2.3 (Kernels [13]). A (c, d)-kernel of a graph G is a subgraph H of G satisfying:
1. For each vertex v ∈ V , the degree of v in H is at most dH(v) ≤ d.
2. For each edge (u, v) ∈ E \H, it holds that max{dH(u), dH(v)} ≥ d/c.

The interest in finding a bounded-degree subgraph H of G may seem natural, as one may
expect to be able to compute a matching quickly in H due to its sparsity (we elaborate more
on this point in §2.3). The interest in satisfying the second property, on the other hand, may
seem a little cryptic. However, combining both properties implies that the matching number
of H, µ(H), is large in comparison with the matching number of G, µ(G).

I Lemma 2.4. Let H be a (c, d)-kernel of G for some c ≥ 1. Then µ(H) ≥ 1
2c(1+1/d) · µ(G).

Proof. LetM∗ be some maximum matching in G (i.e., |M∗| = µ(G)). Consider the following
fractional matching solution:

fu,v =
{

1
d (u, v) ∈ H \M∗

max{1− dh(u)+dH (v)−2
d , 0} (u, v) ∈ H ∩M∗.

This is a feasible fractional matching due to the degree bound of H and the fractional
values assigned to edges of a vertex v incident on an edge e ∈ H ∩ M∗ being at most
dH (v)−1

d + d−dH (v)+1
d = 1. To show that this fractional matching has high value, consider the

variables yv =
∑
u fu,v. On the one hand, by the handshake lemma,

∑
u,v fu,v = 1

2
∑
v yv.

On the other hand, each edge (u, v) of M∗ ∩ H has yu + yv ≥ 1 ≥ 1
c by construction

and each edge of M∗ \H has at least one endpoint v of degree dH(v) ≥ d
c , implying that

yu + yv ≥ d
c ·

1
d = 1

c for each (u, v) ∈M∗ \H. As each vertex v neighbors at most one edge
of the (optimal) matching M∗, we obtain∑

e

fe = 1
2 ·
∑
v

yv ≥
1
2c · |M

∗| = 1
2c · µ(G).

Now, to show that H contains a large integral matching, we rely on Vizing’s Theorem [53],
which asserts that every multigraph of maximum degree ∆ and maximum edge multiplicity µ
has a proper ∆+µ edge-coloring; i.e., a partition of the edge multiset into ∆+µ edge-disjoint
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matchings. To use this theorem, we construct a multigraph on the same vertex set V with
each edge e replaced by fe · d parallel copies (note that fe · d is integral). By construction,
the number of edges in this multigraph is

∑
e fe · d. By feasibility of f , we have that this

multigraph has maximum degree d. By Vizing’s Theorem, the simple subgraph obtained by
ignoring parallel edges corresponding to edges in H∩M∗ can be edge colored using d+1 colors.
But for each edge e = (u, v) ∈ H ∩M∗, such a coloring uses at most dH(u)− 1 + dH(v)− 1
distinct colors on edges other than (u, v) incident on u or v. To extend this d+1 edge coloring
to a proper coloring of the multigraph, we color the max{d− (dH(u)− 1 + dH(v)− 1), 0}
multiple edges (u, v) in this multigraph using some max{d − (dH(u) − 1 + dH(v) − 1), 0}
colors of the palette of size d + 1 not used on the other edges incident on u and v. We
conclude that this multigraph, which is contained in H and has

∑
e fe · d edges, is d+ 1 edge

colorable and therefore H contains an integral matching of size at least

1
d+ 1 ·

∑
e

fe · d = 1
1 + 1/d ·

∑
e

fe ≥
1

2c(1 + 1/d) · µ(G). J

Lemma 2.4 and the algorithm of §2.3 immediately imply that the algorithms of Bhat-
tacharya et al. [13] can be made (2 + ε)-approximate within the same time bounds (up to
poly(1/ε) terms). As this was previously also observed in Bhattacharya et al. [14], we do not
elaborate on this point here.

2.3 Nearly-Maximum Matchings in Degree-Bounded Graphs
In this short subsection we highlight one final component we will rely on for our reduction: fast
nearly-optimal matching algorithms with worst-case update time bounded by G’s maximum
degree. Such algorithms were given by Peng and Gupta [27] and Peleg and Solomon [45].
More precisely, we have the following lemma.

I Lemma 2.5 ([27, 45]). There exists a dynamic (1 + ε)-approximate matching algorithm
with worst-case O(∆/ε2) update time in dynamic graphs of maximum degree at most ∆.

The bound for the algorithm of [45] follows as α ≤ ∆ always, while the bound for the
algorithm of [27] is immediate by inspecting this algorithm, as observed in [45].

3 Sampling Using Approximately-Maximal Matchings

In what follows we will show that sampling edges independently with probability roughly
proportional to their assigned value according to an approximately-maximal fractional
matching yields a kernel of logarithmic maximum degree with high probability.

I Lemma 3.1. Let ε ≤ 1
2 . Let w : E → R+ be a (c, d)-approximately-maximal fractional

matching with c ≥ 1 and d ≥ 6c·ln(max{n,1/ε})
ε2 . Then, a subgraph H obtained by sampling

each edge e independently with probability

min{1, we · d} (3)

is a (c(1 +O(ε)), (1 + ε)d)-kernel of G with probability at least 1− 2
max{n,1/ε} .

Proof. For any vertex v ∈ V , denote by Dv the random variable which corresponds to v’s
degree in H. As before, denote by Wv =

∑
e3v we ≤ 1 the sum of edge weights of edges

incident on v.
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First, we prove the degree upper bound; i.e., Property 1 of a kernel. As w is a fractional
matching, we know that Wv ≤ 1. Therefore, by Equation (3), we have that E[Dv] ≤ d. By
standard Chernoff bounds, as d ≥ 6c·ln(max{n,1/ε})

ε2 and c ≥ 1, we find that

Pr[Dv ≥ (1 + ε) · d] ≤ exp
(
−ε2 · d

3

)
≤ 1

max{n, 1/ε}2c ≤
1

max{n, 1/ε}2 .

Next, we prove that any edge not sampled into H will, with high probability, be incident
on some high-degree vertex in H; i.e., we show that H satisfies Property 2 of a kernel.
First, note that an edge e with we ≥ 1/d will be sampled with probability one, given our
sampling probability given in Equation (3), therefore trivially satisfying Property 2 of a
kernel. Conversely, an edge e with we < 1/d has some endpoint v with Wv ≥ 1/c and all
edges e′ incident on v have we′ ≤ 1/d, since w is (c, d)-approximately maximal. Therefore,
by Equation (3) each edge e′ incident on v is sampled with probability precisely we′ · d.
Consequently, we have that µv = E[Dv] = Wv · d ≥ d/c. By standard Chernoff bounds, as
µv ≥ d/c ≥ 6 ln(max{n,1/ε})

ε2 , we find that

Pr[Dv ≤ (1− ε) · d/c] ≤ Pr[Dv ≤ (1− ε) · µv] ≤ exp
(
−ε2 · µv

2

)
≤ 1

max{n, 1/ε}3 .

Taking a union bound over the O(n2) possible bad events corresponding to violating a property
of a (c(1 + ε)/(1− ε)), d(1 + ε))-kernel, we find that probability at least 1− 2

max{n,1/ε} :
1. For each vertex v ∈ V , it holds that dH(v) ≤ (1 + ε) · d.
2. For each edge (u, v) ∈ E \H, it holds that max{dH(u), dH(v)} ≥ (1− ε) · d/c.
In other words, H is a (c(1 + ε)/(1− ε), d(1 + ε))-kernel of G with high probability. J

4 Our Reduction

Given the previous sections, we are now ready to describe our reduction from fully-dynamic in-
tegral matching to approximately-maximal fractional matching and analyzing its performance,
given by Theorem 1.2, restated here.

I Theorem 1.2. Let A be a fully-dynamic (c, d)-approximately-maximal fractional matching
algorithm whose update time T (n,m) and which changes at most C(n,m) edge weights per
update, for some c ≥ 1, d ≥ 6c·ln(max{n,1/ε})

ε2 , with ε ≤ 1
2 . Then, there exists a randomized

fully-dynamic integral 2c(1 + O(ε))-approximate matching algorithm A′ (with this bound
holding both w.h.p and in expectation) with update time T (n,m)+O(C(n,m)·d/ε2). Moreover,
if T (n,m) and C(n,m) are worst-case bounds, so is the update time of Algorithm A′.

Proof. Our reduction works as follows. Whenever an edge e is added/removed from G, we
update the (c, d)-approximately-maximal fractional matching, using algorithm A, in time
T (n,m). We then sample each of the at most C(n,m) edges e whose value is changed,
independently, with probability given by Equation (3). To control the maximum degree in
the sampled subgraph H ′, every vertex v maintains a list of at most (1 + ε) · d sampled
edges “allowable” for use in H. (This list can be maintained dynamically in O(1) time per
update in H ′ in a straightforward manner.) We let H be the graph induced by the sampled
edges “allowed” by both their endpoints. Finally, we use a (1 + ε)-matching algorithm as in
Lemma 2.5 to maintain a matching in the sampled subgraph H.

By Lemma 3.1 the subgraph H is a (c(1+O(ε)), (1+ε)d)-kernel of G with high probability
(note that by the same lemma, all sampled edges of H ′ will appear in our H). By Lemma 2.4,
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this means that with high probability this kernel H has matching number at least

µ(H) ≥ 1
2c(1 +O(ε))(1 + 1/d)) · µ(G) ≥ 1

2c(1 +O(ε)) · µ(G),

where the second inequality follows from d ≥ 6c·ln(max{n,1/ε})
ε2 ≥ 1

ε . As the above lower bound
on µ(H) holds with probability at least 1− 2ε by Lemma 3.1 and Lemma 2.4, we have that
E[µ(H)] ≥ (1− 2ε) · 1

2c(1+O(ε)) · µ(G) ≥ 1
2c(1+O(ε)) · µ(G). Therefore, a (1 + ε)-approximate

matching in H is itself a 2c(1 +O(ε))-approximate matching in G w.h.p and in expectation.
Now, each of the C(n,m) changes to edge weights of the fractional matching incurs at most
three updates to the kernel H: for every edge e whose weight changes, this edge can be
added/removed to/from H if it is sampled in/out; in the latter case both of e’s endpoints
can have a new edge added to their “allowable” edge list in place of e, and therefore possibly
added to H, in case the endpoints had less than (1 + ε)d sampled edges. In either case, the
number of edges added to H is at most a constant per edge weight update. But on the
other hand, the (1 + ε)-approximate matching algorithm implied by Lemma 2.5 requires
O(d/ε2) worst-case time per update in H, by H ’s worst-case degree bound. Consequently, our
algorithm maintains a 2c(1 +O(ε))-approximate integral matching (w.h.p and in expectation)
in T (n,m) +O(C(n,m) · d/ε2) update time; moreover, this update time is worst case if the
bounds on T (n,m) and C(n,m) are themselves worst case. J

5 Applications to Maximum Weight Matching

In this section we highlight the consequences of our results for fully-dynamic maximum
weight matching. First, we discuss a new reduction of Stubbs and Vassilevska Williams [50].

I Lemma 5.1 ([50]). Let A be an fully-dynamic α-approximate maximum cardinality match-
ing algorithm with update time T (n,m). Then, there exists a fully-dynamic 2α(1 + ε)-
approximate maximum cardinality matching algorithm with update time O(T (n,m) · log(n/ε)

ε ).
Furthermore, if Algorithm A is deterministic, so is the new one, and if Algorithm A’s update
time is worst case, so is the new algorithm’s update time.

This reduction (which we elaborate on shortly), together with the state of the art dynamic
maximum matching algorithms, implies most of the best currently best bounds for dynamic
maximum weight matching, in Table 2.

A somewhat more involved and worse update time bound than that given in Lemma 5.1
was presented in [50], as that paper’s authors sought to obtain a persistent matching, in a
sense that this matching should not change completely after a single step (i.e., no more than
O(T (n,m)) changes to the matching per edge update, if T (n,m) is the algorithm’s update
time). However, a simpler and more efficient reduction yielding a non-persistent matching
algorithm with the performance guarantees of Lemma 5.1 is implied immediately from the
driving observation of Stubbs and Vassilevska Williams [50] (and indeed, is discussed in
[50]). This observation, previously made by Crouch and Stubbs [18] in the streaming setting,
is as follows: denote by Ei the edges of weights in the range ((1 + ε)i, (1 + ε)i+1], and let
Mi be an α-approximate matching in G[Ei]. Then, greedily constructing a matching by
adding edges from each Mi in decreasing order of i yields a 2α(1 + ε)-approximate maximum
weight matching. Adding to this observation the observation that if we are content with a
(1 + ε)-approximate (or worse) maximum weight matching we may safely ignore all edges of
weight less than ε/n of the maximum edge weight (a trivial lower bound on the maximum
weight matching’s weight), we find that we can focus on the ranges ((n/ε)i, (n/ε)i+2], for
some i ∈ Z, noting that each edge belongs to at most two such ranges.
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Table 2 Our Results and Previous State-of-the-Art for Fully-Dynamic MWM.
Approx. Update Time det. w.c. reference

4 + ε O(log(n/ε)/ε) 7 7 5.1 + Solomon (FOCS ’16) [49]
4 + ε poly(log n, 1/ε) 3 7 5.1 + Bhattacharya et al. (STOC ’16) [14]
4 + ε O(m1/3 log(n/ε)/ε3) 3 3 5.1 + Bhattacharya et al. (SODA ’15) [13]

4 + ε poly(log n, 1/ε) 7 3 5.1 + This work

≈ 3.009 + ε O(
√
m logCε−3) 3 3 Gupta and Peng (FOCS ’13) [27]

3 + ε O( 4√m log(n/ε)ε−3) 3 7 5.1 + Bernstein and Stein (SODA ’16) [12]

2 + ε O(
√
m · log2(n/ε)

ε4 ) 3 3 5.1 + Gupta and Peng (FOCS ’13) [27]

1 + ε O(
√
mCε−3) 3 3 Gupta and Peng (FOCS ’13) [27]

1 + ε O(
√
m logCε−O(1/ε)) 3 3 Gupta and Peng (FOCS ’13) [27]

In each such range ((n/ε)i, (n/ε)i+2], the argument of [18, 50] implies that maintaining
α-approximate matchings in the sub-ranges ((1 + ε)j , (1 + ε)j+1] for integral ranges and
combining these greedily result in a 2α(1 + ε)-approximate maximum weight matching in
the range ((n/ε)i, (n/ε)i+2]. Therefore, in the range containing a (1 + ε)-approximate MWM
(such a range exists, by the above), this approach maintains a 2α(1 + O(ε))-approximate
MWM. The only possible difficulty is combining these matchings greedily dynamically.
This is relatively straightforward to do in O(log(n/ε)/ε) worst-case time per change of the
α-approximate matching algorithm, however, implying the bound of Lemma 5.1.

As seen in Table 2, this reduction of Stubbs and Vassilevska Williams [50] implies a slew
of improved bounds for fully-dynamic approximate maximum weight matching. Plugging
in our bounds of Theorem 1.4 for fully-dynamic maximum matching into the reduction of
Lemma 5.1 similarly yields the first constant-approximate maximum weight matching with
polylogarithmic worst-case update time, given in Theorem 1.5 below.

I Theorem 1.5. For all ε ≤ 1
2 , there exists a randomized fully-dynamic (4+O(ε))-approximate

maximum weight matching algorithm with poly(log n, 1/ε) worst-case update time. The
approximation guarantee holds with high probability and in expectation.

6 Conclusion and Future Work

In this work we presented a simple randomized reduction from (2c+ ε)-approximate fully-
dynamic matching to fully-dynamic (c, d)-approximately-maximal fractional matching with
a slowdown of d. Using the recent algorithm of Bhattacharya et al. [15], our work yields
the first fully-dynamic matching algorithms with faster-than-polynomial worst-case update
time for any constant approximation ratio; specifically, it yields a (2 +O(ε))-approximate
matching with polylog worst case update time. Our work raises several natural questions
and future research directions to explore.

Faster Fractional Algorithms. Given our reduction, in order to obtain faster (2 + ε)-
approximate matching algorithms, it would suffice to improve the update time for fully-
dynamic (1 + ε, Oε(log n))-approximately-maximal fractional matching algorithm compared
to the algorithm of Bhattacharya et al. [15]. Large enough improvements in the update
time, number of edge weight changes and parameter d of (1 + ε, d)-approximately-maximal
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fractional matching algorithms used would result in even better bounds. We note however
that our current approach does not seem to allow for sub-logarithmic update bounds, due to
its update time’s dependence on d ≥ log n, so obtaining worst-case sub-logarithmic bounds
may require different ideas.

More Efficient/Deterministic Reduction. Given the above, one may ask whether the
dependence on d may be removed in a black-box reduction such as ours, yielding randomized
integral matching algorithms with the same running time as their fractional counterparts.
One may further wonder whether or not one can obtain a deterministic counterpart to our
black-box reduction from integral matching to approximately-maximal fractional matching.
Such a reduction with polylogarithmic overhead would yield for example a deterministic
(2 + ε)-approximate algorithm with worst-case polylogarithmic update time.

Maximal Matching. Finally, a natural question from our work and prior work is whether
or not a maximal matching can be maintained in worst-case polylogarithmic time (also
implying a 2-approximate minimum vertex cover within the same time bounds). We leave
this as a tantalizing open question.
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Abstract
A noticeable fraction of Algorithms papers in the last few decades improve the running time
of well-known algorithms for fundamental problems by logarithmic factors. For example, the
O(n2) dynamic programming solution to the Longest Common Subsequence problem (LCS) was
improved to O(n2/ log2 n) in several ways and using a variety of ingenious tricks. This line of
research, also known as the art of shaving log factors, lacks a tool for proving negative results.
Specifically, how can we show that it is unlikely that LCS can be solved in time O(n2/ log3 n)?

Perhaps the only approach for such results was suggested in a recent paper of Abboud, Hansen,
Vassilevska W. and Williams (STOC’16). The authors blame the hardness of shaving logs on
the hardness of solving satisfiability on boolean formulas (Formula-SAT) faster than exhaustive
search. They show that an O(n2/ log1000 n) algorithm for LCS would imply a major advance in
circuit lower bounds. Whether this approach can lead to tighter barriers was unclear.

In this paper, we push this approach to its limit and, in particular, prove that a well-known
barrier from complexity theory stands in the way for shaving five additional log factors for
fundamental combinatorial problems. For LCS, regular expression pattern matching, as well as
the Fréchet distance problem from Computational Geometry, we show that an O(n2/ log7+ε n)
runtime would imply new Formula-SAT algorithms.

Our main result is a reduction from SAT on formulas of size s over n variables to LCS on
sequences of length N = 2n/2 · s1+o(1). Our reduction is essentially as efficient as possible, and it
greatly improves the previously known reduction for LCS with N = 2n/2 · sc, for some c ≥ 100.
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1 Introduction

Since the early days of Algorithms research, a noticeable fraction of papers each year shave
log factors for fundamental problems: they reduce the best known upper bound on the time
complexity from T (n) to T (n)/ logc n, for some c > 0. While in some cases a cynic would
call such results “hacks” and “bit tricks”, there is no doubt that they often involve ingenious
algorithmic ideas and suggest fundamental new ways to look at the problem at hand. In
his survey, Timothy Chan calls this kind of research “The Art of Shaving Logs” [37]. In
many cases, we witness a race of shaving logs for some problem, in which a new upper
bound is found every few months, without giving any hints on when this race is going to
halt. For example, in the last few years, the upper bound for combinatorial Boolean Matrix
Multiplication dropped from O(n3/ log2 n) [16], to O(n3/ log2.25 n) [20], to O(n3/ log3 n)
[38], and most recently to O(n3/ log4 n) [99]. Perhaps the single most important missing
technology for this kind of research is a tool for proving lower bounds.

Consider the problem of computing the Longest Common Subsequence (LCS) of two
strings of length n. LCS has a simple O(n2) time dynamic programming algorithm [93, 46].
Several approaches have been utilized in order to shave log factors such as the “Four
Russians” technique [16, 61, 74, 23, 58], utilizing bit-parallelism [10, 47, 62], and working
with compressed strings [48, 54]. The best known upper bounds are O(n2/ log2 n) for constant
size alphabets [74], and O(n2 log log n/ log2 n) for large alphabets [58]. But can we do better?
Can we solve LCS in O(n2/ log3 n) time? While the mathematical intrigue is obvious, we
remark that even such mild speedups for LCS could be significant in practice. Besides its
use as the diff operation in unix, LCS is at the core of highly impactful similarity measures
between biological data. A heuristic algorithm called BLAST for a generalized version of
LCS (namely, the Local Alignment problem [87]) has been cited more than sixty thousand
times [14]. While such heurisitics are much faster than the near-quadratic time algorithms
above, they are not guaranteed to return an optimal solution and are thus useless in many
applications, and biologists often fall back to (highly optimized implementations of) the
quadratic solutions, see, e.g. [71, 72].

How would one show that it is hard to shave logs for some problem? A successful line of
work, inspired by NP-hardness, utilizes “fine-grained reductions” to prove statements of the
form: a small improvement over the known runtime for problem A implies a breakthrough
algorithm for problem B, refuting a plausible hypothesis about the complexity of B. For
example, it has been shown that if LCS can be solved in O(n2−ε) time, where ε > 0, then
there is a breakthrough (2− δ)n algorithm for CNF-SAT, and the Strong Exponential Time
Hypothesis (SETH, defined below) is refuted [2, 29]. Another conjecture that has been
used to derive interesting lower bounds states that the 3-SUM problem2 cannot be solved
in O(n2−ε) time. It is natural to ask: can we use these conjectures to rule out log-factor
improvements for problems like LCS? And even more optimistically, one might hope to base
the hardness of LCS on a more standard assumption like P 6= NP. Unfortunately, we can
formally prove that these assumptions are not sharp enough to lead to any consequences
for log-factor improvements, if only Turing reductions are used. In Section 3 we prove the

2 3-SUM asks, given a list of n numbers, to find three that sum to zero. The best known upper bound is
O(n2(log log n)2/ log n) for real numbers [59, 53, 56] and O(n2(log log n/ log n)2) for integers [21].



A. Abboud and K. Bringmann 8:3

following theorem which also shows that an O(f(n)/ logc(f(n))) time algorithm for problem
A cannot imply, via a fine-grained reduction, an O(g(n)1−ε) algorithm for problem B, unless
B is (unconditionally) solvable in O(g(n)1−δ) time.

I Theorem 1.1 (Informally). If for some c > 0 there is a fine-grained reduction proving that
LCS is not in O(n2/ logc n) time unless SETH fails, then SETH is false.

Note that it also does not suffice to simply make SETH stronger by postulating a higher
running time lower bound for CNF-SAT, since superpolynomial improvements are known for
this problem [81, 34, 49, 8]. Similarly, we cannot base a study of log-factor improvements
on the APSP conjecture, since superlogarithmic improvements are known for APSP [97].
(However, 3SUM could be a candidate to base higher lower bounds on, since only log-factor
improvements are known [59, 53, 56, 21], see Section A of the full version for a discussion.)

Thus, in a time when super-linear lower bounds for problems like LCS are far out of
reach, and our only viable approach to obtaining such negative results is reductions-based,
we are left with two options. We could either leave the study of log-factor improvements in
limbo, without a technology for proving negative results, or we could search for natural and
convincing assumptions that are more fine-grained than SETH that could serve as the basis
for the negative results we desire. Such assumptions were recently proposed by Abboud,
Hansen, Vassilevska Williams and Williams [3]. The authors blame the hardness of shaving
logs on the hardness of solving satisfiability on boolean formulas (Formula-SAT) faster than
exhaustive search3, by polynomial factors (which are log-factors in the runtime), a task for
which there are well known “circuit lower bound” barriers in complexity theory. They show
that an O(n2/ log1000 n) algorithm for LCS would imply a major advance in circuit lower
bounds. In the final section of this paper, we give a more detailed argument in favor of this
approach. Whether one should expect it to lead to tight barriers, i.e. explaining the lack of
O(n2/ log3 n) algorithms for LCS or any other natural problem, was completely unclear.

The Machine Model

We use the Word-RAM model on words of size Θ(log n), where there is a set of operations
on words that can be performed in time O(1). Most papers do not fix the concrete set of
allowed operations, and instead refer to “typical Boolean and arithmetic operations”. In this
paper, we choose a set of operations P that is robust with respect to changing the word size:
For any operation ◦ ∈ P, given two words a, b (of size Θ(log n)) we can compute a ◦ b in
time (log n)1+o(1) on a Word RAM with word size Θ(log log n) and operation set P . In other
words, if we split a, b into Θ(log n/ log log n) words of size Θ(log log n) then a ◦ b can still be
computed very efficiently.

This robustness in particular holds for the following standard set of operations: initializing
a cell with a constant, bitwise AND, OR, NOT, shift, addition, subtraction, multiplication, and
division with remainder (since multiplication and division have near-linear time algorithms).

The results in this paper will get gradually weaker as we relax the restriction on near-linear
time per operation to higher runtimes, however, even with this restriction, to the best of our
knowledge this model captures all log shaving results in the literature (on the “standard”
Word RAM model without fancy word operations).

3 In [3] the authors focus on SAT on Branching Programs (BPs) rather than formulas, but due to standard
transformations between BPs and formulas, the two problems are equivalent up to polynomial factors.
Focusing on Formula-SAT will be crucial to the progress we make in this paper.
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Formula-SAT

A boolean formula over n input variables can be viewed as a tree in which every leaf is
marked by an input variable or its negation and every internal node or gate represents some
basic boolean operation. Throughout this introduction we will only talk about deMorgan
formulas, in which every gate is from the set {∧,∨}. The size of the formula is defined to be
the number of leaves in the tree.

In the Formula-SAT problem we are given a formula F of size s over n inputs, and we
have to decide whether there is an input {0, 1}n that makes it output 1. A naive algorithm
takes O(2n · s) time, since evaluating the formula on some input takes O(s) time. Can we
do better? We will call a SAT algorithm non-trivial4 if it has a runtime at most O( 2n

nε ), for
some ε > 0.

It seems like a clever algorithm must look at the given formula F and try to gain a
speedup by analyzing it. The more complicated F can be, the harder the problem becomes.
Indeed, Dantsin and Hirsch [49] survey dozens of algorithms for SAT on CNF formulas which
exploit their structure. For k-CNF formulas of size s there are 2ns/2Ω(n/k) time algorithms
(e.g. [81]), and for general CNF formulas the bound is 2ns/2Ω(n/ log ∆) where ∆ = s/n is
the clause-to-variable ratio [34, 49, 8]. The popular SETH [66, 35] essentially says that this
is close to optimal, and that there is no 2ns/2Ω(n) algorithm for CNF-SAT. For arbitrary
deMorgan formulas, the upper bounds are much worse. A FOCS’10 paper by Santhanam [84]
and several recent improvements [41, 43, 42, 70, 91] solve Formula-SAT on formulas of size
s = n3−16ε in time 2nsO(1)/2nε , which is non-trivial only for s = o(n3), and going beyond
cubic seems extremely difficult. This leads us to the first barrier which we will transform
into a barrier for shaving logs.

I Hypothesis 1.2. There is no algorithm that can solve SAT on deMorgan formulas of size
s = n3+Ω(1) in O( 2n

nε ) time, for some ε > 0, in the Word-RAM model.

Perhaps the main reason to believe this hypothesis is that despite extensive algorithmic
attacks on variants of SAT (perhaps the most extensively studied problem in computer
science) over decades, none of the ideas that anyone has ever come up with seem sufficient to
refute it. Recent years have been particularly productive in non-trivial algorithms designed
for special cases of Circuit-SAT [84, 86, 64, 35, 98, 22, 40, 67, 63, 44, 83, 57] (in addition to
the algorithms for deMorgan formulas above) and this hypothesis still stands.

A well-known “circuit lower bounds” barrier seems to be in the way for refuting Hypoth-
esis 1.2: can we find an explicit boolean function that cannot be computed by deMorgan
formulas of cubic size? Functions that require formulas of size Ω(n1.5) [89] and Ω(n2) [69]
have been known since the 60’s and 70’s, respectively. In the late 80’s, Andreev [15] proved an
Ω(n2.5) which was later gradually improved to Ω(n2.55) by Nisan and Wigderson [65] and to
Ω(n2.63) by Paterson and Zwick [79] until Håstad proved his n3−o(1) lower bound in FOCS’93
[60] (a recent result by Tal improves the no(1) term [90]). All these lower bound results use
the “random restrictions” technique, first introduced in this context by Subbotovskaya in
1961 [89], and it is known that a substantially different approach must be taken in order
to go beyond the cubic barrier. What does this have to do with Formula-SAT algorithms?
Interestingly, this same “random restrictions” technique was crucial to all the non-trivial
Formula-SAT algorithms mentioned above. This is not a coincidence, but only one out of

4 Some works on SAT algorithms used this term for runtimes of the form 2npoly(s)/nω(1). In our context,
we need to be a bit more fine-grained.
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the many examples of the intimate connection between the task of designing non-trivial
algorithms for SAT on a certain class F of formulas or circuits and the task of proving
lower bounds against F . This connection is highlighted in many recent works and in several
surveys [85, 78, 96]. The intuition is that both of these tasks seem to require identifying a
strong structural property of functions in F . There is even a formal connection shown by
Williams [95], which in our context implies that solving Formula-SAT on formulas of size
O(n3.1) in O(2n/n10) time (which is only slightly stronger than refuting Hypothesis 1.2) is
sufficient in order to prove that there is a function in the class ENP that cannot be computed
by formulas of size O(n3.1) (see [3] for more details). This consequence would be the first
polynomial progress on the fundamental question of worst case formula lower bounds since
Håstad’s result.

1.1 Our Results: New Reductions
Many recent papers have reduced CNF-SAT to fundamental problems in P to prove SETH-
based lower bounds (e.g. [80, 82, 6, 4, 27, 18, 7, 1, 33, 5, 19, 75, 39]). Abboud et al. [3] show
that even SAT on formulas, circuits, and more, can be efficiently reduced to combinatorial
problems in P. In particular, they show that Formula-SAT on formulas of size s over n inputs
can be reduced to an instance of LCS on sequences of length N = O(2n/2 · s1000). This acts
as a barrier for shaving logs as follows. A hypothetical O(N2/ logcN) time algorithm for
LCS can be turned into an algorithm for Formula-SAT in time

n1+o(1) · (2n/2 · s1000)2/(log 2Ω(n))c = O(2n · s2000/nc−1),

which for a large enough c ≥ 2001 would refute Hypothesis 1.2. The first n1+o(1) factor
in the runtime comes from the jump from n to N = 2n and our Word-RAM machine
model: whenever the LCS algorithm wants to perform a unit-cost operation on words of
size Θ(logN) (this is much more than the word size of our SAT algorithm which is only
Θ(log n) = Θ(log logN)), the SAT algorithm can simulate it in (logN)1+o(1) = n1+o(1) time
in the Word-RAM model with words of size Θ(log n).

Our main result is a much more efficient reduction to LCS. For large but constant size
alphabets, we get a near-linear dependence on the formula size, reducing the s1000 factor to
just s1+o(1).

I Theorem 1.3. Formula-SAT on formulas of size s on n inputs can be reduced to an instance
of LCS on two sequences over an alphabet of size σ of length N = 2n/2 · s1+O(1/ log log σ), in
O(N) time.

Thus, if LCS on sequences of length N and alphabet of size ω(1) can be solved in
O(N2/ logcN) time, then Formula-SAT can be solved in 2n · s

2+o(1)

nc ·n1+o(1) time. Recall that
the known upper bound for LCS is O(n2/ logc n) for any constant alphabet size, with c = 2,
and we can now report that the barrier of cubic formulas stands in the way of improving it
to c > 7 (see Corollary 1.6 below).

The novelty in the proof of Theorem 1.3 over [3] is discussed in Section 2. As an alternative
to Theorem 1.3, in Section D of the full version we present another reduction to LCS which
is much simpler than all previously known reductions, but uses a larger alphabet.

Fréchet Distance

An important primitive in computational geometry is to judge how similar are two basic geo-
metric objects, such as polygonal curves, represented as sequences of points in d-dimensional
Euclidean space. Such curves are ubiquitous, since they arise naturally as trajectory data of
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moving objects, or as time-series data of stock prices and other measures. The most popular
similarity measure for curves in computational geometry is the Fréchet distance, also known
as dog-leash-distance. For formal definitions see Section F of the full version. The Fréchet
distance has found many applications (see, e.g., [76, 26, 30]) and developed to a rich field of re-
search with many generalizations and variants (see, e.g., [11, 17, 13, 51, 36, 45, 32, 50, 73, 68]).

This distance measure comes in two variants: the continuous and the discrete. A classic
algorithm by Alt and Godau [12, 55] computes the continuous Fréchet distance in time
O(n2 log n) for two given curves with n vertices. The fastest known algorithm runs in time
O(n2(log log n)2) (on the Word RAM) [31]. If we only want to decide whether the Fréchet
distance is at most a given value δ, this algorithm runs in time O(n2(log log n)2/ log n). For
the discrete Fréchet distance, the original algorithm has running time O(n2) [52], which
was improved to O(n2 log log n/ log n) by Agarwal et al. [9]. Their algorithm runs in time
O(n2 log log n/ log2 n) for the decision version. It is known that both versions of the Fréchet
distance are SETH-hard [27]. However, this does not rule out log factor improvements. In
particular, no reduction from versions of SETH on formulas or branching programs is known.

In this paper we focus on the decision version of the discrete Fréchet distance (which we
simply call “Fréchet distance” from now on). We show that Fréchet distance suffers from the
same barriers for shaving logs like LCS. In particular, this reduction allows us to base the
usual Ω(n2−ε) lower bound on a weaker assumption than SETH, such as NC-SETH (see the
discussion in [3]). This is the first NC-SETH hardness for a problem that does not admit
alignment gadgets (as in [29]).

I Theorem 1.4. Formula-SAT on formulas of size s on n inputs can be reduced to an
instance of the Fréchet distance on two curves of length N = O(2n/2 · s), in O(N) time.

Regular Expression Pattern Matching

Our final example is the fundamental Regular Expression Pattern Matching problem: Decide
whether a given regular expression of length m matches a substring of a text of length
n. Again, there is a classical O(nm) algorithm [92], and the applicability and interest in
this problem resulted in algorithms shaving log factors; the first one by Myers [77] was
improved by Bille and Thorup [24] to time O(mn/ log1.5 n). Recently, Backurs and Indyk
proved an n2−o(1) SETH lower bound [19], and performed an impressive study of the exact
time complexity of the problem with respect to the complexity of the regular expression.
This study was essentially completed by Bringmann, Grønlund, and Larsen [28], up to no(1)

factors. In Section E of the full version we show that this problem is also capable of efficiently
simulating formulas and thus has the same barriers as LCS and Fréchet distance.

I Theorem 1.5. Formula-SAT on formulas of size s on n inputs can be reduced to an instance
of Regular Expression Pattern Matching on text and pattern of length N = O(2n/2 · s log s)
over a constant size alphabet, in O(N) time.

Consequences of the Cubic Formula Barrier

We believe that SAT on formulas can be tightly connected to many other natural problems
in P. As we discuss in the next section, such reductions seem to require problem-specific
engineering and are left for future work. The main point of this paper is to demonstrate
the possibility of basing such ultra fine-grained lower bounds on one common barrier. Our
conditional lower bounds are summarized in the following corollary, which shows that current
log-shaving algorithms are very close to the well-known barrier from complexity theory of
cubic formula lower bounds.
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I Corollary 1.6. For all ε > 0, solving any of the following problems in O(n2/ log7+ε n) time
refutes Hypothesis 1.2, and solving them in O(n2/ log17+ε n) time implies that ENP cannot be
computed by non-uniform formulas of cubic size:

LCS over alphabets of size ω(1)
The Fréchet distance on two curves in the plane
Regular Expression Pattern Matching over constant size alphabets.

The main reason that our lower bounds above are not tight (the gap between 2 and 7) is
that we need to start from SAT on cubic size formulas rather than linear size ones, due to
the fact that clever algorithms do exist for smaller formulas. We remark that throughout the
paper we will work with a class of formulas we call F1 (see Section 2 below), also known
as bipartite formulas, that are more powerful than deMorgan formulas yet our reduction
to LCS can support them as well. This makes our results stronger, since F1-Formula-SAT
could be a harder problem than SAT on deMorgan formulas. In fact, in an earlier version of
the paper we had suggested the hypothesis that F1-Formula-SAT does not have non-trivial
algorithms even on linear size formulas. This stronger hypothesis would give higher lower
bounds. However, Avishay Tal (personal communication) told us about such a non-trivial
algorithm for formulas of size up to n2−Ω(1) using tools from quantum query complexity. We
are optimistic that one could borrow such ideas or the “random restrictions” technique from
SAT algorithms in order to shave more logs for combinatorial problems such as LCS. This is
an intriguing direction for future work.

2 Technical Overview and the Reduction to LCS

We first define the class of frmulas F1. A formula F of size s over n variables x1, . . . , xn is
in the class F1 iff it has the following properties. The gates in the first layer (nodes in the
tree whose children are all leaves) compute arbitrary functions C : {0, 1}n/2 → {0, 1}, as
long as C can be computed in 2o(n) time and all children of a gate are marked with variables
in {x1, . . . , xn/2} or with variables in {xn/2+1, . . . , xn} but not with both. W.l.o.g. we can
assume that the inputs are only connected to nodes in the first layer. The gates in the other
layers compute deMorgan gates, i.e., OR and AND gates. The size of F is considered to be
the number of gates in the first layer. Since F is a formula and thus has fanout 1, our size
measure is up to constant factors equal to the total number of all gates except the inputs.
Note that the complexity of the functions in the first layer and their number of incoming
wires, i.e. the number of leaves in the tree, do not count towards the size of F .

All the reductions from SAT to problems in P mentioned in the introduction start with a
split-and-list reduction to some “pair finding" problem. In the SETH lower bounds, CNF-SAT
is reduced to the Orthogonal-Vectors problem of finding a pair a ∈ A, b ∈ B,A,B ⊆ {0, 1}d
that are orthogonal [94]. When starting from Formula-SAT, we get a more complex pair-
finding problem. In Section B of the full version we show a simple reduction from SAT on
formulas from the class F1 (which contains deMorgan formulas) to the following problem.

I Definition 2.1 (Formula-Pair Problem). Given a deMorgan formula over 2m variables
F = F (x1, . . . , xm, y1, . . . , ym) (each appearing once in F ), and two sets of vectors A,B ⊆
{0, 1}m of size n, decide if there is a pair a ∈ A, b ∈ B such that F (a1, . . . , am, b1, . . . , bm) =
true.

In Section B of the full version we show a Four-Russians type algorithm that solves
Formula-Pair in O(n2m/ log2 n) time, and even when m = |F | = (log n)1+o(1) no
O(n2/ log1+ε n) upper bound is known. By our reduction, such an upper bound would
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imply a non-trivial algorithm for SAT on formulas from F1. Moreover, Hypothesis 1.2 implies
that we cannot solve Formula-Pair in O(n2/ logε n) time, for m = (log n)3+Ω(1). In the
next sections, we reduce Formula-Pair to LCS, from which Theorem 1.3 follows. A simpler
reduction using much larger alphabet size can be found in Section D of the full version.

I Theorem 2.2. Formula-Pair on formulas of size s and lists of size n can be reduced to
an instance of LCS on two strings over alphabet of size σ ≥ 2 of length O(n · s1+O(1/ log log σ)),
in linear time.

The reduction constructs strings x, y and a number ρ such that LCS(x, y) ≥ ρ holds if and
only if the given Formula-Pair instance (F,A,B) is satisfiable. The approach is similar to the
reductions from Orthogonal-Vectors to sequence alignment problems (e.g. [6, 27, 18, 2, 29]).
The big difference is that our formula F can be much more complicated than a CNF, and so
we will need more powerful gadgets. Sequence gadgets that are able to simulate the evaluation
of deMorgan formulas were (implicitly) constructed in [3] with a recursive approach. Our
main contribution is an extremely efficient implementation of such gadgets with LCS.

The main part of the reduction is to construct gate gadgets: for any vectors a, b ∈ {0, 1}m
and any gate g of F , we construct strings x(g, a) and y(g, b) whose LCS determines whether
gate g evaluates to true for input (a, b) to F (see Section 2.1). Once we have this, to find a
pair of vectors a ∈ A, b ∈ B satisfying F , we combine the strings x(r, a), y(r, b), constructed
for the root r of F , using a known construction of so-called alignment gadgets [2, 29] from
previous work (see Section C.1 of the full version).

Let us quickly explain how [3] constructed gate gadgets and the main ideas that go into
our new construction. There are two kinds of gadgets, corresponding to the two types of gates
in F : AND and OR gates. Since the AND gadgets will be relatively simple, let us consider
the OR gadgets. Fix two inputs a, b, and let g = (g1 ∨ g2) be an OR gate, and assume
that we already constructed gate gadgets for g1, g2, namely x1 = x(g1, a), y1 = y(g1, b), x2 =
x(g2, a), y2 = y(g2, b) so that for i ∈ {1, 2} we have that LCS(xi, yi) is large if the gate gi
outputs true on input (a, b), and it is smaller otherwise. In [3], these gadgets were combined
as follows. Let β be an upper bound on the total length of the gadgets xi, yi. We add a
carefully chosen padding of 0’s and 1’s, so that any optimal matching of the two strings will
have to match either x1, y1 or x2, y2 but not both.

x := 04β x1 1β x2 04β

y := y1 1β04β1β y2

One then argues that, in any optimal LCS matching of x, y, the 04β block of y must
be matched either left or right. If it’s matched left, then the total score will be equal
to 4β + β + LCS(x2, y2) while if it’s matched right, we will get 4β + β + LCS(x1, y1).
Thus, LCS(x, y) is determined by the OR of g1, g2. The blowup of this construction is a
multiplicative factor of 11 with every level of the formula, and the length of the gadget of
the root will end up roughly 11depth(F ). To obtain our tight lower bounds, we will need to
decrease this blowup to 1 + εσ at every level, where εσ goes to 0 when the alphabet size σ
tends to infinity. With the above construction, decreasing the length of the padding will
allow the optimal LCS matching to cheat, e.g. by matching y1 to both x1 and x2, and no
longer corresponding to the OR of g1, g2.

Our first trick is an ultra-efficient OR gadget in case we are allowed unbounded alphabet
size. We take x1, y1 and transform all their letters into a new alphabet Σg1 , and we take
x2, y2 and transform their letters into a disjoint alphabet Σg2 . Then our OR gadget does not
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require any padding at all:

x := x1 x2

y := y2 y1

The crossing structure of this construction means that any LCS matching that matches letters
from x1, y1 cannot also match letters from x2, y2, and vice versa, while the disjoint alphabets
make sure that there can be no matches between x1, y2 or x2, y1. With such gadgets we can
encode a formula of size s with O(s) letters, for details see Section D of the full version.

But how would such an idea work for constant size alphabets? Once we allow x1 and
y2 to share even a single letter, this argument breaks. Natural attempts to simulate this
construction with smaller alphabets, e.g. by replacing each letter with a random sequence, do
not seem to work, and we do not know how to construct such an OR gadget with a smaller
alphabet in a black box way. The major part of our proof will be a careful examination of
the formula and the sub-gadgets g1, g2 in order to reduce the alphabet size to a large enough
constant, while using padding that is only 1 + εσ times the length of the sub-gadgets. We
achieve this by combining this crossing gadget with a small padding that will reuse letters
from alphabets that were used much deeper in the formula, and we will argue that the noise
we get from recycling letters is dominated by our paddings, in any optimal matching.

We remark that the reduction of [3] can be implemented in a generic way with any
problem that admits alignment gadgets as defined in [29], giving formula-gadgets of size
sO(1). The list of such problems includes LCS and Edit-Distance on binary strings. However,
to get gadgets of length s1+o(1) it seems that problem-specific reductions are necessary. A
big open question left by our work is to find the most efficient reduction from Formula-SAT
to Edit-Distance. A very efficient OR gadget, even if the alphabet is unbounded, might be
(provably) impossible. Can we use this intuition to shave more log factors for Edit-Distance?

Fréchet Distance falls outside the alignment gadgets framework of [29] and no reduction
from Formula-SAT was known before. In Section F of the full version we prove such a
reduction by a significant boosting of the SETH-lower bound construction of [27]. In order
to implement recursive AND/OR gadgets, our new proof utilizes the geometry of the curves,
in contrast to [27] which only used ten different points in the plane.

In the remainder of this section we present the details of the reduction to LCS. Some
missing proofs can be found in Section C of the full version.

2.1 Implementing Gates
Fix vectors a, b ∈ {0, 1}m (where 2m is the number of inputs to F ). In this section we prove
the following lemma which demonstrates our main construction.

I Lemma 2.3. For any sufficiently large σ > 0 let τ = (log σ)1/4. We can inductively
construct, for each gate g of F , strings x(g) = x(g, a) and y(g) = y(g, b) over alphabet size
5σ2 and a number ρ(g) such that for L(g) := LCS(x(g), y(g)) we have (1) L(g) ≤ ρ(g) and
(2) L(g) = ρ(g) if and only if gate g evaluates to true on input (a, b) to F . Moreover, we
have |x(g)| = |y(g)| = n(g) ≤ 6τ · |Fg|(1 + 7/τ)depth(Fg), where Fg is the subformula of F
below g.

In this construction, we use disjoint size-5 alphabets Σ1, . . . ,Σσ2 , determining the total
alphabet size as 5σ2. Each gate g is assigned an alphabet Σf(g). We fix the function f later.

In the following, consider any gate g of F , and write the gate alphabet as Σf(g) =
{0, 1, 2, 3, 4}. For readability, we write x = x(g) and similarly define y, n, L, ρ. If g has fanin
2, write g1, g2 for the children of g. Moreover, let x1 = x(g1) and similarly define y1, n1, L1, ρ1
and x2, y2, n2, L2, ρ2.
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Input Gate

The base case is an input bit ai to F (input bits bj are symmetric). Interpreting ai as a
string of length 1 over alphabet {0, 1}, note that LCS(ai, 1) = ai. Hence, the strings x = ai
and y = 1, with n = ρ = 1, trivially simulate the input bit ai.

AND Gates

Consider an AND gate g and let β := d(n1 + n2)/τ2e. We construct strings x, y as

x := x1 0β 1β x2

y := y1 0β 1β y2

I Lemma 2.4. If LCS(x2, y1),LCS(x1, y2) ≤ β/4 and the symbols 0, 1 appear at most β/16
times in each of x1, x2, y1, and y2, then we have L = LCS(x, y) = 2β + L1 + L2.

Later we will choose the gate alphabets Σf(g) such that the precondition of the above
lemma is satisfied. Setting ρ := 2β + ρ1 + ρ2 we thus inductively obtain (1) L ≤ ρ and (2)
L = ρ if and only if g1 and g2 both evaluate to true. Thus, we correctly simulated the AND
gate g. It remains to prove the lemma.

Proof. Clearly, we have L ≥ LCS(x1, y1) + LCS(0β , 0β) + LCS(1β , 1β) + LCS(x2, y2) = 2β +
L1+L2. For the other direction, consider any LCS z of x, y. If z does not match any symbol of
the left half of x, x10β , with any symbol of the right half of y, 1βy2, and it does not match any
symbol of the right half of x, 1βx2, with any symbol of the left half of y, y10β , then we can split
both strings in the middle and obtain L = |z| ≤ LCS(x10β , y10β) +LCS(1βx2, 1βy2). Greedy
suffix/prefix matching now yields L ≤

(
LCS(x1, y1) +β

)
+
(
β+LCS(x2, y2)

)
= 2β+L1 +L2.

In the remaining case, there is a matching from some left half to some right half. By
symmetry, we can assume that there is a matching from the left half of x to the right
half of y. We can moreover assume that z matches a symbol of x1 with a symbol of
1βy2, since the case that z matches a symbol of y2 with a symbol of x10β is symmetric.
Now no symbol in 0β in x can be matched with a symbol in 0β in y. We obtain a rough
upper bound on L = |z| by summing up the LCS length of all remaining 4 · 4 − 1 = 15
pairs of a part x′ ∈ {x1, 0β , 1β , x2} in x and a part y′ ∈ {y1, 0β , 1β , y2} in y. This yields
L ≤ L1 + L2 + β + 2 · β/4 + 8 · β/16 = 2β + L1 + L2, finishing the proof. J

OR Gates

Consider an OR gate g and again let β := d(n1+n2)/τ2e. We first make the LCS target values
equal by adding 4|ρ1−ρ2| to the shorter of x2/y2 and x1/y1, i.e., we set x′1 := 4max{0,ρ2−ρ1}x1
and similarly y′1 := 4max{0,ρ2−ρ1}y1, x′2 := 4max{0,ρ1−ρ2}x2, y′2 := 4max{0,ρ1−ρ2}y2. Note that
the resulting strings satisfy L′1 := LCS(x′1, y′1) ≤ ρ′ := max{ρ1, ρ2} and L′1 = ρ′ if and only
if g1 evaluates to true, and similarly L′2 := LCS(x′2, y′2) ≤ ρ′ and L′2 = ρ′ if and only if g2
evaluates to true. We construct the strings x, y as

x := 0β1β x′1 2β3β x′2 0β1β

y := 2β3β y′2 0β1β y′1 2β3β

I Lemma 2.5. If LCS(x2, y1),LCS(x1, y2) ≤ β/8 and the symbols 0, 1, 2, 3 appear at most
β/48 times in each of x1, x2, y1, and y2, then L = LCS(x, y) = 4β + max{L′1, L′2}.
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Later we will choose the gate alphabets Σf(g) such that the precondition of the above
lemma is satisfied. Setting ρ := 4β + ρ′ = 4β + max{ρ1, ρ2} we thus inductively obtain (1)
L ≤ ρ and (2) L = ρ if and only if at least one of g1 and g2 evaluates to true, so we correctly
simulated the OR gate g. The proof of the Lemma is in Section C of the full version.

Analyzing the Length

Note that the above constructions inductively yields strings x(g), y(g) simulating each gate
g. We inductively prove bounds for n(g) and ρ(g). See Section C of the full version.

I Lemma 2.6. We have n(g) ≤ 6τ · |Fg|(1 + 7/τ)depth(Fg) and ρ(g) ≤ 6|Fg|(1 + 7/τ)depth(Fg)

for any gate g, where Fg is the subformula of F below g.

Fixing the Gate Alphabets

Now we fix the gate alphabet Σf(g) for any gate g. Again let Σ(i,j), i, j ∈ [σ], be disjoint
alphabets of size 5, and let Σ :=

⋃
i,j Σ(i,j). For any gate g of F , we call its distance to the

root the height h(g). For any h, order the gates with height h from left to right, and let ι(g)
be the index of gate g in this order, for any gate g with height h. Note that (h(g), ι(g)) is a
unique identifier of gate g. We define f(g) := (h(g) mod σ, ι(g) mod σ), i.e., we set the gate
alphabet of g to Σf(g) = Σ(h(g) mod σ,ι(g) mod σ). Note that the overall alphabet Σ has size
5σ2. Recall that we set τ := (log σ)1/4.

It remains to show that the preconditions of Lemmas 2.4 and 2.5 are satisfied. Specifically,
consider a gate g with children g1, g2. As before, let x, y, n be the strings and string length
constructed for gate g, and let xi, yi, ni be the corresponding objects for gi, i ∈ {1, 2}. We
need to show:
(1) LCS(x2, y1),LCS(x1, y2) ≤ (n1 + n2)/(8τ2), and
(2) each c ∈ Σf(g) appears at most (n1 + n2)/(48τ2) times in each of x1, x2, y1, and y2.

We call a gate g′ in the subformula Fg d-deep if h(g′) ≥ h(g) +d, and d-shallow otherwise.
For each symbol c in x or y we can trace our construction to find the gate g′ in Fg at which
we introduced c to x or y. In other words, each symbol in x, y stems from some gate g′
below g.

First consider (2). Observe that all symbols in x, y stemming from σ-shallow gates do
not belong to the gate alphabet Σf(g), since the function f(g′) has (h(g′) mod σ) as the first
component, which repeats only every σ levels. Thus, if a symbol c ∈ Σf(g) occurs in xi or yi,
then this occurence stems from a σ-deep gate. We now argue that only few symbols in x, y
stem from deep gates. For any d > 0, let Nd be the number of symbols in x (or, equivalently, y)
steming from d-deep gates. Note that Nd is equal to the total string length

∑
n(g′), summed

over all gates g′ in Fg with height h(g′) = h(g) + d. Observe that our construction increases
the string lengths in each step by at least a factor 1 + 1/τ2, i.e., Nd ≥ (1 + 1/τ2)Nd+1 holds
for any d. It follows that Nσ ≤ N1/(1 + 1/τ2)σ−1 = (n1 + n2)/(1 + 1/τ2)σ−1. Hence, each
symbol in Σf(g) appears at most (n1 +n2)/(1 + 1/τ2)σ−1 times in each of x1, x2, y1, y2. Since
τ = (log σ)1/4, we have (1 + 1/τ2)σ−1 = 2Ω(σ/

√
log σ) ≥ 48

√
log σ = 48τ2 for sufficiently

large σ. This proves (2).
For (1), remove all log(σ)-deep symbols from x1 and y2 to obtain strings x′1, y′2. Note

that we removed exactly Nlog σ symbols from each of x1, y2. This yields LCS(x1, y2) ≤
2Nlog σ + LCS(x′1, y′2). For x′1, y′2, we claim that any log(σ)-shallow gates g′1 6= g′2 in Fg have
disjoint alphabets Σf(g′

1),Σf(g′
2). Indeed, if h(g′1) 6= h(g′2) then since the first component

(h(g′) mod σ) of f(g′) repeats only every σ levels we have f(g′1) 6= f(g′2). If h(g′1) = h(g′2) =: h,
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then note that each gate g′ in height h has a unique label ι(g′) mod σ, since there are σ such
labels and there are at most 2h−h(g) < σ gates with height h in Fg. Hence, x′1 and y′2 use
disjoint alphabets, and we obtain LCS(x′1, y′2) = 0. Thus, LCS(x1, y2) ≤ 2Nlog σ. As above, we
bound Nlog σ ≤ (n1 +n2)/(1+1/τ2)log σ−1, so that LCS(x1, y2) ≤ 2(n1 +n2)/(1+1/τ2)log σ−1.
Since τ = (log σ)1/4, we have (1+1/τ2)log σ−1/2 = 2Ω(

√
log σ) ≥ 8

√
log σ = 8τ2 for sufficiently

large σ. This yields (1), since the strings x2, y1 are symmetric, finishing the proof of
Lemma 2.3.

Finalizing the Proof

Let us sketch how we complete the proof of Theorem 2.2. The full details are in Section C.1
of the full version. First, for all vectors a ∈ A, b ∈ B we construct gate gadgets for the output
gate of the formula, i.e. formula gadgets, by invoking Lemma 2.3. Then we combine all these
gadgets by applying a standard alignment gadget [2, 29] to get our final sequences of length
O
(
nτ |F |(1 + 7/τ)depth(F )) and with alphabet of size O(σ2). The LCS of the final sequence

will be determined by the existence of a satisfying pair. Since a priori the depth of F could
be as large as |F |, the factor (1 + 7/τ)depth(F ) in our length bound is not yet satisfactory.
Thus, as a preprocessing before the above construction, we decrease the depth of F using
a depth-reduction result of Bonet and Buss [88, 25]: for all k ≥ 2 there is an equivalent
formula F ′ with depth at most (3k ln 2) log |F | and size |F ′| ≤ |F |1+1/(1+log(k−1)). Choosing
the parameters correctly, we get final sequences of length O

(
n|F |1+O(1/ log log σ)).

3 On the Limitations of Fine-Grained Reductions

With the increasingly complex web of reductions and conjectures used in the “Hardness in P"
research, one might oppose to our use of nonstandard assumptions. Why can’t we base the
hardness of shaving logs on one of the more established assumptions such as SETH, or even
better, on P 6= NP? We conclude the paper with a proof that such results are not possible if
one is restricted to fine-grained reductions, which is essentially the only tool we have in this
line of research.

Let A be a problem with best known upper bound of TA(n) on inputs of size n, and let
B be a problem with best known upper bound of TB(n) on inputs of size n. Throughout
this section we assume that these runtime are non-decreasing functions, such as 2n or n2. A
fine-grained reduction from “solving A in time TA(n)/g(n)" to “solving B in time TB(n)/f(n)"
proves that improving TB(n) to TB(n)/f(n) improves TA to TA(n)/g(n). Formally, it is
an algorithm X that solves A and it is allowed to call an oracle for problem B, as long as
the following bound holds. Let ni be the size of the instance in the ith call to problem B

that our algorithm performs, where i ≤ t for some value t, and let TX(n) be the runtime
of X excluding the time it takes to answer all the instances of problem B. It must be that
TX(n) +

∑t
i=1 TB(ni)/f(ni) ≤ TA(n)/g(n). This is a natural adaptation of the definition of

fine-grained reductions from previous works, where the improvements were restricted to be by
polynomial factors. We can now give a formal version of Theorem 1.1 from the introduction.

I Theorem 3.1. If for some c, ε > 0 and all k ≥ 2 there is a fine-grained reduction from
solving k-SAT in time poly(n,m)2n/2εn to solving LCS in time O(n2/ logc n), then SETH
is false.

Proof. Assume there was a fine-grained reduction from k-SAT to LCS as above. This means
that there is an algorithm X for k-SAT that makes t calls to LCS with instances of size
n1, . . . , nt such that TX(n) +

∑t
i=1 n

2
i / logc ni = O(poly(n,m)2n/2εn). But then consider
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algorithm X ′ which simulates X and whenever X makes a call to the LCS oracle with an
instance of size ni, our algorithm will execute the known quadratic time solution for LCS.
Let nmax be the size of the largest instance we call, and note that nmax < 2n. Simple
calculations show that X ′ solves k-SAT and has a running time of TX(n) +

∑t
i=1 n

2
i =

O
(
poly(n,m)2n/2εn

)
· logc nmax = O(poly(n,m)2n/2εn) for all k, refuting SETH. J
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Abstract
We give faster and simpler approximation algorithms for the (1, 2)-TSP problem, a well-studied
variant of the traveling salesperson problem where all distances between cities are either 1 or 2.

Our main results are two approximation algorithms for (1, 2)-TSP, one with approximation
factor 8/7 and run time O(n3) and the other having an approximation guarantee of 7/6 and run
time O(n2.5). The 8/7-approximation matches the best known approximation factor for (1, 2)-
TSP, due to Berman and Karpinski (SODA 2006), but considerably improves the previous best
run time of O(n9). Thus, ours is the first improvement for the (1, 2)-TSP problem in more than
10 years. The algorithm is based on combining three copies of a minimum-cost cycle cover of
the input graph together with a relaxed version of a minimum weight matching, which allows
using “half-edges”. The resulting multigraph is then edge-colored with four colors so that each
color class yields a collection of vertex-disjoint paths. The paths from one color class can then
be extended to an 8/7-approximate traveling salesperson tour. Our algorithm, and in particular
its analysis, is simpler than the previously best 8/7-approximation.

The 7/6-approximation algorithm is similar and even simpler, and has the advantage of not
using Hartvigsen’s complicated algorithm for computing a minimum-cost triangle-free cycle cover.
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1 Introduction

The metric traveling salesperson problem (TSP) is one of the most fundamental combinatorial
optimization problems. Given a complete undirected graph G with a metric cost function c
on the edges of G, the goal is to find a tour T (i.e., a Hamiltonian cycle) of minimum cost in
G, where the cost of T is the sum of costs of the edges traversed by T . Four decades ago,
Christofides [8] devised a polynomial-time algorithm that always outputs a tour with cost
at most 3/2 times the cost of an optimal tour. Improving this factor remains a major open
problem in the area of approximation algorithms.
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The metric TSP is well-known to be NP-hard; it is one of Karp’s 21 NP-complete
problems [16]. In fact, Karp showed that the special case of metric TSP in which all distances
between the cities are either 1 or 2, i.e., the cost function is of the form c : E(G)→ {1, 2},
is NP-hard. This special case is generally known as the (1, 2)-TSP problem. Notice that
any instance of (1, 2)-TSP satisfies the triangle inequality. The (1, 2)-TSP problem has been
considered in numerous papers [1, 2, 4, 10, 12, 16, 18, 19, 21, 24].

After Karp established the NP-hardness of (1, 2)-TSP, Papadimitriou and Yannakakis
showed the problem to be APX-hard [24]. The currently best known inapproximability bound
for (1, 2)-TSP is 535/534 [18]. A certain restriction of (1, 2)-TSP was considered by Fernandez
de la Vega and Karpinski [10]. It was this restriction of (1, 2)-TSP that Trevisan [27] reduced
from to establish the inapproximability of TSP in Rlog n under any `p metric. This hardness
complemented Arora’s breakthrough result [3] that TSP in R2 admits a PTAS under any `p

metric.
One can also view the (1, 2)-TSP problem as the problem of finding a traveling salesperson

tour that uses the maximum number of 1-edges in the given instance; here and throughout the
paper, we will refer to edges of cost i as i-edges, for i ∈ {1, 2}. Alternatively, (1, 2)-TSP may
be seen as a generalization of the Hamiltonian Cycle problem with non-edges represented
by 2-edges.

Both (1, 2)-TSP and (1, 2)-ATSP (i.e., when the underlying graph G is a complete directed
graph) are well-studied from the approximation point of view. For (1, 2)-TSP, it is NP-hard to
obtain a performance guarantee better than 535/534 [18]. Papadimitriou and Yannakakis [24]
gave a 7/6-approximation algorithm for (1, 2)-TSP; their algorithm works by successively
merging cycles of a triangle-free cycle cover of the graph which they obtained by running
Hartvigsen’s algorithm [14]. The approximation factor was improved by Bläser and Ram [5]
to 65/56, and to 8/7 by Berman and Karpinski [4]. Berman and Karpinski [4] used a local
search approach: starting from a path cover they employ local improvements according to
certain criteria, and finally connect the paths arbitrarily to a tour. Their algorithm takes
time O(n9) for n-city instances.

1.1 Our Results
Our main results are novel approximation algorithms for (1, 2)-TSP that obtain the ap-
proximation ratios of 8/7 and 7/6, respectively.. The 8/7-approximation matches the best
approximation factor known for (1, 2)-TSP, obtained by Berman and Karpinski [4], while
improving the run time from O(n9) to O(n3). This is the first improvement for this classical
problem in over 10 years.

I Theorem 1. The (1,2)-TSP problem admits an 8/7-approximation in time O(n3), and a
7/6-approximation in time O(n2.5).

In this extended abstract we focus on presenting the 7/6-approximation algorithm, which is
the simpler of our two algorithms. It is worth noting that it does not rely on Hartvigsen’s
involved algorithm [14] for computing a minimum-cost triangle-free cycle cover; in contrast,
the 7/6-approximation by Papadimitriou and Yannakakis [24] relies on Hartvigsen’s algorithm.
(Papadimitriou and Yannakakis also gave an 11/9-approximation algorithm that does not
use Hartvigsen’s algorithm.) We defer the full details of our 8/7-approximation algorithm to
the full version of this paper.

Outline of the approach. The idea of the 7/6-approximation algorithm is as follows. We
start with computing a minimum cost cycle cover Cmin of the input graph G. Recall that a
cycle cover of a graph G is a collection of simple cycles of G such that each vertex belongs to
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exactly one cycle. Notice that the cost of Cmin is a lower bound on opt(G, c), where opt(G, c)
denotes the cost of an optimal traveling salesperson tour in the graph G with cost function c.
The cost of a minimum cost perfect matching Mmin of G is also a lower bound, but this
time on opt(G, c)/2. This leads to our key idea of constructing a multigraph Ĝ on V (G)
from two copies of Cmin and one copy of Mmin. It readily follows that the cost of Ĝ satisfies
c(Ĝ) ≤ 5

2 opt(G, c).
Next, we would like to color each edge of Ĝ with one of three colors so that each color

class consists of vertex-disjoint paths, i.e., we would like to “path-3-color” Ĝ. Given a
path-3-coloring of Ĝ, the paths of the color class that contains the maximum number of
1-edges can be patched in an arbitrary manner to form a traveling salesperson tour of weight
not exceeding 7

6 opt(G, c). The exact calculation is given in Sect. 3.1.
However, we observe that not every multigraph Ĝ obtained from Cmin and Mmin in the

above way is path-3-colorable. For example, a subgraph of Ĝ obtained from a 4-cycle (called a
square) C ∈ Cmin such that two edges of Mmin connect vertices of C cannot be path-3-colored.
The reason is that Ĝ has two copies of each edge of C and additionally two more edges
coming from Mmin, and clearly it is not possible to color these ten edges with three colors
without creating a monochromatic cycle.

Similarly, a subgraph of Ĝ obtained from a 3-cycle (called a triangle) C ∈ Cmin such that
one of the edges of Mmin connects vertices of C cannot be path-3-colored. An edge of Mmin
connecting two vertices of a cycle C ∈ Cmin is going to be called an internal edge of C).

While triangles of the above sort can be handled, by flipping edges, squares with two
internal edges of Mmin are problematic. Moreover, there are problem instances where every
perfect matching of weight at most opt/2 uses two internal edges of some square of Cmin.

To get around this obstacle, we relax the notion of a matching and allow it to contain
“half-edges”. A half-edge of an edge e is, informally speaking, half of the edge e that contains
exactly one of its endpoints. The notion of half-edges has been introduced by Paluch et
al. [23]. We call such a relaxed matching M 1

2 with half-edges perfect if every vertex of the
graph has exactly one edge or half-edge of M 1

2 incident to it. Now, we would like to compute
a minimum-cost perfect matching M

1
2

min with half-edges, such that the half-edges can appear
in a controlled way. In particular, for each 4-cycle of Cmin the matching uses correspondingly
at most three “internal” half-edges; here, a half-edge of edge e is internal for a cycle C if
is derived from an edge of G whose both endpoints belong to C. In such a matching the
problem described above cannot occur. In Sect. 3.2 we show that M

1
2

min can be computed in
time O(n2.5), and that its weight is at most opt(G, c)/2.

Next, from two copies of Cmin and one copy of M
1
2

min we will build a multigraph Ĝ whose
cost is at most 5

2 opt(G, c) and that, after some modifications, is path-3-colorable, which
yields the desired 7/6-approximation algorithm for (1,2)-TSP.

Modifying the multigraph Ĝ. Before the multigraph Ĝ can be path-3-colored, it needs to
be modified in certain ways. First, Ĝ should not contain any half-edges; so we replace all
half-edges by an appropriate number of “whole” edges. Second, while coloring Ĝ we can
restrict ourselves to coloring of edges of cost 1. Third, we remove some 1-edges if some
optimal solution contains 2-edges; the exact relationship between the required number of
1-edges in Ĝ and the number of 2-edges in opt(G, c) is given in Sect. 3.1.

Fourth, before Ĝ can be path-3-colored, we need to “flip” certain edges and half-edges.
For example, a subgraph of Ĝ obtained from a triangle C ∈ Cmin and one internal edge of C
contained in M

1
2

min cannot be path-3-colored, and we need to flip this edge to the edge of Ĝ
outside of C. The algorithm for path-3-coloring essentially comes from Dudycz et al. [9].
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1.2 Related Work
Despite extensive research, the best approximation algorithm for metric TSP is still Chris-
tofides’ algorithm [8] from 1976, which has a performance guarantee of 3/2. Generally the
bound 3/2 is not believed to be tight. However, the currently largest known lower bound
on the performance guarantee obtainable in polynomial time is as low as 123/122 [17]. A
promising approach to improving upon the factor of 3/2 for metric TSP is to round a linear
programming relaxation known as the Held-Karp relaxation [15], that is widely conjectured
to have an integrality gap upper bounded by 4/3. However, even for the graphic TSP, the
best known approximation upper bound of 7/5 due to Sebő and Vygen [26] does not match
this conjectured upper bound of 4/3.

Another LP relaxation for TSP is the subtour elimination LP, which has constraints
prescribing any vertex to be incident to exactly two edges of the TSP tour and constraints
ruling out incomplete subtours (hence the name) by forcing edges to leave any non-empty
proper subset of nodes. The best known integrality gap lower bound of the subtour elimination
LP for (1, 2)-TSP is 10/9, due to Williamson [29]. Qian et al. [25] showed an integrality
gap upper bound of 19/15 for (1, 2)-TSP (in a revised version, they improve the integrality
gap upper bound to 5/4 and to 26/21 for fractionally Hamiltonian instances), and of 7/6
if the integrality gap is attained by a basic solution of the fractional 2-matching polytope.
With the additional assumption that a certain type of modification maintains the 2-vertex
connectedness of the support graph, they were able to show a tight integrality gap of 10/9.
For fractionally Hamiltonian instances (i.e., where the optimal value of the LP relaxation of
the subtour elimination formulation equals the order of the instance), Mnich and Mömke [21]
prove integrality upper bounds of 5/4 in the general case and of 10/9 in the case of subcubic
support graphs.

For (1, 2)-ATSP, it is NP-hard to obtain a performance ratio better than 207/206 [18]. The
first non-trivial approximation algorithm for (1, 2)-ATSP was given by Vishwanathan [28],
with an approximation factor of 17/12. This was improved to 4/3 by Bläser and Manthey [7].
The currently best approximation factor is 5/4, and is due to Bläser [6] and Paluch [22]. For
fractionally Hamiltonian instances of (1, 2)-ATSP, Mnich and Mömke [21] prove an integrality
upper bound of 7/6.

The approach of using half-edges for solving variants of TSP was first used by Paluch et
al. [23], who used it to give a 2/3-approximation for Max-ATSP. Later, Paluch [22] used
half-edges to improve the approximation guarantee to 3/4 for the special case of Max-ATSP
where all edge costs are either zero or one. Recently, Dudycz et al. [9] used half-edges to give
a 4/5-approximation for Max-TSP.

2 Preliminaries

An instance of the (1, 2)-TSP problem consists of pair (G, c), where G is a complete undirected
graph and c : E(G)→ {1, 2} is an edge cost function, where each edge e ∈ E(G) has a cost
of c(e) ∈ {1, 2}. A tour for the instance (G, c) is a subset T ⊆ E(G) of edges of G that forms
a Hamiltonian cycle of G, that is, the edges of T form a cycle that visits each vertex of G
exactly once; the cost of T is defined as c(T ) =

∑
e∈T c(e). The goal is to find an optimal

tour opt for (G, c), which is a tour of minimum cost. For a real number r, a tour T for an
instance (G, c) is r-approximate if c(T )/c(opt) ≤ r.

For a graph G, a cycle is a sequence C = (v0, . . . , v`−1) for some ` ≥ 3 of pairwise distinct
vertices vi ∈ V such that {vi, vi+1 (mod `)} ∈ E for i ∈ {0, . . . , ` − 1}. We refer to ` as the
length of C, and denote it by `(C). For an integer `, an `-cycle is a cycle of length exactly `,
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and an (≤ `)-cycle is a cycle of length at most `. For the sake of convenience, we also refer
to 3-, 4-, 5- and 6-cycles as triangles, squares, pentagons and hexagons, respectively.

Let C be an `-cycle of G. We say that C is short if ` ≤ 6. Further, an `′-cycle C ′ of G
with `′ < ` is a subcycle of C if V (C ′) ⊂ V (C). Note that C and C ′ can visit the vertices of
V (C ′) in different order. An edge e = {u, u′} is a native edge of C if u, u′ are two consecutive
vertices of C, and a diagonal of C if u, u′ are two non-consecutive vertices of C. When e is
a native edge or a diagonal of C, we say that e is an internal edge of C. Finally, we call a
cycle C a 1-cycle if c(e) = 1 for all e ∈ E(C); notice that there is no confusion of this notion
with `-cycles as we consider simple undirected graphs without loops.

Cycle covers. Our algorithm utilizes the concept of cycle covers. A cycle cover of G is
a collection of cycles of G such that each vertex of G belongs to exactly one cycle of the
collection. Thus, a Hamiltonian cycle of G is a cycle cover of G that consists of a single
cycle. Cycle covers of undirected graphs are also known as 2-factors, because every vertex is
incident to exactly two edges.

A cycle cover of G is triangle-free if each of its cycles has a length of at least 4. An essential
ingredient of our 8/7-approximation algorithm is the following result by Hartvigsen [14]; the
algorithm can be implemented to run in time O(n3) for an n-vertex graph [13].

I Proposition 2 ([14]). There is an algorithm that, given a complete graph G with edge costs
c : E(G)→ {1, 2}, in strongly polynomial time computes a triangle-free cycle cover of G with
minimum cost under c.

b-matchings. We will use the classical notion of b-matchings in graphs, which are a gen-
eralization of matchings. Let H be a graph. For a vector b = (bv)v∈V (H) ∈ N|V (H)| where
each coordinate corresponds to a vertex of H, a b-matching in H is a collection of edges
E(b) ⊆ E(H) that contains at most bv edges incident to any vertex v ∈ V (H). Notice that a
b-matching with bv = 1 for all v ∈ V (H) is a classical matching in H.

A b-matching in H is said to be maximum if among all b-matchings in H it contains
a maximum number of edges. Maximum matchings as well as maximum cost b-matchings
can be computed in polynomial time. We refer to Lovász and Plummer [20] for further
background on b-matchings.

We are interested in computing a b-matching in a graph H where each vertex v ∈ V (H)
has a lower bound `v and an upper bound bv - we say that a vertex v has capacity interval
[`v, bv]; the b-matching E(`, b) ⊆ E(G) then contains at least `v edges and at most bv edges
incident to any vertex v ∈ V (H). Such b-matchings can also be computed efficiently:

I Proposition 3 ([11]). There is an algorithm that, given a graph H and capacity intervals
[`v, bv], in time O(

√∑
v∈V (H) bv|E(H)|), computes a largest subgraph H ′ of H for which

`v ≤ dH′(v) ≤ bv for every v ∈ V (H ′).

It is possible to reduce the problem of computing a b-matching with capacity intervals to
the computation of a matching in which each vertex has capacity interval [0, 1] or [1, 1], i.e.,
a matching in which every vertex with capacity interval [1, 1] is required to be matched; we
defer the details to the full version of the paper.

Half-edges. Intuitively, half-edges correspond to halves of the edges of a graph and incident
to only one vertex of the graph. Formally, from an instance (G, c) of (1, 2)-TSP we construct
an extended instance (G′, c′) from (G, c), as follows. We start by setting V (G′) = V (G) and
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E(G′) = E1(G), where E1(G) denotes the subset of E(G) containing all 1-edges. Next, for
each edge e = {u, u′} ∈ E1(G) we add to V (G′) a new vertex ve, and to E(G′) the edges
{u, ve}, {ve, u

′}. We refer to the vertices ve as extended vertices, and to the remaining vertices
of G′ as basic vertices. We denote the new edges of E′ as half-edges and the other edges as basic
edges. Put concisely, G′ is the extended graph of G with V (G′) = V (G) ∪ {ve | e ∈ E1(G)},
E(G′) = E1(G) ∪ {{u, ve}, {ve, u

′} | e = {u, u′} ∈ E1(G)}.
A matching with half-edges M 1

2 in G′ is a collection of edges in G′, in which each
vertex has degree 0 or 1 Intuitively, a matching with half-edges in G′ corresponds to a
relaxation of a matching in G, where we can take halves of the edges, incident to only one
vertex, to the matching. We define the cost of a matching with half-edges M 1

2 in G′ as
c′(M 1

2 ) = 1
2 |{v ∈ V (G) : v is matched in M 1

2 }| + |{v ∈ V (G) : v is unmatched in M 1
2 }|.

In other words, a basic vertex that is unmatched in M 1
2 contributes twice as much cost to

c′(M 1
2 ) as a matched basic vertex. (We might say that we treat an unmatched basic vertex

as if it was matched to a half-edge of a basic 2-edge in a perfect matching with half-edges in a
graph G′′ in which we also add basic 2-edges and their half-edges.) Therefore, any maximum
matching with half-edges in G′ has minimum cost.

3 A Fast and Simple 7/6-Approximation Algorithm for (1,2)-TSP

3.1 Outline of the Algorithm
We give an outline of our 7/6-approximation algorithm for (1, 2)-TSP, which is listed as
Algorithm 1. For an instance (G, c) of the problem and a fixed tour T of G, let αT and βT
denote the number of 1-edges and 2-edges, respectively, in T .

I Observation 4. It holds that c(T ) = αT + 2βT = αT + 2(|V (G)| − αT ) = 2|V (G)| − αT .

Let G1 denote the subgraph of G containing all 1-edges. In step 1 of the algorithm
we compute a path-cycle cover Cmin of minimum cost in (G, c), using the algorithm from
Proposition 3. A path-cycle cover of G is any b-matching of G1 such that each vertex v has
capacity interval [0, 2]. The cost of a path-cycle cover C of G is defined as 2n− |C|. Let Cmin
denote a minimum cost path-cycle cover of G. Then, clearly, its cost is a lower bound on
c(opt).

In step 2 we use Cmin to construct a minimum cost matching with half-edges (and some
additional properties) M 1

2 ; this construction is described in Sect. 3.2. In Sect. 3.3 we
describe step 3, i.e., the construction of the graph G1 from Cmin and M

1
2 . In step 4 we

path-3-color G1, for which we use a modification of a path-3-coloring proposed by Dudycz et
al. [9] for Max-TSP.

In summary, the algorithm works as follows:

Algorithm 1 Computing a 7/6-approximate solution for an instance (G,w) of (1,2)-TSP.
Input: An instance (G, c) of (1,2)-TSP.
Output: A tour T of G with cost c(T ) ≤ 7

6c(opt).
1: Find a minimum-cost path-cycle cover Cmin of (G, c).
2: Find a minimum cost matching with half-edges (and some additional properties) M 1

2 .
3: Based on Cmin and M 1

2 , construct a multigraph G1 on vertex set V (G) with at least
5
2αopt − βopt edges of cost 1 from G.

4: Path-3-color the edges of G1.
5: Extend the set of edges of G1 from the largest color class arbitrarily to a tour T of G.
6: return T
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I Lemma 5. Algorithm 1 gives a 7/6-approximate solution for (1,2)-TSP.

Proof. Let alg be a solution output by Algorithm 1 on input (G, c), and let αalg and βalg be
the number of 1-edges resp. 2-edges in alg. Then

αalg ≥
5
2αopt − βopt

3 = 5
6αopt −

1
3βopt .

By multiplying by 6 and using that n = αopt + βopt, we obtain

6αalg ≥ 7αopt − 2n = 7αopt − 2(αopt + βopt) = 5αopt − 2βopt .

Subtracting 14n from both sides, and substituting 2(αopt + βopt) for 2n on the right hand
side yields 12n− 6αalg ≤ 14n− 7αopt, which is equivalent to the desired result of

c(alg)
c(opt) = 2n− αalg

2n− αopt
≤ 7

6 . J

3.2 Computing a Minimum Cost Matching with Half-Edges
In this section we describe the construction of a minimum-cost matching with half-edges
(and some additional properties) M 1

2 in the extended instance (G′, c′), as defined in Sect. 2.
Recall that a square is a 4-cycle. We refer to a diagonal of cost i as an i-diagonal, for i = 1, 2.

Intuitively, we want to ensure that M 1
2 matches at least one vertex of each 1-square

of Cmin with some vertex from outside the square or leaves at least one vertex of a 1-square
unmatched. As we want to find such a matching M 1

2 efficiently, and we want the cost of M 1
2

to be at most c(opt)/2, we allow M
1
2 to contain half-edges. However, we will only allow

half-edges in a controlled manner. The idea is to allow a half-edge {u, ve} within M
1
2 only

when the corresponding edge e is a native edge of a 1-square of Cmin. Also, we want to allow
at most one half-edge per each 1-square of Cmin. For technical reasons (due to parity issues),
we have to relax these simple conditions to a more complex set of conditions.

I Definition 6. A matching with half-edges M 1
2 in (G′, c′) is good for Cmin if it satisfies the

following properties.
(M 1

2 .1) For each half-edge {u, ve} ∈M
1
2 , except at most one special half-edge, the edge e

is a native edge of a 1-square of Cmin. Also, each 1-square of Cmin is incident to at
most one half-edge of M 1

2 .
(M 1

2 .2) For every 1-square C ∈ Cmin (i) there is a 1-edge eC ∈M
1
2 incident to C such that

the other endpoint of eC is incident to a cycle of Cmin different from C, or (ii) at
least one of the vertices of C is unmatched in M 1

2 .
(M 1

2 .3) M 1
2 may contain a special half-edge {u, ve} only if |V (G)| is odd and Cmin does not

contain a 2-edge. The following conditions are satisfied for the special half-edge
{u, ve}:
a. e is an edge of a fixed odd-length 1-cycle C0 ∈ Cmin called a special cycle.
b. If Cmin contains a cycle of length at least 7, then C0 has length at least 7.
c. If C0 is a triangle or pentagon and Cmin consists of at least two cycles, then at

least two vertices of C0 are incident to external edges of M 1
2 , or some vertex of

C0 is unmatched in M 1
2 .

I Lemma 7. Consider an instance (G, c) of (1, 2)-TSP with minimum-cost path-cycle cover
Cmin and extended instance (G′, c′). A matching M 1

2 of minimum cost among all matchings
with half-edgesM 1

2 which are good for Cmin can be computed in time O(n2.5) where n = |V (G)|.
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Figure 1 The gadget for modifying a 1-square {v1, v2, v3, v4} of Cmin which has (a) two 1-diagonals,
(b) one 1-diagonal {v2, v4}, and (c) no 1-diagonals.

Proof. First, from the instance (G, c) we create an unweighted graph G′′0 with a vertex
capacity interval for each vertex of G′′0 . We do that by locally and independently modifying
each 1-square in Cmin. The modification introduces new vertices and edges, as well as vertex
capacity intervals [`v, uv] for each vertex v ∈ V (G′′0).

We start by setting V (G′′0) = V (G), and assigning the capacity interval [0, 1] to each
vertex. For each edge e ∈ E(G) which is not an internal 1-edge of a 1-square of Cmin, we
add e to E(G′′0). Then, for each 1-square C = (v1, . . . , v4) ∈ Cmin we proceed as follows.
For each internal 1-edge e{i,j} = {vi, vj} ∈ E(G) of C (note that we consider both the
native 1-edges and the 1-diagonals of C here), we introduce two new vertices u(i,j), u(j,i)
with capacity intervals [1, 1], and two new edges {vi, u(i,j)}, {u(j,i), vj}. We call these added
vertices subdivision vertices.

The exact type of further modification depends on whether the number of 1-diagonals of
C in (G, c) is two, one, or zero.

If C has two 1-diagonals: (See Fig. 1a) Introduce a vertex vC of capacity interval
[9, 12]; then connect vC to all 12 subdivision vertices u(i,j), u(j,i).
If C has exactly one 1-diagonal {v2, v4}: (See Fig. 1b) Introduce two vertices
v1

C , v
2
C of capacity intervals [3, 4] and [5, 5], respectively, and one vertex vC of capacity

interval [0, 1]. Connect vC1 to each vertex u(i,j), u(j,i) that is a neighbour of v1 or v3, and
connect vC2 to each vertex u(i,j), u(j,i) that is a neighbour of v2 or v4. Further, add two
edges {vC , v

1
C}, {vC , v

2
C}.

If C is a square with no 1-diagonal: (See Fig. 1c) Introduce two vertices v1
C and v2

C

of capacity interval [3, 3] and one vertex vC of capacity interval [0, 1]. Connect vC1 to
each vertex u(i,j), u(j,i) that is a neighbour of v1 or v3, and connect vC2 to each vertex
u(i,j), u(j,i) that is a neighbour of v2 or v4. Further, add twoedges {vC , v

1
C}, {vC , v

2
C}.

This completes the construction of the graph G′′0 with vertex capacity intervals [`v, uv] for
each v ∈ V (G′′0).

The cost of a b-matching M ′′0 in G′′0 is defined as c′(M ′′0 ) = 1
2 |{v ∈ V (G) : v is matched

in M ′′0 }| + |{v ∈ V (G) : v is unmatched in M ′′0 }|. For the graph G′′0 and vertex capacity
intervals [`v, uv] for each v ∈ V (G′′0), we compute a minimum-cost b-matching M ′′0 that
respects the vertex capacity intervals or, equivalently a b-matching that respects the vertex
capacity intervals and minimizes the number of basic vertices unmatched in M ′′0 .
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I Claim 1. For the graph G′′0 and vertex capacity intervals [`v, uv] for each v ∈ V (G′′0), a
minimum-cost b-matching M ′′0 that respects the vertex capacity intervals can be computed in
O(n2.5) time.

We defer the proof of Claim 1 to the full version of this paper.

I Claim 2. The b-matchingM ′′0 in G′′0 can be transformed into a matching with half-edges M 1
2

which is good for Cmin, has the same cost as M ′′0 , and contains no special half-edge.

Proof of Claim 2. We construct the matching M 1
2 as follows. For any edge e = {u, v} ∈

E(G′′0) such that both u, v are basic vertices of G′′0 (i.e., they correspond to the vertices
of G, and not to the vertices introduced during the gadget construction), we add the edge e
to M 1

2 . Then, consider each 1-square C = {v1, .., v4} ∈ Cmin and a gadget corresponding to
it. If there are some two vertices vi, vj ∈ C such that both vi and vj are matched by the
b-matching with subdivision vertices, and the edge e = {vi, vj} in G′ is a 1-edge, we add e
to M 1

2 . We construct such pairings greedily. For all vertices vi which are matched by the
b-matching with subdivision vertices, and which have not been paired, we add a half-edge
{vi, ve} to M

1
2 , where e = {vi, v(i mod 4)+1}.

The degree of each basic vertex v ∈ V (G′′0) in M 1
2 is the same as the degree of v in the

b-matching. The degree of each extended vertex v ∈ V (G′′0) in M 1
2 is either 0 or 1. Therefore,

M
1
2 is a matching with half-edges. Also, is it easy to see that the cost of M 1

2 is the same
as the cost of the b-matching. We now have to prove that M 1

2 is good for Cmin. As we did
not denote any half-edge of M 1

2 as special, we only need to check properties 1 and 2 of
Definition 6.

Consider a 1-square C = {v1, . . . , v4} ∈ Cmin. From the gadgets construction we can see
that the vertex capacities for vC , v

1
C , v

2
C enforce that at most three of the vertices {v1, . . . , v4}

are matched with a subdivision vertex. Therefore, at least one of the vertices {v1, . . . , v4} is
matched by the b-matching via an edge not belonging to the gadget, i.e., an external 1-edge
or at least one vertex of C is unmatched in M ′′0 . Therefore, Property 2 holds.

From the construction of M 1
2 , each half-edge of M 1

2 corresponds to a native edge
e = {vi, v(i mod 4)+1} of a 1-square. To prove Property 1, we need to show that each 1-square
C ∈ Cmin is incident to at most one half-edge. We already know that at most three of the
vertices {v1, . . . , v4} of C are matched with a subdivision vertex. If there are three, some
two of them are incident to neighboring vertices of C, and will be transformed into one
native edge in M 1

2 , which will result in only one half-edge of M 1
2 incident to C. If exactly

two of the vertices {v1, . . . , v4} of C were matched with a subdivision vertex, they yield
two half-edges within M 1

2 only if they are incident with the opposite corners of C, and the
corresponding diagonal has cost 2. We show that the construction of the gadgets prevents
this from happening.

First, consider the case when C has no 1-diagonal, see Fig. 1c. Assume, without loss of
generality, that exactly the vertices v1, v3 are matched by the b-matching with the subdivision
vertices. Then, as the capacity interval of v1

C is [3, 3], and the capacity interval of vC is
[0, 1], vC must be matched with v1

C , and v1
C must be matched with 2 of the subdivision

vertices. Then, as the capacity interval of v2
C is [3, 3], v2

C must be matched with 3 subdivision
vertices. But that leaves one subdivision vertex unmatched, and it therefore cannot happen.

Now, consider the case when C has exactly one 1-diagonal {v2, v4}, see Fig. 1b. Assume
that exactly the vertices v1, v3 are matched by the b-matching with the subdivision vertices.
Then, by the capacity intervals of v1

C and vC , again vC must be matched with v1
C , and v1

C

must be matched with 2 of the subdivision vertices. Then, as the capacity interval of v2
C

is [5, 5], v2
C must be matched with 5 subdivision vertices. But that leaves one subdivision

vertex unmatched, and it therefore cannot happen.
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Each 1-square of Cmin is incident to at most one half-edge, and therefore Property 1 holds
and the matching M 1

2 is good. This completes the proof of Claim 2. J

I Claim 3. Any matching with half-edges M 1
2 which is good for Cmin and contains no special

half-edge can be transformed into a b-matching M ′′0 in G′′0 of the same cost.

Proof of Claim 3. Consider a matching with half-edges M 1
2 which is good for Cmin and

contains no special half-edge. We will construct a corresponding b-matching for M 1
2 . For any

edge e = {u, v} ∈M 1
2 which is not a half-edge or a 1-edge of a 1-square, e is also present in

the graph G′′0 , and we add e to the b-matching. Now, consider any half-edge {u, ve} ∈M
1
2 ,

where e = {u, u′}. From Property 1 of Definition 6, e is a native edge of a square C ∈ Cmin.
In the b-matching, we connect u with any subdivision edge neighbouring with it. Last, for
any edge {ui, uj} which is a 1-edge of a 1-square, we take the two edges {ui, u(i,j)} and
{u(j,i), uj} into the b-matching. From Property 2 of Definition 6, at most 3 subdivision edges
corresponding to any 1-square C ∈ Cmin have been matched by this procedure. Moreover,
if there were two or three, then some two of them must be incident to two endpoints of a
1-edge of C (either a native edge, or a diagonal).

We now show how to extend this matching to a b-matching. For any 1-square C ∈ Cmin
with two 1-diagonals, we match vC with the at least 9 unmatched subdivision vertices.

This completes the proof of Claim 3. J

If |V (G)| is odd and Cmin contains only 1-edges, we also build another unweighted
graph G′′1 from G′, in which we find a b-matching M ′′1 . The graph G′′1 is quite similar to G′′0 .
The details of constructing G′′1 and computing M ′′1 are given in the full version.

From M ′′1 we obtain a matching M
1
2

1 with half-edges good for Cmin. If |V (G)| is odd
and Cmin does not contain any 2-edge, we set as M 1

2 that one of the matching M 1
2 and M

1
2

1
that has smaller cost. This completes the proof. J

I Lemma 8. Any minimum-cost matching M 1
2 of (G′, c′) that is good for Cmin satisfies

c′(M 1
2 ) ≤ c(opt)/2.

Proof. Let (G′′, c′′) denote the extension of the graph G, in which we add two half-edges of
each edge of G, also those of cost 2. Each edge e of G has cost c′′(e) = c(e) in G′′. Each
half-edge of a 1-edge e ∈ G has cost 1

2 and each half-edge of a 2-edge e ∈ G has cost 2. The
cost of a matching M in G′′ is defined in the usual way as c′′(M) =

∑
e∈M c′′(e). We notice

that for any matching M in G′′ it holds c′′(M) = c′(M ′), where M ′ = M ∩ E(G′).
To prove the lemma, we partition the edges of a fixed but arbitrary tour opt of minimum

cost in (G, c) into two perfect matchings M1 ∪M2 in (G′′, c′′) with half-edges, each of which
constitutes in (G′, c′) a matching with half-edges, which is good for Cmin.

To this end, let S2 denote the set of squares in Cmin such that opt uses two of its internal
1-edges. Similarly, let S3 denote the set of squares in Cmin such that opt uses three of its
internal 1-edges. Let us note that if S2 ∪ S3 6= ∅, then partitioning opt into two perfect
matchings might yield a matching or matchings that are not good for Cmin. Therefore, for
each square C ∈ S2 ∪S3, we take one of its internal 1-edges eC belonging to opt, and split es

into two half-edges. For each such edge eC , we place one of its half-edges into M1 and place
its other half-edge into M2.

If the parities of |S2 ∪ S3| and |V (G)| are the same, then this way we have already
decomposed opt into two perfect matchings with half-edges M1 and M2. Assume, without
loss of generality, that c′(M1) ≤ c′(M2). From M1 we construct a matching M ′ in G′. We
first initialize M ′ = M1. This way, the condition c′(M ′) ≤ c′(opt)/2 is clearly satisfied.
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However, M ′ potentially is not a perfect matching with half-edges, as it might contain a
half-edge of a diagonal of a square C ∈ S2. We can, however, replace such a half-edge with a
half-edge of an edge of C, without increasing the cost of M ′.

If the parities of |S2 ∪ S3| and |V (G)| differ and opt uses a 2-edge, then we choose any
such 2-edge e ∈ opt and split it into two half-edges. Otherwise, if S2 ∪ S3 is empty, |V (G)| is
odd. Then any path-cycle cover of G must contain at least one odd cycle C. We split any
edges of opt which is incident to a vertex of C into two half-edges. We decompose opt into
two perfect matchings M1 and M2. Since c′(M1) = c′(M2), we may choose that one which
contains a half-edge incident to a vertex of C.

The remaining case is when the parities of |S2 ∪ S3| and |V (G)| differ, each edge of opt
has cost 1 and S2 ∪ S3 is non-empty. Then we choose one square C ∈ S2 ∪ S3 and do not
split any of its edges. At least one of the perfect matchings M1,M2 from the decomposition
of opt is such that it does not use two internal edges of C. Since again c′(M1) = c′(M2), we
may choose that one, which does not use two internal edges of C. J

3.3 Constructing the Multigraph
We will now construct a multigraph G1 from the path-cycle cover Cmin, and the minimum-cost
matching M 1

2 that is good for Cmin. We set V (G1) = V (G). The idea is to take into G1

two copies of each 1-edge of Cmin, and one copy of each 1-edge and of each 1/2-half-edge
of M 1

2 . However, to ensure that we will be able to color the graph at a later stage, and as
we do not have the extended vertices ve in V (G1) to accommodate half-edges, we first need
to modify the matching M 1

2 into a collection of edges M . The set M does not have to be
a matching—it may contain multiple edges incident to the same vertex, and even multiple
copies of the same edge of G. Also, we need to ensure that the multigraph G1 has at least
5
2αopt − βopt edges of cost 1 in (G, c), i.e., that the set M has at least 1

2αopt − βopt edges of
cost 1 in (G, c).

We start by setting M to be the collection of edges and half-edges of M 1
2 . Then we

modify M by executing the following sequence of steps:
(O1) For every 1-triangle (u, v, w) of Cmin for which {u, v} ∈M and {w, t} ∈M for some t,

we remove the edge {u, v} from M , and instead we add a second copy of {w, t} into
M . Notice that if we perform a similar operation with the cycle of Cmin containing the
vertex t, it will result in the third copy of {w, t} being added to the graph.

(O2) For every 1-triangle (u, v, w) of Cmin for which {u, v} ∈M and w is unmatched in M ,
we remove the edge {u, v} from M .

(O3) For every 1-square (u, v, w, z) of Cmin for which {u, v}, {w, ve} ∈ M and {z, t} ∈ M
for some t, we remove {w, ve} from M , and instead we add a second copy of {z, t}
into M . Notice that in this case we really need half of the additional edge {z, t}, so if
we perform such operation twice for {z, t} (i.e., the component containing t is also a
1-square), we have to add only one, and not two copies of {z, t}. We also perform the
same operation if {u, v} is a diagonal, and not a native edge of the square.

(O4) For every 1-square (u, v, w, z) of Cmin for which {u, v}, {w, ve} ∈M and z is unmatched
in M , we remove the half-edge {w, ve} from M . As before, we perform the same
operation if {u, v} is a diagonal, and not a native edge of the square.

(O5) For every 1-square (u, v, w, z) of Cmin for which {u, ve} ∈ M and no other edge or
diagonal of the square (or its half) is in M , we remove {u, ve} from M and instead we
add {u, v} into M where e = {u, v}.

(O6) If the matching M contains a special half-edge {u, ve}, then we add e to M .
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After these operations, there are no half-edges left in M . We now construct the multi-
graph G1 by setting V (G1) = V (G), and by adding to G1 two copies of each 1-edge of Cmin
and all edges of M . We can show a lower bound on the number of edges of G1.

I Lemma 9. The multigraph G1 has at least 5
2αopt − βopt edges which are 1-edges of (G, c).

Proof. The minimum-cost path-cycle cover Cmin contains at least αopt edges of cost 1 in
(G, c). Therefore, two copies of C1

min contain at least 2αopt edges. The matching M 1
2 has

cost at most c(opt)/2. Therefore, the number of 1-edges in M
1
2 is at least αopt/2, where

half-edges count as half of an edge each. We further have that βopt ≥ βM , where βM denotes
the number of basic verices unmatched in M 1

2 .
The only modifications that decrease the number of edges in G1 are operations 2 and 4.

However, for each triangle or square for which we remove one 1-edge or 1/2-half-edge, we can
uniquely charge it to an unmatched basic vertex. Thus, the number of such deletions is at
most βM and can be charged against βopt. Consequently, we always have at least 5

2αopt−βopt
edges in the resulting multigraph G1. J

The multigraph G1 can be essentially path-3-colored using the path-3-coloring procedure
by Dudycz et al. [9]. The multigraph colored by Dudycz et al. [9] is built from two copies of
a maximum-cost cycle cover and a maximum cost perfect matching. Several not very serious
modifications are needed in order to deal with double and triple edges of M ; note that the
existence of such edges means that some vertices in G1 have degree greater than 5. Again,
details are deferred to the full version of the paper.

4 A New 8/7-Approximation Algorithm for (1,2)-TSP

The 8/7-approximation algorithm is quite similar to the algorithm with an approximation
factor of 7/6. Instead of a minimum-cost path-cycle cover Cmin of (G, c) we use a minimum-cost
triangle-free cycle cover Ct

min. We also compute a minimum-cost matchingM 1
2 with half-edges

with additional properties. To obtain an 8/7-approximation, M 1
2 has to additionally satisfy

the condition that for every 1-hexagon C from Ct
min at least one of the vertices of C must be

incident to an external edge of M 1
2 or be unmatched in M 1

2 . Next, we build a multigraph
G1 that consists of three copies of Ct

min and one copy of M 1
2 . We do some flipping of edges

and half-edges and path-4-color the multigraph G1. Path-4-coloring is based on the same
ideas as path-3-coloring but is a little more complicated. We defer the details to the full
version of this paper.
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Let T = {41, . . . ,4n} be a set of of n pairwise-disjoint triangles in R3, and let B be a con-
vex polytope in R3 with a constant number of faces. For each i, let Ci = 4i ⊕ riB denote
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10:2 Union of Minkowski Sums with Random Sizes in Three Dimensions

1 Introduction

We advance the state of the art regarding the complexity of the union of combinatorial
objects in dimensions d ≥ 3 beyond worst-case analysis. To that end we study the union
complexity of Minkowski sums of pairwise disjoint triangles with a randomly scaled copies
of a fixed convex polytope, and Minkowski sums of points with cubes of random sizes. We
hope that our techniques will be useful in future studies of such stochastic arrangements.

Specifically, let T = {41, . . . ,4n} be a collection of n pairwise-disjoint triangles in R3,
and let B be a fixed convex polytope in R3 with a constant number of faces. We consider
the setup where we are given a sequence r = 〈r1, . . . , rn〉 of non-negative scaling factors (or
sizes), and we let Ci = 4i ⊕ riB denote the Minkowksi sum of 4i with a copy of B scaled
by ri, for i = 1, . . . , n. Each Ci is a convex polytope with a constant number of faces. Let
C = {C1, . . . , Cn}, and let U = U(T, r) =

⋃n
i=1 Ci denote their union. We also use U(C) to

denote U(T, r).
The combinatorial complexity of U is the total number of faces of all dimensions on the

boundary ∂U of U. Each vertex of ∂U is a vertex of some set Ci, an intersection point
between an edge of some Ci and a face of another Cj , or an intersection point of three faces
of three distinct Ci’s. By Euler’s formula, the overall complexity of ∂U is proportional to
the number of vetices on ∂U. Therefore we measure the combinatorial complexity of U by
the number of its vertices, and denote this quantity by ψ(T, r).

Our goal is to obtain an upper bound on the expected value of ψ(T, r), under a suitable
stochastic model for choosing the scaling factors r for the members of C. We refer to
this problem as the stochastic Minkowski-sum union problem. Our expected bounds are
significantly better than the worst case bounds (for any such union), indicating that inputs
which are not adversarial are likely to have lower union complexity.

Another motivation for our analysis is for an efficient computation of the most vulnerable
location of an attack in a three-dimensional scene. Concretely, we use the model where
we have a scene consisting of objects, modeled as a collection of pairwise disjoint triangles.
An attack occurs at some point, and the probability of a triangle to be hit decreases as its
distance from the attacking point increases (up to some threshold). We want to compute a
point of attack in which we maximize the expected number of triangles that we hit. The
same technique to approximately solve this problem, as done in the planar case [1, 2], leads
to questions about the complexity of the union of Minkowski sums of the input triangles
with balls of random radii. The case studied here replaces the ball by a convex polytope,
which we choose to approximate the Euclidean ball. The results obtained in this paper lead
to improved solution to the vulnerability problem, by roughly one factor of n.
We consider two stochastic models for choosing the sequence r = 〈r1, . . . , rn〉 of scaling
factors:

The density model. We are given an arbitrary probability density (or mass) function (pdf)
π over the non-negative reals; for each 1 ≤ i ≤ n, we take ri to be a random value drawn
independently from the distribution determined by π.

The permutation model. We are given a sequence Θ = 〈θ1, . . . , θn〉 of n arbitrary non-
negative real numbers, with θ1 ≤ θ2 ≤ · · · ≤ θn. We draw a random permutation σ on [1 : n],
where all permutations are equally likely to be chosen, and assign ri := θσ(i) to 4i, for each
i = 1, . . . , n.
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For the density model, let ψ(T, π) denote the expected value of ψ(T, r), where the
expectation is taken over the random choices of r, drawn from π in the manner specified
above. Set ψ(n) = maxψ(T, π), where the maximum is taken over all probability density
(mass) functions and over all sets T of n pairwise-disjoint triangles in R3. For the permutation
model, in an analogous manner, we let ψ(T,Θ) denote the expected value of ψ(T, r), where
the expectation is taken over the choices of r, obtained by randomly shuffling the members
of Θ. Then, with a slight overloading of the notation, we define ψ(n) = maxψ(T,Θ),
where the maximum is over all possible choices of the multi-set Θ and over all sets T of n
pairwise-disjoint triangles in R3. Our goal is to prove sharp bounds on ψ(n) under these two
models.

As noted in [2], the permutation model is more general than the density model, in the
sense that an upper bound on ψ(n) in the permutation model immediately implies the same
bound on ψ(n) in the density model. Although we mostly focus on the permutation model,
we also show that some of our bounds can be improved, by a logarithmic factor, in the
density model if the underlying pdf is “well behaved,” in a sense to be made precise below.

Related work. There is extensive work on bounding the complexity of the union of a set
of geometric objects, especially in R2 and R3, and optimal or near-optimal bounds have
been obtained for many interesting cases. We refer the reader to the survey paper by
Agarwal et al. [18] for a comprehensive summary of most of the known results on this topic.

The complexity of the union of n arbitrary shapes of constant complexity in R2 is Θ(n2),
but the bound improves to near linear for a large class of well behaved planar objects; see [18].
Analogously, the complexity of the union of n arbitrary shapes of constant complexity
in R3 is Θ(n3). Over more than a decade, a series of papers have considered geometric
objects in R3 that have some special properties, and derived near-quadratic bounds on the
complexity of their union. These cases include: a family of arbitrary convex polytopes4 [8], a
family of cylinders (of arbitrary radii) [12], (arbitrarily aligned) congruent cubes in three
dimensions [19], a family of fat tetrahedra [13], a family of κ-round objects [4], and Minkowski
sums of a family of pairwise-disjoint convex polytopes with a fixed convex polytope [7] or
with a fixed ball [3]. Quadratic lower bounds are known for all these cases.

The case of the union of axis-parallel cubes is a highly-structured special instance. If
the cubes are isothetic (that is, they are all congruent), the complexity of their union is5
O(n). In dimension d, Boissonnat et al. [10] proved that the complexity of the union of n
isothetic hypercubes is Θ

(
nbd/2c

)
. If the hypercubes are (axis-parallel but) of arbitrary sizes,

the complexity of their union is Θ
(
ndd/2e

)
in Rd. These two bounds coincide for even values

of d, but there is a gap, by a factor of d, for odd values of d.
There is a rich literature on bounding the complexity of geometric structures under a

stochastic model in which the locations of points are drawn randomly from a distribution;
see [14, 20, 21] and references therein. The complexity of the union of a set of objects in a
semi-stochastic model, in which the locations of the objects were arbitrary but their scaling
factors were chosen randomly, was first studied by the authors (with Har-Peled) in [2]. They
investigated two planar variants of the stochastic Minkowski-sum union problem. In the first
variant, one is given a set S of n pairwise-disjoint line segments in R2, and one replaces each
e ∈ S by the Minkowski sum e⊕ riB, where B is the unit disk and the scaling factors ri are

4 Here the bound is cubic in the number of polytopes but is only near linear in the number of facets.
5 In contrast, the complexity of the union of congruent balls in R3 is quadratic in the worst case; see,

e.g., [18].

ICALP 2018



10:4 Union of Minkowski Sums with Random Sizes in Three Dimensions

randomly chosen under either of the above two models. It is shown in [2] that the expected
complexity of the union of these sums is O(n log n). In the second variant, S is a collection
of arbitrary pairwise-disjoint convex sets (of constant complexity) in the plane, and then the
expected complexity of the union of the corresponding random Minkowski sums (again, with
randomly scaled copies of the unit disk) is shown in [2] to be O(n1+ε), for any ε > 0. In
both cases, the bounds are a significant improvement over the worst case quadratic bound,
and almost match the linear upper bound when all scaling factors are equal—the Minkowski
sums then form a collection of pseudo-disks. Here we study related random arrangements in
higher dimensions, a situation that required some new ideas in order to apply some exisiting
techniques.

In a different, but closely related context, Har-Peled and Raichel [16] proved that the
expected complexity of the multiplicatively weighted Voronoi diagram of a set of points
or line segments in R2 is O(n polylog(n)) if the weights are randomly chosen under the
permutation model.6 Recall that if the weights are arbitrarily chosen, then the worst-case
complexity of the weighted Voronoi diagram is quadratic [9]. Chang et al. [11] studied various
generalizations of multiplicatively weighted Voronoi diagrams and proved sharp bounds on
their expected complexity.

Our results. We have two main results in this paper:
Union of hypercubes. We first study (in Section 2) the interesting special case of the
stochastic Minkowski-sum union problem in which each triangle is a point in R3 and B is
an axis-aligned cube in R3 of side-length 2. That is, we have a set P = {p1, . . . , pn} of n
points in R3, and B = {x ∈ R3 | ‖x‖∞ ≤ 1}, and for each i ≤ n, Ci = riB + pi is a cube of
side-length 2ri centered at pi. In other words, we study the complexity of the union of n
cubes Ci each having a random (according to each of our models) L∞ diameter and a fixed
center. In fact, we study this problem not only in R3 but in Rd for general d. The reader
should note that all our definitions (e.g. of ψ(P,Θ)) extend to Rd. Hypercubes in Rd arise in
many applications and the following result indicates that if their diameters are not chosen in
an adversarial manner then the complexity of their union is likely to be smaller than the
worst case, by nearly a factor of n. Specifically, we prove:

I Theorem 1.1. Let P be a set of n points in Rd, let B be the axis-aligned hypercube of
side-length 2 in Rd centered at the origin, and let Θ be a multi-set of scaling factors. Under
the permutation model, ψ(P,Θ) = O(n log2 n) for d = 3, and ψ(P,Θ) = O(nbd/2c log n) for
any fixed odd value of d > 3. The same bounds hold for the density model.

Tame distributions. We call a pdf π, with Π as its cdf (cumulative distribution function),
tame if for every x > 0 and for every integer k ≥ 0,

1−Π(kx) ≤ (1−Π(x))k. (1)

It is an easy exercise to verify that (1) is satisfied for a large class of pdfs, including uniform,
exponential, (one-sided) normal, and log-normal distributions. If the scaling factors are
chosen from a tame pdf, then the bounds can be improved by a logarithmic factor:

I Theorem 1.2. Let P be a set of n points in Rd, and let B be the hypercube of side-length
2 centered at the origin. If the scaling factors are drawn randomly from a tame pdf π, then
ψ(P, π) = O(n log n) for d = 3 and ψ(P, π) = O(nbd/2c) for any fixed odd value of d > 3.

6 Given a point set P = {p1, . . . , pn} and a weight wi > 0 for each point pi, the Voronoi cell of pi in the
multiplicatively weighted Voronoi diagram is {x ∈ Rd | wi‖x− pi‖ ≤ wj‖x− pj‖ ∀j ≤ n}.
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By Theorems 1.1 and 1.2, the expected complexity of the union of a set of axis-aligned
hypercubes, whose sizes are chosen randomly, is almost the same as when their sizes are
equal. The overall structure of the proof of both theorems is the same, and consists of two
stages. The first stage bounds the expected number of outer vertices on the union, i.e., the
vertices that lie on a (d− 2)-face or a lower-dimensional face of one of the hypercubes. This
is where we had to develop a new technique to exploit the randomness of the input. The
second stage then obtains a bound on the number of inner vertices, namely vertices formed
by the intersection of d facets of d distinct hypercubes, by adapting the argument in [10]
and using the bound, derived earlier, on the expected number of outer vertices.

The stochastic Minkowski-sum union problem. Next, we study (in Section 3) the
general case in which T is a set of pairwise disjoint triangles in R3 and B is a convex polytope
in R3 with O(1) faces, and prove the following near-quadratic upper bound:

I Theorem 1.3. Let T be a collection of n pairwise-disjoint triangles in R3, let Θ be a
multi-set of scaling factors, and let B be a convex polytope with O(1) vertices. Then the
value of ψ(T,Θ) under the permutation model is O(n2+ε), for any fixed constant ε > 0; the
constant of proportionality depends on ε and the complexity of B. The same bound holds for
the density model.

If all sizes ri are equal, the complexity of U is O(n2 log n) [7], where the constant of
proportionality depends on the complexity of B. On the other hand, for a bad layout of the
triangles of T and a bad (non-random) choice of sizes, the complexity of U can be Θ(n3); see
Section 3 for a lower-bound construction. (The bound in Theorem 1.3 is coarse enough so
that drawing the scaling factors from a tame pdf does not seem to affect it.

2 Union of Hypercubes

In this section we prove Theorems 1.1 and 1.2. For a point x ∈ Rd, we use ‖x‖∞ to denote the
L∞-norm of x. For a compact set S ⊂ Rd, let d∞(x, S) = miny∈S ‖x− y‖∞. A hypercube C
of L∞-radius (or radius for brevity) r centered at c is the set C = {x ∈ Rd | ‖x− c‖∞ ≤ r};
the side-length of this hypercube is 2r. Let P = {p1, . . . , pn} be a set of n points in Rd, and
let B be the (axis-aligned) hypercube of radius 1 centered at the origin. Given a sequence
r = 〈r1, . . . , rn〉 of non-negative scaling factors, we define, for each i ≤ n, Ci = riB+ pi to be
a hypercube of radius ri centered at pi. Let C = {C1, . . . , Cn}, and let U = U(C) =

⋃n
i=1 Ci

denote the union of the hypercubes.
For simplicity, we assume that the hypercubes of C are in general position, in the sense

that no two facets of any pair of hypercubes lie in a common hyperplane. This assumption is
made only to simplify the analysis, and the general, possibly degenerate case can be reduced
to the general-position setup by means of a suitable small perturbation.

A vertex v in the arrangement A(C) of C is the intersection of d facets of the hypercubes in
C and each of these facets is orthogonal to a different coordinate axis. These facets need not
belong to distinct hypercubes. We refer to v as an inner vertex if the d facets on which it lies
belong to d distinct hypercubes, and as an outer vertex if at least two of these facets belong
to the same hypercube. The level of v is j if it lies in the interior of exactly j hypercubes of
C; the level of every vertex on ∂U is 0. For j ≥ 0, let Ij(C) (resp. Oj(C)) denote the number
of inner (resp. outer) vertices at level j in A(C).

If the sequence r of scaling factors is chosen randomly, using either the permutation
model or the density model, Ij(C) and Oj(C) are random variables. For a sequence Θ of
scaling factors, let Īj(P,Θ) = E[Ij(C)] denote the expected value of Ij(C) in the permutation
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10:6 Union of Minkowski Sums with Random Sizes in Three Dimensions

model, over a random permutation of Θ. For any n > 0 and for any j ≤ n − d, let
Īj(n) = max Īj(P,Θ) denote the expected number of inner vertices of level j under the
permutation model, where the maximum is taken over all point sets of size n. We define
Ōj(P,Θ) and Ōj(n) similarly. By definition (recall the terminology introduced earlier),
ψ(P,Θ) = Ī0(P,Θ) + Ō0(P,Θ) and ψ(n) ≤ Ī0(n) + Ō0(n).

Finally, in the density model, which we use explicitly only when the scaling factors are
chosen randomly from a tame pdf π, we define Īj(P, π) and Ōj(P, π) as the expected number
of inner and outer level-j vertices, respectively, and we also define Īj(n) and Ōj(n) as the
maximum value of these respective quantities, where the maximum is taken over all sets P
of n points and all tame pdf’s.7

Our goal is to bound Ī0(n) and Ō0(n). Our strategy is first to derive an upper bound
for Ō0(n), either for the permutation model or for the density model for a tame pdf, and
then use either of these bounds in a charging scheme that leads to a corresponding bound on
Ī0(n). The following lemma will be crucial in proving the bound on Ī0(n).

I Lemma 2.1. Ō1(n) = O(Ō0(n)).

To keep the presentation simple, we first bound Ō0(n) in R3 (Section 2.1) and then extend
the argument to higher dimensions (Section 2.2). Finally, we prove an upper bound on Ī0(n)
in Rd, for any odd dimension d ≥ 3 (Section 2.3).

2.1 Outer vertices in 3D
An outer vertex of U(C) in R3 is either a vertex of a cube in C or the intersection point of an
edge of a cube Ci with a face of another cube Cj . There are O(n) vertices of the first type,
so it suffices to bound the expected number of the second type of outer vertices.

We fix a point, say p1, of P and an edge e of the cube C1 = p1 + r1B centered at p1.
We bound the expected number of outer vertices of U lying on e. Note that e is not a fixed
segment in R3—its physical location in R3 as well as its length depend on the value of r1.
Nevertheless, we can combinatorially define e so that it refers to a fixed edge (one of the 12
possible edges) of C1. For simplicity, we assume that e is parallel to the z-axis. We bound
the expected number of vertices lying on e, first for the permutation model, and then for the
density model for a tame pdf.

The permutation model. We are given a sequence Θ = 〈0 ≤ θ1 ≤ · · · ≤ θn〉 of n arbitrary
non-negative scaling factors. We choose a random permutation σ on [1 : n], and assign
ri := θσ(i).

Let µ(e, P,Θ) denote the expected number of connected components of ∂U ∩ e. The
expected number of outer vertices on e is at most 2µ(e, P,Θ). For a fixed value θi ∈ Θ for
r1, let µ(e, P,Θ | r1 = θi) denote the conditional expected number of connected components
of ∂U ∩ e assuming that r1 = θi. With this fixed choice of r1, e is a segment of length 2θi,
lying at a fixed location in R3. Observe that

µ(e, P,Θ) = 1
n

n∑
i=1

µ(e, P,Θ | r1 = θi). (2)

The following probabilistic lemma is the main technical tool used in the analysis in R3.

7 One can also take the maximum over all pdfs, but then the various expectations are at most the
corresponding quantities under the permutation model, and no better bounds are known so far. We will
therefore be interested only in tame pdfs.
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I Lemma 2.2. For any 1 ≤ k ≤ n, µ(e, P,Θ | r1 = θn−k+1) ≤ 4n
k .

Proof. Let r = θn−k+1. Let e+ (resp. e−) denote the top (resp. bottom) half of e, i.e., the
portion lying above (resp. below) p1. Further partition e+ into two parts e+

1 and e+
2 , each

of length r/2, and similarly partition e−. We bound the expected number of connected
components of U lying on e+

1 , e
+
2 , e

−
1 and e−2 separately. Let e′ = e+

1 , the bounds for the
other parts of e are derived analogously.

Let P (e∗) = 〈pi1 , pi2 , . . . , pin−1〉 denote the sorted sequence of the points of P \ {p1} by
increasing values of δi = d∞(pi, e′). We fix an assignment r2, . . . , rn of scaling factors (which
is a permutation of Θ \ {r}) to the points of P \ {p1}, so that pi is assigned the scaling factor
ri, for i = 2, . . . , n. Let pij be the first point in the sequence P (e∗) for which rij ≥ r. If
δij ≤ r/2 then, since |e′| = r/2, it follows by the triangle inequality that e′ ⊆ Cij and there
are no connected components of U on e′.

So assume that δij > r/2. Then, since the sequence P (e∗) is sorted by distance to e′, it
follows that δi` > r/2 for every ` ≥ j. Hence, any cube Ci` , for ` ≥ j, will intersect e′ only if
ri` ≥ r/2. But then e′ ∩Ci` must contain an endpoint of e′. It follows that all the cubes Ci` ,
for ` ≥ j, can contribute at most one connected component to ∂U ∩ e′. The cubes Ci` , for
` < j, can increase the number of components by at most j − 1, so in total we get at most j
connected components of U on e′.

As argued in [2, Lemma 3.3] (see also [15]), the expected value of the index j of the first
appearance of one of k− 1 distinguished elements in a random permutation of n− 1 elements
is n/k, so the expected value of j is n/k. This gives an average of at most n/k connected
components of ∂U ∩ e′. From this the lemma follows. J

Plugging Lemma 2.2 into (2), we obtain µ(e, P,Θ) = O(log n). Summing this bound over
all O(n) edges of cubes in C and using Lemma 2.1, we obtain the following.

I Corollary 2.3. Let P be a set of n points in R3, and let Θ be a multi-set of n non-negative
scaling factors. Then Ō0(P,Θ), Ō1(P,Θ) = O(n log n).

The density model for tame distributions. Next, we show that if the scaling factors of
the cubes in C are chosen randomly and independently from a tame pdf then the expected
number of outer vertices on a fixed edge g of any cube, say for concreteness the cube C1
centered at p1, is only O(1). For simplicity, we assume that p1 is at the origin. Let π be
a tame pdf and Π its cdf. By definition, 1 − Π(kx) ≤ (1 − Π(x))k for all x > 0 and for
each k ≥ 1. Adapting the previous notation, let µ(g, P, π) denote the expected number of
connected components on ∂U ∩ g.

I Lemma 2.4. µ(g, P, π) ≤ 2e3/(e− 1).

Proof. Assume, as before, that g is parallel to the z-axis, and let g+ (resp. g−) denote the
top (resp. bottom) half of g, i.e., the portion of g lying above (resp. below) p1. Recall that g+

is a random segment whose length and location depend on the value of r1, the scaling factor
assigned to p1. We bound µ(g+, P, π), the expected number of connected components of
∂U∩ g+. A symmetric argument will bound µ(g−, P, π), and the sum of these two quantities
will bound µ(g, P, π).

Set α = Π−1 (1− 1/e) and let Ik = [kα, (k + 1)α), for k = 0, 1, . . .. For a fixed value of
r1 we partition g+ into `+ 1 intervals, ∆0, . . . ,∆`, such that, for k < `, the projection of ∆k

on the z-axis is Ik and the projection of ∆` is contained in I`. For convenience we define ∆k,
for k > `, to be an empty interval. Note that ` is a random variable whose value depends
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10:8 Union of Minkowski Sums with Random Sizes in Three Dimensions

on r1. Let µ(∆k) := µ(∆k, P, π) denote the expected number of connected components of
∂U ∩∆k. Then

µ(g+, P, π) ≤
∞∑
k=0

µ(∆k). (3)

The probability that ∆k is not empty is equal to Pr[r1 ≥ kα], which is

Pr[r1 ≥ kα] = 1−Π(kα) ≤ (1−Π(α))k = e−k. (4)

Fix a value of r1 for which ∆k is not empty. Let P (∆k) = 〈pi1 , pi2 , . . . , pin−1〉 denote the
sorted sequence of the points of P \ {p1} by increasing values of δi = d∞(pi,∆k). Fix an
assignment r2, . . . , rn of scaling factors to the points of P \ {p1}, so that pi is assigned the
scaling factor ri, drawn from π, for i = 2, . . . , n.

Let pij be the first point in the sequence P (∆k) for which rij ≥ 2α. If δij ≤ α then since
|∆k| ≤ α it follows by the triangle inequality that ∆k ⊆ Cij , and there are no connected
components of U on ∆k.

So let us assume that δij > α. Then, since the sequence P (∆k) is sorted by distance
to ∆k, it follows that δi` ≥ α for every ` ≥ j. Thus, for a cube Ci` , for ` ≥ j, to intersect
∆k, we must have that ri` ≥ α. But then ∆k ∩ Ci` must contain an endpoint of ∆k. It
follows that all the cubes Ci` , for ` ≥ j, can contribute at most one connected component to
∂U∩∆k. The cubes Ci` , for ` < j, can increase the number of components by at most j − 1,
so in total we get at most j connected components of U on ∆k.

Notice that j is a geometric random variable, where the success probability of each trial
is p = 1 − Π(2α) ≤ (1− Π(α))2 = 1/e2. The expectation of j is thus 1/p = e2. Therefore
µ(∆k | ∆k 6= ∅) ≤ e2.

Combining this with the bound on the probability that ∆k is not empty, in Equation (4),
we get that µ(∆k) = Pr[∆k 6= ∅] · µ(∆k | ∆k 6= ∅) ≤ e−k+2. Substituting these bounds into
Equation (3), the lemma follows. J

Putting everything together and using Lemma 2.1, we obtain the following:

I Lemma 2.5. Let P be a set of n points in R3 and π a tame pdf. Then Ō0(P, π), Ō1(P, π) =
O(n).

2.2 Outer vertices in higher odd dimensions
We now bound Ō0(n) in Rd, for any fixed odd value d > 3. We fix a point of P , say, p1, and
a (d− 2)-dimensional face f of C1. We bound the expected number of outer vertices lying on
f. As in the previous case, we first obtain the bound for the permutation model and then for
the density model (with a tame pdf).

The permutation model. Let Θ denote a fixed set of scaling factors, and let µ(f, P,Θ)
denote the expected number of vertices of U lying on f. We bound the conditional expectation
µ(f, P,Θ | r1 = θi), assuming that the scaling factor of p1 is θi, and then use (2) to bound
µ(f, P,Θ).

Recall that once the value r1 is fixed to θi, the hypercube C1 = p1 + r1B is also fixed,
and so is its face f. The problem is therefore to bound the expected number of outer vertices
lying on a fixed (d− 2)-dimensional hypercube f. A naive approach, based on induction on d
within f does not work. We use instead a different approach.

The following lemma is analogous to Lemma 2.2.
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I Lemma 2.6. For any 1 ≤ k ≤ n, µ(f, P,Θ | r1 = θn−k+1) = O
(
nbd/2c

k

)
.

Proof. The proof is similar to that of Lemma 2.2. Let r = θn−k+1. We partition f into
4d−2 hypercubes (subfaces) each of radius r/4. Fix such a smaller hypercube g. Let
µ(g, P,Θ | r1 = r) be the expected number of outer vertices of U incident to g, conditioned
on the choice of r1.

Let δi = d∞(pi, f) and let P (g) = 〈pi1 , pi2 , . . . , pin−1〉 denote the sorted sequence of the
points of P \ {p1} by increasing values of δi = d∞(pi, g). We fix an assignment r2, . . . , rn
of scaling factors from Θ \ {r} to the points of P \ {p1}, so that pi is assigned the scaling
factor ri, for i = 2, . . . , n. Let Ĉ = {Ci := pi + riB | pi ∈ P \ {p1}} be the resulting set of
hypercubes. Let Ug = U(Ĉ) ∩ g. Our goal is to bound the number of vertices of Ug. Let F
be the (d− 2)-dimensional flat spanned by g. For a hypercube Ci ∈ Ĉ, let Ki = Ci ∩ F . If
nonempty, Ki is a (d− 2)-dimensional hypercube of radius ri.

Let pij be the first point in the sequence P (g) for which rij ≥ r. Set K< = {Ki` |
` < j ∧ Ki` 6= ∅} and K≥ = {Ki` | ` ≥ j ∧ Ki` 6= ∅}. By definition, |K<| < j and
Ug = U(K< ∪K≥) ∩ g.

If δij ≤ r/2 then, since the side-length of g is r/2, it follows by the triangle inequality
that f ⊆ Cij and the number of vertices in Ug is 0. So assume that δij > r/2. Then, since
the pi’s are sorted by their distance to g, it follows that δi` > r/2 for every ` ≥ j. Hence, for
a cube Ci` with ` ≥ j to intersect g we must have ri` > r/2.

I Lemma 2.7. Let g be a (d − 2)-dimensional hypercube of radius r/4. For any (d − 2)-
dimensional hypercube K of radius at least r/4, there is another hypercube K̃ of radius exactly
r/4 such that K ∩ g = K̃ ∩ g.

Since all hypercubes in K≥ have radius at least r/4, we obtain, by applying Lemma 2.7
to all of them, a collection K̃≥ = {K̃i | Ki ∈ K≥} such that U(K≥) ∩ g = U(K̃≥) ∩ g. It
follows that Ug = U(K< ∪ K̃≥) ∩ g. It therefore suffices to bound the number of vertices of
Ũg = U(K< ∪ K̃≥), and also the number of vertices of Ũg ∪ g (in order to upper bound the
number of vertices in Ug which are on the boundary of g). We bound the number of vertices
of Ũg, the analysis for Ũg ∪ g is similar.

We call a vertex v of Ũg pure if it does not lie on the boundary of any hypercube
in K<, otherwise we call it mixed. A pure vertex is also a vertex of U(K̃≥). Since K̃≥
is a set of at most n congruent hypercubes in Rd−2, the number of vertices in U(K̃≥) is
O(nb(d−2)/2c) = O(nbd/2c−1).

Each mixed vertex of Ũf is incident to at least one facet of a hypercube in K<. Fix
such a facet φ, and let Φ be the (d− 3)-dimensional flat spanned by φ. For each hypercube
K ∈ K< ∪ K̃≥, let K∗ = K ∩ Φ be the (possibly empty) (d − 3)-dimensional hypercube
contained in Φ. Set K∗ = {K∗ | K ∈ K< ∪ K̃≥}. A mixed vertex incident on φ is also a
vertex of U(K∗). Since d− 3 is even, the result in [10] implies the number of such vertices
is (always) O

(
n(d−3)/2) = O

(
nbd/2c−1). Multiplying the bound by the number of facets

in the hypercubes of K<, the total number of mixed vertices is O(|K<|nbd/2c−1). Hence,
the total number of vertices in Ug is O(|K<|nbd/2c−1 + nbd/2c−1) = O(jnbd/2c−1). As in the
proof of Lemma 2.2, the expected value of j (assuming that r1 = θn−k+1) is O(n/k). Hence,
µ(g, P,Θ | r1 = θn−k+1) = O

(
nbd/2c

k

)
. The lemma follows by summing this over all 4d−2

subfaces g in the subdivision of f. J

Plugging Lemma 2.6 in (2), we obtain that µ(f, P,Θ) = 1
n

∑n
k=1O

(
nbd/2c

k

)
=

O
(
nbd/2c−1 log n

)
. Finally, summing this bound over all points of P and using Lemma 2.1,

we obtain the main result of this section:
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10:10 Union of Minkowski Sums with Random Sizes in Three Dimensions

I Lemma 2.8. Let P be a set of n points in Rd for some fixed odd value of d > 3, and let Θ
be a multi-set of scaling factors. Then Ō0(P,Θ), Ō1(P,Θ) = O

(
nbd/2c log n

)
.

The density model for tame distributions. Next, we show (see the full version for details)
that if the scaling factors of the cubes in C are chosen randomly and independently from a
tame pdf π (whose cdf is denoted by Π) then the expected number of outer vertices on a
fixed (d− 2)-dimensional face f of any cube, say of C1, is O

(
nbd/2c−1). That is,

I Lemma 2.9. µ(f, P, π) = O(nbd/2c−1).

Putting everything together, using Lemma 2.1, we obtain the following:

I Lemma 2.10. Let P be a set of n points in Rd for some fixed odd value of d > 3, and let
π be a tame pdf. Then Ō0(P,Θ), Ō1(P,Θ) = O

(
nbd/2c

)
.

2.3 Inner vertices
We now bound the expected number of inner vertices in U(C) in Rd under both the permutation
model and the density model for tame distributions. We first consider a fixed assignment of
scaling factors to the points of P , so C = {C1, . . . , Cn} is a fixed set of n hypercubes in Rd.
We obtain a recurrence for I0(C) for this fixed C, by closely following the charging scheme
proposed in Boissonnat et al. [10], which shows that there are many distinct outer vertices of
level 0 plus vertices (inner or outer) of level 1 in the neighborhood of any inner vertex of
U(C). This gives an upper bound on I0(C) in terms of I1(C), O0(C), and O1(C). Next, we
consider a random assignment of scaling factors and obtain a recurrence for Ī0(n) in terms
of Ī1(n), Ō0(n), and Ō1(n), from the recurrence for I0(C). We use results from Sections 2.1
and 2.2 to bound the last two terms, and we use a counting argument to bound Ī1(n) in
terms of Ī0(n− 1).

The charging scheme. Let v be an inner vertex of ∂U, lying on d facets f = {f1, . . . , fd}
of a set C = {C1, . . . , Cd} of d distinct hypercubes, such that fi is a facet of Ci orthogonal
to the xi-axis. For each i ≤ d, let γi denote the intersection segment of the d− 1 facets in
f \ {fi}. The segment γi is parallel to the xi-axis. The vertex v is incident to all d segments
γ1, . . . , γd. For each i, we trace the segment γi from v entering the hypercube Ci (recall
that v lies on the xi-orthogonal facet fi of Ci) until we encounter another vertex, wi, of the
arrangement A(C) of C. Three cases can arise:
(i) The vertex wi lies on the facet of Ci opposite to fi (i.e., the other facet of Ci orthogonal

to the xi-axis). This event can happen only if Ci is smaller than all the other d − 1
hypercubes in C, i.e., it can happen for at most one index i.

(ii) The vertex wi is an outer vertex at level 1 (it is contained in Ci), lying on a (d− 2)-face
of one of the hypercubes Cj ∈ C \ {Ci}.

(iii) The vertex wi is an inner vertex at level 1 (it is contained in Ci), lying on the boundary
of another hypercube C0 ∈ C \C.

In the first case, we simply ignore this segment γi and the vertex wi—at most one of the
d segments will be ignored. In cases (ii) and (iii), v charges wi one unit. This way, each
inner vertex v of U receives at least d− 1 units of charge.

An outer vertex w at level 1, lying on a (d − 2)-face φ of Cj , can be reached from an
inner vertex only along one of the two corresponding facets of Cj (in a direction normal to
the other facet containing φ), so w is charged at most twice by a type (ii) event.
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An inner vertex w at level 1 can be charged at most d times, once along each of its d
incident intersection segments. Suppose w is charged s times. If s ≤ 1, then w pays one unit
of charge for its unique charging inner vertex (or does not pay at all). If s > 1, we distribute
s − 1 of the s units of charge to nearby outer vertices at level 0 or 1 so that each outer
vertex is charged at most once (at most one inner vertex can pass a charge to it), and w also
pays only one unit of charge. The charge distribution scheme culminates in the following
recurrence.

(d− 1)I0(C) ≤ I1(C) + 3O1(C) + O0(C). (5)

Recurrence for a fixed assignment. We now obtain a recurrence for I0(C) by using the
following lemma; see [10] for the easy proof.

I Lemma 2.11.
n∑
i=1

I0(C \ {Ci}) = (n− d)I0(C) + I1(C).

Using Lemma 2.11 and (5), we obtain the following recurrence.

(n− 1)I0(C) = (n− d)I0(C) + (d− 1)I0(C)
≤ (n− d)I0(C) + I1(C) + 3O1(C) + O0(C) (Eq. (5))

=
n∑
i=1

I0(C \ {Ci}) + 3O1(C) + O0(C) (Lemma 2.11). (6)

Recurrence for a random assignment. We remind the reader that so far the analysis has
been applied to a fixed assignment of scaling factors to the points of P , that is, to a fixed set
C of hypercubes. We now want to replace (6) by the expectations of the terms appearing
there, with respect to a random assignment of the scaling factors. By linearity of expectation,

(n− 1)E[I0(C)] ≤
n∑
i=1

E[I0(C \ {Ci})] + 3E[O1(C)] + E[O0(C)]. (7)

For a fixed choice of the scaling factor ri of Ci, the assignment of the remaining scaling
factors to the elements of C\{Ci} is a random permutation (of the n−1 elements in Θ\{ri})
under the permutation model, and a random assignment under the density model. The
conditional expected value of I0(C\{Ci}) over any fixed choice of r1 is thus at most Ī0(n−1),
and therefore the same also holds for the unconditional expected value of I0(C\{Ci}). Hence,
we obtain the following:

(n− 1)Ī0(n) ≤ nĪ0(n− 1) + 3Ō1(n) + Ō0(n). (8)

Dividing both sides by n(n− 1) and setting χ(m) = 1
m Ī0(m), we obtain

χ(n) ≤ χ(n− 1) + 1
n(n− 1)(3Ō1(n) + Ō0(n)). (9)

We now substitute the bounds on Ō0(n) and Ō1(n) from Section 2.1 and Section 2.2 for
both the permutation model and the density model for tame distributions. For example,
for the permutation model in R3, Ō0(n), Ō1(n) = O(n log n). Therefore, we obtain χ(n) ≤
χ(n−1)+ b logn

n , where b > 0 is a constant. Hence, χ(n) = O(log2 n) and Ī0(n) = O(n log2 n)
in this case. For any fixed odd d > 3 and still under the permutation model, we obtain
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10:12 Union of Minkowski Sums with Random Sizes in Three Dimensions

χ(n) ≤ χ(n− 1) + b′nbd/2c−2 log n, where b′ is another constant. Since d > 3, the solution
of the above recurrence is χ(n) = O(nbd/2c−1 log n) and thus Ī0(n) = O(nbd/2c log n). This
completes the proof of Theorem 1.1.

If the scaling factors of all points are chosen from a tame pdf, the bounds for Ō0(n), Ō1(n)
can be obtained using Lemmas 2.5 and 2.10. This implies that in this case Ī0(n) = O(n log n)
for d = 3 and Ī0(n) = O(nbd/2c) for any fixed d > 3. This completes the proof of Theorem 1.2.

3 Union of Stochastic Minkowski Sums

We now consider the general (three-dimensional) stochastic Minkowski-sum union problem
defined in the introduction, i.e., we now have a set T = {41, . . . ,4n} of n pairwise-disjoint
triangles in R3 and a convex polytope B with O(1) vertices. Let r = 〈r1, . . . , rn〉 be a sequnce
of n non-negative scaling factors. Ci = 4i ⊕ riB is a convex polytope with O(1) vertices.
Set C = {Ci | 1 ≤ i ≤ n}. Let Θ = 〈θ1, . . . , θn〉 be a sequence of n scaling factors. Our goal
is to bound the expected number of vertices in U(T, r), denoted by ψ(T,Θ), when r is chosen
from Θ using the permutation model, i.e., we choose a random permutation σ of [1 : n] and
set ri = θσ(i). For simplicity, we assume that T,B,Θ are such that C is in general position
for any permutation of Θ. Let F(T, r) denote the complement of U(T, r).

As in Section 2, we first analyze a certain conditional expectation and then bound
the overall expected value ψ(T,Θ). A crucial ingredient in our analysis is the following
technical lemma, adapted from Aronov and Sharir [5, Slicing Theorem] (see also [6, Chopping
Theorem]).

I Lemma 3.1. Let R ⊆ T be a subset of t triangles and let r = 〈r, r, . . . , r〉. Then (a) the
complexity of U(T, r) is O(t2 log t), and (b) there exists a decomposition F∇ of F := F(R, r)
into O(t2 log t) tetrahedra with pairwise-disjoint interiors.

We note that each tetrahedron in F∇ is defined by at most s triangles of T , where s is a
constant that specifies the (maximum) number of input triangles that are needed to define
the features (vertices, edges, and facets) of the corresponding tetrahedron. Moreover, any s
or fewer triangles define at most O(1) tetrahedra. We thus obtain the following lemma:

I Lemma 3.2. The overall number of tetrahedra that can ever arise in the decomposition
F∇(R, r) for any subset R ⊆ T , where all the scaling factors in r are equal, is O(ns).

The recursive partition scheme. We now follow, or rather adapt, the recursive scheme
used in [2]. Specifically, fix a parameter t, whose value will be determined later, and put
ρ = θn−t, the (t + 1)-st largest scaling factor in Θ. Let Θ< be the sequence of the n − t
smallest values in Θ. We fix a subset T> ⊆ T of t triangles, and set T< = T \ T>. Let
ψ(T,Θ | T>) denote the conditional expected complexity of U conditioned over the subset
of those permutations σ that assign the t largest scaling factors in Θ to the triangles of
T>; the restriction of a random permutation from this subset to [1 : n− t] (i.e., the part of
the permutation that assigns the scaling factors of Θ< to the triangles in T<) is a random
permutation, i.e., each permutation of [1 : n− t] is equally likely to arise.

We first obtain a bound on ψ(T,Θ | T>). For each 4i ∈ T , put C̄i = 4i ⊕ ρB. Set
C̄> = {C̄i | 4i ∈ T>} and Ū := U(C̄>). Let F̄ denote the complement of Ū. Since the
4i’s are pairwise disjoint and we now add the same convex polytope ρB to each of them,
Lemma 3.1(a) implies that Ū has O(t2 log t) complexity. Moreover, by Lemma 3.1(b), there
exists a decomposition, denoted as F̄∇, of F̄ into O(t2 log t) tetrahedra with pairwise-disjoint
interiors. For each tetrahedron τ of F̄∇, let T<τ = {4i ∈ T< | C̄i ∩ τ 6= ∅}; set nτ = |T<τ |.
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Note that Ū, F̄, F̄∇, and the sets T<τ are independent of the choice of permutation; they
only depend on ρ and the set T>.8

We now fix a permutation σ, and thus an assignment of scaling factors, such that the
largest t scaling factors are assigned to the triangles of T>. Thus the scaling factors of
all triangles in T< (resp. T>) are at most (resp. at least) ρ. Therefore Ci ⊆ C̄i for each
4i ∈ T< and Ci ⊇ C̄i for each 4i ∈ T>. Consequently, Ū ⊆ U(C).

For a cell τ ∈ F̄∇, set C<τ = {Ci | Ti ∈ T<τ }. Clearly, no other triangle 4i ∈ T< can have
its real expansion Ci meet τ . We define Cτ = {Ci ∩ τ | 4i ∈ T<τ ∪ T>}, and set Uτ = U(Cτ ).
By construction,

U = U(C) = Ū ∪
⋃

τ∈F̄∇
Uτ . (10)

We call a vertex v of U internal if v does not lie on the boundary of any polytope Ci
with Ti ∈ T>, and we call v external otherwise. The number of external vertices is trivially
O(tn2), so it suffices to bound the number of internal vertices of U. Since Ū ⊆ U, every
internal vertex lies in F̄. Suppose v lies in the tetrahedron τ of F̄∇. Then by (10), v is a
vertex of Uτ . Furthermore, v is an internal vertex, so it is not incident on any Ci for Ti ∈ T>,
and thus v is a vertex of U(C<τ ). The total number of internal vertices in τ is bounded by the
combinatorial complexity of U(C<τ ), denoted by ψ(T<τ , rτ ) (as defined in the introduction),
where rτ is the set of scaling factors of the triangles in Tτ , Hence, the total number of internal
vertices on U is

∑
τ∈F̄∇ ψ(T<τ , rτ ), and (10) implies that the total number vertices ψ(T, r)

on U satisfies ψ(T, r) ≤
∑
τ∈F̄∇ ψ(T<τ , rτ ) +O(tn2).

Expected number of vertices. We now bound the expected complexity of U, conditioned
on a fixed choice of T>. That is, we condition the analysis on the subset of those permutations
σ that assign the t largest scaling factors in Θ to the triangles of T>. The set Θ<

τ of scaling
factors assigned to the triangles in T<τ is not fixed, but, since T<τ is a fixed set, conditioned
only on the choice of T>, the set Θ<

τ is a random subset of Θ< = {θ1, . . . , θn−t} of the
fixed size nτ . Moreover, the assignment (under the original random permutation σ) of these
scaling factors to the triangles in T<τ is a random permutation of Θ<

τ . Hence, conditioning
further on the choice of Θ<

τ , the expected value of ψ(T<τ , rτ ) is ψ(T<τ ,Θ<
τ ) ≤ ψ(nτ ). Hence,

the last expression also bounds the unconditional expected complexity of U(C−τ ), albeit still
conditioned on a fixed choice of T>. Summing this over all tetrahedra of F̄∇, we obtain that
ψ(T,Θ | T>) ≤

∑
τ∈F̄∇ ψ(nτ ) +O(tn2).

To bound the unconditional expected value ψ(T,Θ) we notice that the subset T> of the
triangles that are assigned the t largest scaling factors is a random subset of T . Since T> is a
random sample of T of size t and since, by Lemma 3.2, there are only O(ns) tetrahedra that
can appear in the decomposition F̄∇, the following lemma is a consequence of a standard
random-sampling argument; see [17, Section 4.6] for a proof.

I Lemma 3.3. For any constant c > 0, with probability 1−O
( 1
nc

)
, every (open) tetrahedron

τ of F̄∇ intersects at most c′n
t log n of the sets of C̄<, where c′ is a constant that depends on

both c.

Choosing c = 3 in Lemma 3.3, with probability 1 − O
( 1
n3

)
our T> is such that nτ ≤

c′n
t log n for every τ ∈ F̄∇. With probability O

( 1
n3

)
, T> may fail to satisfy this property,

8 Clearly, Ū and F̄ are uniquely determined. For F̄∇, the statement means that if we follow an agreed-upon
implementation of the construction in the proof of Lemma 3.1, F̄∇ is also uniquely determined.
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but, since the complexity of U(C) is always O(n3) (again, with a constant of proportionality
that depends on the complexity of B), the contribution of these “bad” choices of T> to
ψ(T,Θ) is O(1). If n is below some appropriate constant n0, we can use a trivial bound of
O(n3) for the complexity of U. Altogether, we obtain the following recurrence,

ψ(n) ≤

 a0n
3 for n ≤ n0,

a1t
2 log t · ψ

(
c′n
t log n

)
+ a2n

2t for n > n0,
(11)

where n0, a0, a1, a2, c
′ are suitable constants. With appropriate choice of parameters, the

solution of this recurrence is ψ(n) ≤ An2+ε, for any ε > 0, where A depends on ε and on the
other constants appearing in the recurrence. This proves Theorem 1.3.
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Abstract
In this work we construct tests that allow a classical user to certify high dimensional entanglement
in uncharacterized and possibly noisy quantum devices. We present a family of non-local games
{Gn} that for all n certify states with entanglement of formation Ω(n). These tests can be
derived from any bipartite non-local game with a classical-quantum gap. Furthermore, our tests
are noise-tolerant in the sense that fault tolerant technologies are not needed to play the games;
entanglement distributed over noisy channels can pass with high probability, making our tests
relevant for realistic experimental settings. This is in contrast to, e.g., results on self-testing of
high dimensional entanglement, which are only relevant when the noise rate goes to zero with the
system’s size n. As a corollary of our result, we supply a lower-bound on the entanglement cost
of any state achieving a quantum advantage in a bipartite non-local game. Our proof techniques
heavily rely on ideas from the work on classical and quantum parallel repetition theorems.
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11:2 Noise-Tolerant Testing of High Entanglement of Formation

game. This idea dates back to John Bell’s seminal paper [7], in which he presents a
game to test the non-classicality of nature. Today, such games are not only relevant for
our understanding of the foundations of quantum physics but are at the heart of device-
independent quantum information processing, where a classical user can certify that an
unknown quantum device is performing a desired computational or cryptographic task (such
as, e.g., device-independent quantum key distribution [4, 37, 45, 34, 2] or delegated quantum
computation [42, 24, 22, 35, 17]).

In this work we ask the following question:

Is it possible to classically test for high dimensional entanglement,
even in the presence of noise?

Whereas Bell’s original test is a classical method to certify the presence of entanglement,
we are instead interested in non-local games that would allow us to quantify the amount.
In particular, we are interested in certifying the amount of entanglement of noisy quantum
systems.

Designing noise-tolerant tests for high dimensional entanglement is an important and
timely challenge for both computer science and physics. First, our understanding of complexity
theory indicates that unless BQP ⊆ BPP (i.e., quantum computers are classically simulable),
general quantum computations must involve highly entangled states. Thus if we hope to
achieve super-classical speedups in quantum computers, at the very least we must be able to
generate high dimensional entanglement.

Second, we are seeing increasingly sophisticated experiments involving quantum inform-
ation, from loophole-free Bell tests [26, 43, 23] to small scale quantum computers [10, 29].
However, full-fledged quantum fault tolerance appears to be a faraway prospect; in the
near-term, our explorations of complex quantum states will be done using noisy gates and
little (if any) error correction. Despite this obstacle, researchers have been enthusiastically
proposing uses of noisy quantum computers, from approximate optimization to investigation
of exotic physics phenomena. Interesting questions will emerge in tandem with these efforts,
namely: how can one verify that a noisy quantum computer has succeeded in these proposed
experiments? Finding noise-tolerant tests to certify high dimensional entanglement is a
prerequisite step towards verifying other complex quantum behavior in this noisy regime.

1.1 What do we mean by certifying entanglement?
There are a variety of ways to formulate this task; our work is most directly motivated by
recent work on self-tests, which are games that certify the presence of entanglement of a
specific form. The works of [33, 14, 16, 20, 35] construct families of games {Gn} where any
optimal quantum strategy for Gn must use a large amount of entanglement, e.g., a tensor
product of n EPR pairs. These self-testing results are also robust, in that near-optimal
strategies must use states that are near a specific highly entangled state. However, these tests
will also reject a natural class of highly entangled states such as σ⊗n where σ has fidelity
1− ν with a single EPR pair. Here, think of ν as a small (but fixed) noise parameter that
represents the level of imperfection of a state preparation process.

Thus, even though |EPR〉〈EPR|⊗n can be used to pass the tests of [33, 14, 16, 20, 35]
with high probability, the “similar-looking” state σ⊗n will fail with high probability. A
key observation we wish to emphasize in this paper is that robustness of a self-test is not
equivalent to noise tolerance!

More formally, the robust self-tests in the above works show the following: let qval(Gn)
denote the optimal quantum winning probability for the game Gn. Then there exists a
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function f(n, ε) and an ideal state ρ∗n such that for all ε, any quantum strategy that achieves
a winning probability of at least qval(Gn)− ε must use a state ρ that is f(n, ε)-close to ρ∗n.
In these works, ρ∗n is a state whose entanglement grows with n (like a maximally entangled
state on n qubits). “Closeness” can be defined in terms of the fidelity of the two states up to
local isometries acting on each of the players’ systems.

Given a game Gn as above, an experiment to test the entanglement of an unknown state
ρ can be the following: play the game Gn using ρ, and check whether the game is won.3 In
order to obtain a non-trivial guarantee about ρ, we require that f(n, ε) < 1; one can think
of this function as specifying the amount of experimental imperfection/noise that can be
tolerated by the test itself. In the works of [33, 14, 16, 20], the function f(n, ε) scales as
a ·nb · εc for constants a, b, c. Thus we get no guarantees about ρ unless ε scales as 1/ poly(n).
In other words, as we increase the amount of entanglement we want to certify, the test
becomes less tolerant of noise!

The strongest self-testing result (in this context) is presented in the work of Natarajan
and Vidick [35]. There, a self-test for n EPR pairs is given where the associated function is
f(n, ε) = O(

√
ε). While the closeness parameter is independent of the parameter n, such

f(n, ε) still requires that, in order to pass the test with high probability, the players share a
state ρ that is globally O(

√
ε)-close to |EPR〉〈EPR|⊗n. Using a state like σ⊗n where σ has

1− ν fidelity with a single EPR pair would fail their test with high probability, because σ⊗n
has exponentially small fidelity (1− ν)n ≈ e−n/ν with |EPR〉〈EPR|⊗n.

In this paper we seek an entanglement test that is both sound — meaning that any
strategy that passes the test with good probability must have high entanglement — and also
noise tolerant, meaning that they do not reject noisy implementations of an ideal strategy.
The self-tests above are sound, but they are not noise tolerant. Part of the difficulty stems
from the fact that it is not even clear how one should formulate the soundness guarantee of
a desired noise-tolerant self-testing result.

1.2 Noise model
As discussed above, we wish to define a testing procedure that can also certify entanglement
in noisy entangled states. While our work can be used to certify different types of noisy
states, we briefly discuss a specific noise model here for the sake of concreteness. The noise
model that we have in mind produces a state of the form σ⊗n where each σ has fidelity 1− ν
with some optimal state defined via the considered non-local game. Such a state can be
produced, e.g., by sending many copies of the optimal state via noisy channels.

We emphasize that by saying that this is the noise model that we consider we merely
mean that we require that our tests will be able to certify the entanglement of σ⊗n. However,
we do not assume that all of the states on which the procedure is applied must have this
form (i.e., the soundness part of the statement is independent of the considered noise model).

1.3 Results and contributions
In this work, instead of trying to certify the presence of a specific state like in self-testing
statements, we address the question of certifying an entanglement measure. This allows us
to sidestep the difficulty of formulating a noise-tolerant self-testing result.

3 In an experiment one actually needs to prepare many identical and independent copies of ρ and
play the game Gn many times. Then the average winning probability can be calculated, and high
amount of entanglement is certified (with high probability) if the average winning probability is at least
qval(Gn)− ε.
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11:4 Noise-Tolerant Testing of High Entanglement of Formation

We present a family of simple non-local games {Gn} where each game Gn certifies
that the shared state of the players has Ω(n) bits of entanglement of formation. The
entanglement of formation, denoted by EF (ρ), is a well-studied entanglement measure for
bipartite mixed states that, in the case of pure states, is equal to the entanglement entropy.
As the name suggests, the entanglement of formation captures, roughly speaking, the amount
of entanglement needed in order to produce a given state ρ. It is also closely related to
another important, perhaps more well known, entanglement measure which will be of use
below – the entanglement cost EC(ρ). The entanglement cost of a mixed state roughly
describes how many EPR pairs are needed to create ρ via local operations and classical
communication [9]. We provide a more thorough discussion of the entanglement measures
relevant for our work in Section 1.4.

The family of non-local games that we consider are the so called threshold games. Before
stating our main result, we define these games. Let G be a two-player non-local game with
classical value4 cval(G) and quantum value qval(G). Given an integer n ≥ 1 and a noise
threshold 0 ≤ ν < qval(G) − cval(G), define the threshold game Gnqval(G)−ν to be a game
where the two-players now play n independent instances of G in parallel, and win if they win
at least qval(G)− ν fraction of instances of G.

The main theorem of this paper is as follows:

I Theorem 1 (Main theorem). Let G be a two-player game with a classical-quantum gap:
i.e., ∆ := qval(G)− cval(G) > 0. Let 0 ≤ ν < ∆ be a noise parameter.

Completeness (Noise tolerance). Let n ≥ 1 be an integer. Consider a quantum strategy
for G that succeeds with probability qval(G)− η for 0 ≤ η < ν. Playing this strategy n times
independently in parallel in the threshold game Gnqval(G)−ν succeeds with probability at least
1− exp(−(ν − η)2n/3).5

Soundness (Entanglement certification). There exist constants 0 < c1, c2 < 1 such
that for sufficiently large n > 1

c1
, any strategy that wins the threshold game Gnqval(G)−ν

with probability κ ≥ exp(−c1n) must use a quantum state ρ such that its entanglement of
formation satisfies EF (ρ) ≥ c2κ2n.

The constants c1, c2 depend only on ∆, ν, and the number of possible answers in G.

To gain a better understanding of our theorem we now give an example. Consider the
famous CHSH game, which has classical value cval(CHSH) = 3/4 and quantum value
qval(CHSH) ≈ 0.854. Any strategy for winning a single instance of CHSH with probability
qval(CHSH) − η for some parameter 0 ≤ η < 0.1 must use some entangled state σ. An
“honest” strategy for playing the threshold game CHSHn

.854−2η would be to play each instance
of CHSH independently using σ⊗n as the entangled resource state. Via a simple Chernoff-
Hoeffding bound it is easy to see that this strategy will pass CHSHn

.854−2η with overwhelming
probability. Thus this game is noise-tolerant. The entanglement of formation of σ⊗n is
indeed Ω(n).

But what about other strategies? Is there a state with entanglement of formation o(n)
that can be used to win CHSHn

.854−2η sufficiently well? Theorem 1 shows that this is not
possible.

4 The classical value of a game is the maximum winning probability when the players employ classical
strategies, i.e., do not use entanglement. Similarly, the quantum value of a game is the optimal winning
probability when using quantum strategies.

5 Alternatively, a simpler (but slightly weaker) statement is that playing a strategy the succeeds with
probability qval(G)−ν in G n times independently in parallel succeeds in the threshold game Gnqval(G)−ν
with probability 1

2 . This is sufficient for an experiment certifying entanglement.
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We list several features of Theorem 1:
1. It holds for any two-player game G. In other words, any game with a classical-quantum

gap can be “lifted” to another game that tests for large entanglement in a noise-tolerant
manner.

2. The players are able to pass our test with high probability by holding a tensor product of
noisy few-qubit states (such as σ⊗n where σ has fidelity 1− ν with an EPR pair for any
amount). The theorem gives non-trivial guarantees for any 0 ≤ ν < qval(G)− cval(G),
i.e., it is robust to any amount of noise up to the classical limit.

3. It gives non-trivial guarantees even for strategies whose success probability is far from
optimal; for any constant κ, Theorem 1 still guarantees that EF (ρ) ∈ Ω(n).6

Theorem 1 thus shows that by playing the simple threshold game Gnqval(G)−ν with an
uncharacterized device we can classically test for large amounts of entanglement (as measured
by the entanglement of formation), even when the device is highly noisy, as current devices
are. As far as we are aware, previous results [33, 14, 16, 35, 18] cannot be used to derive
conclusions which are quantitively strong as Theorem 1, even when considering more complex
games and proof techniques.7

Our main theorem presented above can be easily used to derive another quantitive relation
between the advantage in a non-local game G and the entanglement cost required to achieve
this advantage. Specifically, we prove the following.

I Theorem 2. Let G be a two-player game with a classical-quantum gap: i.e., ∆ :=
qval(G) − cval(G) > 0. Let 0 ≤ ν < ∆ be a noise parameter. Then, for any state σ that
can be used to win G with probability at least qval(G) − ν, its entanglement cost satisfies
EC(σ) ≥ c2/4, where c2 is the constant from Theorem 1.

Put in other words: the minimum entanglement cost8 needed to obtain a super-classical
success probability in a non-local game only depends on the classical-quantum gap as well as
the number of possible answers in the game.

As we explain in Section 1.4, even given the full description of a state σ, calculating
EC(σ) is not easy and no “single letter” formula is known to describe it. Theorem 2 gives a
simple lower bound on EC(σ) in terms of σ’s advantage in any non-local game G.

The only lower-bound with a similar flavour which was known before is the one given
in [46]. There, a (tight) relation between EF (σ) and σ’s winning probability in the CHSH
game was derived. Self-testing results can, of course, also be used to achieve similar bounds
(by taking into account the continuity of the considered entanglement measures), but so
far most of the results are non-trivial for a very limited amount of noise and only apply to
specific two-player games. In contrast, Theorem 2 holds for any non-local game and amount
of noise.

1.4 Why entanglement of formation?
In this section we motivate and explain the relations between the entanglement measures
certified by our tests in Theorem 1 and Theorem 2.

6 However, the constants c1 and c2 are probably not optimal and can be improved.
7 This is not to say that our work supersedes the mentioned works; these derived self-testing statements
which certify the state and not just its entanglement as we do here.

8 For any σ, EF (σ) ≥ EC(σ). Thus, Theorem 2 could have been phrased in terms of the entanglement of
formation as well.
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Myriad entanglement measurements have been studied by researchers, each possessing
various properties [38, 28]. For pure bipartite states |ψ〉AB, the coarsest quantity describing
entanglement is the entanglement rank, which is simply the Schmidt rank of |ψ〉. However,
this is not a very useful measure of entanglement as one can have a state arbitrarily close to
a product state, yet have high entanglement rank.

A more natural measure of entanglement is the entanglement entropy E(ψ), which is the
von Neumann entropy of the reduced density matrix of |ψ〉 on system A or equivalently B [8, 39].
In fact, the entanglement entropy is the unique entanglement measure for pure bipartite
states that satisfies a few natural axioms, such as monotonicity under local operations and
classical communication (LOCC) and asymptotic continuity [28].

For mixed states the situation is more complicated — there is no clear “best” entanglement
measure. The most natural and operational entanglement measures are considered to be the
entanglement cost EC and the distillable entanglement ED. In fact, for any entanglement
measure M satisfying some natural properties we have that ED ≤ M ≤ EC [28]. Thus
the entanglement cost and distillable entanglement are in a sense “extremal” entanglement
measures. For pure states, both EC and ED are equal to the entanglement entropy.

In the following we focus on EC . Informally, the entanglement cost of a bipartite quantum
state ρAB describes the number of maximally entangled states required to produce ρ using
only LOCC. As LOCC cannot increase entanglement, the pre-shared maximally entangled
states describe the sole source of entanglement in such a process and hence quantify how
entangled ρ is in a meaningful way.9

Formally, the entanglement cost is defined as the following asymptotic quantity:

EC(ρ) = inf
{
r : lim

n→∞

(
inf
Λ
‖ρ⊗n − Λ(Φ+

2rn)‖1
)

= 0
}
,

where the infimum ranges over all LOCC maps Λ and Φ+
2rn is the maximally entangled state

of rank 2rn. That is, it is the maximal possible rate r at which one can convert Φ+
2rn into

ρ⊗n with vanishing error in the limit n→∞.
Computing EC(ρ) is considered to be a difficult task in general. Due to this reason

one usually considers a closely related entanglement measure called the entanglement of
formation. It is formally defined as follows [9]:

EF (ρ) = inf
{∑

i

piE(Ψi) : ρ =
∑
i

pi|Ψi〉〈Ψi|

}
.

That is, EF (ρ) is the minimum average entanglement entropy over all pure-state decomposi-
tions of ρ.

The entanglement of formation derives its relevance from its relation to the entanglement
cost EC(ρ) discussed above. It describes the rate in which maximally entangled states are
converted to ρ using a specific type of LOCC protocols [51] (whereas EC(ρ) is the minimum
over all LOCC protocols). Furthermore, [25] showed that the entanglement cost is equal to
the regularised entanglement of formation:

EC(ρ) = E∞F (ρ) = lim
n→∞

(EF (ρ⊗n)/n).

9 Another way of thinking about the operational meaning of entanglement cost is by considering the task
of entanglement dilution. There, the goal is to start with initial noiseless entanglement and dilute it to
create a target state ρ using LOCC.
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For some time it was conjectured that the entanglement of formation is additive and hence
EC(ρ) = EF (ρ). Today it is known that this is not the case and that the limit in the above
equation is needed in general [11].

It is not known how to compute E∞F (ρ) for general ρ, in part because of the infinite limit.
The “single-letter” quantity EF (ρ) does not appear to be much easier to compute because
of the minimisation over all possible decompositions of ρ. To date, it can be done only for
states with high symmetry [44, 48] or of low dimension [49, 50, 3]. One can imagine that
the task of calculating or bounding EF (ρ) only becomes harder if one does not have full
information about ρ as in the scenario considered in the current work.

In the light of the above, one can see our work as giving a way to lower bound those
complex entanglement measures for an unknown state ρ in a device-independent manner.
Of course, this is not a general method that works for all states ρ, but rather it works
for any state ρ that can be used to gain an advantage in non-local games (or, in other
words, violate some Bell inequality). Specifically, Theorem 1 gives a lower bound on EF for
high dimensional (while perhaps noisy) states that can be used to pass the threshold game
Gnqval(G)−ν for some two-player game G. Theorem 2 gives a lower bound on EC for any state
achieving a quantum advantage in a two-player game G. In particular, for any given state
one can choose the game G such that the lower bounds on EF and EC are maximal.

1.5 Proof technique
The proof idea is simple: if the entanglement of formation of the players’ shared state in
the threshold game Gnqval(G)−ν is o(n) and the players win with non-negligible probability,
then this strategy can be transformed into a strategy for the original game G that uses no
entanglement, yet still wins with probability strictly greater than cval(G), which would be a
contradiction.

This is argued as follows. Consider a two-player game G where the first player receives a
question x and produces answer a, and the second player receives question y and responds with
answer b. The players win if V (x, y, a, b) = 1 for some predicate V . Let qval(G) > cval(G).

Now suppose there is a quantum strategy that wins Gnqval(G)−ν with decent probability.
A simple probabilistic argument implies that conditioned on an event E of winning roughly
qval(G)−ν fraction of some subset S ⊆ [n] of instances, the players will win the j’th instance
with probability close to qval(G), for an average j ∈ [n]. Another way of phrasing this
statement is: Let (Xj ,Yj) denote the questions to the two players in the j’th instance of
G, and let (Aj ,Bj) denote their answers. Let PXjYjAjBj |E denote the joint distribution
of questions and answers of the j’th coordinate in this hypothetical strategy, conditioned
on the event E. Then sampling a tuple (Xj ,Yj ,Aj ,Bj) from PXjYjAjBj |E will satisfy the
game predicate V with probability qval(G)− ε > cval(G).

Next, we will prove the following three statements (roughly speaking): (1) PXjYj |E ≈
PXjYj , (2) PAj |XjYjE ≈ PAj |XjE , and (3) PBj |XjYjAjE ≈ PBj |YjE , where “≈” denotes
closeness in statistical distance. Notice that without the conditioning event E, the first item
would be trivial and the second item would follow exactly from the non-signaling condition
between the players. To prove the third item, we use the fact that the hypothetical strategy
for the threshold game uses o(n) bits of entanglement; intuitively this implies that each
instance of G can only use o(1) bits of entanglement.

Putting these three items together, we obtain a classical strategy for G: the first player
receives question Xj , and samples an answer Aj from the distribution PAj |XjE . The second
player receives question Yj and samples from PBj |YjE . The joint distribution of their
questions and answers will be close to PXjYjAjBj |E , but that implies that they will win G
with probability qval(G)− ε > cval(G), which is a contradiction.
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The proof strategy and the techniques used are heavily inspired by the proofs of the
parallel repetition theorem in classical complexity theory [41, 27, 40], and subsequently the
work on the quantum parallel repetition problem. This problem asks for a bound on qval(Gn)
if qval(G) < 1, where Gn is like the threshold game except we demand that the players win
all instances of G. It is conjectured that qval(Gn) decays exponentially with n, although the
best general upper bound is that qval(Gn) decays polynomially with n when qval(G) < 1 [52].
Nearly all of the works that study the quantum parallel repetition problem [30, 15, 5, 6]
share the proof strategy of transforming a “too-good-to-be-true” strategy for the repeated
game Gn into a “too-good-to-be-true” strategy for the single game G, namely a quantum
strategy with success probability better than qval(G), a contradiction. These works all use
information-theoretic machinery in the proof, and in this work we use the same tools.

The full proof can be found at https://arxiv.org/abs/1712.09368.

1.6 Related work
Our work is the first that addresses directly the question of certifying the entanglement of
formation of high dimensional states in a noise-tolerant way (while the case of a single CHSH
game was already considered in [46] as mentioned above).

Any robust self-testing result can be used to certify any continuous entanglement measures
(e.g. the entanglement of formation); but as explained before, such results cannot accom-
modate the kinds of noise considered here. In addition to the self-testing results mentioned
before [33, 14, 16, 20, 35, 18], the only other self-testing result that certifies asymptotically
growing amounts of entanglement is from the work of Reichardt, Unger and Vazirani [42],
who show how to verify quantum computations using classical resources only. At the heart of
their result is a sequential protocol where the experimenter plays many rounds of the CHSH
game with the two players in order to certify the presence of many EPR pairs. However,
like the other self-testing results, the protocol of [42] is also not noise-tolerant in the sense
considered here.

If one cares just about certifying high entanglement rank of a state (rather than certifying
an entanglement measure such as EF , or precisely characterizing the state as in self-testing),
then we can combine the following two independent results to address the question of noise-
tolerant, device-independent testing of asymptotically growing amounts of entanglement: The
work of [40] shows that the classical value of a threshold game Gncval(G)+δ decays exponentially
fast with n (if cval(G) < 1). The work of [31] shows that the maximum quantum success
probability in a game F using dimension-d entanglement is at most d cval(F ). Letting F be
a threshold game, we obtain that d must be exponentially large in any quantum strategy
whose winning probability is say at least a small constant. Since the threshold game is
noise-tolerant (i.e. it can be won with high probability with noisy strategies), this gives a
noise-tolerant test for entanglement rank. This same argument can be modified to show that
the 1/2-Rényi entropy of the state10 must be linear in n.

Our test lower bounds a stronger entanglement measure, the entanglement of formation,
which in the pure state case is the entanglement entropy and therefore a lower bound on the
1/2-Rényi entropy. There can be arbitrarily large gaps between the von Neumann entropy
and the 1/2-Rényi entropy of a pure state.

10The 1/2-Rényi entropy of a pure state |ψ〉 is 2 log(
∑

i
λ

1/2
i ) where λi are the eigenvalues of the reduced

density matrix of |ψ〉 on either side.

https://arxiv.org/abs/1712.09368
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The broader goal of certifying the dimension of a quantum system in a device-independent
manner has been heavily studied under the heading of dimension witnesses. Much of the
work on dimension witnesses has focused on finding Bell inequalities such that achieving the
optimal violation requires an entangled state of a certain dimension [12, 36, 13]. Many of
these works construct and design dimension witnesses using a combination of analytical and
numerical techniques.

1.7 Future work
Some open problems and future directions include:
1. Quantitatively improve our results. The constants c1, c2 in Theorem 1 are small; for the

CHSH game, the constant c1 is on the order of 10−6 and thus in order for our Theorem
to give any guarantees, ∼ 106 CHSH games would have to be played. Even though
recent experiments are capable of producing such a large amount of states (in [32], for
example, order of 1010 signals were produced), an improvement of the constants can lead
to the ability of certifying much more entanglement in such experiments. Our analysis is
likely far from tight and significant quantitative improvements can probably be gained by
tailoring the analysis to a specific game, such as the CHSH game.

2. To get a non-trivial bound on the entanglement of formation, this requires that the
success probability κ is at least ∼ 1/

√
n. Can this dependence on κ be improved?

3. Can one prove a version of Theorem 1 for some non-local games G that allows one to lower
bound other measures of entanglement, such as distillable entanglement11 or quantum
conditional entropy? The results of [47, 21] indicate that this cannot be done for arbitrary
amount of noise for all games since there are Bell inequalities that can be violated while
using states with un-distillable entanglement or positive conditional entropy.

4. Can one prove a self-testing result for a growing number of EPR pairs that is also
noise-tolerant in the sense described above? A concrete goal would be to characterize
all near-optimal strategies for the threshold game CHSHn

.854−ν . The results of [19] hint
that by sticking to the current measures of distance considered in self-testing results any
characterization of near-optimal strategies for CHSHn

.854−ν , in the regime of high amount
of noise, must include also non-entangled states. Hence, we do not expect self-testing
results (as they are phrased today) to allow for certification of entanglement in the
presence of arbitrary noise using threshold games.
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Abstract
Holant problems are a family of counting problems on graphs, parametrised by sets of complex-
valued functions of Boolean inputs. Holantc denotes a subfamily of those problems, where any
function set considered must contain the two unary functions pinning inputs to values 0 or 1.
The complexity classification of Holant problems usually takes the form of dichotomy theorems,
showing that for any set of functions in the family, the problem is either #P-hard or it can be
solved in polynomial time. Previous such results include a dichotomy for real-valued Holantc
and one for Holantc with complex symmetric functions, i.e. functions which only depend on
the Hamming weight of the input.

Here, we derive a dichotomy theorem for Holantc with complex-valued, not necessarily
symmetric functions. The tractable cases are the complex-valued generalisations of the tractable
cases of the real-valued Holantc dichotomy. The proof uses results from quantum information
theory, particularly about entanglement. This full dichotomy for Holantc answers a question
that has been open for almost a decade.
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1 Introduction

Holant problems are a framework for the analysis of counting problems defined on graphs.
They encompass and generalise other counting complexity frameworks like counting constraint
satisfaction problems (#CSP) [9, 10] and counting graph homomorphisms [10, 4].

A Holant instance is defined by assigning a function from a specified set to each vertex
of a graph, with the edges incident on that vertex corresponding to inputs of the function.
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and then summing over the different assignments of input values to the edges [10]. A more
rigorous definition can be found in Section 2. In this work, we consider only complex-valued
functions of Boolean inputs. Throughout, all numbers are assumed to be algebraic [4].

Problems expressible in the Holant framework include counting matchings or counting
perfect matchings, counting vertex covers [10], and counting Eulerian orientations [14]. A
Holant problem can also be thought of as the problem of contracting a tensor network; from
that perspective, each function corresponds to a tensor with one index for each input [7].

The main goal in the analysis of Holant problems is the derivation of dichotomy theorems,
showing that all problems in a certain family are either polynomial time solvable or #P-
hard. Families of Holant problems are often defined by assuming that the function sets
contain specific functions, which are said to be ‘freely available’. As an example, the
problem #CSP(F) for a function set F effectively corresponds to the Holant problem
Holant (F ∪ {=n| n ∈ N≥1}), where (=1) : {0, 1} → C is the function that is 1 on both
inputs, and, for n ≥ 2, (=n) : {0, 1}n → C is the function satisfying:

(=n)(x1, x2, . . . , xn) =
{

1 if x1 = x2 = . . . = xn

0 otherwise.
(1)

The problem Holantc (F) is the Holant problem where the unary functions pinning edges
to values 0 or 1 are available in addition to the elements of F :

Holantc (F) = Holant (F ∪ {δ0, δ1}) , (2)

with δ0(0) = 1, δ0(1) = 0 and δ1(0) = 0, δ1(1) = 1 [9]. Another important family is Holant∗,
in which all unary functions are freely available [6].

Known Holant dichotomies include a full dichotomy for Holant∗ [6], dichotomies for
Holantc with symmetric functions, i.e. where all functions in the sets considered depend
only on the Hamming weight of the input [9], and a dichotomy for real-valued Holantc,
where functions need not be symmetric but must take values in R instead of C [11]. There is
also a dichotomy for symmetric Holant [5] and a dichotomy for non-negative real-valued
Holant [18]. Both existing results about Holantc are proved via dichotomies for #CSP
problems with complex-valued, not necessarily symmetric functions: in the first case, a
dichotomy for general #CSP problems, and in the second case, a dichotomy for #CSPc

2,
a subfamily of #CSP in which each variable must appear an even number of times and
variables can be pinned to 0 or 1.

While many dichotomies have been derived for functions taking values in some smaller
set, we consider complex-valued functions to be the natural setting for Holant problems.
This is motivated in part by connecting Holant problems to quantum computation, where
complex numbers naturally arise: the problem of strongly classically simulating a quantum
circuit with fixed input and output states can immediately be expressed as a Holant problem.
The second justification for considering complex numbers is that many tractable sets find a
more natural expression over C. An example of this are the ‘affine functions’ (see Section
3.1): they were originally discovered as several distinct tractable sets for a smaller codomain,
but their definition is vastly more straightforward when expressed in terms of complex values
[10]. Thirdly, some problems parametrised in terms of real values are naturally connected
by complex-valued holographic transformations (defined in Section 2.1): for example, the
problem of counting Eulerian orientations on 4-regular graphs is expressed in the Holant
framework in this way [5, 14].

We therefore build on the existing work to derive a Holantc dichotomy for complex-
valued, not necessarily symmetric functions. In the process, we employ notation and results
from quantum information theory. This approach was first used in a recent paper [2]
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to derive a dichotomy for Holant+, in which four unary functions are freely available,
including the ones available in Holantc: Holant+ (F) = Holant (F ∪ {δ0, δ1, δ+, δ−}),
where δ+(x) = 1 for both inputs (i.e. it is the same as the unary equality function2) and
δ−(x) = (−1)x.

A core part of quantum theory, and also of the quantum approach to Holant problems, is
the notion of entanglement. A pure3 quantum state of n qubits, the quantum equivalents of
bits, is represented by a vector in the space (C2)⊗n, which consists of n tensor copies of C2.
Such a vector is called entangled if it cannot be written as a tensor product of vectors from
each copy of C2.

An n-ary function f : {0, 1}n → C can be considered as a vector in C2n by treating each
input as an element of an orthonormal basis for that space and using the function values
as coefficients in a linear combination of those basis vectors (cf. Section 2). This vector
space C2n is isomorphic to (C2)⊗n, allowing functions to be brought into correspondence
with quantum states. We thus call a function entangled if the associated vector is entangled.
Identifying this property in Holant problems lets us apply some of the large body of work
on quantum entanglement [19, 13, 12, 17] to Holant problems. The resulting complexity
classification of Holant problems remains non-quantum, we simply employ a different set of
mathematical tools in their analysis.

In the Holant+ dichotomy, it was shown how to construct a gadget for an entangled
ternary function, given an n-ary entangled function with n ≥ 3 and using the freely-available
unary functions. Furthermore, in most cases it was shown to be possible to realise a ternary
symmetric function from this [2]. We show how to adapt those constructions to the Holantc
framework, where only two unary functions are freely available. This does not always work,
yet if the construction fails, it is always the case that either the problem is tractable by
the Holant∗ dichotomy or it is equivalent to #CSPc

2 using techniques from [11]. With
these adaptations, we therefore extend the dichotomy theorem for real-valued Holantc to
arbitrary complex-valued functions.

In the following, Section 2 contains the formal definition of Holant problems and an
overview over common strategies used in classifying their complexity. We recap existing
results in Section 3. The new dichotomy and its constituent lemmas are proved in Section 4.
Section 5 contains the conclusions and outlook.

2 Holant problems

Holant problems are a framework for counting complexity problems defined on graphs, first
introduced in the conference version of [10]. Let G = (V,E) be a graph with vertices V and
edges E, which may contain self-loops and multiple edges between the same pair of vertices,
and let F be a set of complex-valued functions of Boolean inputs. Throughout, when we
refer to complex numbers we mean algebraic complex numbers. Let π be a function that
assigns to each degree-n vertex v in the graph an n-ary function fv ∈ F and also assigns one
edge incident on the vertex to each input of the function. This determines a complex value

2 The availability of the function δ+ is indeed important to the Holant+ dichotomy proof. This is a
difference between the Holant framework and #CSP, where a constraint equal to δ+ would have no
effect.

3 There are also mixed quantum states, which have a different mathematical representation, and which
are not considered here.
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associated with the tuple (F , G, π), called the Holant and defined as follows:

Holant(F,G,π) =
∑

σ:E→{0,1}

∏
v∈V

f
(
σ|E(v)

)
. (3)

Here, σ is an assignment of a Boolean value to each edge in the graph and σ|E(v) is the
restriction of σ to the edges incident on vertex v. The tuple (F , G, π) is called a signature
grid.

The associated counting problem is Holant (F): given a signature grid (F , G, π) for the
fixed set of functions F , find Holant(F,G,π).

It is often useful to think of the functions, also called signatures, as vectors or tensors
[7]. The n-ary functions can be put in one-to-one correspondence with vectors in C2n as
follows: pick an orthonormal basis for C2n and label its elements {|x〉}x∈{0,1}n , i.e. each basis
vector is labelled by one of the 2n n-bit strings.4 Then assign to each f : {0, 1}n → C the
vector |f〉 =

∑
x∈{0,1}n f(x) |x〉. Conversely, any vector |ψ〉 ∈ C2n corresponds to an n-ary

function ψ : {0, 1}n → C :: x 7→ 〈x|ψ〉, where 〈·|·〉 denotes the inner product of two vectors.5
The product of two functions of disjoint sets of variables corresponds to the tensor product
of the associated vectors, i.e. if h(x1, . . . , xn, y1, . . . , ym) = f(x1, . . . , xn)g(y1, . . . , ym) then
|h〉 = |f〉⊗ |g〉. Where no confusion arises, we drop the tensor product symbol and sometimes
even combine labels into a single ‘ket’ |·〉: for example, instead of writing |0〉 ⊗ |0〉, we may
write |0〉 |0〉 or |00〉. If g is a unary signature, we sometimes write 〈g|l |f〉 to indicate that
the l-th input of f is connected to a vertex with signature g.

The vector perspective is particularly useful for bipartite Holant problems, which arise on
bipartite graphs if we assign functions from two different signature sets to the vertices in the
two different partitions. Then the Holant becomes the inner product between two vectors
corresponding to the two partitions. Formally: let G = (V,W,E) be a bipartite graph with
vertex partitions V and W , and let F ,G be two sets of signatures. Suppose π is a function
that assigns elements of F to vertices from V and elements of G to vertices from W and
otherwise acts as described above. Then:

Holant(F|G,G,π) =
(⊗
v∈V

(|fv〉)T
)(⊗

w∈W
|gw〉

)
, (4)

where we assume the two tensor products are arranged so that the appropriate components of
the two vectors meet. The bipartite Holant problem over signature sets F and G is denoted
by Holant (F | G).

Any Holant instance can be made bipartite without changing the value of the Holant by
inserting an additional vertex in the middle of each edge and assigning it the binary equality
signature =2. Thus, Holant (F) ≡T Holant (F | {=2}), i.e. the two problems have the
same complexity.

In the following, we use the function and vector perspectives on signatures interchangeably.

2.1 Complexity classification
Most complexity results about the Holant problem take the form of dichotomies, showing
that for all signature sets in a specific family, the problem is either #P-hard or in FP. Such a
dichotomy is not expected to be true for all counting complexity problems: if FP 6= #P, then
there are problems in #P \ FP which are not #P-hard [6].

4 The |·〉 notation for vectors is the Dirac or bra-ket notation commonly used in quantum theory.
5 Strictly speaking, this notation refers to the complex inner product, i.e. 〈x| is the conjugate transpose

of |x〉, but the distinction is irrelevant if all coefficients of |x〉 are real.
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We write A ≤T B if there exists a polynomial-time reduction from problem B to problem
A and A ≡T B if (A ≤T B)∧ (B ≤T A). A number of polynomial-time reduction techniques
are commonly used in Holant problems.

The technique of holographic reductions is the origin of the name Holant. Let M be
a 2 by 2 invertible complex matrix and define M ◦ f = M⊗ arity(f) |f〉, where M⊗1 = M

and M⊗n+1 = M ⊗M⊗n. Furthermore, let M ◦ F = {M ◦ f | f ∈ F}. This is called a
holographic transformation. Let F and G be two signature sets. Then:

Holant (F | G) ≡T Holant
(
M ◦ F | (M−1)T ◦ G

)
(5)

and, in fact, Holant(F|G,G,π) = Holant(M◦F|(M−1)T ◦G,G,π′); this is Valiant’s Holant Theorem
[20].

A second technique is that of gadgets. Consider a subgraph of some signature grid, which
is connected to the larger graph by n edges. This subgraph can be replaced by a single
degree-n vertex with an appropriate signature without changing the value of the overall
Holant. Thus, if there exists some subgraph with signatures taken from F such that the
effective signature for that subgraph is g, then [6]:

Holant (F ∪ {g}) ≤T Holant (F) . (6)

We say g is realisable over F . As multiplying a signature by a non-zero constant does not
change the complexity of a Holant problem, we also consider g realisable if we can construct
a gadget with effective signature cg for some c ∈ C \ {0}. In bipartite signature grids, we
may distinguish between left-hand side (LHS) gadgets and right-hand side (RHS) gadgets,
which can be used as if they are signatures for the left and right partitions, respectively.

Finally, there is the technique of polynomial interpolation. Let F be a set of signatures
and suppose g is a signature that cannot be realised over F . If, given any signature grid
over F ∪ {g}, it is possible to set up a family of signature grids over F such that the Holant
for the original problem instance can be determined efficiently from the Holant values of
the family by solving a linear system, then g is said to be interpolatable over F . We do not
directly use polynomial interpolation here, though the technique is employed by many of the
results we build upon. A rigorous definition of polynomial interpolation can be found in [10].

2.2 Properties of signatures
A signature is called symmetric if its value as a function depends only on the Hamming
weight of the inputs – in other words, it is invariant under any permutation of the inputs.
Symmetric functions are often written in the short-hand notation f = [f0, f1, . . . , fn], where
fk is the value f takes on inputs of Hamming weight k.

A signature is degenerate if it can be written as a tensor product of unary signatures.
Conversely, using language from quantum theory, a signature is entangled if it cannot be
written as a tensor product of unary signatures. This corresponds to the notion of non-
degenerate signatures in the Holant literature. For example, |01〉 + |11〉 is not entangled
because it can be rewritten as (|0〉 + |1〉) ⊗ |1〉. On the other hand, the binary equality
signature |00〉+ |11〉 is entangled. If k ≥ 2, a k-ary signature can be partially decomposable
into a tensor product, e.g. |0〉 ⊗ (|00〉+ |11〉). We say a signature is genuinely entangled if
there is no way of decomposing it as a tensor product of signatures of any arity. A genuinely
entangled signature of arity at least 3 is said to be multipartite entangled (as opposed to the
bipartite entanglement in a signature of arity 2). A non-genuinely entangled signature has
multipartite entanglement if it has a tensor factor corresponding to a genuinely entangled
signature of arity at least 3 and a set of signatures has multipartite entanglement if it contains
a signature that does.
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Among genuinely entangled ternary signatures, we distinguish two types, also known as
‘entanglement classes’ [12]. Each entanglement class contains signatures that are related via
local holographic transformations, i.e. two states |f〉 , |g〉 are in the same entanglement class if
and only if there exist some 2 by 2 invertible matrices A,B,C such that (A⊗B⊗C) |f〉 = |g〉.

In quantum theory, the two entanglement classes are named after their representative
states: the ternary equality signature |000〉+ |111〉, called the GHZ-state, and the ternary
perfect matching signature |001〉+ |010〉+ |100〉, called the W state. We say that a signature
has GHZ type if it is equivalent to the GHZ state under local holographic transformations
and that a signature has W type if it is equivalent to the GHZ state under local holographic
transformations. In the Holant literature, GHZ-type signatures are called the generic case
and W type signatures are called the double-root case [9].

The two types of ternary genuinely entangled signatures can be distinguished as follows
[17]. Let f be a ternary signature and write:

|f〉 =
∑

k,`,m∈{0,1}

ak`m |k`m〉 , (7)

where ak`m ∈ C for all k, `,m ∈ {0, 1}. Then |f〉 has GHZ type if the following polynomial
in the coefficients is non-zero:

(a000a111−a010a101 +a001a110−a011a100)2−4(a010a100−a000a110)(a011a101−a001a111). (8)

The signature |f〉 has W type if the above polynomial is zero, and furthermore each of the
following three expressions is satisfied:

(a000a011 6= a001a010) ∨ (a101a110 6= a100a111) (9)
(a001a100 6= a000a101) ∨ (a011a110 6= a010a111) (10)
(a011a101 6= a001a111) ∨ (a010a100 6= a000a110). (11)

If the polynomial (8) is zero and at least one of the above expressions evaluates to false, then
the signature is not genuinely entangled.

There are many other classes of entangled signatures for higher arities [21, 15, 16, 3], but
those are not directly relevant to this paper.

Given a set of signatures that contains multipartite entanglement in the Holantc

framework, we can assume without loss of generality that we have a genuinely multipartite-
entangled signature. To see this, consider a non-zero signature |ψ〉 that has multipartite
entanglement, and suppose |ψ〉 = |ψ1〉 ⊗ |ψ2〉. Then at least one of the tensor factors must
have multipartite entanglement, assume this is |ψ1〉. Now, |ψ〉 is non-zero, so 〈x|ψ2〉 must be
non-zero for some bit string x. Thus we can realise |ψ1〉 by connecting all inputs associated
with |ψ2〉 to |0〉 or |1〉, as appropriate.

3 Existing results

It is difficult to determine the complexity of the general Holant problem. Thus, all existing
dichotomies make use of one or more simplifying assumptions: either they assume the
availability of certain signatures in all signature sets considered [7, 6, 2], or they only consider
signature sets containing functions taken from more restricted families, e.g. symmetric
functions [9, 5] or functions taking only real [11] or even non-negative real values [18].

Among others, the following variants of the Holant problem have been considered:
Holant∗ (F) = Holant (F ∪ U), where U is the set of all unary signatures [6],
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Holant+ (F) = Holant (F ∪ {δ0, δ1, δ+, δ−}), where δ+(x) = 1 and δ−(x) = (−1)x [2],
and
Holantc (F) = Holant (F ∪ {δ0, δ1}) [9, 11].

Several variants of complex-weighted Boolean counting constraint satisfaction problems
(#CSP) have also been expressed in the Holant framework. These include:

#CSP(F) = Holant (F | G), where G = {=n |n ∈ N≥1} is the set containing all equality
signatures [10], and
#CSPc

2(F) = Holant(F | {δ0, δ1} ∪ {=2n| n ∈ N≥1}) [11].
The #CSPc2 problems assume availability of the signatures pinning inputs to 0 or 1, respect-
ively, as well as equality signatures of even arity.

Existing results include full dichotomies for Holant∗ [6], Holant+ [2], #CSP [10],
and #CSPc

2 [11]. There are also dichotomies for Holantc with symmetric complex-valued
signatures [6], Holantc with arbitrary real-valued signatures [11], Holant with symmetric
complex-valued signatures [5], and Holant with arbitrary non-negative real-valued signatures
[18].

3.1 Preliminary definitions
The following definitions will be used throughout the dichotomy theorems. Write:

T =
(

1 0
0 eiπ/4

)
, X =

(
0 1
1 0

)
and K =

(
1 1
i −i

)
, (12)

where i2 = −1. Then let:
T be the set of all unary and binary signatures,
E be the set of all signatures that are non-zero only on two inputs x and x̄, where x̄
denotes the bit-wise complement of x, also called generalised equality signatures,
M be the set of all signatures that are non-zero only on inputs of Hamming weight at
most 1,
A be the set of all affine signatures, i.e. functions of the form f(x) = cil(x)(−1)q(x)χ,
where c ∈ C, l(x) is a linear Boolean function, q(x) is a quadratic Boolean function, and
χ is the indicator function for an affine space, and
L be the set of all signatures f with the property that, for any bit string x in the support
of f :arity(f)⊗

j=1
T xj

 |f〉 ∈ A, (13)

where xj is the j-th bit of x. Elements of L are called local affine signatures.
Denote by 〈F〉 the closure of the signature set F under tensor products. It is straightforward
to see that A = 〈A〉 and L = 〈L〉, i.e. these signature sets are already closed under tensor
products. If n is a positive integer, we denote by [n] the set {1, 2, . . . , n}.

3.2 Dichotomies for Holant variants
The Holant dichotomies generally build upon each other. Dichotomies with fewer freely-
available signatures refer to dichotomies for problems with more freely-available signatures,
as all tractable cases of the latter must also be tractable cases of the former: removing
signatures can never make the problem harder.
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I Theorem 1 (Theorem 2.2, [6]). Let F be any set of complex valued functions in Boolean
variables. The problem Holant∗ (F) is polynomial time computable if:
F ⊆ 〈T 〉, or
F ⊆ 〈O ◦ E〉, where O is a complex orthogonal 2 by 2 matrix, or
F ⊆ 〈K ◦ E〉, or
F ⊆ 〈K ◦M〉 or F ⊆ 〈KX ◦M〉.

In all other cases, Holant∗ (F) is #P-hard.

I Theorem 2 (Theorem 6, [9]). Let F be a set of complex symmetric signatures. Holantc (F)
is #P-hard unless F satisfies one of the following conditions, in which case it is tractable:

Holant∗ (F) is tractable, or
there exists a 2 by 2 matrix S ∈ S such that F ⊆ S ◦ A, where:

S =
{
S
∣∣ (ST )⊗2(=2), ST δ0, S

T δ1 ∈ A
}
. (14)

I Theorem 3 (Theorem 4.1, [11]). A #CSPc
2(F) problem has a polynomial time algorithm

if one of the following holds: F ⊆ 〈E〉, F ⊆ A, F ⊆ T ◦ A, or F ⊆ L. Otherwise, it is
#P-hard.

The preceding results all apply to complex-valued signatures, but the following theorem
is restricted to real-valued ones.

I Theorem 4 (Theorem 5.1, [11]). Let F be a set of real-valued signatures. Then Holantc (F)
is #P-hard unless F is a tractable family for Holant∗ or #CSPc

2.

3.3 Complexity results for ternary signatures
In addition to the above-mentioned Holant dichotomies, there are also some dichotomies
specific to symmetric signatures on three-regular graphs. For signature sets containing a
ternary GHZ-type signature, there is furthermore a direct relationship to #CSP, which
allows a more general complexity classification. When deriving the Holantc dichotomy, our
general approach will be to attempt to construct a gadget for a genuinely entangled ternary
signature and then use the following results.

I Theorem 5 (Theorem 3.4, [9]). Holant([y0, y1, y2]|[x0, x1, x2, x3]) is #P-hard unless the
signatures [x0, x1, x2, x3] and [y0, y1, y2] satisfy one of the following conditions, in which case
the problem is in FP:

[x0, x1, x2, x3] is degenerate, or
there is a 2 by 2 matrix M such that:

[x0, x1, x2, x3] = M ◦ [1, 0, 0, 1] and (MT )−1 ◦ [y0, y1, y2] is in A ∪ 〈E〉,
[x0, x1, x2, x3] = M ◦ [1, 1, 0, 0] and (MT )−1 ◦ [y0, y1, y2] is of the form [0, ∗, ∗],
[x0, x1, x2, x3] = M ◦ [0, 0, 1, 1] and (MT )−1 ◦ [y0, y1, y2] is of the form [∗, ∗, 0],

with ∗ denoting an arbitrary complex number.

The signature |000〉+ |111〉 is invariant under holographic transformations of the form
( 1 0

0 ω ), where ω3 = 1. Therefore, a binary signature is considered to be ω-normalised if y0 = 0,
or there does not exist a primitive (3t)-th root of unity λ, where gcd(t, 3) = 1, such that
y2 = λy0. Similarly, a unary signature [a, b] is ω-normalised if a = 0, or there does not exist
a primitive (3t)-th root of unity λ, where gcd(t, 3) = 1, such that b = λa [9].
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I Theorem 6 (Theorem 4.1, [9]). Let G1,G2 be two sets of signatures and let [y0, y1, y2] be a
ω-normalised and non-degenerate signature. In the case of y0 = y2 = 0, further assume that
G1 contains a unary signature [a, b] which is ω-normalised and satisfies ab 6= 0. Then:

Holant ({[y0, y1, y2]} ∪ G1 | {[1, 0, 0, 1]} ∪ G2) ≡T #CSP({[y0, y1, y2]} ∪ G1 ∪ G2). (15)

More specifically, Holant ({[y0, y1, y2]} ∪ G1 | {[1, 0, 0, 1]} ∪ G2) is #P-hard unless

{[y0, y1, y2]} ∪ G1 ∪ G2 ⊆ 〈E〉 or {[y0, y1, y2]} ∪ G1 ∪ G2 ⊆ A, (16)

in which cases the problem is in FP.

The following lemmas show how to realise symmetric genuinely entangled ternary signa-
tures from non-symmetric ones. They do not rely on any unary signatures.

I Lemma 7 (Lemma 18, [2]). Let |ψ〉 be a ternary GHZ-type signature, i.e. |ψ〉 = (A⊗B ⊗
C) |GHZ〉 for some invertible 2 by 2 matrices A,B,C. Then at least one of the three possible
symmetric triangle gadgets constructed from three copies of |ψ〉 is non-degenerate, unless
|ψ〉 ∈ K ◦ E and is furthermore already symmetric.

I Lemma 8 (Lemma 19, [2]). Let |ψ〉 be a ternaryW -type signature, i.e. |ψ〉 = (A⊗B⊗C) |W 〉
for some invertible 2 by 2 matrices A,B,C. If |ψ〉 ∈ K ◦M (or |ψ〉 ∈ KX ◦M), assume that
we also have a binary entangled signature |φ〉 that is not in K ◦M (or KX ◦M, respectively).
Then we can realise a symmetric genuinely entangled ternary signature.

3.4 Results about 4-ary signatures
Besides the above results about ternary signatures, we will also make use of the following
result about realising or interpolating the 4-ary equality signature from a more general 4-ary
signature.

I Lemma 9 (Lemma 2.38, [8]). Suppose F contains a signature f of arity 4 with:

|f〉 = a |0000〉+ b |0011〉+ c |1100〉+ d |1111〉 , (17)

where M =
(
a b
c d

)
has full rank. Then Pl-Holant({=4} ∪ F) ≤T Pl-Holant(F).

Here, Pl-Holant refers to the Holant problem for planar graphs; the lemma can also be
used in the non-planar setting.

I Lemma 10 (Lemma 5.2, [11]). Suppose F contains a 4-ary generalised equality signature f ,
i.e. f ∈ F ∩ E and arity(f) = 4. Then Holant (F) ≡T #CSP2(F), the counting constraint
satisfaction problem in which each variable appears an even number of times.

4 The dichotomy

Our dichotomy proof uses techniques from the Holant+ dichotomy [2] and from the
real-valued Holantc dichotomy [11], as well as some new results.

The core strategy in the hardness part of the Holant+ dichotomy proof is to realise
a symmetric genuinely entangled ternary signature f and a symmetric entangled binary
signature g for which Holant ({f} | {g}) is known to be #P-hard. The techniques for
realising low-arity signatures utilise knowledge from quantum information theory. They rely
crucially on having access to the four unary signatures δ0, δ1, δ+ and δ−, and do not seem
directly adaptable to the Holantc setting.
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The dichotomy proof for real-valued Holantc contains arity-reduction techniques that
require only δ0, δ1, and self-loops. Yet there are two main barriers to extending this result
to complex-valued signatures: firstly, some of the hardness results for genuinely entangled
ternary signatures in [11] only apply to real values. Secondly, some cases of the dichotomy
proof rely on being able to interpolate all unary signatures using techniques that have only
been shown to work for real-valued signatures.

In the present work, our strategy is similar to that in the Holant+ dichotomy: we
attempt to realise symmetric genuinely entangled ternary signatures. There are now two
cases in which this is not possible: either there is no multipartite entanglement, in which
case the problem is in FP, or all genuinely entangled signatures in the closure of F ∪ {δ0, δ1}
under gadgets have even arity, in which case the smallest signature that can give hardness
has arity 4. For arity reduction, we adapt techniques from [11], modifying them to work for
complex values. If all genuinely entangled signatures have even arity, we show analogously
to [11] that is is always possible to realise a 4-ary signature of a specific form, which can
then be used to realise or interpolate =4. Furthermore, we adapt symmetrisation techniques
for genuinely entangled ternary signatures from [2] to work in the Holantc setting. Thus,
we never need to interpolate arbitrary unary signatures. In one subcase, we do require unary
signatures other than δ0 and δ1, but we give a new construction for realising sufficiently
many such signatures by gadgets.

In this extended abstract, we give sketch proofs of the new results; full proofs may be
found in the full version of the paper [1].

4.1 Hardness proofs involving a genuinely entangled ternary signature
First, we prove two lemmas that give a complexity classification for Holantc problems in
the presence of any genuinely entangled ternary signature with complex coefficients.

I Lemma 11. Let f ∈ F be a genuinely entangled ternary signature. Then Holantc (F) is
#P-hard unless:

Holant∗ (F) is tractable, or
F ⊆ S ◦ A for some S ∈ S, as defined in (14).

In both of those cases, the problem Holantc (F) is tractable.

Proof (sketch). Let F ′ = F ∪ {δ0, δ1}. We distinguish cases according to whether f is
symmetric or not, and according to its entanglement class.

If f is symmetric and has GHZ type, there exists an invertible holographic transformation
M that maps f to =3. Transform the Holant problem to bipartite form by adding an extra
vertex carrying the signature =2 in the middle of each edge. It is straightforward to see that
allowing the signatures δ0 and δ1 on both partitions does not affect the complexity, i.e.:

Holantc (F) ≡T Holant ({=2} | F ′) ≡T Holant ({=2, δ0, δ1} | F ′) . (18)

Apply Valiant’s Holant theorem with the holographic transformation M identified above:

Holant ({=2, δ0, δ1} | F ′) ≡T Holant
(
(M−1)T ◦ {=2, δ0, δ1} |M ◦ F ′

)
. (19)

As (=3) ∈M ◦ F ′ by construction, the problem now has the same form as the LHS of (15),
with [y0, y1, y2] = (M−1)T ◦ (=2), G1 = (M−1)T ◦ {δ0, δ1}, and G2 = M ◦ F ′. With a bit
of effort, it can be shown that the conditions of Theorem 6 regarding ω-normalisation and
unary signatures are always satisfiable by choosing M appropriately; hence:

Holantc (F) ≡T #CSP
(
(M−1)T ◦ {=2, δ0, δ1} ∪M ◦ F ′

)
. (20)
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Now, as stated in Theorem 6, this problem is #P-hard unless (M−1)T ◦ {=2, δ0, δ1} ∪M ◦F ′
is a subset of 〈E〉 or a subset of A. With some additional work, these conditions can be
shown to correspond to Holantc (F) being tractable if F ⊆ 〈O ◦ E〉 for some orthogonal
2× 2 matrix O, if F ⊆ 〈K ◦ E〉, or if F ⊆ S ◦ A for some S ∈ S. For all other F containing
a symmetric GHZ-type signature, Holantc (F) is #P-hard.

If f is symmetric and has W type, then:
If f /∈ K ◦M∪KX ◦M, Holant ({=2} | {f}) is #P-hard by Theorem 5.
If F ⊆ K ◦M or F ⊆ KX ◦M, the problem is tractable by the Holant∗ dichotomy.
If f ∈ K ◦ M but F 6⊆ K ◦ M, the problem is #P-hard by Lemma 12 below, and
analogously with KX instead of K.

If f is not symmetric and f /∈ K ◦M ∪KX ◦M, it is possible to realise a symmetric
genuinely entangled ternary signature using Lemmas 7 and 8, so the case reduces to the
above.

Finally, if f is not symmetric and f ∈ K ◦M (or f ∈ KX ◦M), then either F ⊆ K ◦M
(or F ⊆ KX ◦M) and Holantc (F) is in FP, or the problem is hard by Lemma 12 below.
This covers all cases. J

I Lemma 12. Let f ∈ F ∩K ◦M be a genuinely entangled ternary signature, and assume
F 6⊆ K ◦ M. Then Holantc (F) is #P-hard. The same holds if f ∈ F ∩ KX ◦ M and
F 6⊆ KX ◦M.

Proof (sketch). We show hardness by either realising a symmetric genuinely entangled
ternary signature that is not in K ◦ M ∪ KX ◦ M or by realising a symmetric binary
entangled signature g such that Holant ({f} | {g}) is #P-hard according to Theorem 5.

The basic approach is the same as in [2], but the techniques need some modification to
work in the Holantc setting. In particular, we show how to realise new unary signatures by
gadgets using f , δ0, δ1, and self-loops. With these gadgets, we then realise the signatures
given above. J

These two lemmas show that we can classify the complexity of Holantc (F) whenever
F contains a genuinely entangled ternary signature.

4.2 Main theorem
We now have all the components required to prove the main dichotomy for Holantc. The
proof strategy is to realise certain genuinely entangled signatures of low arity. Then:

If F ⊆ 〈T 〉, the problem is known to be tractable.
If F contains a genuinely entangled ternary signature, its complexity can be determined
by Lemmas 11 and 12.
If =4 can be realised or interpolated over F , then Holantc (F) ≡T #CSPc

2(F) by
Lemma 10, so its complexity is determined by Theorem 3.

The arity reduction technique is adapted from that used in the real-valued Holantc dichotomy
[11], with modifications that ensure it works for all complex-valued signatures.

I Theorem 13. Let F be a set of complex-valued signatures. Then Holantc (F) is #P-hard
unless:
F is a tractable family for Holant∗,
there exists S ∈ S such that F ⊆ S ◦ A, or
F ⊆ L.

In all of the exceptional cases, Holantc (F) is tractable.
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Proof (sketch). If F is one of the tractable families for Holant∗, F ⊆ S ◦A for some S ∈ S,
or F ⊆ L, tractability of Holantc (F) follows using the same algorithms as employed in the
dichotomy proofs for Holant∗ [6], #CSP [10] (possibly after a holographic transformation),
or #CSPc

2 [11]. So assume otherwise. In particular, this implies that F 6⊆ 〈T 〉, i.e. F has
multipartite entanglement.

Without loss of generality, we may focus on genuinely entangled signatures (cf. Section
2.2). So assume that there is some genuinely entangled signature f ∈ F of arity n ≥ 3. If
the signature has arity 3, we are done by Lemma 11. Hence assume n ≥ 4.

As in [11], we now determine the minimum Hamming distance between any pair of bit
strings in the support of f , and distinguish cases according to this value. We show that,
using f , δ0, δ1, and self-loops, it is always possible to realise either a genuinely entangled
ternary signature or a 4-ary signature of the form a |0000〉 + b |1100〉 + c |0011〉 + d |1111〉
where a, b, c, d ∈ C and ad− bc 6= 0. In the former case, we can determine the complexity
by Lemmas 11 and 12. In the latter case, we can realise or interpolate the 4-ary equality
signature by Lemma 9; then, by Lemma 10, Holantc (F) ≡T #CSPc

2(F).
Thus, whenever F is not one of the tractable families listed in the theorem statement,

the problem is #P-hard. J

5 Conclusions

Building on the existing dichotomies for real-valued Holantc and for complex-valued
Holant+, we have derived a dichotomy for complex-valued Holantc. The tractable cases
are the complex generalisations of the tractable cases of the real-valued Holantc dichotomy.
The question of a dichotomy for complex-valued, not necessarily symmetric Holantc had
been open since the definition of the family Holantc in 2009. Several steps in the dichotomy
proof use knowledge from quantum information theory, particularly about entanglement.
We expect this approach of bringing together Holant problems and quantum information
theory to yield further insights into both areas of research in the future. The ultimate goals
include a dichotomy for general Holant problems on the one hand, building up on existing
results for symmetric functions [5] and non-negative real-valued, not necessarily symmetric
functions [18]. On the other hand, we hope to gain further understanding of the complexity
of classically simulating quantum circuits.
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Abstract
The problem of online checkpointing is a classical problem with numerous applications which had
been studied in various forms for almost 50 years. In the simplest version of this problem, a user
has to maintain k memorized checkpoints during a long computation, where the only allowed
operation is to move one of the checkpoints from its old time to the current time, and his goal is
to keep the checkpoints as evenly spread out as possible at all times.

At ICALP’13 Bringmann et al. studied this problem as a special case of an online/offline
optimization problem in which the deviation from uniformity is measured by the natural discrep-
ancy metric of the worst case ratio between real and ideal segment lengths. They showed this
discrepancy is smaller than 1.59−o(1) for all k, and smaller than ln 4−o(1) ≈ 1.39 for the sparse
subset of k’s which are powers of 2. In addition, they obtained upper bounds on the achievable
discrepancy for some small values of k.

In this paper we solve the main problems left open in the ICALP’13 paper by proving that ln 4
is a tight upper and lower bound on the asymptotic discrepancy for all large k, and by providing
tight upper and lower bounds (in the form of provably optimal checkpointing algorithms, some
of which are in fact better than those of Bringmann et al.) for all the small values of k ≤ 10.

2012 ACM Subject Classification Theory of computation → Online algorithms

1 Supported in part by the Israeli Science Foundation through grant No. 573/16.
2 The research of Achiya Bar-On, Nathan Keller, and Rani Hod was supported by the European Research

Council under the ERC starting grant agreement n. 757731 (LightCrypt) and by the BIU Center for
Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber
Bureau in the Prime Minister’s Office.

EA
T

C
S

© Achiya Bar-On, Itai Dinur, Orr Dunkelman, Rani Hod, Nathan Keller, Eyal Ronen, and Adi
Shamir;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 13; pp. 13:1–13:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abo1000@gmail.com
mailto:dinuri@cs.bgu.ac.il
mailto:orrd@cs.haifa.ac.il
https://orcid.org/0000-0001-5799-2635
mailto:rani.hod@math.biu.ac.il
mailto:nkeller@math.biu.ac.il
mailto:eyal.ronen@weizmann.ac.il
mailto:adi.shamir@weizmann.ac.il
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


13:2 Tight Bounds on Online Checkpointing Algorithms

Keywords and phrases checkpoint, checkpointing algorithm, online algorithm, uniform distribu-
tion, discrepancy

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.13

Related Version A full version of the paper is available at https://arxiv.org/abs/1704.
02659.

1 Introduction and Notation

Most programs perform some irreversible operations, and thus they can only be run in a
forward direction. However, in many cases we would like to roll back a computation to an
earlier point in time. When the computation is short, we can just rerun the computation
from the beginning, but when the computation requires many days, a better strategy is
to memorize several copies of the full state of the computation at various times. These
memorized states (called checkpoints) make it possible to roll the computation back from
time T to any earlier time T ′ < T by restarting the computation from the last available
checkpoint which was memorized before T ′. This checkpointing technique is extremely useful
in many real life applications: For example, when we want to interactively debug a new
program we may want to randomly access earlier points in the execution in order to find the
source of a problem; in fault tolerant computer systems we may want to undo the effect of
faulty hardware; and during lengthy simulations of physical systems we may want to explore
the effect of changing some parameter such as the temperature at some earlier point in time
without rerunning the simulation from the beginning.

In principle, we can try to memorize the full state of the computation after each step, but
for long computations this requires an unrealistic amount of memory. Instead, we assume
that we have some bounded amount of memory which suffices to keep k checkpoints. At
time T , these checkpoints are spread within the time interval [0, T ], dividing it into k + 1
subintervals between consecutive checkpoints (where the endpoints 0 and T can be viewed as
virtual checkpoints which require no additional memory). As T increases, the last subinterval
gets longer, and at some point we may want to relocate one of the old checkpoints by reusing
its memory to store the current state of the computation. A checkpointing algorithm can
thus be viewed as an infinite pebbling game in which we place k pebbles on the positive
side of the time axis, and then repeatedly perform update operations which move one of the
pebbles to the right of all the other pebbles.

The first paper dealing with this problem seems to be “Rollback and Recovery Strategies
for Computer Programs” [5], published in 1972, while the first paper which tried to solve
it optimally was “On the Optimum Checkpoint Interval” [7], published in 1979. Over the
years, dozens of academic research papers were published in this area, most notably [8]
in 1984, [3] in 1994, and [1, 4] in 2013. However, many of these papers either dealt with
concrete applications of the problem in other areas (especially in distributed computing
where the notion of a timeline is different), or used other optimization criteria (which make
their optimal solutions incomparable with ours). The mathematical problem we are dealing
with in this paper was mentioned in [1] and studied in [4] which was published at ICALP’13,
and we closely follow their model and notation.

At any time T , we define a snapshot as the ordered sequence of current checkpoint
locations S = (T1, . . . , Tk). Within each snapshot, we refer to the checkpoints by their
freshness index p, where checkpoint 1 stores the oldest state and checkpoint k stores the
newest state. Starting from an initial snapshot Sk = (t1, t2, . . . , tk), we define for every

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.13
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Old:

0 T1 T2 T3 Tk T = ti

New:

0 T1 T2 Tk−1 Tk

Figure 1 Transition from old to new snapshot for the update action (ti, 2).

i ≥ k + 1 the i-th update action as a pair (ti, pi) in which pi is the freshness index of the
checkpoint whose memory we want to reuse by moving it to time ti. A typical example of
how one snapshot is transformed into another snapshot by an update operation is described
in Fig. 1. The effect of the i-th update action is to unify the two consecutive subintervals
which were separated by the pi-th oldest active checkpoint at time T = ti, and to create a
new subinterval which ends at ti. Note that with this notation, each update action affects
multiple freshness indices within the snapshot; in particular, the freshness index of active
checkpoint Tj for 1 ≤ j < pi is left unchanged, and is decreased by one for pi < j ≤ k. To
demonstrate this point, consider a sequence of updates in which pi = 1 for all i ≥ k + 1: it
updates the k memory locations in a round robin way since it always updates the oldest
active checkpoint by overwriting it with the newest checkpoint, shifting all freshness indices
by one. On the other hand, a sequence of updates in which pi = k for all i ≥ k + 1 keeps
updating the same memory location, pushing its associated checkpoint further and further
to the right, with no change to the other checkpoints.

In this model, the time complexity of rolling back a computation from time T to time
T ′ is assumed to be proportional to the distance between T ′ and the last checkpoint that
precedes T ′ in the snapshot at time T , and thus its worst case happens when we decide to
roll back to just before the end of the longest subinterval. A checkpointing algorithm (t, p)
consists of a monotonically increasing and unbounded sequence of update times t = {ti}∞i=1
and a pattern sequence p = {pi}∞i=k+1, forming an initial snapshot and an infinite sequence of
update actions; its goal is to make the length of this longest subinterval as short as possible.
Clearly, no checkpointing algorithm can make this length shorter than the subinterval length
in a perfectly uniform partition of [0, T ], which is T/(k + 1). We say that a snapshot
S = (T1, . . . , Tk) of a k-checkpoint algorithm Alg = (t, p) is q-compliant at time T if the
k+ 1 subintervals defined by S satisfy Tj −Tj−1 ≤ qT/ (k + 1) for j = 1, . . . , k+ 1,3 and that
Alg is q-efficient if its snapshots are q-compliant at all times T ≥ tk. Finally, the efficiency
of a checkpointing algorithm is defined as the smallest q for which it is q-efficient.

Notice that the problem of efficient checkpointing can be viewed as a special case of an
online/offline optimization problem: If we knew in advance the time T at which we would
like to roll back the computation, we could make each subinterval as small as T/(k + 1).
However, in the online version of the problem, we do not know T in advance, and thus we
have to position the checkpoints so that they will be roughly equally spaced at all times. The
efficiency of the solution is the ratio between what we can achieve in the online and offline
cases, respectively, and the goal of the online checkpointing problem is to find the smallest
possible efficiency qk achievable by the best k-checkpoint algorithm for any given k.

3 We write T0 = 0 and Tk+1 = T for convenience.
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Clearly, qk ≥ 1 for all k ≥ 2, and cannot be too close to 1 since any snapshot in which all
subintervals have roughly the same length will be transformed by the next update operation
to a snapshot in which one of the subintervals will be the union of two previous subintervals,
and thus will be about twice as long as the other subintervals.4 On the other hand, there
is a very simple subinterval doubling algorithm from [1, Section 3.1] which is 2-efficient:
Assuming WLOG that k is even, the algorithm starts with the snapshot (1, 2, 3, . . . , k),
and performs the sequence of update actions (k + 2, 1), (k + 4, 2), . . . , (2k, k/2), yielding the
snapshot (2, 4, 6, . . . , 2k). Since this snapshot is the same as the original snapshot up to a
scaling factor of 2, we can continue with update actions (2k + 4, 1), (2k + 8, 2), . . . , (4k, k/2)
and so on. This is a cyclic algorithm, repeating the same sequence of freshness indices again
and again but with times which form a geometric progression. As in each snapshot there are
only two possible lengths for the subintervals of the form x and 2x, all the snapshots in this
algorithm are 2-compliant, and thus the algorithm is 2-efficient.

The best strategy for keeping the checkpoints as uniform as possible at all times is thus
to keep in each snapshot a variety of subinterval lengths, so that the algorithm will always
be able to join two relatively short adjacent subintervals into a single subinterval which is
not too long. This can be viewed as a generalization of the algorithm that creates Fibonacci
numbers: Whereas the standard algorithm is always adding the last two numbers and placing
their sum on the right, in our case we can add any two consecutive numbers in the sequence,
replacing them by their sum and adding any number we want on the right. Analyzing this
problem is surprisingly difficult, and so far there had been no tight bounds on the best
possible efficiencies qk of online checkpointing algorithms in this model.

The main results in [4] are two online checkpointing algorithms whose asymptotic effi-
ciencies are ln 4 + o(1) ≈ 1.39 for the sparse subset of k’s which are powers of 2, and 1.59
for general k. In addition, they proved in their model the first nontrivial asymptotic lower
bound of 2− ln 2− o(1) ≈ 1.30. However, since the upper and lower bounds did not match,
it was not clear whether the checkpointing algorithms they proposed were asymptotically
optimal. For small values of k < 60 they presented concrete checkpointing algorithms whose
efficiencies were all below 1.55, but again it was not clear whether they were optimal.

In this paper we solve the main open problems related to the mathematical formulation
of the problem which was defined and studied in [4]. In particular, we develop a new
checkpointing algorithm with an asymptotic efficiency of ln 4 for all values of k, and prove
its optimality by providing a matching asymptotic lower bound. For all the small values
of k < 10 we develop optimal checkpointing algorithms by proving tight upper and lower
bounds on the achievable efficiency for these k’s. This analysis enables us to show that for
some values of k (such as k = 8), the algorithms presented in [4] are in fact suboptimal.

The rest of this paper is organized as follows. In Section 2 we go over basic observations
about checkpointing algorithms (some from [4], some new). In Section 3 we focus on
moderately small values of k and provide optimal algorithms for k ≤ 10. In Section 4 we
construct a recursive algorithm of asymptotically optimal efficiency ln 4 + o(1). In Section 5
we prove a matching asymptotic lower bound of ln 4−o(1). In Section 6 we provide concluding
remarks.

Most proofs were omitted from this extended abstract due to space constraints.

4 Actually qk ≥ (k+1)/k since subinterval k+1 has zero length upon updating, as noted in [1, Theorem 3].
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2 Basic Observations

By definition, a k-checkpoint Alg = (t, p) is q-efficient if and only if its snapshots at all
times T ≥ tk are q-compliant. However, as noted in [1, Lemma 2] (and also [4, Lemma 1]), it
suffices to verify compliance only at the discrete times T ∈ {ti}∞i=k. It makes sense thus to
only consider “standard” snapshots Si taken at time ti for i ≥ k. Moreover, as shown in [4,
Lemma 2], besides compliance of the initial snapshot Sk, it suffices to verify compliance of
just two subintervals of Si for every i > k — subinterval k, that ends in the new checkpoint ti,
and subinterval pi, created by merging two consecutive subintervals.

The following two observations about the sequence p = (pi)∞i=k+1 were mentioned in [4,
Section 6] without proof.

I Fact 1. Without loss of generality we can assume a k-checkpoint algorithm updates the
least recent checkpoint infinitely often (i.e., lim inf

i→∞
pi = 1).

I Remark 2. An important consequence of Fact 1 is that we can essentially ignore the
compliance of the initial snapshot Sk by rebasing, i.e., running the algorithm until all
checkpoints present in Sk are overwritten and treating the then-current snapshot as the new
initial (t1, . . . , tk).

I Fact 3. Without loss of generality we can assume a k-checkpoint algorithm never updates
the most recent checkpoint (i.e., pi < k for all i ≥ 1).

I Remark 4. Fact 3 means that the two last checkpoints in snapshot Si are ti−1 and ti, and
thus subinterval k is q-compliant if and only if ti−1 − ti ≤ qti/ (k + 1), that is, ti ≤ G · ti−1,
where G = G (q) := (k + 1) / (k + 1− q). We refer to this condition by saying that the
update times sequence t = (ti)∞i=1 should be G-subgeometric.

Next we introduce the notion of cyclic algorithms. Upper bounds on qk presented in
this paper, as well as in [1, 4], are all achieved by cyclic algorithms. Given a positive
integer n and a real number γ > 1, a k-checkpoint algorithm Alg = (t, p) is (n, γ)-cyclic
if tn+i = γ · ti for all i ≥ 1 and pi = pn+i for all i ≥ k + 1. It has been observed in [4,
Lemma 5] that any q-efficient (n, γ)-cyclic algorithm must satisfy γ ≤ Gn (to see this, apply
subgeometry n times). An (n, γ)-cyclic algorithm is called (n,G)-geometric when γ = Gn

(and thus ti+1 = G · ti for i ≥ k).

We finish this subsection with two observations about the exponential growth of update
times in efficient algorithms, relevant for upper and lower bounds on qk.

The first one is an improvement of [4, Lemma 8]:

I Fact 5. Any q-efficient k-checkpoint algorithm Alg = (t, p) satisfies, without loss of
generality, ti+2 > ti ·G for all i ≥ k.

An immediate corollary of Fact 5 is that ti+j > ti · Gbj/2c for j ≥ 0; in particular,
ti+j > ti ·G2 for j ≥ 4. Our next observation says when we can get ti+3 > ti ·G2.

I Fact 6. Let S = (T1, . . . , Tk) be a snapshot of some q-efficient k-checkpoint algorithm
Alg = (t, p) such that Tj = ti and Tj+1 = ti+3 for some j = 1, . . . , k− 1. Thus, without loss
of generality, ti+3 > ti ·G2.

ICALP 2018
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3 Optimal Algorithms for Small Values of k

3.1 Round-robin and k ≤ 5
We now analyze the efficiency of the Round-Robin algorithm, which is geometric and
always updates the oldest checkpoint (i.e., pi = 1 for all i ≥ k + 1).5 Besides serving as a
first example, Round-Robin is optimal for k ≤ 3 and will make an appearance within the
asymptotically optimal algorithm Recursive of Section 4.

I Proposition 7. The efficiency of k-checkpoint Round-Robin is q = (k + 1) r, where r is
the smallest real root of x = (1− x)k−1.

I Remark. Round-Robin is pretty bad for large k; indeed, (k + 1) r ≈ ln k − ln ln k is
asymptotically inferior to the simple bound qk ≤ 2 from the introduction.

The case k = 2 is made obvious by Fact 3, since without loss of generality Round-Robin is
the only 2-checkpoint algorithm to consider. Thus q2 = 1.5.

I Proposition 8. For k = 3 we have q3 = 4r3 ≈ 1.52786, where r3 = 3−
√

5
2 ≈ 0.38197 is the

smaller root of x2 − 3x+ 1 = 0.

Proof. For the upper bound, Round-Robin is 4r3-efficient. For the lower bound, consider a
4r-efficient 3-checkpoint algorithm and a snapshot Si = (x, y, ti). By subgeometry we must
have ti ≤ y/ (1− r) ≤ x/ (1− r)2 and for subinterval 1 to be compliant we need x ≤ rti,
which together imply (1− r)2 ≤ r, i.e., r2 − 3r + 1 ≤ 0. Thus r ≥ r3. J

Round-Robin is no longer optimal for k > 3. Indeed, cyclic algorithms with better
efficiency were described in [4, Figure 3] for k = 4, 5, 6, 7, 8. These provide upper bounds on
q4, . . . , q8, respectively. Nevertheless, no formal proof of optimality was provided.

I Remark. These algorithms were found by the use of linear programming, which is thoroughly
discussed in the next subsection.

For k = 4, 5 the optimal algorithms are 2-cyclic; k = 5 is geometric while k = 4 is not.

I Proposition 9. For k = 4 we have q4 = 5r4 ≈ 1.53989, where r4 = (2 + 2 cos (2π/7))−1 ≈
0.307979 is the smallest root of x3 − 5x2 + 6x − 1 = 0. Moreover, the efficiency of any
geometric 4-checkpoint algorithm is at least 5r̃4 ≈ 1.58836, where r̃4 ≈ 0.31767 > r4 is the
real root of x3 − 3x2 + 4x− 1 = 0.

I Proposition 10. For k = 5 we have q5 = 6r5 ≈ 1.47073, where r5 ≈ 0.24512 is the (only)
real root of x3 − 4x2 + 5x− 1 = 0.

3.2 Casting the problem as a linear program
Fix λ ≥ 1 and an update pattern p = (pi)∞i=k+1. Can we choose a sequence t = (ti)∞i=1 of
update times such that the resulting k-checkpoint algorithm Alg = (t, p) is λ-efficient?

Each snapshot Si consists of a particular subset of the variables t, and using p we can
determine exactly which. Furthermore, all constraints (e.g., monotonicity, subgeometry,
compliance) can be expressed as linear inequalities. This gives rise to an infinite linear
program L = L (λ; p), which is feasible whenever a λ-efficient algorithm with the prescribed

5 The case k = 3 of Round-Robin was considered in [4, Theorem 1] under the name Simple.
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pattern p exists. Note that all constraints are homogeneous, so to avoid the zero solution we
add the non-homogeneous condition tk = 1.

In addition, we are not interested in solutions where t is bounded. This can happen, for
instance, when pi = k − 1 for all i ≥ k + 1.6 Luckily, by using Fact 5 we can restrict our
attention to exponentially increasing sequences t, so we add to L the linear inequalities from
Facts 5 and 6. Now L is feasible if and only if a λ-efficient algorithm with the prescribed
pattern p exists; in other words, qk is the infimum7 over λ ≥ 1 for which there exists a
pattern p such that L (λ; p) is feasible.

As an infinite program, L is not too convenient to work with. We can thus limit our
attention to finite subprograms L (λ; (pk+1, . . . , pk+n)) for some n ∈ N, which only involve
the k + n variables t1, . . . , tk+n and the relevant 3k + 6n constraints. Finite subprograms
can no longer ensure the existence of a λ-efficient algorithm, but can be used to prove lower
bounds on qk in the following way. Write Σ = {1, . . . , k − 1} and consider the set Σ∗ of
strings, i.e, finite sequences over Σ.

I Definition. A string B ∈ Σ∗ is called a λ-witness if L (λ;B) is infeasible. A string set
B ⊂ Σ∗ is called blocking if any infinite sequence p over Σ contains some B ∈ B as a substring.

I Fact 11. If there exists a blocking set of λ-witnesses for some λ ≥ 1, then qk > λ.

I Remark. The lower bound of Fact 11 holds for all algorithms, cyclic or not.

We now describe a strategy to approximate qk to arbitrary precision. For the lower
bound we use Fact 11; for the upper bound, we limit our focus to cyclic algorithms. Given
γ > 1 and a string P ∈ Σ∗ of length n, we can augment L (λ;P ) with k equality constraints
{ti+n = γ · ti}ki=1; call the resulting program L∗ (λ, γ;P ). This is a finite linear program,
which we can computationally solve given λ, γ, and P . Although γ ≤ Gn is not known
to us, we can first compute an approximation γ̃ of γ by solving L10n

(
γ;P 10), and then

solve L∗ (λ, γ̃;P ). Using binary search, we can compute a numerical approximation λ̃ of the
minimal λ for which L∗ (λ, γ̃;P ) is feasible. Lastly, we can enumerate short strings P ∈ Σ∗
in a BFS/DFS-esque manner and take the best λ̃ obtained.

To demonstrate this strategy, we computed q2, . . . , q10 up to 7 decimal digits, using a
Python program employing GLPK [6] via CVXOPT [2] (see Table 1; starred values of k are
geometric algorithms).

At first it seems that Fact 11 cannot be used to pinpoint qk exactly, since any finite
blocking set B of (qk − ε)-witnesses for some ε > 0 leaves an interval of uncertainty of length ε.
The following proposition eliminates this uncertainly.

I Proposition 12. For every string B ∈ Σ∗ there is finite set ΛB ⊂ R such that the
feasibility of L (λ;B) for some λ ≥ 1 only depends on the relative order between λ and
members of ΛB. In particular, there exists some ε > 0 such that if L (λ;B) is feasible and B
is a (λ− ε)-witness, then B is also a λ′-witness for all λ− ε < λ′ < λ.

Proof. Fix B ∈ Σ∗. Treating λ as a parameter, note that the subprogram L (λ;B) is feasible
if and only if its feasible region, the convex polytope P (λ;B), is nonempty. Decreasing λ
shrinks P (λ;B) until some critical λB for which P (λB ;B) is reduced to a single vertex, at
which a subset of the linear constraints are satisfied with equality. Hence λB is a solution of

6 This may not seem a valid pattern to consider, given Fact 1; however, when solving a finite subprogram
we might have to consider an arbitrarily long prefix of the pattern with no occurrences of 1.

7 This infimum is actually a minimum, by [4, Theorem 8] and also by Proposition 12.
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Table 1 Computationally-verified bounds on qk for 2 ≤ k ≤ 10.

k qk γ P n |B| maxB∈B |B|

2* 1.5 2 (1) 1 0 0
3* 1.5278641 1.618037 (1) 1 2 1
4 1.5398927 1.8019377 (1,3) 2 7 3
5* 1.4707341 1.7548777 (1,3) 2 36 13
6 1.5127400 3.627365 (1,2,3,1,3,5) 6 117 9
7 1.4974818 3.11201 (1,3,4,1,5,3) 6 559 10
8 1.4851548 10.712656 (1,2,4,7,5,3,1,7,5,3,7,1,4,2,4,5) 16 1698 14
9 1.4730721 3.2748095 (1,5,3,5,1,5,6,3) 8 5892 135
10 1.4678452 5.67943 (1,5,3,5,1,5,6,3,1,5,9,3,5,9) 14 32843 20

some polynomial equation determined by the relevant constraints. The set of constraints
is finite, thus there are finitely many polynomial equations that can define λB , and we can
take ΛB as the set of all their roots. Now take ε to be smaller than the distance between any
two distinct elements of ΛB . J

I Remark. Note that when ε is small enough, we can actually retrieve the polynomial equations
defining λ and γ from the polytope P∗

(
λ̃, γ̃;B

)
; using this method we get an algebraic

representation of qk rather than a rational approximation. To demonstrate, q9 = 10r9, where
r9 ≈ 0.1473072131 is the smallest real root of x8−7x7+22x6−40x5+39x4−17x3+10x2−8x+1.

4 Asymptotically Optimal Upper Bounds

In this section we describe a family of geometric k-checkpoint algorithms. Despite our
experience from Table 1—that only for k = 2, 3, 5 optimal algorithms are geometric—this
family is rich enough to be asymptotically optimal, i.e., (1 + o (1)) qk-efficient.

4.1 A recursive geometric algorithm
Fix a real number G > 1 and an integer m ≥ 0. We describe a k-checkpoint algorithm
Recursive(G,K), where K is an (m+ 2)-subset {0, . . . , k} whose elements are

k = k0 > k1 > k2 > · · · > km > km+1 = 0.

Recursive(G,K) is (2m, G)-geometric, and its update pattern p is defined as pk+i =
1 + kµ(i)+1, where µ (i) is the largest µ ≤ m for which 2µ divides i. It is easy to see that p is
2m-periodic, and we can just refer to P = (pk+i)2m

i=1. As per Remark 2, via rebasing there is
no need to define the initial snapshot Sk explicitly.

I Example. For K = {0, 2, 4, 9, 19} we get P = (10, 5, 10, 3, 10, 5, 10, 1).

True to its name, Recursive(G,K) can be viewed also as a recursive algorithm: the base case
m = 0 (i.e., K = {0, k}) is simply k-checkpoint Round-Robin; for m ≥ 1, Recursive(G,K)
alternates between updating the (k1 + 1)-st oldest checkpoint and between acting according
to the inner k1-checkpoint algorithm Recursive

(
G2,K \ {k}

)
.

Let us elaborate a bit more on the recursive step. In every snapshot Si = (T1, . . . , Tk)
we have Tj = Gi+j for k1 + 1 ≤ j ≤ k since we never update checkpoints younger than
k1 + 1. In every odd snapshot Si we have just updated the (k1 + 1)-st oldest checkpoint,
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so Tk1 = Gi+k1−1 while Tk1+1 = Gi+k1+1. This means that logG Tj for j = 1, . . . , k1 all
have the same parity as i+ k1 − 1 in any snapshot Si. We thus treat S′ = (T1, . . . , Tk1) as
a snapshot of a k1-checkpoint algorithm, which operates at half speed and never sees half
of the checkpoints. The inner algorithm can rightfully be called Recursive

(
G2,K \ {k}

)
,

as the common ratio of the update times sequence for the checkpoints that do make it to
the inner algorithm is G2, and taking only the even locations of P yields a 2m−1 periodic
sequence p′ such that p′k+i = pk+2i = 1 + kµ(2i)+1 = 1 + kµ(i)+2.

4.2 Analyzing the recursive algorithm
First we determine exactly how efficient Recursive(G,K) can be for any G and K, and
then we work with a particular choice.

Denote by r (G,K) the maximum of

1−G−1; (1a)

max
{
G−e(`)

(
G2`

−G−2`
)}m−1

`=0
; and (1b)

G2m−e(m), (1c)

where e (`) =
∑̀
j=0

2j (kj − kj+1) for ` = 0, 1, . . . ,m.

I Theorem 13. Given G and K, the efficiency of Recursive(G,K) is (k + 1)r (G,K).

Given an integer k ≥ 2, let m = blog2 kc−1. Define K∗ = {k0, . . . , km+1} by kj =
⌊
2−jk

⌋
for j = 0, . . . ,m and km+1 = 0. Note that k0 = k and that km ∈ {2, 3}.

I Theorem 14. Recursive(G,K∗) is q-efficient for large enough k, where G = eq/(k+1)

and q =
(

1 + 3
log2 k

)
k + 1
k

ln 4 = (1 + o (1)) ln 4.

Proof. By Theorem 13, it suffices to verify that (k+1)r (G,K∗) < q, that is, r (G,K∗) ≤ lnG
for sufficiently large k. Clearly (1a) holds since 1−G−1 < lnG for all G > 1. It remains to
verify (1b) and (1c), handled by Propositions 15 and 16 respectively. J

I Proposition 15. For k ≥ 213 and G as above, G−e(`)
(
G2` −G−2`

)
< lnG for all

` = 0, . . . ,m− 1.

I Proposition 16. For k ≥ 5 and G as above, G2m−e(m) < lnG.

I Remark. Theorem 14 chooses G suboptimally. Empirical evidence shows that, for all k ≥ 2,
the optimal G = G∗ for Recursive(G,K∗) satisfies (1a) and one of (1b) and (1c). In other
words, it is the smallest root of either 1− x−1 = x2m−e(m) or 1− x−1 = x−e(`)

(
x2` − x−2`

)
for some ` = 0, . . . ,m− 1.
I Remark. With additional effort the constant 3 in Theorem 14 can be improved by a factor
of almost 6 to τ := − log2 ln 2 ≈ 0.53. The major obstacle is that cases ` = m − 2 and
` = m− 1 of (1b) need to be done separately since the appropriate f (x, z) in the proof of
Proposition 15 is negative for z < log2 (ln 4/ (1− ln 2)) ≈ 2.1756. No proof is possible for
τ ′ < τ since then (1c) would be violated for large enough k = 2m+2 − 1.
I Remark. We verified that the algorithm Recursive(G∗,K∗) is (1 + τ/ log2 k) k+1

k ln 4-
efficient for 2 ≤ k ≤ 213 as well.
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5 Asymptotically Optimal Lower Bounds

In this section we prove lower bounds on qk, focusing on asymptotic lower bounds in which k
grows to infinity.

We start by reproving the simple asymptotic lower bound qk ≥ 2 − ln 2 − o (1) of [4,
Theorem 6], and then improve it to qk ≥ ln 4, which is asymptotically optimal via the
matching upper bound of Section 4.

5.1 Stability and bounding expressions
Obtaining lower bounds requires viewing the problem from a different perspective. It will
sometimes be more convenient to refer to a certain physical checkpoint, without considering
its temporary freshness index p in the checkpoint sequence at some snapshot S (which is
variable and depends on S).

Given a k-checkpoint algorithm, we define a function BE (s) and use it to bound its
efficiency from below. The parameter s is related to the notion of stability, which we now
define.

I Definition. Fix a k-checkpoint algorithm. A checkpoint updated at time T is called
s-stable, for some s = 1, . . . , k − 1, if at least s previous checkpoints are updated before the
next time it is updated.

By Fact 1 we can assume all checkpoints get updated eventually; this means that in a
snapshot S = (T1, . . . , Tk), where Tk is a time by which all checkpoints have been updated
from the initial snapshot, we have that the checkpoint updated at time Tk−s is s-stable for
s = 1, . . . , k − 1.

For convenience, the proofs in this section assume the update times sequence is normalized
by a constant. This is captured by the following definition.

I Definition. A k-checkpoint algorithm is called s-normalized if an s-stable checkpoint is
updated at time R0 = 1.

Given an s-normalized k-checkpoint algorithm, we define a sequence of times 1 = R0 <

R1 < · · · < Rs as follows: Ri for i ≥ 1 is the time at which the i-th checkpoint is removed
from (0, 1]. In other words, R1 is the time T > R0 at which some checkpoint is updated; R2
is the time T > R1 at which we update the next checkpoint that was previously updated in
(0, 1] (but not at T > 1), and so forth. Note that the checkpoint updated at time R0 is not
updated at any time Ri for i = 1, . . . , s by the definition of stability. Now we are ready to
define BE (s).

I Definition. The T -truncated bounding expression of an s-normalized k-checkpoint al-
gorithm is BET (s) =

∑s
i=1 Ui, where Ui = min {T,Ri}.

The bounding expression plays a crucial role in proving lower bounds, based on Pro-
position 17 below. We note that the truncated bounding expression only depends on the
algorithm’s behavior until time T , and hence the bounds that can be obtained from it are
not tight for k > 3. Nevertheless, the lower bound we obtain using BE2 in Corollary 22 is
asymptotically optimal, since the gap between it and the upper bound of Theorem 14 tends
to zero as k grows to infinity.
I Remark. It is possible to analyze BET beyond T = 2 and obtain tight lower bounds for
larger values of k. However, there is no asymptotic improvement and the analysis becomes
increasingly more technical as k grows.
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5.2 Asymptotic lower bound of 2 − ln 2 ≈ 1.3068
To simplify the analysis, we assume k is even. It can be extended to cover odd values of k as
well, but this gives no asymptotic improvement since qk+1 ≤ qk · k+2

k+1 for all k, so we only
lose an error term of O (1/k), which is of the same order as the error terms in Corollaries 20
and 22.

To simplify our notation we write b = q/(k + 1) throughout this section.

I Proposition 17. Any (k/2)-normalized b(k + 1)-efficient k-checkpoint algorithm satisfies
BE2(k/2) ≥ 1/b.

Proof. At time R0 = 1, the time interval (0, 1] contains k subintervals of length ≤ b, giving
rise to the inequality b · k ≥ 1. At time R1, a checkpoint is removed from (0, 1] and it now
contains one subinterval of length ≤ b · R1 (two previous subintervals, each of length ≤ b,
were merged), and k − 2 subintervals of length ≤ b, giving b · (k − 2 +R1) ≥ 1.

At time R2, an additional checkpoint is removed from the time interval (0, 1], hence it
must contain an subinterval of length ≤ b ·R2 formed by merging two previous subintervals.
We obtain b · (k − 4 + R1 + R2) ≥ 1, since the remaining k − 3 subintervals must include
k − 4 subintervals of length ≤ b and one (additional) subinterval of length at most ≤ b ·R1.
Note that this claim holds regardless of which checkpoint is updated at R2, and it holds
in particular in case one of the subintervals merged at time R2 contains the subintervals
merged at R1 (in fact, this case gives the stronger inequality b · (k − 3 +R2) ≥ 1).

In general, for j = 1, 2, . . . , k/2, at time Rj the time interval (0, 1] must contain j distinct
subintervals of lengths ≤ b ·Ri for i = 1, 2, . . . , j, and k− 2j subintervals of length ≤ b. This
gives the inequality k − 2j +

∑j
i=1 Ri ≥ 1/b.

Let j ≤ k/2 be the largest index such that Rj ≤ 2, so Ui = Ri for all 1 ≤ i ≤ j and
Ui = 2 for all j < i ≤ k/2. Now at time Rj we have

1/b ≤ k − 2j +
j∑
i=1

Ri = (k/2− j) · 2 +
j∑
i=1

Ui =
k/2∑
i=j+1

Ui +
j∑
i=1

Ui = BE2(k/2). J

Now we need an upper bound on the bounding expression. For the simpler lower bound
of 2− ln 2 we use the following proposition.

I Proposition 18. Any (k/2)-normalized b(k + 1)-efficient k-checkpoint algorithm satisfies
Ri ≤ 1/ (1− bi) for i = 1, . . . , k/2.

Proof. At time T = 1/ (1− bi), all subintervals are of length at most bT = b/ (1− bi). Since
T − R0 = 1/ (1− bi) − 1 = bi/ (1− bi), for any ε > 0 the time interval (R0, T + ε] must
consist of at least i+ 1 subintervals, implying that the i-th checkpoint was removed from the
time interval (0, 1] by time T . J

I Proposition 19. Let b < 1
2 . Any (k/2)-normalized b(k+1)-efficient k-checkpoint algorithm

satisfies b ·BE2(k/2) ≤ ln 2 + b/(1− 2b) + bk − 1.

I Corollary 20. For all even k ≥ 4 we have qk ≥ 2− ln 2− o (1).

Proof. Fix a (k/2)-normalized qk-efficient k-checkpoint algorithm, and let b = qk/(k+1) < 1
2 .

By Propositions 17 and 19 we have

qk = bk + b ≥ 2− ln 2− b

1− 2b + b = 2− ln 2− 2b2

1− 2b ≥ 2− ln 2− 8
(k + 1)(k − 3) . J
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5.3 Improved asymptotic lower bound of ln 4 ≈ 1.3863
We now improve the asymptotic lower bound to ln 4. This result is a simple corollary of the
following lemma, which gives a tighter upper bound on the bounding expression. Recall that
q = b(k + 1) and thus G = (k + 1)/(k + 1− q) = 1/(1− b).
I Lemma 21. For any s-normalized b(k + 1)-efficient k-checkpoint algorithm such that
1 ≤ s ≤ k/2 and Gk/2 ≤ 2 we have b ·BE2(s) ≤ Gs − 1.
I Corollary 22. For all even k ≥ 2 we have (1−qk/(k+1))−k/2 ≥ 2. In particular, qk > ln 4.
Proof. Write b = qk/(k + 1) and assume for the sake of contradiction that Gk/2 < 2. By
Lemma 21 and Proposition 17 we have 1 ≤ b · BE2(k/2) ≤ Gk/2 − 1 for a k/2-normalized
qk-efficient k-checkpoint algorithm, so Gk/2 ≥ 2, contradicting our assumption. Now

qk
k + 1 = b ≥ 1− 2−2/k = 1− e−(ln 4)/k ≥ ln 4

k
− 1

2

(
ln 4
k

)2
=
(

1− ln 2
k

)
ln 4
k
,

hence qk ≥
(
1 + (1− ln 2)/k − (ln 2)/k2) ln 4 > ln 4. The last inequality is true when

k > ln 2/(1− ln 2) ≈ 2.26, but we already know that q2 = 1.5 > ln 4. J

6 Concluding Remarks and Open Problems

In this paper we solved the main open problem in online checkpointing algorithms, which is to
find tight asymptotic upper and lower bounds on their achievable efficiency. In addition, we
developed efficient techniques for determining tight upper and lower bounds on qk for small
values of k, which enabled us to develop provably optimal concrete algorithms for all k ≤ 10.
However, determining the values of qk for larger values of k remains a computationally
challenging problem, and finding more efficient ways to compute these values remains an
interesting open problem.
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Table 2 Computationally-verified upper bounds on qk for 11 ≤ k ≤ 20.

k λ γ P n

11 1.4650841 8.190656 (1,3,5,6,1,6,2,10,6,3,6,1,6,2,6,3,9,6) 18
12 1.4668421 8.862576 (1,2,3,5,6,7,1,2,6,3,6,7,1,2,6,3,6,9,7) 19
13 1.4592320 2.94 (1,3,6,7,4,7,1,7,8,3) 10
14 1.4570046 58.6 (1,4,2,6,7,4,7,8,1,8,2,3,7,12,4,7,8,1,4,7,2,7,8,4,13,8,

1,8,4,2,7,4,7,8,1,8,4,2,7,12,4,7,13,8)
44

15 1.4487459 2.104027 (1,2,7,8,4,8,9,5) 8
16 1.4487597 8.46 (1,2,4,7,8,9,5,9,1,2,8,4,8,9,5,9,1,2,8,4,8,13,9,5,9) 25
17 1.4593611 1.694884 (1,9,5,3,14,8,9) 7
18 1.4575670 2.57 (1,8,9,5,9,10,2,5,9,10,3,5) 12
19 1.4592194 2.45 (1,9,5,9,10,2,5,9,10,11,3,5) 12
20 1.4696048 13.3 (1,5,9,10,2,5,9,10,11,3,5,10,1,5,9,10,11,2,5,10,11,3,5,10,

1,5,9,10,6,2,9,10,11,3,5,10)
36

A Tables

The best algorithms our LP approach of Section 3.2 found for k = 11, 12, . . . , 20 are described
in Table 2. These are (perhaps non-tight) upper bounds on q11, . . . , q20. Observe how some
of the patterns are reminiscent of the pattern used in the algorithm Recursive of Section 4.
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Abstract
The family of Reed-Solomon (RS) codes plays a prominent role in the construction of quasilinear
probabilistically checkable proofs (PCPs) and interactive oracle proofs (IOPs) with perfect zero
knowledge and polylogarithmic verifiers. The large concrete computational complexity required
to prove membership in RS codes is one of the biggest obstacles to deploying such PCP/IOP
systems in practice.

To advance on this problem we present a new interactive oracle proof of proximity (IOPP) for
RS codes; we call it the Fast RS IOPP (FRI) because (i) it resembles the ubiquitous Fast Fourier
Transform (FFT) and (ii) the arithmetic complexity of its prover is strictly linear and that of the
verifier is strictly logarithmic (in comparison, FFT arithmetic complexity is quasi-linear but not
strictly linear). Prior RS IOPPs and PCPs of proximity (PCPPs) required super-linear proving
time even for polynomially large query complexity.

For codes of block-length N , the arithmetic complexity of the (interactive) FRI prover is less
than 6 · N , while the (interactive) FRI verifier has arithmetic complexity ≤ 21 · logN , query
complexity 2 · logN and constant soundness – words that are δ-far from the code are rejected
with probability min {δ · (1− o(1)), δ0} where δ0 is a positive constant that depends mainly on
the code rate. The particular combination of query complexity and soundness obtained by FRI is
better than that of the quasilinear PCPP of [Ben-Sasson and Sudan, SICOMP 2008], even with
the tighter soundness analysis of [Ben-Sasson et al., STOC 2013; ECCC 2016]; consequently, FRI
is likely to facilitate better concretely efficient zero knowledge proof and argument systems.

Previous concretely efficient PCPPs and IOPPs suffered a constant multiplicative factor loss
in soundness with each round of “proof composition” and thus used at most O(log logN) rounds.
We show that when δ is smaller than the unique decoding radius of the code, FRI suffers only a
negligible additive loss in soundness. This observation allows us to increase the number of “proof
composition” rounds to Θ(logN) and thereby reduce prover and verifier running time for fixed
soundness.
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1 Introduction

The family of Reed-Solomon (RS) codes is a fundamental object of study in algebraic coding
theory and theoretical computer science [56]. For an evaluation set S of N elements in a
finite field F and a rate parameter ρ ∈ (0, 1], the code RS[F, S, ρ] is the space of functions
f : S → F that are evaluations of polynomials of degree d < ρN [56]. The RS proximity
problem assumes a verifier has oracle access to f : S → F, and asks that verifier to distinguish,
with “large” confidence and “small” query complexity, between the case that f is a codeword
of RS[F, S, ρ] and the case that f is δ-far in relative Hamming distance from all codewords.
This problem has been addressed in several different computational models (surveyed next
and summarized in Table 1), and is also the focus of this paper.

RS proximity testing: When no additional data is provided to the verifier, the RS
proximity problem is commonly called a testing problem, and has been first defined and
addressed by Rubinfeld and Sudan in [58] (cf. [32]). In this case, one can see that d + 1
queries are necessary and sufficient to solve the problem: codewords are accepted by their
tester with probability 1 whereas functions that are δ-far from the code are rejected with
probability ≥ δ. Since no additional information is provided to the verifier in this model, we
may say that a prover attempting to convince the verifier that f ∈ RS[F, S, ρ] spends zero
computational effort, zero rounds of interaction and produces a proof of length zero.

RS proximity verification – PCPP model: Probabilistically checkable proofs of proximity
(PCPP) [21, 30] relax the testing problem to a setting in which the verifier is given oracle
access also to an auxiliary proof, called a PCPP and denoted π. This PCPP is produced by
the prover, which is given f ∈ RS[F, S, ρ] as input. The time required to produce π is the
prover complexity and |π| is called the proof length1; similarly, verifier complexity is the total
time required to generate queries and check query-answers. The techniques used to prove
the celebrated PCP Theorem [2, 3] also show that the proximity problem can be solved with
constant query complexity and proof length and prover complexity NO(1), or with proof
length N1+ε and query complexity (logN)O(1/ε) [5]. The current state of the art in the
PCPP model gives proofs of length Õ(N) 4= N · logO(1) N with constant query complexity
[23, 28] and prover complexity Õ(N) [16]; verifier complexity is poly logN [20, 50].

RS proximity verification – IOPP model: Interactive oracle proofs of proximity (IOPP),
formally introduced in [13] and, independently, in [57] (under the name “probabilistically
checkable interactive proofs of proximity”), generalize IPs, PCPs and interactive PCPs
(IPCP) [42]. As in an IP and IPCP, several rounds of interaction are used in which the prover
sends messages π1, π2, . . . , πr in response to successive verifier messages. As in a PCP and

1 Typically π is a sequence of elements in F. Therefore, proof length is measured over the alphabet F.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.14
https://eccc.weizmann.ac.il/report/2017/134/
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Table 1 Comparison of RS proximity protocols. For concreteness, all results are stated for binary
additive RS codes with rate ρ = 1/8 evaluated over a sufficiently large set S, |S| = N satisfying
N/|F| < 0.001 with proximity parameter δ < δ0 (cf. Theorem 2) and soundness at least 0.99δ; i.e.,
the rejection probability of δ-far words is at least 0.99δ for δ < δ0 (in particular, smaller δ leads to
smaller soundness). Exponents for the 4th row taken from [16]; the various exponents c in the 5th
and 6th row have not been estimated in prior works but are greater than the respective exponents
in the 4th row.

prover
comp.

proof
length

verifier
comp.

query
comp.

round
comp.

1. Testing [58] 0 0 Õ(ρN) ρN 0
2. PCP [2, 3] NO(1) NO(1) NO(1) O

(
1
δ

)
1

3. PCP [6, 5] N1+ε N1+ε 1
δ

logO(1/ε) N 1
δ

logO(1/ε) N 1
4. PCPP [23, 21, 16] ≥ N log1.5 N ≥ N log1.5 N ≥ 1

δ
log5.8 N 1

δ
log5.8 N 1

5. PCPP [28, 50] N logcN N logcN 1
δ

logcN O
(

1
δ

)
1

6. IOPP [12, 9] N logcN > 4 ·N 1
δ

logcN O
(

1
δ

)
log logN

7. This work < 6 ·N < N
3 ≤ 21 · logN 2 logN logN

2

IPCP, the verifier is not required to read prover messages in entirety but rather may query
them at random locations (in an IPCP, verifier must read the full messages π2, . . . but may
query π1 randomly); the query complexity is the total number of entries read from f and
π1, π2, . . . , πr. The prover is provided with f ∈ RS[F, S, ρ] as input and prover complexity is
the total time required to produce all (prover) messages2, while proof length is generalized
from the PCPP setting to the IOPP setting and defined as |π1|+ . . .+ |πr|. IOPPs can be
used to “replace” PCPP proof composition with more rounds of interaction, and thereby
reduce proof length and prover complexity without compromising soundness (see Section 1.3).
In particular, the IOPP version of the aforementioned PCPP constructions reduces proof
length to O(N) with no change to soundness and/or query complexity [8, 13]. In spite of
the shorter proof length, prover complexity in prior works was Θ(Npoly logN) due to a
limitation on the number of proof-composition rounds, explained in Section 2.1.

1.1 Main results
We present a new IOPP for RS codes, called the Fast RS IOPP (FRI) because of its
resemblance to the Fast Fourier Transform (FFT) [26]; its analysis relies on the quasi-linear
RS-PCPP [23] (see Section 2.1). FRI is the first RS-IOPP to have (i) strictly linear arithmetic
complexity for the prover with (ii) strictly logarithmic arithmetic complexity for the verifier
and (iii) constant soundness. We start by recalling IOPP systems as described in [12, Section
3.2], after informally summarizing the main complexity parameters of IOPs (introduced and
discussed thoroughly in [19]).

1.1.1 IOP
An Interactive Oracle Proof (IOP) system S is defined by a pair of interactive randomized
algorithms S = (P,V), where P denotes the prover and V the verifier. On input x of length
N , the number of rounds of interaction is denoted by r(N) and called the round complexity
of the system. During a single round the prover sends a message to which the verifier is

2 Notice that prover complexity does not include the time needed to produce f .
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given oracle access, and the verifier responds with a message to the prover. The proof length,
denoted `(N), is the sum of lengths of all messages sent by the prover. The query complexity
of the protocol, denoted q(N), is the number of entries read by V from the various prover
messages; since the verifier has oracle access to those messages, typically q(N) � `(N).
(For the FRI system q(N) = O(log `(N))). We denote by 〈P↔ V〉(x) the output of V after
interacting with P on input x; this output is either accept or reject. An IOP is said to be
transparent (or have public randomness) if all messages sent from the verifier are public
random coins and all queries are determined by public coins, which are broadcast to the
prover (such protocols are also known as Arthur-Merlin protocols [4]).

1.1.2 IOPP
As its name suggests, an IOP of proximity (IOPP) is the natural generalization of a PCP
of Proximity (PCPP) to the IOP model. An IOPP for a family of codes3 C is a pair (P,V)
of randomized algorithms, called prover and verifier, respectively. Both parties receive
as common input a specification of a code C ∈ C which we view as a set of functions
C = {f : S → Σ} for a finite set S and alphabet Σ. We also assume that the verifier has
oracle access to a function f (0) : S → Σ and that the prover receives the same function as
explicit input. The number of rounds of interaction, or round complexity, is denoted by r,
query complexity is denoted by q.

I Definition 1 (Interactive Oracle Proof of Proximity (IOPP) [12]). An r-round Interactive
Oracle Proof of Proximity (IOPP) S = (P,V) is a (r + 1)-round IOP. We say S is an (r-round)
IOPP for the error correcting code C = {f : S → Σ} with soundness s− : (0, 1]→ [0, 1] with
respect to distance measure ∆, if the following conditions hold:

First message format: the first prover message, denoted f (0), is a purported codeword
of C, i.e., f (0) : S → Σ
Completeness: Pr

[
〈P↔ V〉 = accept | ∆

(
f (0), C

)
= 0
]

= 1; this means that for every
f (0) ∈ C the protocol terminates in acceptance.
Soundness: For any P∗, Pr

[
〈P∗ ↔ V〉 = reject | ∆

(
f (0), C

)
= δ
]
≥ s−(δ)

The sum of lengths of all prover messages, except for f (0), is the IOPP proof length; the time
required to generate all messages except for f (0) is the prover complexity. The IOPP query
complexity is the total number of queries to all messages, including f (0) and the decision
complexity is the computational complexity (see following remark) required by the verifier to
reach its verdict, once the queries and query answers are provided as inputs.

I Remark (Computational model for decision complexity). The computational model in which
decision complexity is computed is left undefined. A natural default is to use boolean circuit
complexity. However, later we study families of linear codes in which each IOPP query
is answered by a field element. The natural computational model in this case is that of
arithmetic complexity, i.e., for a linear code C over a finite field F, it is the number of
arithmetic operations over F made by the verifier to reach its decision.

1.1.3 Main Theorem
The finite field of size q is denoted here by Fq; when q is clear from context we omit it. A
field is called binary if q = 2m,m ∈ N. A subset S of a binary field is an additive coset
if it is a coset of a subgroup of the additive group F+, i.e., if S is an additive shift of an

3 The definition of an IOPP can be generalized to arbitrary languages; we study an IOPP for a specific
family of codes so prefer to limit the scope of our definition accordingly.
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F2-linear space contained in Fq. The binary additive RS code family is the collection of codes
RS[F, S, ρ] where F is a binary field and S an additive coset. This family of codes is one
for which quasilinear PCPP were defined in [23], and our main theorem is stated for it (see
Table 1).

I Theorem 2 (Main – FRI properties). The binary additive RS code family of rate ρ =
2−R,R ≥ 2,R ∈ N has an IOPP (FRI) with the following properties, where N = |S|
denotes block-length (which equals the prover-side input length for a fixed RS[F, S, ρ] code)
and ρN > 16:

Prover Complexity is less than 6N arithmetic operations in F; proof length is less than
N/3 field elements and round complexity is at most logN

2 ;
Verifier complexity Query complexity is 2 logN ; the verifier decision is computed using
at most 21 logN arithmetic operations over F;
Soundness: There exists δ0 ≥ 1

4 (1− 3ρ)− 1√
N

such that every f that is δ-far in relative
Hamming distance from the code, is rejected with probability at least min {δ, δ0} − 3N

|F| ;
Parallelization: Each prover-message can be computed in O(1) time on a Parallel
Random Access Machine (PRAM) with common read and exclusive write (CREW),
assuming a single F arithmetic operation takes unit time.

I Remark (Space complexity). Given the ith prover message as input, each symbol of the
(i+ 1)th prover message can be computed with space complexity O(log |F|), i.e., the space
required to hold a constant number of field elements.

This follows immediately from the fact that each prover message is computed in O(1)
arithmetic operations on a parallel machine.

Generalizing Theorem 2 to arbitrary rate ρ ∈ (0, 1] can be done as described in [23,
Proposition 6.13] (cf. remark 6.2 there); this leads to slightly larger constants in the prover
and verifier complexity. For practical applications like ZK-IOPs [14, 12], rates of the form
stated in the theorem above suffice.

I Remark (FRI for “smooth codes”). We call a multiplicative group H ⊂ Fq smooth if its
order (|H|) is 2k for k ∈ N. The family of smooth RS codes of rate ρ is the set of RS[Fq, H, ρ]
codes in which H is a smooth multiplicative group. Theorem 2 holds also with respect to the
family of smooth RS codes, with somewhat smaller constants than 6 and 21 for the prover
and verifier arithmetic complexity (see full version of this paper [10]); see Section 2.1 for a
high-level overview of the smooth case and full version of this paper [10] for more details
on modifying the protocol to this case. The protocol can be further generalized to groups
of order ck for constant c (perhaps with different arithmetic complexity constants), details
omitted.

The soundness bound of Theorem 2 is nearly tight for δ ≤ δ0. We conjecture that a
similar bound holds for all δ. See full version of this paper [10] for a more detailed version of
the conjecture that implies it, and a discussion of Equation (1)

I Conjecture 3. The soundness limit δ0 of Theorem 2 approaches 1− ρ. Specifically, for
all δ ≤ 1− ρ, the rejection probability of any f that is δ-far from the RS-code of rate ρ and
block-length N over F, is at least

δ − 2 logN√
|F|

. (1)
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1.2 Applications to transparent zero knowledge implementations

Prover-efficient IOPPs of the kind presented here are crucially needed to facilitate practical
ZK argument systems that are (i) transparent (public randomness), (ii) universal – apply
to any computation – and (iii) (doubly) scalable – have quasi-linear proving time and poly-
logarithmic verification time, simultaneously. In a follow-up paper we use the FRI protocol
(among other things) to realize in code the first ZK system (called a ZK-STARK there) that
achieves the three properties listed above [11]. The concrete efficiency of that protocol,
which relies to a large degree on the efficiency of the FRI protocol presented here, allows
one to construct ZK arguments of knowledge (ZK-ARKs) for computational statements,
where verifying the computational integrity of the statement using the ZK-STARK verifier is
stricly faster than naïve verification via re-exectution, and the communication compelxity
is strictly smaller than the size of the non-deterministic witness supporting the claim. The
ZK-STARK prover is ≈ 50× faster than the previous state-of-the-art transparent system,
code-named SCI [7] (that system does not have ZK), and ≈ 10× faster than state-of-the-art
ZK-SNARKs [17] (which are not transparent); see [11, Figure 5] for details.

In the remainder of this section we explain, briefly, how our system could be incorporated
in a larger practical ZK system (like the ZK-STARK mentioned earlier). In Section 1.3
we discuss the range of block-lengths that are relevant in applications, and the resulting
communication complexity arising from their use.

The seminal works of Babai et al. [6, 5] showed that verifying the correctness of an
arbitrary nondeterministic computation running for T (N) steps can be achieved by a verifier
running in time poly(N, log T (N)) in the PCP model. Kilian’s construction transforms
such PCPs into a 4-round ZK argument in which the total communication complexity and
verifier running time are bounded by poly log T (N) [43] (cf. [44, 40, 41]), assuming a family of
collision-resistant hash functions. Micali further compressed this system into a non-interactive
computationally sound (CS) proof system, assuming both prover and verifier share access to
the same random function [48]; this is typically realized in practice using a hash function like
SHA2 and relying on the Fiat-Shamir heuristic [31]. No implementation of these marvelous
techniques has appeared during the quarter century that has passed since they were first
published. This is explained, in part, by concerns about the efficiency of these constructions
for concrete programs and run-times. Among the numerous components involved in building
these systems, a significant computational bottleneck is that of computing solutions to the
Reed-Muller (RM) proximity problem, also known as “low degree testing” of multivariate
polynomials.

Quasilinear PCPs based on RS codes have prover complexity that is asymptotically
more efficient than RM codes which lead to PCPs with super-quasi-linear length, and a
number of works have explored the concrete efficiency of these RS-based protocols [16, 8].
Recently, Ben-Sasson et al. suggested an IOP with perfect zero knowledge (PZK) for NP
[14], later extended to NEXP [12], in which prover complexity is quasilinear and verifier
complexity is poly(N, log T (N)); this PZK-IOP can be compiled, using Kilian’s technique,
into an interactive ZK argument with succinct4 communication complexity, or, using Micali’s
technique (cf. [61]), into a non-interactive random oracle proof (NIROP) as defined in
[19]. In light of this, the practicality of Kilian- and Micali-type ZK argument systems with
polylogarithmic verifiers should be reconsidered.

To add motivation, a number of interesting practical succinct argument systems (with and
without zero-knowledge) have been reported recently (see [62] for an excellent updated survey

4 Here, as in past works, “succinct” is synonymous to “polylogarithmic”.
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of the subject and [7] for a comparison of PCP/IOP-based solutions to other approaches). A
particular system based on the quadratic span programs (QSP) of Gennaro et al. [33] (cf.
[17]) has been used by Ben-Sasson et al. to build a decentralized anonymous payment (DAP)
system called “Zerocash” [15], later deployed as a practical commercial crypto-currency
called “Zcash” [52, 38]. However, the QSP based ZK system used in Zerocash/Zcash, called
a “preprocessing SNARK” [24], requires a setup phase that involves private randomness;
additionally, it relies on rather strong cryptographic “knowledge of exponent” assumptions,
and quantum computers can create pseudo-proofs of falsities in polynomial time for such
systems [60] (cf. [54]). In contrast, the aforementioned succinct interactive and non-interactive
(NIROP) systems based on quasilinear PZK-IOPs require only public randomness for their
setup, and the only cryptographic assumption required to realize them5 is the existence
of a family of collision resistant hash functions [43], in particular, they are not known to
be breakable by quantum computers in polynomial time. Therefore, there is great interest
in understanding whether succinct (interactive and non-interactive) ZK argument systems
which require only public randomness (and resistant to known polynomial time quantum
algorithms) can be practically built and used, say, by Zcash. Ben-Sasson et al. [7] describe
such an implemented system, called “succinct computational integrity (SCI)” which is not
ZK and has comparatively large communication complexity6. As mentioned above, the
RS proximity solution described in Theorem 2 is already used within an implemented ZK
system [11].

1.3 Concrete degree, communication, and round complexity
In this section we briefly discuss the “size” of RS codes that would be needed for various
practical applications and the effect of logarithmic round complexity on security. Due to
space limitations, and because the focus of this paper is theoretical (within the information
theoretic IOP model), we omit implementation details and point the interested reader to full
version of this paper [10]; cf. [7, 14].

The message length of RS codes of degree d = ρ · N − 1 is precisely d, so we start
by recounting the range of degrees (message sizes) that seem practically relevant. Later
we calculate the communication complexity arising from using the FRI protocol to argue
proximity to codes of practically relevant block-lengths, and end by discussing the practical
implications of an IOPP with log d rounds. Throughout this section ρ = 1/8 (N = 8 · d)
because this setting is used in prior [7] and future [11] works.

1.3.1 RS block-length of systems realized in code
The recently realized IOP-based argument system called SCI (“Scalable Computational
Integrity”) reduces computational statements, like “the output of program P on input x
equals y after T steps” to a pair of RS-proximity testing problems. SCI uses an IOP version
of the quasilinear PCP of [23], which could be replaced with FRI. Programs bench-marked by
SCI were executed on a simple MIPS-like virtual machine called TinyRAM [18]. Generally
speaking, RS degree increases in size with the number of TinyRAM machine cycles T .

5 To reach a (non-interactive) computationally sound (CS) proof [49], the “random oracle” is assumed,
and realized in practice by relying on the Fiat-Shamir heuristic. In particular, this approach as well is
not known to be breakable by quantum computers in polynomial time.

6 Communication complexity in SCI is on the order of tens of megabytes long, compared with QSP based
zk-SNARKs that are shorter than 300 Bytes.
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Figure 1 A. Degree of RS code arising from the exhaustive subset sum program [7, Appendix
C], as a function of the number of TinyRAM machine cycles. B. Communication complexity (CC)
as a function of degree, using λ = 160 bits, field size 264, soundness error ε = 2−80, and maximal
proximity parameter δ = 1− ρ. The higher (red) graph corresponds to proven soundness (see full
version of this paper [10]) and the lower (blue) corresponds to conjectured soundness (Conjecture 3).
Both plots use code rate ρ = 1/8.

Figure 1.A plots the degree d as a function of T for a specific simple program, showing that
d ≈ T · 221.

For crypto-currency applications requiring zero knowledge, block-length will be dominated
by the type of cryptographic primitives required, and the number of times they are invoked
within a computational statement. For instance, ZK contingent payments [47] require a
single hash, and Zerocash’s Pour circuit [15] uses 64 hash invocations, leading in that
work to RS codewords (over a prime field) with degree (=number of gates) approximately
222. Our new work in progress shows that a single hash invocation requires RS block-
length between 212 = 4096 (for a Davies–Meyer hash based on AES128) to 219 (for SHA2),
meaning that degrees in the range d ∈ [212, 226] are relevant for existing crypto-currency
(ZK) applications [11].

1.3.2 Estimated communication complexity and argument length
The practical realization of interactive proof systems (see Section 1.2) into interactive
argument systems [43] and CS proofs [49] can be extended to the IOPP model, in which
multiple rounds of interaction are used [19]. Using Kilian’s scheme [43], during the ith round
the prover sends the root root(i) of a Merkle hash tree Tree(i) whose leaves are labeled by
entries of f (i), and the verifier replies with randomness. Using Micali’s scheme [49], the
(non-interactive) prover queries the random oracle with root(i) to “simulate” the verifier’s
ith message. When verifier queries to f (i) are answered by the prover, each answer is
accompanied by an authentication path (AP) that shows the query answer is consistent
with root(i). Let CCδ,ε(N) denote the prover-side communication complexity (in bits) of an
argument/CS proof realized by applying the Kilian/Micali scheme to FRI, where δ is the
proximity parameter and ε is the error bound, i.e., words that are δ-far from the RS code
are rejected with probability < ε. Then

CCδ,ε(N) = qδ,ε · log |F|+ APδ,ε · λ (2)

where qδ,ε denotes total query complexity in the IOP model to reach soundness ≥ 1− ε for
proximity parameter δ, APδ,ε is the number of nodes in the sub-forest of the Merkle trees
Tree(0), . . . ,Tree(r) induced by all authentication paths, and λ is the number of output bits of
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the hash function used to construct the Merkle trees. In our preliminary results [11] we use
λ = 160, ε = 2−80, |F| = 264 and ρ = 1/8. Figure 1.B plots the communication complexity
for this setting under the proven soundness of Theorem 2 and the (better) soundness of
Conjecture 3. In both cases we use maximally large distance δ = 1 − ρ = 7/8 to show
the concrete difference in communication complexity between the proven and conjectured
soundness. This plot also motivates the quest for improving the soundness analysis of
Theorem 2.

1.3.3 Round complexity considerations
Assuming that a crypto-currency block-chain serves as a time-stamping service for public
messages and a public beacon of randomness, one may use block-chains to simulate verifier
messages. Several block-chains (including Zcash) generate blocks every 2.5 minutes, which
means that a FRI proof for d = 2k will take roughly k · 5

4 minutes to complete, or less than 1
hour7 for d < 240.

For fixed d, the round complexity stated in Theorem 2 is 1
2 log d, but the more refined

version (see [10]) gives a trade-off between query (q) and round (r) complexity, of the
form r = log d/ log q, allowing further reduction in round complexity in exchange for larger
communication complexity.

Finally, the Random Oracle model used by Micali to “compress” interactive argument
systems (like Kilian’s) into CS proofs applies equally to multi-round IOPs like FRI, with
negligible impact on argument length; see [19, Remark 1.6] for a detailed discussion. Prac-
tically speaking, those who treat hash functions like SHA2 as realizations of the RO model
(a position taken by Bitcoin and other crypto-currency miners), might feel comfortable
compiling IOP protocols like FRI into succinct non-interactive arguments, as described in
[19].

1.4 Related works
High-rate LTCs Locally testable codes (LTCs) are error correcting codes for which – by
definition – prover complexity and proof length equal 0 (as stated for the case of RS codes
by Rubinfeld and Sudan [58]); in other words, when focusing solely on prover complexity,
LTCs offer an optimal solution (zero complexity). Nevertheless, as discussed in Section 1.2,
the specific question of small prover complexity for RS codes is highly relevant because of
the its applications to practical ZK-IOPs.

Classical “direct” constructions of LTCs, such as the Hadamard code studied by Blum,
Luby and Rubinfeld [25] and the logN -variate RM codes used in early PCP constructions
[1, 5] have sub-constant rate, thus lead to long proofs and large PCP prover complexity.

More recently, there has been remarkable progress on constructing locally testable codes
(LTCs) with small query complexity and large soundness. Kopparty et al. obtained such codes
with rate approaching 1 [45] and Gopi et al. presented LTCs that reach the Gilbert Varshamov
bound [36]. These LTCs have super-polylogarithmic query complexity. Additionally, in
contrast to RS codes, we are not aware of PCP constructions with similar parameters nor do
we know how to convert these LTCs into PCPs.

PCPs and IOPs: A number of recent works have considered PCP constructions with
small proof length and query complexity. In addition to the aforementioned works on quasi-
linear PCPs, Moshkovitz and Raz constructed PCPs with optimally small query complexity

7 Compare this with Bitcoin’s “best practice” of waiting 1 hour for confirmations, or 3 days required to
clear standard checks.
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(measured in bits) and proofs of length N1+o(1) [51], where N denotes the length of the
NP statement (like a 3CNF) for which the PCP is constructed, achieving better soundness
than Hr astad’s result [37]. A different line of works attempts to optimize the bit-length
of PCP proofs; the state of the art, due to Ben-Sasson et al., achieves PCPs of bit-length
O(N) and query complexity N ε [22]. In the IOP model, which generalizes PCPs by allowing
more rounds of interaction, Ben-Sasson et al. presented a 2-round IOP with bit-length
O(N), constant query complexity (measured in bits) and constant soundness [13]. (Prover
arithmetic complexity in all of these systems is super-linear.)

Soundness amplification: A number of results in the PCP literature have suggested
techniques for improving soundness of general PCP constructions, including the parallel
repetition theorem of Raz [55], the gap amplification technique of Dinur [28] and direct-
product testing, introduced by Goldreich and Safra [34] (cf. [29, 39]). These techniques lead
to excellent soundness bounds with small query complexity. The concrete prover complexity
of PCPs and PCPPs associated with these methods has not been studied in prior works but
prover complexity is at least super-linear, and often polynomially large.

Doubly-efficient “proofs for muggles”: A recent line of works, initiated by Goldwasser,
Kalai and Rothblum [35], revisits the IP model which is equivalent to PSPACE [46, 59],
focusing on doubly efficient systems in which the prover runs in polynomial time (as opposed
to polynomial space, as in the aforementioned results) and verifier runs in nearly linear time.
The state of the art along this line is due to Reingold et al. [57], they construct doubly-
efficient IP protocols with a constant number of rounds for a family of languages in P. Prover
complexity in this line of works is at least super-linear, and typically polynomially large and
verifier complexity is super-polylogarithmic, and often super-linear as well (cf. [27, 57]).

2 Overview of the FRI IOPP and its soundness

In this section we consider the task of building an IOPP for a “smooth” RS code (defined
below). We start in Section 2.1 by considering the completeness case, where we describe the
interaction between the verifier and an honest prover attempting to prove membership in
the RS code of a valid codeword f (0). The IOPP protocol is explained in similarity to the
Inverse Fast Fourier Transform (IFFT) [26]. Then, in Section 2.2, we consider the soundness
case, where we assume f (0) is far in relative Hamming distance from the code and need to
prove lower bounds on the verifier’s rejection probability. Soundness analysis is the most
challenging aspect of our work (as it is for all prior PCPP/IOPP works). Our analysis uses
the soundness analysis of the quasilinear RS-PCPP [23] for the case of “large” Hamming
distance (beyond the unique decoding radius of the code), and presents a novel, tighter,
analysis for “small” Hamming distance (below that radius).

2.1 FRI overview and similarity to the Fast Fourier Transform (FFT)
We start by describing the protocol in similarity to the IFFT algorithm; that algorithm
is also related to the quasi-linear PCPP for RS codes of [23], and towards the end of this
section we explain the connection between FRI and that quasi-linear PCPP.

Let ω(0) generate a smooth multiplicative group of order N = 2n (see Remark 1.1.3),
denoted L(0), that is contained in a field F; in signal processing applications ω(0) is a complex
root of unity of order 2n and F is the field of complex numbers (we shall use a different
setting). Assume the prover claims that f (0) : L(0) → F is a member of RS[F, L(0), ρ], i.e., f (0)

is the evaluation of an unknown polynomial P (0)(X) ∈ F[X], deg(P ) < ρ2n; for simplicity we
assume ρ = 2−R and R is a positive integer. The task of the verifier is to distinguish between
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low-degreeness (f (0) ≡ P (0) for some low degree P (0)) and cases where f (0) is far from all
polynomials of degree < ρ2n. Recalling the IFFT, if f (0) ≡ P (0) there exist polynomials
P

(1)
0 , P

(1)
1 ∈ F[Y ] such that max

{
deg

(
P

(1)
0

)
, deg

(
P

(1)
1

)}
< 1

2ρ2n and

∀x ∈ L(0) f (0)(x) = P (0)(x) = P
(1)
0 (x2) + x · P (1)

1 (x2),

or, letting Q(1)(X,Y ) 4= P
(1)
0 (Y ) +X · P (1)

1 (Y ) and defining q(0)(X) 4= X2, we have

P (0)(X) ≡ Q(1)(X,Y ) mod Y − q(0)(X) (3)

where degX
(
Q(1)) < 2 and degY

(
Q(1)) < 1

2ρ2n. The map x 7→ q(0)(x) is 2-to-1 on L(0)

because q(0)(x) = q(0)(−x), and the output of this map is the multiplicative group generated
by ω(1) =

(
ω(0))2, this group has order 2n−1, denote it by L(1). Moreover, for every x(0) ∈ F

and y ∈ L(1), the value of Q(1) (x(0), y
)
can be computed by querying two entries of f (0)

because degX
(
Q(1)) < 2 (the two entries are the two roots of the polynomial y − q(0)(X)).

Our verifier thus samples x(0) ∈ F uniformly at random and requests the prover to send
as its first oracle a function f (1) : L(1) → F that is supposedly the evaluation of Q(1) (x(0), Y

)
on L(1). Assuming f (0) ∈ RS[F, L(0), ρ], the discussion above shows that f (1) ∈ RS[F, L(1), ρ].
Notice that there exists a 3-query test for the consistency of f (0) and f (1), we call it the
round consistency test:
1. sample a pair of distinct elements s0, s1 ∈ L(0) such that s2

0 = s2
1 = y; in other words,

sample a uniform y ∈ L(1) and let s0, s1 be the two roots of the polynomial y −X2;
2. query f (0)(s0), f (0)(s1) and f (1)(y), denote the query answers by α0, α1 and β, respect-

ively;
3. interpolate the “line” through (s0, α0) and (s1, α1), i.e., find the polynomial p(X) of degree

at most 1 that satisfies p(s0) = α0 and p(s1) = α1; notice p is unique and well-defined
because s0 6= s1;

4. accept if and only if p
(
x(0)) = β and otherwise reject;

Tallying the costs of the first round, the verifier sends a single field element (x(0)) and
the prover responds with a message (oracle) f (1) : L(1) → F evaluated on a domain that is
half the size of L(0); testing the consistency of f (0) and f (1) requires three field elements
per test (repeating the test boosts soundness). We thus reduced a single proximity problem
of size 2n and rate ρ to a single analogous problem of size 2n−1 and same rate. Repeating
the process for r = n − R rounds leads to a function f (r) that is supposedly of constant
degree and evaluated over a domain of constant size 2R, so at this point the prover sends the
single constant that describes the function, and the verifier uses it as f (r) in the last round
consistency test, the one that tests consistency of f (r−1) and f (r).

Applying inductive analysis to all r rounds, if f (0) ∈ RS[F, L(0), ρ] (and the prover is
honest) then all r round consistency tests pass with probability 1 and f (r) is indeed a constant
function. In other words, the protocol we described has perfect completeness.
I Remark (FRI as a “biased” version of quasi-linear RS-PCPP). The quasi-linear PCPP of
[23] is quite similar to FRI, including the degree-reduction (from P (0) to P (1)) obtained
by requesting the prover to evaluate a bivariate polynomial Q(X,Y ) on a collection of
axis-parallel lines. There are two main differences between FRI and that PCPP:
1. the quasilinear PCPP is non-interactive, and thus the prover evaluates Q(1)(X,Y ) on a

large subset of F× F, whereas the FRI protocol uses interaction to reduce proving time,
by requesting the prover to apply recursion only to the axis-parallel lines selected by the
verifier.
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2. the polynomial q(0)(X) used in [23] has degree ≈
√

deg
(
P (0)

)
and thus Q(1)(X,Y ) has

degree ≈
√

deg
(
P (0)

)
in each of its variables. In contrast, the polynomial q(0) used by

FRI has constant degree, and so the degrees of Q(1) are very biased (constant degree in X
vs. deg

(
P (0)) /2 in Y ). This leads to larger recursion depth for FRI but also avoids the

necessity to apply recursive low-degree testing to each of the axes (the X-axis) because
of its constant degree.

2.1.1 Differences between informal and actual protocol
The differences between the informal and formal protocols are mostly technical; we list them
now. The field F is finite and binary, i.e., of characteristic 2; nevertheless the construction and
analysis can be immediately applied to RS codes evaluated over smooth multiplicative groups
(of order 2n), as explained informally above (cf. Remark 1.1.3). In binary fields, the natural
evaluation domains (like L(0), L(1) above) are cosets of additive groups (not multiplicative
ones), i.e, L(i) is an affine shift of a linear space over F2. The map q(0)(X) = X2 is not
2-to-1 on L(0) (in binary fields it is a 1-to-1 map, a Frobenius automorphism of F over F2)
so we use a different polynomial q(0)(X) that is many-to-one on L(0) and such that the set
L(1) =

{
y = q(0)(x) | x ∈ L(0)} is a coset of an additive group, like L(0), but of smaller size

(|L(1)| � |L(0)|); the polynomial q(0) is known as an affine subspace polynomial, belonging to
the class of linearized polynomials. We use q(0) of degree 4 instead of 2 because this reduces
the number of rounds from n to n/2 with no increase in total query complexity; notice that
a similar reduction could be applied in the multiplicative setting by using q(0) = X4 (but
we preferred simplicity to efficiency in the informal exposition above). Finally, the actual
protocol performs all queries only after the prover has sent all of f (1), . . . , f (r). Thus, we
construct a protocol with two phases. The first phase, called the COMMIT phase, involves r
rounds. At the beginning of the ith round the prover has sent oracles f (0), . . . , f (i−1), and
during this (ith) round the verifier samples and sends x(i) and the prover responds by sending
the next oracle f (i). During the second phase, called the QUERY phase, the verifier applies
the round consistency test to all r rounds. To save query complexity and boost soundness,
the query made to L(i) is used to test both consistency of f (i−1) vs. f (i) and consistency of
f (i) vs. f (i+1).

2.2 Soundness analysis – overview
Proof composition is a technique introduced by Arora and Safra [3] in the context of PCPs,
adapted to PCPPs in [21, 30] and optimized for the special case of the RS code in [23].
Informally, it reduces proximity testing problems over a large domain to similar proximity
testing problems over significantly smaller domains. The process reducing f (0) to f (1) above
is a special case of proof composition, and each invocation of it incurs two costs on behalf of
the verifier. The first is the query complexity needed to check consistency of f (0) and f (1)

(the “round consistency test”) and the second is the reduction in distance, which affects the
soundness of the protocol. Assuming f (0) is δ(0)-far from all codewords in relative Hamming
distance, for proof composition to work one should prove that with high probability f (1)

is δ(1)-far from all codewords where δ(1) depends on δ(0); larger values of δ(1) imply higher
(better) soundness and smaller communication complexity. A benefit of the FRI protocol
is that with high probability δ(1) ≥ (1 − o(1))δ(0), i.e., the reduction in distance in our
protocol is negligible. In contrast, prior RS proximity PCPP and IOPP solutions follow the
construction and analysis of [23] which in turn is based on the bivariate testing Theorem of
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Polischuk and Spielman [53] and incur a constant multiplicative loss in distance per round of
proof composition (δ(1) ≤ δ(0)/2). This loss limited the number of proof composition rounds
to ≤ logN and thus required replacing q(0)(X) = X2 with a higher degree polynomial, like
q(0)(X) = X2n/2 . The higher degree of q(0) results in Q(1)(X,Y ) having balanced X- and
Y -degrees, namely

degX
(
Q(1)

)
≈ degY

(
Q(1)

)
≈ 2n/2.

Moving to q(0)(X) of constant degree as in FRI gives a biased RS-IOPP (because
degX(Q(1))� degY (Q(1))). The main benefit of this bias is that one side of the recursive
process (that of X) terminates immediately and consequently removes the constant mul-
tiplicative soundness loss incurred in prior works, replacing it with a negligible additive
loss. More to the point, we show that for δ(0) less than the unique decoding radius of the
code (δ(0) < (1− ρ)/2), with high probability (namely, 1− O(1)

|F| ) the sum of (i) the round
consistency error and (ii) the “new” distance δ(1) is at least as large as the “old” distance δ(0).
This statement is relatively straightforward to prove in case the prover is honest, i.e., when
f (1)(y) = Q(1) (x(0), y

)
for all y ∈ L(1) (in this case there is no round consistency error). The

challenging part of the proof is to show this also holds for non-honest provers and arbitrary
f (1); see full version of this paper [10] for more details.
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Abstract
We give very short and simple proofs of the following statements: Given a 2-colorable 4-uniform
hypergraph on n vertices,
1. It is NP-hard to color it with logδ n colors for some δ > 0.
2. It is quasi-NP-hard to color it with O

(
log1−o(1) n

)
colors.

In terms of NP-hardness, it improves the result of Guruswam, Håstad and Sudani [SIAM
Journal on Computing, 2002], combined with Moshkovitz-Raz [Journal of the ACM, 2010], by an
‘exponential’ factor. The second result improves the result of Saket [Conference on Computational
Complexity (CCC), 2014] which shows quasi-NP-hardness of coloring a 2-colorable 4-uniform
hypergraph with O (logγ n) colors for a sufficiently small constant 1� γ > 0.

Our result is the first to show the NP-hardness of coloring a c-colorable k-uniform hypergraph
with poly-logarithmically many colors, for any constants c ≥ 2 and k ≥ 3.
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1 Introduction

A k-uniform hypergraph H(V, E) is a collection of vertices V and a family E of subsets of size
k of the vertices. Let n denote the number of vertices |V|. A coloring of H with c colors is a
mapping χ : V → [c]. A coloring χ is said to be a valid c-coloring if for every e ∈ E , χ assigns
at least two different colors to the vertices in e. The chromatic number of a hypergraph is
the minimum c for which a valid c-coloring exists.

It is easy to find a 2-coloring of a 2-colorable graph. Deciding whether a graph is 3-
colorable or not is a well known NP-complete problem [7]. In an approximate graph (or
hypergraph) coloring problem, given a graph which is c colorable, the algorithm is allowed to
use more than c colors to properly color the given graph. The best known polynomial-time
algorithms to color a 3-colorable graph require nΩ(1) colors. However, the known NP-hardness
results can only rule out coloring a 3-colorable graph with 4 colors [11, 10]. This also implies
that coloring a t-colorable graph with t+ 2bt/3c − 1 colors is NP-hard. Garey and Johnson
[7] proved NP-hardness of (2t − 5)-coloring a t-colorable graph, for all t ≥ 6. Recently,
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15:2 Hypergraph Coloring

Brakensiek-Guruswami [4] showed that for all t ≥ 3, it is NP-hard to find a c-coloring when
c ≤ 2t− 2.

For hypergraphs with uniformity 3 and more, the situation is completely different when
the hypergraph is 2-colorable. The best known approximation algorithm for coloring a
2-colorable hypergraph is with nε color for some explicit ε ∈ (0, 1). It is easy to see that
if t-coloring of c-colorable k-uniform hypergraphs is hard, then it also implies a similar
hardness result for k′-uniform hypergraphs for any k′ > k up to polynomial-time reductions
i.e. coloring a c-colorable k′-uniform hypergraph with t colors is also hard. Therefore, the
wishful inapproximability result is to get nε coloring hardness for 2-colorable 3-uniform
hypergraphs for some ε > 0.

Two directions have been pursued in literature. One is getting better and better hardness
results in terms of colorability, where the uniformity of a hypergraph is any constant k
and the guarantee is that the hypergraph is colorable with constantly many colors. The
other is getting hardness results for smaller values of k . Both the directions are equally
interesting and have been looked into for several years. Table 1 summarizes the known
inapproximability results: For e.g. Guruswami et al. [9] (the first row) showed that given
a 2-colorable 4-uniform hypergraph, there is no polynomial-time algorithm to color it with
O
(

log logn
log log logn

)
many colors unless NP ⊆ DTIME

(
nO(log logn)). We would like to point out

that the condition NP ( DTIME
(
nO(log logn)) from [9] can be replaced with P 6= NP, if one

carries out the reduction of [9] starting with the PCP of [17].
We prove the following results:

I Theorem 1. Assuming NP * DTIME(nO(log logn)), there is no polynomial-time algorithm
that colors a 2-colorable 4-uniform hypergraph on n vertices with O

(
logn

log logn

)
colors.

Although an explicit constant in the exponent of log n was not mentioned in [19], it is
less than 0.01. Therefore, Theorem 1 improves the best known inapproximability result by
Saket [19] by a large polynomial factor, in terms of coloring with few colors. However, both
the results are incomparable (See Remark 1).

Our second result shows NP-hardness of coloring a 2-colorable 4-uniform hypergraph.

I Theorem 2. Assuming P 6= NP, there is no polynomial-time algorithm that colors a
2-colorable 4-uniform hypergraph on n vertices with logδ n colors for some δ > 0.

Theorem 2 improves the best known inapproximability result by Guruswami et al.[9] by
an‘exponential’ factor, in terms of coloring with few colors. In fact, our result is the first
to show the NP-hardness of coloring a c-colorable k-uniform hypergraph with poly(log n)
colors for any constants c ≥ 2 and k ≥ 3.

An independent set in a hypergraph is defined as a set of vertices such that no hyperedge
lies entirely within the set. In a valid coloring of a hypergraph, the vertices colored with the
same color form an independent set. Thus, saying that a hypergraph does not contain an
independent set of size n/c is stronger than saying that it cannot be colored with c colors.

In terms of approximating the size of the maximum independent set, Khot-Saket [15]
showed that given an almost 2-colorable 4-uniform hypergraph, it is quasi-NP-hard to find
an independent set of fractional size 2(logn)1−γ , for any γ > 0. More concretely, they show
that it is quasi-NP-hard to distinguish between cases when a 4-uniform hypergraph has
an independent set of size at least

(
n
2 − o(n)

)
vs. when it has no independent set of size

n/2(logn)1−γ , for any γ > 0.
I Remark. With the exception of results from this paper and Dinur et al.(denoted by ?? in
Table 1), all the remaining results give stronger inapproximability results than showing non



A. Bhangale 15:3

Table 1 Known inapproximability results for hypergraph coloring (for ?? see Remark 1).

Completeness Soundness Assumption

Guruswami et
al. [9, 17]

2-colorable 4-uniform
hypergraph

Ω
( log logn

log log logn

)
P 6= NP

Khot [12] q-colorable 4-uniform hy-
pergraph, q ≥ 5

(log n)cq for
some c > 0

NP * DTIME
(
n(logn)O(1)

)
Khot [13] 3-colorable 3-uniform hy-

pergraph
(log log n)1/9 NP * DTIME

(
n(logn)O(1)

)
??Dinur et al. [5] 2-colorable 3-uniform hy-

pergraph
Ω( 3√log log n) NP * DTIME

(
n(logn)O(1)

)
Saket [19] 2-colorable 4-uniform

hypergraph
Ω(logδ n) for
0 < δ � 1

NP * DTIME
(
nO(log logn))

Guruswami et al. 2-colorable 8-uniform hy-
pergraph

[8] 4-colorable 4-uniform hy-
pergraph

22Ω(
√

log logn)
NP * DTIME

(
n2O(

√
log logn)

)
Guruswami et
al. [8]

3-colorable 3-uniform hy-
pergraph

2Ω( log logn
log log logn )

NP * DTIME
(
n2
O( log logn

log log logn )
)

Khot-Saket [14] 2-colorable 12-uniform hy-
pergraph

2(logn)Ω(1)

NP * DTIME
(
n(logn)O(1)

)
Varma [21] 2-colorable 8-uniform hy-

pergraph
4-colorable 4-uniform hy-
pergraph

2(logn)Ω(1)
NP * DTIME

(
n(logn)O(1)

)
??This paper 2-colorable 4-uniform

hypergraph
Ω
( logn

log logn

)
NP * DTIME

(
nO(log logn))

??This paper 2-colorable 4-uniform
hypergraph

Ω(logδ n) for
0 < δ � 1

P 6= NP

c-colorability in soundness. Namely, they show it is hard to distinguish between cases when
a hypergraph satisfies the property in the completeness column vs. when there does not exist
an independent set of size at least 1/s, where s is the quantity in the soundness column.

1.1 Proof Overview
Our inapproximability result is obtained by constructing a probabilistically checkable proof
where the locations are the vertices of a hypergraph and every check denotes a hyperedge of
the hypergraph. Typically, the PCP is constructed by composing the so-called outer verifier
with the inner verifier. Our starting point is a basic outer verifier that one gets from the
PCP Theorem [6, 1, 2], along with Raz’s parallel repetition theorem [18]. We can view
it as an instance of a Label Cover. A Label Cover instance consists of a bipartite graph
G(U, V,E) where every edge is associated with a projection constraint πe : [R]→ [L] (See
section 2.1). The inner verifier consists of encoding of labels of the vertices in a specific
format and performing a test on the encoding.

A typical hardness of approximation result uses the Long Code encoding where the
encoding of a k bit binary (or q-ary) string has an entry for every f : {0, 1}k → {0, 1} (or
f : [q]k → [q] for q ≥ 2). This blows up a string of length k into a string of length 22k . Such
an encoding is used in the construction of PCP by Guruswami et al. [9] and they managed to
show a ≈ log log n lower bound on the inapproximability of coloring a 2-colorable 4-uniform
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15:4 Hypergraph Coloring

hypergraph. Khot [12] used a different encoding based on Split Code to get the hardness of
poly-logarithmic number of colors, but for q-colorable 4-uniform hypergraph where q ≥ 5 .
Saket [19] improved the result of Guruswami et al. [9] and showed the inapproximability of
coloring with O((log n)δ) colors for a very small constant 0 < δ � 1. Saket also used the
Long Code encoding, but the hypergraph is formed using a different inner verifier compared
to [9]. In a more recent series of works [8, 14, 21], efficient encodings were designed based
on so-called Short Code which was used to break the poly-logarithmic barrier. It is not
clear how to use this Short Code encoding to prove better inapproximability for 2-colorable
4-uniform hypergraphs. In all the previous constructions of PCPs based on Short Code,
either the alphabet size is at least 3 (the guarantee on the hypergraph colorability in the
completeness case) or the number of queries (the uniformity of the constructed hypergraph)
is at least 6 if the alphabet size is restricted to 2 (See Table 1).

Our reduction is along the lines of the reduction in [5] which showed that coloring a
2-colorable 3-uniform hypergraph with (log log n)1/3 colors is quasi-NP-hard. We give a very
brief outline of their reduction first: This reduction also encodes a label in the outer verifier
with a (rather large) subset of the Long Code encoding of size 22k−poly(k). They were able
to construct a PCP over a binary alphabet which only queries 3 bits, giving the hardness
for the above mentioned coloring problem. The encoding consists of all the locations in the
Long Code encoding which correspond to a slice of {0, 1}2k of hamming weight m, where m
is roughly 2k/2. The reduction crucially used two important properties of a specific graph,
known as Kneser graph, on these locations. The first is that the chromatic number of the
graph is large and the second is that in all the colorings of this graph with strictly fewer
colors than the chromatic number, there is a large color class containing a monochromatic
edge. The reduction also needed a multi-layered version of Label Cover, which gives the
hardness of (log log n)1/3 colors based on NP * DTIME(n(logn)O(1)).

In our construction of the PCP, we start with a basic outer verifier and use a very short
encoding of the labels of the outer verifier. More specifically, to get an inapproximability of
c-colorability, we use an encoding of size roughly 2kc, which is much shorter than the Long
Code encoding 22k or the encoding used in [5] for c� 2k. This short encoding is the reason
for improvement in the inapproximability. Of course, the whole analysis needs to work for
such a short encoding. For the analysis to work, we need to query one more bit from the
composed PCP, giving a hardness result for 4-uniform hypergraphs.

The subset of locations in the Long Code that we use corresponds to the vertex set of
the Schrijver graph (See section 2.2 for the definition). It has much fewer number of vertices
than the Kneser graph on the same slice. Moreover, the Schrijver graph also has a property
that its chromatic number is large. Unfortunately, it is known to be a vertex-critical graph
2. Thus, the property analogous to the second property of the Kneser graph mentioned
previously no longer holds for the Schrijver graph. However, if we are allowed to query one
more bit, then given an efficient coloring of the constructed 4-uniform hypergraph, it is
possible to list-decode, from the coloring, a small list of possible labelings to the vertices of
the outer verifier. The structure of the hyperedges in our 4-uniform hypergraph ensures that
the lists are consistent with each other i.e. there is a way to assign labels to the vertices of
the Label Cover instance from the list, which satisfies many constraints of the Label Cover
instance.

2 A vertex-critical graph is a graph G in which every vertex is a critical element, that is, if its deletion
decreases the chromatic number of G.
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logδ n NP-hardness
As highlighted earlier, the size of the encoding we use is 2kc and if we start with the NP-
hardness of the Label Cover given by [17], which has better parameters in the subconstant
soundness regime, we can run the whole reduction in polynomial-time if we set c = logδ n
for small enough δ > 0. Therefore, we get the required inapproximability result proving
Theorem 2.

Ω
(

logn
log logn

)
quasi-NP-hardness

The soundness parameter of the Label Cover instance given by [17] has an inverse exponential
dependence on the alphabet size of the instance (See Theorem 5). To get the improved
log1−o(1) n coloring hardness, we start with the usual Label Cover instance derived from
the combination of the PCP Theorem and the parallel repetition theorem. In this case,
there is an inverse polynomial dependence on the soundness parameter and the alphabet size
which enables us to prove a better hardness factor. One drawback of using this Label Cover
instance is that the instance size grows polynomially with the number of parallel repetitions.
More concretely, an instance of size n becomes an instance of size nO(r) with r repetitions.
Thus, it restricts us to assume NP * DTIME

(
nO(log logn)) instead of P 6= NP, as we need

r = Ω(log log n) repetitions.

1.2 logδ n NP-hardness via Independent set analysis?
We discuss here informally why the previous approaches could not reach poly(log n) factor
NP-hardness for approximating hypergraph coloring. Since all the previous approaches
(except [5]) get the inapproximability result by showing the hardness of approximating an
independent set, we focus on those works here. To get NP-hardness of poly(log n)-coloring
by showing the NP-hardness of approximating an independent set by 1/poly(log n) factor,
usually the soundness of the outer verifier (or the Label Cover instance) that one needs is at
most 1/poly(log n). The outer verifier of [17] has an exponential dependence on the label set
size and the inverse of the soundness parameter. Thus, the label set size which is required
for such reductions is at least 2poly(logn). The analysis of [8] uses the Short Code encoding
where the degree is ω(1). Therefore, the blowup in the reduction size is 2poly(logn)ω(1) , which
is super polynomial.

One can use a Short Code encoding where the degree is constant so that the blow-up
is limited to 2poly(logn)O(1) . [14] used a Quadratic Code where the degree is 2. One can
possibly use the Quadratic Code encoding or Short Code encoding of constant degree and
get a hypergraph of polynomial size starting with a Label Cover instance with 1/poly(log n)
soundness. Unfortunately, the analysis of [14] crucially needed an outer verifier with certain
properties. It is not yet known how to get a Label Cover instance by a polynomial-time
reduction starting from a 3SAT instance, with similar properties that were needed in [14]
and with 1/poly(log n) soundness (the latter was done in [17]).

2 Preliminaries

We denote a set {1, 2, . . . , n} by [n]. Bold face letters a,b, c . . . are used to denote strings
and subscripts are used to denote the elements at the respective locations in a string. By an
abuse of notation, we will use a ∈ {0, 1}n as a binary string of length n as well as a subset
of [n] given by {i ∈ [n] | ai = 1}. We will denote by 2[n] the set of all subsets of [n] and by([n]
k

)
the set of all subsets of [n] of size k. We denote the quantity O(nk), where k ∈ R+ by

poly(n).
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2.1 Label Cover
Now, we define a Label Cover instance which is the starting point of our reduction.

I Definition 3 (Label Cover). A Label Cover instance L = (U, V,E, [R], [L], φ) consists of
a bi-regular bipartite graph on two sets of variables U ∪ V . The range of variables in U is
denoted by [R] and that in V by [L]. Every (x, y) ∈ E, has a constraint φx→y : [R]→ [L].
Moreover, every constraint between a pair of variables is a projection constraint i.e. a labeling
to x uniquely defines a labeling to y that satisfies the constraint φx→y.

For brevity, we say x ∼ y, or ‘x is a neighbor of y’ if φx→y ∈ φ. We say that a Label
Cover instance is ε-satisfiable, if there exists a labeling to the variables which satisfies at
least ε fraction of the constraints between U and V .

We have the following NP-hardness result which follows from the PCP Theorem [6, 1, 2]
along with Raz’s parallel repetition theorem [18].

I Theorem 4. For any parameter l ∈ N, there exists a reduction from a 3-SAT instance of
size n to a Label Cover instance with nO(`) variables over a range of size 2O(`). The Label
Cover instance has the following completeness and soundness conditions:

If the 3-SAT instance is satisfiable, then there exists an assignment to the Label Cover
instance that satisfies all the constraints.
If the 3-SAT instance is not satisfiable, then every assignment to the Label Cover instance
satisfies at most 2−Ω(`) fraction of the constraints.

Moreover, the reduction runs in time nO(`).

For our NP-hardness result, we need the following reduction from a 3-SAT instance to a
Label Cover instance by [17], which gives better parameters for subconstant soundness.

I Theorem 5. There exist absolute constants c′, c′′ > 1 such that for every n and ε > 0 (ε
can be any function of n), there exists a reduction from a 3-SAT instance of size n to a Label

Cover instance with n1+o(1) ·
( 1
ε

)c′
variables over a range of size 2( 1

ε )
c′′

. The Label Cover
instance has the following completeness and soundness conditions:

If the 3-SAT instance is satisfiable, then there exists an assignment to the Label Cover
instance that satisfies all the constraints.
If the 3-SAT instance is not satisfiable, then every assignment to the Label Cover instance
satisfies at most ε fraction of the constraints.

Moreover, the reduction runs in time poly(n, 1
ε ).

2.2 Schrijver Graphs
In this section, we define a Schrijver graph of order n, k, denoted by SG(n, k), where
n ≥ 3, k < n and n− k is even, which we use as a gadget in our reduction. The vertex set of
this Schrijver graph, denoted by VSG(n, k), is a subset of {0, 1}n. An element a ∈ {0, 1}n
belongs to VSG(n, k) iff
1. The hamming weight of a is n−k

2 .
2. There exists no i ∈ [n] such that both ai = 1 and a(i+1) mod (n+1) = 1.

In other words, if we denote a cycle graph on {1, 2, . . . , n} by Cn, then the vertex set
V (n, k) corresponds to all independent sets in Cn of size n−k

2 . The edge set of SG(n, k) is as
follows:

ESG(n, k) = {(a,b) | a ∩ b = ∅}.
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Vertices V. Each vertex x ∈ U in the Label Cover instance L is replaced by a cloud
of size |VSG(R, k)| denoted by C[x] := x× VSG(R, k). We refer to a vertex from the
cloud C[x] by a pair (x, a), where a ∈ VSG(R, k). The vertex set of the hypergraph
H is given by

V = ∪x∈UC[x].

Hyperedges E. The hyperedges of H are given by sets {(x, a), (x,b), (y, c), (y,d)}
such that the following conditions hold:
1. There exists a common neighbor z of x and y in V .
2. For every α, β ∈ [R] such that φx→z(α) = φy→z(β), {aα,bα, cβ ,dβ} are not all

the same i.e. |{aα,bα, cβ ,dβ}| = 2.

Figure 1 Reduction to a 4-uniform hypergraph H(V, E)

In other words, a ∼ b in SG(n, k) iff their supports are disjoint.
We need two properties of the Schrijver graph SG(n, k), first of which is easy to prove.

I Claim 6 ([5]). |VSG(n, k)| ≤
(
n
k

)
.

Proof. Map every vertex x ∈ VSG(n, k) to x̃ ∈ {0, 1}n by setting x̃i = x̃i+1 mod (n+1) = 1
iff xi = 1 and rest of the coordinates to 0. Clearly, this is an injective map from VSG(n, k)
to the set

( [n]
n−k
)
. J

The second property of SG(n, k) is its chromatic number. The following theorem from
[20] gives the exact chromatic number of SG(n, k) which builds on the beautiful proofs by
Lovász [16] and Bárány [3].

I Theorem 7 ([20]). The chromatic number of SG(n, k) is k + 2.

3 Main Reduction

We give a reduction from a Label Cover instance L = (U, V,E, [R], [L], φ) with a parameter
R > L and a parameter k, both of which we will set later, to a 4-uniform hypergraph H(V, E).
We also assume that R− k is even. The reduction is given in Figure 1.

The completeness is easy to prove:

I Lemma 8 (Completeness). If the Label Cover instance is satisfiable then the hypergraph H
is 2-colorable.

Proof. Let A : U ∪ V → [R] ∪ [L] be the perfectly satisfiable labeling to the Label Cover
instance L. The 2-coloring of the hypergraph H is given by assigning a vertex (x, a) ∈ C[x]
with a color aA(x). We show that this is a valid 2-coloring of H. Suppose not, in which case,
there exists a monochromatic hyperedge. Let that hyperedge be {(x, a), (x,b), (y, c), (y,d)}.
Let z be the common neighbor responsible for adding this edge. It must be that φx→z(A(x)) 6=
φy→z(A(y)) and hence A is not a perfectly satisfiable assignment, which is a contradiction. J

We now show the soundness of the reduction.
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15:8 Hypergraph Coloring

I Lemma 9 (Soundness). If the Label Cover instance is not 1
(k+1)k2 satisfiable then the

hypergraph is not even k + 1-colorable.

Proof. In this case, we show that if the hypergraph is (k + 1)-colorable, then there exists a
labeling to the Label Cover instance that satisfies at least 1

(k+1)k2 fraction of the constraints
between the two layers U and V .

Suppose the hypergraph is (k + 1)-colorable. Fix a k + 1 coloring χ of the hypergraph.
Consider the Schrijver Graph SG(R, k) defined on the cloud C[x] where x ∈ U . By Theorem 7,
there exists a monochromatic edge i.e χ((x, a)) = χ((x,b)) where (a,b) ∈ ESG(R, k). Label
a cloud C[x] (and hence the vertex x) c ∈ [k + 1] if that edge is c-colored (breaking ties
arbitrarily). Out of |U | vertices, there exists at least 1/(k + 1) fraction of the vertices with
the same color. Let that color be c′.

From now on, we denote the c′ colored vertices of U by U ′. We know from the bi-regularity
of the Label Cover instance that the total number of constraints between U ′ and V is at
least 1

k+1 fraction of the constraints between layers U and V . Thus, if we show that we can
satisfy at least 1

k2 fraction of the constraints between U ′ and V , then we are done. This will
satisfy 1

(k+1)k2 fraction of the constraints between layers U and V .

List-Labeling

We define the list-labeling A to the vertices in U ′ as follows: For x ∈ U ′, in the induced
Schrijver Graph on C[x], there exists a monochromatic edge with color c′. Let that edge be
{(x, a), (x,b)}. Let A(x) = [R] \ (a ∪ b).

I Observation 10. For every x ∈ U ′, |A(x)| = k.

We need a simple fact as follows:

I Fact 11. For every pairwise intersecting family F ⊆
([n]
k

)
, there exists i ∈ [n] which is

present in at least 1/k fraction of the sets in F .

Proof. Suppose not. Consider A = {a1, a2, . . . , , ak} ∈ F and the sub-families Ai = {A′ ∈
F | ai ∈ A′} for i ∈ [k]. By assumption, we have |Ai| < |F|/k. By the union bound,
|∪iA| ≤

∑
i |Ai| < |F|. Thus, there exists B ∈ F\(∪iAi) and A∩B = ∅, a contradiction. J

The following two claims finish the proof.

I Claim 12. For every x, y ∈ U ′ that have a common neighbor z in V ,

φx→z(A(x)) ∩ φy→z(A(y)) 6= ∅.

Proof. For contradiction, suppose there exist x, y ∈ U ′ and a common neighbor z such that
φx→z(A(x))∩φy→z(A(y)) = ∅. Let {(x, a), (x,b)} and {(y, c), (y,d)} be the monochromatic
c′-colored edges that were used to define A on x and y respectively. Since, φx→z(A(x)) ∩
φy→z(A(y)) = ∅, we know that φx→z([R] \ (a∪b)) and φy→z([R] \ (c∪d)) are disjoint. This
means that for every α, β ∈ [R] such that φx→z(α) = φy→z(β), we have aα,bα, cβ ,dβ , not
all of which are 1 (this follows from aα,bα not both equal to 1 as they form an edge in the
Schrijver graph SG(R, k)). Also, not all of aα,bα, cβ ,dβ are 0, since otherwise α ∈ A(x)
and β ∈ A(y) and hence φx→y(A(x)) ∩ φy→z(A(y)) 6= ∅. Thus, {(x, a), (x,b), (y, c), (y,d)}
is a valid hyperedge in H, which is monochromatic with color c′. This contradicts the fact
that χ is a valid k + 1 coloring of H. J
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Now, consider the following randomized labeling B:

∀z ∈ V, B(z)← arg max
i∈[L]

|{x | (x ∈ U ′) ∧ (z ∼ x) ∧ i ∈ φx→z(A(x))}|

∀x ∈ U ′, B(x)← A uniformly random label from A(x).

In other words, B(z) for z ∈ V is a label i ∈ [L] which is the most common projection (w.r.t.
φx→z) of the labels A(x), where x ∼ z and x ∈ U ′.

I Claim 13. The randomized labeling B satisfies at least 1
k2 fraction of the constraints

between U ′ and V in expectation.

Proof. Fix z ∈ V and let X = {x1, x2, . . . , xt} be the neighbors of z in U ′ which satisfy
B(z) ∈ φxi→z(A(xi)). Thus, X constitutes at least 1/k fraction of z’s neighbors in U ′

using Claim 12 and Fact 11. The edge (xi, z) is satisfied by the labeling (B(xi), B(z)) with
probability 1/|A(xi)| = 1/k using Observation 10. Thus, in expectation, the randomized
labeling satisfies at least 1/k2 fraction of the constraints between z and U ′. Finally, by
linearity of expectation, B satisfies at least 1/k2 fraction of the constraints between U ′

and V . J

Thus, the partial labeling B satisfies at least 1
(k+1)k2 fraction of the constraints between

U and V in expectation. J

3.1 Setting of parameters
Proof of Theorem 1: Starting with a 3-SAT instance of size n, we first reduce it to a Label
Cover instance given by Theorem 4 with parameter ` = c0 log log n for a large constant c0 > 1,
so that the soundness of the Label Cover instance is 2−Ω(`) � Ω(log−3 n). We will set k =
log n. Thus, the number of vertices in the hypergraph H is N = nO(`) · 2O(`)·k = nO(log logn)

and the reduction runs in time nO(log logn). Therefore, assuming NP * DTIME(nO(log logn)),
there is no polynomial-time algorithm to color a 2-colorable 4-uniform hypergraph on N

vertices with O
(

logN
log logN

)
colors. J

Proof of Theorem 2: Starting with a 3-SAT instance of size n, we first reduce it to a Label
Cover instance given by Theorem 5 with parameter ε = (log n)−4δ for a sufficiently small
constant δ > 0. Thus, the soundness of the Label Cover instance is (log n)−4δ, the alphabet
size is |Σ| = 2(logn)c

′δ and the size of the Label Cover instance is n1+o(1) · (log n)c′′δ for some
absolute constants c′, c′′ > 1. We will set k = (log n)δ. Thus, the number of vertices in the
hypergraph H is N ≤ n1+o(1) · (log n)c′′δ · |Σ|k = n1+o(1) · (log n)c′′δ · 2(logn)4c′δ+δ = n1+o(1),
for small enough δ. Also, the overall reduction starting from an instance of 3-SAT of size n
runs in time poly(n). Therefore, it is NP-hard to color a 2-colorable 4-uniform hypergraph
on N vertices with logδ N colors for some δ > 0. J

4 Conclusion

Long Code has been used extensively to prove inapproximability results. Many inapprox-
imability results benefit from puncturing/derandomization of the Long Code constructions.
Most of them are algebraic in nature e.g. Hadamard code, Split code, Short code etc. We
made an attempt to find a puncturing of the Long Code which is more combinatorial in
nature. We believe that such combinatorial puncturings might find new applications in the
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15:10 Hypergraph Coloring

hardness of approximation as well as in other areas which use the Long Code or similar
objects.

We conclude with a couple of obvious interesting open problems:
1. Can we show that coloring a 2-colorable 3-uniform hypergraph with ω(log log n) colors is

NP-hard, or even quasi-NP-hard?
2. Can we go beyond poly(log n) coloring NP-hardness factor for coloring a c-colorable

k-uniform hypergraph for some constants c ≥ 2 and k ≥ 3?
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Abstract
We study sublinear algorithms for two fundamental graph problems, MAXCUT and correlation
clustering. Our focus is on constructing core-sets as well as developing streaming algorithms for
these problems. Constant space algorithms are known for dense graphs for these problems, while
Ω(n) lower bounds exist (in the streaming setting) for sparse graphs.

Our goal in this paper is to bridge the gap between these extremes. Our first result is to
construct core-sets of size Õ(n1−δ) for both the problems, on graphs with average degree nδ (for
any δ > 0). This turns out to be optimal, under the exponential time hypothesis (ETH). Our
core-set analysis is based on studying random-induced sub-problems of optimization problems.
To the best of our knowledge, all the known results in our parameter range rely crucially on
near-regularity assumptions. We avoid these by using a biased sampling approach, which we
analyze using recent results on concentration of quadratic functions. We then show that our
construction yields a 2-pass streaming (1 + ε)-approximation for both problems; the algorithm
uses Õ(n1−δ) space, for graphs of average degree nδ.
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Sublinear algorithms are a powerful tool for dealing with large data problems. The range of
questions that can be answered accurately using sublinear (or even polylogarithmic) space
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core-sets have been proven to be a rich toolkit.
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16:2 Sublinear MAXCUT and Correlation Clustering

When dealing with large graphs, the sublinear paradigm has yielded many powerful
results. For many NP-hard problems on graphs, classic results from property testing [20, 7]
imply extremely efficient sublinear approximations. In the case of dense graphs, these results
(and indeed older ones of [10, 16]) provide constant time/space algorithms. More recently,
graph sketching techniques have been used to obtain efficient approximation algorithms for
cut problems on graphs [2, 3] in a streaming setting. These algorithms use space that is
nearly linear in n (the number of vertices) and are sublinear in the number of edges as long
as |E| = ω(n) (this is called the “semi-streaming” setting).

By way of lower bounds, recent results have improved our understanding of the limits of
sketching and streaming. In a sequence of results [22, 23, 25], it was shown that for problems
like matching and MaxCut in a streaming setting, Ω(n) space is necessary in order to obtain
any approximation better than a factor 2 in one round. (Note that a factor 2 is trivial by
simply counting edges.) Furthermore, Andoni et al. [9] showed that any sketch for all the
cuts in a graph must have size Ω(n).

While these lower bounds show that O(n) space is the best possible for approximating
problems like MaxCut in general, the constructions used in these bounds are quite specialized.
In particular, the graphs involved are sparse, i.e., have Θ(n) edges. Meanwhile, as we
mentioned above, if a graph is dense (Ω(n2) edges), random sampling is known to give O(1)
space and time algorithms. The question we study in this paper is if there is a middle ground:
can we get truly sublinear (i.e., o(n)) algorithms for natural graph problems in between
(easy) dense graphs and (hard) sparse graphs?

Our main contribution is to answer this in the affirmative. As long as a graph has average
degree nδ for some δ > 0, truly sub-linear space (1 + ε) approximation algorithms are possible
for problems such as MaxCut and correlation clustering.1 Indeed, we show that a biased
sample of vertices forms a “core-set” for these problems. A core-set for an optimization
problem (see [1]), is a subset of the input with the property that a solution to the subset
provides an approximation to the solution on the entire input.

Our arguments rely on understanding the following fundamental question: given a graph
G, is the induced subgraph on a random subset of vertices a core-set for problems such as
MaxCut? This question of sub-sampling and its effect on the value of an optimization
problem is well studied. Results from property testing imply that a uniformly random sample
of constant size suffices for many problems on dense graphs. [16, 6] generalized these results
to the case of arbitrary k-CSPs. More recently, [12], extending a result in [14], studied
the setting closest to ours. For graphs, their results imply that when the maximum and
minimum degrees are both Θ(nδ), then a random induced subgraph with Õ(n1−δ) acts as
a core-set for problems such as MaxCut. Moreover, they showed that for certain lifted
relaxations, subsampling does not preserve the value of the objective. Finally, using more
modern techniques, [31] showed that the cut norm of a matrix (a quantity related to the
MaxCut) is preserved up to a constant under random sampling, improving on [16, 6]. While
powerful, we will see that these results are not general enough for our setting. Thus we
propose a new, conceptually simple technique to analyze sub-sampling, and present it in the
context of MaxCut and correlation clustering.

1.1 Our Results
As outlined above, our main result is to show that there exist core-sets of size Õ(n1−δ) for
MaxCut and correlation clustering for graphs with Ω(n1+δ) edges (where 0 < δ ≤ 1). This

1 We consider the max-agreement version of correlation clustering (see Section 2).
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then leads to a two-pass streaming algorithm for MaxCut and correlation clustering on
such graphs, that uses Õ(n1−δ) space and produces a 1 + ε approximation.

This dependence of the core-set size on δ is optimal up to logarithmic factors, by a result
of [15]. Specifically, [15] showed that any (1 + ε) approximation algorithm for MaxCut on
graphs of average degree nδ must have running time 2Ω(n1−δ), assuming the exponential time
hypothesis (ETH). Since a core-set of size o(n1−δ) would trivially allow such an algorithm
(we can perform exhaustive search over the core-set), our construction is optimal up to a
logarithmic factor, assuming ETH.

Our streaming algorithm for correlation clustering can be viewed as improving the semi-
streaming (space Õ(n)) result of Ahn et al. [4], while using an additional pass over the data.
Also, in the context of the lower bound of Andoni et al. [9], our result for MaxCut can be
interpreted as saying that while a sketch that approximately maintains all cuts in a graph
requires an Ω(n) size, one that preserves the MaxCut can be significantly smaller, when the
graph has a polynomial average degree.

At a technical level, we analyze the effect of sampling on the value of the MaxCut and
correlation clustering objectives. As outlined above, several techniques are known for such an
analysis, but we give a new and conceptually simple framework that (a) allows one to analyze
non-uniform sampling for the first time, and (b) gets over the assumptions of near-regularity
(crucial for [14, 12]) and density (as in [16, 6]). We expect the ideas from our analysis to be
applicable to other settings as well, especially ones for which the ‘linearization’ framework
of [10] is applicable.

The formal statement of results, an outline of our techniques and a comparison with
earlier works are presented in Section 3.

1.2 Related Work
MaxCut and correlation clustering are both extremely well-studied problems, and thus we
will only mention the results most relevant to our work.

Dense graphs. A graph is said to be dense if its average degree is Ω(n). Starting with the
work of Arora et al. [10], many NP hard optimization problems have been shown to admit a
PTAS when the instances are dense. Indeed, a small random induced subgraph is known to
be a core-set for problems such as MaxCut, and indeed all k-CSPs [20, 6, 16, 29]. The work
of [10] relies on an elegant linearization procedure, while [16, 6] give a different (and more
unified) approach based on “cut approximations” of a natural tensor associated with a CSP.

Polynomial density. The focus of our work is on graphs that are in between sparse (constant
average degree) and dense graphs. These are graphs whose density (i.e., average degree) is
nδ, for some 0 < δ < 1. Fotakis et al. [15] extended the approach of [10] to this setting,
and obtained (1 + ε) approximation algorithms with run-time exp(Õ(n1−δ)). They also
showed that it was the best possible, under the exponential time hypothesis (ETH). By
way of core-sets, in their celebrated work on the optimality of the Goemans-Williamson
rounding, Feige and Schechtman [14] showed that a random sample of Õ(n1−δ) is a core-set
for MaxCut, if the graphs are almost regular and have an average degree nδ. This was
extended to other CSPs by [12]. These arguments seem to use near-regularity in a crucial
way, and are based on restricting the number of possible ‘candidates’ for the maximum cut.

Streaming algorithms and lower bounds. In the streaming setting, there are several
algorithms [2, 27, 18, 3, 19, 26] that produce cut or spectral sparsifiers with O( nε2 ) edges
using Õ( nε2 ) space. Such algorithms preserve every cut within (1 + ε)-factor (and therefore
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also preserve the max cut). Andoni et al. [9] showed that such a space complexity is essential;
in fact, [9] show that any sketch for all the cuts in a graph must have bit complexity Ω( nε2 )
(not necessarily streaming ones). However, this does not rule out the possibility of being
able to find a maximum cut in much smaller space.

For MaxCut, Kapralov et al. [24] and independently Kogan et al. [28] proved that
any streaming algorithm that can approximate the MaxCut value to a factor better than
2 requires Ω̃(

√
n) space, even if the edges are presented in random order. For adversarial

orders, they showed that for any ε > 0, a one-pass (1 + ε)-approximation to the max cut
value must use n1−O(ε) space. Very recently, Kapralov et al. [25] went further, showing that
there exists an ε∗ > 0 such that every randomized single-pass streaming algorithm that yields
a (1 + ε∗)-approximation to the MAXCUT size must use Ω(n) space.

Correlation clustering. Correlation clustering was formulated by Bansal et al. [11] and
has been studied extensively. There are two common variants of the problem – maximizing
agreement and minimizing disagreement. While these are equivalent for exact optimization
(their sum is a constant), they look very different under an approximation lens. Maximizing
agreement typically admits constant factor approximations, but minimizing disagreement
is much harder. In this paper, we focus on the maximum-agreement variant of correlation
clustering and in particular we focus on (1 + ε)-approximations. Here, Ailon and Karnin [5]
presented an approximation scheme with sublinear query complexity (which also yields a
semi-streaming algorithm) for dense instances of correlation clustering. Giotis and Guruswami
[17] described a sampling based algorithm combined with a greedy strategy which guarantees
a solution within (εn2) additive error. (Their work is similar to the technique of Mathieu
and Schudy [29].) Most recently, Ahn et al. [4] gave a single-pass semi-streaming algorithm
for max-agreement. For bounded weights, they provide an (1 + ε)-approximation streaming
algorithm and for graphs with arbitrary weights, they present a 0.766(1− ε)-approximation
algorithm. Both algorithms require (nε−2) space. The key idea in their approach was to
adapt multiplicative-weight-update methods for solving the natural SDPs for correlation
clustering in a streaming setting using linear sketching techniques.

2 Definitions

I Definition 1 (MaxCut). Let G = (V,E,w) be a graph with weights w : E → R+. Let
(A,B) be a partition of V and let w(A,B) denote the sum of weights of edges between A
and B. Then MaxCut(G) = max(A,B) partition of V w(A,B).

For ease of exposition, we will assume that the input graph for MaxCut is unweighted.
Our techniques apply as long as all the weights are O(1). Also, we denote by ∆ the average
degree, i.e.,

∑
i,j wij/|V |.

Moving now to correlation clustering, let G = (V,E, c+, c−) be a graph with edge weights
c+ij and c−ij where for every edge ij we have c+ij , c

−
ij ≥ 0 and only one of them is nonzero. For

every edge ij ∈ E, we define ηij = c+ij − c
−
ij and for each vertex, di =

∑
i∈Γ(j) |ηij |. We will

also assume that all the weights are bounded by an absolute constant in magnitude (for
simplicity, we assume it is 1). We define the “average degree” ∆ (used in the statements
that follow) of a correlation clustering instance to be (

∑
i di)/n.

I Definition 2 (MAX-AGREE correlation clustering). Given G = (V,E, c+, c−) as above,
consider a partition of V into clusters C1, C2, . . . , Ck, and let χij be an indicator that is 1 if
i an j are in the same cluster and 0 otherwise. The MAX-AGREE score of this clustering is
given by

∑
ij c

+
ijχij +

∑
ij c
−
ij(1− χij). The goal is to find a partition maximizing this score.

The maximum value of the score over all partitions of V will be denoted by CC(G).



A. Bhaskara, S. Daruki, and S. Venkatasubramanian 16:5

Note that the objective value can be simplified to
∑
ij c
−
ij + ηijχij = C− +

∑
ij ηijχij , where

C− denotes the sum
∑
ij c
−
ij .

We will also frequently use concentration bounds; these are stated in full version of the
paper.

3 Technical overview

We now present an outline of our main ideas. Suppose we have a graph G = (V,E). First,
we define a procedure vertex sample. This takes as input probabilities pi for every vertex,
and produces a random weighted induced subgraph.

Procedure vertex sample ({pi}i∈V ). Sample a set S′ of vertices by selecting each vertex
vi with probability pi independently. Define H to be the induced subgraph of G on the
vertex set S′. For i, j ∈ S′, define wij = 1

pipj∆2 .2
Intuitively, the edge weights are chosen so that the total number of edges remains the

same, in expectation. Next, we define the notion of an importance score for vertices. Let di
denote the degree of vertex i.

I Definition 3. The importance score hi of a vertex i is defined as hi = min{1, max{di,ε∆}
∆2αε

},
where αε is an appropriately chosen parameter (for MaxCut, we set it to ε4

C logn , and for
correlation clustering, we set it to ε8

C logn , where C is an absolute constant).

The main result is now the following:

I Theorem 4 (Core-set). Let G = (V,E) have an average degree ∆. Suppose we apply
vertex sample with probabilities pi ∈ [hi, 2hi] to obtain a weighted graph H. Then H has
Õ( n∆ ) vertices and the quantities MaxCut(H) and CC(H) are within a (1 + ε) factor of
the corresponding quantities MaxCut(G) and CC(G), w.p. at least 1− 1

n2 .

While the number of vertices output by the vertex sample procedure is small, we would
like a core-set of small “total size”. This is ensured by the following.

Procedure edge sample (H). Given a weighted graph H with total edge weightW , sample
each edge e ∈ E(H) independently with probability pe := min(1, 8|S′|we

ε2W ), to obtain a graph
H ′. Now, assign a weight we/pe to the edge e in H ′.

The procedure samples roughly |S′|/ε2 edges, with probability proportional to the edge
weights. The graph is then re-weighted in order to preserve the total edge weight in
expectation, yielding:

I Theorem 5 (Sparse core-set). Let G be a graph with n vertices and average degree ∆ = nδ.
Let H ′ be the graph obtained by first applying vertex sample and then applying edge
sample. Then H ′ is a ε-core-set for MaxCut and CC, having size Õ( n∆ ) = Õ(n1−δ).

We then show how to implement the above procedures in a streaming setting. This gives:

I Theorem 6 (Streaming algorithm). Let G be a graph on n vertices and average degree
∆ = nδ, whose edges arrive in a streaming fashion in adversarial order. There is a two-
pass streaming algorithm with space complexity Õ( n∆ ) = Õ(n1−δ) for computing a (1 + ε)-
approximation to MaxCut(G) and CC(G).

2 In correlation clustering, we have edge weights to start with, so the weight in H will be wij · c+
ij (or c−ij).
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16:6 Sublinear MAXCUT and Correlation Clustering

Of these, Theorem 4 is technically the most challenging. Theorem 5 follows via standard
edge sampling methods akin to those in [2] (which show that w.h.p., every cut size is
preserved). It is presented in full version of the paper, for completeness. The streaming
algorithm, and a proof of Theorem 6, are presented in Section 6. In the following section, we
give an outline of the proof of Theorem 4.

3.1 Proof of the sampling result (theorem 4): an outline
In this outline we will restrict ourselves to the case of MaxCut as it illustrates our main
ideas. Let G be a graph as in the statement of the theorem, and let H be the output of the
procedure vertex sample.

Showing that MaxCut(H) is at least MaxCut(G) up to an εn∆ additive term is easy.
We simply look at the projection of the maximum cut in G to H (see, for instance, [14]).
Thus, the challenge is to show that a sub-sample cannot have a significantly larger cut, w.h.p.
The natural approach of showing that every cut in G is preserved does not work as 2n cuts
is too many for the purposes of a union bound.

There are two known ways to overcome this. The first approach is the one used in [20, 14]
and [12]. These works essentially show that in a graph of average degree ∆, we need to
consider only roughly 2n/∆ cuts for the union bound. If all the degrees are roughly ∆, then
one can show that all these cuts are indeed preserved, w.h.p. There are two limitations of
this argument. First, for non-regular graphs, the variance (roughly

∑
i pd

2
i , where p is the

sampling probability) can be large, and we cannot take a union bound over exp(n/∆) cuts.
Second, the argument is combinatorial, and it seems difficult to generalize this to analyze
non-uniform sampling.

The second approach is via cut decompositions, developed in [16, 6]. Here, the adjacency
matrix A is decomposed into poly(1/ε) rank-1 matrices, plus a matrix that has a small
cut norm. It turns out that solving many quadratic optimization problems (including
MaxCut) on A is equivalent (up to an additive εn∆) to solving them over the sum of rank-1
terms (call this A′). Now, the adjacency matrix of H is an induced square sub-matrix of
A, and since we care only about A′ (which has a simple structure), [6] could show that
MaxCut(H) ≤MaxCut(G) + εn2, w.h.p. To the best of our knowledge, such a result is
not known in the “polynomial density” regime (though the cut decomposition still exists).

Our technique. We consider a new approach. While inspired by ideas from the works
above, it also allows us to reason about non-uniform sampling in the polynomial density
regime. Our starting point is the result of Arora et al. [10], which gives a method to estimate
the MaxCut using a collection of linear programs (which are, in turn, derived using a
sample of size n/∆). Now, by a double sampling trick (which is also used in the approaches
above), it turns out that showing a sharp concentration bound for the value of an induced
sub-program of an LP as above, implies Theorem 4. As it goes via a linear programming and
not a combinatorial argument, analyzing non-uniform sampling turns out to be quite direct.
Let us now elaborate on this high level plan.

Induced sub-programs. First, we point out that an analysis of induced sub-programs is
also an essential idea in the work of [6]. The main difference is that in their setting, only
the variables are sub-sampled (and the number of constraints remains the same). In our
LPs, the constraints correspond to the vertices, and thus there are fewer constraints in the
sampled LP. This makes it harder to control the value of the objective. At a technical level,
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while a duality-based argument using Chernoff bounds for linear forms suffices in the setting
of [6], we need the more recent machinery on concentration of quadratic functions.

We start by discussing the estimation technique of [10].

Estimation with Linear Programs. The rough idea is to start with the natural quadratic
program for MaxCut: max

∑
(i,j)∈E xi(1 − xj), subject to xi ∈ {0, 1}.3 This is then

“linearized” using a seed set of vertices sampled from G. We refer to Section 4 for details.
For now, Est(G) is a procedure that takes a graph G and a set of probabilities {γi}i∈V (G),
samples a seed set using γ, and produces an estimate of MaxCut (G).

Now, suppose we have a graph G and a sample H . We can imagine running Est(G) and
Est(H) to obtain good estimates of the respective MaxCut values. But now suppose that
in both cases, we could use precisely the same seed set. Then, it turns out that the LPs
used in Est(H) would be ‘induced’ sub-programs (in a sense we will detail in Section 5) of
those used in Est(G), and thus proving Theorem 4 reduces to showing a sufficiently strong
concentration inequality for sub-programs.

The key step above was the ability to use same seed set in the Est procedures. This can
be formalized as follows.

Double sampling. Consider the following two strategies for sampling a pair of subsets
(S, S′) of a universe [n] (here, qv ≤ pv for all v):

Strategy A: choose S′ ⊆ [n], by including every v w.p. pv, independently; then for v ∈ S′,
include them in S w.p. qv/pv, independently.
Strategy B: pick S ⊆ [n], by including every v w.p. qv; then iterate over [n] once again,
placing v ∈ S′ with a probability equal to 1 if v ∈ S, and p∗v if v 6∈ S.

I Lemma 7. Suppose p∗v = pv(1 − qv
pv

)/(1 − pv). Then the distribution on pairs (S, S′)
obtained by strategies A and B are identical.

The proof is by a direct calculation and the details can be found in full version.

Proof of Theorem 4. To show the theorem, we use pv as in the statement of the theorem,
and set q to be the uniform distribution qv = 16 logn

ε2∆ . The proof now proceeds as follows. Let
S′ be a set sampled using the probabilities pv. These form the vertex set of H. Now, the
procedure Est on H (with sampling probabilities qv/pv) samples the set S (as in strategy
A). By the guarantee of the estimation procedure (Corollary 5.1.2 in full version), we have
MaxCut(H) ≈ Est(H), w.h.p. Next, consider the procedure Est on G with sampling
probabilities qv. Again, by the guarantee of the estimation procedure (Corollary 5.1.1), we
have MaxCut(G) ≈ Est(G), w.h.p.

Now, we wish to show that Est(G) ≈ Est(H). By the equivalence of the sampling
strategies, we can now take the strategy B view above. This allows us to assume that the
Est procedures use the same S, and that we pick S′ after picking S. This reduces our goal to
one of analyzing the value of a random induced sub-program of an LP, as mentioned earlier.
The details of this step are technically the most involved, and are presented in Section 5.
This completes the proof of the theorem. (Note that the statement also includes a bound on
the number of vertices of H. This follows immediately from the choice of pv.) J

3 This is a valid formulation, because for every xi 6= xj that is an edge contributes 1 to the objective, and
xi = xj contribute 0.
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4 Estimation via linear programming

We now present the estimation procedure Est used in our proof. It is an extension of [10] to
the case of weighted graphs and non-uniform sampling probabilities.

Let H = (V,E,w) be a weighted, undirected graph with edge weights wij , and let
γ : V → [0, 1] denote sampling probabilities. The starting point is the quadratic program for
MaxCut: max

∑
ij∈E wijxi(1−xj), subject to xi ∈ {0, 1}. The objective can be re-written

as
∑
i∈V xi(di −

∑
j∈Γ(i) wijxj), where di is the weighted degree,

∑
j∈Γ(i) wij . The key idea

now is to “guess” the value of ρi :=
∑
j∈Γ(i) wijxj , by using a seed set of vertices. Given a

guess, the idea is to solve the following linear program, which we denote by LPρ(V ).

maximize
∑
i

xi(di − ρi)− si − ti

subject to ρi − ti ≤
∑
j∈Γ(i)

wijxj ≤ ρi + si

0 ≤ xi ≤ 1, si, ti ≥ 0.

The variables are xi, si, ti. Note that if we fix the xi, the optimal si, ti will satisfy
si + ti = |ρi −

∑
j∈Γ(i) wijxj |. Also, note that if we have a perfect guess for ρi’s (coming

from the MaxCut), the objective can be made ≥MaxCut(H).

Estimation procedure. The procedure Est is the following: first sample a set S ⊆ V where
each i ∈ V is included w.p. γi independently. For every partition (A,S \ A) of S, set
ρi =

∑
j∈Γ(i)∩A

wij
γj

, and solve LPρ(V ) (in what follows, we denote this LP by LP γA,S\A(V ),
as this makes the partition and the sampling probabilities clear). Return the maximum of
the objective values.

Our result here is a sufficient condition for having Est(H) ≈MaxCut(H).

I Theorem 8. Let H be a weighted graph on n vertices, with edge weights wij that add up
to W . Suppose the sampling probabilities γi satisfy the condition

wij ≤
Wε2

8 logn
γiγj∑
u γu

for all i, j. (1)

Then, we have Est(H, γ) ∈ MaxCut(H) ± εW , with probability at least 1 − 1/n2 (where
the probability is over the random choice of S).

The proof consists of claims showing the upper and lower bound separately. The technical
details are presented in full version. Finally, to show Theorem 4 (as outlined in Section 3.1),
we need to apply Theorem 8 with specific values for γ and wij . The related corollaries are
stated in full version of the paper.

5 Random induced linear programs

We will now show that the Est on H has approximately the same value as the estimate
on G (with appropriate γ values). First, note that Est(G) is maxA⊆S LP γA,S\A(G), where
γi = qi. To write the LP, we need the constants ρi, defined by the partition (A,S \ A) as
ρi :=

∑
j∈Γ(i)∩A

1
qj
. For the graph H, the estimation procedure uses an identical program,

but the sampling probabilities are now αi := qi/pi, and the estimates ρ, which we now denote
by ρ̃i, are defined by ρ̃i :=

∑
j∈Γ(i)∩A

pjwij
qj

. Also, by the way we defined wij , ρ̃i = ρi
pi∆2 .
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max
∑
i∈G

[xi(di − ρi)− (si + ti)]

s.t.
∑
j∈Γ(i)

xj ≤ ρi + si, ∀i ∈ [n]

−
∑
j∈Γ(i)

xj ≤ −ρi + ti, ∀i ∈ [n]

0 ≤ xi ≤ 1 ∀i ∈ [n]

(a) The LP on the full graph

max
∑
i∈S′

[xi(d̃i − ρ̃i)− (s̃i+t̃i)]

s.t.
∑

j∈Γ(i)∩S′
wijxj ≤ ρ̃i + s̃i, ∀i ∈ S′

−
∑

j∈Γ(i)∩S′
wijxj ≤ −ρ̃i + t̃i, ∀i ∈ S′

0 ≤ xi ≤ 1, s̃i, t̃i ≥ 0 ∀i ∈ S′

(b) The sampled LP

Figure 1 The two LPs.

minimize
∑
i∈G

ui + ρizi s.t.

ui +
∑
j∈Γ(i)

zj ≥ di − ρi ∀i ∈ V

ui ≥ 0, −1 ≤ zi ≤ 1 ∀i ∈ V

(a) The dual of LP γ
A,S\A(G)

minimize
∑
i∈S′

[ũi + ρ̃iz̃i] s.t.

ũi +
∑

j∈Γ(i)∩S′
wij z̃j ≥ d̃i − ρ̃i ∀i ∈ S′

ũi ≥ 0, −1 ≤ z̃i ≤ 1 ∀i ∈ S′.

(b) The dual of the induced program
LPαA,S\A(H).

Figure 2 The dual LPs.

The degrees are now d̃i :=
∑
j∈Γ(i)∩S′ wij =

∑
j∈Γ(i)∩S′

1
pipj∆2 . The two LPs are shown in

Figure 1. Our aim in this section is to show the following:

I Theorem 9. Let G be an input graph, and let (S, S′) be sampled as described in Section 3.1.
Then, with probability ≥ 1− 1

n2 , we have

max
A⊆S

LP γA,S\A(G) ≥ ∆2 ·max
A⊆S

LPαA,S\A(H)− εn∆.

Proof outline. To prove the theorem, the idea is to take the “strategy B” viewpoint of
sampling (S, S′), i.e., fix S, and sample S′ using the probabilities p∗. Then, we only need
to understand the behavior of an “induced sub-program” sampled with the probabilities p∗.
This is done by considering the duals of the LPs, and constructing a feasible solution to the
induced dual whose cost is not much larger than the dual of the full program, w.h.p. This
implies the result, by linear programming duality.

Let us thus start by understanding the dual of LP γA,S\A(G) given A, shown in Figure 2a.
We note that for any given z, the optimal choice of ui is max{0, di − ρi −

∑
j∈Γ(i) zj}; thus

we can think of the dual solution as being the vector z. The optimal ui may thus be bounded
by 2di, a fact that we will use later. Next, we write down the dual of the induced program,
LPαA,S\A(H), as shown in Figure 2b. Following the outline above, we will construct a feasible
solution to LP (2b), whose cost is close to the optimal dual solution to LP (2a). The
construction we consider is very simple: if z is the optimal dual solution to (2a), we set
z̃i = zi for i ∈ S′ as the candidate solution to (2b). This is clearly feasible, and thus we only
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need to compare the solution costs. The dual objective values are as follows

DualG =
∑
i∈V

ρizi + max{0, di − ρi −
∑
j∈Γ(i)

zj} (2)

DualH ≤
∑
i∈S′

ρ̃izi + max{0, d̃i − ρ̃i −
∑

j∈Γ(i)∩S′
wijzj} (3)

Note that there is a ≤ in (3), as z̃i = zi is simply one feasible solution to the dual (which is
a minimization program). Next, our goal is to prove that w.p. at least 1− 1

n2 ,

max
A⊆S

DualH ≤
1

∆2 ·max
A⊆S

DualG + εn

∆ .

Note that here, the probability is over the choice of S′ given S (as we are taking view-B
of the sampling). The first step in proving the above is to move to a slight variant of the
quantity DualH , which is motivated by the fact that Pr[Yi = 1] is not quite pi, but p∗i (as we
have conditioned on S). Let us define ρ̃∗i := ρi

p∗
i
∆2 (recall that ρ̃i is ρi

pi∆2 ), and w∗ij := 1
p∗
i
p∗
j
∆2 .

So also, let d∗i :=
∑
j∈Γ(i) Yjw

∗
ij . Then, define

Dual∗H :=
∑
i∈S′

ρ̃∗i zi + max{0, d̃∗i − ρ̃∗i −
∑

j∈Γ(i)∩S′
w∗ijzj}. (4)

A straightforward lemma is as follows. The proof is presented in full version of the paper.

I Lemma 10. Let (S, S′) be sampled as in Section 3.1. Then w.p. at least 1− 1
n4 , we have

that for all z ∈ [−1, 1]n and for all partitions (A,S \A) of S,4 |DualH − Dual∗H | ≤ εn
2∆ .

Thus our goal is to show the following (where condition (b) on S is a technical one needed to
bound ρi).

I Lemma 11. Let S satisfy the conditions (a) |S| ≤ 20n logn
ε2∆ , and (b) for all i ∈ V ,∑

j∈Γ(i)∩S
1
qj
≤ 2(di + ε∆). Then, w.p. ≥ 1− 1

n4 over the choice of S′ given S, we have

max
A⊆S

Dual∗H ≤
1

∆2 ·max
A⊆S

DualG + εn

2∆ .

Proof of Theorem 9. The conditions we assumed on S in Lemma 11 hold w.p. at least
1− 1

n4 (via a simple application of Bernstein’s inequality). Thus the conclusion of the lemma
holds w.p. at least 1 − 2

n4 . Combining this with Lemma 10, we have that maxA DualH ≤
1

∆2 maxA DualG + εn
∆ w.p. at least 1− 3

n4 . The theorem then follows via LP duality. J

It thus suffices to prove Lemma 11 via a concentration bound on a quadratic function
that is not quite a quadratic form. Details can be found in full version of the paper.

6 A 2-pass streaming algorithm

We now show how our main core set result can be used to design a streaming algorithm
for MaxCut. The algorithm works in two passes: the first pass builds a core-set S of size
Õ(n/∆) as prescribed by Theorem 4 and the second pass builds the induced weighted graph
G[S] and computes its max cut. This algorithm works under edge insertion/deletion.

4 Note that the partition defines the ρi.
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6.1 Pass 1: Building a core set
To construct S, Theorem 4 states that each vertex must be sampled with probability pi,
where pi ≥ hi and hi = min(1, max(di,ε∆)

∆2αε
) is the importance score of a vertex. As the goal

is to only choose a small number of vertices, we will also make sure that pi ≤ 2hi. The
challenge here is two-fold: we need to sample (roughly) proportional to the degree di, which
can only be computed after the stream has passed, and we also need the actual value of pi
(or a close enough estimate of it) in order to correctly reweight edges in the second pass.

The degree di of a vertex i is the “count” of the number of times i appears in the edge
stream. To sample with probability proportional to di we will therefore make use of streaming
algorithms for `1-sampling [30, 8, 21]. We borrow some notation from [8].

I Definition 12. Let ρ > 0, f ∈ [1, 2]. A (ρ, f)-approximator to τ > 0 is a quantity τ̂ such
that τ/f − ρ ≤ τ̂ ≤ fτ + ρ

I Lemma 13 ([21] (rephrased from [8])). Given a vector x ∈ Rn and parameters ε, δ > 0, c > 0
there exists an algorithm A that uses space O(log(1/ε)ε−1 log2 n log(1/δ)) and generates a
pair (i, v) from a distribution Dx on [1 . . . n] such that with probability 1− δ

Dx(i) is a ( 1
nc , 1 + ε)-approximator to |xi|/‖x‖1

v is a (0, 1 + ε)-approximator to xi
where c is a fixed constant.

We will also need to maintain heavy hitters: all vertices of degree at least ∆2 (up to
constants). To do this, we will make use of the standard CountMin sketch [13]. For
completeness, we state its properties here.

I Lemma 14 ([13]). Fix parameters k, δ > 0. Then given a stream of m updates to a vector
x ∈ Rn there is a sketch CM of size O(k log δ−1(logm+log n)) and a reconstruction procedure
f : [n]→ R such that with probability 1− δ, for any xi, |xi − f(i)| ≤ ‖x‖1/k

Outline. We will have a collection of r, roughly n/∆ `1-samplers. These samplers will
together give a good estimate ((1+ ε)-approximation) of the importance hi for all the vertices
that have a small degree (which we define to be < αε∆2). Then, we use the CM sketch to
maintain the degrees of all the ‘high degree’ vertices, i.e., those with degrees ≥ αε∆2. Taken
together, we obtain the desired sampling in the first pass.

I Definition 15. Given two sets of pairs of numbers S, S′, let

S ∪max S
′ = {(x, max

(x′,y)∈S∪S′,x′=x
y)}.

I Lemma 16. Let S = {(i, vi)} be the set returned by Algorithm 1. Then
S has size Õ

(
n
∆
)
.

Each i ∈ [n] is sampled with probability pi that is (0, 1 + ε) approximated by vi and that
(n−c, 1 + ε)-approximates hi.

Proof sketch. Consider any vertex i with di ≥ ∆2αε. By Lemma 14, such a vertex will
report a count of at least f(i) = (1− ζ)∆2αε and thus is guaranteed to be included in Sh.
Its reported score vi = 1 satisfies the requirement of the Lemma. Secondly, consider any
vertex with degree di < ε∆. For such a vertex, hi = ε/∆αε and thus it is included in Sl with
the desired probability and vi.

Finally, consider a vertex i with ε∆ ≤ di < ∆2αε. The probability that none of the
`1-samplers yield i is (1 − di/n∆)r, and since di/n∆ � 1, this can be approximated as
(1− rdi/n∆). Thus, the probability of seeing i is rdi/n∆ = di/∆2αε as desired. J
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16:12 Sublinear MAXCUT and Correlation Clustering

Algorithm 1 Given n and average degree ∆
Initialize Sl, Sm, Sh ← ∅, and ζ = αε.
Sample elements from [1 . . . n] each with probability ε/∆αε. For each sampled i add
(i, ε/∆αε) to Sl.
Fix ζ > 0. Initialize a CountMin sketch CM with size parameter k = n/∆ζ2. Let f be
the associated reconstruction procedure.
Initialize r = O(n/∆αε) copies A1 . . . Ar of the algorithm A from Lemma 13.
for each stream update (i, w) (a vertex to which current edge is incident, and weight) do
Update each Aj , 1 ≤ j ≤ r. Update CM.

for j = 1 to r do
Sample (i, v) from Aj . Sm = Sm ∪max {(i, v)}

Sh = {(i, 1) | f(i) ≥ (1− ζ)∆2αε}
return Sl ∪max Sm ∪max Sh

I Corollary 17. For each (i, vi) ∈ S, hi ≤ vi ≤ 2hi.

6.2 Pass 2: Building the induced weighted graph
The first pass produces a set S of Õ(n/∆) vertices together with estimates vi for their
importance score hi. If we weight each edge ij in G[S] by wij = 1/vivj∆2, Theorem 4,
along with Corollary 17 guarantee that a MaxCut in the resulting weighted graph is a good
approximation of the true max cut. Thus, knowing S, constructing the re-weighted G[S]
in the second pass is trivial if we had space proportional to the number of edges in G[S].
Unfortunately this can be quadratic in |S|, so our goal is to implement the edge sampling of
Theorem 5 in the second pass. This is done as follows: we maintain a set of edges E′. Every
time we encounter an edge ij with i, j ∈ S, we check to see if it is already in E′. If not, we
toss a coin and with probability pij = min(1, wij log n/ε2) we insert (i, j, wij/pij) into E′.
By Lemma 7.1 in full version of the paper, the size of E′ is Õ(n/∆), and the resulting graph
yields a (1 + ε) approximation to the MaxCut.

7 Correlation Clustering

Our argument for correlation clustering parallels the one for MaxCut. The MAX-AGREE
variant of correlation clustering, while not a CSP (as the number of clusters is arbitrary),
almost behaves as one. We start with two simple observations. The first is that we can
restrict the number of clusters to 1/ε, for the purposes of a (1 + ε) approximation (See
full version of the paper). Next, observe that the optimum objective value is at least
max{C+, C−} ≥ n∆/2. This is simply because placing all the vertices in a single cluster
gives a value C+, while placing them all in different clusters gives C−. Thus, it suffices
to focus on additive approximation of εn∆. Once we fix the number of clusters k, we can
write correlation clustering as a quadratic program in a natural way: for each vertex i, have
k variables xi`, which is supposed to indicate if i is given the label `. We then have the
constraint that

∑
` xi` = 1 for all i. The objective function then has a clean form:

∑
ij

[
k∑
`=1

xi`(1− xj`)c−ij + xi`xj`c
+
ij ] =

∑
ij

∑
`

xi`c
−
ij + xi`xj`ηij =

∑
i,`

xi`(ρi` + d−i ),

where xi` = 1 iff vertex i ∈ C`, and ρi` =
∑
j∈Γ(i) xj`ηij and d

−
i =

∑
j c
−
ij .
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Note the similarity with the program for MaxCut. We will show that the framework
from Section 3.1 carries over with minor changes. The details of the new Est procedure can
be found in full version of the paper (it requires one key change: we now need to consider
k-partitions of the seed set in order to find ρ). The duality based proof is slightly more
involved; however we can use the same rough outline. The proof is presented in full version
of the paper.
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Abstract
The k-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear
codes over F2, which can be stated as follows: given a generator matrix A and an integer k,
determine whether the code generated by A has distance at most k. Here, k is the parameter of
the problem. The question of whether k-Even Set is fixed parameter tractable (FPT) has been
repeatedly raised in literature and has earned its place in Downey and Fellows’ book (2013) as
one of the “most infamous” open problems in the field of Parameterized Complexity.

In this work, we show that k-Even Set does not admit FPT algorithms under the (randomized)
Gap Exponential Time Hypothesis (Gap-ETH) [Dinur’16, Manurangsi-Raghavendra’16]. In fact,
our result rules out not only exact FPT algorithms, but also any constant factor FPT approxim-
ation algorithms for the problem. Furthermore, our result holds even under the following weaker
assumption, which is also known as the Parameterized Inapproximability Hypothesis (PIH) [Lok-
shtanov et al.’17]: no (randomized) FPT algorithm can distinguish a satisfiable 2CSP instance
from one which is only 0.99-satisfiable (where the parameter is the number of variables).

We also consider the parameterized k-Shortest Vector Problem (SVP), in which we are given
a lattice whose basis vectors are integral and an integer k, and the goal is to determine whether
the norm of the shortest vector (in the `p norm for some fixed p) is at most k. Similar to k-Even
Set, this problem is also a long-standing open problem in the field of Parameterized Complexity.
We show that, for any p > 1, k-SVP is hard to approximate (in FPT time) to some constant
factor, assuming PIH. Furthermore, for the case of p = 2, the inapproximability factor can be
amplified to any constant.
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1 Introduction

The study of error-correcting codes gives rise to many computational problems. One of the
most fundamental among these is the problem of computing the distance of a linear code. In
this problem, which is commonly referred to as the Minimum Distance Problem (MDP), we
are given as input a generator matrix A ∈ Fn×m2 of a binary4 linear code and an integer k.
The goal is to determine whether the code has distance at most k. Recall that the distance
of a linear code is min

06=x∈Fm
2

‖Ax‖0 where ‖ · ‖0 denotes the 0-norm (aka the Hamming norm).

The study of MDP dates back to at least 1978 when Berlekamp et al. [8] conjectured that
it is NP-hard. This conjecture remained open for almost two decades until it was positively
resolved by Vardy [46, 47]. Later, Dumer et al. [22] strengthened this result by showing that
even approximately computing the minimum distance of the code is hard. Specifically, they
showed that, unless NP = RP, no polynomial time algorithm can distinguish between a code
with distance at most k and one whose distance is greater than γ · k for any constant γ > 1.
Furthermore, under stronger assumptions, the ratio can be improved to superconstants and
even almost polynomial. Dumer et al.’s result has been subsequently derandomized by Cheng
and Wan [11] and further simplified by Austrin and Khot [6] and Micciancio [36].

While the aforementioned results rule out not only efficient algorithms but also efficient
approximation algorithms for MDP, there is another popular technique in coping with
NP-hardness of problems which is not yet ruled out by the known results: parameterization.

In parameterized problems, part of the input is an integer designated as the parameter
of the problem, and the goal is now not to find a polynomial time algorithm but a fixed
parameter tractable (FPT) algorithm. This is an algorithm whose running time can be upper
bounded by some (computable) function of the parameter in addition to some polynomial
in the input length. Specifically, for MDP, its parameterized variant5 k-MDP has k as the
parameter and the question is to decide if the code generated by A has distance at most k
in time T (k) · poly(mn) where T can be any computable function that depends only on k.

The parameterized complexity of k-MDP was first posed as an open problem by Downey
et al. [21]6,7 who showed that parameterized variants of several other coding-theoretic
problems, including the Nearest Codeword Problem and the Nearest Vector Problem8 which
we will discuss in more details in Section 1.1.1, are W[1]-hard. Thereby, assuming the
widely believed W[1] 6= FPT hypothesis, these problems are rendered intractable from the
parameterized perspective. Unfortunately, Downey et al. fell short of proving such hardness
for k-MDP and left it as an open problem:

4 Note that MDP can be defined over larger fields as well; we discuss more about this in Section 3.
5 Throughout Sections 1 and 2, for a computational problem Π, we denote its parameterized variant by

k-Π, where k is the parameter of the problem.
6 k-MDP is formulated differently in [21] where the input is the parity-check matrix instead of the generator

matrix. Since we can efficiently compute one given the other, the two formulations are equivalent.
7 k-MDP is commonly referred to as k-Even Set due to its graph theoretic interpretation (see [21]).
8 The Nearest Vector Problem is also referred to in the literature as the Closest Vector Problem.
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I Open Question 1. Is k-MDP fixed parameter tractable?

Although almost two decades have passed, the above question remains unresolved to this
day, despite receiving significant attention from the community. In particular, the problem
was listed as an open question in the seminal book of Downey and Fellows [19] and has been
reiterated numerous times over the years [15, 23, 25, 20, 12, 14, 9, 13, 31]. In fact, in their
second book [20], Downey and Fellows even include this problem as one of the six “most
infamous” open questions in the area of Parameterized Complexity.

Another question posted in [21] that remains open is the parameterized Shortest Vector
Problem (k-SVP) in lattices. The input of k-SVP (in the `p norm) is an integer k ∈ N and a
matrix A ∈ Zn×m representing the basis of a lattice, and we want to determine whether the
shortest (non-zero) vector in the lattice has length at most k, i.e., whether min

06=x∈Zm
‖Ax‖p 6 k.

Again, k is the parameter of the problem. Note that, similar to [21], we require the basis of
the lattice to be integer-valued, which is sometimes not enforced in the literature (e.g. [45, 3]).
This is because, if A is allowed to have rational entries, then parameterization is meaningless
because we can simply scale A down by a large multiplicative factor.

The (non-parameterized) Shortest Vector Problem (SVP) has been intensively studied,
motivated partly due to the fact that both algorithms and hardness results for the problem
have numerous applications. Specifically, the celebrated LLL algorithm for SVP [28] can be
used to factor rational polynomials, and to solve integer programming (parameterized by the
number of unknowns) [29] and many other computational number-theoretic problems (see
e.g. [38]). Furthermore, the hardness of (approximating) SVP has been used as the basis of
several cryptographic constructions [3, 4, 39, 40]. Since these topics are out of scope of our
paper, we refer the interested readers to the following surveys for more details: [41, 37, 38, 42].

On the computational hardness side of the problem, van Emde-Boas [45] was the first
to show that SVP is NP-hard for the `∞ norm, but left open the question of whether SVP
on the `p norm for 1 6 p <∞ is NP-hard. It was not until a decade and a half later that
Ajtai [2] showed, under a randomized reduction, that SVP for the `2 norm is also NP-hard;
in fact, Ajtai’s hardness result holds not only for exact algorithms but also for (1 + o(1))-
approximation algorithms as well. The o(1) term in the inapproximability ratio was then
improved in a subsequent work of Cai and Nerurkar [10]. Finally, Micciancio [33] managed to
achieve a factor that is bounded away from one. Specifically, Micciancio [33] showed (again
under randomized reductions) that SVP on the `p norm is NP-hard to approximate within
a factor of p

√
2 for every 1 6 p < ∞. Khot [27] later improved the ratio to any constant,

and even to 2log1/2−ε(nm) under a stronger assumption. Haviv and Regev [26] subsequently
simplified the gap amplification step of Khot and, in the process, improved the ratio to almost
polynomial. We note that both Khot’s and Haviv-Regev reductions are also randomized and
it is still open to find a deterministic NP-hardness reduction for SVP in the `p norms for
1 6 p < ∞ (see [35]); we emphasize here that such a reduction is not known even for the
exact (not approximate) version of the problem. For the `∞ norm, the following stronger
result due to Dinur is known [16]: SVP in the `∞ norm is NP-hard to approximate to within
nΩ(1/ log logn) factor (under a deterministic reduction).

Very recently, fine-grained studies of SVP have been initiated [7, 1]. The authors of [7, 1]
showed that SVP for any `p norm cannot be solved (or even approximated to some constant
strictly greater than one) in subexponential time assuming the existence of a certain family
of lattices9 and the (randomized) Gap Exponential Time Hypothesis (Gap-ETH) [17, 32],
which states that no randomized subexponential time algorithm can distinguish between a
satisfiable 3CNF formula and one which is only 0.99-satisfiable.

9 This assumption is needed only for p 6 2. For p > 2, their hardness is conditional only on Gap-ETH.
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As with MDP, Downey et al. [21] were the first to question the parameterized tractability
of k-SVP (for the `2 norm). Once again, Downey and Fellows included k-SVP as one of the
open problems in both of their books [19, 20], albeit, in their second book, k-SVP was in the
“tough customers” list instead of the “most infamous” list that k-MDP belonged to. And
again, as with Open Question 1, this question remains unresolved to this day:

I Open Question 2. Is k-SVP fixed parameter tractable?

1.1 Our Results
The main result of this paper is a resolution to the previously mentioned Open Ques-
tion 1 and 2: more specifically, we prove that k-MDP and k-SVP (on `p norm for any p > 1)
do not admit any FPT algorithm, assuming the aforementioned (randomized) Gap-ETH. In
fact, our result is slightly stronger than stated here in a couple of ways:

We rule out not only exact FPT algorithms but also FPT approximation algorithms.
Second, our result works even under the so-called Parameterized Inapproximability Hypo-
thesis (PIH) [30], which asserts that no (randomized) FPT algorithm10 can distinguish
between a satisfiable 2CSP instance and one which is only 0.99-satisfiable, where the
parameter is the number of variables. It is known that Gap-ETH implies PIH.

With this in mind, we can state our results starting with the parameterized intractability
of k-MDP, more concretely (but still informally), as follows:

I Theorem 3. Assuming PIH, for any γ > 1 and any computable function T , no T (k) ·
poly(nm)-time algorithm, on input (A, k) ∈ Fn×m2 × N, can distinguish between

the distance of the code generated by A is at most k, and,
the distance of the code generated by A is more than γ · k.

While our above result rules out FPT approximation algorithms with any constant
approximation ratio for k-MDP, we can only prove FPT inapproximability with some
constant ratio for k-SVP in `p norm for p > 1, with the exception of p = 2 for which the
ratio in our result can be amplified to any constant. These are stated more precisely below.

I Theorem 4. For any p > 1, there exists a constant γp > 1 such that, assuming PIH, for
any computable function T , no T (k) · poly(nm)-time algorithm, on input (A, k) ∈ Zn×m ×N,
can distinguish between

the `p norm of the shortest vector of the lattice generated by A is 6 k, and,
the `p norm of the shortest vector of the lattice generated by A is > γp · k.

I Theorem 5. Assuming PIH, for any computable function T and constant γ > 1, no
T (k) · poly(nm)-time algorithm, on input (A, k) ∈ Zn×m × N, can distinguish between

the `2 norm of the shortest vector of the lattice generated by A is 6 k, and,
the `2 norm of the shortest vector of the lattice generated by A is > γ · k.

We remark that our results do not yield hardness for SVP in the `1 norm and this remains
an interesting open question. Section 3 contains discussion on this problem. We also note
that, for Theorem 4 and onwards, we are only concerned with p 6=∞; this is because, for
p =∞, the problem is NP-hard to approximate even when k = 1 [45]!

10The original formulation from [30] is slightly different in that it states that the problem is W[1]-hard.
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1.1.1 Nearest Codeword Problem and Nearest Vector Problem
As we shall see in Section 2, our proof proceeds by first showing FPT hardness of approxima-
tion of the non-homogeneous variants of k-MDP and k-SVP called the k-Nearest Codeword
Problem (k-NCP) and the k-Nearest Vector Problem (k-NVP) respectively. For both k-NCP
and k-NVP, we are given a target vector y (in Fn2 and Zn, respectively) in addition to (A, k),
and the goal is to find whether there is any x (in Fm2 and Zm, respectively) such that the
(Hamming and `p, respectively) norm of Ax− y is at most k.

As an intermediate step of our proof, we show that the k-NCP and k-NVP problems are
hard to approximate11. This should be compared to [21], in which the authors show that
both problems are W[1]-hard. The distinction here is that our result rules out not only exact
algorithms but also approximation algorithms, at the expense of the stronger assumption
than that of [21]. Indeed, if one could somehow show that k-NCP and k-NVP are W[1]-hard
to approximate (to some constant strictly greater than one), then our reduction would imply
W[1]-hardness of k-MDP and k-SVP (under randomized reductions). Unfortunately, no such
W[1]-hardness of approximation of k-NCP and k-NVP is known yet.

We end this section by remarking that the computational complexity of both (non-
parameterized) NCP and NVP are also thoroughly studied (see e.g. [34, 18, 44, 5, 24] in
addition to the references for MDP and SVP), and indeed the inapproximability results of
these two problems form the basis of hardness of approximation for MDP and SVP.

2 Proof Overview

In the non-parameterized setting, all the aforementioned inapproximability results for both
MDP and SVP are shown in two steps: first, one proves the inapproximability of their
inhomogeneous counterparts (i.e. NCP and NVP), and then reduces them to MDP and SVP.
We follow this general outline. That is, we first show, via relatively simple reductions from
PIH, that both k-NCP and k-NVP are hard to approximate. Then, we reduce k-NCP and
k-NVP to k-MDP and k-SVP respectively. In this second step, we employ Dumer et al.’s
reduction [22] for k-MDP and Khot’s reduction [27] for k-SVP. While the latter works almost
immediately in the parameterized regime, there are several technical challenges in adapting
Dumer et al.’s reduction to our setting. The remainder of this section is devoted to presenting
all of our reductions and to highlight such technical challenges and changes in comparison
with the non-parameterized settings.

The starting point of all the hardness results in this paper is Gap-ETH. As mentioned
earlier, it is well-known that Gap-ETH implies PIH, i.e., PIH is weaker than Gap-ETH.
Hence, for the rest of this section, we may start from PIH instead of Gap-ETH.

2.1 Parameterized Intractability of k-MDP from PIH
We start this subsection by describing the Dumer et al.’s (henceforth DMS) reduction [22].
The starting point of the DMS reduction is the NP-hardness of approximating NCP to any
constant factor [5]. Let us recall that in NCP we are given a matrix A ∈ Fn×m2 , an integer
k, and a target vector y ∈ Fn2 , and the goal is to determine whether there is any x ∈ Fm2
such that ‖Ax− y‖0 is at most k. Arora et al. [5] shows that for any constant γ > 1, it is
NP-hard to distinguish the case when there exists x such that ‖Ax− y‖0 6 k from the case
when for all x we have that ‖Ax− y‖0 > γk. Dumer et al. introduce the notion of “locally

11While our k-MDP result only applies for F2, our result for k-NCP holds for any finite field Fq too.
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dense codes” to enable a gadget reduction from NCP to MDP. Informally, a locally dense
code is a linear code L with minimum distance d admitting a ball B(s, r) centered at s of
radius12 r < d and containing a large (exponential in the dimension) number of codewords.
Moreover, for the gadget reduction to MDP to go through, we require not only the knowledge
of the code, but also the center s and a linear transformation T used to index the codewords
in B(s, r), i.e., T maps B(s, r) ∩ L onto a smaller subspace. Given an instance (A,y, k) of
NCP, and a locally dense code (L,T, s) whose parameters (such as dimension and distance)
we will fix later, Dumer et al. build the following matrix:

B =



ATL −y
...

...
ATL −y

L −s
...

...
L −s

 b copies

a copies

, (1)

where a, b are some appropriately chosen positive integers. If there exists x such that
‖Ax− y‖0 6 k then consider z′ such that TLz′ = x (we choose the parameters of (L,T, s),
in particular the dimensions of L and T such that all these computations are valid). Let
z = z′ ◦ 1 (where ◦ is used to denote the concatenation operation on vectors), and note that
‖Bz‖0 = a‖Ax− y‖0 + b‖Lz− s‖0 6 ak + br. In other words, if (A,y, k) is a YES instance
of NCP then (B, ak + br) is a YES instance of MDP. On the other hand if we had that for
all x, the norm of ‖Ax− y‖0 is more than γk for some constant13 γ > 2, then it is possible
to show that for all z we have that ‖Bz‖0 > γ′(ak + br) for any γ′ < 2γ

2+γ . The proof is
based on a case analysis of the last coordinate of z. If that coordinate is 0, then, since L is
a code of distance d, we have ‖Bz‖0 > bd > γ′(ak + br); if that coordinate is 1, then the
assumption that (A,y, k) is a NO instance of NCP implies that ‖Bz‖0 > aγk > γ′(ak + br).
Note that this gives an inapproximability for MDP of ratio γ′ < 2; this gap is then further
amplified by a simple tensoring procedure.

We note that Dumer et al. were not able to find a deterministic construction of locally
dense codes with all of the above described properties. Specifically, they gave an efficient
deterministic construction of L, but only gave a randomized algorithm that finds T and s
w.h.p. Therefore, their hardness result relies on the assumption that NP 6= RP, instead of
the more standard NP 6= P assumption. Later, Cheng and Wan [11] and Micciancio [36]
provided constructions for such (families of) locally dense codes with an explicit center, and
thus showed the constant ratio inapproximability of MDP under the assumption of NP 6= P.

Trying to follow the DMS reduction in order to show the parameterized intractability of
k-MDP, we face the following three immediate obstacles. First, there is no inapproximability
result known for k-NCP, for any constant factor greater than 1. Note that to use the DMS
reduction, we need the parameterized inapproximability of k-NCP, for an approximation
factor which is greater than two. Second, the construction of locally dense codes of Dumer
et al. only works when the distance is linear in the block length (which is a function of the
size of the input). However, we need codes whose distance are bounded above by a function
of the parameter of the problem (and does not depend on the input size). This is because

12Note that for the ball to contain more than a single codeword, we must have r > d/2.
13Note that in the described reduction, we need the inapproximability of NCP to a factor greater than

two, even to just reduce to the exact version of MDP.
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the DMS reduction converts an instance (A,y, k) of k-NCP to an instance (B, ak + br) of
(ak + br)-MDP, and for this reduction to be an FPT reduction, we need ak + br to be a
function only depending on k, i.e., d, the distance of the code L (which is at most 2r), must
be a function only of k. Third, recall that the DMS reduction needs to identify the vectors
in the ball B(s, r) ∩ L with all the potential solutions of k-NCP. Notice that the number of
vectors in the ball is at most (nm)O(r) but the number of potential solutions of k-NCP is
exponential in m (i.e. all x ∈ Fm2 ). However, this is impossible since r 6 d is bounded above
by a function of k!

We overcome the first obstacle by proving the constant inapproximability of k-NCP
under PIH. Specifically, assuming PIH, we first show the parameterized inapproximability of
k-NCP for some constant factor greater than 1, and then boost the gap using a composition
operator (self-recursively). Note that in order to follow the DMS reduction, we need the
inapproximability of k-NCP for some constant factor greater than 2; in other words, the
gap amplification for k-NCP is necessary, even if we are not interested in showing the
inapproximability of k-NCP for all constant factors.

We overcome the third obstacle by introducing an intermediate problem in the DMS
reduction, which we call the sparse nearest codeword problem. The sparse nearest codeword
problem is a promise problem which differs from k-NCP in only one way: in the YES case, we
want to find x ∈ B(0, k) (rather than from the entire space Fm2 ), such that ‖Ax− y‖0 6 k.
In other words, we only allow sparse x as a solution. We show that k-NCP can be reduced
to the sparse nearest codeword problem.

Finally, we overcome the second obstacle by introducing a variant of locally dense codes,
which we call sparse covering codes. Roughly speaking, we show that any code which nears
the Hamming bound (aka sphere-packing bound) in the high rate regime is a sparse covering
code. Then we follow the DMS reduction with the new ingredient of sparse covering codes
(replacing locally dense codes) to reduce the sparse nearest codeword problem to k-MDP.

We note that overcoming the second and third obstacles are our main technical contribu-
tions. Specifically, our result on sparse covering codes might be of independent interest.

The full reduction goes through several intermediate steps, which we will describe in more
detail in the coming paragraphs. Throughout this section, for any gap problem, if we do not
specify the gap in the subscript, then it implies that the gap can be any arbitrary constant.
For every ε > 0, we denote by Gap2CSPε the gap problem where we have to determine if a
given 2CSP instance Γ, i.e., a graph G = (V,E) and a set of constraints {Cuv}(u,v)∈E over
an alphabet set Σ, has an assignment to its vertices that satisfies all the constraints or if
every assignment violates more than ε fraction of the constraints. Here each Cuv is simply
the set of all (σu, σv) ∈ Σ × Σ that satisfy the constraint. The parameter of the problem
is |V |. PIH asserts that there exists some constant ε > 0 such that no randomized FPT
algorithm can solve Gap2CSPε.

Reducing Gap2CSPε to GapMLDγ . We start by showing the parameterized inapproxim-
ability of k-NCP for some constant ratio. Instead of working with k-NCP, we work with its
equivalent formulation (by converting the generator matrix given as input into a parity-check
matrix) which in the literature is referred to as the maximum likelihood decoding problem14.
We define the gap version of this problem (i.e., a promise problem), denoted by GapMLDγ

(for some constant γ > 1) as follows: on input (A,y, k), distinguish between the YES case

14The two formulations are equivalent but we use different names for them to avoid confusion when we
use Sparse Nearest Codeword Problem later on.
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where there exists x ∈ B(0, k) such that Ax = y, and the NO case where for all x ∈ B(0, γk)
we have Ax 6= y. It is good to keep in mind that this is equivalent to asking whether there
exist k columns of A whose sum is equal to y or whether any 6 γk columns of A do not
sum up to y.

Next, we sketch the reduction from an instance (G = (V,E),Σ, {Cuv}(u,v)∈E) of
Gap2CSPε to an instance (A,y, k) of GapMLD1+ε/3. The matrix A has |V ||Σ| +∑
(u,v)∈E

|Cuv| columns and |V | + |E| + 2|E||Σ| rows. The first |V ||Σ| columns of A are

labelled with (u, σu) ∈ V × Σ, and the remaining columns are labeled by (e, σu, σv) where
e = (u, v) ∈ E and (σu, σv) ∈ Cuv.

Before we continue with our description of A, let us note that, in the YES case where
there is a satisfying assignment φ : V → Σ, our intended solution for our GapMLD instance
is to pick the (u, φ(u))-column for every u ∈ V and the ((u, v), φ(u), φ(v))-column for every
(u, v) ∈ E. Notice that |V | + |E| columns are picked, and indeed we set k = |V | + |E|.
Moreover, we set the first |V |+ |E| coordinates of y to be one and the rest to be zero.

We also identify the first |V | rows of A with u ∈ V , the next |E| rows with e ∈ E, and
the remaining 2|E||Σ| rows with (e, σ, b) ∈ E × Σ× {0, 1}. Figure 1 provides an illustration
of A. The rows of A will be designed to serve the following purposes: the first |V | rows will
ensure that, for each u ∈ V , at least one column of the form (u, ·) is picked, the next |E|
rows will ensure that, for each e ∈ E, at least one column of the form (e, ·, ·) is picked, and
finally the remaining 2|E||Σ| rows will “check” that the constraint is indeed satisfied.

Specifically, each u-row for u ∈ V has only |Σ| non-zero entries: those in column (u, σu)
for all σu ∈ Σ. Since our target vector y has yu = 1, we indeed have that at least one column
of the form (u, ·) must be selected for every u ∈ V . Similarly, each e-row for e = (u, v) ∈ E
has |Cuv| non-zero entries: those in column (e, σu, σv) for all (σu, σv) ∈ Cuv. Again, these
make sure that at least one column of the form (e, ·, ·) must be picked for every e ∈ E.

Finally, we will define the entries of the last 2|E||Σ| rows. To do so, let us recall that,
in the YES case, we pick the columns (u, φ(u)) for all u ∈ V and ((u, v), φ(u), φ(v)) for all
(u, v) ∈ E. The goal of these remaining rows is to not only accept such a solution but also
prevent any solution that picks columns (u, σu), (v, σv) and ((u, v), σ′u, σ′v) where σu 6= σ′u
or σv 6= σ′v. In other words, these rows serve as a “consistency checker” of the solution.
Specifically, the |Σ| rows of the form ((u, v), ·, 0) will force σu and σ′u to be equal whereas the
|Σ| rows of the form ((u, v), ·, 1) will force σv and σ′v to be equal. For convenience, we will
only define the entries for the ((u, v), ·, 0)-rows; the ((u, v), ·, 1)-rows can be defined similarly.
Each ((u, v), σ, 0)-row has only one non-zero entry within the first |V ||Σ| rows: the one in
the (u, σ)-column. For the remaining columns, the entry in the ((u, v), σ, 0)-row and the
(e, σ0, σ1)-column is non-zero if and only if e = (u, v) and σ0 = σ.

It should be clear from the definition that our intended solution for the YES case is
indeed a valid solution because, for each ((u, v), φ(u), 0)-row, the two non-zero entries from
the columns (u, φ(u)) and ((u, v), φ(u), φ(v)) cancel each other out. On the other hand, for
the NO case, the main observation is that, for each edge (u, v) ∈ E, if only one column of
the form (u, ·), one of the form (v, ·) and one of the form ((u, v), ·, ·) are picked, then the
assignment corresponding to the picked columns satisfy the constraint Cuv. In particular, it
is easy to argue that, if we can pick (1 + ε/3)(|V |+ |E|) columns that sum up to y, then all
but ε fraction of all constraints fulfill the previous conditions, meaning that we can find an
assignment that satisfies 1 − ε fraction of the constraints. Thus, we have also proved the
soundness of the reduction.

Gap Amplification for GapMLDγ . We have sketched the proof of the hardness of GapMLDγ

for some constant γ > 1, assuming PIH. The next step is to amplify the gap and arrive at the
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A =

|V | × |Σ|
∑

(u,v)∈E
|Cuv|

|E| × |Σ| × {0, 1}

|E|

|V |

,y =
|E| × |Σ| × {0, 1}

|V |+ |E|

1

...

1
0
...
0

Figure 1 An illustration of A and y. All entries in shaded areas are zero. Each row in the brick
pattern area has one non-zero entry in that area, and each column in the star pattern area has two
non-zero entries in the area. Finally, each column has one non-zero entry in the lines pattern areas.

hardness for GapMLDγ for every constant γ > 1. To do so, we define an operator ⊕ over
every pair of instances of GapMLDγ with the following property: if two instances (A1,y1, k1)
and (A2,y2, k2) are both YES instances, then (A,y, k) := (A1,y1, k1) ⊕ (A2,y2, k2) is a
YES instance for GapMLDγ′ where γ′ ≈ γ2. On the other hand, if both (A1,y1, k1) and
(A2,y2, k2) are NO instances, then (A,y, k) is a NO instance for GapMLDγ′ . Hence, we
can apply ⊕ repeatedly to the GapMLDγ instance from the previous step (with itself) and
amplify the gap to be any arbitrarily large constant. The definition of ⊕, while simple, is
slightly tedious to formalize and we defer it to the full version of this paper.

Reducing GapMLD to GapSNC. Now we introduce the sparse nearest codeword problem
that we had briefly talked about. We define the gap version of this problem, denoted by
GapSNCγ (for some constant γ > 1) as follows: on input (A′,y′, k), distinguish between the
YES case where there exists x ∈ B(0, k) such that ‖A′x− y′‖0 6 k, and the NO case where
for all x (in the entire space), we have ‖A′x− y′‖0 > γk. We highlight that the difference
between k-NCP and GapSNCγ is that, in the YES case of the latter, we are promised that
x ∈ B(0, k). We sketch below the reduction from an instance (A,y, k) of GapMLDγ to an
instance (A′,y′, k) of GapSNCγ . Given A,y, let

A′ =


A
...

A
Id

 γk + 1 copies
, y′ =


y
...
y
0

 γk + 1 copies
.

Notice that for any x (in the entire space), we have ‖A′x−y′‖0 = (γk+1)‖Ax−y‖0+‖x‖0,
and thus both the completeness and soundness of the reduction easily follow.

Sparse Covering Codes. Before reducing GapSNC to GapMDP1.99 we need to introduce
in more detail the notion of sparse covering codes that we previously mentioned.

A sparse covering code (SCC) is a linear code L of block length h with minimum distance
d admitting a ball B(s, r) centered at s of radius r < d and containing a large (i.e., about
hk, where k = Ω(d)) number of codewords. Moreover, for our reduction to go through, we
require not only L and s, but also a linear transformation T used to index the codewords in
B(s, r), i.e., T(B(s, r) ∩ L) needs to contains the ball of radius k centered at 0. Similar to
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how Dumer et al. only managed to show the probabilistic existence of the center, we too
cannot find an explicit s for the SCCs that we construct, but instead provide an efficiently
samplable distribution such that, for any x ∈ B(0, k), the probability (over s sampled from
the distribution) that x ∈ T(B(s, r) ∩L) is non-negligible. This is what makes our reduction
from GapSNC to GapMDP1.99 randomized. We will not elaborate more on this issue here,
but focus on the (probabilistic) construction of such codes. For convenience, we will assume
throughout this overview that k is much smaller than d, i.e., k = 0.001d.

Recall that the Hamming (aka sphere-packing) bound states that a binary code of block
length h and distance d can have at most 2h/|B(0, dd−1

2 e)| codewords, because the balls of
radius dd−1

2 e centered at the codewords do not intersect. Our main theorem regarding the
existence of SCC is that any code that is “near” the Hamming bound is a sparse covering
code with r = dd−1

2 e+k ≈ 0.501d. Here “near” means that the number of codewords must be
at least 2h/|B(0, dd−1

2 e)| divided by f(d) · poly(h) for some function f that depends only on
d. (Equivalently, this means that the message length must be at least h− (d/2 +O(1)) log h.)
The BCH code over binary alphabet is an example of a code satisfying such a condition.

While we do not sketch the proof of the theorem here, we note that the idea is to set T
and the distribution over s in such a way that the probability that x lies in T(B(s, r) ∩ L) is
at least the probability that a random point in Fh2 is within distance r − k = dd−1

2 e of some
codeword. The latter is non-negligible since L nears the Hamming bound.

Finally, we remark that our proof here is completely different from the DMS proof of
existence of locally dense codes. Specifically, DMS uses a group-theoretic argument to show
that, when a code exceeds the Gilbert–Varshamov bound, there must be a center s such
that B(s, r) contains many codewords. Then, they pick a random linear map T and show
that w.h.p. T(B(s, r) ∩ L) is the entire space. Note that this second step does not use any
structure of B(s, r) ∩ L; their argument is simply that, for any sufficiently large subset Y , a
random linear map T maps Y to an entire space w.h.p. However, such an argument fails
for us, due to the fact that, in SCC, we want to cover a ball B(0, k) rather than the whole
space, and it is not hard to see that there are very large subsets Y such that no linear map
T satisfies T(Y ) ⊇ B(0, k). A simple example of this is when Y is a subspace of Fh2 ; in this
case, even when Y is as large as exp(poly(h)), no desired linear map T exists.

Reducing GapSNCγ to GapMDP1.99. Next, we prove the hardness of GapMDPγ′ for all
constant γ′ ∈ [1, 2), assuming PIH, using a gadget constructed from sparse covering codes.

Given an instance (A,y, k) of GapSNCγ for some γ > 2 and a SCC (L,T, s) we build an
instance (B, ak+ br) of GapMDPγ′ where γ′ < 2γ

2+γ , by following the DMS reduction (which
was previously described; see (1)). If ‖Ax − y‖0 6 k for some x ∈ B(0, k), then consider
z′ such that TLz′ = x; the existence of such a z′ is guaranteed by the definition of SCC.
Consider z = z′ ◦ 1, and note that ‖Bz‖0 = a‖Ax − y‖0 + b‖Lz− s‖0 6 ak + br. In other
words, as in the DMS reduction, if (A,y, k) is a YES instance of NCP, then (B, ak + br)
is a YES instance of MDP. On the other hand, similar to the DMS reduction, if we had
that ‖Ax − y‖0 > γk for all x, then ‖Bz‖0 > γ′(ak + br) for all z. The parameterized
intractability of GapMDP1.99 is obtained by setting γ = 400 in the above reduction.

Gap Amplification for GapMDP1.99. It is well known that the distance of the tensor
product of two linear codes is the product of the distances of the individual codes. We can
use this proposition to reduce GapMDPγ to GapMDPγ2 for any γ > 1. In particular, we
can obtain, for any constant γ, the intractability of GapMDPγ starting from GapMDP1.99
by just recursively tensoring the input code dlog1.99 γe times.
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2.2 Parameterized Intractability of k-SVP from PIH

We begin this subsection by briefly describing Khot’s reduction. The starting point of Khot’s
reduction is the NP-hardness of approximating NVP in every `p norm to any constant factor
[5]. Let us recall that in NVP in the `p norm, we are given a matrix A ∈ Zn×m, an integer
k, and a target vector y ∈ Zn, and the goal is to determine whether there is any x ∈ Zm
such that‖Ax− y‖pp is at most k. The result of Arora et al. [5] states that for any constant
γ > 1, it is NP-hard to distinguish the case when there exists x such that ‖Ax − y‖pp 6 k

from the case when for all (integral) x we have that ‖Ax − y‖pp > γk. Khot’s reduction
proceeds in four steps. First, he constructs a gadget lattice called the “BCH Lattice” using
BCH Codes. Next, he reduces NVP in the `p norm (where p ∈ (1,∞)) to an instance of
SVP on an intermediate lattice by using the BCH Lattice. This intermediate lattice has the
following property. For any YES instance of NVP the intermediate lattice contains multiple
copies of the witness of the YES instance; For any NO instance of NVP there are also many
“annoying vectors” (but far less than the total number of YES instance witnesses) which
look like witnesses of a YES instance. However, since the annoying vectors are outnumbered,
Khot reduces this intermediate lattice to a proper SVP instance, by randomly picking a
sub-lattice via a random homogeneous linear constraint on the coordinates of the lattice
vectors (this annihilates all the annoying vectors while retaining at least one witness for the
YES instance). Thus he obtains some constant factor hardness for SVP. Finally, the gap is
amplified via “Augmented Tensor Product”. It is important to note that Khot’s reduction is
randomized, and thus his result of inapproximability of SVP is based on NP 6= RP.

Trying to follow Khot’s reduction, in order to show the parameterized intractability
of k-SVP, we face only one obstacle: there is no known parameterized inapproximability
of k-NVP for any constant factor greater than 1. Let us denote by GapNVPp,η for any
constant η > 1 the gap version of k-NVP in the `p norm. Recall that in GapNVPp,η we
are given a matrix A ∈ Zn×m, a target vector y ∈ Zn, and a parameter k, and we would
like to distinguish the case when there exists x ∈ Zm such that ‖Ax − y‖pp 6 k from the
case when for all x ∈ Zm we have that ‖Ax− y‖pp > ηk. As it turns out, our reduction from
Gap2CSPε to GapSNC (with arbitrary constant gap), having GapMLDγ and GapMLD
as intermediate steps, can be translated to show the constant inapproximability of GapNVPp

(under PIH) in a straightforward manner. We will not elaborate on this part of the proof
any further here and defer the detailed proof to the full version of this paper.

Once we have established the constant parameterized inapproximability of GapNVPp, we
follow Khot’s reduction, and everything goes through as it is to establish the inapproximability
for some factor of the gap version of k-SVP in the `p norm (where p ∈ (1,∞)). We denote by
GapSVPp,γ for some constant γ(p) > 1 the gap version of k-SVP (in the `p norm) where we
are given a matrix B ∈ Zn×m and a parameter k ∈ N, and we would like to distinguish the
case when there exists a non-zero x ∈ Zm such that ‖Bx‖pp 6 k from the case when for all
x ∈ Zm \ {0} we have that ‖Bx‖pp > γk. Let γ∗ := 2p

2p−1+1 . Following Khot’s reduction, we
obtain the inapproximability of GapSVPp,γ∗ (under PIH). To obtain inapproximability of
GapSVP2 for all constant ratios, we use the tensor product of lattices; the argument needed
here is slightly more subtle than the similar step in MDP because, unlike distances of codes,
the `2 norm of the shortest vector of the tensor product of two lattices is not necessarily
equal to the product of the `2 norm of the shortest vector of each lattice. Fortunately, Khot’s
construction is tailored so that the resulting lattice is “well-behaved” under tensoring [27, 26],
and gap amplification is indeed possible for such instances.
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We remark here that, for the (non-parameterized) inapproximability of SVP, the tech-
niques of [27, 26] allow one to successfully amplify gaps for `p norm where p 6= 2 as well.
Unfortunately, this does not work in our settings, as it requires the distance k to be dependent
on nm which is not possible for us since k is the parameter of the problem.

3 Discussion and Open Questions

While our results give an evidence of intractability of k-MDP and k-SVP, there are still many
questions that remain open. First and foremost, it is still open whether the hardness of
both problems can be based on more standard assumptions, such as ETH or W[1] 6= FPT.
On this front, we would like to note that the only reason we need PIH is to arrive at the
inapproximability of the non-homogeneous variants of the problems, which is needed for us
even if we want to only rule out exact FPT algorithms for k-MDP and k-SVP. Hence, if one
could prove the hardness of approximation for these problems under weaker assumptions,
then the inapproximability of k-MDP and k-SVP would still follow.

Another obvious question is whether k-SVP in the `1 norm is in FPT. Khot’s reduction
unfortunately does not work for `1; indeed, in [26], the hardness of approximating SVP in
the `1 norm is shown by embedding SVP instances in `2 to instances in `1 using an earlier
result of Regev and Rosen [43]. This embedding inherently does not work in the FPT regime
either, as it produces non-integral lattices. Similar issue applies to an earlier hardness result
for SVP on `1 of [33], whose reduction produces irrational bases.

An additional question regarding k-SVP is whether we can prove inapproximability for
every constant factor for p 6= 2. As described earlier, the gap amplification techniques
of [27, 26] require the distance k to be dependent on the input size nm, and hence are not
applicable for us. To the best of our knowledge, it is unknown whether this dependency is
necessary. If they are indeed required, it would be interesting to come up with different gap
amplification techniques that also work for our settings.

Furthermore, k-MDP can be defined for linear codes in Fp for any larger field of size p > 2
as well. It turns out that our result does not rule out FPT algorithms for k-MDP over Fp
with p > 2. The issue here is that, in our proof of existence of Sparse Covering Codes, we
need the co-dimension of the code to be small compared to its distance. In particular, the
co-dimension h−m has to be at most (d/2 +O(1)) logp h where d is the distance. While the
BCH code over binary alphabet satisfies this property, we are not aware of any linear codes
that satisfy this for larger fields. It is an intriguing open question to determine whether such
codes exist, or whether the reduction can be made to work without existence of such codes.

Since the current reductions for both k-MDP and k-SVP are randomized, it is still an
intriguing open question whether we can find deterministic reductions from PIH to these
problems. As stated in the introduction, even in the non-parameterized setting, NP-hardness
of SVP through deterministic reductions is not known. On the other hand, MDP is known
to be NP-hard even to approximate under deterministic reductions; in fact, even the DMS
reduction [22] that we employ can be derandomized, as long as one has a deterministic
construction for Locally Dense Codes [11, 36]. In our settings, if one can deterministically
construct Sparse Covering Codes, we would also get a deterministic reduction for k-MDP.

Finally, another interesting research direction is to prove more concrete running time
lower bounds for k-MDP and k-SVP. For instance, k-MDP can be trivially solved (exactly) in
NO(k) time, where N = nm is the input size. On the other hand, while not stated explicitly
above, our proof implies that k-MDP cannot be solved (or even approximated) in time No(kc)

for some small constant c > 0, assuming Gap-ETH. Would it be possible to improve this
running time lower bound to the tight No(k)? Similar questions also apply to k-SVP.
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Abstract
A rollercoaster is a sequence of real numbers for which every maximal contiguous subsequence
– increasing or decreasing – has length at least three. By translating this sequence to a set of
points in the plane, a rollercoaster can be defined as an x-monotone polygonal path for which
every maximal sub-path, with positive- or negative-slope edges, has at least three vertices. Given
a sequence of distinct real numbers, the rollercoaster problem asks for a maximum-length (not
necessarily contiguous) subsequence that is a rollercoaster. It was conjectured that every sequence
of n distinct real numbers contains a rollercoaster of length at least dn/2e for n > 7, while the
best known lower bound is Ω(n/ log n). In this paper we prove this conjecture. Our proof
is constructive and implies a linear-time algorithm for computing a rollercoaster of this length.
Extending the O(n log n)-time algorithm for computing a longest increasing subsequence, we show
how to compute a maximum-length rollercoaster within the same time bound. A maximum-length
rollercoaster in a permutation of {1, . . . , n} can be computed in O(n log log n) time.

The search for rollercoasters was motivated by orthogeodesic point-set embedding of cater-
pillars. A caterpillar is a tree such that deleting the leaves gives a path, called the spine. A
top-view caterpillar is one of maximum degree 4 such that the two leaves adjacent to each vertex
lie on opposite sides of the spine. As an application of our result on rollercoasters, we are able to
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18:2 Rollercoasters and Caterpillars

find a planar drawing of every n-vertex top-view caterpillar on every set of 25
3 (n + 4) points in

the plane, such that each edge is an orthogonal path with one bend. This improves the previous
best known upper bound on the number of required points, which is O(n log n). We also show
that such a drawing can be obtained in linear time, when the points are given in sorted order.

2012 ACM Subject Classification Theory of computation → Algorithm design techniques

Keywords and phrases sequences, alternating runs, patterns in permutations, caterpillars

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.18

Related Version A full version of the paper is available at [3], https://arxiv.org/abs/1801.
08565.

1 Introduction

A run in a sequence of real numbers is a maximal contiguous subsequence that is increasing
or decreasing. A rollercoaster is a sequence of real numbers such that every run has length at
least three.7 For example the sequence (8, 5, 1, 3, 4, 7, 6, 2) is a rollercoaster with runs (8, 5, 1),
(1, 3, 4, 7), (7, 6, 2), which have lengths 3, 4, 3, respectively. The sequence (8, 5, 1, 7, 6, 2, 3, 4)
is not a rollercoaster because its run (1, 7) has length 2. Given a sequence S = (s1, s2, . . . , sn)
of n distinct real numbers, the rollercoaster problem is to find a maximum-size set of indices
i1 < i2 < · · · < ik such that (si1 , si2 , . . . , sik

) is a rollercoaster. In other words, this problem
asks for a longest rollercoaster in S, i.e., a longest subsequence of S that is a rollercoaster.

One can interpret S as a set P of points in the plane by translating each number si ∈ S
to a point pi = (i, si). With this translation, a rollercoaster in S translates to a “rollercoaster”
in P , which is a polygonal path whose vertices are points of P and such that every maximal
sub-path, with positive- or negative-slope edges, has at least three points. See Figure 1(a).
Conversely, for any point set in the plane, the y-coordinates of the points, ordered by their
x-coordinates, form a sequence of numbers. Therefore, any rollercoaster in P translates to a
rollercoaster of the same length in S.

The best known lower bound on the length of a longest rollercoaster is Ω(n/ log n) due to
Biedl et al. [4], who posed the following conjecture; see Appendix B in the full version of [4].

I Conjecture 1. Every sequence of n > 7 distinct real numbers contains a rollercoaster of
length at least dn/2e.

Conjecture 1 can be viewed as a statement about patterns in permutations, a topic
with a long history, and the subject of much current research. For example, the Eulerian
polynomials, introduced by Euler in 1749, are the generating function for the number of
descents in permutations. For surveys of recent work, see, for example, Linton et al. [13]
and Kitaev [12]. Specifically, Conjecture 1 is related to the following seminal result of Erdős
and Szekeres [7] in the sense that they prove the existence of an increasing or a decreasing
subsequence of length at least a+ 1 for n = a2 + 1, which is essentially a rollercoaster with
one run.

7 The term “rollercoaster permutation” has also been used to refer to a permutation that, together with
all its subsequences, has maximum number of changes from increasing to decreasing and vice versa; see
e.g. [1].
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Figure 1 (a) Translating the sequence (8, 5, 1, 3, 4, 7, 6, 2) to a set of points. (b) A planar L-shaped
drawing of a top-view caterpillar.

I Theorem 2 (Erdős and Szekeres, 1935). Every sequence of ab + 1 distinct real numbers
contains an increasing subsequence of length at least a+ 1 or a decreasing subsequence of
length at least b+ 1.

Hammersley [11] gave an elegant proof of the Erdős–Szekeres theorem that is short,
simple, and based on the pigeonhole principle. The Erdős–Szekeres theorem also follows
from the well-known decomposition of Dilworth (see [17]). The following is a restatement of
Dilworth’s decomposition for sequences of numbers.

I Theorem 3 (Dilworth, 1950). Any finite sequence S of distinct real numbers can be
partitioned into k ascending sequences where k is the maximum length of a descending
sequence in S.

Besides its inherent interest, the study of rollercoasters is motivated by point-set embed-
ding of caterpillars [4]. A caterpillar is a tree such that deleting the leaves gives a path,
called the spine. An ordered caterpillar is a caterpillar in which the cyclic order of the edges
incident to each vertex is specified. A top-view caterpillar is an ordered caterpillar where
all vertices have degree 4 or 1 such that the two leaves adjacent to each spine vertex lie
on opposite sides of the spine; see Figure 1(b). Planar orthogonal drawings of trees on a
fixed set of points in the plane have been explored recently, see e.g., [4, 10, 15]; in these
drawings every edge is drawn as an orthogonal path between two points, and the edges are
non-intersecting. A planar L-shaped drawing is a simple type of planar orthogonal drawing
in which every edge is an orthogonal path of exactly two segments. Such a path is called
an L-shaped edge. For example see the top-view caterpillar in Figure 1(b) together with a
planar L-shaped drawing on a given point set. Biedl et al. [4] proved that every top-view
caterpillar on n vertices has a planar L-shaped drawing on every set of O(n log n) points in
the plane that is in general orthogonal position, meaning that no two points have the same x-
or y-coordinate.

1.1 Our Contributions
In Section 2 we study rollercoasters and prove Conjecture 1. In fact we prove something
stronger: every sequence of n distinct numbers contains two rollercoasters of total length n.
Our proof is constructive and yields a linear-time algorithm for computing such rollercoasters.
We also extend our result to rollercoasters whose runs are of length at least k, for k > 3. Then
we present an O(n log n)-time algorithm for computing a longest rollercoaster, extending
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18:4 Rollercoasters and Caterpillars

the classical algorithm for computing a longest increasing subsequence. This algorithm
can be implemented in O(n log log n) time if each number in the input sequence is an
integer that fits in a constant number of memory words. Then we give an estimate on the
number of permutations of {1, . . . , n} that are rollercoasters. In Section 3 we prove, by using
Conjecture 1, that every n-vertex top-view caterpillar has a planar L-shaped drawing on
every set of 25

3 (n+ 4) points in the plane in general orthogonal position.

2 Rollercoasters

In this section we investigate lower bounds for the length of a longest rollercoaster in a
sequence of numbers. We also study algorithmic aspects of computing such rollercoasters.
First we prove Conjecture 1: any sequence of n distinct real numbers contains a rollercoaster
of length at least dn/2e. Observe that the length 4 sequence (3, 4, 1, 2) has no rollercoaster,
so we will restrict to n > 5 in the remainder of this section. Also, due to the following
proposition we assume that n > 8.

I Proposition 1. Every sequence of n ∈ {5, 6, 7} distinct real numbers contains a rollercoaster
of length at least 3. This bound is tight in the worst case.

Proof. By applying Theorem 2 with a = b = 2 we get that every sequence of at least
ab + 1 = 5 distinct numbers contains an increasing or a decreasing subsequence of length
at least 3. This subsequence is a rollercoaster of length at least 3. For the tightness of this
bound, consider the sequence (5, 2, 6, 3, 7, 1, 4), depicted in the figure below. It has length 7
and its longest rollercoaster has length 3.

1 2 3 4 5 6 7

1
2
3
4
5
6
7

J

We refer to a polygonal path as a chain. We define an ascent (resp., a descent) as an
increasing (resp., a decreasing) sequence. We define a k-ascent (resp., a k-descent) as an
ascent (resp., a descent) with at least k elements. We also use k-ascent and k-descent to refer
to increasing and decreasing chains with at least k points, respectively. With this definition,
a rollercoaster is a sequence in which every run is either a 3-ascent or a 3-descent. We refer
to the rightmost run of a rollercoaster as its last run.

2.1 A Proof of Conjecture 1
In this section we prove the following theorem, which is a restatement of Conjecture 1. Our
proof is constructive, and yields a linear-time algorithm for finding such a rollercoaster.

I Theorem 4. Every sequence of n > 8 distinct real numbers contains a rollercoaster of
length at least dn/2e; such a rollercoaster can be computed in linear time. The lower bound
of dn/2e is tight in the worst case.
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`

RA

RD

d

a

Figure 2 One iteration of algorithm: Constructing two pseudo-rollercoasters.

Consider a sequence with n > 8 distinct real numbers, and let P be its point-set translation
with points p1, . . . , pn that are ordered from left to right. We define a pseudo-rollercoaster as
a sequence in which every run is a 3-ascent or a 3-descent, except possibly the first run. That
is, the first run of a pseudo-rollercoaster could be of length at most two, while the other runs
are of length at least three. We present an algorithm that computes two pseudo-rollercoasters
R1 and R2 in P such that |R1| + |R2| > n; the length of the longer one is at least dn/2e.
Then with a more involved proof we show how to extend this longer pseudo-rollercoaster to
obtain a rollercoaster of length at least dn/2e; this will prove the lower bound.

2.1.1 An Algorithm
First we provide a high-level description of our algorithm as depicted in Figure 2. Our
algorithm is iterative, and proceeds by sweeping the plane by a vertical line ` from left to
right. We maintain the following invariant:

I Invariant. At the beginning of every iteration we have two pseudo-rollercoasters whose
union is the set of all points to the left of ` and such that the last run of one of them is an
ascent and the last run of the other one is a descent. Furthermore, these two last runs have
a point in common.

During every iteration we move ` forward and try to extend the current pseudo-rollercoas-
ters. If this is not immediately possible with the next point, then we move ` farther and
stop as soon as we are able to split all the new points into two chains that can be appended
to the current pseudo-rollercoasters to obtain two new pseudo-rollercoasters that satisfy the
invariant. See Figure 2.

Now we present our iterative algorithm in detail.

The First Iteration: We take the leftmost point p1, and initialize each of the two pseudo-
rollercoasters by p1 alone. We may consider one of the pseudo-rollercoasters to end in an
ascent and the other pseudo-rollercoaster to end in a descent. The two runs share p1.

An Intermediate Iteration: By the above invariant we have two pseudo-rollercoasters RA

and RD whose union is the set of all points to the left of ` and such that the last run of one
of them, say RA, is an ascent and the last run of RD is a descent. Furthermore, the last run
of RA and the last run of RD have a point in common. During the current iteration we make
sure that every swept point will be added to RA or RD or both. We also make sure that at
the end of this iteration the invariant will hold for the next iteration. Let a and d denote
the rightmost points of RA and RD, respectively; see Figure 2. Observe that a lies above d.
Let pi be the first point to the right of `. If pi is above a, we add pi to RA to complete this
iteration. Similarly, if pi is below d, we add pi to RD to complete this iteration. In either
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pk′
pi+1

pi
RA

RD

a

d

pred(pk′ , A1)

A′
1

A2

A′′
1pk′′

pi+2

pk

Figure 3 Illustration of an intermediate iteration of the algorithm.

case we get two pseudo-rollercoasters that satisfy the invariant for the next iteration. Thus
we may assume that pi lies below a and above d.

Consider the next point pi+1. (If there is no such point, go to the last iteration; see
below.) Suppose by symmetry that pi+1 lies above pi as depicted in Figure 3. Then d, pi, pi+1
forms a 3-ascent. Continue considering points pi+2, . . . , pk until for the first time, there is
a 3-descent in a, pi, . . . , pk. In other words, k is the smallest index for which a, pi, . . . , pk

contains a descending chain of length 3. (If we run out of points before finding a 3-descent,
then go to the last iteration.)

Without pk there is no descending chain of length 3. Thus the longest descending chain
has two points, and by Theorem 3, the sequence P ′ = a, pi, pi+1, . . . , pk−1 is the union of two
ascending chains. We give an algorithm to find two such chains A1 and A2 with A1 starting
at a and A2 starting at pi. The algorithm also finds the 3-descent ending with pk. For every
point q ∈ A2 we define its A1-predecessor to be the rightmost point of A1 that is to the left
of q. We denote the A1-predecessor of q by pred(q, A1).

The algorithm is as follows: While moving ` forward, we denote by r1 and r2 the rightmost
points of A1 and A2, respectively; at the beginning r1 = a, r2 = pi, and pred(pi, A1) = a.
Moreover, we maintain this invariant that pred(r2, A1) is above r2. Let p be the next point
to be considered. If p is above r1 then we add p to A1. If p is below r1 and above r2, then we
add p to A2 and set pred(p,A1) = r1; notice that this assignment satisfies the invariant. If p
is below r2, then we find our desired first 3-descent formed by (in backwards order) pk = p,
pk′ = r2, and pk′′ = pred(r2, A1). See Figure 3. This algorithm runs in time O(k − i), which
is proportional to the number of swept points.

We add point d to the start of chain A2. The resulting chains A1 and A2 are shaded in
Figure 3. Observe that A2 ends at pk′ . Also, all points of P ′ that are to the right of pk′ (if
there are any) belong to A1, and lie to the right of pk′′ , and form an ascending chain. Let
A′′1 be this ascending chain. Let A′1 be the sub-chain of A1 up to pk′′ ; see Figure 3. Now
we form one pseudo-rollercoaster (shown in red) consisting of RA followed by A′1 and then
by the descending chain pk′′ , pk′ , pk. We form another pseudo-rollercoaster (shown in blue)
consisting of RD followed by A2 and then by A′′1 . We need to verify that the ascending chain
added after d has length at least 3. This chain contains d, pi and pk′ . This gives a chain of
length at least 3 unless k′ = i, but in this case pk′′ = a, so pi+1 is part of A′′1 (because pi+1
is above pi) and consequently part of this ascending chain. Thus we have constructed two
longer pseudo-rollercoasters whose union is the set of all points up to point pk, one ending
with a 3-ascent and one with a 3-descent and such that the last two runs share the point pk′ .
Figure 4(a) shows an intermediate iteration.
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a = pk′′

pi
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pk
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Figure 4 (a) An intermediate iteration. (b) A point set for which any rollercoaster of length at
least n/4 + 3 does not contain p1 and pn. The green (dashed) rollercoaster, which contains p1, has
length n/4 + 2. The red (solid) and blue (dash-dotted) chains are the two rollercoasters returned by
our algorithm.

The Last Iteration: If there are no points left, then we terminate the algorithm. Otherwise,
let pi be the first point to the right of `. Let a and d be the endpoints of the two pseudo-
rollercoasters obtained so far, such that a is the endpoint of an ascent and d is the endpoint
of a descent. Notice that pi is below a and above d, because otherwise this iteration would
be an intermediate one. Moreover, the remaining points pi, . . . , pn do not contain a 3-ascent
together with a 3-descent, again, because otherwise this iteration would be an intermediate
one. If pi is the last point, i.e., i = n, then we discard this point and terminate this iteration.
Assume that i 6= n, and suppose by symmetry that the next point pi+1 lies above pi. In this
setting, by Theorem 3 and as described in an intermediate iteration, with the remaining
points, we can get two ascending chains A1 and A2 such that A2 contains at least two points.
By connecting A1 to a and A2 to d we get two pseudo-rollercoasters whose union is all the
points (in this iteration we do not need to maintain the invariant).

Final Refinement: At the end of algorithm, we obtain two pseudo-rollercoasters R1 and R2
that share p1 and such that their union contains all points of P , except possibly pn. Thus,
|R1|+ |R2| > n, and the length of the longer one is at least

⌈
n
2
⌉
.

Recall that every run of pseudo-rollercoasters R1 and R2 is a 3-ascent or a 3-descent,
except possibly the first run. If the first run of R1 (resp., R2) contains only two points, then
we remove p1 to obtain a rollercoaster R1 (resp., R2). Therefore, we obtain two rollercoasters
whose union contains all points, except possibly p1 and pn.

This is the end of our algorithm. In the next section we analyze the length of the resulting
rollercoaster, the tightness of the claimed lower bound, and the running time of the algorithm.

2.1.2 Length and Running-Time Analysis

Our algorithm computes two rollercoasters R1 and R2 consisting of all points of P , except
possibly p1 and pn. Thus, the total length of these rollercoasters is at least n− 2, and the
length of the longer one is at least

⌈
n−2

2
⌉
. In the full version of the paper (see [3]) we show

how to improve this bound to
⌈

n
2
⌉
by revisiting the first and last iterations of our algorithm

with some case analysis.
We note that there are point sets, with n points, for which every rollercoaster of length

at least n/4 + 3 does not contain any of p1 and pn; see e.g., the point set in Figure 4(b). To
verify the tightness of the dn/2e lower bound, consider a set of n points in the plane where
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dn/2e of the points lie on a positive-slope line segment in the (−,+)-quadrant and the other
bn/2c points lie on a positive-slope line segment in the (+,−)-quadrant.

To verify the running time, notice that the first iteration and final refinement take
constant time, and the last iteration is essentially similar to an intermediate iteration. As
described in an intermediate iteration the time complexity to find a 3-ascent and a 3-descent
for the first time, together with the time complexity to compute chains A′1, A′′1 , and A2 is
O(k− i), which is linear in the number of swept points pi, . . . , pk. Based on this and the fact
that every point is considered only in one iteration, our algorithm runs in O(n) time.

2.2 An Extension
In this section we extend our result to k-rollercoasters. A k-rollercoaster is a sequence of
real numbers in which every run is either a k-ascent or a k-descent.

I Theorem 5. Let k > 4 be an integer. Then every sequence of n > (k − 1)2 + 1 distinct
real numbers contains a k-rollercoaster of length at least n

2(k−1) −
3k
2 . Moreover, for every

n > 0 there exists a sequence of n distinct real numbers whose longest k-rollercoaster has
length at most d n

k−1e.

Proof. Our proof of the lower bound follows the same iterative approach of the proof of
Theorem 4. Consider a sequence of n distinct real numbers and its point-set translation
p1, . . . , pn. We sweep the plane by a line `, and maintain two k-rollercoasters RA and RD to
the left of ` such that the last run of RA is an ascent and the last run of RD is a descent. In
each iteration, except the last one, we move ` forward and stop as soon as we see a k-ascent
A and a k-descent D in the swept points. Then we attach D to RA, and A to RD. To achieve
the claimed lower bound, we make sure that the total length of A and D is at least 1/(k− 1)
times the number of swept points.

Consider an intermediate iteration where pi lies below the rightmost point of RA and
above the rightmost point of RD. Let m be the number of swept points in this iteration
and let P ′ = (pi, pi+1 . . . , pi+m−2, pi+m−1) be the sequence of these points. Notice that
m > 2k− 1 because we need to sweep at least 2k− 1 points to get a k-ascent and a k-descent,
which may share one point. Our strategy for stopping ` ensures that P ′ contains a k-ascent
and a k-descent, while P ′′ = (pi, . . . , pi+m−2) may contain only one of them but not both.
Without loss of generality assume that P ′′ does not contain a k-descent. Since m−1 > 2k−2,
there exists an integer α > 2 for which

(α− 1)(k − 1) < m− 1 6 α(k − 1). (1)

The left-hand side of Inequality (1) implies that P ′′ has at least (α − 1)(k − 1) + 1
points. Having this and our assumption that P ′′ does not contain a k-descent, Theorem 2
implies that P ′′ contains an increasing subsequence of length at least α. We take the longest
increasing and the longest decreasing subsequences in P ′ as A and D, respectively. Observe
that |A| > max{k, α} and |D| = k. This and the right-hand side of Inequality (1) imply that

|A|+ |D| > α+ k >
m− 1
k − 1 + k >

m

k − 1 ,

which means that the total length of A and D is at least 1/(k− 1) times the number of swept
points. In the last iteration if we sweep at most (k − 1)2 points then we discard all of them.
But if we sweep m > (k − 1)2 points then by an argument similar to the one above there
exists an integer α, with α > m/(k− 1), for which we get either an α-ascent or an α-descent,
which contains at least 1/(k − 1) fraction of the swept points.
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The first iteration is similar to the one in the proof of Theorem 4: we assume the existence
of an ascent and a descent that end at the first point. At the end of algorithm if the first run
of any of RA and RD contains k′ points, for some k′ < k, then by removing k′ − 1(6 k − 2)
points from its first run we get a valid k-rollercoaster. The total length of the resulting two
k-rollercoasters is

|RA|+ |RD| >
n− (k − 1)2

k − 1 − 2(k − 2),

where the length of the longer one is at least
n− (k − 1)2

2(k − 1) − (k − 2) > n

2(k − 1) −
3(k − 1)

2 .

This finishes our proof of the lower bound. To verify the upper bound, consider a set of n
points that are placed in the main-diagonal cells of a (k − 1)× (k − 1) grid, such that every
cell contains at most d n

k−1e points that are placed on a positive-slope line. J

2.3 Algorithms for a Longest Rollercoaster
In this section we study algorithmic aspects of computing a longest rollercoaster in a given
sequence S of n distinct real numbers. By Theorem 4 we can compute a rollercoaster of length
at least dn/2e in O(n) time. However this rollercoaster may not necessarily be a longest one.
If we run our algorithm of Section 2.1.1 on the point set in the figure below, then it returns
two rollercoasters R1 and R2 each of length at most dn

2 e while the longest rollercoaster
R has length n. In this section, first we adapt the existing O(n log n)-time algorithm for
computing a longest increasing subsequence in S to compute a longest rollercoaster in S

within the same time bound. Then we show that if S is a permutation of {1, . . . , n}, then
we can compute a longest rollercoaster in O(n log log n) time.

R1

R2

R

First we recall Fredman’s version of the O(n log n)-time algorithm for computing a longest
increasing subsequence [9]; for more information about longest increasing subsequence, see
Romik [14]. We maintain an array R[i], which initially has R[1] = S[1] and is empty
otherwise. Then as i proceeds from 2 to n, we find the largest l for which R[l] < S[i], and set
R[l+1] = S[i]; if S[i] is smaller than all elements of R, then l = 0. This insertion ensures that
every element R[l] stores the smallest element of S[1..i] in which an increasing subsequence
of length l ends. After all elements of S have been processed, the index of the last non-empty
element of R is the largest length of an increasing sequence; the corresponding sequence can
also be retrieved from R. Notice that R is always sorted during the above process. So, the
proper location of S[i] in R can be computed in O(log n) time by a predecessor search, which
can be implemented as a binary search. Therefore, this algorithm runs in O(n log n) time.

To compute a longest rollercoaster we need to extend this approach. We maintain six
arrays R(w, h) with w ∈ {inc, dec} and h ∈ {2, 3+, 3′+} where inc stands for “increasing”,
dec stands for “decreasing”, and both 3+ and 3′+ stand for any integer that is at least 3
(we will see the difference between 3+ and 3′+ later when we fill the arrays). We define a
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18:10 Rollercoasters and Caterpillars

w-h-rollercoaster to be a rollercoaster whose last run has h points and is increasing if w = inc
and decreasing if w = dec. We insert S[i] into arrays R(inc, h) such that after this insertion
the following invariants hold:

The array R(inc, 2)[l] stores the smallest element of S[1..i] in which an inc-2-rollercoaster
of length l ends. The array R(dec, 2)[l] stores the largest element of S[1..i] in which a
dec-2-rollercoaster of length l ends.
The arrayR(inc, 3+)[l] stores the smallest element of S[1..i] in which an inc-3+-rollercoaster
of length l ends. The array R(dec, 3+)[l] stores the largest element of S[1..i] in which an
dec-3+-rollercoaster of length l ends.
The array R(inc, 3′+)[l] stores the largest element of S[1..i] in which an inc-3+-rollercoaster
of length l ends. The array R(dec, 3′+)[l] stores the smallest element of S[1..i] in which a
dec-3+-rollercoaster of length l ends. These arrays will be used when the last run of the
current rollercoaster changes from an ascent to a descent, and vice versa.

We insert S[i] into arrays R(dec, h) so to maintain analogous aforementioned invariants.
To achieve these invariants we insert S[i] as follows:

R(inc, 2): Find the largest index l such that R(dec, 3′+)[l] < S[i]. If S[i] < R(inc, 2)[l+ 1]
then update R(inc, 2)[l + 1] = S[i].
R(inc, 3+): Find the largest indices l1 and l2 such thatR(inc, 2)[l1] < S[i] andR(inc, 3+)[l2]
< S[i]. Let l = max{l1, l2}. If S[i] < R(inc, 3+)[l+1] then update R(inc, 3+)[l+1] = S[i].
R(inc, 3′+): Find the largest index l1 and l2 such that R(inc, 2)[l1] < S[i] and R(inc, 3′+)[l2]
< S[i]. Let l = max{l1, l2}. If S[i] > R(inc, 3′+)[l+1] then update R(inc, 3′+)[l+1] = S[i].
The arrays R(dec, h) are updated in a similar fashion.

Since our arrays R(w, h) are not necessarily sorted, we cannot perform a predecessor
search to find proper locations of S[i]. To insert S[i] we need to find the largest index l such
that R(w, h)[l] is smaller (or, alternatively, larger) than S[i] for some w and h, and also need
to update contents of these arrays. Thereby, if A is an R(w, h) array, we need to perform the
following two operations on A:

FindMax(A,S[i]): Find the largest index l such that A[l] > S[i] (or A[l] < S[i]).
Update(A, l, S[i]): Set A[l] = S[i].

We implement each R(w, h) as a Fenwick tree [8], which supports FindMax and Update
in O(log n) time. Thus, the total running time of our algorithm is O(n log n). After all
elements of S have been processed, the largest length of a rollercoaster is the largest value l
for which R(w, 3+)[l] or R(w, 3′+)[l] is not empty; the corresponding rollercoaster can also be
retrieved from arrays R(w, h), by keeping the history of the way the elements of these arrays
were computed, and then rolling back the computation.

A Longest Rollercoaster in Permutations: Here we consider a special case where our input
sequence S consists of n distinct integers, each of which can be represented using at most
c memory words for some constant c > 1, in a RAM model with logarithmic word size. In
linear time, we can sort S, using Radix Sort, and then hash it to a permutation of {1, . . . , n}.
This reduces the problem to finding a longest rollercoaster in a permutation of {1, . . . , n}.
The longest increasing subsequence of such a sequence can be computed in O(n log log n)
time by using a van Emde Boas tree [18], which supports predecessor search and updates
in O(log log n) time.8 To compute a longest rollercoaster in the same time, we need a data

8 We note that a longest increasing subsequence of a permutation can also be computed in O(n log log k)
time (see [5]) where k is the largest length of an increasing sequence. However, in our case, the largest
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structures that supports FindMax and Update in permutations in O(log log n) time. In the
full version of the paper (see [3]) we show how to obtain such a data structure by using van
Emde Boas trees combined with some other structures.

I Lemma 6. Let A be an array with n elements from the set {0, 1, . . . , n} such that each
non-zero number occurs at most once in A. We can construct, in linear time, a data structure
that performs FindMax and Update operations in O(log log n) amortized time.

With Lemma 6 in hand, we can compute a longest rollercoaster in S in O(n log log n)
time. We note that this algorithm can also compute a longest increasing subsequence by
maintaining only the array R(inc, 3+).

Notice that both of our algorithms (for general sequences and for permutations) can be
generalized to compute a longest k-rollercoaster in O(kn log n) time and in O(kn log log n)
time, respectively. A straightforward way is to maintain 2k arrays R(w, h) with w ∈ {inc, dec}
and h ∈ {2, . . . , k−1, k+, k

′
+} and fill them in a way analogous to what we did for rollercoasters.

The following theorem summarizes our results in this section.

I Theorem 7. Let k > 3 be an integer. Then a longest k-rollercoaster in every sequence of
n distinct real numbers can be computed in O(kn log n) time, and a longest k-rollercoaster in
every permutation of {1, . . . , n} can be computed in O(kn log log n) time.

2.4 Counting Rollercoaster Permutations
In this section we estimate the number r(n) of permutations of {1, 2, . . . , n} that are roller-
coasters. A brief table follows:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
r(n) 1 0 2 2 14 42 244 1208 7930 52710 40580 3310702 29742388 285103536

This is sequence A277556 in the On-Line Encyclopedia of Integer Sequences [16].
The first step is to rephrase the condition that a permutation is a rollercoaster in the

language of ascents and descents. Given a length-n permutation π = π1π2 · · ·πn, its descent
word u(π) is defined to be u1u2 · · ·un−1 where ui = a if πi < πi+1 and b otherwise. For
example if π = 2, 4, 6, 1, 3, 5, then u(π) = aabaa. Notice that π is a rollercoaster if and only
if every maximal contiguous subsequence of u(π), that consists of only a’s or b’s, has length
at least two. In other words, π is a rollercoaster if and only if u(π) does not have an isolated
a or an isolated b; in fact u(π) does not contain patterns {aba,bab}, and also begins and
ends with either aa or bb. The set of all such descent words u(π) is given by the expression

(aaa∗ + bbb∗)∗.

This expression specifies that every increasing run and every decreasing run must contain
at least three elements. Since this description is a regular expression, one can, in principle,
obtain the asymptotic behavior of r(n) using the techniques of [2], but the calculations
appear to be formidable.

Instead, we follow the approach of Ehrenborg and Jung [6]. This is based on specifying
sets of permutations through pattern avoidance. We say a word w avoids a set of words
S if no contiguous subword of w belongs to S. Although rollercoasters are not specifiable
in terms of a finite set of avoidable patterns, they “almost are”. Consider the patterns

length of a rollercoaster is Ω(n).
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18:12 Rollercoasters and Caterpillars

{aba,bab}. Every descent word of a rollercoaster must avoid both these patterns, and
every word avoiding these patterns that also begins and ends with either aa or bb is the
descent word of some rollercoaster. Let s(n) be the number of permutations of length n

whose descent word avoids {aba,bab}. Then r(n) = Θ(s(n)). From [6, Prop. 5.2] we know
that s(n) ∼ c · n! · λn−3 where λ .= 0.6869765032 · · · is the root of a certain equation. It
follows that r(n) ∼ c′ · n! · λn−3 where c′ is a constant, approximately 0.204.

3 Caterpillars

In this section we study the problem of drawing a top-view caterpillar, with L-shaped edges,
on a set of points in the plane that is in general orthogonal position. Recall that a top-view
caterpillar is an ordered caterpillar of degree 4 such that the two leaves adjacent to each
vertex lie on opposite sides of the spine; see Figure 1(b) for an example. The best known
upper bound on the number of required points for a planar L-shaped drawing of the n-vertex
top-view caterpillar is O(n log n), for all n; this bound is due to Biedl et al. [4]. We use
Theorem 4 and improve this bound to 25

3 n+O(1).
In every planar L-shaped drawing of a top-view caterpillar, every node of the spine, except

for the two endpoints, must have its two incident spine edges aligned either horizontally
or vertically. Such a drawing of the spine (which is essentially a path) is called a straight-
through drawing. It has been proved in [4] that every n-vertex path has an x-monotone
straight-through drawing on any set of at least c · n log n points, for some constant c. The
following theorem improves this bound.

I Theorem 8. Any path of n vertices has an x-monotone straight-through drawing on any
set of at least 3n−3 points in the plane that is in general orthogonal position.

Proof. Fix an arbitrary set of 3n−3 points. As in the proof of Theorem 4, find two pseudo-
rollercoasters that together cover all but the last point and that both contain the first
point. Append the last point to both sets; we hence obtain two subsequences R1, R2 with
|R1|+ |R2| > 3n−1 and for which all but the first and last run have length at least 3.

We may assume |R1| > 3
2n−

1
2 , and will find the straight-through drawing within it. To

do so, consider any run r of R1 that is neither the first nor the last run, and that has even
length (hence length at least 4). By removing from r one point that is not shared with an
adjacent run, we turn it into a run of odd length. Let R′ be the subsequence that results after
applying this to every such run of R1; then R′ satisfies that every run except the first and
last one has odd length. Observe that we can find an x-monotone straight-through drawing
of length |R′| on this, see e.g. the black path in Figure 5 that is drawn on the black points.

It remains to argue that |R′| > n. Let r1, . . . , r` be the runs of R1, and assign to
each run ri all but the last point of ri (the last point of ri is counted with ri+1, or not
counted at all if i = `). Therefore |r1| + · · · + |r`| = |R1|−1 > 3

2n −
3
2 . For each ri with

2 6 i 6 `−1, we remove a point only if |ri| > 3, hence we keep at least 2
3 |ri| points. Therefore

|R′| > |r1|+ |r`|+
∑

26i6`−1
2
3 |ri| =

∑
16i6`

2
3 |ri|+ 1

3 (|r1|+ |r`|) > 2
3 · (

3
2n−

3
2 )+ 1

3 (2+1) = n

as desired. J

To draw top-view caterpillars, we essentially use Theorem 8 and place the spine on the
resulting straight-through x-monotone path. But we will get a slightly better factor if we
analyze the number of points directly.

I Theorem 9. For every n, the n-vertex top-view caterpillar has a planar L-shaped drawing
on any set of 25

3 (n+4) points in the plane that is in general orthogonal position. Such a
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s1

s2

sN

b1

a1

c1

d1

a2

b2

s3

d2

c2

Figure 5 An x-monotone straight-through drawing of an N -vertex path. Red (lighter shade)
points are reserved.

drawing can be computed in O(n) time, provided that the input points are given in sorted
order.

Proof. Fix any 25
3 (n+4) points P in general orthogonal position. Partition P , by vertical

lines, into 5
3 (n+4) sets, each of them containing five points. We call every such set a 5-set.

Let P ′ be the set of the mid-points (with respect to y-coordinates) of every 5-set. We have
|P ′| > 5

3 (n+4), so by Theorem 4 it contains a rollercoaster R of length at least 5
6 (n+4).

Let s1, . . . , sN (for N > 5
6 (n+4)) be the points of R, ordered from left to right. For every

i ∈ {1, . . . , N}, consider the 5-set containing si and let its other points be ai, bi, ci, di from
top to bottom; we call these the reserved points. The main idea is to draw the spine of
the caterpillar along R and the leaves at reserved points, though we will deviate from this
occasionally. Let the spine consist of vertices v1, v2, . . . , v`, where v1 and v` are leaves while
v2, v3, . . . are vertices of degree 4. We process the vertices in order along the spine, and
maintain the following invariant:

I Invariant. At time k > 1, vertex v2k is drawn on a point si that is not an extremal vertex
of a run of R. Edge (v2k, v2k−1) attaches vertically at v2k. All vertices v1, . . . , v2k−1, all
their incident leaves, and one incident leaf of v2k are drawn on points to the left of si.

By a suitable reflection we may assume that s2 is above s1. To initiate this process, we
draw v1 on s1, v2 on s2, and one leaf incident to s2 on b1. See Figure 5. Clearly the invariant
holds for v2. Now assume that vertex v2k has been placed at si, and we want to place v2k+1
and v2k+2 next. We know that si is in the middle of some run of R; up to symmetry we may
assume that it is an ascending run. Let sj be the last point of this run of R; by the invariant
j > i. We distinguish cases:

Case 1: j 6 i + 4. See Figure 6(a). We will completely ignore the 5-sets containing
si+1, . . . , sj−1. Recall that there are two reserved points aj and bj above sj . We place v2k+1
at bj and v2k+2 at sj+1. We connect leaves as follows: The leaves incident to v2k+1 are
placed at aj and sj . To place one leaf each incident to v2k and v2k+2, we use the two points
cj and dj , using the one farther left for v2k. Clearly the invariant holds.

Observe that there are at most five 5-sets (corresponding to si+1, . . . , sj+1) that were
parsed, and we have used two for placing spine-vertices. Therefore, we have used at least
2
5 th of the parsed 5-sets.
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si sj+1

bj
sj

aj

cj

dj

si

si+1

si+3

si+2

si+4

bi+2

ci+2

Figure 6 Placing the next two spine-vertices. (a) j 6 i + 4. (b) j > i + 4. The dashed line
indicates R, the solid line is the spine.

Case 2: j > i+ 4. See Figure 6(b). We ignore the reserved points corresponding to si+1
and si+3. We place v2k+1 at si+2 and v2k+2 at si+4. Note that by case-assumption si+4 is
not the end of the run, so this satisfies the invariant. We connect, as leaves, si+1 to v2k (at
si), and si+3 to v2k+2 (at si+4). The two leaves of v2k+1 can be placed in the 5-set of si+2.
We have used four 5-sets and placed two spine-vertices, and have therefore used half of the
parsed 5-sets.

This is the end of one iteration. In every iteration, we have used at least 2
5 th of the

parsed 5-sets. Since there were 5
6 (n+4) 5-sets, we hence can place 1

3 (n+4) spine-vertices.
Since the spine of the n-vertex top-view caterpillar has 1

3 (n+4) vertices, our claim about
the size of the input point set follows. If the input points are given in sorted order, we can
find the rollercoaster in linear time, and then we do one scan of the points to find a planar
L-shaped drawing. Thus, our claim about the running time follows. J
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Abstract
Reoptimization is a setting in which we are given an (near) optimal solution of a problem instance
and a local modification that slightly changes the instance. The main goal is that of finding an
(near) optimal solution of the modified instance.

We investigate one of the most studied scenarios in reoptimization known as Steiner tree
reoptimization. Steiner tree reoptimization is a collection of strongly NP-hard optimization prob-
lems that are defined on top of the classical Steiner tree problem and for which several constant-
factor approximation algorithms have been designed in the last decade. In this paper we improve
upon all these results by developing a novel technique that allows us to design polynomial-time
approximation schemes. Remarkably, prior to this paper, no approximation algorithm better
than recomputing a solution from scratch was known for the elusive scenario in which the cost
of a single edge decreases. Our results are best possible since none of the problems addressed in
this paper admits a fully polynomial-time approximation scheme, unless P = NP.
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1 Introduction

Reoptimization is a setting in which we are given an instance I of an optimization problem
together with an (near) optimal solution S for I and a local modification that, once applied
to I, generates a new instance I ′ which slightly differs from I. The main goal is that of
finding an (near) optimal solution of I ′. Since reoptimization problems defined on top of
NP-hard problems are usually NP-hard, the idea beyond reoptimization is to compute a
good approximate solution of I ′ by exploiting the structural properties of S. This approach
leads to the design of reoptimization algorithms that, when compared to classical algorithms
that compute feasible solutions from scratch, are less expensive in terms of running time or
output solutions which guarantee a better approximation ratio. Thus, reoptimization finds
applications in many real settings (like scheduling problems or network design problems)
where prior knowledge is often at our disposal and a problem instance can arise from a local
modification of a previous problem instance (for example, a scheduled job is canceled or
some links of the network fail).

The term reoptimization was mentioned for the first time in the paper of Schäffter [33],
where the author addressed an NP-hard scheduling problem with forbidden sets in the scenario
of adding/removing a forbidden set. Since then, reoptimization has been successfully applied
to other NP-hard problems including: the Steiner tree problem [8, 11, 13, 14, 15, 29, 30, 35],
the traveling salesman problem and some of its variants [1, 5, 7, 12, 15, 16, 17, 18, 19, 32],
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19:2 New algorithms for Steiner tree reoptimization

scheduling problems [6, 21], the minimum latency problem [27], the minimum spanning
tree problem [24], the rural postman problem [3], many covering problems [10], the shortest
superstring problem [9], the knapsack problem [2], the maximum-weight induced hereditary
subgraph problems [22], and the maximum Pk subgraph problem [23]. Some overviews on
reoptimization can be found in [4, 25, 34].1

1.1 Our results
In this paper we address Steiner tree reoptimization. Steiner tree reoptimization is a collection
of optimization problems that are built on top of the famous Steiner tree problem (STP
for short), a problem that given an edge-weighted graph as input, where each vertex can
be either terminal or Steiner, asks to find a minimum-cost tree spanning all the terminals.
More precisely, we study the four local modifications in which the cost of an edge changes (it
can either increase or decrease) or a vertex changes its status (from Steiner to terminal and
viceversa).2 All the problems addressed are strongly NP-hard [14, 15], which implies that
none of them admits a fully polynomial-time approximation scheme, unless P = NP.

In this paper we improve upon all the constant-factor approximation algorithms that have
been developed in the last 10 years by designing polynomial-time approximation schemes.
More precisely, if S is a ρ-approximate solution of I, then all our algorithms compute a
(ρ+ ε)-approximate solution of I ′. For the scenarios in which the cost of an edge decreases
or a terminal vertex becomes Steiner, our polynomial-time approximation schemes hold
under the assumption that ρ = 1, i.e., the provided solution is optimal. We observe that
this assumption is somehow necessary since Goyal and Mömke (see [30]) proved that in
both scenarios, unless ρ = 1, any σ-approximation algorithm for the reoptimization problem
would be also a σ-approximation algorithm for the STP! Remarkably, prior to this paper,
no approximation algorithm better than recomputing a solution from scratch was known for
the elusive scenario in which the cost of a single edge decreases.

The state of the art of Steiner tree reoptimization is summarized in Table 1. We observe
that the only problem that remains open is the design of a reoptimization algorithm for the
scenario in which a vertex, that can be either terminal or Steiner, is added to the graph. In
fact, as proved by Goyal and Mömke [30], the scenario in which a vertex is removed from
the graph is as hard to approximate as the STP (think of the removal of a vertex that is
connected to each terminal by an edge of cost 0).

1.2 Used techniques
All the polynomial-time approximation schemes proposed in this paper make a clever use of
the following three algorithms:

the algorithm Connect that computes a Steiner tree in polynomial time by augmenting
a Steiner forest having a constant number of trees with a minimum-cost set of edges. This
algorithm has been introduced by Böckenhauer et al. in [14] and has been subsequently
used in several other papers on Steiner tree reoptimization [11, 13, 30, 35];
the algorithmic proof of Borchers and Du [20] that, for every ξ > 0, converts a Steiner
tree S into a f(ξ)-restricted Steiner tree Sξ, for some function f(ξ) that depends on ξ
only, whose cost is a (1 + ξ)-factor away from the cost of S. This algorithm has been
used for the first time in Steiner tree reoptimization by Goyal and Mömke [30];

1 In this paper we focus only on reoptimization problems that are NP-hard.
2 We observe that the insertion of an edge can be modeled by decreasing the cost of the edge from +∞

to its real value. Analogously, the deletion of an edge can be modeled by increasing the cost of the edge
to +∞.
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Table 1 The state of the art of the approximability of Steiner tree reoptimization before and
after our paper. The value σ is the best approximation ratio we can achieve for STP (actually
σ = ln 4 + ε ≈ 1.387 [26]). If we substitute σ = ln 4 + ε, we get 10σ−7

7σ−4 ≈ 1.204, 7σ−4
4σ−1 ≈ 1.256, and

5σ−3
3σ−1 ≈ 1.246. The bound of 5σ−3

3σ−1 for the scenario in which the cost of an edge decreases holds when
the modified edge can affect only its cost in the shortest-path metric closure. To increase readability,
all the bounds are provided for the case in which ρ = 1. Local modifications marked with an asterisk
are those for which the condition ρ = 1 is necessary as otherwise the reoptimization problem would
be as hard to approximate as the STP. Finally, the question mark means that the problem is still
open.

Local modification before our paper after our paper

a terminal becomes a Steiner vertex* 10σ−7
7σ−4 + ε [30] 1 + ε

a Steiner vertex becomes terminal 10σ−7
7σ−4 + ε [30] 1 + ε

an edge cost increases 7σ−4
4σ−1 + ε [30] 1 + ε

an edge cost decreases* 5σ−3
3σ−1 [8] 1 + ε

a vertex is added to the graph* ? ?
a vertex is deleted from the graph as hard as the STP [30] as hard as the STP [30]

a novel algorithm, that we call BuildST, that takes a f(ξ)-restricted Steiner forest Sξ
of S with q trees, generated with the algorithm of Borchers and Du, and a positive
integer h as inputs and computes a minimum-cost Steiner tree S′ w.r.t. the set of all
the feasible solutions that can be obtained by swapping up to h full components of Sξ
with a minimum-cost set of edges (that is computed using the algorithm Connect). The
running time of this algorithm is polynomial when all the three parameters f(ξ), q, and h
are bounded by a constant.

We prove that the approximation ratio of the solution S′ returned by the algorithm
BuildST is ρ+ε (i) by showing that the cost of S′ is at most the cost of other feasible solutions
S1, . . . , S` and (ii) by proving useful upper bounds to the cost of each Si’s. Intuitively, each
Si is obtained by swapping up to h suitable full components, say Hi, of a suitable f(ξ)-
restricted version of a forest in S, say Sξ, with a minimal set of full components, say H ′i,
of a g(ξ)-restricted version of a fixed optimal solution OPT ′. This implies that we can
easily bound the cost of each Si w.r.t. the cost of Sξ, the cost of Hi, and the cost of H ′i.
Unfortunately, none of these bounds can be used by itself to prove the claim. We address this
issue by carefully defining Hi+1 as a function of both OPT ′ and H ′i, and H ′i as a function of
both Sξ and Hi. This trick allows us to derive better upper bounds: we prove that the cost
of each Si is at most ρg(ξ)2 times the cost of OPT ′ plus the i-th term of a telescoping sum.
As each term of the telescoping sum can be upper bounded by g(ξ) times the cost of OPT ′,
the bound of (ρ+ ε) on the approximation ratio of S′ then follows by averaging the costs of
the Si’s and because of the choices of the parameters.

The paper is organized as follows: in Section 2 we provide the basic definitions and
some preliminaries; in Section 3 we describe the three main tools that are used in all our
algorithms; in Sections 4 and 5 we describe and analyze the algorithms for the cases in which
a Steiner vertex becomes terminal and the cost of an edge increases, respectively. Due to the
lack of space, the local modifications in which a terminal becomes a Steiner vertex and the
cost of an edge decreases can be found in the full version of the paper.
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2 Basic definitions and preliminaries

The Steiner tree problem (STP for short) is defined as follows:

the input is a triple I = 〈G, c,R〉 where G = (V (G), E(G)) is a connected undirected
graph with |V (G)| = n vertices, c is a function that associates a real value c(e) ≥ 0 to
each edge e ∈ E(G), and R ⊆ V (G) is a set of terminal vertices;

the problem asks to compute a minimum-cost Steiner tree of I, i.e., a tree that spans R
and that minimizes the overall sum of its edge costs.

The vertices in V (G) \R are also called Steiner vertices. With a slight abuse of notation, for
any subgraph H of G, we denote by c(H) :=

∑
e∈E(H) c(e) the cost of H.

In Steiner tree reoptimization we are given a triple 〈I, S, I ′〉 where I is an STP instance,
S is a ρ-approximate Steiner tree of I, and I ′ is another STP instance which slightly differs
from I. The problem asks to find a ρ-approximate Steiner tree of I ′.

For a forest F of G (i.e., with E(F ) ⊆ E(G)) and a set of edges E′ ⊆ E(G), we denote by
F +E′ a (fixed) forest yielded by the addition of all the edges in E′ \E(F ) to F , i.e., we scan
all the edges of E′ one by one in any (fixed) order and we add the currently scanned edge to
the forest only if the resulting graph remains a forest. Analogously, we denote by F −E′ the
forest yielded by the removal of all the edges in E′ ∩ E(F ) from F . We use the shortcuts
F + e and F − e to denote F + {e} and F − {e}, respectively. Furthermore, if F ′ is another
forest of G we also use the shortcuts F +F ′ and F −F ′ to denote F +E(F ′) and F −E(F ′),
respectively. For a set of vertices U ⊆ V (G), we define F + U := (V (F ) ∪ U,E(F )) and use
the shortcut F + v to denote F + {v}.

W.l.o.g., in this paper we tacitly assume that all the leaves of a Steiner tree are terminals:
if a Steiner tree S contains a leaf which is not a terminal, then we can always remove such
a leaf from S to obtain another Steiner tree whose cost is upper bounded by the cost of S.
Analogously, we tacitly assume that all the leaves of a Steiner forest (i.e., a forest spanning
all the terminals) are terminals. A full component of a Steiner forest F – so a Steiner tree as
well – is a maximal (w.r.t. edge insertion) subtree of F whose leaves are all terminals and
whose internal vertices are all Steiner vertices. We observe that a Steiner forest can always
be decomposed into full components. A k-restricted Steiner forest is a Steiner forest where
each of its full components has at most k terminals.

In the rest of the paper, for any superscript s (the empty string is included), we denote
by Is an STP instance (we tacitly assume that Is = 〈Gs, cs, Rs〉 as well as that Gs has n
vertices), by OPT s a fixed optimal solution of Is, by ds the shortest-path metric induced
by cs in Gs (i.e, ds(u, v) is equal to the cost of a shortest path between u and v in Gs w.r.t.
cost function cs), by Ks the complete graph on V (Gs) with edge costs ds, and by Ks

n the
complete graph obtained by adding n− 1 copies of Ks to Ks and where the cost of an edge
between a vertex and any of its copies is equal to 0. With a little abuse of notation, we use
ds to denote the cost function of Ks

n. Moreover, we say that a subgraph H of Ks
n spans a

vertex v ∈ V (Gs) if H spans – according to the standard terminology used in graph theory –
any of the n copies of v. Finally, with a little abuse of notation, we denote by Isn the STP
instance Isn = 〈Ks

n, d
s, Rs〉.

Let I be an STP instance. We observe that any forest F of G is also a forest of K such
that d(F ) ≤ c(F ). Moreover, any forest F̄ of K can be transformed in polynomial time into
a forest F of G spanning V (F̄ ) and such that c(F ) ≤ d(F̄ ). In fact, F can be build from an
empty graph on V (G) by iteratively adding – according to our definition of graph addition –
a shortest path between u and v in G, for every edge (u, v) ∈ E(F̄ ).
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We also observe that any forest F of K can be viewed as a forest of Kn. Conversely, any
forest F of Kn can be transformed in polynomial time into a forest of K spanning V (F ) and
having the same cost of F : it suffices to identify each of the 0-cost edges of F between any
vertex and any of its copies. Therefore, we have polynomial-time algorithms that convert
any forest F of any graph in {G,K,Kn} into a forest F ′ of any graph in {G,K,Kn} such
that F ′ always spans V (F ) and the cost of F ′ (according to the cost function associated
with the corresponding graph) is less than or equal to the cost of F (according to the cost
function associated with the corresponding graph). All these polynomial-time algorithms
will be implicitly used in the rest of the paper; for example, we can say that a Steiner tree of
In is also a Steiner tree of I or that a forest of In that spans v is also a forest of I that spans
v. However, we observe that some of these polynomial-time algorithms do no preserve useful
structural properties; for example, when transforming a k-restricted Steiner tree of In into a
Steiner tree of I we may lose the property that the resulting tree is k-restricted. Therefore,
whenever we refer to a structural property of a forest, we assume that such a property holds
only w.r.t. the underlying graph the forest belongs to.

3 General tools

In this section we describe the three main tools that are used by all our algorithms.
The first tool is the algorithm Connect that has been introduced by Böckenhauer et

al. in [14]. This algorithm takes an STP instance I together with a Steiner forest F of
I as inputs and computes a minimum-cost set of edges of G whose addition to F yields
a Steiner tree of I. The algorithm Connect reduces the STP instance to a smaller STP
instance, where each terminal vertex corresponds to a tree of F , and then uses the famous
Dreyfus-Wagner algorithm (see [28]) to find an optimal solution of the reduced instance.3 If
F contains q trees, the running time of the algorithm Connect is O∗(3q);4 this implies that
the algorithm has polynomial running time when q is constant. The call of the algorithm
Connect with input parameters I and F is denoted by Connect(I, F ).

The second tool is the algorithmic proof of Borchers and Du on k-restricted Steiner
trees [20] that has already been used in Steiner tree reoptimization in the recent paper of
Goyal and Mömke [30]. In their paper, Borchers and Du proved that, for every STP instance
I and every ξ > 0, there exists a k-restricted Steiner tree Sξ of In, with k = 2d1/ξe, such that
d(Sξ) ≤ (1 + ξ)c(OPT ). As the following theorem shows, the algorithmic proof of Borchers
and Du immediately extends to any (not necessarily optimal!) Steiner tree of In.

I Theorem 1 ([20]). Let I be an STP instance, S a Steiner tree of I, and ξ > 0 a real value.
There is a polynomial time algorithm that computes a k-restricted Steiner tree Sξ of In, with
k = 2d1/ξe, such that d(Sξ) ≤ (1 + ξ)c(S).

The call of Borchers and Du algorithm with input parameters I, S, and ξ, is denoted by
RestrictedST(I, S, ξ). By construction, the algorithm of Borchers and Du also guarantees
the following properties:
(a) if v is a Steiner vertex that has degree at least 3 in S, then Sξ spans v;
(b) if the degree of a terminal t in S is 2, then the degree of t in Sξ is at most 4.
As shown in the following corollary, these two properties are useful if we want that a specific
vertex of S would also be a vertex of the k-restricted Steiner tree Sξ of In.

3 We refer to Hougardy [31] for further exact algorithms for the STP.
4 The O∗ notation hides polynomial factors.
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Algorithm 1: The pseudocode of the algorithm BuildST(I, F, h).
1 if F contains less than h full components then return Connect(I, (R, ∅));
2 S′ ←⊥;
3 for every set H of up to h full components of F do
4 F̄ ← F −H;
5 S̄ ← Connect

(
In, F̄

)
;

6 if S′ =⊥ or c(S̄) < c(S′) then S′ ← S̄;
7 return S′;

I Corollary 2. Let I be an STP instance, S a Steiner tree of I, v a vertex of S, and ξ > 0
a real value. There is a polynomial time algorithm that computes a k-restricted Steiner tree
Sξ of In, with k = 22+d1/ξe, such that d(Sξ) ≤ (1 + ξ)c(S) and v ∈ V (Sξ).

Proof. The cases in which v ∈ R has already been proved in Theorem 1. Moreover, the claim
trivially holds by property (a) when v is a Steiner vertex of degree greater than or equal to 3
in S. Therefore we assume that v is a Steiner vertex of degree 2 in S. Let I ′ = 〈G, c,R∪{v}〉.
In this case, the call of RestrictedST

(
I ′, S, ξ

)
outputs a k′-restricted Steiner tree Sξ of I ′n,

with k′ = 2d1/ξe, such that d(Sξ) ≤ (1 + ξ)c(S). Since v is a terminal in I ′, by property (b)
the degree of v in Sξ is at most 4; in other words, v is contained in at most 4 full components
of Sξ. Therefore, Sξ is a k-restricted Steiner tree of I, with k = 4k′ = 22+d1/ξe. J

The call of Borchers and Du algorithm with parameters I, S, ξ, and v is denoted by
RestrictedST(I, S, ξ, v).

The third tool, which is the novel idea of this paper, is the algorithm BuildST (see
Algorithm 1 for the pseudocode). The algorithm BuildST takes as inputs an STP instance
I, a Steiner forest F of In, and a positive integer value h. The algorithm computes a Steiner
tree of I by selecting, among several feasible solutions, the one of minimum cost. More
precisely, the algorithm computes a feasible solution for each forest F̄ that is obtained by
removing from F up to h of its full components. The Steiner tree of I associated with F̄ is
obtained by the call of Connect

(
In, F̄

)
. If F contains a number of full components which

is strictly less than h, then the algorithm computes a minimum-cost Steiner tree of I from
scratch. The call of the algorithm BuildST with input parameters I, F , and h is denoted
by BuildST(I, F, h). The proof of the following lemma is immediate.

I Lemma 3. Let I be an STP instance, F a Steiner forest of In, F̄ a Steiner forest of In
that is obtained from F by removing up to h of its full components, and H a minimum-cost
subgraph of Kn such that F̄ +H is a Steiner tree of I. Then the cost of the Steiner tree of I
returned by the call of BuildST(I, F, h) is at most c(F̄ ) + c(H).

Moreover, the following lemmas hold.

I Lemma 4. Let I be an STP instance and F a forest of G spanning R. If F contains
q trees, then every minimal (w.r.t. the deletion of entire full components) subgraph H of
any graph in {G,K,Kn} such that F +H is a Steiner tree of I contains at most q − 1 full
components.

Proof. Since H is minimal, each full component of H contains at least 2 vertices each of
which respectively belongs to one of two distinct trees of F . Therefore, if we add the full
components of H to F one after the other, the number of connected components of the
resulting graph strictly decreases at each iteration because of the minimality of H. Hence,
H contains at most q − 1 full components. J
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Algorithm 2: A Steiner vertex t ∈ V (G) \R becomes a terminal.
1 ξ ← ε/10;
2 h← 22d2/εed1/ξe;
3 Sξ ← RestrictedST(I, S, ξ);
4 S′ ← BuildST(I ′, Sξ + t, h);
5 return S′;

I Lemma 5. Let I be an STP instance and F a Steiner forest of In of q trees. If each tree
of F is k-restricted, then the call of BuildST(I, F, h) outputs a Steiner tree of I in time
O∗(|R|h3q+hk).

Proof. If F contains at most h full components, then the number of terminals is at most
q + hk and the call of Connect(I, (R, ∅)) outputs a Steiner tree of I in time O∗(3q+hk).
Therefore, we assume that F contains a number of full components that is greater than or
equal to h. In this case, the algorithm BuildST(I, F, h) computes a feasible solution for each
forest that is obtained by removing up to h full components of F from itself. As the number
of full components of F is at most |R|, the overall number of feasible solutions evaluated by
the algorithm is O(|R|h+1). Let F̄ be any forest that is obtained from F by removing h of
its full components. Since F is k-restricted, F̄ contains at most q + hk trees. Therefore the
call of Connect(In, F̄ ) requires O∗(3q+hk) time to output a solution. Hence, the overall
time needed by the call of BuildST(I, F, h) to output a solution is O∗(|R|h3q+hk). J

For the rest of the paper, we denote by 〈I, S, I ′〉 an instance of the Steiner tree reoptim-
ization problem. Furthermore, we also assume that ρ ≤ 2 as well as ε ≤ 1, as otherwise we
can use classical time-efficient algorithms to compute a 2-approximate solution of I ′.

4 A Steiner vertex becomes a terminal

In this section we consider the local modification in which a Steiner vertex t ∈ V (G) \ R
becomes a terminal. Clearly, G′ = G, c′ = c, d′ = d, whereas R′ = R ∪ {t}. Therefore, for
the sake of readability, we will drop the superscripts from G′, c′, and d′.

Let ξ = ε/10 and h = 22d2/εed1/ξe. The algorithm, whose pseudocode is reported in
Algorithm 2, computes a Steiner tree of I ′ first by calling RestrictedST(I, S, ξ) to obtain
a k-restricted Steiner tree Sξ of In, with k = 2d1/ξe, and then by calling BuildST(I ′, Sξ +
t, h). Intuitively, the algorithm guesses the full components of Sξ to be replaced with the
corresponding full components of a suitable k′-restricted version of a new (fixed) optimal
solution, for suitable values of k′.

I Theorem 6. Let 〈I, S, I ′〉 be an instance of Steiner tree reoptimization, where S is a
ρ-approximate solution of I and I ′ is obtained from I by changing the status of a single
vertex from Steiner to terminal. Then Algorithm 2 computes a (ρ+ ε)-approximate Steiner
tree of I ′ in polynomial time.

Proof. Theorem 1 implies that the computation of Sξ requires polynomial time. Since Sξ is
a Steiner tree of In, Sξ + t is a Steiner forest of I ′n of at most two trees (observe that Sξ may
already contain t). Therefore, using Lemma 5 and the fact that h is a constant value, the
call of BuildST(I ′, Sξ + t, h) outputs a solution S′ in polynomial time. Hence, the overall
time complexity of Algorithm 2 is polynomial.

In the following we show that Algorithm 2 returns a (ρ+ ε)-approximate solution. Let S′ξ
denote the Steiner tree of I ′n that is returned by the call of RestrictedST(I ′,OPT ′, ξ). Let
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t t

t t

(a) (b)

(c) (d)

Figure 1 An example that shows how Hi and H ′i are defined. In (a) it is depicted a Steiner tree
reoptimization instance where square vertices represent the terminals, while circle vertices represent
the Steiner vertices. The Steiner vertex t of I that becomes a terminal in I ′ is represented as a
terminal vertex of grey color. Solid edges are the edges of Sξ, while dashed edges are the edges of S′ξ.
The full component H ′0 of S′ξ is highlighted in (a). The forests S′ξ −H ′0 and H1 are shown in (b).
The forests Sξ −H1 and H ′1 are shown in (c). Finally, the forests S′ξ −H ′1 and H2 are shown in (d).

H ′0 be a full component of S′ξ that spans t (ties are broken arbitrarily). For every i = 1, . . . , `,
with ` = d2/εe, we define:

Hi as the forest consisting of a minimal set of full components of Sξ whose addition to
S′ξ −H ′i−1 yields a Steiner tree of In (see Figure 1 (b) and (d));
H ′i as the forest consisting of a minimal set of full components of S′ξ whose addition to
Sξ −Hi yields a Steiner tree of I ′n (see Figure 1 (c)).

For the rest of the proof, we denote by Si the Steiner tree of I ′ yielded by the addition of
H ′i to Sξ −Hi.

Let k = 2d1/ξe and observe that both Sξ and S′ξ are k-restricted Steiner trees of In and
I ′n, respectively (see Theorem 1). Therefore H ′0 spans at most k terminals. Furthermore, by
repeatedly using Lemma 4, Hi contains at most k2i−1 full components and spans at most k2i

terminals, while H ′i contains at most k2i full components and spans at most k2i+1 terminals.
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This implies that the number of the full components of Hi, with i = 1, . . . , `, is at most

k2i−1 ≤ k2` = 22d2/εed1/ξe = h.

Therefore, by Lemma 3, the cost of the solution returned by the call of BuildST(I ′, Sξ + t, h)
is at most c(Si). As a consequence

c(S′) ≤ 1
`

∑̀
i=1

c(Si). (1)

Now we prove an upper bound to the cost of each Si. Let ∆OPT = (1 + ξ)c(OPT ′) −
c(OPT ). As any Steiner tree of I ′ is also a Steiner tree of I, c(OPT ′) ≥ c(OPT ); therefore
∆OPT ≥ 0. Since the addition of Hi to S′ξ −H ′i−1 yields a Steiner tree of I, the cost of this
tree is lower bounded by the cost of OPT . As a consequence, using Theorem 1 in the second
inequality that follows, c(OPT ) ≤ d(S′ξ)−d(H ′i−1)+d(Hi) ≤ (1+ξ)c(OPT ′)−d(H ′i−1)+d(Hi),
i.e.,

d(Hi) ≥ d(H ′i−1)−∆OPT . (2)

Using Theorem 1 in the first inequality that follows we have that

d(Sξ) ≤ (1 + ξ)c(S) ≤ ρ(1 + ξ)c(OPT ) ≤ ρ(1 + ξ)2c(OPT ′)−∆OPT . (3)

Using both (2) and (3) in the second inequality that follows, we can upper bound the cost of
Si with

c(Si) ≤ d(Sξ)− d(Hi) + d(H ′i) ≤ ρ(1 + ξ)2c(OPT ′)− d(H ′i−1) + d(H ′i). (4)

Observe that the overall sum of the last two terms on the right-hand side of (4) for every
i ∈ {1, . . . , `} is a telescoping sum. As a consequence, if for every i ∈ {1, . . . , `} we substitute
the term c(Si) in (1) with the corresponding upper bound in (4), and use Theorem 1 to
derive that d(H ′`) ≤ d(S′ξ) ≤ (1 + ξ)c(OPT ′), we obtain

c(S′) ≤ 1
`

∑̀
i=1

c(Si) ≤ ρ(1 + ξ)2c(OPT ′) + 1 + ξ

`
c(OPT ′) ≤ (ρ+ ε)c(OPT ′),

where last inequality holds by the choice of ξ and `, and because ρ ≤ 2 and ε ≤ 1. This
completes the proof. J

5 The cost of an edge increases

In this section we consider the local modification in which the cost of an edge e = (u, v) ∈ E(G)
increases by ∆ > 0. More formally, we have that G′ = G, R′ = R, whereas, for every
e′ ∈ E(G),

c′(e′) =
{
c(e) + ∆ if e′ = e;
c(e′) otherwise.

For the sake of readability, in this section we drop the superscripts from G′ and R′. Fur-
thermore, we denote by c−e the edge-cost function c restricted to G − e and by d−e the
corresponding shortest-path metric.
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Algorithm 3: The cost of an edge e = (u, v) increases by ∆ > 0.
1 ξ ← ε/10;
2 h← 22(1+d1/ξe)d2/εe;
3 if e 6∈ E(S) then
4 S′ ← S;
5 else
6 let Su and Sv be the tree of S − e containing u and v, respectively;
7 Iu ← 〈G− e, c−e, V (Su) ∩R〉;
8 Iv ← 〈G− e, c−e, V (Sv) ∩R〉;
9 Su,ξ ← RestrictedST(Iu, Su, ξ, u);

10 Sv,ξ ← RestrictedST(Iv, Sv, ξ, v);
11 Sξ ← Su,ξ + Sv,ξ;
12 S′ ← BuildST(I ′, Sξ, h);
13 if c′(S) ≤ c′(S′) then S′ ← S;
14 return S′;

Let ξ = ε/10 and h = 22(1+d1/ξe)d2/εe. The algorithm, whose pseudocode is reported
in Algorithm 3, first checks whether e ∈ E(S). If this is not the case, then the algorithm
returns S. If e ∈ E(S), then let Su and Sv denote the two trees of S − e containing u and
v, respectively. The algorithm first computes a k-restricted Steiner tree Su,ξ (resp., Sv,ξ),
with k = 22+d1/ξe, of Su (resp., Sv) such that u ∈ V (Su,ξ) (resp., v ∈ V (Sv,ξ)). Then the
algorithm computes a solution S′ via the call of BuildST(I ′, Su,ξ + Sv,ξ, h), and, finally, it
returns the cheapest solution between S and S′. As we will see, the removal of e from S is
necessary to guarantee that the cost of the processed Steiner forest of I ′ (i.e., S − e) is upper
bounded by the cost of OPT ′.

I Theorem 7. Let 〈I, S, I ′〉 be an instance of Steiner tree reoptimization, where S is a
ρ-approximate solution of I and I ′ is obtained from I by increasing the cost of a single edge.
Then Algorithm 3 computes a (ρ+ ε)-approximate Steiner tree of I ′ in polynomial time.

Proof. Corollary 2 implies that the computation of both Su,ξ and Sv,ξ requires polynomial
time. Therefore, using Lemma 5 and the fact that h is a constant value, the call of
BuildST(I ′, Sξ, h) outputs a solution S′ in polynomial time. Hence, the overall time
complexity of Algorithm 3 is polynomial.

In the following we show that Algorithm 3 returns a (ρ+ε)-approximate solution. Observe
that the local modification does not change the set of feasible solutions, i.e., a tree is a Steiner
tree of I iff it is a Steiner tree of I ′. This implies that OPT ′ is a Steiner tree of I as well.
Thanks to this observation, if e 6∈ E(S) we have that

c′(S) = c(S) ≤ ρc(OPT ) ≤ ρc(OPT ′) ≤ ρc′(OPT ′),

i.e., the solution returned by the algorithm is a ρ-approximate solution. Moreover, if
e ∈ E(OPT ′), then c′(OPT ′) = c(OPT ′) + ∆ or, equivalently, c(OPT ′) = c′(OPT ′) −∆.
As a consequence,

c′(S) ≤ c(S) + ∆ ≤ ρc(OPT ) + ∆ ≤ ρc(OPT ′) + ∆ ≤ ρc′(OPT ′),

i.e., once again, the solution returned by the algorithm is a ρ-approximate solution. Therefore,
in the rest of the proof, we assume that e ∈ E(S) as well as e 6∈ E(OPT ′).

Let S′ξ denote the Steiner tree of 〈Kn, d−e, R〉 that is returned by the call of
RestrictedST(〈G− e, c−e, R〉,OPT ′, ξ). Using Theorem 1 and the fact that e 6∈ E(OPT ′)
we have that

d−e(S′ξ) ≤ (1 + ξ)c−e(OPT ′) = (1 + ξ)c′(OPT ′). (5)
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Let H ′0 be a full component of S′ξ whose addition to Sξ yields a Steiner tree of I ′n (ties are
broken arbitrarily). For every i = 1, . . . , `, with ` = d2/εe, we define:

Hi as the forest consisting of a minimal set of full components of Sξ such that the addition
of Hi and e to S′ξ −H ′i−1 yields a Steiner tree of In;5
H ′i as the forest consisting of a minimal set of full components of S′ξ whose addition to
Sξ −Hi yields a Steiner tree of I ′n.

For the rest of the proof, we denote by Si the Steiner tree of I ′ obtained by augmenting
Sξ −Hi with H ′i. Observe that Si does not contain e. Therefore

c′(Si) ≤ c−e(Si) ≤ d−e(Sξ)− d−e(Hi) + d−e(H ′i). (6)

Let k = 22+d1/ξe and r = 2d1/ξe. Observe that Sξ is a k-restricted Steiner forest of In
(see Corollary 2), while S′ξ is an r-restricted Steiner tree of I ′n (see Theorem 1). Therefore,
H ′0 spans at most r terminals. Moreover, by repeatedly using Lemma 4, Hi contains at most
ki−1ri full components and spans at most kiri terminals, while H ′i contains at most kiri
full components and spans at most kiri+1 terminals. This implies that the number of full
components of Hi, with i = 1, . . . , `, is at most

ki−1ri ≤ k`r` = 22(1+d1/ξe)d2/εe = h.

Therefore, by Lemma 3, the cost of the solution returned by the call of BuildST(I ′, Sξ, h)
is at most the cost of Si. As a consequence

c′(S′) ≤ 1
`

∑̀
i=1

c′(Si). (7)

Now we prove an upper bound to the cost of each Si, with i ∈ {1, . . . , `}. Let ∆OPT =
(1 + ξ)c′(OPT ′)− c(OPT ) and observe that ∆OPT ≥ 0. Since the addition of Hi and e to
S′ξ−H ′i−1 yields a Steiner tree of I, the cost of this tree is lower bounded by the cost of OPT .
As a consequence, using (5) together with Theorem 1 in the third inequality that follows,

c(OPT ) ≤ d(S′ξ −H ′i−1) + d(Hi) + d(e) ≤ d−e(S′ξ −H ′i−1) + d−e(Hi) + c(e)
= d−e(S′ξ)− d−e(H ′i−1) + d−e(Hi) + c(e)
≤ (1 + ξ)c′(OPT ′)− d−e(H ′i−1) + d−e(Hi) + c(e),

from which we derive

d−e(Hi) ≥ d−e(H ′i−1)−∆OPT − c(e). (8)

Using Corollary 2 twice in the first inequality that follows we have that

d−e(Sξ) = d−e(Su,ξ) + d−e(Sv,ξ) ≤ (1 + ξ)c−e(Su) + (1 + ξ)c−e(Sv)
= (1 + ξ)c(S)− (1 + ξ)c(e) ≤ ρ(1 + ξ)c(OPT )− c(e)
≤ ρ(1 + ξ)2c′(OPT ′)−∆OPT − c(e). (9)

Starting from (6) and using both (8) and (9) in the second inequality that follows, we can
upper bound the cost of Si, for every i ∈ {1, . . . , `}, with

c′(Si) ≤ d−e(Sξ)− d−e(Hi) + d−e(H ′i) ≤ ρ(1 + ξ)2c′(OPT ′)− d−e(H ′i−1) + d−e(H ′i). (10)

5 We observe that the existence of Hi is guarantee by the fact that Sξ + e is a Steiner tree of In: in fact,
Sξ = Su,ξ + Sv,ξ is a forest of two trees such that u ∈ Su,ξ and v ∈ Sv,ξ.
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As a consequence, if for every i ∈ {1, . . . , `} we substitute the term c′(Si) in (7) with
the corresponding upper bound in (10), and use (5) to derive d−e(H ′`) ≤ d−e(S′ξ) ≤ (1 +
ξ)c′(OPT ′), we obtain

c′(S′) ≤ 1
`

∑̀
i=1

c′(Si) ≤ ρ(1 + ξ)2c′(OPT ′) + 1 + ξ

`
c′(OPT ′) ≤ (ρ+ ε)c′(OPT ′),

where last inequality holds by the choice of ξ and `, and because ρ ≤ 2 and ε ≤ 1. This
completes the proof. J
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Abstract
A common way to accelerate shortest path algorithms on graphs is the use of a bidirectional
search, which simultaneously explores the graph from the start and the destination. It has been
observed recently that this strategy performs particularly well on scale-free real-world networks.
Such networks typically have a heterogeneous degree distribution (e.g., a power-law distribution)
and high clustering (i.e., vertices with a common neighbor are likely to be connected themselves).
These two properties can be obtained by assuming an underlying hyperbolic geometry.

To explain the observed behavior of the bidirectional search, we analyze its running time on
hyperbolic random graphs and prove that it is Õ(n2−1/α + n1/(2α) + δmax) with high probabil-
ity, where α ∈ (0.5, 1) controls the power-law exponent of the degree distribution, and δmax is
the maximum degree. This bound is sublinear, improving the obvious worst-case linear bound.
Although our analysis depends on the underlying geometry, the algorithm itself is oblivious to it.
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1 Introduction

Finding shortest paths between nodes in a network is among the most basic graph problems.
Besides being of independent interest, many algorithms use shortest path queries as a
subroutine. On unweighted graphs, such queries can be answered in linear time using a
breadth-first search (BFS). Though this is optimal in the worst case, it is not efficient enough
when dealing with large networks or problems involving many shortest path queries.

A way to heuristically improve the run time, is to use a bidirectional BFS [16]. It runs two
searches, simultaneously exploring the graph from the start and the destination. The shortest
path is then found once the two search spaces touch. Though this heuristic does not improve
the worst-case running time, recent experiments by Borassi and Natale [6] suggest that it
achieves a significant speedup on scale-free real-world networks. They also try to explain the
observed run times by proving that the bidirectional BFS runs in sublinear expected time
on different random graph models. Though this is a great result, we do not think that it
provides a satisfying explanation for the good practical performance for two reasons.

First, the bidirectional search performs particularly well on networks with a heterogeneous
degree distribution (i.e., few vertices with high degree, many vertices with low degree). A
common assumption is that the degree distribution follows a power-law, i.e., the number of
vertices of degree k is proportional to k−β . The constant β is called the power-law exponent
and is typically between 2 and 3. The above mentioned proof predicts a shorter execution
time for homogeneous graphs (e.g., for Erdős-Rényi graphs) than for heterogeneous graphs
(e.g., for Chung-Lu graphs), which contradicts the observed behavior.

Second, the proof relies on the independence of edges. In fact, this is the only assumption,
which makes the same proof hold for multiple different models. However, this assumption is
unrealistic for most real-world networks. The dependence between edges is typically measured
with the clustering coefficient. The local clustering coefficient of a vertex v is the probability
that two randomly chosen neighbors of v are adjacent. The clustering coefficient of the graph
is the average of all local coefficients. The assumption of independent edges thus implies
a clustering coefficient close to 0. In contrast, the three best performing instances in [6,
Figure 2] have comparatively high clustering coefficients 0.47, 0.49, and 0.57 [14].

In this paper, we analyze the bidirectional BFS on hyperbolic random graphs, which are
generated by randomly placing vertices in the hyperbolic plane and connecting each pair
that is geometrically close. This model was introduced by Krioukov et al. [13] with the aim
to generate graphs that closely resemble real-world networks. Hyperbolic random graphs in
particular have a power-law degree distribution and high clustering [12, 13]. Moreover, as
these properties emerge naturally from the hyperbolic geometry, the model is conceptually
simple, which makes it accessible to mathematical analysis. It has thus gained popularity in
different research areas and has been studied from different perspectives.

From the network-science perspective, the goal is to gather knowledge about real-world
networks. This is for example achieved by assuming that a real-world network has a hidden
underlying hyperbolic geometry, which can be revealed by embedding it into the hyperbolic
plane [1, 5]. From the mathematical perspective, the focus lies on studying structural
properties. Beyond degree distribution and clustering [12], the diameter [11], the component
structure [4], the clique size [3], and separation properties [2] have been studied successfully.

Finally, there is the algorithmic perspective, which is the focus of this paper. Usually
algorithms are analyzed by proving worst-case running times. Though this is the strongest
possible performance guarantee, it is rather pessimistic as practical instances rarely resemble
worst-case instances. Techniques leading to a more realistic analysis include parameterized



T. Bläsius et al. 20:3

or average case complexity. The latter is based on the assumption that instances are drawn
from a certain probability distribution. Thus, its explanatory power depends on how realistic
the distribution is. For hyperbolic random graphs, the maximum clique can be computed
in polynomial time [3], and there are several algorithmic results based on the fact that
hyperbolic random graphs have sublinear tree width [2]. Moreover, there is a compression
algorithm that can store a hyperbolic random graph using on O(n) bits in expectation [8, 15].
Finally, a close approximation of the shortest path between two nodes can be found using
greedy routing, which visits only O(log log n) nodes for most start-destination pairs [9].
The downside of all these algorithms is that they need to know the underlying geometry,
i.e., the coordinates of each vertex. Unfortunately, this is a rather unrealistic assumption
for real-world networks. To the best of our knowledge, we present the first analysis of an
algorithm on hyperbolic random graphs that is oblivious to the underlying geometry.

Contribution and Outline. After an introduction to hyperbolic random graphs in Section 2,
we analyze the bidirectional BFS in Section 3. We first prove in Section 3.1 that a certain
greedy strategy for deciding when to alternate between the forward and the backward search
is not much worse than any other alternation strategy. We note that this result is interesting
in its own right and does not depend on the input. In Section 3.2 we analyze the bidirectional
BFS on hyperbolic random graphs. We show that, for any pair of vertices, it computes a
shortest path in Õ(n2−1/α + n1/(2α) + δmax) time with high probability1, where α ∈ (0.5, 1)
controls the power-law exponent and δmax is the maximum degree of the graph (which is
Õ(n1/(2α)) almost surely [12]). We note that drawing the hyperbolic random graph is the only
random choice here; once this is done our analysis always assumes the worst case. Thus, the
bound in particular holds for every start-destination pair. Section 4 contains concentration
bounds that were left out in Section 3 to improve readability. In Section 5, we conclude by
comparing our theoretical results to empirical data.

2 Preliminaries

Let G = (V,E) be an undirected, unweighted, and connected graph. We denote the number
of vertices and edges with n and m, respectively. With N(v) = {w ∈ V | {v, w} ∈ E}, we
denote the neighborhood of a vertex v ∈ V . The degree of v is deg(v) = |N(v)|. We denote
the maximum degree with δmax. The soft O-notation Õ suppresses poly-logarithmic factors.

The Hyperbolic Plane. The major difference between hyperbolic and Euclidean geometry is
the exponential expansion of the hyperbolic plane. A circle of radius r has area 2π(cosh(r)−1)
and circumference 2π sinh(r), with cosh(x) = (ex + e−x)/2 and sinh(x) = (ex− e−x)/2, both
growing as ex/2 ± o(1). To identify points, we use radial coordinates with respect to a
designated origin O and a ray starting at O. A point p is uniquely determined by its
radius r, which is the distance to O, and the angle (or angular coordinate) ϕ between the
reference ray and the line through p and O. In illustrations, we use the native representation,
obtained by interpreting the hyperbolic coordinates as polar coordinates in the Euclidean
plane, see Figure 1 (left). Due to the exponential expansion, line segments bend towards the
origin O. Let p1 = (r1, ϕ1) and p2 = (r2, ϕ2) be two points. The angular distance between
p1 and p2 is the angle between the rays from the origin through p1 and p2. Formally, it is

1 With high probability and almost surely refer to probabilities 1−O(1/n) and 1− o(1), respectively.
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Figure 1 Left: A circle and several line segments in the native representation of the hyperbolic
plane. A disk of radius x is centered at p2. Right: Geometric shapes and their intersections.

∆(ϕ1, ϕ2) = π − |π − |ϕ1 − ϕ2||. The hyperbolic distance dist(p1, p2) is given by

cosh(dist(p1, p2)) = cosh(r1) cosh(r2)− sinh(r1) sinh(r2) cos(∆(ϕ1, ϕ2)).

Note how the angular coordinates make simple definitions cumbersome as angles are considered
modulo 2π, leading to a case distinction depending on where the reference ray lies. Whenever
possible, we implicitly assume that the reference ray was chosen such that we do not have
to compute modulo 2π. Thus, the above angular distance between p1 and p2 simplifies to
|ϕ1 − ϕ2|. A third point p = (r, ϕ) lies between p1 and p2 if ϕ1 ≤ ϕ ≤ ϕ2 or ϕ2 ≤ ϕ ≤ ϕ1.

Throughout the paper, we regularly use different geometric shapes, which are mostly
based on disks centered at the origin O, as can be seen in Figure 1 (right). With Dr2

r1
we

denote the set of points that have radius between r1 and r2. Note that Dr
0 is the disk of

radius r centered at O. The restriction of a disk Dr
0 to all points with angular coordinates in

a certain interval is called sector, which we usually denote with the letter S. Its angular width
is the length of this interval. For an arbitrary set of points A, Ar2

r1
denotes the restriction of

A to points with radii in [r1, r2], i.e., Ar2
r1

= A ∩Dr2
r1
.

Hyperbolic Random Graphs. A hyperbolic random graph is generated by drawing n points
uniformly at random in a disk of the hyperbolic plane and connecting pairs of points whose
distance is below a threshold. More precisely, the model depends on two parameters C
and α. The generated graphs have a power-law degree distribution with power-law exponent
β = 2α+ 1 and with an average degree depending on C. The n points are sampled within
the disk DR

0 of radius R = 2 log n + C. For each vertex, the angular coordinate is drawn
uniformly from [0, 2π]. The radius r is sampled according to the probability density function

f(r) = 1
2π

α sinh(αr)
cosh(αR)− 1 = Θ(eα(r−R)), (1)

for r ∈ [0, R]. For r > R, f(r) = 0. Two vertices are connected by an edge if and only if their
hyperbolic distance is less than R. The above probability distribution is a natural choice as
the probability for a vertex ending up in a certain region is proportional to its area (at least
for α = 1). Note that the exponential growth in r reflects the fact that the area of a disk
grows exponentially with the radius. It follows that a hyperbolic random graph typically
has few vertices with high degree close to the center of the disk and many vertices with low
degree near its boundary. The following lemma is common knowledge; see the full version of
the paper for a proof.
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I Lemma 1. Let G be a hyperbolic random graph. Furthermore, let v1, v2 be two nodes with
radii r1 ≤ r2 ≤ R, respectively, and with the same angular coordinate. Then N(v2) ⊆ N(v1).

Given two vertices with fixed radii r1 and r2, their hyperbolic distance grows with increas-
ing angular distance. The maximum angular distance such that they are still adjacent [12,
Lemma 3.1] is

θ(r1, r2) = arccos
(

cosh(r1) cosh(r2)− cosh(R)
sinh(r1) sinh(r2)

)
= 2e

R−r1−r2
2 (1 + Θ(eR−r1−r2)). (2)

The probability that a sampled node falls into a given subset A ⊆ DR
0 of the disk is given

by its probability measure µ(A) =
∫
A
f(r) dr, which can be thought of as the area of A.

There are two types of regions we encounter regularly: disks Dr
0 with radius r centered at

the origin and disks DR
0 (r, ϕ) of radius R centered at a point (r, ϕ). Note that the measure

of DR
0 (r, ϕ) gives the probability that a random vertex lies in the neighborhood of a vertex

with position (r, ϕ). Gugelmann et al. [12, Lemma 3.2] showed that

µ(Dr
0) = eα(r−R)(1 + o(1)), and (3)

µ(DR
0 (r, ϕ)) = Θ(e−r/2). (4)

For a given region A ⊆ DR
0 of the disk, let X1, . . . , Xn be random variables with Xi = 1

if i ∈ A and Xi = 0 otherwise. Then X =
∑n
i=1 Xi is the number of vertices lying in A.

By the linearity of expectation, we obtain that the expected number of vertices in A is
E[X] =

∑n
i=1 E[Xi] = nµ(A). To bound the number of vertices in A with high probability,

we regularly use the following Chernoff bound.

I Theorem 2 (Chernoff Bound [10, A.1]). Let X1, . . . , Xn be n independent random variables
with Xi ∈ {0, 1} and let X be their sum. For any δ > 0,

Pr[X > (1 + δ)E[X]] < exp
(
−δ

2

3 E[X]
)
.

I Corollary 3. Let X1, . . . , Xn be n independent random variables with Xi ∈ {0, 1} and let
X be their sum. Let f(n) = Ω(log n). If f(n) is an upper bound for E[X], then for any
constant c there is a constant c′ such that X ≤ c′f(n) holds with probability 1−O(n−c).

3 Bidirectional BFS

In this section, we analyze the running time of the bidirectional BFS on hyperbolic random
graphs. Our results are summarized in the following main theorem.

I Theorem 4. Let G be a hyperbolic random graph. With high probability the shortest path
between any two vertices in G can be computed in Õ(n2−1/α + n1/(2α) + δmax) time.

To prove this, we make use of the hyperbolic geometry in the following way; see Figure 2.
As long as the two searches visit only low-degree vertices, all explored vertices lie within a
small region, i.e., the searches operate locally. Once the searches visit high-degree vertices
closer to the center of the hyperbolic disk (gray area in Figure 2), it takes only few steps to
complete the search, as hyperbolic random graphs have a densely connected core. Thus, we
split our analysis in two phases: a first phase in which both searches advance towards the
center and a second phase in which both searches meet in the center. Note that this strategy
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t
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0

Dρ
0

Figure 2 Visualization of the two phases of each BFS in a hyperbolic random graph. Nodes that
are visited during the first phase are bold. The bold black edges denote the first encounter of a node
in the inner disk Dρ

0 (gray region). This corresponds to the first step in the second phase. The last
step then leads to a common neighbor via the dashed edges.

assumes that we know the coordinates of the vertices as we would like to stop a search once
it reached the center. To resolve this issue, we first show in Section 3.1 that there exists an
alternation strategy that is oblivious to the geometry but performs not much worse than any
other alternation strategy. We note that this result is independent of hyperbolic random
graphs and thus interesting in its own right. Afterwards, in Section 3.2, we actually analyze
the bidirectional search in hyperbolic random graphs.

3.1 Bidirectional Search and Alternation Strategies
In an unweighted and undirected graph G = (V,E), a BFS finds the shortest path between
two vertices s, t ∈ V by starting at s and exploring the graph level after level, where the ith
level Lsi contains the vertices with distance i to s. More formally, the BFS starts with the
set Ls0 = {s} on level 0. Assuming the first i levels Ls1, . . . , Lsi have been computed already,
one obtains the next level Lsi+1 as the set of neighbors of vertices in level Lsi that are not
contained in earlier layers. Computing Lsi+1 from Lsi is called an exploration step, which is
obtained by exploring the edges between vertices in Lsi and Lsi+1.

The bidirectional BFS runs two BFSs simultaneously. The forward search starts at s and
the backward search starts at t. The shortest path between the two vertices can then be
obtained, once the search spaces of the forward and backward search touch. Since the two
searches cannot actually be run simultaneously, they alternate depending on their progress.
When exactly the two searches alternate is determined by the alternation strategy. Note that
we only swap after full exploration steps, i.e., we never explore only half of level i of one
search before continuing with the other. This has the advantage that we can be certain to
know the shortest path once a vertex is found by both searches.
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In the following we define the greedy alternation strategy as introduced by Borassi and
Natale [6] and show that it is not much worse than any other alternation strategy. Assume the
latest layers of the forward and backward searches are Lsi and Ltj , respectively. Then the next
exploration step of the forward search would cost time proportional to csi :=

∑
v∈Ls

i
deg(v),

while the cost for the backward search is ctj :=
∑
v∈Lt

j
deg(v). The greedy alternation strategy

then greedily continues with the search that causes the fewer cost in the next exploration step,
i.e., it continues with the forward search if csi ≤ ctj and with the backward search otherwise.

I Theorem 5. Let G be a graph with diameter d. If there exists an alternation strategy
such that the bidirectional BFS explores f(n) edges, then the bidirectional BFS with greedy
alternation strategy explores at most d · f(n) edges.

Proof. Let A be the alternation strategy that explores only f(n) edges. First note that
the number of explored edges only depends on the number of layers explored by the two
different searches and not on the actual order in which they are explored. Thus, if the greedy
alternation strategy is different from A, we can assume without loss of generality that the
greedy strategy performed more exploration steps in the forward search and fewer in the
backward search compared to A. Let cs and ct be the number of edges explored by the
forward and backward search, respectively, when using the greedy strategy. Moreover, let j
be the last layer of the backward search (which is actually not explored) and, accordingly,
let ctj be the number of edges the next step in the backward search would have explored.
Then ct + ctj ≤ f(n) as, when using A, the backward search still explores layer j. Moreover,
the forward search with the greedy strategy explores at most ct + ctj (and therefore at
most f(n)) edges in each step, as exploring the backward search would be cheaper otherwise.
Consequently, each step in the forward and backward search costs at most f(n). As there
are at most d steps in total, we obtain the claimed bound. J

3.2 Bidirectional Search in Hyperbolic Random Graphs

To analyze the size of the search space of the bidirectional BFS in hyperbolic random graphs,
we separate the whole disk DR

0 into two partitions. One is the inner disk Dρ
0 centered at

the origin. Its radius ρ is chosen in such a way that any two vertices in Dρ
0 have a common

neighbor with high probability. The second part is the outer band DR
ρ , the remainder of the

whole disk. A single BFS now explores the graph in two phases. In the first phase, the BFS
explores vertices in the outer band. The phase ends, when the next vertex to be encountered
lies in the inner disk. Once both BFSs completed the first phase, they only need at most
two more steps for their search spaces to share a vertex. One step to encounter the vertex in
the inner disk and another step to meet at their common neighbor that any two vertices in
the inner disk have with high probability; see Figure 2.

For our analysis we assume an alternation strategy in which each search stops once
it explored one additional layer after finding the first vertex in the inner disk Dρ

0 . Of
course, this cannot be implemented without knowing the underlying geometry of the network.
However, by Theorem 5 the search space explored using the greedy alternation strategy
is only a poly-logarithmic factor larger, as the diameter of hyperbolic random graphs is
poly-logarithmic with high probability [11]. The following lemma shows for which choice of
ρ the above sketched strategy works.

I Lemma 6. Let G be a hyperbolic random graph. With high probability, G contains a vertex
that is adjacent to every other vertex in Dρ

0 , for ρ = 1
α (log n− log log n).
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Figure 3 Left: The sector S of angular width ϕ contains the search space of a BFS in the outer
band DR

ρ starting at v. The vertices v1 and v2 are at maximum angular distance to still be adjacent.
Right: Neighbor w of vertex v is in S (gray) or a neighbor of c1 or c2 (dark gray).

Proof. Assume v is a vertex with radius at most R− ρ. Note that the distance between two
points is upper bounded by the sum of their radii. Thus, every vertex in Dρ

0 has distance at
most R to v, and is therefore adjacent to v. Hence, to prove the claim, it suffices to show
the existence of this vertex v with radius at most R − ρ. As described in Section 2, the
probability for a single vertex to have radius at most R− ρ is given by the measure µ(DR−ρ

0 ).
Using Equation (3) we obtain

µ(DR−ρ
0 ) = e−αρ(1 + o(1))

= log n
n

(1 + o(1)).

Thus, the probability that none of the n vertices lies in DR−ρ
0 is O((1 − logn

n )n) = O( 1
n ).

Hence, there is at least one vertex with radius at most R− ρ with high probability. J

In the following, we first bound the search space explored in the first phase, i.e., before
we enter the inner disk Dρ

0 . Afterwards we bound the search space explored in the second
phase, which consists of two exploration steps. The first one to enter Dρ

0 and the second one
to find a common neighbor, which exists due to Lemma 6.

3.2.1 Search Space in the First Phase
To bound the size of the search space in the outer band, we make use of the network geometry
in the following way. For two vertices in the outer band to be adjacent, their angular distance
has to be small. Moreover, the number of exploration steps is bounded by the diameter of
the graph. Thus, the maximum angular distance between vertices visited in the first phase
cannot be too large. Note that following lemma restricts the search to a sublinear portion of
the disk, which we later use to show that also the number of explored edges is sublinear.

I Lemma 7. With high probability, all vertices a BFS on a hyperbolic random graph explores
before finding a vertex with radius at most ρ = 1

α (log n − log log n) lie within a sector of
angular width Õ(n1−1/α).

Proof. For an illustration of the proof see Figure 3 (left). Recall from Section 2 that θ(r1, r2)
denotes the maximum angular distance between two vertices of radii r1 and r2 such that
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they are still adjacent. As this angle increases with decreasing radii, θ(r1, r2) ≤ θ(ρ, ρ) holds
for all vertices in the outer band DR

ρ .
Now assume we start a BFS at a vertex v ∈ DR

ρ and perform d exploration steps without
leaving the outer band DR

ρ . Then no explored vertex has angular distance more than dθ(ρ, ρ)
from v. Thus, the whole search space lies within a disk sector of angular width 2dθ(ρ, ρ). The
number of steps d is at most poly-logarithmic as the diameter of a hyperbolic random graph
is poly-logarithmic with high probability [11]. Using Equation (2) for θ(ρ, ρ), we obtain

θ(ρ, ρ) = 2e
R−2ρ

2 (1 + Θ(eR−2ρ))

= 2eC/2n1−1/α log1/α n(1 + Θ((log n/n1−α)2/α)

= O(n1−1/α log1/α n),

which proves the claimed bound. J

Note that the expected number of vertices in a sector S of angular width ϕ is linear in nϕ
due to the fact that the angular coordinate of each vertex is chosen uniformly at random.
Thus, Lemma 7 already shows that the expected number of vertices visited in the first
phase of the BFS is Õ(n2−1/α), which is sublinear in n. It is also not hard to see that this
bound holds with high probability (see Corollary 3). To also bound the number of explored
edges, we sum the degrees of vertices in S. It is not surprising that this yields the same
asymptotic bound in expectation, as the expected average degree in a hyperbolic random
graph is constant. However, showing that this value is concentrated around its expectation
is more involved. Though we can use techniques similar to those that have been used to
show that the average degree of the whole graph is constant with high probability [7, 12], the
situation is complicated by the restriction to a sublinear portion of the disk. Nonetheless, we
obtain the following theorem.

I Theorem 8. Let G be a hyperbolic random graph. The degrees of vertices in every sector
of angular width ϕ sum to Õ(ϕn+ δmax) with high probability if ϕ = Ω(n1−1/α log n).

We note that δmax has to be included here, as the theorem states a bound for every
sector, and thus in particular for sectors containing the vertex of maximum degree. Recall,
that δmax = Õ(n1/(2α)) holds almost surely [12]. Moreover, we note that the condition
ϕ = Ω(n1−1/α log n) is crucial for our proof, i.e., the angular width of the sector has to be
sufficiently large for the concentration bound to hold. Fortunately, this matches the bound
found in Lemma 7. As the proof for Theorem 8 is rather technical, we defer it to Section 4.
Together with Lemma 7, we obtain the following corollary.

I Corollary 9. On a hyperbolic random graph, the first phase of the bidirectional search
explores with high probability only Õ(n2−1/α + δmax) many edges.

3.2.2 Search Space in the Second Phase
The first phase of the BFS is completed when the next vertex to be encountered lies in
the inner disk. Thus, the second phase consists of only two exploration steps. One step to
encounter the vertex in the inner disk and another step to meet the other search. Thus, to
bound the running time of the second phase, we have to bound the number of edges explored
in these two exploration steps. To do this, let V1 be the set of vertices encountered in the first
phase. Recall that all these vertices lie within a sector S of angular width ϕ = Õ(n1−1/α)
(Lemma 7). The number of explored edges in the second phase is then bounded by the sum of
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degrees of all neighbors N(V1) of vertices in V1. To bound this sum, we divide the neighbors
of V1 into two categories: N(V1) ∩ S and N(V1) \ S. Note that we already bounded the sum
of degrees of vertices in S for the first phase (see Theorem 8), which clearly also bounds this
sum for N(V1) ∩ S. Thus, it remains to bound the sum of degrees of vertices in N(V1) \ S.

To bound this sum, we introduce two hypothetical vertices (i.e., vertices with specific
positions that are not actually part of the graph) c1 and c2 such that every vertex in N(V1)\S
is a neighbor of c1 or c2. Then it remains to bound the sum of degrees of neighbors of these
two vertices. To define c1 and c2, recall that the first phase was not only restricted to the
sector S but also to points with radius greater than ρ, i.e., all vertices in V1 lie within SRρ .
The hypothetical vertices c1 and c2 are basically positioned at the corners of this region, i.e.,
they both have radius ρ, and they assume the maximum and minimum angular coordinate
within S, respectively. Figure 3 (right) shows these positions. We obtain the following.

I Lemma 10. Let G be a hyperbolic random graph and let v ∈ SRρ for a sector S. Then,
every neighbor of v lies in S or is a neighbor of one of the hypothetical vertices c1 or c2.

Proof. Let v = (r, ϕ) ∈ SRρ and w ∈ N(v) \ S. Without loss of generality, assume that c1
lies between v and w, as is depicted in Figure 3 (right). Now consider the point v′ = (ρ, ϕ)
obtained by moving v to the same radius as c1. According to Lemma 1 we have N(v) ⊆ N(v′).
In particular, it holds that w ∈ N(v′) and therefore dist(v′, w) ≤ R. Since v′ and c1 have
the same radial coordinate and c1 is between v′ and w, it follows that dist(c1, w) ≤ R. J

By the above argumentation, it remains to sum the degrees of neighbors of c1 and c2.
It is not hard to see that the degrees of the neighbors of a node with radius r sum to
O(ne−(α−1/2)r) in expectation. For c1 and c2, which both have radius ρ, the degrees of their
neighbors thus sum to Õ(n1/(2α)) in expectation. Note that this matches the claimed bound
in Theorem 4. However, to actually prove Theorem 4, we need to show that this bound holds
with high probability for every possible angular coordinates of c1 and c2. Again, showing this
concentration bound is rather technical and thus deferred to Section 4. Together with the
bounds on the sum of degrees in a sector of width ϕ = Õ(n1−1/α) (Theorem 8), we obtain
the following corollary, which concludes the proof of Theorem 4.

I Corollary 11. On a hyperbolic random graph, the second phase of the bidirectional search
explores with high probability only Õ(n2−1/α + n1/(2α) + δmax) many edges.

4 Concentration Bounds for the Sum of Vertex Degrees

Here we prove the concentration bounds that were announced in the previous section. For
the first phase, we already know that the search space is contained within a sector S of
sublinear width (Lemma 7). Thus, the running time in the first phase is bounded by the
sum of vertex degrees in this sector. Moreover, all edges explored in the second phase also
lie within the same sector S or are incident to neighbors of the two hypothetical vertices c1
and c2 (Lemma 10). Thus, the running time of the second phase is bounded by the sum of
vertex degrees in S and in the neighborhood of c1 and c2. We start by proving Theorem 8 to
bound the sum of degrees in a given sector. Afterwards, we consider the neighborhood of c1
and c2. To improve readability, we restate Theorem 8 here.

I Theorem 8. Let G be a hyperbolic random graph. The degrees of vertices in every sector
of angular width ϕ sum to Õ(ϕn+ δmax) with high probability if ϕ = Ω(n1−1/α log n).
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Due to space constraints, we only sketch the proof by explaining the overall strategy and
stating the core lemmas. A full proof can be found in the full version of the paper. The proof
of Theorem 8 basically works as follows. For each degree, we want to compute the number of
vertices of this degree and multiply it with the degree. As all vertices with a certain degree
have roughly the same radius, we can separate the disk into small bands, one for each degree.
Then summing over all degrees comes down to summing over all bands and multiplying the
number of vertices in this band with the corresponding degree. If we can prove that each of
these values is highly concentrated (i.e., probability 1−O(n−2)), we obtain that the sum is
concentrated as well (using the union bound). Unfortunately, this fails in two situations. For
large radii the degree is too small to be concentrated around its expected value. Moreover,
for small radii, the number of vertices within the corresponding band (i.e., the number of
high degree vertices) is too small to be concentrated.

To overcome this issue, we partition the sector S into three parts. An inner part Sρ1
0 ,

containing all points of radius at most ρ1, an outer part SRρ2
, containing all points of radius

at least ρ2, and a central part Sρ2
ρ1
, containing all points in between. We choose ρ2 in such

a way that the smallest degree in the central part Sρ2
ρ1

is Ω(log n), which ensures that all
vertex degrees in Sρ2

ρ1
are concentrated. Moreover, we choose ρ1 such that the number of

vertices with maximum degree in Sρ2
ρ1

is Ω(log n), which ensures that for each vertex degree,
the number of vertices with this degree is concentrated. To achieve this, we set

ρ1 = 2 log n− log(ϕn)− log log n
α

and ρ2 = log n
α

,

and show concentration separately for the three parts.

The Inner Part of a Sector. The inner part Sρ1
0 contains vertices of high degree. It is not

hard to see that there are only poly-logarithmically many vertices with radius at most ρ1.
Thus, we obtain the following lemma.

I Lemma 12. Let G be a hyperbolic random graph. For every sector S of angular width ϕ,
the degrees of the nodes in Sρ1

0 sum to Õ(δmax) with high probability.

The Central Part of a Sector. For each possible vertex degree k, we want to compute the
number of vertices with this degree in the central part Sρ2

ρ1
. First note, that by Equation (4)

a vertex with fixed radius has expected degree Θ(k) if this radius is 2 log(n/k). Motivated
by this, we define rk = 2 log(n/k). To bound the sum of degrees in the central part Sρ2

ρ1
, we

use that vertices with radius significantly larger than rk also have a smaller degree. More
formally, one can show that there exists a constant ε such that all vertices of degree k have
radius at most rk + ε with high probability. From this, we can derive a bound g(k) for the
number of vertices with degree at least k by bounding the number of vertices with radius at
most rk + ε. Then summing the vertex degrees boils down to integrating over g(k), which
yields the following lemma.

I Lemma 13. Let G be a hyperbolic random graph. For every sector S of angular width ϕ,
the degrees of the nodes in Sρ2

ρ1
sum to O(ϕn3−2α−1/(2α)) with high probability.

Note that 3 − 2α − 1/(2α) ≤ 1 for α ∈ [0.5, 1]. Thus, the lemma in particular shows that
Sρ2
ρ1

contains at most O(ϕn) edges, as claimed in Theorem 8.

The Outer Part of a Sector. The outer part SRρ2
contains many vertices, all of which have

low expected degree. To bound their sum with high probability, we consider the coordinates
of the vertices as random variables and the sum of their degrees as a function in these

ICALP 2018



20:12 Efficient Shortest Paths in Networks with Underlying Hyperbolic Geometry

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

α

se
ar
ch

sp
ac
e
ex
p
on

en
t

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
α

2− 1
α

1
2α

0

0.2

0.4

0.6

0.8

1

Figure 4 Left: The exponent of our theoretical bound depending on α. Right: The corresponding
empirically measured search spaces. The data was obtained by generating 20 hyperbolic random
graphs with average degree roughly 8 for each shown α and each n ∈ {100k, 200k, 300k}. For each
graph we sampled 300k start-destination pairs and report the maximum number of edges explored
in one search. The numbers are normalized with the total number of edges m of the graph such that
x is plotted for a search space of size mx.

variables. Then, our plan to show concentration is to apply a method of average bounded
differences [10, Theorem 7.2]. It is based on the fact that changing the value of a single
random variable (i.e., moving the position of a single vertex) has only little effect on the
function (i.e., on the sum of degrees). To make sure that this is actually true, we exclude
certain bad events that happen only with low probability: First, the maximum degree in SRρ2

should not be too high such that moving a single vertex can increase its degree only slightly.
Second, there should not be too many vertices in SRρ2

such that the sum of degrees actually
changes only for few vertices (as we do not count vertices not in SRρ2

). Overall we obtain the
following lemma.

I Lemma 14. Let G be a hyperbolic random graph. For every sector S of angular width ϕ,
the degrees of the nodes in SRρ2

sum to O(ϕn) with high probability if ϕ = Ω(n1−1/α log n).

The Neigborhood of a Vertex with Radius ρ. For the second phase, we showed in Sec-
tion 3.2.2 that it remains to bound the sum of degrees in the neighborhood of the corner
vertices. Recall that they both have radius ρ = 1/α(log n− log log n). Let v be a vertex with
radius ρ and let A be the disk with radius R around v. Note that we already know from
Section 3.2 that the maximum angular distance of neighbors of v with radius at least ρ is
Õ(n1−1/α). Thus, ARρ is contained within a sector of this width and we can use Theorem 8
to obtain the desired bound for this part. Moreover, as in Lemma 12, we can bound the
number of vertices with small radius. For all radii in between, A contains a sector of angular
width Ω(n1−1/α). It is thus not surprising that for each degree occurring in this part, the
number of vertices of this degree is concentrated around its expectation. Hence, similar
arguments as for Lemma 13, lead to the following lemma.

I Lemma 15. Let G be a hyperbolic random graph and let v be a hypothetical vertex with
radius ρ = 1/α(log n− log log n) and arbitrary angular coordinate. The degrees of neighbors
of v sum to Õ(n2−1/α + n1/(2α) + δmax) with high probability.
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5 Conclusion

To conclude, we discuss why we think that the bound Õ(n2−1/α + n1/(2α) + δmax) is rather
tight; see Figure 4 (left) for a plot of the exponents. Clearly, the maximum degree of the
graph is a lower bound, i.e., we cannot improve the δmax. As δmax = Θ̃(n1/(2α)) holds
almost surely [12], we also cannot improve below Õ(n1/(2α)). For the term n2−1/α we do
not have a lower bound. Thus, the gray region in Figure 4 (left) is the only part where
our bound can potentially be improved. However, by only making a single step from a
vertex with radius ρ = 1/α(log n − log log n), we can already reach vertices with angular
distance Θ(n1−1/α). Thus, it seems likely, that there exists a start-destination pair such that
all vertices within a sector of this angular width are actually explored. As such a sector
contains Θ(n2−1/α) vertices, our bound seems rather tight (at least asymptotically and up to
poly-logarithmic factors). For a comparison of our theoretical bound with actual search-space
sizes in hyperbolic random graphs, see Figure 4.
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Abstract
Given a finite set of points P ⊆ Rd, we would like to find a small subset S ⊆ P such that the
convex hull of S approximately contains P . More formally, every point in P is within distance ε
from the convex hull of S. Such a subset S is called an ε-hull. Computing an ε-hull is an important
problem in computational geometry, machine learning, and approximation algorithms.

In many applications, the set P is too large to fit in memory. We consider the streaming
model where the algorithm receives the points of P sequentially and strives to use a minimal
amount of memory. Existing streaming algorithms for computing an ε-hull require O(ε(1−d)/2)
space, which is optimal for a worst-case input. However, this ignores the structure of the data.
The minimal size of an ε-hull of P , which we denote by OPT, can be much smaller. A natural
question is whether a streaming algorithm can compute an ε-hull using only O(OPT) space.

We begin with lower bounds that show, under a reasonable streaming model, that it is not
possible to have a single-pass streaming algorithm that computes an ε-hull with O(OPT) space.
We instead propose three relaxations of the problem for which we can compute ε-hulls using space
near-linear to the optimal size. Our first algorithm for points in R2 that arrive in random-order
uses O(log n ·OPT) space. Our second algorithm for points in R2 makes O(log(ε−1)) passes before
outputting the ε-hull and requires O(OPT) space. Our third algorithm, for points in Rd for any
fixed dimension d, outputs, with high probability, an ε-hull for all but δ-fraction of directions
and requires O(OPT · log OPT) space.
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1 Introduction

The question addressed by this paper is: Can we compute approximate convex hulls of
data streams using near-optimal space? Approximate convex hulls are fundamental in
computational geometry, computer vision, data mining, and many more (see e.g. [2]), and
computing them in a streaming manner is important in the big data regime.

Our notion of approximate convex hulls is the commonly used ε-hull. Let P be a set of n
points in Rd. Let C(P ) denote the convex hull of P , the smallest convex set containing P .
We want a small subset S of P such that all points in P are inside C(S) or within distance ε
from C(S). Since every point in P can be approximated by a sparse convex combination of
points in S, S is also called a generating set [7]. For an example motivation of this particular
definition, consider two far-away sensors rapidly collecting data: one of positive examples
and the other of negative examples; if it is expected that these should be linearly separable
with some margin ε, then an appropriate small summary of their data would be an ε-hull.

ε-hulls and their variants have been studied extensively in the literature. In the multiplic-
ative error variant, ε-kernels, one requires that any directional width (the diameter of S in a
particular direction) of S is a (1± ε) approximation to that of P . ε-hulls and ε-kernels are
intimately connected: algorithms for ε-kernels typically apply a transformation to the data,
and then use algorithms for ε-hulls. For more details, we refer the reader to [2].

Existing work focuses on worst case bounds, which scale poorly with the dimension d.
The worst case lower bound for the size of an ε-hull is Ω(ε−(d−1)/2). Recently, it has been
shown in [7] that one can do much better than the worst case bound if the size of the smallest
ε-hull for P (which we denote as OPT) is small. In their paper, they show that one can
efficiently obtain S of size nearly linear in OPT and at most linear in the dimension d.

One concern of the algorithms in [7] is that they require storing all points of P in memory.
The huge size of real-world datasets limits the applicability of these algorithms. A natural
question to ask is whether it is possible to efficiently maintain an ε-hull of P when P is
presented as a data stream while using a small amount of memory.

We provide both negative and positive results, summarized below.

1.1 Our Contributions
Let OPT be the optimal size of an ε-hull. In Section 3, we show, under a reasonable streaming
model, that no streaming algorithm can achieve space bounds comparable to OPT. In
particular, no streaming algorithm can have space complexity competitive with f(OPT, d) in 3

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.21
https://arxiv.org/abs/1712.04564
https://arxiv.org/abs/1712.04564


A. Blum, V. Braverman, A. Kumar, H. Lang, and L. F. Yang 21:3

dimensions or higher for any f : N×N→ N. This lower bound guides us to consider variants
on this problem. Note that the lower bound applies specifically to streaming algorithms; for
the batch setting, [7] gives a polynomial-time algorithm that computes an ε-hull with space
O(dOPT log OPT).

We devise and prove the correctness of streaming algorithms for three relaxations of
the problem. In Section 4, we show the first relaxation, in which the points are from R2

and come in a random order. In Section 5, we relax the problem (again in R2) by allowing
the algorithm to make multiple passes over the stream. In Section 6, we show the third
relaxation, in which the points come in an arbitrary order and from d-dimensional space,
but we only require to approximate the convex hull in a large fraction of all directions.

In the first relaxation, our algorithm maintains an initially empty point set S. When
our algorithm sees a new point p, it adds p to S if p is at least distance ε away from the
convex hull of S. Additionally, our algorithm keeps removing points p′ ∈ S when some p′ is
contained inside the convex hull of S \ {p′}, that is, removing p′ does not change the convex
hull of S. Surprisingly, for any point stream P , with high probability this algorithm keeps
an ε-hull of size O(OPT · log n), where n is the size of P .

In the second relaxation, we permit the algorithm to make a small number of passes over
the stream. Our algorithm begins the first pass by taking O(1) directions and storing the
point with maximal dot product with each direction. In each of O(log( 1

ε )) subsequent passes,
we refine the solution by adding a new direction in sectors that incurred too much error
while potentially deleting old directions that become no longer necessary. The algorithm
computes an ε-hull of size O(OPT).

In the third relaxation, we only need to be correct in most directions (all but a δ fraction
of directions). Our algorithm picks Od(OPT

δ2 log OPT
δ ) random unit vectors. For each of these

vectors v, we keep the point in the stream that has maximal dot product with v.
To the best of our knowledge, this is the first work that gives lower bounds and streaming

algorithms for ε-hulls with space complexity comparable to the optimal approximation.

1.2 Related Work

Batch Algorithms. We use the term batch algorithm for an algorithm that stores the
entire set of points in memory. In the batch setting, Bentley, Preparata, and Faust [5]
give a Od(1/ε(d−1)) space algorithm for computing an ε-hull of a set of points (assuming
constant dimension d). Agarwal, Har-Peled, and Varadarajan [1] improve the result to give a
Od(1/ε(d−1)/2) space algorithm for ε-kernels, a multiplicative approximation of convex hulls.
The running time bounds were further improved in [8, 10, 12]. Recently, Blum, Har-Peled,
and Raichel [7] give the only known batch algorithms for an ε-hull that are competitive with
the optimal ε-hull size of the given point set.

Streaming Algorithms with Worst Case Guarantees. Hershberger and Suri [11] and Agar-
wal & Yu [3] give 2D one-pass streaming algorithms for ε-hulls that uses O(1/

√
ε) space.

Agarwal, Har-Peled, and Varadarajan [1] give a one-pass streaming algorithm for ε-kernels
that uses Od((1/ε

d−1
2 ) logd n) space. Chan [8] removes the dependency on n and gives a

streaming algorithm for ε-kernels that uses Od((1/εd−3/2) logd 1/ε) space. This was then
improved to Od((1/ε

d−1
2 ) log 1

ε ) [13] and the time complexity was further improved by Arya
and Chan [4]. Chan [9] also gives a dynamic streaming (allowing deletions in the stream)
algorithm based on polynomial methods. All of these space bounds assume a constant
dimension d, and focus on worst case guarantees.
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(a) Set of points. (b) ε-hull in red (for suitable ε).

Figure 1 ε-hull of a set of points.

ε-kernels vs ε-hulls. Past work focuses on both ε-hulls and ε-kernels, a multiplicative error
variant. ε-kernels can be trickier to compute, but are closely related to ε-hulls, and often
use algorithms for ε-hulls as a core subroutine. We focus on ε-hulls, but extending this work
to ε-kernels is an exciting (non-trivial) avenue for future research. In particular, typical
reductions from ε-kernels to ε-hulls (e.g. see [2]) are not compatible with the notion of OPT.

Our Techniques. The proof of our 2D random order algorithm exposes an elegant connection
between our 2D result, and a classic 1D result. Our multipass algorithm and (ε, δ)-hull
algorithm are built on existing methods (e.g. [1, 3]) in that a core subroutine involves
preserving the maximal point along certain directions.

2 Preliminaries

I Definition 2.1. For any bounded set C ⊆ Rd, a point q is ε-close to C if infx∈C ‖q−x‖2 ≤ ε.

I Definition 2.2. Given a set of points P ⊆ Rn, S ⊆ P is an ε-hull of P if for every p ∈ P ,
p is ε-close to C(S), the convex hull of S.

I Definition 2.3. Let OPT(P, ε) denote the number of points in a (not necessarily unique)
smallest ε-hull of P . We omit P and ε if it is clear from the context.

2.1 Streaming Model
Our streaming model, while simple, captures most streaming algorithms for ε-hulls in the
literature. In our model, a streaming algorithm A is given ε in advance but not the size of
the input point stream P ∈ Rd. P is presented to an algorithm A sequentially:

P = (p1, p2, . . . , pt, . . .),

where pt ∈ Rd is the point coming at time t. Note that P may have duplicate points. For the
ε-hull problem, we require Algorithm A to maintain a subset S ⊆ P . For each point p ∈ P ,
A can choose to add p to S (remembering p) or ignore p (therefore permanently forgetting
p). A can also choose to delete points in S, in which case these points are permanently lost.
After one-pass of the stream, we require S to be an ε-hull of the points set P . A trivial
streaming algorithm could just keep all points it has seen. However, such an algorithm
would not be feasible in the big data regime. Ideally, A should use space competitive with
OPT(P, ε).



A. Blum, V. Braverman, A. Kumar, H. Lang, and L. F. Yang 21:5

3 Lower Bounds

An (f, r)-optimal algorithm in dimension d uses space competitive with f(OPT(P, ε), d) and
maintains an (rε)-hull where r > 1. Note that this definition is rather permissive, since it
allows an arbitrary function of OPT and allows slack in ε as well.

I Definition 3.1. For r ≥ 1, f : N×N→ N, we say a streaming algorithm A is (f, r)-optimal
if given arbitrary ε > 0 and point stream P ⊆ Rd, A keeps an (rε)-hull of P of size at most
f(OPT(P, ε), d).

I Theorem 3.2. For all r ≥ 1, d ≥ 3, f : N× N→ N, there does not exist an (f, r)-optimal
streaming algorithm in Rd.

Proof. See Theorem A.5, Theorem A.6, and Corollary A.8 in the Appendix of the full version
for the proof. Here we give high level intuition for the case r = 1, d = 3. In our proof, we
assume for the sake of contradiction that there exists such a streaming algorithm A and
function f . We construct 3 sequences of points P1, P2, P3. Let P1 ◦ P2 denote sequence P1
followed by sequence P2 (P2 appended to P1). We then show that if A keeps an ε-hull of size
at most f(OPT(P1 ◦ P2, ε), 3) after receiving P1 ◦ P2, then it cannot keep an ε-hull of size at
most f(OPT(P1 ◦ P2 ◦ P3, ε), 3) after receiving P1 ◦ P2 ◦ P3. This is a contradiction.

To do this, we ensure that |P2| is much larger than |P1| and that P1 is an ε-hull of P1 ◦P2.
This forces the algorithm to keep only a small proportion of points in P1 ◦ P2. We then
ensure that |P3| is much larger than |P2| and that P2 is an ε-hull for P2 ◦ P3. However, since
the algorithm only kept a small number of points in P2, it is forced to keep many points in
P3. See the appendix for precise details. The result extends easily for d > 3. For r > 1, we
use a similar construction, but add more sets of points P4, P5, ... J

We can also ask a slightly different question: what if an algorithm is given an additional
parameter k in advance, and only needs to maintain an ε-hull at time t when OPT of the
substream at time t falls below k. The algorithm we give for (ε, δ)-hulls in Section 6 is of this
form. In the appendix of the full version (Definition A.9 and Theorem A.10), we formulate a
lower bound for this case.

Our lower bounds guide future research by showing that we need to think beyond the
current streaming models, add reasonable assumptions to the problem, or the space bounds
of our algorithms must include some functions of ε or |P | (along with OPT and d).

4 2D Random Order Algorithm (ROA)

In many cases, data points are generated i.i.d., for example in mixture models or topic
models (e.g. [6]). In this section we assume a more general setup: that the points come in a
random order. More precisely, for all sets of points P , every permutation of P must have
equal probability density. The case where the data points are generated i.i.d. (making no
assumptions about the distribution) is a special case. We assume the points are in 2D. To
begin, we introduce the following definition.

I Definition 4.1. A point p is interior to P if p is in the convex hull of P \ {p}.

4.1 1D Algorithm
To motivate our 2D algorithm, we begin with a classic result in 1-dimension. Consider the
algorithm ROA-insertion: Begin by keeping a set S = {}. For each point p ∈ P that the
algorithm sees, if the distance from p to the convex hull of S is at most ε, we discard p.
Otherwise, we add p to S.

ICALP 2018
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Algorithm 1 Pseudocode for ROA (2D random order algorithm).
1: S ← {}
2: when p ∈ P is received do:
3: if dist(p, C(S)) ≤ ε then:
4: // Discard p
5: else:
6: S ← S ∪ {p}
7: for p′ ∈ S sequentially do:
8: If p′ is an interior point of S then S ← S \ {p′}
9: end for

10: end when

I Lemma 4.2. There exists a constant c > 0 such that for any random order input stream
P containing at most n points, ROA-insertion maintains a subset S ⊆ P which is an ε-hull
of P at all times. Moreover, if P ⊆ R1 then with probability at least 1− 1/n3,

|S| ≤ c · log n ≤ c · OPT(P, ε) · log n,

note that for any ε ≥ 0, if P ⊆ R1 then 1 ≤ OPT(P, ε) ≤ 2.

A natural question is whether the space bound for this algorithm generalizes to higher
dimensions. Our experiments suggest that it does not even generalize to 2D. In our experi-
ments, we set ε = 0 and gave ROA-insertion n equally spaced points inside a square. OPT is
4, since all the points are contained inside a square. However, experimentally, the number of
points kept by ROA-insertion increases much faster than log n.

4.2 2D Algorithm
We extend algorithm ROA-Insertion to get algorithm ROA. Let the points kept by ROA at
the ith step of the algorithm be Si. At each step i, we iteratively delete interior points from
Si until Si has no interior points. We summarize algorithm ROA in Algorithm 1.

The proof of ROA gives an interesting connection between our 2D algorithm, and the 1D
classical result in the previous section. We begin with a technical lemma (see Lemma B.1 in
the appendix of the full version for the proof), and then proceed to the main theorem.

I Lemma 4.3. (Similar Boundaries) Suppose A and B are ε-hulls of P . Let H denote the
(two-way) Hausdorff distance and ∂C(A) denote the boundary of the convex hull of A. Then
H(∂C(A), ∂C(B)) ≤ ε.

I Theorem 4.4. There exists a constant c > 0 such that for any random order input stream
P containing at most n points, ROA maintains a subset S ⊆ P which is an ε-hull of P at
all times. Moreover, if P ⊆ R2 then with probability at least 1− 1/n2,

|S| ≤ c · OPT(P, ε) · log n.

Since the algorithm is deterministic, the probability is over the arrival order of P .

Proof. An inductive argument shows that at each iteration i, S is an ε-hull of P . We focus
on the proof of the space bound.

Step 1: Consider an optimal ε-hull T of P . We show that all points in S are near
the boundary ∂C(T ). Note that S does not contain any interior points, so for all s ∈ S,
s ∈ ∂C(S). Then by Lemma 4.3, for every point s ∈ S, dist(s, ∂C(T )) ≤ ε.
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Figure 2 Figure for Theorem 4.4. Consider all points
near segment l = tjtj+1. Consider points q1, q2, q3 ∈ Q

on one side of l. They are contained in a thin strip R of
width ε.

Figure 3 A diagram of EarP (q1, q2).
The dotted line is `, and the length of the
dashed line is ErrorP (q1, q2).

Step 2: We split T into OPT sections, and show that with high probability our algorithm
keeps O(log n) points for each section. Since T is optimal, it does not contain any interior
points. Label the points in T : t1, ..., tk, clockwise along the boundary of the convex hull of
T . For every s ∈ S, since dist(s, ∂C(T )) ≤ ε, s is within distance ε from the line segment
connecting some ti and ti+1. Now, referring to Figure 2, consider the line segment l connecting
arbitrary tj and tj+1, and consider all points in P within distance ε from l. We group the
points based on which side of the line segment they are on - consider the points Q on one
side of the line segment.

The points Q are contained in some narrow strip R with width ε. Effectively, because
Q is contained in a narrow strip, we can reduce to the 1D case and apply the proof from
Lemma 4.2. To see this reduction, consider the projection of the points in Q onto the (infinite)
line l′ connecting tj and tj+1. Let f(qi) denote the projection of qi onto line l′. If f(qk)
is between f(qi) and f(qj), and qk arrives after qi and qj , then our algorithm discards qk
because qk is within distance ε from the line segment connecting qi and qj . Applying the 1D
proof, we get that with high probability we keep O(log n) points for each segment.

Step 3: We take a union bound over the OPT sections to get the desired result, where
we note that OPT ≤ n. J

5 2D Multipass Algorithm

In this section, we relax the problem by letting the algorithm pass over the stream P multiple
times. Let diam(P ) refer to the diameter of the point-set P which is maxx,y∈P d(x, y). Our
algorithm requires log( diam(P )

ε ) passes and O(OPT) memory. For convenience of exposition,
we assume diam(P ) = 1 and prove a bound of log( 1

ε ) passes. If diam(P ) 6= 1, we can simply
scale all the points, and ε, by 1

diam(P ) and run the algorithm to get the desired bound.
By convention, we define the distance between a point p and a set A to be d(p,A) =

mina∈A d(p, a). In a slight abuse of notation, for a finite set P we define ∂P to be the subset
of P that lies on the boundary of the convex hull of P . Formally:

I Definition 5.1. For a finite set P ⊂ R2, we define ∂P = P ∩ ∂C(P ). Here ∂C(P ) means
the boundary of the convex hull of P .

Given any two points q1, q2 ∈ ∂P , define ` = C({q1, q2}) to be the line segment with
endpoints q1 and q2. Observe that the set C(P ) \ ` has at most two connected components.
Define EarP (q1, q2) to be the component that lies to the left of the vector from q1 to q2. We
define ErrorP (q1, q2) = maxx∈EarP (q1,q2) d(x, `) to be the maximum distance of a point in this
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Algorithm 2 Input: a stream of points P ⊂ R2 and a value ε ∈ (0, 1]. Output: an
ε-approximate hull of P

1: t1 ← (1, 0), t2 ← (−1, 0)
2: T ← an ordered list (t1, t2)
3: For i = {1, 2}, associate qi ← GetMaxP (ti) with ti
4: Initialize Flag to down position
5: for all 1 ≤ i ≤ |T | (in parallel) do
6: Compute ErrorP (qi, qi+1)
7: Compute ErrorP (qi−1, qi+1)
8: t′i ← direction bisecting ti and ti+1
9: q′i ← GetMax(t′i)

10: for all 1 ≤ i ≤ |T | (in parallel) do
11: if ErrorP (qi−1, qi+1) ≤ ε and neither ti+1 or ti−1 have been deleted then
12: Remove ti from T

13: if ErrorP (qi, qi+1) > ε then
14: Add t′i to T and associate q′i with t′i
15: Raise Flag
16: Recompute indices of T to preserve clockwise-order
17: Delete any points/vectors except ti ∈ T and their associated qi
18: if Flag is up then
19: Go to Line 4
20: else
21: Output {q1, . . . , q|T |}

component from `. See Figure 3 for an example. Note that we can compute ErrorP (q1, q2) in
a single pass (see Algorithm 2 and Lemma C.1 in the Appendix of the full version).

Let t be a unit vector. Define GetMaxP (t) to be arg maxp∈P p · t. It is clear that GetMaxP (t)
can be computed in a single pass. Algorithm 2 is the main multipass algorithm, using Error
and GetMax as blackboxes. We always maintain a set of directions T . On Lines 5-9 we run
3|T | single-pass algorithms completely in parallel, therefore requiring only a single pass. By
the phrase “associating a point with a direction”, we mean to keep this point as piece of
satellite data.

Our main result for this section is the behavior of Algorithm 2. We define a word as the
space required to store a single point in R2.

We begin with some preliminary statements. We defer the proofs of these lemmas to the
Appendix of the full version (see Lemmas C.2, C.3, C.4, and C.6). Throughout this section,
we use the convention of incrementing subscripts modulo n (for example qn+1 = q1).

I Lemma 5.2. If Algorithm 2 terminates, it outputs an ε-hull to P .

I Lemma 5.3. Algorithm 2 terminates in 3 + dlog2(1/ε)e passes.

I Lemma 5.4. Let p, p′, q′, q ∈ ∂P be in clockwise order along ∂C(P ). Then ErrorP (p′, q′) ≤
ErrorP (p, q).

I Lemma 5.5. There exists an ε-hull for P using only points from ∂P of cardinality at most
2OPT(P, ε).

Note that Lemma 5.5 is not trivial. By definition, there exists an ε-hull for P of size
OPT(P, ε) using points from P . It may be that an ε-hull of optimal size must use a point
from the interior of P . For example, consider a square of side length r ∈ (

√
2ε, 2ε), where
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∂P consists of the four corners. It is possible, due to interior points, that OPT(P, ε) = 2 and
yet an ε-hull using only points from ∂P must use all four corners. Note that this example
also shows that the bound in Lemma 5.5 is tight.

On Line 8, t′i is defined as the direction that bisects ti and ti+1. We define the bisection of
unit vectors a and b to be the unit vector obtained by rotating a clockwise through through
half of the rotation required to point in the direction of b.

I Theorem 5.6. Given a stream of points P ⊂ R2 and a value ε ∈ (0, 1], Algorithm 2
terminates within 3 + dlog2(1/ε)e passes, stores at most 24OPT(P, ε) + O(1) words, and
returns an ε-hull of P of cardinality 6OPT(P, ε).

Proof. By Lemma 5.3, Algorithm 2 terminates after 3 + dlog2(1/ε)e passes. By Lemma 5.2,
Algorithm 2 outputs an ε-hull to P . It only remains to bound the space usage and cardinality
of the set returned

Let W ⊂ ∂P be an ε-approximation of P such that n = |W | ≤ 2OPT(P, ε). Lemma 5.5
guarantees that such a W exists. Let W = {w1, . . . , wn} be an ordering of W that is
clockwise in ∂C(P ). By definition, ErrorP (wi, wi+1) ≤ ε for every i ∈ Z (recall the convention
of indexing modulo n). Consider the state of the algorithm at the beginning of a pass; for
notation let T contain the directions {ti}|T |i=1 associated respectively with {qi}|T |i=1.

For s ∈ {1, 2}, suppose that wi, qj , qj+s, wi+1 are in clockwise order of ∂C(P ). By
Lemma 5.4, ErrorP (qj , qj+s) ≤ ErrorP (wi, wi+1) ≤ ε. We draw two conclusions. The first
conclusion (s = 1) is that on Line 13, t′i will not be added to T . The second conclusion
(s = 2) is that on Line 11, ti+1 is a candidate for deletion (i.e. ti+1 will be deleted unless ti
or ti+2 have already been deleted).

Using the clockwise ordering of ∂C(P ), we say that a point q ∈ ∂P is on edge (wi, wi+1)
if it lies between wi and wi+1 in the ordering. Suppose that {qj}|T |j=1 contains m points on
edge (wi, wi+1). By the reasoning in the preceding paragraph, it is easy to verify that all but
dm−1

2 e+ 1 will be deleted on Line 11. As for points added on Line 13, this can only occur at
the boundary (between qj and qj+1 where qj is the last point on some edge) and therefore
adds at most 1 point per edge.

Combining these facts, we see that an edge which enters a pass with m points finishes
that pass with at most dm−1

2 e+ 2 points. Inductively we begin with m = {0, 1, 2} for each
edge. This implies that m ≤ 3 after each pass. Therefore |T | ≤ 3n ≤ 6OPT(P, ε) at all times.

Finally, observe that the storage of 4|T |+O(1) points are used in a pass. To compute
Error without precision issues, storing a single point suffices. Therefore for each i we store
one point for each of the two Error computations, one point for GetMax, and the original point
qi and vector ti. The O(1) is just a workspace to carry out the calculations. J

6 (ε, δ)-Hull

In this section we give an algorithm for a relaxation of ε-hulls, which we call (ε, δ)-hulls. Our
results hold for arbitrary point sets P ⊆ Rd. Intuitively, an (ε, δ)-hull of P is within distance
ε from the boundary of the convex hull of P in at least a 1− δ fraction of directions. We
begin by building up the definition of an (ε, δ)-hull.

I Definition 6.1. Given a vector v ∈ Rd and a finite point set P ⊆ Rd, we define the
directional extent as

ωv(P ) = max
p∈P

p · v.
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Figure 4 Point p maximizes the set of points
in direction u because its projection onto u is
the highest.

Figure 5 All vectors between u and v with
Euclidean norm at most 1 are in ET

D. See texts
for details.

If p ∈ Rd is a point we define ωv(p) = p · v = ωv({p}). We say that S maximizes P in v if
ωv(P ) = ωv(S) (see Figure 4). Note that S can be either a single vector or a set of vectors.

I Definition 6.2. Let P ⊂ Rd be a set of points and S ⊆ P . We say S ε-maximizes P in
v if v = 0 or, letting v′ = v/‖v‖2, we have

|ωv′(P )− ωv′(S)| ≤ ε.

Note that as per definition 6.1, S can be either a single vector or a set of vectors.

I Definition 6.3. Given P ⊆ Rd, an (ε, δ)-hull is a subset S ⊆ P such that if we pick a
vector v uniformly at random from the boundary of the unit sphere, Sd−1, S ε-maximizes P
in direction v with probability at least 1− δ, that is,

Prv∼Sd−1(|ωv(P )− ωv(S)| > ε) ≤ δ.

Suppose we fix the dimension d. We give a randomized algorithm that uses m points and
with probability at least 1− γ gives us an (ε, δ)-hull of a point set P , where k is the optimal
size for the ε-hull of P , and m satisfies:

m ∈ Od
(
k

δ2 · log k

γδ

)
.

Note that m does not explicitly depend on ε. Our algorithm for d-dimensional space is as
follows: Choose m uniformly random vectors in the unit ball Bd (or equivalently on the
boundary of the unit ball, Sd−1). For each chosen vector v we store a single point p ∈ P
that maximizes P in direction v, that is, p · v = ωv(P ). This can easily be done in streaming.
Note that the given complexity is for a fixed dimension d, the actual space complexity will
be multiplied by some (exponential) function of d, but independent of ε.

6.1 Proof of (ε, δ)-hull Algorithm
Consider an arbitrary point set P , and suppose that our algorithm keeps a subset S of
P . The core of our proof, leading up to lemma 6.11, shows that for each point that our
algorithm picks, S gets closer to an (ε, δ)-hull. In particular, we define the set C of bad
vectors in Bd, as vectors v s.t. S does not ε-maximize P in v. We want to bound the number
of points we need to include in S so that C is small. Crucially, we show that C is a union of
a small number of convex sets, and does not contain any vectors we selected (recall that our
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algorithm selects uniformly random vectors in Bd, and uses these to select certain points in
P ). Then, we can approximate C with a union of ellipsoids, which has small VC-dimension.
This finally allows us to apply the machinery of ε-nets to get the desired result.

We begin with some definitions and lemmas.

I Definition 6.4. Let Bd denote the unit ball in d dimensions. Let Sd−1 denote the unit
sphere in d dimensions, which is ∂Bd (the boundary of Bd).

I Definition 6.5. Let V d(S) denote the d-dimensional volume (Lebesgue measure) of a
measurable set S in d-dimensional space.

I Definition 6.6. Given T ⊆ Rd and t ∈ Rd, we define ETt to be the set of all vectors v ∈ Bd
such that t maximizes T in v, that is,

ETt = {v | v · t = ωv(T ) ∧ |v|2 ≤ 1}.

Figure 5 shows a set of points T . All vectors between u and v with Euclidean norm at most 1,
in the range indicated by the angle, are in ETD. Note that u is perpendicular to line segment
CD and v is perpendicular to line segment DE. Only points t ∈ T that lie on the boundary
of the convex closure of T have non-empty ETt .

I Definition 6.7. Given a point stream P , and a set S, we say the set of bad vectors C (with
respect to P , S) is the set of vectors v in Bd such that S does not ε-maximize P in v. An
equivalent definition of (ε, δ)-hulls is that V d(C)/V d(Bd) ≤ δ.

We are now ready to present the following lemmas about the properties of ETt .

I Lemma 6.8 (ε-Maximization Lemma). Suppose P ⊆ Rd is a finite set of points and T ⊆ P
is an ε-hull of P , and t ∈ T . Then t ε-maximizes P for all vectors v ∈ ETt (see Definition 6.6).

I Lemma 6.9 (Covering Lemma). For all finite point sets T ⊆ Rd,
⋃
t∈T E

T
t = Bd.

I Lemma 6.10 (Convex Lemma). For any point t ∈ Rd and finite set T ⊆ Rd, ETt is convex
and has finite volume.

We want to show that the set of points S our algorithm chooses is ε-maximal in most
directions. One way is to show that for each point our algorithm picks, the set of bad vectors
(vectors that our stored points do not ε-maximize) shrinks. We present a crucial lemma that
formalizes this notion under some assumptions.

I Lemma 6.11. Given a finite point set P ⊆ Rd and a finite-volume convex set C ⊆ Rd.
Assume that there exists some p ∈ P s.t. for all unit vectors v ∈ C, p ε-maximizes P in v.
Suppose that we pick arbitrary vectors v1, ..., vk ∈ C and corresponding points p1, ..., pk ∈ P
s.t. for all i, pi maximizes P in vi. Then there exists a finite-volume convex subset C ′ ⊆ C
s.t.
1. For all i ∈ [k], vi 6∈ C ′.
2. For all vectors v ∈ C \ C ′, S = {p1, ..., pk} ε-maximizes P in v.

Proof. Consider a vector vi that we picked, and corresponding point pi. If pi = p, then
C ′ = {} satisfies the required conditions. Otherwise, let Hi = {v | pi · v ≥ p · v}. Hi is a
half-space that contains the vector vi. Furthermore for all vectors v ∈ Hi ∩C, S ε-maximizes
P in v. So the set of vectors in C that pi does not maximize are contained in Hc

i ∩ C,
where Hc

i does not contain vi. Applying this argument for each vector vi and corresponding
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point pi, we can construct C ′ to be the intersection of C with the k (open) half-spaces Hc
i

corresponding to each of the points pi we selected. Our constructed C ′ is convex, because it
is the intersection of convex sets, and it is bounded and measurable. J

For completeness, we include a standard lemma that is similar to the finite ε-net in
computational geometry. Before we proceed, for a family of sets H, we denote the simplified
version of VC-dimension d′ = ṼC(H) as the smallest positive integer d′ such that for every
finite set A ⊆ Rd, |{h ∩ A : h ∈ H}| ≤ |A|d′ (that is, such that a simple variant of Sauer’s
Lemma holds). We then have the following lemma, which we prove in the appendix.

I Lemma 6.12. Let τ, γ ∈ (0, 1) be two parameters. Let H be a set of measurable sets in
Rd such that ṼC(H) ≤ d′ for some integer d′. Given a measuable convex set C ⊆ Rd, let
HC = {c ∈ H : c ⊆ C} be the sets of subsets of H contained in C. Suppose we choose
m = Θ( d

′

τ2 log d′

τγ ) points uniformly random in C. Then, except with probability γ, all sets
u ∈ HC with V d(u)/V d(C) ≥ τ contains some selected point, where V d(u) denotes the
volume of u.

Before we present the main theorem, we note that the set of unions of k ellipsoids is of
small VC-dimension. The formal proof is presented in the Appendix.

I Lemma 6.13. Let E be the sets of all ellipsoids in Rd. Let Ek = {e1∪e2∪e3 . . .∪ek : ei ∈ E}.
Then ṼC(H) ≤ 4kd2.

Now we are ready to present the main theorem in this section.

I Theorem 6.14. Let γ, δ ∈ (0, 1), k ≥ 1 be parameters. Given a point stream P in Rd and
ε ≥ 0. Suppose OPT(P, ε) ≤ k. Then there exists a one-pass streaming algorithm, given
P, γ, δ, k, stores a set S ⊆ P of m = Θd

(
k
δ2 log k

γδ

)
points, such that, except with probability

γ, S is an (ε, δ)-hull of P .

Proof. To begin the proof, we recall the algorithm. We first pick uniformly at random
m = Θ

(
d2d+2k
δ2 log kd

γδ

)
directions from Bd, the d-dimensional unit ball. When the stream is

coming, we maintain the extreme point from P in each direction. The output S is the set of
extreme points in each direction.

Intuitively, S is an (ε, δ)-hull iff Bd only contains a small region of bad vectors (with
respect to P , S). Let T be an optimal ε-hull of P , with |T | = k. Fix t ∈ T . Consider the
set ETt . In our proof we will show that with high probability each set ETt only contains a
small subset of bad vectors, C ′t, such that, for all vectors v ∈ ETt \ C ′t, S ε-maximizes P in v.
Then we show that

∑
t∈T V

d(C ′t) ≤ δ, which completes the proof.
Suppose the selected random set of vectors is A ⊆ Bd. Fix t ∈ T . By Lemma 6.8, t ∈ T ε-

maximizes P for all vectors v ∈ ETt . Then by Lemma 6.11, there exists a finite-volume convex
subset C ′t ⊆ ETt such that C ′t ∩ A = ∅ and for all v ∈ ETt \ C ′t, S ε-maximizes v. Next, for
each t ∈ T , we select a large ellipsoid ut contained in C ′t such that V d(C ′t) ≤ V d(ut)dd. Note
that ∪t∈TC ′t is a member of the family E |T | = {h1∪h2∪ . . .∪h|T | : ∀i, hi is an ellipsoid}. By
Lemma 6.13, ṼC(E |T |) ≤ 4kd2. By Lemma 6.12, since all ut do not contain any point from A,
with probability at least 1− γ, it must be the case that V d(∪t∈Tut)/V d(Bd) ≤ δ/(dd). Since
the ut are disjoint, this means that V d(∪t∈TC ′t)/V d(Bd) ≤ δ. Furthermore, by Lemma 6.9,⋃
t∈T E

T
t = Bd. Therefore, with probability at least 1− γ, S ε-maximizes all vectors in Bd

except for those in ∪t∈TC ′t. Thus, S is an (ε, δ)-hull except with probability γ. J
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Abstract
A small-biased function is a randomized function whose distribution of truth-tables is small-
biased. We demonstrate that known explicit lower bounds on (1) the size of general Boolean
formulas, (2) the size of De Morgan formulas, and (3) correlation against small De Morgan
formulas apply to small-biased functions. As a consequence, any strongly explicit small-biased
generator is subject to the best-known explicit formula lower bounds in all these models.

On the other hand, we give a construction of a small-biased function that is tight with
respect to lower bound (1) for the relevant range of parameters. We interpret this construction
as a natural-type barrier against substantially stronger lower bounds for general formulas.
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1 Introduction

Formula size is one of the most thoroughly studied complexity measures of Boolean functions.
A formula is a circuit in which every internal gate has fan-out one. The power of formulas
depends on the types of gates allowed. In this work we consider two models: General formulas
in which any gate of some pre-specified fan-in c is allowed, and De Morgan formulas that
only use NOT gates and AND/OR gates of fan-in two.

Explicit size lower bounds for general formulas were first proved by Nečiporuk [18], who
showed that the selector (addressing) function requires general constant fan-in formula size
Ω(n2/ log n log log n) over inputs of size n. Boppana and Sipser [8] applied a variant of this
method to obtain an improved lower bound of Ω(n2/ log n) for the element distinctness
function by a related but different method.

The case of De Morgan formulas had been studied even earlier. Subbotovskaya [25]
proved that computing parity on n bits requires formula size Ω(n3/2). Andreev [3] combined
the ideas of Nečiporuk and Subbotovskaya to obtain a n5/2−o(1) De Morgan formula size
lower bound for an explicit family of functions from {0, 1}n to {0, 1}. Following partial
improvements (Impagliazzo and Nisan [11], Paterson and Zwick [19]), Håstad [10] showed

1 Work supported by HK RGC GRF grant no. CUHK14208215.
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that Andreev’s function requires formula size n3−o(1), which is optimal in the exponent.2
The same lower bound was reproved by Dinur and Meir [9] using different methods.

More recently, Tal gave two lower-order improvements to Håstad’s result. First, in [27] he
showed that Andreev’s function requires De Morgan formulas of size Ω(n3/(log n)2 log log n),
which is optimal for this function up to the doubly logarithmic term. Later, in [28] he showed
that another function introduced by Komargodski and Raz [13] requires De Morgan formula
size Ω(n3/(log n)(log log n)2).

In a related line of works, Komargodski, Raz, and Tal [13, 14, 27] study correlation
lower bounds against small formulas. For every k ≤ n1/3, they construct two variants
of an explicit function that has correlation at most 2−k with any De Morgan formula of
size n3/(log n)O(1)k2. Their hard functions make use of error-correcting codes with good
list-decodable properties and extractors for bit-fixing sources. Weaker correlation bounds
for the parity function were proved by Santhanam [23] and, as observed in [14], also follow
implicitly from bounds on the approximate degree of De Morgan formulas [6, 22].

Razborov and Rudich [21] observed that all formula size lower bounds (known at the
time) are natural, meaning that the formulas to which the bounds apply cannot compute
cryptographically pseudorandom functions. On the other hand, the class NC1 of polynomial-
size logarithmic-depth bounded fan-in circuit families, which are equivalent in power to
polynomial-size formula families, is believed to contain pseudorandom functions. Naor and
Reingold [16,17] and Banerjee, Peikert, and Rosen [5] proposed such candidate families based
on the Decisional Diffie Hellman, hardness of factoring, and Learning With Errors hardness
assumptions, respectively. These constructions suggest that explicit size nC lower bounds for
formulas is out of reach for current techniques for sufficiently large values of the exponent C.
The values of C in these constructions (for the requisite levels of hardness) are apparently
rather large, so they are unlikely to explain the perceived barriers of n2 and n3 for general
and De Morgan formula size, respectively.

Our results

Our main conceptual contribution is the realization that all known formula size lower bound
techniques also apply to small-biased functions. A randomized function is (K, ε)-biased if the
induced distribution over truth-tables is a (K, ε)-biased distribution (it satisfies (1) below).

From the perspective of natural proofs, the known properties that distinguish small
formulas from random functions are local in the sense that they only make a bounded
number of non-adaptive queries to the function.3 It is therefore reasonable to expect that
the largeness condition of the relevant natural properties should continue to hold for random
functions that only exhibit bounded independence. We show that these properties, in fact,
merely require small bias [15], which is closely related to approximate bounded independence.
As a direct consequence, we show that the best-known explicit formula lower bounds hold
against any implicitly specified small-biased generator (the precise definition is given below).

I Theorem 1. Any small-biased generator SBn,2−15n : {0, 1}O(n) → {0, 1}
1. requires fan-in c formulas of size Ω(n2/2c log n),
2. requires De Morgan formulas of size Ω(n3/ log n (log log n)2),
3. has correlation at most 2−Ω(k) with De Morgan formulas of size at most n3/(log n)O(1)k2

for any k such that ω(log n) ≤ k ≤ n.

2 Our discussion of formula lower bounds is based on Chapter 6 of Jukna’s book [12].
3 The correlation lower bounds [13,14] in fact apply adaptive queries of a restricted type.
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Together with the existence of strongly explicit small-biased generators (see definition
and discussion below), Theorem 1 reproves the best-known formula lower bounds in a unified
manner and even gives a minor improvement in one case. Item 1 matches the explicit formula
size lower bound of Nečiporuk. Item 2 matches the lower bound of Tal [28]. Item 3 is a minor
improvement over the lower bound of Tal [27]. His proof requires the additional assumption
k ≤ n1/3.

Like previous formula size lower bounds with the exception of [9], the proof of Theorem 1
relies on shrinkage. It is therefore not surprising that it merely matches but fails to improve
the state of the art in explicit lower bounds. The value of Theorem 1 is in explaining hardness
against formulas by a single natural property, namely small bias. In contrast, shrinkage
proofs are tailored to the model in question. The proofs of [10, 18, 28] rely on shrinkage
of a random restriction, the one of [8] on simultaneous shrinkage of multiple restrictions,
while [13,14,27] use high probability shrinkage. While the role of small bias in the shrinkage
arguments is more or less self-evident in certain proofs (Propositions 1 and 3), it is less
obvious properties of small bias (Lemmas 2 and 3) that enables the others (Propositions 2, 4,
and 5).

From a wider perspective, the utility of circuit lower bounds extends far beyond separating
complexity classes, which is merely a motivating purpose. It is just as important to identify
which natural (both in the common and technical sense) properties of functions make them
intractable in specific computational models. In this sense Theorem 1 provides a new criterion
for pseudorandomness of a cryptographic function against a restricted class of distinguishers.

On the other hand, in Theorem 6 we construct a (K, ε)-biased function F with fan-in
two formula size O(n(logK)2(log 1/ε)). For ε = 2−2K , this is a (K, 2−K)-wise independent
function of formula size O(nK(logK)2), which matches our lower bounds for general formulas
in Propositions 1 and 2 up to terms polylogarithmic in K.

In the parameter regimes that yield lower bounds 1 and 2 in Theorem 1, the function F
has formula size O((n log n)2) and De Morgan formula size O(n4(log n)3). We view this as a
barrier to proving super-quadratic lower bounds for general formulas, and super-quartic ones
for De Morgan formulas.

In the notation of Razborov and Rudich, our barriers are ⊕-natural, where ⊕ is the class
of parity functions. However, they are not quasipolynomial-size-natural since our function
F is not cryptographically pseudorandom: In addition to having small formula size, F
is computable by polynomial-size, depth 3 circuit families with AND, OR, and PARITY
gates (the class AC0[⊕]), which is known not to contain cryptographic pseudorandom
functions [20,21,24]. It remains open whether our bounds can be matched (or even improved
in the case of De Morgan formulas) by a different construction that is plausibly secure with
respect to all subexponential-size circuits, of which linear tests are a very special case.

Theorems 1 and 6 suggest that small-biased functions should be studied as suitable
candidates for formula size lower bounds. In the extreme setting of parameters K = 2n,
ε = 2−Θ(n), known constructions of small-biased functions have seed lengths linear in n and
may be plausible candidates for improved formula size lower bounds. In this regime, the
general and De Morgan formula sizes of F in Theorem 6 are as large as Θ̃(n4). Do there
exist, say, (2n, 2−100n)-biased functions of smaller formula size?

Bounded independence and small bias

We will call a randomized function F : {0, 1}n → {0, 1} (k, ε)-wise independent (in qualitative
terms, almost locally independent) if for any k distinct inputs x1, . . . , xk, the distribution
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22:4 Small Bias Requires Large Formulas

(F (x1), . . . , F (xk)) is within statistical distance ε of the uniform distribution over {0, 1}k.
A random function F : {0, 1}n → {0, 1} is (K, ε)-biased (locally small-biased) if for any
nonempty set X of at most K distinct inputs,∣∣∣E[∏

x∈X
(−1)F (x)

]∣∣∣ ≤ ε. (1)

When K = 2n the family is called ε-biased (small-biased). Small bias implies bounded
independence by the following claim [15, Corollary 2.1].

I Claim 1. Every (K, ε)-biased function is (K, 2K/2ε)-wise independent.

Small-biased generators

A family of functions SBn,ε : {0, 1}s(n,ε) × {0, 1}n → {0, 1} is a small-biased generator if the
random function Fr(x) = SBn,ε(r, x) (with r uniformly random) is ε-biased for all n and
ε. If we view SBn,ε as a function from {0, 1}s(n,ε) to the set of truth-tables of functions
{0, 1}n → {0, 1}, we recover the usual representation of a pseudorandom generator as a
function of its seed.

The generator is strongly explicit if s(n, ε) = O(n + log 1/ε) and SBn,ε is uniformly
polynomial-time computable. Known constructions of small-biased sets [1, 2, 7, 15, 26] are
strongly explicit.

2 Small bias requires large formulas

We are aware of two techniques for proving general formula size lower bounds, the one of
Nečiporuk [18] and the variant due to Boppana and Sipser [8]. We show that both imply
lower bounds on the formula size of almost locally independent functions. While the second
technique yields a stronger lower bound, we find the first one instructive as the role of
almost-independence is more transparent.

In the case of De Morgan formulas, we study three proof techniques. The first one, based
on average-case shrinkage, underlies the lower bound of Andreev including improvements by
Impagliazzo and Nisan, Paterson and Zwick, Håstad, and Tal. We show that this method
also bounds the formula size of almost independent functions.

The second method for De Morgan formula lower bounds is due to Tal, who applies a
correlation-to-computation reduction in addition to bounds on average-case shrinkage. The
third method, due to Komargodski and Raz and improvements by these authors and Tal,
applies a high-probability shrinkage lemma to derive strong correlation lower bounds. We
show that these two methods give lower bounds on the size of small-biased functions.

Arbitrary formulas
A restriction f |ρ of a function f under a partial assignment ρ of its inputs is the function on
the unassigned inputs obtained by fixing all the assigned variables to their values. A random
k-restriction of f is the distribution of restrictions of f under a uniform random assignment
that leaves exactly k inputs unassigned.

The size of a formula is the number of leaves in the formula tree, namely the number
of variables occurring in the formula. The following shrinkage property of formulas follows
immediately from linearity of expectation:

I Claim 2. Assume f : {0, 1}n → {0, 1} has formula size s. Then the expected formula size
of a random k-restriction of f is at most (k/n) · s.
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We say a random function F has formula size at most s if every function in the support
of F can be computed by a formula of size at most s.

I Proposition 1. Assuming c ≤ log log k, any (2k, 1/4)-wise independent function
F : {0, 1}n → {0, 1} requires fan-in c formulas of size Ω(n · 2k/k log k).

Proof. Suppose F has formula size s. By Claim 2 and averaging, there exists a partial
assignment ρ with k unassigned variables under which the expected formula size of F |ρ is at
most ks/n. By Markov’s inequality,

PrF [size(F |ρ) ≤ 2ks/n] ≥ 1
2 (2)

for any distribution of functions F , where size denotes formula size.
A formula of size s̃ can be specified by listing its at most 2s̃ gates in depth-first order. For

a formula of fan-in c on k inputs, there are 22c possible internal gates and k possible input
gates, so the number of such formulas is at most (22c + k)2s̃ ≤ (2k)2s̃. Therefore, setting
s̃ = 2ks/n, for a uniformly random function R it holds that

PrR[size(R|ρ) ≤ 2ks/n] ≤ (2k)4ks/n

22k . (3)

The event “size(F |ρ) ≤ 2ks/n” depends on at most 2k values of F , so if F is (2k, 1/4)-wise
independent, then

PrF [size(F |ρ) ≤ 2ks/n] ≤ PrR[size(R|ρ) ≤ 2ks/n] + 1
4 . (4)

Combining (2), (3), and (4), we obtain that (2k)4ks/n/22k ≥ 1/4, from where the desired
lower bound on s follows. J

An improved lower bound

We now discuss the other proof of Nečiporuk, which gives a slightly stronger lower bound in
the regime of k < log n and for exponentially small error.

I Proposition 2. For k ≤ log n−1, any (2·2k, 2−2k )-wise independent function F : {0, 1}n →
{0, 1} requires fan-in c formulas of size Ω(n · 2k−c/k).

The proposition is proved by showing that the number of possible restrictions of a small
formula that leave the least frequently occurring inputs unrestricted is small. On the other
hand, the following lemma shows that the number of distinct restrictions of an almost
locally independent function is large, even when the set of unrestricted variables is fixed. A
U -restriction is a restriction under any assignment in which U is the set of free variables.

I Lemma 2. Assume F is (2 · 2k, 2−2k )-wise independent. For any set U of k variables, the
number of distinct U -restrictions of F is at least min{2n−k−2, 22k−3} with probability more
than half.

In particular, when k ≤ log n− 1, a (2 · 2k, 2−2k )-wise independent function family has at
least 1

8 · 2
2k distinct U -restrictions with probability more than half.

Proof. Let ρ, ρ′ be independent random partial assignments to the variables in U . Then

PrF,ρ,ρ′ [F |ρ = F |ρ′ ] ≤ Pr[ρ = ρ′] + Pr[F |ρ = F |ρ′ | ρ 6= ρ′]. (5)
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The first term equals 2−n+k. To bound the second term, fix an arbitrary pair of distinct ρ, ρ′.
The event that the restricted functions F |ρ and F |ρ′ are identical depends on at most 2 · 2k
values of F . By the almost local independence of F ,

PrF [F |ρ = F |ρ′ | ρ 6= ρ′] ≤ Pr[R = R′] + 2−2k

,

where R,R′ : {0, 1}k → {0, 1} are independent uniformly random functions. Such functions
are equal with probability at most 2−2k , and so the second term in (5) at most 2−2k+1.
Therefore

PrF,ρ,ρ′ [F |ρ = F |ρ′ ] ≤ 2−n+k + 2−2k+1.

Now assume the support size of F |ρ over random ρ is less than S for at least half the functions
F . Then the collision probability Prρ,ρ′ [F |ρ = F |ρ′ ] is at least 1/S for at least half the
functions F and so

2−n+k + 2−2k+1 ≥ 1
2S ,

from where it follows that the larger of 2−n+k and 2−2k+1 is at least 1/4S. It follows that
S ≥ min{2n−k−2, 22k−3}. J

Proof of Proposition 2. Let s be the size of F . By Claim 2 and averaging, there is a set
U of size k so that on average, F has at most (k/n) · s occurrences of variables from U .
By Markov’s inequality, at least half of the formulas in F have no more than s̃ = 2ks/n
occurrences of variables from U .

We now upper bound the number of U -restrictions of φ (for fixed φ and U). Under each
partial assignment ρ to this inputs in U , φ reduces to a formula φ|ρ of size at most s̃. This
formula can be simplified by propagating the restricted inputs and subsuming all gates of
fan-in one into their parents or children in some canonical way. The simplified formula can
then be described by specifying, say in depth first order, the truth-tables of its gates (of
fan-in at least two). As there are at most s̃ such gates and each can compute one of at most
22c possible functions, the desired number of restrictions can be at most 22cs̃.

By Lemma 2, there must then exist a formula in the support of F whose number of U -
restrictions is at most 22cs̃ = 22c+1ks/n and at least 1

8 ·2
2k . It follows that s = Ω(n·2k−c/k). J

Computation by De Morgan formulas
In this section we show that known proofs for De Morgan formula size also apply to small-
biased functions. The following proof relies on expected shrinkage of De Morgan formulas
under random restrictions [3, 10,11,19].

I Proposition 3. Assuming k ≤ n/2, any (2k, 1/4)-wise independent function F : {0, 1}n →
{0, 1} requires De Morgan formula size Ω(n2 · 2k/k2 log k).

Proof. In a p-random restriction, the unrestricted variables are sampled from the binomial
distribution with parameter p. Tal [27] showed that if f has a De Morgan formula of size
s then the expected formula size of a p-random restriction of f is s̃ = O(p2s+

√
p2s). Set

p = 2k/n. By deviation bounds, for every f in the support of F , the event that ρ has fewer
than k = 1

2pn unassigned inputs or f |ρ has formula size more than 4s̃ has probability at
most 1

2 .
By averaging, there exists a partial assignment ρ with k unassigned inputs under which

F |ρ has formula size at most 4s̃ for at least half the functions F . Since F is (2k, 1/4)-wise
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independent, the same is true for at least a quarter of truly random functions R. The number
of size 4s̃ De Morgan formulas on k inputs is at most (2k)8s̃, and these must compute at least
1
4 · 2

2k distinct functions. It follows that s̃ = Ω(2k/ log k). As s̃ = O(p2s+
√
p2s) it follows

that p2s = Ω(2k/ log k). Using the constraint k ≥ 1
2pn we obtain the desired bound. J

Tal [27] recently obtained a slight improvement to the aforementioned bounds. His
method also applies to small-biased functions as demonstrated in the following proposition:

I Proposition 4. Assume that k ≤ n/2 and 2− 7
16k2k/8

< ε ≤ 2−2k. Then every (2k, ε)-biased
F requires De Morgan formula size Ω(n2 log(1/ε)/k(log k)2).

The proof relies on the large deviation bound for small-bias distributions of Naor and
Naor [15, Section 5]. We rework it here in more convenient notation. We say a random
variable X over {−1, 1}K is ε-biased if |E[

∏
i∈S Xi]| ≤ ε for every subset S of indices.

I Lemma 3. Let t be even and X be a (t, ε)-biased random variable over {−1, 1}K . The
probability that |

∑
Xi| exceeds δK is at most δ−t · (2(t/K)t/2 + ε).

Proof. We apply a t-th moment calculation. By Markov’s inequality,

Pr
[∣∣∣∑K

i=1
Xi

∣∣∣ ≥ δK] ≤ 1
(δK)t E

[(∑K

i=1
Xi

)t]
= 1

(δK)t
(∑

S∈E
E
[∏

i∈S
Xi

]
+
∑

S∈E
E
[∏

i∈S
Xi

])
,

where E is the set of ordered terms of size t in which every index appears an even number of
times. The first expectation is upper bounded by the number of such terms, which is at most
Kt/2 · t!/(t/2)! ≤ 2 · (tK)t/2. The second expectation is upper bounded by the number of
terms times the maximum bias of each term, namely Kt · ε. The desired bound follows. J

The following consequence of the lemma is far from tight but will be of use in the
proof of Proposition 4. The correlation of two functions f, φ : {0, 1}k → {0, 1} is 〈f, φ〉 =
Ex[(−1)f(x) · (−1)g(x)], where x is uniform in {0, 1}n.

I Corollary 4. Assuming 2− 7
16k2k/8

< ε ≤ 4 · 2−2k and F : {0, 1}k → {0, 1} is (2k, ε)-biased,
for every φ : {0, 1}k → {0, 1}, the probability that |〈F, φ〉| is greater than 2−k/4 is at most
3 · ε1/4.

Proof. Assuming 4 ≤ t ≤ 2k/8, the expression (t · 2−k)t/2 is non-increasing as a function of t.
By our assumption on ε, there must exist even value 4 ≤ t < 2k/8 for which(

(t+ 2)2−k
)(t+2)/2

< ε ≤ (t2−k)t/2. (6)

Applying Lemma 3 with parameters K = 2k, δ = 2−k/4 to the truth-table X of the
(K, ε)-biased function (−1)F (x)⊕φ(x), we obtain that the desired probability is at most

(2−k/4)t ·
(
2(t2−k)t/2 + ε

)
= 3 · tt/2 · 2−kt/4.

To derive the corollary, it remains to show that tt/2 · 2−kt/4 ≤ ((t + 2)2−k)(t+2)/8. This
follows from k ≥ (4t log t)/(t− 2), which is true in the regime 4 ≤ t < 2k/8. J

Proof of Proposition 4. Initially we proceed as in the proof of Proposition 3 to obtain
a partial assignment ρ with k unassigned inputs under which F |ρ has formula size s̃ =
O((k/n)2s+

√
(k/n)2s) for at least half the functions F . Let S (for shrinkage) denote this

event so that Pr[S] ≥ 1
2 .
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Tal [28] showed that every formula of size s̃ has correlation at least δ = 2−k/4 (7) with
some formula of size s̃′ = O(

√
s̃+ s̃ log k/k). Let Φ be the set of all such formulas over inputs

in U . Then we have

E[|〈F |ρ,Φ〉|] ≥ E[|〈F |ρ,Φ〉| | S] · Pr[S] ≥ δ

2 ,

where |〈f,Φ〉| denotes the maximum value of |〈f, φ〉| over all φ ∈ Φ. By Markov’s inequality,

Pr[|〈F |ρ,Φ〉| ≥ δ/4] ≥ δ

4 .

On the other hand, by a union bound and Corollary 4,

Pr[|〈F |ρ,Φ〉| ≥ δ/4] ≤ 3|Φ|ε1/4.

From these two inequalities we obtain that

|Φ| ≥ 1
12 · ε

−1/4 · δ ≥ ε−1/8

12

by (7) and the assumption ε ≤ 2−2k. Since |Φ| ≤ (9k)s̃′ , it follows that s̃′ = Ω(log(1/ε)/ log k).
A calculation shows that s = Ω(n2 log(1/ε)/k(log k)2) as desired. J

Correlation with De Morgan formulas
Komargodski, Raz, and Tal [13,14,27] proved a correlation lower bound for small De Morgan
formulas. Their main technical ingredient is the following high-probability shrinkage lemma
for De Morgan formulas [14,27].

Lemma 5 and the proof of Proposition 5 use the following notation. Given a depth-(n−k)
decision tree ∆ in n variables and a seed π ∈ {0, 1}n−k, the partial assignment ∆(π) is the
one obtained by assigning values to the variables in ∆ from root to leaf according to the
sequence π (the first bit π1 is assigned to the root variable, the second bit π2 is assigned to
its child, and so on).

I Lemma 5 (High-probablity shrinkage). For every constant c > 0 there exists a constant
c′ > 0 such that for every c′ log n ≤ k ≤ n the following holds. For every formula f on n

variables of size s ≤ nc there exists a decision tree ∆ over its variables of depth at most n− k
so that f |∆(π) has formula size s̃ = (log n)O(1) · (k/n)2 · s except with probability δ = 2−Ω(k)

over the choice of π.

Without loss of generality we will assume that ∆ is a complete decision tree of depth
exactly n− k so that ∆(π) has exactly k unrestricted variables for every π.

I Proposition 5. Assuming 2− 7
16k2k/8 ≤ ε ≤ 3−8n · 2−2k and ω(log n) ≤ k ≤ n, for every

(2k, ε)-biased F , at most a 2−Ω(k)-fraction of F has correlation more than 2−Ω(k) with
formulas of size at most n2 log(1/ε)/(log n)O(1)k2.

Proof of Proposition 5. Let C (for correlating) be the event that F has correlation at least
2δ in absolute value with some formula F̂ of size at most s (which may depend on F ) so that

EF [|〈F, F̂ 〉| | C] ≥ 2δ.

We set δ = 2−Ω(k) and assume that δ ≥ 2−k/8 (8). For every complete decision tree ∆ (which
may depend on F̂ ) of depth n− k,

EF,π[|〈F |∆(π), F̂ |∆(π)〉| | C] ≥ EF
[
|Eρ[〈F |∆(π), F̂ |∆(π)〉]|

∣∣ C] = EF [|〈F, F̂ 〉| | C] ≥ 2δ, (9)
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where π ∼ {0, 1}n−k is a random seed. Let S be the event that F̂ |∆(π) has formula size at
most s̃ = (log n)C · (k/n)2 · s (10). By Lemma 5,

PrF,π[S | C] ≤ δ. (11)

By the formula for conditional expectations,

E[|〈F |∆(π), F̂ |∆(π)〉| | C] = E[|〈F |∆(π), F̂ |∆(π)〉| | CS] · Pr[S | C]

+ E[|〈F |∆(π), F̂ |∆(π)〉| | CS] · Pr[S | C]

≤ E[|〈F |∆(π), F̂ |∆(π)〉| | CS] + Pr[S | C],

so (9) and (11) imply that

EF,π[|〈F |∆(π), F̂ |∆(π)〉| | CS] ≥ δ.

Let Φ be the set of all size-s̃ formulas over k variables. Then |Φ| ≤ (9k)s̃ (12). Since
conditioned on S all formulas F̂ |∆(π) are in Φ, it must be the case that

EF,π[|〈F |∆(π),Φ〉| | CS] ≥ δ,

where 〈f,Φ〉 denotes the maximum of 〈f, φ〉 over all φ ∈ Φ. By the formula for conditional
expectations, EF,π[|〈F |∆(π),Φ〉|] must be at least δ · Pr[CS]. We can then bound Pr[CS] by

Pr[CS] ≤ 1
δ
· EF,π[|〈F |∆(π),Φ〉|] ≤

1
δ

(δ2

4 + PrF,π[|〈F |∆(π),Φ〉| ≥ δ2/4]
)
. (13)

Let Pnk denote the set of partial assignments that leave k inputs unassigned. As each input
can take value 0, take value 1, or be unassigned, Pnk has size at most 3n. By Corollary 4, (8),
and a union bound,

PrF,π[|〈F |∆(π),Φ〉| ≥ δ2/4] ≤ PrF [|〈F |ρ, φ〉| ≥ δ2/4 for some ρ ∈ Pnk and φ ∈ Φ]

≤ 3n · |Φ| · 3ε1/4.

Using (8) and the assumption ε ≤ 3−8n ·2−2k, the right hand side is at most (δ2/4) ·12|Φ|ε1/8.
By (12) and (10), this quantity is at most δ2/4 as long as s ≤ n2 log(1/ε)/(log n)Ck2.
Plugging into (13), we conclude that Pr[CS] is at most δ/2 for formulas of the desired size.

Finally, applying (11) again, we have

Pr[C] = Pr[CS]
1− Pr[S | C]

≤ δ/2
1− δ ≤ δ. J

3 Main results

Proof of Theorem 1
Let F be the random function F (x) = SBn,2−15n(s, x) for uniformly random s. To obtain
item 1, we apply Proposition 2 with k = log n − 1 and Claim 1. (Proposition 1 gives the
weaker bound Ω(n2/ log n log log n) for fan-in up to c = log log log n.)

For item 2, we apply Proposition 4 with k = 3 log n and ε = n9e−n. (Proposition 3 with
k = log n gives the weaker bound Ω(n3/(log n)2 log log n).)

For item 3, we apply Proposition 5 with ε = 3−8n · 2−2n. The conclusion is that at most a
2−Ω(k)-fraction of F can have correlation more than 2−Ω(k) with formulas of size s. Therefore
the correlation between SBn,2−15n and size s formulas can be at most 2−Ω(k). J
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Moderate formulas for small bias
I Theorem 6. For every n, k, and ε, there exists a (2k, ε)-biased F : {0, 1}n → {0, 1} of
fan-in two formula size O(nk2 · log 1/ε).

Applying Claim 1 and a suitable change of parameters we obtain the following corollary
to Theorem 6:

I Corollary 7. For every n, K, and ε there exist (K, ε)-wise independent functions with
formula size O(n · (logK)2 · (K + log 1/ε)).

Proof of Theorem 6. Let Ht : {0, 1}n → {0, 1} be the random function

Ht(x) =
{
a random bit, if Ax = b,

0, if not,

where A and b are a uniformly random t × n matrix and t-dimensional boolean vector,
respectively, and all algebra is over F2. We let

F = F1 ⊕ F2 ⊕ · · · ⊕ Fk+2,

where the Ft are independent XORs of 6 log 1/ε independent copies of Ht. Since Ht has
formula size O(tn), F has formula size O(nk2 · log 1/ε).

We now prove that F is (2k, ε)-biased. Let X be any nonempty set of at most 2k distinct
inputs. Set t = blog|X|c + 2 and let U (for unique) be the event that exactly one x in X
satisfies Ax = b for a random t× n matrix A and t-dimensional vector b. By the isolation
lemma of Valiant and Vazirani [29], U has probability at least 1/8 (see for example [4, Lemma
17.19]). By the rule of conditional expectations,∣∣∣E[∏

x∈X
(−1)Ht(x)

]∣∣∣
≤
∣∣∣E[∏

x∈X
(−1)Ht(x)

∣∣∣U]∣∣∣ · Pr[U ] +
∣∣∣E[∏

x∈X
(−1)Ht(x)

∣∣∣U]∣∣∣ · Pr[U ]

≤ |E[(−1)Ht(u) | U ]| · Pr[U ] + 1 · Pr[U ]
= 0 · Pr[U ] + 1 · Pr[U ]
≤ 7/8.

By independence, it follows that

∣∣∣E[∏
x∈X

(−1)Ft(x)
]∣∣∣ =

∣∣∣E[∏
x∈X

(−1)Ht(x)
]∣∣∣6 log 1/ε

≤
(

7
8

)6 log 1/ε
≤ ε,

so |E[
∏
x∈X(−1)F (x)]| =

∏k+2
t=1 |E[

∏
x∈X(−1)Ft(x)]| is also upper bounded by ε. J

Our small-biased function can be viewed as a simplified variant of a construction of Naor
and Naor [15, Section 3.1.1]. The simplifications can be partly explained by a difference in
objectives: Naor and Naor (and other constructions) aim to optimize the seed length, while
we are interested in minimizing formula size.

By the standard simulation of fan-in two formulas by De Morgan formulas, F has De
Morgan formula size at most O((nk2 log 1/ε)2). The De Morgan formula size analysis can
be slightly improved to O(n2k3(log 1/ε)2) by observing that the middle layer of AND gates
does not suffer from the quadratic blow-up.
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Specifically, in the parameter settings used in the proof of items 1 and 2 in Theorem 1,
the function F has fan-in two formula size O((n log n)2) and De Morgan formula size
O(n4(log n)3).

For item 3, plugging in ε = 2−k gives the (De Morgan) formula size upper bound O(n4k3).
This can be improved to O(n4(log(n/k))3): In the proof of Corollary 4 (and Proposition 5)
it is sufficient that F be (t, ε)-biased where t is the unique even integer satisfying (6). For
our choice of parameters t is on the order of n/k.
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Abstract
An obstacle representation of a graph is a mapping of the vertices onto points in the plane and
a set of connected regions of the plane (called obstacles) such that the straight-line segment
connecting the points corresponding to two vertices does not intersect any obstacles if and only
if the vertices are adjacent in the graph. The obstacle representation and its plane variant (in
which the resulting representation is a plane straight-line embedding of the graph) have been
extensively studied with the main objective of minimizing the number of obstacles. Recently,
Biedl and Mehrabi [5] studied non-blocking grid obstacle representations of graphs in which
the vertices of the graph are mapped onto points in the plane while the straight-line segments
representing the adjacency between the vertices is replaced by the L1 (Manhattan) shortest paths
in the plane that avoid obstacles.

In this paper, we introduce the notion of geodesic obstacle representations of graphs with the
main goal of providing a generalized model, which comes naturally when viewing line segments
as shortest paths in the Euclidean plane. To this end, we extend the definition of obstacle repres-
entation by allowing some obstacles-avoiding shortest path between the corresponding points in
the underlying metric space whenever the vertices are adjacent in the graph. We consider both
general and plane variants of geodesic obstacle representations (in a similar sense to obstacle
representations) under any polyhedral distance function in Rd as well as shortest path distances
in graphs. Our results generalize and unify the notions of obstacle representations, plane obstacle
representations and grid obstacle representations, leading to a number of questions on such rep-
resentations.
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1 Introduction

An obstacle representation of an (undirected simple) graph G is pair (ϕ, S) where ϕ : V (G)→
R2 maps vertices of G to distinct points in R2 and S is a set of connected subsets of R2 with
the property that, for every u,w ∈ V (G), uw ∈ E(G) if and only if the line segment with
endpoints ϕ(u) and ϕ(w) is disjoint from ∪S. The elements of S are called obstacles. It is
easy to see that every graph G has an obstacle representation: obtain a straight-line drawing
of G by taking any ϕ that does not map three vertices of G onto a single line, and let S be
the set of the open faces in the resulting arrangement of line segments.

Since every graph has an obstacle representation, this defines a natural graph parameter
called the obstacle number, obs(G) = min{|S| : (ϕ, S) is an obstacle representation of G}.
Since their introduction by Alpert et al. [2], obstacle numbers have been studied extensively
with the main goal of bounding the obstacle numbers of various classes of graphs (see
e.g. [3, 8, 11, 12, 14, 16] and the references therein).

For planar graphs, there is also a natural notion of a plane obstacle representation (ϕ, S)
which is an obstacle representation in which ϕ defines a plane straight-line embedding of
G. This leads to plane obstacle number : plane-obs(G) = min{|S| : (ϕ, S) is a plane obstacle
representation of G}. Using Euler’s formula, it is not hard to see that the plane obstacle
number of any n-vertex planar graph is O(n): let ϕ define any plane drawing of G with
no three vertices collinear and take S to be the set of open faces in this drawing. Since an
n-vertex planar graph has at most 2n− 4 faces, this implies plane-obs(G) ≤ 2n− 4.

Recently, Biedl and Mehrabi [5] studied non-blocking grid obstacle representations of
graphs, consisting of the pair (ϕ, S) as before in which ϕ maps the vertices of the graph to
points in the plane and S is a set of obstacles, but the adjacency in the graph is represented
by replacing straight-line segments with L1 shortest paths in the plane. That is, for every
u,w ∈ V (G), uw ∈ E(G) if and only if some L1 shortest path from ϕ(u) to ϕ(w) is disjoint
from ∪S; see Figure 1 for an illustration of these obstacle representations.

Geodesic obstacle representation. In this paper, we generalize the notions of obstacle
representations [2], plane obstacle representations, and grid obstacle representations [5]
by introducing geodesic obstacle representations of graphs. This natural generalization of
obstacle representations comes from viewing line segments as shortest paths in the Euclidean
plane. An obstacle representation (ϕ, S) has the property that uw ∈ E(G) if and only if
the shortest path from ϕ(u) to ϕ(w) does not intersect ∪S. The Euclidean distance is a
very special case because the shortest path between any two points p and q is unique. To

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.23
https://arxiv.org/abs/1803.03705
https://arxiv.org/abs/1803.03705
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(a) (b) (c) (d)

Figure 1 Four different obstacle representations of the same graph G: (a) an obstacle representa-
tion, (b) a geodesic obstacle representation under L1 distance, (c) a plane obstacle representation,
and (d) a non-crossing geodesic obstacle representation under L1 distance.

accommodate other distance measures, we extend the definition of obstacle representation
by saying that uw ∈ E(G) if and only if some shortest path from ϕ(u) to ϕ(w) does not
intersect ∪S. In this way, we can obtain many generalizations of obstacle representations
by changing the underlying distance measure. For example, with the L1 distance measure,
every xy-monotone path is a shortest path. Therefore, if (ϕ, S) is an obstacle representation
under L1, then uw ∈ E(G) if and only if there is some xy-monotone path from u to w that
avoids ∪S. Analogous to plane obstacle representations, we can define non-crossing geodesic
obstacle representations in which ϕ defines a plane embedding of graph G. Under the L1
metric, this non-crossing version is equivalent to non-blocking grid obstacle representations
as defined by Biedl and Mehrabi [5].

Considering the L1 metric in the plane, one can view a geodesic obstacle representation of
G as a partition of the neighbours of each vertex u ∈ V (G) into four sets based on which of
the four quadrants relative to u the neighbours of u are in the representation. Consequently,
if uv, vw ∈ E(G) in such a way that v is in the same quadrant of u as w is in the quadrant
of v in a representation, then we must have uw ∈ E(G) since there is an xy-monotone path
from u to w in the representation. Notice that it is now not clear whether every graph has a
geodesic obstacle representation. In fact, Pach [15] showed that there exists a bipartite graph
that does not admit a grid obstacle representation. Indeed, the focus of this paper is to
determine, for a class G of graphs, whether or not every member of G has a geodesic obstacle
representation (under some metric space). Clearly, the existence of such representations is
more likely if one extends the definition of monotonicity by considering 2k equal-angled cones
around each vertex (instead of 2k = 4 quadrants), where k > 2 is an integer. This leads us
to the general question of, informally speaking, what is the minimum integer k > 0 for which
every member of G has a geodesic obstacle representation when shortest paths are defined by
monotone paths relative to such 2k equal-angled cones around each vertex. In this paper,
with this “parameter k”, we study geodesic obstacle representations and its non-crossing
version under polyhedral distance functions in Rd as well as shortest path distances in graphs.
See Section 2 for a formal definition of this generalized notion of obstacle representations.

Related work. It is known that every n-vertex graph has obstacle number O(n log n) [3]
and some n-vertex graphs have obstacle number Ω(n/(log log n)2) [8]. For planar graphs,
there exist planar graphs with obstacle number 2 (the icosahedron is an example [4]), but
the best upper bound on the obstacle number of an n-vertex planar graph is O(n). Recall
the O(n) upper bound on the plane obstacle number of any n-vertex planar graph by Euler’s
formula. A lower bound of Ω(n) is also not difficult: any plane drawing of the

√
n×
√
n grid

G√n×
√
n has at least n− 2

√
n bounded faces. Each of these faces has at least four vertices

and therefore requires at least one obstacle, so plane-obs(G√n×√n) ≥ n − 2
√
n. Gimbel

et al. [11] have nailed the leading constant by showing that every planar graph has plane
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obstacle number at most n − 3, the maximum being attained by planar bipartite graphs.
See [2, 3, 8, 11] and the references therein for more details of results on obstacle number and
its plane version.

While the obstacle numbers have been extensively studied under the Euclidean distance
as shortest path, not much is known about obstacle representations under other shortest path
metrics. In fact, we are only aware of the works of Bishnu et al. [6], and Biedl and Mehrabi [5]
both of which considered only a restricted version of obstacle representations. Bishnu et al. [6]
showed that any n-vertex planar graph G has an obstacle representation on an O(n4)×O(n4)
grid in the plane under L1 metric, with the additional restriction that, for any uw ∈ E(G),
the shortest path from ϕ(u) to ϕ(w) also avoids ϕ(v) for all v ∈ V (G) \ {u,w} (in addition
to avoiding ∪S). Biedl and Mehrabi [5] relaxed this “vertex blocking” constraint and were
able to show that every n-vertex planar bipartite graph has a non-blocking grid obstacle
representation on an O(n)×O(n) grid. They left open the problem of finding other classes
of graphs for which such non-blocking grid obstacle representations exist and, in particular,
whether every planar graph has such a representation.

Our results. In this paper, we prove the following results:
For any integer k > 1, there is a graph with O(k2) vertices that does not have a geodesic
obstacle representation with parameter k. On the other hand, every n-vertex graph has a
geodesic obstacle representation with every k ≥ n.
For any integer d > 1 and any integer k > 1, there exists a graph that does not have
a geodesic obstacle representation in Rd with parameter k. On the other hand, every
n-vertex graph has a geodesic obstacle representation in R3 with k = d(1/2) log2 n+ 2e.
Every planar graph of treewidth at most 2 (and hence every outerplanar graph) has a
non-crossing geodesic obstacle representation with k = 2; i.e., a non-blocking obstacle
representation.
Not every planar 3-tree has a non-crossing geodesic obstacle representation with k = 2,
answering the question asked by Biedl and Mehrabi [5] negatively. Moreover, not every
planar 4-connected triangulation has a non-crossing geodesic obstacle representation with
k = 2.
Every planar 3-tree has a non-crossing geodesic obstacle representation with k = 3.
Furthermore, every 3-connected cubic planar graph has a non-crossing geodesic obstacle
representation with k = 7.
Every n-vertex graph admits a non-crossing geodesic obstacle representation when taking
the D-cube graph as the underlying distance metric, where D = C log n for some constant
C > 0.

Organization. We first give some definitions and notation in Section 2. Then, we show our
results for (general) geodesic obstacle representations in Section 3 and for its non-crossing
version in Section 4. Finally, we give our result for graph metrics in Section 5, and conclude
the paper with a discussion on open problems in Section 6.

Throughout this paper, the proofs of lemmas and theorems marked with (∗) are given in
the full version of the paper [7] due to space constraints.

2 Notation and Preliminaries

Let (X, δ) be a metric space. A curve over X is a function f : [0, 1]→ X. We call f(0) and
f(1) the endpoints of the curve f and define the image of f as I(f) = {f(t) : 0 ≤ t ≤ 1}. A
curve f is a geodesic if, for every 0 ≤ t ≤ 1, δ(f(0), f(t)) + δ(f(t), f(1)) = δ(f(0), f(1)). A
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path space is a triple (X, δ, C), where (X, δ) is a metric space and C is a set of curves over X
that has the following closure property: if the curve f is in C then, for every 0 ≤ t ≤ 1, C
also contains the curves g(x) = f(x · t) and h(x) = f(t+ x · (1− t)). A path space (X, δ, C)
is connected if, for every distinct pair u,w ∈ X, there is some path in C with endpoints
u and w. For a path space P = (X, δ, C) and a subset R ⊂ X, we denote the subspace
induced by R as P [R] = (R, δ, {f ∈ C : I(f) ⊆ R}). The subspace that avoids R is defined
as P \ R = P [X \ R]. Moreover, any curve in P \ R is called an R-avoiding curve. With
these definitions in hand, we are ready to define a generalization of obstacle representations.

I Definition 1. An (X, δ, C)-obstacle representation of a graph G is a pair (ϕ, S) where
ϕ : V (G)→ X is a one-to-one mapping and S is a set of connected subspaces of (X, δ, C) with
the property that, for every u,w ∈ V (G), uw ∈ E(G) if and only if C contains a ∪S-avoiding
geodesic with endpoints ϕ(u) and ϕ(w).

Notice that it is now not clear whether every graph has an (X, δ, C)-obstacle representation.
Indeed, the focus of this paper is to determine, for a class G of graphs and a particular path
space (X, δ, C), whether or not every member of G has an (X, δ, C)-obstacle representation.
This is closely related to certain types of embeddings of G into X. An embedding (ϕ, c) of
a graph G into (X, δ, C) consists of a one-to-one mapping ϕ : V (G) → X and a function
c : E(G) → C such that, for each uw ∈ E(G), the endpoints of c(uw) correspond to ϕ(u)
and ϕ(w). The embedding is geodesic if c(uw) is a geodesic for every uw ∈ E(G). Moreover,
the embedding (ϕ, c) is non-crossing if c(uw) is disjoint from c(xz), for every uw, xz ∈ E(G)
with {u,w} ∩ {x, z} = ∅. Observe that given an (X, δ, C)-obstacle representation (ϕ, S) of G,
for each uw ∈ E(G), we can choose some ∪S-avoiding geodesic c(uw) ∈ C with endpoints
ϕ(u) and ϕ(w). Then, the pair (ϕ, c) gives a geodesic embedding of G into X. If we can
choose c such that (ϕ, c) is also non-crossing, then we say that the representation (ϕ, S) is
non-crossing.

Distance functions. In this paper, we focus on the (X, δ, C)-obstacle representation using
polyhedral distance functions in Rd. For a set N = {v0, . . . , vt−1} of vectors in Rd, we define
the polyhedral distance function

δN (p, q) = min
{
t−1∑
i=0
|ai| : q − p =

t−1∑
i=0

aivi

}
.

Every such distance function defines a centrally symmetric polyhedron PN = {x ∈ Rd :
δN (0, x) ≤ 1}. The facets of PN determine the geodesics. For a (closed) facet F of PN , we
denote the cone CF as the union of all rays originating at the origin and containing a point
on F (this is the conical hull of F ). For a point x ∈ Rd, the F -sector of x is QNF (x) = CF +x.
For a facet of F of PN , we say that a curve f is δN -monotone in direction F if, for all
0 ≤ a ≤ b ≤ 1, f(b) ∈ QNF (f(a)). We say that a curve is δN -monotone if it is δN -monotone
in direction F for some facet F of PN . Observe that a curve f is a geodesic for δN if and
only if f is δN -monotone.

I Observation 2. If uw and xz are curves that are each δN -monotone in direction F and
uw ∩ xz contains at least one point p, then δk(u, z) = δk(u, p) + δk(p, z) and δk(x,w) =
δk(x, p) + δk(p, w).

When X = Rd, we let Cd denote the set of curves over Rd. For the sake of compactness,
when X = Rd, we denote the (Rd, δN , Cd)-obstacle representation by δN -obstacle representa-
tion. For the plane case d = 2, we define, for each integer k ≥ 2 ∈ N, the regular distance
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function δk = δNk
, where Nk = {(cos(iπ/k), sin(iπ/k)) : i ∈ {0, . . . , 2k − 1}}. In this case,

the associated polygon PN is a regular 2k-gon. Moreover, we use δk-obstacle representation
as shorthand for (R2, δk, C2)-obstacle representation. Moreover, for a point in R2, we denote
the i-sector of x by Qki (x), for i ∈ {0, . . . , 2k − 1}.

In addition to polyhedral distance functions, we consider obstacle representations under
graph distance. For a graph H , we denote the set of neighbours of a vertex u in H by NH(u)
and the degree of u by degH(u). Moreover, let δH denote the graph distance and let CH be
the set of curves that define paths in H . Then, we call a (H, δH , CH)-obstacle representation
an H-obstacle representation. If we consider the infinite square grid H4 (resp., the infinite
triangular grid H6), for instance, then it is not difficult to argue that a graph G has a
non-crossing δ2-obstacle representation (resp., non-crossing δ3-obstacle representation) if
and only if G has a non-crossing H4-obstacle representation (resp., non-crossing H6-obstacle
representation). In general, for any integer D > 1, define the D-cube graph QD to be the
graph with vertex set V (QD) = {0, 1}D and that contains the edge uw if and only if u and
w differ in exactly one coordinate.

3 General Representations

In this section, we show our results for the general representations. We first consider the
special case of R2 and will then discuss our results for higher dimensions. We start by the
following result.

I Theorem 3. For any ε > 0, there exists a graph G with n = n(ε) vertices such that G has
no δk-obstacle representation for any k < n1−ε.

Proof. For some constant c > 0 and all sufficiently large n, there exists a graph G with
n vertices and cn2−2/r edges and that contains no Kr,r as subgraph [1]. Let (ϕ, S) be a
δk-obstacle representation of G and let (ϕ, c) be an embedding of G obtained by taking, for
each uw ∈ E(G), c(uw) to be some shortest ∪S-avoiding path from ϕ(u) to ϕ(w). From this
point on we identify the vertices of G with the points they are embedded to and the edges of
G with the curves they are embedded to.

By definition each edge uw ∈ E(G) is k-monotone. Since PN has at most 2k facets and
each edge is monotone in at least two of these directions, this means that it has some facet F
such that G contains E(G)/k edges that are monotone in direction F . Consider the graph G′
consisting of only these edges and the embedding ϕ of G′. Observe that if two edges uw and
xy of G′ intersect at some point p, then (after appropriate relabelling), this implies that there
is a ∪S-avoiding geodesic from u to x as well as from w to y. Therefore, ux, uw ∈ E(G′).

Therefore, if G′ contains an r-tuple of pairwise crossing edges, then G′ contains a Kr,r

subgraph. Now, observe that the edges of G′ are monotone in some direction and (after an
appropriate rotation) we can assume that they are x-monotone. We call this an x-monotone
embedding. Valtr [17] has shown that for every fixed r, there exists a constant C = C(r)
such that any x-monotone embedding of any n-vertex graph with more than Cn log n edges
contains a set of r pairwise crossing edges. In our case, this means that G contains a Kr,r

subgraph if (cn2−2/r)/k ≥ Cn log n, which gives a contradiction when k ≤ cn1−2/r/C log n.
The result then follows by choosing any r > 2/ε. J

As k →∞, δk becomes the usual Euclidean distance function and δk-obstacle represent-
ations are just the usual obstacle representations, which we know every graph has. Thus,
for every n ∈ N, there is a threshold value k(n) such that every n-vertex graph has a δk(n)-
obstacle representation. Theorem 3 shows that k(n) ∈ Ω(n1−ε) and the following theorem
shows that k(n) ∈ O(n).
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I Theorem 4 (∗). Every n-vertex graph G has a δk-obstacle representation for k = dn/2e.

Higher dimensions. The proof of Theorem 3 makes critical use of the fact that obstacle
representations live in the plane so that any sufficiently dense (sub)graph has a k-tuple
of pairwise crossing edges. An obvious question, then, is whether every graph has a δN -
obstacle representation in R3 (i.e., an (R3, δN , C3)-obstacle representation), where δN is some
polyhedral distance function. The following theorem shows that the answer to this question
is no.

I Theorem 5. Let δN be a polyhedral distance function over Rd whose corresponding poly-
hedron PN has 2k facets, for k ∈ o(log n). Then, there exists an n-vertex graph G that has
no δN -obstacle representation.

Proof. Let G be an n-vertex graph with no clique and no independent set of size larger
than 2 log n. The existence of such graphs was shown by Erdős and Renyi [10]. Suppose, for
the sake of contradiction, that G has some δN -obstacle representation (ϕ, S). Let ≺ denote
lexicographic order over points in Rd.

We will k-colour the
(
n
2
)
pairs of vertices of G where the colours are facets of PN . A pair

(u,w) with u ≺ w is coloured with a facet F of PN such that w ∈ QNF (u). If more than one
such facet exists, we choose one arbitrarily. For each i ∈ {1, . . . , k}, let ≺i denote the partial
order obtained by restricting the total order ≺ to the pairs of vertices in G with colour i.
We claim that for at least one i, ≺i contains a chain v1 ≺i · · · ≺i vr of size r ≥ n1/k. To
see why this is so, observe that, by Dilworth’s Theorem, if ≺k does not contain a chain of
length n1/k, then it contains an antichain Ak of size n1−1/k. Now, proceed inductively on
≺1, . . . ,≺k−1 and Ak, observing that every pair in Ak is coloured with {1, . . . , k − 1}.

Next, consider the relation ≺′i over v1, . . . , vr in which va ≺i vb if and only if 1 ≤ a < b ≤ r
and vavb ∈ E(G). Observe that ≺′i is a partial order over {v1, . . . , vr}. Therefore, by
Dilworth’s Theorem, it contains a chain of size at least

√
r or it contains an antichain of

size at least
√
r. A chain corresponds to a clique in G and an antichain corresponds to an

independent set in G. This contradicts our choice of G when
√
r > 2 log n, which is true for

all k ∈ o(log n) and all sufficiently large n. J

Theorem 5 shows that, for some n-vertex graphs G, any δN -obstacle representation of G
must use a distance function δN with k = Ω(log n) facets. Our next result shows that, even
in R3, a polyhedral distance function with k = O(log n) facets is indeed sufficient.

I Theorem 6 (∗). Let δN be any polyhedral distance function in Rd, where d ≥ 3, for which
the polyhedron PN has at least 2 log2 n facets. Then, every n-vertex graph G has a δN -obstacle
representation.

If we take t generic unit vectors in R3, then the polyhedral distance function determined
by these vectors defines a polyhedron having 2t vertices and 4t−8 triangular faces. Theorem 6
therefore implies that a polyhedral distance function determined by t ≥ (1/2) log2 n+ 2 unit
vectors is sufficient to allow a obstacle representation of any n-vertex graph.

In constant dimensions d > 3, there exists sets of t vectors in Rd defining polytopes with
Θ(tbd/2c) facets. Therefore, in Rd, every n-vertex graph has a δN -obstacle representation
with |N | ∈ O( bd/2c

√
log n) vectors.

4 Non-Crossing Representations

In this section, we consider non-crossing δk-obstacle representations. The following lemma
shows that these representations are equivalent to plane δk-obstacle embeddings.
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23:8 Geodesic Obstacle Representation of Graphs

I Lemma 7 (∗). A graph G has a non-crossing δk-obstacle representation if and only if G
has a non-crossing δk-obstacle embedding.

Lemma 7 allows us to focus our effort on studying the existence (or not) of plane δk-
obstacle embeddings. We begin with non-crossing δk-obstacle embeddings of small treewidth
graphs.

Treewidth. A k-tree is any graph that can be obtained in the following manner: we begin
with a clique on k + 1 vertices and then we repeatedly select a subset of the vertices that
form a k-clique K and add a new vertex adjacent to every element in K. The class of k-trees
is exactly the set of edge-maximal graphs of treewidth k. A graph G is called a partial k-tree
if it is a subgraph of some k-tree. The class of partial k-trees is exactly the class of graphs
of treewidth at most k. We will make use of the following lemma, due to Dujmović and
Wood [9] in some recursive embeddings.

I Lemma 8 (Dujmović and Wood [9]). Every k-tree is either a clique on k + 1 vertices or it
contains a non-empty independent set S and a vertex u 6∈ S, such that (i) G \ S is a k-tree,
(ii) degG\S(u) = k, and (iii) every element in S is adjacent to u and k − 1 elements of
NG\S(u).

4.1 δ2-Obstacle Representations
In this section, we focus on plane δ2-obstacle embeddings. Recall that these are equivalent
to the non-blocking planar grid obstacle representation studied by Biedl and Mehrabi [5].
We begin with the positive result that all graphs of treewidth at most 2 (i.e., partial 2-trees)
have plane δ2-obstacle embeddings.

I Theorem 9. Every partial 2-tree has a plane straight-line δ2-obstacle embedding.

Proof. Let G be a partial 2-tree. We can, without loss of generality, assume that G is
connected. If |V (G)| < 4, then the result is trivial, so we can assume |V (G)| ≥ 4. We now
proceed by induction on |V (G)|.

Let T = T (G) be a 2-tree with vertex set V (G) and that contains G. Apply Lemma 8 to
find the vertex set S and the vertex u. Let x and y be the neighbours of u in T \ S. Now,
apply induction to find a plane straight-line δ2-obstacle embedding of the graph G′ whose
vertex set is V (G′) = V (G) \ S and whose edge set is E(G′) = E(G \ S) ∪ {ux, uy}. Denote
by Sx (resp., Sy) the neighbours of x (resp., y) that belong to S.

Now, observe that, since u has degree 2 in G′ and the edges ux and uy are in G′,
this embedding does not contain any monotone path of the form uxw or uyw for any
w ∈ V (G)\{u, x, y}. Therefore, if we place the vertices in S sufficiently close to u, we will not
create any monotone path of the form ayw or axw for any a ∈ S and any w ∈ V (G)\{u, x, y}.
What remains is to show how to place the elements of S in order to avoid unwanted monotone
paths of the form uay, uax, or aub for any a, b ∈ S. There are three cases to consider:
1. x ∈ Q2

i (u) and y ∈ Q2
i+2(u) for some i ∈ {0, . . . , 3}. W.l.o.g., assume that Q2

i+3(u) does
not intersect the segment xy. Then, we can embed the elements of S in Q2

i+3(u) without
creating any new monotone paths; see Figure 2(a).

2. x, y ∈ Q2
i (u) for some i ∈ {0, . . . , 3}. There are two subcases:

(i) At least one of ux or uy is in E(G). Suppose ux ∈ E(G). Then we embed Sx in
Q2
i (u) and embed Sy in Q2

i+3(u); see Figure 2(b). The only monotone paths this
creates are of the form uax with a ∈ Sx, which is acceptable since ux ∈ E(G).
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Figure 2 An illustration in supporting the proof of Theorem 9.

(ii) Neither ux nor uy is in E(G). In this case, we embed all of S in Q2
i+2(u) (see

Figure 2(c)). This does not create any new monotone paths.
3. x ∈ Q2

i (u) and y ∈ Q2
i+3(u) for some i ∈ {0, . . . , 3}. We have three subcases to consider:

(i) |{ux, uy} ∩ E(G)| = 1. In this case, assume ux ∈ E(G). Then, we embed the
vertices of Sx in Q2

i (u) and we embed the vertices of Sy in Q2
i+1(u). See Figure 2(d).

The only monotone paths this creates are of the form uax with a ∈ Sx, which is
acceptable since ux ∈ E(G).

(ii) |{ux, uy} ∩ E(G)| = 2. In this case, we embed the vertices of Sx in Q2
i (u) and we

embed the vertices of Sy in Q2
i+3(u) (see Figure 2(e)). The only monotone paths this

creates are of the form uax with a ∈ Sx and uby with b ∈ Sy, which is acceptable
since ux, uy ∈ E(G).

(iii) |{ux, uy} ∩ E(G)| = 0. In this case, we embed all of S into Q2
i+1 (see Figure 2(f)).

This does not create any new monotone paths.
This completes the proof of the theorem. J

In the full version of the paper [7], we show that not every planar 3-tree admits a
non-crossing δ2-obstacle embedding.

I Theorem 10 (∗). There exists a planar 3-tree that does not have a non-crossing δ2-obstacle
embedding.

We further prove that even 4-connectivity does not help to guarantee the existence of
non-crossing δ2-obstacle embeddings. To this end, we show that a 4-connected triangulation
having a plane δ2-obstacle representation must have a constrained 4-colouring in the sense
that, for the neighbours of a vertex, which colours and in what order are they allowed to be
assigned to them. The following theorem then follows by finding a 4-connected triangulation
that does not admit such a constrained 4-colouring (see the full version of the paper [7]).
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I Theorem 11 (∗). There exists a 4-connected triangulation G with maximum degree 7 that
has no plane δ2-obstacle embedding.

4.2 Higher-k δk-Obstacle Representations
In this section, we consider the non-crossing embeddings for k > 2. We show that planar
3-trees have plane δ3-obstacles embeddings and that all 3-connected cubic planar graphs
have plane δ7-obstacles embeddings. We start by planar 3-trees.

I Theorem 12. Every planar 3-tree has a plane δ3-obstacle embedding.

Proof Sketch. Here, we sketch the proof; see the full version of the paper [7] for the complete
proof. The proof is by induction on n = |V (G)| in which our inductive hypothesis is that
every n vertex planar 3-tree has a plane δ3-obstacle embedding in which the neighbours of
each vertex u occupy at least 3 of the sectors Q3

0(u), . . . , Q3
5(u). The key to our proof is the

result of Dujmovic and Wood [9] when specialized to planar 3-trees, which says that every
planar 3-tree is either K4 or has a vertex u and an independent set S (|S| ≤ 3) such that
G \ S is a 3-tree, u has degree 3 in G \ S with neighbours x, y and z, and every vertex r in S
forms a clique with exactly one of uxy, uyz or uzx.

By applying this result and recursing on G\S (when n > 4), we obtain a plane δ3-obstacle
embedding of G \ S. By our induction hypothesis, there are two cases depending on the
locations of x, y and z with respect to u. In both cases, the elements of S are placed close
enough to u that we do not create any new δ3-monotone paths involving vertices other
than those in {u, x, y, z} ∪ S. Since {u, x, y, z} form a clique, we only need to worry about
(possibly) creating a new δ3-monotone path involving at least one vertex of S. J

We next show that every 3-connected cubic planar graph has a plane δ7-obstacle embedding.
The algorithm contrustructs a δ7-obstacle embedding by adding one vertex per time according
to a canonical ordering of the graph [13], and at each step it maintains a set of geometric
invariants which guarantee its correctness. The key ingredients are the fact that each new
vertex v to be inserted has exactly two neighbors in the already constructed representation,
together with the existence of a set of edges whose removal disconnects the representation in
two parts, each containing one of the two neighbors of v. A sufficient stretching of these edges
allows for a suitable placement for vertex v. See the full version of the paper for details [7].

I Theorem 13 (∗). Every 3-connected cubic plane graph has a plane δ7-obstacle embedding.

5 Graph Metrics

In this section, we consider the problem under graph distances. Recall the graph D-cube,
QD whose vertex set is V (QD) = {0, 1}D and that contains the edge uw if and only u and
w differ in exactly one coordinate. It is not hard to see that every n vertex graph has a
Qn-obstacle representation: Each vertex of G is assigned a coordinate with a single 1 bit.
Then, for any two vertices u and w there are exactly two shortest paths in Qn joining them
and they each have length 2. One path goes through the intermediate vertex 0 = (0, . . . , 0)
and the other goes through u+ w. Therefore, by placing an obstacle at 0 and at each u+ w

for which uw 6∈ E(G), we obtain a QD-obstacle representation of G. The following theorem
shows we can do this with much fewer coordinates.

I Theorem 14. There exists a constant C > 0 such that, for D = C log n, every n-vertex
graph has a non-crossing QD-obstacle representation.
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Proof. Consider the following embedding (ϕ, c) of G into QD: For each u ∈ V (G), ϕ(u) is a
random element of {0, 1}D. We use the notation ui to denote the ith coordinate of u. Let ≺
denote lexicographic order on D-tuples. For each edge uw ∈ E(G) with u ≺ w, we take c(uw)
to be the greedy path that visits, for i = 0, . . . , D, the vertex uwi = (w1, . . . , wi, ui+1, . . . , uD).
Thus uw0, . . . , uwD is a sequence of vertices that—after removing duplicates—is a shortest
path, in QD, from u to w. Note that there is an asymmetry here that we should be careful
of, so for u ≺ w, we define wui = (w1, . . . , wD−i, uD−i+1, . . . , uD) = uwD−i. Here are some
observations about the embedding (ϕ, c):
1. All vertex distances are close to D/2: The distance between any two vertices is a

binomial(D, 1/2) random variable. Therefore, by Chernoff’s bounds, for any constant
ε > 0 and for any vertex pair u 6= w, Pr{|δQD

(u,w) − D/2| > ε(D/2)} ≤ n−Ω(C). By
the union bound, the probability that there exists any pair of vertices u 6= w with
|δQD

(u,w)−D/2| > ε(D/2) is also n−Ω(C).
2. The embedding is non-crossing: For any four distinct vertices u ≺ w and x ≺ y,

and any i, j ∈ {0, . . . , D}, the vertices uwi and xyj are independent random D-bit
strings. Therefore, Pr{δQD

(uwi, xyj) ≤ 1} = (D + 1)/2D. By the union bound, the
probability that there exists any four vertices u,w, x, y and any pair of indices i, j for
which δQD

(uwi, xyj) ≤ 1 is at most n4(D + 1)3/2D = n−Ω(C).
3. No geodesic passes close to a vertex except its endpoints: Let u, w, and x be distinct

vertices and r ∈ {0, . . . , D} be an integer. Then, the probability that there exists any
geodesic with endpoints u and w that contains a vertex z with δQD

(z, x) ≤ r is at most
n−Ω(C). To see why this is so, suppose that such a geodesic, C, contains a vertex z such
that δQD

(z, x) ≤ r. Then, at least one of the following events occurs:
(a) δQD

(u,w) ≥ (1 + ε)D/2;
(b) δQd

(u, x) ≤ (1 + ε)D/4 + r; or
(c) δQd

(w, x) ≤ (1 + ε)D/4 + r.
Point 1 above establishes that the probability of the first event is n−Ω(C) and that, for
r ≤ (1− 3ε)D/4, the probability of each of the other two events is n−Ω(C). Applying the
union bound over all 3 events, and over all

(
n
3
)
choices of u, w, and x then shows that

the probability that there is any triple u, w, x such that any geodesic from u to w passes
within distance (1− 3ε)D/4 of x is n−Ω(C).

4. Paths diverge quickly: Let xu, xw ∈ E(G), be two edges of G with the common endpoint
x and let r ∈ {0, . . . , D}. We want to show that the directed paths xu and xw diverge
quickly. There are three cases to consider:
a. x ≺ u and x ≺ w. In this case xur = xwr if and only if u1, . . . , ur = w1, . . . , wr, so

Pr{xur = xwr} = 2−r.
b. x ≺ u and w ≺ x. In this case, we consider xur = u1, . . . , ur, xr+1, . . . , xD and

xwr = wxD−r = x1, . . . , xD−r, wD−r+1, . . . , wD. For any choice of i, these two strings
have independent bits in at least r locations, so Pr{xur = xwr} ≤ 2−r.

c. u ≺ x and w ≺ x. In this case xur = uxD−r = x1, . . . , xD−r, uD−r+1, . . . , uD and
xwr = wxD−r = x1, . . . , xD−r, wD−i+1, . . . , wD. So Pr{xur = xwr} = 2−r.

If we choose r = α log n, then this probability is at most n−Ω(α). Again, the union bound
shows that the probability that there is any u, w, or x such that xur = xwr is at most
n−Ω(α).

In the following, we choose C sufficiently large and α < (1/4 − ε)C also sufficiently large
so that with probability greater than 0, we obtain an embedding for which all four of
preceding properties hold. Therefore, there exists some embedding (ϕ, c) such that 1. for all
u,w ∈ V (G), |δQD

(u,w)−D/2| ≤ εD/2; 2. for all uw, xy ∈ E(G) with {u,w} ∩ {x, y} = ∅,
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δQD
(c(uw), c(xy)) > 1; 3. for all uw ∈ E(G) and x ∈ V (G) \ {u,w}, δQD

(c(uw), x) ≥
(1− ε)D/4; and 4. for all xu, xw ∈ E(G) and all r ≥ α log n, xur 6= xwr.

To obtain a QD-obstacle representation (ϕ, S) we take S to contain all the vertices not
used in any path of the embedding (ϕ, c). To verify that this is indeed a non-crossing
QD-obstacle representation, we need only verify that, for any u,w ∈ V (G) with uw 6∈ E(G),
δQD\S(u,w) > δQD

(u,w). This is implied by the following inequality, which relates distances
in G to those in QD \ S:

δQD\S(u,w) ≥ δG(u,w)(1− ε)D/2− (δG(u,w)− 1)2α log n . (1)

Note (1) is sufficient since, if uw 6∈ E(G), then δG(u,w) ≥ 2 and (1) implies δQD\S(u,w) ≥
(1− ε)D− 2α log n = ((1− ε)C− 2α) log n > (1 + ε)D/2, which contradicts Property 1. Thus,
all that remains is to establish (1). To do this, consider any path P from u to w in QD \ S.
Since the only vertices in QD \ S are those that are used by some embedded edge of G, the
path P consists of a sequence of subpaths P0, . . . , Pk where each Pi is a subpath of c(xiyi)
for some edge xiyi ∈ E(G). Note that Property 3 implies that x0 = u and that xk = w.
Furthermore, Properties 2 and 3 imply that xi = yi−1 for each i ∈ {1, . . . , k}. Therefore,
x0, . . . , xk is a path in G from u to w, so k ≥ δG(u,w). Finally, Property 4 implies that, for
each i ∈ {1, . . . , k − 1}, the portion of c(xi, xi+1) not used by Pi has length at most 2α log n.
Thus, the length of P is at least k(1− ε)D/2− 2(k − 1)α log n, as required. J

It is worth noting that Theorem 14 is closely related to Theorem 6. Indeed, before
perturbing it, the point set X used in the proof of Theorem 6 is a projection of the vertices
of QD with D = dlog2 ne onto R3. In Theorem 6 we then perturb X to obtain a non-crossing
embedding. In the proof of Theorem 14 we have to be more careful to avoid crossings.

6 Conclusion

In this paper, we introduced the geodesic obstacle representation of graphs, providing a
unified generalization of obstacle representations and grid obstacle representations. Our work
leaves several problems open. As perhaps the main question, does every planar graph admit
a non-crossing δk-obstacle representation for some constant k? It would be also interesting
to extend the classes of graphs for which non-crossing δk-obstacle representations exist for
small values of k. For graph metrics, given two graphs G and H, is it NP-hard to decide if
G has an H-obstacle representation?
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Abstract

In this work, we initiate the study of bottleneck complexity as a new communication efficiency
measure for secure multiparty computation (MPC). Roughly, the bottleneck complexity of an
MPC protocol is defined as the maximum communication complexity required by any party
within the protocol execution.

We observe that even without security, bottleneck communication complexity is an interesting
measure of communication complexity for (distributed) functions and propose it as a fundamental
area to explore. While achieving O(n) bottleneck complexity (where n is the number of parties)
is straightforward, we show that: (1) achieving sublinear bottleneck complexity is not always
possible, even when no security is required. (2) On the other hand, several useful classes of
functions do have o(n) bottleneck complexity, when no security is required.

Our main positive result is a compiler that transforms any (possibly insecure) efficient protocol
with fixed communication-pattern for computing any functionality into a secure MPC protocol
while preserving the bottleneck complexity of the underlying protocol (up to security parameter
overhead). Given our compiler, an efficient protocol for any function f with sublinear bottleneck
complexity can be transformed into an MPC protocol for f with the same bottleneck complexity.

Along the way, we build cryptographic primitives – incremental fully-homomorphic encryp-
tion, succinct non-interactive arguments of knowledge with ID-based simulation-extractability
property and verifiable protocol execution – that may be of independent interest.
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24:2 Bottleneck Complexity

1 Introduction

Secure multi-party computation (MPC) [32, 20] is a fundamental notion in cryptography,
enabling a collection of mutually distrusting parties to jointly evaluate a function on their
private inputs while revealing nothing beyond the function output. In the past decades, a
great deal of research has been dedicated to the design and optimization of efficient MPC
protocols.

In this work, we study one fundamental metric of MPC efficiency: the required commu-
nication between parties. In particular, we focus on the communication complexity of MPC
in large-scale settings, where the number of participants is significant.

In nearly all existing works in MPC literature, the communication complexity goal has
been to minimize the total communication of the protocol across all n parties. However,
for many important applications, such as peer-to-peer computations between lightweight
devices,1 total costs (such as total communication) are only secondarily indicative of the
feasibility of the computation, as opposed to the primary issue of per-party cost. Indeed, while
a total communication bound L implies average per-party communication of the protocol is
L/n, the computation may demand a subset of the parties to each communicate as much
as Θ(L). When all parties contribute input to the computation, then L ≥ n, meaning
these parties must bear communication proportional to the total number of parties. In
large-scale distributed settings, or when the protocol participants are lightweight devices,
such a requirement could be prohibitive.

New efficiency measure: (MPC) Bottleneck Complexity

To address these concerns, we initiate the study of bottleneck complexity of MPC. The
bottleneck complexity of a protocol Π is defined as the maximum communication required by
any party within the protocol execution. One may further specialize this to incoming versus
outgoing communication. The MPC bottleneck complexity of a (distributed) function is the
minimum possible bottleneck complexity of a secure MPC protocol for the function. In this
work, our goal is to explore this notion as a complexity measure for distributed computations,
and to develop secure protocols with low bottleneck complexity.

Bottleneck complexity addresses certain (practically important) aspects ignored by stand-
ard communication complexity. For instance, if two messages are transmitted in two different
parts of a network, say A → B and C → D, they would be delivered faster than two
messages sent to/from the same party, say A→ B and C → B. While both have same total
communication, the latter has higher bottleneck communication.

Bottleneck Complexity without Security

Before studying bottleneck communication complexity for secure protocols, we first consider
this measure for arbitrary protocols without any security considerations. Indeed, this already
forms an interesting measure of complexity for (distributed) functions, and we propose it as
a fundamental area to explore. As in the case of total communication complexity (which
coincides with bottleneck complexity for the case of 2 parties), there is a trivial upper bound
of O(n) bottleneck complexity for any n-party functionality (with boolean inputs), where
all parties simply send their input to a central party who computes the functionality. On

1 For example, optimizing navigation routes based on traffic information contributed by the cell phones of
drivers on the road, without revealing the locations of individual users.
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the other hand, in many functions, bottleneck complexity brings out structures that total
communication complexity overlooks. For instance, in computing say the XOR or AND of n
bits, total communication complexity is Θ(n), but the bottleneck complexity is O(1). These
functions naturally allow for incremental computation along a chain, in which each party
receives and sends a single bit. Indeed, there is a large class of useful functions which have
protocols with low bottleneck complexity, as discussed below.

However, a priori it is not clear whether all functions can be computed in a similar
manner. This brings us to the first question considered in this work:

Can all functions be computed (without security)
with sublinear bottleneck complexity?

For concreteness, we may consider n-party functions, with n inputs (one for each party)
each k bits long, and a single-bit output. Because of the trivial O(nk) upper bound on
total communication complexity for any such function (as discussed above), each party on
average needs only to communicate O(k) bits. But in this protocol, the communication
complexity of the central party—and thus bottleneck complexity of the protocol—is (n− 1)k
bits. Surprisingly, we show that this is the best one can ask for, for general functions. That
is, there exist n-party functionalities with k-bit inputs for which the bottleneck complexity
is Ω(nk).

I Theorem 1. (Informal.) There exist n-party functions with k-bit input for each party that
have bottleneck complexity close to that in the trivial upperbound, namely (n− 1)k.

Our proof is based on a counting argument, and quantifies over possibly inefficient functions
too. Interestingly, giving an explicit efficient function f with such a lower bound will require
a breakthrough in complexity theory, as it would imply an Ω(n2) lower bound on the circuit
size of computing f . (We discuss this connection below.)

Functions with Low Bottleneck Complexity

Despite the above lower bound, there is a large class of interesting functions which do have
sublinear bottleneck complexity. One simple but widely applicable example is addition in a
finite group: the sum of n group elements distributed among n parties can be aggregated
bottom-up (and then disseminated top-down) using a constant-degree tree, with every party
communicating O(d) group elements, where d is its degree in the tree. 2

A wider class of functions are obtained from the literature on streaming algorithms
[18, 26]. Indeed, any streaming algorithm with a small memory and a small number of passes
corresponds to a low bottleneck complexity function. (Here, we refer to the actual function
that the streaming algorithm computes, which may in fact be an approximation to some
other desired function.) This is because we can design a protocol which passes around the
state of the streaming algorithm from one party to the next, in the order in which their
inputs are to be presented to the algorithm.

On the other hand, low bottleneck complexity protocols appear to be much more general
than streaming algorithms. Indeed, observe that the low bottleneck complexity protocol
described above has a very special communication structure of a chain (or multi-pass cycle).
We leave it as an open problem to separate these two notions – i.e., find functions which have
low bottleneck complexity protocols, but do not have low-memory streaming algorithms.

2 If the group is not abelian, the tree used should be such that its in-order traversal should result in the
parties to be ordered in the same way their inputs are ordered in the sum being computed.
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Finally, we note that, any n-input function with a constant fan-in circuit of subquadratic
size (i.e., o(n2) gates) has a sublinear bottleneck complexity protocol. To see this, first we
note that such a circuit can be made to have constant fan-out as well, by increasing the
circuit size by a constant factor. 3 Then, a sublinear bottleneck complexity protocol can be
obtained from the circuit by partitioning all the o(n2) gates roughly equally among the n
parties, and letting the parties evaluate the gates assigned to them, communicating with
each other when wires cross party boundaries. The communication incurred by each party is
bounded by the number of wires incident on all the gates it is assigned, which is o(n).

MPC Bottleneck complexity

We next turn our attention to achieving low bottleneck complexity for secure computation of
functionalities. We focus on the general setting where up to n− 1 out of n parties can be
corrupted. As a baseline, we observe that the MPC protocol of Dodis et al. [15] based on
“additive-spooky encryption” can be easily adapted to obtain generic secure computation with
O(n) bottleneck complexity (where O(n) hides factors of the security parameter). Therefore,
as in the insecure setting, we focus on constructing MPC protocols with sublinear o(n)
bottleneck complexity.

Specifically, we ask the question:

If a function f can be computed with bottleneck complexity L,
can it be computed securely with the same bottleneck complexity,

up to a multiplicative overhead of the security parameter?

We note that the goal of sublinear bottleneck complexity is strictly stronger than the
recently studied problem of MPC with sublinear communication locality [5]. The locality
of a protocol is the maximum number of other parties that any party must communicate
with during the course of the protocol. It is easy to see that sublinear bottleneck complexity
directly implies sublinear locality (since sending/receiving o(n) bits means that a party can
only communicate with o(n) neighbors); however, as locality does not place any requirements
on the number of bits communicated by a party, the converse is not true. Indeed, without
security requirements, every function has an O(1)-local protocol, which is not the case for
bottleneck complexity.

We show a general compiler which transforms any (possibly insecure) efficient multi-
party protocol Π for computing a function f into a protocol Π′ for securely computing f ,
preserving the per-party communication and computation requirements up to O(λc) factors
in the security parameter λ for small constant c. The original protocol Π can have an
arbitrary communication pattern; however, we require that this pattern must be fixed a
priori (independent of inputs) and known to all parties. Our compiler additionally preserves
the topology of communication graph of Π (and in particular, preserves locality).

I Theorem 2 (Informal). There is a transformation which maps any (possibly insecure)
efficient protocol with fixed-communication-pattern for an n-party distributed function f into
a secure MPC protocol for f with asymptotically (as a function of n) the same communication
and computational requirements per party, and using the same communication graph as the
original protocol.

3 Given a gate with fan-out d > 2, consider the depth-1 tree T rooted that gate with d leaves being the
gates to which its outputs are connected. T can be replaced by an equivalent binary tree T ′ with the
same root and leaves, and d− 2 new internal nodes. The new internal nodes of T ′ can be “charged” to
the leaves of T . On doing this for all gates in the circuit, each gate gets charged at most as many times
as its fan-in. Since each gate in the original circuit has constant fan-in, this transformation increases
the circuit size by at most a constant factor.



E. Boyle, A. Jain, M. Prabhakaran, and C. Yu 24:5

The transformation to achieve security against passive corruption is based on a new
tool that we develop, namely Incremental Fully Homomorphic Encryption, which we show
can be instantiated from the Learning With Errors (LWE) assumption, à la [19]. For
security against active corruption (possibly for restricted auxiliary information), we build
zero-knowledge succinct non-interactive arguments of knowledge (ZK-SNARK [2]) with
an“ID-based” simulation-extractability property (see Section 1.1 for details). We rely on a
setup that includes a common random string and a (bare) public-key infrastructure, where
all the n parties have deposited keys for themselves, and which all the parties can access for
free. The setup can be reused for any number of executions.

Our Contributions

To summarize, our main contributions in this work are as follows:
We introduce a new measure of per-party communication complexity for (distibuted)
functions, called bottleneck complexity.
We demonstrate the existence of n-party functions with k bits of input for each party, that
have bottleneck complexity Θ(nk). Showing an explicit function with Ω(n) bottleneck
complexity will require showing an explicit function with Ω(n2) circuit size complexity. On
the other hand, we observe that many useful classes of functions do have o(n) bottleneck
complexity.
We show a general transformation from arbitrary efficient protocols to secure MPC
protocols (in a model with public setup) that asymptotically (as a function of n) preserves
the communication and computational requirements per party, and preserves the same
communication graph.
As part of our transformation, we introduce cryptographic primitives—Incremental FHE,
Verifiable Protocol Execution—and give a construction of ZK-SNARKs with an ID-based
simulation-extractability property. These may be of independent interest.

We expand on the transformation in the following section.

1.1 Our Techniques
We describe the main ideas underlying our positive result: the bottleneck-complexity-
preserving transformation from arbitrary protocols to secure ones.

At a high-level, we follow an intuitive outline for our compiler: (1) We first compile
an insecure protocol into a protocol that is secure against semi-honest (or honest-but-
curious) adversaries using fully homomorphic encryption (FHE). (2) We then use zero-
knowledge succinct arguments of knowledge (ZK-SNARKs) to compile it into a protocol that
is (standalone) secure against malicious adversaries. However, we run into several technical
challenges along the way, requiring us to develop stronger guarantees for FHE and SNARKs,
as well as some other new ideas. We elaborate on these challenges and our solutions below.

Semi-honest Security

A natural starting idea to obtain semi-honest security is to execute an “encrypted” version of
the underlying (insecure) protocol by using FHE. Once the parties have the encrypted output,
they execute the FHE decryption process to learn the output. The immediate problem with
implementing this idea in the multiparty setting is which key must we use for encryption and
decryption. If a single party knows the (entire) decryption key, then we cannot guarantee
security.
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To address this problem, two approaches have been developed in the literature: threshold
FHE [1], where the parties jointly generate a public key for an FHE scheme such that each
party only knows a share of the decryption key, and multi-key FHE [25], where each party
has its own public and secret key pair and FHE evaluation can be performed over ciphertexts
computed w.r.t. different public keys.

While these approaches have been shown to suffice for constructing round-efficient MPC
protocols, they are not directly applicable to our setting. This is for two reasons:

Threshold FHE and multi-key FHE systems are defined in the broadcast model of
communication where each party gets to see the messages sent by all the other parties. In
contrast, our setting is inherently point-to-point, where a party only communicates with
its neighbors in the communication graph of the underlying insecure protocol. Indeed,
in order to maintain sublinear bottleneck complexity, we cannot afford each party to
communicate with all the other parties.
Further, in all known solutions for threshold FHE [1] and multi-key FHE [25, 9, 27, 6, 29],
the size of one or more protocol messages of each party grows at least linearly with the
number of parties. This directly violates our sublinear bottleneck complexity requirement.

To address these issues, we define and implement a new notion of incremental FHE
(IFHE). Roughly, an IFHE scheme is defined similarly to threshold FHE, with the following
key strengthened requirements: a “joint” public key can be computed by incrementally
combining shares provided by different parties in an arbitrary order. Similarly, a ciphertext
w.r.t. the joint public key can be decrypted by incrementally combining partial decryption
shares provided by parties in an arbitrary order. Crucially, the intermediate keys and partial
decryption values must be succinct.

We construct an IFHE scheme with appropriate security guarantees based on the Gentry-
Sahai-Waters FHE scheme [19]. Using IFHE, we are able to directly compile an insecure
protocol into a semi-honest secure protocol. In fact, this protocol can withstand a slightly
stronger adversary – called a semi-malicious adversary [1] – which is allowed to maliciously
choose its random tape. This will be crucially exploited in the next step, because without it,
one will need to enforce honest random-tapes for all the parties (using n-way coin-tossing-in-
the-well) which would incur Ω(n) communication already.

From Semi-Malicious to Malicious Security

A natural approach to achieve security against malicious adversaries is to use the GMW
paradigm [20]. Roughly, in the GMW compiler, each party first commits to its input and
random tape. Later, whenever a party sends a message of a semi-malicious protocol,4 it also
proves in ZK to all the other parties that it is behaving correctly w.r.t. the committed input
and random tape.

The GMW commit-and-prove methodology is problematic in our setting since we cannot
allow a party to talk to all other parties (directly or indirectly through the other nodes). Yet,
in order to achieve security, each honest party must verify not just that its neighbors behave
correctly, but that all corrupt parties (many of whom may not directly interact with any
honest party) behaved honestly. A priori, these may seem to be contradictory goals.

We address all of these challenges by presenting a new generic compiler for Verifiable Pro-
tocol Execution (VPE), modeled as a functionality Fvpe. Our protocol Πvpe for implementing

4 The standard GMW compiler is defined for semi-honest protocols and also involves a coin-tossing step.
Here, we consider a natural variant that works for semi-malicious protocols.
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Fvpe asymptotically preserves the per-party communication and computational complexity
(up to a multiplicative factor polynomial in the security parameter) of the underlying semi-
malicious protocol. We construct Πvpe from two main ingredients: (1) a new commitment
protocol that allows the parties to compute a succinct “aggregate” commitment over the
inputs and randomness of all of the parties. (2) ZK-SNARKs with a strong extraction prop-
erty as well as simulation-soundness to ensure that adversary cannot prove false statements
even upon receiving simulated proofs. We refer the reader to the full version for details on
our commitment protocol. Here, we discuss our use of ZK-SNARKs.

ID-Based Simulation-Extractable ZK-SNARKs

We rely on ZK-SNARKs to let parties provide not just proofs of correctly computing their
own messages, but also of having verified previous proofs recursively. This use of SNARKs for
recursive verification resembles prior work on proof-carrying data [8, 3]. The key difference
is that proof-carrying data only addresses correctness of computation, whereas in our setting,
we are also concerned with privacy. In particular, in order to argue security, we also require
these proofs to be simulation-sound with extractability (or simply simulation-extractable)
[30, 31], which presents a significant additional challenge.

The core challenge in constructing simulation-extractable ZK-SNARKs (SE-ZK-SNARKs)
arises from the inherent limitation that extraction from the adversary must be non-black-box
(since the size of the extracted witness is larger than the proof itself), but the adversary
receives simulated proofs which he cannot directly produce on his own. Indeed, for this
reason SE-ZK-SNARKs are impossible to achieve with strong universal composability (UC)
security [23]. To reduce the security of an SE-ZK-SNARK construction to an underlying
knowledge assumption (such as standard SNARKs), one must thus either (a) start with
an assumption that guarantees non-black-box extraction even in the presence of an oracle
(which can be problematic [16]), or (b) somehow in the reduction be able to provide the
code to answer the adversary’s simulated proof queries, without voiding the reduction by
including the simulation trapdoor itself.

Two recent works have presented constructions of SE-ZK-SNARKs, each adopting a
different approach. Groth and Maller [21] embody approach (a), constructing full SE-ZK-
SNARKs from a new specific pairing-based knowledge assumption which assumes extraction
in the presence of black-box access to an oracle with the trapdoor. Alternatively, Garman et
al. [17] take approach (b), basing their construction on standard SNARKs; however, their
construction is only applicable to a restricted security model where the statements on which
the adversarial prover requests simulated proofs are fixed in advance (in which case these
proofs can be hardcoded in the reduction). The case where the adversary’s queries are chosen
adaptively as a function of previously simulated proofs (which we need for our transformation)
is not currently addressed in this setting.

We provide a new solution for handling adaptive queries, without relying upon oracle-
based assumptions as in [21]. We consider an ID-based notion of SE-ZK-SNARKs, where
each proof is generated with respect to an identity (chosen from a set of identities that are
fixed in advance). In our definition, the adversary must fix a set ID∗ of “honest” identities
in advance and can then receive simulated proofs on adaptively chosen statements w.r.t.
identities from this set. It must then come up with an accepting proof for a new statement
w.r.t. an identity id /∈ ID∗.

We show how to transform any SNARK argument system into an ID-based SE-ZK-
SNARKs by relying on only standard cryptographic assumptions. Very roughly, in our
construction, it is possible to “puncture” the trapdoor trap for the CRS w.r.t. an identity set
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ID∗. A punctured trapdoor trapID∗ can only be used to simulate the proofs w.r.t. identities
id ∈ ID∗, but cannot be used to simulate proofs w.r.t. identities id /∈ ID∗. Using such a
punctured trapdoor, we are able to successfully implement approach (b) in the adaptive
setting. We implement this idea by using identity-based signatures, which can be readily
constructed using certificate chains from a standard signature scheme.

Ultimately, we obtain recursively verifiable ID-based SE-ZK-SNARK generically from
signatures and (standard) SNARKs with an “additive extraction overhead.” While the latter
is a relatively strong requirement [22], such primitives have been considered in prior work
[10, 3] and appears to be as justified as the standard SNARK assumption.

Auxiliary Inputs

In order to achieve the standard MPC security, we require SE-ZK-SNARKs that allow
extraction even w.r.t. adversaries with auxiliary inputs from arbitrary distribution, which
in turn requires SNARKs with the same extraction property. However, even assuming
SNARKs which are secure only with respect to specific auxiliary information distribution,
our construction obtains MPC that is secure with respect to restricted auxiliary information
(see the full version for details).

1.2 Related Work
Communication complexity models

The vast majority of study in communication complexity (c.f. [24]) focuses on the setting
of only two parties, in which case the total and bottleneck complexities of protocols align
(asymptotically). In the multi-party setting, several models are considered regarding how the
input to f begins initially distributed among the players. The most common such models
are the “number-on-forehead” model, in which parties begin holding all inputs except their
own, and the model considered in this work (as is standard in MPC), frequently known as
the “number in hand” model, where each party begins with his own input. In all cases, the
“communication complexity” within the given model refers to the total communication of all
parties.

Communication complexity of MPC

Communication complexity of secure multiparty computation (MPC) has been extensively
studied over the years. Communication complexity preserving compilers from insecure to
secure protocols were introduced in the 2-party setting by [28]. The setting of MPC with
many parties was first predominantly considered in the line of work on scalable MPC [11, 12].
Here the focus was on optimizing the complexity as a function of the circuit size |C|, and the
resulting n-party protocols have per-party communication Õ(|C|/n)+poly(n). Some of these
works explicitly achieve load-balancing (e.g., [14, 4]), a goal similar in spirit to bottleneck
complexity, where the complexity of the protocol is evenly distributed across the parties.
To the best of our knowledge, however, the poly(n) term in the per-party communication
complexity is Ω(n) in all works aside from [33], which achieves Õ(|C|/n) amortized per-party
communication but Õ(|C|/n+ n) bottleneck complexity (due to its dependence on [7]).

Communication Locality

A related notion to bottleneck complexity is communication locality [5]. The locality of a
party is the number of total other parties it must communicate with throughout the protocol,
and the locality of the protocol is the worst case locality of any party. In [5], Boyle et al.
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studied locality in secure MPC and showed (based on various computational assumptions)
that any efficiently computable function has a polylog(n)-locality secure MPC protocol.

Lower bounds on MPC communication complexity

As discussed, lower bounds on standard multi-party communication complexity cannot
directly imply meaningful lower bounds on bottleneck complexity, as no such bound can
exceed Ω(n) (attainable by all parties sending their input to a single party), but this implies
only a bound of Ω(1) bottleneck complexity. For secure computation, in [13], Damgård et al.
showed that securely evaluating a circuit of m multiplication gates requires Ω(n2m) total
communication in the information-theoretic security setting. This implies a super-linear
lower bound for bottleneck complexity in their setting. We note, however, that their lower
bound does not apply to us, as we consider computational security, and further, their lower
bound does not apply to the setting where the number of parties is larger than the security
parameter.

2 Preliminaries and Definitions

By x ∈R Znq we denote that x is uniformly sampled from Znq , and by x← D we denote that
x is sampled from a distribution D. By

c
u we denote computational indistinguishability. We

denote an N -party additive secret sharing of x ∈ Zq by [x]Nq . That is, each Pi owns xi ∈ Zq
such that x =

∑
i∈[N ] xi. When it is clear, we write [x] for brevity.

Communication Model

We consider a synchronous network among n parties, P1, · · · , Pn, that allows secure commu-
nication between (some) pairs of parties; the channels are authenticated and leak nothing
except the number of bits in each message.

An n-party protocol π in this model is a “next-message function,” that takes as input the
round number t, two identities i, j ∈ [n] and the view of Pi, and outputs the message from Pi
to Pj in round t. The view of a party consists of its input, random-tape, and all the messages
received in prior rounds of the protocol. If the next-message function is invoked with the
keyword out instead of a receiver, π generates the output for the “sender” (for simplicity, we
shall restrict ourselves to protocols that produce output only on termination).

We shall require that in a protocol, the message on any edge (i, j) at any round t is
encoded using a prefix-free code that is agreed up on between the sender and the receiver.
Adopting this model precludes communication by not sending any bits. 5

Security for MPC

We use a standard simulation-based security definition for MPC protocols in the standalone
security model. We consider two notions of corruptions: (1) active adversaries, who may
arbitrarily deviate from the protocol strategy, and (2) semi-malicious adversaries, who follow
the protocol instructions but may choose their random tapes arbitrarily. Both of these

5 While one may argue that it is reasonable to allow zero-cost communication in this manner, it can be
abused to communicate large amounts of information at the cost of a single bit, by using a large number
of rounds. Further, such signalling cannot be used if multiple such protocols are executed concurrently.
Also, practically, the prefix-free communication is more amenable to implementing a synchronous model
over an asynchronous network, as delays will not be mistaken for shorter (or empty) messages.
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adversaries can abort the execution whenever they choose. We shall also consider a notion of
MPC security in which the auxiliary information given to the adversary at the beginning of
the protocol is restricted to be from a class of distributions. We refer the reader to the full
version for further details.

2.1 Bottleneck Complexity

We introduce a new per-party communication metric for distributed computations.

I Definition 3 (Bottleneck Complexity of Protocol). The individual communication complexity
of a party Pi in an n-party protocol π, denoted as CCi(π), is the expected number of bits
sent or received by Pi in an execution of π, with worst-case inputs.

The bottleneck complexity (BC) of an n-party protocol π is the worst-case communication
complexity of any party. That is, BC(π) = maxi∈[n] CCi(π).

I Definition 4 (Bottleneck Complexity of Function). The bottleneck complexity of an n-input
function f is the minimum value of BC(π) when quantified over all n-party distributed
protocols π which correctly evaluate f .

Analogously, we define the MPC bottleneck complexity of f as the minimum BC(π)
quantified over all n-party protocols π which securely evaluate f .

Admissible Protocols

We will show techniques that transform general (insecure) protocols to secure ones. Here
we define the required minimal assumption of the original protocols, which we refer to as
admissibility. Roughly, a protocol is admissible if its next-message function is polynomial-
time computable and it has a fixed communication pattern. Below Z+ denotes non-negative
integers.

I Definition 5 (Admissible Protocol). Let f be a polynomial function, k be a security
parameter, and let π = {π1, ..., πn} be a possibly randomized n-party protocol, where πi
is a next message function of Pi. Let x = {x1, ..., xn} and r = {r1, ..., rn} be the input set
and the random string set respectively. Denote

{
mt
i,j(x, r)

}t∈[T ]
i,j∈[n] as the set of the messages

generated by π(x, r), and let |mt
i,j(x, r)| ∈ [0, f(k)] be the length of message from Pi to Pj

at time t.6 We say π is admissible if it satisfies the following two conditions:
- Polynomial-Time Computable: For each i, next-message function πi is expressed by a

circuit of fixed polynomial-size in |xi|+ |ri|, with a universally bounded depth.
- Fixed Communication Pattern: A protocol π is said to have a fixed communication pattern

if, irrespective of the input and random-tapes of the parties, the total number of rounds
tmax is fixed and there is a function len : [tmax]× [n]× [n]→ Z+ that maps (t, i, j) to the
length of message (possibly 0) from Pi to Pj at round t as determined by π for any view
of Pi.

Note that above we allow randomized protocols, as some interesting low bottleneck
complexity protocols (e.g., those derived from streaming algorithms) tend to be randomized.

6 Precisely, for each i ∈ [n], t ∈ [T ], {mi,j(x, r)}tj∈[n] ← πi

(
xi, ri, {mj,i(x, r)}t∈[t−1]

j∈[n]

)
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3 Lowerbound on Bottleneck Complexity of Distributed Functions

In this section we show that for most functions f on n inputs (each input could be as
short as 1 bit, and the output a single bit delivered to a single party), for any distributed
computation protocol π that implements f , the (incoming) bottleneck complexity BC(π) is at
least n−O(log n) bits. In fact, this holds true even without any security requirement. This
is tight in the sense that, even with a security requirement, there is a protocol in which only
one party has individual communication complexity Ω(n), and all others have communication
proportional to their inputs and outputs (with a multiplicative overhead independent of the
number of parties).

This is somewhat surprising since many interesting functions do have protocols with
constant communication complexity. As mentioned before, any (possibly randomized)
function which has a streaming algorithm or a sub-quadratic sized circuit (with small fan-in
gates) gives rise to low botteleneck complexity protocols.

To show our lower-bound, we need to therefore rely on functions with roughly a quadratic
lower-bound on circuit size. Given the current lack of explicit examples of such functions, we
present an existential result, and leave it as a conjecture that there are n-bit input boolean
functions with polynomial sized circuits with bottleneck communication complexity of Ω̃(n).
For simplicity, we discuss the case of perfectly correct protocols, but as we shall point out, a
small constant probability of error does not change the result significantly. This result says
that there is a function (in fact, most functions) such that the best bottleneck complexity
is almost achieved by the trivial protocol, in which one party receives the inputs of all the
other n− 1 parties and carries out the computation locally. We prove the following in the
full version.

I Theorem 6. ∃f : {0, 1}k×n → {0, 1} such that any n-party, each with k bits input,
distributed computation protocol that computes f correctly will have at least one party
receiving at least (n− 1)k −O(log nk) bits in the worst-case.

4 Incremental FHE

We define and implement a new notion of incremental FHE (IFHE), which is used within
our main positive result. We start by providing syntax and security definitions for IFHE in
Section 4.1. We describe our construction of IFHE in Section 4.2. Our construction builds
upon the FHE scheme of Gentry, Sahai and Waters (GSW) [19]; we refer the reader to the
full version for discussion on the specific properties of their scheme that we rely upon.

4.1 Definitions
(Leveled) Fully Homomorphic Encryption

A fully homomorphic encryption (FHE) scheme consists of algorithms (Keygen,Encrypt,
Eval,Decrypt), where (Keygen,Encrypt,Decrypt) constitute a semantically secure
public-key encryption scheme, and Eval refers to the homomorphic evaluation algorithm on
ciphertexts. An `-leveled FHE scheme supports homomorphic evaluation of circuits of depth
at most `.

Incremental FHE

An IFHE scheme is defined similarly to threshold FHE [1], with the following key modifications:
a “joint” public key can be computed by incrementally combining shares provided by different
parties in an arbitrary order. Similarly, a ciphertext w.r.t. the joint public key can be
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decrypted by incrementally combining partial decryption shares provided by parties in an
arbitrary order. Crucially, the intermediate keys and partial decryption values must be
succinct.

For technical reasons, it is convenient to describe the joint decryption procedure via three
sub-algorithms: A procedure PreDec which pre-processes a homomorphically evaluated
ciphertext to be safe for joint decryption; PartDec run by each individual party on
a ciphertext (with his share of the secret key) to generate his contribution toward the
decryption; and CombineDec which combines the outputs of PartDec from each party
for a given ciphertext to reconstruct the final decrypted output. In addition to standard
semantic security, we also require the output of PartDec to hide information about the
secret key share that was used; this is captured by the Simulatability of Partial Decryption
property below.

I Definition 7 (Incremental FHE). An incremental fully homomorphic encryption (IFHE)
scheme is an FHE scheme with an additional algorithm IFHE.CombineKeys and with
Decrypt replaced by three algorithms IFHE.PreDec, IFHE.PartDec and
IFHE.CombineDec. By pkS we denote a combined public key of a subset S ⊆ [n] of
parties. Particularly, pk{i} = pki is generated by Pi using the algorithm Keygen, and
pk = pk[n] is the final public key. Similarly, by vS we denote a combined decryption, and by
vi when S = {i}. For the completeness of notations, let pkS and vS be empty strings when
S = ∅. We describe the syntax of the four algorithms as follows:

IFHE.CombineKeys(pkS , pkT ): On input 2 combined public keys pkS , pkT , where
S ∩ T = ∅, output a combined public key pkS∪T .
IFHE.PreDec(pk,C): On input a final public key pk and a ciphertext C, sample a
public random R, and output a re-randomized ciphertext C′ of the same plaintext.
IFHE.PartDec(pk, ski,C): On input a final public key pk, ith secret key ski, ciphertext
C, output a partial decryption vi.
IFHE.CombineDec(vS , vT ): On input 2 partial decryptions vS , vT , where S ∩ T = ∅, if
|S ∪ T | < n, output a partial decryption vS∪T ; otherwise, output a plaintext y as the
final decryption.

Also, we require the following additional properties:
Efficiency: There are polynomials poly1(·), poly2(·) such that for any security parameter λ

and any S ⊆ [n], S 6= ∅, |pkS | = poly1(λ) and |vS | = poly2(λ).
Correctness: Given a set of plaintexts and a circuit to evaluate, the correctness of IFHE

says that the FHE evaluation of the circuit over the ciphertexts can always be decrypted
to the correct value, where the ciphertexts are encryption of plaintexts using a single
combined public key.
Furthermore, by “Incremental” FHE, we mean that the final combined public key as well
as the final combined decryption can be formed in an arbitrary incremental manner. We
defer the formal definition of correctness to the full version.

Semantic security under Combined Keys (against Semi-Malicious Adversary): Given the
parameters prepared in the initial setup, the (corrupted) parties {Pj}j 6=i, instead of us-
ing random strings to compute {pki, ski}j 6=i, can use an arbitrary string to generate
{pki, ski}j 6=i. Then as long as an honest party generates (pki, ski) independently, the
encryption using the final combined public key (pk[n], sk[n]) is semantically secure. Form-
ally, we say that the IFHE scheme has semantic security under combined keys if the
advantage Pr[β′ = β]− 1/2 in the following experiment is negligible for all PPT Adv.
1. (params)← Setup(1λ, 1d)
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2. ∀j 6= i, Adv computes (pkj , skj) according to Keygen(params) but replaces the
randomly sampled string by a chosen one. Then Adv computes a combined key
pk[n]\{i} according to CombineKeys, picks x ∈ {0, 1} and sends (pk[n]\{i}, x) to the
challenger.

3. The challenger computes (pki, ski)← Keygen(params), pk← CombineKeys(pki,
pk[n]\{i}), and chooses a random bit β $← {0, 1}. If β = 0, it lets C := Encrypt(pk, 0),
and else C := Encrypt(pk, x), and sends C to Adv.

4. Finally Adv outputs a bit β′.
Simulatability of Partial Decryption: There is a PPT simulator Sim, s.t. for every combined

public key pk, ciphertext C′ of a plaintext y, index i ∈ [n]:{
pk,C′, {skj}j∈[n]\{i}, vi

}
c
≈
{

pk,C′, {skj}j∈[n]\{i}, v
′
i

}
,

where vi ← IFHE.PartDec(pk, ski,C′) and v′i ← Sim(pk, {skj}j∈[n]\{i}, y,C′).

4.2 Construction of IFHE
We present an IFHE scheme building on the FHE scheme of Gentry et al. [19]. The Setup,
Keygen, Encrypt, and Eval parts are the same as those of [19], while CombineKeys,
PreDec, PartDec and CombineDec parts are new. The algorithms are described as
follows:

An IFHE scheme.
Setup: (params)← IFHE.Setup(1λ, 1d). Same as GSW, where params = (q, n,m, χ,Bχ,B).
Key Generation: (pki, ski) ← IFHE.Keygen(params). Same as GSW, where pki =
(B,bi) and ski = ti ≡ (−si, 1).
Combining Keys: pkS∪T ← IFHE.CombineKeys(pkS , pkT )
On input pkS = (B,bS) and pkS = (B,bT ), output pkS∪T = (B,bS + bT ). Particularly
pk[n] is abbreviated as pk or a matrix A.
Encryption: Ci ← IFHE.Encrypt(pk, xi). Same as GSW.
Evaluation: C← IFHE.Eval(C1, ...,Cτ ; f). Same as GSW.
Preparing Decryption: C′ ← IFHE.PreDec(pki,C)
On input pk = A and C ∈ Zn×mq , sample a public random matrix R in {0, 1}m×m and
output C′ = C + AR.
Partial Decryption: vi ← IFHE.PartDec(pki, ski,C′)
On input pk = A, ski ≡ ti ≡ (−si, 1), and C′ ∈ Zn×mq , sample e′i ← χm, set t′i = ti
if i = 1 and t′i = (−si, 0) if i > 1, and output vi = (t′iC′ − e′i)G−1(wT ), where
w = (0, ..., 0, dq/2e) ∈ Znq .
Combining Decryption: IFHE.CombineDec(vS , vT )
On input two partial decryptions vS , vT with S ∩ T = ∅, compute a partial decryption
vS∪T = vS + vT . For |S ∪ T | < n, output vS∪T ; for |S ∪ T | = n, output a plaintext
y =

⌊
v
q/2

⌉
.

5 Summary of Further Results

Due to space limitations we defer the remaining technical sections to the full version. We first
demonstrate how to convert an arbitrary admissible multi-party distributed protocol Π (as
per Definition 5) for computing a function f to a protocol Πsm for computing f secure against
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semi-malicious adversaries, while preserving per-party computation and communication.
Note that as per Definition 5 the communication pattern of the starting protocol Π can be
arbitrary, but we require that it be fixed (i.e., not data dependent).

I Theorem 8. Let IFHE be an incremental FHE scheme, and Π be an n-party protocol for
evaluating a function f with fixed communication pattern. Then there exists a protocol Πsm
that securely evaluates f against up to (n − 1) semi-malicious corruptions, preserving the
per-party computation and communication requirements of Π up to poly(λ) multiplicative
factors (independent of the number of parties n). Moreover, the communication pattern of
Πsm is identical to that of Π plus two additional traversals of a communication spanning tree
of Π.

At a very high level, the parties will run a one-pass protocol to (incrementally) construct
a joint key for the incremental FHE scheme, then execute the original protocol Π underneath
FHE encryption, and finally run one more pass to (incrementally) decrypt.

Next, we give a general compiler to transform the above protocol into a maliciously-
secure MPC protocol, while preserving the bottleneck complexity. Our compiler relies
upon multiple cryptographic ingredients, most notably, ID-based simulation-extractable
succinct non-interactive arguments of knowledge (ZK-SNARKs) – a notion that we define
and construct in this work (see the full version).

I Theorem 9. Let Πsm be an MPC protocol that securely evaluates a functionality f against
semi-malicious corruptions, as in Theorem 8. Then, assuming the existence of an ID-based
simulation-extractable succinct non-interactive arguments of knowledge, non-interactive com-
mitment schemes and a family of collision-resistant hash functions, there exists a compiler
that transforms Πsm into another MPC protocol Π in the (bare) public-key and common refer-
ence string model such that Π computes the same functionality f and preserves the per-party
computation and communication of Πsm up to poly(λ) multiplicative factors (independent of
the number of parties n).

We remark that in the above theorem, the ID-based SE-ZK-SNARK is w.r.t. arbitrary
auxiliary inputs. We stress, however, that in order to achieve a weaker MPC definition where
the adversary only receives restricted auxiliary inputs, the requirement on the SE-ZK-SNARK
can be similarly relaxed as well.
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25:2 Revisiting Frequency Moment Estimation in Random Order Streams

1 Introduction

Analyzing massive datasets has become an increasingly challenging problem. Data sets, such
as sensor networks, stock data, web/network traffic, and database transactions, are collected
at a tremendous pace. Traditional algorithms that store an entire dataset in memory are
impractical. The streaming model has emerged as an important model for coping with
massive datasets. Streaming algorithms are typically randomized and approximate, making
a single pass over the data and using only a small amount of memory.

A well-studied problem in the streaming model is that of estimating the frequency
moments of an underlying vector. Formally, in an insertion-only stream, the algorithm is
presented with a sequence of integers 〈a1, a2, . . . , am〉 from a universe [n]. A turnstile stream
is defined similarly except integers may also be removed from the stream. The p-th frequency
moment of the stream is defined to be Fp =

∑
i∈[n] f

p
i , where fi is number of times integer

i occurs in the stream, i.e., its frequency. The quantity Fp is a basic, yet very important
statistic of a dataset (e.g. [1]). For example, interpreting 00 as 0, F0 is equal to the number of
distinct items in the stream. F2 measures the variance and can be used to estimate the size
of a self-join in database applications. It also coincides with the (squared) Euclidean norm
of a vector and has applications in geometric and linear algebraic problems on streams. For
other non-integer p > 0, Fp can serve as a measure of the entropy or skewness of a dataset,
which can be useful for query optimization.

In their seminal paper, Alon, Matias & Szegedy [2] introduced the study of frequency
moments in the streaming model. Nearly two decades of research have been devoted to
the space and time complexity of this problem. An incomplete list of papers on frequency
moments includes [3, 8, 11,18–20,23], and [7]; please also see the references therein. In the
turnstile model, Θ(ε−2 log(mn)) bits of space is necessary and sufficient for a randomized
one-pass streaming algorithm to obtain a (1 ± ε)-approximation to Fp for 0 < p ≤ 2 [21].
Here, by (1± ε)-approximation, we mean that the algorithm outputs a number F̃p for which
(1− ε)Fp ≤ F̃p ≤ (1 + ε)Fp. For larger values of p, i.e., p > 2, the memory required becomes
polynomial in n rather than logarithmic [5, 11,19].

In this paper, we study the frequency moment estimation problem in the random-order
model, which is a special case of insertion streams in which the elements in the stream occur
in a uniformly random order and the algorithm sees the items in one pass over this random
order. This model was initially studied by Munro and Paterson [22], which was one of the
initial papers on data streams in the theory community. Random-order streams occur in
many real-world applications and are studied in, e.g., [10,13,15] and the references therein.
It has been shown that there is a considerable difference between random order streams and
general arbitrary order insertion streams for problems such as quantile estimation [10,16].
Notice that [12] studies the frequency moment problem for stochastic streams, in which data
points are generated from some distribution. That model is different from ours, but when
conditioning on the realizations of the values of each point, the stream is exactly in random
order. Therefore, our upper bounds are applicable to that model as well.

However, there is a gap in our understanding for the important problem of Fp-estimation,
0 < p ≤ 2, in the random order model. On the one hand there is an Ω(ε−2) bits of space
lower bound [9]. On the other hand, the best upper bound we have is the same as the
best upper bound in the turnstile model, namely O(ε−2 log n) bits [2, 20, 21]. In practice
it would be desirable to obtain O(ε−2 + log n) bits rather than O(ε−2 log n) bits, since if ε
is very small this can lead to considerable savings. For example, if ε−2 ≈ log n, it would
represent a roughly quadratic improvement. The goal of this work is to close this gap in our
understanding of the memory required for Fp-estimation, 0 < p ≤ 2, in the random order
model. Note that in all our bounds, we apply the convention that m = poly(n).
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1.1 Our Contribution
In this paper, we make considerable progress on understanding the space complexity of Fp
estimation with 0 < p ≤ 2, in random order streams. Specifically,

for F2, we show that there exists a simple, and in fact deterministic, one-pass algorithm
using O(ε−2+log n) bits of space to output a (1±ε) approximation, provided F2 ≥ m·log n,
for Fp with p ∈ (0, 2)\{1}, we obtain a one-pass deterministic algorithm to obtain a
(1± ε) approximation using Õ(ε−2 + log n) bits of space3. We also show that this space
complexity is optimal for deterministic algorithms in the random order model, up to
poly(log(1/ε)) + poly(log log n) factors. Note that for the case p = 1, Fp is the length of
the stream, which can be computed using O(log n) bits of memory.

1.2 Our Techniques
For F2, we partition the stream updates into a sequence of small blocks for which each block
can be stored using O(ε−2) bits. We then construct an unbiased estimator by counting the
number of “pairs” of updates that belong to the same universe item. The counting can be
done exactly and with only O(log n) bits of space in each small block. We further show that
if F2 ≥ log n · F1, we can obtain the desired concentration by averaging the counts over all
blocks. The analysis of the concentration is by constructing a Doob martingale over the pairs
and applying Bernstein’s inequality.

For Fp with 0 < p < 2 our algorithm is considerably more involved. We first develop a
new reduction from estimating Fp to finding `p heavy hitters (an `p heavy hitter is an item
with frequency comparable to F 1/p

p of the stream) and then we establish the heavy hitter
algorithm. Both our new reduction and the heavy hitter-finding algorithm are redesigned
over the existing ones to allow us to obtain better space complexity. Our heavy hitter finding
algorithm is similar to that of [6]. However, we need to be more careful so that the final
space bound of the heavy hitter algorithm can be controlled (e.g., we cannot afford to store
Ω(1/ε2) many coordinate IDs, which would cost Ω((log n)/ε2) bits of space. We have to store
only O(1/ε2) many approximate values). The major contribution of our algorithm is the
careful reduction from Fp estimation to `p heavy hitter-finding. Many reductions are known
in the literature but are suffering from a poly(log n) space blow up. Our careful reduction
allows us to pay only a poly(log log n) space blow up.

In what follows, we illustrate the high level ideas of the heavy hitter reduction. Let
v = (f1, f2, . . . , fn) be the frequency vector of the items. We first apply a random scaling
Xi to each fi, where each Xi is pairwise independently drawn from some distribution. We
argue that finding the leading `p heavy hitter of the scaled frequency vector (denoted as
Xi∗fi∗) gives a good estimation of the F 1/p

p of the original stream. The distribution of Xi is
a so-called p-inverse distribution (see Definition 2 for details). This distribution has a similar
tail as that of the max-stable distributions used in [3] or the precision sampling distribution
in [4]. However, it has different properties better suited to our setting, e.g., we can use
pairwise independent variables to do the scaling. In contrast, for max-stable distributions,
we have to use fully random hash functions and apply pseudo-random generators, which
is problematic in our very low space regime (a related technique called tabulation-based
hashing has similar problems). Note that [4] does not require pseudo-random generators, but
their precision sampling technique aims to solve a more general family of problems and their

3 We use Õ to hide poly(log log n+ log ε−1) factors.
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distribution has a slightly different form, e.g., the random variable is drawn from a continuous
distribution. The p-inverse distribution is particularly suited for p-norm estimation, and
allows for a concise algorithm and improved space complexity in our setting.

After choosing the random scalings, we group the coordinates of v into Θ(log n) levels by
their scalings, i.e., if 2−wFp < Xp

i ≤ 2−w+1Fp, then i is in level w for some integer w. Since
we do not know Fp before the stream arrives, the exact level ID is not known to the algorithm.
But since each Xi is obtained pseudo-randomly, the algorithm is able to know whether two
coordinates are in a same level or not (i.e., the relative level ID) before looking at the stream.
Let Zw ⊂ [n] be the set of universe items in level w. We observe that if for some coordinate
i∗ ∈ Zw, it satisfies Xp

i∗f
p
i∗ ≈ Fp, then fpi∗ = Ω(2w). Fortunately, we can also show that in

expectation, i∗ is an `p-heavy hitter of the substream induced by Zw (i.e., in expectation the
Fp of the stream restricted to Zw is approximately 2w). Our algorithm simply looks for i∗
from Zw for every w ∈ [log n]. One may notice that if we run the search instance in parallel,
then there will be a (log n)-factor blowup in the space of a heavy hitter algorithm. However,
we can show that for random order streams, one can choose a w0 = Θ(log log n) such that
1. for all w > w0: the search for the heavy hitter i∗ can be done in one pass and in sequence

for each w. This is because fi∗ is large (i.e., Ω(2w)) and a small portion of the random
order stream contains sufficient information about i∗.

2. 2. for all w ≤ w0: with high probability, |Zw| = poly(log n). We thus do a brute force
search for each level w below w0 in parallel. Each search instance uses a small amount of
memory because of the small universe size.

The final space overhead becomes a poly(w0) factor rather than a Θ(log n) factor. This
observation is critical to reduce space usage for approximating frequency moments in random
order streams and is, to the best of our knowledge, new. For p ≥ 2, the above claim is no
longer true. We leave the exact space complexity for p ≥ 2 as an open problem.

1.3 Roadmap
In Section 2, we introduce some definitions and the p-inverse distribution. In Section 3,
we present our algorithm for F2. In Section 4, we present our generic framework for
approximating Fp as well as our main result. In Section A of the full version of this paper,
we present the detailed construction of each subroutine used in Section 4, and the details of
the main algorithm. In Section 6, we introduce our deterministic algorithm, which uses our
randomized algorithm as a subroutine. We also show its optimality in the same section.

2 Preliminaries

I Definition 1 (Aggregate Streaming). An insertion-only stream (or simply stream) S =
〈a1, a2, . . . , am〉 is a sequence of integers, where each ai ∈ [n]. A weighted stream S ′ =
〈(a1, w1), (a2, w2), . . . , (am, wm)〉 is a sequence of pairs, where each ai ∈ [n] and each wm ∈ R.
The insertion-only stream S is a special case of a weighted stream with all the weights being
1. The frequency fi(S ′) of a weighted stream is defined as the sum of all weights of the item
i. Formally,

fi(S ′) :=
∑m
j=1 I(aj = i)wj .

The frequency vector V (S ′) ∈ Rn is the vector with i-th coordinate equal to fi(S ′), for each
i ∈ [n]. The p-th frequency moment, for p ≥ 0, is defined as

Fp(S ′) := ‖V (S ′)‖pp :=
∑n
i=1 f

p
i (S ′).
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For time 0 < t1 ≤ t2 ≤ m, we let

S ′:t1 := 〈(a1, w1), (a2, w2), . . . , (at1 , wt1)〉 and
S ′t1:t2 := 〈(at1 , wt1), (at1+1, wt1+1), . . . , (at2 , wt2)〉

be sub-streams of S ′ from 1 to t1 or from t1 to t2.

We introduce a discretized version of the α-Fréchet distribution: the α-Inverse distribution.

I Definition 2. Fixing an α > 0, we say a random variable X on N is drawn from an
α-Inverse distribution if

P[X < x] = 1− 1
xα for x ∈ N+.

I Definition 3 (α-Scaling Transformation). Given an α > 0, an α-scaling transformation
(ST) Tk,α : [n]m → ([k] × [n] × R)m is a function acting on a stream of length m on the
universe [n]. On input stream S, it outputs a weighted stream S ′ of length km on universe
[k]× [n] via the following operation: let Xi,j be identically distributed and independent (or,
actually, limited independence suffices) α-Inverse random variables, where i = 1, 2, . . . , k and
j = 1, 2, . . . , n. For each a ∈ S, the transformation outputs

Tk,α(a)→ ((a, 1), X1,a), ((a, 2), X2,a), . . . , ((a, k), Xk,a).

The next lemma shows that the k
2 -th largest element of the transformed frequency vector

gives a good approximation to the α-norm of the vector.

I Lemma 4. Let S be a stream of items from the universe [n]. Let Tk,α be a pairwise
independent α-ST with k ≥ 160

α2ε2 being an even integer and α ≥ 0, where ε ∈ (0, 1
2α ). Let

S ′ = Tk,α(S). Define the two sets,

U+ := {(a, r) ∈ [n]× [k] : f(a,r)(S ′) ≥ 21/α(1− ε)‖V (S)‖α}

and

U− := {(a, r) ∈ [n]× [k] : f(a,r)(S ′) < 21/α(1 + ε)‖V (S)‖α}.

Then with probability at least 0.9,

|U+| ≥ k
2 , |U−| < k

2 and |U+ ∩ U−| > 0,

where U is the complement of the set U .

The proof of this lemma is provided in Section B of the full version.

3 A Simple F2 Algorithm For Long Streams

We start with a very simple algorithm for approximating F2 in a random order stream. We
denote the algorithm by RANDF2. The algorithm has a parameter b > 0. It treats the stream
updates as a series of length b blocks, i.e.,

S = (B1, B2, . . . , Bm/b).

ICALP 2018
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Initialize a register K = 0. At any time, suppose the current block is Bi. The algorithm
simply stores everything it sees until the end of Bi. After storing Bi entirely, the algorithm
computes

Ki =
∑
j=1

(
fj(Bi)

2

)
.

This can be done using b log n bits of space. Then, the counter K is updated as

K ← K +Ki.

At the end of the stream, the algorithm computes

Y = 2K(m2 −m)
(b2 − b)T +m,

where T is the ID of the last complete block, and m is the length of the stream. The
algorithm uses O(b log n) bits. By setting

b = Θ[max((ε2 log n)−1, 2) · log 1
δ ],

we obtain the following theorem.

I Theorem 5. Let S be a random order stream satisfying F2(S) ≥ m · log n. After one pass
over the stream S, Y is a (1 ± ε) approximation to F2(S) with probability at least 1 − δ.
Moreover, to compute Y , RANDF2 uses O(ε−2 log δ−1 + log n) bits of memory.

Proof. For each j ∈ [n], we let its stream updates be u(j)
1 , u

(j)
2 , . . . , u

(j)
fj(S). Then Ki is

the number of pairs of the form (u(j)
`1
, u

(j)
`2

) appearing in Bi. We denote F2 = F2(S) and
F1 = F1(S) for simplicity. Thus,

∀i ∈ [T ] : E(Ki) =
∑n

j=1 (fj(S)
2 )

(F1
2 )

(
b
2
)

= F2−m
m2−m

(b2−b)
2 .

Thus, by linearity of expectation,

E[Y ] = F2.

We now prove that Y is concentrated around its mean. Notice that the algorithm can be
viewed as sampling a number of “pairs”. A pair is formed by two updates to the same
universe element. There are q = (F2 − F1)/2 many pairs. Let P = [q] denote the set of pairs.
For each pair z ∈ P , we let Xz denote the indicator that Xz is sampled by some bucket.
Let K =

∑
z∈P Xz. Note that this K is the same as the one denoted in the algorithm. Let

Qz = E[K|X1, X2, . . . , Xz]. The Qz for z = 1, 2, . . . form a Doob martingale. Also notice
that |Qz −Qz−1| ≤ 1. Next, we proceed to bound the variance of

Qz −Qz−1 = Xz|X1, X2, . . . Xz−1.

For a pair z ∈ P , let a, b be the two nodes. Consider a fixed assignment of X1, X2, . . . Xz−1.
Also note that, knowing Xi, the two nodes of the i-th pair are assigned to some block.

Now, if from the X1, X2, . . . , Xz−1, a, b are both assigned and to the same block, then
Xz = 1 and otherwise Xz = 0. For both cases Var(Qz − Qz−1) = 0. If a, b are assigned,
but it cannot be determined if they are in the same block, then P[Xz = 1] ≤ b/m and
thus Var(Xz) ≤ b/m. If only one of a, b is assigned, then P[Xz = 1] ≤ b/m, and thus
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Var(Xz) ≤ b/m. Lastly, if both a, b are not assigned, then P[Xz = 1] ≤ b/m. Thus
Var(Xz) ≤ b/m. Overall, we have that v2

z := Var(Qz − Qz−1) ≤ b/m for all possible
X1, X2, . . . , Xz−1. Let

V =
∑
z v

2
z ≤

b(F2−m)
2m .

Next, by Bernstein’s inequality [14], we have that,

P[|K − E(K)| ≥ t] ≤ 2 exp
(
− t2

2V (1+t/3V )

)
.

Since we need to have a (1± ε) approximation to F2, we can set

2t(m2 −m)b
(b2 − b)m ≤ εF2 and t = ε

F2b

2m .

Since F2 ≥ m · log n · log 1
δ , and ε is sufficiently small, we can bound the error probability by:

P[|K − E(K)| ≥ t] ≤ 2 exp
(
− t2

2V (1 + t/3V )

)
≤ 2 exp

(
− ε2F 2

2 b

8m(F2 −m)

)
≤ δ, (1)

for b = Ω( log 1
δ

ε2·logn ). Finally, since K ∈ E(K)± εF2b/(2m), we have

Y ∈ F2 ± εF2b
2m ·

2(m2−m)b
(b2−b)m ⊂ (1± ε)F2

as desired. J

4 A Generic Framework for Fp Estimation

In this section, we first construct a generic framework for Fp estimation, and then we
construct all the components in subsequent sections. For a random order stream S, we will
need the following three components to construct an Fp estimation algorithm.

A counter that stores the time for the current update;
An algorithm that gives a constant approximation to the current Fp(S :t);
An algorithm that computes an accurate (1± ε) approximation to Fp(S) given
poly(log n, ε−1) approximations to m and Fp(S).

To begin, we denote by C2Fp a data structure that, once initialized with a poly(log n, ε−1)-
approximation of both the length and p-th frequency moments, Fp(S), supports two opera-
tions: update and query. At the end of the stream, C2Fp.query() returns either Fail or a
(1± ε)-approximation to Fp of the input stream S. Component (1) will be used to guess the
length of the stream, and component (2) will be used to guess an approximation to Fp(S).
We denote component (2) by ConstFp, which is a data structure that supports both update
and query operations. ConstFp.query() returns a 2-approximation to Fp(S :t) at some fixed t.
The full framework is described in Algorithm 1.

Our full algorithm is denoted by RndFp, which uses C2Fp as a subroutine. From a high
level, the algorithm constantly guesses the length of the stream. If at some point in time the
algorithm finds that the current guess of the length is at least a factor C = poly(ε−1, log n)
smaller than the true value of the stream, then the algorithm initializes a new instance of
C2Fp to estimate the Fp value of the stream. At the end, it is guaranteed that a stored

ICALP 2018
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Algorithm 1: Full algorithm for Fp in random order: RndFp.
Data:
S = 〈a1, a2, . . . , am〉 is a random order stream of length m from a universe [n] (known in
advance);
p ∈ (0, 2] is a real number, which is a constant;

1 Initialize (p, n, ε, δ):
2 m0 ← 1, m1 ← 1 G0 ← 1. Here m0 is the approximate length, G0 is a guess of Fp, ε is

the target precision, and δ is the failure probability;
3 A1 ←new C2Fp(p, ε/3, n,m0, G0, δ/3), A2 ←new C2Fp(p, ε/3, n,m0, G0, δ/3);
4 A3 ←new ConstFp(p, n, δ/3);
5 C ← poly( 1

ε
, log n

δ
);

6 Update a:
7 A1.update(a), A2.update(a), A3.update(a);
8 m1 ← m1 + 1;
9 if m1 ≥ Cm0 then

10 A1 ← A2;
11 G0 ← A3.query();
12 m0 ← m1;
13 A2 ←new C2Fp(p, ε/3, n,m0, G0, δ/3);
14 Query():
15 return A1.query();

instance of C2Fp uses at least a (1− poly(ε, 1/ log n)) portion of the stream to approximate
the frequency moments. It can be verified that an accurate estimation of Fp of this portion
of the stream will serve as a good estimator for the overall stream. Therefore, if C2Fp is able
to output the correct answer with high probability, then the algorithm RndF is guaranteed to
be correct with high probability.

I Theorem 6 (Main Theorem). For fixed p ∈ [0, 2), ε ∈ (0, 1),δ ∈ ( 1
poly(n) ,

1
2 ), and n ∈ N+,

algorithm RndFp, makes a single pass over a random order stream S on universe [n], and
outputs a number F̂ such that, with probability at least 1− δ,

(1− ε)Fp(S) ≤ F̂ ≤ (1 + ε)Fp(S),

where the probability is over both the randomness of the algorithm and the randomness of the
data stream. The algorithm uses

O[( 1
ε2

(log log n+ log 1
ε

)4 + log n) log 1
δ

]

bits of memory in the worst case.

Proof. Without loss of generality, we assume Fp(S) = Ω(poly 1
εpoly log n

δ ), since otherwise
we can use a turnstile Fp algorithm with memory O

( 1
ε2 log log n

δ + 1
ε2 log 1

ε

)
bits to solve the

Fp estimation problem. Initialize m0 = 1. Let S ′ = Sm0:m. By definition of the algorithm,
A1 is an instance of C2Fp that runs on S ′. Let S ′′ = S0:m0 and C = polyε−1polylognδ . By
definition of the algorithm, we always update m0 so that

m

C2 ≤ m0 ≤
m

C
,

at the end of the stream. By Lemma 24 and Lemma 25 of the full version of this paper, we
have, with probability at least 1− δ/3,

Fp(S)
5pC2p ≤ Fp(S

′′) ≤ (17 log 20n
δ

)p(C−1Fp(S) + 4 log 20n
δ

) ≤
(18 log 20n

δ )p

C
Fp(S),
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where the last inequality holds for sufficiently large Fp(S). Conditioned on this event, we
obtain that

‖V (S ′′)‖p ≤
(18 log 20n

δ )
C1/p ‖V (S)‖p ≤

ε

3p‖V (S)‖p,

for sufficiently large C. By the triangle inequality, we obtain

(1− ε/(3p))‖V (S)‖p ≤ ‖V (S)‖p − ‖V (S ′′)‖p ≤ ‖V (S ′)‖p ≤ ‖V (S)‖p.

Thus Fp(S ′) is a (1± ε/3) approximation to Fp(S).
In the algorithm, A3 is an instance of ConstFp, i.e., by Theorem 7. Let G0 be the output

of A3.query(). Since with probability at least 1 − δ/3, A3 outputs a c0 approximation to
Fp(S ′′) for some constant c0, we obtain that G0 is a 5pc0C

2p(log 20n
δ )p−1 approximation to

Fp(S ′).
In the algorithm, A1 is an instance of C2Fp, which runs on the stream S ′ at any time

t with the required parameters, i.e., G0. By Theorem 8, with probability at least 1− δ/3,
A1.query() outputs a (1± ε/3) approximation to Fp(S ′), and thus a (1± ε) approximation
to Fp(S). By a union bound, the overall algorithm is correct with probability at least 1− δ.

By Theorem 16 and Theorem 17, of the full version, the space needed for A1 and A2 is

O[( 1
ε2

(log log n+ log 1
ε

)4 + log n) log 1
δ

].

The space needed for A3 is O(log n log 1
δ ) (Theorem 7). Thus the total space is dominated

by the total space used by A1 and A2 as desired. J

The following is a theorem required in the above proof.

I Theorem 7 (Const. Fp approx., [21]).
For a fixed n, there exists a turnstile streaming algorithm, which on input a stream S of
length m, outputs a number F ∈ (1± ε)Fp(S) with probability at least 1− δ. The algorithm
uses O(ε−2 logm+ log log(n)) log δ−1) bits of space in the worst case.

In subsequent sections, we will construct the C2Fp Algorithm.

5 A (1 ± ε) Approximation to Fp With a Prior

In this section, we construct the algorithm C2Fp. We assume that the input is a random order
stream and that the algorithm is given two parameters, m̂ and G, which are poly(ε−1, log n)
approximations to the length and the p-th frequency moments of the stream S, respectively.

5.1 High Level Idea
Although the high level idea is introduced in the introduction, we repeat it here with more
details for better understanding of the algorithm. To illustrate the intuition of the algorithm,
we first consider a constant factor approximation algorithm. Estimating the frequency
moments can be reduced to finding the heavy hitters of a scaled vector, as shown in Lemma 4.
Suppose the frequency vector in a stream is v = (f1(S), f2(S), . . . , fn(S)), and the scaling
applied to it is X = (X1, X2, . . . , Xn), where the Xi are pairwise independent p-Inverse (see
Definition 2) random variables. Let i∗ be the maximum of the scaled vector. By Lemma 4, we
expect Xp

i∗f
p
i∗(S) ≈ Fp. We group the coordinates of v into Θ(log n) levels by their scalings,

i.e., if 2−wFp < Xp
i ≤ 2−w+1Fp, then i is in level w. Let Zw ⊂ [n] be the universe items in
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level w. We observe that if i∗ ∈ Zw, then fpi∗(S) = Ω(2w). Luckily, we can also show that,
in expectation, i∗ is an Fp-heavy hitter of the substream induced by Zw. Our algorithm
is simply looking for i∗ from Zw for every w ∈ [log n]. One may notice that if we run the
search instances in parallel, then there will be a log n factor blowup in the space. However,
we can show that in a random order stream, one can choose a w0 = Θ(log log n) such that
1. for all w > w0: the search for i∗ can be done in one pass and in series for each w.
2. for all w ≤ w0: with high probability, |Zw| = poly log n. We thus do a brute force search

for each level w below w0 in parallel.
The final space overhead is a poly(w0) factor rather than Θ(log n).

To reduce the error from constant to (1± ε), we repeat the above process Θ
( 1
ε2

)
times

conceptually. Namely, we apply a p-ST Tk,p transformation to the stream, where k = Θ
( 1
ε2

)
.

For r = 1, 2, . . . , [k], i = 1, 2, . . . , n, we denote the scaling p-Inverse random variable by X(r)
i .

We wish to find the heavy hitter for each r using the same procedure described above. By
Lemma 4, the k/2-th largest of all the outputs serves as a good approximation to Fp(S).

5.2 The Algorithm
The algorithm needs three components, SmallApprox, SmallCont and LargeCont. All
these algorithms support “update” and “query” operations. SmallApprox returns fail if
Fp(S) is much larger than poly(ε−1, log n), otherwise returns an approximation to Fp(S).
SmallApprox is a turnstile streaming Fp algorithm [21] but with restricted memory. Once the
memory exceeds the memory quota, the algorithm simply returns Fail. SmallCont estimates
the contribution from the small-valued frequencies and LargeCont estimates the contribution
from the large-valued frequencies. The correctness of these algorithms is presented in
Theorem 16 and 17 of the full version of this paper. The full algorithm is presented in
Algorithm 2. The following theorem guarantees its correctness.

I Theorem 8. Fix p ∈ [0, 2], ε ∈ (0, 1/2) and δ = Ω(1/poly(n)). Let S be a random
order stream on universe [n] and with length m. Given that C−1

0 Fp(S) ≤ G0 ≤ Fp(S) and
C−1

0 m ≤ m0 ≤ m for some C0 = poly(ε−1, log n), there exists an algorithm A, which makes
a single pass over S and outputs a number F such that F ∈ (1 ± ε)Fp(S) with probability
at least 1− δ, where the probability is over both the randomness of the algorithm and of the
order of the stream. The algorithm uses

O[( 1
ε2 (log log n+ log 1

ε )4 + log n) log 1
δ ]

bits of memory in the worst case.

We postpone the full proof and detailed algorithmic constructions to the appendix.

6 Deterministic Algorithm for Fp Approximation

In this section we introduce our deterministic algorithm for Fp approximation, which follows
from our randomized algorithm with an initial space-efficient randomness extraction procedure
applied to a prefix of the stream.

6.1 Upper Bound
I Theorem 9. Fix p ≥ 0, ε ∈ (0, 1). There exists a deterministic algorithm that makes
a single pass over a random order stream S on the universe [n], and outputs a number
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Algorithm 2: Fp-Algorithm with Approximation: C2Fp(p, ε, n,m0, G0).
Data:

p ∈ [0, 2], a real number;
L ∈ [Fp(S)

C0
, Fp(S)] for some C0 = Θ[poly(ε−1, log n)];

m0 ∈ [ mC0
,m];

S = 〈a1, a2, . . . , am〉 is random order stream of length m;
Result: F ∈ (1± ε)Fp(S);

1 Initialize(p, n, ε, δ):
2 k ← Θ

( 1
ε2

)
;

3 X
(r)
i ∼ p-Inverse distribution for i ∈ [n] and r ∈ [k], pairwise independent;

4 w0 ← d0
(

log log n+ log 1
ε

)
for some large constant d0;

5 Let K ∈ Rn×k have entries Ki,r = X
(r)
i vi (only for notational purposes);

6 B1 ← new SmallApprox(p, n, ε);
7 B2 ← new SmallCont(p, n, k, ε, w0, L, {Xr

i });
8 B3 ← new LargeCont(p, n, k, ε, w0, L, {Xr

i });
9 Update(a):

10 B1.update(a); B2.update(a); B3.update(a);
11 Query:
12 if B1.query() 6=Fail then
13 return B1.query()
14 else if B2.query() =Fail or B3.query() =Fail then
15 return Fail;
16 else
17 R← the (k/2)-th largest element of B2.query() ◦B3.query();
18 return (R)p/2

F ∈ (1± ε)Fp(S) with probability at least 1− δ, where the randomness is over the order of
the stream updates. The algorithm uses

O
[

1
ε2

(
log log n+ log 1

ε

)4
log 1

δ
+ log n ·

(
log log n+ log 1

δ

)
· 1
δ

+ log n log 1
ε

]
bits of memory, provided δ ≥ 1/poly(n).

Proof. W.l.o.g., we assume ε ≥ 1/
√
n, since otherwise we can simply store an approximate

counter for each item in the stream. It is sufficient to show that we are able to derandomize
the randomized algorithm using the random updates from the stream using a near-logarithmic
number of bits of space. First we pick s = O(log log n+ log δ−1) and store all the universe
items, their frequencies and their first arrival times until we obtain s distinct items in the
stream. Let z1 denote when the this happens. We assume the stream is long enough that
this step can be done, since otherwise we obtain an exact estimate of Fp. We show in Section
6.1.1 how to obtain a nearly uniformly random seed of s bits.

We thus obtain a nearly uniform sample from all the prime numbers with O(log log n+
log 1

δ ) bits (note that there are poly(log n/δ) many such prime numbers). Let this sampled
prime number be q. For the next O(log n/δ) distinct universe items, denoted by R, we argue
that with probability at least 1− δ, all of them are distinct modulo q. Indeed, consider any
r1, r2 ∈ R with r1 6= r2. Then r1− r2 can have at most log n prime factors ( [17], p.355). For
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all
(|R|

2
)
pairs, their differences can have at most O(log3 n/δ3) distinct prime factors in total.

Thus with probability at least 1 − δ, q does not divide any of the differences. Therefore
the set R is mapped to distinct numbers modulo q. The value q can be stored using at
O(log log n+ log 1

δ ) bits.
Next we approximately store the frequencies of each item in R using the random order

stream. To do this, we first fix the following numbers g1 = 1, g2 = 2, g3 = 4, . . . , gi = 2i−1.
For each r ∈ R, we store the largest number i such that fr(Sz1:gi) = poly(log n, ε−1) and
fr(Sz1:gi) as well. Therefore, such an operation only costs O( logn

δ (log log n+ log 1
δ + log ε−1))

bits. By Lemma 22 of the full version, the frequency of each item is preserved up to a (1± ε)
factor with probability at least 1− 1/poly(n). Note that if the stream ends before we observe
all of R, we obtain a good approximation to Fp(S) immediately. We also store the first
occurrence in the stream of each item in R. We also store the parity of the first appearance
of each item.

Repeating the extraction argument in Section 6.1.1 for the set R, we can now extract
O(log n) bits that is (1 ± δ) close to uniform. Given these bits, it now suffices to run our
earlier randomized algorithm on the remaining part of the stream.

There is one last problem remaining, however. Namely, it may be the case that the stream
used for extracting random bits contributes too much to Fp(S), causing the estimation of the
randomized algorithm to have too much error (since the prefix and the suffix of the stream
share the same items, we need to take the p-th power of the sum of their frequencies). This
problem can be solved as follows – we can continue the frequency estimation in parallel with
the randomized algorithm until the Fp value becomes at least a 1/ε factor larger than the
time when we initialized our randomized algorithm. Therefore, if the stream ends before this
happens, then we use the frequency estimates for calculating Fp(S) from our deterministic
algorithm. Otherwise we use the value of the randomized algorithm (which is seeded with
the seed found by our deterministic algorithm). In either case, the overall error is at most
εFp. J

6.1.1 Derandomization

Let s > 0 be a parameter. Suppose we store t = O(s/δ) distinct universe items with their
approximate frequencies as well as the IDs and the parities of their first appearances in the
stream. Denote the set of these items by H and the overall length of the stream as m′. First,
we sort the items by their approximate counts and take the smallest δt/100 items as set
L. We additionally sort the items in L by their IDs, and obtain a bit string b of length |L|,
where each bit bi is the parity of the first appearance of the i-th item in L. Since L contains
the smallest δt/100 items of H , we have for each w ∈ L, fw(S0:m′) ≤ m′/t/(1− δ/100). Thus
for each bit bi,

P[bi = 0],P[bi = 1] ∈ 1
2 ±

2
m′
.

and

∀x ∈ {0, 1}|L| : P[b = x] ∈ (1
2 ±

2
m′

)|L| ⊂ 1
2|L|

(1± 5|L|
m′

) ⊂ 1
2|L|

(1± δ

20).

As such, we obtain a bit stream of length Ω(s), that is close to uniform bits up to a (1± δ)
factor.
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Abstract
We study a generic framework that provides a unified view on two important classes of problems:
(i) extensions of the k-median problem where clients are interested in having multiple facilities
in their vicinity (e.g., due to the fact that, with some small probability, the closest facility might
be malfunctioning and so might not be available for using), and (ii) finding winners according to
some appealing multiwinner election rules, i.e., election system aimed for choosing representatives
bodies, such as parliaments, based on preferences of a population of voters over individual can-
didates. Each problem in our framework is associated with a vector of weights: we show that the
approximability of the problem depends on structural properties of these vectors. We specifically
focus on the harmonic sequence of weights, since it results in particularly appealing properties
of the considered problem. In particular, the objective function interpreted in a multiwinner
election setup reflects to the well-known Proportional Approval Voting (PAV) rule.

Our main result is that, due to the specific (harmonic) structure of weights, the problem
allows constant factor approximation. This is surprising since the problem can be interpreted as
a variant of the k-median problem where we do not assume that the connection costs satisfy the
triangle inequality. To the best of our knowledge this is the first constant factor approximation
algorithm for a variant of k-median that does not require this assumption. The algorithm we
propose is based on dependent rounding [Srinivasan, FOCS’01] applied to the solution of a natural
LP-relaxation of the problem. The rounding process is well known to produce distributions over
integral solutions satisfying Negative Correlation (NC), which is usually sufficient for the analysis
of approximation guarantees offered by rounding procedures. In our analysis, however, we need
to use the fact that the carefully implemented rounding process satisfies a stronger property,
called Negative Association (NA), which allows us to apply standard concentration bounds for
conditional random variables.
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1 Introduction

This paper considers a general unified framework for two classes of problems: (i) extensions
of the k-median problem where clients care about having multiple facilities in their vicinity,
and (ii) finding winning committees according to a number of well-known, but hard-to-
compute multiwinner election systems1. Let us first formalize our framework; we will discuss
motivation and explain the relation to k-median and to multiwinner elections later on.

For a natural number t ∈ N, by [t] we denote the set {1, . . . , t}. Let F = {F1, . . . , Fm} be
the set of m facilities and let D = {D1, . . . , Dn} be the set of n clients (demands). The goal is
to pick a set of k facilities that altogether are most satisfying for the clients. Different clients
can have different preferences over individual facilities – by ci,j we denote the cost that client
Dj suffers when using facility Fi (this can be, e.g., the communication cost of client Dj to
facility Fi, or a value quantifying the level of personal dissatisfaction of Dj from Fi). Following
Yager [34], we use ordered weighted average (OWA) operators to define the cost of a client for a
bundle of k facilities C. Formally, let w =

(
w1, . . . , wk

)
be a non-increasing vector of k weights.

We define the w-cost of a client Dj for a size-k set of facilities C as w(C, j) =
∑k
i=1 wic

→
i (C, j),

where c→(C, j) = (c→1 (C, j), . . . , c→k (C, j)) = sortASC
({
ci,j : Fi ∈ C

})
is a non-decreasing

permutation of the costs of client Dj for the facilities from C. Informally speaking, the
highest weight is applied to the lowest cost, the second highest weight to the second lowest
cost, etc. In this paper we study the following computational problem.

I Definition 1 (OWA k-median). In OWA k-median we are given a set D = {D1, . . . , Dn}
of clients, a set F = {F1, . . . , Fm} of facilities, a collection of clients’ costs

(
ci,j
)
i∈[m],j∈[n], a

positive integer k (k ≤ m), and a vector of k non-increasing weights w =
(
w1, . . . , wk

)
. The

task is to compute a subset C of F that minimizes the value

w(C) =
n∑
j=1

w(C, j) =
n∑
j=1

k∑
i=1

wic
→
i (C, j).

Note that OWA k-median with weights (1, 0, 0, . . . , 0) is the k-median problem. Some-
times the costs represent distances between clients and facilities. Formally, this means that
there exists a metric spaceM with a distance function d : M×M→ R≥0, where each client
and each facility can be associated with a point in M so that for each Fi ∈ F and each
Dj ∈ D we have d(i, j) = ci,j . When this is the case, we say that the costs satisfy the triangle
inequality, and use the terms “costs” and “distance” interchangeably. Then, we use the prefix
Metric for the names of our problems. E.g., by Metric OWA k-median we denote the
variant of OWA k-median where the costs satisfy the triangle inequality.

We are specifically interested in the following two sequences of weights:

1 We note that multiwinner election rules have many applications beyond the political domain – such
applications include finding a set of results a search engine should display [12], recommending a
set of products a company should offer to its customers [25, 26], allocating shared resources among
agents [29, 28], solving variants of segmentation problems [23], or even improving genetic algorithms [15].
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(1) harmonic: whar =
(
1, 1/2, 1/3, . . . , 1/k

)
. By Harmonic k-median we denote the OWA

k-median problem with the harmonic vector of weights.
(2) p-geometric: wgeom =

(
1, p, p2, . . . , pk−1), for some p < 1.

The two aforementioned sequences of weights, whar and wgeom, have their natural interpreta-
tions, which we discuss later on (for instance, see Examples 3 and 4).

1.1 Motivation
In this subsection we discuss the applicability of the studied model in two settings.

Multiwinner Elections

Different variants of the OWA k-median problem are very closely related to the preference
aggregation methods and multiwinner election rules studied in the computational social choice,
in particular, and in AI, in general – we summarize this relation in Table 1 and in Figure 1.
In particular, one can observe that each “median” problem is associated with a corresponding
“winner” problem. Specifically, the k-median problem is known in computational social
choice as the Chamberlin–Courant rule. Let us now explain the differences between the
winner (“election”) and the median (“facility location”) problems:
1. The election problems are usually formulated as maximization problems, where instead

of (negative) costs we have (positive) utilities. The two variants, the minimization (with
costs) and the maximization (with utilities) have the same optimal solutions. Yet, there
is a substantial difference in their approximability.
Approximating the minimization variant is usually much harder. For instance, consider
the Chamberlin–Courant (CC) rule which is defined by using the sequence of weights
(1, 0, 0, . . . , 0). In the maximization variant standard arguments can be used to prove
that a greedy procedure yields the approximation ratio of (1 − 1/e). This stands in a
sharp contrast to the case when the same rule is expressed as the minimization one; in
such a case we cannot hope for virtually any approximation [30] (we extend this result in
Theorem 21 in [6]). Approximating the minimization variant is also more desired. E.g.,
a 1/2-approximation algorithm for (maximization) CC can effectively ignore half of the
population of clients, whereas it was argued [30] that a 2-approximation algorithm for
the minimization (if existed) would be more powerful. In this paper we study the harder
minimization variant, and give the first constant-factor approximation algorithm for the
minimization OWA-Winner with the harmonic weights.

2. In facility location problems it is usually assumed that the costs satisfy the triangle
inequality. This relates to the previous point: since the problem cannot be well approxim-
ated in the general setting, one needs to make additional assumptions. One of our main
results is showing that there is a k-median problem (OWA k-median with harmonic
weights) that admits a constant-factor approximation without assuming that the costs
satisfy the triangle inequality; this is the first known result of this kind.

The special case of Harmonic k-median where each cost belongs to the binary set
{0, 1} is equivalent to finding winners according to Proportional Approval Voting.
The harmonic sequence whar = (1, 1/2, 1/3, . . . , 1/k) is in a way exceptional: indeed, PAV can
be viewed as an extension of the well known D’Hondt method of apportionment (used for
electing parliaments in many contemporary democracies) to the case where the voters can
vote for individual candidates rather than for political parties [4]. Further, PAV satisfies
several other appealing properties, such as extended justified representation [3]. This is one
of the reasons why we are specifically interested in the harmonic weights. For more discussion
on PAV and other approval-based rules, we refer the reader to the survey of Kilgour [22].
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Table 1 The relation between the k-median problems and the corresponding problems studied
in AI, in particular in the computational social choice community.

k-median problem election rule comment

OWA k-median OWA-Winner [29] Finding winners according to OWA-Winner
rules is the maximization variant of OWA
k-median (utilities instead of costs).

Thiele methods [33] Thiele methods are OWA-Winner rules for
0/1 costs.

Harmonic k-median PAV [33] In PAV we assume the 0/1 costs. So far,
only the maximization variant was con-
sidered in the literature.

k-median Chamberlin–Courant [9] In CC, usually some specific form of utilities
is assumed – different utilities have been
considered, but always in the maximization
variant (utilities instead of costs).

OWA ��median

Harmonic ��median

(harmonic weights)

Proportional Approval Voting

(0-1 costs)

d�Hondt method
�approvals for a single party)

Figure 1 The relation between the considered models. OWA k-median is the most general
model. Proportional Approval Voting and Harmonic k-median due to the use of harmonic
weights can be viewed as natural extensions of the well known and commonly used D’Hondt method
of apportionment [4].

OWA k-median as an Extension of k-median

Intuitively, our general formulation extends k-median to scenarios where the clients not only
use their most preferred facilities, but when there exists a more complex relation of “using
the facilities” by the clients. Similar intuition is captured by the Fault Tolerant version
of the k-median problem introduced by Swamy and Shmoys [32] and recently studied by
Hajiaghayi et al. [17]. There, the idea is that the facilities can be malfunctioning, and to
increase the resilience to their failures each client needs to be connected to several of them.

I Definition 2 (Fault Tolerant k-median). In Fault Tolerant k-median problem
we are given the same input as in k-median, and additionally, for each client Dj we are
given a natural number rj ≥ 1, called the connectivity requirement. The cost of a client Dj is
the sum of its costs for the rj closest open facilities. Similarly as in k-median, we aim at
choosing at most k facilities so that the sum of the costs is minimized.

When the values
(
rj
)
j∈[n] are all the same, i.e., if rj = r for all j, then Fault Tolerant

k-median is called r-Fault Tolerant k-median and it can be expressed as OWA k-
median for the weight vector w with r ones followed by k − r zeros. Yet, in the typical
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setting of k-median problems one additionally assumes that the costs between clients and
facilities behave like distances, i.e., that they satisfy the triangle inequality. Indeed, the
(2.675 + ε)-approximation algorithm for k-median [5], the 93-approximation algorithm for
Fault Tolerant k-median [17], the 2-approximation algorithm for k-center [18], and the
6.357-approximation algorithm for k-means [1], they all use triangle inequalities. Moreover
it can be shown by straightforward reductions from the Set Cover problem that there are
no constant factor approximation algorithms for all these settings with general (non-metric)
connection costs unless P = NP.

Using harmonic or geometric OWA weights is also well-justified in case of facility location
problems, as illustrated by the following examples.

I Example 3 (Harmonic weights: proportionality). Assume there are ` ≤ k cities, and for
i ∈ [`] let Ni denote the set of clients who live in the i-th city. For the sake of simplicity, let
us assume that k · |Ni| is divisible by n. Further, assume that the cost of traveling between
any two points within a single city is negligible (equal to zero), and that the cost of traveling
between different cities is equal to one. Our goal is to decide in which cities the k facilities
should be opened; naturally, we set the cost of a client for a facility opened in the same city
to zero, and – in another city – to one. Let us consider OWA k-median with the harmonic
sequence of weights whar. Let ni denote the number of facilities opened in the i-th city in
the optimal solution. We will show that for each i we have ni = k|Ni|

n , i.e., that the number
of facilities opened in each city is proportional to its population. Towards a contradiction
assume there are two cities, i and j, with ni ≥ k|Ni|

n + 1 and nj ≤ k|Nj |
n − 1. By closing one

facility in the i-th city and opening one in the j-th city, we decrease the total cost by at least:

|Nj | · wnj+1 − |Ni| · wni = |Ni|
nj + 1 −

|Ni|
ni

>
|Nj |n
k|Nj |

− |Ni|n
k|Ni|

= 0.

Since, we decreased the cost of the clients, this could not be an optimal solution. As a result
we see that indeed for each i we have ni = k|Ni|

n .

I Example 4 (Geometric weights: probabilities of failures). Assume that we want to select k
facilities and that each client will be using his or her favorite facility only. Yet, when a client
wants to use a facility, it can be malfunctioning with some probability p; in such a case the
client goes to her second most preferred facility; if the second facility is not working properly,
the client goes to the third one, etc. Thus, a client uses her most preferred facility with
probability 1− p, her second most preferred facility with probability p(1− p), the third one
with probability p2(1− p), etc. As a result, the expected cost of a client Dj for the bundle of
k facilities C is equal to w(C, j) for the weight vector w =

(
1− p, (1− p)p, . . . , (1− p)pk−1).

Finding a set of facilities, that minimize the expected cost of all clients is equivalent to
solving OWA k-median for the p-geometric sequence of weights (in fact, the sequence that
we use is a p-geometric sequence multiplied by (1− p), yet multiplication of the weight vector
by a constant does not influence the structure of the optimal solutions).

1.2 Our Results and Techniques
Our main result is showing, that there exists a 2.3589-approximation algorithm for Harmonic
k-median for general connection costs (not assuming triangle inequalities). This is in contrast
to the innaproximability of most clustering settings with general connection costs.

Our algorithm is based on dependent rounding of a solution to a natural linear program
(LP) relaxation of the problem. We use the dependent rounding (DR) studied by Srinivasan
et al. [31, 16], which transforms in a randomized way a fractional vector into an integral one.
The sum-preservation property of DR ensures that exactly k facilities are opened.
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DR satisfies, what is well known as negative correlation (NC) – intuitively, this implies
that the sums of subsets of random variables describing the outcome are more centered
around their expected values than if the fractional variables were rounded independently.
More precisely, negative correlation allows one to use standard concentration bounds such as
the Chernoff-Hoeffding bound. Yet, interestingly, we find out that NC is not sufficient for our
analysis in which we need a conditional variant of the concentration bound. The property
that is sufficient for conditional bounds is negative association (NA) [20]. In fact its special
case that we call binary negative association (BNA), is sufficient for our analysis. It captures
the capability of reasoning about conditional probabilities. Thus, our work demonstrates how
to apply the (B)NA property in the analysis of approximation algorithms based on DR. To
the best of our knowledge, Harmonic k-median is the first natural computational problem,
where it is essential to use BNA in the analysis of the algorithm.

We additionally show that the 93-approximation algorithm of Hajiaghayi et al. [17] can
be extended to OWA k-median (our technique is summarized in Section 3) – this time we
additionally need to assume that the costs satisfy the triangle inequality. Indeed, without
this assumption the problem is hard to approximate for a large class of weight vectors; for
instance, for p-geometric sequences with p < 1/e or for sequences where there exists λ ∈ (0, 1)
such that clients care only about the λ-fraction of opened facilities. Due to space constraints
the formulation and the discussion on these hardness results are redelegated to the full
version of the paper [6, Appendix E].

For the paper to be self-contained in [6, Appendix A] we discuss in detail the process
of dependent rounding (including a few illustrative examples); in particular, we provide an
alternative proof that DR satisfies binary negative association. Our proof is more direct and
shorter than the proofs known in the literature [24].

2 Harmonic k-median and Proportional Approval Voting:
a 2.3589-approximation Algorithm

In this section we demonstrate how to use the Binary Negative Association (BNA) property
of Dependent Rounding (DR) to derive our main result – a randomized constant-factor
approximation algorithm for Harmonic k-median. In [6, Appendix A] we provide a detailed
discussion on DR and BNA, including a proof that DR satisfies BNA, and several examples.

I Theorem 5. There exists a polynomial time randomized algorithm for Harmonic k-
median that gives 2.3589-approximation in expectation.

I Corollary 6. There exists a polynomial time randomized algorithm for the minimization
Proportional Approval Voting that gives 2.3589-approximation in expectation.

In the remainder of this section we will prove the statement of Theorem 5. Consider the
following linear program (1–5) that is a relaxation of a natural ILP for Harmonic k-median.

min
n∑
j=1

k∑
`=1

m∑
i=1

w` · x`ij · cij (1)

m∑
i=1

yi = k (2)

k∑
`=1

x`ij ≤ yi ∀i ∈ [m], j ∈ [n] (3)

m∑
i=1

x`ij ≥ 1 ∀j ∈ [n], ` ∈ [k] (4)

yi, x
`
ij ∈ [0, 1] ∀i ∈ [m], j ∈ [n], ` ∈ [k] (5)

The intuitive meaning of the variables and constraints of the above LP is as follows.
Variable yi denotes how much facility Fi is opened. Integral values 1 and 0 correspond
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to, respectively, opening and not opening the i-th facility. Constraint (2) encodes opening
exactly k facilities. Each client Dj ∈ D has to be assigned to each among k opened facilities
with different weights. For that we copy each client k times: the `-th copy of a client Dj is
assigned to the `-th closest to Dj open facility. Variable x`ij denotes how much the `-th copy
of Dj is assigned to facility Fi. In an integral solution we have x`ij ∈ {0, 1}, which means that
the `-th copy of a client can be either assigned or not to the respective facility. The objective
function (1) encodes the cost of assigning all copies of all clients to the opened facilities,
applying proper weights. Constraint (3) prevents an assignment of a copy of a client to a
not-opened part of a facility. In an integer solution it also forces assigning different copies of
a client to different facilities. Observe that, due to non-increasing weights w`, the objective
(1) is smaller if an `′-th copy of a client is assigned to a closer facility than an `′′-th copy,
whenever `′ < `′′. Constraint (4) ensures that each copy of a client is served by some facility.

Just like in most facility location settings it is crucial to select the facilities to open,
and the later assignment of clients to facilities can be done optimally by a simple greedy
procedure. We propose to select the set of facilities in a randomized way by applying the
DR procedure to the y vector from an optimal fractional solution to linear program (1–5).
This turns out to be a surprisingly effective methodology for Harmonic k-median.

2.1 Analysis of the Algorithm

Let OPTLP be the value of an optimal solution (x∗, y∗) to the linear program (1–5). Let OPT
be the value of an optimal solution (xOPT, yOPT) for Harmonic k-median. Easily we can see
that (xOPT, yOPT) is a feasible solution to the linear program (1–5), so OPTLP ≤ OPT. Let
Y = (Y1, . . . , Ym) be the random solution obtained by applying the DR procedure described
in [6, Appendix A] to the vector y∗. Recall that DR preserves the sum of entries (see [6,
Appendix A]), hence we have exactly k facilities opened. It is straightforward to assign
clients to the open facilities, so the variables X = (X`

ij)j∈[n],i∈[m],`∈[k] are easily determined.
We will show that E[cost(Y )] ≤ 2.3589 ·OPTLP. In fact, we will show that E[costj(Y )] ≤

2.3589 ·OPTLP
j , where the subindex j extracts the cost of assigning client Dj to the facilities

in the solution returned by the algorithm. In our analysis we focus on a single client Dj ∈ D.
Next, we reorder the facilities {F1, F2, . . . , Fm} in the non-decreasing order of their connection
costs to Dj (i.e., in the non-decreasing order of cij). Thus, from now on, facility Fi is the
i-th closest facility to client Dj ; ties are resolved in an arbitrary but fixed way.

The ordering of the facilities is depicted in Figure 2, which also includes information
about the fractional opening of facilities in y∗, i.e., facility Fi is represented by an interval of
length y∗i . The total length of all intervals equals k. Next, we subdivide each interval into a
set of (small) ε-size pieces (called ε-subintervals); ε is selected so that 1/ε, and y∗i/ε for each i,
are integers. Note that the values y∗i , which originate from the solution returned by an LP
solver, are rational numbers. The subdivision of [0, k] into ε-subintervals is shown in Figure 2
on the "(Zr)r∈{1,2,...,k/ε}" level.

The idea behind introducing the ε-subintervals is the following. Although computationally
the algorithm applies DR to the y∗ variables, for the sake of the analysis we may think
that the DR process is actually rounding z variables corresponding to ε-subinterval under
the additional assumption that rounding within individual facilities is done before rounding
between facilities. Formally, we replace the vector Y = (Y1, Y2, . . . , Ym) by an equivalent
vector of random variables Z = (Z1, Z2, . . . , Zk/ε). Random variable Zr represents the r-th
ε-subinterval. We will use the following notation to describe the bundles of ε-subintervals
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client Dj

ordered facilities

c�;j c2;j c3;j c4;j cm;j

y�
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2 y�
3 y�

4 y�m

1 2 k0

�Zr)r2f�;2;:::;k=�g
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distances

F� F2 F3 F4 Fm

�
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Figure 2 Ordering of the facilities by ci,j for the chosen client Dj . Definitions of the variables Yi,
Zr and of the indices sub(i) and submax(i).

that correspond to particular facilities:

submax(0) = 0 and submax(i) = submax(i− 1) + y∗i
ε
, (6)

sub(i) = {submax(i− 1) + 1, . . . , submax(i)}. (7)

Intuitively, sub(i) is the set of indexes r such that Zr represents an interval belonging to the
i-th facility. Examples for both definitions are shown in Figure 2 in the upper level. Formally,
the random variables Zr are defined so that:

Yi =
∑

r∈sub(i)

Zr and Yi = 1 =⇒ ∃! r ∈ sub(i) Zr = 1. (8)

For each r ∈ {1, 2, . . . , k/ε} we can write that:

Pr[Zr = 1] = Pr[Zr = 1
∣∣Ysub−1(r) = 1] · Pr[Ysub−1(r) = 1] = ε

y∗sub−1(r)
· y∗sub−1(r) = ε (9)

and Pr[Zr = 0] = 1− ε, hence E[Zr] = ε. Also we have:

Pr [Yi = 1] = Pr

 ∑
r∈sub(i)

Zr = 1

 = Pr

 ∨
r∈sub(i)

Zr = 1

 =
∑

r∈sub(i)

Pr [Zr = 1] . (10)

When Yi = 1 its representative is chosen randomly among (Zr)r∈sub(i) independently of the
choices of representatives of other facilities. Therefore

∀i∈[m] ∀r∈sub(i) E [f(Y ) | Yi = 1] = E [f(Y ) | Yi = 1 ∧ Zr = 1] , (11)

for any function f on vector Y = (Y1, Y2, . . . , Ym). Now we are ready to analyze the expected
cost for any client Dj ∈ D. Here we use the special assumption on the harmonic weights.
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E[costj(Y )] ≤
m∑
i=1

(
E

[
cij

1 +∑i−1
i′=1 Yi′

∣∣∣∣∣Yi = 1
]
· Pr [Yi = 1]

)

(10)=
m∑
i=1

cij · E[ 1
1 +∑i−1

i′=1 Yi′

∣∣∣∣∣Yi = 1
]
·
∑

r∈sub(i)
Pr [Zr = 1]


=

m∑
i=1

cij · ∑
r∈sub(i)

E

[
1

1 +∑i−1
i′=1 Yi′

∣∣∣∣∣Yi = 1
]
· Pr [Zr = 1]


(11)=

m∑
i=1

cij · ∑
r∈sub(i)

E

[
1

1 +∑i−1
i′=1 Yi′

∣∣∣∣∣Yi = 1 ∧ Zr = 1
]
· Pr [Zr = 1]


(8),(9)=

m∑
i=1

ε · cij · ∑
r∈sub(i)

E

[
1

1 +∑submax(i−1)
r′=1 Zr′

∣∣∣∣∣Zr = 1
]

(8)=
m∑
i=1

ε · cij · ∑
r∈sub(i)

E

[
1

1 +∑r−1
r′=1 Zr′

∣∣∣∣∣Zr = 1
] (12)

W.l.o.g., assume that OPTLP
j > 0. Hence the approximation ratio for any client Dj is

E[costj(Y )]
OPTLP

j

(7),(12)
≤

k/ε∑
r=1

ε · csub−1(r),j · E

[
1

1 +
∑r−1
r′=1 Zr′

∣∣∣∣Zr = 1
]

k/ε∑
r=1

ε · csub−1(r),j · 1
drεe

=

note that sub−1(r) is an index of a facility that contains Zr. Now we convert the sum over
facilities into a sum over unit intervals. A unit interval is represented as a sum of 1/ε many
ε-subintervals:

=

k∑
`=1

/̀ε∑
r=(`−1)/ε+1

csub−1(r),j · E

[
1

1 +
∑r−1
r′=1 Zr′

∣∣∣∣Zr = 1
]

k∑
`=1

/̀ε∑
r=(`−1)/ε+1

csub−1(r),j · 1
`

≤

W.l.o.g., we can assume that first interval has non-zero costs:
∑1/ε
r=1 csub−1(r),j > 0, otherwise

the LP pays 0 and our algorithm pays 0 in expectation on intervals from non-empty prefix of
(1, 2, . . . , k). With this assumption we can take maximum over intervals:

Lemma 17 in [6]
≤ max

`∈[k]



/̀ε∑
r=(`−1)/ε+1

csub−1(r),j · E

[
1

1 +
∑r−1
r′=1 Zr′

∣∣∣∣Zr = 1
]

/̀ε∑
r=(`−1)/ε+1

csub−1(r),j · 1
`

 ≤

Costs csub−1(r),j can be general and they could be hard to analyze. Therefore we would like
to remove costs from the analysis. We will use Lemma 18 from [6] for which the technique of
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splitting variables Yi into Zr was needed. We are using the fact that the variables Zr have
the same expected values; otherwise the coefficient in front of the expected value would be
cij · y∗i , i.e., not monotonic. Thus

Lemma 18 in [6]
≤ max

`∈[k]

ε · ` · /̀ε∑
r=(`−1)/ε+1

E

[
1

1 +∑r−1
r′=1 Zr′

∣∣∣∣Zr = 1
] . (13)

Consider the expected value in the above expression for a fixed r ∈ {(`−1)/ε + 1, . . . , /̀ε}:

Er = E

[
1

1 +∑r−1
r′=1 Zr′

∣∣∣∣Zr = 1
]

=
k∑
t=1

1
t
Pr
[
r−1∑
r′=1

Zr′ = t− 1
∣∣∣∣Zr = 1

]
=

=
∑̀
t=1

1
t
Pr
[
r−1∑
r′=1

Zr′ = t− 1
∣∣∣∣Zr = 1

]
+

k∑
t=`+1

1
t
Pr
[
r−1∑
r′=1

Zr′ = t− 1
∣∣∣∣Zr = 1

]
. (14)

For t ∈ {1, 2, . . . , `} we consider the conditional probability in the above expression, denote
it by pr(t− 1), and analyze the corresponding cumulative distribution function Hr(t− 1):

pr(t− 1) = Pr
[
r−1∑
r′=1

Zr′ = t− 1
∣∣∣∣Zr = 1

]
, (15)

Hr(t− 1) = Pr
[
r−1∑
r′=1

Zr′ ≤ t− 1
∣∣∣∣Zr = 1

]
=

t−1∑
t′=0

pr(t′), (16)

We continue the analysis of Er:

Er
(14),(15)=

∑̀
t=1

1
t
pr(t− 1) +

k∑
t=`+1

1
t
pr(t− 1)

(16)= Hr(0) +
∑̀
t=2

1
t

(Hr(t− 1)−Hr(t− 2)) +
k∑

t=`+1

1
t
pr(t− 1)

= Hr(0) +
∑̀
t=2

1
t
Hr(t− 1)−

∑̀
t=2

1
t
Hr(t− 2) +

k∑
t=`+1

1
t
pr(t− 1)

=
∑̀
t=1

1
t
Hr(t− 1)−

`−1∑
t=1

1
t+ 1Hr(t− 1) +

k∑
t=`+1

1
t
pr(t− 1)

=
`−1∑
t=1

1
t
Hr(t− 1)−

`−1∑
t=1

1
t+ 1Hr(t− 1) + 1

`
Hr(`− 1) +

k∑
t=l+1

1
t
pr(t− 1)

≤
`−1∑
t=1

(
1
t
− 1
t+ 1

)
Hr(t− 1) + 1

`

(
Hr(`− 1) +

k∑
t=`+1

pr(t− 1)
)

=
`−1∑
t=1

1
t(t+ 1)Hr(t− 1) + 1

`

(
Hr(`− 1) +

k∑
t=`+1

pr(t− 1)
)

≤
`−1∑
t=1

1
t(t+ 1)Hr(t− 1) + 1

`
. (17)

I Lemma 7. For any ` ∈ [k], t ∈ [`− 1] and r ∈ {(`−1)/ε + 1, (`−1)/ε + 2, . . . , /̀ε} we have

Hr(t− 1) ≤ e−r·ε ·
(e · r · ε

t

)t
.
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The proof of Lemma 7 combines the use of the BNA property of variables {Z1, Z2, . . . , Zk/ε}
with applications of Chernoff-Hoeffding bounds. Due to the space constraints, the proof is
moved to the full version of the paper [6, Appendix C]. In the end, we get the following
bound on the approximation ratio.

I Lemma 8. For any j ∈ [n] we have

E[costj(Y )]
OPTLP

j

≤ 2.3589.

A proof uses inequalities (13), (17) as well as Lemma 7 with an upper bound derived by
an integral of the function ft(x) = e−x. We made numerical calculation for ` ∈ {1, 2, . . . , 88}
and for other case we used Stirling formula and Taylor series for e` to derive analytical
upper bound. Full proof, including a plot of numericaly obtained values, is presented in [6,
Appendix C].

3 OWA k-median with Costs Satisfying the Triangle Inequality

In this section we construct an algorithm for OWA k-median with costs satisfying the
triangle inequality. Thus, the problem we address in this section is more general than
Harmonic k-median (i.e., the problem we have considered in the previous section) in a
sense that we allow for arbitrary non-increasing sequences of weights. On the other hand, it
is less general in a sense that we require the costs to form a specific structure (a metric).

In our approach we first adapt the algorithm of Hajiaghayi et al. [17] for Fault Tolerant
k-median so that it applies to the following, slightly more general setting: for each client Dj

we introduce its multiplicity mj ∈ N – intuitively, this corresponds to cloning Dj and co-
locating all such clones in the same location as Dj . However, this will require a modification
of the original algorithm for Fault Tolerant k-median, since we want to allow the
multiplicities {mj}Dj∈D to be exponential with respect to the size of the instance (otherwise,
we could simply copy each client a sufficient number of times, and use the original algorithm
of Hajiaghayi et al.).

Next, we provide a reduction from OWA k-median to such a generalization of Fault
Tolerant k-median. The resulting Fault Tolerant k-median with Clients Multi-
plicities problem can be cast as the following integer program:

min
n∑
j=1

m∑
i=1

mj · xij · cij

m∑
i=1

yi = k

m∑
i=1

xij = rj ∀j ∈ [n]

xij ≤ yi ∀i ∈ [m], j ∈ [n]
yi, xij ∈ {0, 1} ∀i ∈ [m]
mj ∈ N ∀j ∈ [n]

I Theorem 9. There is a polynomial-time 93-approximation algorithm for Metric Fault
Tolerant k-median with Clients Multiplicities.

Proof can be found in [6, Appendix D]. Consider reduction from OWA k-median to
Fault Tolerant k-median with Clients Multiplicities depicted on Figure 3.

I Lemma 10. Let I be an instance of OWA k-median, and let I ′ be an instance of Fault
Tolerant k-median with Clients Multiplicities constructed from I through reduction
from Figure 3. An α-approximate solution to I ′ is also an α-approximate solution to I.

Proof can be found in [6, Appendix D].
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I Reduction. Let us take an instance I of OWA k-median
(
D,F , k, w, {cij}Fi∈F ,Dj∈D

)
where wi = pi

qi
, i ∈ [k] are rational numbers in the canonical form. We construct an

instance I ′ of Fault Tolerant k-median with Clients Multiplicities with the
same set of facilities and the same number of facilities to open, k. Each client Dj ∈ D is
replaced with clients Dj,1, Dj,2, . . . , Dj,k with requirements 1, 2, . . . , k, respectively. For
Q =

∏k
r=1 qr, the multiples of the clients are defined as follows:

mj,` = (w` − w`+1) ·Q, for each ` ∈ [k − 1], and
mj,k = wk ·Q.

Figure 3 Reduction from OWA k-median to Fault Tolerant k-median with Clients
Multiplicities.

I Corollary 11. There exists a 93-approximation algorithm for Metric OWA k-median
that runs in polynomial time.

4 Concluding Remarks and Open Questions

We have introduced a new family of k-median problems, called OWA k-median, and we have
shown that our problem with the harmonic sequence of weights allows for a constant factor
approximation even for general (non-metric) costs. This algorithm applies to Proportional
Approval Voting. In the analysis of our approximation algorithm for Harmonic k-median,
we used the fact that the dependent rounding procedure satisfies Binary Negative Association.

We showed that any Metric OWA k-median can be approximated within a factor
of 93 via a reduction to Fault Tolerant k-median with Clients Multiplicities.
We also obtained that OWA k-median with p-geometric weights with p < 1/e cannot be
approximated without the assumption of the costs being metric. The status of the non-metric
problem with p-geometric weights with p > 1/e remains an intriguing open problem.

Using approximation and randomized algorithms for finding winners of elections requires
some comment. First, the multiwinner election rules such as PAV have many applications in
the voting theory, recommendation systems and in resource allocation. Using (randomized)
approximation algorithms in such scenarios is clearly justified. However, even for other high-
stake domains, such as political elections, the use of approximation algorithms is a promising
direction. One approach is to view an approximation algorithm as a new, full-fledged voting
rule (for more discussion on this, see the works of Caragiannis et al. [7, 8], Skowron et al. [30],
and Elkind et al. [13]). In fact, the use of randomized algorithms in this context has been
advocated in the literature as well – e.g., one can arrange an election where each participant
is allowed to suggest a winning committee, and the best out of the suggested committees is
selected; in such case the approximation guaranty of the algorithm corresponds to the quality
of the outcome of elections (for a more detailed discussion see [30]) 2. Nonetheless, we think
that it would be beneficial to learn whether our algorithm can be efficiently derandomized.

2 Indeed, approximation algorithms for many election rules have been extensively studied in the literature.
In the world of single-winner rules, there are already very good approximation algorithms known for
the Kemeny’s rule [2, 10, 21] and for the Dodgson’s rule [27, 19, 7, 14, 8]. A hardness of approximation
has been proven for the Young’s rule [7]. For the multiwinner case we know good (randomized)
approximation algorithms for Minimax Approval Voting [11], Chamberlin–Courant rule [30], Monroe
rule [30], or maximization variant of PAV [29].
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Abstract
We show that popular hardness conjectures about problems from the field of fine-grained com-
plexity theory imply structural results for resource-based complexity classes. Namely, we show
that if either k-Orthogonal Vectors or k-CLIQUE requires nεk time, for some constant ε > 1/2,
to count (note that these conjectures are significantly weaker than the usual ones made on these
problems) on randomized machines for all but finitely many input lengths, then we have the
following derandomizations:

BPP can be decided in polynomial time using only nα random bits on average over any
efficient input distribution, for any constant α > 0
BPP can be decided in polynomial time with no randomness on average over the uniform
distribution

This answers an open question of Ball et al. (STOC ’17) in the positive of whether deran-
domization can be achieved from conjectures from fine-grained complexity theory. More strongly,
these derandomizations improve over all previous ones achieved from worst-case uniform assump-
tions by succeeding on all but finitely many input lengths. Previously, derandomizations from
worst-case uniform assumptions were only know to succeed on infinitely many input lengths. It
is specifically the structure and moderate hardness of the k-Orthogonal Vectors and k-CLIQUE
problems that makes removing this restriction possible.

Via this uniform derandomization, we connect the problem-centric and resource-centric views
of complexity theory by showing that exact hardness assumptions about specific problems like
k-CLIQUE imply quantitative and qualitative relationships between randomized and determin-
istic time. This can be either viewed as a barrier to proving some of the main conjectures of
fine-grained complexity theory lest we achieve a major breakthrough in unconditional derandom-
ization or, optimistically, as route to attain such derandomizations by working on very concrete
and weak conjectures about specific problems.
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1 Introduction

Computational complexity can be viewed through two main perspectives: problem-centric
or resource-centric. Problem-centric complexity theory asks what resources are required
to solve specific problems, while resource-centric complexity deals with the relative power
of different computational models given different resource budgets such as time, memory,
non-determinism, randomness, etc. (see [17] for a discussion). Through complete problems,
these two perspectives often coincide, so that a resource-centric view acts as a fine proxy
for answering questions about the complexity of specific problems. The rapidly progressing
field of fine-grained complexity theory, however, brings attention back to the problem-centric
viewpoint, raising fine distinctions even between problems complete for the same complexity
class, and making connections between problems at very different levels of complexity. To
what extent are these two approaches linked, i.e., to what extent can inferences about the
fine-grained complexities of specific problems be made from general assumptions about
complexity classes, and vice versa?

Here, we examine such links between the fine-grained complexity of specific problems
such as the k-Orthogonal Vectors and k-CLIQUE problems and general results about deran-
domization of algorithms. Derandomization has been a very fruitful study in complexity
theory, with many fascinating connections between lower bounds, showing that problems
require large amounts of resources to solve, and upper bounds, showing that classes of
probabilistic algorithms can be ‘derandomized’ by simulating them deterministically in a
non-trivial fashion. In particular, the hardness-to-randomness framework shows that in many
cases, the existence of any “hard” problem can be used to derandomize classes of algorithms.
We reconsider this framework from the fine-grained, problem-centric perspective. We show
that replacing a generic hard problem with specific hardness conjectures from fine-grained
complexity leads to quantitatively and qualitatively stronger derandomization results than
one gets from the analogous assumption about a generic problem. In particular, we show
that starting from these assumptions, we can simulate any polynomial-time probabilistic
algorithm (on any samplable distribution on inputs with a very small fraction of errors) by a
polynomial time probabilistc algorithm that uses only nα random coins, for any α > 0. This
type of derandomization previously either assumed the existence of cryptographic One-Way
Functions or exponential non-uniform hardness of Boolean functions.

Thus, the problem-centric conjectures of fine-grained complexity cannot live in isolation
from classical resource-centric consequences about the power of randomness. Viewed another
way, our results can be seen as a barrier to proving some of the key hardness assumptions used
by fine-grained complexity theory. That is, despite recent progress towards proving hardness
for k-Orthogonal Vectors, one of fine-grained complexity’s key problems, in restricted models
of computation [29], doing so for general randomized algorithms would immediately prove
all problems in BPP are easy on average (over, say, uniformly chosen inputs).

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.27
https://eccc.weizmann.ac.il/report/2018/092/
https://eccc.weizmann.ac.il/report/2018/092/
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1.1 Our Results
We obtain two main theorems about the power of BPP from uniform worst-case assump-
tions about well-studied problems from fine-grained complexity theory. We consider the
k-Orthogonal Vectors (k-OV) and the k-CLIQUE problems, defined and motivated in Sec-
tion 2.1, and show that (even weaker versions of) popular conjectures about their hardness
give two flavors of average-case derandomization that improve over the classical uniform
derandomizations.

All previous derandomizations from uniform assumptions on worst-case hardness only
succeed on infinitely many input lengths. Our work is the first to use worst-case uniform
assumptions to derandomize BPP for all but finitely many input lengths, giving a standard
inclusion. The only other worst-case uniform assumptions known to imply such results are
those so strong as to imply cryptographic assumptions or circuit lower bounds, fitting closer
to the cryptographic or non-uniform derandomization literature. In contrast, our uniform
derandomizations are from extremely weak worst-case uniform conjectures on simple, natural,
combinatorial problems. Informally, we prove the following:

I Informal Theorem 1. If k-OV or k-CLIQUE requires nεk time, for some constant ε > 1/2,
to count on randomized machines in the worst-case for all but finitely many input lengths,
then BPP can be decided in polynomial time using only nα random bits on average over
any efficient input distribution, for any constant α > 0.

Randomness can be removed entirely by simply brute-forcing all random bits and taking
the majority of the outputs to give the following more standard full derandomization.

I Corollary. If k-OV or k-CLIQUE requires nεk time, for some constant ε > 1/2, to count
on randomized machines in the worst-case for all but finitely many input lengths, then BPP
can be decided with no randomness in sub-exponential time on average over any efficient
input distribution.

This conclusion is strictly stronger than the classic uniform derandomizations of [25, 38].
The weakest uniform assumption previously known to imply such a conclusion was from those
already strong enough to imply the cryptographic assumption of the existence of One-Way
Functions that are hard to invert for polynomial time adversaries [9, 19, 20, 23, 42] or those
implying non-uniform circuit lower bounds [4].

Our second main theorem, using techniques from [31], shows how to remove all random-
ness within polynomial time if the distribution over inputs is uniform. The only stronger
derandomization from uniform assumptions were, again, from those already strong enough
to imply circuit lower bounds or the cryptographic assumption of the existence of One-Way
Permutations that require exponential time to invert [9, 20, 42].

I Informal Theorem 2. If k-OV or k-CLIQUE require nεk time, for some constant ε > 1/2,
to count on randomized machines in the worst-case for all but finitely many input lengths,
then BPP can be decided in polynomial time with no randomness on average over the
uniform distribution.

1.2 Related Work
Connections Between Problem-Centric and Resource-Centric Complexity. Most connec-
tions from problem-centric to resource-centric complexity show that faster algorithms for
OV or related problems give circuit lower bounds. For instance, improvements in EDIT-
DISTANCE algorithms imply circuit lower bounds [2] and solving OV faster (and thus
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CNF-SAT [40]) implies circuit lower bounds [26]. These are all non-uniform results, how-
ever, whereas in this paper we are concerned with machines and their resource-bounds as
opposed to circuits. On the uniform side, [18] recently showed that the exact complexity
of k-Orthogonal Vectors is closely related to the complexity of uniform AC0, although a
connection between more powerful machine models and fine-grained assumptions was still
not known until now. Further, most of these results follow from OV being easy. Our work
shows instead that there are interesting resource-centric consequences if our fine-grained
problems are hard.

Uniform Derandomization Framework. The uniform derandomization framework was in-
troduced in [25], a breakthrough paper that showed the first derandomization from a
uniform assumption (EXP 6= BPP) in the low-end setting: a weak assumption gives a slow
(subexponential-time) deterministic simulation of BPP. This is in contrast to our simulation
which retains small amounts of randomness but is fast (this is a strictly stronger result as it
recovers the [25] derandomization as a corollary).

We build on [38], which simplifies the proof of [25] to prove that PSPACE 6= BPP implies
a non-trivial deterministic simulation of BPP. The technique of [38] carefully arithmetizes
the PSPACE-complete problem TQBF and uses this as a hard function in the generator of
[25]. Our proof substitutes a carefully-arithmetized k-OV problem from [8]. Numerous other
works study derandomization from uniform assumptions ([27, 33, 24, 22, 37]), but these all
focus on assumptions and consequences about nondeterministic classes.

All worst-case uniform derandomizations, including [38] and [25], seem to only be able to
achieve simulations of BPP that succeed for infinitely many input lengths because of how
their proofs use downward self-reductions. Our is the first work to achieve simulations on
all but finitely many input lengths, because the k-OV and k-CLIQUE-inspired problems have
very parallelizable downward self reductions so that we can reduce to a single much smaller
input length rather than recurse through a chain of incrementally smaller input lengths in
our downward self-reduction.

Heuristics by Extracting Randomness From the Input. A separate line of work began when
[21] introduced the idea of using the input itself as a source of randomness to heuristically
simulate randomized algorithms over uniformly-distributed inputs. While their assumptions
contain oracles and are mostly non-uniform and average-case, they construct an algebraic
problem inside P whose worst-case uniform hardness can be used in the framework of [25]
to get an infinitely-often simulation of BPP in polynomial time. Our work differs in that
we achieve an almost-everywhere simulation, that our assumptions are based on canonical
fine-grained problems, and that our assumptions aren’t against machines with SAT-oracles.
Further, the downward self-reduction of their problem requires an expansion by minors of
the determinant and so they cannot also obtain an almost-everywhere heuristic using our
techniques without placing the determinant in NC1 (as our modification to [25] exploits
embarrassingly parallel downward self reductions).

The work of [31], generalizing [36], removes the SAT-oracles needed in the assumptions of
[21] by showing that the Nisan-Wigderson generator (see [35]) remains secure against non-
uniform adversaries even if the seed is revealed to potential distinguishers. In Section 3.2.2
we will show their arguments can be made uniform so we can derandomize from uniform
assumptions. Seed-revealing Nisan-Wigderson generators are used in [31] to obtain polynomial-
time heuristics for randomized algorithms, where the uniformly distributed input is used
as a seed to the generator. The derandomizations in [31] are achieved from non-uniform
assumptions of polynomial average-case hardness. From worst-case uniform assumptions we
achieve the same derandomizations.
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2 Preliminaries

All complexity measures of fine-grained problems will refer to time on a randomized word
RAM with O(log(n))-bit word length, as is standard for the fine-grained literature [41, 8].
Specifically, we will consider two-sided bounded error as in [8].

2.1 Fine-Grained Hardness
The problem-centric field of fine-grained complexity theory has had impressive success in
showing the fixed polynomial time (“fine-grained”) hardness of many practical problems by
assuming the fine-grained hardness of four “key” well-studied problems, as discussed in [8].
We obtain our results under hardness conjectures about two of these four key problems: the
k-Orthogonal Vectors (k-OV) problem and the k-CLIQUE problem.

k-CLIQUE. Denote the matrix multiplication constant by ω. The fastest known algorithm
for deciding if a graph has a k-CLIQUE (given its adjacency matrix) runs in time O(nωk/3),
and was discovered in 1985 [34] for k a multiple of three (for other k different ideas are needed
[14]). It is conjectured that no algorithm can improve the exponent to a better constant.
The parameterized version of the famous NP-hard MAX-CLIQUE problem [30], k-CLIQUE is
one of the most heavily studied problems in theoretical computer science and is the canonical
intractable (W[1]-complete) problem in parameterized complexity (see [1] for a review of the
copious evidence of k-CLIQUE’s hardness and consequences of its algorithm’s exponent being
improved). Recent work has shown that conjecturing k-CLIQUE to require nωk/3−o(1) time,
for k a multiple of three, leads to interesting hardness results for other important problems
such as parsing languages and RNA folding [1, 12, 5, 7], and it is known that refuting this
conjecture deterministically would give a faster exact algorithm for MAX-CUT [40]. Our
results hold under a much weaker version of the conjecture:

I Definition 1 (Weak k-CLIQUE Conjecture). There exists an absolute constant ε0 > 1/2
such that, for all k ∈ N a multiple of three, any randomized algorithm that counts the number
of k-CLIQUE’s in an n node graph requires nε0k time.

Note that this conjecture gives leeway for the exponent of the k-CLIQUE algorithm to
be improved so long as it doesn’t get down to k/2; even finding a linear time algorithm for
Boolean matrix multipliaction (ω = 2) would not contradict this conjecture! Further, even if
it is possible to decide the k-CLIQUE problem that quickly, this conjecture still holds unless
it is possible to count all of the k-CLIQUE’s in that time.

k-Orthogonal Vectors. Although the k-CLIQUE problem is certainly at least as important
as the k-OV problem, for concreteness we will use the k-OV problem to demonstrate our
techniques throughout the paper. Proofs based on hardness of k-CLIQUE follow identically.

I Definition 2 (k-Orthogonal Vectors Problem, k-OVn,d). For an integer k ≥ 2, the k-OVn,d
problem on vectors of dimension d is to determine, given k sets (U1, . . . , Uk) of n vectors
from {0, 1}d each, whether there exist ui ∈ Ui for each i such that over Z,∑

`∈[d]

u1` · · ·uk` = 0

If left unspecified, d is to be taken to be d(n) =
⌈
log2 n

⌉
.
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I Definition 3 (k-Orthogonal Vectors Conjecture, k-OVC). For any d = ω(log n), for all k ≥ 2,
any randomized algorithm for the k-OVn,d problem requires nk−o(1) time.

For k = 2 the Orthogonal Vectors conjecture for deterministic algorithms has been
extensively studied and is supported by the Strong Exponential Time Hypothesis (SETH)
[40], which states that there is no ε > 0 such that t-SAT can be solved in time Õ(2n(1−ε)) for
all values of t. The natural generalization to k-OV is studied in [8, 18] and its deterministic
hardness is also supported by SETH. While SETH has been controversial , the deterministic
k-OV conjecture seems to be a much weaker assumption and is independently believable and
supported: it has been shown that it holds unless all first-order graph properties become
easy to decide [18] and the 2-OV conjecture has recently been proven unconditionally when
the model of computation is restricted to branching programs [29]. This conjecture has also
been used to support the hardness of many practical and well-studied fine-grained problems
[3, 6, 13]. As with k-CLIQUE, our main results will hold using a much weaker version of the
randomized k-OV conjecture introduced below.

I Definition 4 (Weak k-Orthogonal Vectors Conjecture). For any d = ω(log n), there exists
an absolute constant ε0 > 1/2 such that, for all k ≥ 2, any randomized algorithm counting
the number of k-OVn,d solutions requires nε0k time.

I Remark. For all of these conjectures we will also consider the strengthened versions that
assume that all algorithms running in time less than what is required will fail on all but
finitely many input lengths, as opposed to only on infinitely many input lengths. For natural
problems we expect that hardness grows, instead of oscillates, asymptotically.

For the purposes of derandomization, for a given k, we will use a family of polynomials
introduced in [8],

{
fkn,d,p : Fkndp → Fp

}
n,d,p∈N

, such that the variables are grouped into sets

of size nd in the form of a matrix Ui ∈ F n×d
p where the n rows ui ∈ Ui are each collections

of d variables:

fkn,d,p(U1, . . . , Uk) =
∑

u1∈U1,...,uk∈Uk

∏
`∈[d]

(1− u1` · · ·uk`)

The worst-case hardness of evaluating these polynomials was related to the worst-case
hardness of k-OVn in [8].

I Lemma 5. Let p be the smallest prime number larger than nk and d =
⌈
log2(n)

⌉
. If fkn,d,p

can be computed in O(nk/2+c) time for some c > 0, then k-OVn can be counted in time
Õ(nk/2+c)

Derandomization from uniform assumptions typically requires two other properties of the
assumed hard problem: random self-reducibility and downward self-reducibility. We recall
from [8] that fkn,d,p satisfies both of these properties. We give a polynomial for k-CLIQUE
and show that it also has the necessary properties in the full version.

Random Self-Reducible. fkn,d,p is random self-reducible by the following classical lemma
[32, 15] (see [8] for a proof). Note that degree log2 n adds negligibly to the random self-
reduction time.

I Lemma 6 (Random Self-Reducibility of Polynomials). If f : FNP → FP is a degree 9 <

D < P/12 polynomial, then there exists a randomized algorithm that takes a circuit Ĉ
3/4-approximating f and produces a circuit C exactly computing f , such that the algorithm
succeeds with high probability and runs in time poly(N,D, logP, |Ĉ|).
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Downward Self-Reducible. We will show that fkn,d,p is downward self-reducible in the sense
that, if we we have a way to produce an oracle for fk√

n,d,p
, we can quickly compute fkn,d,p

with it. Compare this to downward self reducibility going from input size n to n − 1 in
previous uniform derandomizations. We exploit our more dramatic shrinkage and parallelism
to later give an almost-everywhere derandomization, instead of an infinitely-often one. The
proof of the following lemma is in the full version.

I Lemma 7. If there exists an algorithm A that, on input 1n, outputs a circuit C computing
fk√

n,d,p
, then there exists an algorithm that computes fkn,d,p in time O(nk/2|C|+ TIME(A)).

2.2 Derandomization

We now define pseudorandom generators (PRGs) in terms of their distinguishers.

I Definition 8 (Distinguishers). A test T : {0, 1}m` → {0, 1} is an ε-distinguisher against
G : {0, 1}m → {0, 1}m` , denoted T ∈ DIS(G, ε), if:∣∣∣∣ Pr

r∼U
m`

[T (r)]− Pr
z∼Um

[T (G(z))]
∣∣∣∣ > ε

We also will consider the seemingly weaker object of distinguishers that succeed if they are
also given the seed to the PRG. These were studied in [38] to relate uniform derandomization
to average-case hardness and in [31] to derandomize over the uniform distribution by using
the random input itself as the seed to the PRG.

I Definition 9 (Seed-Aware Distinguishers). A test T : {0, 1}m × {0, 1}m` → {0, 1} is an
ε-seed-aware distinguisher against G, denoted T ∈ DIS(G, ε), if:∣∣∣∣ Pr

x∼Um,r∼Um`
[T (x, r)]− Pr

x∼Um
[T (x,G(x))]

∣∣∣∣ > ε

Standard hardness-to-randomness arguments typically derandomize using generators
that are based on some ‘hard’ function by contrapositive: if derandomization fails, then
a distinguisher for the generator can be produced. Further, from a distinguisher, we can
create a small circuit for the supposedly hard function that the generator was based on. For
our purposes, we require an algorithmic version of this argument for derandomization from
uniform hardness assumptions. More specifically, we will use the following lemma which was
originally proved for distinguishers [38, 25] but Lemma 2.9 of [31] proves that it also holds
for seed-aware distinguishers (while the proof of [31] is non-uniform, it is easy to see that
it can be made constructive, in the same way that [25] gave a constructive version of [35]).
Thus, DIS(G, ε) in the lemma below can be thought to refer to either regular or seed-aware
distinguishers (which justifies overloading this notation).

I Lemma 10 (Algorithmic Distinguishers to Predictors ([38, 25])). For every random self-
reducible f , there exists a function G with stretch m bits to m` bits and a constant c such
that

G(z) is in time (|z|`)c with oracle access to f on inputs of length at most |z|
There exists a polynomial-time randomized algorithm A that, with high probability, given
as input circuit D ∈ DIS(G, ε) for ε at least inverse polynomial and an oracle for f , prints
a circuit computing f exactly.
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2.3 Uniform Derandomization
Average-Case Tractability. We give standard definitions of average-case tractability (for
an extensive survey of these notions, see [10]).

I Definition 11 (t(n)-Samplable Ensemble). An ensemble µ = {µn} is t(n)-samplable if there
is a randomized algorithm A that, on input a number n, outputs a string in {0, 1}∗ and:

A runs in time at most t(n) on input n, regardless of its internal coin tosses
for every n and for every x ∈ {0, 1}∗, Pr[A(n) = x] = µn(x)

With this notion of samplable ensemble we can now consider heuristic algorithms that
perform well on some language L : {0, 1}∗ → {0, 1} over some µ. The pair (L, µ) is a
distributional problem.

I Definition 12 (Heuristics for Distributional Problems). For t : N→ N, δ : N→ R+, we say
(L, µ) ∈ Heurδ(n)DTIME[t(n)] if there is a time t(n) deterministic algorithm A such that, for
all but finitely many n: Prx∼µn [A(x) 6= L(x)] ≤ δ(n).

For a class of languages C we say (C, µ) ∈ Heurδ(n)DTIME[t(n)] if (L, µ) ∈
Heurδ(n)DTIME[t(n)] for all L ∈ C. As in [10], HeurδP is defined as the union over all
polynomials p of HeurδDTIME(p(n)) and HeurP is the intersection over all inverse polyno-
mial δ(n) of HeurδP. HeurSUBEXP is defined similarly where SUBEXP = ∩ε>0DTIME

[
2nε
]
.

Finally, to discuss the randomness-reduced simulations we construct, we define BPTIME with
a limited number of random coins in the natural way.

I Definition 13 (Randomized Heuristics with Bounded Coins). For t : N→ N, δ : N→ R+,
and coin bound r : N→ N we say (L, µ) ∈ Heurδ(n)BPTIME[r(n)][t(n)] if there is randomized
algorithm A running in time t(n) and flipping r(n) coins such that, for all but finitely many
n: Prx∼µn

[
Prr∼Ur(n) [A(x, r) 6= L(x)] > 1/3

]
≤ δ(n)

For example, HeurBPP[r(n)] denotes the class of distributional problems that, for every
inverse polynomial error, have a polynomial time randomized algorithm using only r(n)
random coins.

Infinitely-Often Simulation. As opposed to an algorithm that decides a language (possibly
on average) “for all but finitely many n” as in Definition 12, an infinitely-often (io-) qualifier
can be added to any complexity class to specify that an algorithm need only succeed on
infinitely many input lengths within the time and error bounds. Thus, to derandomize BPP
into io-HeurP over the uniform distribution is to say that every language in BPP can be
simulated on average in polynomial time by an algorithm that is only guaranteed to succeed
for infinitely many input lengths. There is no guarantee on what those input lengths are or
how large the gaps could be between them. This is obviously a very undesirable notion of
‘tractability’.

Non-uniform hardness to randomness trade-offs can derandomize almost-everywhere (the
desired notion of tractability for asymptotics) by assuming almost-everywhere hardness:
that no algorithm works for all sufficiently large input lengths. That is, the ‘infinitely-
often’ qualifier on the consequent can be flipped across the implication to be an ‘almost-
everywhere’ qualifier on the assumption and vice-versa. Thus, the unrealistic ‘infinitely-often’
notion of tractability can be dropped by slightly strengthening the assumption to the (as
argued in Section 2.1’s remark) realistic ‘almost-everywhere’ hardness. For non-uniform
derandomizations this is possible.
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Starting with [25] and the techniques it introduced, all uniform derandomizations have
been infinitely-often derandomizations without being able to flip the io- qualifier to an
‘almost-everywhere’ assumption. Our work is the first that is able to do this in the uni-
form derandomization framework, thus removing the ‘infinitely-often’ qualifier from our
derandomizations.

3 Fine-Grained Derandomization

We will prove our main derandomization results (Theorems 17 and 20) here. Under either the
(weak) k-OV or k-CLIQUE conjectures, we derandomize BPP on average, where ‘on average’
will have two different flavors. Although all techniques apply to k-CLIQUE, for concreteness
we will use k-OV throughout this section.

We show in Section 3.1 that if we base pseudorandom generators on fkn,d,p, then an
algorithm printing distinguishers for this PRG can be used to count k-OV solutions quickly.
We will then show in Section 3.2 how to attain these distinguisher-printing algorithms if
derandomization doesn’t work on average (for both flavors of on average). Thus, a failed
derandomization using these PRGs refutes the k-OV conjecture (similarly for k-CLIQUE).

3.1 Counting k-OV from Distinguishers
In this section we show that any algorithm producing a distinguisher for Gf

k
m,d,p (the generator

guaranteed to exist from Lemma 14, using the hard function fkm,d,p) can be used to quickly
count k-OV solutions. First, Lemma 14 follows immediately by combining the distinguisher
to predictor algorithm of Lemma 10 with the fact that fkm,d,p is random self-reducible as in
Lemma 6.

I Lemma 14. There is a randomized algorithm Af
k
m,d,p that takes any circuit D that is a

distinguisher for Gf
k
m,d,p and produces a circuit C exactly computing fkm,d,p, such that A

succeeds with high probability and runs in time poly(m, d, log p, |D|)

As fkm,d,p is efficiently computable (unlike the hard problems of [25]) in time
O(mkpoly(d, log p)), we get the following theorem without an oracle by running the algorithm
guaranteed in Lemma 14 with each oracle call answered by naïve brute force computation of
fkm,d,p.

I Lemma 15. There is a randomized algorithm B that takes any circuit D that is a distin-
guisher for Gf

k
m,d,p and produces a circuit C of size poly(m, d, log p, |D|) exactly computing

fkm,d,p. B succeeds with high probability and runs in time O(mkpoly(m, d, log p, |D|)).

Now we show that, if we have an algorithm producing a distinguisher, then we have an
algorithm counting k-OV.

I Theorem 16. Let p be the smallest prime number larger than nk and d =
⌈
log2(n)

⌉
.

If there is an algorithm A that, on input 1n, outputs a distinguisher D of poly(n) size
for Gf

k√
n,d,p , then there exists a randomized algorithm counting k-OVn that runs in time

O(nk/2+c + TIME(A)), where c only depends on |D|.

Proof. Using A, we print a distinguisher circuit D for Gf
k√
n,d,p . Then, by Lemma 15, we

know there exists a randomized algorithm running in time O(nk/2poly(
√
n, d, log p, |D|)) =

O(nk/2+c1) that yields a circuit exactly computing fk√
n,d,p

of size only poly(
√
n, d, log p, |D|) =

O(nc2), where c1 and c2 only depend on |D|. Thus, by Lemma 7, there exists an algorithm
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computing fkn,d,p in time O(nk/2+c2 + (nk/2+c1 + TIME(A))) = O(nk/2+c + TIME(A)) for
c = max{c1, c2}. Finally, this gives us an algorithm running in time Õ(nk/2+c + TIME(A))
to count k-OVn by Lemma 5. J

3.2 Printing Distinguishers from Failed Derandomization
3.2.1 Randomness-Reduced Heuristics Over Any Efficient Distribution
Our first main result in derandomizing BPP is to reduce the amount of randomness required
to arbitrarily small quantities, over any efficient distribution of inputs. This simulation trades
time for reduced randomness under fine-grained hardness assumptions.

I Theorem 17. If the weak k-OV conjecture holds almost everywhere, then, for all polyno-
mially samplable ensembles µ and for all constants α > 0, (BPP, µ) ∈ HeurBPP[nα].

Thus, for any efficient distribution over inputs that nature might be drawing from and
for any inverse polynomial error rate we specify, we can simulate BPP using only nα random
bits for any constant α > 0 we want. In contrast to typical full derandomizations which
brute-force all seeds to a pseudorandom generator and take majority answer (which we can
also do with our randomness-reduced derandomization to get a subexponential-time full
derandomization), we show that choosing a single random seed and using the generator’s
output as our randomness yields randomness-reduced simulations so long as the generator
is efficient enough (which it typically is not; ‘quick’ complexity-theoretic PRGs are usually
given exponential time in their seed length).

I Definition 18 (Randomness-Reduced Simulations). Let A : {0, 1}N × {0, 1}N` → {0, 1}
be a randomized algorithm that uses N ` random bits and let G : {0, 1}Nα → {0, 1}N`

be a function. Then for constant α > 0, define the randomness-reduced simulation to be
a randomized algorithm B : {0, 1}N × {0, 1}Nα → {0, 1} using only Nα random bits as
B(x, r) = A(x,G(r)).

Lemma 19 states that if this simulation fails, we can uniformly print a distinguisher for
the function G. This proof is identical to that of Lemma 18 in [25] and is recalled in the full
version.

I Lemma 19 (Failed Randomness-Reduction to Distinguishers). Let A, B, and G be as in
Definition 18 such that for language L : {0, 1}N → {0, 1}, Prr∼U

N`
[A(x, r) 6= L(x)] ≤ 1/10.

That is, that A as a good randomized algorithm deciding L for all x ∈ {0, 1}N . Yet, also
assume that, for µ samplable in time Na1 and δ(n) = 1/Na2 , it holds that

Pr
x∼µN

[
Pr

r∼UNα
[B(x, r) 6= L(x)] > 1/3

]
≥ δ(N)

So B is a (randomness-reduced) randomized algorithm that does not decide L on average
over µ. Then 1N 7→ DIS(G, 1/5) is in randomized time N c TIME(G) for c depending on a1
and a2.

Randomness-Reduced Simulation from k-OV. To finish defining a randomness-reduced
simulation, we need to use a specific pseudorandom generator G that, for input length N ,
stretches Nα coins to N `. Thus, consider the family of simulations Bk using the standard
generators Gf

k√
n,d,p of Lemma 10 that map

√
n
s bits to

√
n
b bits, for some fixed s and

any b we choose, using fk√
n,d,p

as our hard function, for d = log2 n and p the smallest
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prime number larger than nk. Set b = s`/α and
√
n = Nα/s. Note that TIME(Gf

k√
n,d,p) =

poly(N) nk/2 = poly(N) by naïvely evaluating fk√
n,d,p

at each oracle call, giving an efficient

randomness-reduced simulation. Further, since N = poly(n), TIME(Gf
k√
n,d,p) also equals

nk/2+c for some constant c not depending on k (this will be useful in quickly counting k-OVn
using downward self-reducibility in the following proof). Thus, given an N `-coin machine
A, we have the Nα-coin machine Bk(x, r) = A

(
x,Gf

k√
n,d,p(r)

)
. We now prove our main

Theorem 17 using this simulation and the above lemma.

Proof of Theorem 17. We proceed by contradiction. Assume that the weak k-OVn conjec-
ture holds for all but finitely many input lengths, where ε0 = 1/2 + γ for some constant
γ > 0, but that there exists L ∈ BPP, a polynomially samplable distribution µ, constant α,
and an inverse polynomial function δ(N) such that any polynomial-time randomness-reduced
algorithm with coin bound Nα fails in deciding L on average over µ within δ(N) error for
infinitely many input lengths N .

Since L ∈ BPP there is a randomized algorithm A deciding L with probability of error at
most 1/10 over its randomness yet, since any polynomial-time randomness-reduced algorithm
fails to decide L on average, Bk, the randomness-reduced simulation of A described above,
fails on average infinitely often, for any constant k. Thus, the antecedents of Lemma 19 are
satisfied and we can uniformly print D ∈ DIS(Gf

k√
n,d,p , 1/5) in time nc1 TIME

(
Gf

k√
n,d,p

)
=

nc1 nc2nk/2.
This uniform printing of D allows us to apply Theorem 16 to count k-OVn in time

O(nk/2+c3 + nk/2+c1+c2) = O(nk/2+c) = O(n( 1
2 + c

k )k) for any k, where c = max{c1 + c2, c3}.
Setting k such that c

k < γ yields our contradictions: on the infinitely many input lengths
where Bk fails to derandomize L, the algorithm counts k-OV faster than nε0k time. J

3.2.2 Fast Heuristics for BPP Over the Uniform Distribution

Here we present our second flavor of derandomization: a fully deterministic heuristic for BPP
when inputs are sampled according to the uniform distribution.

I Theorem 20. If the weak k-OV conjecture holds almost everywhere, then
(BPP,U) ∈ HeurP.

This strictly improves previous uniform derandomizations over the uniform distribution.
Specifically, [21] can be seen to achieve our derandomization identically from a worst-case
uniform assumption if combined with techniques from [31] except only on infinitely many
input lengths.

We proceed by showing that if a PRG fails to give a good heuristic for BPP over the
uniform distribution, a seed-aware distinguisher for the PRG can be produced uniformly and
efficiently, which can then be used to count k-OV solutions quickly using Theorem 16.

I Definition 21 (Input-As-Seed Heuristics). Let A : {0, 1}N × {0, 1}N` → {0, 1} be a
polynomial-time randomized algorithm using N ` random bits. Let G : {0, 1}N → {0, 1}N`

be a deterministic function. Define the heuristic B : {0, 1}N → {0, 1} that uses its input as
G’s seed as B(x) = A(x,G(x)).

We prove a uniform analog of the Main Lemma of [31], which gave the consequences of
failed heuristics in the non-uniform setting. Namely, we prove:
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I Lemma 22 (Failed Heuristics to Distinguishers). Let A : {0, 1}N × {0, 1}N` → {0, 1} and
L : {0, 1}N → {0, 1} be functions such that Prx∼UN ,r∼UN` [A(x, r) 6= L(x)] ≤ ρ. Let B be the
input-as-seed heuristic for A using function G. Then, if B does not succeed on a (5ρ+ ε)
fraction of the inputs of a given length, the map 1N 7→ DIS(G, ε) is uniform and in randomized
polynomial time, for infinitely many N .

We sketch the proof here (see the full version for a proof). If B is a bad heuristic for L,
then we could use B(x) = A(x,G(x)) as a seed-aware distinguisher for G by comparing B(x)
to L(x). Unfortunately we cannot afford to print distinguishers with L-oracles. But since we
are guaranteed that A is a good heuristic for L, we can obtain a deterministic circuit close to
L from A, by fixing a string of good random bits r′. The proof of the analogous lemma in
[31] uses non-uniformity to obtain a good r′ for distinguishing, but we can instead obtain
good strings r′ by showing that there are many good random strings. We find a good r′ by
a sample-and-test procedure. If we compare B(x) and the fixed-coin algorithm A(x, r′), they
will also tend to disagree, giving the necessary distinguishing gap.

Fully Deterministic Heuristics from k-OV. Here we specify a family of heuristics Bk, by
specifying the generator G, that stretches a seed of length N to N `, as the generators Gf

k√
n,d,p

of Lemma 10. These map
√
n
s bits to

√
n
b bits, for some fixed s and any b we choose, using

fk√
n,d,p

, for d = log2 n and p the smallest prime number larger than nk. Set b = s` and
√
n = N1/s. All comments about the runtime of the randomness-reduced heuristic in Section

3.2.1 also apply to this fully deterministic heuristic. Thus, given an N `-coin machine A, we
have the deterministic machine Bk(x) = A

(
x,Gf

k√
n,d,p(x)

)
.

This can now be used to prove Theorem 20, although we defer this proof to the full
version as it is very similar to the proof of Theorem 17 in Section 3.2.1.

4 Open Questions

We derandomize under hardness conjectures about two of four ‘key’ problems in fine-
grained complexity: k-OV and k-CLIQUE. What about k-SUM and APSP? APSP doesn’t
seem to have a natural hierarchy and so doesn’t fit our framework (although it does
reduce to ZERO-TRIANGLE which generalizes to ZERO-k-CLIQUE and should easily work
in our framework using polynomials similar to those in [8]). k-SUM however is actually
computable in O(ndk/2e) time and so our downward self-reducibility techniques are not
fast enough to break this conjecture in the contrapositive. The clearest path we see to
getting derandomization without reintroducing the io- qualifier is to find a polynomial
for k-SUM that is also computable in Õ(ndk/2e) time (unlike the one found in [8]).
Our derandomizations hold under (randomized) SETH, since SETH implies the k-OV
conjecture. Can a better derandomization be obtained directly from SETH, the stronger
assumption? A stumbling block here is the random self-reduction, an ingredient in all
known uniform derandomization techniques: If t-SAT has a straightforward and efficient
random-self-reduction, PH collapses [16, 11]. So derandomizing from SETH directly
could require new ideas, or a strange random self-reduction. An inefficient random
self-reduction for t-SAT shouldn’t collapse PH except to say that t-SAT has a mildly
exponential MA proof which is already known to be true [39], although most random
self-reductions we know are through arithmetization which seems to always have ‘low’
degree to the point that such a polynomial would still collapse PH.
Is a strong “derandomization to hardness” converse possible for these heuristic simulations
of BPP? In the full version of this paper, we show a weak converse: our simulation
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is impossible without separting DTIME[nω(1)] from BPP. But this is a very different
statement from the k-OV or k-CLIQUE conjectures. In [31], they show that herusitic
simulations of BPP with inverse-subexponential error rates imply circuit lower bounds,
by generalizing techniques of [28]. Do the efficient inverse-polynomial error heuristics we
obtain imply any circuit lower bounds?
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Abstract
Ranking algorithms are deployed widely to order a set of items in applications such as search
engines, news feeds, and recommendation systems. Recent studies, however, have shown that,
left unchecked, the output of ranking algorithms can result in decreased diversity in the type of
content presented, promote stereotypes, and polarize opinions. In order to address such issues,
we study the following variant of the traditional ranking problem when, in addition, there are
fairness or diversity constraints. Given a collection of items along with 1) the value of placing
an item in a particular position in the ranking, 2) the collection of sensitive attributes (such as
gender, race, political opinion) of each item and 3) a collection of fairness constraints that, for
each k, bound the number of items with each attribute that are allowed to appear in the top k

positions of the ranking, the goal is to output a ranking that maximizes the value with respect
to the original rank quality metric while respecting the constraints. This problem encapsulates
various well-studied problems related to bipartite and hypergraph matching as special cases and
turns out to be hard to approximate even with simple constraints. Our main technical contri-
butions are fast exact and approximation algorithms along with complementary hardness results
that, together, come close to settling the approximability of this constrained ranking maximiza-
tion problem. Unlike prior work on the approximability of constrained matching problems, our
algorithm runs in linear time, even when the number of constraints is (polynomially) large, its
approximation ratio does not depend on the number of constraints, and it produces solutions
with small constraint violations. Our results rely on insights about the constrained matching
problem when the objective function satisfies certain properties that appear in common ranking
metrics such as discounted cumulative gain (DCG), Spearman’s rho or Bradley-Terry, along with
the nested structure of fairness constraints.
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1 Introduction

Selecting and ranking a subset of data is a fundamental problem in information retrieval and
at the core of ubiquitous applications including ordering search results such (e.g., Google),
personalized social media feeds (e.g., Facebook, Twitter or Instagram), ecommerce websites
(e.g., Amazon or eBay), and online media sites (e.g., Netflix or YouTube). The basic
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algorithmic problem that arises is as follows: There are m items (e.g., webpages, images,
or documents), and the goal is to output a list of n � m items in the order that is most
valuable to a given user or company. For each item i ∈ [m] and a position j ∈ [n] one is
given a number Wij that captures the value that item i contributes to the ranking if placed
at position j. These values can be tailored to a particular query or user and a significant
effort has gone into developing models and mechanisms to learn these parameters [31]. In
practice there are many ways one could arrive at Wij , each of which results in a slightly
different metric for the value of a ranking – prevalent examples include versions of discounted
cumulative gain (DCG) [26], Bradley-Terry [6] and Spearman’s rho [41]. Note that for many
of these metrics, one does not necessarily need nm parameters to specify W and typically m

“degrees of freedom” is enough (just specifying the “quality of each item”). Still, we choose
to work with this general setting, and only abstract out the most important properties such
a weight matrix W satisfies. Generally, for such metrics, Wij is non-increasing in both i and
j, and if we interpret i1 < i2 to mean that i1 has better quality than i2, then the value of
the ranking can only increase by placing i1 above i2 in the ranking. Formally, such values
satisfy the following property (known as monotonicity and the Monge condition)

Wi1j1 ≥Wi2j1 and Wi1j1 ≥Wi1j2 and Wi1j1 + Wi2j2 ≥Wi1j2 + Wj1i2 (1)

for all 1 ≤ i1 < i2 ≤ m and 1 ≤ j1 < j2 ≤ n. The ranking maximization problem is to find
an assignment of the items to each of the n positions such that the total value obtained is
maximized. In this form, the problem is equivalent to finding the maximum weight matching
in a complete m×n bipartite graph and has a well known solution – the Hungarian algorithm.

However, recent studies have shown that producing rankings in this manner can result
in one type of content being overrepresented at the expense of another. This is a form
of algorithmic bias and can lead to grave societal consequences – from search results that
inadvertently promote stereotypes by over/under-representing sensitive attributes such as
race and gender [28, 5], to news feeds that can promote extremist ideology [18] and possibly
even influence the results of elections [2, 3]. For example, [21] demonstrated that by varying
the ranking of a set of news articles the voting preferences of undecided voters can be
manipulated. Towards ensuring that no type of content is overrepresented in the context of
the ranking problem as defined above, we introduce the constrained ranking maximization
problem that restricts allowable rankings to those in which no type of content dominates –
i.e., to ensure the rankings are fair.

Since fairness (and bias) could mean different things in different contexts, rather than
fixing one specific notion of fairness, we allow the user to specify a set of fairness constraints;
in other words, we take the constraints as input. As a motivating example, consider the
setting in which the set of items consists of m images of computer scientists, each image
is associated with several (possibly non-disjoint) sensitive attributes or properties such as
gender, ethnicity and age, and a subset of size n needs to be selected and ranked. The user
can specify an upper-bound Uk` ∈ Z≥0 on the number of items with property ` that are
allowed to appear in the top k positions of the ranking, and similarly a lower-bound Lk`.
Formally, let {1, 2, . . . , p} be a set of properties and let P` ⊆ [m] be the set of items that
have the property ` (note that these sets need not be disjoint). Let x be an m× n binary
assignment matrix whose j-th column contains a one in the i-th position if item i is assigned
to position j (each position must be assigned to exactly one item and each item can be
assigned to at most one position). We say that x satisfies the fairness constraints if for all
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` ∈ [p] and k ∈ [n], we have

Lk` ≤
∑

1≤j≤k

∑
i∈P`

xij ≤ Uk`,

If we let B be the family of all assignment matrices x that satisfy the fairness constraints,
the constrained ranking optimization problem is: Given the sets of items with each property
{P1, . . . , Pp}, the fairness constraints, {Lk`}, {Uk`}, and the values {Wij}, find

arg max
x∈B

∑
i∈[m],j∈[n]

Wijxij .

This problem is equivalent to finding a maximum weight matching of size n that satisfies the
given fairness constraints in a weighted complete m× n bipartite graph, and now becomes
non-trivial – its complexity is the central object of study in this paper.

Beyond the fairness and ethical considerations, traditional diversification concerns in
information retrieval such as query ambiguity (does “jaguar” refer to the car or the animal?)
or user context (does the user want to see webpages, news articles, academic papers or
images?) can also be cast in this framework. Towards this, a rich literature on diversifying
rankings has emerged in information retrieval. On a high-level, several approaches redefine
the objective function to incorporate a notion of diversity and leave the ranking maximization
problem unconstrained. E.g., a common approach is to re-weight the wijs to attempt to
capture the amount of diversity item i would introduce at position k conditioned on the
items that were placed at positions 1, . . . , k − 1 (see [7, 47, 17, 46, 48]), or casting it directly
as an (unconstrained) multi-objective optimization problem [43]. Alternate approaches mix
together or aggregate different rankings, e.g., as generated by different interpretations of a
query [36, 20]. Diversity has also been found to be desirable by users [14], and has been
observed to arise inherently when the ranking is determined by user upvotes [12]. Despite
these efforts and the fact that all major search engines now diversify their results, highly
uniform content is often still displayed – e.g., certain image searches can display results
that have almost entirely the same attributes [28]. Further, [23] showed that no single
diversification function can satisfy a set of natural axioms that one would want any fair
ranking to have. In essence, there is a tension between relevance and fairness – if the wijs
for items that have a given property are much higher than the rest, the above approaches
cannot correct for overrepresentation. Hence the reason to cast the problem as a constrained
optimization problem: The objective is still determined by the values but the solution space
is restricted by fairness constraints.

Theoretically, the fairness constraints come with a computational price: The constrained
ranking maximization problem can be seen to generalize various NP-hard problems such as
independent set, hypergraph matching and set packing. Unlike the unconstrained case, even
checking if there is a complete feasible ranking (i.e., B 6= ∅) is NP-hard. As a consequence,
in general, we cannot hope to produce a solution that does not violate any constraints. Some
variants and generalizations of our problem have been studied in the TCS and optimization
literature; here we mention the three most relevant. Note that some may leave empty positions
in the ranking as opposed to selecting n elements to rank as we desire. [1] considered the
bipartite perfect matching problem with poly(m) constraints. They present a polynomial
time randomized algorithm that finds a near-perfect matching which violates each constraint
additively by at most O(

√
m). [24] improved the above result to a (1 + ε)-approximation

algorithm; however, the running time of their algorithm is roughly mK2.5/ε2 where K is the
number of hard constraints and the output is a matching. [42] studied the approximability of
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the packing integer program problem which, when applied to our setting and gives an O(
√

m)
approximation algorithm. In the constrained ranking maximization problem presented above,
all of these results seem inadequate; the number of fairness constraints is 2np which would
make the running time of [24] too large and an additive violation of O(

√
m) would render

the upper-bound constraints impotent.
The main technical contributions of this paper are fast, exact and approximation al-

gorithms for this constrained ranking maximization problem along with complementary
hardness results which, together, give a solid understanding of the computational complexity
of this problem. To overcome the limitations of the past work on constrained matching
problems, our results often make use of two structural properties of such a formulation: A)
The set of constraints can be broken into p groups; for each property ` ∈ [p] we have n (nested)
upper-bound constraints, one for each k ∈ [n], and B) The objective function satisfies the
property stated in (1). Using properties A) and B) we obtain efficient – polynomial, or even
linear time algorithms for this problem in various interesting regimes. Both these properties
are natural in the information retrieval setting and could be useful in other algorithmic
contexts involving rankings.

2 Our model

We study the following constrained ranking maximization problem

arg max
x∈Rm,n

∑
i∈[m],j∈[n]

Wijxij s.t. Lk` ≤
∑

1≤j≤k

∑
i∈P`

xij ≤ Uk` ∀ ` ∈ [p], k ∈ [n], (2)

where Rm,n is the set of all matrices {0, 1}m×n which represent ranking m items into n

positions. Recall that Wij represents the profit of placing item i at position j and for every
property ` ∈ [p] and every position k in the ranking, Lk` and Uk` are the lower and upper
bound on the number of items having property ` that are allowed to be in the top k positions
in the ranking. For an example, we refer to Figure 1.

We distinguish two important special cases of the problem: when only the upper-bound
constraints are present, and when only the lower-bound constraints are present. These variants
are referred to as the constrained ranking maximization problem (U) and the constrained
ranking maximization problem (L) respectively, and to avoid confusion we sometimes add (LU)
when talking about the general problem with both types of constraints present. Furthermore,
most our results hold under the assumption that the weight function W is monotone and
satisfies the Monge property (1), whenever these assumptions are not necessary, we emphasize
this fact by saying that general weights are allowed.

3 Our results

In this section, we present an overview of our results. The statements of theorems here are
informal for the ease of readability and for the formal statements our results, we refer the
reader to the full version of the paper [13].

Let the type

Ti := {` ∈ [p] : i ∈ P`}

of item i be the set of properties that the item i has. Our first result is an exact algorithm
for solving the constrained ranking maximization problem whose running time is polynomial
if the number of distinct Tis, denoted by q, is constant.
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(a) An example of a value matrix W . The values
corresponding to the optimal (unconstrained) rank-
ing in (b) and the optimal constrained ranking in
(c) are depicted by gray and orange respectively.
(Note that, for clarity of the rank order, the above
is the transpose of the matrix referred to as W in
the text.)

(b) The optimal un-
constrained ranking.
The upper-bound con-
straint at position D
is violated as there are
3 men, but only 2 are
allowed.

(c) The optimal
constrained ranking.
The upper-bound con-
straint at position D
is no longer violated;
in fact all constraints
are satisfied.

Figure 1 A simple example of our framework: In (a) a matrix of Wijs is presented. Here, the
options are people who are either male (blue) or female (yellow), and 6 of them must be ranked.
We assume that there is a single upper-bound constraint for each position in the ranking which is
applied to both genders as depicted in figures (b) and (c). The constraints are satisfied in the latter,
but not the former. The weights of these two rankings are depicted in figure (a).

I Theorem 3.1 (Exact dynamic programming-based algorithm). There is an algorithm that
solves the constrained ranking maximization problem (LU) in O(pqnq + pm) time when the
values W satisfy property (1).

This algorithm combines a geometric interpretation of our problem along with dynamic
programming and proceeds by solving a sequence of q−dimensional sub-problems. When q

is allowed to be large, the problem is NP-hard; see Theorem 3.5.
Generally, we may not be able to assume that q is a constant and, even then, it would be

desirable to have algorithms whose running time is close to (m + n)p, the size of the input.
Towards this we consider a natural parameter of the set of properties: The size of the largest
Ti, namely

∆ := max
i∈[m]

|Ti|.

The complexity of the constrained ranking maximization problem turns out to show interesting
behavior with respect to ∆ (note that ∆ ≤ p and typically p� q). The case when ∆ = 1
corresponds to the simplest practical setting where there are p disjoint properties, i.e., the
properties partition the set of items. For instance, a set of images of humans could be
partitioned based on the ethnicity or age of the individual. Note that even though q = p for
∆ = 1, this q could still be large and the previous theorem may have a prohibitively large
running time.

When ∆ = 1 we prove that the constrained ranking maximization problem (LU) is
polynomial time solvable even when the matrix W does not satisfy the property (1).

I Theorem 3.2 (Polynomial time algorithm for ∆ = 1). The constrained ranking maximization
problem (LU) for general weights and ∆ = 1 can be solved in Õ(n2m) time.
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The above is obtained by reducing this variant of the ranking maximization problem to the
minimum cost flow problem, that can be solved efficiently (the network is acyclic). We note
that even though the running time is polynomial in m, it might be still not satisfactory for
practical purposes. With the aim of designing faster – linear time algorithms, we focus on
the case when only upper-bound constraints are present. For this case, we analyze a natural
linear programming (LP) relaxation for the constrained ranking maximization problem (U). It
reveals interesting structure of the problem and motivates a fast greedy algorithm. Formally,
the relaxation considers the set Ωm,n defined as

Ωm,n :=

x ∈ [0, 1]m×n :
n∑

j=1
xij ≤ 1 for all i ∈ [m],

m∑
i=1

xij = 1, for all j ∈ [n]


and the following linear program

max
x∈Ωm,n

m∑
i=1

n∑
j=1

Wijxij s.t.
∑
i∈P`

k∑
j=1

xij ≤ Uk`, ∀ ` ∈ [p], k ∈ [n]. (3)

Observe that in the absence of fairness constraints, (3) represents the maximum weight
bipartite matching problem – it is well known that the feasible region of its fractional
relaxation has integral vertices and hence the optimal values of these two coincide. However,
in the constrained setting, even for ∆ = 1, it can be shown that the feasible region is no
longer integral – it can have fractional vertices. For this reason, it is not true that maximizing
any linear objective results in an integral solution. Surprisingly, we prove that for ∆ = 1 the
cost functions we consider are special and never yield optimal fractional (vertex) solutions.

I Theorem 3.3 (Exact LP-based algorithm for ∆ = 1). Consider the linear programming
relaxation (3) for the constrained ranking maximization problem (U) when ∆ = 1 and the
objective function satisfies (1). Then there exists an optimal solution with integral entries
and hence the relaxation is exact. Further, there exists a greedy algorithm to find an optimal
integral solution in O(np + m) time.

The proof relies on a combinatorial argument on the structure of tight constraints that
crucially uses the assumption that ∆ = 1 and the property (1) of the objective function. Note
that the result of Theorem 3.3 implies in particular that whenever the linear program (3) is
feasible then there is also an integer solution – a feasible ranking. This can be also argued
for the general (LU) variant of the problem and its corresponding LP relaxation. However,
extending Theorem 3.3 to this case seems more challenging and is left as an open problem.

When trying to design algorithms for larger ∆, the difficulty is that the constrained
ranking feasibility problem remains NP-hard (in fact, even hard to approximate when
feasibility is guaranteed) for ∆ ≥ 3; see Theorem 3.5. Together, these results imply that
unless we restrict to feasible instances of the constrained ranking problem, it is impossible to
obtain any reasonable approximation algorithm for this problem. In order to bypass this
barrier, we focus on the (U) variant of the problem and present an algorithmically verifiable
condition for feasibility and argue that it is natural in the context of information retrieval.
For each 1 ≤ k ≤ n, we consider the set

Sk := {l ∈ [p] : U(k−1)` + 1 ≤ Uk`}

of all properties whose constraints increase by at least 1 when going from the (k − 1)st to
the kth position. We observe that the following abundance of items condition is sufficient for
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feasibility:

∀k there are at least n items i s.t. Ti ⊆ Sk. (4)

Intuitively, this says that there should be always at least a few ways to extend a feasible
ranking of (k − 1) items to a ranking of k items. Simple examples show that this condition
can be necessary for certain constraints {Uk`}. In practice, this assumption is almost never
a problem – the available items m (e.g., webpages) far outnumber the size of the ranking
n (e.g., number of results displayed in the first page) and the number of properties p (i.e.,
there are only so many “types” of webpages).

We show that assuming condition (4), there is a linear-time algorithm that achieves an
(∆ + 2)-approximation, while only slightly violating the upper-bound constraints. This result
does not need assumption (1), rather only that the Wijs are non-negative. This result is
near-optimal; we provide an Ω

(
∆

log ∆

)
hardness of approximation result (see Theorem 3.5

and the full version of the paper [13] for more details).

I Theorem 3.4 ((∆ + 2)-approximation algorithm). For the constrained ranking maximization
problem (U), under the assumption (4), there is an algorithm that in linear time outputs a
ranking x with value at least 1

∆+2 times the optimal one, such that x satisfies the upper-bound
constraints with at most a twice multiplicative violation, i.e.,

∑
i∈P`

k∑
j=1

xij ≤ 2Uk`, for all ` ∈ [p] and k ∈ [n].

One can construct artificial instances of the ranking problem, where the output of the
algorithm indeed violates upper-bound constraints with a 2-multiplicative factor. However,
these violations are caused by the presence of high-utility items with a large number of
properties. Such items are unlikely to appear in real-life instances and thus we expect the
practical performance of the algorithm to be better than the worst-case bound given in
Theorem 3.4 suggests. Lastly we summarize our hardness results for the constrained ranking
problem.

I Theorem 3.5 (Hardness Results – Informal). The following variants of the constrained
ranking feasibility (U) and constrained ranking maximization (U) problem are NP-hard.
1. Deciding feasibility for the case of ∆ ≥ 3.
2. Under the feasibility condition (4), approximating the optimal value of a ranking within a

factor O (∆/log ∆), for any ∆ ≥ 3.
3. Deciding feasibility when only the number of items m, number of positions n, and upper-

bounds u are given as input; the properties are fixed for every m.
4. For every constant c, deciding between whether there exists a feasible solution or every

solution violates some constraint by a factor of c.

Organization of the rest of the paper

In Section 4 we discuss other related work. Section 5 contains an overview of the proofs of
our main results. For complete proofs, we refer the reader to the full version of the paper [13].
In Section 6 we provide a discussion of possible directions for future work and open problems.
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4 Other related work

Information retrieval, which focuses on selecting and ranking subsets of data, has a rich
history in computer science, and is a well-established subfield in and of itself; see, e.g., the
foundational work by [39]. The probability ranking principle (PRP) forms the foundation of
information retrieval research [32, 38]; in our context it states that a system’s ranking should
order items by decreasing value. Our problem formulation and solutions are in line with this
– subject to satisfying the diversity constraints.

A related problem is diverse data summarization in which a subset of items with var-
ied properties must be selected from a large set [35, 9], or similarly, voting with diversity
constraints in which a subset of items of people with varied properties or attributes must
be selected via a voting procedure [34, 10]. However, the formulation of these problem is
considerably different as there is no need to produce a ranking of the selected items, and
hence the analogous notion of constraints is more relaxed. Extending work on fairness in
classification problems [45], the fair ranking problem has also been studied as an (uncon-
strained) multi-objective optimization problem, and various fairness metrics of a ranking
have been proposed [43].

Combining the learning of values along with the ranking of items has also been studied
[37, 40]; in each round an algorithm chooses an ordered list of k documents as a function of
the estimated values Wij and can receive a click on one of them. These clicks are used to
update the estimate of the Wijs, and bounds on the regret (i.e., learning rate) can be given
using a bandit framework. In this problem, while there are different types of items that can
affect the click probabilities, there are no constraints on how they should be displayed.

Recent work has shown that, in many settings, there are impossibility results that prevent
us from attaining both property and item fairness [30]. Indeed, our work focuses on ensuring
property fairness (i.e., no property is overrepresented), however this comes at an expense
of item fairness (i.e., depending on which properties an item has, it may have much higher
/ lower probability of being displayed than another item with the same value). In our
motivating application we deal with the ranking of documents or webpages, and hence are
satisfied with this trade-off. However, further consideration may be required if, e.g., we wish
to rank people as this would give individuals different likelihoods of being near the top of
the list based on their properties rather than solely on their value.

5 Proof overviews

Overview of the proof of Theorem 3.1. We first observe that the constrained ranking
maximization problem has a simple geometric interpretation. Every item i ∈ [m] can be
assigned a property vector ti ∈ {0, 1}p whose `-th entry is 1 if item i has property ` and 0
otherwise. We can then think of the constrained ranking maximization problem as finding
a sequence of n distinct items i1, i2, . . . , in such that Lk ≤

∑k
j=1 tij

≤ Uk for all k ∈ [n],
where Uk is the vector whose `-th entry is U`k. In other words, we require that the partial
sums of the vectors corresponding to the top k items in the ranking stay within the region
[Lk1, Uk1]× [Lk2, Uk2]× · · · × [Lkn, Ukn] defined by the fairness constraints.

Let Q := {ti : i ∈ [m]} be the set of all the different property vectors ti that appear
for items i ∈ [m], and let us denote its elements by v1, v2, . . . , vq. A simple but important
observation is that whenever two items i1, i2 ∈ [m] (with say i1 < i2) have the same property
vector: ti1 = ti2 , then in every optimal solution either i1 will be ranked above i2, only i1
is ranked, or neither is used. This follows from the assumption that the weight matrix is
monotone in i and j and satisfies the property as stated in (1).
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Let us now define the following sub-problem that asks for the property vectors of a feasible
solution: Given a tuple (s1, s2, . . . , sq) ∈ Nq such that k = s1 + s2 + · · ·+ sq ≤ n, what is the
optimal way to obtain a feasible ranking on k items such that sj of them have property vector
equal to vj for all j = 1, 2, . . . , q? Given a solution to this sub-problem, using the observation
above, it is easy to determine which items should be used for a given property vector, and in
what order. Further, one can easily solve such a sub-problem given the solutions to smaller
sub-problems (with a smaller sum of sjs), resulting in a dynamic programming algorithm
with O(nq) states and, hence, roughly the same running time.

Overview of the proof of Theorem 3.2. The main idea is to reduce ranking maximization
to the minimum cost flow problem and then observe several structural properties of the
resulting instance which allow one to solve it efficiently (in Õ(n2m) time).

Given an instance of the constrained ranking maximization problem (U), we construct a
weighted flow network G = (V, E) such that every feasible ranking corresponds to a feasible
flow of value n in G. Roughly, for every item i and every property ` a chain of n vertices is
constructed so that placing item i (such that i ∈ P`) at position k corresponds to sending
one unit of flow through the chain corresponding to item i up to its kth vertex and then
switching to the chain corresponding to property `. Edge weights in these gadgets (chains)
are chosen in such a way that the cost of sending a unit through this path is −Wi,k. The
capacities in chains corresponding to properties implement upper-bound constraints. The
lower-bound constraints can be also enforced by putting appropriate weights on edges of
these chains.

The instance of the minimum cost flow problem we construct has O(nm) vertices and
O(nm) edges and is acyclic, which allows to replace the application of the Bellman-Ford
algorithm in the first phase of the Successive Shortest Path algorithm by a linear-time
procedure. This then easily leads to an implementation in O(n2m log m) time.

Overview of the proof of Theorem 3.3. Unlike the ∆ = 0 case where the LP-relaxation
(3) has no non-integral vertex (it is the assignment polytope) , even when p = 1, fractional
vertices can arise (see the full version of the paper [13]). Theorem 3.3 implies that for ∆ = 1,
although the feasible region of (3) is not integral in all directions, it is along the directions of
interest. In the proof we first reduce the problem to the case when m = n (i.e., when one has
to rank all of the items) and w has the strict form of property (1) (i.e., when the inequalities
in assumption (1) are strict). Our strategy then is to prove that for every fractional feasible
solution x ∈ Ωm,m there is a direction y ∈ Rm×m such that the solution x′ := x + εy is still
feasible (for some ε > 0) and its weight is larger than the weight of x. This implies that
every optimal solution is necessarily integral.

Combinatorially, the directions we consider correspond to 4-cycles in the underlying
complete bipartite graph, such that the weight of the matching can be improved by swapping
edges along the cycle. The argument that shows the existence of such a cycle makes use of
the special structure of the constraints in this family of instances.

To illustrate the approach, suppose that there exist two items i1 < i2 that have the same
property ` ∈ [p], and for some ranking positions j1 < j2 we have

xi1j2 > 0 and xi2j1 > 0. (5)

Following the strategy outlined above, consider x′ = x + εy with y ∈ Rm×m to be zero
everywhere except yi1j1 = yi2j2 = 1 and yi1j2 = yi2j1 = −1. We would like to prove that the
weight of x′ is larger than the weight of x and that x′ is feasible for some (possibly small)
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ε > 0. The reason why we gain by moving in the direction of y follows from property (1).
Feasibility in turn follows because y is orthogonal to every constraint defining the feasible
region. Indeed, the only constraints involving items i1, i2 are those corresponding to the
property `. Further, every such constraint is of the form1 〈1Rk

, x〉 ≤ Uk` where 1Rk
is the

indicator vector of a rectangle Rk := P` × [k]. Such a rectangle contains either all non-zero
entries of y, two non-zero entries (with opposite signs), or none. In any of these cases,
〈1Rk

, y〉 = 0.
Using a reasoning as above, one can show that no configuration of the form (5) can appear

in any optimal solution for i1, i2 that share a property `. This implies that the support
of every optimal solution has a certain structure when restricted to items that have any
given property ` ∈ [p]; this structure allows us to find an improvement direction in case
the solution is not integral. To prove integrality we show that for every fractional solution
x ∈ Rm×m there exists a fractional entry xij ∈ (0, 1) that can be slightly increased without
violating the fairness constraints. Moreover since the i-th row and the j-th column must
contain at least one more fractional entry each (since the row- and column-sums are 1), we
can construct (as above) a direction y, along which the weight can be increased. The choice
of the corresponding entries that should be altered requires some care, as otherwise we might
end up violating fairness constraints.

The second part of Theorem 3.3 is an algorithm for solving the constrained ranking
maximization problem for ∆ = 1 in optimal (in the input size) running time of O(np + m).
We show that a natural greedy algorithm can be used. More precisely, one iteratively fills in
ranking positions by always selecting the highest value item that is still available and does
not lead to a constraint violation. An inductive argument based that relies on property 1
and the ∆ = 1 assumption gives the correctness of such a procedure.

Overview of the proof of Theorem 3.4. Let ∆ > 1 be arbitrary. The most important
part of our algorithm is a greedy procedure that finds a large weight solution to a slightly
relaxed problem in which not all positions in the ranking have to be occupied. It processes
pairs (i, j) ∈ [m]× [n] in non-increasing order of weights Wij and puts item i in position j

whenever this does not lead to constraint violation.
To analyze the approximation guarantee of this algorithm let us first inspect the combin-

atorial structure of the feasible set. In total there are p ·n fairness constraints in the problem
and additionally m + n “matching” constraints, saying that no “column” or “row” can have
more than a single one in the solution matrix x ∈ {0, 1}m×n. However, after relaxing the
problem to the one where not all ranking positions have to be filled, one can observe that
the feasible set is just an intersection of p + 2 matroids on the common ground set [m]× [n].
Indeed, two of them correspond to the matching constraints, and are partition matroids.
The remaining p matroids correspond to properties: for every property ` there is a chain of
subsets S1 ⊆ S2 ⊆ · · · ⊆ Sn of [m]× [n] such that

I` = {S ⊆ [m]× [n] : |S ∩ Sk| ≤ Uk` for all k = 1, 2, . . . , n}

is the set of independent sets in this (laminar) matroid. In the work [27] it is shown that
the greedy algorithm run on an intersection of K matroids yields K-approximation, hence
(p + 2)-approximation of our algorithm follows.

1 By 〈·, ·〉 we denote the inner product between two matrices, i.e., if x, y ∈ Rm×n then 〈x, y〉 :=∑m

j=1

∑n

i=1 xijyij .
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To obtain a better – (∆ + 2)-approximation bound, a more careful analysis is required.
The proof is based on the fact that, roughly, if a new element is added to a feasible solution
S, then at most ∆ + 2 elements need to be removed from S to make it again feasible. Thus
adding greedily one element can cost us absence of ∆+2 other elements of weight at most the
one we have added. This idea can be formalized and used to prove the (∆ + 2)-approximation
of the greedy algorithm. This is akin to the framework of K-extendible systems by [33] in
which this greedy procedure can be alternatively analyzed. Finally, we observe that since
the problem solved was a relaxation of the original ranking maximization problem, the
approximation ratio we obtain with respect to the original problem is still (∆ + 2).

It remains to complete the ranking by filling in any gaps that may have been left by the
above procedure. This can be achieved in a greedy manner that only increases the value of
the solution, and violates the constraints by at most a multiplicative factor of 2.

Overview of the proof of Theorem 3.5. Our hardness results are based on a general
observation that one can encode various types of packing constraints using instances of the
constrained ranking maximization (U) and feasibility (U) problem. The first result (part
1. in Theorem 3.5) – NP-hardness of the feasibility problem (for ∆ ≥ 3) is established by
a reduction from the hypergraph matching problem. Given an instance of the hypergraph
matching problem one can think of its hyperedges as items and its vertices as properties.
Degree constraints on vertices can then be encoded by upper-bound constraints on the
number of items that have a certain property in the ranking. The inapproximability result
(part 2. in Theorem 3.5) is also established by a reduction from the hypergraph matching
problem, however in this case one needs to be more careful as the reduction is required to
output instances that are feasible.

Our next hardness result (part 3. in Theorem 3.5) illustrates that the difficulty of the
constrained ranking optimization problem (U) could be entirely due to the upper-bound
numbers Uk`s. In particular, even when the part of the input corresponding to which item
has which property is fixed, and only depends on m (and, hence, can be pre-processed as
in [22]), the problem remains hard. This is proven via a reduction from the independent
set problem. The properties consists of all pairs of items {i1, i2} for i1, i2 ∈ [m]. Given
any graph G = (V, E) on m vertices, we can set up a constrained ranking problem whose
solutions are independent sets in G of a certain size. Since every edge e = {i1, i2} ∈ E is a
property, we can set a constraint that allows at most one item (vertex) from this property
(edge) in the ranking.

Finally, part 4. in Theorem 3.5 states that it is not only hard to decide feasibility but even
to find a solution that does not violate any constraint by more than a constant multiplicative
factor c ∈ N. The obstacle in proving such a hardness result is that, typically, even if a
given instance is infeasible, it is easy to find a solution that violates many constraints by
a small amount. To overcome this problem we employ an inapproximability result for the
maximum independent set problem by [25] and an idea by [16]. Our reduction (roughly)
puts a constraint on every (c + 1)−clique in the input graph G = (V, E), so that at most one
vertex (item) is picked from it. Then a solution that does not violate any constraint by a
multiplicative factor more than c corresponds to a set of vertices S such that the induced
subgraph G[S] has no c-clique. Such a property allows us to prove (using elementary bounds
on Ramsey numbers) that G has a large independent set. Hence, given an algorithm that is
able to find a feasible ranking with no more than a c-factor violation of the constraints, we
can approximate the maximum size of an independent set in a graph G = (V, E) up to a
factor of roughly |V |1−1/c; which is hard by [25].
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6 Discussion and future work

In this paper, motivated by controlling and alleviating algorithmic bias in information
retrieval, we initiate the study of the complexity of a natural constrained optimization
problem concerning rankings. Our results indicate that the constrained ranking maximization
problem, which is a generalization of the classic bipartite matching problem, shows fine-
grained complexity. Both the structure of the constraints and the numbers appearing in
upper-bounds play a role in determining its complexity. Moreover, this problem generalizes
several hypergraph matching/packing problems. Our algorithmic results bypass the obstacles
implicit in the past theory work by leveraging on the structural properties of the constraints
and common objective functions from information retrieval. More generally, our results not
only contribute to the growing set of algorithms to counter algorithmic bias for fundamental
problems [19, 4, 44, 9, 11, 8, 29, 15], the structural insights obtained may find use in other
algorithmic settings related to the rather broad scope of ranking problems.

Our work also suggests some open problems and directions. The first question concerns
the ∆ = 1 case and its (LU) variant; Theorem 3.2 implies that it can be solved in Õ(n2m)
time, can this be improved to nearly-linear time, as we do for the (U) variant (Theorem 3.3)?
Another question is the complexity of the constrained ranking maximization problem (in
all different variants) when ∆ = 2 – is it in P? The various constants appearing in our
approximation algorithms are unlikely to be optimal and improving them remains important.
In particular, our approximation algorithm for the case of large ∆ in Theorem 3.4 may
incur a 2-multiplicative violation of constraints. This could be significant when dealing with
instances where the upper bound constraints are rather large (i.e., Uk` & k

2 ) in which case,
such a violation effectively erases all the constraints. It is an interesting open problem to
understand whether this 2-violation can be avoided, either by providing a different algorithm
or by making different assumptions on the instance.

In this work we consider linear objective functions for the the ranking optimization
problem, i.e., the objective is an independent sum of profits for individual item placements.
While this model might be appropriate in certain settings, there may be cases where one
would prefer to measure the quality of a ranking as a whole, and in particular the utility of
placing a given item at the kth position should also depend on what items were placed above
it [46]. Thus defining and studying a suitable variant of the problem for a class of objectives
on rankings that satisfy some version of the diminishing returns principle (submodularity),
is of practical interest.

A related question that deserves independent exploration is to study the complexity of
sampling a constrained ranking from the probability distribution induced by the objective
(rather than outputting the ranking that maximizes its value, output a ranking with probab-
ility proportional to its value). Finally, extending our results to the online setting seems like
an important technical challenge which is also likely to have practical consequences.
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Abstract
We consider a generalization of k-median and k-center, called the ordered k-median problem. In
this problem, we are given a metric space (D, {cij}) with n = |D| points, and a non-increasing
weight vector w ∈ Rn+, and the goal is to open k centers and assign each point j ∈ D to a
center so as to minimize w1 · (largest assignment cost) + w2 · (second-largest assignment cost) +
. . . + wn · (n-th largest assignment cost). We give an (18 + ε)-approximation algorithm for this
problem. Our algorithms utilize Lagrangian relaxation and the primal-dual schema, combined
with an enumeration procedure of Aouad and Segev. For the special case of {0, 1}-weights, which
models the problem of minimizing the ` largest assignment costs that is interesting in and of by
itself, we provide a novel reduction to the (standard) k-median problem, showing that LP-relative
guarantees for k-median translate to guarantees for the ordered k-median problem; this yields a
nice and clean (8.5 + ε)-approximation algorithm for {0, 1} weights.
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1 Introduction

Clustering is an ubiquitous problem that finds applications in various fields including data
mining, machine learning, image processing, and bioinformatics. Many clustering problems
involve finding a set F of at most k “centers” from an underlying set D of data points
located in some metric space {cij}i,j∈D, and an assignment of data points to centers, so as
to minimize some objective function of the assignment costs, i.e., the distances between data
points and their assigned centers. These problems can typically also be stated as facility-
location problems, wherein we seek a cost-effective way of opening facilities (≡ centers) and
assigning clients (≡ data points) to open facilities. Given their widespread applicability,
clustering and facility-location problems have been extensively studied in the Computer
Science and Operations Research literature; see, e.g., [16, 22], as also the literature on the
classical k-median (minimize sum of the assignment costs) [6, 13, 15, 4]), and k-center
(minimize maximum assignment cost [10, 11]) problems.
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29:2 Approximation Algorithms for Ordered k-Median

We consider a common generalization of k-median and k-center, called the ordered k-
median problem [17, 9]. As before, we are given a metric space (D, {cij}i,j∈D), and an integer
k ≥ 0. We will often refer to points in D as clients. We are also given non-increasing,
nonnegative weights w1 ≥ w2 ≥ . . . ≥ wn ≥ 0, where n = |D|. For a vector v ∈ RD, we use
v ↓ to denote the vector v with coordinates sorted in non-increasing order. That is, we have
v ↓i = vσ(i), where σ is a permutation of D such that vσ(1) ≥ vσ(2) ≥ . . . vσ(n). The goal in the
ordered k-median problem is to choose a set F of k points from D as centers (or “facilities”),
and assign each client j ∈ D to a center i(j) ∈ F , so as to minimize

cost
(
w;~c := {ci(j)j}j∈D

)
:= wT~c↓ =

n∑
j=1

wj~c
↓
j .

Observe that when all the wis are 1, we obtain the k-median problem; on the other hand,
setting w1 = 1, w2 = . . . = wn = 0, yields the k-center problem. Indeed the special case with
{0, 1} weights is already interesting: that is, for some ` ∈ [n], we have w1 = . . . = w` = 1 and
all the remaining wis are 0; this captures the problem of minimizing the ` largest assignment
costs, which Tamir [23] calls the `-centrum problem.

The ordered k-median problem can be motivated from various perspectives. The problem
was proposed in network location theory as a convenient way of unifying the k-median and
k-center objectives, as also some other objective functions considered in location theory (see,
e.g., [17]). Such a versatile model is also useful in the context of clustering applications,
wherein the clustering objective (e.g., k-median or k-center) is often a means to an end,
namely, producing a “good” clustering. The ordered k-median problem yields a suite of
clustering objectives, including those that interpolate between the k-median and k-center
objectives, and thereby offers a useful means of obtaining a variety of clustering solutions
(which motivates the question of developing efficient algorithms for (approximately) solving
this problem). Another motivation for studying ordered k-median comes from a fairness
perspective: if the weights decrease geometrically (at a sufficiently large rate), then an
optimal ordered-k-median solution yields a min-max fair assignment-cost vector: that is,
a solution that minimizes the maximum assignment cost, subject to which, it minimizes
the second largest assignment cost, and so on. Finally, the `-centrum problem can also be
interpreted as the following robust-optimization version of k-median. Suppose there is some
uncertainty in the client-set that needs to be clustered: in every scenario, some (at most)
` clients need to be clustered, and we need to determine the k centers and the assignment
of clients to centers before knowing the scenario realization. Robust optimization seeks to
minimize the maximum scenario cost, which leads to precisely the `-centrum problem.

While the special cases of k-median and k-center have been considered extensively
from the viewpoint of developing approximation algorithms, much less is known about the
approximability of the ordered k-median problem, especially in general metrics. Aouad
and Segev [2] obtained a logarithmic-approximation ratio for general metrics, and Alamdari
and Shmoys [1] obtain a bicriteria approximation for the special case, where w is a convex
combination of (1, 0, . . . , 0) and

( 1
n ,

1
n , . . . ,

1
n

)
, which is called the centridian problem [12].

Our results. We obtain constant-factor approximation algorithms for the ordered k-median
problem. Together with the concurrent work of [3], these constitute the first constant-factor
approximation guarantees for ordered k-median. Our main result is an (deterministic) (18+ε)-
approximation algorithm for the ordered k-median problem (Theorem 7). Our algorithm
utilizes the primal-dual schema and Lagrangian relaxation, and, hence, is combinatorial.

En route, in Section 2, we first develop constant-factor approximation algorithms for
the case of {0, 1}-weights. This introduces many of the ideas needed to handle the general
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setting. We design two algorithms for this setting. Both algorithms are derived using a novel
LP-relaxation that we propose for the problem, which leverages a key insight to circumvent
the issue that the natural LP-relaxation has a large (non-constant) integrality gap.

Our first algorithm is a clean, combinatorial (12+ε)-approximation algorithm that is based
on the Jain-Vazirani primal-dual schema coupled with Lagrangian relaxation (Theorem 4).
Both the algorithm and its analysis are versatile, and we show in Section 3 that the underlying
ideas extend easily and, in combination with an enumeration procedure of [2], yield an
(18 + ε)-approximation for the general setting. Our second algorithm for {0, 1}-weights is
based on LP-rounding, and yields an improved approximation factor via a novel black-box
reduction to LP-relative algorithms for (standard) k-median. We show that an LP-relative α-
approximation for k-median yields (essentially) a 2(α+1)-approximation; taking α = 3.25 [7],
we obtain an (8.5 + ε)-approximation for ordered k-median with {0, 1}-weights (Theorem 5);
we believe that this reduction is of independent interest.

Relationship with the work of [3]. Recently, we learnt that Byrka et al. [3] have also
obtained a (randomized) O(1)-approximation guarantee (equal to 38 + ε) for the ordered
k-median problem. Our work was done independently and concurrently; a manuscript with
the same approximation guarantees was posted on the arXiv in November 2017 [5]. In
particular, our results for {0, 1} weights were obtained without knowledge of the work of [3].
But it was after we learnt of the results in [3] that we realized that our results can be
extended to the general weighted setting.

While we use similar LP relaxations, our techniques are different. Whereas [3] crucially
exploit properties of the Charikar-Li [7] LP-rounding algorithm, we leverage the (primal-dual
+ Lagrangian relaxation) methodology for k-median due to Jain and Vazirani [13]. Our
algorithms are thus combinatorial. Our approximation factors improve upon those obtained
in [3], both for {0, 1} weights and general weights; we believe that our algorithms and analyses
are also simpler. Finally, our reduction to LP-relative algorithms for k-median shows that we
do not need to rely on a specific k-median LP-rounding algorithm in order to tackle ordered
k-median with {0, 1} weights, and suggests that the same might be true for general weights.

Our techniques. It is instructive to first discuss the {0, 1}-weighted case. One of the main
challenges is in coming up with a good LP-relaxation for this `-centrum problem. The natural
LP-relaxation augments the natural LP for k-median by imposing constraints encoding that
the total assignment cost of any set of ` clients is at most B, where B is a new variable
that we seek to minimize. It is well known that, even for (standard) k-median, one cannot
hope to round an LP solution while approximately preserving the assignment cost of each
client [6].2 More significantly, whereas we can round and approximately preserve the sum
of all assignment costs (as shown by k-median rounding), it turns out that we cannot
preserve the sum of the ` largest assignment costs: the natural LP has a large (non-constant)
integrality gap. This integrality gap is robust and cannot be alleviated by guessing the
maximum assignment cost and incorporating this in the LP and the lower bound.3 In essence,
the cause for this disparity (between k-median and `-centrum) is that the k-median objective
crucially also includes the contribution from clients with small assignment costs.

2 This is possible if we open O(k) centers, using, e.g., the filtering-based algorithm of [21] for facility
location.

3 This is in contrast with k-center, where such preprocessing does mitigate the bad integrality gap of the
natural LP and reduces it to a constant.
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29:4 Approximation Algorithms for Ordered k-Median

The key insight that allows us to circumvent this difficulty is the following. Suppose we
aim to find a solution of objective value O(B). Then, it suffices to find a solution where the
total assignment cost of clients having assignment cost at least B/` is O(B): the remaining
clients can contribute at most additional B towards the `-centrum objective, since we consider
at most ` clients in the `-centrum objective value. Moreover, if there is a solution of `-centrum
objective value at most B, then the total assignment cost of clients with assignment cost
at least B/` is at most B. Thus, given a “guess” B of the optimal value, our new LP (PB)
seeks to minimize the total assignment cost of clients having assignment cost larger than B/`.

The LP (PB) corresponds to the LP-relaxation for k-median with non-metric distances
given by {fB(cij)}i,j∈D, where fB(d) = d if d ≥ B/`, and is 0 otherwise. Despite this
complication, we devise two ways of leveraging (PB) to obtain a solution of `-centrum cost
O(OPTB + B) (which yields an O(1)-approximation for the correct choice of B), both of
which involve simple procedures with a clean analysis; here, OPTB denotes the optimal
value of (PB). Our first algorithm is based on the Jain-Vazirani (JV) template [13]. This
is our main result for {0, 1} weights (see Section 2.1), and this algorithm extends easily to
the setting with general weights. We Lagrangify the cardinality constraint and move to the
facility-location (FL) version where we may choose any number of centers but incur a fixed
cost of (say) λ for each center we choose. We adapt the JV primal-dual algorithm and its
analysis to obtain a so-called Lagrangian-multiplier-preserving guarantee for this FL version.
By fine-tuning λ, we can then find two solutions, one with less than k centers and the other
with more than k centers, whose convex combination has low cost; rounding this bipoint
solution yields the final solution. This yields our 12-approximation algorithm.

The second algorithm utilizes LP-rounding. We show that after a clustering step, where
we merge clients that are distance at most B

` -apart, the problem of rounding a solution to
(PB) reduces to that of rounding a fractional k-median solution on the cluster centers. Thus,
any LP-relative α-approximation algorithm for k-median can be used to obtain a solution of
cost at most 2(α+ 1)B.

For general weights, the key again is to consider k-median with suitable (non-metric)
proxy distances analogous to the fB(cij)s. We utilize a clever enumeration idea due to [2] to
obtain these proxy distances. Whereas with {0, 1} weights, we created two distance buckets
(cij ≥ B/` and cij < B/`) with weight multipliers 1 and 0, we now create O

(
log1+ε(nε )

)
buckets by grouping distances in powers of (1 + ε). We guess the average weight (roughly
speaking) incurred for a bucket by an optimal solution, and use this as the weight multiplier
for the bucket. As argued in [2]: (a) if we enumerate average weights in powers of (1 + ε) then
there are only polynomially many choices; and (b) the resulting proxy distances provide a good
approximation for the actual cost(w; .)-cost. Finally, we show that the primal-dual algorithm
and its analysis developed in Section 2.1 extends to solve the k-median problem with these
new proxy distances. Combining these ingredients, we obtain an (18 + ε)-approximation.

Other related work. While the ordered k-median problem, and its special cases, have been
well studied in the Operations Research literature (see, e.g., [18, 14]), much of this work
has focused either on modeling issues and formulations, or on solving the problem exactly
in special cases, or via (non-polynomial time) heuristics. There is little prior work (i.e.,
discounting [3]) on the design of approximation algorithms for this problem, in general
metrics. As mentioned earlier, for general metrics, we are only aware of the work of [2], who
obtain a logarithmic-approximation ratio, and [1], who obtain a bicriteria approximation for
the special case of the centridian problem.
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A significant amount of research has taken place for special cases of the problem, e.g.,
the k = 1 setting [17], and the “continuous” version of the problem where centers can also be
opened “in the middle of an edge” [19]. For these settings, fast exact algorithms have been
developed in many interesting cases; see, e.g., [8, 23, 20] and the references therein. There is
also a large body of work looking at compact integer-programming formulations, branch and
bound methods etc.; for a detailed account of this and other work related to location theory
and ordered-median models, we refer the reader to the books [18, 14].

2 The setting with {0, 1}-weights

We first consider the setting with {0, 1} weights. Let ` ∈ [n] be such w1 = . . . = w` = 1,
w`+1 = 0 = . . . = wn. We abbreviate cost(w;~c) to cost(`;~c), or simply cost(~c). The {0, 1}-
weight setting serves as a natural starting point for two reasons. First, the problem of
minimizing the ` most expensive assignment costs is a natural, well-motivated problem that
is interesting in its own right. Second, the study of the {0, 1}-case serves to introduce some
of the key underlying ideas that are also used to handle the general setting. Notice also that
a non-decreasing weight vector w can be written as a nonnegative linear-combination of such
{0, 1} weight vectors.

The natural LP-relaxation for this `-centrum problem has an Ω(`) integrality gap, and, as
noted earlier, the integrality gap does not decrease even if we guess the maximum assignment
cost and incorporate this in our LP and lower bound. Our constant-factor approximation
algorithms are based on an alternate novel LP-relaxation, where, given a “guess” B of the
optimal value, we seek to minimize the total assignment cost of clients having assignment
cost at least B/`. The rationale is that assignment costs that are smaller than B/` can
contribute at most B to the `-centrum cost, and can hence be ignored when searching for a
solution of `-centrum cost O(B). For d ≥ 0, define fB(d) = d if d ≥ B/`, and 0 otherwise.
Throughout, i and j index points of D. We consider the following LP.

min
∑
j

∑
i

fB(cij)xij (PB)

s.t.
∑
i

xij ≥ 1 for all j (1)

0 ≤ xij ≤ yi for all i, j (2)∑
i

yi ≤ k. (3)

Variable yi indicates if facility i is open (i.e., i is chosen as a center), and xij indicates if client
j is assigned to facility i. The first two constraints say that each client must be assigned to
an open facility, and the third constraint encodes that at most k centers may be chosen.

An atypical aspect of our relaxation is that, while an integer solution corresponds to
a solution to our problem, its objective value under (PB) may underestimate the actual
objective value; however, as alluded to above, the objective value of (PB) is within an
additive B of the actual objective value. Let OPTB denote the optimal value of (PB), and
opt denote the optimal value of the `-centrum problem.

I Claim 1. If B ≥ opt, then OPTB ≤ opt ≤ B.

Proof. Let (x̃, ỹ) be the integer point corresponding to an optimal solution. Clearly, (x̃, ỹ)
is feasible to (PB). There are at most ` assignment costs that are at least opt/` (and hence
at least B/`). Therefore, the objective value of (x̃, ỹ) is at most opt. J
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I Claim 2. Let ~c be an assignment-cost vector (where ~cj is the assignment cost of j). Then,
cost(`;~c) ≤

∑
j fB(~cj) +B.

I Claim 3. For any B ≥ 0, we have: (i) fB(x) ≤ fB(y) if x ≤ y; (ii) max{fB(x), fB(y),
fB(z)} ≥ fB

(
x+y+z

3
)
for any x, y, z ≥ 0; and (iii) 3fB(x/3) = f3B(x) for any x ≥ 0.

We may assume that we have B ≤ (1 + ε)opt (e.g., by enumerating all possible choices for
opt in powers of (1 + ε), or using binary search to find, within a (1 + ε)-factor, the smallest
B such that OPTB ≤ B). While (PB) closely resembles the LP-relaxation for k-median,
notice that the assignment costs {fB(cij)} used in the objective of (PB) do not form a
metric. Despite this complication, we show that (PB) can be leveraged to obtain a solution
of cost(`; .)-cost O(B). We devise two algorithms for obtaining such a guarantee. The first
algorithm is based on the primal-dual method and the Jain-Vazirani (JV) template [13]; this
yields a 12-approximation algorithm. The second algorithm is based on LP-rounding, and
shows that any LP-relative α-approximation algorithm for k-median can be used to obtain a
solution of cost(`.)-cost at most 2(α+ 1)B.

I Theorem 4. We can obtain a solution to the `-centrum problem of cost at most
(
12 +

O(ε)
)
·B ≤

(
12 +O(ε)

)
opt.

I Theorem 5. Let (kmed-P) denote the k-median LP: min
{∑

j,i cijxij : (1)–(3)
}
. Let

A be an α-approximation algorithm for k-median whose approximation guarantee is proved
relative to (kmed-P). We can obtain a solution to the `-centrum problem of cost at most
2(α + 1)B. Thus, taking A to be the 3.25-approximation algorithm in [7], we obtain an
(8.5 + ε)-approximation algorithm for the `-centrum problem.

Although Theorem 4 yields a worse approximation factor, the underlying primal-dual
algorithm and analysis are quite versatile and extend easily to the setting with general
weights. We prove Theorem 4 in this extended abstract. The proof of Theorem 5 can be
found in Appendix A of the arXiv version [5] of this paper.

2.1 Proof of Theorem 4
As noted earlier, the proof relies on the primal-dual method. The dual of (PB) is as follows.

max
∑
j

αj − k · λ (DB)

s.t. αj ≤ fB(cij) + βij ∀i, j (4)∑
j

βij ≤ λ ∀i (5)

α, λ ≥ 0.

Let OPT := OPTB denote the optimal value of (PB). We first fix λ and construct a solution
that may open more than k centers but will have some near-optimality properties (see
Theorem 6).

P1. Dual-ascent. Initialize D′ = D, αj = βij = 0 for all i, j ∈ D, F = ∅. The clients in D′
are called active clients. If αj ≥ fB(cij), we say that j reaches i. (So if cij ≤ B/`, then
j reaches i from the very beginning.)
We repeat the following until all clients become inactive. Uniformly raise the αjs of all
active clients, and the βijs for (i, j) such that i /∈ F , j is active, and can reach i until
one of the following events happen.
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Some client j ∈ D reaches some i (and previously could not reach i): if i ∈ F , we
freeze j, and remove j from D′.
Constraint (5) becomes tight for some i /∈ F : we add i to F ; for every j ∈ D′ that
can reach i, we freeze j and remove j from D′.

P2. Pruning. Pick a maximal subset T of F with the following property: for every j ∈ D,
there is at most one i ∈ T such that βij > 0. Let P = {j : ∃i ∈ T s.t. βij > 0}.

P3. Return T as the set of centers, and assign every j to the nearest point (in terms of cij)
in T , which we denote by i(j).

I Theorem 6. The solution satisfies 3λ|T |+
∑
j∈P fB(ci(j)j) +

∑
j /∈P f3B(ci(j)j) ≤ 3

∑
j αj .

Proof. The proof resembles the analysis of the JV primal-dual algorithm for facility location,
but the subtlety is that we need to deal with the complication that the {fB(cij)}i,j∈D
“distances” do not form a metric.

Observe that for every i ∈ T , every client j ∈ P for which βij > 0 satisfies i(j) = i. So∑
j∈P

3αj ≥
∑
j∈P

(
3βi(j)j + fB(ci(j)j)

)
= 3λ|T |+

∑
j∈P

fB(ci(j)j).

We show that for each client j /∈ P , there is some i′′ ∈ T such that f3B(ci′′j) ≤ 3αj , which will
complete the proof. Let i ∈ F be the facility that caused j to freeze, so fB(cij) ≤ αj . If i ∈ T ,
then we are done. Otherwise, since T is maximal, there is some i′ ∈ T and some client k ∈ P
such that βi′k, βik > 0. Notice that αj ≥ αk, since αj grows at least until the time point when
i joins F , and αk grows until at most this time point. Therefore, fB(cik), fB(ci′k) ≤ αk ≤ αj .
We have ci′j ≤ ci′k + cik + cij . Now, by Claim 3, we have f3B(ci′j) ≤ f3B(ci′k + cik + cij) =
3fB((ci′k + cik + cij)/3) ≤ 3 max(fB(cik), fB(ci′k), fB(cij)) ≤ 3αj . J

Using standard arguments, by performing binary search on λ, we can achieve one of the
following two outcomes.
(a) Obtain some λ such that the above algorithm returns a solution T with |T | = k: in this

case, Theorem 6 implies that
∑
j f3B(ci(j)j) ≤ 3OPT , and Claim 2 then implies that the

cost(`; .)-cost of our solution is at most 3OPT + 3B ≤ 6B.
(b) Obtain λ1 < λ2 with λ2 − λ1 <

εB
n such that letting T1 and T2 be the solutions returned

for λ1 and λ2, we have k1 := |T1| > k > k2 := |T2|. We describe below the procedure
for extracting a low-cost feasible solution from T1 and T2, and analyze it, which will
complete the proof of Theorem 4.

Extracting a feasible solution from T1 and T2 in outcome (b). Let a, b ≥ 0 be such that
ak1 + bk2 = k, a+ b = 1. Thus, a convex combination of T1 and T2, called a bipoint solution,
yields a feasible fractional solution and our task is to round this into a feasible solution.
Let (α1, β1), (α2, β2) denote the dual solutions obtained for λ1 and λ2 respectively. Let
i1(j) and i2(j) denote the centers to which j is assigned in T1 and T2 respectively. Let
d1,j = f3B(ci1(j)j) and d2,j = f3B(ci2(j)j). Let C1 :=

∑
j d1,j and C2 :=

∑
j d2,j . Then,

aC1 + bC2 ≤ 3a
(∑

j

α1,j − k1λ1

)
+ 3b

(∑
j

α2,j − k2λ2

)
≤ 3a

(∑
j

α1,j − kλ2

)
+ 3b

(∑
j

α2,j − kλ2

)
+ 3ak1(λ2 − λ1) ≤ 3OPT + 3εB

where the last inequality follows since (α1, β1, λ2), (α2, β2, λ2) are feasible solutions to (DB). If
b ≥ 0.5, then T2 yields a feasible solution of cost(`; .)-cost at most C2 +3B ≤ 6OPT +(3+ε)B.
So suppose a ≥ 0.5. The procedure for rounding the bipoint solution is as follows.
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B1. Clustering. We first match facilities in T2 with a subset of facilities in T1 as follows.
Initialize D′ ← D, A ← ∅, and M ← ∅. While D′ 6= ∅, we repeatedly pick the client
j ∈ D′ with minimum d1,j +d2,j value, and add j to A. We add the tuple (i1(j), i2(j)) to
M , remove from D′ all clients k (including j) such that i1(k) = i1(j) or i2(k) = i2(j), and
set σ(k) = j for all such clients. Let M1 = M denote the matching when D′ = ∅. Next,
for each unmatched i ∈ T2, we pick an arbitrary unmatched facility i′ ∈ T1, and add (i′, i)
to M . Let F1 be the set of T1-facilities that are matched, and S := {j ∈ D : i1(j) ∈ F1}.
Note that |F1| = |M | = k2.

B2. Opening facilities. We will open k2 facilities at locations in A∪M , and k−k2 facilities
from T1 \ F1. We solve the following LP to determine how to do this. Variables zi for
every i ∈ T1 \ F1 indicate if we open facility i; variable θ indicates if we give preference
to F1 (i.e., the T1-facilities in M), or the facilities in T2 (which are always matched).

min
∑
j∈S

(
θd1,j+(1−θ)d2,j

)
+
∑
k/∈S

(
zi1(k)d1,k+(1−zi1(k))(d2,k+d1,σ(k)+d2,σ(k))

)
(R-P)

s.t.
∑

i∈T1\F1

zi ≤ k − k2, θ ∈ [0, 1], zi ∈ [0, 1] ∀i ∈ T1 \ F1.

The above LP is integral. Given an integral optimal solution (θ̃, z̃) to (R-P), we open
facilities as follows. We open the facilities in T1 \ F1 specified by the z̃i variables that
are 1. If θ̃ = 1, we open all the T1-facilities in M \M1, and if θ̃ = 0, we open all the
T2-facilities in M \M1. For some clients j ∈ A, we may open a facility at j (instead of
at i1(j) or i2(j)). For every j ∈ A, if θ̃d1,j + (1− θ̃)d2,j = 0, then we open a facility at
j; otherwise, we open a facility at i1(j) if θ̃ = 1 and at i2(j) if θ̃ = 0.

Analysis. It suffices to show that (R-P) has a fractional solution of small objective value,
and that the integral optimal solution (θ̃, z̃) yields a feasible solution to our problem whose
cost(`; .)-cost is comparable to the objective value of (θ̃, z̃) in (R-P).

For the former, we argue that setting θ = a, zi = a for all i ∈ T1 \ F1 yields a feasible
solution of objective value at most 2(aC1 + bC2). We have

∑
i∈T1\F1

zi = a(k1−k2) = k−k2.
Every j ∈ S contributes ad1,j + bd2,j to the objective value of (R-P), which is also its
contribution to aC1 + bC2. Consider k /∈ S with σ(k) = j, so d1,j + d2,j ≤ d1,k + d2,k. Its
contribution to the objective value of (R-P) is ad1,k+b(d2,k+d1,j+d2,j) ≤ (a+b)d1,k+2bd2,k,
which is at most twice its contribution to aC1 + bC2.

For the latter, we first show that every k ∈ S has assignment cost at most θ̃d1,k + (1−
θ̃)d2,k + 6B/`. If a facility is opened in {k, i1(k), i2(k)}, then this clearly holds. Otherwise,
it must be that k /∈ A. Let i = i1(k) if θ̃ = 1, and i2(k) if θ̃ = 0. Since i is not open, it must
be that i belongs to a tuple (i1(j), i2(j)) of M . Then, j ∈ A, and a facility is opened at j.
we have that ci,k ≤ θ̃d1,k + (1− θ̃)d2,k + 3B/` and ci,j ≤ 3B/`. The last inequality follows
since the fact that none of i1(j), i2(j) is open implies that θ̃d1,j + (1− θ̃)d2,j = 0.

Now consider k /∈ S with σ(k) = j. If z̃i1(k) = 1, it’s assignment cost is at most
d1,k + 3B/`. Otherwise, a facility is opened in {j, i1(j), i2(j)}. If a facility is opened in
{j, i2(j)}, then k’s assignment cost is at most ci2(k)k + ci2(j)j ≤ d2,k + d1,j + d2,j + 6B/`.
Otherwise, it must be that θ̃ = 1 and d1,j = ci1(j)j > 3B/`; in this case, k’ assignment
cost is at most ci2(k)k + ci2(j)j + ci1(j)j ≤ (d2,k + 3B/`) + (d2,j + 3B/`) + d1,j . Thus, the
cost(`; .)-cost of our solution is at most the objective value of (θ̃, z̃) + 6B, which is at most
2(aC1 + bC2) + 6B ≤ 6OPT + (6 + 3ε)B ≤

(
12 +O(ε)

)
B. This completes the proof.
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3 The general weighted case

We now consider the general setting, where we have n = |D| non-increasing nonnegative
weights w1 ≥ . . . ≥ wn ≥ 0, and the goal is to open k centers from D and assign each client
j ∈ D to a center i(j) ∈ F , so as to minimize cost

(
w;~c := {ci(j)j}j∈D

)
:= wT~c↓ =

∑n
j=1 wj~c

↓
j .

By combining the ideas in Section 2 with an enumeration procedure due to Aouad and
Segev in [2], we obtain the following result.

I Theorem 7. We can obtain an
(
18 +O(ε)

)
-approximation algorithm for ordered k-median

that runs in time poly
(
(nε )1/ε).

As before, we define suitable proxy costs analogous to the fB(cij)s for the setting with
general weights. By defining these appropriately, it will be easy to argue that the primal-dual
algorithm and its analysis extend to the setting with general weights, since essentially the only
property that we use about {fB(cij)} costs in Section 2 is that they satisfy Claim 3. Instead
of creating two distance buckets in the {0, 1} weighted case (cij ≥ B/` and cij < B/`), with
weight multipliers 1 and 0, we now create O

(
log1+ε(nε )

)
buckets and utilize an enumeration

idea due to Aouad and Segev [2]. In Section 3.1, we describe this enumeration procedure using
our notation, and restate the main claims in [2] in a simplified form. Next, in Section 3.2,
we discuss how to adapt the ideas in Section 2 to the k-median problem for the proxy costs
(given by (7)) that we obtain from Section 3.1. At the end of this section, we combine this
ingredients to prove Theorem 7.

3.1 Proxy costs and the enumeration idea of [2]
Throughout, let ~o↓ denote the assignment-cost vector corresponding to an optimal solution,
whose coordinates are sorted in non-increasing order. So the optimal cost opt is

∑n
i=1 wi~o

↓
i .

By a standard argument, we can perturb w to eliminate very small weights wi: for i ∈ [n],
set w̃i = wi if wi ≥ εw1

n , and w̃i = 0 otherwise.

I Claim 8. For any vector v ∈ Rn+, we have (1− ε)cost(w; v) ≤ cost(w̃; v) ≤ cost(w; v).

Proof. Since w̃i ≤ wi for all i ∈ [n], the upper bound on cost(w̃; v) is immediate. We have

cost(w̃; v) =
n∑
i=1

w̃iv
↓
i = cost(w; v)−

∑
i∈[n]:wi<εw1/n

wiv
↓
i ≥ cost(w; v)− εw1

n · nv
↓
1 . J

In the sequel, we always work with the w̃-weights. We guess an estimate M of ~o↓1 , and
group distances in the range

[
εM
n ,M

]
(roughly speaking) by powers of (1 + ε). Let T be the

largest integer such that εM
n (1 + ε)T ≤M . For r = 0, . . . , T , we define the distance interval

Ir :=
[
εM
n (1 + ε)T−r, εMn (1 + ε)T−r+1). There are at most 1 + log1+ε

(
n
ε

)
= O

( 1
ε log n

ε

)
intervals.

Finally, we guess a non-increasing vector west
0 ≥ west

1 ≥ . . . ≥ west
T , where the west

r s
are powers of (1 + ε) in the range [ εw̃1

n , w̃1(1 + ε)). As argued in [2], there are only
exp
(
O( 1

ε log(nε ))
)

= O
(
(nε )1/ε) choices for west := (west

0 , . . . , west
T ). The intention is for

west
r to represent (within a (1 + ε)-factor) the average w̃-weight of the set {i ∈ [n] : ~o↓i ∈ Ir}.

More precisely, we would like west
r to estimate the following quantity, for all r ∈ {0, . . . , T}.

wavg
r :=


(∑

i∈[n]:~o↓
i
∈Ir

w̃i
)
/|{i ∈ [n] : ~o↓i ∈ Ir}| if {i ∈ [n] : ~o↓i ∈ Ir} 6= ∅;

min {w̃i : ~o↓i ∈
⋃
s<r Is} if

⋃
s<r Is 6= ∅;

w̃1 otherwise.
(6)
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The following claim will be useful.

I Claim 9. For any r ∈ {0, . . . , T}, we have wavg
r ≥ max {w̃i : ~o↓i /∈

⋃
s≤r Is}.

Proof. If wavg
r is defined by cases 1 or 2 of (6), then the inequality follows since for every

i′ ∈
⋃
s≤r Ir and i /∈

⋃
s≤r Is, we have w̃i′ ≥ w̃i (since ~o↓i′ ≥ ~o

↓
i ). If wavg

r is defined by case 3
of (6), then wavg

r = w̃1, and again, the inequality holds. J

Given M and the corresponding intervals I0, . . . , IT , and the vector west, we can now
finally define our proxy costs as follows. For d ≥ 0 and γ ≥ 1, define

gM,west(γ; d) =


w̃1(1 + ε)d if d/γ ≥ εM

n (1 + ε)T+1;
west
r d if d/γ ∈ Ir (where r ∈ {0, . . . , T})

0 if d/γ < εM
n .

(7)

The above definition is essentially the scaled surrogate function in [2]. We abbreviate
gM,west(1; d) to gM,west(d). The following two key lemmas are analogous to Claims 1 and 2,
and show that for the right choice of M and west, evaluating the above proxy costs on an
assignment-cost vector ~c yields a good estimate of the actual cost(w̃; .)-cost of ~c. Similar
statements, albeit stated somewhat differently, are proved in [2].

I Lemma 10 (adapted from [2]). Suppose M ≥ ~o↓1 and the west satisfies west
r ≤ (1 + ε)wavg

r

for all r ∈ {0, . . . , T}. Then,
∑n
i=1 gM,west(~o↓i ) ≤ (1 + ε)2cost(w̃;~o↓).

Proof. Since εM
n (1 + ε)T+1 > M ≥ ~o↓1 , there is no i such that ~o↓i ≥ εM

n (1 + ε)T+1. Fix
r ∈ {0, . . . , T}, and consider all i ∈ [n] such that ~o↓i ∈ Ir. We have∑
i∈[n]:~o↓

i
∈Ir

gM,west(~o↓i ) = west
r

∑
i∈[n]:~o↓

i
∈Ir

~o↓i ≤
εM

n
(1 + ε)T−r+1 · west

r ·
∣∣{i ∈ [n] : ~o↓i ∈ Ir}

∣∣
≤ (1 + ε) · εM

n
(1 + ε)T−r+1 · wavg

r ·
∣∣{i ∈ [n] : ~o↓i ∈ Ir}

∣∣
= (1 + ε) · εM

n
(1 + ε)T−r+1 ·

∑
i∈[n]:~o↓

i
∈Ir

w̃i ≤ (1 + ε)2
∑

i∈[n]:~o↓
i
∈Ir

w̃i~o
↓
i .

It follows that
∑n
i=1 gM,west(~o↓i ) ≤ (1 + ε)2cost(w̃;~o↓). J

I Lemma 11 (adapted from [2]). Let γ ≥ 1. LetM ≥ 0, and suppose west satisfies wavg
r ≤ west

r

for all r ∈ {0, . . . , T}. Let ~c be an assignment-cost vector. Then, we have the upper bound
cost(w̃;~c) ≤

∑n
i=1 gM,west(γ;~ci) + γ(1 + ε)cost(w̃;~o↓) + γεw̃1M .

Proof. We have cost(w̃;~c) =
∑n
i=1 w̃i~c

↓
i ≤

∑n
i=1 gM,west(γ;~ci)+

∑
i: w̃i~c

↓
i
>gM,west (γ;~c↓

i
) w̃i~c

↓
i .

Consider some i ∈ [n] for which w̃i~c↓i > gM,west(γ;~c↓i ). It must be that ~c↓i /γ < εM
n (1 + ε)T+1

as otherwise (see (7)), we have gM,west(γ;~c↓i ) = (1 + ε)w̃1~c
↓
i > w̃i~c

↓
i . If gM,west(γ;~c↓i ) = 0,

then we have w̃i~c↓i /γ < w̃i · εMn ≤ w̃1 · εMn .
Otherwise, we claim that ~c↓i /γ ≤ (1 + ε)~o↓i . Suppose not. Suppose ~c↓i /γ ∈ Ir, where

r ∈ {0, . . . , T}. Since ~c↓
i
/γ

~o↓
i

> (1 + ε), we have that ~o↓i /∈
⋃
s≤r Is. So by Claim 9, we

have wavg
r ≥ w̃i. Hence, gM,west(γ;~c↓i ) = west

r ~c
↓
i ≥ wavg

r ~c↓i ≥ w̃i~c
↓
i , which contradicts our

assumption that w̃i~c↓i > gM,west(γ;~c↓i ).
Putting everything together, we have that

∑
i:w̃i~c

↓
i
>gM,west (γ;~c↓

i
) w̃i~c

↓
i ≤ nγw̃1 · εMn + γ(1 +

ε)
∑
i∈[n] w̃i~o

↓
i , which proves the lemma. J
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Finally, we show that gM,west satisfies the analogue of Claim 3, which will be crucial in
arguing that our algorithms and analysis from Section 4 carry over and allow us to solve, in
an approximate sense, the k-median problem with the {gM,west(cij)} proxy costs.

I Lemma 12. For any γ ≥ 1, M ≥ 0, and west, we have: (i) gM,west(γ;x) ≤ gM,west(γ; y)
if x ≤ y; and (ii) 3 max{gM,west(γ;x), gM,west(γ; y), gM,west(γ; z)} ≥ gM,west(3γ;x+ y + z) for
any x, y, z ≥ 0.

3.2 Solving the k-median problem with the
{
gM,west(cij)

}
proxy costs

We now work with a fixed guess M , west, and give an algorithm for finding a near-optimal
k-median solution with the {gM,west(cij)} proxy costs. Our algorithm and analysis will be
quite similar to the one in Section 4. The primal and dual LPs we consider are the same as
(PB) and (DB), except that we replace all occurrences of fB(cij) and fB(cij) with gM,west(cij).
Let OPTM,west denote the optimal value of this LP.

The primal-dual algorithm for a given center-cost λ (steps P1–P3 in Section 4) is
unchanged. The analysis also is essentially identical, since, previously, we only relied on
the fact that the proxy costs satisfy an approximate triangle inequality, which is also true
here (Lemma 12). We state below the guarantee from the primal-dual algorithm slightly
differently, in the form suggested by part (ii) of Lemma 12; the proof mimics the proof of
Theorem 6.

I Theorem 13. For any λ ≥ 0, the primal-dual algorithm (P1)–(P3) returns a set T of
centers, an assignment i(j) ∈ T for every j ∈ D, and a dual feasible solution (α, β, λ) such
that 3λ|T |+

∑
j gM,west(3; ci(j)j) ≤ 3

∑
j αj.

Given Theorem 13, we can use binary search on λ, to either obtain: (a) some λ such for
which we return a solution T with |T | = k; or (b) λ1 < λ2 with λ2 − λ1 <

εw̃1M
n such that

letting T1 and T2 be the solutions returned for λ1 and λ2, we have k1 := |T1| > k > k2 := |T2|.
In case (a), Theorem 13 implies that

∑
j gM,west(3; ci(j)j) ≤ 3OPTM,west . In case (b), we

again extract a low-cost feasible solution from T1 and T2 by rounding the bipoint solution
given by their convex combination. As before, a, b ≥ 0 be such that ak1 + bk2 = k, a+ b = 1.
Let (α1, β1), (α2, β2) denote the dual solutions obtained for λ1 and λ2 respectively. Let
i1(j) and i2(j) denote the centers to which j is assigned in T1 and T2 respectively. Let
d1,j = gM,west(3; ci1(j)j) and d2,j = gM,west(3; ci2(j)j). Let C1 :=

∑
j d1,j and C2 :=

∑
j d2,j .

Similar to before, we have aC1 + bC2 ≤ 3OPTM,west + 3εw̃1M . The procedure for rounding
this bipoint solution requires only minor changes to steps B1, B2 in Section 4.

Rounding the bipoint solution. If b ≥ 1/3, then T2 yields a feasible solution with∑
j gM,west(3; ci2(j)j) = C2 ≤ 9OPTM,west + 9εw̃1M . So suppose a ≥ 2/3.

G1. Clustering. We match facilities in T2 with a subset of facilities in T1 as follows. Initialize
D′ ← D, A ← ∅, and M ← ∅. We repeatedly pick the client j ∈ D′ with minimum
max{d1,j , d2,j} value, and add j to A. (This is the only change, compared to step
B1.) We add the tuple (i1(j), i2(j)) toM , remove from D′ all clients k (including j) such
that i1(k) = i1(j) or i2(k) = i2(j), and set σ(k) = j for all such clients. Let M1 = M

denote the matching when D′ = ∅. Next, for each unmatched i ∈ T2, we pick an arbitrary
unmatched facility i′ ∈ T1, and add (i′, i) to M . Let F1 be the set of T1-facilities that
are matched, and S := {j ∈ D : i1(j) ∈ F1}. Note that |F1| = |M | = k2.
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G2. Opening facilities. This is almost identical to step B2, except that we decide which
facilities to open by now solving the following LP.

min
∑
j∈S

(
θd1,j+(1−θ)d2,j

)
+
∑
k/∈S

(
zi1(k)d1,k+(1−zi1(k)) ·3 max{d1,k, d2,k}

)
(GR-P)

s.t.
∑

i∈T1\F

zi ≤ k − k2, θ ∈ [0, 1], zi ∈ [0, 1] ∀i ∈ T1 \ F.

Let (θ̃, z̃) be an optimal integral solution to (GR-P). If θ̃ = 1, we open all facilities in
F1, and otherwise, all facilities in T2. We also open the facilities from T1 \ F1 for which
z̃i = 1.

To analyze this, we first show that setting θ = a, zi = a for all i ∈ T1 \ F1 yields a
feasible solution to (GR-P) of objective value at most 3(aC1 + bC2). We have

∑
i∈T1\F1

zi =
a(k1 − k2) = k − k2. Every j ∈ S contributes ad1,j + bd2,j to the objective value of (GR-P).
Consider k /∈ S. Its contribution to the objective value of (GR-P) is

ad1,k + 3bmax{d1,k, d2,k} = max{(a+ 3b)d1,k, ad1,k + 3bd2,k} ≤ 3(ad1,k + bd2,k)

where the inequality follows since a + 3b ≤ 3a when a ≥ 2/3. Thus, for every j ∈ D, its
contribution to the objective value of (GR-P) is at most thrice its contribution to aC1 + bC2.

Suppose ~c is the assignment-cost vector resulting from (θ̃, z̃). We show that∑
j gM,west(9;~cj) is at most the objective value of (θ̃, z̃) under (GR-P). For every k ∈ S, we

have gM,west(9;~ck) ≤ gM,west(3;~ck) ≤ θ̃d1,k + (1− θ̃)d2,k. Now consider k /∈ S with σ(k) = j,
so max{d1,j , d2,j} ≤ max{d1,k, d2,k}. If z̃i1(k) = 1, then gM,west(9;~ck) ≤ gM,west(3;~ck) ≤ d1,k.
Otherwise, ~ck ≤ ci2(k)k + ci1(j)j + ci2(j)j , and so by Lemma 12, we have

gM,west (9;~ck) ≤ gM,west (9; ci2(k)k + ci1(j)j + ci2(j)j)
≤ 3 max{gM,west (3; ci2(k)), gM,west (3; ci1(j)j), gM,west (3; ci2(j)j)} ≤ 3 max{d1,k, d2,k}.

So in every case, gM,west(9;~ck) is bounded by the contribution of k to the objective value of
(θ̃, z̃). Thus, we have proved the following theorem.

I Theorem 14. For any M ≥ 0, west, we can obtain a solution opening k centers whose
assignment-cost vector ~c satisfies

∑
j gM,west(9;~cj) ≤ 9OPTM,west + 9εw̃1M .

Proof of Theorem 7. The proof follows by combining Theorem 14, Lemmas 10 and 11, and
Claim 8. Recall that ~o↓ is the assignment-cost vector corresponding to an optimal solution
with coordinates sorted in non-increasing order, and opt =

∑n
i=1 wi~o

↓
i is the optimal cost.

There are only n2 choices forM , and O
(
(nε )1/ε) choices for west, so we may assume that in

polynomial time, we have obtained M = ~o↓1 , and west
r s satisfying wavg

r ≤ west
r ≤ (1+ ε)wavg

r for
all r ∈ {0, . . . , T}. By Lemma 10, we know that OPTM,west ≤ (1+ε)2cost(w̃;~o↓) ≤ (1+ε)2opt.
Let ~c be the assignment-cost vector of the solution returned by Theorem 14 for this M , west.
Combining Theorem 14, Lemma 11, and Claim 8, we obtain that

(1− ε)cost(w;~c) ≤ cost(w̃;~c) ≤
(
9OPTM,west + 9εw̃1M

)
+ 9(1 + ε)cost(w̃;~o↓) + 9εw̃1M

≤ 9(1 + ε)2opt + 9opt +O(ε)opt =
(
18 +O(ε)

)
opt.

4 Conclusions and discussion

We have described algorithms achieving approximation guarantees of 12 + ε and 18 + ε for
the `-centrum and ordered k-median problems. Our algorithms are combinatorial, utilizing
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the primal-dual schema and Lagrangian relaxation, and improve upon the algorithms in [3],
both in terms of approximation factors and simplicity of analysis.

One interesting research direction suggested by our work is to investigate the ordered-
median and `-centrum (i.e., ordered median with {0, 1}-weights) versions of other optimization
problems. In further work, we have been able to develop a general framework for devising
algorithms for ordered-median problems. Our framework also yields improved guarantees
for the `-centrum and ordered k-median problems studied here. We obtain analogous
improvements for ordered k-median. We defer details to a forthcoming manuscript.
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Abstract
We study the F-center problem with outliers: given a metric space (X, d), a general down-closed
family F of subsets of X, and a parameter m, we need to locate a subset S ∈ F of centers such
that the maximum distance among the closest m points in X to S is minimized.

Our main result is a dichotomy theorem. Colloquially, we prove that there is an efficient
3-approximation for the F-center problem with outliers if and only if we can efficiently optimize
a poly-bounded linear function over F subject to a partition constraint. One concrete upshot of
our result is a polynomial time 3-approximation for the knapsack center problem with outliers
for which no (true) approximation algorithm was known.
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1 Introduction

The k-center problem is a classic discrete optimization problem with numerous applications.
Given a metric space (X, d) and a positive integer k, the objective is to choose a subset S ⊆ X
of at most k points such that maxv∈X d(v, S) is minimized, where d(v, S) = minu∈S d(v, u).
Informally, the problem is to open k centers to serve all points, minimizing the maximum
distance to service. This problem has been studied for at least 50 years [13, 14], is NP-
hard to approximate to a factor better than 2 [18], and has a simple 2-approximation
algorithm [11, 16].

In many applications one is interested in a nuanced version of the problem where instead
of serving all points in X, the objective is to serve at least a certain number of points. This
is the so-called k-center with outliers version, or the robust k-center problem. This problem
was first studied by Charikar et al. in [8] which gives a 3-approximation for the problem. A
best possible 2-approximation algorithm was recently given by Chakrabarty et al. in [6] (see
also the paper [15] by Harris et al. ).

Another generalization of the k-center problem arises when the location of centers has
more restrictions. For instance, if each point in X has a different weight and the constraint is
that the total weight of centers opened is at most k. This problem, now called the knapsack
center problem, was studied by Hochbaum and Shmoys in [17] which gives a 3-approximation
for the problem. To take another instance, X could be vectors in high dimension and the
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centers picked need to be linearly independent vectors. This motivates the matroid center
problem where the set of centers must be an independent set in a matroid. Chen et al. give
a 3-approximation for this problem in [10].

Naturally, the two aforementioned generalizations can be taken together. Indeed, for
the robust matroid center problem, that is, the problem of picking centers which are an
independent set and only m points need to be served, there is a 7-approximation algorithm
in [10]. This was recently improved to a 3-approximation in [15]. The robust knapsack center
problem, however, has had no non-trivial approximation algorithm till this work. Both [10]
and [15] give bi-criteria 3-approximation algorithms which violate the knapsack constraint
by (1 + ε) (the running time of their algorithm is exponential in 1/ε).

Our Contributions

Motivated by the state-of-affairs of the robust knapsack center problem, we study a broad
generalization of the problems mentioned above. Let F be a general down-closed1 family of
subsets overX. In the robust F-center problem we are given a metric space (X, d), a parameter
m, and the objective is to select a subset S ∈ F such that minT⊆X,|T |=m maxv∈T d(v, S) is
minimized. That is, the maximum distance of service of the closest m points is minimized.

Observe that if F := {A : w(A) ≤ k} then we get the robust knapsack center problem, and
if F is the collection of independent sets of a matroid, then we get the robust matroid center
problem. But this generalization captures a host of other problems. For instance, one can
consider multiple (but constant) knapsack constraints. Indeed, this was studied in both [17]
and [10]. The former2 only looks at the version without outliers and gives a polynomial
time 3-approximation in the case when the weights are all polynomially bounded. The latter
proves that when the weights are not polynomially bounded, there can be no approximation
algorithm via a reduction to the Subset Sum problem, and gives a 3-approximation violating
each knapsack constraint by at most (1 + ε) multiplicative factor.

Another instance is a single knapsack constraint along with a single matroid constraint.
To our knowledge, this problem has not been studied earlier even in the case when outliers are
not allowed. This problem seems natural: for instance, when the points are high dimensional
vectors with weights and the collection of centers needs to be a linearly independent set with
total weight at most k.

The complexity of the robust F-center problem naturally depends on the complexity of
F. To understand this, we define the following optimization problem which depends only on
the set-system (X,F). We call it the F-maximization under partition constraints or simply
F-PCM. In this problem, one is given an arbitrary partition P of X along with F, and a
poly-bounded (the range is at most a polynomial in |X|) value val(x) on each x ∈ X. The
objective is to find a set S ∈ F maximizing val(S) such that S contains at most one element
from each part of P. Our main result stated colloquially (and formally stated as Theorem 4
and Theorem 5 in Section 2) is the following dichotomy theorem3.

1 if A ∈ F and B ⊆ A, then B ∈ F.
2 The complete proofs can be found in the STOC 1984 version of [17]
3 We are deliberately being inaccurate here. We should state the theorem for the more general supplier

version where the set X is partitioned into F ∪C and only the points in C need to be covered and only
the centers in F can be opened. Being more general, the algorithmic results are therefore stronger. On
the other hand, we weren’t able (and didn’t try too hard) to make our hardness go through for the
center version. In the Introduction we stick with the center version and switch to the supplier in the
more formal subsequent sections.
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I Informal Theorem. For any down-closed family (X,F), the robust F-center problem has
an efficient 3-approximation algorithm if the F-PCM problem can be solved in polynomial
time. Otherwise, there is no efficient non-trivial approximation algorithm for the robust
F-center problem.

Note that in general, we are not concerned about how F is represented, because the only
place the algorithm checks if a set S is in F is perhaps for solving the F-PCM problem. So
one can choose a representation that works best for the F-PCM solver.

A series of corollaries follow from the above theorem. These are summarized in Table 1.
When F = {A : w(A) ≤ k}, the F-PCM problem can be solved in polynomial time via
dynamic programming. This crucially uses that the val is poly-bounded. Therefore we
get a 3-approximation for the robust knapsack center problem. (Theorem 17)
When F is the independent set of a matroid, then the F-PCM problem is a matroid
intersection problem. Therefore we get a 3-approximation for the robust matroid center
problem recovering the result from [15]. (Theorem 19)
When F = {A : w1(A) ≤ k1, w2(A) ≤ k2, . . . , wd(A) ≤ kd} is defined by d weight functions
and each weight function wi is poly-bounded, then F-PCM can be solved efficiently using
dynamic programming. Therefore we get a 3-approximation algorithm for the robust
multi-knapsack center problem, extending the result in [17] to the case with outliers.
(Theorem 18)
When F is given by the intersection of a single knapsack and a single matroid constraint,
then we don’t know the complexity. However, when the weight function w(·) is poly-
bounded and the matroid is representable, then we can give a randomized algorithm for
the F-PCM problem via a reduction to the exact matroid intersection problem. Therefore,
we get a randomized 3-approximation for this special case of robust knapsack-and-matroid
center problem (Theorem 21).

Remark 1: The Zero Outlier Case. At this juncture, the reader may wonder about the
complexity of the F-center problem which doesn’t allow any outliers. This is related to the
following decision problem. Given (X,F) and an arbitrary sub-partition P of X, the problem
asks whether there is a set S ∈ F such that S contains exactly one element from each part of
P. We call this the F-feasibility under partition constraints or simply the F-PCF problem.
Analogous to the informal theorem from earlier, the F-center problem (without outliers)
has an efficient 3-approximation algorithm if the F-PCF problem can be solved efficiently;
otherwise the F-center problem has no non-trivial approximation algorithm. Indeed, this
theorem is much simpler to prove and arguably the roots of this lie in [17].

This raises the main open question from our paper: what is the relation between the
F-PCF and the F-PCM problem? Clearly, the F-PCF problem is as easy as the F-PCM
problem (set all values equal to one in the latter). But is there an F such that F-PCM is
“hard” while F-PCF is “easy”? One concrete example is the corollary discussed in the last
bullet point above. When F is a single knapsack constraint and a single matroid constraint,
then the F-PCF problem is solvable in polynomial time by minimizing a linear function over
a matroid polytope and another partition matroid base polytope. As noted above, we don’t
know the complexity of the F-PCM problem in this case.

Remark 2: Handling Approximations. If the F-PCM problem is NP-hard, then the robust
F-center has no non-trivial approximation algorithm. However approximation algorithms for
F-PCM translate to bi-criteria approximation algorithms for the robust F-center problem.
More precisely, if we have a ρ-approximation for the F-PCM problem (ρ ≤ 1), then we get
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Table 1 All the above results can be obtained as corollary or simple extensions to our main
result. The numbers in bold indicate new results.

The constraint system F Without Outliers Robust (With Outliers)

Knapsack Constraint 3 [17] 3 (Theorem 17)

Matroid Constraint 3 [10] 3 [15]
Multiple Knapsack

(poly-bounded weights) 3 [17] 3 (Theorem 18)

Knapsack and Matroid 3 (Theorem 24) Open
3 in special case (Theorem 21)

Multiple Knapsacks
and Matroid Constraint

No uni-criteria
approximation 3, (1 + ε) violating (Theorem 27)

a (3, ρ)-bi-criteria approximation algorithm for the robust F-center problem. That is, we
return a solution S ∈ F such that the maximum distance among the closest ρ ·m points is at
most 3 times the optimum value.

There could be a different notion of approximation possible for the F-PCM problem.
Given an instance, there may be an algorithm which returns a set S whose value is at least
the optimum value but S ∈ FR for some FR ⊇ F which is a ‘relaxation’ of F. For instance, if
F is the intersection of multiple (constant) knapsack constraints which are not poly-bounded,
then for any constant ε > 0 the F-PCM problem can be solved [9, 12] returning a set with
value at least the optimum but violating each constraint by multiplicative (1+ε). We can use
the same to get a polynomial time 3-approximation for the robust multiple knapsack-center
problem if we are allowed to violate the knapsack constraints by (1 + ε).

Our Technique

Although our theorem statement is quite general, the proof is quite easy. Let us begin with
the F-center problem without outliers. For this, we follow the algorithmic ‘partitioning’ idea
outlined in paper [17] by Hochbaum and Shmoys. As is standard, we guess the optimum
distance which we assume to be 1 by scaling. Initially, all points are marked uncovered.
Subsequently, we pick any uncovered point x and consider a subset Bx of points within
distance 1 from it. Note that the optimum solution must pick at least one point from each
Bx to serve x. Next, we call x “responsible” for all uncovered points within a distance 2
from it, and mark all these points covered. Observe that all the newly covered points are
within distance 3 from any point in Bx. We continue the above procedure till all points are
marked covered. Also observe that the Bx’s form a sub-partition P of the universe where
each part has a responsible point. By the above two observations, we see that the F-PCF
problem must have a feasible solution with respect to P, and any solution to the F-PCF
problem gives a 3-approximation to the F-center problem.

Handling outliers is a bit trickier. The above argument doesn’t work since the ‘responsible’
point may be an outlier in the optimal solution and we can no longer assert that the optimal
solution must contain a point from each part. Indeed, the nub of the problem seems to
be figuring out which points should be outliers. The 3-approximation algorithm in [8] by
Charikar et al. (see also paper [1]) cleverly chooses the partitioning via a greedy procedure,
but their argument seems hard to generalize to other constraints.

A different attack used in the algorithm in [6] by Chakrabarty et al. and that in [15] by
Harris et al. is by writing an LP relaxation and using the solution of the LP to recognize
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the outliers. At a high level, the LP assigns each point x a variable (in this paper we call
it cov(x)) that indicates the extent to which x is served. Subsequently, the partitioning
procedure described in the first paragraph is run, except the responsible points are considered
in decreasing order of cov(x). The hope is that points assigned higher cov(x) in the LP
solution are less likely to be outliers, and therefore the partition returned by the procedure
can be used to recover a 3-approximate solution. This idea does work for the natural LP
relaxation of the robust matroid center problem but fails for the natural LP relaxation of
the robust knapsack center problem. Indeed, the latter has unbounded integrality gap.

Our solution is to use the round-or-cut framework that has recently been a powerful tool
in designing many approximation algorithms (see [7, 20, 19, 2, 5]). We consider the following
“coverage polytope” for the robust F-center problem: the variables are cov(x) denoting the
extent to which x is covered by a convex combination of sets S ∈ F. Of course, we cannot
hope to efficiently check whether a particular cov lies in this polytope. Nevertheless, we
show that for any cov in the coverage polytope, the partitioning procedure when run in the
decreasing order of cov, has the property that there exists a solution S ∈ F intersecting each
part at most once which covers at least m points. We can then use the algorithm for F-PCM
to find this set. Furthermore, and more crucially, if the partitioning procedure does not have
this property, then we can efficiently find a hyperplane separating cov from the the coverage
polytope. Therefore, we can run the ellipsoid algorithm on the coverage polytope each time
either obtaining a separating hyperplane, or obtaining a cov that leads to a desired partition,
and therefore a 3-approximation.

2 Preliminaries

In this section we give formal definitions and statements of our results. As mentioned in a
footnote in the Introduction, we focus on the supplier version of the problem.

I Definition 1 (F-Supplier Problem). The input is a metric space (X, d) on a set of points
X = F ∪ C with distance function d : X ×X −→ R≥0 and F ⊆ 2F a down-closed family of
subsets of F . The objective is to find S ∈ F such that maxv∈C d(v, S) is minimized.

I Definition 2 (Robust F-Supplier Problem). The input is an instance of the F-supplier
problem along with an integer parameter m ∈ {0, 1, . . . , |C|}. The objective is to find S ∈ F

and T ⊆ C for which |T | ≥ m, and maxu∈T d(u, S) is minimized.

Thus an instance I of the robust F-supplier problem is defined by the tuple (F,C, d,m,F). In
the definitions above, F and C are often called the set of facilities and customers respectively.

Given the set system F defined over F , we define the following optimization problem.

I Definition 3 (F-PCM problem). The input is J = (F,F,P, val) where F is a finite set and
F ⊆ 2F is a down-closed family, P ⊆ 2F is a sub-partition of F , and val : F −→ {0, 1, 2, · · · }
is an integer-valued function with maximum range |val| satisfying: ∀f1, f2 ∈ A ∈ P, val(f1) =
val(f2). The objective is to find:

opt(J) = max
S∈F

val(S) : |S ∩A| ≤ 1, ∀A ∈ P

The next theorem is the main result of the paper.

I Theorem 4. Given a Robust F-Supplier instance I = (F,C, d,m,F), Let A be an algorithm
that solves any F-PCM instance J = (F,F,P, val), with |val| ≤ |C|, in time bounded by TA(J).
Then, there is a 3-approximation algorithm for the Robust F-Supplier instance that runs in
time poly(|I|)TA(J).
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The next theorem is the (easier) second part of the dichotomy theorem. We show that if
F-PCM cannot be solved, then the corresponding Robust F-Supplier cannot be approximated.

I Theorem 5. Given any non-trivial approximation algorithm B for the Robust F-Supplier
problem that runs in time TB(|I|) on instance I, any F-PCM instance J = (F,F,P, val) can
be solved in time poly(|J|)TB(|I|), where |I| = poly(|J|).

The proof can be found in the full version of the paper.
We end this section by setting a few notations used in the remainder of the paper.

For any u ∈ F ∪ C we let BC(u, r) be the customers in a ball of radius r around u i.e.
BC(u, r) = {v ∈ C : d(u, v) ≤ r}. Similarly, define BF (u, r) as the facilities in a ball of
radius r around u i.e. for u ∈ F ∪ C, BF (u, r) = {f ∈ F : d(u, f) ≤ r}.

3 Algorithm and Analysis : Proof of Theorem 4

We fix I = (F,C, d,F,m) the instance of the Robust F-Supplier problem. We use ôpt to
denote our guess of the value of the optimal solution. Without loss of generality, we can
always assume ôpt = 1 because if not, we could scale d to meet this criteria. Our objective
henceforth is to either find a set S ∈ F such that |{v ∈ C : d(v, S) ≤ 1}| ≥ m, or prove that
opt(I) > 1.

There are two parts to our proof. The first part is a partitioning procedure which given an
assignment cov(v) ∈ R≥0 for every customer v ∈ C, constructs an instance J of F-PCM. We
call cov valuable if J has optimum value ≥ m. Our procedure ensures that if cov is valuable,
then we get a 3-approximate solution for I. This is described in Section 3.1. The second
part contains the proof of Theorem 4. In particular we show how using the round-and-cut
methodology using polynomially many calls to A (recall this is the algorithm for F-PCM)
we can either prove opt(I) > 1, or find a valuable cov. This is described in Section 3.2.

3.1 Reduction to F-PCM
Algorithm 1 inputs an assignment {cov(v) ∈ R≥0 : v ∈ C}. It returns a sub-partition P of F
and assigns val : F → {0, 1, · · · , |C|} such that all the facilities in the same part of P get the
same val. That is, it returns an F-PCM instance J = (F,F,P, val) with |val| ≤ |C|.

The algorithm maintains a set of uncovered customers U ⊆ C initialized to C (Line 1).
In each iteration, it picks the customer v ∈ U with maximum cov (Line 5) and adds it
to set Repscov (Line 6). We add the set of facilities BF (v, 1) at distance 1 from v to P

(Line 7, 8). For each such v, we eke out the subset Chld(v) = BC(v, 2) ∩ U of currently
uncovered clients “represented” by v (Line 9). For every facility f ∈ BF (v, 1) we define its
value to be: val(f) = |Chld(v)| (Line 10). At the end of the iteration, Chld(v) is removed
from U (Line 11) and the loop continues till U becomes ∅. This way, the algorithm partitions
C into {Chld(v) : v ∈ Repscov} (see fact(6)). Claim 8 shows that P is a sub-partition of F .

I Fact 6. {Chld(v) : v ∈ Repscov} is a partition of C.

I Fact 7. For a v ∈ Repscov and any u ∈ Chld(v) line 6 of the algorithm implies cov(v) ≥
cov(u).

I Claim 8. P constructed by Algorithm 1 is a sub-partition of F .

Proof. By Line 11 of the algorithm, for each u, v ∈ Repscov we have d(u, v) > 2 hence
BF (u, 1) ∩BF (v, 1) = ∅ implying P is a sub-partition of F . J
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Algorithm 1 F-PCM instance construction.
Input: Robust F-Supplier instance (F,C, d,m,F) and assignment {cov(v) ∈ R≥0 : v ∈ C}
Output: F-PCM instance (F,F,P, val)

1: U ← C . The set of uncovered customers
2: Repscov ← ∅ . The set of representatives
3: P ← ∅ . The sub-partition of F that will be returned
4: while U 6= ∅ do
5: v ← arg maxv∈U cov(v) . The first customer in U in non-increasing cov order
6: Repscov ← Repscov ∪ v
7: BF (v, 1)← {f ∈ F : d(f, v) ≤ 1} . Facilities that can cover v with a ball of radius 1
8: P ← P ∪BF (v, 1)
9: Chld(v)← {u ∈ U : d(u, v) ≤ 2} . Equals to BC(v, 2) ∩ U

10: val(f)← |Chld(v)| ∀f ∈ BF (v, 1)
11: U ← U\Chld(v)
12: end while

I Claim 9. For each v ∈ Repscov and f ∈ BF (v, 1), Chld(v) ⊆ BC(f, 3).

Proof. For any u ∈ Chld(v), we have d(u, v) ≤ 2 and since d(f, v) ≤ 1, the fact that d is
metric implies d(f, u) ≤ 3. J

I Definition 10. For S ⊆ F let R(S) = {v ∈ Repscov : BF (v, 1) ∩ S 6= ∅}, be the set of
representative customers in Repscov that are covered by balls of radius 1 around the facilities
in S.

I Claim 11. Let S ∈ F be any feasible solution of the F-PCM instance constructed by
Algorithm 1. Then,

∑
f∈S val(f) =

∑
v∈R(S)|Chld(v)|.

Proof. For an f ∈ S, according to Line 10 of the algorithm, val(f) > 0 only if f ∈ BF (v, 1)
for some v ∈ Repscov. Also, by definition of the F-PCM problem, |BF (v, 1) ∩ S| ≤ 1 for any
v ∈ Repscov. That is, there is exactly one f ∈ BF (v, 1) ∩ S for each v ∈ R(S) and again by
line 10, val(f) = |Chld(v)|. Summing this equality over all v ∈ R(S) and the corresponding
f ∈ BF (v, 1) ∩ S proves the claim. J

I Claim 12. Let I = (F,C, d,m,F) be a Robust F-Supplier instance and let cov : C → R≥0
be a coverage function. Let J = (F,F,P, val) be the F-PCM instance returned by Algorithm 1
on input I and cov. Given any feasible solution S to J, we can cover at least val(S) customers
of C by opening radius 3-balls around each facility in S.

Proof. By considering R(S) from Definition 10, Claim 11 gives:
∑

v∈R(S)|Chld(v)| =∑
f∈S val(f). From Fact 6, we get that for all u, v ∈ Repscov,Chld(u) ∩ Chld(v) = ∅. Thus,

|
⋃

v∈R(S) Chld(v)| =
∑

v∈R(S)|Chld(v)| = val(S). Furthermore, by Claim 9, {v ∈ C : d(v, S) ≤
3} ⊇

⋃
u∈R(S) Chld(u) implying the size of the former is at least val(S), thus proving the

lemma. J

The above claim motivates the following definition of valuable cov assignments, and the
subsequent lemma.

I Definition 13. An assignment {cov(v) ∈ R≥0 : v ∈ C} is valuable with respect to a Robust
F-Supplier instance I = (F,C, d,m,F), iff opt(J) ≥ m, where J is the F-PCM instance
returned by Algorithm 1 from I and cov.
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I Lemma 14. Given an instance I of the Robust F-Supplier problem with opt(I) = 1, and a
valuable assignment cov with respect to it, we can obtain a 3-approximate solution in time
poly(|I|) + TA(J) where J is the instance constructed by Algorithm 1 from I and cov.

Proof. Since cov is valuable, opt(J) ≥ m. We use solver A to return an optimal solution
S ∈ F with val(S) ≥ m. Claim 12 implies that S is a 3-approximate solution to I. J

3.2 The Round and Cut Approach
If the guess ôpt = 1 for I = (F,C, d,m,F) is at least opt(I), then the following polytope
must be non-empty. To see this, if S∗ ∈ F is the optimal solution to I then set zS∗ := 1 and
zS := 0 for S ∈ F\S∗.

PI
cov = {(cov(v) : v ∈ C) :

∑
v∈C

cov(v) ≥ m (PI
cov.1)

∀v ∈ C, cov(v)−
∑

S∈F:d(v,S)≤1

zS = 0 (PI
cov.2)∑

S∈F

zS = 1 (PI
cov.3)

∀S ∈ F, zS ≥ 0} (PI
cov.4)

Even though PI
cov has exponentially many auxiliary variables (zS for all S ∈ F), its dimension

is still |C|. The following gives a family of valid inequalities for PI
cov via Farkas lemma.

I Lemma 15. Let λ(v) ∈ R for every v ∈ C be such that∑
v∈C:

d(v,S)≤1

λ(v) ≤ m ∀S ∈ F (V1)

Then any cov ∈ PI
cov satisfies∑

v∈C

λ(v)cov(v) ≤ m (V2)

Proof. Given cov ∈ PI
cov, there exists {zS : S ∈ F} such that together they satisfy (PI

cov.1)-
(PI

cov.4).∑
v∈C

λ(v)cov(v) =(PI
cov.2)

∑
v∈C

λ(v)
∑

S∈F:
d(v,S)≤1

zS =
∑
S∈F

zS

∑
v∈C:

d(v,S)≤1

λ(v)

≤(V1),(PI
cov.4)

m
∑
S∈F

zS =(PI
cov.3)

m

J

The next lemma shows that all cov’s in PI
cov are valuable.

I Lemma 16. Suppose an assignment {cov(v) ∈ R≥0 : v ∈ C} is not valuable with respect to
I = (F,C, d,m,F). Then there is a hyper-plane separating it from PI

cov that can be constructed
in polynomial time.
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Proof. If
∑

v∈C cov(v) < m, this inequality itself is a separating hyper-plane and we are
done. So we may assume

∑
v∈C cov(v) ≥ m.

Let J = (F,F,P, val) be the F-PCM instance constructed by Algorithm 1 from I and cov.
Fix S ∈ F and recall from Definition 10 that R(S) = {v ∈ Repscov : BF (v, 1) ∩ S 6= ∅}. Pick
an arbitrary T ⊆ S for which |BF (v, 1) ∩ T | = 1, for all v ∈ R(S). Observe that by down-
closedness of F, we have T ∈ F which implies T is a feasible solution for J, and since cov is not
valuable val(T ) < m. Furthermore, Claim 11 applied to T gives val(T ) =

∑
v∈R(T ) |Chld(v)|.

Since R(S) = R(T ) and |Chld(v)| is integer-valued, we get:∑
v∈R(S)

|Chld(v)| ≤ m− 1 (1)

Let α = m
m−0.5 > 1. Define λ(v) for v ∈ C as:

λ(v) =
{
α|Chld(v)| v ∈ Repscov

0 for all other v ∈ C

Now observe that for any S ∈ F:∑
v∈C:d(v,S)≤1

λ(v) =
∑

v∈Repscov:d(v,S)≤1

α|Chld(v)| = α
∑

v∈R(S)

|Chld(v)| ≤ α(m− 1) < m

That is, λ(v)’s satisfy (V1). Now we prove (V2) is not satisfied thus it can be used to separate
cov from PI

cov.∑
v∈C

λ(v)cov(v) = α
∑

v∈Repscov

|Chld(v)|cov(v) = α
∑

v∈Repscov

∑
u∈Chld(v)

cov(v)

≥Fact 7 α
∑

v∈Repscov

∑
u∈Chld(v)

cov(u) =Fact 6 α
∑
v∈C

cov(v) ≥ αm > m

J

Proof of Theorem 4. Given the guess ôpt which is scaled to 1, we use the ellipsoid algorithm
to check if PI

cov is empty or not. Whenever ellipsoid asks if a given cov is in PI
cov or not,

run Algorithm 1 for this given cov to construct the corresponding F-PCM instance J and
use algorithm A, promised in the statement of Theorem 4, to solve it. If opt(J) ≥ m, then
Lemma 14 implies that we have a 3-approximate solution. Otherwise, cov is not valuable,
and we can use Lemma 16 to find a separating hyperplane. In polynomial time, either we
get a cov ∈ PI

cov which by Lemma 16 has to be valuable, or we prove PI
cov is empty and

we modify our ôpt guess. For the correct guess, the latter case won’t occur and we get a
3-approximate solution. J

4 Applications and Extensions

In this section we elaborate on the applications and extensions stated in the Introduction.
We begin with looking at specific instances of F which have been studied in the literature,
and some which have not.

Single and Multiple Knapsack Constraints. We look at

FKN := {S ⊆ F : for i = 1, . . . , d,
∑
v∈S

wi(v) ≤ ki}
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where there are d weight functions over F and ki’s are upper bounds on these weights. Of
special interest is the case d = 1 in which we get the robust knapsack supplier problem also
called the weighted k-supplier problem with outliers.

The F-PCM problem for the above FKN has the following complexity: When d = 1, the
problem can be solved in polynomial time. Indeed, given a partition P, since val(u) = val(v)
for all v in the same part, any solution which picks a facility from a part A ∈ P may as well
pick the one with the smallest weight in that part. Thus, the problem boils down to the
usual knapsack problem in which we have |P| items where the item corresponding to part
A ∈ P has weight minv∈A w(v) and value val(v). Since the values are poly-bounded, this
problem is solvable in polynomial time. Thus, we get the following corollary to Theorem 4
resolving the open question raised in [10] and [15].

I Theorem 17. There is a polynomial time 3-approximation to the robust knapsack center
problem.

When d > 1, then the F-PCM problem is NP-hard even when val is poly-bounded. However,
if the wi’s are also poly-bounded (actually one of them can be general), then the F-PCM
problem can be solved in polynomial time using dynamic programming. This problem was in
fact studied in [17] (the conference version) and is called the suitcase problem there. Thus,
we get the following corollary to Theorem 4 extending the result in [17].

I Theorem 18. There is a polynomial time 3-approximation to the robust multiple-knapsack
center problem if the number of weights is a constant and all but possibly one weight function
are poly-bounded.

Single and Multiple Matroid Constraints. We look at

FMat := {S ⊆ F : S ∈ IMi , ∀i = 1, . . . , d}

When d = 1, we get the robust matroid center problem. The F-PCM paper reduces to
finding a maximum value set in IM and a partition matroid induced by P. This is solvable in
polynomial time even when val is general and not poly-bounded, and even when IM is given
as an independent set oracle. Thus, we get the following corollary to Theorem 4 obtaining
the result in [15].

I Theorem 19. [Theorem 1.1 in [15]] There is a polynomial time 3-approximation to the
robust matroid center problem even when the matroid is described as an independent set
oracle.

When there are d > 1 matroids, then the F-PCM problem is NP-hard. Therefore, Theorem 5
implies that for instance, we can have no unicriteria approximation for the robust matroid-
intersection center problem.

Single Knapsack and Single Matroid Constraint. We look at

FKN∩Mat := {S ⊆ F :
∑
v∈S

w(v) ≤ k, S ∈ IM}

which is the intersection of a single matroid and a single knapsack constraint. To the best of
our knowledge, the resulting Robust F-Supplier problem has not been studied before. One
natural instantiation is when F is a collection of high-dimensional vectors with weights and
the constraint on the centers is to pick a linearly independent set with total weight at most k.
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The corresponding F-PCM problem asks us, given a partition P and poly-bounded values
val, to find a set S ∈ IM ∩ IP of maximum value such that w(S) ≤ k, where IP is the
partition matroid induced by P. We don’t know if this problem can be solved in polynomial
time, even in the case when M is another partition matroid.

However, the above problem is related to the exact matroid intersection problem. In this
problem, we are given two matroids M and P, and a weight function w on each ground
element and a budget W. The objective is to decide whether or not there is a set S ∈ IM∩IP

such that w(S) = W. Understanding the complexity of this problem is a long standing
challenge [4, 21, 22]. When the matroids are representable over the same field, then [4]
gives a randomized pseudopolynomial time algorithm for the problem. The following claim
shows the relation between F-PCM and the exact matroid intersection problem; this claim is
essentially present in [3] and the reader can refer to the full version of our paper for the
proof.

I Claim 20. Given an algorithm for the exact matroid intersection problem, one can solve
the F-PCM problem in polynomial time when the weights w are poly-bounded.

Armed with the non-trivial result about exact matroid intersection from [4], we get the
following.

I Theorem 21. Given a linear matroid M and a poly-bounded weight function, there is
a randomized polynomial time 3-approximation to the robust knapsack-and-matroid center
problem.

4.1 The Case of No Outliers
The F-supplier problem, that is the case of m = |C|, may be of special interest. In this
case the problem is easier and the complexity is defined by the complexity of the following
decision problem.

I Definition 22 (F-PCF problem). The input is J = (F,F,P) where F is a finite set, F ⊆ 2F

is a down-closed family and P ⊆ 2F is an arbitrary sub-partition of F . The objective is to
decide whether there exists a set S ∈ F such that |S ∩A| = 1, ∀A ∈ P.

I Theorem 23. If the F-PCF problem can be solved efficiently for any partition P, then the
F-supplier problem has a polynomial time 3-approximation. Otherwise, there is no non-trivial
approximation possible for the F-supplier problem.

Sketch. Run Algorithm 1 with an arbitrary assignment cov (and ignore the val’s). Let
J = (F,F,P) be the resulting F-PCF instance. If the guess ôpt = 1 is correct, then note that
the optimum solution S∗ must satisfy S∗∩A 6= ∅ for all A ∈ P; if not, then the corresponding
v ∈ Repscov can’t be served. Conversely, any S satisfying S ∩A 6= ∅ for all A ∈ P implies a
3-approximate solution. Therefore, an algorithm for F-PCF can either give a 3-approximate
solution or prove the guess ôpt is too low. J

Theorem 4 and Theorem 23 raise the question: is there any set of constraints for which
the problem without outliers is significantly easier than the problem with outliers? We don’t
know the answer to this question, although we guess the answer is yes. For this, it suffices to
design a set system for which F-PCF is easy but F-PCM is hard (perhaps NP-hard). To see
the difference between these problems consider the FKN∩Mat family described in the previous
subsection. We don’t know if F-PCM is easy or hard, but F-PCF is easy: this amounts to
minimizing w(S) over S ∈ IM ∩ BP where BP is the base polytope induced by P. This can
be done in polynomial time, and therefore we get the following corollary.
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I Theorem 24. There is a polynomial time 3-approximation to the knapsack-and-matroid
center problem.

4.2 Handling Approximation
The technique used to prove Theorem 4 is robust enough to translate approximation al-
gorithms for the F-PCM problem to bi-criteria approximation algorithms for the Robust
F-Supplier problem. There are two notions of approximation algorithms for the F-PCM
problem and they lead to two notions of bi-criteria approximation.

The first is the standard notion: a ρ-approximation (for ρ ≤ 1) algorithm that takes
instance J of F-PCM, returns a solution S ∈ F of value val(S) ≥ ρ ·opt(J). The corresponding
bi-criteria approximation notion for the Robust F-Supplier problem is the following: an
(α, β)-approximation algorithm for instance I of Robust F-Supplier returns a solution which
opens centers at S ∈ F and the distance of at least βm customers to S is ≤ α · opt(I). The
proof of Theorem 4 in fact implies the following.

I Theorem 25. Let A be a polynomial time ρ-approximate algorithm for the F-PCM problem.
Then there is a polynomial time (3, ρ)-bi-criteria approximation algorithm for the Robust
F-Supplier problem.

The second notion of approximation for the F-PCM problem is one which satisfies the
constraints approximately. This notion is more problem dependent and makes sense only if
there is a notion of an approximate relaxation FR for the set F. For example, an (1 + ε)-
relaxation for FKN could be the subsets S with wi(S) ≤ (1 + ε) · ki for all i. A ρ-violating
algorithm for an instance J of F-PCM would then return a set S with val(S) ≥ opt(J) but
S ∈ FR which is an ρ-relaxation for F. This defines a different bi-criteria approximation
notion for the Robust F-Supplier problem. An α-approximate β-violating algorithm for the
Robust F-Supplier problem takes an instance I and returns a solution S ∈ FR which is a
β-relaxation for F such that at least m customers in C are at distance at most α · opt(I) to S.

I Theorem 26. Let A be a polynomial time ρ-violating algorithm for the F-PCM problem.
Then there is a polynomial time 3-approximate-ρ-violating algorithm for the Robust F-Supplier
problem.

When F is described by constant d knapsack constraints (with general weights) and a
single matroid constraint, for any constant ε > 0 Chekuri et al. give an (1 + ε)-approximation
algorithm for the F-PCM in [9]. Without the matroid constraint, Grandoni et al. give an
(1 + ε)-violating algorithm in [12]. Together, we get the following corollary. The latter
recovers a result from [10].

I Theorem 27. Fix any constant ε > 0. There is a polynomial time (3, (1 + ε))-bi-criteria
approximation algorithm for the robust supplier problem with constant many knapsack con-
straints and one matroid constraint. There is a polynomial time 3-approximate (1+ε)-violating
algorithm for the robust supplier problem with constant many knapsack constraints.
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Abstract
In this work, we present a collection of new results on two fundamental problems in geometric
data structures: orthogonal point location and rectangle stabbing.

Orthogonal point location. We give the first linear-space data structure that supports
3-d point location queries on n disjoint axis-aligned boxes with optimal O (log n) query time
in the (arithmetic) pointer machine model. This improves the previous O

(
log3/2 n

)
bound

of Rahul [SODA 2015]. We similarly obtain the first linear-space data structure in the I/O
model with optimal query cost, and also the first linear-space data structure in the word
RAM model with sub-logarithmic query time.
Rectangle stabbing. We give the first linear-space data structure that supports 3-d 4-
sided and 5-sided rectangle stabbing queries in optimal O(logw n + k) time in the word RAM
model. We similarly obtain the first optimal data structure for the closely related problem
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31:2 Orth. Point Location and Rect. Stabbing Queries in 3-d

1 Introduction

In this work we present a plethora of new results on two fundamental problems in geometric
data structures: (a) orthogonal point location (where the input rectangle or boxes are non-
overlapping), and (b) rectangle stabbing (where the input rectangles or boxes are overlapping).

1.1 Orthogonal point location
Point location is among the most central problems in the field of computational geometry,
which is covered in textbooks and has countless applications. In this paper we study the
orthogonal point location problem. Formally, we want to preprocess a set of n disjoint
axis-aligned boxes (hyperrectangles) in Rd into a data structure, so that the box in the set
containing a given query point (if any) can be reported efficiently. There are two natural
versions of this problem, for (a) arbitrary disjoint boxes where the input boxes need not fill
the entire space, and (b) a subdivision where the input boxes fill the entire space.

Arbitrary disjoint boxes. Historically, the point location problem has been studied in the
pointer machine model and the main question has been the following:

“Is there a linear-space structure with O(log n) query time?”

In 2-d this question has been successfully resolved: there exists a linear-space structure with
O(log n) query time [19, 18, 14, 27, 30] (actually this result holds for nonorthogonal point
location). In 3-d there has been work on this problem [15, 17, 2, 23], but the question has
not yet been resolved. The currently best known result on the pointer machine model is a
linear-space structure with O(log3/2 n) query time by Rahul [23]. In this paper,

we obtain the first linear-space structure with O(log n) query time for 3-d orthogonal
point location for arbitrary disjoint boxes. The structure works in the (arithmetic) pointer
machine model and is optimal in this model.

The orthogonal point location problem has been studied in the I/O-model and the word
RAM as well (please see the full version for a brief description of these models). In the I/O
model, an optimal solution is known in 2-d [16, 6]: a linear-space structure with O(logB n)
query time, where B is the block size (this result holds for nonorthogonal point location).
However, in 3-d the best known result is a linear-space structure with a query cost of
O(log2

B n) I/Os by Nekrich [20] (for orthogonal point location for disjoint boxes).

In the I/O model, we obtain the first linear-space structure with O(logB n) query cost
for 3-d orthogonal point location for arbitrary disjoint boxes. This result is optimal.

In the word RAM model, an optimal solution in 2-d was given by Chan [10] with a query
time of O (log log U), assuming that input coordinates are in [U ] = {0, 1, . . . , U−1}. However,
in 3-d the best known result for arbitrary disjoint boxes is a linear-space structure with
O (log n log log n) query time: this result was not stated explicitly before but can obtained
by an interval tree augmented with Chan’s 2-d orthogonal point location structure [10] at
each node. Our above new result with logarithmic query time is already an improvement
even in the word RAM, but we can do slightly better still:

In the w-bit word RAM model, we obtain the first linear-space structure with sub-
logarithmic query time for 3-d orthogonal point location for arbitrary disjoint boxes. The
time bound is O(logw n). (We do not know whether this result is optimal, however.)
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Subdivisions. In the plane, the two versions of the problem are equivalent in the sense
that any arbitrary set of n disjoint rectangles can be converted into a subdivision of Θ (n)
rectangles via the vertical decomposition. In 3-d, the two versions are no longer equivalent,
since there exist sets of n disjoint boxes that need Ω

(
n3/2) boxes to fill

the entire space. See figure on the right.
In 3-d the special case of a subdivision is potentially easier than

the arbitrary disjoint boxes setting, as the former allows for a fast
O(log2 log U) query time in the word RAM model with O(n log log U)
space, as shown by de Berg, van Kreveld, and Snoeyink [13] (with an
improvement by Chan [10]).

In the word RAM model, we further improve de Berg, van Kreveld, and Snoeyink’s method
to achieve a linear-space structure with O(log2 log U) query time for 3-d orthogonal point
location on subdivisions.

1.2 Rectangle stabbing
Rectangle stabbing is a classical problem in geometric data structures [1, 3, 7, 12, 23], which
is as old, and as equally natural, as orthogonal range searching—in fact, it can be viewed
as an “inverse” of orthogonal range searching, where the input objects are boxes and query
objects are points, instead of vice versa. Formally, we want to preprocess a set S of n

axis-aligned boxes (possibly overlapping) in Rd into a data structure, so that the boxes in
S containing a given query point q can be reported efficiently. (As one of many possible
applications, imagine a dating website, where each lady is interested in gentlemen whose
salary is in a range [S1,S2] and age is in a range [A1,A2]; suppose that a gentleman with
salary xq and age yq wants to identify all ladies who might be potentially interested in him.)

Throughout this paper, we will assume that the endpoints of the rectangles lie on the
grid [2n]3 (this can be achieved via a simple rank-space reduction). In the word RAM
model, Pǎtraşcu [21] gave a lower bound of Ω(logw n) query time for any data structure
which occupies at most n logO(1) n space to answer the 2-d rectangle stabbing query. Shi and
Jaja [29] presented an optimal solution in 2-d which occupies linear space with O(logw n + k)
query time, where k is the number of rectangles reported.

3-sided 4-sided 5-sided 6-sided

We introduce some notation to define
various types of rectangles in 3-d. (We will
use the terms “rectangle” and “box” inter-
changably throughout the paper.) A rect-
angle in 3-d is called (3 + t)-sided if it is bounded in t out of the 3 dimensions and unbounded
(on one side) in the remaining 3− t dimensions.

In the word RAM model, an optimal solution in 3-d is known only for the 3-sided
rectangle stabbing query: a linear-space structure with O(log logw n + k) query time (by
combining the work of Afshani [1] and Chan [10]; this is optimal due to the lower bound
of Pǎtraşcu and Thorup [22]). Finding an optimal solution for 4-, 5-, and 6-sided rectangle
stabbing has remained open.

3-d 4- and 5-sided rectangle stabbing. Currently, the best-known result for 4-sided and
5-sided rectangle stabbing queries by Rahul [23] occupies O(n log∗ n) space with O(log n + k)
and O(log n log log n + k) query time, respectively. This result holds in the pointer machine
model. For 4-sided rectangle stabbing, adapting Rahul’s solution to the word RAM model
does not lead to any improvement in the query time (the bottleneck is in answering log n
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3-d dominance reporting queries). For 5-sided rectangle stabbing, even if we assume the
existence of an optimal 4-sided rectangle stabbing structure, plugging it into Rahul’s solution
can improve the query time to only O(log n + k), which is still suboptimal. In this paper,

we obtain the first optimal solution for 3-d 4-sided and 5-sided rectangle stabbing in the
word RAM model: a linear-space structure with O(logw n + k) query time.

2-d top-k rectangle stabbing. Recently, there has been a lot of interest in top-k range
searching [4, 8, 9, 24, 25, 26, 28, 31]. Specifically, in the 2-d top-k rectangle stabbing problem,
we want to preprocess a set of weighted axis-aligned rectangles in 2-d, so that given a query
point q and an integer k, the goal is to report the k largest-weight rectangles containing (or
stabbed by) q. This problem is closely related to the 5-sided rectangle stabbing problem (by
treating the weight as a third dimension, a rectangle r with weight w(r) can be mapped to a
5-sided rectangle r × (−∞, w(r)]).

By extending the solution for 3-d 5-sided rectangle stabbing problem, we obtain the first
optimal solution for the 2-d top-k rectangle stabbing problem: a linear-space structure
with O(logw n + k) query time.

3-d 6-sided rectangle stabbing. Our new solution to 3-d 5-sided rectangle stabbing, com-
bined with standard interval trees, immediately implies a solution to 3-d 6-sided rectangle
stabbing with a query time of O(logw n · log n + k), which is already new. But we can do
slightly better still:

We obtain a linear-space structure with O(log2
w n+k) query time for 3-d 6-sided rectangle

stabbing problem in the word RAM model. We conjecture this to be optimal (the
analogy is the lower bound of Ω(log2 n + k) query time for linear-space pointer machine
structures [3]).

Back to orthogonal point location. Our solution for orthogonal point location uses rect-
angle stabbing as a subroutine: if there is an S(n)-space data structure with Q(n) + O(k)
query time to answer the rectangle stabbing problem in <d, then one can obtain a data
structure for orthogonal point location in <d+1 with O(S(n))-space and O(Q(n)) time. By
plugging in our new results for 3-d 6-sided rectangle stabbing, we obtain a linear-space word
RAM structure which can answer any orthogonal point location query in 4-d in O(log2

w n)
time, improving the previously known O(log2 n log log n) bound [10].

1.3 Our techniques
Our results are obtained using a number of new ideas (in addition to existing data structuring
techniques), which we feel are as interesting as the results themselves.

3-d orthogonal point location. To better appreciate our new 3-d orthogonal point location
method, we first recall that the current best word-RAM method had O(log n log log n) query
time, and was obtained by building an interval tree over the x-coordinates, and at each
node of the tree, storing Chan’s 2-d point location data structure on the yz-projection of the
rectangles. Interval trees caused the query time to increase by a logarithmic factor, while
Chan’s 2-d structures achieved O(log log n) query time via a complicated van-Emde-Boas-like
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recursion. We can thus summarize this approach loosely by the following recurrence for the
query time (superscripts refer to the dimension):

Q(3)(n) = O(Q(2)(n) log n) and Q(2)(n) = Q(2)(
√

n) + O(1)

=⇒ Q(3)(n) = O(log n log log n).

(Note that naively increasing the fan-out of the interval tree could reduce the query time but
would blow up the space usage.)

In the pointer machine model, the current best data structure by Rahul [23], with
O(log3/2 n) query time, required an even more complicated combination of interval trees,
Clarkson and Shor’s random sampling technique, 3-d rectangle stabbing, and 2-d orthogonal
point location.

To avoid the extra log log n factor, we cannot afford to use Chan’s 2-d orthogonal point
location structure as a subroutine; and we cannot work with just yz-projections, which
intuitively cause loss of efficiency. Instead, we propose a more direct solution based on a new
van-Emde-Boas-like recursion, aiming for a new recurrence of the form

Q(3)(n) = Q(3)(
√

n) + O(log n).

The O(log n) term arises from the need to solve 2-d rectangle stabbing subproblems, on
projections along all three directions (the yz-, xz-, and xy-plane), applied in a round-robin
fashion. The new recurrence then solves to O(log n)—notice how log log disappears, unlike
the usual van Emde Boas recursion! In the word RAM model, we can even use known
sub-logarithmic solutions to 2-d rectangle stabbing to get O(logw n) query time.

We emphasize that our new method is much simpler than the previous, slower methods,
and is essentially self-contained except for the use of a known data structure for 2-d rectangle
stabbing emptiness (which reduces to standard 2-d orthogonal range counting).

One remaining issue is space. In our new method, a rectangle is stored O(log log n) times,
due to the depth of the recursion. To achieve linear space, we need another idea, namely,
bit-packing tricks, to compress the data structure. Because of the rapid reduction of the
universe size in the round-robin van-Emde-Boas recursion, the amortized space in words per
input box satisfies a recurrence of the form

s(n) = s(
√

n) + O

(
log n

w

)
=⇒ s(n) = O

(
log n

w

)
= O(1).

Our new result on the subdivision case is obtained by a similar space-reduction trick.

3-d 5-sided rectangle stabbing. For 3-d rectangle stabbing, the previous solution by
Rahul [23] was based on a grid-based,

√
n-way recursive approach of Alstrup, Brodal, and

Rauhe [5], originally designed for 2-d orthogonal range searching. The fact that the approach
can be adapted here is nontrivial and interesting, since our input objects are now more
complicated (rectangles instead of points) and the target query time is quite different (near
logarithmic rather than log log). More specifically, Rahul first solved the 4-sided case via a
complicated data structure, and then applied Alstrup et al.’s technique to reduce 5-sided
rectangles to 4-sided rectangles, which led to a query-time recurrence similar to the following
(subscripts denote the number of sides, and output cost related to k is ignored):

Q4(n) = O(log n) and Q5(n) = 2Q5(
√

n) + O(Q4(n)) =⇒ Q5(n) = O(log n log log n).

Intuitively, the reduction from the 5-sided to the 4-sided case causes loss of efficiency. To
avoid the extra log log n factor, we propose a new method that is also based on Alstrup et
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al.’s recursive technique, but reduces 5-sided rectangles directly to 3-sided rectangles, aiming
for a new recurrence of the form

Q3(n) = O(log logw n) and Q5(n) = 2Q5(
√

n) + O(Q3(n)).

During recursion, we do not put 4-sided rectangles in separate structures (which would slow
down querying), but instead use a common tree for both 4-sided and 5-sided rectangles. The
new recurrence then solves to Q5(n) = O(logw n) with an appropriate base case—notice how
log log again disappears, and notice how this gives a new result even for the 4-sided case!

One remaining issue is space. Again, we can compress the data structure by incorporating
bit-packing tricks (which was also used in Alstrup et al.’s original method). For 4- and
5-sided rectangle stabbing, the space recurrence then solves to linear.

However, with space compression, a new issue arises. The cost of reporting each output
rectangle in a query increases to O(log log n) (the depth of the recursion), because of the
need to decode the coordinates of a compressed rectangle. In other words, the query cost
becomes O(logw n + k log log n) instead of O(logw n + k). This extra decoding overhead also
occurred in previous work on 2-d orthogonal range searching by Alstrup et al. [5] and Chan
et al. [11], and it is open how to avoid the overhead for that problem without sacrificing
space (this is related to the so-called ball inheritance problem [11]).

We observe that for the 4- and 5-sided rectangle stabbing problem, a surprisingly simple
idea suffices to avoid the overhead: instead of keeping pointers between consecutive levels of
the recursion tree, we just keep pointers directly from each level to the leaf level.

3-d 6-sided rectangle stabbing. We can solve 6-sided rectangle stabbing by using our result
for 5-sided rectangle stabbing as a subroutine. However, the naive reduction via interval
trees increases the query time by a log n factor instead of logw n. To speed up querying,
the standard idea is to use a tree with a larger fan-out wε. This leads to various colored
generalizations of 2-d rectangle stabbing with a small number wε of colors. Much of our
ideas can be extended to solve these colored subproblems in a straightforward way, but a key
subproblem, of answering colored 2-d dominance searching queries in O(log logw n + k) time
with linear space, is nontrivial. We solve this key subproblem via a clever use of 2-d shallow
cuttings, combined with a grouping trick, which may be of independent interest.

2 Orthogonal Point Location in 3-d

Preliminaries. Our solution to 3-d orthogonal point location will require known data
structures for 2-d orthogonal point location and 2-d rectangle stabbing emptiness. The proofs
are presented in the full version.

I Lemma 1. Given n disjoint axis-aligned rectangles in [U ]2 (n ≤ U ≤ 2w), there are data
structures for point location with O

(
n logU
w

)
words of space and O (log n) query time in the

pointer machine model, O (logB n) query cost in the I/O model, and O (min{log log U, logw n})
query time in the word RAM model.

I Lemma 2. Given n (possibly overlapping) axis-aligned rectangles in [U ]2 (n ≤ U ≤ 2w),
there are data structures for rectangle stabbing emptiness with O

(
n logU
w

)
words of space and

O (log n) query time in the pointer machine model, O (logB n) query cost in the I/O model,
and O (logw n) query time in the word RAM model.
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√
U slabs along x-axis

(a) (b) (c)

y

z

Left/right boxes of a slab Short boxes of a slab

z

y

Figure 1 Boxes obtained after partitioning along the x-direction.

Data structure. We are now ready to describe our data structure for 3-d orthogonal point
location. We focus on the pointer machine model first. At the beginning, we apply a rank
space reduction (replacing input coordinates by their ranks) so that all coordinates are in
[2n]3, where n is the global number of input boxes. Given a query point, we can initially
find the ranks of its coordinates by three predecessor searches (costing O(log n) time in the
pointer machine model).

We describe our preprocessing algorithm recursively. The input to the preprocessing
algorithm is a set of n disjoint boxes that are assumed to be aligned to the [Ux]× [Uy]× [Uz]
grid. (At the beginning, Ux = Uy = Uz = 2n.)

Without loss of generality, assume that Ux ≥ Uy, Uz. We partition the [Ux]× [Uy]× [Uz]
grid into

√
Ux equal-sized vertical slabs perpendicular to the x-direction. See Figure 1. (In

the symmetric case Uy ≥ Ux, Uz or Uz ≥ Ux, Uy, we partition along the y- or z-direction
instead.) We classify the boxes into two categories:

Short boxes. For each slab, define its short boxes to be those that lie completely inside
the slab.
Long boxes. Long boxes intersect the boundary (vertical plane) of at least one slab. Each
long box B is broken into three disjoint boxes:

Left box. Let sL be the slab containing the left endpoint (with respect to the x-axis)
of B. The left box is defined as B ∩ sL.
Right box. Let sR be the slab containing the right endpoint of B. The right box is
defined as B ∩ sR.
Middle box. The remaining portion of box B after removing its left and right box, i.e.
B \ ((B ∩ sL) ∪ (B ∩ sR)).

We build our data structure as follows:
1. Planar point location structure. For each slab, we project its left boxes onto the yz-plane.

The projected boxes remain disjoint, since they intersect a common boundary. We store
them in a data structure for 2-d orthogonal point location by Lemma 1. We do this for
the slab’s right boxes as well.

2. Rectangle stabbing structure. For each slab, we project its short boxes onto the yz-plane.
The short boxes are not necessarily disjoint. We store them in a data structure for 2-d
rectangle stabbing emptiness by Lemma 2.

3. Recursive middle structure. We recursively build a middle structure on all the middle
boxes.

4. Recursive short structures. For each slab, we recursively build a short structure on all the
short boxes inside the slab.
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By translation or scaling, these recursive short structures or middle structure can be
made aligned to the

[√
Ux
]
× [Uy] × [Uz] grid. In addition, we store the mapping from

left/right/middle boxes to their original boxes, as a list of pairs (sorted lexicographically)
packed in O

(
n log(UxUyUz)

w

)
words.

Query algorithm. The following lemma is crucial for deciding whether to query recursively
the middle or the short structure.

I Lemma 3. Given a query point (qx, qy, qz), if the query with (qy, qz) on the rectangle
stabbing emptiness structure of the slab that contains qx returns

Non-empty, then the query point cannot lie inside a box stored in the middle structure,
or
Empty, then the query point cannot lie inside a box stored in the slab’s short structure.

Proof. If Non-empty is returned, then the query point is stabbed by the extension (along
the x-direction) of a box in the slab’s short structure and cannot be stabbed by any box stored
in the middle structure, because of disjointness of the input boxes. If Empty is returned,
then obviously the query point cannot lie inside a box stored in the short structure. J

To answer a query for a given point (qx, qy, qz), we proceed as follows:
1. Find the slab that contains qx by predecessor search over the slab boundaries.
2. Query with (qy, qz) the planar point location structures at this slab. If a left or a right

box returned by the query contains the query point, then we are done.
3. Query with (qy, qz) the rectangle stabbing emptiness structure at this slab. If it returns

Non-empty, query recursively the slab’s short structure, else query recursively the middle
structure (after appropriate translation/scaling of the query point).

In step 3, to decode the coordinates of the output box, we need to map from a
left/right/middle box to its original box; this can be done naively by another predecessor
search in the list of pairs we have stored.

Query time analysis. Let Q (Ux, Uy, Uz) denote the query time for our data structure
in the [Ux] × [Uy] × [Uz] grid. Observe that the number of boxes n is trivially upper-
bounded by UxUyUz because of disjointness. The predecessor search in step 1, the 2-d
point location query in step 2, and the 2-d rectangle stabbing query in step 3 all take
O (log n) = O (log(UxUyUz)) time by Lemmata 1 and 2. We thus obtain the following
recurrence, assuming that Ux ≥ Uy, Uz:

Q (Ux, Uy, Uz) = Q
(√

Ux, Uy, Uz

)
+ O (log (UxUyUz)) .

If Ux = Uy = Uz = U , then three rounds of recursion will partition along the x-, y-, and
z-directions and decrease Ux, Uy, and Uz in a round-robin fashion, yielding

Q (U, U, U) = Q
(√

U,
√

U,
√

U
)

+ O (log U) ,

which solves to Q (U, U, U) = O (log U). As U = 2n initially, we get O(log n) query time.
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Space analysis. Let s (Ux, Uy, Uz) denote the amortized number of words of space needed
per input box for our data structure in the [Ux]× [Uy]× [Uz] grid. The amortized number
of words per input box for the 2-d point location and rectangle stabbing structures is
O
(

log(UxUyUz)
w

)
by Lemmata 1 and 2. We thus obtain the following recurrence, assuming

that Ux ≥ Uy, Uz:

s (Ux, Uy, Uz) = s
(√

Ux, Uy, Uz

)
+ O

(
log (UxUyUz)

w

)
.

Three rounds of recursion yield

s (U, U, U) = s
(√

U,
√

U,
√

U
)

+ O

(
log U

w

)
,

which solves to s (U, U, U) = O
(

logU
w

)
. As U = 2n initially, the total space in words is

O
(

n logn
w

)
≤ O (n). Note that the above analysis ignores an overhead of O(1) words of space

per node of the recursion tree, but by shortcutting degree-1 nodes, we can bound the number
of nodes in the recursion tree by O (n). To summarize, we claim the following results:

I Theorem 4. Given n disjoint axis-aligned boxes in 3-d, there are data structures for point
location with O (n) words of space and O(log n) query time in the pointer machine model,
O(logB n) query cost in the I/O model, and O(logw n) query time in the word RAM model.

Proof. The proof for the I/O model and the word RAM model can be found in the full
version. J

Further applications of this framework to subdivisions, 4-d and higher dimensions can be
found in the full version.

3 Rectangle Stabbing

3.1 Preliminaries
I Lemma 5. (Rahul [23]) There is a data structure of size O(n) words which can answer a
5-sided 3-d rectangle stabbing query in O(log2 n · log log n + k) time.

I Lemma 6. (Leaf structure.) For a set of size O(w1/4), there is a data structure of size
O(w1/4) words which can answer a 5-sided 3-d rectangle stabbing query in O(1 + k) time.

3.2 3-d 5-sided rectangle stabbing
Skeleton of the structure. Consider the projection of the rectangles of S on to the xy-plane

and impose an orthogonal
s

2
√

n
log4 n

{
×

s
2
√

n
log4 n

{
grid such that each horizontal and

vertical slab contains the projections of
√

n log4 n sides of S. This grid is the root node of
our tree T . For each vertical and horizontal slab, we recurse on the rectangles of S which
are sent to that slab. At each node of the recursion tree, if we have m rectangles in the

subproblem, the grid size changes to
s

2
√

m
log4 m

{
×

s
2
√

m
log4 m

{
. We stop the recursion when

a node has less than w1/4 rectangles.
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`

Original coordinates of S`

Stage-III

Stage-II

Stage-I

Figure 2

(a) (b) (c) (d)

Figure 3

Breaking the rectangles. The solution of Rahul [23] breaks only one side to reduce 5-sided
rectangles to 4-sided rectangles, and then uses the solution for 4-sided rectangle stabbing
as a black box. Unlike the approach of Rahul [23], we will break two sides of each 5-sided
rectangle to obtain O(log log n) 3-sided rectangles.

For a node in the tree, the intersection of every pair of horizontal and vertical grid line
defines a grid point. A rectangle r ∈ S is associated with four root-to-leaf paths (as shown in
Figure 2). Any node (say, v) on these four paths is classified w.r.t. r into one of the three
stages as follows:

Stage-I. The xy-projection of r intersects none of the grid points. Then r is not stored at v,
and sent to the child corresponding to the row or column r lies in.

Stage-II. The xy-projection of r intersects at least one of the grid points. Then r is broken
into at most five disjoint pieces. The first piece is a grid rectangle, which is the bounding box
of all the grid points lying inside r, as shown in Figure 3(b). The remaining four pieces are
two column rectangles and two row rectangles as shown in Figure 3(c) and (d), respectively.
The grid rectangle is stored at v. Note that each column rectangle (resp., row rectangle) is
now a 4-sided rectangle in R3 w.r.t. its column (resp., row), and is sent to its corresponding
child node.

Stage-III. The xy-projection of a 4-sided piece of r intersects at least one of the grid points.
Without loss of generality, assume that the 4-sided rectangle r is unbounded along the
negative x-axis. Then the rectangle is broken into at most four disjoint pieces: a grid
rectangle, two row rectangles, and a column rectangle, as shown in Figure 4(b), (c) and (d),
respectively. The grid rectangle and the two row rectangles are stored at v, and the column
rectangle is sent to its corresponding child node. Note that the two row rectangles are now
3-sided rectangles in R3 w.r.t. their corresponding rows (unbounded in one direction along
x-, y- and z-axis).

Encoding structures. Let Sv be the set of rectangles stored at a node v in the tree. We apply
a rank space reduction (replacing input coordinates by their ranks) so that the coordinates
of all the endpoints are in [2|Sv|]3. If v is a leaf node, then we build an instance of Lemma 6.
Otherwise, the following three structures will be built using Sv:
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(a) (b) (c) (d)

Figure 4

(A) Slow structure. An instance of Lemma 5 is built on Sv to answer the 3-d 5-sided rectangle
stabbing query when the output size is “large”.
(B) Grid structure. For each cell c of the grid, among the rectangles which completely cover
c, pick the log3 |Sv| rectangles with the largest span along the z-direction. Store them in a
list Top(c) in decreasing order of their span.
(C) 3-d dominance structure. For a given row or column in the grid, based on the 3-sided
rectangles stored in it, a linear-space 3-d dominance reporting structure [1, 10] is built. This
structure is built for each row and column slab.

Where are the original coordinates stored? Unlike the previous approaches for indexing
points [5, 11], we use a somewhat unusual approach for storing the original coordinates of
each rectangle. In the process of breaking each 5-sided rectangle described above, there will
be four leaf nodes where portions of the rectangle will get stored. We will choose these leaf
nodes to store the original coordinates of the rectangle (see Figure 2). The benefit is that
each 3-sided rectangle (stored at a node v) has to maintain a decoding pointer of length
merely O(log |Sv|) to point to its original coordinates stored in its subtree.

Query algorithm and analysis. Given a query point q, we start at the root node and
perform the following steps: First, query the dominance structure corresponding to the
horizontal and the vertical slab containing q. Next, for the grid structure, locate the cell c

on the grid containing q. Scan the list Top(c) to keep reporting till (a) all the rectangles
have been exhausted, or (b) a rectangle not containing q is found. If case (a) happens
and |Top(c)| = log3 |Sv|, then we discard the rectangles reported till now, and query the
slow structure. The decoding pointers will be used to report the original coordinates of the
rectangles. Finally, we recurse on the horizontal and the vertical slab containing q. If we
visit a leaf node, then we query the leaf structure (Lemma 6).

First, we analyze the space. Let s(|Sv|) be the amortized number of bits needed per
input 5-sided rectangle in the subtree of a node v. The amortized number of bits needed
per rectangle for the encoding structures and the pointers to the original coordinates is
O(log |Sv|). This leads to the following recurrence:

s(n) = s(
√

n log4 n) + O(log n)

which solves to s(n) = O(log n) bits. Therefore, the overall space is bounded by O(n) words.
Next, we analyze the query time. To simplify the analysis, we will exclude the output

size term while mentioning the query time. At the root, the time taken to query the grid
and the dominance structure is O(log logw n). This leads to the following recurrence:

Q(n) = 2Q(
√

n log4 n) + O(log logw n)

with a base case of Q(w1/4) = O(1). This solves to Q(n) = O(logw n−log logw n) = O(logw n).
For each reported rectangle it takes constant time to recover its original coordinates. The
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time taken to query the slow structure is dominated by the output size. Therefore, the
overall query time is O(logw n + k).

I Theorem 7. There is a data structure of size O(n) words which can answer any 3-d 5-sided
rectangle stabbing query in O(logw n + k) time. This is optimal in the word RAM model.

Our solution for 2-d top-k rectangle stabbing can be found in the full version.

3.3 3-d 6-sided rectangle stabbing
The complete discussion on 6-sided rectangle stabbing can be found in the full version. Here
we will only highlight the key result.

I Lemma 8. There exists an optimal linear-space data structure that answers z-restricted 3-d
4-sided rectangle stabbing queries in O(log logw n + k) time. A z-restricted 4-sided rectangle
is of the form (−∞, x]× (−∞, y]× [i, j], where integers i, j ∈ [wε] and ε = 0.1.

Proof. We can safely assume that n > w2ε · log w log log n, because the case of n < w2ε ·
log w log log n = O(w1/4) can be handled in O(1 + k) time by using the structure of Lemma 6.
To keep the discussion short, we will assume that k < log w · log log n (handling small values
of k is typically more challenging).

Shallow cuttings. A point p1 is said to dominate point p2 if it has a larger x-coordinate
and a larger y-coordinate value. Our main tool to handle this case are shallow cuttings
which have the following three properties: (a) A t-shallow cutting for a set P of 2-d points is
a union of O(n/t) cells where every cell is of the form [a, +∞) × [b, +∞), (b) every point
that is dominated by at most t points from P will lie within some cell(s), and (c) each cell
contains at most O(t) points of P . A cell [a, +∞)× [b, +∞) can be identified by its corner
(a, b). We denote by Dom(c) the set of points that dominate the corner c.

Data structure. We classify rectangles according to their z-projections. The set Sij contains
all rectangles of the form r = (−∞, xf ]× (−∞, yf ]× [i, j]. Since 1 ≤ i ≤ j ≤ wε, there are
O(w2ε) sets Sij . Every rectangle r in Sij is associated with a point p(r) = (xf , yf ). We
construct a t-shallow cutting Lij with t = log w · log log n for the set of points p(r), such
that r ∈ Sij . A rectangle r = (−∞, xf ] × (−∞, yf ] × [i, j] is stabbed by a query point
q = (qx, qy, qz) if and only if p(r) ∈ Sij and the point p(r) dominates the 2-d point (qx, qy).
We can find points of a set Sij that dominate q using the shallow cutting Lij . However, to
answer the stabbing query we must simultaneously answer a dominance query on O(w2ε)
different sets of points.

We address this problem by grouping corners of different shallow cuttings into one
structure. Let Cij denote the set of corners in a shallow cutting Lij and let C =

⋃
∀i,j∈[wε] Cij .

The set C is divided into disjoint groups, so that every group Gα consists of w2ε consecutive
corners (with respect to their x-coordinates): for any c ∈ Gα and c′ ∈ Gα+1, c.x < c′.x. We
say that a corner c ∈ Cij is immediately to the left of Gα if it is the rightmost corner in Cij
such that cx ≤ c′x for any corner c′ = (c′x, c′y) in Gα. The set of corners Gα contains (1) all
corners from Gα, and (2) for every pair i, j such that 1 ≤ i ≤ j ≤ wε, the corner c ∈ Cij
immediately to the left of Gα. The set Rα contains all rectangles r such that p(r) ∈ Dom(c)
for each corner c ∈ Gα. Since Rα contains O(w2ε log w · log log n) = O(w1/6) rectangles, we
can perform a rank-space reduction and answer queries on Rα in O(k + 1) time by using
Lemma 6.
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Next, we will show that the space occupied by this structure is O(n). The crucial
observation is that the number of corners in Gα is w2ε and the number of “immediately left”
corners added to each Gα is also bounded by w2ε. The number of corners in set C is bounded
by
∑
∀Li,j

O
(

1 + |Sij |
t

)
= O(n/t), since n/t > w2ε. Therefore, the number of groups will be

O
(

n
tw2ε

)
. Each set Rα contains O(w2εt) rectangles. Therefore, the total space occupied by

this structure is
∑
∀α |Rα| = O( n

tw2ε · w2εt) = O(n).

Query algorithm. Given a query point q = (qx, qy, qz), we find the set Gα that “contains”
qx. Then we report all the rectangles in Rα that are stabbed by q by using Lemma 6.
We need O(log logw n) time to find the group Gα [22] and, then O(1 + k) time to report
Rα ∩ q. J
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Abstract

We study a natural problem in graph sparsification, the Spanning Tree Congestion (STC) problem.
Informally, it seeks a spanning tree with no tree-edge routing too many of the original edges.

For any general connected graph with n vertices and m edges, we show that its STC is at
most O(

√
mn), which is asymptotically optimal since we also demonstrate graphs with STC at

least Ω(
√
mn). We present a polynomial-time algorithm which computes a spanning tree with

congestion O(
√
mn · log n). We also present another algorithm for computing a spanning tree

with congestion O(
√
mn); this algorithm runs in sub-exponential time when m = ω(n log2 n).

For achieving the above results, an important intermediate theorem is generalized Győri-
Lovász theorem. Chen et al. [8] gave a non-constructive proof. We give the first elementary and
constructive proof with a local search algorithm of running time O∗ (4n). We discuss some con-
sequences of the theorem concerning graph partitioning, which might be of independent interest.

We also show that for any graph which satisfies certain expanding properties, its STC is at
most O(n), and a corresponding spanning tree can be computed in polynomial time. We then
use this to show that a random graph has STC Θ(n) with high probability.
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1 Introduction

Graph Sparsification/Compression generally describes a transformation of a large input graph
into a smaller/sparser graph that preserves certain feature (e.g., distance, cut, congestion,
flow) either exactly or approximately. The algorithmic value is clear, since the smaller
graph might be used as a preprocessed input to an algorithm, so as to reduce subsequent
running time and memory requirement. In this paper, we study a natural problem in graph
sparsification, the Spanning Tree Congestion (STC) problem. Informally, the STC problem
seeks a spanning tree with no tree-edge routing too many of the original edges. The problem
is well-motivated by network design applications, where designers aim to build sparse
networks that meet traffic demands, while ensuring no connection (edge) is too congested.
Indeed, the root of this problem dates back to at least 30 years ago under the name of
“load factor” [5, 25], with natural motivations from parallel computing and circuit design
applications. The STC problem was formally defined by Ostrovskii [21] in 2004, and since
then a number of results have been presented.

Two canonical goals for graph sparsification problems are to understand the trade-off
between the sparsity of the output graph(s) and how well the feature is preserved, and to
devise (efficient) algorithms for computing the sparser graph(s). These are also our goals for
the STC problem. We focus on two scenarios: (A) general connected graphs with n vertices
and m edges, and (B) graphs which exhibit certain expanding properties.

For (A), we show that the spanning tree congestion (STC) is at most O(
√
mn), which

is a factor of Ω(
√
m/n) better than the trivial bound of m. We present a polynomial-time

algorithm which computes a spanning tree with congestion O(
√
mn · log n). We also present

another algorithm for computing a spanning tree with congestion O(
√
mn); this algorithm

runs in sub-exponential time when m = ω(n log2 n). For almost all ranges of average degree
2m/n, we also demonstrate graphs with STC at least Ω(

√
mn). For (B), we show that

the expanding properties permit us to devise polynomial-time algorithm which computes a
spanning tree with congestion O(n). Using this result, together with a separate lower-bound
argument, we show that a random graph has Θ(n) STC with high probability.

For achieving the results for (A), an important intermediate theorem is generalized
Győri-Lovász theorem, which was first proved by Chen et al. [8]. Their proof uses advanced
techniques in topology and homology theory, and is non-constructive. For brevity, we will
say “k-connected” for “k-vertex-connected” henceforth.

I Definition 1. In a graph G = (V,E), a k-connected-partition is a k-partition of V into
∪k

j=1Vj , such that for each j ∈ [k], G[Vj ] is connected.

I Theorem 2 ([8, Theorems 25, 26]). Let G = (V,E) be a k-connected graph. Let w be a
weight function w : V → R+. For any U ⊂ V , let w(U) :=

∑
v∈U w(v). Given any k distinct

terminal vertices t1, · · · , tk, and k positive integers T1, · · · , Tk such that for each j ∈ [k],
Tj ≥ w(tj) and

∑k
i=1 Ti = w(V ), there exists a k-connected-partition of V into ∪k

j=1Vj , such
that for each j ∈ [k], tj ∈ Vj and w(Vj) ≤ Tj + maxv∈V w(v)− 1.

One of our main contributions is to give the first elementary and constructive proof by
providing a local search algorithm with running time O∗ (4n).

I Theorem 3. (a) There is an algorithm which given a k-connected graph, computes a
k-connected-partition satisfying the conditions stated in Theorem 2 in time O∗ (4n).
(b) If we need a (bk/2c+ 1)-partition instead of k-partition (the input graph remains assumed
to be k-connected), the algorithm’s running time improves to O∗(2O((n/k) log k)).
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We make three remarks. First, the O∗(2O((n/k) log k))-time algorithm is a key ingredient
of our algorithm for computing a spanning tree with congestion O(

√
mn). Second, since

Theorem 2 guarantees the existence of such a partition, the problem of computing such a
partition is not a decision problem but a search problem. Our algorithm shows that this
problem is in the complexity class PLS [12]; we raise its completeness in PLS as an open
problem. Third, the running times do not depend on the weights.

The STC Problem, Related Problems and Our Results. Given a connected graph G =
(V,E), let T be a spanning tree. For an edge e = (u, v) ∈ E, its detour with respect
to T is the unique path from u to v in T ; let DT(e, T ) denote the set of edges in this
detour. The stretch of e with respect to T is |DT(e, T )|, the length of its detour. The
dilation of T is maxe∈E |DT(e, T )|. The edge-congestion of an edge e ∈ T is ec(e, T ) :=
|{f ∈ E : e ∈ DT(f, T )}|, i.e., the number of edges in E whose detours contain e. The
congestion of T is cong(T ) := maxe∈T ec(e, T ). The spanning tree congestion (STC) of the
graph G is STC(G) := minT cong(T ), where T runs over all spanning trees of G.

We note that there is an equivalent cut-based definition for edge-congestion, which we will
use in our proofs. Given a connected graph G = (V,E), an edge set F ⊆ E and two disjoint
vertex subsets V1, V2 ⊂ V , we let F (V1, V2) := { e = {v1, v2} ∈ F | v1 ∈ V1 and v2 ∈ V2 }.
For each tree-edge e ∈ T , removing e from T results in two connected components; let Ue

denote one of the components. Then ec(e, T ) := |E(Ue, V \ Ue)|.
Various types of congestion, stretch and dilation problems are studied in computer science

and discrete mathematics; see the survey [24] for more details. In these problems, one
typically seeks a spanning tree (or some other structure) with minimum congestion, stretch
or dilation. Among them, the most famous one is the Low Stretch Spanning Tree (LSST)
problem, which seeks a spanning tree which minimizes the total stretch of all the edges of
G [3]. It is easy to see that minimizing the total stretch is equivalent to minimizing the
total edge-congestion of the selected spanning tree. Several strong results were published
about the LSST problem. Alon et al. [3] had shown a lower bound of Ω(max{n log n,m}).
Upper bounds have been derived and many efficient algorithms have been devised; the
current best upper bound is Õ(m log n). [3, 9, 1, 14, 2] Since total stretch is identical to
total edge-congestion, the best upper bound for the LSST problem automatically implies
an Õ( m

n log n) upper bound on the average edge-congestion. But in the STC problem, we
concern the maximum edge-congestion.

In comparison, there were not many strong and general results for the STC Problem,
though it was studied extensively in the past 13 years. The problem was formally proposed
by Ostrovskii [21] in 2004. Prior to this, Simonson [25] had studied the same parameter
under a different name to approximate the cut width of outer-planar graph. A number of
graph-theoretic results were presented on this topic [22, 17, 16, 15, 7]. Some complexity
results were also presented recently [20, 6], but most of these results concern special classes
of graphs. The most general result regarding STC of general graphs is an O(n

√
n) upper

bound by Löwenstein, Rautenbach and Regen in 2009 [19], and a matching lower bound by
Ostrovskii in 2004 [21]. Note that the above upper bound is not interesting when the graph
is sparse, since there is also a trivial upper bound of m. In this paper we come up with a
strong improvement to these bounds after 8 years:

Theorem (informal): For a connected graph G with n vertices and m edges, its spanning
tree congestion is at most O(

√
mn). In terms of average degree davg = 2m/n, we can state

this upper bound as O(n
√
davg). There is a matching lower bound.
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Our proof for achieving the O(
√
mn) upper bound is constructive. It runs in exponential

time in general; for graphs with m = ω(n log2 n) edges, it runs in sub-exponential time. By
using an algorithm of Chen et al. [8] for computing single-commodity confluent flow from
single-commodity splittable flow, we improve the running time to polynomial, but with a
slightly worse upper bound guarantee of O(

√
mn · log n).

Motivated by an open problem raised by Ostrovskii [23] concerning STC of random graphs,
we formulate a set of expanding properties, and prove that for any graph satisfying these
properties, its STC is at most O(n). We devise a polynomial time algorithm for computing
a spanning tree with congestion O(n) for such graphs. This result, together with a separate
lower-bound argument, permit us to show that for random graph G(n, p) with 1 ≥ p ≥ c log n

n

for some small constant c > 1, its STC is Θ(n) with high probability, thus resolving the open
problem raised by Ostrovskii completely.

Min-Max Graph Partitioning and the Generalized Győri-Lovász Theorem. It looks clear
that the powerful Theorem 2 can make an impact on graph partitioning. We discuss a
number of its consequences which might be of wider interest.

Graph partitioning/clustering is a prominent topic in graph theory/algorithms, and has a
wide range of applications. A popular goal is to partition the vertices into sets such that the
number of edges across different sets is small. While the min-sum objective, i.e., minimizing
the total number of edges across different sets, is more widely studied, in various applications,
the more natural objective is the min-max objective, i.e., minimizing the maximum number
of edges leaving each set. The min-max objective is our focus here.

Depending on applications, there are additional constraints on the sets in the partition.
Two natural constraints are (i) balancedness: the sets are (approximately) balanced in sizes,
and (ii) induced-connectivity: each set induces a connected subgraph. The balancedness
constraint appears in the application of domain decomposition in parallel computing, while the
induced-connectivity constraint is motivated by divide-and-conquer algorithms for spanning
tree construction. Imposing both constraints simultaneously is not feasible for every graph;
for instance, consider the star graph with more than 6 vertices and one wants a 3-partition.
Thus, it is natural to ask, for which graphs do partitions satisfying both constraints exist.
Theorem 2 implies a simple sufficient condition for existence of such partitions.

By setting the weight of each vertex in G to be its degree, and using the fact that (the
maximum degree) ≤ n ≤ 2m

k for any k-connected graph on n vertices and m edges, we have

I Proposition 4. If G is a k-connected graph with m edges, then there exists a k-connected-
partition, such that the total degree of vertices in each part is at most 4m/k. Consequently,
the min-max objective is also at most 4m/k.

Due to expander graphs, this bound is optimal up to a small constant factor. This proposition
(together with Lemma 9) implies the following crucial lemma for achieving some of our results.

I Lemma 5. Let G be a k-connected graph with m edges. Then STC(G) ≤ 4m/k.

Proposition 4 can be generalized to include approximate balancedness in terms of number of
vertices. By setting the weight of each vertex to be cm/n plus its degree in G, we have

I Proposition 6. Given any fixed c > 0, if G is a k-connected graph with m edges and n
vertices, then there exists a k-connected-partition such that the total degree of vertices in each
part is at most (2c+ 4)m/k, and the number of vertices in each part is at most 2c+4

c · n
k .
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Further Related Work. Concerning STC problem, Okamoto et al. [20] gave an O∗(2n)
algorithm for computing the exact STC of a graph. For graph partitioning, Kiwi, Spielman
and Teng [13] formulated the min-max k-partitioning problem and gave bounds for classes of
graphs with small separators, which were then improved by Steurer [26]. On the algorithmic
side, the min-sum objective has been extensively studied; the min-max objective, while
striking as the more natural objective in some applications, has received much less attention.
The only algorithmic work on this objective (and its variants) are Svitkina and Tardos [28]
and Bansal et al. [4]. None of the above work addresses the induced-connectivity constraint.

The classical version of Győri-Lovász Theorem (i.e., the vertex weights are uniform) was
proved independently by Győri [10] and Lovász [18]. Lovász used homology theory and is
non-constructive. Győri’s proof is elementary and is constructive implicitly, but he did not
analyze the running time. Polynomial time algorithms for constructing the k-partition were
devised for k = 2, 3 [27, 29], but no non-trivial finite-time algorithm was known for general
graphs with k ≥ 4. Recently, Hoyer and Thomas [11] provided a clean presentation of Győri’s
proof by introducing their own terminology, which we use for our constructive proof.

In the full version, we discuss some other related work and some interesting open problems.

2 Technical Overview

To prove the generalized Győri-Lovász theorem, we follow the same framework of Győri’s
proof [10], and we borrow terminology from the recent presentation by Hoyer and Thomas [11].
But it should be emphasized that proving our generalized theorem is not straight-forward,
since in Győri’s proof, at each stage a single vertex is moved from one set to other to make
progress, while making sure that the former set remains connected. In our setting, in addition
to this we also have to ensure that the weights in the partitions do not exceed the specified
limit; and hence any vertex that can be moved from one set to another need not be candidate
for being transferred. The proof of the theorem is presented in Section 3.

As discussed, a crucial ingredient for our upper bound results is Lemma 5, which is a
direct corollary of the generalized Győri-Lovász theorem. The lemma takes care of the highly-
connected cases; for other cases we provide a recursive way to construct a low congestion
spanning tree. See Section 4 for details. For showing our lower bound for general graphs, the
challenge is to maintain high congestion while keeping density small. To achieve this, we
combine three expander graphs with little overlapping between them, and we further make
those overlapped vertices of very high degree. This will force a tree-edge adjacent to the
centroid of the tree to have high congestion. See Section 5 for details.

We formulate a set of expanding properties which permit constructing a spanning tree
of better congestion guarantee in polynomial time. The basic idea is simple: start with a
vertex v of high degree as the root, then try to grow the tree by keep attaching new vertices
to it, while keeping the invariant that the subtrees rooted at each of the neighbours of v
are roughly balanced in size; each such subtree is called a branch. But when trying to grow
the tree in a balanced way, we will soon realize that as the tree grows, all the remaining
vertices might be adjacent only to a few “heavy” branches. To help the balanced growth, our
algorithm identifies a transferable vertex in a “heavy” branch, and it and its descendants in
the tree can be transferred to a “lighter” branch. Another technique is to use multiple rounds
of matching between vertices in the tree and the remaining vertices to attach new vertices to
the tree. This will tend to make sure that all subtrees do not grow uncontrolled. By showing
that random graph satisfies the expanding properties with appropriate parameters, we show
that its STC is Θ(n) with high probability. These results are formally presented in Section 6;
see the full version for the complete algorithm and its analysis.
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3 Generalized Győri-Lovász Theorem

Let G(V,E) be a k-connected graph on n vertices and m edges, and w : V → R+ be a weight
function. For any subset U ⊆ V , we write w(U) :=

∑
u∈U w(u). Let wmax := maxv∈V w(v).

We prove Theorem 3 in this section. Observe that the classical Győri-Lovász Theorem follows
from Theorem 3 by taking w(v) = 1 for all v ∈ V and Tj = nj for all j ∈ [k]. We note that a
perfect generalization where one requires that w(Vj) = Tj is not possible – think when all
vertex weights are even integers, while some Tj is odd.

3.1 Key Combinatorial Notions

We first highlight the key combinatorial notions used for proving Theorem 3.

Fitted Partial Partition. First, we introduce the notion of fitted partial partition (FPP).
An FPP A is a tuple of k subsets of V , (A1, . . . , Ak), such that the k subsets are pairwise
disjoint, and for each j ∈ [k]:

1. tj ∈ Aj and G[Aj ] is connected, and
2. w(Aj) ≤ Tj + wmax − 1 (we say the set is fitted for satisfying this inequality).
We say an FPP is a Strict Fitted Partial Partition (SFPP) if A1∪· · ·∪Ak is a proper subset of
V . We say the set Aj is light if w(Aj) < Tj , and we say it is heavy otherwise. Note that there
exists at least one light set in any SFPP, for otherwise w(A1 ∪ · · · ∪ Ak) ≥

∑k
j=1 Tj = w(V ),

which means A1 ∪ · · · ∪ Ak = V . Also note that by taking Aj = {tj}, we have an FPP, and
hence at least one FPP exists.

Configuration. For a set Aj in an FPP A and a vertex v ∈ Aj \{tj}, we define the reservoir
of v with respect to A, denoted by RA(v), as the vertices in the same connected component
as tj in G[Aj ] \ {v}. Note that v /∈ RA(v).

For a heavy set Aj , a sequence of vertices (z1, . . . , zp) for some p ≥ 0 is called a cascade
of Aj if z1 ∈ Aj \ {tj} and zi+1 ∈ Aj \ RA(zi) for all 1 ≤ i < p. The cascade is called a
null cascade if p = 0, i.e., if the cascade is empty. Note that for light set, we do not need to
define its cascade since we do not use it in the proof.

A configuration CA is defined as a pair (A,D), where A = (A1, · · · , Ak) is an FPP, and
D is a set of cascades, which consists of exactly one cascade (possibly, a null cascade) for
each heavy set in A. A vertex in some cascade of the configuration is called a cascade vertex.

Given a configuration, we define rank and level inductively as follows. Any vertex in a
light set is said to have level 0. For i ≥ 0, a cascade vertex is said to have rank i+ 1 if it
has an edge to a level-i vertex but does not have an edge to any level-i′ vertex for i′ < i. A
vertex u is said to have level i, for i ≥ 1, if u ∈ RA(v) for some rank-i cascade vertex v, but
u /∈ RA(w) for any cascade vertex w such that rank of w is less than i. A vertex that is not
in RA(v) for any cascade vertex v is said to have level ∞.

A configuration is called a valid configuration if for each heavy set Aj , rank is defined
for each of its cascade vertices and the rank is strictly increasing in the cascade, i.e., if
{z1, . . . , zp} is the cascade, then rank(z1) < · · · < rank(zp). Note that by taking Aj = {tj}
and taking the null cascade for each heavy set (in this case Aj is heavy if w(tj) = Tj), we
get a valid configuration.
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Configuration Vectors and Their Total Ordering. For any vertex, we define its neighbor-
hood level as the smallest level of any vertex adjacent to it. A vertex v of level ` is said
to satisfy maximality property if each vertex adjacent on it is either a rank-(`+ 1) cascade
vertex, has a level of at most `+ 1, or is one of the terminals tj for some j. For any ` ≥ 0, a
valid configuration is called an `-maximal configuration if all vertices having level at most
`− 1 satisfy the maximality property. Note that by definition, any valid configuration is a
0-maximal configuration.

For a configuration CA = ((A1, . . . , Ak) , D), we define SA := V \ (A1 ∪ · · · ∪ Ak). An
edge uv is said to be a bridge in CA if u ∈ SA, v ∈ Aj for some j ∈ [k], and level(v) 6=∞.

A valid configuration CA is said to be `-good if the highest rank of a cascade vertex in
CA is exactly ` (if there are no cascade vertices, then we take the highest rank as 0), CA is
`-maximal, and all bridges uv in CA (if any) are such that u ∈ SA and level(v) = `. Note that
taking Aj = {tj} and taking the null cascade for each heavy set gives a 0-good configuration.

For each configuration CA = (A,D), we define a configuration vector as below:

( LA , N0
A , N1

A , N2
A , . . . , Nn

A ),

where LA is the number of light sets in A, and N `
A is the number of all level-` vertices in CA.

Next, we define ordering on configuration vectors. Let CA and CB be configurations. We
say CA >0 CB if

LA < LB , or
LA = LB , and N0

A > N0
B .

We say CA =0 CB if LA = LB and N0
A = N0

B. We say CA ≥0 CB if CA =0 CB or CA >0 CB.
We say CA =` CB if LA = LB , and N `′

A = N `′

B for all `′ ≤ `.
For 1 ≤ ` ≤ n, we say CA >` CB if
CA >`−1 CB , or
CA =`−1 CB , and N `

A > N `
B .

We say CA ≥` CB if CA =` CB or CA >` CB . We say CA > CB (CA is strictly better than CB)
if CA >n CB .

3.2 Proof of Theorem 3(a)

We use two technical lemmas about configuration vectors and their orderings to prove
Theorem 3(a). The proof of Theorem 3(b) follows closely with the proof of Theorem 3(a),
but makes use of an observation to give an improved bound on the number of configuration
vectors navigated by the local search algorithm.

I Lemma 7. Given any `-good configuration CA = (A = (A1, . . . , Ak), DA)) that does not
have a bridge, we can find an (`+ 1)-good configuration CB = (B = (B1, B2, . . . , Bk) , DB)
in polynomial time such that CB > CA.

I Lemma 8. Given an `-good configuration CA = (A = (A1, . . . , Ak), DA) having a bridge,
we can find in polynomial time a valid configuration CB = (B = (B1, . . . , Bk) , DB) such that
one of the following holds:
CB >` CA, and CB is an `-good configuration, or
CB ≥`−1 CA, there is a bridge u′v′ in CB such that u′ ∈ SB and level(v′) ≤ ` − 1, and
CB is an (`− 1)-good configuration.
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Proof of Theorem 3(a): We always maintain a configuration CA = (A,DA) that is `-good
for some ` ≥ 0. If the FPP A is not an SFPP at any point, then we are done. So assume A
is an SFPP.

We start with the 0-good configuration where Aj = {tj} and the cascades of all heavy
sets are null cascades. If our current configuration CA is an `-good configuration that has
no bridge, then we use Lemma 7 to get a configuration CB such that CB > CA and B is
(`+ 1)-good. We take CB as the new current configuration CA. If our current configuration
CA is an `-good configuration with a bridge, then we get an `′-good configuration CB for some
`′ ≥ 0 such that CB > CA by repeatedly applying Lemma 8 at most ` times. So in either
case, we get a strictly better configuration that is `′-good for some `′ ≥ 0 in polynomial time.
We call this an iteration of our algorithm.

Notice that the number of iterations possible is at most the number of distinct configuration
vectors possible. It is easy to see that the number of distinct configuration vectors with
highest rank at most r is at most

(
n+r−1

n

)
. Since rank of any point is at most n, the number

of iterations of our algorithm is at most (k + 1) ·
(2n

n

)
≤ n · 4n. Since each iteration runs in

polynomial time as guaranteed by the two lemmas, the required running time is O∗(4n).
When the algorithm terminates, the FPP given by the current configuration is not an

SFPP and this gives the required partition.

Proof of Lemma 7: Since CA is `-maximal, any vertex that is at level `′ < ` satisfies
maximality property. So, for satisfying (`+ 1)-maximality, we only need to worry about the
vertices that are at level `. Let Xj be the set of all vertices x ∈ Aj such that x is adjacent
to a level-` vertex, level(x) ≥ `+ 1 (i.e., level(x) = ∞ as the highest rank of any cascade
vertex is `), x 6= tj , and x is not a cascade vertex of rank `.

We claim that there exists at least one j for which Xj is not empty. If that is not the
case, then we exhibit a cut set of size at most k − 1. For each j such that Aj is a heavy set
with a non-null cascade, let yj be the highest ranked cascade vertex in Aj . For each j such
that Aj is a heavy set with a null cascade, let yj be tj . Let Y be the set of all yj such that
Aj is a heavy set. Note that |Y | ≤ k − 1 as A is an SFPP and hence has at least one light
set. Let Z∞ be the set of all vertices in V \ Y that have level ∞ and Z be the remaining
vertices in V \ Y . Since A is an SFPP, SA 6= ∅, and since all vertices in SA have level ∞,
we have that Z∞ 6= ∅. Z is not empty because there exists at least one light set in A and
the vertices in a light set have level 0. We show that there is no edge between Z∞ and Z in
G. Suppose there exists an edge uv such that u ∈ Z∞ and v ∈ Z. If u ∈ SA, then uv is a
bridge which is a contradiction by our assumption that CA does not have a bridge. Hence
u ∈ Aj for some j ∈ [k]. Note that Aj has to be a heavy set, otherwise u has level 0. We
have that u is not a cascade vertex (as all cascade vertices with level ∞ are in Y ) and u 6= tj
(as all tj such that level(tj) =∞ are in Y ). Also, v is not of level ` as otherwise, u ∈ Xj but
we assumed Xj is empty. But then, v has level at most `− 1, u has level ∞, and there is
an edge uv. This means that CA was not `-maximal, which is a contradiction. Thus, there
exists at least one j for which Xj is not empty.

For any j such that Xj 6= ∅ , there is at least one vertex xj such that Xj \ {xj} ⊆ RA(xj).
Now we give the configuration CB as follows. We set Bj = Aj for all j ∈ [k]. For each heavy
set Aj such that Xj 6= ∅, we take the cascade of Bj as the cascade of Aj appended with xj .
For each heavy set Aj such that Xj = ∅, we take the cascade of Bj as the cascade of Aj . It
is easy to see that CB is (`+ 1)-maximal as each vertex that had an edge to level-` vertices
in CA is now either a rank `+ 1 cascade vertex or a level-(`+ 1) vertex or is tj for some j.



S. L. Chandran, Y. K. Cheung, and D. Issac 32:9

Also, notice that all the new cascade vertices that we introduce (i.e., the xj ’s) have their
rank as `+ 1 and there is at least one rank `+ 1 cascade vertex as Xj is not empty for some
j. Since there were no bridges in CA, all bridges in CB has to be from SB to a vertex having
level `+ 1. Hence, CB is (`+ 1)-good. All vertices that had level at most ` in CA retained
their levels in CB . And, at least one level-∞ vertex of CA became a level-(`+ 1) vertex in CB

because the cascade vertex that was at rank ` becomes level-(`+ 1) vertex now in at least
one set. Since CA had no level-(`+ 1) vertices, this means that CB > CA.

Proof of Lemma 8: Let uv be a bridge where u ∈ SA. Let Aj∗ be the set containing v.
Note that level(v) = ` because CA is `-good. We keep Bj = Aj for all j 6= j∗. But we modify
Aj∗ to get Bj∗ as described below. We maintain that if Aj is a heavy set then Bj is also a
heavy set for all j, and hence maintain that LB ≤ LA.

Case 1: Aj∗ is a light set (i.e., when ` = 0). We take Bj∗ = Aj∗ ∪ {u}. For all j such
that Bj is a heavy set, cascade of Bj is taken as the null cascade. We have w(Aj∗) ≤ Tj − 1
because Aj∗ is a light set. So, w(Bj∗) = w(Aj∗) + w(u) ≤ (Tj − 1) + wmax, and hence Bj∗

is fitted. Also, G[Bj∗ ] is connected and hence (B1, . . . , Bk) is an FPP. We have CB >0 CA

because either Bj∗ became a heavy set in which case LB < LA, or it is a light set in which
case LB = LA and N0

B > N0
A. It is easy to see that CB is 0-good.

Case 2: Aj∗ is a heavy set i.e., when ` ≥ 1.
Case 2.1: w(Aj∗ ∪{u}) ≤ Tj +wmax− 1. We take Bj∗ = Aj∗ ∪{u}. For each j such that

Bj is a heavy set (Aj is also heavy set for such j), the cascade of Bj is taken as the cascade
of Aj . G[Bj∗ ] is clearly connected and Bj∗ is fitted by assumption of the case that we are in.
Hence B is indeed an FPP. Observe that all vertices that had level `′ ≤ ` in CA still has level
`′ in CB . Since level(v) was ` in CA by `-goodness of CA, u also has level ` in CB ; and u had
level ∞ in CA. Hence, CB >` CA. It is also easy to see that CB remains `-good.

Case 2.2: w(Aj∗ ∪ {u}) ≥ Tj +wmax. Let z be the cascade vertex of rank ` in Aj∗ . Note
that Aj∗ should have such a cascade vertex as v ∈ Aj∗ has level `. Let R̄ be Aj∗ \ (RA(z)∪z),
i.e., R̄ is the set of all vertices in Aj∗ \ {z} with level ∞. We initialize Bj∗ := Aj∗ ∪ {u}.
Now, we delete vertices one by one from Bj∗ in a specific order until Bj∗ becomes fitted.
We choose the order of deleting vertices such that G[Bj∗ ] remains connected. Consider a
spanning tree τ of G[R̄∪{z}]. τ has at least one leaf, which is not z. We delete this leaf from
Bj∗ and τ . We repeat this process until τ is just the single vertex z or Bj∗ becomes fitted. If
Bj∗ is not fitted even when τ is the single vertex z, then delete z from Bj∗ . If Bj∗ is still not
fitted then delete u from Bj∗ . Note that at this point Bj∗ ⊂ Aj∗ and hence is fitted. Also,
note that G[Bj∗ ] remains connected. Hence (B1, . . . , Bk) is an FPP. Bj∗ does not become
a light set because Bj became fitted when the last vertex was deleted from it. Before this
vertex was deleted, it was not fitted and hence had weight at least Tj∗ + wmax before this
deletion. Since the last vertex deleted has weight at most wmax, Bj∗ has weight at least Tj∗

and hence is a heavy set. Now we branch into two subcases for defining the cascades.
Case 2.2.1: z ∈ Bj∗ (i.e, z was not deleted from Bj∗ in the process above). For each j

such that Bj is a heavy set, the cascade of Bj is taken as the cascade of Aj . Since a new `

level vertex u is added and all vertices that had level at most ` retain their level, we have
that CB >` CA. It is also easy to see that CB remains `-good.

Case 2.2.2: z /∈ Bj∗ (i.e, z was deleted from Bj∗). For each j such that Bj is a heavy set,
the cascade of Bj is taken as the cascade of Aj but with the rank ` cascade vertex (if it has
any) deleted from it. CB ≥`−1 CA because all vertices that were at a level of `′ = `− 1 or
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smaller, retain their levels. Observe that there are no bridges in CB to vertices that are at a
level at most `− 2, all vertices at a level at most `− 2 still maintain the maximality property,
and we did not introduce any cascade vertices. Hence, CB is (`− 1)-good. It only remains to
prove that there is a bridge u′v′ in CB such that level(v′) ≤ `− 1. We know z ∈ SB . Since z
was a rank ` cascade vertex in CA, z had an edge to z′ such that z′ had level ` − 1 in CA.
Observe that level of z′ is at most `− 1 in CB as well. Hence, taking u′v′ = zz′ completes
the proof.

4 Upper Bounds for Spanning Tree Congestion

We first state the following easy lemma, which together with Proposition 4, implies Lemma 5.

I Lemma 9. In a graph G = (V,E), let t1 be a vertex, and let t2, · · · , t` be any (` − 1)
neighbours of t1. Suppose that there exists a `-connected-partition ∪`

j=1V` such that for all
j ∈ `, tj ∈ Vj, and the sum of degree of vertices in each Vj is at most D. Let τj be an
arbitrary spanning tree of G[Vj ]. Let ej denote the edge {t1, tj}. Let τ be the spanning tree
of G defined as τ :=

(
∪`

j=1 τj

) ⋃ (
∪`

j=2 ej

)
. Then τ has congestion at most D.

I Theorem 10. For any connected graph G = (V,E), there is an algorithm which computes

a spanning tree with congestion at most 8
√
mn in time O∗

(
2O
(

n log n/
√

m/n
))

.

I Theorem 11. For any connected graph G = (V,E), there is a polynomial time algorithm
which computes a spanning tree with congestion at most 16

√
mn log n.

The two algorithms follows the same framework, depicted in Algorithm 1. It is a recursive
algorithm; the parameter m̂ is a global parameter, which is the number of edges in the input
graph G in the first level of the recursion; let n̂ denote the number of vertices in this graph.

The only difference between the two algorithms is in Line 15 on how this step is executed,
with trade-off between the running time of the step T (m̂, n

H
,m

H
), and the guarantee

D(m̂, n
H
,m

H
). For proving Theorem 10, we use Theorem 3(b), Proposition 4 and Lemma 9,

yielding D(m̂, n
H
,m

H
) ≤ 8m

H

√
n
H
/m̂ and T (m̂, n

H
,m

H
) = O∗

(
2O(n

H
log n

H
/
√

m̂/n
H )
)
.

For proving Theorem 11, we make use of an algorithm in Chen et al. [8], which yields
D(m̂, n

H
,m

H
) ≤ 16m

H

√
n
H
/m̂ log n

H
and T (m̂, n

H
,m

H
) = poly(n

H
,m

H
). Next, we discuss

the algorithm in Chen et al., then we prove Theorem 11.

Single-Commodity Confluent Flow. In a single-commodity confluent flow problem, the
input includes a graph G = (V,E), a demand function w : V → R+ and ` sinks t1, · · · , t` ∈ V .
For each v ∈ V , a flow of amount w(v) is routed from v to one of the sinks. But there is a
restriction: at every vertex u ∈ V , the outgoing flow must leave u on at most 1 edge, i.e., the
outgoing flow from u is unsplittable. The problem is to seek a flow satisfying the demands
which minimizes the node congestion, i.e., the maximum incoming flow among all vertices.
Since the incoming flow is maximum at one of the sinks, it is equivalent to minimize the
maximum flow received among all sinks. (We assume that no flow entering a sink will leave.)
Single-commodity splittable flow problem is almost identical to single-commodity confluent
flow problem, except that the above restriction is dropped, i.e., now the outgoing flow at u
can split along multiple edges. Note that here, the maximum incoming flow might not be at
a sink. It is known that single-commodity splittable flow can be solved in polynomial time.
For brevity, we drop the phrase “single-commodity” from now on. Corollary 13 below follows
from Theorem 12 and Proposition 4.
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Algorithm 1: FindLCST(H, m̂)
Input :A connected graph H = (VH , EH) on n

H
vertices and m

H
edges

Output :A spanning tree τ of H

1 if m
H
≤ 8
√
m̂n

H
then

2 return an arbitrary spanning tree of H
3 end
4 k ←

⌈√
m̂/n

H

⌉
5 Y ← a global minimum vertex cut of H
6 if |Y | < k then
7 X ← the smallest connected component in H[VH \ Y ]
8 Z ← VH \ (X ∪ Y )
9 τ1 ← FindLCST( H[X], m̂ )

10 τ2 ← FindLCST( H[Y ∪ Z], m̂); (H[Y ∪ Z] is connected as Y is a global min cut)
11 return τ1 ∪ τ2 ∪ (an arbitrary edge between X and Y )
12 else
13 t1 ← an arbitrary vertex in VH

14 Pick bk/2c neighbors of t1 in the graph H; denote them by t2, t3, · · · , tbk/2c+1.
Let ej denote edge t1tj for 2 ≤ j ≤ bk/2c+ 1.

15 Compute a (bk/2c+ 1)-connected-partition of H, denoted by ∪bk/2c+1
j=1 Vj , such

that for each j ∈ [bk/2c+ 1], tj ∈ Vj , and the total degree (w.r.t. graph H) of
vertices in each Vj is at most D(m̂, n

H
,m

H
). Let the time needed be

T (m̂, n
H
,m

H
).

16 For each j ∈ [bk/2c+ 1], τj ← an arbitrary spanning tree of G[Vj ]
17 return

(
∪bk/2c+1

j=1 τj

) ⋃ (
∪bk/2c+1

j=2 ej

)
18 end

I Theorem 12 ([8, Section 4]). Suppose that given graph G, demand w and ` sinks, there is
a splittable flow with node congestion q. Then there exists a polynomial time algorithm which
computes a confluent flow with node congestion at most (1 + ln `)q for the same input.

I Corollary 13. Let G be a k-connected graph with m edges. Then for any ` ≤ k and for
any ` vertices t1, · · · , t` ∈ V , there exists a polynomial time algorithm which computes an
`-connected-partition ∪`

j=1V` such that for all j ∈ `, tj ∈ Vj , and the total degrees of vertices
in each Vj is at most 4(1 + ln `)m/`.

Congestion Analysis. We view the whole recursion process as a recursion tree. There is no
endless loop, since down every path in the recursion tree, the number of vertices in the input
graphs are strictly decreasing. On the other hand, note that the leaf of the recursion tree is
resulted by either (i) when the input graph H to that call satisfies m

H
≤ 8

√
m̂n

H
, or (ii)

when Lines 13–17 are executed. An internal node appears only when the vertex-connectivity
of the input graph H is low, and it makes two recursion calls.

We prove the following statement by induction from bottom-up: for each graph which
is the input to some call in the recursion tree, the returned spanning tree of that call has
congestion at most 16

√
m̂n

H
log n

H
.
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We first handle the two basis cases (i) and (ii). In case (i), FindLCST returns an arbitrary
spanning tree, and the congestion is bounded by m

H
≤ 8
√
m̂n

H
. In case (ii), by Corollary 13

and Lemma 9, FindLCST returns a tree with congestion at most 16m
H

√
n
H
/m̂ log n

H
≤

16
√
m̂n

H
log n

H
.

Next, let H be the input graph to a call which is represented by an internal node of the
recursion tree. Recall the definitions of X,Y, Z, τ1, τ2 in the algorithm.

Let |X| = x. Note that 1 ≤ x ≤ n
H
/2. Then by induction hypothesis, the congestion of

the returned spanning tree is at most

max{ congestion of τ1 in H[X] , congestion of τ2 in H[Y ∪ Z] } + |X| · |Y |

≤ 16
√
m̂(n

H
− x) log(n

H
− x) +

(√
m̂/n

H
+ 1
)
· x.

Viewing x as a real variable, by taking derivative, it is easy to see that the above
expression is maximized at x = 1. Thus the congestion is at most 16

√
m̂(n

H
− 1) log(n

H
−

1) +
√
m̂/n

H
+ 1 ≤ 16

√
m̂n

H
log n

H
. In the full version, we do the running time analysis.

5 Lower Bound for Spanning Tree Congestion

Here, we give a lower bound on spanning tree congestion which matches our upper bound.

I Theorem 14. For any sufficiently large n, and for any m satisfying n2/2 ≥ m ≥
max{16n log n, 100n}, there exists a connected graph with N = (3 − o(1))n vertices and
M ∈ [m, 7m] edges, for which the spanning tree congestion is at least Ω (

√
mn).

By some standard random graph arguments, we show that when n2/2 ≥ m ≥ 16n log n,
there exists a connected graph H(n,m) with n vertices and [m/2, 2m] edges, such that for
each subset of vertices S with |S| ≤ n/2, the number of edges leaving S is Ω((m/n) · |S|).

We discuss our construction for Theorem 14. The full proof is in the full version. The
vertex set V is the union of three vertex subsets V1, V2, V3, such that |V1| = |V2| = |V3| = n,
|V1 ∩ V2| = |V2 ∩ V3| =

√
m/n, and V1, V3 are disjoint. In each of V1, V2 and V3, we embed

H(n,m). Up to this point, the construction is similar to that of Ostrovskii [21], except that
we use H(n,m) instead of a complete graph. The new component in our construction is
adding the following edges. For each vertex v ∈ V1 ∩ V2, add an edge between v and every
vertex in (V1 ∪ V2) \ {v}. Similarly, for each vertex v ∈ V3 ∩ V2, add an edge between v and
every vertex in (V3 ∪ V2) \ {v}. This new component is crucial: without it, we could only
prove a lower bound of Ω(m/

√
n) = Ω(

√
mn ·

√
m

n ).

6 Graphs with Expanding Properties

For any vertex subset U,W ⊂ V , let NW (U) denote the set of vertices in W which are
adjacent to a vertex in U . Let N(U) := NV \U (U).

I Definition 15. A graph G = (V,E) on n vertices is an (n, s, d1, d2, d3, t)-expanding graph
if the following four conditions are satisfied:
(1) for each vertex subset S with |S| = s, |N(S)| ≥ d1n;
(2) for each vertex subset S with |S| ≤ s, |N(S)| ≥ d2|S|;
(3) for each vertex subset S with |S| ≤ n/2 and for any subset S′ ⊂ S, |NV \S(S′)| ≥ |S′|−t.
(4) For each vertex subset S, |E(S, V \ S)| ≤ d3|S|.
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I Theorem 16. For any connected graph G which is an (n, s, d1, d2, d3, t)-expanding graph,
there is a polynomial time algorithm which computes a spanning tree with congestion at most

d3 ·

[
4 ·max

{
s+ 1 ,

⌈
3d1n

d2

⌉}
·
(

1
2d1

)log(2−δ) 2
+ t

]
, where δ = t

d1n
.

In the full version, we show that for random graph G(n, p) with p ≥ 64 log n/n. with high
probability the graph is an (n, s, d1, d2, d3, t)-expanding graph with s = Θ(1/p), d1 = Θ(1),
d2 = Θ(np), d3 = Θ(np), t = Θ(1/p) (and hence δ = o(1)). Applying the above theorem,
together with a separate lower bound argument, we show:

I Theorem 17. If G ∈ G(n, p) where p ≥ 64 log n/n, then with probability at least 1−O(1/n),
its STC is Θ(n).
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Abstract
The state-of-the-art algorithm for maintaining an approximate maximum matching in fully dy-
namic graphs has a polynomial worst-case update time, even for poor approximation guarantees.
Bhattacharya, Henzinger and Nanongkai showed how to maintain a constant approximation to
the minimum vertex cover, and thus also a constant-factor estimate of the maximum matching
size, with polylogarithmic worst-case update time. Later (in SODA’17 Proc.) they improved the
approximation to 2 + ε. Nevertheless, the fundamental problem of maintaining an approximate
matching with sub-polynomial worst-case time bounds remained open.

We present a randomized algorithm for maintaining an almost-maximal matching in fully
dynamic graphs with polylogarithmic worst-case update time. Such a matching provides (2 + ε)-
approximations for both maximum matching and minimum vertex cover, for any ε > 0. The
worst-case update time of our algorithm, O(poly(log n, ε−1)), holds deterministically, while the
almost-maximality guarantee holds with high probability. Our result was done independently of
the (2+ ε)-approximation result of Bhattacharya et al., thus settling the aforementioned problem
on dynamic matchings and providing essentially the best possible approximation guarantee for
dynamic vertex cover (assuming the unique games conjecture).

To prove this result, we exploit a connection between the standard oblivious adversarial
model, which can be viewed as inherently “online”, and an “offline” model where some (limited)
information on the future can be revealed efficiently upon demand. Our randomized algorithm
is derived from a deterministic algorithm in this offline model. This approach gives an elegant
way to analyze randomized dynamic algorithms, and is of independent interest.
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1 Introduction

Consider a fully dynamic setting where we start from an initially empty graph on n fixed
vertices G0, and at each time step i a single edge (u, v) is either inserted in the graph Gi−1
or deleted from it, resulting in graph Gi. The problem of maintaining a large matching or a
small vertex cover in such graphs has attracted a lot of research attention in recent years. In
general, one would like to devise an algorithm for maintaining a “good” matching and/or
vertex cover with polylog(n) update time (via a data structure that answers queries of whether
an edge is matched or not in constant time), where “good" means a good approximation to
the maximum matching and/or the minimum vertex cover, and the update time is the time
required by the algorithm to update the matching/vertex cover at each step.

One may try to optimize the amortized (i.e., average) update time of the algorithm or its
worst-case (i.e., maximum) update time, over a worst-case sequence of graphs. There is a
strong separation between the state-of-the-art amortized bounds and the worst-case bounds.
A similar separation exists for various other dynamic graph problems, such as spanning tree,
minimum spanning tree and two-edge connectivity. Next, we provide a brief literature survey
on dynamic matchings. (See [17, 2, 18, 19] for a detailed survey.)

In FOCS’11, [2] devised an algorithm for maintaining a maximal matching with an
expected amortized update time of O(log n) under the oblivious adversarial model.3 Building
on [2], [19] devised a different randomized algorithm with constant amortized update time.
Note that a maximal matching provides a 2-approximation for both the maximum matching
and the minimum vertex cover, while a better-than-2 approximate vertex cover cannot
be efficiently computed under the unique games conjecture (UGC) [14]. In SODA’15
[5] (respectively, STOC’16 [6]) devised a deterministic algorithm for maintaining (2 + ε)-
approximate vertex cover (resp., matching) with amortized update time O(log n/ε2) (resp.,
O(poly(log n, ε−1))). All these time bounds are amortized.

All the known algorithms for maintaining a better-than-2 approximate matching (for
general graphs) require polynomial update time. In FOCS’13 [12] devised a deterministic
algorithm for maintaining (1 + ε)-approximate matching with a worst-case update time
O(
√
m/ε2), improving over the 3/2-approximation result of [16]. [4] maintained (3/2 + ε)-

approximate matching with an amortized update time O(m1/4/ε2.5), generalizing their earlier
work [3] for bipartite graphs, but the time bound in [3] is worst-case not amortized.

There are two main open questions in this area. The 1st is if one can maintain a
better-than-2 approximate matching in amortized polylogarithmic update time. The 2nd is:

I Question 1. Can one maintain a “good” (close to 2) approximate matching and/or vertex
cover with worst-case polylogarithmic update time?

In a recent breakthrough, Bhattacharya, Henzinger and Nanongkai devised a deterministic
algorithm that maintains a constant approximation to the minimum vertex cover, and
thus also a constant-factor estimate of the maximum matching size, with polylogarithmic
worst-case update time. While this result makes significant progress towards Question 1,
this fundamental question remained open.4 In particular, no algorithm for maintaining a
matching with sub-polynomial worst-case update time was known, even if a polylogarithmic
approximation guarantee on the matching size is allowed!

3 In the standard oblivious adversarial model (cf. [8], [13]), the adversary knows all the edges in the graph
and their arrival order, but is not aware of the random bits used by the algorithm.

4 Later (in SODA’17 Proc. [7]) Bhattacharya et al. significantly improved the approximation to 2 + ε.
However, our result was done independently to [7]. Moreover, [7] solves Question 1 only for vertex cover.
Independently of us, Arar et al. [1] solves Question 1 for matching by building on [7].
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In this paper we devise a randomized algorithm that maintains an almost-maximal
matching (AMM) with a polylogarithmic update time. We say that a matching for G is
almost-maximal w.r.t. some slack parameter ε, or (1− ε)-maximal in short, if it is maximal
w.r.t. any graph obtained from G after removing ε · |M∗| arbitrary vertices, where M∗ is
a maximum matching for G. Just as a maximal matching provides a 2-approximation for
matching and vertex cover, an AMM provides a (2 + ε)-approximation. We show:

I Theorem 2. For any ε > 0, one can maintain an AMM with worst-case update time
O(poly(log n, ε−1)), where the (1− ε)-maximality guarantee holds with high probability.

Our update time is O(max{log7 n/ε, log5 n/ε4}); reducing this bound towards constant lies
outside the scope of this paper; see Sec. 9 in the full version [9] (shortly, “i.t.f.v.”).

The algorithm’s worst-case guarantee can be strengthened, using [20], to bound the
number of changes (replacements) to the matching. Optimizing this measure is important in
various practical applications; refer to [20] for a motivation of this measure.

Our result resolves Question 1 in the affirmative, up to the ε dependency. In particular, it
is essentially the best result possible under the UGC for the dynamic vertex cover problem; it
started to circulate in Nov. 2016, and is independent of the (2 + ε)-vertex cover result of [7].

On the way to this result, we devise a deterministic algorithm that maintains an AMM
with a polylogarithmic update time in a natural offline model that is described next. This
deterministic algorithm may be of independent interest, as the offline setting seems important
in its own right; see p. 3 i.t.f.v. for further details.

1.1 A Technical Overview

The offline model. Suppose the entire update sequence is known in advance, and is stored
in some data structure. Suppose further that for any i, accessing the ith edge update via the
data structure is efficient, taking polylog(n) or even O(1) time. A natural question is whether
one can exploit this knowledge of the future to obtain better algorithms for maintaining a
good matching and/or vertex cover. Consider in particular the maximal matching problem,
and a deletion of a matched edge (u, v) from the graph (which is the problematic part). If u
has a free neighbor, we need to match them, and similarly for v. The algorithm may naively
scan the neighbors of u and v, which may require O(n) time. Surprisingly, this naive O(n)
bound is the state-of-the-art for general (dense) graphs, unless one allows both randomization
and amortization [2, 19]. Can one do better in the offline setting?

We argue that a dynamic maximal matching can be maintained in the offline setting
deterministically with constant amortized update time. To this end, we make the following
observation: The machinery of [2, 19] extends seamlessly to the offline setting. More
specifically, in contrast to the algorithms [2, 19], which choose the matched edge of v
uniformly at random among a subset of its adjacent edges Ev that is computed carefully by
those algorithms (details below), in the offline setting we choose the matched edge to be the
one that will be deleted last among Ev. (We do not choose the edge that will be deleted
last among all adjacent edges of v, as this is doomed; see the technical overview i.t.f.v). It is
readily verified that the analysis of [2, 19] carries over to the offline setting directly.

The resulting deterministic algorithm for the offline setting is inherently amortized,
whereas our focus is on worst-case bounds. To obtain good worst-case bounds, we build
on the machinery of [2, 19]. The price of translating the amortized bounds of [2, 19] into a
similar worst-case bound is that the maintained matching is no longer maximal, but rather
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almost-maximal.5 This translation is highly non-trivial, and is carried out in two stages.
First, we consider the offline setting, and devise a deterministic algorithm there. Coping with
the offline setting is easier than with the standard setting, as it allows us to ignore intricate
probabilistic considerations, and to handle them separately. Second, we convert the results
for the offline setting to the standard setting. The algorithm itself remains essentially the
same. (Instead of choosing the edge that will be deleted last, choose a random edge.) On the
other hand, showing that the maintained matching remains almost-maximal requires more
work. This two-stage approach thus provides an elegant way to analyze randomized dynamic
algorithms, and we believe it would be useful in other dynamic graph problems as well.

The framework of [2, 19]. We next provide a rough description of the amortized framework
of [2, 19]. (The approach of [19] builds on the framework of [2] and extends it; for clarity, we
won’t distinguish between [2] and [19].)

Matched edges will be chosen randomly. If an edge e = (u, v) is chosen to the matching
uniformly at random among k adjacent edges of either u or v, w.l.o.g. u, we say that its
potential is k. Under the oblivious adversarial model, the expected number of edges incident
on u that are deleted from the graph before deleting edge (u, v) is k/2. Thus, following a
deletion of a matched edge (u, v) with potential k from the graph, we have time Õ(k) to
handle u and v in the amortized sense.

Each vertex v dynamically maintains a level `v; informally, v’s level will be logarithmic in
the potential value of the matched edge adjacent to v. Free vertices are at level −1; matched
vertices are at levels between 0 and O(log n). Based on vertices’ levels, a dynamic edge
orientation is maintained, where each edge is oriented towards the lower level endpoint.

When a vertex u becomes free, the algorithm (usually) chooses a mate for it randomly. If
this mate w is already matched, say to w′, the algorithm has to delete edge (w,w′) from the
matching in order to match u with w. However, we will be able to compensate for the loss
in potential value (caused by deleting edge (w,w′) from the matching) if it is significantly
smaller than the potential of the newly created matched edge. Since vertices’ levels are
logarithmic in their potential, all neighbors of u with lower level should have potential value
at most half the potential value of the new matched edge on u. In other words, for each of
those neighbors, we can afford to break their old matched edge. Hence, the mate w of u will
be chosen uniformly at random among u’s neighbors with lower level.

A central obstacle is to distinguish between neighbors of u with level `u and those with
lower level. Indeed, it is possible that most of u’s neighbors have level `u, and none of them
can be chosen as a mate for u. Roughly speaking, the execution of the algorithm splits into
two cases. If the current out-degree of u is not (much) larger than its out-degree at the time
its old matched edge got created, then we should be able to afford to scan all of them, due
to sufficiently many adversarial edge deletions that are expected to occur. Notice that in
this case the charging argument is based on past edge deletions.

The second case is when the out-degree of u is (much) larger than what it was when the
old matched edge got created. The time needed for distinguishing u’s neighbors at level
`u from those at lower levels could be significantly larger than the “money” we got from

5 The amortized update time analysis of the algorithm from [2] (both the FOCS’11 and subsequent journal
SICOMP’15 versions) was erroneous, but was corrected in a subsequent erratum by the same authors.
(The amortized update time analysis of the algorithm from [19] is different than the one used in [2], and
does not have that mistake.) Although our algorithm builds on the machinery of [2, 19], the mistake in
[2] does not affect the current paper, as we provide an independent analysis for a different algorithm,
which bounds the worst-case update time of our algorithm rather than the amortized update time.
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past edge deletions. In this case the algorithm raises u to a possibly much higher level `∗,
where there are not too many neighbors for u at that level as compared to the number of
neighbors at lower levels. Having raised u to that level, we can perform the random sampling
of its mate among all neighbors of level lower than `∗. Notice that in this case the charging
argument is not based on the past, but rather on future edge deletions.

Our approach. Note that the framework of [2, 19] is inherently amortized: Every once
in a while there are “expensive” operations, which are charged to “cheap” operations that
occurred in the past or will occur in the future. To obtain a low worst-case update time, we
should be cheap in any time interval, thus we can rely neither on the past nor the future.
Consider a matched edge (u, v) deleted by the adversary. We expect the adversary to make
many edge deletions on at least one of these endpoints before deleting this edge. Alas, it
is possible that all these edge deletions occurred a long time ago, which is useless for a
worst-case algorithm. Consider the offline setting, and let e1, . . . , eη be η arbitrary matched
edges with potential value k. For each such edge ei, let S(ei) be its sample, i.e., the set of
edges from which ei was sampled to the matching. In the offline setting ei will be deleted
only after all k − 1 other edges from its sample have been deleted. However, it is possible
that the adversary first deletes the first k − 1 edges from the samples of each of the matched
edges, and only then turn to deleting the matched edges. Assuming k is large, it takes a
long time for the adversary to delete the first η(k − 1) edges from all η samples, but the
amortized algorithms of [2, 19] remain idle during all this time. An algorithm with a low
worst-case update time must be active in this time interval, as immediately afterwards the
adversary can remove the η matched edges from the graph, much faster than the algorithm
can add edges to the matching in their place, leading to a poor approximation guarantee.
Hence, at any point in time, the algorithm needs to be proactive and protect itself from such
a situation happening in the future.

Generally, while in an amortized algorithm invariants may sometimes be violated and
then restored via expensive operations, an algorithm with a low worst-case update time
should persistently “clean” the graph, making sure that it is never close to violating any
invariant. Naturally, we will need to maintain additional invariants to those maintained by
the amortized algorithms [2, 19]. To this end we employ four different data structures that
we call schedulers, each for a different purpose. Each of those schedulers consists of O(log n)
sub-schedulers, a single sub-scheduler per level. Next we fix some level ` ≈ log k, where k is
the potential of the matched edges on that level, and focus on it.

The scheduler unmatch-schedule periodically removes edges from the matching, one
after another, by always picking a matched edge whose remaining sample (i.e., the set of
edges from the sample that have not been deleted yet from the graph) is smallest. As strange
as it might seem, this strategy enables us to guarantee that only few matched edges will ever
be deleted by the adversary. Note that removing a matched edge from the matching is not
a cheap operation, as we need to find new mates for the two endpoints of the edge. Thus,
the execution of the scheduler must be simulated over sufficiently many adversarial updates,
which may include more deletions. But, as we control the rate at which the scheduler is
working, we can make sure that it works sufficiently faster than the adversary. Therefore, in
this “game” between the scheduler and the adversary, the scheduler will always win.

The role of unmatch-schedule is to make sure that all the samples are pretty full.
Intuitively, this provides the counter-measure of relying on past adversarial edge deletions, as
done in the amortized argument. The next scheduler rise-schedule provides the counter-
measure of relying on future adversarial edge deletions. Recall that future edge deletions
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are used in the amortized argument only in the case that a vertex had to rise to a higher
level, which occurs only if its out-degree became too large for its current level. The role of
rise-schedule is to make sure that vertices’ out-degrees are always commensurate with
their level. This scheduler periodically raises vertices to the level ` of which it is in charge,
one after another, by always choosing to raise a vertex with the largest number of neighbors
at level lower than `. Although the two schedulers are based on the same principle, the
game that we play here is not between the scheduler and the adversary, because here the
algorithm itself may change the level of vertices and their out-degree, so rise-schedule has
to compete against both the adversary and the algorithm. In contrast to the other scheduler,
speeding up the rate at which rise-schedule works will not help winning the game. Instead,
we manage to bound the speed of this scheduler with respect to that of the (adversary +
algorithm), which enables us to show that the out-degree of all vertices is always in check.

For the offline model, these two schedulers suffice. However, in the oblivious adversarial
model, the adversary will manage to delete some matched edges from time to time. The
scheduler free-schedule periodically handles all the vertices that become free due to the
adversary, one after another. Using the property that all samples are always pretty full,
we manage to prove that only an ε-fraction of the matched edges get destroyed by the
adversary at any time interval. Note that this bound is probabilistic – to make sure that it
indeed occurs with high probability, we also use another scheduler shuffle-schedule, which
periodically removes a random edge from the matching. For technical reasons, it is vital that
shuffle-schedule would work sufficiently faster than some of the other schedulers.

2 The Update Algorithm

2.1 Invariants and schedulers. Our algorithm builds on the amortized algorithms by
[2, 19], which maintain for each vertex v a level `v, with −1 ≤ `v ≤ logγ(n − 1), where
γ = Θ(log n). (We use logarithms in base γ = Θ(log n), whereas [2] and [19] use base 2 and
5, respectively.) Based on the levels of vertices, an edge orientation is maintained, with the
vertex out-degree serving as an important parameter. The amortized algorithms of [2, 19]
maintain the following invariants (Invariants 3(a)-3(d)) at all times. i.e., these invariants
hold at the end of the execution of the update algorithms (and before the next update
operation occurs). These invariants may become violated throughout the execution of the
update algorithms. Also, the runtime of the update algorithms of [2, 19] may be Ω(n) in the
worst case, thus it may take them a lot of time to restore the validity of these invariants, once
violated. We added a comment to the right of each of these invariants, either /* maintained
*/ or /* partially maintained */, to indicate jf the respective invariant is maintained fully
or only partially by our new algorithm. Our algorithm will maintain Invariants 3(a) and
3(b) at all times, as in the amortized algorithms [2, 19], where Invariants 3(c) and 3(d) are
maintained only partially. Next, we make this statement precise.

I Invariant 3.
(a) Any matched vertex has level at least 0. /* maintained */
(b) The endpoints of any matched edge are of the same level, and this level remains unchanged

until the edge is deleted from the matching. (We henceforth define the level of a matched
edge, which is at least 0 by item (a), as the level of its endpoints.) /* maintained */

(c) Any free vertex has level -1 and out-degree 0. (The matching is maximal.) /* partially
maintained */

(d) An edge (u, v) with `u > `v is oriented by the algorithm as u → v. (If `u = `v, the
orientation of (u, v) is determined suitably by the algorithm.) /* partially maintained */
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Once a matched vertex becomes free, its level will exceed -1 until the update algorithm
handles it. We say that such a vertex is temporarily free (shortly, TF), meaning that it is
not matched to any vertex yet, but its level and out-degree remain temporarily as before.
From now on, we distinguish between free and TF vertices: Free vertices are unmatched and
their level is -1, while TF vertices are unmatched and their level exceeds -1. By making this
distinction, Invariant 3(c) holds true as stated. Combining it with Invariant 3(a), we obtain:

I Invariant 4. Any vertex of level -1 is unmatched and has out-degree 0.

Invariants 3(c) and 4 do not apply to TF vertices; thus there may be edges between TF (thus
unmatched) vertices, hence the matching is not maximal. The challenge is to guarantee that
the number of TF vertices is small w.r.t. the number of matched vertices, yielding an AMM.

TF vertices are handled via data structures that we call schedulers. We distinguish
between vertices that become TF due to the adversary and those due to the update algorithm
itself. For each level `, we maintain a queue Q` of level-` vertices that become TF due to
the adversary, and the vertices in Q` will be handled, one after another, via appropriate
schedulers. We will need to make sure that the total number of vertices over the queues
of all levels is in check at all times. The various schedulers need to work together, without
conflicting each other; the exact way in which they work is described soon.

A TF vertex that is being handled by some scheduler is called active, and the process
of handling it may be simulated over multiple update operations. Hence, there might be
inconsistencies in the data structures throughout this process concerning the active vertices.
To account for those inconsistencies, we hold a list of active vertices, denoted Active, and we
will make sure that this list is of size O(logγ n) = O(log n) at any point in time. By bounding
the number of active vertices, we can authenticate the up-to-date information concerning
active vertices efficiently; this authentication process is described i.t.f.v in Section 2.3. Our
algorithm maintains the following relaxation of Invariant 3(d).

I Invariant 5. Any edge (u, v), with `u > `v and u, v 6∈ Active, is oriented as u→ v.

For each vertex v, we maintain its neighbors and outgoing neighbors in linked lists Nv
and Ov, and its incoming neighbors via a more detailed structure Iv; see p. 8 i.t.f.v.

Our algorithm employs four different schedulers, each of which consists of O(logγ n) =
O(log n) sub-schedulers, a single sub-scheduler per level ` = 0, 1, . . . , logγ(n − 1). It is
instructive to think of each sub-scheduler as running threads of execution, and of its scheduler
as synchronizing O(log n) threads, one per level. Each thread executed by a level-` sub-
scheduler, hereafter level-` thread, will run in the same amount of time T` = γ` ·Θ(log4 n),
by “sleeping” if finishing the execution prematurely. To achieve a low worst-case update
time, the execution of any such thread is not carried out at once, but is rather carried out
(or simulated) over multiple update operations, simulating a fixed number of computation
steps per update operation; we refer to that number as a simulation parameter, and we’ll
use two of them, ∆ := Θ(log5 n/ε) and ∆′ = ∆ · γ = ∆ · Θ(log n). The schedulers
free-schedule, rise-schedule and shuffle-schedule use a simulation parameter of ∆′,
whereas unmatch-schedule uses a simulation parameter of ∆, and is thus “slower” than
the others by a factor of γ = Θ(log n). The simulation parameters, ∆ or ∆′, determine the
number of update operations required to finish the execution of the thread, T`/∆ or T`/∆′,
respectively. We refer to this number as the (level `) simulation time; unlike the simulation
parameters, which do not change with the level, the simulation times grow with each level
by a factor of γ.
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1st scheduler. The first scheduler free-schedule handles all vertices that become TF
due to the adversary; for each level ` = 0, 1, . . . , logγ(n− 1), the corresponding sub-scheduler
free-schedule` handles all vertices of Q`, one after another. The exact procedure for hand-
ling a TF vertex v, handle-free(v), is described in Section 2.4. Procedure handle-free(v)
will be executed by a single level-` thread corresponding to v that runs in an overall time of
T`, simulating ∆′ steps of this procedure following each update operation. The logγ(n−1)+1
execution threads (over all levels) executed by free-schedule following every update opera-
tion are handled sequentially, by decreasing order of simulation times, and thus by decreasing
order of levels, i.e., the logγ(n− 1)-level thread is handled first, then the logγ(n− 1)− 1-level
thread, etc., until the 0-level thread. Note that these threads execute different calls of
Procedure handle-free, which handle vertices at different levels. [[S: moved this sentence]]
Following each update operation, the logγ(n− 1)-level thread simulates ∆′ steps of its own
call of Procedure handle-free, the logγ(n − 1) − 1-level thread simulates ∆′ steps of its
own call, and so on, hence the total time spent by free-schedule following a single update
operation is ∆′ · (logγ(n− 1) + 1) = O(log7 n/ε).

By the same principle, the total time spent by rise-schedule and shuffle-schedule
following a single update operation will be bounded by ∆′ · (logγ(n− 1) + 1) = O(log7 n/ε).
On the other hand, unmatch-schedule has a simulation parameter of ∆ rather than ∆′,
so the total time spent by this scheduler following a single update will be bounded by
∆ · (logγ(n− 1) + 1) = O(log6 n/ε). This scheme gives rise to a worst-case update time of
O(log7 n/ε), and this bound holds deterministically.

2nd scheduler. The second scheduler unmatch-schedule removes matched edges from the
matching; for each `, the corresponding sub-scheduler unmatch-schedule` removes level-`
edges from the matching, one after another, as follows. Each level-` matched edge e = (u, v)
is sampled uniformly at random from between (1 − ε) · γ` and γ` edges. (In the offline
setting, we choose the edge that will be deleted last among those.) We refer to this edge
set, denoted by S(e), as the sample space (or sample) of e. As time progresses, some edges
of S(e) may be deleted from the graph; denote by S∗(e) the original sample of e, with
(1 − ε) · γ` ≤ |S∗(e)| ≤ γ`, and by St(e) = S(e) its sample remaining at time t. The goal
of unmatch-schedule` is to guarantee that the samples of all level-` matched edges never
reach (1− 2ε) · γ`; more accurately, unmatch-schedule` maintains the following invariant:

I Invariant 6. For any level-` matched edges e with T`/∆ ≥ 1 and any t, |St(e)| > (1−2ε)·γ`.

To maintain this invariant, unmatch-schedule` will always remove a matched edge of smallest
remaining sample (can be easily carried out in O(1) time). For each level-` matched edge
e = (u, v) that is removed by unmatch-schedule`, its two endpoints u and v become TF,
and they are handled by appropriate calls to Procedure handle-free. More specifically, we
execute Procedure handle-free(u) and then handle-free(v) by running a level-` thread,
which runs in an overall time of T`, simulating ∆ steps of execution following each update
operation. The intuition as to why unmatch-schedule` can maintain Invariant 6 is the
following. (See Section 4.2 i.t.f.v. for the formal argument.) Since T` = γ` ·Θ(log4 n) and
∆ = Θ(log5 n/ε), the simulation time T`/∆ of a thread run by unmatch-schedule` (which
designates the number of update operations needed for simulating its entire execution) is
Θ(ε(γ`/ log n)). In other words, unmatch-schedule` can remove a level-` matched edge
within T`/∆ = Θ(ε(γ`/ log n)) adversarial update operations. On the other hand, the
expected number of adversarial edge deletions needed to turn a “full” level-` matched edge e
(with sample |S∗(e)| ≥ (1− ε) · γ`) into an “under full” edge (with sample ≤ (1− 2ε) · γ`) is
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Ω(ε · γ`). Thus unmatch-schedule` is “faster” than the adversary by at least a logarithmic
factor, assuming T`/∆ ≥ 1 (which holds when γ` = Ω(log n/ε)), a property that suffices for
showing that no edge is ever under full, i.e., the samples of all level-` matched edges are
always in check. This is the idea behind maintaining the validity of Invariant 6 in levels `
for which the simulation time satisfies T`/∆ ≥ 1. This invariant, in turn, guarantees that
the adversary is unlikely to delete any particular edge from the matching, using which we
show (in Section 6 i.t.f.v.) that the maintained matching is always almost-maximal with
high probability. The complementary regime of levels, namely, levels ` for which T`/∆ < 1,
is trivial and does not rely on Invariant 6, as then the adversary does not make any edge
deletion within the time required by a level-` thread to complete its entire execution.

3rd scheduler. Let Nv(`) denote the set of neighbors of v with level strictly lower than `,
and write φv(`) = |Nv(`)|. For each vertex v, we will maintain the φv(`) values for all levels
` greater than the current level `v of v. For any level ` ≤ `v, the corresponding value φv(`)
will not be maintained, and the algorithm will have to compute it “on the fly”, if needed.
The algorithm of [2] maintains the invariant that φv(`) < γ`, for any v and ` > `v. (Recall
that γ is taken to be constant in [2], whereas here we take γ to be Θ(log n).) The scheduler
rise-schedule maintains the following relaxation of the invariant from [2], and it does so
by raising vertices to higher levels in a specific order, as described next.

I Invariant 7. For any vertex v and any level ` > `v, φv(`) ≤ γ` ·O(log2 n).

For each level `, the corresponding sub-scheduler rise-schedule` is responsible for main-
taining the invariant w.r.t. that level. Whenever a new level-` thread is initiated by
rise-schedule`, it starts by authenticating the φv(`) values over all vertices v using the
Active list. (The authentication process takes time O(log2 n) to guarantee that all φv(`)
values are up to date, and is described in Section 2.3 i.t.f.v.) Then the thread picks a
vertex v whose φv(`) value is highest among all vertices with level lower than ` (can be
easily carried out in O(1) time). These steps take time O(log2 n), and are thus carried out
by the thread “instantly”, i.e., without simulating their execution over subsequent update
operations. The same execution thread continues to removing v’s old matched edge (v, w) (if
exists) from the matching, and raises v to level ` by executing Procedure set-level(v, `),
whose description is in Section 2.2. The runtime of this procedure is high, so its execution
is simulated over multiple update operations, simulating ∆′ execution steps following each
update operation. Then the same execution thread handles the two TF vertices v and w
using Procedure handle-free, i.e., it continues to executing the call to handle-free(v) and
then to handle-free(w), simulating ∆′ execution steps following each update operation.

4th scheduler. The fourth scheduler shuffle-schedule removes matched edges from the
matching uniformly at random. By working faster than some other schedulers (unmatch-
schedule in particular), it forms a dominant part of the algorithm, using which we show
(Section 6.2 i.t.f.v.) that it provides a near-uniform random shuffling of the matched
edges. This random shuffling facilitates the proof of the assertion that the adversary is
unlikely to delete any particular edge from the matching. For each `, the sub-scheduler
shuffle-schedule` always picks a matched edge uniformly at random among all remaining
level-` edges, and then removes it from the matching. As with unmatch-schedule`, for each
level-` matched edge e = (u, v) that is removed by shuffle-schedule`, its two endpoints u
and v become TF, and they are handled by calls to Procedure handle-free. We execute
these calls (to handle-free(u) and handle-free(v)) by running a level-` thread, which runs
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in an overall time of T`, and we simulate ∆′ (rather than ∆ as with unmatch-schedule`)
execution steps following each update operation, which ensures that shuffle-schedule is
faster than unmatch-schedule by a logarithmic factor. We only need to apply the shuffling
in levels ` for which the simulation time satisfies T`/∆ ≥ 1, as in the complementary regime
(T`/∆ < 1) the adversary does not make any edge deletion within the time required by a
level-` thread to complete its entire execution, and then a random shuffling is redundant.

2.2 Procedure set-level(v, `). (This procedure is described in detail in Section 3.1
i.t.f.v.) Whenever the update algorithm examines a vertex v, it may need to re-evaluate
its level. After the new level ` is determined (outside this procedure, details below), the
algorithm calls Procedure set-level(v, `). Although setting the level of v to ` can be done
instantly, the task of Procedure set-level(v, `) is to update the relevant data structures
as a result of this level change. This process involves updating the sets of outgoing and
incoming neighbors of v and some of its neighbors (or “flipping” the respective edges) so as
to maintain Invariant 5, and also updating the φ values of v and its relevant neighbors. We
refer to this (possibly long) process as the falling (if ` < `v) or rising of v (if ` > `v); the
thread executing this procedure simulates multiple execution steps following each update
operation. We will need to make sure that any call to set-level(v, `) is executed by a
level-ˆ̀ thread, where ˆ̀≥ ˜̀ := max{`v, `}. We show (see Lemma 3.2 i.t.f.v.) that the runtime
of this procedure is bounded by O((φv(˜̀+ 1) + log n) · log n), where φv(˜̀+ 1) is the number
of v’s neighbors of level < ˜̀+ 1 at the beginning of this procedure’s execution.

2.3 Procedures handle-insertion(u, v) and handle-deletion(u, v). (These proced-
ures are described in detail in Section 3.2 i.t.f.v.) An edge insertion (u, v) is handled
(via handle-insertion(u, v)) in the obvious way in time O(log4 n), which is within the
time reserved for a single update operation. An edge deletion (u, v) is handled (via
handle-deletion(u, v)) similarly, unless (u, v) is matched, in which case both u and v

become TF, and they are inserted to the queue Q`u
(by Invariant 3(b) `u = `v). As described

above, free-schedule`u will handle u and v (by making the calls to handle-free(u) and
handle-free(v)), one after another, after handling all preceding vertices in Q`u

.

2.4 Procedure handle-free(v). (This procedure is described in detail in Section 3.3
i.t.f.v.) This procedure handles a TF vertex v, and is first invoked by the schedulers
as described above, but then also recursively. It starts by computing the highest level
`, 0 ≤ ` ≤ `v, where φv(`) ≥ γ`, and the corresponding vertex set N`(v) of v, in order to
sample a neighbor w of level < ` as v’s new mate. The sampling is done from the set N ′`(v) of
non-active vertices in N`(v). To match v with w, we first delete the old matched edge (w,w′)
on w (if exists), thus rendering w′ TF. Second, we let v and w fall and rise to the same level
`, respectively, by calling to set-level(v, `) and set-level(w, `). We then match v with w,
thus creating a new level-` matched edge (satisfying Invariant 3(b)). Finally, assuming w
was previously matched to w′, we handle w′ recursively by calling to handle-free(w′). (In
the degenerate case that no level ` as above exists, we have φv(0) = 0, i.e., v does not have
any neighbor at level -1, thus we call set-level(v,−1) and v becomes free.)

Our update algorithm guarantees that this procedure is executed by a level-`v thread,
where `v is v’s level at the outset of the procedure’s execution. The same thread is used
also for all subsequent recursive calls. We show (Lemma 3.1 i.t.f.v.) that the runtime of
Procedure handle-free(v) is bounded by O(γ`v · log4 n).
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3 Analysis

3.1 Schedulers. The principle that governs the operation of unmatch-schedule and
rise-schedule can be described via a balls and bins game by [11, 15, 10] between two
players. Initially there are N empty bins. In each round Player I removes a bin of largest
size, then Player II may add up to b ≥ 1 balls to bins. The game ends when no bin is left or
when the size of any bin reaches some parameter k. Player I wins (respectively, loses) in the
former (resp., latter) case. As follows from [11, 15, 10], Player I wins if b < k

(lnN+1) .
To prove that unmatch-schedule and rise-schedule maintain Invariants 4 and 5,

respectively, we carefully build on this principle in several steps; see Sections 4.2 and 4.3
i.t.f.v. The analysis of rise-schedule is more intricate than that of unmatch-schedule,
as our update algorithm affects both players in the underlying balls and bins game; we
henceforth focus on rise-schedule, highlighting some insights behind our analysis. Consider
the variant of the game where the bins are not empty initially, but rather contain at most
k′ � k balls each. Using the same argument, Player 1 wins if b < k−k′

(lnN+1) . We show that
Invariant 7 is maintained by translating this variant of the game appropriately.

Fix any level ` ≥ 0. Invariant 7 requires that the φv(`) values are always < γ` ·O(log2 n),
for all v with `v < `. In the balls and bins game, the bins represent the respective vertex
sets Nv(`) (of v’s neighbors of level ≤ `− 1), for `v < `. (Our algorithm does not maintain
these sets, only the φ values.) The sub-scheduler rise-schedule` is Player I in the game;
it always picks a vertex v whose φv(`) value is highest, and raises it to level `. Following
this rise, `v = `, hence the invariant for v and level ` holds vacuously. Thus, the analog of
removing a bin by Player I is to raise a vertex to level `.

At the beginning the graph is empty, so all vertex levels are -1 and all vertex sets Nv(`)
are empty. Thus initially we have an empty bin for every vertex. As time progresses some
of these bins are being removed due to vertex rising. When a vertex rises to level `, all its
bins up to level ` are removed instantly. Bins are also created due to vertices falling, by
Procedure handle-free. When a vertex v starts falling from level `v to level `, it is as if
the corresponding vertex sets Nv(j) in all levels j ∈ {`+ 1, . . . , `v} are created instantly; the
level of v is viewed as its destination level ` from the moment its falling to level ` starts.
Although the same vertex set Nv(j) may be removed and created multiple times, we view
any such newly created set as a different bin that was there from the game’s outset. To
comply with the initial bound of ≤ k′ balls in any bins, we set k′ = k′` as γ`, and prove
(Lemma 4.1 i.t.f.v.) that any newly created level-` bin contains ≤ k′ = γ` balls.

The level-` vertex sets Nv(`) and values φv(`) may grow either due to edge insertions
(by adversary) or due to falling vertices (by update algorithm). In other words, Player II
in the game is (adversary + update algorithm). Letting Player I (rise-schedule`) work
faster than the other sub-schedulers is problematic: While this would lead to more vertices
rising, which helps Player I win, each vertex rising may trigger the fall of another vertex,
which has the opposite effect. Instead, we prove (Lemma 4.2 i.t.f.v.) that the number of
balls b = b` added to the bins by Player II while Player I removes a bin is O(γ` · log n). It is
easy to verify that the number N of level-` bins is polynomially bounded, so lnN = Θ(log n).
Taking k = O(γ` · log2 n) completes the translation of the balls and bins game. By setting
the constant appropriately, we obtain b < k−k′

lnN , hence Player I wins the game. Consequently,
we showed that Invariant 7 is maintained.

3.2 Proof of (Almost-)Maximality. To prove almost-maximality, we show that the number
of TF vertices is always an ε-fraction of the number of matched edges. We only consider
here TF vertices due to the adversary of levels ` with T`/∆ ≥ 1, as the complementary case
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is easy. Any matched edge is created by the algorithm by first determining its level, and
only then performing the sampling. If the edge is matched at level `, it is chosen uniformly
at random from between (1− ε) · γ` and γ` edges. We thus fix some level ` with T`/∆ ≥ 1,
and focus on the matched edges at that level. Invariant 6 holds for level `, thus the samples
of all level-` edges always contain with probability (w.p.) 1 at least (1− 2ε) · γ` edges.

Consider any time step t, and let Vt be the set of vertices of level ` at time t. Let
At = A′t ∩ A′′t , where A′t is the event that |Vt| = Ω(log4 n/ε3) and A′′t is the event that
an Ω(ε)-fraction of the vertices of Vt are TF due to the adversary at time t. We argue
that IP(At) = O(n−c+2), for some (big enough) constant c. This assertion, which is given
as Lemma 6.1 i.t.f.v., is central in our proof of the almost-maxiamlity guarantee, and the
almost-maximality guarantee is derived as a simple corollary (Theorems 6.5 and 6.6 i.t.f.v.).
Next, we give some insights behind the proof.

Any matched edge is sampled uniformly at random from between (1 − ε) · γ` and γ`

edges. Consider the edges of the sample S∗(e) of e in the order they are deleted by the
adversary, even after the edge is removed from the matching, either by the adversary or by
the algorithm. A matched edge is called bad if it is one of the first (at most) 2ε · γ` edges in
this ordering; otherwise it is good. Invariant 6 guarantees that the samples of all level-` edges
always contain ≥ (1− 2ε) · γ` edges, so at most 2ε · γ` edges are deleted from the sample of
any matched edge (while it is matched). It follows that a good edge cannot get deleted by
the adversary while it is matched (hereafter, get hit); a bad edge may get hit.

The probability of an edge to be bad is ≤ 2ε·γ`

(1−ε)·γ` , which is at most 4ε for all ε < 1/2.
Our argument, alas, is not applied on all matched edges created since the algorithm’s outset,
but rather on a subset of edges that are matched at a certain time step t′, and there are
dependencies on previous coin flips of our algorithm, which are the result of edges being
removed from the matching by the update algorithm itself (not the adversary). Indeed,
given that some edge e is matched at time t′, the sample of e may be significantly reduced,
which could increase the probability of e being bad. To overcome this hurdle, we use
shuffle-schedule to show that the fraction of bad edges at any time is O(ε) w.h.p. To
this end, we apply a game, hereafter the shuffling game, where in each step a single edge is
either added or deleted (starting with no edges) by the following players: (1) Adder: adds an
edge, which is bad w.p. ≤ 4ε, (2) Shuffler: deletes an edge uniformly at random among
the existing edges, (3) Malicious: deletes a good edge. A newly created matched edge is
bad w.p. ≤ 4ε, thus Adder assumes the role of creating matched edges by the algorithm, and
so only an O(ε)-fraction of the matched edges created by Adder are bad w.h.p. Shuffler
assumes the role of shuffle-schedule in the algorithm, deleting matched edges uniformly
at random. If the fraction of bad edges during some time interval is Θ(ε), the fraction of bad
edges deleted by Shuffler in this interval is Θ(ε) w.h.p., hence Shuffler does not change
the fraction of bad edges by too much. The role of Malicious is not to model the exact
behavior of the other (non-shuffled) parts of the algorithm that remove matched edges, but
rather to capture the worst-case scenario that might happen. We show that the affect of
Malicious to the game is negligible, which implies that even if the other (non-shuffled) parts
were to delete only good edges, the fraction of bad edges would be O(ε); formally, we prove
that the fraction of bad edges at any step t′ is w.h.p. O(ε). This proof, provided in Section
6.2 i.t.f.v, is nontrivial and makes critical use of the property that Shuffler is faster than
Malicious by a logarithmic factor; we then show that the parties corresponding to Shuffler
and Malicious in the algorithm indeed satisfy this property (Lemma 6.2 i.t.f.v.).

Equipped with this bound on the fraction of bad edges at any time step, we consider
the last time t′ prior to t in which the queue Q` of TF level-` vertices is empty, i.e., Q` is
non-empty in the entire time interval [t′+1, t], thus free-schedule` is never idle during that
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time. We need to bound the fraction of bad edges not only among the ones matched at time
t′, but also among those that get matched between times t′ and t. The fraction of bad edges
among those matched at time t′ is O(ε) w.h.p. by the shuffling game; as for those that get
created later on, there is no dependency on coin flips that the algorithm made prior to time
t′, and so the probability of any of those edges to be bad is ≤ 4ε, independently of whether
previously created matched edges are bad, and by Chernoff we get that the fraction of bad
edges among them is O(ε) too. The formal proof for this bound on the fraction of bad edges
among those is provided in Section 6.3 i.t.f.v., and it implies that only an O(ε)-fraction of all
those edges may get hit w.h.p., and thus get into the queue. This bound, however, does not
suffice to argue that the number of vertices in Q` at time t is an O(ε)-fraction of the matching
size, due to edges that get deleted from the matching by the algorithm itself. Nonetheless,
since free-schedule` is no slower than the other sub-schedulers (as its simulation parameter
is ∆′), we show in Section 6.3 i.t.f.v. that it removes vertices from Q` in the interval [t′+ 1, t]
at least at the same rate as matched edges get deleted by the algorithm. By formalizing
these assertions and carefully combining them, we conclude with the required result, and
with the almost-maximality guarantee as a corollary. The deterministic worst-case update
time follows from the description of the algorithm (refer to the first paragraph of page 8).
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1 Introduction

The edit distance Δed(𝑥, 𝑦) between two strings 𝑥 and 𝑦 is the minimum number of character
insertions, deletions, and substitutions needed to transform 𝑥 into 𝑦. This is a fundamental
distance measure on strings, extensively studied in computer science [2–5, 9, 11, 17, 21, 24].
Edit distance has applications in areas including computational biology, signal processing,
handwriting recognition, and image compression [19]. One of its oldest and most important
uses is as a tool for comparing differences between genetic sequences [1, 19,20].

The textbook dynamic-programming algorithm for edit distance runs in time 𝑂(𝑛2)
[20, 23, 24], and can be leveraged to recover a sequence of edits, also known as an alignment.
The quadratic run time is prohibitively large for massive datasets (e.g., genomic data), and
conditional lower bounds suggest that no strongly subquadratic time algorithm exists [5].

The difficulty of computing edit distance has motivated the development of fast heuristics
[1,10,14,19]. On the theoretical side, the tradeoff between run time and approximation factor
(or distortion) is an important question (see [15, Section 6], and [16, Section 8.3.2]). Andoni
and Onak [4] (building on beautiful work of Ostrovsky and Rabani [21]) gave an algorithm
that estimates edit distance within a factor of 2�̃�(

√
log 𝑛) in time 𝑛1+𝑜(1). The current best

known tradeoff was obtained by Andoni, Krauthgamer and Onak [3], who gave an algorithm
that estimates edit distance to within factor (log 𝑛)𝑂(1/𝜀) with run time 𝑂(𝑛1+𝜀).

Alignment Recovery

While these algorithms produce estimates of edit distance, they do not produce an alignment
between strings (i.e., a sequence of edits). By decoupling the problem of numerical estimation
from the problem of alignment recovery, the authors of [4] and [3] are able to exploit
techniques such as metric space embeddings4 and random sampling in order to obtain better
approximations. The algorithm of [3] runs in phases, with the 𝑖-th phase distinguishing
between whether Δed(𝑥, 𝑦) is greater than or significantly smaller than 𝑛

2𝑖 . At the beginning
of each phase, a nuanced random process is used to select a small fraction of the positions in
𝑥, and then the entire phase is performed while examining only those positions. In total,
the full algorithm samples an �̃�

(︁
𝑛𝜀

Δed(𝑥,𝑦)

)︁
-fraction of the letters in 𝑥. Note that this is a

polynomially small fraction as we are interested in the case where Δed(𝑥, 𝑦) > 𝑛1/2 (if the
edit distance is small, we can run the algorithm of Landau et al. [18] in linear time). Given
that the algorithm only views a small portion of the positions in 𝑥, it is not clear how to
recover a global alignment between the two strings.

We show, somewhat surprisingly, that any edit distance estimator can be turned into an
approximate aligner in a black box fashion with modest loss in approximation factor and
small loss in run time. For example, plugging the result of [3] into our framework, we get an
algorithm with distortion (log 𝑛)𝑂(1/𝜀2) and run time �̃�(𝑛1+𝜀). To the best of our knowledge,
the best previous result that gave an approximate alignment was the work of Batu, Ergun,
and Sahinalp [7], which has distortion that is polynomial in 𝑛.

4 The algorithm of [4] has a recursive structure in which at each level of recursion, every substring 𝛼 of
some length 𝑙 is assigned a vector 𝑣𝛼 such that the ℓ1 distance between vectors closely approximates
edit distance between substrings. The vectors at each level of recursion are constructed from the vectors
in lower levels through a series of procedures culminating in an application of Bourgain’s embedding to
a sparse graph metric. As a result, although the distances between vectors in the top level of recursion
allow for a numerical estimation of edit distance, it is not immediately clear how one might attempt to
extract additional information from the vectors in order to recover an alignment.
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Embeddings of Edit Distance Using Min-Hash Techniques

The study of approximation algorithms for edit distance closely relates to the study of
embeddings [4, 7, 21]. An embedding from a metric space 𝑀1 to a metric space 𝑀2 is a map
of points in 𝑀1 to 𝑀2 such that distances are preserved up to some factor 𝐷, known as
the distortion. Loosely speaking, low-distortion embeddings from a complex metric space
𝑀1 to a simpler metric space 𝑀2 allow algorithm designers to focus on the simpler metric
space, rather than directly handling the more complex one. Embeddings from edit distance
to Hamming space have been widely studied [8, 9, 11, 21] and have played pivotal roles in the
development of approximation algorithms [4] and streaming algorithms [8, 9].

The second contribution of this paper is to introduce new algorithms for three problems
related to embeddings for edit distance. The algorithms are unified by the use of min-hash
techniques to select pivots in strings. We find this technique to be particularly useful for edit
distance because hashing the content of strings allows us to split strings in places where their
content is aligned, thereby getting around the problem of insertions and deletions misaligning
the strings. In several of our results, this allows us to obtain algorithms which are either
more intuitive or simpler than their predecessors. The three results are summarized below.

Efficiently Embedding the Ulam Metric into Hamming Space: For the special case of
the Ulam metric (edit distance on permutations), we present a randomized embedding 𝜑

of permutations of size 𝑛 to poly(𝑛)-dimensional Hamming space with distortion 𝑂(log 𝑛).
Given strings 𝑥 and 𝑦, the Hamming differences between 𝜑(𝑥) and 𝜑(𝑦) not only approximate
the edit distance between 𝑥 and 𝑦, but also implicitly encode a sequence of edits from 𝑥 to 𝑦.
If the output string of our embedding is stored using a sparse vector representation, then
the embedding can be computed in linear time, and its output can be stored in linear space.
The logarithmic distortion matches that of Charikar and Krauthgamer’s embedding into
ℓ1-space [11], which did not encode the actual edits and needed quadratic time and number
of dimensions. Our embedding also supports efficient updates, and can be modified to reflect
an edit in expected time 𝑂(log 𝑛) (as opposed to the deterministic linear time of [11]).

Embedding Edit Distance in the Low-Distance Regime: Recently, there has been consid-
erable attention devoted to edit distance in the low-distance regime [8, 9]. In this regime, we
are interested in finding algorithms that run faster or perform better given the promise that
the edit distance between the input strings is small. This regime is of considerable interest
from the practical point of view. Landau, Myers and Schmidt [18] gave an exact algorithm for
strings with edit distance 𝐾 that runs in time 𝑂(𝑛+𝐾2). Recently, Chakraborty, Goldenberg
and Kouckỳ [9] gave a randomized embedding of edit distance into Hamming space that has
distortion linear in the edit distance with probability at least 2/3.

Given an embedding with distortion 𝛾(𝑛) (a function of the input size), could one obtain
an embedding whose distortion is a function of 𝐾, the edit distance, instead of 𝑛? We answer
this question in the affirmative for the class of (𝐷, 𝑅)-periodic free strings. We say that a
string is (𝐷, 𝑅)-periodic free if none of its substrings of length 𝐷 are periodic with period of
at most 𝑅. For 𝐷 ∈ poly(𝐾) and 𝑅 = 𝑂(𝐾3), we show that the embedding of Ostrovksy
and Rabani [21] can be used in a black-box fashion to obtain an embedding with distortion
2𝑂
(︀√

log 𝐾 log log 𝐾
)︀

for (𝐷, 𝑅)-periodic free strings with edit distance of at most 𝐾. Our result
can be seen as building on the min-hash techniques of [11, Section 3.5] (which in turn extends
ideas from [6]). The authors of [11] give an embedding for (𝑡, 180𝑡𝐾)-non-repetitive strings
with distortion 𝑂(𝑡 log(𝑡𝐾)) [11]. The key difference is that our notion of (𝐷, 𝑅)-periodic
free is much less restrictive than the notion of non-repetitive strings studied in [11].
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Optimal Dimension Reduction for Edit Distance: The aforementioned work of Batu et
al. [7] introduced and studied an interesting notion of dimension reduction for edit distance:
An embedding of edit distance on length-𝑛 strings to edit distance on length-𝑛/𝑐 strings
(with larger alphabet size) is called a dimension-reduction map with contraction 𝑐. By first
performing dimension reduction, one can then apply inefficient algorithms to the contracted
strings at a relatively small overall cost. This idea was used in [7] to design an approximation
algorithm with approximation factor 𝑂(𝑛1/3+𝑜(1)). We provide a dimension-reduction map
with contraction 𝑐 and asymptotically optimal expected distortion 𝑂(𝑐), improving on the
distortion of �̃�(𝑐1+2/ log log log 𝑛) obtained by the deterministic map of [7].5

2 Preliminaries

Throughout the paper, we will use Σ to denote an alphabet,6 and Σ𝑛 to denote the set
of words of length 𝑛 over that alphabet. Additionally, we use 𝒫𝑛 to denote the set of
permutations of length 𝑛 over Σ, or equivalently, the subset of Σ𝑛 containing words whose
letters are distinct. Given a string 𝑤 of length 𝑛, we denote its letters by 𝑤1, 𝑤2, . . . , 𝑤𝑛,
and we use 𝑤[𝑖 : 𝑗] to denote the substring 𝑤𝑖𝑤𝑖+1 · · · 𝑤𝑗 (which is empty if 𝑗 < 𝑖).

An edit operation is either an insertion, a deletion, or a substitution of a letter with
another letter in a word. Given words 𝑥 and 𝑦, an alignment from 𝑥 to 𝑦 is a sequence
of edits transforming 𝑥 to 𝑦. The edit distance Δed(𝑥, 𝑦) is the minimum number of edits
needed to transform 𝑥 to 𝑦. Alternatively, it is the length of an optimal alignment.

For convenience, we make the Simple Uniform Hashing Assumption [12], which assumes
access to a fully independent family ℋ of hash functions mapping Θ(log 𝑛) bits to Θ(log 𝑛)
bits with constant time evaluation. For our applications, this can be simulated using the
family of Pagh and Pagh [22], which is independent on any given set of size 𝑛 with high
probability. The family can be constructed in linear time and uses 𝑂(𝑛 log 𝑛) random bits.

3 Alignment Recovery Using a Black-Box Approximation Algorithm

In this section, we show how to transform a black-box edit distance approximation algorithm
𝒜 into an approximate alignment algorithm ℬ. The algorithm ℬ appears here as Algorithm 1.
In the description of the algorithm, we rely on the following definition of a partition.

I Definition 3.1. A partition of a string 𝑢 into 𝑚 parts is a tuple 𝑃 = (𝑝0, 𝑝1, 𝑝2, . . . , 𝑝𝑚)
such that 𝑝0 = 0, 𝑝𝑚 = |𝑢|, and 𝑝0 ≤ 𝑝1 ≤ · · · ≤ 𝑝𝑚. For 𝑖 ∈ {1, . . . , 𝑚}, the 𝑖-th part of 𝑃

is the subword 𝑃𝑖 := 𝑢[𝑝𝑖−1 + 1 : 𝑝𝑖], which is empty if 𝑝𝑖 = 𝑝𝑖−1. A partition of a string 𝑢

into 𝑚 parts is an equipartition if each of the parts is of size either ⌊|𝑢|/𝑚⌋ or ⌈|𝑢|/𝑚⌉.

Formally, we assume that the approximation algorithm 𝒜 has the following properties:
1. There is some non-decreasing function 𝛾 such that for all 𝑛 > 0, and for any two strings

𝑢, 𝑣 with |𝑢| + |𝑣| ≤ 𝑛, Δed(𝑢, 𝑣) ≤ 𝒜(𝑢, 𝑣) ≤ 𝛾(𝑛) · Δed(𝑢, 𝑣).
2. 𝒜(𝑢, 𝑣) runs in time at most 𝑇 (𝑛) for some non-decreasing function 𝑇 which is super-

additive in the sense that 𝑇 (𝑗) + 𝑇 (𝑘) ≤ 𝑇 (𝑗 + 𝑘) for 𝑗, 𝑘 ≥ 0.

We are now ready to state the main theorem of this section.

5 When comparing these distortions, one should note that 2/ log log log 𝑛 goes to zero very slowly; in
particular, 𝑐1+2/ log log log 𝑛 ≥ 𝑐1.66 for all 𝑛 ≤ 1082, the number of atoms in the universe.

6 We assume that characters in Σ can be represented in Θ(log 𝑛) bits, where 𝑛 is the size of input strings.
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Algorithm 1 Black-Box Approximate Alignment Algorithm.
Input: Strings 𝑢, 𝑣 with |𝑢| + |𝑣| ≤ 𝑛.
Parameters: 𝑚 ∈ N satisfying 𝑚 ≥ 2 and an approximation algorithm 𝒜 for edit distance.

1. If |𝑢| ≤ 1, then find an optimal alignment in time 𝑂(|𝑣|) naively.
2. Let 𝑃 = (𝑝0, 𝑝1, . . . , 𝑝𝑚) be an equipartition of 𝑢.
3. Let 𝑆 consist of the positions in 𝑣 which can be reached by adding or subtracting a power

of (1 + 1
𝑚 ) to some 𝑝𝑖. Formally, define

𝑆 =
(︃

{𝑝0, . . . , 𝑝𝑚} ∪ {|𝑣|} ∪

{︃⌈︃
𝑝𝑖 ±

(︂
1 + 1

𝑚

)︂𝑗
⌉︃

| 𝑖, 𝑗 ≥ 0
}︃)︃

∩ {0, . . . , |𝑣|}.

4. Using dynamic programming, find a partition 𝑄 = (𝑞0, . . . , 𝑞𝑚) of 𝑣 such that each 𝑞𝑖 is
in 𝑆, and such that the cost

∑︀𝑚
𝑖=1 𝒜(𝑃𝑖, 𝑄𝑖) is minimized:

a. For 𝑙 ∈ 𝑆, let 𝑓(𝑙, 𝑗) be the subproblem of returning a choice of 𝑞0, 𝑞1, . . . , 𝑞𝑗 with
𝑞𝑗 = 𝑙 which minimizes

∑︀𝑗
𝑖=1 𝒜(𝑃𝑖, 𝑄𝑖).

b. Solve 𝑓(𝑙, 𝑗) by examining precomputed answers for subproblems of the form 𝑓(𝑙′, 𝑗 −1)
with 𝑙′ ≤ 𝑙 ∈ 𝑆: if 𝑓(𝑙′, 𝑗 − 1) gives a choice of 𝑞0, 𝑞1, . . . , 𝑞𝑗−1 with

∑︀𝑗−1
𝑖=1 𝒜(𝑃𝑖, 𝑄𝑖) = 𝑡,

then we can set 𝑞𝑗 = 𝑙 to get
∑︀𝑗

𝑖=1 𝒜(𝑃𝑖, 𝑄𝑖) = 𝑡 + 𝒜(𝑃𝑗 , 𝑣[𝑙′ + 1 : 𝑙]).
(Here, 𝒜(𝑃𝑗 , 𝑣[𝑙′ + 1 : 𝑙]) is computed using 𝒜.)

5. Recurse on each pair (𝑃𝑖, 𝑄𝑖). Combine the resulting alignments between each 𝑃𝑖 and 𝑄𝑖

to obtain an alignment between 𝑢 and 𝑣.

I Theorem 3.2. For all 𝑢, 𝑣 with |𝑢| + |𝑣| ≤ 𝑛 and 𝑚 ≥ 2, Algorithm 1 outputs an alignment
from 𝑢 to 𝑣 of size at most (3𝛾(𝑛))𝑂(log𝑚 𝑛) ·Δed(𝑢, 𝑣). Moreover, the run time is �̃�(𝑚5 ·𝑇 (𝑛)).

Before continuing, we provide a brief discussion of Algorithm 1. The algorithm first
breaks 𝑢 into a partition 𝑃 of 𝑚 equal parts. It then uses the black-box algorithm 𝒜 to
search for a partition 𝑄 of 𝑣 such that

∑︀
𝑖 Δed(𝑃𝑖, 𝑄𝑖) is near minimal; after finding such

a 𝑄, the algorithm recurses to find approximate alignments between 𝑃𝑖 and 𝑄𝑖 for each 𝑖.
Rather than considering every option for the partition 𝑄 = (𝑞0, . . . , 𝑞𝑚), the algorithm limits
itself to those for which each 𝑞𝑖 comes from a relatively small set 𝑆.

The set 𝑆 is carefully designed so that although it is small, any optimal partition 𝑄opt of 𝑣

can be in some sense well approximated by some partition 𝑄 using only 𝑞𝑖 values from 𝑆. This
limits the multiplicative error introduced at each level of recursion to be bounded by 3𝛾(𝑛);
across the 𝑂(log𝑚 𝑛) level of recursion, the total multiplicative error becomes 3𝛾(𝑛)𝑂(log𝑚 𝑛).
The fact that the recursion depth appears in the exponent of the multiplicative error is why
we partition 𝑢 and 𝑣 into many parts at each level.

Next we discuss several implications of Theorem 3.2. The parameter 𝑚 allows us to trade
off the approximation factor and the run time of the algorithm. When taken to the extreme,
this gives two particularly interesting results.

I Corollary 3.3. Let 0 < 𝜀 < 1 (not necessarily constant). Then 𝑚 can be chosen so that
Algorithm 1 has approximation ratio (3𝛾(𝑛))𝑂( 1

𝜀 ) and run time �̃� (𝑇 (𝑛) · 𝑛𝜀).

I Corollary 3.4. Let 0 < 𝜀 < 1 (not necessarily constant). Then 𝑚 can be chosen so that
Algorithm 1 has approximation ratio 𝑛𝑂(𝜀) and run time �̃�(𝑇 (𝑛)) · (3𝛾(𝑛))𝑂(1/𝜀).

We can apply Corollary 3.3 to the algorithm of Andoni et al. [3] with approximation ratio
(log 𝑛)𝑂(1/𝜀) and run time 𝑂(𝑛1+𝜀) as follows. (Note that 𝜀 may be 𝑜(1).)
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I Corollary 3.5. There exists an approximate-alignment algorithm which runs in time
�̃�(𝑛1+𝜀), and has approximation factor (log 𝑛)𝑂(1/𝜀2) with probability 1 − 1

poly(𝑛) .

3.1 Proof of Theorem 3.2
The proof of the theorem will follow from Proposition 3.6, which bounds the run time of
Algorithm 1, and Proposition 3.11, which bounds the approximation ratio.

Throughout this section, let 𝑢, 𝑣 and 𝑚 be the values given to Algorithm 1. Let 𝑃 =
(𝑝0, . . . , 𝑝𝑚) be the equipartition of 𝑢, and let 𝑆 be the set defined by Algorithm 1.

I Proposition 3.6. Algorithm 1 runs in time �̃�(𝑇 (|𝑢| + |𝑣|) · 𝑚5).

Proof. If |𝑢| ≤ 1, then we can find an optimal alignment in time 𝑂(|𝑣|) naively. Suppose
|𝑢| > 1. Notice that |𝑆| ≤ 𝑂(𝑚2 log 𝑛). In particular, because (1 + 1

𝑚 )(𝑚+1) ln 𝑛 ≥ 𝑛,

𝑆 ⊆ {𝑝0, . . . , 𝑝𝑚} ∪ {|𝑣|} ∪

{︃⌈︃
𝑝𝑖 ±

(︂
1 + 1

𝑚

)︂𝑗
⌉︃

| 𝑖 ∈ [0 : 𝑚], 𝑗 ∈ [0 : (𝑚 + 1) ln 𝑛]
}︃

,

which has size at most 𝑂(𝑚2 log 𝑛).
Finding an equipartition of 𝑢 can be done in linear time, and constructing 𝑆 takes time

𝑂(|𝑆|) = �̃�(𝑚2). In order to perform the fourth step which selects 𝑄, we must compute
𝑓(𝑙, 𝑗) for each 𝑙 ∈ 𝑆 and 𝑗 ∈ [0 : 𝑚]. To evaluate 𝑓(𝑙, 𝑗), we must consider each 𝑙′ ∈ 𝑆

satisfying 𝑙′ ≤ 𝑙, and then compute the cost of 𝑓(𝑙′, 𝑗 − 1) plus 𝒜(𝑃𝑗 , 𝑣[𝑙′ + 1 : 𝑙]) (which
takes time at most 𝑇 (|𝑢| + |𝑣|) to compute). Therefore, each 𝑓(𝑙, 𝑗) is computed in time
𝑂(|𝑆| ·𝑇 (|𝑢|+ |𝑣|)) ≤ �̃�(𝑇 (|𝑢|+ |𝑣|) ·𝑚2). Because there are 𝑂(𝑚 · |𝑆|) = �̃�(𝑚3) subproblems
of the form 𝑓(𝑙, 𝑗), the total run time of the dynamic program is �̃�(𝑇 (|𝑢| + |𝑣|) · 𝑚5).

So far we have shown that the first level of recursion takes time �̃�(𝑇 (|𝑢| + |𝑣|)𝑚5). The
sum of the lengths of the inputs to Algorithm 1 at a particular level of the recursion is at
most |𝑢|+ |𝑣|. It follows by the super-additivity of 𝑇 (𝑛) that the time spent in any given level
of recursion is at most �̃�(𝑇 (|𝑢| + |𝑣|)𝑚5). Because each level of recursion reduces the sizes
of the parts of 𝑢 by a factor of Ω(𝑚), the number of levels is at most 𝑂(log𝑚 𝑛) ≤ 𝑂(log 𝑛).
Therefore, the run time is �̃�(𝑇 (|𝑢| + |𝑣|) · 𝑚5). J

When discussing the approximation ratio of Algorithm 1, it will be useful to have a notion
of edit distance between partitions of strings.

I Definition 3.7. Given two partitions 𝐶 = (𝑐0, . . . , 𝑐𝑚) and 𝐷 = (𝑑0, . . . , 𝑑𝑚) of strings 𝑎

and 𝑏 respectively, we define Δed(𝐶, 𝐷) :=
∑︀

𝑖 Δed(𝐶𝑖, 𝐷𝑖).

In order to bound the approximation ratio of Algorithm 1, we will introduce, for the
sake of analysis, a partition 𝑄opt = (𝑞opt

0 , . . . , 𝑞opt
𝑚 ) of 𝑣 satisfying Δed(𝑃, 𝑄opt) = Δed(𝑢, 𝑣).

Recall that 𝑃 is fixed, which allows us to use it in the definition of 𝑄opt.
We claim that some partition 𝑄opt satisfying Δed(𝑃, 𝑄opt) = Δed(𝑢, 𝑣) must exist. If 𝑢

and 𝑣 differed by only a single edit, one could start from 𝑃 and explicitly define 𝑄opt so that
Δed(𝑃, 𝑄opt) = 1 (by a case analysis of which type of edit was performed). It can then be
shown by induction on the number of edits that, in general, we can obtain a partition 𝑄opt

satisfying Δed(𝑃, 𝑄opt) = Δed(𝑢, 𝑣).
Our strategy for bounding the approximation ratio will be to compare Δed(𝑃, 𝑄) for the

partition 𝑄 selected by our algorithm to Δed(𝑃, 𝑄opt). We do this through three observations.
The first observation upper bounds Δed(𝑃, 𝑄). Informally, it shows that the cost in edit

distance which Algorithm 1 pays for selecting 𝑄 instead of 𝑄opt is at most 2
∑︀𝑚

𝑖=0 |𝑞𝑖 − 𝑞opt
𝑖 |.
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I Lemma 3.8. Let 𝑄 = (𝑞0, . . . , 𝑞𝑚) be a partition of 𝑣. Then

Δed(𝑃, 𝑄) ≤ Δed(𝑢, 𝑣) + 2
𝑚∑︁

𝑖=1
|𝑞𝑖 − 𝑞opt

𝑖 |.

Proof. Observe that

Δed(𝑃, 𝑄) ≤ Δed(𝑃, 𝑄opt) + Δed(𝑄opt, 𝑄) = Δed(𝑢, 𝑣) +
𝑚∑︁

𝑖=1
Δed(𝑄opt

𝑖 , 𝑄𝑖).

Because 𝑄 and 𝑄opt are both partitions of 𝑣, Δed(𝑄𝑖, 𝑄opt
𝑖 ) ≤ |𝑞𝑖−1 − 𝑞opt

𝑖−1| + |𝑞𝑖 − 𝑞opt
𝑖 |.

In particular, |𝑞𝑖−1 − 𝑞opt
𝑖−1| insertions to the left side of one of 𝑄𝑖 or 𝑄opt

𝑖 (whichever has its
start point further to the right) will result in the two substrings having the same start-point;
and then |𝑞𝑖 − 𝑞opt

𝑖 | insertions to the right side of one of 𝑄𝑖 or 𝑄opt
𝑖 (whichever has its end

point further to the left) will result in the two substrings having the same end-point. Thus

Δed(𝑢, 𝑣) +
𝑚∑︁

𝑖=1
Δed(𝑄opt

𝑖 , 𝑄𝑖) ≤ Δed(𝑢, 𝑣) +
𝑚∑︁

𝑖=1
|𝑞𝑖−1 − 𝑞opt

𝑖−1| + |𝑞𝑖 − 𝑞opt
𝑖 |

≤ Δed(𝑢, 𝑣) + 2
𝑚∑︁

𝑖=1
|𝑞𝑖 − 𝑞opt

𝑖 |,

where we are able to disregard the case of 𝑖 = 0 because 𝑞0 = 𝑞opt
0 = 0. J

The next observation establishes a lower bound for Δed(𝑢, 𝑣).

I Lemma 3.9. Δed(𝑢, 𝑣) ≥ 1
𝑚

∑︀𝑚
𝑖=1 |𝑝𝑖 − 𝑞opt

𝑖 |.

Proof. Because Δed(𝑃, 𝑄opt) = Δed(𝑢, 𝑣), we must have that for each 𝑖 ∈ [𝑚],

Δed(𝑢, 𝑣) = Δed(𝑢[1 : 𝑝𝑖], 𝑣[1 : 𝑞opt
𝑖 ]) + Δed(𝑢[𝑝𝑖 + 1 : |𝑢|], 𝑣[𝑞opt

𝑖 + 1 : |𝑣|]).

Notice, however, that the strings 𝑢[1 : 𝑝𝑖] and 𝑣[1 : 𝑞opt
𝑖 ] differ in length by at least |𝑞opt

𝑖 − 𝑝𝑖|.
Therefore, their edit distance must be at least |𝑞opt

𝑖 −𝑝𝑖|, implying that Δed(𝑢, 𝑣) ≥ |𝑞opt
𝑖 −𝑝𝑖|.

Thus 1
𝑚 Δed(𝑢, 𝑣) ≥ 1

𝑚 |𝑞opt
𝑖 − 𝑝𝑖|. Summing over 𝑖 ∈ [𝑚] gives the desired equation. J

So far we have shown that the cost in edit distance which Algorithm 1 pays for selecting
𝑄 instead of 𝑄opt is at most 2

∑︀𝑚
𝑖=0 |𝑞𝑖 − 𝑞opt

𝑖 | (Lemma 3.8), and that the edit distance from
𝑢 to 𝑣 is at least 1

𝑚

∑︀𝑚
𝑖=1 |𝑝𝑖 − 𝑞opt

𝑖 | (Lemma 3.9). Next we compare these two quantities. In
particular, we show that if 𝑄 is chosen to mimic 𝑄opt as closely as possible, then each of the
|𝑞𝑖 − 𝑞opt

𝑖 | will become small relative to each of the |𝑝𝑖 − 𝑞opt
𝑖 |.

I Lemma 3.10. There exists a partition 𝑄 = (𝑞0, . . . , 𝑞𝑚) of 𝑣 such that each 𝑞𝑖 is in 𝑆,
and such that for each 𝑖 ∈ [0 : 𝑚], |𝑞𝑖 − 𝑞opt

𝑖 | ≤ 1
𝑚 |𝑝𝑖 − 𝑞opt

𝑖 |.

Proof Sketch. Consider the partition 𝑄 in which 𝑞𝑖 is chosen to be the largest 𝑠 ∈ 𝑆

satisfying 𝑠 ≤ 𝑞opt
𝑖 . Observe that: (i) because 0 ∈ 𝑆, each 𝑞𝑖 always exists; (ii) because

|𝑣| ∈ 𝑆, we will have 𝑞𝑚 = |𝑣|; and (iii) because 𝑞opt
0 ≤ 𝑞opt

1 ≤ · · · ≤ 𝑞opt
𝑚 , we will have that

𝑞0 ≤ 𝑞1 ≤ · · · ≤ 𝑞𝑚. Therefore, 𝑄 is a well-defined partition of 𝑣.
It remains to prove |𝑞𝑖 −𝑞opt

𝑖 | ≤ 1
𝑚 |𝑝𝑖 −𝑞opt

𝑖 |. For brevity, we focus on the case of 𝑝𝑖 < 𝑞opt
𝑖 .

The other cases are conceptually similar and appear in the full version of this paper.
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Assume 𝑝𝑖 < 𝑞opt
𝑖 . Consider the largest non-negative integer 𝑗 such that 𝑝𝑖 + (1 + 1

𝑚 )𝑗 ≤
𝑞opt

𝑖 . One can verify that by definition of 𝑗, we must have(︂
1 + 1

𝑚

)︂𝑗

≤ 𝑞opt
𝑖 − 𝑝𝑖 ≤

(︂
1 + 1

𝑚

)︂𝑗+1
. (3.1)

It follows that

𝑞opt
𝑖 −

(︃
𝑝𝑖 +

(︂
1 + 1

𝑚

)︂𝑗
)︃

≤
(︂

1 + 1
𝑚

)︂𝑗+1
−
(︂

1 + 1
𝑚

)︂𝑗

= 1
𝑚

(︂
1 + 1

𝑚

)︂𝑗

. (3.2)

Since ⌈𝑝𝑖 + (1 + 1
𝑚 )𝑗⌉ ∈ 𝑆, the definition of 𝑞𝑖 ensures that 𝑞𝑖 is between 𝑝𝑖 + (1 + 1

𝑚 )𝑗 and
𝑞opt

𝑖 inclusive. Therefore, (3.2) implies 𝑞opt
𝑖 − 𝑞𝑖 ≤ 1

𝑚

(︀
1 + 1

𝑚

)︀𝑗 . Combining this with (3.1),
it follows that 𝑞opt

𝑖 − 𝑞𝑖 ≤ 1
𝑚 (𝑞opt

𝑖 − 𝑝𝑖), as desired. J

We are now equipped to bound the approximation ratio of Algorithm 1, thereby completing
the proof of Theorem 3.2. We will use the preceeding lemmas to bound the approximation
ratio at each level of recursion to 𝑂(𝛾(𝑛)). The approximation ratio will then multiply across
the 𝑂(log𝑚 𝑛) levels of recursion, giving total approximation ratio 𝑂(𝛾(𝑛))𝑂(log𝑚 𝑛).

I Proposition 3.11. Let 𝐸(𝑢, 𝑣) be the number of edits returned by Algorithm 1. Then

Δed(𝑢, 𝑣) ≤ 𝐸(𝑢, 𝑣) ≤ Δed(𝑢, 𝑣) · (3𝛾(𝑛))𝑂(log𝑚 𝑛).

Proof. Because Algorithm 1 finds a sequence of edits from 𝑢 to 𝑣, clearly Δed(𝑢, 𝑣) ≤ 𝐸(𝑢, 𝑣).
By Lemma 3.10 there is some partition 𝑄 = (𝑞0, . . . , 𝑞𝑚) of 𝑣 such that each 𝑞𝑖 is in 𝑆, and
such that for each 𝑖 ∈ [0 : 𝑚], |𝑞𝑖 − 𝑞opt

𝑖 | ≤ 1
𝑚 |𝑝𝑖 − 𝑞opt

𝑖 |. By Lemma 3.9, it follows that

𝑚∑︁
𝑖=1

|𝑞𝑖 − 𝑞opt
𝑖 | ≤ 1

𝑚

𝑚∑︁
𝑖=1

|𝑝𝑖 − 𝑞opt
𝑖 | ≤ Δed(𝑢, 𝑣).

Applying Lemma 3.8, we then get that

Δed(𝑃, 𝑄) ≤ Δed(𝑢, 𝑣) + 2
𝑚∑︁

𝑖=1
|𝑞𝑖 − 𝑞opt

𝑖 | ≤ 3Δed(𝑢, 𝑣).

Thus there is some 𝑄 which Algorithm 1 is allowed to select such that Δed(𝑃, 𝑄) ≤
3Δed(𝑢, 𝑣). Since the approximation ratio of 𝒜 is 𝛾(𝑛), the true partition 𝑄 selected at the
first level of recursion must satisfy Δed(𝑃, 𝑄) ≤ 3𝛾(𝑛)Δed(𝑢, 𝑣).

After the 𝑖-th level of recursion, 𝑢 has implicitly been split into a large partition 𝑃 𝑖,
𝑣 has implicitly been split into a large partition 𝑄𝑖, and the recursive subproblems are
searching for edits between pairs of parts of 𝑃 𝑖 and 𝑄𝑖. Since there is 3𝛾(𝑛) distortion
at each level, we can get by induction that Δed(𝑃 𝑖, 𝑄𝑖) ≤ (3𝛾(𝑛))𝑖Δed(𝑢, 𝑣). Since there
are 𝑂(log𝑚 𝑛) levels of recursion, the number of edits returned by the algorithm is at most
Δed(𝑢, 𝑣) · (3𝛾(𝑛))𝑂(log𝑚 𝑛). J

4 Embeddings and Dimension Reduction Using Min-Hash Techniques

4.1 Alignment Embeddings for Permutations
Here we present a randomized embedding from 𝒫𝑛, the set of permutations of length 𝑛,
into Hamming space with expected distortion 𝑂(log 𝑛). The embedding has the surprising
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Algorithm 2 Alignment Embedding for Permutations.
Input: A string 𝑤 = 𝑤1 · · · 𝑤𝑛 ∈ 𝒫𝑛.
Parameters: 𝜀 and 𝑚 ≥ log1/2+𝜀

1
𝑛 + 1.

1. At the first level of recursion only:
a. Initialize an array 𝐴 of size 2𝑚 − 1 (indexed starting at one) with zeros. The array 𝐴

will contain the output embedding.
b. Select a hash function ℎ mapping Σ to 𝑟 log 𝑛 bits for a sufficiently large constant 𝑟.

2. Let 𝑖 minimize ℎ(𝑤𝑖) out of the 𝑖 ∈ [𝑛/2 − 𝜀𝑛 : 𝑛/2 + 𝜀𝑛].8 We call 𝑤𝑖 the pivot in 𝑤.
3. Set 𝐴[2𝑚−1] = 𝑤𝑖.
4. Recursively embed 𝑤1 · · · 𝑤𝑖−1 into 𝐴[1 : 2𝑚−1 − 1].
5. Recursively embed 𝑤𝑖+1 · · · 𝑤𝑛 into 𝐴[2𝑚−1 + 1 : 2𝑚 − 1].

property that it implicitly encodes alignments between strings. If the output is stored using
run-length encoding,7 then the size of the output and the run time are both 𝑂(𝑛).

The description of the embedding appears as Algorithm 2. For simplicity, we assume
0 /∈ Σ, which allows us to use 0 as a null character. The algorithm takes two parameters: 𝜀

and 𝑚. The parameter 𝜀 controls a trade-off between the distortion and the output dimension.
The parameter 𝑚 dictates the maximum depth of recursion that can be performed within
the array 𝐴. In particular, 𝑚 needs to be chosen such that the algorithm does not run out
of space for the embedding in the recursive calls.

Since each recursive step takes as input words of size in the range [(1/2 − 𝜀)𝑛 : (1/2 + 𝜀)𝑛],
the input size at the 𝑖-th level of the recursion is at most (1/2 + 𝜀)𝑖−1𝑛. We need to choose
𝑚 such that at the 𝑚-th level of recursion, the input size will be at most 1. Therefore, it
suffices to pick 𝑚 satisfying 𝑚 ≥ log1/2+𝜀

1
𝑛 + 1.

We denote the resulting embedding of the input string 𝑤 into the output array 𝐴 by
𝜑𝜀,𝑚(𝑤). Moreover, for 𝑚 = ⌈log1/2+𝜀

1
𝑛 + 1⌉, we define 𝜑𝜀(𝑤) to be 𝜑𝜀,𝑚(𝑤). Note that

𝜑𝜀 embeds 𝑤 into an array 𝐴 of size 𝑂
(︁

2log1/2+𝜀 1/𝑛
)︁

= 𝑂
(︀
𝑛−1/ log(1/2+𝜀))︀ , which one can

verify for 𝜀 ≤ 1
4 is 𝑂(𝑛1+6𝜀).

We call 𝜑𝜀 an alignment embedding because 𝜑𝜀 maps a string 𝑥 to a copy of 𝑥 spread
out across an array of zeros. When we compare 𝜑𝜀(𝑥) with 𝜑𝜀(𝑦) by Hamming differences,
𝜑𝜀 encodes an alignment between 𝑥 and 𝑦; it pays for every letter which it fails to match
up with another copy of the same letter. In particular, every pairing of a letter with a null
corresponds to an insertion or deletion, and every pairing of a letter with a different letter
corresponds to a substitution. Thus Ham(𝜑𝜀(𝑥), 𝜑𝜀(𝑦)) will always be at least Δed(𝑥, 𝑦).

In the rest of this subsection we will prove the following theorem.

I Theorem 4.1. For 𝜀 ≤ 1
4 , there exists a randomized embedding 𝜑𝜀 from 𝒫𝑛 to 𝑂(𝑛1+6𝜀)-

dimensional Hamming space with the following properties.
For 𝑥, 𝑦 ∈ 𝒫𝑛, 𝜑𝜀(𝑥) and 𝜑𝜀(𝑦) encode a sequence of Ham(𝜑𝜀(𝑥), 𝜑𝜀(𝑦)) edits from 𝑥 to 𝑦.
In particular, Ham(𝜑𝜀(𝑥), 𝜑𝜀(𝑦)) ≥ Δed(𝑥, 𝑦).
For 𝑥, 𝑦 ∈ 𝒫𝑛, E[Ham(𝜑𝜀(𝑥), 𝜑𝜀(𝑦))] ≤ 𝑂

(︀ 1
𝜀 log 𝑛

)︀
· Δed(𝑥, 𝑦).

For 𝑥 ∈ 𝒫𝑛, 𝜑𝜀(𝑥) is sparse in the sense that it only contains 𝑛 non-zero entries. Moreover,
if 𝜑𝜀(𝑥) is stored with run-length encoding, it can be computed in time 𝑂(𝑛).

7 In run-length encoding, runs of identical characters are stored as a pair whose first entry is the character
and the second entry is the length of the run.

8 With high probability, there are no hash collisions.
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The first property in the theorem follows from the discussion above. In order to prove
E[Ham(𝜑𝜀(𝑥), 𝜑𝜀(𝑦))] ≤ Δed(𝑥, 𝑦)𝑂

(︀ 1
𝜀 log 𝑛

)︀
, we will consider a series of at most 2Δed(𝑥, 𝑦)

insertions or deletions that are used to transform 𝑥 into 𝑦. Each substitution operation
can be emulated by an insertion and a deletion. Moreover, note that by ordering deletions
before insertions, each of the intermediate strings will still be a permutation. In the following
lemma, we bound the expected Hamming distance for just a single insertion (or equivalently,
a deletion). By the triangle inequality, we get the bound on E[Ham(𝜑𝜀(𝑥), 𝜑𝜀(𝑦))].

I Lemma 4.2. Let 𝑥 ∈ 𝒫𝑛 be a permutation, and let 𝑦 be a permutation derived from 𝑥 by
a single insertion. Let 0 < 𝜀 ≤ 1

4 and let 𝑚 be large enough so that 𝜑𝜀,𝑚 is well-defined on 𝑥

and 𝑦. Then E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦))] ≤ 𝑂
(︀ 1

𝜀 log 𝑛
)︀
.

Proof. Observe that the set of letters in position-range [(1/2−𝜀)|𝑥| : (1/2 + 𝜀)|𝑥|] in 𝑥 differs
by at most 𝑂(1) elements from the set of letters in position-range [(1/2 − 𝜀)|𝑦| : (1/2 + 𝜀)|𝑦|]
in 𝑦. Thus with probability 1 − 𝑂(1/(𝜀𝑛)), there will be a letter 𝑙 in the overlap between the
two ranges whose hash is smaller than that of any other letter in either of the two ranges. In
other words, the pivot in 𝑥 (i.e., the letter in the position range with minimum hash) will
differ from the pivot in 𝑦 with probability 𝑂(1/(𝜀𝑛)). Therefore,

E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦))] = Pr[pivots differ] · E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦)) | pivots differ]
+ Pr[pivots same] · E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦)) | pivots same]

≤ 𝑂

(︂
1

𝜀𝑛

)︂
· E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦)) | pivots differ]

+ E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦)) | pivots same].

In general, Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦)) cannot exceed 𝑂(𝑛). Thus

E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦))] ≤ 𝑂

(︂
1

𝜀𝑛

)︂
· 𝑂(𝑛) + E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦)) | pivots same]

≤ 𝑂

(︂
1
𝜀

)︂
+ E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦)) | pivots same].

If the pivot in 𝑥 is the same as in 𝑦, then the insertion must take place to either
the left or the right of the pivot. Clearly 𝜑𝜀,𝑚(𝑥) and 𝜑𝜀,𝑚(𝑦) will agree on the side
of the pivot in which the edit does not occur. Inductively applying our argument to
the side on which the edit occurs, we incur a cost of 𝑂(1/𝜀) once for each level in the
recursion. The maximum depth of the recursion is 𝑂

(︁
log1/2+𝜀

1
𝑛

)︁
= 𝑂(log 𝑛). This gives us

E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦))] ≤ 𝑂
(︀ 1

𝜀

)︀
· log 𝑛. J

It remains only to analyze the run time. Notice that 𝜑𝜀(𝑥) can be stored in space Θ(𝑛)
using run-length encoding. We can compute 𝜑𝜀(𝑥) in time 𝑂(𝑛), as follows. Using Range
Minimum Query [13] we can build a data structure which supports constant-time queries
returning minimum hashes in contiguous substrings of 𝑥. This allows each recursive step in
the embedding to be performed in constant time. Since each recursive step writes one of the
𝑛 letters to the output, the total run time is bounded by 𝑂(𝑛).

4.2 Embedding into Hamming Space in the Low-Distance Regime
Assume we are given an embedding from edit distance in Σ𝑛 into Hamming space with
subpolynomial distortion 𝛾(𝑛). We wish to use such an embedding as a black box in order to
obtain a new embedding for the low edit distance regime: the new embedding, which would
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Algorithm 3 Choose Next Block (Informal).
Input: A string 𝑥, the index 𝑖 where the current block begins.
Output: The index where the next block begins.
Parameters: 𝑊 ′′ ≪ 𝑊 ′ ≪ 𝑊 set as needed.

1. Consider the window 𝑥𝑖 · · · 𝑥𝑖+𝑊 −1 of size 𝑊 . Divide the second half of the window into
non-overlapping sub-windows of size 𝑊 ′, and pick one such sub-window at random.

2. Each substring of length 𝑊 ′′ inside the sub-window is called a sub-sub-window (sub-sub-
windows may overlap). Compute a hash of each of the sub-sub-windows.9

3. Return the start position of the sub-sub-window with the smallest hash.

be parameterized by a value 𝐾, would take any two strings 𝑥, 𝑦 ∈ Σ𝑛 with Δed(𝑥, 𝑦) ≤ 𝐾

and map 𝑥 and 𝑦 into Hamming space with distortion 𝛾′(𝐾), a function of 𝐾 rather than 𝑛.
We make progress toward such an embedding with the added constraint that our strings

𝑥 and 𝑦 are (𝐷, 𝑅)-periodic free for 𝐷 ∈ poly(𝐾) of our choice and 𝑅 ∈ 𝑂(𝐾3). A string
is (𝐷, 𝑅)-periodic free if it contains no contiguous substrings of length 𝐷 that are periodic
with period at most 𝑅. Our embedding takes two such strings with Δed(𝑥, 𝑦) ≤ 𝐾 and maps
them into Hamming space with distortion 𝛾(poly(𝐾)). If we select the black-box embedding
to be embedding of Ostrovsky and Rabani [21], then this gives distortion 2𝑂

(︀√
log 𝐾 log log 𝐾

)︀
.

Our main result in this section is stated as the following theorem.

I Theorem 4.3. Suppose we have an embedding from edit distance in Σ𝑛 to Hamming
space with subpolynomial distortion 𝛾(𝑛) ≥ 2. Let 𝐾 ∈ N and pick some 𝐷 ∈ poly(𝐾).
Then there exists 𝑅 ∈ 𝑂(𝐾3) and an embedding 𝛼 from edit distance into scaled Hamming
space with the following property. For strings 𝑥 and 𝑦 that are (𝐷, 𝑅)-periodic free and
of edit distance at most 𝐾 apart, 𝛼 distorts the distance between 𝑥 and 𝑦 by at most
𝑂(𝛾(𝐾3𝐷)) ≤ 𝑂(𝛾(poly(𝐾))) in expectation.

The complete proof of Theorem 4.3 appears in the full version of the paper. Below we
discuss the key ideas, which once again make use of min-hash techniques.

The main step in our embedding is to partition the strings 𝑥 and 𝑦 into parts of length
poly(𝐾) in a way so that the sum of the edit distances between the parts equals Δed(𝑥, 𝑦)
(with some probability), and then to apply the black-box embedding to each individual part.

We select the partition of 𝑥 by going from left to right, and at each step choosing the next
index at which the current block ends and the next one begins. The algorithm for selecting
each successive block appears as Algorithm 3.

The goal of the algorithm is to find partitions of 𝑥 and 𝑦 that are aligned despite the edits.
By picking a sub-window uniformly at random, we guarantee that with high probability (as
a function of 𝑊, 𝑊 ′) no edits occur directly within that sub-window. However, if 𝑥 and 𝑦

differ by an insertion or deletion prior to that sub-window, the sub-window within 𝑥 may be
misaligned with the sub-window within 𝑦. Nonetheless, the set of 𝑊 ′′-letter sub-sub-windows
of the sub-window of 𝑥 will be almost the same as the set of 𝑊 ′′-letter sub-sub-windows
of the sub-window of 𝑦. By selecting the sub-sub-window with minimum hash as the start
position for the next block, we are then able to guarantee that with high probability (as a
function of 𝑊 ′) we pick positions in 𝑥 and 𝑦 which are aligned with each other.

9 By selecting 𝑊 ′′, 𝑊 ′, 𝑊 appropriately, we can use the (𝐷, 𝑅)-periodic free property to guarantee that
these sub-sub-windows are distinct.
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4.3 Dimension Reduction
A mapping of edit distance on length-𝑛 strings to edit distance on length-at-most-𝑛/𝑐 strings
(with larger alphabet size) is called a dimension-reduction map with contraction 𝑐 [7]. The
distortion of the map measures the multiplicative factor to which edit distance is preserved.

I Theorem 4.4. There is a randomized dimension-reduction map 𝜑 with contraction 𝑐 and
expected distortion 𝑂(𝑐). In particular, for 𝑥, 𝑦 ∈ Σ𝑛,

1
2𝑐

· Δed(𝑥, 𝑦) ≤ Δed(𝜑(𝑥), 𝜑(𝑦)),

and

E[Δed(𝜑(𝑥), 𝜑(𝑦))] ≤ 𝑂(1) · Δed(𝑥, 𝑦).

Moreover, for this definition of distortion, 𝜑 is within a constant factor of optimal. Addition-
ally, 𝜑 can be evaluated in time 𝑂(𝑛 log 𝑐).

Note that the output of a dimension-reduction map may be over a much larger alphabet
than the input. One should not be too alarmed by this, however, because alphabet reduction
can be performed after the dimension reduction (by simply hashing to Θ(log 𝑛) bits).

Below we summarize our approach to proving Theorem 4.4. The complete proof appears
in the full version of the paper. When computing our dimension-reduction map 𝜑(𝑤) on a
word 𝑤, one approach would be to split 𝑤 into blocks of size 𝑐 and to then define 𝜑(𝑤)’s
letters to correspond to blocks. This would achieve the desired reduction in dimension,
and would have the effect that a single edit to 𝜑(𝑤) would correspond to at most 𝑐 edits
in 𝑤. However, a single insertion to 𝑤 could change the content of linearly many blocks,
corresponding to a large number of edits to 𝜑(𝑤). Thus the challenge is to instead break 𝑤

into blocks in a way so that an edit to 𝑤 affects only a small number of blocks.
In order to accomplish this, our actual 𝜑 breaks 𝑤 into long periodic substrings and

non-periodic substrings. The two types of substrings are then handled as follows:

Handling Long Periodic Substrings: Within the periodic substrings, we break the substring
into blocks based on the periodic behavior. The key insight is that the embedding of the
periodic substring will consist of the same block repeating many times. If an edit occurs
in the middle of a long periodic substring, the embedding will still include the same block
repeated many times, but 𝑂(1) blocks around the edit will be modified. Since the blocks
correspond to letters in 𝜑(𝑤), the edit to 𝑤 results in 𝑂(1) edits to 𝜑(𝑤).

Handling Non-Periodic Substrings: Within the non-periodic substrings, we select markers
in a randomized fashion to determine block boundaries. The definition of non-periodic sub-
strings guarantees that for every 𝑐 adjacent letters, the 8𝑐-letter substrings 𝑤𝑖𝑤𝑖+1 · · · 𝑤𝑖+8𝑐−1
beginning at each of those 𝑐 letters 𝑤𝑖 are distinct. We utilize this property to select markers
based on the minimum hash of 8𝑐-letter substrings. A letter is selected as a marker if the
hash of the 8𝑐-letter string beginning at that letter is smaller than the hashes of any of the
8𝑐-letter strings beginning in the 𝑐/2 letters to its left or right. This localizes the selection so
that edits to the string will only affect nearby markers.

When two markers are more than 𝑐 apart, we additionally break the space between them
into sub-blocks of size at most 𝑐. By preventing blocks in 𝜑(𝑤) from exceeding 𝑂(𝑐) in size,
we can take a sequence of edits in 𝜑(𝑤) and generate a corresponding sequence of edits in 𝑤

with distortion 𝑂(𝑐). When bounding the distortion in the other direction, we risk edits in
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𝑤 taking place between two far-apart markers, which in turn could affect all of the blocks
between those markers in 𝜑(𝑤). The main technical challenge is bounding the effect this has
on the distortion. We do so by showing probabilistically that wherever there is an edit, there
will be markers nearby which mitigate the impact of that edit on the block structure of 𝜑(𝑤).
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Abstract
The classic Stable Roommates problem (the non-bipartite generalization of the well-known
Stable Marriage problem) asks whether there is a stable matching for a given set of agents,
i.e. a partitioning of the agents into disjoint pairs such that no two agents induce a blocking pair.
Herein, each agent has a preference list denoting who it prefers to have as a partner, and two
agents are blocking if they prefer to be with each other rather than with their assigned partners.

Since stable matchings may not be unique, we study an NP-hard optimization variant of
Stable Roommates, called Egal Stable Roommates, which seeks to find a stable matching
with a minimum egalitarian cost γ, i.e. the sum of the dissatisfaction of the agents is minimum.
The dissatisfaction of an agent is the number of agents that this agent prefers over its partner
if it is matched; otherwise it is the length of its preference list. We also study almost stable
matchings, called Min-Block-Pair Stable Roommates, which seeks to find a matching with
a minimum number β of blocking pairs. Our main result is that Egal Stable Roommates
parameterized by γ is fixed-parameter tractable, while Min-Block-Pair Stable Roommates
parameterized by β is W[1]-hard, even if the length of each preference list is at most five.
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1 Introduction

This paper presents algorithms and hardness results for two variants of the Stable Room-
mates problem, a well-studied generalization of the classic Stable Marriage problem.
Before describing our results, we give a brief background that will help motivate our work.

Stable Marriage and Stable Roommates. An instance of the Stable Marriage problem
consists of two disjoint sets of n men and n women (collectively called agents), who are each
equipped with his or her own personal strict preference list that ranks every member of the
opposite sex. The goal is to find a bijection, or matching, between the men and the women
that does not contain any blocking pairs. A blocking pair is a pair of man and woman who
are not matched together but both prefer each other over their own matched partner. A
matching with no blocking pairs is called a stable matching, and perfect if it is a bijection
between all men and women.

Stable Marriage is a classic and fundamental problem in computer science and
applied mathematics, and as such, entire books were devoted to it [24, 32, 50, 37]. The
problem emerged from the economic field of matching theory, and it can be thought of
as a generalization of the Maximum Matching problem when restricted to complete
bipartite graphs. The most important result in this context is the celebrated Gale-Shapley
algorithm [22]: This algorithm computes in polynomial time a perfect stable matching in
any given instance, showing that regardless of their preference lists, there always exists a
perfect stable matching between any equal number of men and women.

The Stable Marriage problem has several interesting variants. First, the preference
lists of the agents may be incomplete, meaning that not every agent is an acceptable partner
to every agent of the opposite sex. In graph theoretic terms, this corresponds to the bipartite
incomplete case. The preference lists could also have ties, meaning that two or more agents
may be considered equally good as partners. Finally, the agents may not be partitioned into
two disjoint sets, but rather each agent may be allowed to be matched to any other agent.
This corresponds to the non-bipartite case in graph theoretic terms, and is referred to in the
literature as the Stable Roommates problem.

While Stable Marriage and Stable Roommates seem very similar, there is quite a
big difference between them in terms of their structure and complexity. For one, any instance
of Stable Marriage always contains a stable matching (albeit perhaps not perfect), even if
the preference lists are incomplete and with ties. Moreover, computing some stable matching
in any Stable Marriage instance with 2n agents can be done in O(n2) time [22]. However,
an instance of Stable Roommates may have no stable matchings at all, even in the case of
complete preference lists without ties (see the third example in Figure 1). Furthermore, when
ties are present, deciding whether an instance of Stable Roommates contains a stable
matching is NP-complete [47], even in the case of complete preference lists.

All variants of Stable Marriage and Stable Roommates mentioned here have several
applications in a wide range of application domains. These include partnership issues in the
real-world [22], resource allocation [5, 16, 27], centralized automated mechanisms that assign
children to schools [3, 4], assigning school graduates to universities [7, 8], assigning medical
students to hospitals [1, 2], and several others [6, 21, 29, 30, 33, 34, 35, 37, 38, 48, 49].

Optimization variants. As noted above, some Stable Roommates instances do not admit
any stable matching at all, and in fact, empirical study suggests that a constant fraction of
all sufficiently large instances will have no solution [46]. Moreover, even if a given Stable
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1
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3
4

1 : 2 � 3 � 4
2 : 3 � 1
3 : 4 � 2 � 1
4 : 1 � 3

1
2

3
4

1 : 2 ∼ 3 � 4
2 : 1 � 3
3 : 1 ∼ 2 � 4
4 : 3 � 1

1
2

3
4

1 : 2 � 3 � 4
2 : 3 � 1 � 4
3 : 1 � 2 � 4
4 : 1 � 2 � 3

Figure 1 An example of three Stable Roommates instances, where x � y means that x is
strictly preferred to y, and x ∼ y means that they are equally good and tied as a partner. The
instance on the left is incomplete without ties and has exactly two stable matchings {{1, 2}, {3, 4}}
and {{1, 4}, {2, 3}}, both of which are perfect. The instance in the middle is incomplete with ties
and has two stable matchings {{1, 3}} and {{1, 2}, {3, 4}}, the latter being perfect while the former
not. The right instance is complete without ties and has no stable matchings at all.

Roommates instance admits a solution, this solution may not be unique, and there might
be other stable matchings with which the agents are more satisfied overall. Given these two
facts, it makes sense to consider two types of optimization variants for Stable Roommates:
In one type, one would want to compute a stable matching that optimizes a certain social
criterion in order to maximize the overall satisfaction of the agents. In the other, one would
want to compute matchings which are as close as possible to being stable, where closeness can
be measured by various metrics. In this paper, we focus on one prominent example of each
of these two types – minimizing the egalitarian cost of a stable matching, and minimizing
the number of blocking pairs in a matching which is close to being stable.

Egalitarian optimal stable matchings. Over the years, several social optimality criteria
have been considered, yet arguably one of the most popular of these is the egalitarian cost
metric [41, 32, 31, 36, 39]. The egalitarian cost of a given matching is the sum of the ranks of
the partners of all agents, where the rank of the partner y of an agent x is the number of agents
that are strictly preferred over y by x. The corresponding Egal Stable Marriage and
Egal Stable Roommates problems ask whether there is a stable matching with egalitarian
cost at most γ, for some given bound γ ∈ N (Section 2 contains the formal definition).

When the input preferences do not have ties (but could be incomplete), Egal Stable
Marriage is solvable in O(n4) time [31]. For preferences with ties, Egal Stable Marriage
becomes NP-hard [36]. Thus, already in the bipartite case, it becomes apparent that allowing
ties in preference lists makes the task of computing an optimal egalitarian matching much
more challenging. Marx and Schlotter [39] showed that Egal Stable Marriage is fixed-
parameter tractable when parameterized by the parameter “sum of the lengths of all ties”.

For Egal Stable Roommates, Feder [20] showed that the problem is NP-hard even
if the preferences are complete and have no ties, and gave a 2-approximation algorithm
for this case. Halldórsson et al. [25] showed inapproximability results for Egal Stable
Roommates, and Teo and Sethuraman [51] proposed a specific LP formulation for Egal
Stable Roommates and other variants. Cseh et al. [17] studied Egal Stable Roommates
for preferences with bounded length ` and without ties. They showed that the problem is
polynomial-time solvable if ` = 2, and is NP-hard for ` ≥ 3.

Matchings with minimum number of blocking pairs. For the case where no stable matchings
exist, the agents may still be satisfied with a matching that is close to being stable. One
very natural way to measure how close a matching is to being stable is to count the number
of blocking pairs [45, 19]. Accordingly, the Min-Block-Pair Stable Roommates problem
asks to find a matching with a minimum number of blocking pairs.

Abraham et al. [6] showed that Min-Block-Pair Stable Roommates is NP-hard, and
cannot be approximated within a factor of n0.5−ε unless P = NP, even if the given preferences
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are complete. They also showed that the problem can be solved in nO(β) time, where n and
β denote the number of agents and the number of blocking pairs, respectively. This implies
that the problem is in the XP class (for parameter β) of parameterized complexity. Biró et al.
[9] showed that the problem is NP-hard and APX-hard even if each agent has a preference
list of length at most 3, and presented a (2`− 3)-approximation algorithm for bounded list
length `. Biró et al. [10] and Hamada et al. [26] showed that the related variant of Stable
Marriage, where the goal is to find a matching with minimum blocking pairs among all
maximum-cardinality matchings, cannot be approximated within n1−ε unless P = NP.

Our contributions. We analyze both Egal Stable Roommates and Min-Block-Pair
Stable Roommates from the perspective of parameterized complexity, under the natural
parameterization of each problem (i.e. the egalitarian cost and number of blocking pairs,
respectively). We show that while the former is fixed-parameter tractable, the latter is
W[1]-hard even when each preference list has length at most five and has no ties. This
shows a sharp contrast between the two problems: Computing an optimal egalitarian stable
matching is a much easier task than computing a matching with minimum blocking pairs.

When no ties are present, an instance of the Egal Stable Roommates problem has a
lot of structure, and so we can apply a simple branching strategy for finding a stable matching
with egalitarian cost of at most γ in 2O(γ)n2 time. Moreover, we derive a kernelization
algorithm, obtaining a polynomial problem kernel (Theorems 3 and 4). Note that the original
reduction of Feder [20] already shows that Egal Stable Roommates cannot be solved in
2o(γ)nO(1) time unless the Exponential Time Hypothesis [18] fails.

When ties are present, the problem becomes much more challenging because several agents
may be tied as a first ranked partner and it is not clear how to match them to obtain an
optimal egalitarian stable matching. Moreover, we have to handle unmatched agents. When
preferences are complete or without ties, all stable matchings match the same (sub)set of
agents and this subset can be found in polynomial time [24, Chapter 4.5.2]. Thus, unmatched
agents do not cause any real difficulties. However, in the case of ties and with incomplete
preferences, stable matchings may involve different sets of unmatched agents. Aiming at a
socially optimal egalitarian stable matching, we consider the cost of an unmatched agent to
be the length of its preference list [39]. (For the sake of completeness, we also consider two
other variants where the cost of an unmatched agent is either zero or a constant value, and
show that both these variants are unlikely to be fixed-parameter tractable.) Our first main
result is given in the following theorem:

I Theorem 1. Egal Stable Roommates can be solved in γO(γ) ·(n log n)3 time, even for
incomplete preferences with ties, where n is the number of agents and γ the egalitarian cost.

The general idea behind our algorithm is to apply random separation [13] to “separate”
irrelevant pairs from the pairs that belong to the solution matching, and from some other
pairs that would not block our solution. This is done in two phases, each involving some
technicalities, but in total the whole separation can be computed in γO(γ) · nO(1) time. After
the separation step, the problem reduces to Minimum-Weight Perfect Matching, and
we can apply known techniques. Recall that for the case where the preferences have no ties,
a simple depth-bounded search tree algorithm suffices (Theorem 4).

In Section 4, we show that Min-Block-Pair Stable Roommates is W[1]-hard with
respect to the parameter β (the number of the blocking pairs) even if each input preference
list has length at most five and does not have ties. This implies that assuming bounded
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length of the preferences does not help in designing an f(β) · nO(1)-time algorithm for Min-
Block-Pair Stable Roommates, unless FPT = W[1]. Our W[1]-hardness result also
implies as a corollary a lower-bound on the running time of any algorithm. By adapting our
reduction, we also answer in the negative an open question regarding the number of blocking
agents proposed by Manlove [37, Chapter 4.6.5] (Corollary 14).

I Theorem 2. Let n denote the number of agents and β denote the number of blocking pairs.
Even when each input preference list has length at most five and has no ties, Min-Block-
Pair Stable Roommates is W[1]-hard with respect to β and admits no f(β) · no(β)-time
algorithms unless the Exponential Time Hypothesis is false.

Besides the relevant work mentioned above there is a growing body of research regarding the
parameterized complexity of preference-based stable matching problems [39, 40, 43, 42, 23, 15].
Due to space constraints we deferred the proofs for results marked by ? to a full version [14].

2 Definitions and notation

Let V = {1, 2, . . . , n} be a set of even number n agents. Each agent i ∈ V has a subset of
agents Vi ⊆ V which it finds acceptable as a partner and has a preference list �i on Vi (i.e. a
transitive and complete binary relation on Vi). Here, x �i y means that i weakly prefers
x over y (i.e. x is better or as good as y). We use �i to denote the asymmetric part (i.e.
x �i y and ¬(y �i x)) and ∼i to denote the symmetric part of �i (i.e. x �i y and y �i x).
For two agents x and y, we call x most acceptable to y if x is a maximal element in the
preference list of y. Note that an agent can have more than one most acceptable agent. We
extend � to X � Y for pairs of disjoint subsets X,Y ⊆ V in the natural way.

A preference profile P for V is a collection (�i)i∈V of preference lists for each agent i ∈ V .
A profile P may have the following properties: It is complete if for each agent i ∈ V it holds
that Vi ∪ {i} = V ; otherwise it is incomplete. If there are three agents i ∈ V , x, y ∈ Vi such
that x ∼i y, then we say that x and y are tied by i and that the profile P has ties. To an
instance (V,P) we assign an acceptability graph, which has V as its vertex set and two agents
are connected by an edge if each finds the other acceptable. Without loss of generality, G
does not contain isolated vertices. The rank of an agent i in the preference list of some
agent j is the number of agents x that j strictly prefers over i: rankj(i) := |{x | x �j i}|.

For a preference profile with acceptability graph G and edge set E(G), a matching M ⊆
E(G) is a subset of disjoint pairs {x, y} of agents with x 6= y. If {x, y} ∈M , then we denote
the partner y of x byM(x); otherwise we call the pair {x, y} unmatched. We writeM(x) = ⊥
if agent x has no partner ; i.e. if agent x is not involved in any pair in M . If no agent x has
M(x) = ⊥ thenM is perfect. Given a matchingM of P , an unmatched pair {x, y} ∈ E(G)\M
is blocking M if both x and y prefer each other to being unmatched or to their assigned
partners, i.e. it holds that

(
M(x) = ⊥∨ y �x M(x)

)
∧
(
M(y) = ⊥∨ x �y M(y)

)
. We call a

matching M stable if no unmatched pair is blocking M . The Stable Roommates problem
has as input a preference profile P for a set V of (even number) n agents and asks whether P
admits a stable matching. When preferences are complete, each stable matching is perfect.

The two problems we consider in the paper are Egal Stable Roommates and Min-
Block-Pair Stable Roommates. The latter asks to determine whether a given preference
profile P for a set of agents V has a stable matching with at most β blocking pairs. The
former problem asks to find a stable matching with minimum egalitarian cost; the egalitarian
cost of a given matching M is as follows: γ(M) :=

∑
i∈V ranki(M(i)), where we augment

the definition rank with ranki(⊥) := |Vi|. For example, the second profile in Figure 1 has two
stable matchings M1 = {{1, 3}} and M2 = {{1, 2}, {3, 4}} with γ(M1) = 4 and γ(M2) = 2.
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Algorithm 1: A modified version of the phase-1 algorithm of Irving [28].
1 repeat
2 foreach agent u ∈ U whose preference list contains at least one unmarked agent do
3 w ← the first agent in the preference list of u such that {u,w} is not yet marked
4 foreach u′ with u �w u′ do mark {u′, w}
5 until no new pair was marked in the last iteration

The egalitarian cost, as originally introduced for the Stable Marriage problem, does
not include the cost of an unmatched agent because the preference lists are complete. For
complete preferences, a stable matching must assign a partner to each agent, meaning that
our notion of egalitarian cost equals the one used in the literature. For preferences without
ties, all stable matchings match the same subset of agents [24, Chapter 4.5.2]. Thus, the two
concepts differ only by a fixed value which can be pre-determined in polynomial time [24,
Chapter 4.5.2]. For incomplete preferences with ties, there seems to be no consensus on
whether to “penalize” stable matchings by the cost of unmatched agents [17]. Our concept
of egalitarian cost complies with Marx and Schlotter [39], but we tackle other concepts as
well (Section 3.3).

3 Minimizing the egalitarian cost

In this section we give our algorithmic and hardness results for Egal Stable Roommates.
Section 3.1 treats the case when no ties are present, where we can use a straightforward
branching strategy. In Section 3.2 we solve the case where ties are present. Herein, we need
a more sophisticated approach based on random separation. Finally, in Section 3.3, we study
variants of the egalitarian cost, differing in the cost assigned to unmatched agents.

3.1 Warm-up: Preferences without ties
By the stability concept, if the preferences have no ties and two agents x and y that are each
other’s most acceptable agents, then any stable matching must contain {x, y}, which has cost
zero. Hence, we can safely add such pairs to a solution matching. After we have matched all
pairs of agents with zero cost, all remaining, unmatched agents induce cost at least one when
they are matched. This leads to a simple depth-bounded branching algorithm. In terms of
kernelization, we can delete any two agents that induce zero cost and delete agents from
some preference list that are ranked higher than γ. This gives us a polynomial kernel.

First, we recall a part of the polynomial-time algorithm by Irving [28] which finds an
arbitrary stable matching for preferences without ties. The whole algorithm works in two
phases. We present here a modified version of the first phase to determine “relevant” agents
by sorting out fixed pairs – pairs of agents that occur in every stable matching [24, Chapter
4.4.2] – and marked pairs – pairs of agents that cannot occur in any stable matching. The
modified phase-1 algorithm is given in Algorithm 1. Herein, by marking a pair {u,w} we
mean marking the agents u and w in the preference lists of w and u, respectively.

Let P0 be the preference profile produced by Algorithm 1. We introduce some more
notions. For each agent x, let first(P0, x) and last(P0, x) denote the first and the last agent
in the preference list of x that are not marked, respectively. We call a pair {x, y} a fixed pair
if first(P0, x) = y and first(P0, y) = x. Let marked(P0) denote the set of all agents whose
preference lists consist of only marked agents, and let unmarked(P0) denote the set of all
agents whose preference lists have at least one unmarked agent. By [24, Chapters 4.4.2 and
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4.5.2], we can neglect all agents that are in the fixed pairs and ignore all “irrelevant” agents
from marked(P0). We can now shrink our instance to obtain a polynomial size problem
kernel.

I Theorem 3. Egal Stable Roommates for preferences without ties but with possibly
incomplete preferences admits a size-O(γ2) problem kernel with at most 3γ + 1 agents and at
most γ + 1 agents in each of the preference lists.

Proof sketch. Let I = (P, V, γ) be an instance of Egal Stable Roommates and let P0
be the profile that Algorithm 1 produces for P. We use F to denote the set of agents of
all fixed pairs, and we use O to denote the set of ordered pairs (x, y) of agents such that
x ranks y higher than γ. Briefly put, our kernelization algorithm will delete all agents in
F ∪marked(P0), and introduce O(γ) dummy agents to replace the deleted agents and some
more that are identified by O. Initially, F and O are set to empty sets.
1. If |marked(P0)| > γ or if there is an agent x in unmarked(P0) with rankx(first(P0, x)) > γ,

then return a trivial no-instance.
2. For each two agents x, y ∈ unmarked(P0) with first(P0, x) = y and first(P0, y) = x, add to

F the agents x and y. Let γ̂ = γ −
∑
x∈F rankx(first(P0, x))−

∑
x∈marked(P0) |Vx|.

3. If 2γ̂ < |unmarked(P0) \ F |, then return a trivial no-instance.
4. Add to the original agent set a set D of 2k dummy agents d1, d2, . . . , d2k, where k = 2dγ̂/2e,

such that for each i ∈ {1, 2, . . . , k}, the preference list of di consists of only dk+i, and the
preference list of dk+i consists of only di.

5. For each two x, y ∈ unmarked(P0) with rankx(y) > γ̂, add to O the ordered pair (x, y).
6. For each agent a ∈ unmarked(P0) \ F do the following.

(1) For each i ∈ {0, 1, 2, . . . , γ̂}, let x be the agent with ranka(x) = i. If x ∈ F∪marked(P0)
or if (x, a) ∈ O, then replace in a’s preference list agent x with a dummy agent d,
using a different dummy for each i, and append a to the preference list of d.

(2) Delete all agents y in the preference list of a with ranka(y) > γ̂.
7. Delete F ∪marked(P0) from P0.

The proof that the above algorithm produces a problem kernel with the desired size in the
desired running time is deferred to a full version [14]. J

Using a simple branching algorithm, we obtain the following.

I Theorem 4 (?). Let n denote the number of agents and γ denote the egalitarian cost.
Egal Stable Roommates without ties can be solved in O(2γ · n2) time.

3.2 Preferences with ties
When the preferences may contain ties, we can no longer assume that if two agents are
each other’s most acceptable agents, denoted as a good pair, then a minimum egalitarian
cost stable matching would match them together; note that good pairs do not induce any
egalitarian cost. This is because their match could force other pairs to be matched together
that have large cost. Nevertheless, a good pair will never block any other pair, i.e. no agent
in a good pair will form with an agent in some other pair a blocking pair. However, a stable
matching may still contain some other pairs which have non-zero cost. We call such pairs
costly pairs. Aiming to find a stable matching M with egalitarian cost at most γ, it turns out
that we can also identify in γO(γ) ·nO(1) time a subset S of pairs of agents, which contains all
costly pairs of M and contains no two pairs that may induce a blocking pair. It hence suffices
to find a minimum-cost maximal matching in the graph induced by S and the good pairs.
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The crucial idea is to use the random separation technique [13] to highlight the difference
between the matched costly pairs in M and the unmatched costly pairs. This enables us
to ignore the costly pairs which pairwisely block each other or are blocked by some pair
in M so as to obtain the desired subset S. Before describing the algorithm, we show that
we can focus on the case of perfect matchings, even for incomplete preferences. (Note that
the case with complete preferences is covered because stable matchings for such case are
always perfect.) We show this by introducing dummy agents to extend each non-perfect
stable matching to a perfect one, without altering the egalitarian cost.

I Lemma 5 (?). Egal Stable Roommates for n agents and egalitarian cost γ is O(γ ·n2)-
time reducible to Egal Stable Roommates for at most n+ γ agents and egalitarian cost γ
with an additional requirement that the stable matching should be perfect.

Lemma 5 allows, in a subprocedure of our main algorithm, to compute a min-cost perfect
matching in polynomial time instead of a min-cost maximal matching (which is NP-hard).

The algorithm. As mentioned, we use random separation [13]. We apply it already in
derandomized form using Bshouty’s construction of cover-free families [11], a notion related
to universal sets [44]. Let n̂, p, q ∈ N such that p + q ≤ n̂. A family F of subsets of some
n̂-element universe U is called (n̂, p, q)-cover-free family if for each subset S ⊆ U of cardinality
p+q and each subset S′ ⊆ S of cardinality p, there is a member A ∈ F with S∩A = S′.1 The
result by Bshouty [11, Theorem 4] implies that if p ∈ o(q), then there is an (n̂, p, q)-cover-free
family of cardinality qO(p) · log n̂ which can be computed in time linear of this cardinality.

In the remainder of this section, we prove Theorem 1. Let P be a preference profile for a
set V of agents, possibly incomplete and with ties. For brevity we denote by a solution (of
P) a stable matching M with egalitarian cost at most γ. By Lemma 5, we assume that each
solution is perfect. Our goal is to construct a graph with vertex set V which contains all
matched “edges”, representing the pairs, of some solution and some other edges for which no
two edges in this graph are blocking each other. Herein, we say that two edges e, e′ ∈

(
V
2
)
are

blocking each other if, assuming both edges (which are two disjoint pairs of agents) are in the
matching, they would induce a blocking pair, i.e. u′ �u v and u �u′ v′, where e := {u, v} and
e′ := {u′, v′}. Pricing the edges with their corresponding cost, by Lemma 5, it is then enough
to find a minimum-cost perfect matching. The graph is constructed in three phases (see
Algorithm 2). In the first phase, we start with the acceptability graph of our profile P and
remove all edges whose “costs” each exceed γ. In the second and the third phases, we remove
all edges that block each other while keeping a stable matching with minimum egalitarian
cost intact.

We introduce some more necessary concepts. Let G be the acceptability graph corre-
sponding to P with vertex set V , which also denotes the agent set, and with edge set E.
The cost of an edge {x, y} is the sum of the ranks of each endpoint in the preference list of
the other: rankx(y) + ranky(x). We call an edge e := {x, y} a zero edge if it has cost zero,
i.e. rankx(y) + ranky(x) = 0, otherwise it is a costly edge if the cost does not exceed γ. We
ignore all edges with cost exceeding γ. Note that no such edge belongs to or is blocking
any stable matching with egalitarian cost at most γ. To distinguish between zero edges and
costly edges, we construct two subsets Ezero and Eexp such that Ezero consists of all zero
edges, i.e. Ezero := {{x, y} ∈ E | rankx(y) + ranky(x) = 0}, and Eexp consists of all costly
edges, i.e. Eexp := {{x, y} ∈ E | 0 < rankx(y) + ranky(x) ≤ γ}.

1 The standard definition of cover-free families [11] is stated differently from but equivalent [12] to ours.
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Algorithm 2: Constructing a perfect stable matching of egalitarian cost at most γ.
Input: A set V of agents, a preference profile P over V , and a budget γ ∈ N.
Output: A stable matching of egalitarian cost at most γ if it exists.
/* Phase 1 */

1 (V,E)← The acceptability graph of P
2 Ezero ← {{x, y} ∈ E | rankx(y) + ranky(x) = 0} // The set of zero edges in E
3 Eexp ← {{x, y} ∈ E | 1 ≤ rankx(y) + ranky(x) ≤ γ} // The set of costly edges in E
4 E1 ← Ezero ∪ Eexp

/* Phase 2 */
5 F exp ← (|Eexp|, γ, γ3)-cover-free family over the universe Eexp

6 foreach E′ ∈ F exp do
7 Apply Rule 1 to E1 to obtain E2

/* Phase 3 */
8 C ← (|V |, γ2 + 2 · γ, 2 · γ)-cover-free family over the universe V
9 foreach V ′ ∈ C do

10 Apply Rules 2 and 3 to E2 to obtain E3
11 M ← Minimum-cost perfect matching in the graph (V,E3) or ⊥ if none exists
12 if M 6= ⊥ and M has cost at most γ then return M

Phase 1. We construct a graph G1 = (V,E1) from G with vertex set V and with edge
set E1 := Ezero ∪ Eexp. The following is easy to see.

I Lemma 6. If P has a stable matching M with egalitarian cost at most γ, then M ⊆ E1.

Observe also that a zero edge cannot block any other edge because the agents in a zero edge
already obtain their most acceptable agents. Thus, we have the following.

I Lemma 7. If two edges in E1 block each other, then they are both costly edges.

Phase 2. In this phase, comprising Lines 5–7 in Algorithm 2, we remove from G1 some of
the costly edges that block each other (by Lemma 7, no zero edges are blocking any other
edge). For technical reasons, we distinguish two types of costly edges: We say that a costly
edge e with e := {u, v} is critical for its endpoint u if the largest possible rank of v over
all linearizations of the preference list of u exceeds γ, i.e. |{x ∈ Vu \ {v} | x �u v}| > γ.
Otherwise, e is harmless for u. If an edge is critical for at least one endpoint, then we call it
critical and otherwise harmless. Observe that a critical edge could still belong to a solution.
If two edges e and e′ block each other due to the blocking pair {u, u′} with u ∈ e, u′ ∈ e′ such
that e′ is harmless for u′, then we say that e is harmlessly blocking e′ (at the endpoint u′).
Note that blocking is symmetric while harmlessly blocking is not.

Intuitively, we want to distinguish the solution edges from all edges blocked by the
solution. There is a “small” number of harmless edges blocked by the solution, so we can
easily distinguish between them. For the critical edges, we do not have such a bound; we
deal with the critical edges blocked by the solution in Phase 3 in some other way.

I Lemma 8 (?). Let M be a stable matching with egalitarian cost at most γ. In G1, at most
γ2 edges are harmlessly blocked by some edge in M .

Let M ′ := M ∩ Eexp be the set of all costly edges in some solution M and let BM be the set
of all edges harmlessly blocked by some edge in M . By the definition of costly edges and
by Lemma 8, it follows that |M ′| ≤ γ and |BM | ≤ γ2. In order to identify and delete all
edges in BM we apply random separation. Compute a (|Eexp|, γ, γ2)-cover-free family F exp

over the universe Eexp. For each member of F exp, perform all the computations below (in
this phase and in Phase 3). By the properties of cover-free families, F exp contains a good
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member E′ that “separates” M ′ from BM , i.e. M ′ ⊆ E′ and BM ⊆ Eexp \ E′. Formally,
we call a member E′ ∈ F exp good if there is a solution M such that each costly edge in M
belongs to E′, and each edge that is harmlessly blocked by M belongs to Eexp \E′. We also
call E′ good for M . By the property of cover-free families, if there is a solution M , then F exp

contains a member E′ which is good for M . In the following we present two data reduction
rules that delete edges and show their correctness. By correctness we mean that, if some
member E′ ∈ F exp is good, then the corresponding solution is still present after the edge
deletion.

Recall that the goal was to compute a graph that contains all edges from a solution and
some other edges such that no two edges in the graph block each other. Observe that we
can ignore the edges in Eexp \ E′, because, if E′ is good, then it contains all costly edges
in the corresponding solution. This implies the correctness of the first part of the following
reduction rule. The correctness for the second part follows from the definition of being good.

I Rule 1. Remove all edges in Eexp \E′ from E1. If there are two edges e, e′ ∈ E′ that are
harmlessly blocking each other, then remove both e and e′ from E1.

Let G2 = (V,E2) be the graph obtained from G1 by exhaustively applying Rule 1. By the
goodness of E′ and by the correctness of Rule 1, we have the following.

I Lemma 9. If there is a stable matching M with egalitarian cost at most γ, then F exp

contains a member E′ such that the edge set E2 of G2 defined for E′ contains all edges of M .

By Lemma 7 and since all pairs of edges that are harmlessly blocking each other are
deleted by Rule 1, we have the following.

I Lemma 10. If two edges in G2 block each other due to a blocking pair {u, u′}, then one
of the edges is critical for u or u′.

Phase 3. In Line 10 of Algorithm 2 we remove from G2 the remaining (critical) edges that
do not belong to M but are blocked by some other edges. This includes the edges that are
blocked by M . While the number of edges blocked by M could still be unbounded, we show
that there are only O(γ2) agents due to which an edge could be blocked by M . The idea
here is to identify such agents, helping to find and delete edges blocked by M or blocking
some other edges. We introduce one more notion. Consider an arbitrary matching N (i.e.
a set of disjoint pairs of agents) of G2. Let e ∈ N and e′ ∈ E2 \ N be two edges. If they
induce a blocking pair {u, u′} with u ∈ e and u′ ∈ e′, then we say that u′ is a culprit of N .
We obtain the following upper bound on the number of culprits with respect to a solution.

I Lemma 11 (?). Let M be a stable matching. Then, each culprit of M is incident with
some edge in M . If M has egalitarian cost at most γ, then it admits at most γ culprits.

Consider a solution M and let CI(M) = {v ∈ V | v is a culprit of or incident with some
costly edge of M}. By Lemma 11 and since M has at most γ costly edges, it follows that
|CI(M)| ≤ 3γ. We aim to identify in CI(M) a subset R(M) of agents incident with a critical
edge in M , i.e. R(M) = {v ∈ CI(M) | {v, w} ∈M with {v, w} being critical for v}. Since M
has at most γ costly edges, it follows that |R(M)| ≤ 2γ. To “separate” R(M) from CI(M),
we compute a (|V |, 2γ, 3γ)-cover-free family C on the set V . We call a member V ′ ∈ C good
if there is a solution M ⊆ E2 such that R(M) ⊆ V ′ and (CI(M) \ R(M)) ⊆ V \ V ′. By a
similar reasoning as given for Phase 2 and by the properties of cover-free families, if there is
a solution M ⊆ E2, then C contains a good member V ′. For this member, the following two
reduction rules will not destroy the solution.
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I Rule 2 (?). For each agent y ∈ V \ V ′, delete all incident edges that are critical for y.

After having exhaustively applied Rule 2, we use the following reduction rule.

I Rule 3 (?). If E2 contains two edges e and e′ that induce a blocking pair {u, u′} with
u ∈ e and u′ ∈ e′ such that e is critical for u, then remove e′ from E2.

Let G3 = (V,E3) be the graph obtained after having exhaustively applied Rules 2 and 3
to G2. By the correctness of Rules 2 and 3 we have the following.

I Lemma 12. If there is a stable matching M ⊆ E2 with egalitarian cost at most γ, then
the constructed cover-free family C contains a good member V ′ ∈ C such that the edge set E3
of G3 resulting from the application of Rules 2 and 3 contains all edges of M .

Since for each member V ′ ∈ C, we delete all edges that pairwisely block each other, each
perfect matching in G3 induces a stable matching. We thus have the following.

I Lemma 13 (?). If G3 admits a perfect matching M with edge cost at most γ, then M

corresponds to a stable matching with egalitarian cost at most γ.

Thus, to complete Algorithm 2, in Line 11 we compute a minimum-cost perfect matching
for G3 and output yes, if it has egalitarian cost at most γ. Summarizing, by Lemma 5 if there
is a stable matching of egalitarian cost at most γ, then it is perfect and thus, by Lemmas 6,
9 and 12, there is a perfect matching in G3 of cost at most γ. Hence, if our input is a
yes-instance, then Algorithm 2 accepts by returning a desired solution. Ifi it accepts, then by
Lemma 13 the input is a yes-instance. The running time is proved in a full version [14].

3.3 Variants of the egalitarian cost for unmatched agents
As discussed in Sections 1 and 2, when the input preferences are incomplete, a stable matching
may leave some agents unmatched. In the absence of ties, all stable matchings leave the
same set of agents unmatched [24, Chapter 4.5.2]. Hence, whether an unmatched agent
should infer any cost is not relevant in terms of complexity. However, when preferences are
incomplete and with ties, stable matchings may involve different sets of matched agents. The
cost of unmatched agents changes the parameterized complexity dramatically. In particular,
as soon as the cost of an unmatched agent is bounded by a fixed constant, seeking for an
optimal egalitarian stable matching is parameterized intractable. See the full version [14].

4 Minimizing the number of blocking pairs

In this section, we strengthen the known result [6] by showing that Min-Block-Pair
Stable Roommates is W[1]-hard with respect to “the number β blocking pairs”, even
when each preference list has length at most five. The main building block of our reduction,
which is from the W[1]-hard Multi-Colored Independent Set problem (see our full
version [14] for the definition), is a selector gadget (Construction 1) that always induces at
least one blocking pair and allows for many different configurations. To keep the lengths of
the preference lists short we use “duplicating” agents (Construction 2).

First, we discuss a vertex-selection gadget which we later use to select a vertex of the
input graph into the independent set. The selected vertex is indicated by an agent which
is matched to someone outside of the vertex-selection gadget. The gadget always induces
at least one blocking pair. An illustration is shown in a full version [14]. In the following,
let n′ be a positive integer, and all additions and subtractions in the superscript are taken
modulo 2n′ + 1:
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I Construction 1. Consider the following four disjoint sets U,A,C,D of 2n′ + 1 agents
each, where A := {ai | 0 ≤ i ≤ 2n′}, U := {ui | 0 ≤ i ≤ 2n′}, C := {ci | 0 ≤ i ≤ 2n′}, and
D := {di | 0 ≤ i ≤ 2n′}. The preferences of the agents in A∪C∪D are: ∀i ∈ {0, 1, . . . , 2n′} :
agent ai : ai+1 � ai−1 � ui � ci � di, agent ci : di � ai, agent di : ai � ci.

The preferences of the agents in U are intentionally left unspecified and we define them later
when we use the gadget. Regardless of the preferences of the agents in U , we can verify that
if no ai obtains an agent ui as a partner, then it induces at least two blocking pairs.

Next, we construct verification gadgets that ensure that no two adjacent vertices are
chosen into the independent set solution. See the full version for an illustration [14]. Herein,
let δ be a positive integer, and all additions and subtractions in the superscript are taken
modulo 2δ + 2.

I Construction 2. Consider two disjoint sets X ] Y where X = {xi | 0 ≤ i ≤ 2δ + 1} is a
set of 2δ + 2 agents and Y = {yi | 1 ≤ i ≤ δ} is a set of δ agents. Let a, b be two agents
distinct from the agents in X ∪ Y . The preference lists of the agents from X are as follows.

Agent x0 : x1 � a � x2δ+1, Agent x2δ+1 : x0 � b � x2δ.
∀i ∈ {1, . . . , δ} : Agent x2i−1 : x2i � x2i−2, Agent x2i : x2i+1 � yi � x2i−1.

The preferences of the agents a, b and those in Y are intentionally left unspecified and will
be defined when we use the gadget later. Regardless of the concrete preferences of agents in
Y ∪ {a, b}, we claim that the above gadget has two possible matchings such that no blocking
pair involves any agent from X. The first one is straightforward from the definition of the
preference lists: {{x2i, x2i+1} | i ∈ {0, 1, . . . , δ}}. The second one matches x0 to a, x2δ+1

to b, while keeping the remaining agents matched in some stable way.

Proof sketch of Theorem 2. Let (G = (V1, V2, . . . , Vk, E)) be a Multi-Colored Inde-
pendent Set instance (see our full version [14] for the definition). Without loss of gen-
erality, assume that each vertex subset Vj has exactly 2n′ + 1 vertices with the form
Vj = {v0

j , v
1
j , . . . , v

2n′

j }. Construct a Min-Block-Pair Stable Roommates instance with
the following groups of agents: Uj , Aj , Bj , Cj , Dj , Fj ,Wj , j ∈ {1, 2, . . . , k}, where Uj corre-
sponds to the vertex subset Vj . Let δij be the degree of vertex vij . For each vertex vij ∈ Vj ,

construct 2δij + 2 agents ui,0j , ui,1j , . . . , u
i,2δi

j+1
j and let U ij = {ui,zj | 0 ≤ z ≤ 2δij + 1}. Define

Uj = ∪0≤i≤2n′U ij . For each (Q, q) ∈ {(A, a), (B, b), (C, c), (D, d), (F, f), (W,w)} and for each
i ∈ {1, 2, . . . , k}, the set Qj := {qij | 0 ≤ i ≤ 2n′} consists of 2n′ + 1 agents. The preference
lists of the agents in U ij obey the verification gadget constructed in Construction 2. Formally,
for each j ∈ {1, . . . , k} and each i ∈ {0, 1, . . . , 2n′} we introduce a verification gadget for vij
as in Construction 2 where we set δ = δij , xz = ui,zj , 0 ≤ z ≤ 2δij + 1, a = aij , and b = bij .
The agents from Y correspond to the neighbors of vij : For each neighbor vi′j′ of vij we pick
a not-yet-set agent yz in the verification gadget for vij and a not-yet-set agent yz′ in the
verification gadget for vi′j′ , and define yz = ui

′,2z′

j′ and yz′ = ui,2zj .
For each j ∈ {1, . . . , k}, the preference lists of Aj ∪ Cj ∪Dj ∪ {ui,0j | 0 ≤ i ≤ 2n′} obey

Construction 1. Formally, for each j ∈ {1, . . . , k} we introduce a vertex-selection gadget
as in Construction 1 and for each i ∈ {0, 1, . . . , 2n′} we set ai = aij , ci = cij , di = dij , and
ui = ui,0j . Analogously, for each j ∈ {1, . . . , k} we introduce a vertex-selection gadget for

Bj ∪ Fj ∪Wj ∪ {u
i,2δi

j+1
j | 0 ≤ i ≤ 2n′}: For each i ∈ {0, 1, . . . , 2n′} we set ai = bij , ci = f ij ,

di = wij , and ui = u
i,2δj

i
+1

j . To complete the construction, we set the upper bound on the
number of blocking pairs as β = 2k. The correctness proof is deferred to a full version [14]. J
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The reduction given in the proof of Theorem 2 shows that the lower-bound on β in [6, Lemma 4]
is tight. The reduction also answers an open question by Manlove [37, Chapter 4.6.5] about
the complexity of the following problem. Given a preference profile and an integer η, Min-
Block-Agents Stable Roommates asks whether there is a matching with at most η
blocking agents. Herein, an agent is a blocking agent if it is involved in a blocking pair.

I Corollary 14 (?). Let n be the number of agents and η be the number of blocking agents.
Even when each input preference list has length at most five and has no ties, Min-Block-
Agents Stable Roommates is NP-hard and W[1]-hard with respect to η. Min-Block-
Agents Stable Roommates for preferences without ties is solvable in O(2η2 · nη+2) time.
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Abstract
We show explicit separations between the expressive powers of multilinear formulas of small-depth
and all polynomial sizes.

Formally, for any s = s(n) = nO(1) and any δ > 0, we construct explicit families of multilinear
polynomials Pn ∈ F[x1, . . . , xn] that have multilinear formulas of size s and depth three but no
multilinear formulas of size s1/2−δ and depth o(log n/ log log n).

As far as we know, this is the first such result for an algebraic model of computation.
Our proof can be viewed as a derandomization of a lower bound technique of Raz (JACM

2009) using ε-biased spaces.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Algebraic circuit complexity, Multilinear formulas, Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.36

1 Introduction

The main aim of Computational Complexity is to understand as precisely as possible the
amounts of computational resources required to perform interesting computational tasks.
These resources could be of various kinds depending on the computational model under
consideration, e.g., time and space for traditional algorithms, size and depth for Boolean and
Algebraic circuits, the number of random bits for randomized algorithms, total communication
for communication protocols and so on.

A fundamental question regarding any given resource is if access to more of that resource
strictly increases the power of the underlying computational model. Classical theorems
in Computational Complexity theory such as the Time Hierarchy theorem [13] and Space
Hierarchy Theorem [18] answer this question (in the affirmative) for the resources of time
and space on multitape Turing Machines.

In this paper, we consider an analogous question for Algebraic formulas. Algebraic
formulas (and their variants such as Algebraic circuits, Algebraic Branching Programs etc.)
are the natural computational model for computing multivariate polynomials over some
underlying domain, usually a field F. Many natural problems, such as the Determinant,
Permanent, Matrix Multiplication, the Fast Fourier Transform etc. fit into this general
framework. Algebraic formulas compute multivariate polynomials from the ring F[x1, . . . , xn]
using the natural algebraic operations of sum and product.
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The size of an algebraic formula is the number of algebraic operations it uses and is a
measure of the efficiency of the formula (it roughly corresponds to the time in the case of
traditional algorithms). One can also consider the depth of the formula, which measures how
nested the algebraic operations in the formula are, and corresponds to how parallelizable the
underlying procedure is. In this paper, we consider the question of proving a Size-hierarchy
theorem for Algebraic formulas. Somewhat informally, we ask the following.

I Question 1 (The Size-Hierarchy Question). For any δ > 0, are there explicit families of
polynomials Pn ∈ F[x1, . . . , xn] that can be computed by formulas of size s(n) but not by
formulas of size less than s(n)1−δ?

(See Section 2 for the definition of “explicit”. We note that requiring explicit polynomial
families is necessary since counting arguments easily yield the existence of polynomials that
have formulas of size s(n) but not size s(n)1−δ for most reasonable functions s(n). However,
as is standard in Circuit Complexity, the interesting question is finding an explicit function
that witnesses this separation.)

As of now, the size-hierarchy question is far beyond the range of our techniques for most
non-trivial parameters. Indeed, we do not have techniques to prove any explicit strong lower
bounds for general algebraic formulas, let alone lower bounds for explicit polynomials that
further have algebraic formulas of some prescribed size s(n).

So, we restrict ourselves to the setting of multilinear formulas, which are algebraic
formulas that are required to compute a multilinear polynomial1 at each intermediate
stage of computation. Note that the most efficient formula for computing some multilinear
polynomial need not be multilinear (this is known to be true for small-depth multilinear
formulas [8]) and so this is indeed a restriction. Nevertheless, it is a reasonable restriction
for formulas that compute multilinear polynomials and has been the focus of a large body of
work [20, 22, 21, 24, 23, 25, 15, 11, 17, 8, 3, 7] with interesting upper as well as lower bound
results.

Therefore, it is natural to consider the size-hierarchy question in the setting of multilinear
formulas. It follows from the work of Raz [21] and Raz and Yehudayoff [24] that for
s(n) ≤ nO(1), there are explicit polynomial families that can be computed by multilinear
formulas of size s but not by multilinear formulas of size less than sδ0 for some positive, but
small, δ0. (One needs to mine the proofs for the exact value of δ0. The best value that we
could obtain for δ0 was less than 1/30.)

In this paper, we prove a near-tight multilinear size-hierarchy theorem for small-depth
multilinear formulas. It is known [6, 5] that any multilinear formula of polynomial size s
can be converted to another of size at most s1+δ and depth O(log n) (for any fixed δ > 0).
Below, we consider multilinear formulas of smaller depth O(log n/ log log n). The main result
is the following.

I Theorem 2. For any fixed c ∈ N and δ ∈ (0, 1/2), there exists an explicit polynomial family
Pn ∈ F[x1, . . . , xn] that has a multilinear formula of depth 3 and size at most s = O(nc) but
no multilinear formulas of size less than s(1/2)−δ and depth ∆ < log n/100 log log n.

As such, our result is incomparable with the separation implied by [21, 24] since we
further assume that our formulas have small depth. However, in the setting of small-depth
multilinear formulas, our result improves on the separation of [21, 24] in two ways. The first
is that we obtain a separation of s versus s(1/2)−δ as opposed to the s versus sδ0 separation

1 Recall that a multilinear polynomial P ∈ F[x1, . . . , xn] is one in which each variable has degree at most
1.
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obtained by [21, 24]. The second is that the polynomials Pn that we consider have depth-three
formulas of size s. This is in contrast to the polynomials constructed in [21, 24], that have
formulas of size s but also depth Ω(

√
log s), which is considerably larger.2 Finally, our proof

technique is based on a derandomization of a special case of a lower bound technique of
Raz [22]. This derandomization leaves some scope for improvement: an optimal result along
these lines would resolve the size-hierarchy question optimally yielding a separation between
sizes s and s1−δ for any δ > 0. An optimal derandomization of the more general lower bound
technique of Raz would yield the same result for general multilinear formulas (without the
depth restriction).

1.1 Related Work
Our work is partially motivated by hierarchy theorems for Boolean circuits, which compute
functions f : {0, 1}n → {0, 1} using simple Boolean operations such as AND and OR.
Superpolynomial lower bounds have been known for constant-depth Boolean circuits since
the early 1980s [12, 1, 14]. However, a size hierarchy theorem in this setting was obtained
relatively recently by Rossman [26], who proved that for any constant k ∈ N, there are
explicit functions that have depth-two Boolean circuits of size O(nk) but not of size less than
nk/4. This was then improved by Amano [4] who showed that for any fixed k and δ there
are explicit functions that have depth two Boolean circuits of size O(nk) but no circuits of
size less than nk−δ.

Our proofs build on standard techniques for proving lower bounds for multilinear formulas.
While these ideas are essentially due to Raz [22], we use a high-level reformulation of this
argument that appears in the survey of Shpilka and Yehudayoff [28].

1.2 Proof Outline
Our proof can be seen as a derandomization of (a special case of a) technique of Raz [22] for
proving lower bounds for multilinear formulas. Here, we follow a well-known reformulation
of this proof that appears in [15, 28, 11].

Say we want to show that a multilinear polynomial P ∈ F[X] does not have a small-depth
multilinear formula of size s′. The proof strategy consists of two steps. The first step is a
decomposition lemma that says that any multilinear polynomial P that is computed by a
small-depth multilinear formula of size s′ can be written as a sum of s′ polynomials, each
of which is of the form f = f1 · f2 · . . . · ft where the fi’s are multilinear polynomials over
pairwise disjoint non-empty sets of variables X1, . . . , Xt that partition the variable set X.
Following [28], we call such a polynomial a t-product polynomial. Here, t is some growing
function of the number of variables n and the depth of the formula.

Thus, to show that P does not have a small-depth multilinear formula of size s′, it suffices
to show that it cannot be written as a sum of s′ many t-product polynomials for a large t.
This is the second step. To argue this, Raz used a rank-based argument. Specifically, we
partition the variables X into any two sets3 Y and Z and consider any polynomial P (X) as
a polynomial in the variables in Y , with coefficients from F[Z]. The dimension of the space of
coefficients (as vectors over the base field F) is considered to be a measure of the complexity
of P . The idea is that polynomials with small formulas will have low complexity and hence,
by choosing a P of high complexity we obtain a lower bound.

2 In fact, the polynomial families from [21, 24] do not have formulas of constant-depth and comparable
size. This follows from a later lower bound result of Raz and Yehudayoff [25].

3 Actually, the sets Y and Z also need to be of equal size. We ignore this for now for the sake of exposition.
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Unfortunately, this idea by itself is not enough to prove a strong lower bound. This is
because of the fact that given any partition (Y,Z), there is a small depth-2 multilinear formula
F(Y,Z) (which is also a t-product polynomial for large t) that has maximum dimension w.r.t.
this partition. To overcome this, we consider a random partition (Y,Z) and show that any
t-product polynomial will have low-rank w.r.t. this random partition with high probability.
Using a union bound, we then show that any sum of s′ many t-product polynomials must be
of low-rank w.r.t. some partition. If, on the other hand, our choice of polynomial P has high
rank w.r.t. every partition, we obtain a lower bound.

The crux of the matter therefore is to argue that given any t-product polynomial
f = f1 · · · ft as above, and a random partition (Y,Z), the polynomial f is low-rank w.h.p.,
w.r.t. this partition. Formally, for the union bound over s′ many such polynomials to go
through, we need the following criterion to hold.

Pr
(Y,Z)

[f does not have small rank w.r.t. (Y,Z)] < 1
s′
.

Raz [22] showed that this reduces to a combinatorial discrepancy question. Note that any
choice of partition (Y, Z) of X induces a partition (Yi, Zi) of each Xi (i ∈ [t]). To prove the
above bound, it actually suffices to show4 that

Pr
(Y,Z)

[|{i ∈ [t] | |Yi| − b|Xi|/2c odd}| is small] < 1
s′
.

But this is quite easy to argue. Since (Y,Z) is a random partition, each |Yi|− b|Xi|/2c is odd
with probability 1/2. Since the Xi (i ∈ [t]) are pairwise disjoint, these events are mutually
independent and hence by a Chernoff bound, it is easy to show that the probability of the
above event is 1/2Ω(t) < 1/s′ for the specific t that we obtain in the decomposition lemma
(this is where the small-depth assumption comes in). This completes the proof.

The derandomization. Our idea is to simulate the purely random partition argument of
Raz, but using instead a random partition from a small predefined set S = {(Y (1), Z(1)), . . . ,
(Y (s), Z(s))} of partitions. We would like to show that for a random j ∈ [s] and any product
polynomial f = f1 · · · ft as above, we similarly obtain

Pr
j

[|{i ∈ [t] | |Y (j)
i | − b|Xi|/2c is odd}| is small] < 1

s′
(1)

where Y (j)
i denotes the set Xi ∩ Y (j).

If we have a set S as above, we obtain a size-hierarchy theorem as follows. First, we
construct a multilinear formula FS of size roughly s that is full-rank w.r.t. each of the
partitions in S: this is done by simply taking a suitable linear combination of the formulas
F(Y (j),Z(j)) (j ∈ [s]) mentioned above. On the other hand, we know that given any small-
depth multilinear formula F ′ of size s′, (1) implies that F ′ cannot compute a polynomial
that is full-rank w.r.t. all the partitions in S, and in particular cannot compute the same
polynomial as F . This proves a separation between small-depth multilinear formulas of size
s and size s′. The question now is – how do we construct such a set S as described above
while keeping s as close to s′ as possible?

4 Raz in fact shows that it suffices to bound the probability that
∑

i∈[t] ||Yi| − |Xi|/2| is small. Here, we
only use the fact that for each i such that |Yi| − b|Xi|/2c is odd, we must have ||Yi| − |Xi|/2| ≥ 1/2.
This harks back to an earlier result of Nisan and Wigderson [20] who use a simpler parity argument to
prove a lower bound for set-multilinear formulas.
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Our construction of the set S follows two steps. We first show that it suffices to construct
a set that satisfies the following somewhat weaker condition.

Pr
j

[|{i ∈ [t] | |Y (j)
i | − b|Xi|/2c is odd}| = 0] < 1

2s′ (2)

We deduce (1) from (2) by adapting a combinatorial proof of the Chernoff bound that appears
in a result of Impagliazzo and Kabanets [16].

Finally, we show that for (2) it suffices to use Small-Bias spaces, which are a standard tool
in the derandomization literature [19]. Known explicit constructions of small-bias spaces [2]
yield sets S satisfying (2) of size roughly s = (s′)2. This yields a separation between size s
and size roughly

√
s as stated in Theorem 2.

We remark that non-constructively, we can show that there exist sets S satisfying (2) of
size roughly s′. Constructing such sets explicitly would improve our result to a near-tight
size-hierarchy theorem.

2 Preliminaries

Recall that a polynomial P ∈ F[x1, . . . , xn] is multilinear if each variable has degree at most
1 in P .

A family {Pn ∈ F[x1, . . . , xn] | n ≥ 1} of multilinear polynomials is said to be explicit if
there is a deterministic algorithm that given as input n and a monomial m over the variables
x1, . . . , xn, computes in time poly(n) the coefficient of the monomial m in Pn.

2.1 Multilinear formulas
For the detailed introduction to algebraic formulas, we refer the reader to standard resources
such as [28, 27]. Having said that, we do make a few remarks.

All the gates in our formulas may have unbounded fan-in.
The size of a formula refers to the number of gates (including input gates) in it, and
depth of the formula refers to the number of gates on the longest path from an input
gate to output gate.

An algebraic formula F computing a polynomial from F[X] is said to be multilinear if
each gate in the formula computes a multilinear polynomial.

We state below a decomposition lemma for small-depth multilinear formulas.
Define a polynomial f ∈ F[X] to be a t-product polynomial if we can write f as f1 · · · ft ,

where we can find a partition of X into pairwise disjoint non-empty sets Xf
1 , . . . , X

f
t such

that fi is a multilinear polynomial from F[Xf
i ].5 We say that Xf

i is the set ascribed to fi in
the t-product polynomial f . We use Vars(fi) (with a slight abuse of notation)6 to denote
Xf
i .
The following is easily implied by Lemma 3.8 in [28].

I Lemma 3. Assume that f ∈ F[X] can be computed by a multilinear circuit over n variables
of size at most s and depth at most ∆. Then, f is the sum of at most s · n many t-product
polynomials for t = Ω(n1/2∆).

5 Note that we do not need fi (i ∈ [t]) to depend non-trivially on all (or any) of the variables in Xf
i .6 Vars(·) is used to describe variables ascribed to gates in a circuit as well as to denote variables ascribed

to polynomials.
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2.2 Partial derivative matrices and relative rank
From here on, for the sake of simplicity, we will assume that n is even7.

Let X,W be disjoint sets of variables with X = {x1, . . . , xn}. Let F be any field. Let
G = F(W ) be the field of rational functions over F generated by set of variables W . Let Y
and Z be disjoint variable sets {y1, . . . , yn} and {z1, . . . , zn}. We consider injective maps
ρ : X → Y ∪ Z which we call partitioning functions.

We can index partitioning functions by elements of {0, 1}n as follows. Fix a ∈ {0, 1}n
be any vector. Let 1a = {i | a(i) = 1} and 0a = {i | a(i) = 0}, and thus, |1a|+ |0a| = n.
For a vector a ∈ {0, 1}n, define the partitioning function ρa by ρa(xi) = yi if i ∈ 1a and
ρa(xi) = zi otherwise, i.e. if i ∈ 0a. Let Img(ρa) denote the subset of Y ∪ Z that ρa maps
the set X to. Let Ya = Y ∩ Img(ρa) and let Za = Z ∩ Img(ρa). If the vector a is balanced8
then we also get that |Ya| = |Za| = n/2. For a balanced vector a, we call ρa a balanced
partition.

Note that given any a ∈ {0, 1}n and any multilinear polynomial f ∈ F[X,W ], the
partitioning function ρa defines by substitution a multilinear9 polynomial in F[Ya ∪Za ∪W ],
which we denote f |ρa . We will consider f |ρa as a polynomial in G[Ya ∪ Za].

For any disjoint sets of variables Y ′ and Z ′, let g ∈ G[Y ′∪Z ′] be a multilinear polynomial.
Define the 2|Y ′| × 2|Z′| matrix M(Y ′,Z′)(g) whose rows and columns are labelled by distinct
multilinear monomials in Y ′ and Z ′ respectively and the (m1,m2)th entry of M(Y ′,Z′)(g)
is the coefficient of the monomial m1 ·m2 in g. We will use the rank of this matrix as a
measure of the complexity of g.

We define the relative-rank of g w.r.t. (Y ′, Z ′), denoted relrk(Y ′,Z′)(g), by

relrk(Y ′,Z′)(g) =
rank(M(Y ′,Z′)(g))

2(|Y ′|+|Z′|)/2 .

The above notion is implicit in the work of Nisan and Wigderson [20] and Raz [22].
We note the following properties of relative rank.

I Proposition 4. Let g, g1, g2 ∈ G[Y ′ ∪ Z ′] be multilinear polynomials.
1. relrk(Y ′,Z′)(g) ≤ 1. Further if |Y ′| 6= |Z ′|, then relrk(Y ′,Z′)(g) ≤ 1/

√
2.

2. relrk(Y ′,Z′)(g1 + g2) ≤ relrk(Y ′,Z′)(g1) + relrk(Y ′,Z′)(g2).
3. If Y ′ is partitioned into Y ′1 , Y ′2 and Z ′ into Z ′1, Z ′2 with gi ∈ G[Y ′i ∪ Z ′i] (i ∈ [2]), then

rank(M(Y ′,Z′)(g)) = rank(M(Y ′
1 ,Z

′
1)(g1))·rank(M(Y ′

2 ,Z
′
2)(g2)). In particular, relrk(Y ′,Z′)(g1·

g2) = relrk(Y ′
1 ,Z

′
1)(g1) · relrk(Y ′

2 ,Z
′
2)(g2).

2.3 Explicit ε-biased spaces
The following notions are borrowed from [2]. For any a,b ∈ {0, 1}n, let (a,b)2 denote the
inner product of the binary vectors a and b modulo 2, that is, (a,b)2 =

∑n
i=1 a(i) · b(i)

(mod 2).

I Definition 5. Let S be a multiset in {0, 1}n. Let x = (x1, x2, . . . , xn) be chosen uniformly
from S. The multiset S is said to be an ε-biased space if for every b = (b1, b2, . . . , bn) ∈

7 If n is odd, everything will work as is with n replaced by n− 1.
8 A vector a ∈ {0, 1}n is said to be balanced if |1a| = |0a|.
9 The polynomial is multilinear by the injectivity of ρa.
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{0, 1}n \ {0}n, the random variable (x,b)2 is ε-biased. That is, for all b ∈ {0, 1}n \ {0}n,∣∣∣∣ E
x∈S

[(−1)(x,b)2 ]
∣∣∣∣ ≤ ε.

A standard probabilistic argument implies the existence of ε-biased spaces of size O(n/ε2).
Explicit constructions of size poly(n/ε) were first presented by Naor and Naor in [19]. We
use the following construction of Alon, Goldreich, Håstad and Peralta [2].

I Theorem 6 ([2], Proposition 3). There is a deterministic algorithm, which given as input
n ∈ N and ε > 0, produces an ε-biased set S of size O(n2/ε2) in time poly(|S|).

3 The hard polynomial and restrictions

3.1 Subspace-avoiding sets
I Definition 7. We say that a multiset S ⊆ {0, 1}n is (ε, k)-subspace avoiding if for any
affine subspace V of {0, 1}n (here identified with Fn2 ) with co-dimension k,

Pr
x∈S

[x ∈ V ] ≤ 1
2k + ε.

The above definition is quite similar to the notion of subspace evasive sets that have
been studied in the literature (see, e.g. [10]). However, there also seems to be a crucial
difference between the two settings, since in [10] the interest is in evading subspaces of small
dimension whereas we are trying to avoid subspaces of somewhat large but still relative
small co-dimension. In particular, it is not clear to us if [10] can be used to give better
constructions of subspace avoiding sets than the ones we obtain here.

The following fact is immediate from the definition above.

I Fact 8. If k = 10 log 1
ε and S is an (ε, k)-subspace avoiding set, then Prx∈S [x ∈ V ] ≤ 2ε.

It is a standard fact [19, 9] that ε-biased spaces are in particular (ε, k)-subspace avoiding.
We state this claim below. The proof is omitted for lack of space.

I Claim 9. Any ε-biased space S is also an (ε, k)-subspace avoiding set.

We will use the vectors from an (ε, k)-subspace avoiding set to define our hard polynomial.
For reasons that will become apparent, it is helpful to have the vectors in the subspace
avoiding set to be balanced, i.e. have an equal number of 0s and 1s. However, a priori, there
is no reason to assume that the vectors we obtain via some construction of such a set will be
balanced. In order to make them balanced, we will use the following trick.

For i ∈ [n], let αααi ∈ {0, 1}n denote the vector defined by αααi(j) = 0 if j > i and αααi(j) = 1
otherwise. Let 0 denote the all zero vector, i.e. 0 = 0n. Let V = {ααα1,ααα2, . . . ,αααn,0}. Note
that, for any a ∈ {0, 1}n, there exists an x ∈ V such that a⊕ x is balanced. In particular for
x ∈ V chosen at random, the probability that a ⊕ x is balanced is at least 1/(n+ 1).

Now, let S be an (ε, k)-subspace avoiding set. Let S ⊕ x denote the set of all vectors
obtained by shifting all the vectors in S by x, i.e. S ⊕ x = {a ⊕ x | a ∈ S}. We have the
following easily verifiable fact.

I Fact 10. Let S be an (ε, k)-subspace avoiding set. Then for each x ∈ {0, 1}n, S ⊕ x is
also an (ε, k)-subspace avoiding set.
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36:8 A Quadratic Size-Hierarchy Theorem for Small-Depth Multilinear Formulas

For any x, let Bx be the balanced vectors in S ⊕ x. From our reasoning above, we get
that Ex∈V [|Bx|] ≥ |S|/(n + 1). By averaging, we see that there exists an x ∈ V such that
|Bx| ≥ |S|/(n+ 1). We will now fix such an x. We will denote it by x0 and work with some
B ⊆ Bx0 of size exactly d|S|/(n+ 1)e. Clearly, given S, such an x0 and B can be found in
time poly(|S|, n) by simply computing all the sets S ⊕ x (x ∈ V) and counting the number
of balanced vectors in them.

We have shown the following claim.

I Claim 11. Let S ⊆ {0, 1}n be any (ε, k)-subspace avoiding set. Then, there is an x0 ∈
{0, 1}n and a set B of balanced vectors from S ⊕ x0 such that |B| = Θ(|S|/n). Further, given
S, such an x0 and B can be found deterministically in time poly(|S|, n).

3.2 The hard polynomial
We now define the explicit polynomial family that we will use to prove our size hierarchy
theorem.

Let n ∈ N be any positive even integer and let ε > 0 be any positive real parameter. Let
Sn,ε be the explicit ε-biased space from Theorem 6. We further fix an x0 ∈ {0, 1}n and a set
B of balanced vectors from Sn,ε ⊕ x0 such that |B| = Θ(|Sn,ε|/n) as guaranteed to exist by
Claim 11. Note that by Theorem 6 and Claim 11, |B| can be computed in time poly(n/ε).
We denote |B| by τ.

Fix any a ∈ B. Let 1a = {i1, . . . , in/2} and 0a = {j1, . . . , jn/2}, where i1 < i2 < . . . < in/2

and j1 < j2 . . . < jn/2. Define Γa(X) =
∏n/2
t=1(xit + xjt

).
We will use Γa(X) for a ∈ B to define our hard polynomial. As in [22, 24] we define such

a polynomial using a set W of auxiliary variables. Intuitively, the variables W help us in
tagging a certain polynomial Γa(X) with the appropriate vector a from the set B. We will
now formally describe this idea.

Since |B| = τ , we can fix a one-one map C : B → {0, 1}log τ . Let the vectors in B
be enumerated in some arbitrary order, say a1, . . . , aτ . For an index i ∈ [τ ], let C(ai) =
(ui,1 . . . , ui,T ). We will denote this vector by ui, we will call ui the encoding of ai.

Let T = log τ . Let W = {w1, . . . , wT } be a new set of auxiliary variables. For a
vector u ∈ {0, 1}T , let φu(j) = wj if uj = 1 and φu(j) = 1 − wj otherwise. Then let
Wu =

∏
j∈[T ] φu(j). We will say that a polynomial Wu is the label of the vector u. We will

say that the tagging of the polynomial Γa(X) is obtained by multiplying Γa(X) with the label
of the encoding of a, i.e. with WC(a). Note that, given a ∈ B, the polynomial WC(a) · Γa(X)
can be computed by a depth-2 multilinear formula, which itself can be constructed in time
poly(n, τ) = poly(n/ε).

We are now ready to define our hard polynomial.

Pn,ε(X,W ) =
∑
a∈B

WC(a) · Γa(X).

We have the following.

I Lemma 12. The polynomial Pn,ε(X,W ) can be computed by a depth 3 multilinear formula
Fn,ε of size s = O(τ(n+2 log τ)) = O(n2/ε2+(n/ε2) log(n/ε)) that can be constructed in time
poly(s). Further, there is a deterministic poly(s)-time algorithm that, given a multilinear
monomial m over the variables X ∪W , computes the coefficient of m in Pn,ε(X,W ).

Proof. Everything but the last statement is immediate from the preceding discussion. To
prove the final statement, it suffices to note that the coefficient of m can be found in each
constituent depth-2 formula in time poly(n) = poly(s). Summing these coefficients yields the
coefficient of m in Pn,ε(X,W ). J
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Another property of our hard polynomial that is true by construction is the following.

I Lemma 13. For any n ∈ N and ε > 0, let Pn,ε(X,W ) ∈ F[X,W ] be the polynomial
defined above, which we will consider as a polynomial from G[X] where G = F(W ). For any
a ∈ B, let restriction ρa : X → Y ∪ Z be the restriction as defined in Section 2.2. Then
relrk(Ya,Za)(Pn,ε(X,W )|ρa) = 1.

Proof. Fix any a ∈ B and consider the balanced partition ρa : X → Ya ∪ Za. We analyze
the partial derivative matrix M(Ya,Za)(Pn,ε(X,W )|ρa) whose entries are polynomials over
the variables in W . To show that relrk(Ya,Za)(Pn,ε(X,W )|ρa) = 1, we need to show that
M(Ya,Za)(Pn,ε(X,W )|ρa) is a full rank matrix over G. Towards that, it is sufficient to show
that det(M(Ya,Za)(Pn,ε(X,W )|ρa )) is a non-zero polynomial over the variables in W . Further,
it is enough to show that there is an assignment A : W → {0, 1} to the W -variables such
that det(M(Ya,Za)(Pn,ε(X,A(W ))|ρa )) evaluates to a non-zero value. This is what we will do.
(A similar proof strategy is used in the proof of Claim 4.6 in [3].)

Let the vector u = C(a). For all i ∈ [log τ ], A sets the variable wi to 1 if ui = 1 and 0
otherwise. Now, it is easy to see that Pn,ε(X,A(W )) = Γa(X). This also implies that

det(M(Ya,Za)(Pn,ε(X,A(W ))|ρa)) = det(M(Ya,Za)(Γa(X)|ρa))

Now it is easy to check that M(Ya,Za)(Γa(X)|ρa) is a permutation matrix and hence
det(M(Ya,Za)(Γa(X)|ρa)) is non-zero. This implies that det(M(Ya,Za)(Pn,ε(X,A(W ))|ρa))
is non-zero as well. Thus, det(M(Ya,Za)(Pn,ε(X,W )|ρa)) is a non-zero polynomial over the
variables in W and we get that M(Ya,Za)(Pn,ε(X,W )|ρa) is a full rank matrix. J

4 The lower bound

In this section, we show that for f , a t-product polynomial, and a chosen randomly from an
(ε, 10 log(1/ε))-subspace avoiding set, the polynomial f |ρa has low relative-rank with high
probability. We then use this to prove the main theorem.

I Lemma 14. Let s ∈ N and ε > 0 be parameters such that s ≥ 1/ε. Let f ∈ G[X] be
a t-product polynomial with t ≥ (log s)3. Let S0 be any (ε, 10 log 1

ε )-subspace avoiding set
defined in Section 3.2. For any a ∈ {0, 1}n, let ρa denote the partitioning function defined in
Section 2.2. Then,

Pr
a∈S0

[relrk(Ya,Za)(f |ρa) ≥ 1
s

] ≤ 5 · ε.

Proof of Lemma 14. For all k ∈ [t], let r(k) = (r(k)
1 , r

(k)
2 , . . . , r

(k)
n ) be a vector in {0, 1}n

such that

r
(k)
i =

{
1 if xi ∈ Vars(fk),
0 otherwise.

Let Ek(a) be a 0-1 random variable defined as follows. If |Vars(fk)| is odd, Ek(a) is always 0.
Otherwise, define βk = |Vars(fk)| /2 (mod 2) and

Ek(a) =
{

1 if (r(k),a)2 = βk,

0 otherwise.

The main step in the proof of Lemma 14, is the following claim.
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I Claim 15. If S0 is a (ε, 10 log 1
ε )-subspace avoiding set, then Pra∈S0 [

∑
k∈[t] Ek(a) ≥ t −

2 log s] ≤ 5 · ε.

First, we will prove Lemma 14 using this claim. In order to do that, we will show that
for all a ∈ S0 the condition that (

∑
k∈[t] Ek(a) < t− 2 log s implies relrk(Ya,Za)(f |ρa) ≤ 1

s .
For any vector a ∈ S0 and for k ∈ [t], let Yk,a = ρa(Vars(fk)) ∩ Ya and let Zk,a =

ρa(Vars(fk)) ∩ Za. By Item 3 in Proposition 4 we know that

relrk(Ya,Za)(f |ρa) =
∏
k∈[t]

relrk(Yk,a,Zk,a)(fk|ρa).

We claim that for any k ∈ [t], if Ek(a) = 0, then relrk(Yk,a,Zk,a)(fk|ρa ) ≤ 1/
√

2. To see this,
note that, for any k ∈ [t], Ek(a) = 1 if and only if |Vars(fk)| is even and (r(k),a)2 = βk. Now,
if |Vars(fk)| is odd then we can never have |Yk,a| = |Zk,a| and hence by Item 1 of Proposition 4,
relrk(Yk,a,Zk,a)(fk|ρa) ≤ 1/

√
2. Further, if |Vars(fk)| is even and |Yk,a| − |Vars(fk)| /2 6= 0

(mod 2), then again we must have |Yk,a| 6= |Zk,a| and hence relrk(Yk,a,Zk,a)(fk|ρa) ≤ 1/
√

2.
Now if

∑
k∈[t] Ek(a) ≤ t− 2 log s then there exist at least (2 log s) elements k ∈ [t] such

that Ek(a) = 0. Hence, relrk(Ya,Za)(f |ρa) ≤ (1/
√

2)2 log s ≤ 1/s.
Thus, in order to upper bound the probability of the event that relrk(Ya,Za)(f |ρa) ≥ 1/s,

it suffices to upper bound the probability of
∑
k∈[t] Ek(a) ≥ t− 2 log s, which by Claim 15 is

at most 5ε. This concludes the proof of Lemma 14.
It remains to prove Claim 15, which we do now. The proof follows a combinatorial proof

of the Chernoff bound due to Impagliazzo and Kabanets [16].

Proof of Claim 15. Let ` = t − 2 log s and E(a) =
∑
k∈[t] Ek(a). Let R(a) be a Boolean

random variable such that

R(a) =
{

1 if
∑
k∈[t] Ek(a) ≥ `,

0 otherwise.

Thus, Pra∈S [E(a) ≥ `] = Ea∈S [R(a)]. Fix a vector a. Let R̃(a) ∈ [0, 1] be the random
variable defined by R̃(a) = EA[

∏
i∈A Ei(a)], where A ⊆ [t] is an independently and uniformly

randomly chosen subset of size 2 log s.
We claim that for every a ∈ S0, R(a) ≤ 2 · R̃(a). Assuming this, we get the following.

Pr
a

[
∑
k∈[t]

Ek(a) ≥ `] = E
a

[R(a)] ≤ 2 E
a

[E
A

[
∏
i∈A
Ei(a)]]

= 2 E
A

[E
a

[
∏
i∈A
Ei(a)]] = 2 E

A
[Pr

a
[
∏
i∈A
Ei(a) = 1]]. (3)

Consider an individual term EA(a) :=
∏
i∈A Ei(a) in the above expression. We claim

that Ea[EA(a)] ≤ 2ε. To see this, note that we have one of the following two scenarios.
Either A contains an i such that |Vars(fi)| is odd, in which case EA(a) = Ei(a) = 0
with probability 1. Otherwise, |Vars(fi)| is even for each i ∈ A and then a satisfies
EA(a) = 1 if and only if a satisfies the system of linear equations {(a, r(i))2 = βi | i ∈ A}.
Since the r(i)’s are non-zero and linearly independent, this system of equations defines
an affine subspace of codimension |A| = 2 log s. Now, by invoking Claim 9, we get that
Pra[

∏
i∈A Ei(a) = 1] ≤ 1/s2 + ε ≤ 2ε, where the final inequality uses s ≥ 1/ε. Substituting

this back in (3), we get that Pra[E(a) ≥ `] ≤ 4ε.
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To complete the proof, we need to show that for every a ∈ S0, R(a) ≤ 2R̃(a). If R(a) = 0,
then this statement is trivial. If not, R(a) = 1. That is, there exist at least ` many k ∈ [t]
such that Ek(a) = 1. Then,

R̃(a) = E
A

[
∏
i∈A
Ei(a)] = Pr

A
[for all i ∈ A, Ei(a) = 1] ≥

(
`

2 log s
)(

t
2 log s

) =
(
t−2 log s

2 log s
)(

t
2 log s

) ≥ 1/2,

where the final inequality follows from the fact that t ≥ (log s)3. This completes the proof of
Lemma 14. J

The main theorem

We now prove our main theorem. It is restated here for the sake of convenience.

I Theorem 16. For any fixed positive c ∈ N and δ ∈ (0, 1/2), there exists an explicit
polynomial family Pn ∈ F[x1, . . . , xn] that has multilinear formulas of depth 3 and size at
most O(s) where s = nc, but no multilinear formulas of size less than s(1/2)−δ and depth
∆ < log n/100 log log n.

Proof. We first show that we can assume without loss of generality that c ≥ 10/δ. Say this
is not the case: we then have s = nc < n10/δ. Now, let m = sδ/10 ≤ n. We will then define a
polynomial over only the variables {x1, . . . , xm}. So the number of variables reduces to m
and s = m10/δ (in particular, the new value of c is now 10/δ). Thus, we can always reduce
the problem to the case when c ≥ 10/δ.

So we assume without loss of generality that s ≥ n10/δ. We will fix our polynomial
Pn to be Pn/2,ε(X,W ) as defined in Section 3.2 for ε = n/

√
s, where the variable set

X = {x1, · · · , xn/2} and W ⊆ {xn/2+1, . . . , xn} is some fixed set of size log τ ≤ log s (since
s ≤ nc, it is clear that log s ≤ n/2). From Lemma 12, we know that {Pn | n ∈ N} is an explicit
family of multilinear polynomials such that each Pn is computed by a depth three multilinear
formula of size O(s). Further, from Lemma 13, we get that relrk(Ya,Za)(Pn(X,W )|ρa) = 1
for every choice of a ∈ B, where B is as defined in Section 3.2.

Let us assume that Pn can be computed by a depth ∆ multilinear formula Φ of size
s′ < s1/2−δ. We consider Pn(X,W ) as a polynomial from the ring G[X] where G = F(W ).
We also consider Φ as a multilinear formula computing a polynomial from G[X] (i.e. we
consider the variables from W in Φ as constants from the underlying field G.)

From Lemma 3, we know that Pn can be written as a sum of at most s′′ = s′ · n many
t-product polynomials where t = Ω(n1/2∆). Note that as ∆ < log n/100 log log n, we have
t = Ω((log n)50) ≥ (log s)40, the latter inequality following from the fact that log s = O(log n).

Assume that the t-product polynomials in the above decomposition are f1, . . . , fs′′ ∈ G[X].
So, we have Pn =

∑
i∈[s′′] fi. We would like to show that

Pr
a∈B

[relrk(Ya,Za)(Pn|ρa) < 1] > 0 (4)

which would contradict Lemma 13 and hence prove the theorem.
In order to prove inequality (4), by the sub-additivity property (Proposition 4 Item 2) of

the relative-rank, it suffices to show the following.

Pr
a∈B

[∀i ∈ [s′], relrk(Ya,Za)(fi|ρa) < 1/s′′] > 0.

Equivalently, it suffices to prove that

Pr
a∈B

[∃i ∈ [s′′], relrk(Ya,Za)(fi|ρa) ≥ 1/s′′] < 1. (5)
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Recall from Section 3.2 that the set B is defined to be a subset of the set S0 = Sn,ε ⊕ x0
of size τ = Θ(|S0|/n). Also, by Claim 9 and Fact 10, it follows that S0 is an (ε, 10 log(1/ε))-
biased set. By using Lemma 14, we get that for each t-product polynomial fi, we have
that

Pr
a∈S0

[relrk(Ya,Za)(fi|ρa) ≥ 1
s

] ≤ 5ε.

Therefore, by a simple union bound, we get that

Pr
a∈S0

[∃i : relrk(Ya,Za)(fi|ρa) ≥ 1
s

] ≤ 5s′′ · ε. (6)

As B is a subset of S0, we get that

|B|
|S0|
· Pr

a∈B
[∃i : relrk(Ya,Za)(fi|ρa) ≥ 1

s
] ≤ Pr

a∈S0
[∃i : relrk(Ya,Za)(fi|ρa) ≥ 1

s
]. (7)

Hence, using the inequalities (6), (7) and the fact that |B|/|S0| = Θ(1/n), we get

Pr
a∈B

[∃i : relrk(Ya,Za)(fi|ρa) ≥ 1
s

] ≤ O
(
s′′n2
√
s

)
≤ s′n4
√
s
. (8)

As s ≥ n10/δ we get n4 ≤ sδ/2. Therefore, as long as s′ ≤ O(s1/2−δ), inequality (5) is
satisfied, which then implies that inequality (4) is also satisfied.

If inequality (4) is satisfied, then there exists a partitioning function ρa for a ∈ B such that
relrk(Ya,Za)(Pn|ρa) < 1. This contradicts Lemma 13 which tells us relrk(Ya,Za)(Pn|ρa) = 1
with respect to every partitioning function ρa (a ∈ B). J
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Abstract
The restricted max-min fair allocation problem seeks an allocation of resources to players that
maximizes the minimum total value obtained by any player. It is NP-hard to approximate the
problem to a ratio less than 2. Comparing the current best algorithm for estimating the optimal
value with the current best for constructing an allocation, there is quite a gap between the ratios
that can be achieved in polynomial time: 4 + δ for estimation and 6 + 2

√
10 + δ ≈ 12.325 + δ for

construction, where δ is an arbitrarily small constant greater than 0. We propose an algorithm
that constructs an allocation with value within a factor 6 + δ from the optimum for any constant
δ > 0. The running time is polynomial in the input size for any constant δ chosen.
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1 Introduction

Background. Let P be a set ofm players. Let R be a set of n indivisible resources. Resource
r ∈ R is worth a non-negative integer value vpr for player p ∈ P . An allocation is a partition
of R into disjoint subsets {Cp : p ∈ P} so that player p is assigned the resources in Cp. The
max-min fair allocation problem is to distribute resources to players so that the minimum
total value of resources received by any player is maximized. The value of an allocation is
minp∈P

∑
r∈Cp

vpr. So we want to find an allocation with maximum value.
No algorithm can achieve an approximation ratio less than 2 unless P = NP [5]. Bansal

and Sviridenko [4] proposed the configuration LP and showed that it can be solve to any
desired accuracy in polynomial time. The configuration LP turns out to be a useful tool
for this problem. Using it, approximation ratios of O(

√
m logm) and O(nδ log n) for any

δ > 9 log logn
logn have been attained [3, 4, 6, 12]. In this paper, we focus on the restricted case

in which each resource r is desired by some subset of players, and has the same value vr
for those who desire it and value 0 for the rest. Even in this case, no approximation ratio
better than 2 can be obtained unless P = NP [5]. Bansal and Sviridenko [4] designed a
O
( log logm

log log logm
)
-approximation algorithm which is based on rounding the configuration LP.

Feige [8] proved that the integrality gap of the configuration LP is bounded by a constant

EA
T

C
S

© Siu-Wing Cheng and Yuchen Mao;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 37; pp. 37:1–37:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:scheng@cse.ust.hk
https://orcid.org/0000-0002-3557-9935
mailto:ymaoad@cse.ust.hk
https://orcid.org/0000-0002-1075-344X
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.37
https://arxiv.org/abs/1804.10902
https://arxiv.org/abs/1804.10902
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


37:2 Restricted Max-Min Fair Allocation

(large and unspecified). His proof was made constructive by Haeupler et al. [10], and hence,
results in a constant-approximation algorithm. Asadpour et al. [2] proved that the integrality
gap of the configuration LP is at most 4. As a consequence, by solving the configuration LP
approximately, one can estimate the optimal solution value within a factor of 4 + δ for any
constant δ > 0. However, it is not known how to construct a (4 + δ)-approximate allocation
in polynomial time. Annamalai et al. [1] developed a (6+2

√
10+δ)-approximation algorithm.

Their algorithm is purely combinatorial, but the analysis still relies on the configuration LP.
There is quite a gap between the current best estimation ratio 4 + δ and the current best
approximation ratio 6 + 2

√
10 + δ ≈ 12.325 + δ.

If one constrains the restricted case further by requiring vr ∈ {1, ε} for some fixed
constant ε ∈ (0, 1), then it becomes the (1, ε)-restricted case. Golovin proposed an O(

√
n)-

approximation algorithm [9]. Chan et al. [7] showed that it is still NP-hard to obtain an
approximation ratio less than 2 and that the algorithm in [1] achieves an approximation ratio
of 9 in this case. The analysis in [7] does not rely on the configuration LP.

Our contributions. We propose an algorithm for the restricted max-min fair allocation
problem that achieves an approximation ratio of 6 + δ for any constant δ > 0. It runs in
polynomial time for any constant δ chosen. Our algorithm uses the same framework as [1]:
we maintain a stack of layers to record the relation between players and resources, and use
lazy update and a greedy strategy to achieve a polynomial running time.

Our first contribution is a greedy strategy that is much more aggressive than that in [1].
Let τ∗ be the optimal solution value. Let λ > 2 be the target approximation ratio. To obtain
a λ-approximate solution, the value of resources a player need is τ∗/λ. The greedy strategy
in [1] considers a player greedy if that player claims at least τ∗/2 worth of resources, which
is more than needed. In contrast, we consider a player greedy if it claims (nearly) the largest
total value among all the candidates. When building the stack, both [1] and we add greedy
players and the resources claimed by them to the stack. Intuitively, our more aggressive
definition of greedy leads to faster growth of the stack, and hence a significantly smaller
approximation ratio can be achieved.

Our aggressive strategy brings challenge to the analysis that approaches in [1, 7] cannot
cope with. Our second contribution is a new analysis tool: an injection that maps a lot of
players in the stack to their competing players who can access resources of large total value.
Since players added to the stack must be greedy, they claim more than their competing
players. Therefore, such an injection allows us to conclude that players in the stack claim
large worth of resources. By incorporating competing players into the analysis framework
in [7], we improve the approximation ratio to 6 + δ. Our analysis does not rely on the
configuration LP, and is purely combinatorial.

2 Preliminaries

Let τ∗ be the optimal solution value. Let λ denote our target approximation ratio. Given
any value τ 6 τ∗, our algorithm returns an allocation of value τ/λ in polynomial time. We
will show how to combine this algorithm with binary search to obtain an allocation of value
at least τ∗/λ in the end. We assume that τ is no more than τ∗ in the rest of this section.

Bipartite graph and thin edges. A resource r is fat if vr > τ/λ; otherwise, r is thin. Let
G be the bipartite graph formed by representing the players in P and the fat resources in R
as vertices, and connecting a player p and a fat resource r by an edge if p desires r. Similarly,
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players and thin resources form a hypergraph, namely, there are vertices representing players
in P and thin resources in R, and a player p and a subset B of thin resources form an edge
(p,B) if p desires all resources in B. (Note that (p, ∅) is included.) We call the edges of
this hypergraph thin edges. For a subset B of thin resources, we define the value of B as
value(B) =

∑
r∈B vr. For a thin edge e = (p,B), its value value(e) is defined to be the total

value of thin resources covered by it, i.e., value(e) = value(B). We use uppercase calligraphic
letters to denote subsets of thin edges. Given a set S of thin edges, define value(S) to be the
total value of the thin resources covered by S.

Partial allocation. Since our target approximation ratio is λ, it suffices to assign each player
p either a single fat resource r such that {p, r} is an edge of G, or a subset B of thin resources
such that (p,B) is a thin edge and value(B) > τ/λ. Hence, it suffices to consider allocations
that consist of two parts, one being a maximum matching M of G and the other being a
subset E of thin edges such that every player is covered by either M or E , no two edges in E
share any resource, and every edge in E has value at least τ/λ.

Our algorithm will start with an arbitrary maximum matching of G alone, grow and
update the set E of thin edges, and whenever necessary, update the maximum matching as
well. We call the intermediate solutions partial allocations. A partial allocation consists of
a maximum matching M of G and a set E of thin edges such that: (i) no player is covered
by both M and E ; (ii) no two edges in E share any resource; (iii) every edge (p,B) ∈ E is
minimal in the sense that value(B) > τ/λ and every proper subset B′ ⊂ B has value less
than τ/λ. We say a player p is satisfied by a partial allocation if p is covered by M or E . A
partial allocation is an allocation if it satisfies every player.

Node-disjoint paths. We define a family of networks which are heavily used in both our
algorithm and its analysis. With respect to any arbitrary maximum matching M of G, define
GM to be a directed bipartite graph such that GM has the same vertex set as G (i.e., players
and fat resources), there is a directed edge from player p to resource r if {p, r} is an edge of
G that is not used in M , and there is a directed edge from resource r to player p if {p, r} is
an edge of G that is used in M .

We use PM and PM to denote the subsets of players matched and unmatched in M ,
respectively. Given S ⊆PM and T ⊆ P , we use GM (S, T ) to denote the problem of finding
the maximum number of node-disjoint paths from S to T in GM . This problem will arise in
this paper for different choices of S and T . A feasible solution of GM (S, T ) is just any set of
node-disjoint paths from S to T in GM . An optimal solution maximizes the number of paths.
Let fM (S, T ) denote the size of an optimal solution of GM (S, T ). In case that S ∩ T 6= ∅, a
feasible solution may allow a path from a player p ∈ S ∩ T to itself, i.e., a path with no edge.
We call such a path a trivial path. Other paths are non-trivial.

Let Π be any feasible solution of GM (S, T ). The paths in Π originate from a subset of
S, which we call the sources, and terminate at a subset of T , which we call the sinks. We
denote the sets of sources and sinks by source(Π) and sink(Π), respectively. A trivial path
has only one node which is both its source and sink. We use Π0 and Π+ to denote the sets
of the trivial paths and the non-trivial paths in Π, respectively.

An optimal solution of GM (S, T ) can be found by solving a maximum s-t flow problem
as follows. Add a super source s and directed edges from s to all vertices in S. Add a super
sink t and directed edges from all vertices in T to t. Set the capacities of all edges to 1. Find
an integral maximum flow in the resulting network. The paths in GM used by this maximum
flow is an optimal solution of GM (S, T ). Node-disjointness is ensured because, in the s-t flow
network, each player has in-degree at most one and each resource has out-degree at most one.

ICALP 2018
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Let π be a non-trivial path from PM to P in GM . If we ignore the directions of edges
in π, then π is called an alternating path in the matching literature [11]. We use M ⊕ π to
denote the result of flipping π, i.e., removing the edges in π ∩M from the matching and
adding the edges in π \M to the matching. M ⊕ π is also a maximum matching of G. We
can extend the above operation and form M ⊕Π+ for any feasible solution Π of GM (S, T )
for any S ⊆ PM and any T ⊆ P . M ⊕ Π+ is a maximum matching of G. The following
results follow from basic theories of matching and network flow.

I Claim 2.1. For any maximum matchings M and M ′ of G, (i) fM (PM ,PM ′) = |PM |, and
(ii) for every subset T of players, fM (PM , T ) = fM ′(PM ′ , T ).

If one treats Π like a flow in the network GM , then GM⊕Π+ behaves like the residual graph
with respect to Π. Claims 2.2 and 2.3 below concerns with augmentation using GM⊕Π+ .

I Claim 2.2. Let Π be a feasible solution of GM (S, T ). Then, M ⊕ Π+ is a maximum
matching of G, so the directed bipartite graph GM⊕Π+ is well defined. Also, Π is an optimal
solution of GM (S, T ) if and only if GM⊕Π+ contains no path from S\source(Π) to T \sink(Π).

I Claim 2.3. Let Π be a feasible solution of GM (S, T ). Suppose that GM⊕Π+ contains a
path π from S \ source(Π) to T \ sink(Π). We can use π to augment Π to a feasible solution
Π′ of GM (S, T ) such that |Π′| = |Π|+ 1, the vertex set of Π′ is a subset of the vertices in
Π ∪ {π}, source(Π′) = source(Π) ∪ {source(π)}, and sink(Π′) = sink(Π) ∪ {sink(π)}.

We can also push flow along a path in GM⊕Π+ from sink(Π) to T . This reroutes the flow
in GM without changing its flow value. Claim 2.4 below gives a precise statement.

I Claim 2.4. Let Π be a feasible solution of GM (S, T ). Suppose that there is a non-trivial
path π in GM⊕Π+ from sink(Π) to T . Clearly, sink(π) 6∈ sink(Π) because every node in
sink(Π) has zero in-degree in GM⊕Π+ . We can use π to convert Π to a feasible solution Π′
of GM (S, T ) such that |Π′| = |Π|, the vertex set of Π′ is a subset of the vertices in Π ∪ {π},
source(Π′) = source(Π), and sink(Π′) = (sink(Π) \ {source(π)}) ∪ {sink(π)}.

3 The Algorithm

3.1 Overview
We give an overview of the common framework that our algorithm shares with that in [1].
Let M and E denote the maximum matching of G and the set of thin edges in the current
partial allocation, respectively. Let p0 be an arbitrary player who is not yet satisfied.

To satisfy p0, the simplest case is that we can find a minimal thin edge (p0, B) such that
value(B) is at least τ/λ and B excludes the resources covered by edges in E , i.e., not blocked
by any thin edge in E . We can extend the partial allocation by adding (p0, B) to E .

More generally, we can use any thin edge (q,B) such that B meets the above requirements
even if q 6= p0, provided that there is a path from p0 to q in GM . If q 6= p0, such a path is an
alternating path in G with respect to M , and q is matched by M . We can flip this path to
match p0 with a fat resource and then include (q,B) in E to satisfy q.

We may have the situation that the thin edge (q,B) mentioned above is blocked by some
thin edges in E . Pick such a (q,B) arbitrarily, and call it (q0, B0). Let {(p1, B

′
1), . . . , (pk, B′k)}

be the thin edges in E that block (q0, B0), i.e., B0 ∩B′i 6= ∅ for i ∈ [1, k]. To make (q0, B0)
unblocked, we need to satisfy each player pi, i ∈ [1, k], with a fat resource or another thin
edge. Afterwards, we can satisfy p0 as before. To record the different states of the algorithm,
we initialize a stack to contain (p0, ∅) as the first layer and then create another layer on top
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that stores the sets X2 = {(q0, B0)} and Y2 = {(p1, B
′
1), . . . , (pk, B′k)} among other things

for bookkeeping. We change our focus to satisfy the set of players Y2 = {p1, . . . , pk}.
To satisfy a player in Y2 (by a new edge), we need to identify a minimal thin edge (q1, B1)

such that value(B1) is at least τ/λ and GM contains two node-disjoint paths from {p0} ∪ Y2
to {q0, q1}, and we also require B1 to exclude the resources already covered by thin edges in
the current stack (i.e., X2 and Y2) because the current plan to satisfy q0 in the future involves
some of these thin resources. If (q1, B1) is blocked by thin edges in E , we initialize a set
X3 = {(q1, B1)}; otherwise, we initialize a set I = {(q1, B1)}. Ideally, if (q1, B1) is unblocked,
we could immediately make some progress. Since there are two node-disjoint paths from
{p0} ∪ Y2 to {q0, q1}, q1 is either reachable from p0 or a player in Y2. In the former case, we
can satisfy p0; in the latter case, the path from Y2 to q1 must be node-disjoint from the path
from p0 to q0. We can remove a blocking edge from Y2 without affecting the alternating
path from p0 to q0. But we would not do so because, as argued in [1], in order to achieve a
polynomial running time, we should let I grow bigger so that a large progress can be made.

Since there are multiple players in Y2 to be satisfied, we continue to look for another
minimal thin edge (q2, B2) such that GM contains three node-disjoint paths from {p0} ∪ Y2
to {q0, q1, q2}, value(B2) > τ/λ, and B2 excludes the resources covered by thin edges in the
current stack (i.e.,X2 ∪ Y2 ∪ X3) and I. If (q2, B2) is blocked by thin edges in E , we add
(q2, B2) to X3; otherwise, we add it to I. After collecting all such thin edges in X3 and I, we
construct the set Y3 of thin edges in the current partial allocation that block X3. Then, we
add a new top layer to the stack that stores X3 and Y3 among other things for bookkeeping.
Then, we turn our attention to satisfying the players in Y3 with new edges and so on. These
repeated additions of layers to the stack constitute the build phase of the algorithm.

The build phase stops when we have enough thin edges in I to satisfy a predetermined
fraction of players in Yl for some l, and then we shrink this layer and delete all layers above
it. The above is repeated until I is not large enough to satisfy the predetermined fraction
of players in any Yl in the stack. These repeated removal of layers constitute the collapse
phase of the algorithm. At the end of the collapse phase, we switch back to the build phase.

The alternation of build and collapse phases continues until we succeed in satisfying
player p0, our original goal, that is stored in the bottommost layer in the stack.

A greedy strategy is also used for achieving a polynomial running time. In [1], when a
blocked thin edge (q,B) is picked and added to Xl for some l, B is required to be a minimal
set of value at least τ/2, which is more than τ/λ. Intuitively, if such an edge is blocked, it
must be blocked by many edges. Hence, the strategy leads to fast growth of stack. We use a
more aggressive strategy: we allow the value of B to be as large as τ + τ/λ, and among all
candidates, we pick the (q,B) with (nearly) the largest value. Our strategy leads to faster
growth of the stack, and hence, a polynomial running time can be achieved for smaller λ.

3.2 Notation and definitions
A state of the algorithm consists of several components, namely, M , E , a stack of layers, and
a global variable I that stores a set of thin edge. The layers in the stack are indexed starting
from 1 at the bottom. For i > 1, the i-th layer is a 4-tuple (Xi,Yi, di, zi), where Xi and Yi
are sets of thin edges, and di and zi are two numeric values that we will explain later. We
use I, Xi and Yi to denote the set of players covered by edges in I, Xi and Yi, respectively.
For any k > 1, let X6k denote

⋃k
i=1 Xi, and Y6k, X6k, and Y6k are similarly defined.

The sets Xi and Yi are defined inductively. At the beginning of the algorithm, X1 = ∅,
Y1 = {(p0, ∅)}, d1 = z1 = 0, and I = ∅. The first layer in the stack is thus (∅, {(p0, ∅)}, 0, 0).
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Consider the construction of the (k+1)-th layer in an execution of the build phase. When
it first starts, Xk+1 is initialized to be empty. We say that p is addable if fM (Y6k, X6k+1 ∪
I ∪ {p}) > fM (Y6k, X6k+1 ∪ I). Note that this definition depends on X6k+1 ∪ I, so adding
edges to Xk+1 and I may affect the addability of players. Given an addable player p, we say
that a thin edge (p,B) is addable if value(B) ∈ [τ/λ, τ + τ/λ] and B excludes resources
currently in X6k+1 ∪ Y6k ∪ I. An addable thin edge (p,B) is unblocked if there exists a
subset B′ ⊆ B such that value(B′) > τ/λ and B′ excludes resources used in E . Otherwise,
(p,B) is blocked. During the construction of the (k + 1)th layer, the algorithm adds some
blocked addable thin edges to Xk+1 and some unblocked addable thin edges to I. When the
growth of Xk+1 stops, the algorithm constructs Yk+1 as the set of the thin edges in E that
share resource(s) with some edge(s) in Xk+1. Edges in Yk+1 are called blocking edges.

After constructing Xk+1 and Yk+1 and growing I, we define dk+1 := fM (Y6k, X6k+1 ∪ I)
and zk+1 := |Xk+1|. The values dk+1 and zk+1 do not change once computed unless the
layer Lk+1 is destructed in the collapse phase, although fM (Y6k, X6k+1 ∪ I) and |Xk+1| may
change subsequently. The values dk+1 and zk+1 are introduced only for the analysis.

Whenever we complete the construction of a new layer in the stack, we check whether
any existing layer is collapsible. If so, we leave the build phase and enter the collapse phase,
during which the stack is shrunk and the current partial allocation is updated. We stay in
the collapse phase until no layer is collapsible. If the stack has become empty, we are done as
the player p0 has been satisfied. Otherwise, we reenter the build phase. We give the detailed
specification of the build and collapse phases in the following.

3.3 Build phase
Assume that the stack currently contains layers L1, . . . , Lk with Lk at the top. Let M and E
denote the maximum matching in G and the set of thin edges in the current partial allocation,
respectively. The following routine Build constructs the next layer Lk+1.

Build(M, E , I, (L1, · · · , Lk))
1. Initialize Xk+1 to be the empty set.
2. If there is an addable player p and an unblocked addable edge (p,B), then:

a. take a minimal subset B′ ⊆ B such that value(B′) > τ/λ and B′ excludes the
resources used in E (we call (p,B′) a minimal unblocked addable edge),

b. add (p,B′) to I,
c. go back to step 2.

3. When we come to step 3, no unblocked addable edge is left. If there are no (blocked)
addable edges, go to step 4. For each addable player p who is incident to at least one
addable edge, identify one maximal blocked addable edge (p,B) such that B 6⊂ B′
for any blocked addable edge (p,B′). Pick the edge with the largest value among
those identified, add it to Xk+1, and repeat step 3.

4. At this point, the construction of Xk+1 is complete. Let Yk+1 be the set of the
thin edges in E that share resource(s) with some thin edge(s) in Xk+1.

5. Compute dk+1 := fM (Y6k, X6k+1 ∪ I) and zk+1 :=
∣∣Xk+1

∣∣.
6. Push the new layer Lk+1 = (Xk+1,Yk+1, dk+1, zk+1) onto the stack.

Build differs from its counterpart in [1] in several places, particularly in step 3. First,
we requires blocked addable edges to be maximal while [1] only considers minimal addable
edges of value at least τ/2. Second, when adding addable edges to Xk+1, we pick the one
with (nearly) the largest value. In contrast, [1] arbitrarily picks one addable edge.
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Table 1 Let ` denote the highest layer index in the current stack. Let M and E be the maximum
matching and the set of thin edges in the current partial allocation.

Invariant 1 Every edge in I has value in [τ/λ, 2τ/λ]. Every edge in X6` has value in
[τ/λ, τ + τ/λ]. No two edges from X6` and I (both edges from either set or
one edge from each set) cover the same player or share any resource.

Invariant 2 No edge in E shares any resource with any edge in I.
Invariant 3 For all i ∈ [1, `], every edge in Xi shares some resource(s) with some edge(s)

in Yi but not with any edge in E \ Yi.
Invariant 4 Y2, . . . ,Y` are disjoint subsets of E . (Y1 = {(p0, ∅)} is not.)
Invariant 5 For all i ∈ [1, `], no edge in Yi shares any resource with any edge in Xj for

any j 6= i.
Invariant 6 fM (Y6`−1, I) = |I|.
Invariant 7 For all i ∈ [1, `− 1], fM (Y6i, X6i+1 ∪ I) > di+1.

Is it possible that Xk+1 = ∅ and Yk+1 = ∅? We will establish Lemma 4.1 in Section 5.2,
which implies that if Yk+1 is empty, then some layer below Lk+1 is collapsible. As a result,
the algorithm will enter the collapse phase next and Lk+1 will be removed.

I Lemma 3.1. Build runs in poly(m,n) time.

I Lemma 3.2. Build maintains invariants 1–7 in Table 1.

3.4 Collapse phase
Let M be the maximum matching in the current partial allocation. Let (L1, L2, . . . , L`) be
the current stack. Deciding whether a layer can be collapsed requires a decomposition of I.

Collapsibility. Let I1 ∪ I2 ∪ · · · I` be some partition of I. Let Ii denote the set of players
covered by Ii. We use I6j and I6j to denote

⋃j
i=1 Ii and

⋃j
i=1 Ii, respectively. Note that

|Ii| = |Ii| by invariant 1. The partition I1 ∪ I2 ∪ · · · I` is a canonical decomposition of I
if for all i ∈ [1, `], fM (Y6i, I6i) = fM (Y6i, I) = |I6i| = |I6i|. [1]

I Lemma 3.3 ([1]). In poly(`,m, n) time, one can compute a canonical decomposition
I1 ∪ I2 ∪ . . . I` of I and a canonical solution of GM (Y6`, I) which can be partitioned into a
disjoint union Γ1 ∪ Γ2 ∪ · · ·Γ` such that for every i ∈ [1, `], Γi is a set of |Ii| paths from Yi
to Ii.

The canonical decomposition and solution can be obtained by starting with an optimal
solution of GM (Y1, I) and successively augment it (using Claim 2.3) to optimal solutions of
GM (Y62, I), . . . , GM (Y6`, I). The resulting optimal solution of GM (Y6`, I) is an canonical
solution, and also induces a canonical decomposition of I.

Consider Γi. The sources (which are also sinks) of the trivial paths in Γi can be satisfied
by a new thin edge from Ii. Recall that the non-trivial paths in Γi are alternating paths
of M . Their sources can be satisfied by fat resources if we flip these alternating paths and
satisfy the sinks with thin edges from Ii. If we do so, then edges in Yi that cover source(Γi)
can be safely removed from E as the players in source(Γi) are satisfied by new edges, and
from Yi since they no longer block edges in Xi. A layer is collapsible if a certain portion
of its blocking edges can be removed. More precisely, for any i ∈ [0, `], Li is collapsible if
there is a canonical decomposition I0 ∪ I1 ∪ . . . I` of I such that |Ii| > µ|Yi|, where µ is a
constant that will be determined later.
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37:8 Restricted Max-Min Fair Allocation

Collapse layers. When we find that some layer is collapsible, we run the routine Collapse
below, which collapses layers in the stack until no layer is collapsible. Collapse works in
the same manner as its counterpart in [1], but there are small differences in the presentation.

Collapse(M, E , I, (L1, · · · , L`))
1. Compute a canonical decomposition I1 ∪ I2 ∪ · · · I` and a canonical solution

Γ1∪Γ2∪· · ·Γ` of GM (Y6`, I). If no layer is collapsible, go to build phase. Otherwise,
let Lt be the collapsible layer with the smallest index t.

2. Remove all layers above Lt from the stack. Set I := I6t−1.
3. Recall that source(Γt) ⊆ Yt by Lemma 3.3. Let V denote the set of the thin edges

in Yt that cover source(Γt). Recall that Yt ⊆ E .
a. Update the maximum matching M by flipping the non-trivial paths in Γt, i.e.,

set M := M ⊕ Γ+
t . This matches the sources of non-trivial paths in Γt while

leave their sinks unmatched.
b. Add to E edges in It, i.e., set E := E ∪ It. Now the sinks of non-trivial paths are

satisfied. Also the sources of trivial paths are satisfied by new thin edges.
c. Now each player in source(Γt) is satisfied either by a fat resource or a thin edge

from It. Edges in V can be safely removed from E . Set E := E \V . Consequently,
edges in V no longer block edges in Xt. Set Yt := Yt \ V .

4. If t > 2, we need to update Xt because the removal of V from E (and hence Yt)
may make some edges in Xt unblocked. For each edge (p,B) ∈ Xt that becomes
unblocked, perform the following:
a. Remove (p,B) from Xt.
b. If fM (Y6t−1, I ∪ {p}) > fM (Y6t−1, I), then add (p,B′) to I, where B′ is an

arbitrary minimal subset of B such that value(B′) > τ/λ and B′ excludes the
resources covered by E .

5. If t = 1, step 3 already satisfied the player p0 in the bottommost layer in the stack,
so the algorithm terminates. Otherwise, update ` := t and go back to step 1.

I Lemma 3.4. Collapse maintains invariants 1–7 in Table 1.

4 Polynomial running time and binary search

Each call of Build and Collapse runs in time polynomial in `, m and n. Lemma 4.1 below
is the key to obtaining a bound on ` and the total number of calls of Build and Collapse.
The proof of Lemma 4.1 is deferred to Section 5.

I Lemma 4.1. Assume that the values τ and λ used by the algorithm satisfy the relations
τ 6 τ∗ and λ = 6 + δ for an arbitrary constant δ ∈ (0, 1). There exists a constant
µ ∈ (0, 1) dependent on δ such that for any state (M, E , I, (L1, . . . , L`)) of the algorithm, if
|Yi+1| <

√
µ|Y6i| for some i ∈ [1, `− 1], then some layer below Li+1 must be collapsible.

Lemma 4.1, immediately implies a logarithmic bound on the maximum number ` of layers.
Using argument similar to that in [1, Lemmas 4.10 and 4.11], we can show that given a
partial allocation, our algorithm can extend it to satisfy one more player in polynomial time.
By repeating the algorithm at most n times, we can extend a maximum matching of G to an
allocation of value at least τ/λ.

The remaining task is to binary search for τ∗. If we use a value τ that is at most τ∗, the
algorithm terminates in polynomial time with an allocation. If we use a value τ > τ∗, there
are two possible outcomes. We may be lucky and always have some collapsible layer below
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Li+1 whenever |Yi+1| <
√
µ|Y6i| for some i ∈ [1, `− 1]. In this case, the algorithm returns

in polynomial time an allocation of value at least τ/λ > τ∗/λ. The second outcome is that
no layer is collapsible at some point, but |Yi+1| <

√
µ|Y6i| for some i ∈ [1, `− 1]. This can

be detected in O(1) time by maintaining |Yi+1| and |Y6i|, which allows us to detect that
τ > τ∗ and halt the algorithm. Since this is the first violation of this property, the running
time before halting is polynomial in m and n. The last allocation returned by the algorithm
during the binary search has value at least τ∗/λ = τ∗/(6 + δ). We will see in Section 5.2
that a smaller δ requires a smaller µ and hence a higher running time.

I Theorem 4.2. For any fixed constant δ ∈ (0, 1), there is an algorithm for the restricted
max-min fair allocation problem that returns a (6 + δ)-approximation in time polynomial in
the number of players and the number of resources.

5 Analysis

We will derive lower and upper bounds for the total value of the thin resources in the stack
and show that if Lemma 4.1 does not hold, the lower bound would exceed the upper bound.

5.1 Competing players
To analyze our aggressive greedy strategy for selecting blocked addable thin edges, we need
an injective map ϕ from the players covered by them to players who can access thin resources
of high total value. The next result shows that these target players exist.

I Lemma 5.1. Let OPT be an arbitrary optimal allocation. There exists a maximum
matching M∗ of G induced by OPT such that M∗ matches every player who is assigned at
least one fat resource in OPT. Hence, every player in PM∗ is assigned only thin resources in
OPT that are worth a total value of τ or more, assuming that τ 6 τ∗.

The domain of the injection ϕ is a subset of X6` and its image is a subset of PM∗ . We
call the image of ϕ the competing players. For any player q ∈ X6`, ϕ(q) has access to thin
resources that are worth a total value of τ or more. Our goal is to prove that ϕ(q) is also
an addable player when q is added to X6`. Since the algorithm prefers q to ϕ(q), either no
addable edge is incident to ϕ(q) or the maximal addable edge identified for ϕ(q) has less
value than the edge eq ∈ X6` that covers q. In both cases, more than τ − value(eq) worth of
thin resources assigned to ϕ(q) in OPT are already in the stack. This will allow us to prove
a good lower bound for the total value of the thin resources in the stack.

Lemma 5.2 below states the properties of competing players. We already discussed the
usage of Lemma 5.2(i) and (ii). It would be ideal if the domain of ϕ could cover the entire
X6`. However, for technical reasons, when Collapse removes a player from X6`, we may
have to remove two players from the domain of ϕ in order to maintain the properties of ϕ.
Lemma 5.2(iii) puts a lower bound on the size of the domain of ϕ. When deriving lower
bound for the total value of the thin resources in the stack, the players in PM∗ that are not
competing players and outside X6` ∪ I also play a role. Lemma 5.2(iv) will allow us to prove
that a large subset of such players are still addable after we finish adding edges to X` during
the construction of layer L`. Each of these addable players contributes a large worth of thin
resources to the stack.

I Lemma 5.2. Let M∗ be a maximum matching of G induced by some optimal allocation.
For any state (M, E , I, (L1, . . . , L`)) of the algorithm, there exists an injection ϕ such that
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(i) The domain Dϕ and image Imϕ of ϕ are subsets of X6` and PM∗ , respectively.
(ii) For every player p ∈ Dϕ, when p was added to Xk for some k ∈ [2, `], ϕ(p) was also an

addable player at that time.
(iii) |Dϕ| > 2|X6`| −

∑`
i=1 zi.

(iv) fM (PM , (PM∗ \ Imϕ) ∪X6`) = |PM |.

Proof. Our proof is by induction on the chronological order of the build and collapse phases.
In the base case, ` = 1, X1 = ∅, and z1 = 0. The existence of ϕ is trivial as its domain
Dϕ ⊆ X1 = ∅. So Imϕ = ∅. Then, (i), (ii) and (iii) are satisfied trivially, and (iv) follows
from Claim 2.1(i). We discuss how to update ϕ during the build and collapse phases.

Build phase. Suppose that Build begins to construct a new layer L`. X` is initialized to
be empty. The value z` is computed only at the completion of L`. However, in this proof,
we initialize z` = 0, increment z` whenever we add an edge to X`, and show the validity of
(i)–(iv) inductively.

Since X` = ∅ and z` = 0 initially, properties (i)–(iv) are satisfied by the current ϕ by
inductive assumption.

Step 2 of Build does not change X`, and so ϕ needs no update.
Consider step 3 of Build. Suppose that a thin edge incident to player q1 is added to

X`. So q1 is addable. For clarity, we use X ′`, z′`, ϕ′, Dϕ′ , and Imϕ′ to denote the updated
X`, z`, ϕ, Dϕ, and Imϕ, respectively. Clearly, X ′` = X` ∪ {q1} and z′` = z` + 1. We set
Dϕ′ := Dϕ ∪ {q1}. For every p ∈ Dϕ′ \ {q1}, we set ϕ′(p) := ϕ(p). We set ϕ′(q1) as follows.

Let Π1 be an optimal solution of GM (Y6`−1, X6`∪I∪{q1}). We have q1 ∈ sink(Π1) since
otherwise we would have fM (Y6`−1, X6`∪ I ∪{q1}) = fM (Y6`−1, X6`∪ I), contradicting the
addability of q1. Similarly, q1 6∈ X6`. As q1 ∈ sink(Π1), q1 must be unmatched in M ⊕Π+

1 ,
i.e., q1 ∈ PM⊕Π+

1
. Let Π2 be an optimal solution of GM⊕Π+

1
(PM⊕Π+

1
, (PM∗ \ Imϕ) ∪X6`).

We have |Π2| = fM⊕Π+
1

(PM⊕Π+
1
, (PM∗ \ Imϕ) ∪ X6`) = fM (PM , (PM∗ \ Imϕ) ∪ X6`) by

Claim 2.1(ii). Then, inductive assumption gives |Π2| = |PM | = |PM⊕Π+
1
| (both M and

M ⊕Π1 are maximum matchings). So PM⊕Π+
1

= source(Π2), implying that there is a path
π ∈ Π2 originating from q1. Let q2 = sink(π).

We claim that q2 6∈ X6`. If π is a trivial path, the claim is true because q2 = q1 /∈ X6`.
Suppose that π is non-trivial. Suppose, for the sake of contradiction, that q2 ∈ X6`. This
allows us to apply Claim 2.4 and use π to convert Π1 to an equal-sized set of node-disjoint paths
from Y6`−1 to X6`∪ I. But then fM (Y6`−1, X6`∪ I) > |Π1| = fM (Y6`−1, X6`∪ I ∪{q1}) >
fM (Y6`−1, X6`∪I). That is, fM (Y6`−1, X6`∪I∪{q1}) = fM (Y6`−1, X6`∪I), contradicting
the addability of q1. This proves our claim that q2 6∈ X6`.

Observe that q2 ∈PM∗ \ Imϕ because q2 ∈ sink(Π2) ⊆ (PM∗ \ Imϕ) ∪X6` and q2 6∈ X6`.
This allows us to set ϕ′(q1) := q2 and keep ϕ′ injective.

Properties (i) and (iii) are straightforwardly satisfied by ϕ′, z′`, Dϕ′ , and X ′`.
By induction assumption, (ii) holds for players in Dϕ′ \ {q1} = Dϕ. It remains to check

the validity of (ii) for ϕ′(q1) = q2. If π is a trivial path, then (ii) holds because q2 = q1
and q1 is addable. Assume that π is non-trivial. By Claim 2.4, we can use π to convert
Π1 to an equal-sized set of node-disjoint paths in GM from Y6`−1 to X6` ∪ I ∪ {q2}. Thus,
fM (Y6`−1, X6` ∪ I ∪ {q2}) > |Π1| = fM (Y6`−1, X6` ∪ I ∪ {q1}) = fM (Y6`−1, X6` ∪ I) + 1
as q1 is addable. Therefore, q2 is also an addable player at the time when X` gains a thin
edge incident to q1.

Consider (iv). If π is a trivial path, i.e., q1 = q2, then (iv) holds because (PM∗ \
Imϕ) ∪X6` ⊆ (PM∗ \ (Imϕ ∪ {q2})) ∪X6` ∪ {q1} = (PM∗ \ Imϕ′) ∪X ′6`. Suppose that π is
non-trivial. Recall that Π2 is an optimal solution of GM⊕Π+

1
(PM⊕Π+

1
,PM∗ \ Imϕ) ∪X6`),
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and |Π2| = |PM⊕Π+
1
|. Take the maximum matching M ⊕ Π+

1 of G and flip the paths in
Π+

2 \ {π} in G. This produces another maximum matching M ′ = (M ⊕Π+
1 )⊕ (Π+

2 \ {π}).
All |PM⊕Π+

1
| sinks of Π2, except for q2, are unmatched in M ′. Player q1 is also unmatched

in M ′. There are equally many unmatched players in M ′ and M ⊕ Π+
1 . This implies

that (sink(Π2) \ {q2}) ∪ {q1} is exactly PM ′ . Since sink(Π2) ⊆ (PM∗ \ Imϕ) ∪ X6`, we
get PM ′ ⊆

((
(PM∗ \ Imϕ) ∪X6`

)
\ {q2}

)
∪ {q1} ⊆ (PM∗ \ (Imϕ ∪ {q2})) ∪ X6` ∪ {q1} =

(PM∗ \ Imϕ′) ∪ X ′6`. Then, we can apply Claim 2.1(i) to obtain |PM | > fM (PM , (PM∗ \
Imϕ′) ∪X ′6`) > fM (PM ,PM ′) = |PM |. Hence, (iv) holds.

Clearly, steps 4–6 of Build do not affect ϕ.

Collapse phase. Suppose that we are going to collapse the layer Lt. Since we will set ` := t

at the end of collapsing Lt, we only need to prove (i)—(iv) with ` substituted by t.
Clearly, step 1 of Collapse has no effect on ϕ.
Consider step 2 of Collapse. Go back to the last time when Lt was either created by

Build as the topmost layer or made by Collapse as the topmost layer. By the inductive
assumption, there was an injection ϕ′′ at that time that satisfies (i)–(iv). We set ϕ := ϕ′′,
Dϕ := Dϕ′′ , and Imϕ := Imϕ′′ .

In step 3 of Collapse, the maximum matching M may change, so only (iv) is affected.
Nonetheless, by Claim 2.1(ii), the value of fM (PM , (PM∗ \ Imϕ)∪X`) remains the same after
updating M . So (iv) is satisfied afterwards.

In step 4 of Collapse, we may remove some edges from Xt and add some of these
removed edges to I. Adding edges to I does not affect ϕ. We need to update ϕ when an
edge is removed from Xt. Suppose that we are going to remove from Xt an edge that covers
a player q1. Recall that zt was defined in the last construction of the layer Lt, and it has
remained fixed despite possible changes to Xt since then. Let X ′6t, ϕ′, Dϕ′ , and Imϕ′ denote
the updated X6t, ϕ, Dϕ, and Imϕ, respectively. Note that X ′6t = X6t \ {q1}. We show how
to define ϕ′, Dϕ′ , and Imϕ′ appropriately.

Consider property (iv). If (iv) is not affected by the deletion of q1, that is, fM (PM , (PM∗ \
Imϕ) ∪ X ′6t) = |PM |, then we simply set Dϕ′ := Dϕ \ {q1} and ϕ′(p) := ϕ(p) for all
p ∈ Dϕ′ . It is easy to verify that ϕ′ satisfies (iv). Suppose that property (iv) is affected, and
therefore, fM (PM , (PM∗ \ Imϕ)∪X ′6t) = |PM |− 1. Since fM (PM ,PM∗) = |PM |, we have that
fM (PM ,PM∗ ∪X ′6t) = |PM |. Comparing the two equations above, we conclude that there
must a player q2 ∈ Dϕ such that fM (PM , (PM∗ \ (Imϕ \ {ϕ(q2)}) ∪X ′6t) = |PM |. So we set
Dϕ′ := Dϕ \ {q1, q2}, and ϕ′(p) := ϕ(p) for all p ∈ Dϕ′ . Property (iv) is satisfied afterwards.

Irrespective of which definition of ϕ′ above is chosen, properties (i) and (ii) trivially hold.
Property (iii) holds because the left hand side decreases by at most 2 and the right hand
side decreases by exactly 2. J

5.2 Proof of Lemma 4.1
Suppose, for the sake of contradiction, that there exists an index k ∈ [1, ` − 1] such that
|Yk+1| <

√
µ |Y6k| but no layer below Lk+1 is collapsible. Let k be the smallest such index.

So |Yi+1| >
√
µ |Y6i| for every i ∈ [1, k − 1].

Consider the moment immediately after the last construction of the (k + 1)-th layer.
Let (M ′, E ′, I ′, (L′1, . . . , L′k+1)) be the state of the algorithm at that moment. No layer
below L′k+1 is collapsible immediately after the construction of L′k+1 since this is the last
construction of the (k + 1)-th layer. We will derive a few inequalities that hold given the
existence of k. Then we will obtain a contradiction by showing that the system made up of
these inequalities is infeasible.
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We first define some notations. Let X ′i and Y ′i denote the set of blocked addable (thin)
edges and the set of blocking (thin) edges associated with L′i. Then, X ′i, Y ′i , X ′6i, Y ′6i,
X ′6i, and Y ′6i are correspondingly defined. Let M∗ be a maximum matching induced by an
optimal allocation OPT. Let ϕ′ and Dϕ′ be the injection and its domain associated with
X ′6t+1 as defined in Lemma 5.2 with respect to M∗. For all p ∈ Dϕ′ , define wp := value(B),
where (p,B) is the thin edge for p in X ′6k+1. By invariant 1 in Table 1, wp is well defined
(as Dϕ′ ⊆ X ′6k+1 by Lemma 5.2(i) and no player is covered by two edges in X ′6k+1) and
wp ∈ [τ/λ, τ + τ/λ].

By the definition above, we already have two easy inequalities. Recall that given a set S
of thin edges, value(S) is the total value of the thin resources covered by S.

value(X ′6k+1 ∪ Y ′6k) > value(X ′6k+1) >
∑
p∈Dϕ′

wp,
τ

λ
|Dϕ′ | 6

∑
p∈Dϕ′

wp 6 (τ + τ

λ
)|Dϕ′ |.

I Claim 5.3. |Dϕ′ | 6 |Y ′6k|.

I Claim 5.4. value(X ′6k+1∪Y ′6k) 6 τ
λ |Dϕ′ |+ 2τ

λ |Y
′
6k|+

δ1τ
λ |Y

′
6k|, where δ1 = λµ+2µ+2√µ.

I Claim 5.5. value(X ′6k+1 ∪ Y ′6k) > (τ − τ
λ )(|Y ′6k| − |Dϕ′ |) +

∑
p∈Dϕ′

(τ − wp)− δ2τ
λ |Y

′
6k|,

where δ2 = 2λµ+ 2λ√µ+ 6√µ.

The proofs of above claims use Lemma 5.2. In particular, Lemma 5.2 plays a key role in
the proof of Claim 5.5. Here we give a rough idea. Consider the moment we just finish adding
edges to X ′k+1. Lemma 5.2(iv) ensures that roughly (|Y ′6k| − |Dϕ′ |) players in PM∗ \ Imϕ′ are
still addable. Since there are no more addable edges (otherwise they will be added to X ′k+1),
each of these addable players can access less than τ/λ worth of thin resources that are not in
the stack, and hence each of them contribute at least τ − τ/λ worth of thin resources to the
stack. This gives the first term (τ − τ

λ )(|Y ′6k| − |Dϕ′ |). For each player ϕ′(p) ∈ Imϕ′ , as we
explained in section 5.1, it contributed at least τ −wp worth of thin resources to the stack at
the time player p was picked. This gives the second term

∑
p∈Dϕ′

(τ − wp). The third term
is just slack in the analysis.

Putting all the inequalities together gives the following system.
value(X6k+1 ∪ Y6k) >

∑
p∈Dϕ′

wp,
τ
λ |Dϕ′ | 6

∑
p∈Dϕ′

wp 6 (τ + τ/λ)|Dϕ′ |,
|Dϕ′ | 6 |Y ′6k|,
value(X ′6k+1 ∪ Y ′6k) 6 τ

λ |Dϕ′ |+ 2τ
λ |Y

′
6k|+

δ1τ
λ |Y

′
6k|,

value(X ′6k+1 ∪ Y ′6k) > (τ − τ/λ)(|Y ′6k| − |Dϕ′ |) +
∑
p∈Dϕ′

(τ − wp)− δ2τ
λ |Y

′
6k|.

Divide the above system by τ
λ |Dϕ′ |. To simplify the notation, define the variables

B1 := value(X6k+1 ∪ Y6k)/( τλ |Dϕ′ |), B2 := |Y ′6k|/|Dϕ′ |, and B3 :=
∑
p∈Dϕ′

wp/( τλ |Dϕ′ |).
Then we can write the above system equivalently as follows.

B1 > B3, 1 6 B3 6 λ+ 1, 1 6 B2, B1 6 1 + 2B2 + δ1B2,

B1 > (λ− 1)(B2 − 1) + λ−B3 − δ2B2.

The first, fourth, and fifth inequalities give 2(1 + 2B2 + δ1B2) > B1 +B3 > (λ− 1)(B2− 1) +
λ− δ2B2 ⇒ 2 + (4 + 2δ1)B2 > (λ− 1− δ2)B2 + 1⇒ (λ− 5− 2δ1 − δ2)B2 6 1. On the other
hand, λ− 5− 2δ1 − δ2 > 1 for a sufficiently small µ because when µ tends to zero, both δ1
and δ2 tend to 0. Hence, (λ− 5− 2δ1 − δ2)B2 > 1 as B2 > 1 by the third inequality. But it
is impossible that (λ− 5− 2δ1 − δ2)B2 6 1 and (λ− 5− 2δ1 − δ2)B2 > 1 simultaneously.
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Abstract
We study the classical Node-Disjoint Paths (NDP) problem: given an undirected n-vertex graph
G, together with a set {(s1, t1), . . . , (sk, tk)} of pairs of its vertices, called source-destination, or
demand pairs, find a maximum-cardinality set P of mutually node-disjoint paths that connect
the demand pairs. The best current approximation for the problem is achieved by a simple greedy
O(
√
n)-approximation algorithm. Until recently, the best negative result was an Ω(log1/2−ε n)-

hardness of approximation, for any fixed ε, under standard complexity assumptions.
A special case of the problem, where the underlying graph is a grid, has been studied ex-

tensively. The best current approximation algorithm for this special case achieves an Õ(n1/4)-
approximation factor. On the negative side, a recent result by the authors shows that NDP is
hard to approximate to within factor 2Ω(

√
logn), even if the underlying graph is a subgraph of a

grid, and all source vertices lie on the grid boundary. In a very recent follow-up work, the authors
further show that NDP in grid graphs is hard to approximate to within factor Ω(2log1−ε n) for any
constant ε under standard complexity assumptions, and to within factor nΩ(1/(log logn)2) under
randomized ETH.

In this paper we study the NDP problem in grid graphs, where all source vertices {s1, . . . , sk}
appear on the grid boundary. Our main result is an efficient randomized 2O(

√
logn·log logn)-

approximation algorithm for this problem. Our result in a sense complements the 2Ω(
√

logn)-
hardness of approximation for sub-graphs of grids with sources lying on the grid boundary, and
should be contrasted with the above-mentioned almost polynomial hardness of approximation of
NDP in grid graphs (where the sources and the destinations may lie anywhere in the grid).

Much of the work on approximation algorithms for NDP relies on the multicommodity flow
relaxation of the problem, which is known to have an Ω(

√
n) integrality gap, even in grid graphs,

with all source and destination vertices lying on the grid boundary. Our work departs from this
paradigm, and uses a (completely different) linear program only to select the pairs to be routed,
while the routing itself is computed by other methods.
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1 Introduction

We study the classical Node-Disjoint Paths (NDP) problem, where the input consists of
an undirected n-vertex graph G and a collectionM = {(s1, t1), . . . , (sk, tk)} of pairs of its
vertices, called source-destination or demand pairs. We say that a path P routes a demand
pair (si, ti) iff the endpoints of P are si and ti. The goal is to compute a maximum-cardinality
set P of node-disjoint paths, where each path P ∈ P routes a distinct demand pair inM.
We denote by NDP-Planar the special case of the problem when the underlying graph G

is planar, and by NDP-Grid the special case where G is a square grid4. We refer to the
vertices in set S = {s1, . . . , sk} as source vertices; to the vertices in set T = {t1, . . . , tk} as
destination vertices, and to the vertices in set S ∪ T as terminals.

NDP is a fundamental graph routing problem that has been studied extensively in both
graph theory and theoretical computer science communities. Robertson and Seymour [31, 33]
explored the problem in their Graph Minor series, providing an efficient algorithm for NDP
when the number k of the demand pairs is bounded by a constant. But when k is a part
of input, the problem becomes NP-hard [20, 18], even in planar graphs [27], and even in
grid graphs [26]. The best current approximation factor of O(

√
n) for NDP is achieved

by a simple greedy algorithm [25]. Until recently, this was also the best approximation
algorithm for NDP-Planar and NDP-Grid. A natural way to design approximation algorithms
for NDP is via the multicommodity flow relaxation: instead of connecting each routed
demand pair with a path, send maximum possible amount of (possibly fractional) flow
between them. The optimal solution to this relaxation can be computed via a standard
linear program. The O(

√
n)-approximation algorithm of [25] can be cast as an LP-rounding

algorithm of this relaxation. Unfortunately, it is well-known that the integrality gap of this
relaxation is Ω(

√
n), even when the underlying graph is a grid, with all terminals lying on its

boundary. In a recent work, Chuzhoy and Kim [12] designed an Õ(n1/4)-approximation for
NDP-Grid, thus bypassing this integrality gap barrier. Their main observation is that, if all
terminals lie close to the grid boundary (say within distance O(n1/4)), then a simple dynamic
programming-based algorithm yields an O(n1/4)-approximation. On the other hand, if, for
every demand pair, either the source or the destination lies at a distance at least Ω(n1/4)
from the grid boundary, then the integrality gap of the multicommodity flow relaxation
improves, and one can obtain an Õ(n1/4)-approximation via LP-rounding. A natural question
is whether the integrality gap improves even further, if all terminals lie further away from
the grid boundary. Unfortunately, the authors show in [12] that the integrality gap remains
at least Ω(n1/8), even if all terminals lie within distance Ω(

√
n) from the grid boundary. The

Õ(n1/4)-approximation algorithm for NDP-Grid was later extended and generalized to an
Õ(n9/19)-approximation algorithm for NDP-Planar [13].

On the negative side, until recently, only an Ω(log1/2−ε n)-hardness of approximation was
known for the general version of NDP, for any constant ε, unless NP ⊆ ZPTIME(npoly logn) [4,
3], and only APX-hardness was known for NDP-Planar and NDP-Grid [12]. In a recent

4 We use the standard convention of denoting n = |V (G)|, and so the grid has dimensions (
√

n×
√

n); we
assume that

√
n is an integer.
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work [15], the authors have shown that NDP is hard to approximate to within a 2Ω(
√

logn)

factor unless NP ⊆ DTIME(nO(logn)), even if the underlying graph is a planar graph with
maximum vertex degree at most 3, and all source vertices lie on the boundary of a single face.
The result holds even when the input graph G is a vertex-induced subgraph of a grid, with all
sources lying on the grid boundary. In a very recent work [14], the authors show that NDP-Grid
is 2Ω(log1−ε n)-hard to approximate for any constant ε assuming NP * BPTIME(npoly logn),
and moreover, assuming randomized ETH, the hardness of approximation factor becomes
nΩ(1/(log logn)2). We note that the instances constructed in these latter hardness proofs
require all terminals to lie far from the grid boundary.

In this paper we explore NDP-Grid. This important special case of NDP was initially
motivated by applications in VLSI design, and has received a lot of attention since the
1960’s. We focus on a restricted version of NDP-Grid, that we call Restricted NDP-Grid:
here, in addition to the graph G being a square grid, we also require that all source
vertices {s1, . . . , sk} lie on the grid boundary. We do not make any assumptions about
the locations of the destination vertices, that may appear anywhere in the grid. The best
current approximation algorithm for Restricted NDP-Grid is the same as that for the general
NDP-Grid, and achieves a Õ(n1/4)-approximation [12]. Our main result is summarized in the
following theorem.

I Theorem 1. There is an efficient randomized 2O(
√

logn·log logn)-approximation algorithm
for Restricted NDP-Grid.

This result in a sense complements the 2Ω(
√

logn)-hardness of approximation of NDP
on sub-graphs of grids with all sources lying on the grid boundary of [15]5, and should
be contrasted with the recent almost polynomial hardness of approximation of [14] for
NDP-Grid mentioned above. Our algorithm departs from previous work on NDP in that it
does not use the multicommodity flow relaxation. Instead, we define sufficient conditions
that allow us to route a subsetM′ of demand pairs via disjoint paths, and show that there
exists a subset of demand pairs satisfying these conditions, whose cardinality is at least
OPT/2O(

√
logn·log logn), where OPT is the value of the optimal solution. It is then enough

to compute a maximum-cardinality subset of the demand pairs satisfying these conditions.
We write an LP-relaxation for this problem and design a 2O(

√
logn·log logn)-approximation

LP-rounding algorithm for it. We emphasize that the linear program is only used to select
the demand pairs to be routed, and not to compute the routing itself.

We then generalize this result to instances where the source vertices lie within a prescribed
distance from the grid boundary.

I Theorem 2. For every integer δ ≥ 1, there is an efficient randomized(
δ · 2O(

√
logn·log logn)

)
-approximation algorithm for the special case of NDP-Grid where all

source vertices lie within distance at most δ from the grid boundary.

We note that for instances of NDP-Grid where both the sources and the destinations
are within distance at most δ from the grid boundary, it is easy to obtain an efficient
O(δ)-approximation algorithm (see, e.g. [12]).

A problem closely related to NDP is the Edge-Disjoint Paths (EDP) problem. It is defined
similarly, except that now the paths chosen to route the demand pairs may share vertices,

5 Note that the two results are not strictly complementary: our algorithm only applies to grid graphs,
while the hardness result is only valid for sub-graphs of grids.
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Figure 1 A wall graph.

and are only required to be edge-disjoint. The approximability status of EDP is very similar
to that of NDP: there is an O(

√
n)-approximation algorithm [10], and an Ω(log1/2−ε n)-

hardness of approximation for any constant ε, unless NP ⊆ ZPTIME(npoly logn) [4, 3]. As
in the NDP problem, we can use the standard multicommodity flow LP-relaxation of the
problem, in order to obtain the O(

√
n)-approximation algorithm, and the integrality gap of

the LP-relaxation is Ω(
√
n) even in planar graphs. Recently, Fleszar et al. [19] designed an

O(
√
r · log(kr))-approximation algorithm for EDP, where r is the feedback vertex set number

of the input graph G = (V,E) — the smallest number of vertices that need to be deleted
from G in order to turn it into a forest.

Several special cases of EDP have better approximation algorithms: an
O(log2 n)-approximation is known for even-degree planar graphs [9, 8, 22], and an O(log n)-
approximation is known for nearly-Eulerian uniformly high-diameter planar graphs, and
nearly-Eulerian densely embedded graphs, including grid graphs [5, 24, 23]. Furthermore,
an O(log n)-approximation algorithm is known for EDP on 4-edge-connected planar, and
Eulerian planar graphs [21]. It appears that the restriction of the graph G to be Eulerian,
or near-Eulerian, makes the EDP problem on planar graphs significantly simpler, and in
particular improves the integrality gap of the standard multicommodity flow LP-relaxation.

The analogue of the grid graph for the EDP problem is the wall graph (see Figure 1):
the integrality gap of the multicommodity flow relaxation for EDP on wall graphs is Ω(

√
n).

The Õ(n1/4)-approximation algorithm of [12] for NDP-Grid extends to EDP on wall graphs,
and the 2Ω(

√
logn)-hardness of approximation of [15] for NDP-Planar also extends to EDP

on sub-graphs of walls, with all sources lying on the top boundary of the wall. The recent
hardness result of [14] for NDP-Grid also extends to an 2Ω(log1−ε n)-hardness of EDP on
wall graphs, assuming NP * BPTIME(npoly logn), and to nΩ(1/(log logn)2)-hardness assuming
randomized ETH. We extend our results to EDP and NDP on wall graphs:

I Theorem 3. There is an efficient randomized 2O(
√

logn·log logn)-approximation algorithm
for EDP and for NDP on wall graphs, when all source vertices lie on the wall boundary.

Other related work

Cutler and Shiloach [17] studied an even more restricted version of NDP-Grid, where all source
vertices lie on the top row R∗ of the grid, and all destination vertices lie on a single row R′

of the grid, far enough from its top and bottom boundaries. They considered three different
settings of this special case. In the packed-packed setting, all sources appear consecutively on
R∗, and all destinations appear consecutively on R′ (but both sets may appear in an arbitrary
order). They show a necessary and a sufficient condition for all demand pairs to be routable
via node-disjoint paths in this setting. The second setting is the packed-spaced setting. Here,
the sources again appear consecutively on R∗, but all destinations are at a distance at least



J. Chuzhoy, D.H.K. Kim, and R. Nimavat 38:5

d from each other. For this setting, the authors show that if d ≥ k, then all demand pairs
can be routed. We note that [12] extended their algorithm to a more general setting, where
the destination vertices may appear anywhere in the grid, as long as the distance between
any pair of the destination vertices, and any destination vertex and the boundary of the grid,
is at least Ω(k). Robertson and Seymour [32] provided sufficient conditions for the existence
of node-disjoint routing of a given set of demand pairs in the more general setting of graphs
drawn on surfaces, and they designed an algorithm whose running time is poly(n) · f(k) for
finding the routing, where f(k) is at least exponential in k. Their result implies the existence
of the routing in grids, when the destination vertices are sufficiently far from each other and
from the grid boundaries, but it does not provide an efficient algorithm to compute such a
routing. The third setting studied by Cutler and Shiloach is the spaced-spaced setting, where
the distances between every pair of source vertices, and every pair of destination vertices
are at least d. The authors note that they could not come up with a better algorithm for
this setting, than the one provided for the packed-spaced case. Aggarwal, Kleinberg, and
Williamson [1] considered a special case of NDP-Grid, where the set of the demand pairs is a
permutation: that is, every vertex of the grid participates in exactly one demand pair. They
show that Ω(

√
n/ log n) demand pairs are routable in this case via node-disjoint paths. They

further show that if all terminals are at a distance at least d from each other, then at least
Ω(
√
nd/ log n) pairs are routable.
A variation of the NPD and EDP problems, where small congestion is allowed, has been a

subject of extensive study, starting with the classical paper of Raghavan and Thompson [29]
that introduced the randomized rounding technique. We say that a set P of paths causes
congestion c, if at most c paths share the same vertex or the same edge, for the NDP and
the EDP settings respectively. A recent line of work [9, 28, 2, 30, 11, 16, 7, 6] has lead to an
O(poly log k)-approximation for both NDP and EDP problems with congestion 2. For planar
graphs, a constant-factor approximation with congestion 2 is known [34].

Organization

The majority of this extended abstract is dedicated to a detailed but informal overview of
the proofs of Theorem 1 and Theorem 2. The formal proofs, as well as the extension to EDP
and NDP on wall graphs, are deferred to the full version of the paper.

2 High-Level Overview of the Algorithm

The goal of this section is to provide an informal high-level overview of the main result of the
paper – the proof of Theorem 1. With this goal in mind, the values of various parameters are
given imprecisely in this section, in a way that best conveys the intuition. The full version
of the paper contains a formal description of the algorithm and the precise settings of all
parameters.

We first consider an even more restricted special case of NDP-Grid, where all source
vertices appear on the top boundary of the grid, and all destination vertices appear far enough
from the grid boundary, and design an efficient randomized 2O(

√
logn·log logn)-approximation

algorithm A for this problem. We later show how to reduce Restricted NDP-Grid to this
special case of the problem; we focus on the description of the algorithm A for now.

We assume that our input graph G is the (` × `)-grid, and we denote by n = `2 the
number of its vertices. We further assume that the set of the demand pairs is M =
{(s1, t1), . . . , (sk, tk)}, with the vertices in set S = {s1, . . . , sk} called source vertices; the
vertices in set T = {t1, . . . , tk} called destination vertices; and the vertices in S ∪ T called
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38:6 Improved Approx. for Node-Disjoint Paths in Grids with Sources on the Boundary

(a) Global routing. In this figure, the sub-grids Bi

are aligned vertically and horizontally. A similar
(but somewhat more complicated) routing can be per-
formed even if they are not aligned. For convenience
we did not include all source vertices and all paths.

(b) Local routing inside Bi

Figure 2 Schematic view of routing of spaced-out instances.

terminals. Let OPT denote the value of the optimal solution to the NDP instance (G,M).
We assume that the vertices of S lie on the top boundary of the grid, that we denote by R∗,
and the vertices of T lie sufficiently far from the grid boundary – say, at a distance at least
OPT from it. For a subsetM′ ⊆M of the demand pairs, we denote by S(M′) and T (M′)
the sets of the source and the destination vertices of the demand pairs in M′, respectively.
As our starting point, we consider a simple observation of Chuzhoy and Kim [12], that
generalizes the results of Cutler and Shiloach [17]. Suppose we are given an instance of
NDP-Grid with k demand pairs, where the sources lie on the top boundary of the grid, and the
destination vertices may appear anywhere in the grid, but the distance between every pair of
the destination vertices, and every destination vertex and the boundary of the grid, is at least
(8k + 8) – we call such instances spaced-out instances. In this case, all demand pairs inM
can be efficiently routed via node-disjoint paths, as follows. Consider, for every destination
vertex ti ∈ T , a square sub-grid Bi of G, of size (2k × 2k), such that ti lies roughly at the
center of Bi. We construct a set P of k node-disjoint paths, that originate at the vertices of
S, and traverse the sub-grids Bi one-by-one in a snake-like fashion (see a schematic view on
Figure 2a). We call this part of the routing global routing. The local routing needs to specify
how the paths in P traverse each box Bi. This is done in a straightforward manner, while
ensuring that the unique path originating at vertex si visits the vertex ti (see Figure 2b).
By suitably truncating the final set P of paths, we obtain a routing of all demand pairs in
M via node-disjoint paths.

Unfortunately, in our input instance (G,M), the destination vertices may not be located
sufficiently far from each other. We can try to select a large subset M′ ⊆M of the demand
pairs, so that every pair of destination vertices in T (M′) appear at a distance at least Ω(|M′|)
from each other; but in some cases the largest such setM′ may only contain O(OPT/

√
k)

demand pairs (for example, suppose all destination vertices lie consecutively on a single row
of the grid). One of our main ideas is to generalize this simple algorithm to a number of
recursive levels.

For simplicity, let us first describe the algorithm with just two recursive levels. Suppose
we partition the top row of the grid into z disjoint intervals, I1, . . . , Iz. LetM′ ⊆M be a
set of demand pairs that we would like to route. Denote |M′| = k′, and assume that we are
given a collection Q of square sub-grids of G, of size (4k′ × 4k′) each (that we call squares),
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such that every pair Q,Q′ ∈ Q of distinct squares is at a distance at least 4k′ from each
other. Assume further that each such sub-grid Q ∈ Q is assigned a color χ(Q) ∈ {c1, . . . , cz},
such that, if Q is assigned the color cj , then all demand pairs (s, t) ∈M′ whose destination t
lies in Q have their source s ∈ Ij (so intuitively, each color cj represents an interval Ij). Let
M′j ⊆M′ be the set of all demand pairs (s, t) ∈ M′ with s ∈ Ij . We would like to ensure
that |M′j | is roughly k′/z, and that all destination vertices of T (M′j) are at a distance at
least |M′j | from each other. We claim that if we could find the collection {I1, . . . , Iz} of the
intervals of the first row, a collection Q of sub-grids of G, a coloring χ : Q → {c1, . . . , cz},
and a subsetM′ ⊆M of the demand pairs with these properties, then we would be able to
route all demand pairs inM′.

In order to do so, for each square Q ∈ Q, we construct an augmented square Q+, by
adding a margin of k′ rows and columns around Q. Our goal is to construct a collection P
of node-disjoint paths routing the demand pairs inM′. We start by constructing a global
routing, where all paths in P originate from the vertices of S(M′) and then visit the squares
in {Q+ | Q ∈ Q} in a snake-like fashion, just like we did for the spaced-out instances described
above (see Figure 2a). Consider now some square Q ∈ Q and the corresponding augmented
square Q+. Assume that χ(Q) = cj , and let Pj ⊆ P be the set of paths originating at the
source vertices that lie in Ij . While traversing the square Q+, we ensure that only the paths
in Pj enter the square Q; the remaining paths use the margins on the left and on the right of
Q in order to traverse Q+. This can be done because the sources of the paths in Pj appear
consecutively on R∗, relatively to the sources of all paths in P . In order to complete the local
routing inside the square Q, observe that the destination vertices appear far enough from
each other, and so we can employ the simple algorithm for spaced-out instances inside Q.

In order to optimize the approximation factor that we achieve, we extend this approach
to ρ = O(

√
log n) recursive levels. Let η = 2

⌈√
logn

⌉
. We define auxiliary parameters

d1 > d2 > · · · > dρ > dρ+1. Roughly speaking, we can think of dρ+1 as being a constant (say
16), of d1 as being comparable to OPT, and for all 1 ≤ h ≤ ρ, dh+1 = dh/η. The setup for
the algorithm consists of three ingredients: (i) a hierarchical decomposition H̃ of the grid
into square sub-grids (that we refer to as squares); (ii) a hierarchical partition I of the first
row R∗ of the grid into intervals; and (iii) a hierarchical coloring f of the squares in H̃ with
colors that correspond to the intervals of I, together with a selection of a subsetM′ ⊆M
of the demand pairs to route. We define sufficient conditions on the hierarchical system H̃
of squares, the hierarchical partition I of R∗ into intervals, the coloring f and the subset
M′ of the demand pairs, under which a routing of all pairs inM′ exists and can be found
efficiently. For a fixed hierarchical system H̃ of squares, a triple (I, f,M′) satisfying these
conditions is called a good ensemble. We show that a good ensemble with a large enough set
M′ of demand pairs exists, and then design an approximation algorithm for computing a
good ensemble maximizing |M′|. We now describe each of these ingredients in turn.

2.1 A Hierarchical System of Squares.

A hierarchical system H̃ of squares consists of a sequence Q1,Q2, . . . ,Qρ of sets of sub-grids
of G. For each 1 ≤ h ≤ ρ, Qh is a collection of disjoint sub-grids of G (that we refer to as
level-h squares); every such square Q ∈ Qh has size (dh × dh), and every pair of distinct
squares Q,Q′ ∈ Qh are within distance at least dh from each other (see Figure 3). We require
that for each 1 < h ≤ ρ, for every square Q ∈ Qh, there is a unique square Q′ ∈ Qh−1
(called the parent-square of Q) that contains Q. We say that a demand pair (s, t) belongs
to the hierarchical system H̃ = (Q1,Q2, . . . ,Qρ) of squares iff t ∈

⋃
Q∈Qρ

Q. We show a
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Figure 3 A schematic view of a hierarchical system of squares with 2 levels.

simple efficient algorithm to construct 2O(
√

logn) such hierarchical systems of squares, so
that every demand pair belongs to at least one of them. Each such system H̃ of squares
induces an instance of NDP — the instance is defined over the same graph G, and the set
M̃ ⊆M of demand pairs that belong to the system H̃. It is then enough to obtain a factor
2O(
√

logn·log logn)-approximation algorithm for each resulting instance (G,M̃) separately.
From now on we fix one such hierarchical system H̃ = (Q1,Q2, . . . ,Qρ) of squares, together
with the set M̃ ⊆M of demand pairs, containing all pairs (s, t) that belong to H̃, and focus
on designing a 2O(

√
logn·log logn)-approximation algorithm for instance (G,M̃).

2.2 A Hierarchical Partition of the Top Grid Boundary
Recall that R∗ denotes the first row of the grid. A hierarchical partition I of R∗ is a sequence
I1, I2, . . . , Iρ of sets of sub-paths of R∗, such that for each 1 ≤ h ≤ ρ, the paths in Ih
(that we refer to as level-h intervals) partition the vertices of R∗. We also require that for
all 1 < h ≤ ρ, every level-h interval I ∈ Ih is contained in a unique level-(h − 1) interval
I ′ ∈ Ih−1, that we refer to as the parent-interval of I. For every level 1 ≤ h ≤ ρ, we define a
collection χh of colors, containing one color ch(I) for each level-h interval I ∈ Ih. If I ′ ∈ Ih
is a parent-interval of I ∈ Ih+1, then we say that color ch(I ′) is a parent-color of ch+1(I).

2.3 Coloring the Squares and Selecting Demand Pairs to Route
The third ingredient of our algorithm is an assignment f of colors to the squares, and a
selection of a subset of the demand pairs to be routed. For every level 1 ≤ h ≤ ρ, for every
level-h square Q ∈ Qh, we would like to assign a single level-h color ch(I) ∈ χh to Q, denoting
f(Q) = ch(I). Intuitively, if color ch(I) is assigned to Q, then the only demand pairs (s, t)
with t ∈ Q that we may route are those whose source vertex s lies on the level-h interval I.
We require that the coloring is consistent across levels: that is, for all 1 < h ≤ ρ, if a level-h
square is assigned a level-h color ch, and its parent-square is assigned a level-(h− 1) color
ch−1, then ch−1 must be a parent-color of ch. We call such a coloring f a valid coloring of H̃
with respect to I.

Finally, we would like to select a subsetM′ ⊆ M̃ of the demand pairs to route. Consider
some demand pair (s, t) and some level 1 ≤ h ≤ ρ. Let Ih be the level-h interval to which s
belongs. Then we say that s has the level-h color ch(Ih). Therefore, for each level 1 ≤ h ≤ ρ,
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vertex s is assigned the unique level-h color ch(Ih), and for 1 ≤ h < ρ, ch(Ih) is the parent-
color of ch+1(Ih+1). Let Qρ ∈ Qρ be the level-ρ square to which t belongs. We may only add
(s, t) toM′ if the level-ρ color of Qρ is cρ(Iρ) (that is, it is the same as the level-ρ color of
s). Notice that in particular, this means that for every level 1 ≤ h ≤ ρ, if Qh is the level-h
square containing t, and it is assigned the color ch(Ih), then s is assigned the same level-h
color, and so s ∈ Ih. Finally, we require that for all 1 ≤ h ≤ ρ, for every level-h color ch, the
total number of all demand pairs (s, t) ∈M′, such that the level-h color of s is ch, is no more
than dh+1/16 (if h = ρ, then the number is no more than 1). IfM′ has all these properties,
then we say that it respects the coloring f . We say that (I, f,M′) is a good ensemble iff I is
a hierarchical partition of R∗ into intervals; f is a valid coloring of the squares in H̃ with
respect to I; andM′ ⊆ M̃ is a subset of the demand pairs that respects the coloring f . The
size of the ensemble is |M′|.

2.4 The Routing
We show that, if we are given a good ensemble (I, f,M′), then we can route all demand pairs
inM′. The routing itself follows the high-level idea outlined above. We gradually construct
a collection P of node-disjoint paths routing the demand pairs inM′. At the highest level,
all these paths depart from their sources and then visit the level-1 squares one-by-one, in a
snake-like fashion, as in Figure 2a. Consider now some level-1 square Q, and assume that
its level-1 color is c1(I), where I ∈ I1 is some level-1 interval of R∗. Then only the paths
P ∈ P that originate at the vertices of I will enter the square Q; the remaining paths will
exploit the spacing between the level-1 squares in order to bypass it; the spacing between the
level-1 squares is sufficient to allow this. Once we have defined this global routing, we need
to specify how the routing is carried out inside each square. We employ the same procedure
recursively. Consider some level-1 square Q, and let P ′ ⊆ P be the set of all paths that visit
Q. Assume further that the level-1 color of Q is c1(I). Since we are only allowed to have
at most d2/16 demand pairs inM′ whose level-1 color is c1(I), |P ′| ≤ d2/16. Let Q′ ⊆ Q2
be the set of all level-2 squares contained in Q. The paths in P ′ will visit the squares of Q′
one-by-one in a snake-like fashion (but this part of the routing is performed inside Q). As
before, for every level-2 square Q′ ⊆ Q, if the level-2 color of Q′ is c2(I ′), then only those
paths of P ′ that originate at the vertices of I ′ will enter Q′; the remaining paths will use the
spacing between the level-2 squares to bypass Q′. Since |P ′| ≤ d2/16, and all level-2 squares
are at distance at least d2 from each other, there is a sufficient spacing to allow this routing.
We continue this process recursively, until, at the last level of the recursion, we route at most
one path per color, to its destination vertex.

In order to complete the proof of the theorem, we need to show that there exists a good
ensemble (I, f,M′) of size |M′| ≥ |OPT|/2O(

√
logn·log logn), and that we can find such an

ensemble efficiently.

2.5 The Existence of the Ensemble
The key notion that we use in order to show that a large good ensemble (I, f,M′) exists
is that of a shadow property. Suppose Q is some (d × d) sub-grid of G, and let M̂ ⊆ M
be some subset of the demand pairs. Among all demand pairs (s, t) ∈ M̂ with t ∈ Q, let
(s1, t1) be the one with s1 appearing earliest on the first row R∗ of G, and let (s2, t2) be the
one with s2 appearing latest on R∗. The shadow of Q with respect to M̂ is the sub-path of
R∗ between s1 and s2. Let NM̂(Q) be the number of all demand pairs (s, t) ∈ M̂ with s
lying in the shadow of Q (that is, s lies between s1 and s2 on R∗). We say that M̂ has the
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shadow property with respect to Q iff NM̂(Q) ≤ d. We say that M̂ has the shadow property
with respect to the hierarchical system H̃ = (Q1, . . . ,Qρ) of squares, iff M̂ has the shadow
property with respect to every square in

⋃ρ
h=1Qh. Let P∗ be the optimal solution to the

instance (G,M̃) of NDP, where M̃ only includes the demand pairs that belong to H̃. Let
M∗ ⊆ M̃ be the set of the demand pairs routed by P∗. For every demand pair (s, t) ∈M∗,
let P (s, t) ∈ P∗ be the path routing this demand pair. Intuitively, it feels like M∗ should
have the shadow property. Indeed, let Q ∈

⋃ρ
h=1Qh be some square of size (dh × dh), and

let (s1, t1), (s2, t2) ∈ M∗ be defined for Q as before, so that the shadow of Q with respect
toM∗ is the sub-path of R∗ between s1 and s2. Let P be any path of length at most 2dh
connecting t1 to t2 in Q, and let γ be the closed curve consisting of the union of P (s1, t1), P ,
P (s2, t2), and the shadow of Q. Consider the disc D whose boundary is γ. The intuition is
that, if (s, t) ∈M∗ is a demand pair whose source lies in the shadow of Q, and destination
lies outside of D, then P (s, t) must cross the path P , as it needs to escape the disc D. Since
path P is relatively short, only a small number of such demand pairs may exist. The main
difficulty with this argument is that we may have a large number of demand pairs (s, t),
whose source lies in the shadow of Q, and the destination lies in the disc D. Intuitively, this
can only happen if P (s1, t1) and P (s2, t2) “capture” a large area of the grid. We show that,
in a sense, this cannot happen too often, and that there is a subset M∗∗ ⊆M∗ of at least
|M∗|/2O(

√
logn·log logn) demand pairs, such thatM∗∗ has the shadow property with respect

to H̃.
Finally, we show that there exists a good ensemble (I, f,M′) with

|M′| ≥ |M∗∗|/2O(
√

logn·log logn). We construct the ensemble over the course of ρ itera-
tions, starting withM′ =M∗∗. In the hth iteration we construct the set Ih of the level-h
intervals of R∗, assign level-h colors to all level-h squares of H̃, and discard some demand
pairs from M′. Recall that η = 2

⌈√
logn

⌉
. In the first iteration, we let I1 be a partition

of the row R∗ into intervals, each of which contains roughly d1
16η = d2

16 ≤
|M∗|
η vertices of

S(M′). Assume that these intervals are I1, . . . , Ir, and that they appear in this left-to-right
order on R∗. We call all intervals Ij where j is odd interesting intervals, and the remaining
intervals Ij uninteresting intervals. We discard from M′ all demand pairs (s, t), where s
lies on an uninteresting interval. Consider now some level-1 square Q, and letM(Q) ⊆M′
be the set of all demand pairs whose destination lies in Q. Since the original set M∗∗
of demand pairs had the shadow property with respect to Q, it is easy to verify that all
source vertices of the demand pairs in M(Q) must belong to a single interesting interval
of I1. Let I be that interval. Then we color the square Q with the level-1 color c1(I)
corresponding to the interval I. This completes the first iteration. Notice that for each
level-1 color c1(I), at most d2/16 demand pairs (s, t) ∈ M′ have s ∈ I. In the following
iteration, we similarly partition every interesting level-1 interval into level-2 intervals that
contain roughly d3/16 ≤ |M∗|/η2 source vertices ofM′ each, and then define a coloring of
all level-2 squares similarly, while suitably updating the set M′ of the demand pairs. We
continue this process for ρ iterations, eventually obtaining a good ensemble (I, f,M′). Since
we only discard a constant fraction of the demand pairs ofM′ in every iteration, at the end,
|M′| ≥ |M∗∗|/2ρ = |M∗∗|/2O(

√
logn) ≥ |M∗|/2O(

√
logn·log logn).

2.6 Finding the Good Ensemble
In our final step, our goal is to find a good ensemble (I, f,M′) maximizing |M′|. We show
an efficient randomized 2O(

√
logn·log logn)-approximation algorithm for this problem. First,

we show that, at the cost of losing a small factor in the approximation ratio, we can restrict
our attention to a small collection I1, I2, . . . , Iz of hierarchical partitions of R∗ into intervals,
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and that it is enough to obtain a 2O(
√

logn·log logn)-approximate solution for the problem of
finding the largest ensemble (Ij , f,M′) for each such partition Ij separately.

We then fix one such hierarchical partition Ij , and design an LP-relaxation for the problem
of computing a coloring f of H̃ and a collectionM′ of demand pairs, such that (Ij , f,M′)
is a good ensemble, while maximizing |M′|. Finally, we design an efficient randomized
LP-rounding 2O(

√
logn·log logn)-approximation algorithm for the problem.

2.7 Completing the Proof of Theorem 1

So far we have assumed that all source vertices lie on the top boundary of the grid, and
all destination vertices are at a distance at least Ω(OPT) from the grid boundary. Let A
be the randomized efficient 2O(

√
logn·log logn)-approximation algorithm for this special case.

We now extend it to the general Restricted NDP-Grid problem. For every destination vertex
t, we identify the closest vertex t̃ that lies on the grid boundary. Using standard grouping
techniques, at the cost of losing an additional O(log n) factor in the approximation ratio,
we can assume that all source vertices lie on the top boundary of the grid, all vertices in{
t̃ | t ∈ T (M)

}
lie on a single boundary edge of the grid (assume for simplicity that it is the

bottom boundary), and that there is some integer d, such that for every destination vertex
t ∈ T (M), d ≤ d(t, t̃) < 2d. We show that we can define a collection Z = {Z1, . . . , Zr} of
disjoint square sub-grids of G, and a collection I = {I1, . . . , Ir} of disjoint sub-intervals of
R∗, such that the bottom boundary of each sub-grid Zi is contained in the bottom boundary
of G, the top boundary of Zi is within distance at least OPT from R∗, Z1, . . . , Zr appear in
this left-to-right order in G, and I1, . . . , Ir appear in this left-to-right order on R∗. For each
1 ≤ j ≤ r, we letMj denote the set of all demand pairs with the sources lying on Ij and
the destinations lying in Zj . For each 1 ≤ j ≤ r, we then obtain a new instance (G,Mj)
of the NDP problem. We show that there exist a collection Z of squares and a collection
I of intervals, such that the value of the optimal solution to each instance (G,Mj), that
we denote by OPTj , is at most d, while

∑r
j=1 OPTj ≥ OPT/2O(

√
logn·log logn). Moreover, it

is not hard to show that, if we can compute, for each 1 ≤ j ≤ r, a routing of some subset
M′j ⊆ Mj of demand pairs in G, then we can also route all demand pairs in

⋃r
j=1M′j

simultaneously in G.
There are two problems with this approach. First, we do not know the set Z of sub-grids of

G and the set I of intervals of R∗. Second, it is not clear how to solve each resulting problem
(G,Mj). To address the latter problem, we define a simple mapping of all source vertices in
S(Mj) to the top boundary of grid Zj , obtaining an instance of Restricted NDP-Grid, where
all source vertices lie on the top boundary of the grid Zj , and all destination vertices lie at a
distance at least OPTj ≤ d from its boundary. We can then use algorithm A in order to solve
this problem efficiently. It is easy to see that, if we can route some subsetM′j of the demand
pairs via node-disjoint paths in Zj , then we can extend this routing to the corresponding set
of original demand pairs, whose sources lie on R∗.

Finally, we employ dynamic programming in order to find the set Z of sub-grids of G
and the set I of intervals of I. For each such potential sub-grid Z and interval I, we use
algorithm A in order to find a routing of a large set of demand pairs of the corresponding
instance defined inside Z, and then exploit the resulting solution values for each such pair
(I, Z) in a simple dynamic program, that allows us to compute the set Z of sub-grids of G,
the set I of intervals of I, and the final routing.
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3 Approximation Algorithm for the Special Case with Sources Close
to the Grid Boundary

In this section we provide a sketch of the proof of Theorem 2. We assume that we are given
an instance (G,M) of NDP-Grid and an integer δ > 0, such that every source vertex is at a
distance at most δ from the grid boundary. Our goal is to design an efficient randomized
factor-(δ ·2O(

√
logn·log logn))-approximation algorithm for this special case. For every terminal

v ∈ S(M)∪T (M), let ṽ be the vertex lying closest to v on the boundary of the grid G. Using
standard grouping techniques, at the cost of losing an O(log n)-factor in the approximation
ratio, we can assume that there is some integer d, such that for all t ∈ T (M), d ≤ d(t, t̃) < 2d.

Assume first that d ≤ δ · 2O(
√

logn log logn). Let M̂ =
{

(s̃, t̃) | (s, t) ∈M
}
be a new set of

demand pairs, so that all vertices participating in these demand pairs lie on the boundary of
G. We can efficiently find an optimal solution to the NDP problem instance (G,M̂) using
standard dynamic programming. We then show that OPT(G,M̂) = Ω(OPT(G,M)/(δ ·
2O(
√

logn·log logn))), obtaining an (δ · 2O(
√

logn·log logn))-approximation algorithm.
From now on we assume that d > δ · 2Ω(

√
logn log logn). Next, we define a new set M̃ of

demand pairs: M̃ = {(s̃, t) | (s, t) ∈M}, so all source vertices of the demand pairs in M̃ lie
on the boundary of G, obtaining an instance of Restricted NDP-Grid. Let OPT′ be the value
of the optimal solution to problem (G,M̃). We show that OPT′ ≥ Ω(OPT(G,M)/δ).

We then focus on instance (G,M̃) of Restricted NDP-Grid. We say that a path P routing a
demand pair (s̃, t) ∈ M̃ is canonical iff it contains the original source s. The crux of the proof
is to show that we can modify the routing produced by the 2O(

√
logn·log logn)-approximation

algorithm to instance (G,M̃), so that in the resulting routing all paths are canonical. In
order to do so, we utilize the fact that the destination vertices lie much further from the
grid boundaries than the source vertices. This creates sufficient margins around the grid
boundaries that allow us to modify the routing to turn it a canonical one.

References

1 Alok Aggarwal, Jon Kleinberg, and David P. Williamson. Node-disjoint paths on the
mesh and a new trade-off in VLSI layout. SIAM J. Comput., 29(4):1321–1333, 2000. doi:
10.1137/S0097539796312733.

2 Matthew Andrews. Approximation algorithms for the edge-disjoint paths problem via
Raecke decompositions. In Proceedings of IEEE FOCS, pages 277–286, 2010. doi:10.
1109/FOCS.2010.33.

3 Matthew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, Kunal Talwar,
and Lisa Zhang. Inapproximability of edge-disjoint paths and low congestion routing on un-
directed graphs. Combinatorica, 30(5):485–520, 2010. doi:10.1007/s00493-010-2455-9.

4 Matthew Andrews and Lisa Zhang. Logarithmic hardness of the undirected edge-disjoint
paths problem. J. ACM, 53(5):745–761, sep 2006. doi:10.1145/1183907.1183910.

5 Yonatan Aumann and Yuval Rabani. Improved bounds for all optical routing. In Proceed-
ings of the sixth annual ACM-SIAM symposium on Discrete algorithms, SODA ’95, pages
567–576, Philadelphia, PA, USA, 1995. Society for Industrial and Applied Mathematics.
URL: http://dl.acm.org/citation.cfm?id=313651.313820.

6 Chandra Chekuri and Julia Chuzhoy. Half-integral all-or-nothing flow. Unpublished Ma-
nuscript.

7 Chandra Chekuri and Alina Ene. Poly-logarithmic approximation for maximum node dis-
joint paths with constant congestion. In Proc. of ACM-SIAM SODA, 2013.

http://dx.doi.org/10.1137/S0097539796312733
http://dx.doi.org/10.1137/S0097539796312733
http://dx.doi.org/10.1109/FOCS.2010.33
http://dx.doi.org/10.1109/FOCS.2010.33
http://dx.doi.org/10.1007/s00493-010-2455-9
http://dx.doi.org/10.1145/1183907.1183910
http://dl.acm.org/citation.cfm?id=313651.313820


J. Chuzhoy, D.H.K. Kim, and R. Nimavat 38:13

8 Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. Edge-disjoint paths in planar
graphs. In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Sym-
posium on, pages 71–80. IEEE, 2004.

9 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Multicommodity flow, well-
linked terminals, and routing problems. In Proc. of ACM STOC, pages 183–192, 2005.

10 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. An O(
√
n) approximation and

integrality gap for disjoint paths and unsplittable flow. Theory of Computing, 2(1):137–146,
2006. doi:10.4086/toc.2006.v002a007.

11 Julia Chuzhoy. Routing in undirected graphs with constant congestion. SIAM J. Comput.,
45(4):1490–1532, 2016. doi:10.1137/130910464.

12 Julia Chuzhoy and David H. K. Kim. On approximating node-disjoint paths in grids. In
Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim, editors, Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM 2015, August 24-26, 2015, Princeton, NJ, USA, volume 40 of LIPIcs, pages 187–211.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://www.dagstuhl.
de/dagpub/978-3-939897-89-7, doi:10.4230/LIPIcs.APPROX-RANDOM.2015.187.

13 Julia Chuzhoy, David H. K. Kim, and Shi Li. Improved approximation for node-disjoint
paths in planar graphs. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, pages 556–569, New York, NY, USA, 2016. ACM.
doi:10.1145/2897518.2897538.

14 Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. Almost polynomial hardness of
node-disjoint paths in grids. Unpublished Manuscript, 2017.

15 Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. New hardness results for rout-
ing on disjoint paths. In Hamed Hatami, Pierre McKenzie, and Valerie King, edit-
ors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 86–99. ACM, 2017.
doi:10.1145/3055399.3055411.

16 Julia Chuzhoy and Shi Li. A polylogarithmic approximation algorithm for edge-disjoint
paths with congestion 2. J. ACM, 63(5):45:1–45:51, 2016. URL: http://dl.acm.org/
citation.cfm?id=2893472, doi:10.1145/2893472.

17 M. Cutler and Y. Shiloach. Permutation layout. Networks, 8:253–278, 1978. doi:10.1002/
net.3230080308.

18 Shimon Even, Alon Itai, and Adi Shamir. On the complexity of timetable and multicom-
modity flow problems. SIAM J. Comput., 5(4):691–703, 1976. doi:10.1137/0205048.

19 Krzysztof Fleszar, Matthias Mnich, and Joachim Spoerhase. New Algorithms for Maximum
Disjoint Paths Based on Tree-Likeness. In Piotr Sankowski and Christos Zaroliagis, editors,
24th Annual European Symposium on Algorithms (ESA 2016), volume 57 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 42:1–42:17, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ESA.2016.42.

20 R. Karp. On the complexity of combinatorial problems. Networks, 5:45–68, 1975.
21 Ken-Ichi Kawarabayashi and Yusuke Kobayashi. An O(log n)-approximation algorithm

for the edge-disjoint paths problem in Eulerian planar graphs. ACM Trans. Algorithms,
9(2):16:1–16:13, 2013. doi:10.1145/2438645.2438648.

22 Jon Kleinberg. An approximation algorithm for the disjoint paths problem in even-degree
planar graphs. In Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science, FOCS ’05, pages 627–636, Washington, DC, USA, 2005. IEEE Computer
Society. doi:10.1109/SFCS.2005.18.

23 Jon M. Kleinberg and Éva Tardos. Disjoint paths in densely embedded graphs. In Pro-
ceedings of the 36th Annual Symposium on Foundations of Computer Science, pages 52–61,
1995.

ICALP 2018

http://dx.doi.org/10.4086/toc.2006.v002a007
http://dx.doi.org/10.1137/130910464
http://www.dagstuhl.de/dagpub/978-3-939897-89-7
http://www.dagstuhl.de/dagpub/978-3-939897-89-7
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.187
http://dx.doi.org/10.1145/2897518.2897538
http://dx.doi.org/10.1145/3055399.3055411
http://dl.acm.org/citation.cfm?id=2893472
http://dl.acm.org/citation.cfm?id=2893472
http://dx.doi.org/10.1145/2893472
http://dx.doi.org/10.1002/net.3230080308
http://dx.doi.org/10.1002/net.3230080308
http://dx.doi.org/10.1137/0205048
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.42
http://dx.doi.org/10.1145/2438645.2438648
http://dx.doi.org/10.1109/SFCS.2005.18


38:14 Improved Approx. for Node-Disjoint Paths in Grids with Sources on the Boundary

24 Jon M. Kleinberg and Éva Tardos. Approximations for the disjoint paths problem in high-
diameter planar networks. J. Comput. Syst. Sci., 57(1):61–73, 1998. doi:10.1006/jcss.
1998.1579.

25 Stavros G. Kolliopoulos and Clifford Stein. Approximating disjoint-path problems using
packing integer programs. Mathematical Programming, 99:63–87, 2004. doi:10.1007/
s10107-002-0370-6.

26 MR Kramer and Jan van Leeuwen. The complexity of wire-routing and finding minimum
area layouts for arbitrary vlsi circuits. Advances in computing research, 2:129–146, 1984.

27 James F. Lynch. The equivalence of theorem proving and the interconnection problem.
SIGDA Newsl., 5(3):31–36, 1975. doi:10.1145/1061425.1061430.

28 Harald Räcke. Minimizing congestion in general networks. In Proc. of IEEE FOCS, pages
43–52, 2002.

29 Prabhakar Raghavan and Clark D. Tompson. Randomized rounding: a technique for prov-
ably good algorithms and algorithmic proofs. Combinatorica, 7:365–374, December 1987.
doi:10.1007/BF02579324.

30 Satish Rao and Shuheng Zhou. Edge disjoint paths in moderately connected graphs. SIAM
J. Comput., 39(5):1856–1887, 2010. doi:10.1137/080715093.

31 N. Robertson and P. D. Seymour. Outline of a disjoint paths algorithm. In Paths, Flows
and VLSI-Layout. Springer-Verlag, 1990.

32 Neil Robertson and Paul D. Seymour. Graph minors. VII. disjoint paths on a surface. J.
Comb. Theory, Ser. B, 45(2):212–254, 1988. doi:10.1016/0095-8956(88)90070-6.

33 Neil Robertson and Paul D Seymour. Graph minors. XIII. the disjoint paths problem.
Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995.

34 Loïc Seguin-Charbonneau and F. Bruce Shepherd. Maximum edge-disjoint paths in planar
graphs with congestion 2. In Proceedings of the 2011 IEEE 52Nd Annual Symposium on
Foundations of Computer Science, FOCS ’11, pages 200–209, Washington, DC, USA, 2011.
IEEE Computer Society. doi:10.1109/FOCS.2011.30.

http://dx.doi.org/10.1006/jcss.1998.1579
http://dx.doi.org/10.1006/jcss.1998.1579
http://dx.doi.org/10.1007/s10107-002-0370-6
http://dx.doi.org/10.1007/s10107-002-0370-6
http://dx.doi.org/10.1145/1061425.1061430
http://dx.doi.org/10.1007/BF02579324
http://dx.doi.org/10.1137/080715093
http://dx.doi.org/10.1016/0095-8956(88)90070-6
http://dx.doi.org/10.1109/FOCS.2011.30


Optimal Hashing in External Memory

Alex Conway
Rutgers University, New Brunswick, NJ, USA
alexander.conway@rutgers.edu

Martín Farach-Colton
Rutgers University, New Brunswick, NJ, USA
farach@rutgers.edu

Philip Shilane
Dell EMC, Newtown, PA, USA
shilane@dell.com

Abstract

Hash tables are a ubiquitous class of dictionary data structures. However, standard hash table
implementations do not translate well into the external memory model, because they do not
incorporate locality for insertions.

Iacono and Pătraşu established an update/query tradeoff curve for external-hash tables: a
hash table that performs insertions in O(λ/B) amortized IOs requires Ω(logλN) expected IOs
for queries, where N is the number of items that can be stored in the data structure, B is the
size of a memory transfer, M is the size of memory, and λ is a tuning parameter. They provide
a complicated hashing data structure, which we call the IP hash table, that meets this curve
for λ that is Ω(log logM + logM N).

In this paper, we present a simpler external-memory hash table, the Bundle of Arrays
Hash Table (BOA), that is optimal for a narrower range of λ. The simplicity of BOAs allows
them to be readily modified to achieve the following results:

A new external-memory data structure, the Bundle of Trees Hash Table (BOT), that
matches the performance of the IP hash table, while retaining some of the simplicity of the
BOAs.

The Cache-Oblivious Bundle of Trees Hash Table (COBOT), the first cache-oblivious
hash table. This data structure matches the optimality of BOTs and IP hash tables over the
same range of λ.
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1 Introduction

Dictionaries are among the most heavily used data structures. A dictionary maintains a
collection of key-value pairs S ⊆ U × V , under operations1 insert(x, v,S), delete(x,S),
and query(x,S), which returns the value corresponding to x when x ∈ S. When data fits in
memory, there are many solutions to the dictionary problem.

When data is too large to fit in memory, comparison-based dictionaries can be quite
varied. They include the Bε-tree [8], the write-optimized skip list [6], and the cache-optimized
look-ahead array (COLA) [2,3,5]. These are optimal in the external-memory comparison
model in that they match the bound established by Brodal and Fagerberg [8] who showed
that for any dictionary in this model, if insertions can be performed in O

(
λ logλN

B

)
amortized

IOs, then there exists a query that requires at least Ω(logλN) IOs, where N is the number
of items that can be stored in the data structure, B is the size of a memory transfer, and
λ is a tuning parameter. In the following M will be the size of memory, and B = Ω(log n).
This trade off has since been extended in several ways [1, 4].

Iacono and Pǎtraşcu showed that in the DAM model, in which operations beyond
comparisons are allowed on keys, that a better tradeoff exists:

I Theorem 1 ( [11]). If insertions into an external memory dictionary can be performed in
O (λ/B) amortized IOs, then queries require an expected Ω(logλN) IOs.

They further describe an external-memory hashing algorithm, which we refer to here as
the IP hash table, that performs insertions in O

(
1
B

(
λ+ logM

B
N + log logN

))
IOs and

queries in O(logλN) IOs w.h.p. Therefore, for λ = Ω
(

logM/B N + log logN
)
, the IP hash

table meets the tradeoff curve of Theorem 1 and is thus optimal.
In dictionaries that do not support successors and predecessors, we can assume that

keys are hashed, that is, that they are uniformly distributed and satisfy some independence
properties. The IP hash table and the following results hash all keys before insertion and
query in the dictionary by a Θ(logN)-independent hash function.

The base result of this paper is a simple external-memory hashing scheme, the Bundle
of Arrays Hash Table (BOA), that meets the optimal Theorem 1 trade off curve for large
enough λ. Specifically, we show:

I Theorem 2. A BOA supports N insertions and deletions with amortized per entry cost of
O
((
λ+ logM

B
N + logλN

)
/B
)
IOs, for any λ > 1. A query for a key K costs O(DK logλN)

IOs w.h.p., where DK is the number of times K has been inserted or deleted.

Thus BOAs are optimal for λ = Ω(logM
B
N + logλN). They are readily modified to

provide several variations, notably the Bundle of Trees Hash Table (BOT). BOTs are
optimal for the same range of λ as the IP hash table:

I Theorem 3. A BOT supports N insertions and deletions with amortized per entry
cost of O

((
λ+ logM

B
N + log logM

)
/B
)
IOs for any λ > 1. A query for a key K costs

O(DK logλN) IOs w.h.p., where DK is the number of times K has been inserted or deleted.

1 We do not consider dictionaries that also support the succ(x,S) and pred(x,S). succ(x,S) return
min{y|y > x ∧ y ∈ S} and pred(x,S) is defined symmetrically.
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We further introduce the first cache-oblivious hash table, the Cache-Oblivious Bundle
of Trees Hash Table (COBOT), which matches the IO performance of BOTs and IP hash
tables.

The BOT can also be adapted to models in which disk reads and writes incur different
costs. The β-asymmetric BOT adjusts the merging schedule of a regular BOT to trade some
writes for more reads. We leave the details for the full version [?].

I Theorem 4. A β-asymmetric BOT supports N insertions and deletions with amortized
per entry cost of O

(
1
B

(
λ+ 1

β logλN
))

writes and O
( 1
B (λ+ β)

)
reads for any λ > 1 and

β ≤
⌊
logλ M

B logλN

⌋
. A query for a key K performs O(DK logλN) reads, where DK is the

number of times K has been inserted or deleted.

2 Preliminaries

Fingerprints and Hashing. In order to achieve our bounds, we need Θ(logN)-wise inde-
pendent hash functions, which, once again matches IP hash tables. We note that a k-wise
independent hash function is also k-wise independent on individual bits. Furthermore, the
following Chernoff-type bound holds:

I Lemma 5 ( [14]). Let X1, X2, . . . , XN be dµδe-wise independent binary random variables,
X =

∑N
i=1 Xi and µ = E [X]. Then P (X > µδ) = O

(
1/δµδ

)
, for sufficiently large δ.

In the following, we use fingerprint to refer to any key that has been hashed using a
Θ(logN)-wise independent hash function. Such hash functions have a compact representation
and can be specified using Θ(logN) words. The universe that is hashed into is assumed to
have size Θ(Nk) for k ≥ 2. We ignore collisions, but these can be handled as in [12].

For a fingerprint K, it will be convenient to interpret the bits of K as a string of log λ
(where lambda is a given parameter) bit characters, K = K0K1K2 · · · .
Delta Encoding. We will frequently encounter sorted lists of fingerprint prefixes (possibly
with duplicates), together with some data about each. When the size of the list is dense
in the space of prefixes, we can compress it using delta encoding, where the difference
between prefixes is stored rather than the prefixes themselves.

I Lemma 6. A list of delta-encoded prefixes with density D, that is there are D prefixes in
the list for every possible prefix, requires O(− logλD) characters per prefix.

Proof. The average difference between consecutive prefixes is 1/D. Because logarithms are
convex, the average number of characters required to represent this difference is therefore
O(− logλD). J

Log-structured Merge Trees. Log-structured merge trees (LSMs) are (a family of) external-
memory dictionary data structures. They come in two varieties: level-tiered LSMs
(LT-LSMs) and size-tiered LSMs (ST-LSMs). Both kinds are suboptimal in that they
do not meet the optimal insertion-query tradeoff [8], although the COLA [3] is an optimal
variant of the LT-LSMs.

An LSM consists of sets of either B-trees or sorted arrays called runs. In this paper, we
describe them in terms of runs, since we use runs below.

An LT-LSM consists of a cascade of levels, where each level consists of at most one run.
Each level has a capacity that is λ times greater than the level below it, where λ is called
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the growth factor.2 When a level reaches capacity, it is merged into the next level (perhaps
causing a merge cascade). The amortized IO cost for insertions is small because sequential
merging is fast, although each item will participate in λ/2 merges on average. The IO cost
for a query is high because a query must be performed independently on each of O(logλN)
levels (although Bloom filters [5, 7] are sometimes used to mitigate this cost).

An ST-LSM further improves insertion IOs at the expense of queries. Each level contains
fewer than λ runs. Every run on a given level has the same size, which is λ times larger than
the runs on the level beneath it. When λ runs are present at a level, they are merged into
one run and placed at the next level. There are therefore O(logλN) levels. Insertions are
faster than in LT-LSMs because each item is only merged once on each level. Queries are
slower because each query must be perform O(λ) times at each level.

In LSMs, deletions can be implemented by the use of upsert messages [9, 13], which
are a type of insertion with a message that indicates that the key has been deleted. A query
for a key K then fetches all the matching key-value pairs and if the last one (temporally) is
a deletion upsert, it returns false. To this end, the merges must maintain the temporal order
of key-value pairs with the same key. Because a query for a key K must fetch every instance
of K, the cost of a query is proportional to the number of times the key has been inserted
and deleted, which we refer to as the duplication count, DK of K. When N/2 deletions
have been made, the structure is rebuilt to reclaim space. In what follows, deletions will be
implemented using the same mechanism.

3 Bundle of Arrays Hashing

A Bundle of Arrays Hash Table (BOA) is an external-memory dictionary based on
ST-LSMs. In this section, we describe a simple version which is optimal in the sense of
Theorem 1, but where the query cost meets the bound only in expectation, not w.h.p. In
Section 4, we give a version that satifies Theorem 2.

As a first step, we show that runs with uniformly distributed, Θ(logN)-wise independent
fingerprints can be searched more quickly than in an ST-LSMs. In this section

I Lemma 7. Let A be a sorted array of N uniformly distributed Θ(logN)-wise independent
keys in the range [0,K), and assume B = Ω(logN). Then A can be written to external
memory using O(N) space and O(N/B) IOs so that membership in A can be determined in
O(1) IOs with high probability.

Proof. First note that, by Lemma 5 and Bonferroni’s inequality, if N balls are thrown into
Θ(N/ logN) bins uniformly and Θ(logN)-wise independently, then every bin has Θ(logN)
balls with high probability.

Divide the range of keys into N/B uniformly sized buckets; that is, bucket i contains
keys in the range [(i− 1)KB/N, iKB/N). Because the keys in A are distributed uniformly,
and B = Ω(logN), every bucket contains Θ(B) keys with high probability. Let F be the
number of items in the fullest bucket, and write the keys in each bucket to disk in order
using F space for each. Because F = Θ(B), this takes the desired space and IOs.

Now, to find a key, compute which bucket it belongs to. A constant number of IOs will
fetch that bucket, whose address is known because all buckets have the same size. J

2 Sometimes this and related structures are analyzed with a growth factor of Bε. The two are equivalent.
We use λ rather than ε as the tuning parameter for consistency with the external-memory hashing
literature.
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I Corollary 8. If an ST-LSM contains uniformly distributed and Θ(logN)-wise inde-
pendent fingerprints and has growth factor λ, then a query for K can be performed in
O(DKλ logλN) IOs by writing the levels as in Lemma 7. The insertion/deletion cost is
unchanged: O

(
1
B

(
logλN + logM

B
N
))

amortized IOs.

While the query performance improves by a factor of logN , the ST-LSM is still off the
optimal tradeoff curve of Theorem 1. In particular, queries can be at least exponentially
slower than optimal. The BOA use additional structure in order to reduce this query cost.

3.1 Routing Filters
The main result of this section is an auxiliary data structure, the routing filter, that
improves the query cost of an ST-LSM by a factor of λ by further exploiting the log-wise
independence of fingerprints. Combining these routing filters with fast interpolation search
will yield the BOA, a hashing data structure that is optimal for large enough λ.

The purpose of the routing filter is to indicate probabilistically, at each level, which run
contains the fingerprint we are looking for. Each level will have its own routing filter, defined
as follows. For each level `, let h` be some number, to be specified below. Let P`(K) be
the prefix consisting of the first h` characters of K. The routing filter F` for level ` is a
λh`-character array, where F`[i] = j if the jth run R`,j contains a fingerprint K such that
the P`(K) = i, and no later run R`,j′ (i.e. with j′ > j) contains such a fingerprint.

We also modify each run R`,j during the merge so that each fingerprint-value pair contains
a previous field of 1 additional character used to specify the previous run containing a
fingerprint with the same prefix, or j to indicate no such run exists. Thus these fingerprint-
value pairs now form a singly linked list whose fingerprint share the same prefix, and the
routing filter points to the run containing the head.

During a query for a fingerprint K, first F`[P`(K)] is checked to find the latest run
containing a fingerprint with a matching prefix. Once that fingerprint-value pair is found, its
previous field indicates the next run which needs to be checked and so on until all fingerprints
with matching prefix in the level are found. Each fingerprint K ′ 6= K that matches K’s
prefix is a false positive.

Such routing filters induce a space/cost tradeoff. The greater h` is, the more space the
table takes but the less likely it is that many runs will have false positives. The rest of this
section shows that when h` = logλB + `, in other words, when prefixes grow by a character
per level, the BOA lies on the optimal tradeoff curve of Theorem 1.

Define β, the routing table ratio, to be the ratio of the number of buckets in the
routing filter to the size of a run. The number of entries in a run on level ` is Bλ`−1, so
β = λh`/Bλ`−1. We first analyze the per-level insertion/deletion cost, and then we compute
the expected number of false positives in order to analyze the overall query cost.

I Lemma 9. For a BOA with growth factor λ and routing table ratio β, merging a level
incurs Θ

(
1
B

(
1 + logM

B
λ+ β logN λ

))
IOs per fingerprint.

Proof. Merging a level requires merging its runs as well as updating the next level’s routing
filter. Merging λ sorted arrays takes Θ

(
1
B

(
1 + logM/B λ

))
IOs per fingerprint.

The routing filter is updated by iterating through it and the new run sequentially. For
each fingerprint K appearing in the run, F`+1[Ph`+1(K)] is copied to the previous field in the
run, and F`+1[Ph`+1(K)] is set to the number of the current run. Each entry in the routing
filter is a character, and the routing filter has β entries for each new fingerprint. Thus, it
requires Θ

(
β
B logN λ

)
IOs per fingerprint to update sequentially. J
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I Lemma 10. For a BOA with growth factor λ and routing table ratio β, querying a
fingerprint K on a given level incurs at most λ

β false positives in expectation.

Proof. Given some enumeration of the fingerprints in level `, which are not equal to K,
denote the ith such fingerprint by Ki. Some of these may be the duplicates. Let Xi be
the indicator random variable, which is 1 if P`(K) = P`(Ki) and 0 otherwise. K and Ki

are uniformly distributed and their bits are pairwise independent. Thus E [Xi] ≤ 1
λh`

. The
expected number of fingerprints (excluding K) in the level with prefix P`(K) is thus at most∑Bλ`

i=1 E [Xi] ≤ Bλ`

λh`
= λ

β . J

I Lemma 11. A BOA with growth factor λ and routing table ratio β has insertion/dele-
tion cost O

(
1
B

(
β + logM

B
N + logλN

))
. A query for fingerprint K has expected cost

O
(
λ
βDK logλN

)
, where DK is the duplication count of K.

Proof. Because a BOA has logλN levels, the insertion cost follows from Lemma 9.
To query for a fingerprint K, the routing filter on each level is checked, which incurs

O(logλN) IOs. These routing filters return a collection of runs which contain up to DK true
positives and an expected O

(
λ
β logλN

)
false positives, by Lemma 10. By Lemma 7, each

run can be checked in O(1) IOs. J

So for a fixed λ, there is no advantage to choosing β = ω(λ). On the other hand, β = o(λ)
is suboptimal, because then choosing β′ = λ′ = β changes a linear factor in the query cost to
a logarithmic one. Therefore, it is optimal to choose β = Θ(λ), and in what follows we will
fix β = λ. Thus,

I Lemma 12. A BOA supports N insertions and deletions with amortized per entry cost of
O
((
λ+ logM

B
N + logλN

)
/B
)
IOs, for any λ > 1. A query for a key K costs O(DK logλN)

IOs in expectation, where DK is the duplication count of K.

4 Refined Bundle of Arrays Hashing

In order to obtain high probability bounds for a BOA, we need a stronger guarantee on
the number of false positives. This is achieved by including an additional character, the
check character from each fingerprint in the routing filter, which is also checked during
queries and thus eliminates most false positives. To support this, we will need to refine the
routing filter so it can maintain check characters even when there are collisions.

The ith check character Ci(K) of a fingerprint K is the ith character from the end of the
string representation of K. As described in Section 2, we assume that the fingerprints are
taken from a universe of size at least N2 so that the check characters do not overlap with
the characters used in the prefixes of the routing filters, and by Θ(logN)-wise independence,
the check characters of O(1) fingerprints are independent. Now each fingerprint in the filter
has a check character and a array pointer, and we refer to this data as the sketch of the
fingerprint.

When level i of the BOA is queried for a fingerprint K, the refined routing filter (described
below) returns a list of sketches, one for each fingerprint in the level with prefix Pi(K). The
array indicated in the sketch is only checked if the check character matches Ci(K), which
reduces the number of false positives by a factor of λ.
Refined Routing Filter. The routing filter described in Section 3.1 handles prefix collisions
by returning only the last run containing the queried fingerprint and then chaining in the
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runs. Whereas, to support check characters, we need to return a list instead, while having
the same performance guarantees.

The idea behind the refined routing filter is to keep the prefix-sketch pairs in a sorted list
and use a hash table on prefixes to point queries to the appropriate place. Each pointer may
require as many as Ω(logN) bits, and we require the routing filter to have O(1) characters
per fingerprint. Therefore the hash table must use shorter prefixes so as to reduce the number
of buckets and thus reduce its footprint. In particular, it uses prefixes which are logλ logλN
characters shorter, which we refer to as pivot prefixes.

The list delta encodes the prefix for each fingerprint K, together with its sketch. In
addition, the first entry following each pivot prefix contains the full prefix, rather then just
the difference. Otherwise, when the hash table routes a query to that place in the list, the
full prefix wouldn’t be immediately computable.

I Lemma 13. A refined routing filter can be updated using O
(
λ logλ
B logN

)
IOs per new entry,

and performs lookups in O(D∗K) IOs w.h.p., where D∗K is the number of times K appears in
the level.

Proof. We prove first the update bound and then the query bound.
Let C be the capacity of the level. There are at most C

logλN
pivot prefixes. For each pivot

prefix, the hash table stores the bit position in a list with at most C entries, where C ≤ N .
Each entry is at most logN bits, so this position can be written using O(logN) bits.

For each fingerprint in the node, the list contains O(1) characters by Lemma 6, or O(log λ)
bits. Additionally, each pivot prefix has to an initial entry of length O(logN) bits, so the list
all together uses O(C log λ+ C

logλN
· logN) = O(C log λ) bits.

When the refined routing filter is updated, the old version is read sequentially and the
new version is written out sequentially. C/λ fingerprints are added at a time, so this incurs
O
(
λ logλ
B logN

)
IOs per entry.

During a query, the pivot bit string of a fingerprint and its successor are accessed from
the hash table in O(1) IOs. This returns the beginning and ending bit positions in the list.
Because the fingerprints are distributed uniformly and are pairwise independent to K, there
are O(logλN +D∗K) fingerprints matching the pivot prefix in expectation. From Lemma 5
with δ = log λ, there are O(logN +D∗K) fingerprints matching the pivot prefix w.h.p. The
encoding of each fingerprint is less than a word, and B = Ω(logN) by assumption, so this is
O(D∗K) IOs. J

BOA Performance. We now can show:

I Theorem 2. A BOA supports N insertions and deletions with amortized per entry cost of
O
((
λ+ logM

B
N + logλN

)
/B
)
IOs, for any λ > 1. A query for a key K costs O(DK logλN)

IOs w.h.p., where DK is the number of times K has been inserted or deleted.

Proof. The insertion/deletion cost is given by Lemma 13 and Theorem 12.
During a query for a fingerprint K, the expected number of false positives on level i

(fingerprints which match the prefix Pi(K) and check character Ci(K) but are not K) is
O
( 1
λ

)
. Thus, the number of false positives across levels is O

(
logλN
λ

)
, so by Lemma 5, the

number of false positives is O (logλN) w.h.p. J

Thus, a BOA is optimal for large enough λ:

I Corollary 14. Let B be a BOA with growth factor λ containing N entries. If λ =
Ω
(

logM
B
N + logN

log logN

)
, then B is an optimal unsorted dictionary.
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Level 3
Level 2

Level 1

LogLog

Figure 1 The routing trees in a 3
level BOT. The trees cover contiguous
portions of the log. The highest level
covers the beginning of the log, the next
level the beginning of the remainder of
the log, and so on.

Level 2Level 3 Level 3

Keys added to  
root routing filter

Tree becomes 
child of root

Figure 2 When the routing tree on level i fills, it is
merged into the routing tree on level i+1. The now-full
routing tree from level i+ 1 becomes a child of the root
on level i + 1. Its fingerprints are added to the root
routing filter. Note that the tree is not moved.

5 Bundle of Trees Hashing

In order for a BOA to be an optimal dictionary, its growth factor λmust be Ω(logN/ log logN).
Otherwise, the cost of insertion is dominated by the cost of merging, which in slow because
it effectively sorts the fingerprints using a λ-ary merge sort. In this section, we present the
Bundle of Trees Hash Table (BOT), which is a BOA-like structure. A BOT stores the
fingerprints in a log in the order in which they arrive. Each level of the BOT is like a level of
a BOA, where the bundle of arrays on each level is replaced by an search structure on the
log (the routing tree) and a data structure needed to merge routing trees (the character
queue). The character queue performs a delayed sort on the characters needed at each level,
thus increasing the arity of the sort and decreasing the IOs.

A BOT has s = dlogλN/Be levels, each of which contains a routing tree. The root of
the routing tree has degree less than λ and all internal nodes have degree λ. Each node of
a routing tree contains a routing filter. As in Section 4, each routing filter takes as input
a fingerprint K and outputs a list of sketches corresponding to fingerprints with the same
prefix as K. Each sketch consists of a pointer to a child, a check character and some auxiliary
information discussed below.

Each leaf points to a block of B fingerprints in the log. The deepest level s uses a
height-s tree to index the beginning of the fingerprint log, the next level then indexes the
next section and so forth, as shown in Figure 1. Insertions and deletions (as upsert messages)
are appended to the log until they form a block, at which point they are added to the tree in
the 1st level of the BOT.

When a level i in the BOT fills, its routing tree is merged into the routing tree of level
i + 1, thus increasing the degree of the target routing tree by 1 (and perhaps filling level
i+ 1, which triggers a merge of level i+ 1 into i+ 2, and so on). The merge of level i into
level i + 1 consists of adding the prefix-sketch pairs of the fingerprints from level i to the
routing filter of the root on level i+ 1. The child pointers of these pairs will point to the
root of the formerly level-i routing tree, so it becomes a child of the root of the level i+ 1
routing tree, although it isn’t moved or copied. See Figure 2. In this way, a BOT resembles
an LT-LSM, described in Section 2.

In order to add a fingerprint K from level i to the root routing filter on level i+ 1, the
prefix Pi+1(K) must be known. However, the root routing filter on level i only stores the
prefix Pi(K) for each fingerprint K it contains, so that in particular the last character of
Pi+1(K) is missing. As described in Section 5.2, each level has a character queue, which
provides this character, as well as the check characters, in order to merge the routing trees
efficiently.
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5.1 Queries in a BOT

A query to the BOT for a fingerprint K is performed independently at each level, beginning
at the root of each routing tree. When a node is queried, its routing filter returns a list of
sketches. The sketches whose check characters match the queried fingerprint indicate to
which children the query is passed. This process continues until the query reaches a block of
the log, which is then searched in full. In this way queries are “routed” down the tree on
each level to the part of log where the fingerprint and its associated value are. Note that as
queries descend the routing tree, they may generate false positives which are likewise routed
down towards the log.

In this section, we refine routing trees so that they offer two guarantees about false
positives. The first is that at each level, the probability that a given false positive is not
elinimated is at most 1

λ . The second is that false positives can only be created in the root,
so that as the query descends the tree, the number of false positives cannot increase.

During a query to a node of height h for a fingerprint K, the routing filter returns a list
of sketches corresponding to fingerprints which match K’s prefix. The query only proceeds
on those children whose check characters also match the check character Ch(K). Since the
characters of the fingerprint are uniformly distributed and Θ(logN)-wise independent, the
check character of each false positive matches with probability 1

λ . Moreover, the characters
of each level are non-overlapping, so for fingerprints K, K ′ the event that Vh(K) = Vh(K ′)
is independent of the event that Vh−1(K) = Vh−1(K ′).

To prevent new false positives from being generated when a query passes from a parent
to a child, the next character of each fingerprint is also kept in its sketch in the routing
filter. For a fingerprint K in a node of height h, the next character is just the next character
that follows the prefix, Ph(K), so that its prefix in the parent, Ph+1(K), can be obtained. A
false positive in a child which is not in the parent will not match this next character and can
be eliminated.

When there are multiple prefix-matching fingerprints in both a parent and its child,
we would like to be able to align the lists returned by the routing filters so that known
false positives in the parent (either from check or next characters) can be eliminated in the
child. Otherwise the check character in the child of a known false positive in the parent may
match the queried fingerprint, and therefore more than 1

λ of the false positives may survive.
To this end, we require the routing filter to return the list of sketches in the order their
fingerprint-value pairs appear in the log. Then after the sketches in the child list whose next
characters do not match the parent are eliminated, the remaining phrases will be in the same
order as in the parent. In this way, known false positives can also be eliminated in the child.

Now we can show:

I Lemma 15. During a query to a routing tree, the following are true:

1. A false positive can only be generated in the root.

2. At each level, a given false positive survives with probability at most 1
λ .

Proof. Because of the next characters, false positives may only be created in the root of
the routing tree. Each false positive in the root corresponds to a fingerprint K ′ in the level.
At each node on the path to K ′’s location in the log, we use the ordering to determine
which returned sketch corresponds to K ′, so that the false positive corresponding to K ′ is
eliminated with probability 1

λ . J

ICALP 2018



39:10 Optimal Hashing in External Memory

5.2 Character Queue
The purpose of the character queue is to store all the sketches of fingerprints contained in a
level i that will be needed during a merge in the future. When level i is merged into level
i+ 1, the character queue outputs a sorted list of the delta-encoded prefix-sketch pairs of all
the fingerprints, which is used to update the root routing tree. The character queue is then
merged into the character queue on level i+ 1.

The character queue effectively performs a merge sort on the sketches. If it were to
merge all the sketches as soon as they are available, this would consist of λ-ary merges. In
order to increase the arity of the merges, it defers merging sketches which are not needed
immediately. The sketches are stored collection of series, by which we mean a collection of
sorted runs. Each series stores a continuous range of sketches Si(K), Si+1(K), . . . , Si+j(K)
for each fingerprint K, together with the prefix up to the first sketch, Pi−1(K). These prefixes
are delta encoded in their run. Thus the size of an entry is determined by the number of
sketches in the range and the length of the prefix relative to the size of the run (by Lemma 6).
The character queue tradeoff. We are faced with the following tradeoff. If the character
queue merges a series frequently, the delta encoding is more efficient, which decreases the
cost of the merging. However the arity is lower, which increases it. The character queue uses
a merging schedule which balances this tradeoff and thus achieves optimal insertions.
The character queue merging schedule. The character queue on level i (here we consider
blocks of the log to be level 0) contains the sketches Si+1(K), Si+2(K), . . . Ss(K) of each
fingerprint K in the level. These characters are stored in a collection of series {σjq},
where jq is the smallest multiple of 2q greater than i. Series σjq contains the sketches
Sjq(K), . . . , Sjq+1−1(K). Each series consists of a collection of sorted runs each of which
stores the delta encoded prefix of each fingerprint together with its sketches.

Initially, when a block of the log is written, all the series σ2q for q = 1, 2, 3, . . . are created.
When level i fills, the runs in the series σi+1 are merged, and the character queue outputs the
delta encoded prefix-sketch pairs, (Pi+1(K), Si+1(K)) to update the root routing filter on
level i+1. If 2ρ(i+q) is the greatest power of 2 dividing i+1 (ρ is sometimes referred to as the
ruler function [15]), then σi+1 also contains the next 2ρ(i+1)−1 sketches of each fingerprint.
These are batched and delta encoded to become runs in the series σjq for q = [0, ρ(i+ 1)].
The runs in the remaining series of level i becomes runs of their respective series on level
i+ 1.

Note that for the lower levels, some runs in may be shorter than B due to the delta
encoding. For a run in a series σq, this is handled by buffering them with the runs σq of higher
levels and writing them out once they are of size B. Note that this requires O(B log logN)
memory.

This leads to the following merging pattern: σj batches 2ρ(j) sketches, and has delta
encoded prefixes of 2ρ(j) characters on average, by Lemma 6. Therefore,

I Lemma 16. A series σj in a character queue contains O(2ρ(j)) characters per fingerprint.

This leads to a merging schedule where the characters per item merged on the jth level
is O(2ρ(j)). Starting from 1 this is 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, . . ., which resemble
the tick marks of a ruler, hence the name ruler function.

We now analyze the cost of maintaining the character queues.

I Lemma 17. The total per-insertion/deletion cost to update the character queues in a BOT
is Θ

(
1
B

(
logM

B
N + log logM

))
.
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Proof. When σj is merged, λ2ρ(j) runs are merged, which has a cost of
O
(

2ρ(j)

B

⌈
logM/B

(
λ2ρ(j))⌉) characters per fingerprint.

There are logλ N
B = O(logλN) levels, so this leads to the following total cost in terms of

characters:

O

logλN∑
i=1

2ρ(j)
⌈
logM

B

(
λ2ρ(j)

)⌉ = O

log logλN∑
k=0

logλN
2k · 2k

⌈
logM

B

(
λ2k
)⌉

= O

logλN

log logM +
log logλN∑
k=log logM

2k logM
B
λ


= O

(
logλN

(
log logM + logM

B
N
))

,

where the last equality is because the RHS sum is dominated by its last term. Because there
are logλN characters in a word, and all reads and writes are performed sequentially in runs
of size at lease B, the result follows. J

5.3 Performance of the BOT
We can now prove Theorem 3:

I Theorem 3. A BOT supports N insertions and deletions with amortized per entry
cost of O

((
λ+ logM

B
N + log logM

)
/B
)
IOs for any λ > 1. A query for a key K costs

O(DK logλN) IOs w.h.p., where DK is the number of times K has been inserted or deleted.

Proof. By Lemma 13, the cost of updating the routing filters is O
(
λ
B

)
, since there are

O(logλN) levels. This, together with the cost of updating the character queues, given by
Lemma 17, is the insertion cost.

By Lemma 15, a query for fingerprint K on level i incurs O
( 1
λ

)
false positives in the

root, and O(1) nodes are accessed along each of their root-to-leaf paths. By Lemma 13, each
false positive thus incurs O(DK) IOs.

There are an expected O
(

logλN
λ

)
false positives across all levels, so, using Lemma 5

with δ = λ, O(DK logλN) nodes are accessed due to false positives w.h.p. For each time K
appears in the BOT, O(logλN) nodes are accessed on its root-to-leaf path. By Lemma 13
the node accesses along each path incur O(DK logλ) IOs w.h.p., so accessing the nodes incurs
O(logλN) IOs w.h.p.

A block of the log is scanned at most DK times for true positives and also whenever
a false positive from the level-i root survives i times. The expected number of such false
positives for level i is 1/λi, so the expected number across levels is O

( 1
λ

)
. Therefore by

Lemma 5, the number of blocks scanned is O(DK logλN) w.h.p. J

I Corollary 18. Let B be a BOT with growth factor λ containing N entries. If λ =
Ω
(

logM
B
N + log logM

)
, then B is an optimal dictionary.

6 Cache-Oblivious BOTs

In this section, we show how to modify a BOT to be cache oblivious. We call the resulting
structure a cache-oblivious hash tree (COBOT).
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Much of the structure of the BOT translates directly into the cache-oblivious model.
However, some changes are necessary. In particular, when the series of character queues are
merged, this merge must be performed cache-obliviously using funnels [10], rather than with
an (up to) M/B-way merge. Also, the log cannot be buffered into sections of size O(B), and
so instead they are buffered into sections of constant size, items are immediately added to
routing filter, and the extra IOs are eliminated by optimal caching.

When an insertion is made into a COBOT, its fingerprint-value pair is appended to the
log, and it is immediately inserted into level 1. Thus, the leaves of the routing trees point to
single entries in the log.

The series of the character queues must be placed more carefully as well. In particular
the runs of series σj must be laid out back-to-back for all j (rather than just small j as in
Section 5.2), so that the caching algorithm can buffer them appropriately.

The series are merged using a partial funnelsort. Funnelsort is a cache-oblivious sorting
algorithm that makes use of K-funnels [10]. A K-funnel is a CO data structure that merges
K sorted lists of total length N . We make use of the the following lemma.

I Lemma 19 ( [10]). A K-funnel merges K sorted lists of total length N ≥ K3 in
O
(
N
B logM/B

N
B +K + N

B logK N
B

)
IOs, provided the tall cache assumption that M = Ω(B2)

holds.

The partial funnelsort used to merge K runs of a series with total length L (in words)
performs a single merge with a K-funnel if L ≥ K3 and recursively merges the run in groups
of K1/3 runs otherwise.

I Corollary 20. A partial funnelsort merges K runs of total word length L in
O
(
L
B logM/B

L
B + L

B logK L
B

)
IOs, provided the tall cache assumption that M = Ω(B2)

holds.

Proof. The base case of the recursion occurs either when there is only 1 list remaining or
the remaining lists fit in memory. In any other case of the recursion, since L = Ω(B2) by the
tall cache assumption, the K term in Lemma 19 is dominated.

The recurrence is dominated by the cost of the funnel merges, which yields the result. J

I Theorem 21. If M = Ω(B2), then a COBOT with N entries and growth factor λ has
amortized insertion/deletion cost Θ

(
1
B

(
λ+ log logM + logM/B N/B

))
. A query for key K

has cost Θ (DK logλN), w.h.p., where DK is the duplication count of K.

Proof. We may assume that the caching algorithm sets aside enough memory that the last
B items in the log, together with the subtree rooted at their least common ancestor, are
cached. Thus the log is updated at a per-item cost of O(1/B).

The proof of Theorem 3 now carries over to the COBOT. The routing filters are updated
the same way, and the cost of updating the character queues is unchanged, by Corollary 20.

Queries are performed as in Section 5.1, except that now the level 1 nodes cover O(1)
fingerprints, but the depth of the tree is unchanged, so the cost is the same. J
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Abstract
In this paper, we relate a beautiful theory by Lovász with a popular heuristic algorithm for
the graph isomorphism problem, namely the color refinement algorithm and its k-dimensional
generalization known as the Weisfeiler-Leman algorithm. We prove that two graphs G and H

are indistinguishable by the color refinement algorithm if and only if, for all trees T , the number
Hom(T,G) of homomorphisms from T to G equals the corresponding number Hom(T,H) for H.

There is a natural system of linear equations whose nonnegative integer solutions correspond
to the isomorphisms between two graphs. The nonnegative real solutions to this system are
called fractional isomorphisms, and two graphs are fractionally isomorphic if and only if the color
refinement algorithm cannot distinguish them (Tinhofer 1986, 1991). We show that, if we drop
the nonnegativity constraints, that is, if we look for arbitrary real solutions, then a solution to
the linear system exists if and only if, for all t, the two graphs have the same number of length-t
walks.

We lift the results for trees to an equivalence between numbers of homomorphisms from
graphs of tree width k, the k-dimensional Weisfeiler-Leman algorithm, and the level-k Sherali-
Adams relaxation of our linear program. We also obtain a partial result for graphs of bounded
path width and solutions to our system where we drop the nonnegativity constraints.

A consequence of our results is a quasi-linear time algorithm to decide whether, for two given
graphs G and H, there is a tree T with Hom(T,G) 6= Hom(T,H).
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1 Introduction

An old result due to Lovász [16] states a graph G can be characterized by counting homo-
morphisms from all graphs F to G. That is, two graphs G and H are isomorphic if and
only if, for all F , the number Hom(F,G) of homomorphisms from F to G equals the number
Hom(F,H) of homomorphism from F to H . This simple result has far reaching consequences,
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because mapping graphs G to their homomorphism vectors HOM(G) :=
(
Hom(F,G)

)
F graph

(or suitably scaled versions of these infinite vectors) allows us to apply tools from functional
analysis in graph theory. This is the foundation of the beautiful theory of graph limits,
developed by Lovász and others over the last 15 years (see [17]).

However, from a computational perspective, representing graphs by their homomorphism
vectors has the disadvantage that the problem of computing the entries of these vectors
is NP-complete. To avoid this difficulty, we may want to restrict the homomorphism vectors
to entries from a class of graphs for which counting homomorphisms is tractable. That
is, instead of considering the full homomorphism vector HOM(G) we consider the vector
HOMF (G) :=

(
Hom(F,G)

)
F∈F for a class F of graphs such that the problem of computing

Hom(F,G) for given graphs F ∈ F and G is in polynomial time. Arguably the most natural
example of such a class F is the class of all trees. More generally, computing Hom(F,G) for
given graphs F ∈ F and G is in polynomial time for all classes F of bounded tree width, and
under a natural assumption from parameterized complexity theory, it is not in polynomial
time for any class F of unbounded tree width [10]. This immediately raises the question
what the vector HOMF (G), for a class F of bounded tree width, tells us about the graph G.

A first nice example (Proposition 9) is that the vector HOMC(G) for the class C of all cycles
characterizes the spectrum of a graph, that is, for graphs G,H we have HOMC(G) = HOMC(H)
if and only if the adjacency matrices of G and H have the same eigenvalues with the same
multiplicities. This equivalence is a basic observation in spectral graph theory (see [23,
Lemma 1]). Before we state deeper results along these lines, let us describe a different
(though related) motivation for this research.

Determining the similarity between two graphs is an important problem with many
applications, mainly in machine learning, where it is known as “graph matching” (e.g. [9]).
But how can the similarity between graphs be measured? An obvious idea is to use the
edit distance, which simply counts how many edges and vertices have to be deleted from or
added to one graph to obtain the other. However, two graphs that have a small edit distance
can nevertheless be structurally quite dissimilar (e.g. [17, Section 1.5.1]). The edit distance
is also very hard to compute as it is closely related to the notoriously difficult quadratic
assignment problem (e.g. [3, 19]).

Homomorphism vectors offer an alternative, more structurally oriented approach to
measuring graph similarity. After suitably scaling the vectors, we can can compare them
using standard vector norms. This idea is reminiscent of the “graph kernels” used in machine
learning (e.g. [24]). Like the homomorphism vectors, many graph kernels are based on the
idea of counting certain patterns in graphs, such as paths, walks, cycles or subtrees, and in
fact any inner product on the homomorphism vectors yields a graph kernel.

A slightly different type of graph kernel is the so-called Weisfeiler-Leman (subtree) ker-
nel [20]. This kernel is derived from the color refinement algorithm (a.k.a. the 1-dimensional
Weisfeiler-Leman algorithm), which is a simple and efficient heuristic to test whether two
graphs are isomorphic (e.g. [11]). The algorithm computes a coloring of the vertices of a
graph based on the iterated degree sequences, we give the details in Section 3. To use it as
an isomorphism test, we compare the color patterns of two graphs. If they are different, we
say that color refinement distinguishes the graphs. If the color patterns of the two graphs
turn out to be the same, the graphs may still be non-isomorphic, but the algorithm fails to
detect this.

Whether color refinement is able to distinguish two graphs G and H has a very nice
linear-algebraic characterization due to Tinhofer [21, 22]. Let V andW be the vertex sets and
let A ∈ {0, 1}V×V and B ∈ {0, 1}W×W be the adjacency matrices of G and H, respectively.
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Now consider the system Fiso(G,H) of linear equations:

Fiso(G,H) :


AX = XB

X1W = 1V
1TVX = 1TW

(F1)
(F2)
(F3)

In these equations, X denotes a (V ×W )-matrix of variables and 1U denotes the all-1
vector over the index set U . Equations (F2) and (F3) simply state that all row and column
sums of X are supposed to be 1. Thus the nonnegative integer solutions to Fiso(G,H)
are permutation matrices, which due to (F1) describe isomorphisms between G and H.
The nonnegative real solutions to Fiso(G,H), which in fact are always rational, are called
fractional isomorphisms between G and H . Tinhofer proved that two graphs are fractionally
isomorphic if and only if color refinement does not distinguish them.

For every k ≥ 2, color refinement has a generalization, known as the k-dimensional
Weisfeiler-Leman algorithm (k-WL), which colors not the vertices of the given graph but
k-tuples of vertices. Atserias and Maneva [4] (also see [18]) generalized Tinhofer’s theorem by
establishing a close correspondence between k-WL and the level-k Sherali-Adams relaxation
of Fiso(G,H).

Our results
How expressive are homomorphism vectors HOMF (G) for restricted graph classes F ? We
consider the class T of trees first, where the answer is surprisingly clean.

I Theorem 1. For all graphs G and H, the following are equivalent:
i HOMT (G) = HOMT (H).
ii Color refinement does not distinguish G and H.
iii G and H are fractionally isomorphic, that is, the system Fiso(G,H) of linear equations

has a nonnegative real solution.

As mentioned before, the equivalence between ii and iii is due to Tinhofer [21, 22]. An
unexpected consequence of our theorem is that we can decide in time O((n+m) log n) whether
HOMT (G) = HOMT (H) holds for two given graphs G and H with n vertices and m edges.
(If two graphs have a different number of vertices or edges, then their homomorphism counts
already differ on the 1-vertex or 2-vertex trees.) This is remarkable, because every known
algorithm for computing the entry Hom(T,G) of the vector HOMT (G) requires quadratic
time when T and G are given as input.

It is a consequence of the proof of Theorem 1 that, in order to characterize an n-
vertex graph G up to fractional isomorphisms, it suffices to restrict the homomorphism
vector HOMT (G) to trees of height at most n− 1. What happens if we restrict the structure
of trees even further? In particular, let us restrict the homomorphism vector to its path
entries, that is, consider HOMP(G) for the class P of all paths. Figure 1 shows an example
of two graphs G and H with HOMP(G) = HOMP(H) and HOMT (G) 6= HOMT (H).

Despite their weaker distinguishing capabilities, the vectors HOMP(G) are quite inter-
esting. They are related to graph kernels based on counting walks, and they have a clean
algebraic description: it is easy to see that Hom(Pk, G), the number of homomorphisms
from the path Pk of length k to G, is equal to the number of length-k walks in G, which in
turn is equal to 1TAk1, where A is the adjacency matrix of G and 1 is the all-1 vector of
appropriate length.

ICALP 2018
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Figure 1 Two fractionally non-isomorphic graphs with the same path homomorphism counts.

I Theorem 2. For all graphs G and H, the following are equivalent:
i HOMP(G) = HOMP(H).
ii The system Fiso(G,H) of linear equations has a real solution.

While the proof of Theorem 1 is mainly graph-theoretic—we establish the equivalence
between the assertions i and ii by expressing the “colors” of color refinement in terms of
specific tree homomorphisms—the proof of Theorem 2 is purely algebraic. We use spectral
techniques, but with a twist, because neither does the spectrum of a graph G determine
the vector HOMP(G) nor does the vector determine the spectrum. This is in contrast
with HOMC(G) for the class C of all cycles, which, as we already mentioned, distinguishes
two graphs if and only if they have the same spectrum.

Let us now turn to homomorphism vectors HOMTk
(G) for the class Tk of all graphs

of tree width at most k. We will relate these to k-WL, the k-dimensional generalization
of color refinement. We also obtain a corresponding system of linear equations. Let G
and H be graphs with vertex sets V and W , respectively. Instead of variables Xvw for
vertex pairs (v, w) ∈ V ×W , as in the system Fiso(G,H), the new system has variables Xπ

for π ⊆ V ×W of size |π| ≤ k. We call π = {(v1, w1), . . . , (v`, w`)} ⊆ V ×W a partial
bijection if vi = vj ⇐⇒ wi = wj holds for all i, j, and we call it a partial isomorphism if
in addition vivj ∈ E(G) ⇐⇒ wiwj ∈ E(H) holds for all i, j. Now consider the following
system Lkiso(G,H) of linear equations:

Lkiso(G,H) :



∑
v∈V

Xπ∪{(v,w)} = Xπ for all π ⊆ V ×W of size
|π| ≤ k − 1 and all w ∈W∑

w∈W
Xπ∪{(v,w)} = Xπ for all π ⊆ V ×W of size

|π| ≤ k − 1 and all v ∈ V
Xπ = 0 for all π ⊆ V ×W of size |π| ≤ k

such that π is not a partial iso-
morphism from G to H

X∅ = 1

(L1)

(L2)

(L3)

(L4)

This system is closely related to the Sherali-Adams relaxations of Fiso(G,H): Every
solution for the level-k Sherali-Adams relaxation of Fiso(G,H) yields a solution to Lkiso(G,H),
and every solution to Lkiso(G,H) yields a solution to the level k− 1 Sherali-Adams relaxation
of Fiso(G,H) [4, 12]. Our result is this:

I Theorem 3. For all k ≥ 1 and for all graphs G and H, the following are equivalent:
i HOMTk

(G) = HOMTk
(H).

ii k-WL does not distinguish G and H.
iii Lk+1

iso (G,H) has a nonnegative real solution.
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The equivalence between ii and iii is implicit in previous work [14, 4, 12]. The sys-
tem Lkiso(G,H) has another nice interpretation related to the proof complexity of graph
isomorphism: it is shown in [7] that Lkiso(G,H) has a real solution if and only if a natural
system of polynomial equations encoding the isomorphisms between G and H has a degree-k
solution in the Hilbert Nullstellensatz proof system [6, 8]. In view of Theorem 2, it is
tempting to conjecture that the solvability of Lk+1

iso (G,H) characterizes the expressiveness
of the homomorphism vectors HOMPk

(G) for the class Pk of all graphs of path width k.
Unfortunately, we only prove one direction of this conjecture.

I Theorem 4. Let k be an integer with k ≥ 2 and let G,H be graphs. If Lk+1
iso (G,H) has a

real solution, then HOMPk
(G) = HOMPk

(H).

Combining this theorem with a recent result from [13] separating the nonnegative from
arbitrary real solutions of our systems of equations, we obtain the following corollary.

I Corollary 5. For every k, there are graphs G and H with HOMPk
(G) = HOMPk

(H) and
HOMT2(G) 6= HOMT2(H).

2 Preliminaries

Basics. Graphs in this paper are simple, undirected, and finite (even though our results
transfer to directed graphs and even to weighted graphs). For a graph G, we write V (G) for
its vertex set and E(G) for its edge set. For v ∈ V (G), the set of neighbors of v are denoted
with NG(v). For S ⊆ V (G), we denote with G[S] the subgraph of G induced by the vertices
of S. A rooted graph is a graph G together with a designated root vertex r(G) ∈ V (G). We
write multisets using the notation {{1, 1, 6, 2}}.

Matrices. An LU -decomposition of a matrix A consists of a lower triangular matrix L and
an upper triangular matrix U such that A = LU holds. Every finite matrix A over R has an
LU -decomposition. We also use infinite matrices over R, which are functions A : I × J → R
where I and J are locally finite posets and countable. The matrix product AB is defined
in the natural way via (AB)ij =

∑
k AikBkj if all of these inner products are finite sums,

and otherwise we leave it undefined. An n× n real symmetric matrix has real eigenvalues
and a corresponding set of orthogonal eigenspaces. The spectral decomposition of a real
symmetric matrixM is of the formM = λ1P1 + · · ·+λlPl where λ1, . . . , λl are the eigenvalues
of M with corresponding eigenspaces W1, . . . ,Wl. Moreover, each Pj is the projection matrix
corresponding to the projection onto the eigenspaceWj . Usually, Pj is expressed as Pj = UUT

for a matrix U whose columns form an orthonormal basis of Wj .

Homomorphism numbers. Recall that a mapping h : V (F )→ V (G) is a homomorphism if
h(e) ∈ E(G) holds for all e ∈ E(F ) and that Hom(F,G) is the number of homomorphisms
from F to G. Let Surj(F,G) be the number of homomorphisms from F to G that are
surjective on both the vertices and edges of G. Let Inj(F,G) be the number of injective
homomorphisms from F to G. Let Sub(F,G) = Inj(F,G)/Aut(F ), where Aut(F ) is the
number of automorphisms of F . Observe that Sub(F,G) is the number of subgraphs of G
that are isomorphic to F . Where convenient, we view the objects Hom, Surj, and Inj as
infinite matrices; the matrix indices are all unlabeled graphs, sorted by their size. However,
we only use one representative of each isomorphism class, called the isomorphism type of
the graphs in the class, as an index in the matrix. Then Surj is lower triangular and Inj is
upper triangular, so Hom = Surj · Sub is an LU-decomposition of Hom. Finally, Ind(F,G) is

ICALP 2018
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the number of times F occurs as an induced subgraph in G. Similarly to the homomorphism
vectors HOMF (G) we define vectors INJF (G) and INDF (G). Finally, let G,H be rooted
graphs. A homomorphism from G to H is a graph homomorphism that maps the root of G
to the root of H. Moreover, two rooted graphs are isomorphic if there is an isomorphism
mapping the root to the root.

3 Homomorphisms from trees

3.1 Color refinement and tree unfolding
Color refinement iteratively colors the vertices of a graph in a sequence of refinement rounds.
Initially, all vertices get the same color. In each refinement round, any two vertices v and w
that still have the same color get different colors if there is some color c such that v and w
have a different number of neighbors of color c; otherwise they keep the same color. We
stop the refinement process if the vertex partition that is induced by the colors does not
change anymore, that is, all pairs of vertices that have the same color before the refinement
round still have the same color after the round. More formally, we define the sequence
CG0 , C

G
1 , C

G
2 , . . . of colorings as follows. We let CG0 (v) = 1 for all v ∈ V (G), and for i ≥ 0

we let CGi+1(v) = {{CGi (u) : u ∈ NG(v) }}. We say that color refinement distinguishes two
graphs G and H if there is an i ≥ 0 with

{{CGi (v) : v ∈ V (G) }} 6= {{CHi (v) : v ∈ V (H) }} . (1)

We argue now that the color refinement algorithm implicitly constructs a tree at v
obtained by simultaneously taking all possible walks starting at v (and not remembering
nodes visited in the past). For a rooted tree T with root r, a graph G, and a vertex v ∈ V (G),
we say that T is a tree at v if there is a homomorphism f from T to G such that f(r) = v and,
for all non-leaves t ∈ V (T ), the function f induces a bijection between the set of children
of t in in T and the set of neighbors of f(t) in G. In other words, f is a homomorphism
from T to G that is locally bijective. If T is an infinite tree at v and does not have any leaves,
then T is uniquely determined up to isomorphisms, and we call this the infinite tree at v (or
the tree unfolding of G at v), denoted with T (G, v). For an infinite rooted tree T , let T≤d be
the finite rooted subtree of T where all leaves are at depth exactly d. For all finite trees T
of depth d, define Cr(T,G) ∈ {0, . . . , |V (G)|} to be the number of vertices v ∈ V (G) for
which T is isomorphic to T (G, v)≤d. Note that this number is zero if not all leaves of T are
at the same depth d or if some node of T has more than n− 1 children. The CR-vector of G
is the vector CR(G) = (Cr(T,G))T∈Tr

, where Tr denotes the family of all rooted trees. The
following connection between the color refinement algorithm and the CR-vector is known.

I Lemma 6 (Angluin [2], also see Krebs and Verbitsky [15, Lemma 2.5]). For all graphs G
and H, color refinement distinguishes G and H if and only if CR(G) 6= CR(H) holds.

3.2 Proof of Theorem 1
Throughout this section, we work with rooted trees. For a rooted tree T and an (unrooted)
graph G, we simply let Hom(T,G) be the number of homomorphisms of the plain tree
underlying T to G, ignoring the root.

Let T and T ′ be rooted trees. A homomorphism h from T to T ′ is depth-preserving if, for
all vertices v ∈ V (T ), the depth of v in T is equal to the depth of h(v) in T ′. Moreover, a
homomorphism h from T to T ′ is depth-surjective if the image of T under h contains vertices
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at every depth present in T ′. We define
−−→
Hom(T, T ′) as the number of homomorphisms from T

to T ′ that are both depth-preserving and depth-surjective. Note that
−−→
Hom(T, T ′) = 0 holds

if and only if T and T ′ have different depths.

I Lemma 7. Let T be a rooted tree and let G be a graph. We have

Hom(T,G) =
∑
T ′

−−→
Hom(T, T ′) · Cr(T ′, G) , (2)

where the sum is over all unlabeled rooted trees T ′. In other words, the matrix identity
Hom =

−−→
Hom · Cr holds.

Proof. Let d be the depth of T and let r be the root of T . Every T ′ with
−−→
Hom(T, T ′) 6= 0

has depth d too and there are at most n non-isomorphic rooted trees T ′ of depth d with
Cr(T ′, G) 6= 0. Thus the sum in (2) has only finitely many non-zero terms and is well-defined.

For a rooted tree T ′ and a vertex v ∈ V (G), let H(T ′, v) be the set of all homomorphisms h
from T to G such that h(r) = v holds and the tree unfolding T (G, v)≤d is isomorphic to T ′.
Let H(T ′) =

⋃
v∈V (G) H(T ′, v) and observe |H(T ′, v)| =

−−→
Hom(T, T ′). Since Cr(T ′, G) is the

number of v ∈ V (G) with T (G, v)≤d ∼= T ′, we thus have |H(T ′)| =
−−→
Hom(T, T ′) · Cr(T ′, G).

Since each homomorphism from T to G is contained in exactly one set H(T ′), we obtain the
desired equality (2). J

For rooted trees T and T ′, let
−−→
Surj(T, T ′) be the number of depth-preserving and surjective

homomorphisms from T to T ′. In particular, not only do these homomorphisms have to
be depth-surjective, but they should hit every vertex of T ′. For rooted trees T and T ′ of
the same depth, let

−−→
Sub(T, T ′) be the number of subgraphs of T ′ that are isomorphic to T

(under an isomorphism that maps the root to the root); if T and T ′ have different depths,
we set

−−→
Sub(T, T ′) = 0.

I Lemma 8.
−−→
Hom =

−−→
Surj ·

−−→
Sub is an LU -decomposition of

−−→
Hom, and

−−→
Surj and

−−→
Sub are

invertible.

As is the case for finite matrices, the inverse of a lower (upper) triangular matrix is
lower (upper) triangular. As the matrix

−−→
Surj is lower triangular and the matrix

−−→
Sub is upper

triangular, their inverses are as well. We are ready to prove our first main theorem.

Proof of Theorem 1. We only need to prove the equivalence between assertions i and ii.
For every graph G, let HOMr(G) :=

(
Hom(T,G)

)
T∈Tr

. By our convention that for a rooted
tree T and an unrooted graph G we let Hom(T,G) be the number of homomorphisms of
the plain tree underlying T to G, for all G and H we have HOMr(G) = HOMr(H) ⇐⇒
HOM(G) = HOM(H). By Lemma 6, it suffices to prove for all graph G,H that

CR(G) = CR(H) ⇐⇒ HOMr(G) = HOMr(H) . (3)

We view the vectors HOMr(G) and CR(G) as infinite column vectors. By Lemma 7, we have

HOMr(G) =
−−→
Hom · CR(G) and HOMr(H) =

−−→
Hom · CR(H) . (4)

The forward direction of (3) now follows immediately.
It remains to prove the backward direction. Since

−−→
Hom =

−−→
Surj ·

−−→
Sub holds by Lemma 8

for two invertible matrices
−−→
Surj and

−−→
Sub, we can first left-multiply with

−−→
Surj−1 to obtain the

equivalent identities
−−→
Surj−1 · HOMr(G) =

−−→
Sub · CR(G) and

−−→
Surj−1 · HOMr(H) =

−−→
Sub · CR(H) . (5)

ICALP 2018
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Now suppose HOMr(G) = HOMr(H) holds, and set v = HOMr(G). Then
−−→
Surj−1 · v is

well-defined, because
−−→
Surj and its inverse are lower triangular. Thus we obtain

−−→
Sub ·CR(G) =

−−→
Sub ·CR(H) and set w = CR(G). Unfortunately,

−−→
Sub−1 ·w may be undefined, since

−−→
Sub−1 is

upper triangular. While we can still use a matrix inverse, the argument becomes a bit subtle.
The crucial observation is that Cr(T ′, G) is non-zero for at most n different trees T ′, and all
such trees have maximum degree at most n− 1. Thus we do not need to look at all trees
but only those with maximum degree n. Let T̃ be the set of all unlabeled rooted trees of
maximum degree at most n. Let CR′ = CR |T̃ , let w′ = w|T̃ , and let

−−→
Sub′ =

−−→
Sub|T̃ ×T̃ . Then

we still have the following for all T ∈ T̃ and G:

w′T =
∑
T ′∈T̃

−−→
Sub′(T, T ′) · Cr′(T ′, G) . (6)

The new matrix
−−→
Sub′ is a principal minor of

−−→
Sub and thus remains invertible. Moreover,−−→

Sub′−1 ·w′ is well-defined, since∑
T ′∈T̃

−−→
Sub′−1(T, T ′) ·w′T ′ (7)

is a finite sum for each T : The number of (unlabeled) trees T ′ ∈ T̃ that have the same
depth d as T is bounded by a function in n and d. Thus

−−→
Sub′−1 · w′ = CR′(G). By a

similar argument, we obtain
−−→
Sub′−1 ·w′ = CR′(H). This implies CR′(G) = CR′(H) and thus

CR(G) = CR(H). J

4 Homomorphisms from cycles and paths

While the arguments we saw in the proof of Theorem 1 are mainly graph-theoretic, the
proof of Theorem 2 uses spectral techniques. To introduce the techniques, we first prove a
simple, known result already mentioned in the introduction. We call two square matrices
co-spectral if they have the same eigenvalues with the same multiplicities, and we call two
graphs co-spectral if their adjacency matrices are co-spectral.

I Proposition 9 (e.g. [23, Lemma 1]). Let C be the class of all cycles (including the
degenerate cycle of length 0, which is just a single vertex). For all graphs G and H, we have
HOMC(G) = HOMC(H) if and only if G and H are co-spectral.

For the proof, we review a few simple facts from linear algebra. The trace tr(A) of a
square matrix A ∈ Rn×n is the sum of the diagonal entries. If the eigenvalues of A are
λ1, . . . , λn, then tr(A) =

∑n
i=1 λi. Moreover, for each ` ≥ 0 the eigenvalues of the matrix A`

are λ`1, . . . , λ`n, and thus tr(A`) =
∑n
i=1 λ

`
i . The following technical lemma encapsulates the

fact that the information tr(A`) for all ` ∈ N suffices to reconstruct the spectrum of A with
multiplicities. We use the same lemma to prove Theorem 2, but for Proposition 9 a less
general version would suffice.

I Lemma 10. Let X,Y ⊆ R be two finite sets and let c ∈ RX
6=0 and d ∈ RY

6=0 be two vectors.
If the equation∑

x∈X
cxx

` =
∑
y∈Y

dyy
` (8)

holds for all ` ∈ N, then X = Y and c = d.
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Proof. We prove the claim by induction on k := |X|+ |Y |. For k = 0, the claim is trivially
true since both sums in (8) are equal to zero by convention.

Let x̂ = arg max{ |x| : x ∈ X∪Y } and let x̂ ∈ X without loss of generality. If x̂ = 0, then
X = {0} and we claim that Y = {0} holds. Clearly (8) for ` = 0 yields 0 6= c0 =

∑
y∈Y dy.

In particular, Y 6= ∅ holds. Since x̂ = 0 is the maximum of X ∪ Y in absolute value, we
have Y = {0} and thus also c = d.

Now suppose that x̂ 6= 0 holds. We consider the sequences (a`)`∈N and (b`)`∈N with

a` = 1
x̂`
·
∑
x∈X

cxx
` and b` = 1

x̂`
·
∑
y∈Y

dyy
` . (9)

Note that a` = b` holds for all ` ∈ N by assumption. Observe the following simple facts:
1) If −x̂ 6∈ X, then lim`→∞ a` = cx̂.
2) If −x̂ ∈ X, then lim`→∞ a2` = cx̂ + c−x̂ and lim`→∞ a2`+1 = cx̂ − c−x̂.
As well as the following exhaustive case distinction for Y :
a) If x̂,−x̂ 6∈ Y , then lim`→∞ b` = 0.
b) If x̂ ∈ Y and −x̂ 6∈ Y , then lim`→∞ b` = dx̂.
c) If x̂ 6∈ Y and −x̂ ∈ Y , then lim`→∞ b2` = d−x̂ and lim`→∞ b2`+1 = −d−x̂.
d) If x̂,−x̂ ∈ Y , then lim`→∞ b2` = dx̂ + d−x̂ and lim`→∞ b2`+1 = dx̂ − d−x̂.
If −x̂ 6∈ X holds, we see from 1) that a` converges to the non-zero value cx̂. Since the two
sequences are equal, the sequence b` also converges to a non-zero value. The only case for Y
where this happens is b), and we get x̂ ∈ Y , −x̂ 6∈ Y , and cx̂ = dx̂. On the other hand,
if −x̂ ∈ X, we see from 2) that a` does not converge, but the even and odd subsequences do.
The only cases for Y where this happens for b` too are c) and d). We cannot be in case c),
since the two accumulation points of b` just differ in their sign, while the two accumulation
points of a` do not have the same absolute value. Thus we must be in case d) and obtain
x, x̂ ∈ Y as well as

cx̂ + c−x̂ = dx̂ + d−x̂ and cx̂ − c−x̂ = dx̂ − d−x̂ .

This linear system has full rank and implies cx̂ = dx̂ and c−x̂ = d−x̂.
Either way, we can remove {x̂} or {x̂,−x̂} from both X and Y and apply the induction

hypothesis on the resulting instance X ′, Y ′, c′, d′. Then (X, c) = (Y, d) follows as claimed. J

Proof of Proposition 9. For all ` ≥ 0, the number of homomorphisms from the cycle C` of
length ` to a graph G with adjacency matrix A is equal to the number of closed length-`
walks in G, which in turn is equal to the trace of A`. Thus for graphs G,H with adjacency
matrices A,B, we have HOMC(G) = HOMC(H) if and only if tr(A`) = tr(B`) holds for
all ` ≥ 0.

If A and B have the same spectrum λ1, . . . , λn, then tr(A`) = λ`1 + · · ·+λ`n = tr(B`) holds
for all ` ∈ N. For the reverse direction, suppose tr(A`) = tr(B`) for all ` ∈ N. Let X ⊆ R
be the set of eigenvalues of A and for each λ ∈ X, let cλ ∈ {1, . . . , n} be the multiplicity
of the eigenvalue λ. Let Y ⊆ R and dλ for λ ∈ Y be the corresponding eigenvalues and
multiplicities for B. Then for all ` ∈ N, we have∑

λ∈X

cλλ
` = tr(A`) = tr(B`) =

∑
λ∈Y

dλλ
` .

By Lemma 10, this implies (X, c) = (Y, d), that is, the spectra of A and B are identical. J

In the following example, we show that the vectors HOMC for the class C of cycles and
HOMT for the class T of trees are incomparable in their expressiveness.
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Figure 2 Two co-spectral graphs

I Example 11. The graphs G and H shown in Figure 2 are co-spectral and thus HOMC(G) =
HOMC(H), but it is easy to see that HOMP(G) 6= HOMP(H) for the class P of all paths.

Let G′ be a cycle of length 6 and H ′ the disjoint union of two triangles. Then obviously,
HOMC(G′) 6= HOMC(H ′). However, color refinement does not distinguish G′ and H ′ and
thus HOMT (G′) = HOMT (H ′).

Let us now turn to the proof of Theorem 2.

Proof of Theorem 2. Let A and B be the adjacency matrices of G and H, respectively.
Since A is a symmetric and real matrix, its eigenvalues are real and the corresponding
eigenspaces are orthogonal and span Rn. Let 1 be the n-dimensional all-1 vector, and
let X = {λ1, . . . , λk} be the set of all eigenvalues of A whose corresponding eigenspaces are
not orthogonal to 1. We call these eigenvalues the useful eigenvalues of A and without loss of
generality assume λ1 > · · · > λk. The n-dimensional all-1 vector 1 can be expressed as a direct
sum of eigenvectors of A corresponding to useful eigenvalues. In particular, there is a unique
decomposition 1 =

∑k
i=1 ui such that each ui is a non-zero eigenvector in the eigenspace

of λi. Moreover, the vectors u1, . . . , uk are orthogonal. For the matrix B, we analogously
define its set of useful eigenvalues Y = {µ1, . . . , µk′} and the direct sum 1 =

∑k′

i=1 vi.
We prove the equivalence of the following three assertions (of which the first and third

appear in the statement of Theorem 2).
1. HOMP(G) = HOMP(H).
2. A and B have the same set of useful eigenvalues λ1, . . . , λk and ‖ui‖ = ‖vi‖ holds for

all i ∈ {1, . . . , k}. Here, ‖.‖ denotes the Euclidean norm with ‖x‖2 =
∑
j x

2
j .

3. The system Fiso(G,H) of linear equations has a real solution.
Note that in 2, we do not require that the useful eigenvalues occur with the same multiplicities
in A and B. We show the implications (1 ⇒ 2), (2 ⇒ 3), and (3 ⇒ 1).

(1 ⇒ 2): Suppose that Hom(P`, G) = Hom(P`, H) holds for all paths P`. Equivalently,
this can be stated in terms of the adjacency matrices A and B: for all ` ∈ N, we have
1TA`1 = 1TB`1. We claim that A and B have the same useful eigenvalues, and that the
projections of 1 onto the corresponding eigenspaces have the same lengths.

Note that A`1 =
∑k
i=1 λ

`
iui holds. Thus we have

1TA`1 =
(

k∑
i=1

uTi

)(
k∑
i=1

λ`iui

)
=

k∑
i=1
‖ui‖2 · λ`i . (10)

The term 1TB`1 can be expanded analogously, which together yields

k∑
i=1
‖ui‖2 · λ`i =

k′∑
i=1
‖vi‖2 · µ`i for all ` ∈ N. (11)
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Since all coefficients cλi = ‖ui‖2 and dµi = ‖vi‖2 are non-zero, we are in the situation of
Lemma 10. We obtain k = k′ and, for all i ∈ {1, . . . , k}, we obtain λi = µi and ‖ui‖ = ‖vi‖.
This is exactly the claim that we want to show.

(2 ⇒ 3): We claim that the (n× n)-matrix X defined via

X =
k∑
i=1

1
‖ui‖2 · uiv

T
i (12)

satisfies the Fiso equations AX = XB and X1 = 1 = XT1. Indeed, we have

AX =
k∑
i=1

1
‖ui‖2 ·Auiv

T
i =

k∑
i=1

λi
‖ui‖2 · uiv

T
i =

k∑
i=1

1
‖ui‖2 · uiv

T
i B

T = XBT = XB , (13)

This follows, since Aui = λiui, Bvi = λivi, and B is symmetric. Moreover, we have

X1 =
k∑
i=1

1
‖ui‖2 ·Auiv

T
i 1 =

k∑
i=1

1
‖ui‖2 · uiv

T
i

k∑
j=1

vj =
k∑
i=1

1
‖ui‖2 · ui · v

T
i vi = 1 . (14)

This holds by definition of ui and vi and from vTi vi = ‖vi‖2 = ‖ui‖2. The claim XT1 = 1
follows analogously.

(3 ⇒ 1): Suppose there is a matrix X with XT1 = X1 = 1 and AX = XB. We
obtain A`X = XB` by induction for all ` ∈ N>0. For ` = 0, this also holds since
A0 = In by convention. As a result, we have 1TA`1 = 1TA`X1 = 1TXB`1 = 1TB`1
for all ` ∈ N. Since these scalars count the length-` walks in G and H, respectively, we
obtain Hom(P`, G) = Hom(P`, H) for all paths P` as claimed. J

5 Homomorphisms from bounded tree width and path width

We briefly outline the main ideas of the proofs of Theorems 3 and 4; the technical details are
deferred to the full version of this paper. In Theorem 3, the equivalence between ii and iii is
essentially known, so we focus on the equivalence between i and ii. The proof is similar to
the proof of Theorem 1 in Section 3.

Let us fix k ≥ 2. The idea of the k-WL algorithm is to iteratively color k-tuples of vertices.
Initially, each k-tuple (v1, . . . , vk) is colored by its atomic type, that is, the isomorphism type
of the labeled graph G[{v1, . . . , vk}]. Then in the refinement step, to define the new color of
a k-tuple v̄ we look at the current color of all k-tuples that can be reached from k by adding
one vertex and then removing one vertex.

Similar to the tree unfolding of a graph G at a vertex v, we define the Weisfeiler-Leman
tree unfolding at a k-tuple v̄ of vertices. These objects have some resemblance to the pebbling
comonad, which was defined by Abramsky, Dawar, and Wang [1] in the language of category
theory. The WL-tree unfolding describes the color of v̄ computed by k-WL; formally it may be
a viewed as a pair (T, F ) consisting of a graph F together with a “rooted” tree decomposition
(potentially infinite, but again we cut it off at some finite depth). Similar to the numbers
Cr(T,G) and the vector CR(G), we now have numbers WL((T, F ), G) and a vector WL(G)
such that WL(G) = WL(H) holds if and only if k-WL does not distinguish G and H. Then
we define a linear transformation Φ with HOMTk

(G) = ΦWL(G). The existence of this linear
transformation directly yields the implication ii =⇒ i of Theorem 3. To prove the converse,
we show that the transformation Φ is invertible by giving a suitable LU -decomposition of
full rank. This completes our sketch of the proof of Theorem 3.
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The proof of Theorem 4 requires a different argument, because now we have to use a
solution (Xπ) of the system Lk+1

iso (G,H) to prove that the path width k homomorphism
vectors HOMPk

(G) and HOMPk
(H) are equal. The key idea is to express entries of a suitable

variant of HOMPk
(G) as a linear combinations of entries of the corresponding vector for H

using the values Xπ as coefficients.

6 Conclusions

We have studied the homomorphism vectors HOMF (G) for various graph classes F , focusing
on classes F where it is tractable to compute the entries Hom(F,G) of the vector. Our main
interest was in the “expressiveness” of these vectors, that is, in the question what HOMF (G)
tells us about the graph G. For the classes C of cycles, T of trees, Tk of graphs of tree width
at most k, and P of paths, we have obtained surprisingly clean answers to this question,
relating the homomorphism vectors to various other well studied formalisms that on the
surface have nothing to do with homomorphism counts.

Some interesting questions remain open. The most obvious is whether the converse of
Theorem 4 holds, that is, whether for two graphs G, H with HOMPk

(G) = HOMPk
(H), the

system Lk+1
iso (G,H) has a real solution (and hence the Nullstellensatz propositional proof

system has no degree-(k + 1) refutation of G and H being isomorphic).
Another related open problem in spectral graph theory is to characterize graphs which

are identified by their spectrum, up to isomorphism. In our framework, Proposition 9 ensures
that we can equivalently ask for the following characterization: for which graphs G does the
vector HOMC(G) determine the entire homomorphism vector HOM(G)?

Despite the computational intractability, it is also interesting to study the vectors
HOMF (G) for classes F of unbounded tree width. Are there natural classes F (except
of course the class of all graphs) for which the vectors HOMF (G) characterize G up to
isomorphism? For example, what about classes of bounded degree or the class of planar
graphs? And what is the complexity of deciding whether HOMF (G) = HOMF (H) holds
when G and H are given as input? Our results imply that this problem is in polynomial time
for the classes T , Tk, and P. For the class of all graphs, it is in quasi-polynomial time by
Babai’s quasi-polynomial isomorphism test [5]. Yet it seems plausible that there are classes F
(even natural classes decidable in polynomial time) for which the problem is co-NP-hard.

Maybe the most interesting direction for further research is to study the graph similarity
measures induced by homomorphism vectors. A simple way of defining an inner product on
the homomorphism vectors is by letting

〈
HOMF (G),HOMF (H)

〉
:=

∑
k≥1
Fk 6=∅

1
kk|Fk|

∑
F∈Fk

Hom(F,G)Hom(F,H),

where Fk denotes the class of all graph F ∈ F with k vertices. The mapping (G,H) 7→
〈HOMF (G),HOMF (H)〉 is what is known as a graph kernel in machine learning. It induces
a (pseudo)metric dT on the class of graphs. It is an interesting question how it relates to
other graph similarity measures, for example, the metric induced by the Weisfeiler-Leman
graph kernel. Our Theorem 1 implies that the metric dT for the class T of trees and the
metric induced by the Weisfeiler-Leman graph kernel have the same graphs of distance zero.
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Abstract
We study the problem of testing identity against a given distribution with a focus on the high
confidence regime. More precisely, given samples from an unknown distribution p over n elements,
an explicitly given distribution q, and parameters 0 < ε, δ < 1, we wish to distinguish, with
probability at least 1 − δ, whether the distributions are identical versus ε-far in total variation
distance. Most prior work focused on the case that δ = Ω(1), for which the sample complexity of
identity testing is known to be Θ(

√
n/ε2). Given such an algorithm, one can achieve arbitrarily

small values of δ via black-box amplification, which multiplies the required number of samples
by Θ(log(1/δ)).

We show that black-box amplification is suboptimal for any δ = o(1), and give a new identity
tester that achieves the optimal sample complexity. Our new upper and lower bounds show that
the optimal sample complexity of identity testing is

Θ
(

1
ε2

(√
n log(1/δ) + log(1/δ)

))
for any n, ε, and δ. For the special case of uniformity testing, where the given distribution is the
uniform distribution Un over the domain, our new tester is surprisingly simple: to test whether
p = Un versus dTV (p, Un) ≥ ε, we simply threshold dTV (p̂, Un), where p̂ is the empirical probab-
ility distribution. The fact that this simple “plug-in” estimator is sample-optimal is surprising,
even in the constant δ case. Indeed, it was believed that such a tester would not attain sublinear
sample complexity even for constant values of ε and δ.

An important contribution of this work lies in the analysis techniques that we introduce in
this context. First, we exploit an underlying strong convexity property to bound from below the
expectation gap in the completeness and soundness cases. Second, we give a new, fast method
for obtaining provably correct empirical estimates of the true worst-case failure probability for
a broad class of uniformity testing statistics over all possible input distributions – including all
previously studied statistics for this problem. We believe that our novel analysis techniques will
be useful for other distribution testing problems as well.
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1 Introduction

Distribution property testing [15, 4, 5], originating in statistical hypothesis testing [18, 17],
studies problems of the form: given sample access to one or more unknown distributions,
determine whether they satisfy some global property or are “far” from satisfying the property.
(See Section 1.1 for a formal definition.) During the past two decades problems of this form
have received significant attention within the computer science community. See [20, 6] for
two recent surveys.

Research in this field has primarily centered on determining tight bounds on the sample
complexity of testing various properties in the constant probability of success regime. That is,
the testing algorithm must succeed with a probability of (say) at least 2/3. This constant
confidence regime is fairly well understood. For a range of fundamental properties [19, 7, 22,
12, 11, 1, 10, 9] we now have sample-optimal testers that use provably optimal number of
samples (up to constant factors) in this regime.

In sharp contrast, the high confidence regime – i.e., the case where the desired failure
probability is subconstant – is poorly understood even for the most basic properties. For
essentially all distribution property testing problems studied in the literature, the standard
amplification method is the only way known to achieve a high confidence success probability.
Amplification is a black-box method that can boost the success probability to any desired
accuracy. However, using it increases the number of required samples beyond what is
necessary to obtain constant confidence. Specifically, to achieve a high confidence success
probability of 1− δ via amplification, the number of samples required increases by a factor
of Θ(log(1/δ)) compared to the constant confidence regime.

This discussion raises the following natural questions: For a given distribution property
testing problem, does black-box amplification give sample-optimal testers for obtaining a
high confidence success probability? Specifically, is the Θ(log(1/δ)) multiplicative increase
in the sample size the best possible? If not, can we design testers that have optimal sample
complexity in terms of all relevant problem parameters, including the error probability δ?

We believe that these are fundamental questions that merit theoretical investigation in
their own right. As Goldreich notes [14], “eliminating the error probability as a parameter does
not allow to ask whether or not one may improve over the straightforward error reduction”.
From a practical perspective, understanding this high confidence regime is important to
applications of hypothesis testing (e.g., in biology), because the failure probability δ of the
test can be reported as a p-value. (The family of distribution testing algorithms with success
probability 1− δ for a given problem is equivalent to the family of statistical tests whose
p-value (probability of Type I error) and probability of Type II error are both at most δ.)
Standard techniques for addressing the problem of multiple comparisons, such as Bonferroni
correction, require vanishingly small p-values.

Perhaps surprisingly, with one exception [16], this basic problem has not been previously
investigated in the finite sample regime. A conceptual contribution of this work is to raise
this problem as a fundamental goal in distribution property testing. We note here that

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.41
https://eccc.weizmann.ac.il/report/2017/133/
https://eccc.weizmann.ac.il/report/2017/133/


I. Diakonikolas, T. Gouleakis, J. Peebles, and E. Price 41:3

the analogous question in the context of distribution learning has been intensely studied in
statistics and probability theory (see, e.g., [23, 8]) and tight bounds are known in a range of
settings.

1.1 Formal Framework
The focus of this work is on the task of identity testing, which is arguably the most fundamental
distribution testing problem.

I Definition 1 (Distribution Identity Testing Problem). Given a target distribution q with
domain D of size n, parameters 0 < ε, δ < 1, and sample access to an unknown distribution
p over the same domain, we want to distinguish with probability at least 1− δ between the
following cases:

Completeness: p = q.
Soundness: dTV (p, q) ≥ ε.

We call this the problem of (ε, δ) testing identity to q. The special case of q being uniform is
known as uniformity testing. An algorithm that solves one of these problems will be called
an (ε, δ)-tester for identity/uniformity.

Note that dTV (p, q) denotes the total variation distance or statistical distance between
distributions p and q, i.e., dTV (p, q) def= 1

2 · ‖p− q‖1. The goal is to characterize the sample
complexity of the problem: i.e., the number of samples that are necessary and sufficient to
correctly distinguish between the completeness and soundness cases with probability 1− δ.

1.2 Our Results
Our main result is a complete characterization of the worst-case sample complexity of identity
testing in the high confidence regime. For this problem, we show that black-box amplification
is suboptimal for any δ = o(1), and give a new identity tester that achieves the optimal
sample complexity:

I Theorem 2 (Main Result). There exists a computationally efficient (ε, δ)-identity tester
for discrete distributions of support size n with sample complexity

Θ
(

1
ε2

(√
n log(1/δ) + log(1/δ)

))
. (1)

Moreover, this sample size is information-theoretically optimal, up to a constant factor, for
all n, ε, δ.

As we explain in Section 1.3, [16] gave a tester that achieves the optimal sample complexity
when the sample size is o(n). However this tester completely fails with Ω(n) samples, as
may be required when either ε or δ are sufficiently small. Theorem 2 provides a complete
characterization of the worst-case sample complexity of the problem with a single statistic
for all settings of parameters n, ε, δ.

Brief Overview of Techniques. To analyze our tester, we introduce two new techniques
for the analysis of distribution testing statistics, which we describe in more detail in Section
1.4. Our techniques leverage a simple common property of numerous distribution testing
statistics which does not seem to have been previously exploited in their analysis: their
convexity. Our first technique crucially exploits an underlying strong convexity property
to bound from below the expectation gap between the completeness and soundness cases.
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We remark that this is a contrast to most known distribution testers where bounding the
expectation gap is easy, and the challenge is in bounding the variance of the statistic.

Our second technique implies a new, fast method for obtaining empirical estimates
of the true worst-case failure probability of any member of a broad class of uniformity
testing statistics. This class includes all uniformity testing statistics studied in the literature.
Critically, these estimates come with provable guarantees about the worst-case failure
probability of the statistic over all possible input distributions, and have tunable additive
error. We elaborate in Section 1.4.

1.3 Discussion and Prior Work
Uniformity testing is the first and one of the most well-studied problems in distribution
testing [15, 19, 22, 12, 9]. As already mentioned, the literature has almost exclusively
focused on the case of constant error probability δ. The first uniformity tester, introduced by
Goldreich and Ron [15], counts the number of collisions among the samples and was shown
to work with O(

√
n/ε4) samples [15]. A related tester proposed by Paninski [19], which relies

on the number of distinct elements in the set of samples, was shown to have the optimal
m = Θ(

√
n/ε2) sample complexity, as long as m = o(n). Recently, a chi-squared based

tester was shown in [22, 12] to achieve the optimal Θ(
√
n/ε2) sample complexity without

any restrictions. Finally, the original collision-based tester of [15] was very recently shown to
also achieve the optimal Θ(

√
n/ε2) sample complexity [9]. Thus, the situation for constant

values of δ is well understood.
The problem of identity testing against an arbitrary (explicitly given) distribution was

studied in [3], who gave an (ε, 1/3)-tester with sample complexity Õ(n1/2)/poly(ε). The
tight bound of Θ(n1/2/ε2) was first given in [22] using a chi-squared type tester (inspired
by [7]). In subsequent work, a similar chi-squared tester that also achieves the same sample
complexity bound was given in [1]. (We note that the [22, 1] testers have sub-optimal sample
complexity in the high confidence regime, even for the case of uniformity.) In a related work,
[12] obtained a reduction of identity to uniformity that preserves the sample complexity, up
to a constant factor, in the constant error probability regime. More recently, Goldreich [13],
building on [10], gave a different reduction of identity to uniformity that preserves the error
probability. We use the latter reduction in this paper to obtain an optimal identity tester
starting from our new optimal uniformity tester.

Since the sample complexity of identity testing is Θ(
√
n/ε2) for δ = 1/3 [22, 12], standard

amplification gives a sample upper bound of Θ(
√
n log(1/δ)/ε2) for this problem. It is not

hard to observe that this naive bound cannot be optimal for all values of δ. For example,
in the extreme case that δ = 2−Θ(n), this gives a sample complexity of Θ(n3/2/ε2). On the
other hand, one can learn the underlying distribution (and therefore test for identity) with
O(n/ε2) samples for such values of δ4.

The case where 1� δ � 2−Θ(n) is more subtle, and it is not a priori clear how to improve
upon naive amplification. Theorem 2 provides a smooth transition between the extremes
of Θ(

√
n/ε2) for constant δ and Θ(n/ε2) for δ = 2−Θ(n). It thus provides a quadratic

improvement in the dependence on δ over the naive bound for all δ ≥ 2−Θ(n), and shows
that this is the best possible. For δ < 2−Θ(n), it turns out that the additive Θ(log(1/δ)/ε2)
term is necessary, as outlined in Section 1.4, so learning the distribution is optimal for such
values of δ.

4 This follows from the fact that, for any distribution p over n elements, the empirical probability
distribution p̂m obtained after m = Ω((n+ log(1/δ))/ε2) samples drawn from p is ε-close to p in total
variation distance with probability at least 1 − δ.
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We obtain the first sample-optimal uniformity tester for the high confidence regime. Our
sample-optimal identity tester follows from our uniformity tester by applying the recent
result of Goldreich [13], which provides a black-box reduction of identity to uniformity. We
also show a matching information-theoretic lower bound on the sample complexity.

The sample-optimal uniformity tester we introduce is remarkably simple: to distinguish
between the cases that p is the uniform distribution Un over n elements versus dTV (p, Un) ≥ ε,
we simply compute dTV (p̂, Un) for the empirical distribution p̂. The tester accepts that
p = Un if the value of this statistic is below some well-chosen threshold, and rejects otherwise.

It should be noted that such a tester was not previously known to work with sub-learning
sample complexity – i.e., fewer than Θ(n/ε2) samples – even in the constant confidence
regime. Surprisingly, in a literature with several different uniformity testers [15, 19, 22, 12],
no one has previously used the empirical total variation distance. On the contrary, it would
be natural to assume – as was suggested in [4, 5] – that this tester cannot possibly work. A
likely reason for this is the following observation: When the sample size m is smaller than
the domain size n, the empirical total variation distance is very far from the true distance to
uniformity. This suggests that the empirical distance statistic gives little, if any, information
in this setting.

Despite the above intuition, we prove that the natural “plug-in” estimator relying on the
empirical distance from uniformity actually works for the following reason: the empirical
distance from uniformity is noticeably smaller for the uniform distribution than for “far
from uniform” distributions, even with a sub-linear sample size. Moreover, we obtain the
stronger statement that the “plug-in” estimator is a sample-optimal uniformity tester for all
parameters n, ε and δ.

In [16], it was shown that the distinct-elements tester of [19] achieves the optimal sample
complexity of m = Θ(

√
n log(1/δ)/ε2) , as long as m = o(n). When m = Ω(n), as is the

case in many practically relevant settings (see, e.g., the Polish lottery example in [21] with
n <
√
n/ε2� n/ε2), this tester is known to fail completely even in the constant confidence

regime. On the other hand, in such settings the sample size is not sufficiently large so that
we can actually learn the underlying distribution.

It is important to note that all previously considered uniformity testers [15, 19, 22, 12]
do not achieve the optimal sample complexity (as a function of all parameters, including δ),
and this is inherent, i.e., not just a failure of previous analyses. Roughly speaking, since the
collision statistic [15] and the chi-squared based statistic [22, 12] are not Lipschitz, it can
be shown that their high-probability performance is poor. Specifically, in the completeness
case (p = Un), if many samples happen to land in the same bucket (domain element), these
test statistics become quite large, leading to their suboptimal behavior for all δ = o(1). (For
a formal justification, the reader is referred to Section V of [16]). On the other hand, the
distinct-elements tester [19] does not work for m = ω(n). For example, if ε or δ are sufficiently
small to necessitate m� n log n, then typically all n domain elements will appear in both
the completeness and soundness cases, hence the test statistic provides no information.

1.4 Our Techniques
1.4.1 Upper Bound for Uniformity Testing
We would like to show that the test statistic dTV (p̂, Un) is with high probability larger when
dTV (p, Un) ≥ ε than when p = Un. We start by showing that among all possible alternative
distributions p with dTV (p, Un) ≥ ε, it suffices to consider those in a very simple family. We
then show that the test statistic is highly concentrated around its expectation, and that the
expectations are significantly different in the two cases. The main technical components of
our paper are our techniques for accomplishing these tasks.
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41:6 Optimal Identity Testing with High Probability

To simplify the structure of p, it can be shown that if p majorizes another distribution
q, then the test statistic dTV (p̂, Un) stochastically dominates dTV (q̂, Un). (In fact, this
statement holds for any test statistic that is a convex symmetric function of the empirical
histogram.) We defer this proof to the full version. Therefore, for any p, if we average out
the large and small entries of p, the test statistic becomes harder to distinguish from uniform.

We remark as a matter of independent interest that this stochastic domination lemma
immediately implies a fast algorithm for performing rigorous empirical comparisons of test
statistics. A major difficulty in empirical studies of distribution testing is that it is not
possible to directly check the failure probability of a tester over every possible distribution as
input, because the space of such distributions is quite large. Our structural lemma reduces
the search space dramatically for uniformity testing: for any convex symmetric test statistic
(which includes all existing ones), the worst case distribution will have αn coordinates of
value (1 + ε/α)/n, and the rest of value (1− ε/(1− α))/n, for some α. Hence, there are only
n possible worst-case distributions for any ε. Notably, this reduction does not lose anything,
so it could be used to identify the non-asymptotic optimal constants that a distribution
testing statistic achieves for a given set of parameters.

Returning to our uniformity tester, at the cost of a constant factor in ε we can assume
α = 1/2. As a result, we only need to consider p to be either Un or of the form 1±ε

n in
each coordinate. We now need to separate the expectation of the test statistic in these two
situations. The challenge is that both expectations are large, and we do not have a good
analytic handle on them. We therefore introduce a new technique for showing a separation
between the completeness and soundness cases that utilizes the strong convexity of the test
statistic. Specifically, we obtain an explicit expression for the Hessian of the expectation,
as a function of p. The Hessian is diagonal, and for our two situations of pi ≈ 1/n each
entry is within constant factors of the same value, giving a lower bound on its eigenvalues.
Since the expectation is minimized at p = Un, strong convexity implies an expectation gap.
Specifically, we prove that this gap is ε2 ·min(m2/n2,

√
m/n, 1/ε).

Finally, we need to show that the test statistic concentrates about its expectation. For
m ≥ n, this follows from McDiarmid’s inequality: since the test statistic is 1/m-Lipschitz in
the m samples, with probability 1− δ it lies within

√
log(1/δ)/m of its expectation. When

m is larger than the desired sample complexity given in (1), this is less than the expectation
gap above. The concentration is trickier when m < n, since the expectation gap is smaller,
so we need to establish tighter concentration. We get this by using a Bernstein variant of
McDiarmid’s inequality, which is stronger than the standard version of McDiarmid in this
context. We note that the use of the stochastic domination is also crucial here. Since our
statistic is a symmetric convex function of the histogram values, we show (details deferred to
the full version) that for each soundness case distribution, there is a different distribution
that has possible probability mass values exclusively in the set { 1+ε′

n , 1
n ,

1−ε′

n }, for some
ε′ = O(ε), and is harder to distinguish from the uniform distribution. However, we could show
that this distribution has a stronger Lipschitz-type property than the other soundness case
distributions. Therefore, we are able to use a stronger concentration bound via McDiarmid’s
inequality and argue that even though other soundness case distributions may have weaker
concentration, they still have smaller error due to our stochastic domination argument.

1.4.2 Upper Bound for Identity Testing
In [13], it was shown how to reduce ε-testing of an arbitrary distribution q over [n] to
ε/3-testing of U6n. This reduction preserves the error probability δ, so applying it gives an
identity tester with the same sample complexity as our uniformity tester, up to constant
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factors.

1.4.3 Sample Complexity Lower Bound

To match our upper bound (1), we need two lower bounds. The lower bound of Ω( 1
ε2 log(1/δ))

is straightforward from the same lower bound as for distinguishing a fair coin from an ε-biased
coin, while the

√
n log(1/δ)/ε2 bound is more challenging.

For intuition, we start with a
√
n log(1/δ) lower bound for constant ε. When p = Un,

the chance that all m samples are distinct is at least (1 − m/n)m ≈ e−m
2/n. Hence, if

m�
√
n log(1/δ), this would happen with probability significantly larger than 2δ. On the

other hand, if p is uniform over a random subset of n/2 coordinates, the m samples will also
all be distinct with probability (1− 2m/n)m > 2δ. The two situations thus look the same
with 2δ probability, so no tester could have accuracy 1− δ.

This intuition can easily be extended to include a 1/ε dependence, but getting the desired
1/ε2 dependence requires more work. First, we Poissonize the number of samples, so we
independently see Poi(mpi) samples of each coordinate i; with exponentially high probability,
this Poissonization only affects the sample complexity by constant factors. Then, in the
alternative hypothesis, we set each pi independently at random to be 1±ε

n . This has the
unfortunate property that p no longer sums to 1, so it is a “pseudo-distribution” rather than
an actual distribution. Still, it is exponentially likely to sum to Θ(1), and using techniques
from [24, 10] this is sufficient for our purposes.

At this point, we are considering a situation where the number of times we see each
coordinate is either Poi(m/n) or 1

2 (Poi((1− ε)mn ) + Poi((1 + ε)mn )), and every coordinate is
independent of the others. These two distributions have Hellinger distance at least ε2m/n in
each coordinate. Then the composition property for Hellinger distance over n independent
coordinates implies m ≥

√
n log(1/δ)/ε2 is necessary for success probability 1− δ.

1.5 Notation

We write [n] to denote the set {1, . . . , n}. We consider discrete distributions over [n], which
are functions p : [n] → [0, 1] such that

∑n
i=1 pi = 1. We use the notation pi to denote the

probability of element i in distribution p. For S ⊆ [n], we will denote p(S) =
∑
i∈S pi. We

will also sometimes think of p as an n-dimensional vector. We will denote by Un the uniform
distribution over [n].

For r ≥ 1, the `r-norm of a distribution is identified with the `r-norm of the corresponding
vector, i.e., ‖p‖r = (

∑n
i=1 |pi|r)

1/r. The `r-distance between distributions p and q is defined
as the the `r-norm of the vector of their difference. The total variation distance between
distributions p and q is defined as dTV (p, q) def= maxS⊆[n] |p(S) − q(S)| = (1/2) · ‖p − q‖1.
The Hellinger distance between p and q is H(p, q) def= (1/

√
2) · ‖√p − √q‖2 = (1/

√
2) ·√∑n

i=1(√pi −
√
qi)2. We denote by Poi(λ) the Poisson distribution with parameter λ.

2 Sample-Optimal Uniformity Testing

In this section, we describe and analyze our optimal uniformity tester. Given samples from
an unknown distribution p over [n], our tester returns “YES” with probability 1− δ if p = Un,
and “NO” with probability 1− δ if dTV (p, Un) ≥ ε.
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2.1 Our Test Statistic
We define a very natural statistic that yields a uniformity tester with optimal dependence
on the domain size n, the proximity parameter ε, and the error probability δ. Our statistic
is a thresholded version of the empirical total variation distance between the unknown
distribution p and the uniform distribution. Our tester Test-Uniformity is described in
the following pseudocode:

Algorithm Test-Uniformity(p, n, ε, δ)
Input: sample access to a distribution p over [n], ε > 0, and δ > 0.
Output: “YES” if p = Un; “NO” if dTV (p, Un) ≥ ε.
1. Draw m = Θ

(
(1/ε2) ·

(√
n log(1/δ) + log(1/δ)

))
i.i.d. samples from p.

2. Let X = (X1, X2, . . . , Xn) ∈ Zn>0 be the histogram of the samples. That is, Xi is
the number of times domain element i appears in the (multi-)set of samples.

3. Define the random variable S = 1
2
∑n
i=1
∣∣Xi

m −
1
n

∣∣ and set the threshold

t = µ(Un) + C ·


ε2 · m

2

n2 for m ≤ n
ε2 ·

√
m
n for n < m ≤ n

ε2

ε for n
ε2 ≤ m

,

where C is a universal constant (derived from the analysis of the algorithm),
and µ(Un) is the expected value of the statistic in the completeness case. (We
can compute µ(Un) in O(m) time using the procedure in Appendix A of the full
version.)

4. If S ≥ t return “NO”; otherwise, return “YES”.

The main part of this section is devoted to the analysis of Test-Uniformity, establishing
the following theorem:

I Theorem 3. There exists a universal constant C > 0 such that the following holds: Given

m ≥ C · (1/ε2)
(√

n log(1/δ) + log(1/δ)
)

samples from an unknown distribution p, Algorithm Test-Uniformity is an (ε, δ)-tester
for uniformity of distribution p.

As we point out in Appendix A of the full version, the value µ(Un) can be computed
efficiently, hence our overall tester is computationally efficient. To prove correctness of the
above tester, we need to show that the expected value of the statistic in the completeness
case is sufficiently separated from the expected value in the soundness case, and also that
the value of the statistic is highly concentrated around its expectation in both cases. In
Section 2.2, we bound from below the difference in the expectation of our statistic in the
completeness and soundness cases. The proof the desired concentration, which completes the
proof of Theorem 3, is deferred to the full version.

2.2 Bounding the Expectation Gap
The expectation of the statistic in algorithm Test-Uniformity can be viewed as a function
of the n variables p1, . . . , pn. We denote this expectation by µ(p) def= E[S(X1, . . . , Xn)] when
the samples are drawn from distribution p.
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Our analysis has a number of complications for the following reason: the function
µ(p)− µ(Un) is a linear combination of sums that have no indefinite closed form, even if the
distribution p assigns only two possible probabilities to the elements of the domain. This
statement is made precise in Appendix B of the full version. As such, we should only hope
to obtain an approximation of this quantity.

A natural approach to try and obtain such an approximation would be to produce separate
closed form approximations for µ(p) and µ(Un), and combine these quantities to obtain an
approximation for their difference. However, one should not expect such an approach to work
in our context. The reason is that the difference µ(p)−µ(Un) can be much smaller than µ(p)
and µ(Un); it can even be arbitrarily small. As such, obtaining separate approximations of
µ(p) and µ(Un) to any fixed accuracy would contribute too much error to their difference.

To overcome these difficulties, we introduce the following technique, which is novel in this
context. We directly bound from below the difference µ(p)− µ(Un) using strong convexity.
Specifically, we show that the function µ is strongly convex with appropriate parameters and
use this fact to bound the desired expectation gap. The main result of this section is the
following lemma:

I Lemma 4. Let p be a distribution over [n] and ε = dTV (p, Un). For all m ≥ 6 and n ≥ 2,
we have that:

µ(p)− µ(Un) ≥ Θ(1) ·


ε2 · m

2

n2 for m ≤ n
ε2 ·

√
m
n for n < m ≤ n

ε2

ε for n
ε2 ≤ m

.

We note that the bounds in the right hand side above are tight, up to constant factors.
Any asymptotic improvement would yield a uniformity tester with sample complexity that
violates our tight information-theoretic lower bounds.

The proof of Lemma 4 (which will be deferred to the full version) requires a couple of
important intermediate lemmas. Our starting point is as follows: By the intermediate value
theorem, we have the quadratic expansion

µ(p) = µ(Un) +∇µ(Un)ᵀ(p− Un) + 1
2(p− Un)ᵀHp′(p− Un) ,

where Hp′ is the Hessian matrix of the function µ at some point p′ which lies on the line
segment between Un and p. This expression can be simplified as follows: First, we show that
our µ is minimized over all probability distributions on input Un (see the full version of the
paper for details). Thus, the gradient ∇µ(Un) must be orthogonal to being a direction in
the space of probability distributions. In other words, ∇µ(Un) must be proportional to the
all-ones vector. More formally, since µ is symmetric its gradient is a symmetric function,
which implies it will be symmetric when given symmetric input. Moreover, (p − Un) is a
direction within the space of probability distributions, and therefore sums to 0, making it
orthogonal to the all-ones vector. Thus, we have that ∇µ(Un)ᵀ(p− Un) = 0, and we obtain

µ(p)− µ(Un) = 1
2(p− Un)ᵀHp′(p− Un) ≥ 1

2‖p− Un‖
2
2 · σ ≥

1
2‖p− Un‖

2
1/n · σ , (2)

where σ is the minimum eigenvalue of the Hessian of µ on the line segment between Un
and p.

The majority of this section is devoted to proving a lower bound for σ. Before doing
so, however, we must first address a technical consideration. Because we are considering
a function over the space of probability distributions – which is not full-dimensional – the
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Hessian and gradient of µ with respect to Rn depend not only on the definition of our statistic
S, but also its parameterization. For the purposes of this subsection, we parameterize S as
S(x) =

∑n
i=1 max

{
xi

m −
1
n , 0
}

= 1
m

∑n
i=1 max

{
xi − m

n , 0
}
.

In the analysis we are about to perform, it will be helpful to replace m
n with a free

parameter t which we will eventually set back to roughly m/n. Thus, we define

St(x) , 1
m

n∑
i=1

max{xi − t, 0}

and

µt(p) , Ex∼Multinomial(m,p)[St(x)] = 1
m

n∑
i=1

m∑
k=dte

(
m

k

)
pki (1− pi)m−k(k − t) . (3)

Note that when t = m/n we have St = S and µt = µ. Also note that when we compute
the Hessian of µt(p), we are treating µt(p) as a function of p and not of t. In the following
lemma, we derive an exact expression for the entries of the Hessian. This result is perhaps
surprising in light of the likely nonexistence of a closed form expression for µ(p). That is,
while the expectation µ(p) may have no closed form, we prove that the Hessian of µ(p) does
in fact have a closed form.

I Lemma 5. The Hessian of µt(p) viewed as a function of p is a diagonal matrix whose ith
diagonal entry is given by

hii = st,i ,

where we define st,i as follows: Let ∆t be the distance of t from the next largest integer, i.e.,
∆t , dte − t. Then, we have that

st,i =


0 for t = 0
(m− 1)

(
m−2
t−1
)
pt−1
i (1− pi)m−t−1 for t ∈ Z>0

∆t · sbtc,i + (1−∆t) · sdte,i for t ≥ 0 and t 6∈ Z
.

In other words, we will derive the formula for integral t ≥ 1 and then prove that the
value for nonintegral t ≥ 0 can be found by linearly interpolating between the closest integral
values of t.

Proof. Note that because St(x) is a separable function of x, µt(p) is a separable function of
p, and hence the Hessian of µt(p) is a diagonal matrix. By Equation 3, the i-th diagonal
entry of this Hessian can be written explicitly as the following expression:

st,i = ∂2

∂p2
i

µt(p) = d2

dp2
i

1
m

m∑
k=dte

(
m

k

)
pki (1− pi)m−k(k − t) .

Notice that if we sum starting from k = 0 instead of k = dte, then the sum equals the
expectation of Bin(m, pi) minus t. That is, notice that:

d2

dp2
i

1
m

m∑
k=0

(
m

k

)
pki (1− pi)m−k(k − t) = d2

dp2
i

1
m

(pim− t) = 0 .
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By this observation and the fact that the summand is 0 for integer t when k = t , we can
switch which values of k we are summing over to k from 0 through btc if we negate the
expression:

st,i = ∂2

∂2pi
µt(p) = 1

m

d2

dp2
i

btc∑
k=0

(
m

k

)
pki (1− pi)m−k(t− k) .

We first prove the case when t ∈ Z+. In this case, we view st,i as a sequence with respect
to t (where i is fixed), which we denote st. We now derive a generating function for this
sequence.5 Observe that derivatives that are not with respect to the formal variable commute
with taking generating functions. Then, the generating function for the sequence {st} is

d2

dp2
i

1
m

(
x

d
dx

(
(pix+ 1− pi)m

1− x

)
−
x d

dx (pix+ 1− pi)m

1− x

)
= (m− 1)(pix+ 1− pi)m−2x .

Note that the coefficient on x0 is 0, so s0,i = 0 as claimed. For t ∈ Z>0, the right hand side
is the generating function of

(m− 1)
(
m− 2
t− 1

)
pt−1(1− p)m−t−1 .

Thus, this expression gives the i-th entry Hessian in the t ∈ Z≥0, as claimed.
Now consider the case when t is not an integer. In this case, we have:

st,i ,
d2

dp2
i

1
m

m∑
k=dte

(
m

k

)
pki (1− pi)m−k(k − t)

= d2

dp2
i

1
m

m∑
k=dte

(
m

k

)
pki (1− pi)m−k(k − dte+ ∆t)

= sdte,i + ∆t d2

dp2
i

1
m

m∑
k=dte

(
m

k

)
pki (1− pi)m−k.

= sdte,i −∆t d2

dp2
i

1
m

dte−1∑
k=0

(
m

k

)
pki (1− pi)m−k .

The last equality is because if we change bounds on the sum so they are from 0 through m,
we get 1 which has partial derivative 0. Thus, we can flip which terms we are summing over
if we negate the expression.

Note that this expression we are subtracting above can be alternatively written as:

∆t d2

dp2
i

1
m

dte−1∑
k=0

(
m

k

)
pki (1− pi)m−k = ∆t · (sdte,i − sbtc,i) .

Thus, we have

st,i = sdte,i −∆t · (sdte,i − sbtc,i) = ∆t · sbtc,i + (1−∆t) · sdte,i ,

as desired. This completes the proof of Lemma 5. J

5 To avoid potential convergence issues, we view generating functions as formal polynomials from the ring
of infinite formal polynomials. Under this formalism, there is no need to deal with convergence at all.
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It will be convenient to simplify the exact expressions of Lemma 5 into something more
manageable. This is done in the following lemma:

I Lemma 6. Fix any constant c > 0. The Hessian of µ(p), viewed as a function of p, is a
diagonal matrix whose i-th diagonal entry is given by

hii = st:=m/n,i ≥ Θ(1) ·
{
m2

n for m ≤ n
√
mn for n < m ≤ c · nε2

,

assuming pi = 1±ε
n , m ≥ 6, n ≥ 2, and ε ≤ 1/2.

Similarly, these bounds are tight up to constant factors, as further improvements would
violate our sample complexity lower bounds.

Proof. By Lemma 5, we have an exact expression st,i for the ith entry of the Hessian of
µt(p).

First, consider the case where m ≤ n. Then we have

st,i = (1−∆t) · sdte,i .

Substituting t = m/n, dte = 1, and ∆t = dte − t = 1−m/n gives

st,i = m

n
· (m− 1)(1− pi)m−2 = Θ(1) · m

2

n
.

Now consider the case where n < m ≤ Θ(1) · nε2 . Note that the case where n < m < 2n
follows from (i) the fact that st,i for fractional t linearly interpolates between the value of
st′,i the nearest two integral values of t′ and (ii) the analyses of the cases where m ≤ n and
2n ≤ m ≤ Θ(1) nε2 . Thus, all we have left to do is prove the case where 2n ≤ m ≤ Θ(1) · nε2 .

Since st,i is a convex combination of sdte,i and sbtc,i, it suffices to bound from below these
quantities for t = m/n. Both of these tasks can be accomplished simultaneously by bounding
from below the quantity st=m/n+γ,i for arbitrary γ ∈ [−1, 1].

We do this as follows: Let t = m/n + γ. Using Stirling’s approximation, we can show
that for any γ ∈ [−1, 1], we get:

st,i ≥ Θ(1) ·
√
mn

The calculations are deferred to the full version. J

3 Conclusions and Future Work

In this paper, we gave the first uniformity tester that is sample-optimal, up to constant
factors, as a function of the confidence parameter. Our tester is remarkably simple and our
novel analysis may be useful in other related settings. By using a known reduction of identity
to uniformity, we also obtain the first sample-optimal identity tester in the same setting.

Our result is a step towards understanding the behavior of distribution testing problems
in the high-confidence setting. We view this direction as one of fundamental theoretical and
important practical interest. A number of interesting open problems remain. Perhaps the
most appealing one is to design a general technique (see, e.g., [10]) that yields sample-optimal
testers in the high confidence regime for a wide range of properties. From the practical
standpoint, it would be interesting to perform a detailed experimental evaluation of the
various algorithms (see, e.g., [16, 2]).
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Abstract
In the bounded-leg shortest path (BLSP) problem, we are given a weighted graph G with nonneg-
ative edge lengths, and we want to answer queries of the form “what’s the shortest path from u

to v, where only edges of length ≤ L are considered?”. A more general problem is the APSP-AF
(all-pair shortest path for all flows) problem, in which each edge has two weights – a length d and
a capacity f , and a query asks about the shortest path from u to v where only edges of capacity
≥ f are considered.

In this article we give an Õ(n(ω+3)/2ε−3/2 logW ) time algorithm to compute a data structure
that answers APSP-AF queries in O(log(ε−1 log(nW ))) time and achieves (1 + ε)-approximation,
where ω < 2.373 is the exponent of time complexity of matrix multiplication, W is the upper
bound of integer edge lengths, and n is the number of vertices. This is the first truly-subcubic
time algorithm for these problems on dense graphs. Our algorithm utilizes the O(n(ω+3)/2) time
max-min product algorithm [Duan and Pettie 2009]. Since the all-pair bottleneck path (APBP)
problem, which is equivalent to max-min product, can be seen as all-pair reachability for all flow,
our approach indeed shows that these problems are almost equivalent in the approximation sense.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Graph Theory, Approximation Algorithms, Combinatorial Optimization

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.42

1 Introduction

The shortest path problem is one of the most fundamental problems in algorithmic graph
theory. In this paper we study one of its variants, the apBLSP(all-pair bounded-leg shortest
path), and a more general problem, the APSP-AF(all-pair shortest path for all flows) problem.

In apBLSP, we are given a weighted graph G, and we want to find the shortest path from
u to v when only using edges with length no more than L. Answering one such query is easy:
just discard edges with length > L and run a shortest-path algorithm. So we consider that
there are many queries (u, v, L), and we need to preprocess the graph G to answer these
queries efficiently.

The apBLSP problem is a special case of the APSP-AF problem. In the APSP-AF
problem, we’re given a directed graph G, and each edge has a length d and a capacity f .
Let W and K be the maximum length and maximum capacity, respectively. We assume
that all lengths are nonnegative integers. The length of a path is the sum of lengths of all
its edges, while the capacity of a path is the minimum capacity over its edges. The goal
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is to compute from G a data structure that handles such queries: given u, v ∈ V (G) and
1 ≤ f ≤ K, determine the shortest path (in terms of length) from u to v with capacity at
least f . We call the length of this shortest path “distance from i to j under flow constraint
f”. Given an instance of the apBLSP problem, we can give the capacity of edges in the order
reversely as the order of their lengths, then the apBLSP is easily reducible to APSP-AF.

We consider data structures whose query algorithm uses no arithmetic operations. In
other words, such a data structure would precompute the answers for all possible queries
and store them up. As observed in [7], any such data structure requires Ω(n4) space to
report the exact answer. It’s easy to come up with an O(n4) exact algorithm: let δ(i, j, f) be
the distance from i to j under flow constraint f , we add edges in descending order of their
capacities, and when we add an edge e from i to j with length d and capacity f , we set

δ(i′, j′, f)← min{δ(i′, j′, f0), δ(i′, i, f0) + d+ δ(j, j′, f0)}, ∀i′, j′ ∈ V,

where f0 is the capacity of the last edge we added before e. In this sense, the exact version
of APSP-AF is not very interesting. In the approximation setting, what we would like
to compute is actually a df -matrix2 A, which is a matrix whose entries are sets of pairs
(d, f). The answer to the query (i, j, f) is simply min{d : (d, f ′) ∈ Aij , f ′ ≥ f}, and can be
computed in O(log |Aij |) time by binary search. The data structure achieves a stretch of
(1 + ε) if for any possible query (i, j, f), the returned value is in [D, (1 + ε)D] where D is the
actual APSP-AF distance.

Related work. The bounded-leg shortest path problem was firstly considered by Bose et al.
[4], where they showed that a data structure of size O(ε−1n2 log n) can be constructed in
O(n5) time to (1 + ε)-approximate the bounded-leg length in Euclidean graphs; if explicit
paths are required, their data structure needs O(ε−1n3 log n) size. They also gave a data
structure of size O(n5/2) computable in O(n5/2) time to support exact apBLSP queries
in planar graphs. Roditty and Segal [11] showed a (1 + ε)-approximate data structure for
general graphs, which has size Õ(n2.5) and can be computed in Õ(n4) time.3 They also
obtained a (1 + ε)-approximate data structure for apBLSP in any lp-metric, which has size
O(n2 log n) and is computable in O(n3(log3 n+ log2 n · ε−d)) time. In [7], Duan and Pettie
improved the time complexity for general graphs to O(n3 log3 n) and the space complexity
to O(ε−1n2 log n). For planar directed graphs, they also gave a data structure with size
O(kn1+1/k) that answers bounded-leg reachability queries in Õ(n k−1

2k ) time, for any integer
k ≥ 2.

The APSP-AF problem was introduced by Shinn and Takaoka [12, 13, 14, 15]. In
graphs with unit edge lengths, they showed an O(

√
Kn(ω+9)/4) exact algorithm. In general

graphs, they showed exact algorithms of running time O(Kn3), Õ(
√
KW (ω+5)/4n(ω+9)/4)

and O(m2n+ min(nW,mn2 log W
mn )) respectively.

We can also view APSP-AF as an offline version of partially dynamic shortest path
problem: edge insertions and distance queries appear by descending order of f , and we know
the whole sequence of insertions and queries at the beginning of algorithm. Most works on
dynamic shortest path problem are online: the sequence of operations and queries must
be processed in order. In incremental setting, Ausiello et al. [1] showed an algorithm to
handle all pair distance queries and edge insertions in a digraph in O(Wn3 log(nW )) time. In
decremental setting, Bernstein [3] showed a (1+ε)-approximate algorithm with a total running

2 See section 2.2.
3 Õ hides poly(log n) factor.
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time of Õ(mnε−1 logR) in weighted digraphs, where R is the ratio of the largest weight that
was ever seen in the graph to the smallest such weight. For unweighted digraphs, Baswana,
Hariharan and Sen [2] showed a randomized algorithm with O(min(n3/2m

√
log n, n3 log2 n))

total update time which returns exact answers w.h.p, and a (1 + ε)-approximate algorithm
with O(nmε−2 log n + n2ε−1√m log n) total update time. More results can be found in
surveys [6, 10]. However, the online setting has its disadvantages: in both incremental and
decremental settings, even a reachability oracle in a truly-subcubic total time would refute
the OMV conjecture [9].

Our algorithm relies on fast algorithms for max-min product. The first truly-subcubic
time algorithm for max-min product was discovered by Vassilevska, Williams and Yuster
[16], which has running time O(n2+ω/3). Subsequently, Duan and Pettie [8] improved this
algorithm to O(n(ω+3)/2) time.

Our contribution. We show that a data structure for APSP-AF within stretch (1 + ε) can
be computed in Õ(n(ω+3)/2ε−3/2 logW ) time for any n-vertex graph and any ε > 0, where
ω < 2.373 is the exponent of time complexity of matrix multiplication [5]. This is the first
truly-subcubic time (i.e. O(n3−δpoly(ε−1, logW )) for some δ > 0) algorithm to approximate
apBLSP or APSP-AF problem in general graphs when m = Θ(n2) and W = Ω(n). Our data
structure uses O(n2ε−1 log n log(nW )) space.

We also establish the equivalence between approximating APSP-AF and computing
max-min product. In particular, it’s shown in Section 3 that if the max-min product of two
matrices can be computed in T (n) time, then a (1 + ε)-approximate data structure for APSP-
AF can be computed in Õ(T (n)ε−2 logW ) time. This is optimal up to poly(ε−1, log n, logW )
factors in the sense that APSP-AF approximation is at least as hard as max-min product.
In fact, max-min product is reducible to the special case of bounded-leg reachability problem
where the goal is only to query if u can reach v via edges of capacity ≥ f . 4 Consider
computing the max-min product of two n× n matrices A,B. We construct a directed graph
G = (V,E) with 3n vertices V = {u1, u2, . . . , un, v1, v2, . . . , vn, w1, w2, . . . , wn}. For every
i, j, link an edge from ui to vj with capacity Aij and link an edge from vi to wj with capacity
Bij . Let C be the max-min product of A and B, then Cij ≥ f iff wj is reachable from ui by
edges of capacity ≥ f .

2 Preliminaries

We denote [n] = {1, . . . , n}, [n]0 = [n] ∪ {0}, min(∅) = +∞,max(∅) = −∞. Rows and
columns of matrices are numbered from 1 to n. Let ω < 2.373 be the exponent of time
complexity of matrix multiplication. For a set of m × n matrices {Ai}, min{Ai} is the
entry-wise minimum of them. Let W,K be the upper bound of lengths and capacities of
edges, respectively; i.e. for any edge, its length is in [W ]0 and its capacity is in [K].

2.1 Matrix products

We introduce the distance product and max-min product for two matrices, denoted as ? and
> respectively.

4 It should be “edges of length ≤ L” for bounded-leg reachability problem; However this constraint is
equivalent.
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I Definition 2.1. For two matrices A,B of size n× n, we define:

(A ? B)ij = min
k∈[n]
{Aik +Bkj};

(A>B)ij = max
k∈[n]
{min{Aik, Bkj}}.

A simpler version of our algorithm in Section 3, which runs in Õ(n(ω+3)/2ε−2 logW ),
makes use of max-min product algorithm [8] for two matrices.

I Lemma 2.2 ([8]). There is an algorithm that, given two n×n matrices A and B, compute
A>B in O(n(ω+3)/2) time.

We also need the following lemma, stating that the distance product of matrices with
large entries can be approximated by several distance products of matrices with small entries:

I Lemma 2.3 (Lemma 5.1 of [17]). Suppose A,B are two matrices whose entries are in
[M ]0 ∪ {+∞}, C = A ? B. Let R be a power of 2, and Scale(A,M,R) be a matrix A′ such
that

A′ij =
{
dRAij/Me if 0 ≤ Aij ≤M
+∞ otherwise

.

Define C ′ as:

C ′ = min
blog2 Rc≤r≤dlog2 Me

{(2r/R) · (Scale(A, 2r, R) ? Scale(B, 2r, R))}

Then for any i, j, Cij ≤ C ′ij ≤ (1 + 4
R )Cij.

2.2 The distance/flow pairs and their operations
We introduce the notion of df-pairs in [12]. Our algorithm is based on manipulations of
df -pairs and df -matrices.

I Definition 2.4. A df-pair is a pair (d, f) where d represents distance and f represents
capacity or flow. We may assume f ∈ [K].

A df-set is a set of df -pairs.
A df-matrix is a matrix whose entries are df -sets. If for every df -pair (d, f) ∈ Aij ,

d ∈ [R]0, then we say A is within distance R.

I Definition 2.5 ([12]). The merit order <m is defined as (d1, f1) >m (d2, f2) iff d1 <

d2 ∧ f1 ≥ f2. For a df -set S, define C(S) = {(d, f) : @(d′, f ′) ∈ S, (d′, f ′) >m (d, f)}.

I Remark. Given a df -set S sorted by distances, C(S) can be computed in O(|S|) time.
We can see if (d1, f1) >m (d2, f2), then (d2, f2) is not useful since its distance is larger

but flow is no larger. The operator C can be used to delete redundant elements of a df -set.

I Definition 2.6 ([12]). For two df -sets, define their addition and multiplication as

S1 + S2 =C(S1 ∪ S2)
S1 · S2 =C({(d1 + d2,min(f1, f2)) : (d1, f1) ∈ S1, (d2, f2) ∈ S2}).

The multiplication of two df -sets S1, S2 can be understood as we try to link the paths
pair-wisely in them, so the distance is the sum of their distances, and the flow is the minimum
of their flows.
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I Definition 2.7. For a df -set S, define S(f) = min{d : (d, f ′) ∈ S, f ′ ≥ f}. Similarly,
for a df -matrix A, define A(f) be the matrix whose entries are in R ∪ {+∞} such that
(A(f))ij = Aij(f).

For two df -sets S, S′, we say S = S′ if ∀f ∈ [K], S(f) = S′(f). The relation = is an
equivalence relation. We say S′ is a (1 + ε)-approximation of S, denoted as S′ ≈ε S, if
S(f) ≤ S′(f) ≤ (1 + ε)S(f) for any f ∈ [K]. Similarly, for two df -matrices A,A′ of size
n× n, say A = A′ if Aij = A′ij for all i, j ∈ [n], and say A′ is a (1 + ε)-approximation of A,
denoted as A′ ≈ε A, if A′ij is a (1 + ε)-approximation of Aij for all i, j ∈ [n].

I Definition 2.8. The product of two df -matrices A,B, denoted as A ? B, is defined as
(A ? B)ij =

∑
k∈[n] Aik ·Bkj . We define A1 = A and Ap = Ap−1 ? A for integer p > 1.

Intuitively, this product can be understood in the following way: suppose we have a
3-layer graph G = (V,E) where V = {u1, u2, . . . , un, v1, v2, . . . , vn, w1, w2, . . . , wn}. Let A be
the df -matrix representing edges among {ui} and {vk}: for all (d, f) ∈ Aik, there is an edge
with length d and capacity f from ui and vk. Similarly let B be the df -matrix representing
edges among {vk} to {wj}. Let C = A ? B, then each element (d, f) ∈ Cij corresponds to a
path from ui to wj with total length d and capacity f .

We have the following facts:

I Fact 2.9. Let S1, S2 be two df-sets and f ∈ [K]. Then (C(S))(f) = S(f), (S1 + S2)(f) =
min{S1(f), S2(f)} and (S1 · S2)(f) = S1(f) + S2(f).

Proof. These are immediate from definition. J

I Fact 2.10. For three df-matrices A,B,C and ε ≥ 0, C ≈ε A ? B if and only if C(f) ≈ε
A(f) ? B(f) for any f ∈ [K]. In particular when ε = 0, C = A ? B iff C(f) = A(f) ? B(f)
for all f ∈ [K].

Proof. For all i, j, f , from Fact 2.9,

(A ? B)ij(f) = (
∑
k∈[n]

Aik ·Bkj)(f) = min
k∈[n]
{Aik(f) +Bkj(f)} = (A(f) ? B(f))ij ,

and

C ≈ε (A ? B)
⇐⇒ ∀i, j, f, Cij(f)/(A ? B)ij(f) ∈ [1, 1 + ε]
⇐⇒ ∀i, j, f, Cij(f)/(A(f) ? B(f))ij ∈ [1, 1 + ε]
⇐⇒ ∀f, C(f) ≈ε A(f) ? B(f). J

I Fact 2.11. Let A,B,C be df-matrices. If B is a (1 + ε1)-approximation of A and C is a
(1 + ε2)-approximation of B, then C is a (1 + ε1)(1 + ε2)-approximation of A.

Proof. For any i, j, f , Aij(f) ≤ Bij(f) ≤ Cij(f) ≤ (1+ε2)Bij(f) ≤ (1+ε1)(1+ε2)Aij(f). J

I Fact 2.12. Let A,B be df-matrices and ε > 0. If B ≈ε A, then B ? B ≈ε A ? A.

Proof. For any i, j, f , from Fact 2.10, (A ? A)(f) = A(f) ? A(f), and:

(A ? A)(f)ij = min
k∈[n]
{A(f)ik +A(f)kj}

≤ min
k∈[n]
{B(f)ik +B(f)kj} = (B ? B)(f)ij

≤(1 + ε) min
k∈[n]
{A(f)ik +A(f)kj}

=(1 + ε)(A ? A)(f)ij . J
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3 Main Algorithm

In this section we introduce an Õ(n(ω+3)/2ε−2 logW ) algorithm for approximating APSP-AF
problem within a stretch of (1 + ε). The idea is not hard. Suppose M is the df -matrix
corresponding to G, and D = Mn, then D is the exact df -matrix representing all-pair
distances for all flows. To approximate D, we only need an algorithm that approximates
the product of df -matrices by a stretch of (1 + Θ(ε/ log n)). By Lemma 2.3, this can be
done by exact df -matrix product algorithms that only handles distances no more than
R = O(ε−1 log n), which turns out to be expressible as O(R2) max-min products.

3.1 Exact product for small distances
The following algorithm shows that the product of two df -matrices A and B can be reduced
to O(R2) max-min products if the distances are integers between 0 and R.

Algorithm 1 Exact product for two df -matrices.
1: function Exact-Prod(A,B,R)
2: Cij ← ∅
3: for d0 in [R]0 do
4: A

(d0)
ij ← max{f : (d, f) ∈ Aij , d ≤ d0}

5: B
(d0)
ij ← max{f : (d, f) ∈ Bij , d ≤ d0}

6: for d1, d2 in [R]20 do
7: C ′ ← A(d1) >B(d2)

8: Cij ← Cij ∪ {(d1 + d2, C
′
ij)}

9: Cij ← {C(Cij)}; return C

I Lemma 3.1. Exact-Prod correctly returns the product A ? B of two df-matrices A,B
which are both within distance R.

Proof. Let C = Exact-Prod(A,B,R). For any i, j ∈ [n] and f ∈ [K],

(A(f) ? B(f))ij
= min
k∈[n]
{A(f)ik +B(f)kj}

= min
k∈[n]
{min{d1 : (d1, f1) ∈ Aik, f1 ≥ f}+ min{d2 : (d2, f2) ∈ Bkj , f2 ≥ f}}

= min
d1,d2
{d1 + d2 : ∃k ∈ [n], A(d1)

ik ≥ f,B(d2)
kj ≥ f}

= min
d1,d2
{d1 + d2 :

(
A(d1) >B(d2)

)
ij
≥ f}

= min{d′ : (d′, f ′) ∈ Cij , f ′ ≥ f} = (C(f))ij ,

thus C = A ? B by Fact 2.10. J

3.2 Approximate product for arbitrary distances
For two df -matrices A,B within distance M , we can compute an approximation of A ? B by
applying Lemma 2.3. Given a parameter R which is a power of 2, the following algorithm
computes a (1 + 4

R )-approximation of A ? B.
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Algorithm 2 Approximate product of two df -matrices.
1: function Scale(a,M,R)

2: a′ =
{
dR · a/Me 0 ≤ a ≤M
+∞ otherwise

3: return a′

4: function Approx-Prod(A,B,M,R)
5: Cij ← ∅
6: for r ← blog2 Rc to dlog2 Me do
7: A

(r)
ij ← C({(Scale(d, 2r, R), f) : (d, f) ∈ Aij})

8: B
(r)
ij ← C({(Scale(d, 2r, R), f) : (d, f) ∈ Bij})

9: C(r) = Exact-Prod(A(r), B(r), R)
10: Cij ← Cij ∪ {((2r/R) · d, f) : (d, f) ∈ C(r)

ij }

11: Cij ← {C(Cij)}; return C

I Lemma 3.2. Let A,B be two df-matrices within distance M , and R a power of 2, C =
Approx-Prod(A,B,M,R), then C ≈ 4

R
A ?B. Moreover, for each i, j, |Cij | = O(R logM).

Proof. Fix f ∈ [K]. Then A(r)(f) = Scale(A(f), 2r, R), B(r)(f) = Scale(B(f), 2r, R). By
Lemma 3.1,

C(f) = min
blog2 Rc≤r≤dlog2 Me

{(2r/R) · (A(r)(f) ? B(r)(f))}.

From Lemma 2.3, C(f) ≈ 4
R
A(f) ? B(f) for all f . The lemma is immediate from Fact 2.10.

The “moreover” part holds since |Cij | ≤
∑dlog2 Me
r=blog2 Rc

|C(r)
ij | ≤ 2Rdlog2 Me for any i, j. J

3.3 Main procedure
Consider an instance G of APSP-AF problem, we represent G as a df -matrix A: Aij is the
set of all (d, f) such that there is an edge from i to j with length d and capacity f . Given
ε > 0, the following algorithm computes a df -matrix that approximates answers of APSP-AF
problem within a stretch of 1 + ε.

Algorithm 3 the main procedure
1: function APSP-AF-Approx(A,W, ε)
2: M ← nW

3: R← 4dlog2 ne/ ln(1 + ε)
4: R← 2dlog2 Re

5: D̃
(0)
ij ← Aij

6: D̃
(0)
ii ← {(0,K)}

7: for t = 1 to dlog2 ne do
8: D̃(t) ← Approx-Prod(D̃(t−1), D̃(t−1),M,R)
9: return D̃(dlog2 ne)

I Theorem 3.3. For a graph G, let A be the df-matrix representing G as above, D be the
df-matrix such that D(f)ij is the shortest distance from i to j under flow constraint f in G,
and D̃ = APSP-AF-Approx(A,W, ε). Then D̃ ≈ε D. Moreover, APSP-AF-Approx runs
in Õ(n(ω+3)/2ε−2 logW ) time, and D̃ occupies O(n2ε−1 log n log(nW )) space.
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Proof. The time bottleneck of APSP-AF-Approx is O(log(nW )) invocations of Exact-
Prod, which runs in Õ(n(ω+3)/2R2) time. From Lemma 3.2, for each i, j, we have |D̃ij | =
O(R log(nW )). Since R = O(ε−1 log n), the “moreover” part is proved.

Let D(t)
ij (f) be the shortest distance from i to j under flow constraint f , where only

paths of ≤ 2t edges are considered. Then D(t) = D(t−1) ? D(t−1), D̃(t) ≈ 4
R
D̃(t−1) ? D̃(t−1)

(by Lemma 3.2), and D(0) = D̃(0). We can prove by induction that D̃(t) is a (1 + 4
R )t-

approximation of D(t). Base case (t = 0) is obvious; suppose this is true for t0, let
D̂(t0+1) = D̃(t0) ? D̃(t0), then D̂(t0+1) is a (1 + 4

R )t0-approximation of D(t0+1) by induction
hypothesis and Fact 2.12. Since D̃(t0+1) ≈ 4

R
D̂(t0+1), D̃(t0+1) is a (1+ 4

R )(t0+1)-approximation
of D(t0+1) by Fact 2.11.

Since

(
1 + 4

R

)dlog2 ne

≤
(

1 + ln(1 + ε)
dlog2 ne

)dlog2 ne

≤ 1 + ε,

D̃ = D̃(dlog2 ne) is a (1 + ε)-approximation of D. J

3.4 Computing witnesses

Our algorithm can be adapted to answer path queries in addition to distance queries: given
i, j ∈ [n] and f ∈ [K], we not only find the approximated distance from i to j under flow
constraint f , but also find an actual path with that distance. Suppose the path contains `
vertices, then a query takes O(` log log1+ε(nW )) time to report the whole path.

First we notice that the max-min product algorithm in [8] can be modified to return
witnesses of max-min product:

I Lemma 3.4 ([8]). For two n×n matrices A,B, a pair of matrices (C,W ) can be computed
in O(n(ω+3)/2) time, where C = A > B and for any i, j ∈ [n], suppose k = Wij, then
Cij = min{Aik, Bkj}. We call W a witness of A>B.

We attach a node in the graph as additional information to every df -pair we encounter.
For a df -pair representing a path p from i to j, suppose node x is attached to it, then x is
on p. Moreover, if x = i or x = j, then p contains at most one edge. More precisely:

In Algorithm 1, we compute a witness matrix W besides computing C ′ = A(d1) >B(d2).
Each df -pair (d1 + d2, C

′
ij) in line 8 is attached with Wij ;

In Algorithm 2, line 10, the node attached with ((2r/R) · d, f) is the same as the node
attached with (d, f);

In Algorithm 3, line 6, the node attached with (0,K) ∈ D̃(0)
ii is i.

It is easy to see from above modifications that, suppose node x is attached with (d, f) ∈
D̃ij , then there is a path from i to j with distance ≤ d, flow ≥ f which passes through
node x.

We give a simple recursive algorithm that, based on nodes attached to df -pairs in the
data structure, find the whole path for a query (u, v, f).
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Algorithm 4 Path querying
1: function Query(u, v, f)
2: (d′, f ′)← arg min{d′ : (d′, f ′) ∈ D̃uv, f

′ ≥ f}
3: x← the node attached with (d′, f ′)
4: if x = u or x = v then
5: return edge u→ v

6: else
7: return Query(u, x, f)+Query(x, v, f)

4 Faster Implementation of Exact Product

In this section we show how to multiply two df -matrices within distance R in Õ(n(ω+3)/2R3/2)
time. This implies an Õ(n(ω+3)/2ε−3/2 logW ) time algorithm for the original APSP-AF
approximation problem.

The idea is to look into details of the max-min product algorithm in [8]. The task of
computing max-min product of two matrices can be composed into O(t) Boolean matrix
multiplications and O(n3/t) extra work, so in our case we have O(tR2) matrix multiplications
and O(R2n3/t) extra work. However, these O(tR2) matrix multiplications can be expressed
as O(t) distance products of matrices whose elements are in [R], thus can be accelerated by
Zwick’s algorithm for distance product [17] to run in Õ(tRnω) time.

I Lemma 4.1 ([17]). The distance product of two n× n matrices whose entries are in [M ]
can be computed in Õ(Mnω) time.

4.1 Row-balancing and column-balancing
The max-min product algorithm in [8] uses the concept of row-balancing and column-
balancing. The function of row (column)-balancing is to rearrange the entries of a sparse
matrix such that every row (column) has a moderate number of entries. We adapt this
technique to df -matrices here.

I Definition 4.2. Let A be an n × n df -matrix where m =
∑
i,j∈[n] |Aij |. We define the

row-balancing of A, denoted by rb(A), as a pair of n× n df -matrices (A′, A′′), where each
row of A′ or A′′ contains at most k = dm/ne df -pairs in total. More precisely, we first sort all
df -pairs in the i-th row of A by ascending order of f values, and partition them into blocks
of size ≤ k: T 1

i , T
2
i , . . . , T

ai
i . The last block T ai

i has at most k df -pairs, and other blocks
have exactly k df -pairs. We define A′ to contain all entries in the last block: A′ij = Aij ∩ T ai

i .
Since

∑
i∈[n](ai− 1) ≤ m/k ≤ n, we can rearrange all T ji (1 ≤ j < ai) into n distinct rows, by

selecting an injection ρ : {(i, j) : i ∈ [n], j ∈ [ai − 1]} → [n]. Then we define A′′ij = Ai′j ∩ T qi′
where (i′, q) = ρ−1(i).

The column-balancing of A, denoted by cb(A), is a pair of n × n df -matrices (A′, A′′)
such that (A′>, A′′>) = rb(A>).

4.2 Dominance product
I Definition 4.3. The dominance product of two df -matrices A,B, denoted as A < B, is
defined as (A<B)ij = min{d1 + d2 : (d1, f1) ∈ Aik, (d2, f2) ∈ Bkj , f1 ≤ f2}.

There is also a “3-layer graph interpretation” of the dominance product of two df -matrices:
consider a graph G = (V,E) where V = {u1, u2, . . . , un, v1, v2, . . . , vn, w1, w2, . . . , wn}. Let
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A be the df -matrix representing edges among {ui} and {vk}: for all (d, f) ∈ Aik, there is
an edge with length d and capacity f from ui and vk. Similarly let B be the df -matrix
representing edges among {vk} to {wj}. Let C = A<B, then Cij is the minimum distance
of a path from ui to wj , where it’s required that the capacity of the first edge is no more
than the capacity of the second edge.

I Lemma 4.4. Given two df-matrices A,B within distance R, let m1 =
∑
i,j∈[n] |Aij |,

m2 =
∑
i,j∈[n] |Bij |. The dominance product A<B can be computed in Õ(m1m2/n+Rnω)

time.

Proof. Let (A′, A′′) = cb(A), the column-balancing of A. Define two (scalar) matrices Ã
and B̃:

Ãik = min{d : (d, f) ∈ A′′ik}, B̃kj = min{d : (d, f) ∈ Bk′j , f ≥ max flow of T q
′

k′ },

where (k′, q′) = ρ−1(k). Note that (Ã ? B̃)ij is the smallest d1 + d2 such that:
(d1, f1) ∈ Aik′ , (d2, f2) ∈ Bk′j ;
(d1, f1) ∈ T q

′

k′ , q′ < ak′ , and f2 dominates all flows in T q
′

k′ .

What we haven’t considered are pairs (d1, f1) ∈ Aik′ and (d2, f2) ∈ Bk′j such that (d1, f1)
is contained in the largest part of column k′, or f2 is smaller than the largest flow in T q

′

k′ ,
that is, f1 and f2 locate in the same “block”. In either cases, for any (d2, f2) there are
only O(m1/n) entries in A′ or A′′ to compare. The time complexity for distance product is
Õ(Rnω), and the time complexity for the rest pairs are O(m1m2/n). J

4.3 Faster exact product
I Theorem 4.5. Given two df-matrices A,B within distance R, their product A ? B can be
computed in Õ(n(ω+3)/2R3/2) time.

Proof. Let D(d)
ij = max{f1 : d1 + d2 = d, f1 ≤ f2, (d1, f1) ∈ Aik, (d2, f2) ∈ Bkj} and

D
′(d)
ij = max{f2 : d1 + d2 = d, f1 ≥ f2, (d1, f1) ∈ Aik, (d2, f2) ∈ Bkj}, then (A ? B)ij =
C
(⋃

d

{
(d,max{D(d)

ij , D
′(d)
ij })

})
. We show D(d) for all 0 ≤ d ≤ 2R can be computed in

Õ(n(ω+3)/2R3/2) total time; D′(d) is similar.
Sort all df -pairs of A and B by their f values in increasing order, and then partition

this sorted list into t parts L1, L2, . . . , Lt, where each part has O(n2R/t) elements. Let
A

(r)
ij = Aij ∩ Lr, B(r)

ij = Bij ∩ Lr for 1 ≤ r ≤ t. For each r we let (A′(r), A′′(r)) = rb(A(r)),
and compute A(r) <B, A′(r) <B, A′′(r) <B. For each d, i, j, we can compute D(d)

ij as follows:
1. We first determine which part D(d)

ij lies in, i.e. find the largest r such that (A(r) <B)ij ≤ d;
2. If (A′(r) <B)ij ≤ d, then we only need to consider k where A′(r)

ik 6= ∅ to determine D(d)
ij ;

3. Otherwise, we find the largest q such that (A′′(r) <B)ρ(i,q),j ≤ d, and determine D(d)
ij by

looking through the q-th part of i-th row of A(r).

The above procedure takes O(nR/t) time for each d, i, j. We compute A(r) < B in
Õ(n3R2/t2 + Rnω) time as follows. Let f ′ = min{f : (d, f) ∈ Lr+1}, then A(r) < B =
min{A(r) < B(r), A(r)(0) ? B(f ′)}. The A(r) < B(r) part considers comparisons inside Lr,
which we compute in Õ((n2R/t)2/n + Rnω) time by Lemma 4.4; the A(r)(0) ? B(f ′) part
represents comparisons between Lr and

⋃
r<r′≤t Lr′ , and is simply a distance product

computable in Õ(Rnω) time. We can compute A′(r) <B and A′′(r) <B similarly as we did
in A(r) < B. Therefore, we spend Õ(n3R2/t + tRnω) time in total for all 1 ≤ r ≤ t. The
theorem follows by setting t = n(3−ω)/2R1/2. J
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4.4 Computing witnesses
We modify this algorithm to support path queries as in Section 3.4. We call k ∈ [n] is a
witness of D(d)

ij if there is (d1, f1) ∈ Aik, (d2, f2) ∈ Bkj such that d1 + d2 = d, f1 ≤ f2 and
D

(d)
ij = f1. For any d, i, j, a witness of D(d)

ij can be found by step 2,3 when computing D(d)
ij .

Similarly we can find witnesses of D′(d)
ij . For each d, i, j, if D(d)

ij ≥ D
′(d)
ij , attach the witness

of D(d)
ij to the df -pair (d,D(d)

ij ); otherwise attach the witness of D′(d)
ij to the df -pair (d,D′(d)

ij ).
The time complexity remains the same.

5 Conclusions

Our work shows that the apBLSP and APSP-AF problem can be approximated within a
stretch of (1 + ε) in Õ(n(ω+3)/2ε−3/2 logW ) time. Also, a faster algorithm for max-min
product would imply a faster algorithm for approximating APSP-AF problem. In this sense,
since approximating APSP-AF is at least as hard as max-min product, our algorithm is
optimal up to Õ(poly(ε−1) logW ) factors.

We think the main open problem left by our work is to further improve the dependence on
ε. Can the APSP-AF problem be approximated in, say, Õ(n(ω+3)/2ε−1 logW ) time? There
is an ε−1/2 gap here, and we might need a more refined approach to fill this gap.
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Abstract
In a directed graph G = (V,E) with a capacity on every edge, a bottleneck path (or widest path) be-
tween two vertices is a path maximizing the minimum capacity of edges in the path. For the single-
source all-destination version of this problem in directed graphs, the previous best algorithm runs
in O(m+n log n) (m = |E| and n = |V |) time, by Dijkstra search with Fibonacci heap [Fredman
and Tarjan 1987]. We improve this time bound to O(m

√
log n +

√
mn log n log log n), which is

O(n
√

log n log log n) when m = O(n), thus it is the first algorithm which breaks the time bound
of classic Fibonacci heap when m = o(n

√
log n). It is a Las-Vegas randomized approach. By

contrast, the s-t bottleneck path has algorithm with running time O(mβ(m,n)) [Chechik et al.
2016], where β(m,n) = min{k ≥ 1 : log(k) n ≤ m

n }.
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1 Introduction

The bottleneck path problem is a graph optimization problem finding a path between two
vertices with the maximum flow, in which the flow of a path is defined as the minimum
capacity of edges on that path. The bottleneck problem can be seen as a mathematical
formulation of many network routing problems, e.g. finding the route with the maximum
transmission speed between two nodes in a network, and it has many other applications such
as digital compositing [11]. It is also the important building block of other algorithms, such
as the improved Ford-Fulkerson algorithm [10, 12], and k-splittable flow algorithm [1]. The
minimax path problem which finds the path that minimizes the maximum weight on it is
symmetric to the bottleneck path problem, thus has the same time complexity.
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1.1 Our Results
In a directed graph G = (V,E) (n = |V |,m = |E|), we consider the single-source bottleneck
path (SSBP) problem, which finds the bottleneck paths from a given source node s to all
other vertices. In the comparison-based model, the previous best time bound for SSBP is the
traditional Dijkstra’s algorithm [8] with Fibonacci heap [14], which runs in O(m+ n log n)
time. Some progress has been made for slight variants of the SSBP problem: When the
graph is undirected, SSBP is reducible to minimum spanning tree [16], thus can be solved
in randomized linear time [18]; for the single-source single-destination bottleneck path (s-t
BP) problem in directed graphs, Gabow and Tarjan [15] showed that it can be solved
in O(m log∗ n) time, and this bound was subsequently improved by Chechik et al [5] to
O(mβ(m,n)). However, until now no algorithm is known to be better than Dijkstra’s
algorithm for SSBP in directed graphs. And as noted in [14], Dijkstra’s algorithm can be
used to sort n numbers, so a “sorting barrier”, O(m+ n log n), prevents us from finding a
more efficient implementation of Dijkstra’s algorithm.

In this paper, we present a breakthrough algorithm for SSBP that overcomes the sorting
barrier. Our main result is shown in the following theorem:

I Theorem 1. Let G = (V,E) be directed graph with edge weights w : E → R. In comparison-
based model, SSBP can be solved in expected O

(√
nm log n log log n+m

√
log n

)
time.

An alternative way to state our result is: for m ≤ n log log n, SSBP can be solved in
O(
√
nm log n log log n) time; for m > n log log n, SSBP can be solved in O(m

√
log n) time.

In particular, when m = O(n) the time bound is O(n
√

log n log log n). Our algorithm is
inspired by previous works on the s-t BP problem: the O(m log∗ n)-time algorithm by Gabow
and Tarjan [15] and the O(mβ(m,n))-time algorithm by Chechik et al [5]. See Section 3 for
our intuitions.

1.2 Related Works
A “sorting barrier” seemed to exist for the the Minimum Spanning Tree problem (MST) for
many years [3, 17, 19], but it was eventually broken by [25, 6]. Fredman and Tarjan [14]
gave an O(mβ(m,n))-time algorithm by introducing Fibonacci heap. The current best time
bounds for MST include randomized linear time algorithm by Karger et al [18], Chazelle’s
O(mα(m,n))-time deterministic algorithm [4] and Pettie and Ramachandran’s optimal
approach [20].

The single-source single-destination version of the bottleneck path (s-t BP) problem is
proved to be equivalent to the Bottleneck Spanning Tree (BST) problem (see [5]). In the
bottleneck spanning tree problem, we want to find a spanning tree rooted at source node s
minimizing the maximum edge weight in it. For undirected graph, the s-t BP can be reduced
to the MST problem. For directed graph, Dijkstra’s algorithm [8] gave an O(n log n+m)-time
solution using Fibonacci heap [14]. Then Gabow and Tarjan [15] gave an O(m log∗ n)-time
algorithm based on recursively splitting edges into levels. Recently, Chechik et al. [5]
improved the time complexity of BST and BP to randomized O(mβ(m,n)) time, where
β(m,n) = min{k ≥ 1 : log(k) n ≤ m

n }. All these algorithms are under comparison-based
model. For word RAM model, an O(m)-time algorithm has been found by Chechik et al. [5].

For the all-pairs version of the bottleneck path (APBP) problem, we can sort all the
edges and use Dijkstra search to obtain an O(mn) time bound. For dense graphs, it has
been shown that APBP can be solved in truly subcubic time. Shapira et al. [21] gave an
O(n2.575)-time APBP algorithm on vertex-weighted graphs. Then Vassilevska et al. [23]
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showed that APBP for edge-weighted graphs can be solved in O(n2+ω/3) = O(n2.791) time
based on computing (max,min)-product of real matrices, which was then improved by Duan
and Pettie [9] to O(n(3+ω)/2) = O(n2.686). Here ω < 2.373 is the exponent of time bound for
fast matrix multiplication [7, 24].

2 Preliminaries

For a directed graph G, we denote w(u, v) to be the edge weight of (u, v) ∈ E. Without
additional explanation, we use the symbol n to denote the number of nodes and m to denote
the number of edges in G.

2.1 Bottleneck Path Problems

The capacity of a path is defined to be the minimum weight among traversed edges, i.e.,
if a path traverses e1, . . . , el ∈ E, then the capacity of the path is minl

i=1 w(ei). For any
u, v ∈ V , a path from u to v with maximum capacity is called a bottleneck path from u to v,
and we denote this maximum capacity by b(u, v).

I Definition 2. The Single-Source Bottleneck Path (SSBP) problem is: Given a directed
graph G = (V,E) with weight function w : E → R and a source s ∈ V , output b(s, t) for
every t ∈ V , which is the maximum path capacity among all the paths from s to t.

We use the triple (G,w, s) to denote a SSBP instance with graph G, weight function w(·)
and source node s.

It is more convenient to present our algorithm on a slight variant of the SSBP problem.
We shall call it Arbitrary-Source Bottleneck Path with Initial Capacity (ASBPIC) problem.
We assume that the edge weight w(e) of an edge e ∈ E is either a real number or infinitely
large (+∞). We say an edge e is unrestricted if w(e) = +∞; otherwise we say the edge e is
restricted. In the ASBPIC problem, an initial capacity h(v) is given for every node v ∈ V ,
and the capacity of a path is redefined to be the minimum between the initial capacity of the
starting node and the minimum edge weights in the path, i.e., if the path starts with the
node v ∈ V and traverses e1, . . . , el, then its capacity is min

(
{h(v)} ∪ {w(ei)}l

i=1
)
. For any

v ∈ V , a path ended with v with maximum capacity is called a bottleneck path ended with v,
and we denote this maximum capacity as d(v).

I Definition 3. The Arbitrary-Source Bottleneck Path with Initial Capacity (ASBPIC)
problem is: Given a directed graph G = (V,E) with weight function w : E → R ∪ {+∞}
and initial capacity function h : V → R ∪ {±∞}, output d(v) for every v ∈ V , which is the
maximum path capacity among all the paths ended with v.

We use the triple (G,w, h) to denote an ASBPIC instance with graph G, weight function
w(·), and inital capacity function h(·).

Note that ASBPIC and SSBP are equivalent under linear-time reductions. Given an
ASBPIC instance, we construct a new graph G′ from G by adding a new node v0 which
has outgoing edges with weight h(v) to all the nodes v ∈ V having h(v) > −∞, then it
suffices to find bottleneck paths from v0 to all other nodes in G′. On the other hand, a
SSBP instance (G,w, s) can be easily reduced to the ASBPIC instance (G,w, h), where
h(s) = maxe∈E{w(e)} and h(v) = −∞ for all v 6= s.
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2.2 Dijkstra’s Algorithm for SSBP and ASBPIC
SSBP can be easily solved using a variant of Dijkstra’s algorithm [8]. In this algorithm, each
node is in one of the three status: unsearched, active, or scanned. We associate each node
v ∈ V with a label d′(v), which is the maximum path capacity among all the paths from s to
v that only traverse scanned nodes or v.

Initially, all the nodes are unsearched except s is active, and we set d′(s) = +∞ and
d′(v) = −∞ for all v 6= s. We repeat the following step, which we call the Dijkstra step, until
none of nodes is active:

Select an active node u with maximum label and mark u as scanned. For every outgoing
edge (u, v) of u, update the label of v by

d′(v)← max{d′(v),min{d′(u), w(u, v)}}, (1)

and mark v as active if v is unsearched.
We use priority queue to maintain the order of labels for active nodes. This algorithm runs
in O(m+ n log n) time when Fibonacci heap [14] is used.

The algorithm we introduced above can also be adapted for solving ASBPIC. The only
thing we need to change is that in the initial stage all nodes are active and d′(v) = h(v) for
every v ∈ V . The resulting algorithm again runs in O(m+ n log n) time. We shall call these
two algorithms as Dijkstra’s algorithm for SSBP and Dijkstra’s algorithm for ASBPIC, or
simply call any of them Dijkstra’s algorithm when no confusion can arise.

2.3 Weak and Strong Connectivity in Directed Graph
We also need some definitions about connectivity in graph theory in this paper. A directed
graph is said to be weakly-connected if it turns to be a connected undirected graph when
changing all of its directed edges to undirected edges. A directed graph is said to be strongly-
connected if every pair of nodes can be reached from each other. A weakly- (or strongly-)
connected components is defined to be a maximal weakly- (or strongly-) connected subgraph.

3 Intuitions for SSBP

If all the edge weights are integers and are restricted in {1, . . . , c}, then SSBP can be solved
in O(m+ c) time using Dijkstra’s algorithm with bucket queue. If the edge weights are not
necessarily small integers but all the edges given to us are already sorted by weights, then we
can replace the edge weights by their ranks and use Dijkstra’s algorithm with bucket queue
to solve the problem in O(m) time. However, edges are not sorted in general. If we sort the
edges directly, then a cost of Ω(m logm) time is unavoidable in a comparison-based model,
which is more expensive than the O(m+ n log n) running time of Dijkstra’s algorithm.

Our algorithm is inspired by previous works on the single-source single-destination
bottleneck path problem (s-t BP): the O(m log∗ n)-time algorithm by Gabow and Tarjan [15]
and the O(mβ(m,n))-time algorithm by Chechik et al [5]. Gabow and Tarjan’s algorithm for
s-t BP consists of several stages. Let b(s, t) be the capacity of a bottleneck path from s to
t. Initially, we know that b(s, t) is in the interval (−∞,+∞). In each stage, we narrow the
interval of possible values of b(s, t). Assume that b(s, t) is known to be in the range (l, r). Let
m(l,r) be the the number of edges with weights in the range (l, r) and k be a parameter. By
applying the median-finding algorithm [2] repeatedly, we choose k thresholds λ1, · · · , λk to
split (l, r) into k + 1 subintervals (l, λ1), [λ1, λ2), [λ2, λ3), . . . , [λk−1, λk), [λk, r) such that for
each subinterval, there are O(m(l,r)/k) edges of weight in it. Gabow and Tarjan then show
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that locating which subinterval contains b(s, t) can be done in O(m(l,r)) time by incremental
search. Finally, the O(m log∗ n) running time bound is achieved by setting k appropriately
at each stage.

The algorithm by Chechik et al. is based on the framework of Gabow and Tarjan’s
algorithm, but instead of selecting the thresholds λ1, . . . , λk by median-finding repeatedly in
O(m(l,r) log k) time, in this algorithm we select the k thresholds by randomly sampling in
edge weights, and sort them in O(k log k) time. These thresholds partition the edges evenly
with high probability, but it requires Ω(m log k) time to compute the partition explicitly.
Then they show that actually we can locate which subinterval contains b(s, t) in O(m(l,r) +nk)
(or O(m(l,r) + n log k)) time, without computing the explicit partition. The time bound for
the overall algorithm is again obtained by setting k appropriately at each stage.

We adapt Chechik et al.’s framework for the s-t BP problem to the SSBP problem. Our
SSBP algorithm actually works on an equvialent problem called ASBPIC. In ASBPIC, there
is no fixed source but every node has an initial capacity, and for all destination t ∈ V we
need to compute the capacity d(t) of a bottleneck path ended with t (See Section 2.1 for
details). Instead of locating the subinterval for a single destination t, our algorithm locates
the subintervals for all destinations t ∈ V . Thus we adopt a divide-and-conquer methodology.
At each recursion, we follow the idea from Chechik et al. [5] to randomly sample k thresholds.
Then we split the nodes into k+ 1 levels V0, . . . , Vk, where the i-th level contains the nodes t
that have d(t) in the i-th subinterval (0 ≤ i ≤ k). For each level Vi of nodes, we compute
d(t) for every t ∈ Vi by reducing to solve the SSBP on a subgraph consisting of all the nodes
in Vi and some of the edges connecting them. We set k to be fixed in all recursive calls, and
the maximum recursion depth is O(log n/ log k) with high probability.

The split algorithm becomes the key part of our algorithm. Note that at each recursion,
we should reduce or avoid the use of operations that cost time O(log k) per node or per
edge (e.g., binary searching for the subinterval containing a particular edge weight). This
is because that, for example, if we execute an O(log k)-time operation for each edge at
each recursion, then the overall time cost is O(m log k) ·O(log n/ log k) = O(m log n), which
means no improvement comparing with the previous O(m+n log n)-time Dijkstra’s algorithm.
Surprisingly, we can design an algorithm such that whenever we execute an O(log k)-time
operation, we can always find one edge that does not appear in any subsequent recursive
calls. Thus total time complexity for such operations is O(m log k), which gives us some
room to obtain a better time complexity by adjusting the parameter k.

4 Our Algorithm

Our algorithm for SSBP is as follows: Given a SSBP instance (G,w, s), we first reduce the
SSBP problem to an ASBPIC instance (G,w, h), and then use a recursive algorithm (Figure
1) to solve the ASBPIC problem. The reduction is done by setting h(s) = maxe∈E{w(e)}
and h(v) = −∞ for all v 6= s as described in the preliminaries.

For convenience, we assume that in the original graph, all edge weights are distinct. This
assumption can be easily removed.

A high-level description of our recursive algorithm for ASBPIC is shown in Figure 1.
For two set A and B, A ] B stands for the union of A and B with the assumption that
A ∩ B = ∅. We use E(r) to denote the set of restricted edges in G, and similarly we use
E

(r)
i to denote the set of restricted edges in Gi for each ASBPIC instance (Gi, wi, hi). When

the thresholds λ0, . . . , λk+1 are presence, we define the index of x for every x ∈ R to be the
unique index i such that λi ≤ x < λi+1, and we denote it as I(x). For x = ±∞, we define
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Algorithm 1 Main Algorithm.
Input: Directed graph G = (V,E), weight function w(·), initial capacity function h(·);

Parameter k ≥ 1.
Output: For each v ∈ V , output d(v), the capacity of a bottleneck path ended with v.
1: if G is not weakly-connected then
2: Compute {d(v)}v∈V in each weakly-connected component recursively.
3: Let E(r) = {e ∈ E | w(e) < +∞} be the set of restricted edges.
4: if |E(r)| ≤ 1 then
5: Compute {d(v)}v∈V in linear time and exit. . Section 4.2
6: Sample l = min{k, |E(r)|} distinct edges from E(r) uniformly randomly.
7: Sort the sampled edges by weights, and let λ1 < · · · < λl be their weights.
8: Let λ0 = −∞, λl+1 = +∞.
9: Split V into l + 1 levels: V0 ] V1 ] · · · ] Vl, where Vi = {v ∈ V | λi ≤ d(v) < λi+1} .

. Section 4.3
10: For every level Vi, reduce the computation of {d(v)}v∈Vi

to a new ASBPIC instance
(Gi, wi, hi), where Gi = (Vi, Ei) is a subgraph of G consisting of all the nodes in Vi and
some of edges that connect them. Solve each (Gi, wi, hi) instance recursively.

I(−∞) = 0, I(+∞) = l. Note that all the subgraphs Gi at Line 10 are disjoint. We denote
r = |E| −

∑l
i=0|Ei| to be the total number of edges in E that do not appear in any recursive

calls of (Gi, wi, hi). For an edge (u, v) ∈ E, if u and v belong to different levels, then we say
that (u, v) is cross-level. If u and v belong to the same level Vi and w(u, v) < λi, then we say
that (u, v) is below-level; conversely, if w(u, v) ≥ λi+1 then we say that (u, v) is above-level.

Besides the problem instance (G,w, h) of ASBPIC, our algorithm requires an addi-
tional integral parameter k. At the top level of recursion, we set the parameter k =
2Θ
(√

n log n log log n/m
)
if m ≤ n log log n, or k = 2Θ

(√
log n

)
if m > n log log n. We fix this

value k all through our algorithm. The value of the parameter k does not affect the correctness
of our algorithm, but it controls the number of recursive calls at each recursion.

At each recursion, our algorithm first checks if G contains only one weakly-connected
component. If not, then our algorithm calls itself to compute d in each weakly-connected
component recursively. Now we can assume that G is weakly-connected (so n ≤ m).

If the number of restricted edges is no more than 1, we claim that we can compute d(v)
for all v in linear time. The specific algorithm will be introduced in Section 4.2.

I Lemma 4. ASBPIC can be solved in O(m) time if there is at most one restricted edge.

If the number of restricted edges is more than 1, then our algorithm first sample l =
min{k, |E(r)|} distinct edges from E(r) uniformly randomly and sort them by weights, that
is, if the number of restricted edges is more than k, then we sample k distinct restricted
edges and sort them; otherwise we just sort all the restricted edges. Let λi be the weight of
the edge with rank i (1 ≤ i ≤ l) and λ0 = −∞, λl+1 = +∞.

Next, we split V into l + 1 levels of nodes V = V0 ] V1 ] · · ·Vl, where the i-th level of
nodes is Vi = {v ∈ V | I(d(v)) = i} = {v ∈ V | λi ≤ d(v) < λi+1}. The basic idea of the split
algorithm is: we run Dijkstra’s algorithm for ASBPIC on the graph produced by mapping
every edge weight w(e) and initial capacity h(v) in G to their indices I(w(e)) and I(h(v)),
and we obtain the final label value d′(v) for each node v ∈ V (Remember that d′(v) is the
label of v in Dijkstra’s algorithm). It is easy to show that the final label value d′(v) equals
I(d(v)), so the nodes can be easily split into levels according to their final labels. The specific
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split algorithm will be introduced in Section 4.3. The time complexity for a single splitting
is given below. In Theorem 9 we show that this implies that the total time cost for splitting
is O(m log n/ log k + n log n log log k/ log k +m log k).

I Lemma 5. Splitting V into levels at Line 9 can be done in O(m+ n log log k + r log k).

Finally, for every level Vi, we compute d(·) for nodes in this level by reducing to a new
ASBPIC instance (Gi, wi, hi), where Gi is a subgraph of G consisting of all the nodes in Vi

and some of edges that connect them. We solve each new instance by a recursive call. The
construction of (Gi, wi, hi) is as follows:

Gi = (Vi, Ei), where Vi is the nodes at level i in G, and Ei is the set of edges which
connect two nodes at level i and are not below-level, i.e., Ei = {(u, v) ∈ E | u, v ∈
Vi, w(u, v) ≥ λi};
For any e ∈ Ei, wi(e) = +∞ if e is above-level; otherwise wi(e) = w(e);
For any v ∈ Vi, hi(v) = max ({h(v)} ∪ {w(u, v) ∈ E | u ∈ Vi+1 ] · · · ] Vl}).

I Lemma 6. We can construct all the new ASBPIC instances (G0, w0, h0), . . . , (Gl, wl, hl)
in O(m) time. For v ∈ Vi, the value of d(v) in the instance (Gi, wi, hi) exactly equals to the
value of d(v) in the instance (G,w, h).

Proof. We can construct all these instances (Gi, wi, hi) for all 0 ≤ i ≤ l by linearly scanning
all the nodes and edges, which runs in O(m) time. We prove the correctness by transforming
(G,w, h) to (Gi, wi, hi) step by step, while preserving the values of d(v) for all v ∈ Vi.

By definition, λi ≤ d(v) < λi+1 for all v ∈ Vi. We can delete all the nodes at level less
than i and delete all the edges with weight less than λi, since no bottleneck path ended with
a node in Vi can traverse them. Also, for every edge e with weight w(e) ≥ λi+1, we can
replace the edge weight with +∞ since w(e) is certainly not the minimum in any path ended
with a node in Vi.

For every edge e = (u, v) where u ∈ Vi+1 ] · · · ] Vl and v ∈ Vi, the edge weight w(e) must
be less than λi+1, otherwise d(v) ≥ min{d(u), w(u, v)} ≥ λi+1 leads to a contradiction. Thus
contracting all the nodes in Vi+1 ] · · · ] Vl to a single node v0 with infinite initial capacity is
a transformation preserving the values of d(v) for all v ∈ Vi. Finally, our construction follows
by taking hi(v) to be the maximum between the weight of incoming edges from v0 and the
initial capacity h(v) for every v ∈ Vi. J

I Remark. In any subsequent recursive calls of (Gi, wi, hi), neither cross-level nor below-level
edges will appear, and all the above-level edges will become unrestricted. Also, it is easy to
see that r is just the total number of cross-level and below-level edges (Recall that r is the
number of edges that do not appear in any recursive calls).

4.1 Running Time
First we analyze the maximum recursion depth. The following lemma shows that randomly
sampled thresholds evenly partition the restricted edges with high probability.

I Lemma 7. Let E(r) = {e1, . . . , eq} be q restricted edges sorted by their weights in E. Let
f1, . . . , fk be k ≥ 2 random edges sampled from E(r) such that w(f1) < w(f2) < · · · < w(fk).
Let λi = w(fi) for i = 1, . . . , k, and λ0 = −∞, λk+1 = +∞. Let Fi = {e ∈ E | λi ≤ w(e) <
λi+1}. Then for every t > 0, max0≤i≤k{|Fi|} < tq log k/k holds with probability 1− k−Ω(t).

Proof. Let M = tq log k/k. If max0≤i≤k{|Fi|} ≥M , then there exists an edge ep such that
ep is chosen but for any p+ 1 ≤ j < p+M , ej is not chosen. Note that when p is given, this
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event happens with probability ≤ k · (1/q) ·
∏k−1

i=1 ((q−M − i)/(q− i)) ≤ (k/q) · (1−M/q)k−1.
By the union bound for all possible p, we have

Pr
[

max
0≤i≤k

{|Fi|} ≥ tq log k/k
]
≤ k(1− t log k/k)k−1 ≤ k−Ω(t),

which completes the proof. J

For our purposes it is enough to analyze the case that k = 2Ω
(√

log n
)
. The following lemma

gives a bound for the maximum recursion depth using Lemma 7.

I Lemma 8. For k = 2Ω
(√

log n
)
where n is the number of nodes at the top level of recursion,

the maximum recursion depth is O(log n/ log k) with probability 1− n−ω(1).

Proof. It is not hard to see that the total number of recursive calls of our main algorithm
is O(m). Applying Lemma 7 with t = Θ(log n) and the union bound for all recursive calls,
we know that with probability at least 1 − k−Ω(t) · O(m) = 1 − n−Ω(log n)3/2 , after every
split with |E(r)| > k, the number of restricted edges in Gi is less than (t log k/k) · |E(r)| for
every (Gi, wi, hi). Thus after O(logm/ log(k/(t log k))) = O(log n/ log k) levels of recursion,
every ASBPIC instance (G,w, h) has |E(r)| ≤ k, and this means that in any recursive call of
(Gi, wi, hi), the graph Gi has at most one restricted edge, which will be directly solved at
Line 5. J

The overall time complexity of our algorithm is given by the following theorem:

I Theorem 9. For k = 2Ω
(√

log n
)
, with probability 1− n−ω(1), our main algorithm shown

in Figure 1 runs in O(n log n log log k/ log k +m log n/ log k +m log k) time.

Proof. Let r = |E| −
∑l

i=0|Ei|, r′ = |E(r)| −
∑l

i=0|E
(r)
i |. First we show that the running

time in each recursive call is O(m+ n log log k + (r + r′) log k).
In each recursive call of our algorithm, the time cost for sorting at Line 7 is O(l log l). For

the sample edge ei with rank i, either Vi is not empty, or this edge is cross-level, below-level,
or above-level. Let l1 be the number of edges in the former case, and l2 be the number
of edges in the latter case. For the former case, note that we only run the split algorithm
for weakly-connected graphs, so there are at least l1 − 1 cross-level edges, which implies
l1 ≤ r + 1. For the latter case, ei becomes unrestricted or does not appear for every Gi, so
l2 ≤ r′. Thus l = l1 + l2 ≤ r + r′ + 1 and the time cost for sorting is O((r + r′) log k).

By Lemma 5, the split algorithm runs in O(m+n log log k+r log k) time in each recursive
call. All other parts of our algorithm run in linear time. Thus the running time for each
recursion is O(m+n log log k+(r+r′) log k). Note that the recursion depth is O(log n/ log k)
with probability 1− nω(1). We can complete the proof by adding the time cost for all the
O(m) recursive calls together. J

Finally, we can get our main result by setting k = 2Θ
(√

n log n log log n/m
)
form ≤ n log log n

and setting k = 2Θ
(√

log n
)
for m > n log log n.

I Theorem 10. For m ≤ n log log n, SSBP can be solved in O(
√
nm log n log log n) time

with high probability; For m > n log log n, SSBP can be solved in O(m
√

log n) time with high
probability.

I Remark. The above time bounds are also true for expected running time. It can be easily
derived from the fact that the worst-case running time is at most nO(1).

In the rest of this section, we introduce the algorithm for ASBPIC with at most one
restricted edge and the split algorithm.
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4.2 Algorithm for the Graph with at Most One Restricted Edge
We introduce our algorithm for the graph with at most one restricted edge in the following
two lemmas.

I Lemma 11. For a given ASBPIC instance (G,w, h), if there is no restricted edge in G,
then the values of d(v) for all v ∈ V can be computed in linear time.

Proof. G contains only unrestricted edges, so for every v ∈ V , d(v) is just equal to the
maximum value of h(u) among all the nodes u that can reach v. If v1 and v2 are in the same
strongly-connected component, then d(v1) = d(v2). Thus we can use Tarjan’s algorithm [22]
to contract every strongly-connected component to a node. The initial capacity of a node is
the maximum h(u) for all u in the component, and the capacity of an edge between nodes is
the maximum among edges connecting components. Then Dijkstra approach on DAG takes
linear time. J

I Lemma 12. For a given ASBPIC instance (G,w, h), if there is exactly one restricted edge
in G, then the values of d(v) for all v ∈ V can be computed in linear time.

Proof. Let e0 = (u0, v0) be the only restricted edge in G. There are two kinds of paths in G:
1. Paths that do not traverse e. We remove e from G and use the algorithm in Lemma 11

to get d(v) for every node v ∈ V .
2. Paths that traverse e. Note that d(u0) got in the previous step is the maximum capacity to

u0 through only restricted edges. Then we update d(v) by max{d(v), min{d(u0), w(u0, v0)}}
for every node v that can be reached from v0.

We output the values of d(·) after these two kinds of updates, then all the paths should have
been taken into account. J

4.3 Split
Now we introduce the split algorithm at Line 9 in our main algorithm. As before, we use the
notation I(x) for the index of a value x and d′(v) is the label of v in Dijkstra’s algorithm.
The goal of this procedure is to split V into l + 1 levels, V = V0 ] V1 ] · · · ] Vl, where Vi =
{v ∈ V | I(d(v)) = i}. We need to show that this can be done in O(m+ n log log k + r log k)
time, where r = |E| −

∑l
i=0|Ei| is the total number of edges in E that do not appear in any

(Gi, wi, hi).
A straightforward approach to achieve this goal is to use Dijkstra’s algorithm as described

in Section 2.2. We map all the edge weights and initial capacities to their indices using
binary searches, and run Dijkstra’s algorithm for ASBPIC. The output should be exactly
d′(v) = I(d(v)) for every v. However, this approach is rather inefficient. Evaluating the index
I(x) for a given x requires Ω(log l) time in a comparison-based model, thus in total, this
algorithm needs Ω(n log l) time to compute indices, and this does not meet our requirement
for the running time.

The major bottleneck of the above algorithm is the inefficient index evaluations. Our
algorithm overcomes this bottleneck by reducing the number of index evaluations for both
edge weights and initial capacities to be at most O(r + n/ log l).

4.3.1 Index Evaluation for Edge Weights
First we introduce our idea to reduce the number of index evaluations for edge weights.
Recall that in Dijkstra’s algorithm for ASBPIC we maintain a label d′(v) for every v ∈ V .
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In every Dijkstra step, we extract an active node u with the maximum label, and for all
edges (u, v) ∈ E we compute min{d′(u), I(w(u, v))} to update d′(v). In the straightforward
approach we evaluate every I(w(u, v)) using binary search, but actually this is a big waste:
1. If w(u, v) ≥ λd′(u), then min{d′(u), I(w(u, v))} = d′(u), so there is no need to evaluate

I(w(u, v)).
2. If w(u, v) < λd′(u), then min{d′(u), I(w(u, v))} = I(w(u, v)), so we do need to evaluate

I(w(u, v)). However, it can be shown that (u, v) is either a cross-level edge or a below-level
edge, so (u, v) will not appear in any subsequent recursive calls of (Gi, wi, hi).

Using the method discussed above, we can reduce the number of index evaluations for edge
weights to be at most r = |E| −

∑l
i=0|Ei| in Dijkstra’s algorithm. Lemma 14 gives a formal

proof for this.

4.3.2 Index Evaluation for Initial Capacities
Now we introduce our idea to reduce the number of index evaluations for initial capacities.
Recall that in Dijkstra’s algorithm, we need to initialize the label d′(v) to be I(h(v)) for
each v ∈ V , and maintain a priority queue for the labels of all active nodes. If we evaluate
every I(h(v)) directly, we have to pay a time cost Ω(n log l).

In our split algorithm, we first find a spanning tree T of G after replacing all the edges
with undirected edges. Then we partition the tree T into b = O(n/s) edge-disjoint (but not
necessarily node-disjoint) subtrees, T1, . . . , Tb, each of size O(s). This partition can be found
in O(n) time using a slight variant of the topological partition algorithm in Frederickson’s
paper [13].

I Theorem 13. (see [13]) Given a tree T = (V,E) with n nodes and given an integer
1 ≤ s ≤ n, there exists a linear time algorithm that can partition T into edge-disjoint subtrees,
T1, . . . , Tb, such that the number of nodes in each subtree is in the range [s, 3s).

We form b groups of nodes, U1, . . . , Ub, where Ui is the group of nodes that are in the
i-th subtree Ti. In the running of Dijkstra’s algorithm, we divide the active nodes in V into
two kinds:
1. Updated node. This is the kind of node v that has d′(v) already been updated by

Dijkstra’s update rule (1), which means d′(v) = min{d′(u), I(w(u, v))} ≥ I(h(v)) for some
u after a previous update. The value of min{d′(u), I(w(u, v))} is evaluated according
to Section 4.3.1, so the value of d′(v) can be easily known. We can store such nodes in
buckets to maintain the order of their labels.

2. Initializing node. This is the kind of node v whose d′(v) has not been updated by
Dijkstra’s update rule (1), so d′(v) = I(h(v)). However, we do not store the value of
I(h(v)) explicitly. For each group Ui, we put the initializing nodes in Ui into a priority
queue in descending order by their initial capacities h(·). We only compute the value of
I(h(v)) when v is the maximum in its group, and use buckets to maintain the maximum
values from all groups.

At each iteration in Dijkstra’s algorithm, we extract the active node with the maximum
label among the updated nodes and initializing nodes and mark it as scanned. For the
case that the maximum node v ∈ Uj is an initializing node, we remove v from the priority
queue of Uj , and compute d′(u) = I(h(u)) for the new maximum node u. However, if we
compute this value directly using an index evaluation for h(u), then we will suffer a total
cost Ω(n log l), which is rather inefficient.
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Algorithm 2 Split Algorithm.
Input: Directed graph G = (V,E), weight function w(·), initial capacity function h(·) ,

l + 2 thresholds −∞ = λ0 < λ1 < · · · < λl < λl+1 = +∞
Output: Split V into V0 ] V1 ] · · · ] Vl where Vi = {v ∈ V | λi ≤ d(v) < λi+1}.
1: Let s = min{dlog le, n}. Find a spanning tree T of G after replacing all the edges with

undirected edges and partition T into b = O(n/s) edge-disjoint subtrees T1, . . . , Tb, each
of size O(s). Form b groups of nodes, U1, . . . , Ub, where Ui is the group of nodes that are
in the i-th subtree Ti.

2: For nodes in each group, we maintain a priority queue implemented by binary heap by
the order of h(·).

3: Evaluate I(h(v)) only for the maximum node in each group, and initialize l + 1 buckets
B0, . . . , Bl which store the groups according to the index of h(·) of their maximum nodes.

4: Initialize l + 1 buckets C0, . . . , Cl ← ∅ which store the active nodes according to d′(·).
5: for i← l, l − 1, . . . , 1, 0 do
6: for all U ∈ Bi do
7: while U 6= ∅ and the maximum node u in U has I(h(u)) = i do
8: Extract u from U and put u into Ci

9: d′(u)← i

10: while Ci 6= ∅ do
11: Extract a node u from Ci

12: for all (u, v) ∈ E do
13: w̄ ← min{d′(u), I(w(u, v))}. (Evaluate I(w(u, v)) only if w(u, v) < λd′(u))
14: if λw̄ > h(v) then
15: if d′(v) does not exist or w̄ > d′(v) then
16: Delete v from Cd′(v)
17: Delete v from the group U containing it (if any) and put v into Cw̄

18: d′(v)← w̄

19: while Bi contains at least one non-empty group do
20: Extract a non-empty group U from Bi

21: Evaluate I(h(u)) for the maximum node u in U and put U into BI(h(u))

22: Split V according to d′ and return

The idea to speed up is to check whether d′(u) = d′(v) before performing an index
evaluation. This can be done in O(1) time since we can know the corresponding interval
of h(u) from the value of d′(v) if I(h(u)) = d′(v). We only actually evaluate I(h(u)) if
d′(u) 6= d′(v) after the Dijkstra step scans all nodes with level d′(v). In this way, we can
always ensure that the number of index evaluations in a group never exceeds the number
of different final label values d′(·) in this group. Indeed, it can be shown that if there are c
different final label values d′(·) in a group Ui, then there must be at least c− 1 cross-level
edges in Ti, which implies that the number of index evaluations for initial capacities should
be no greater than r + b. (Remember b is the number of groups in the partition.) Lemma 15
gives a formal proof for this.

4.3.3 The O(m + n log log k + r log k)-time Split Algorithm

Now we are ready to introduce our split algorithm in full details. A pseudocode is shown in
Figure 2. During the search at Line 5 - 21, Bi may contain groups with maximum nodes
not at the i-th level, e.g., when the maximum node in a group U is deleted at Line 17 and
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I(h(u)) of the new maximum node u in U has not been evaluated yet. We have the following
observations:

For all v ∈ V , d′(v) is non-decreasing, and at the end we have d′(v) = I(d(v)).
All the binary heaps of Ui are deletion only (so the priority queue can also be implemented
by a sorted linked list).
Only at Line 3, 13 and 21 we need to evaluate the index of h(·) of a node. Each index
evaluation costs O(log l) time.
The numbers of executions of the while loops at Line 7 - 9, Line 10 - 18, Line 19 - 21 are
all bounded by O(n).

Our algorithm is an implementation of Dijkstra’s algorithm, so the correctness is obvious.
The running time analysis is based on the following lemmas:

I Lemma 14. If we evaluate I(w(u, v)) at Line 13, then the edge (u, v) will not be in any
recursive calls of (Gi, wi, hi).

Proof. We evaluate I(w(u, v)) only if w(u, v) < λd′(u), so w̄ = I(w(u, v)) right after Line
13. Since u has already been scanned, d′(u) here is just its final value I(d(u)). Note that
I(d(v)) ≥ min{I(d(u)), I(w(u, v))} = I(w(u, v)). If I(d(v)) > I(w(u, v)), then I(w(u, v)) is
smaller than both I(d(u)) and I(d(v)), thus (u, v) is a below-level edge or cross-level edge. If
I(d(v)) = I(w(u, v)), then I(d(v)) < I(d(u)) and (u, v) is a cross-level edge. J

I Lemma 15. At Line 3 and 21, if we evaluate I(h(u)) for c nodes u in some group Ui, then
the number of different final label values d′(·) in Ui is at least c. Thus, the number of edges
in the subtree Ti corresponding to Ui that do not appear in any recursive calls of (Gi, wi, hi)
is at least c− 1.

Proof. At line 21, I(d(u)) must be less than i; otherwise, u should have been extracted at
Line 11 before extracting u at Line 20, which is impossible. Also note that d(u) ≥ h(u), so
I(h(u)) ≤ I(d(u)) for all u ∈ V . Thus, if u1 ∈ Ui is evaluated at Line 3 and there are c− 1
nodes u2, . . . , uc extracted from Ui at Line 21, then I(d(u1)), I(d(u2)), . . . , I(d(uc)) should be
in c distinct ranges: [I(h(u1)),+∞), [I(h(u2)), I(h(u1))), . . . , [I(h(uc)), I(h(uc−1))), which
implies that the number of different final values of d′(u) in Ui is at least c.

Suppose we remove all the cross-level edges in Ti, i.e., remove all the edges (u, v) in Ti

whose final values of d′(u) and d′(v) differ. Then the tree should be decomposed into at least
c components since there are at least c different final values of d′(u) in Ui. Thus there are at
least c− 1 cross-level edges in Ti. J

Finally, we can derive the O(m+ n log log k + r log k) time bound for our split algorithm.

Proof for Lemma 5. By Lemma 14, the number of index evaluations at Line 13 is at most
r. Let ci be the number of index evaluations at Line 3 and 21 for nodes in the group Ui.
Then by Lemma 15,

∑b
i=1 ci ≤ r+ b. Thus the total number of index evaluations in our split

algorithm can be bounded by 2r + b ≤ O(r + n/ log l), which costs O(r log l + n) time.
The extraction operations of the maximum element at Line 8 and 21 and the deletion

operation at Line 17 runs in O(log s) ≤ O(log log l) time per operation. Note that there are
O(n) such operations, thus all these operations cost O(n log log l) time in total.

It can be easily seen that all other parts of our split algorithm runs in linear time, so the
overall time complexity is O(m+ n log log l + r log l) ≤ O(m+ n log log k + r log k). J
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5 Discussion

We give an improved algorithm for solving SSBP in O(m
√

log n+
√
mn log n log log n) faster

than sorting for sparse graphs. This algorithm is a breakthrough compared to traditional
Dijkstra’s algorithm using Fibonacci heap. There are some open questions remained to be
solved. Can our algorithm for SSBP be further improved to O(mβ(m,n)), which is the time
complexity for the currently best algorithm for s-t BP? Can we use our idea to obtain an
algorithm for SSBP that runs faster than Dijkstra in word RAM model?
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Abstract
We present improved algorithms for solving the All Pairs Non-decreasing Paths (APNP) problem
on weighted digraphs. Currently, the best upper bound on APNP is Õ(n(9+ω)/4) = O(n2.844),
obtained by Vassilevska Williams [TALG 2010 and SODA’08], where ω < 2.373 is the usual
exponent of matrix multiplication. Our first algorithm improves the time bound to Õ(n2+ω/3) =
O(n2.791). The algorithm determines, for every pair of vertices s, t, the minimum last edge
weight on a non-decreasing path from s to t, where a non-decreasing path is a path on which the
edge weights form a non-decreasing sequence. The algorithm proposed uses the combinatorial
properties of non-decreasing paths. Also a slightly improved algorithm with running time O(n2.78)
is presented.
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1 Introduction

Given a digraph with arbitrary real weights, a non-decreasing path is a path on which the
edge weights form a non-decreasing sequence. Two of the problems studied on non-decreasing
paths are the Single Source Non-decreasing Paths (SSNP) problem and the All Pairs Non-
decreasing Paths (APNP) problem. The problem of SSNP was first studied by Minty [13].
The motivation is a train scheduling problem, as reviewed in [22]. Every train stop is mapped
to a vertex. A train from stop v1 with departure time t1 to stop v2 with arrival time t2 is
mapped to a vertex v with two edges (v1, v), (v, v2), of which the weights are t1, t2 resp. Now
a trip from s to t is possible only when there exists a non-decreasing path from s to t in the
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constructed digraph. As said in [22], for SSNP a folklore modification of Dijkstra’s algorithm
[5], implemented using Fibonacci heaps [8], gives the running time of O(m+ n log n), where
m, n are the number of edges and vertices resp. In the word RAM model the first linear-time
algorithm was given by Vassilevska Williams [22]. With a slight modification, the algorithm
also runs in O(m log log n) time in the standard addition-comparison model.

A restriction of APNP in vertex-weighted digraphs is computationally equivalent to the
problem of Maximum Witness for Boolean Matrix Multiplication (MWBMM) [22]. (Note
that the complexity of computing MWBMM is at least Ω(nω) [17].) An algorithm of O(n2+µ)
time for the latter problem was given by Czumaj et al. [3], where µ satisfies the equation
ω(1, µ, 1) = 1 + 2µ and ω(1, µ, 1) is the exponent of the multiplication of an n×nµ matrix by
an nµ × n matrix. Currently, the best available bounds on ω(1, µ, 1) by Le Gall and Urrutia
[11] imply that µ < 0.5286. The first truly sub-cubic algorithm for edge-weighted APNP was
also presented in [22]. The algorithm originally runs in Õ(n(15+ω)/6) = O(n2.896) time2 based
on an O(n2+ω/3)-time (min,≤)-product (mink{B[k, j] | A[i, k] ≤ B[k, j]} for (min,≤)(A,B))
algorithm from [21], where ω is the exponent of square matrix multiplication. The best upper
bound on ω is currently ω < 2.373 [12, 23]. By using a faster O(n(3+ω)/2)-time algorithm
from [6] for (min,≤)-product, the result can be improved to Õ(n(9+ω)/4) as indicated in
the abstract. These two algorithms for (min,≤)-product are from [21] and [6] resp. The
faster algorithm of [6] utilizes a simple technique called row-balancing, which we introduce in
details in Section 2.

A closely related problem of APNP is the All Pairs Bottleneck Paths (APBP) problem,
where the bottleneck weight of a path is the smallest weight of an edge on the path.
Intuitively for a digraph with non-negative edge weights, APBP determines, for every pair
of vertices s, t, the maximum amount of flow that can be routed from s to t along any
single path. As indicated in [22], APNP is at least as hard as APBP. We briefly explain it
here. Consider an O(n3−δ)-time algorithm for APNP with 0 < δ ≤ 1. Now to compute the
(min,≤)-product of two n× n matrices A, B, a tripartitle digraph G′ = (V1 ∪ V2 ∪ V3, E

′)
can be constructed as follows. The edge from i ∈ V1 to k ∈ V2 is represented by A[i, k];
the edge from k ∈ V2 to j ∈ V3 is similarly represented by B[k, j]. Hence the (min,≤)-
product is solved in O(n3−δ) time. The (max,min)-product (maxk min{A[i, k], B[k, j]} for
(max,min)(A,B)) is a combination of two variants of (min,≤)-product. Therefore it can
also be computed in O(n3−δ) time. If (max,min)-product is computable in O(n3−δ) time,
then APBP is computable in O(n3−δ) time, as (R,min,max,∞,−∞) is a closed semiring
[21]. There are several results on the APBP problem. On vertex-weighted digraphs, Shapira
et al. [17] showed that APBP can be solved in O(n2+µ) time. They also demonstrated the
computational equivalence (up to constant factors) among vertex-weighted APBP and several
other problems. The forementioned problem of MWBMM is one of them. The first truly
sub-cubic algorithm for edge-weighted APBP was given by Vassilevska et al. [21], with the
running time of O(n2+ω/3). Later an improved algorithm was proposed in [6], which runs
in O(n(3+ω)/2) time. There are several variants of APBP. One is the All Pairs Bottleneck
Shortest Paths (APBSP) problem, which for every pair of vertices u, v, determines a path
with the maximum bottleneck weight among all the shortest paths from u to v. The shortest
paths here are measured w.r.t. the unweighted distances. On edge-capacitated digraphs,
Vassilevska et al. [21] gave an algorithm for APBSP with the running time Õ(n(15+ω)/6),
which was improved to Õ(n(3+ω)/2) in [6]. On vertex-capacitated digraphs, Shapira et al. [17]
presented an Õ(n(8+µ)/3)-time algorithm. Also the result was later improved by [6].

2 Here Õ(·), as usual, hides poly-logarithmic factors.
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Fast matrix multiplication algorithms have numerous applications in other graph problems
as well. We list here only a subset of them, which includes finding a maximum triangle in
vertex-weighted graphs [19, 20, 4], to obtain the All Pairs Shortest Paths [9, 10, 16, 18, 1, 25, 7],
finding minimum weight cycles in directed or undirected graphs with integral edge weights
[14, 24, 2, 15].

Our Results: We give faster algorithms for solving APNP on digraphs. The results are
listed in Theorem 1, which follows directly from Theorem 18 and Theorem 21.

I Theorem 1. Let G = (V,E,w) be a real edge-weighted digraph. There exists a deterministic
algorithm which solves the problem of APNP in Õ(n2+ω/3) = O(n2.791) time. There also
exists another slightly faster deterministic algorithm which runs in O(n2.78) time using
rectangular matrix multiplications.

A High-level Overview: The problem of APNP can be solved by running (essentially)
(n−1) steps of the (min,≤)-product of the adjacency matrix of the input digraph. We utilize
the fact that the adjacency matrix in the computation is always fixed, and therefore when
the rows of it all have a bounded number of (< ∞) entries, we find a simple (and faster)
alternative to the repeated applications of the (min,≤)-product. To make use of this simple
alternative, we partition the input digraph into many sparse subgraphs, and compute APNP
by considering the edges one subgraph by one subgraph. However, even in a sparse subgraph
the number of (<∞) entries in a row might be still as large as Ω(n). Thus we further classify
a row as type low or high, where a high row corresponds to a high out-degree vertex in the
subgraph. The simple alternative is used to replace the (min,≤)-product for the submatrix
consisting of low rows. Also it computes the portion of a non-decreasing path until the first
vertex of high out-degree. The remaining portion from this high out-degree vertex to the
destination can be constructed by the relevant queries on a slightly modified data structure
from [22]. However, to get an efficient algorithm we should first make sure of the queries
worthy of asking, which is actually a weaker problem of the existence of non-decreasing paths.

The paper is organized as follows. We introduce the preliminaries required in the next
section. Then in Section 3 we propose an algorithm for a simple case, which is also a
sub-routine of the improved algorithms presented in Section 4.

2 Preliminaries

Given a real edge-weighted digraph G = (V,E,w), where w : E → R is a weight function
defined on its edges, the All-Pairs Non-decreasing Paths (APNP) problem asks to determine,
for every pair of vertices u, v, the minimum last edge weight on a non-decreasing path from
u to v (∞ if such a path does not exist). Typically the output is in tabular form, i.e. a
matrix R with R[i, j] corresponding to the minimum last edge weight of a non-decreasing
path from ui to uj . Also conventionally the entries R[i, i]’s are set as −∞ [22]. The matrix
R is called the “APNP matrix” of G. Given a matrix A, the i-th row, the j-th column of A
are denoted as A[i, ·], A[·, j] resp. Also for two matrices A, B of the same size, the entry-wise
minimum of them is denoted as min(A,B). Given a path p in G, if vertex k1 appears earlier
on p than k2, then the portion of p from k1 to k2 is denoted as p[k1, k2]. Notations p(k1, k2],
p[k1, k2), p(k1, k2) represent p[k1, k2] excluding k1, k2, both k1 and k2 resp. The following
special matrix products are used in later algorithms.
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I Definition 2 (Various Products). Given two n×n matrices A and B over a totally ordered
set, the dominance product A4B is defined as

(A4B)[i, j] = |{k | A[i, k] ≤ B[k, j]}|.

The (min,≤)-product A6B is defined as

(A6B)[i, j] =
{

mink{B[k, j] | A[i, k] ≤ B[k, j]} if ∃k,A[i, k] ≤ B[k, j],
∞ otherwise.

Next we review a simple technique called row-balancing [6]. Basically by row-balancing,
a matrix is decomposed into a sparse matrix and a dense one, where the finite entries of the
dense matrix are uniformly re-distributed across the rows.

I Definition 3 ([6] Row-Balancing). Let A be an n × p matrix with m finite elements.
Depending on context, the other elements will either all be ∞ or all be −∞. We assume the
former below. The row-balancing of A, or rb(A), is a pair (A′, A′′) of n× p matrices, each
with at most k = dm/ne elements in each row. The row-balancing is obtained by the following
procedure: First, sort all the finite elements in the i-th row of A in non-increasing or non-
decreasing order depending on context , and divide this list into several parts T 1

i , T
2
i , . . . , T

ai
i

such that all parts except the last one contain k elements and the last part (T ai
i ) contains at

most k elements. Let A′ be the submatrix of A containing the last parts:

A′[i, j] =
{
A[i, j] if A[i, j] ∈ T ai

i ,
∞ otherwise.

Since the remaining parts have exact k elements, there can be at most m/k ≤ n of them. We
assign each part to a distinct row in A′′, i.e., we choose an arbitrary mapping ρ : [n]× [p/k]→
[n] such that ρ(i, q) = i′ if T qi is assigned row i′; it is undefined if T qi doesn’t exist. Let A′′
be defined as:

A′′[i′, j] =
{
A[i, j] if ρ−1(i′) = (i, q) and (i, j) ∈ T qi ,
∞ otherwise.

Thus, every finite A[i, j] in A has a corresponding element in either A′ or A′′, which is also
in the j-th column. The column-balancing of A, or cb(A), is similarly defined as (A′T , A′′T ),
where (A′, A′′) = rb(AT ).

This simple technique is very useful for computing A4B, A6B, (max,min)(A,B), and
several new hybrid products defined in [6]. Below is a theorem from [6], which shows how to
compute A4B using cb(A).

I Theorem 4 ([6] Sparse Dominance Product). Let A and B be two n× n matrices where
the number of non-(∞) values in A is m1 and the number of non-(−∞) values in B is m2.
Then A4B can be computed in time O(m1m2/n+ nω).

There is a symmetric problem of computing non-decreasing paths with maximum first
edge weights. Note that the maximum first edge weight on a non-decreasing path from i to
i is defined as ∞, and for i 6= j, if no non-decreasing path exists, the maximum first edge
weight is defined as −∞. The time complexity of the single source version is given below.

I Theorem 5 ([22] Maximum First Edge Weight). Given a digraph G with n vertices, m edges,
and a vertex s, there exists an algorithm which in O(m log n) time outputs the maximum
first edge weight on a non-decreasing path from s to v for every v ∈ V .
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We need a slightly modified auxiliary data structure from [22] to efficiently compute
a non-decreasing path with the minimum last edge weight starting from a subset of the
out-edges of the source vertex. A paraphrased proof is given below.

I Theorem 6. Given a digraph G = (V,E,w) with n vertices, m edges, and a vertex s, there
exists an algorithm which in O(m log n) time constructs a balanced binary search tree T (t)
for every t ∈ V . With T (t), given a weight value w′, the algorithm can determine in O(log n)
time the minimum last edge weight of a non-decreasing path from s to t, starting from any
out-edge e of s with w(e) ≥ w′.

Proof. For every vertex v, add an attribute d[v] and a list L(v), where d[s] = −∞, d[v] =∞
if v 6= s, and L(v) = ∅ initially. Next start a search resembling DFS from s, where differently
the edges of s are explored in reverse sorted order, and the search only follows non-decreasing
paths. Also for every edge (u, v), once explored, we first run d[v]← min{d[v], w(u, v)} and
then remove (u, v) from G. Lastly, vertices can be repeatedly visited. Consider the time when
this recursive search backtracks to the initial search at s. The algorithm will explore the
next unexplored out-edge of s in the reverse sorted order. We can thus partition the search
into different phases, each of which corresponds to the search starting from an unexplored
out-edge of s until the algorithm backtracks to s. Consider the end of a specific phase
corresponding to an out-edge e of s. For every v of which d[v] becomes strictly smaller in this
phase, append (w(e), d[v]) to L(v). At the end of the whole search, for every v, scan L(v),
where for consecutive elements of equal w(e), only the last one is retained. Next transform
L(v) into a balanced binary search tree T (v) keyed by w(e).

Given a weight value w′, the value required is the d[v] attribute of the predecessor
found. J

We last review a standard technique called bridging set, which is repeatedly used in
the literature [6, 22, 25, 17]. The following lemma is one from [22]. The set of size n logn

L

constructed is an L-bridging set.

I Lemma 7 ([22, 25]). Given a collection of N subsets of {1, . . . , n}, each of size L, one
can find in deterministic O(NL) time a set of n logn

L elements of {1, . . . , n} hitting every one
of the subsets.

Model of Computation: We use the standard addition-comparison computational model.
The only operations performed on real numbers are comparisons in this paper.

3 Warm Up: A Simple Case

As a warm up for our main algorithms, we consider a simple algorithm, which is efficient
if the out-edges are uniformly distributed across the vertices. The main purpose is to give
an idea of how the combinatorial properties of non-decreasing paths are utilized, and the
difficulty of extending the algorithm to the general case.

Given a digraph G = (V,E,w), let L(E) be a sorted list of the edges in E. We evenly
divide L(E) into t parts such that each part has at most dn2/te edges. Each part corresponds
to a subgraph of G. Therefore there are t subgraphs. Denote them as Gr for 1 ≤ r ≤ t. The
edge weights in Gr−1 is no greater than those in Gr.

Consider the adjacency matrix Aj of Gj . By saying a simple case, we mean the number
of (< ∞) elements of any row in any Aj is bounded by d, which has n/t ≤ d ≤ n. This
assumption is only used in Theorem 15 later. We use the notation G≤r to represent the
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subgraph induced by the (< ∞) entries of Aj for 1 ≤ j ≤ r. The notation G<r can be
inferred similarly. The proposed algorithm consists of t iterations. In the r-th iteration, the
APNP matrix of G<r is extended to the APNP matrix of G≤r. Consider the APNP matrix
R of G<r. Except a technical issue of edges of equal weights straddling across different Ar’s
(which is handled later in this section), one can verify that by running R← min(R,R6Ar)
for (n − 1) steps, the matrix R will be the APNP matrix of G≤r. Intuitively by n′ steps
of R ← min(R,R 6 Ar), the algorithm considers all the non-decreasing paths containing
at most n′ edges of Gr. The combinatorial properties of non-decreasing paths bring the
following observations in the extension from G<r to G≤r.

The APNP matrices of G<r, G≤r are denoted as R, R′ resp. If R[i, j] < ∞, then the
non-decreasing path in G from i to j with the minimum last edge weight is already computed,
for existing non-decreasing paths with minimum last edge weights cannot be improved by
introducing edges of no smaller weights.

I Observation 8 (An Entry Only Computed Once). If R[i, j] <∞, then R′[i, j] = R[i, j].

The above observation indicates that the exact value of an entry of the APNP matrix is
computed in at most one extension among all the extensions.

By allowing non-decreasing paths with more edges of Gr, minimum last edge weights of
non-decreasing paths never become larger. Therefore we have the following observation.

I Observation 9 (Non-increasing of Entries). In the process of the (n − 1) steps of R ←
min(R,R 6Ar), the entry R[i, j] is non-increasing.

Generally, given a non-decreasing path p from s to t with the minimum last edge weight,
we can only claim subpaths starting from s (prefixes) can be replaced with non-decreasing
paths with minimum last edge weights. However, as shown below, except the technicality on
equal weights handled later, the claim also holds for certain other subpaths.

I Observation 10 (Two Parts of A Path). Consider a non-decreasing path p in G≤r with the
minimum last edge weight. W.l.o.g. the path p can be split into two portions p1, p2 lying
within G<r, Gr resp. Any prefix of p2 can be replaced with a non-decreasing path in Gr
with the minimum last edge weight.

We use the following definition to capture the entries of interest in R′.

I Definition 11. An entry R′[i, j] is new w.r.t. R if R′[i, j] <∞ but R[i, j] =∞. Otherwise,
it is old.

Use nr to denote the number of new entries of the APNP matrix of G≤r w.r.t. the APNP
matrix of G<r. The following observation is then obvious.

I Observation 12 (Bounded Number of New Entries).
∑

1≤r≤t nr ≤ n2.

We also need a different view of computing C = min(A,A6B), where A, B are n× n
matrices. The matrix C is the entry-wise minimum of A and the n matrices A[·, k] 6B[k, ·]
for 1 ≤ k ≤ n. An algorithm for computing C using this view is given in Table 1. Now we
present the intuition of the algorithm for the simple case.

The Intuition: The matrices R, R′ are defined as before. Among all the non-decreasing
paths from i to j in G≤r with the minimum last edge weight, consider one path p with
the least number of edges in Gr. As in Observation 10 (Two Parts of A Path), w.l.o.g. p
is a concatenation of subpaths p[i, k1], p[k1, j]. Subpaths p[i, k1], p[k1, j] are within G<r,
Gr resp. The entry R′[i, k1] is old, whereas the entries R′[i, k′]’s are new for k′ ∈ p(k1, j)
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Algorithm 1 An algorithm for computing C = min(A,A6B).

(S1) Initialize C as A. Construct a sorted list L(B[k, ·]) of the (<∞) elements of B[k, ·] in
non-increasing order, for every k.

(S2) For every A[·, k], and for every A[i, k] within:
(S21) Scan L(B[k, ·]) from head to tail until the first element of L(B[k, ·]) which is less

than A[i, k].
(S22) C[i, j] ← min{C[i, j], B[k, j]} for every B[k, j] scanned, excluding the first ele-

ment of L(B[k, ·]) which is less than A[i, k].

due to p having the least number of edges in Gr. Therefore during the (n − 1) steps of
R← min(R,R6Ar), the old entries effectively change R only in the first step. The changes
of R in the later (n− 2) steps are contributed only by the new entries. In the view of the
algorithm in Table 1, the entry (i, k′) of R is only compared with the k′-th row of Ar. As
the number of (<∞) elements of the k′-th row of Ar is assumed to be bounded, the cost
brought by all the new entries is bounded due to Observation 9 (Non-increasing of Entries)
and Observation 12 (Bounded Number of New Entries).

Besides the algorithm in Table 1, we also need an “ordinary” way to compute R6Ar as
shown below.

I Lemma 13 (The First Edge). Given the APNP matrix R of G<r, the product R6Ar can
be computed in Õ(nω + nr · nt ) time.

Proof. According to Observation 8 (An Entry Computed Only Once), only the new entries
of R6Ar w.r.t. R are of concern. To get these, we first determine the set S of (i, j)’s with
(R6Ar)[i, j] <∞ but R[i, j] =∞. Again to determine whether (R6Ar)[i, j] <∞, we only
need to compute R 4 Ar, where a slight difference is that here only the (< ∞) entries of
Ar are considered. As the (<∞) entries of R are no greater than those of Ar, the product
R4Ar is a matrix product of two Boolean matrices corresponding to the (<∞) entries of
R, Ar resp., which is computable in O(nω) time.

To determine the exact value of (R 6 Ar)[i, j] < ∞, we use an idea similar to one in
[6]. Let (A′r, A′′r ) = cb(Ar). Compute R 4 A′r and R 4 A′′r in O(nω) time. The value of
(R 6 Ar)[i, j] is R[i, ·] 6 Ar[·, j]. In cb(Ar), the column Ar[·, j] is divided into aj parts
T 1
j , . . . , T

aj

j . To determine the right q′ where (R6Ar)[i, j] ∈ T q
′

j , check (R4A′r)[i, j] > 0,
and if it does not hold, search for the largest q with (R4A′′r )[i, ρ(j, q)] > 0. Note that T qj ’s
with q < aj are assigned to columns ρ(j, q)’s in matrix A′′r . Once q′ is known, the exact value
of (R6Ar)[i, j] is returned by an exhaustive enumeration within T q

′

j . The total time for the
new entries of R6Ar is Õ(nω + nr · nt ), as each entry of R4A′′r is checked no more than
once, and T q

′

j ’s are of size O(n/t). J

A Technicality on Equal Weights: To let the edges of a non-decreasing path first come
from G<r, then from Gr, we need to handle the case in which the edges of equal weight
straddle across different Ar’s. We split out these special edges and merge them into single
matrices. Consider one such a matrix A′. The APNP matrix R′ of the corresponding
subgraph of A′ can be computed by a transitive closure algorithm in O(nω) time. Suppose
the APNP matrix before processing A′ is R. Next we run R ← min(R,R 6 R′), which is
similar to Lemma 13 (The First Edge), but now the finite entries of R′ are all equal to the
single value. Therefore the cost is O(nω). As there are only O(t) such A′’s, the total cost for
the technicality is only O(t · nω).
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Algorithm 2 The algorithm for the simple case.
(S1) An APNP matrix R is initialized as R[i, i] = −∞, and R[i, j] =∞ for i 6= j.
(S2) ∀r, 1 ≤ r ≤ t, the APNP matrix R of G<r is extended to the APNP matrix of G≤r.

Construct a sorted list L(Ar[k, ·]) of the (<∞) elements of Ar[k, ·] in non-increasing
order, for 1 ≤ k ≤ n.
(S21) Run R← min(R,R 6Ar) as in Lemma 13 (The First Edge). Let S be the set

of the entries of R which get strictly smaller. Any entry first added to S, say
R[i, k], is associated with a pointer pointing to the head of L(Ar[k, ·]).

(S22) Run the following for (n− 2) steps or until S = ∅.
i. For every R[i, k] ∈ S:
A. Starting from the position of L(Ar[k, ·]) pointed to by the pointer asso-

ciated with R[i, k], move the pointer element by element until the first
element of L(Ar[k, ·]) which is less than R[i, k].

B. R[i, j] ← min{R[i, j], Ar[k, j]}, for every element Ar[k, j] of L(Ar[k, ·])
scanned, excluding the first element of L(Ar[k, ·]) which is less than
R[i, k].

ii. Re-initialize S as the set of the entries of R which get strictly smaller in this
step.

iii. Any entry first added to S, say R[i, k], is associated with a pointer pointing
to the head of L(Ar[k, ·]).

The formal algorithm for the simple case is given in Table 2. The analysis for it is given
in Theorem 15. Also by Observation 8 (An Entry Only Computed Once), the set S in Table
2 has the following property which is useful in the proof.

I Observation 14. The set S in Table 2 contains only the new entries of the APNP matrix
of G≤r w.r.t. the APNP matrix of G<r.

I Theorem 15. If the number of (<∞) elements in any row of Ar is bounded by d, then
the steps S21 and S22 in Table 2 can find the APNP matrix of G≤r in Õ(nω + nr · (d+ n

t ))
time in every iteration. So the total time is Õ(t · nω + n2 · (d+ n

t )).

Proof. To show the correctness, we only need to prove that the step S22 in Table 2 is
equivalent to (n− 2) steps of the algorithm in Table 1. This is almost obvious, as the entries
not getting strictly smaller during the previous step of R← min(R,R6Ar) do not contribute
anything in the current step of R← min(R,R6Ar). Also if S in the step S22 of Table 2 is
empty, we can stop earlier than (n− 2) steps, as later steps of R← min(R,R6Ar) give the
same R.

Note that the cost of the step S22 in Table 2 is charged to the scanning induced by the
entries in S. By Observation 9 (Non-increasing of Entries) and Observation 14, the time of
the step S22 of Table 2 in r-th iteration is Õ(nr · d). Also by Lemma 13 (The First Edge),
the step S21 of Table 2 takes Õ(nω + nr · nt ) time, thus prove the theorem. J

So if the out-edges are uniformly distributed across all vertices, i.e., the number of (<∞)
elements of any row in any Ar is always bounded by O(n/t) for any t, then we can get a
Õ(n(3+ω)/2) time APNP algorithm by setting t = n(3−ω)/2.

Generally a row of an Ar could have as many as Ω(n) (< ∞) elements. Rows with a
large number of (<∞) elements correspond to vertices of high out-degree. A new approach
for them is given in the next section.
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G<r

Gr

G≤r

k1

i

k2

j

p1
p2

(k1, k2): the first edge

h1 ∈ V H
r

Figure 1 An illustration of the extension of the APNP matrix from G<r to G≤r in the general
case.

4 Improved Algorithms for APNP

We move to the general case, in which the number of (<∞) elements in a row might not be
bounded by O(n/t). For ease of analysis, the edge set is divided into nt subsets, each with
at most dn2/nte = dn2−te edges. The vertices of Gr are classified as high out-degree with
out-degree > n1−t+s, or low out-degree otherwise, where s > 0 is a parameter to be chosen.
Denote the sets of high out-degree, low out-degree vertices of Gr as V Hr , V Lr resp. Note that
|V Hr | = O(n1−s).

The Intuition: As illustrated in Figure 1, among all the non-decreasing paths in G≤r
from i to j with the minimum last edge weight, consider one path p with the least number
of edges in Gr. By running the step S21 of Table 2, we construct the first edge (k1, k2).
Thanks to p having the least number of edges in Gr, entries (i, k′) of the APNP matrix
of G≤r for k′ ∈ p[k2, j) are new w.r.t. the APNP matrix of G<r. The hard case is when
there exists a vertex from V Hr on p[k2, j). Consider the first such vertex h1 from V Hr . The
important observation is that the edges on p[k2, h1] are the out-edges of low out-degree
vertices. Therefore, if we run the step S22 of Table 2, but differently only on the low
out-degree vertices, then the portion p[i, h1] is successfully constructed. The last portion
p[h1, j] can be constructed by Theorem 6, as p[h1, j] represents a non-decreasing path starting
with an edge of weight no smaller than the last edge weight of p[i, h1]. However, to get an
efficient algorithm, we could not afford to construct p[h1, j] if it did not exist. To determine
the existence of p[h1, j], we replace p[h1, j] with a non-decreasing path in Gr from h1 to j
with the maximum first edge weight. Then the existence of p[h1, j] is reduced to whether
p[i, h1] can be concatenated with this replacement of p[h1, j].

The algorithm for the general case is described in Table 3. For the matrix HN
1 in Table

3, we have the following properties which are crucial for the correctness and an efficient
algorithm.

I Observation 16. Consider one path p with the least number of edges in Gr among all the
non-decreasing paths in G≤r from i to j with the minimum last edge weight. Let p[k1, j] be
the portion of p in Gr. If p[k1, j] 6= ∅, and there exists a vertex from V Hr on p(k1, j), then
the last edge weight of p[i, h1] is stored in HN

1 [i, h1], where h1 is the first vertex in V Hr on
p(k1, j). For the matrix HN

1 , the number of (<∞) entries of HN
1 is no greater than nr.

For the matrix X, the number of X[i, j] = 1 with R[i, j] =∞ is no more than nr. Such
(i, j)’s of X are associated with non-decreasing paths never appearing in G<r. Hence these
(i, j)’s in the APNP matrix of G≤r are new w.r.t. R. By Theorem 6, the running time of the
step S24 therefore is as follows.
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Algorithm 3 The algorithm for the general case.
(S1) An APNP matrix R is initialized as R[i, i] = −∞, and R[i, j] =∞ for i 6= j.
(S2) ∀r, 1 ≤ r ≤ nt, the APNP matrix R of G<r is extended to the APNP matrix of G≤r.

(S21) Split out a sub-matrix ALr of Ar, which contains only the rows with the number
of (<∞) elements no greater than n1−t+s. Initialize a matrix R′ as R.
i. Run the steps S21, S22 in Table 2 with inputs R′, Ar and ALr . The step S22

of Table 2 only works on ALr instead of Ar.
(S22) With Theorem 5 (Maximum First Edge Weight), compute an n1−s × n matrix

H2 with H2[i, j] representing the maximum first edge weight on a non-decreasing
path in Gr from i ∈ V Hr to j.

(S23) Group the entries of R′ from V to V Hr that are new w.r.t. R as an n×n1−s matrix
HN

1 . Construct a Boolean matrix X with X[i, j] = 1 if (HN
1 4H2)[i, j] > 0.

(S24) Initialize a matrix R′′ as R. For every h1 ∈ V Hr , use Theorem 6 to build the
auxiliary data structure for h1 in Gr, i.e., a set of T (h1, j)’s for all j ∈ V .
For every X[i, j] = 1 with R[i, j] =∞:
i. For every h1 ∈ V Hr :
A. Query T (h1, j) with w′ = HN

1 [i, h1]. Get the minimum last edge weight
w′′ of a non-decreasing path from h1 to j in Gr, starting from any
out-edge e of h1 with w(e) ≥ w′.

B. R′′[i, j]← min(R′′[i, j], w′′).
(S25) R← min(R′, R′′).

I Observation 17. The step S24 of Table 3 has the running time of Õ(nr ·n1−s+n1−s ·n2−t).

I Theorem 18. Given a real edge-weighted digraph on n vertices, the APNP matrix can be
computed in Õ(n2+ω/3) = O(n2.791) time.

Proof. We show the APNP matrix R is correctly extended from G<r to G≤r. Among all the
non-decreasing paths in G≤r from i to j with the minimum last edge weight, consider one
path p with the least number of edges in Gr. We show p can be constructed by the algorithm.
As in Observation 10 (Two Parts of A Path), the path p consists of two subpaths p[i, k1],
p[k1, j], lying within G<r, Gr resp. An illustration is given in Figure 1. If p[k1, j] = ∅,
then R[i, j] is an old entry. Therefore p is already constructed. Consider the case in which
p[k1, j] 6= ∅. Let (k1, k2) be the first edge on p[k1, j]. If there is no vertex in V Hr on
p[k2, j), the circumstance is similar to the simple case of Section 3. The step S21 successfully
constructs p under this circumstance. The only case left is when there exists a vertex in V Hr
on p[k2, j). Consider the first such vertex h1. Due to Observation 16, the subpath p[i, h1] is
successfully constructed by the step S21. The last portion p[h1, j] is constructed by the step
S24, as X[i, j] = 1 and R[i, j] =∞ in this case.

Next we proceed to the analysis of the time complexity. The step S1 costs O(n2).
According to Theorem 15, the step S21 needs the running time of Õ(nω + nr · n1−t+s) to
compute R′. By Theorem 5 (Maximum First Edge Weight), the step S22 takes Õ(n1−s ·n2−t)
time, as |V Hr | = O(n1−s) and Gr has O(n2−t) edges. The step S23 involves the computation
of HN

1 4H2, for which Theorem 4 (Sparse Dominance Product) is used. Due to Observation
16, the cost for it is Õ(nω + nr · n1−s). Note that the number of (> −∞) entries of H2 is
no greater than n2−s. Also HN

1 , H2 are expanded to n × n matrices in Theorem 4. For
easy understanding, one can do rb(H2) rather than cb(HN

1 ) in the proof of Theorem 4,
which can be found in [6]. The step S24 takes Õ(nr · n1−s + n1−s · n2−t) time according to
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Observation 17. The step S25 costs O(n2). Summing up all these costs, we have the total
running time within Õ(·) as follows.∑

1≤r≤nt

(nω + nr · n1−t+s) + n3−s

+
∑

1≤r≤nt

(nω + nr · n1−s)

+
∑

1≤r≤nt

(nr · n1−s + n1−s · n2−t)

=nt+ω + n3−t+s + n3−s,

where by choosing t = 2s, and s = 1− ω
3 , we have the final result n2+ω/3. J

4.1 A Slight Improvement via Rectangular Matrix Multiplication
The algorithm in Table 3 builds auxiliary data structures of Theorem 6 for all vertices in
V Hr . We can lessen this cost a little bit at the price of considering more vertices like h1 in
Figure 1.

The Intuition: As illustrated in Figure 1, formerly we consider the first vertex h1 in V Hr on
p[k2, j). Now we look at more vertices from V Hr on p[k2, j). Consider the second such vertex
h2. Similarly the edges on p(h1, h2] are the out-edges of low out-degree vertices. Also thanks
to p having the least number of edges in Gr, entries (i, k′) of the APNP matrix of G≤r for
k′ ∈ p(h1, h2) are new w.r.t. the APNP matrix of G<r. Therefore, if we had constructed the
first edge of p[h1, h2], the cost for constructing later edges on p[h1, h2] could be charged to
the step S22 in Table 2. The idea for the improvement is to look at the first nq vertices from
V Hr on p[k2, j). Name them as h1, . . . , hnq . If p[k2, j) contains no more than nq vertices from
V Hr , the path p is then fully constructed. If p[k2, j) contains more than nq vertices from V Hr ,
we could sample only O(n1−s−q log n) vertices from V Hr , such that w.h.p. at least one vertex
in {h1, . . . , hnq} is hit. Say one such vertex is h. Note that p[i, h] is already constructed. We
then use the same auxiliary data structures as in Table 3 to construct p[h, j]. Also we use
the same algorithm as in Table 3 to first determine the existence of p[h, j]. The difference is
that the construction of p[h, j] only involves the computation on O(n1−s−q log n) vertices,
instead of O(n1−s) vertices as before. The improvement comes from this difference.

The algorithm is given in Table 4, which needs to compute HN
1 6AHr for matrices HN

1 ,
AHr defined within. The time complexity of the computation is given as follows, for which
the idea is similar to one in [6]. Note that Theorem 4 (Sparse Dominance Product) can be
extended to handling two matrices of sizes n × n1−s and n1−s × n. The time complexity
similar to the one in Theorem 4 is O(m1m2/n

1−s + nω(1,1−s,1)).

I Lemma 19. The computation for HN
1 6AHr takes Õ(nω(1,1−s,1)+q + nr · n1−t−q+s) time.

Proof. Let L(AHr ) be the sorted list of (< ∞) entries of AHr . We divide L(AHr ) into nq
parts, so each part contains at most dn2−t/nqe entries. We have nq matrices AHr,1, . . . , AHr,nq

corresponding to each part. The entries of HN
1 with values no greater than max{e | e ∈ AHr,nq}

are partitioned into (nq+1) matrices HN
1,0, H

N
1,1, . . . ,H

N
1,nq . The matrix HN

1,p with 1 ≤ p ≤ nq
consists of the entries HN

1 [i, j]’s satisfying min{e | e ∈ AHr,p} < HN
1 [i, j] ≤ max{e | e ∈ AHr,p}.

The matrix HN
1,0 consists of the entries HN

1 [i, j]’s satisfying HN
1 [i, j] ≤ min{e | e ∈ AHr,1}.

We compute HN
1 4AHr,p for 1 ≤ p ≤ nq. Note that the following holds.

HN
1 4AHr,p = (HN

1,0 + · · ·+HN
1,p) 4AHr,p,
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Algorithm 4 A slightly faster algorithm via rectangular matrix multiplication.
(S1) An APNP matrix R is initialized as R[i, i] = −∞, and R[i, j] =∞ for i 6= j.
(S2) ∀r, 1 ≤ r ≤ nt, the APNP matrix R of G<r is extended to the APNP matrix of G≤r.

Split Ar into two sub-matrices AHr , ALr , representing out-edges of high, low out-degree
vertices resp.
(S21) Initialize a matrix R′ as R.

i. Run the steps S21, S22 in Table 2 with inputs R′, Ar and ALr . The step S22
of Table 2 only works on ALr instead of Ar.

(S22) Run the following for nq steps:
i. Group the entries of R′ from V to V Hr that are new w.r.t. R as an n× n1−s

matrix HN
1 .

ii. R′ ← min(R′, HN
1 6 AHr ). Determine the set S of the entries of R′ which

get strictly smaller in this step.
iii. Run the step S22 of Table 2 with inputs R′, S and ALr .

(S23) Sample uniformly at random O(n1−s−q · log n) vertices from V Hr . Run the steps
S22–S25 in Table 3, but only on the sampled vertices, rather than V Hr .

where (HN
1,0 + · · · + HN

1,p−1) 4 AHr,p is computable in O(nω(1,1−s,1)) time, as the entries in
(HN

1,0 + · · · + HN
1,p−1) are no greater than min{e | e ∈ AHr,p}. Use |HN

1,p| to represent the
number of (<∞) entries in HN

1,p. We use Theorem 4 (Sparse Dominance Product) to compute
HN

1,p 4 AHr,p in Õ(nω(1,1−s,1) + |HN
1,p| · n2−t−q/n1−s) time, as AHr,p only has n1−s rows. The

total time for computing HN
1 4AHr,p for 1 ≤ p ≤ nq is Õ(nω(1,1−s,1) · nq + nr · n2−t−q/n1−s),

as
∑

1≤p≤nq |HN
1,p| ≤ nr.

Let ((AH1,p)′, (AH1,p)′′) = cb(AH1,p). The computation of HN
1 4 (AHr,p)′, HN

1 4 (AHr,p)′′ for
1 ≤ p ≤ nq also takes Õ(nω(1,1−s,1) · nq + nr · n2−t−q/n1−s) time.

For an entry (HN
1 6 AHr )[i, j] to be determined, we find the smallest p with (HN

1 4
AHr,p)[i, j] > 0. Then (HN

1 6AHr )[i, j] ∈ AHr,p. The remaining steps are similar to Lemma 13
(The First Edge). The total time is Õ(nω(1,1−s,1) · nq + nr · n2−t−q/n1−s + nr · n2−t−q/n),
as AHr,p has n columns and only the new entries of HN

1 6 AHr are of interest, of which the
number is at most nr. J

The step S23 in Table 4 constructs an L-bridging set with L = nq. We use Lemma 7 to
compute it deterministically as follows. Consider p as in the intuition of Section 4.1. The N
subsets in Lemma 7 are p’s with exactly nq vertices from V Hr on p[k2, j)’s, where j ∈ V Hr .
To get the subset related to p, we need to extract the vertices in V Hr on p[k2, j). This is
solvable in O(nq) time if we know the predecessors in V Hr of the vertices on p(k2, j].

We notice that for a specific i, just before the Step 23 of Table 4, for the j’s of which
R′[i, j]’s are new w.r.t. R, the edges corresponding to these R′[i, j] form a forest, i.e., we
know the predecessors in V (rather than in V Hr ) of these j’s. Given such a forest, a DFS
will give us the required predecessors in V Hr of these j’s. The cost of DFS for different i’s is
O(nr), as there are no more than nr new R′[i, j]’s w.r.t. R. Thus the following holds.

I Observation 20. An L-bridging set with L = nq in the step S23 of Table 4 can be
constructed deterministically in Õ(n1−s · nq) time.

I Theorem 21. The APNP matrix of a real edge-weighted digraph with n vertices is com-
putable in deterministic O(n2.78) time.

Proof. The correctness proof is almost similar to the one in Theorem 18. There we consider
the first vertex h1 in V Hr , whereas here we consider the vertex h in V Hr hit by the bridging
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set. According to Observation 20, the total time for the construction of the bridging sets is
Õ(nt+1−s+q) = Õ(n2+t−2s) (as q ≤ 1− s), which is absorbed by the other terms.

Now we turn to the analysis of time complexity. The step S21 is the same as before,
taking Õ(nω+nr ·n1−t+s) time. The second step of S22 takes Õ(nω(1,1−s,1)+q+nr ·n1−t−q+s)
time, as shown in Lemma 19. The third step of S22 in one iteration of the step S2 is charged
to the step S21, resulting in Õ(nr · n1−t+s) time. The other steps are similar to Theorem 18,
for which the time is Õ(nω + nr · n1−s−q + n1−s−q · n2−t). Summing up all of them, we have
the total running time within Õ(·) as follows.

nt+ω + n3−t+s + n3−s−q + nt+ω(1,1−s,1)+2q,

where ω(1, 1− s, 1) ≤ 2 + (1− s)(ω − 2) if rectangular matrix multiplications are reduced
to square matrix multiplications. By setting s = 3−ω

ω+1 , t = 1
2 (3 + s− ω), and q = t− 2s, we

have the final result n
1
2 (3+ 3−ω

ω+1 +ω) = O(n2.78). J
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Abstract
Edit distance between trees is a natural generalization of the classical edit distance between
strings, in which the allowed elementary operations are contraction, uncontraction and relabeling
of an edge. Demaine et al. [ACM Trans. on Algorithms, 6(1), 2009] showed how to compute
the edit distance between rooted trees on n nodes in O(n3) time. However, generalizing their
method to unrooted trees seems quite problematic, and the most efficient known solution remains
to be the previous O(n3 log n) time algorithm by Klein [ESA 1998]. Given the lack of progress
on improving this complexity, it might appear that unrooted trees are simply more difficult than
rooted trees. We show that this is, in fact, not the case, and edit distance between unrooted trees
on n nodes can be computed in O(n3) time. A significantly faster solution is unlikely to exist,
as Bringmann et al. [SODA 2018] proved that the complexity of computing the edit distance
between rooted trees cannot be decreased to O(n3−ε) unless some popular conjecture fails, and
the lower bound easily extends to unrooted trees. We also show that for two unrooted trees of
size m and n, where m ≤ n, our algorithm can be modified to run in O(nm2(1 + log n

m )). This,
again, matches the complexity achieved by Demaine et al. for rooted trees, who also showed that
this is optimal if we restrict ourselves to the so-called decomposition algorithms.
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1 Introduction

Computing the edit distance between two strings [30] is the most well-known example of
dynamic programming. Thanks to the new fine-grained complexity paradigm, we know that
this simple approach is essentially the best possible [1, 5], so the problem appears to be
solved from the theoretical perspective. However, in many real-life applications we would
like to operate on more complicated structures than strings. As a prime example, while
primary structure of RNA can be seen as a string, computational biology is often interested
in comparing also secondary structures. Second structure of RNA can be modeled as an
ordered tree [17, 26], so we would like to generalize computing the edit distance between
strings to computing the edit distance between ordered trees.

Tai [29] defined the edit distance between two ordered trees as the minimum total cost of
a sequence of elementary operations that transform one tree into the other. For unrooted

EA
T

C
S

© Bartłomiej Dudek and Paweł Gawrychowski;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 45; pp. 45:1–45:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bartlomiej.dudek@cs.uni.wroc.pl
mailto:gawry@cs.uni.wroc.pl
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.45
https://arxiv.org/abs/1804.10186
https://arxiv.org/abs/1804.10186
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


45:2 Edit Distance between Unrooted Trees in Cubic Time

a

de

b

contract edge x

uncontract edge xc

a

b

de

c

x

Figure 1 Contraction and uncontraction of the edge with label x costs cdel(x) = cins(x).

trees, which are the focus of this paper, the trees are edge-labeled, and we have three
elementary operations: contraction, uncontraction and relabeling of an edge. We think
that the trees are embedded in the plane, i.e., there is a cyclic order on the neighbors
of every node that is preserved by the contraction/uncontraction. See Figure 1. The
cost of an operation depends on the label(s) of the edge(s): cdel(τ), cins(τ), cmatch(τ1, τ2),
respectively. We assume that every operation has the same cost as its reverse counterpart:
cdel(τ) = cins(τ), cmatch(τ1, τ2) = cmatch(τ2, τ1), and each edge participates in at most one
elementary operation.

Computing the edit distance between trees is used as a measure of similarity in mul-
tiple contexts. The most obvious, given that some biological structures resemble trees, is
computational biology [26]. Others include comparing XML data [10,11,16], programming
languages [18]. Others, less obvious, include computer vision [6, 20, 22, 25], character re-
cognition [24], automatic grading [3], and answer extraction [31]. See also the survey by
Bille [7].

Tai [29] introduced the edit distance between rooted node-labeled trees on n nodes and
designed an O(n6) algorithm. Zhang and Shasha [27] improved the time complexity to O(n4)
by designing a recursive formula, which reduces computing the edit distance between two
trees to computing the edit distance between two smaller trees. Then, Klein [21] considered
the more general problem of computing the edit distance between unrooted edge-labeled trees
and further improved the complexity to O(n3 log n) using essentially the same formula, but
applying it more carefully to restrict the number of different trees that appear in the whole
process. This high-level idea of using the recursive formula can be formalized using the notion
of decomposition strategy algorithms as done by Dulucq and Touzet [15]. Finally, Demaine
et al. [13] further improved the complexity for rooted node-labeled trees to O(n3). For trees
of different sizes m and n, where m ≤ n, their algorithm runs in O(nm2(1 + log n

m )) time. At
a very high level, the gist of their improvement was to apply the heavy path decomposition
to both trees, while in Klein’s algorithm only one tree is decomposed. This requires some
care, as switching from being guided by the heavy path decomposition of the first tree to the
second tree cannot be done too often.

Although Demaine et al. [13] showed that their algorithm is optimal among all decom-
position strategies, it is not clear that any algorithm must be based on such a strategy.
Nevertheless, there has been no progress on beating the best known O(n3) time worst-case
bound for exact tree edit distance. Pawlik and Augsten [23] presented an experimental
comparison of the known algorithms. Aratsu et al. [4], Akutsu et al. [2], and Ivkin [19]
designed approximation algorithms. Only very recently a convincing explanation for the
lack of progress on improving this worst-case complexity has been found by Bringmann et
al. [9], who showed that a significant improvement on the cubic time complexity for rooted
node-labeled trees is rather unlikely: an O(n3−ε algorithm for computing the edit distance
between rooted trees on n nodes implies an O(n3−ε) algorithm for APSP (assuming alphabet
of size Θ(n)) and an O(nk(1−ε)) algorithm for Max-Weight k-Clique (assuming alphabet of
sufficiently large but constant size).
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Thus, the complexity of computing the edit distance between rooted trees seems well-
understood by now. However, in multiple important applications, the trees are, in fact,
unrooted. For example, Sebastian et al. [25] use unrooted trees to recognize shapes (in a paper
with over 700 citations). Unfortunately, while the almost 20 years old algorithm presented by
Klein works for unrooted trees in O(n3 log n) time, it is not clear how to translate Demaine
et al.’s improvement to the unrooted case. In fact, even if one of the trees is a rooted full
binary tree and the other is a simple caterpillar, their approach appears to use O(n4) time,
and it is not clear how to modify it. Given the lack of further progress, it might seem that
unrooted trees are simply more difficult than rooted trees.

Our contribution. We present a new algorithm for computing the edit distance between
unrooted trees which runs in O(n3) time and O(n2) space. For the case of trees of possibly
different sizes n and m where m ≤ n, it runs in O(nm2(1 + log n

m )) time and O(nm) space.
This matches the complexity of Demaine et al.’s algorithm for the rooted case and improves
Klein’s algorithm for the unrooted case. By a simple reduction, unrooted trees are as difficult
as rooted trees, so our algorithm is optimal among all decomposition algorithms [13], and
significantly faster approach is unlikely to exist unless some popular conjecture fails [9].

Our starting point is dynamic programming using the recursive formula of Zhang and
Shasha, similarly as done by Klein and Demaine et al., but instead of presenting the
computation in a top-down order, we prefer to work bottom-up. This gives us more control
and allows us to be more precise about the details of the implementation. In the simpler
O(n3 log log n) version of the algorithm, we apply the heavy path decomposition to both
trees. As long as the first tree is sufficiently big, we proceed similarly as Klein, that is,
look at its heavy path decomposition. However, if the first tree is small (roughly speaking)
we consider the heavy path decomposition of the second tree and design a new divide and
conquer strategy that is applied on every heavy path separately.

In the full version of the paper [14] we further improve the complexity to O(n3). Instead
of a global parameter we modify the divide and conquer strategy so that the larger the
first tree is the sooner the strategy terminates and switches to another approach. A careful
analysis of such a modification leads to O(nm2(1 + log2 n

m )) = O(n3) running time. Then,
we shave one log n

m by making the divide and conquer sensitive to the sizes of the subtrees
attached to the heavy path instead of its length, that is, making some nodes more important
than the other, reminiscing the so-called telescoping trick [8, 12]. All the improvements
applied together decrease the overall complexity to O(nm2(1 + log n

m )), thus matching the
running time of the algorithm by Demaine et al. for rooted trees [13].

I Theorem 1. Edit distance between unrooted trees of size n and m, where m ≤ n, can be
computed in O(nm2(1 + log n

m )) = O(n3) time and O(nm) space.

A straightforward reduction shows that computing edit distance between unrooted trees
is at least as difficult as computing edit distance between rooted trees. Thus, invoking the
lowerbound of Demaine et al. [13] we obtain that our algorithm is optimal if we restrict
ourselves to the so-called decomposition algorithms, and by the result of Bringmann et al. [9]
a significantly faster O(n3−ε) algorithm is not possible assuming some popular conjecture.

Roadmap. In Section 2 we introduce the notation and the recursive formula that are then
used to present Klein’s algorithm adapted for the rooted case. Next, in Section 3 we return
to the unrooted case, introduce new notation and transform both input trees by adding some
auxiliary edges. Then, in Section 4 we present our new O(n3 log log n) algorithm for the
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unrooted case which already improves the state-of-the-art Klein’s algorithm and is essential
for understanding our main O(n3) algorithm described in the full version of the paper. Both
algorithms are described in a bottom-up fashion. In the simpler O(n3 log log n) version we
first assume that one of the trees is a caterpillar and then generalize to arbitrary trees. In
the more complicated O(n3) algorithm we start with an even more restricted case of one tree
being a caterpillar and the other a rooted full binary tree. When analyzing both algorithms
we only bound the total number of considered subproblems. As explained in the full version,
this can be translated into an implementation with the same running time.

2 Preliminaries

We are given two unrooted trees T1, T2 with every edge labeled by an element of Σ and
a cyclic order on the neighbors of every node. For every label α ∈ Σ, we know the cost
cdel(α) = cins(α) of contracting or uncontracting of an edge with label α. For every α, β ∈ Σ,
cmatch(α, β) = cmatch(β, α) is the cost of changing the label of an edge from α to β. All
costs are non-negative and each edge can participate in at most one operation. Edit distance
between T1 and T2 is defined as the minimum total cost of a sequence of the above operations
transforming T1 to T2. Equivalently, it is the minimum cost of transforming both the trees
to a common tree using only contracting and relabeling operations, as each operation has
the same cost as its undo-counterpart. Note that for unrooted trees, edit distance is the
minimum edit distance over all possible rootings of T1 and T2, where a rooting is uniquely
determined by choice of the root and the leftmost edge from the root.

We first assume, that both trees are of equal size n = |T1| = |T2|, but later we will also
address the case when one of them is significantly larger than the other. We start with the
case when both trees are rooted, which is essential for the understanding of the unrooted
case. Then, every node has its children ordered left-to-right. We also assume that both
(rooted) trees are binary, as we can add O(n) edges with a fresh label that costs 0 to contract
and ∞ to relabel.

Naming convention. We use a similar naming convention as in [13]. We call main left and
right edges of a (rooted) tree respectively the leftmost and rightmost edge from the root.
For a given rooted tree T with at least 2 nodes, let rT denote the right main edge of T and
RT denote the rooted subtree of T that is under (not including) rT . By T − rT we denote
a tree obtained from T by contracting edge rT and by T − RT a tree obtained from T by
contracting edge rT and all edges from its subtree RT . Thus the tree T consists of RT , the
edge rT and edges (T −RT ). lT and LT are defined analogously and T v denotes subtree of
T rooted at v. See Figure 2(a) and (b).

We define a pruned subtree of a tree T to be the tree obtained from T by a sequence
of contractions of the left or right main edge. Note that every pruned subtree is uniquely
represented by the pair of its left and right main edges. It also corresponds to an interval
on the Euler tour of the tree started in the root when we remove from the interval each
edge that occurs once. Thus we can completely represent a pruned subtree in O(1) space
by storing two edges. We can preprocess all the O(n2) pruned subtrees T ′ of a tree T to be
able to obtain trees RT ′ , LT ′ , T ′ − lT ′ , T ′ − rT ′ and edges rT ′ , lT ′ in O(1) time.

Dynamic programming. Zhang and Shasha [27] introduced the following recursive formula
for computing the edit distance between two rooted trees:
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Figure 2 (a) Tree F with both rF and RG contracted. (b) F with its right main edge contracted.
(c) When both right main edges are not contracted we obtain two independent problems.

I Lemma 2. Let δ(F,G) be the edit distance between two pruned subtrees F and G of
respectively T1 and T2. Then:

δ(∅, ∅) = 0

δ(F,G) = min


δ(F − rF , G) + cdel(rF ) if F 6= ∅
δ(F,G− rG) + cdel(rG) if G 6= ∅
δ(RF , RG) + δ(F −RF , G−RG) + cmatch(rF , rG) if F,G 6= ∅

The above recurrence also holds if we contract or match the left main edge.

It contracts the right main edge in one of the two trees or matches the right main edges
of the two trees. In the latter case, we get two independent subproblems (RF , RG) and
(F −RF , G−RG) that must be transformed to equal trees. See Figure 2(c) for an illustration
of this case.

To estimate time complexity of the algorithm, we only count different pairs (F,G) for
which δ(F,G) is computed. Each such value is computed at most once and stored. Note that
F is always a pruned subtree of T1, while G is a pruned subtree of T2, thus there are O(n4)
possible pairs (F,G). In the worst case, all such pairs might be considered. The formula
from Lemma 2 can be evaluated in constant time, and any previously computed value can
be retrieved in constant time from a four-dimensional table.

The above algorithm always contracts or relabels the right main edge. A more deliberate
choice of direction (whether to choose the left or right main edge) will lead to a different
behavior of the algorithm which in turn might result in a smaller total number of considered
pairs (F,G). Such a family of algorithms is called decomposition algorithms. When analyzing
the time complexity of such an algorithm, we assume that any already computed δ(F,G)
can be retrieved in constant time. If our goal is to compute significantly fewer than
O(n4) subproblems, we cannot afford to allocate the four-dimensional table anymore. An
obvious solution is to store the already computed values in a hash table, but this requires
randomization. In the full version [14] we explain how to carefully arrange the order of the
computation and store the partial results as to obtain deterministic algorithms with the
same running time.

While the formula from Lemma 2 suggests a top-down strategy, we phrase the algorithms
in a bottom-up perspective, which allows us to present the details of the computation more
precisely. The aim of all the algorithms is to compute δ(T1, T2) knowing only δ(∅, ·) and
δ(·, ∅), as the costs of contraction of an arbitrary pruned subtree are precomputed.
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Algorithm 1 Klein’s algorithm.
1: for each heavy path H in T1 in the bottom-up order do
2: let v1, v2, . . . , v|H| = H

3: for i = |H| − 1, . . . , 0 do
. avoiding the heavy child:

4: ComputeFrom(δ(T vi
1 , ·), δ(T vi+1

1 , ·))

Klein’s O(n3 log n) algorithm. Klein’s algorithm [21] uses heavy path decomposition [28]
of T1. The root is called light and every node calls its child with the largest subtree (and the
leftmost in case of ties) heavy and all other children light. An edge is heavy if it leads to the
heavy child.

While applying the dynamic formula from Lemma 2, Klein’s algorithm uses a strategy
that we call “avoiding the heavy child” in T1. It chooses the direction (either left or right) in
such a way that the edge leading to the heavy child of the root is contracted or relabeled
as late as possible. Observe that contracting the main edge not leading to the heavy child
of the root of a pruned subtree T , does not change the heavy child of the root of T , as its
subtree is still the largest. Note that Klein’s strategy does not depend on the considered
pruned subtree of T2.

Even though Klein uses top-down view to describe his algorithm, we find it more convenient
to implement the computations in bottom-up order. Therefore the algorithm processes heavy
paths of T1 in the bottom-up order as shown in Algorithm 1. Consider a heavy path H

with nodes v1, v2, . . . , v|H| where v1 is the closest node to the root and v|H| is a leaf. By
δ(T v

1 , ·) we denote a table of O(n2) distances between tree T v
1 and all pruned subtrees of T2.

The algorithm considers all nodes on H also bottom-up. It starts from δ(T v|H|
1 , ·) = δ(∅, ·),

which is precomputed, and then iteratively computes δ(T vi
1 , ·) from δ(T vi+1

1 , ·) for decreasing
values of i. We denote such a step by ComputeFrom subroutine. Note that in every
step the strategy avoiding the heavy child always chooses the same direction (recall that
the tree is binary) and visits altogether at most O(n) pruned subtrees of T1. Also when
actually implementing the ComputeFrom step we proceed bottom-up. That is, suppose
we have already computed δ(T vi+1

1 , ·) and that vi+1 is the left child of vi. Then the strategy
avoiding the heavy child says R that is chooses first the right main edge to consider. We
compute δ(T vi

1 , ·) as follows. First we consider the tree T vi+1
1 ∪ {{vi, vi+1}} (we call this

uncontracting the heavy edge), next T vi+1
1 ∪ {{vi, vi+1}, {vi, w}} if exists a light child w of

vi and then uncontract the subsequent edges of Tw
1 . This guarantees that while computing

δ(F,G) the subtrees F − rF and F −RF have been already processed. Pruned subtrees of
T2 are also considered in the order of increasing sizes. Clearly, as argued for Zhang and
Shasha’s algorithm, the algorithm visits O(n2) pruned subtrees of T2, so we need to bound
the number of pruned subtrees of T1.

I Observation 3. Consider an arbitrary tree T . Suppose that strategy avoiding the heavy
child in T says R for a pruned subtree F . Then F −RF is also obtained by a sequence of
contractions of the main edge according to the strategy.

The observation implies that in order to count the relevant intervals of T1 we can only
consider the trees obtained by contraction of the main edge according to the strategy, and
trees of the form LF and RF . Note that the only trees of the form LF or RF that are not
obtained in this way are rooted at a light node so will be counted separately for another
heavy path.
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Figure 3 Every pruned subtree is uniquely represented by its left and right main edges or a dart.

We denote apex(F ) to be the top node of the heavy path containing the lowest common
ancestor of all endpoints of edges of F . In other words, apex(F ) is the lowest light ancestor
of all edges of F . Now grouping all the visited pruned subtrees by their apex-es we bound
their total number:

I Observation 4. For an arbitrary tree T , there is
∑

v: light node in T |T v| pruned subtrees
of T visited while applying strategy avoiding the heavy child of T .

Let the light-depth ldepth(u) of a node u be the number of light nodes that are ancestors
of u (node is also an ancestor of itself). Because ldepth(u) ≤ log(n) + 1, we obtain:∑

v: light node in T1

|T v
1 | =

∑
v: node in T1

ldepth(v) ∈ O(n log n) (1)

Recalling that there are O(n2) relevant intervals of T2 we conclude that Klein’s algorithm
visits O(n3 log n) subproblems. As we assume the constant time memoization, it runs in
O(n3 log n) time.

3 Back to Unrooted Case

Recall that edit distance between two unrooted trees T1 and T2 is the minimum edit distance
between T1 and T2 over all possible rootings of them, where rooting is determined by the
root of the tree and its the left main edge. As Klein [21] mentioned, it is enough to choose
an arbitrary rooting in one of the trees and try all possible rootings of the other to find
an optimal setting. Observe, that we can treat the Euler tour of T2 as a cyclic string and
represent every pruned subtree of T2 as an interval of it, for all possible rootings of T2. Thus
Klein’s algorithm works in O(n3 log n) time also for the edit distance between unrooted
trees. Before we present our faster algorithm for this case, we need to introduce some new
definitions. Recall, that even in the unrooted case, we first arbitrarily root both trees and
the initial rooting remains unchanged throughout the algorithm.

Darts. We replace every edge e with two darts corresponding to two ways of traversing the
edge, either down e↓ or up the tree e↑ (with respect to the fixed rooting). Subtree of a dart
subtree((u, v)) is defined as the subtree rooted at node v, when u is its parent. Note that e↑
and e↓ belong neither to subtree(e↑) nor to subtree(e↓). Every pruned subtree of (unrooted)
tree is uniquely represented by its left and right main edges or a dart (if there is one edge
from the root). See Figure 3.
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Auxiliary edges for rootings. We observed that every rooting of T2 corresponds to a
subrange of a cyclic Euler tour ET2 , but later it will be convenient to represent every rooting
as a subtree of a dart. For this purpose, we add new edges labeled with a fresh label # /∈ Σ
which will be used only to denote a rooting. Setting cdel(#) = 0 and cmatch(#, ·) =∞ we
force that these edges are only contracted. For every node v we add new edges alternating
with the original ones. Thus in total, there are 2(n− 1) edges added. Using these new edges
we can compute edit distance between the unrooted trees from the values of δ(T1, subtree(d))
for all darts d in T2. Thus, our aim is to fill the table ∆ where ∆[u, d] := δ(Tu

1 , subtree(d)).

Auxiliary edges to bound the degrees. As the last step, again we add O(n) edges with
appropriate costs as to ensure that the degree of every node is at most 3. Observe that
the cost of the optimal solution for the modified trees is the same as for the initial ones
and having a sequence of operations for the modified trees, we can easily obtain an optimal
sequence for the original instance of the problem.

4 O(n3 log log n) Algorithm for Unrooted Case

After initial modifications both trees are binary and the algorithm needs to fill the table
∆ where ∆[u, d] := δ(Tu

1 , subtree(d)) for all nodes u ∈ T1 and darts d ∈ T2. We first run
Demaine et al.’s algorithm operating on labels on edges instead of nodes which computes
δ(Tu

1 , T
v
2 ) for all nodes u ∈ T1 and v ∈ T2 in O(n3) time and stores them in ∆[u, e↓v] where

e↓v is the dart to v from its parent. Now we need to fill the remaining fields ∆[u, e↑] for all
darts e↑ up the tree T2.

This is the main difficulty in the unrooted case, in which we need to handle many big
subtrees which are significantly different from each other. Our approach is to successively
reduce different subproblems to smaller ones, in a way that there are fewer subproblems to
consider in the next step. We use divide and conquer paradigm, in which there is more and
more sharing after every step.

In the beginning, we call each node of T1 and T2 light or heavy as in the Klein’s algorithm
and all the time the notion is with respect to the initial rootings. Similarly, the notion of
traversing an edge up or down the tree is always with respect to the rooting. Recall that we
denote apex(T ) as the top node on the heavy path containing the lowest common ancestor
of all edges of T . We first fix a global value b, which will be determined exactly later. On
a high level, from the top-down perspective, the algorithm uses the following strategy to
compute δ(F,G): if |T apex(F )

1 | > n/b, then avoid the heavy child in F , and otherwise apply a
new strategy based only on G and T2.

Considering it bottom-up, the algorithm first fills values of ∆[u, e↑] for all nodes u such
that |T apex(u)

1 | ≤ n/b and all darts up T2. For the remaining fields of ∆, it uses strategy
avoiding the heavy child in T1. As in the Klein’s algorithm, in this phase, the algorithm
needs to process heavy paths of T1 in the bottom-up order. Note that for each light node
v such that |T v

1 | > n/b holds ldepth(v) < log b+ 1. Thus there are O(n3 log b) subproblems
visited in total in this phase.

For the other phase note that there are O(n2/b) relevant subtrees in T1, and now we
need to carefully design and analyze the new strategy for T2. It will be easier to think, that
in this phase the algorithm needs to compute ∆[u, e↑] for all darts e↑ up T2 and all nodes
u ∈ T1 such that |Tu

1 | ≤ n/b, call them interesting. Clearly, all subproblems in which there
is a switch to the strategy based on T2 are of this form.
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Figure 4 (a) A heavy path H with edge r2 (dotted) denoting the rooting of T2. (b) To compute
δ(∗, subtree(h↑i )) we use δ(∗, subtree(h↑i−1)), first uncontract the edge hi−1 and then li (if exists).

As now the strategy will be more complex than before, we first describe it for the case
when T2 is a caterpillar: a heavy path with possibly single nodes connected to it. This
example is already difficult in the unrooted case and will require divide and conquer approach
to handle all the possible rootings of T2 at once. Next, we will slightly modify the approach
to handle arbitrary trees T2.

4.1 Caterpillar T2

Now we consider the case when T2 is a heavy path H with possibly single nodes connected
to it. Let hi denote (heavy) edges on H, r2 = h0 be the edge denoting the initial rooting of
T2 and (if exists) li be the light edge connected to the i-th node on H. See Figure 4(a) for
an example.

In the first step we compute values of δ(∗, subtree(h↑i )) for all heavy edges hi, where ∗
denotes all pruned subtrees of T1 of size at most n/b. The strategy is to avoid the parent,
that is to contract the edge leading to the parent as late as possible. See Figure 4(b).

More precisely, in the beginning, we already know δ(∗, subtree(h↑0)), because it is the cost
of contraction of the whole pruned subtree of T1 (which is precomputed), as h0 = r2 and
subtree(h↑0) = ∅. Then, having values of δ(∗, subtree(h↑i−1)) we compute δ(∗, subtree(h↑i )) by
uncontracting first hi−1 and then li if it exists. It is an extension of the ComputeFrom
subroutine, but now we do not have subtrees T x and T y, where x is the parent of y, but two
edges hi and hi−1 with a common endpoint. Note that in this step all uncontractions are
from the same direction.

There are O(n) pruned subtrees of T2 obtained by uncontractions of a main edge according
to the strategy, starting from the empty subtree. Now we need to show that the algorithm
did not consider any other pruned subtree of T2. Suppose it uncontracted the left main edge.
Then G − LG ∈ {∅, G − lG}, depending on whether lG was the heavy edge leading to the
parent or not. Also LG ∈ {∅, G− lG}, so in both cases, all the obtained pruned subtrees are
among the O(n) described above. Finally, as there are O(n2/b) pruned subtrees of T1, in
total we computed and stored the edit distance of O(n3/b) subproblems. Now, using the
computed values we fill ∆[u, h↑i ] for all interesting nodes u ∈ T1 and heavy edges hi ∈ T2.
Thus, later on, we do not have to consider the pruned subtrees of the form δ(LF , LG) or
δ(RF , RG) as their values are already stored in ∆, because either one of them is empty or
they are of the form δ(T v

1 , subtree(dh)) for an interesting node u ∈ T1 and a dart dh from a
heavy edge in T2. We only have not computed values ∆[u, l↑] for darts from light edges up
the tree, but in this phase of the algorithm, they never appear in δ(LF , LG) or δ(RF , RG)
subproblem. However, we need to compute these values because they correspond to some
rootings of T2, so we will consider them in the following paragraph.

ICALP 2018



45:10 Edit Distance between Unrooted Trees in Cubic Time

h1

h2

h3

h4

h5

l1

l2

l3

l4

l5

h1

h2

h5

l1

l2

mergedR(3, 5) :

l3

l5

left main

right main

right main

left main≡

Figure 5 Pruned subtree mergedR(3, 5) has the left main edge h2 and right h5.

Algorithm 2 Computes input tables needed for processing a heavy path H
1: function ProcessHeavyPath(δ(∗, subtree(h↑0)))
2: for i = 1..|H| do

. avoiding the parent:
3: ComputeFrom(δ(∗, subtree(h↑i )), δ(∗, subtree(h↑i−1)))
4: fill ∆[u, h↑i ] for all interesting nodes u

. repeatedly uncontracting the left main edge:
5: ComputeFrom(δ(∗,mergedR(1, |H|)), δ(∗, subtree(h↑0)))

. repeatedly uncontracting the right main edge:
6: ComputeFrom(δ(∗,mergedL(1, |H|)), δ(∗, subtree(h↑0)))

7: Group(1, |H|,Data(1, |H|))

Darts from light nodes up the tree. From now on, our algorithm processes heavy paths
of T2 one-by-one. In particular, in this subsection, we process the only heavy path H of
T2. Thus, unless explicitly stated otherwise all the notion is relative to the current heavy
path H. First, we define mergedR(A,B) as the pruned subtree obtained by contraction of
edges between the A-th and B-th node on H or to the right of H:

I Definition 5. Let H be a heavy path and A and B (A ≤ B) denote indices of two nodes
on H. Then mergedR(A,B) is a tree with the left main edge hA−1 and the right main
edge hB . mergedL(A,B) is a tree with the left main edge hB and the right main edge hA−1.

See Figure 5. Note that subtree(l↑A) is either mergedR(A,A) or mergedL(A,A), depending on
which side of H is lA.

As explained earlier, in the beginning the algorithm computes δ(∗, subtree(h↑i )) for all
heavy edges on H . Additionally, it calculates δ(∗,mergedL(1, |H|)) and δ(∗,mergedR(1, |H|))
from δ(∗, subtree(h↑0)) by repeatedly uncontracting respectively the right and left main edge.
See Algorithm 2 for the summary of the whole preprocessing. Then it calls a recursive
procedure Group(1, |H|,Data(1, |H|)). The final goal of this call is to fill ∆[u, l↑i ] for all
light edges li connected to the heavy path H.

Group(A,B,Data(A,B)) is a procedure which considers an interval [A,B] of indices
on H given tables of values δ(∗, subtree(h↑A−1)), δ(∗, subtree(h↓B)), δ(∗,mergedL(A,B)) and
δ(∗,mergedR(A,B)), which we denote as Data(A,B). Intuitively, Data(A,B) contains in-
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Algorithm 3 Fills ∆[u, l↑i ] for light edges li connected to the heavy path H with i ∈ [A,B].
1: function Group(A,B,Data(A,B))
2: if A = B then
3: if there is a light edge lA connected to H then
4: fill ∆[u, l↑A] for interesting nodes u ∈ T1

5: return
6: M := b(A+B)/2)c
7: for i = (B − 1)..M do

. avoiding the heavy child:
8: ComputeFrom(δ(∗, subtree(h↓i )), δ(∗, subtree(h↓i+1)))

. repeatedly uncontracting the right main edge:
9: ComputeFrom(δ(∗,mergedR(A,M)), {δ(∗,mergedR(A,B)); δ(∗, subtree(h↑A−1))})

. repeatedly uncontracting the left main edge:
10: ComputeFrom(δ(∗,mergedL(A,M)), {δ(∗,mergedL(A,B)); δ(∗, subtree(h↑A−1))})

11: Group(A,M,Data(A,M))
12: symmetric computations for interval [M + 1, B]
13: Group(M + 1, B,Data(M + 1, B))

formation about subtrees “outside” the considered interval [A,B] which are relevant during
intermediate computations. Then, the procedure calls itself recursively for shorter intervals
until it holds that A = B when δ(∗,mergedL(A,A)) or δ(∗,mergedR(A,A)) contains the
fields of ∆[u, l↑A] for all interesting nodes u and then the recurrence stops.

In more detail, for an interval [A,B], the procedure computes Data(A,M) and Data(M +
1, B) for M = bA+B

2 c and calls itself recursively for the smaller intervals. Note that for
Data(A,M) it needs to compute tables δ(∗, G) for trees G = mergedR(A,M),mergedL(A,M)
or subtree(h↓M ) and can reuse table δ(∗, subtree(h↑A−1)) which is a part of Data(A,B). Simil-
arly for interval [M + 1, B]. See Algorithm 3.

To analyze the complexity of the Group procedure, first note that in every step of the
loop in line 7, it considers a constant number of pruned subtrees from T2, so in total there
are O(B −M) of them. After this loop, we have δ(∗, subtree(h↓M )) computed.

The call of ComputeFrom in line 9 needs more input than the call in line 8, even
though the strategy is always uncontracting the right main edge. Note that if the dynamic
program only tried contracting the right main edge, it would be possible to compute
δ(∗,mergedR(A,M)) only from δ(∗,mergedR(A,B)). However, it is not the case when the
algorithm also matches edges. The first case when rG is a light edge (rG = lX for some value
of X) is not problematic, because then RG = ∅ and G−RG = G− rG, so this pruned subtree
is already visited. Although, if rG is a heavy edge then RG = subtree(r↓G) and G − RG is
a pruned subtree, which has not been considered yet. Observe that in this situation the
pruned subtree can be obtained from subtree(h↑A−1) by a sequence of O(B −A) contractions
of the right main edge, so we need it as a separate input to the ComputeFrom subroutine.
A similar reasoning applies to the edges to the left of H in line 10 and to the computations
for interval [M + 1, B].

To sum up, one call of Group(A,B) (not including recursive calls) visits O(B − A)
pruned subtrees of T2. As we start from an interval of length |H| and in every recursive
call its length is roughly halved, the procedure considers in total O(|H| log |H|) = O(n log n)
pruned subtrees of T2.
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4.2 Arbitrary Tree T2

Now we describe, how to modify the above algorithm to process not only a caterpillar, but
an arbitrary tree T2. In this case, there can be non-empty subtrees connected to the main
heavy path.

Note that for an arbitrary heavy path H inside T2, the ProcessHeavyPath procedure
only needs to know δ(∗, subtree(h↑0)) to be able to compute all the remaining input parameters
in Data(1, |H|), because δ(∗, subtree(h↓|H|)) = δ(∗, ∅) is precomputed. In the beginning, the
algorithm calls ProcessHeavyPathH0(δ(∗, ∅)), where H0 is the heavy path of T2 containing
the root of T2. The only place we need to change inside the Group procedure to handle
arbitrary trees T2 is to not only fill ∆[u, l↑A] in line 4 of Algorithm 3, but also recursively call
ProcessHeavyPathH′(δ(∗, subtree(l↑A))) where H ′ is the heavy path connected to the A-th
node of the considered heavy path. As we pointed earlier, subtree(l↑A) is either mergedR(A,A)
or mergedL(A,A), depending on which side of H is lA. Now observe, that each subsequent
pruned subtree that appears in the recursive formula is already visited and processed:

I Observation 6. In the modified Group procedure, during the call of ComputeFrom
subroutine in line 9 of Algorithm 3, all the intermediate pruned subtrees of T2 are obtained by
a sequence of uncontractions of the right main edge from the root either from mergedR(A,B)
or subtree(h↑A−1). A similar property holds for the other three calls of ComputeFrom in
lines 10 and 12.

What changes in the analysis of the procedure is that now there are not O(|H| log |H|)
pruned subtrees of T2 but O(|T v

2 | log |H|) = O(|T v
2 | log n), where v is the top node of H.

In other words, the heavy path H itself might be short, but there might be big subtrees
connected to it. However, every subtree connected to H is completely contracted (edge-by-
edge) a constant number of times on every level of recursion of Group procedure and thus
the bound.

Recall that top node of every heavy path is light, so using equation (1) we bound the
overall number of subtrees of T2 considered during this part of the algorithm:

∑
v: top node of a heavy path in T2

|T v
2 | · log n =

∑
v: light node in T2

|T v
2 | · log n ∈ O(n log2 n)

4.3 Final Analysis
To conclude, the above algorithm computes ∆[u, e↑] for all nodes u ∈ T1 such that |Tu

1 | ≤ n/b
and all darts up the tree T2 by considering O(n log2 n) pruned subtrees of T2 and O(n2/b) of
T1. At the beginning of Section 4 we described the second phase of the algorithm, which
avoids the heavy child in T1 and fills the remaining fields of ∆ considering O(n log b) pruned
subtrees of T1 and O(n2) of T2. Thus, during the two phases, the whole algorithm visits
O(n3 log2 n

b + n3 log b) subproblems. Setting b = log2 n we obtain the overall complexity
O(n3 log log n).
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Abstract
For a hypergraph H, let q(H) denote the expected number of monochromatic edges when the
color of each vertex in H is sampled uniformly at random from the set of size 2. Let smin(H)
denote the minimum size of an edge in H. Erdős asked in 1963 whether there exists an unbounded
function g(k) such that any hypergraph H with smin(H) > k and q(H) 6 g(k) is two colorable.
Beck in 1978 answered this question in the affirmative for a function g(k) = Θ(log∗ k). We
improve this result by showing that, for an absolute constant δ > 0, a version of random greedy
coloring procedure is likely to find a proper two coloring for any hypergraph H with smin(H) > k

and q(H) 6 δ · log k.
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1 Introduction

A hypergraph H = (V,E) is a finite set of vertices V and a set of edges E where each edge is
a set of at least two vertices. A two coloring of H is an assignment of color blue or red to
each vertex in H. A coloring is proper if each edge in H contains both a vertex colored blue
and a vertex colored red. We say that H is two colorable if it admits a proper two coloring.
Hypergraph H is k-uniform if every edge in H has size exactly k – we also say that H is a
k-graph. For every n ∈ N, the set {1, . . . , n} is denoted by [n]. We use standard O-notation
to describe asymptotic properties of various functions.
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One of the most classical problems in the extremal combinatorics is to find the minimum
number of edges m(k) in a k-uniform hypergraph that is not two colorable. The research
on this problem has been started in the 60s by Erdős and Hajnal [5], who used the term
Property B for two colorability. Today, by the result of Radhakrishnan and Srinivasan [10],
we know that m(k) = Ω((k/ log k)1/2) ·2k. The best known upper bound, proved by Erdős [4]
in 1964, is m(k) = O(k2) · 2k. This upper bound follows from the fact that a random k-graph
with k2 vertices and O(k2) ·2k edges is very unlikely to be two colorable. Interestingly, known
deterministic constructions require much larger structures – the best one is by Gebauer [7]
and gives a not two colorable k-graph with roughly 2k+k2/3 edges.

Lovász [8] proved that for k > 3, the problem of deciding if a given k-graph is two colorable
is NP-complete. For k-graphs with the number of edges smaller than m(k) the decision
problem is trivial – by the definition they are all two colorable. Nevertheless, constructing
a two coloring of such k-graphs is not necessarily an easy task. Luckily, the known lower
bounds for m(k) are constructive. In fact, the bound of [10] is proved by showing that some
randomized coloring procedure succeeds with high probability for the considered hypergraphs.
Cherkashin and Kozik [2] showed that the same bound is obtained by the analysis of a random
greedy algorithm (i.e., a procedure that colors the vertices of a hypergraph in a random
order and assigns color blue to each vertex unless it is the last vertex of a monochromatic
blue edge – only then color red is assigned).

For a hypergraph H = (V,E), let q(H) denote the expected number of monochromatic
edges when the color of each vertex is sampled uniformly at random. Clearly, for a k-graph
H, we have q(H) = |E| · 2−k+1, and determining the value of m(k) is equivalent to finding
a not two colorable k-graph H with the minimal possible value of q(H). This formulation
allows for a neat generalization of the question to hypergraphs with edges of arbitrary sizes
(i.e., nonuniform hypergraphs). For a hypergraph H = (V,E), let smin(H) = mine∈E |e| and
observe that q(H) =

∑
e∈E 2−|e|+1. Erdős [3, 6] asked whether there exists an unbounded

function g such that any hypergraph H with smin(H) > k and q(H) 6 g(k) is two colorable. A
positive answer has been given in 1978 by Beck [1] who proved the result for g(k) = Θ(log∗(k)).
This has not been improved since then. (In 2008 Lu [9] announced a proof of a bound
Ω(log(k)/ log log(k)), but it turned out to work only for some specific class of hypergraphs1.
The class contains all simple hypergraphs, but for these Shabanov in [11] improved the
bound to Ω(

√
k).) In this paper we prove the same result for g(k) = Θ(log(k)). The random

construction of a not two colorable k-graph by Erdős [4] shows that the best possible g
is O(k2), even when restricted to uniform hypergraphs. Interestingly, there are no better
nonuniform constructions known. Our main result is the following.

I Theorem 1. There exists a constant δ > 0 such that for all sufficiently large k, any
hypergraph H = (V,E) with smin(H) > k and q(H) 6 δ · log k is two colorable.

Moreover, we prove the theorem by showing that a version of a random greedy coloring
procedure succeeds with positive probability for these hypergraphs.

1 The proof in the preprint available on the authors web page is very close to the developments of Section
3.3 "Simple bound". In our opinion it is incorrect, since it does not take into account that a vertex of
some edge f can be recolored because of some other edge e with |e ∩ f | > 1 (despite irreducibility). We
avoid this problem by considering the vertices in a random order and allowing only the last vertex of an
initially monochromatic edge to be recolored, provided that the edge is not already repaired.
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2 Basic notions and the coloring procedure

2.1 Tools
We start with a simple lemma on convex functions of random variables.

I Lemma 2. Let X be a nonnegative random variable such that 0 6 X 6M and E[X] 6 λM

for some M > 0, and 0 6 λ 6 1. Then, for any convex function f : [0,M ] → [0,∞) with
f(M) > f(0), the following inequality holds

E[f(X)] 6 λf(M) + (1− λ)f(0).

Proof. Consider another random variable Y := X
M f(M) + (1− X

M )f(0). From the convexity
of f we have f(X) 6 Y . Therefore

E[f(X)] 6 E[X]
M
· f(M) + f(0)− E[X]

M
· f(0) 6 f(0) + (f(M)− f(0)) · E[X]

M

6 λf(M) + (1− λ)f(0),

as desired. J

2.2 Preliminaries
Let H = (V,E) be a hypergraph and let k denote the minimum size of an edge in H. For
any j > k we define

qj :=
∑

e∈E,|e|=j

2−j+1,

which is the expected number of monochromatic edges of size j when the color of each vertex
is sampled uniformly at random. Let q := q(H) and observe that q =

∑
j>k qj .

We aim to prove that if q = O(log k) then the hypergraph is two colorable. In order to
do that, we describe a random coloring procedure and with a careful analysis we bound the
probability that a fixed edge is monochromatic after the procedure finishes. The obtained
bound allows us to conclude that the expected number of monochromatic edges after the
procedure finishes is smaller than one. Thus, the hypergraph is two colorable.

2.3 The coloring procedure
Our algorithm is based on the random greedy coloring and it works in two phases. In the
first one, for every vertex v we sample uniformly and independently an initial color ic(v) and
a weight w(v) ∈ (0, 1). Then, an edge in which all vertices get the same initial color is called
initially monochromatic. For an edge e, the heaviest vertex in e is the one with maximum
weight among vertices in e (we assume that no two vertices have the same weight). We define
the weight w(e) of e to be the weight of the heaviest vertex in e (i.e. w(e) = maxv∈e w(v)).
The procedure is defined as follows:

Phase 1: Initial coloring
For every vertex v sample independently the following two values:
ic(v) – the initial color of v: blue or red, each with probability 1

2 ,
w(v) – the weight of v, sampled uniformly at random from the real interval (0, 1).

Phase 2: Recoloring
Arrange the vertices in the order of increasing weights. Iterating over vertices in that
order, for every vertex v, we assign c(v) – the color of v according to the following rules:
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if v is the heaviest vertex of some initially monochromatic edge e, and for all other
vertices w of e we have c(w) = ic(w), we set c(v) to be the color that is different than
ic(v),
otherwise we put c(v) = ic(v).

Observe that once the color c(v) is assigned, it is never changed. We say that a vertex v
is recolored if c(v) is different than ic(v). Note also that if v is the heaviest vertex in some
initially monochromatic edge e, then, at the moment when we assign color c(v) to v, the
color of every other vertex in e is already defined. At that point, if none of the other vertices
in e is recolored, we define c(v) to be the color other than ic(v) (i.e. we recolor v), and we
say that e is a reason to recolor v. Note that there may be more than one reason to recolor v.
On the other hand, if there is no reason to recolor v we simply assign c(v) = ic(v). Observe
that eventually every initially monochromatic edge gets one of the vertices recolored.

2.4 Main result
For a better exposition of the argument, we first prove a statement slightly weaker than
Theorem 1. In Section 3.3 we give a proof of the following result about the coloring procedure.

I Proposition 3. If q = O( log k
log log k ) then, for any edge e, the probability that all vertices in e

are colored red does not exceed 1
3q2|e|−1 .

This immediately implies that the expected number of monochromatic edges is at most
2 ·
∑
e∈E

1
3·q·2|e|−1 = 2

3 and thus, not only H is two colorable but also that our coloring
procedure succeeds with probability at least 1

3 . In Section 3.4 we introduce more technical
details to the argument and improve the bound.

I Proposition 4. If q = O(log k) then, for any edge e, the probability that all vertices in e
are colored red does not exceed 1

3q2|e|−1 .

This immediately implies Theorem 1.

3 Analysis

3.1 Bad events
The proof focuses on bounding the probability that one, fixed edge becomes monochromatic
red. Nevertheless, we want to first exclude some problematic but unlikely events from
happening. The simplest example is that we don’t want two different vertices to receive the
same weight. The probability of this event is zero and we want to simply assume that it
doesn’t happen. To be more precise, we allow our coloring procedure to fail during the initial
phase of coloring. We give a few different reasons to fail and we argue that the probability
that any of those bad events happens is small. Then, for the rest of the proof, we assume
that none of the bad events happens.

3.1.1 Event A – too many initially monochromatic edges
The expected number of initially monochromatic edges is q. For a constant αA (to be fixed
later) let A denote the event that there are more than αA · q initially monochromatic edges.
Markov’s inequality gives that Pr[A] < 1/αA.
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3.1.2 Event B – a light monochromatic edge
For a constant αB (to be fixed later) and every j we define

pj := ln(αBq)
j

.

An edge f of size j is light if it is initially monochromatic and the weight of every vertex in
f is smaller than 1− pj . The expected number of light monochromatic edges of size j is

qj2j−1 · (1− pj)j · 2−j+1 < qj · exp(−pj · j) = qj
αBq

.

Therefore, the expected total number of light edges (of any size) is at most 1/αB. Let B
denote the event that there is a light monochromatic edge. Clearly Pr[B] < 1/αB.

3.1.3 Event C – too many almost monochromatic edges
An edge f is almost monochromatic if there is a vertex v ∈ f such that all vertices in f − v
have the same initial color (in particular, an initially monochromatic edge is also an almost
monochromatic edge). With every almost monochromatic edge f we can injectively associate
a certifying pair (f, v) ∈ E × V for which v ∈ f and f − v is initially monochromatic.

Let Qj be a random variable that denotes the number of almost monochromatic edges
of size j. Since the number of such edges cannot exceed the number of certifying pairs
associated with edges of size j, we get E[Qj ] 6 qj2j−1 · j · 2−j+2 = 2j · qj . We define random
variable

Y :=
∑
j

Qj
j
,

and get that E[Y ] 6 2q. Let C denote the event that Y > αCq. Markov’s inequality gives
Pr[C] < 2/αC .

For any fixed ε > 0 we can choose constants αA, αB, αC so that 1/αA + 1/αB + 2/αC < ε.
Denote by G the intersection A ∩ B ∩ C and observe that Pr[G] > 1 − ε. That is, with
arbitrarily high probability none of the bad events happens. For any event V, we denote
Pr[V ∩ G] by PrG [V] and similarily by PrG [V|C] we mean Pr[V ∩ G|C].

3.2 e-focused coloring
For the rest of this section and the next section we fix an arbitrary edge e in E. Let s
denote the size of e. The event “e becomes red” denotes the situation that all vertices
in e are colored red by the coloring procedure. First observation is that if e is initially
monochromatic red, then at least one vertex in e gets recolored and e can’t become red in
the end. Thus, if e becomes red then e contains some initially blue vertices and each of them
gets recolored. In particular, every initially blue vertex in e is the heaviest vertex in some
initially monochromatic blue edge. Additionally, it needs to happen that none of the initially
red vertices in e gets recolored, but this condition seems impossible to use.

Taking into account the bad events we aim to prove that for a proper q we have:

PrG [e becomes red] < 1
3 ·

1
q2s−1 .
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3.2.1 The threat hypergraph
In what follows we try to understand better which initially blue vertices in e are recolored
to red. The important observation is that if edges f and e have more than one vertex in
common and f is a reason to recolor any of the common vertices, then e does not become
red. To see that, let v be the heaviest vertex in f , and let w be any vertex in f ∩ e other
than v. If f is a reason to recolor v then f is initially monochromatic blue and w is not
recolored. Thus, w retains the initial blue color, and edge e does not become red.

This motivates the following construction of the threat hypergraph He. We define the
vertex set of He to be V \ e. For each edge f in E that has exactly one common vertex with
e (i.e., |f ∩ e| = 1), let fe = f \ e. We define the edge set of He to be {fe : f ∈ E, |f ∩ e| = 1}.
Observe that for different edges f 6= f ′ in E it might happen that fe = f ′e. Thus, He is a
multihypergraph. For each edge fe of He we call f to be the extension edge of fe and we
call the only vertex in f ∩ e to be the extension vertex of fe.

For the sake of our analysis, we reveal the outcomes of the random experiments used
in the coloring procedure in four steps. In the first step we reveal the initial colors of the
vertices in He. In the second step, we reveal the initial colors of the vertices in e. Then, we
reveal the weights of vertices in He. Finally, we reveal the weights of the vertices in e. It is
crucial to understand that this does not influence the coloring procedure in any way.

After the first step, some edges in He are monochromatic blue. For every such edge fe,
let v be the extension vertex of fe, and we say that v is endangered by fe. Observe that if
e is to become red, then among vertices in e, only the endangered ones can be recolored
from blue to red. For every endangered vertex v in e we define the severity of v to be the
minimum size |f | of an edge such that v is endangered by fe. We define Rej to be the set of
all vertices in e that are endangered and with severity j. Let Rej := |Rej |. Note that both Rej
and Rej are random variables which are determined after the first step (i.e., by the initial
colors of the vertices in He).

Thus, a necessary condition for e to become red is that in the second step only the
endangered vertices get initial color blue. Consider an endangered vertex with severity j
which is initially blue and which is to become red. There is an edge fe that endangers v, and
v becomes the heaviest vertex in the extension of fe. In particular, since the size of f is at
least j, the weight of v (revealed in the fourth step) has to be at least 1− pj . Otherwise, the
edge f is a light monochromatic edge and bad event B happens.

Observe that there are no more vertices recolored than there are initially monochromatic
edges. As we assume that bad event A does not happen, there are at most αAq vertices
recolored in total. Let us sum up the observed necessary conditions for the edge e to become
red:
1. at least one and at most αAq vertices in e are initially blue,
2. every initially blue vertex v in e is endangered. If severity of v is j then w(v) > 1− pj .
We use these conditions to obtain an upper bound on the probability of e becoming red.

3.3 Simple bound
We define, mainly for technical convenience, a random variable

X :=
∑
j

Rej · pj .

Observe that X is determined after the first step and that X takes only a finite number
of possible values. For the rest of this section whenever we condition on event X = x we
always assume that the value x is such that Pr[X = x] > 0. Recall that s is the size of e.
The bound will follow from the following result:
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I Proposition 5.

PrG [e becomes red |X = x] < exp(x)− 1
2s .

Proof. Assume that we are after the first step and the values of variables Rej , Rej , and X are
determined. For each j > k, let rj := Rej . With this assumption, we compute the probability
of e becoming red. We claim that

PrG [e becomes red |the first step] 6 1

2s−
∑

j
rj

∑
16ck+ck+1+...6αAq

∏
j

(
rj
cj

)(
pj
2

)cj (1
2

)rj−cj
.

The first factor corresponds to the not endangered vertices in e – each of them needs to be
initially colored red. The sum spans over the values ck, ck+1, . . ., where cj corresponds to
the number of initially blue vertices in Rej . There are exactly

∑
j cj initially blue elements

and we know that this number is at least 1 and at most αAq.
Once the number of initially blue elements in each Rej is fixed, there are

(
rj
cj

)
possibilities

to choose these elements from Rej . Finally, all the chosen elements have to be initially colored
blue and their weight has to be at least 1− pj . The remaining elements of Rej have to be
initially colored red.

Observe that the expression depends not on a particular result of the first phase, but
rather only on the values of Rej . We use the fact that

(
rj
cj

)
6

r
cj
j

cj ! , rearrange the terms, and
obtain:

PrG [e becomes red |(Rej = rj)j>k] 6 1
2s

αAq∑
c=1

∑
ck+ck+1+...=c

∏
j

(
rj
cj

)
p
cj
j

6
1
2s

αAq∑
c=1

1
c!

∑
j

rj · pj

c

.

Let x :=
∑
j rj · pj , recall that X =

∑
j R

e
j · pj , and observe that the last expression

depends not on the particular values of Rej , but rather only on the value of X.

PrG [e becomes red |X = x] 6 1
2s

αAq∑
c=1

xc

c! (1)

<
exp(x)− 1

2s . (2)

J

Proof of Proposition 3. Recall that the random variable Qj denotes the number of almost
monochromatic edges of size j, while Rej is the number of endangered vertices in e with
severity j. For every such vertex v we have an initially blue edge f in He for which v is the
extension vertex. Since the extension edge of f is almost blue we obtain that Rej 6 Qj . This
implies:

X =
∑
j

Rej · pj = ln(αBq) ·
∑
j

Rej
j

6 ln(αBq) ·
∑
j

Qj
j

= ln(αBq) · Y . (3)
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Therefore X 6 ln(αBq) · αCq unless bad event C happens. We now have:

PrG [e becomes red] =
∑

x6ln(αBq)·αCq

Pr[X = x] · PrG [e becomes red |X = x]

<
∑

x6ln(αBq)·αCq

Pr[X = x] · exp(x)− 1
2s

6
1
2s · E

[
exp(X)− 1

∣∣∣X 6 ln(αBq) · αCq
]
.

Inequality (3) also yields

E[X] 6
∑
j

qj · pj 6
q ln(αBq)

k
.

We apply Lemma 2 for f(x) = exp(x)− 1, M = αCq ln(αBq) and λ = 1
αCk

, and obtain:

E[exp(X)− 1] 6 exp(ln(αBq) · αCq)
αCk

.

Hence

PrG [e becomes red] < 1
2s ·

exp(ln(αBq) · αCq)
αCk

.

Let α > max{αB, αC}. Now, suppose that:

q 6
1
α
· ln k

ln ln k .

For k large enough, ln(αBq) 6 ln ln(k) which yields:

exp(ln(αBq) · αCq)
αCk

6
1
αCk

· exp
(
αC ln k
α ln ln k · ln ln k

)
6
k(αC/α)−1

αC
.

For k large enough, the last term is less than 1
6q , which implies:

PrG [e becomes red] < 1
3q · 2s−1

and completes the proof. J

An astute reader may have realised that we did not use bad event A in any essential way.
Currently, the only reason to introduce A is that it makes the proof slightly easier. We
could, however, use A to improve bound (2) for the values of x greater than q, leading to a
slightly better condition q = O( log k

log log log k ). We do not elaborate on that since the argument
in Section 3.4 already gives an even better result.

3.4 Improved bound

In order to obtain an improved bound we introduce one more bad event.
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3.4.1 Event D – large second weight deficit
For every edge f in E which is initially monochromatic, we define its second weight deficit as
d2(f) := (|f |+ 1) · (1− w2(f)), where w2(f) is the weight of the second heaviest vertex in f .
For an edge f that is not initially monochromatic, d2(f) is defined to be 0.

Note that, conditioned on f being initially monochromatic, the variable 1− w2(f) has
mean 2

|f |+1 . In particular E[d2(f)| f is monochromatic] = 2 and hence E[d2(f)] = 2
2|f|−1 .

Let D2 :=
∑
f∈E d2(f) and observe that we have

E[D2] =
∑
j

2qj = 2q.

Event D is defined as D2 > αDq. By Markov’s inequality, we get Pr[D] < 2/αD and we can
chose αD so that this probability is arbitrarily small.

3.4.2 Analysis
In the first step of e-focused coloring we reveal the initial colors of all the vertices from V \ e.
This step determines the endangered vertices in e – we denote their set by R. For every value
of c = 1, 2, . . . αAq and every c-subset S = {v1, . . . , vc} of R we consider an event that S
contains exactly the vertices in e which become recolored. Thus, these are the only initially
blue vertices in e. Once we fix the subset S, the probability that S is the set of initially blue
vertices in e is precisely 2−s. This event is determined after the second step of e-focused
coloring – when the initial colors of vertices in e are revealed. In order to be recolored, every
vertex vj must receive a weight that makes it heavier than some edge that endangers it. Let
us reveal the weights of the vertices in V \ e (third step of e-focused coloring). The vertex vj
is endangered by some edges f1

vj , . . . , f
t
vj of He, and let fvj be the lightest of these edges (i.e.

the edge whose heaviest vertex is the lightest among the heaviest vertices of f1
vj , . . . , f

t
vj ).

Clearly in order for vertex vj to be recolored, it has to get a weight greater than w(fvj ) – this
happens with probability 1− w(fvj ). We choose a parametrization that takes into account
the size of fvj and denote the value 1− w(fvj ) by δj

|fvj |+2 . Now, conditioned on the result of
the first three steps, the probability that all vertices {v1, . . . , vc} are heavy enough is

c∏
j=1

δj
|fvj |+ 2 <

c∏
j=1

δj
|fvj |+ 1 . (4)

The edge fvj together with vj forms an edge of H, which we denote by hvj . Although the
value of d2(hvj ) is not determined until we reveal the weight of vj (in the fourth step), we
already know at this point that δj 6 d2(hvj ) (it becomes an equality when vj becomes the
heaviest vertex in hvj ). Assuming the bad event D does not happen, we have

∑c
j=1 δj 6 αDq.

Using the AM-GM inequality we deduce that
∏c
j=1 δj 6

(
αDq
c

)c, which bounds the value of
(4):

c∏
j=1

δj
|fvj |+ 1 6

(αDq
c

)c c∏
j=1

1
|fvj |+ 1 .

Summing over all c-subsets of R we get that the probability that some c-subset contains
all initially blue vertices in e and they are all recolored does not exceed∑

S∈(Rc )

1
2s
(αDq

c

)c∏
v∈S

1
|fv|+ 1 6

1
2s
(αDq

c

)c 1
c!

(∑
v∈R

1
|fv|+ 1

)c
.
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Define random variable

Ye :=
∑

fe in He, fe is blue

1
|fe|+ 1 ,

which gets determined after the first step of e-focused coloring. For each endangered vertex
v in e, all the edges, including the lightest one, that endanger v are blue and thus are taken
into the sum defining Ye. Therefore, Ye >

∑
v∈R

1
|fv|+1 . On the other hand, the extension

edge of every blue edge in He is an almost monochromatic edge in H. As Y counts the
number of almost monochromatic edges in H, we get Ye 6 Y 6 αCq unless bad event C
happens. We can also bound the expected value of Ye:

E[Ye] =
∑
f∈He

2−|f |

|f |+ 1 <
1
k

∑
f ′∈H

2−|f
′|+1 = q

k
.

Note that Ye takes only a finite number of possible values. For any value y such that
Pr[Ye = y] > 0, we get the following bound:

PrG [e becomes red |Ye = y] 6 1
2s

αAq∑
c=1

(αDq
c

)c yc
c!

6
1
2s

αAq∑
c=1

(αDqy)c

c! · cc

6
1
2s

αAq∑
c=1

(2αDqy)c

(2c)!

as (2c)!
2c 6 c!·(2c)c

2c = c! · cc. For any x, we have
∑∞
c=0

x2c

(2c)! = exp(x)+exp(−x)
2 = cosh(x).

Therefore

PrG [e becomes red |Ye = y] 6 1
2s (cosh

(√
2αDqy

)
− 1),

and

PrG [e becomes red] 6 E
[

1
2s (cosh

(√
2αDqYe

)
− 1)

∣∣∣Ye 6 αCq

]
.

Observe that for any a > 0, the function cosh (a
√
x) is convex and increasing in [0,∞).

Therefore, we apply Lemma 2 for f(x) = cosh (
√

2αDqx)− 1, M = αCq and λ = 1
αCk

, and
obtain:

PrG [e becomes red] 6 1
2s

1
αCk

(cosh
(√

2αDαCqq
)
− 1) 6 1

αCk2s exp
(√

2αDαC · q
)
.

The obtained value is smaller than 1
3q2s−1 whenever

3q exp
(√

2αDαC · q
)

2αCk
6 1.

The last inequality is easily seen to hold for q 6 0.9√
2αDαC

ln k and all large enough k.
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4 Remarks

4.1 Bounded maximal size
We can derive better bounds when the size of the maximum edge is not much larger than k.
Suppose that maxe∈E |e| 6 K. We apply the proof strategy from [2] and analyze the random
greedy coloring procedure (i.e. we arrange the vertices in random order and color consecutive
vertices blue if this does not create a monochromatic edge, otherwise we color it red). As a
technical convenience, instead of sampling a random ordering of the vertices, for every vertex
we choose uniformly a weight from the real interval (0, 1). We color vertices greedily in the
order of increasing weights. We choose (with foresight) parameter p := ln(4q)/k. An edge is
called light if the weight of its heaviest vertex is at most (1− p)/2. Similarly an edge f is
heavy if every verex in f has weight at least (1 + p)/2. The probability that there exists a
light edge is bounded by the expected number of such:∑

f∈E

(
1− p

2

)|f |
6 (1− p)k · q.

The same bound holds for heavy edges. It is easy to see that in order for the procedure to fail
there must exist a pair of edges f1, f2 such that the heaviest vertex of f1 is the lightest vertex
of f2. Such a pair is called conflicting. Therefore for the procedure to fail it is necessary that
either there exists a conflicting pair f1, f2 for which the weight of the unique common vertex
belongs to ((1− p)/2, (1 + p)/2) or there exists a light or heavy edge. The expected number
of such conflicting pairs is at most∑

f1,f2∈E

∫ p/2

−p/2

(
1
2 + x

)|f1|−1(1
2 − x

)|f2|−1
dx

6
∑

f1,f2∈E

2−|f1|−|f2|+2 · p · max
x∈(−p/2,p/2)

(1 + 2x)|f1|−1(1− 2x)|f2|−1

6 p ·
∑

f1,f2∈E

2−|f1|−|f2|+2 · max
x∈(−p/2,p/2)

(1 + 2x)|f1|−|f2|

= p ·
∑

f1,f2∈E

2−|f1|−|f2|+2 · (1 + p)|f1|−|f2|

6 p · (1 + p)K−k
∑

f1,f2∈E

2−|f1|−|f2|+2 = p(1 + p)K−kq2.

Altogether the probability of failure is at most

p(1 + p)K−kq2 + 2(1− p)kq ∼ pq2 exp(p(K − k)) + 2q exp(−pk).

Plugging in the value of p we get

ln(4q)q2(4q)K/k−1

k
+ 1/2 6

ln(k)(4q)K/k+1

k
+ 1/2

where we additionally assumed that q 6 k. As long as this value is below 1 we can be sure
that random greedy coloring strategy succeeds with positive probability. For k = K we
recover the result of [2]. When K is bounded by a linear function of k, e.g. K 6 αk it is
sufficient that q does not exceed

1
5

(
k

ln(k)

) 1
α+1
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The resulting bound for q starts to be worse than the one from Theorem 1 when K is roughly
of the order k log(k).

4.2 Uniform case
It is instructive to observe how our analysis works for uniform hypergraphs. We focus on
modifications in the proof of our simple bound, since the ideas used for the improved bound
do not help in the uniform case. Using an obvious bound Rek 6 k, we improve inequality (3)
to X 6 ln(αBq). Then we apply Lemma 2 with M = ln(αBq) and λ = q

k obtaining

PrG [e becomes red] < 2−k q
k

exp(ln(αBq)) = 2−k q
1+αB

k
.

Since in this case the only bad event that we use is B, we can afford to set αB = 1 + ε, for
any small ε > 0. We get that B does not happen with probability at least ε

1+ε . Then

PrG [e becomes red] < 2−k q
2+ε

k

and in order for this value to be at most 1
2kq ·

ε
1+ε it suffices that

q 6 k
1

3+ε ·
(

ε

1 + ε

) 1
3+ε

.

This way we obtain a result analogous to that of Beck from [1] (i.e. m(k) > k1/3−o(1)2k).
Incorporating the ideas from [10] or [2] that allowed to derive a bound m(k) = Ω(

√
k/ log(k))·

2k does not bring any significant improvement of our main result.

4.3 Hypergraphs with random-like characteristics
The weakest points of our analysis are the places where we apply Lemma 2. The lemma
works for any bounded non-negative random variable X. It is clear from the bound that the
worst case distribution of X is the one that assumes only values 0 and M . The variables
for which we apply the lemma are related to the numbers of initially monochromatic edges
in hypergraphs He. If these variables exhibit sufficiently strong concentration around their
mean (like in the case of random hypergraphs) we may get a much stronger bound than the
one of Lemma 2 and obtain results that are much closer to the case of uniform hypergaphs.
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Abstract
Robin Thomas asked whether for every proper minor-closed class G, there exists a polynomial-
time algorithm approximating the chromatic number of graphs from G up to a constant additive
error independent on the class G. We show this is not the case: unless P = NP, for every integer
k ≥ 1, there is no polynomial-time algorithm to color a K4k+1-minor-free graph G using at most
χ(G)+k−1 colors. More generally, for every k ≥ 1 and 1 ≤ β ≤ 4/3, there is no polynomial-time
algorithm to color a K4k+1-minor-free graph G using less than βχ(G) + (4 − 3β)k colors. As
far as we know, this is the first non-trivial non-approximability result regarding the chromatic
number in proper minor-closed classes.

We also give somewhat weaker non-approximability bound for K4k+1-minor-free graphs with
no cliques of size 4. On the positive side, we present an additive approximation algorithm whose
error depends on the apex number of the forbidden minor, and an algorithm with additive error
6 under the additional assumption that the graph has no 4-cycles.
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Keywords and phrases non-approximability, chromatic number, minor-closed classes
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1 Introduction

The problem of determining the chromatic number of a graph, or even of just deciding
whether a graph is colorable using a fixed number c ≥ 3 of colors, is NP-complete [7], and
thus it cannot be solved in polynomial time unless P = NP. Even the approximation version
of the problem is hard: for every ε > 0, Zuckerman [16] proved that unless P = NP, there
exists no polynomial-time algorithm approximating the chromatic number of an n-vertex
graph within multiplicative factor n1−ε.

There are more restricted settings in which the graph coloring problem becomes more
tractable. For example, the well-known Four Color Theorem implies that deciding c-
colorability of a planar graph is trivial for any c ≥ 4; still, 3-colorability of planar graphs is
NP-complete [7]. From the approximation perspective, this implies that chromatic number
of planar graphs can be approximated in polynomial time up to multiplicative factor of 4/3
(but not better), and additively up to 1.
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47:2 Non-Approximability of Chromatic Number

Let Σ be a fixed surface, and consider a graph G embedded in Σ. If G is large enough,
Euler’s formula implies that its average degree is less than 7, and thus G contains a vertex v
of degree at most 6. Removing v and repeating this observation, we conclude that the vertex
set of G can be partitioned in parts A and B such that A has bounded size (depending only
on Σ) and G[B] is 6-degenerate. We can now by brute force find an optimal coloring of G[A]
and color G[B] greedily using at most 7 additional colors, thus obtaining a proper coloring of
G using at most χ(G[A]) + 7 ≤ χ(G) + 7 colors. That is, for any fixed surface Σ, there exists
a linear-time algorithm to approximate chromatic number of graphs embedded in Σ with
additive error at most 7, independent of the surface (this additive error can be improved to
2 using the fact that c-colorability of embedded graphs can be decided in polynomial-time
for c ≥ 5 based on a deep result of Thomassen [14]).

If a graph can be drawn in a given surface, all its minors can be drawn there as well.
Hence, it is natural to also consider the coloring problem in the more general setting of
proper minor-closed classes. Motivated by the simple algorithm for embedded graphs from
the previous paragraph (and the minor structure theorem [12], which relates proper minor-
closed classes to embedded graphs), Robin Thomas [13] conjectured that such an additive
approximation algorithm exists for graphs from any proper minor-closed class.

I Conjecture 1. For some fixed constant α ≥ 0, the following holds: for every proper
minor-closed class G, there exists a polynomial-time algorithm taking as an input a graph
G ∈ G and returning an integer c such that χ(G) ≤ c ≤ χ(G) + α.

The fact that we do not allow α depend on the class G is important: any Kk-minor-free graph
is O(k

√
log k)-colorable [10], and thus its chromatic number can be trivially approximated

with additive error O(k
√

log k).
Since it is easy to decide whether χ(G) < 3, Conjecture 1 would imply that chromatic

number in proper minor-closed classes can be approximated up to a fixed multiplicative
factor (at most 1 + α/3). And indeed, this weaker statement holds: As shown by DeVos
et al. [4] and algorithmically by Demaine et al. [2], for every proper minor-closed class G,
there exists a constant γG such that the vertex set of any graph G ∈ G can be partitioned
in polynomial time into two parts A and B with both G[A] and G[B] having tree-width at
most γG . Consequently, χ(G[A]) and χ(G[B]) can be determined exactly in linear time [1],
and we can color G[A] and G[B] using disjoint sets of colors, obtaining a coloring of G using
at most χ(G[A]) + χ(G[B]) ≤ 2χ(G) colors.

In the light of this evidence, Conjecture 1 seems quite plausible. Kawarabayashi et al. [9]
conjectured that it actually holds even in a stronger form, in the list coloring setting. As our
main result, we show that Conjecture 1 is actually false, even if we allow further multiplicative
error by a factor smaller than 4/3. A graph F is t-apex if there exists a set X of at most t
vertices of F such that F −X is planar.

I Theorem 2. Let k0 be a positive integer, let F be a (4k0 − 3)-connected graph that is
not (4k0 − 4)-apex, and let 1 ≤ β ≤ 4/3 be a real number. Unless P = NP, there is no
polynomial-time algorithm taking as an input an F -minor-free graph G and returning an
integer c such that χ(G) ≤ c < βχ(G) + (4− 3β)k0.

In particular, in the special case of β = 1 and F being a clique, we obtain the following.

I Corollary 3. Let k0 be a positive integer. Unless P = NP, there is no polynomial-time
algorithm taking as an input a K4k0+1-minor-free graph G and returning an integer c such
that χ(G) ≤ c ≤ χ(G) + k0 − 1.
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On the positive side, Kawarabayashi et al. [9] showed it is possible to approximate the
chromatic number of Kk-minor free graphs in polynomial time additively up to k − 2. We
leave open the question whether a better additive approximation (of course above the bound
≈ k/4 given by Corollary 3) is possible. Another positive result was given by Demaine et
al. [3], who proved that if H is a 1-apex graph, then the chromatic number of H-minor-free
graphs can be approximated additively up to 2. Let us also remark that if H is 0-apex (i.e.,
planar), then H-minor-free graphs have bounded tree-width [11], and thus their chromatic
number can be determined exactly in linear time [1].

The apex number of a graph F is the minimum t such that F is t-apex. Theorem 2 shows
that the additive error of any approximation algorithm for chromatic number of F -minor-free
graphs must depend on the apex number of F . On the positive side, we show that such
algorithm exists, generalizing the results from the previous paragraph.

I Theorem 4. Let t be a positive integer and let H be a t-apex graph. There exists a
polynomial-time algorithm taking as an input an H-minor-free graph G and returning an
integer c such that χ(G) ≤ c ≤ χ(G) + t+ 3.

The construction we use to establish Theorem 2 results in graphs with large clique number
(on the order of k0). On the other hand, forbidding triangles makes the coloring problem for
embedded graphs more tractable—all triangle-free planar graphs are 3-colorable [8] and there
exists a linear-time algorithm to decide 3-colorability of a triangle-free graph embedded in
any fixed surface [6]. It is natural to ask whether Conjecture 1 could not hold for triangle-free
graphs, and this question is still open. On the negative side, we show that forbidding cliques
of size 4 is not sufficient.

I Theorem 5. Let β and d be real numbers such that 1 ≤ β < 4/3 and d ≥ 0. Let
m = dd/(4− 3β)e. There exists a positive integer k0 = O

(
m4 log2 m

)
such that the following

holds. Let F be a (4k0− 1)-connected graph with at least 4k0 + 8 vertices that is not (4k0− 4)-
apex. Unless P = NP, there is no polynomial-time algorithm taking as an input an F -minor-
free graph G with ω(G) ≤ 3 and returning an integer c such that χ(G) ≤ c < βχ(G) + d.

In particular, in the special case of β = 1 and F being a complete graph, we get the
following.

I Corollary 6. For every positive integer k0, there exists an integer d = Ω(k1/4
0 / log1/2 k0) as

follows. Unless P = NP, there is no polynomial-time algorithm taking as an input a K4k0+8-
minor-free graph G with ω(G) ≤ 3 and returning an integer c such that χ(G) ≤ c ≤ χ(G) + d.

On the positive side, we offer the following small improvement to the additive error of
Theorem 4.

I Theorem 7. Let t be a positive integer and let H be a t-apex graph. There exists a
polynomial-time algorithm taking as an input an H-minor-free graph G with no triangles
and returning an integer c such that χ(G) ≤ c ≤ χ(G) + d(13t+ 172)/14e.

What about graphs of larger girth? It turns out that Conjecture 1 holds for graphs
of girth at least 5, with α = 6. Somewhat surprisingly, it is not even necessary to forbid
triangles to obtain this result, just forbidden 4-cycles are sufficient. Indeed, we can show the
following stronger result.

I Theorem 8. Let a ≤ b be positive integers and let G be a proper minor-closed class of
graphs. There exists a polynomial-time algorithm taking as an input a graph G ∈ G not
containing Ka,b as a subgraph and returning an integer c such that χ(G) ≤ c ≤ χ(G) + a+ 4.
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Let us remark that the multiplicative 2-approximation algorithm of Demaine et al. [2] can
be combined with the algorithms of Theorems 4, 7, and 8 by returning the minimum of their
results. E.g., if H is a t-apex graph, then there is a polynomial-time algorithm coloring an
H-minor-free graph G using at most min(2χ(G), χ(G)+ t+3) ≤ βχ(G)+(2−β)(t+3) colors,
for any β such that 1 ≤ β ≤ 2; the combined multiplicative-additive non-approximability
bounds of Theorems 2 and 5 are also of interest in this context.

The rest of the paper is organized as follows. In Section 2, we present a graph construction
which we exploit to obtain the non-approximability results in Section 3. The approximation
algorithms are presented in Section 4.

2 Tree-like product of graphs

Let G and H be graphs, and let |V (G)| = n and V (H) = {u1, . . . , uk}. Let Tn,k denote the
rooted tree of depth k + 1 such that each vertex at depth at most k has precisely n children
(the depth of the tree is the number of vertices of a longest path starting with its root, and
the depth of a vertex x is the number of vertices of the path from the root to x; i.e., the root
has depth 1). For each non-leaf vertex x ∈ V (Tn,k), let Gx be a distinct copy of the graph
G and let θx be a bijection from V (Gx) to the children of x in Tn,k. If v ∈ V (Gx), y is a
non-leaf vertex of the subtree of Tn,k rooted in θx(v), and z ∈ V (Gy), then we say that v is
a progenitor of z. The level of v is defined to be the depth of x in Tn,k. Note that a vertex
at level j has exactly one progenitor at level i for all positive i < j. The graph T (G,H) is
obtained from the disjoint union of the graphs Gx for non-leaf vertices x ∈ V (Tn,k) by, for
each edge uiuj ∈ E(H) with i < j, adding all edges from vertices of T (G,H) at level j to
their progenitors at level i. Note that the graph T (G,H) depends on the ordering of the
vertices of H, which we consider to be fixed arbitrarily.

Let Q1 and Q2 be graphs, containing cliques K1 and K2 of the same size k. A graph Q
is a clique-sum of graphs Q1 and Q2 on cliques K1 and K2 if Q is obtained from Q1 and Q2
by identifying the two cliques and possibly removing some edges of the resulting clique. We
use the following well-known observation: If F is a (k+ 1)-connected graph and F is a minor
of Q, then F is also a minor of Q1 or Q2.

I Lemma 9. Let G and H be graphs with |V (G)| = n ≥ 2 and V (H) = {u1, . . . , uk}. Let
q ≤ k be the maximum integer such that {uk−q+1, . . . , uk} is an independent set in H. The
graph T (G,H) has O(nk) vertices and ω(T (G,H)) = ω(G) + ω(H)− 1. Furthermore, if F
is a minor of T (G,H) and F is (k − q + 1)-connected, then there exists a set X ⊆ V (F ) of
size at most k − q such that F −X is a minor of G.

Proof. The tree Tn,k has 1 + n + n2 + . . . + nk−1 ≤ 2nk−1 non-leaf vertices, and thus
|V (T (G,H))| ≤ 2nk.

Consider a clique K in T (G,H), and let v be a vertex of K of largest level. Let x be the
vertex of Tn,k such that v ∈ V (Gx). Note that all vertices of K \ V (Gx) are progenitors of
v, and the vertices of H corresponding to their levels are pairwise adjacent. Consequently,
|K \ V (Gx)| ≤ ω(H) − 1 and |K ∩ V (Gx)| ≤ ω(G). Therefore, each clique in T (G,H)
has size at most ω(G) + ω(H) − 1. A converse argument shows that cliques KG in G

and KH in H give rise to a clique in T (G,H) of size |KG| + |KH | − 1, implying that
ω(T (G,H)) = ω(G) + ω(H)− 1.

For i = 0, . . . , k − q, let Gi denote the graph obtained from G by adding i universal
vertices. Observe that T (G,H) is obtained from copies of G0, . . . , Gk−q by clique-sums on
cliques of size at most k − q (corresponding to the progenitors whose level is most k − q).
Hence, each (k − q + 1)-connected minor F of T (G,H) is a minor of one of G0, . . . , Gk−q,
and thus a minor of G can be obtained from F by removing at most k − q vertices. J
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For an integer p ≥ 1, the p-blowup of a graph H0 is the graph H obtained from H0 by
replacing every vertex u by an independent set Su of p vertices, and by adding all edges zz′
such that z ∈ Su and z′ ∈ Su′ for some uu′ ∈ E(H0). For the purposes of constructing the
graph T (G,H), we order the vertices of H so that for each u ∈ V (H0), the vertices of Su are
consecutive in the ordering. Note that χ(H) ≤ χ(H0), since we can assign all the vertices of
Su the color of u.

The strong p-blowup of H0 is obtained from the p-blowup by making the sets Su into
cliques for each u ∈ V (H0). For integers a ≥ b ≥ 1, an (a : b)-coloring of H0 is a
function ϕ that to each vertex of H0 assigns a subset of {1, . . . , a} of size b such that
ϕ(u) ∩ ϕ(v) = ∅ for each edge uv of H0. The fractional chromatic number χf (H0) is the
infimum of {a/b : H0 has an (a : b)-coloring}. Note that if H is the strong p-blowup of a
graph H0, then a c-coloring of H gives a (c : p)-coloring of H0. Consequently, we have the
following.

I Observation 10. If H is the strong p-blowup of a graph H0, then χ(H) ≥ pχf (H0).

We now state a key result concerning the chromatic number of the graph T (G,H).

I Lemma 11. Let p, c ≥ 1 be integers and let G be a graph. Let H0 be a graph such that
χ(H0) = χf (H0) = c, and let H be the p-blowup of H0. Then

χ(T (G,H)) ≤ cχ(G)

and if χ(G) ≥ p, then

χ(T (G,H)) ≥ cp.

Proof. Let V (H) = {u1, . . . , uk}, where k = p|V (H0)|. Note that χ(H) ≤ χ(H0) = c. Let
ϕH be a proper coloring of H using c colors. Let C1, . . . , Cc be pairwise disjoint sets of χ(G)
colors. For each non-leaf vertex x of Tn,k of depth i, color Gx properly using the colors in
CϕH (ui). Observe that this gives a proper coloring of T (G,H) using at most cχ(G) colors,
and thus χ(T (G,H)) ≤ cχ(G).

Suppose now that χ(G) ≥ p and consider a proper coloring ϕ of T (G,H). We construct a
path P = x1x2 . . . xk+1 in the tree Tn,k from its root x1 to one of the leaves and a coloring ψ
of H, as follows. Suppose that we already selected x1, . . . , xi for some i ≤ k. Let Zi denote
the set of progenitors of level at least i− p+ 1 of the vertices of Gxi

. Since |Zi| ≤ p− 1 and
ϕ uses at least χ(G) ≥ p distinct colors on Gxi , there exists v ∈ V (Gxi) such that ϕ(v) is
different from the colors of all vertices of Zi. We define xi+1 = θxi

(v) be the child of xi in
Tn,k corresponding to v, and set ψ(ui) = ϕ(v).

Note that ψ is a proper coloring of H such that for each u ∈ V (H0), ψ assigns vertices in
Su pairwise distinct colors. Consequently, ψ is a proper coloring of the strong p-blowup of
H0, and thus ψ (and ϕ) uses at least pχf (H0) = cp distinct colors by Observation 10. We
conclude that χ(T (G,H)) ≥ cp. J

For positive integers p and k, let Kk×p denote the p-blowup of Kk, i.e., the complete
k-partite graph with parts of size p. Let us summarize the results of this section in the
special case of the graph T (G0,Kk×4) with G0 planar.

I Corollary 12. Let G0 be a planar graph with n vertices and let k0 be a positive integer. Let
G = T (G0,Kk0×4). The graph G has O(n4k0) vertices. If G0 is 3-colorable, then χ(G) ≤ 3k0,
and otherwise χ(G) ≥ 4k0. Furthermore, every (4k0 − 3)-connected graph appearing as a
minor in G is (4k0 − 4)-apex.
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Proof. Note that χ(Kk0) = χf (Kk0) = k0, |V (Kk0×4)| = 4k0 and the last 4 vertices of
Kk0×4 form an independent set. The claims follow from Lemma 9 (with H = Kk0×4, k = 4k0
and q = 4, using the fact that every minor of a planar graph is planar) and Lemma 11 (with
H0 = Kk0 , p = 4 and c = k0). J

3 Non-approximability

The main non-approximability result is a simple consequence of Corollary 12 and NP-hardness
of testing 3-colorability of planar graphs.

Proof of Theorem 2. Suppose for a contradiction that there exists such a polynomial-time
algorithm A, taking as an input an F -minor-free graph G and returning an integer c such
that χ(G) ≤ c < βχ(G) + (4− 3β)k0.

Let G0 be a planar graph, and let G = T (G0,Kk0×4). By Corollary 12, the size of G is
polynomial in the size of G0 and G is F -minor-free. Furthermore, if G0 is 3-colorable, then
χ(G) ≤ 3k0, and otherwise χ(G) ≥ 4k0. Hence, if G0 is 3-colorable, then the value returned
by the algorithm A applied to G is less than βχ(G) + (4 − 3β)k0 ≤ 4k0, and if G0 is not
3-colorable, then the value returned is at least χ(G) ≥ 4k0. This gives a polynomial-time
algorithm to decide whether G0 is 3-colorable.

However, it is NP-hard to decide whether a planar graph is 3-colorable [7], which gives a
contradiction unless P = NP. J

Note that the graphs T (G0,Kk0×4) used in the proof of Theorem 2 have large cliques (of
size greater than k0). This turns out not to be essential—we can prove somewhat weaker
non-approximability result even for graphs with clique number 3. To do so, we need to
apply the construction with both G and H0 being triangle-free. A minor issue is that testing
3-colorability of triangle-free planar graphs is trivial by Grötzsch’ theorem [8]. However, this
can be worked around easily.

I Lemma 13. Let G denote the class of graphs such that all their 3-connected minors with
at least 12 vertices are planar. The problem of deciding whether a triangle-free graph G ∈ G
is 3-colorable is NP-hard.

Proof. Let R0 be the Grötzsch graph (R0 is a triangle-free graph with 11 vertices and
chromatic number 4, and all its proper subgraphs are 3-colorable). Let R be a graph obtained
from R0 by removing any edge uv. Note that R is 3-colorable and the vertices u and v have
the same color in every 3-coloring.

Let G1 be a planar graph. Let G2 be obtained from G1 by replacing each edge xy of G1 by
a copy of R whose vertex u is identified with x and an edge is added between v and y (i.e., G2
is obtained from G1 by a sequence of Hajós sums with copies of R0). Clearly, G2 is triangle-
free, it is 3-colorable if and only if G1 is 3-colorable, and |V (G2)| = |V (G1)| + 10|E(G1)|.
Furthermore, G2 is obtained from a planar graph by clique-sums with R0 on cliques of size
two, and thus every 3-connected minor of G2 is either planar or a minor of R0 (and thus has
at most 11 vertices). Hence, G2 belongs to G.

Since testing 3-colorability of planar graphs is NP-hard, it follows that testing 3-colorability
of triangle-free graphs from G is NP-hard. J

We also need a graph H0 which is triangle-free and its fractional chromatic number is
large and equal to its ordinary chromatic number. Such a graph can be obtained by a
standard probabilistic argument (omitted).
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I Lemma 14. For every positive integer m, there exists a triangle-free graph Hm with
O(m4 log2 m) vertices such that χ(Hm) = χf (Hm) = m.

Theorem 5 now follows in the same way as Theorem 2, using the graphs from Lemma 14
instead of cliques.

Proof of Theorem 5. Suppose for a contradiction that there exists such a polynomial-time
algorithm A, taking as an input an F -minor-free graph G with ω(G) ≤ 3 and returning an
integer c such that χ(G) ≤ c < βχ(G) + d. Recall that m = dd/(4− 3β)e. Let Hm be the
graph from Lemma 14. Let k0 = |V (Hm)| and let H be the 4-blowup of Hm. Let G be the
class of graphs such that all their 3-connected minors with at least 12 vertices are planar.

Consider a triangle-free graph G0 ∈ G, and let G = T (G0, H). By Lemma 9, the size
of G is polynomial in the size of G0. Consider any (4k0 − 1)-connected minor F ′ of G. By
Lemma 9, there exists a set X of size at most 4k0−4 such that F ′−X is a minor of G0. Since
F ′ −X is 3-connected and G0 ∈ G, we conclude that either |V (F ′)| ≤ |X|+ 11 ≤ 4k0 + 7
or F ′ − X is planar. Consequently, F ′ 6= F , and thus G does not contain F as a minor.
Furthermore, ω(G) ≤ ω(G0) + ω(H)− 1 ≤ 3.

Recall that χ(Hm) = χf (Hm) = m. By Lemma 11, if G0 is 3-colorable, then χ(G) ≤ 3m,
and otherwise χ(G) ≥ 4m. Hence, if G0 is 3-colorable, then the value returned by the
algorithm A applied to G is less than βχ(G)+d ≤ 3βm+d ≤ 4m, and if G0 is not 3-colorable,
then the value returned is at least χ(G) ≥ 4m. This gives a polynomial-time algorithm to
decide whether G0 is 3-colorable, in contradiction to Lemma 13 unless P = NP. J

4 Approximation algorithms

Let us now turn our attention to the additive approximation algorithms. The algorithms we
present use ideas similar to the ones of the 2-approximation algorithm of Demaine et al. [2]
and of the additive approximation algorithms of Kawarabayashi et al. [9] and Demaine et
al. [3]. We find a partition of the vertex set of the input graph G into parts L and C such that
G[L] has bounded tree-width (and thus its chromatic number can be determined exactly)
and G[C] has bounded chromatic number, and color the parts using disjoint sets of colors.
The existence of such a decomposition is proved using the minor structure theorem [12], in
the variant limiting the way apex vertices attach to the surface part of the decomposition.
The proof of this stronger version can be found in [5]. Let us now introduce definitions
necessary to state this variant of the structure theorem.

A tree decomposition of a graph G is a pair (T, β), where T is a tree and β is a function
assigning to each vertex of T a subset of V (G), such that for each uv ∈ E(G) there exists
z ∈ V (T ) with {u, v} ⊆ β(z), and such that for each v ∈ V (G), the set {z ∈ V (T ) : v ∈ β(z)}
induces a non-empty connected subtree of T . The width of the tree decomposition is
max{|β(z)| : z ∈ V (T )} − 1, and the tree-width of a graph is the minimum of the widths of
its tree decompositions.

The decomposition is rooted if T is rooted. For a rooted tree decomposition (T, β) and a
vertex z of T distinct from the root, if w is the parent of z in T , we write β ↑ z := β(z)∩β(w)
and β ↓ z := β(z) \ β(w). If z is the root of T , then β ↑ z := ∅ and β ↓ z := β(z). The torso
expansion of a graph G with respect to its rooted tree decomposition (T, β) is the graph
obtained from G by adding a clique on β ↑ z for all z ∈ V (T ).

A path decomposition is a tree decomposition (T, β) where T is a path. A vortex with
boundary sequence v1, . . . , vs and depth d is a graph with a path decomposition (p1p2 . . . ps, β)
such that |β(pi)| ≤ d + 1 and vi ∈ β(pi) for i = 1, . . . , s. An embedding of a graph in a
surface is 2-cell if each face of the embedding is homeomorphic to an open disk.
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I Theorem 15 (Dvořák and Thomas [5]). For every non-negative integer t and a t-apex graph
H, there exists a constant aH such that the following holds. For every H-minor-free graph
G, there exists a rooted tree decomposition (T, β) of G with the following properties. Let G′
denote the torso expansion of G with respect to (T, β). For every v ∈ V (T ), there exists a
set Av ⊆ β(v) of size at most aH with β ↑ v ⊆ Av, a set A′v ⊆ Av of size at most t− 1, and
subgraphs Gv, Gv,1, . . . , Gv,m of G′[β(v) \Av] for some m ≤ aH such that
(a) G′[β(v) \Av] = Gv ∪Gv,1 ∪ . . .∪Gv,m, and for 1 ≤ i < j ≤ m, the graphs Gv,i and Gv,j

are vertex-disjoint and G′ contains no edges between V (Gv,i) and V (Gv,j),
(b) the graph Gv is 2-cell embedded in a surface Σv in which H cannot be drawn,
(c) for 1 ≤ i ≤ m, Gv,i is a vortex of depth aH intersecting Gv only in its boundary sequence,

and this sequence appears in order in the boundary of a face fv,i of Gv, and fv,i 6= fv,j

for 1 ≤ i < j ≤ m,
(d) vertices of Gv have no neighbors in Av \A′v, and
(e) if w is a child of v in T and β(w) ∩ V (Gv) 6= ∅, then β ↑ w ⊆ V (Gv) ∪A′v.
Furthermore, the tree decomposition and the sets and subgraphs as described can be found in
polynomial time.

Informally, the graph G is a clique-sum of the graphs G′[β(v)] for v ∈ V (T ), and β(v)
contains a bounded-size set Av of apex vertices such that G′[β(v)]−Av can be embedded in
Σv up to a bounded number of vortices of bounded depth. Furthermore, at most t− 1 of
the apex vertices (forming the set A′v) can have neighbors in the part Gv of G′[β(v)]−Av

drawn in Σv, or in the other bags of the decomposition that intersect Gv. Note that it is
also possible that Σv is the null surface, and consequently Av = β(v).

We need the following observation on graphs embedded up to vortices.

I Lemma 16. Let Σ be a surface of Euler genus g and let a be a non-negative integer. Let
G be a graph and let G0, G1, . . . , Gm be its subgraphs such that G = G0 ∪G1 ∪ . . . ∪Gm,
the subgraphs G1, . . . , Gm are pairwise vertex-disjoint and G contains no edges between
them, G0 is 2-cell embedded in Σ, and there exist pairwise distinct faces f1, . . . , fm of this
embedding such that for 1 ≤ i ≤ m, Gi intersects G0 only in a set of vertices contained in
the boundary of fi. If the graphs G1, . . . , Gm have tree-width at most a, then there exists a
subset L0 of vertices of G0 such that G0−L0 is planar and the graph G0[L0]∪G1 ∪ . . .∪Gm

has tree-width at most 26g + 9m+ a.

Proof. If Σ is the sphere, then we can set L0 = ∅; hence, we can assume that g ≥ 1. Let G′0
be the graph obtained from G0 by, for 1 ≤ i ≤ m, adding a new vertex ri drawn inside fi

and joined by edges to all vertices of V (G0) ∩ V (Gi). Note that G′0 has a 2-cell embedding
in Σ extending the embedding of G. Let F be a subgraph of G′0 such that the embedding of
F in Σ inherited from the embedding of G′0 is 2-cell and |V (F )|+ |E(F )| is minimum. Then
F has only one face, since otherwise it is possible to remove an edge separating distinct faces
of F , and F has minimum degree at least two, since otherwise we can remove a vertex of
degree at most 1 from F . By generalized Euler’s formula, we have |E(F )| = |V (F )|+ g − 1,
and thus F contains at most 2(g− 1) vertices of degree greater than two. By considering the
graph obtained from F by suppressing vertices of degree two, we see that F is either a cycle
(if g = 1) or a subdivision of a graph with at most 3(g − 1) edges.

Let M0 be the set of vertices of F of degree at least three and their neighbors. We
claim that each vertex of V (F ) \M0 is adjacent in G′0 to only two vertices of V (F ). Indeed,
suppose that a vertex x ∈ V (F ) \M0 has at least three neighbors in G′0 belonging to V (F ).
Let w and y be the neighbors of x in F , and let z be a vertex distinct from w and y adjacent
to x in G′0. The graph F + xz has two faces, and by symmetry, we can assume that the edge
xy separates them. Since x 6∈M0, the vertex y has degree two in F , and thus the embedding
of F + xz − y is 2-cell, contradicting the minimality of F .
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Let M1 be the set of vertices of F at distance at most 4 from a vertex of degree greater
than two. Note that |M1| ≤ 26g. For 1 ≤ i ≤ m, let Ni denote the set of vertices of F −M1
that are in G′0 adjacent to a vertex of V (Gi)∩V (G0)\V (F ). We claim that |Ni| ≤ 9. Indeed,
suppose for a contradiction that |Ni| ≥ 10 and consider a path w4w3w2w1xy1y2y3y4 in F
such that x belongs to Ni (vertices x, w1, . . . , w4, y1, . . . , y4 have degree two in F , since
x 6∈M1). If ri ∈ V (F ), then let Q be a path in G′0 of length two between x and ri through
a vertex of V (Gi) ∩ V (G0) \ V (F ); note that ri 6∈ {w1, w2, y1, y2}, since ri has at least 10
neighbors in V (F ) and belongs to M0 by the previous paragraph and x 6∈M1. If ri 6∈ V (F ),
then there exists a vertex z ∈ Ni \ {x,w1, . . . , w4, y1, . . . , y4}; we let Q be a path of length
at most four between x and z passing only through their neighbors in V (Gi)∩ V (G0) \ V (F )
and possibly through ri. By symmetry, we can assume that the edge xy1 separates the two
faces of F + Q, and the graph F + Q − {y1, y2} if ri ∈ V (F ) or F + Q − {y1, y2, y3, y4} if
ri 6∈ V (F ) contradicts the minimality of F .

Let M = (M1 ∪
⋃m

i=1 Ni) ∩ V (G0); we have |M | ≤ 26g + 9m. Let L0 = V (F ) ∩ V (G0).
Clearly, G0−L0 ⊆ G′0−V (F ) is planar. Let G′ be the graph obtained from G1∪ . . .∪Gm by
adding vertices of M as universal ones, adjacent to all other vertices of G′. The tree-width of
G′ is at most a+ |M | ≤ 26g+ 9m+ a. Note that each vertex of L0 \V (G′) has degree two in
G0[L0]∪G1 ∪ . . .∪Gm, and thus G0[L0]∪G1 ∪ . . .∪Gm is a subgraph of a subdivision of G′.
We conclude that the tree-width of G0[L0]∪G1 ∪ . . .∪Gm is also at most 26g+ 9m+ a. J

Note that the set L0 can be found in polynomial time. For the clarity of presentation of
the proof we selected F with |V (F )| + |E(F )| minimum; however, it is sufficient to start
with an arbitrary inclusionwise-minimal subgraph with exactly one 2-cell face (obtained by
repeatedly removing edges that separate distinct faces and vertices of degree at most 1) and
repeatedly perform the reductions described in the proof until each vertex of V (F ) \M0 is
adjacent in G′0 to only two vertices of V (F ) and until |Ni| ≤ 9 for 1 ≤ i ≤ m.

For positive integers t and a, we say that a rooted tree decomposition (T, β) of a graph G
is (t, a)-restricted if for each vertex v of T , the subgraph of the torso expansion of G induced
by β ↓ v is planar, |β ↑ v| ≤ t− 1, and each vertex of β ↓ v has at most a− 1 neighbors in
G that belong to β ↑ v. Using the decomposition from Theorem 15, we now partition the
considered graph into a part of bounded tree-width and a (t, t)-restricted part.

I Theorem 17. For every positive integer t and a t-apex graph H, there exists a constant cH

with the following property. The vertex set of any H-minor-free graph G can be partitioned
in polynomial time into two parts L and C such that G[L] has tree-width at most cH and
G[C] has a (t, t)-restricted rooted tree decomposition. Additionally, for any such graph H
and positive integers a ≤ b, there exists a constant cH,a,b such that if G is H-minor-free and
does not contain Ka,b as a subgraph, then L and C can be chosen so that G[L] has tree-width
at most cH,a,b and G[C] has a (t, a)-restricted rooted tree decomposition.

Proof. Let aH be the constant from Theorem 15 for H, and let g be the maximum Euler
genus of a surface in which H cannot be embedded. Let cH = 26g + 11aH and cH,a,b =
cH +

(
t−1

a

)
(b− 1).

Since G is H-minor-free, we can in polynomial time find its rooted tree decomposition
(T, β), its torso expansion G′, and for each v ∈ V (T ), find Av, A′v, Gv, Gv,1, . . . , Gv,m, and
Σv as described in Theorem 15. Let L′v be the set of vertices obtained by applying Lemma 16
to Gv, Gv,1, . . . , Gv,m; i.e., Gv − L′v is planar and the graph Gv[L′v] ∪Gv,1 ∪ . . . ∪Gv,m has
tree-width at most 26g + 10aH . When considering the case that G does not contain Ka,b as
a subgraph, let Sv be the set of vertices of Gv that have at least a neighbors in G belonging
to Av (and thus to A′v); otherwise, let Sv = ∅. Since there are at most

(
t−1

a

)
ways how to

choose a set of a neighbors in A′v and no b vertices can have the same set of a neighbors in
A′v, we have |Sv| ≤

(
t−1

a

)
(b− 1). Let Lv = (Av \ β ↑ v) ∪ V (Gv,1 ∪ . . . ∪Gv,m) ∪ L′v ∪ Sv.
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We define L =
⋃

v∈V (T ) Lv. Note that L ∩ β(v) ⊆ Lv ∪ (β ↑ v) ⊆ Lv ∪Av. Consequently,
G′[L∩β(v)] is obtained from Gv[L′v]∪Gv,1∪ . . .∪Gv,m by adding Sv and some of the vertices
of Av, and consequently G′[L ∩ β(v)] has tree-width at most cH,a,b when considering the
case that G does not contain Ka,b as a subgraph and at most cH otherwise. The graph G[L]
is a clique-sum of the graphs G′[L ∩ β(v)] for v ∈ V (T ), and thus the tree-width of G[L] is
also at most cH,a,b or cH .

Let C = V (G) \ L, and consider the graph G[C]. For v ∈ V (T ), let β′(v) = β(v) ∩ C.
Then (T, β′) is a rooted tree decomposition of G[C] such that for every v ∈ V (T ), the graph
G′[β′ ↓ v] ⊆ Gv−L′v is planar, all vertices of β′ ↑ v adjacent in G to a vertex of β′ ↓ v belong
to A′v (and thus there are at most t− 1 such vertices), and when considering the case that G
does not contain Ka,b as a subgraph, each vertex of β′ ↓ v has at most a− 1 neighbors in G
belonging to β′ ↑ v.

Note that β′ ↑ v can contain vertices not belonging to A′v, and thus β′ ↑ v can have
size larger than t− 1, and the tree decomposition (T, β′) is not necessarily (t, t)-restricted.
However, by the condition (e) from the statement of Theorem 15, the vertices of (β′ ↑ v) \A′v
can only be contained in the bags of descendants of v which are disjoint from V (Gv), and
thus we can fix up this issue as follows.

If w is a child of v and β′(w) ∩ V (Gv) = ∅, we say that the edge vw is skippable; note
that in that case β′ ↑ w ⊆ β′ ↑ v. For each vertex w of T , let f(w) be the nearest ancestor of
w such that the first edge on the path from f(w) to w in T is not skippable. Let T ′ be the
rooted tree with vertex set V (T ) where the parent of each vertex w is f(w). Observe that
(T ′, β′) is a tree decomposition of G[C]. Furthermore, denoting by z the child of f(w) on the
path from f(w) to w in T , note that if a vertex x ∈ β′ ↑ f(w) is contained in β′(w), then
x ∈ β(z), and since the edge f(w)z is not skippable, the condition (e) from the statement of
Theorem 15 implies that x ∈ A′f(w).

Hence, letting β′′(v) = (β′ ↓ v)∪(A′v∩C) for each vertex v of T ′, we conclude that (T ′, β′′)
is a rooted tree decomposition of G[C] which is (t, t)-restricted, and when considering the
case that G does not contain Ka,b as a subgraph, the decomposition is (t, a)-restricted. J

Let us now consider the chromatic number of graphs with a (t, a)-restricted tree decom-
position.

I Lemma 18. Let a and t be positive integers. Let G be a graph with a (t, a)-restricted
rooted tree decomposition (T, β). The chromatic number of G is at most min(t+ 3, a+ 4).
Additionally, if G is triangle-free, then the chromatic number of G is at most d(13t+172)/14e.

Proof. We can color G using t+ 3 colors, starting from the root of the tree decomposition,
as follows. Suppose that we are considering a vertex v ∈ V (T ) such that β ↑ v is already
colored. Since |β ↑ v| ≤ t − 1, this leaves at least 4 other colors to be used on G[β ↓ v].
Hence, we can extend the coloring to G[β ↓ v] by the Four Color Theorem.

We can also color G using a+ 4 colors, starting from the root of the tree decomposition,
as follows. For each vertex x of β ↓ v, at most a− 1 colors are used on its neighbors in β ↑ v,
leaving x with at least 5 available colors not appearing on its neighbors. Since G[β ↓ v] is
planar, we can color it from these lists of size at least 5 using the result of Thomassen [15],
again extending the coloring to G[β ↓ v].

Finally, suppose that G is triangle-free. Let G′ be the torso expansion of G with respect
to (T, β), and let c = d(13t + 172)/14e. We again color G starting from the root of the
tree decomposition using at most c colors. Additionally, we choose the coloring so that the
following invariant is satisfied: (?) for each vertex w of T and for each independent set I in
G[β(w)] such that I ∩ β ↓ w induces a clique in G′, at most c− 6 distinct colors are used on
I.
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Let v be a vertex of T . Suppose we have already colored β ↑ v, and we want to extend
the coloring to β ↓ v. Note that the choice of this coloring may only affect the validity of the
invariant (?) at v and at descendants of v in T . Consider any descendant w of T . Coloring
β ↓ v can only assign color to vertices of β ↑ w, and since G′ is the torso expansion of G,
the set β ↑ w ∩ β ↓ v induces a clique in G′. Consequently, the validity of (?) at v implies
the validity at w (until more vertices of G are assigned colors), and thus when choosing the
coloring of β ↓ v, we only need to ensure that (?) holds at v.

The graph G′[β ↓ v] is planar, and thus it is 5-degenerate; i.e., there exists an ordering
of its vertices such that each vertex is preceded by at most 5 of its neighbors. Let us color
the vertices of β ↓ v according to this ordering, always preserving the validity of (?) at
v. Suppose that we are choosing a color for a vertex x ∈ V (β ↓ v). Let Px consist of the
neighbors of x in G′ belonging to β ↓ v that precede it in the ordering; we have |Px| ≤ 5.
Note that all cliques in G′[β ↓ v] containing x and with all other vertices already colored are
subsets of Px ∪ {x}. Let Qx = Px ∪ β ↑ v; we have |Qx| ≤ t+ 4.

Let Nx consist of vertices of Qx that are adjacent to x in G. We say that a color a is
forbidden at x if there exists an independent set Aa ⊆ Qx \Nx of G such that Aa ∩ Px is a
clique in G′ and c− 6 colors distinct from a appear on Aa. Observe that assigning x a color
which neither appears on Nx nor is forbidden results in a proper coloring that preserves the
invariant (?) at v.

Suppose first that no color is forbidden at x. Since G is triangle-free, Nx \ Px is an
independent set in G[β ↑ v], and by (?), at most c − 6 colors appear on Nx \ Px. Since
|Px| ≤ 5, it follows that some color does not appear on Nx, as required.

Hence, we can assume that some color is forbidden at x, and thus there exists an
independent set Z1 ⊆ Qx \ Nx of size at least c − 6 such that vertices of Z1 are assigned
pairwise distinct colors. Since |Qx| ≤ t + 4, at most t + 4 − (c − 6) = t + 10 − c of these
colors appear at least twice on Qx, and thus there exists a set Z2 ⊆ Z1 of size at least
c− 6− (t+ 10− c) = 2c− t− 16 such that the color of each vertex of Z2 appears exactly
once on Qx (and thus does not appear on Nx). Let Z = Z2 \ Px; we have |Z| ≥ 2c− t− 21.
We claim that not all colors appearing on Z are forbidden; since such colors do not appear
on Nx, we can use them to color x.

For contradiction, assume that colors of all vertices of Z are forbidden at x. Let
Z = {z1, . . . , zm} for some m ≥ 2c − t − 21, and for a = 1, . . . ,m, let a be the color of za.
Since a is forbidden at x, there exists an independent set Aa ⊆ Qx \Nx such that Aa ∩ Px is
a clique in G′ and c− 6 colors distinct from a appear on Aa. Note that Aa ∪ {za} is not an
independent set, as otherwise this set contradicts the invariant (?) at v. Hence, we can choose
a neighbor f(a) of za in Aa. Since Z is an independent set, we have f(a) 6∈ Z. Furthermore, we
claim that the preimage in f of each vertex has size at most 6: if say f(z1) = . . . = f(z7) = y,
then for i = 1, . . . , 7, the vertex zi would have a neighbor y in the independent set A1,
and thus z1, . . . , z7 6∈ A1; however, the only appearance of colors 1, . . . , 7 in Qx is on the
vertices z1, . . . , z7, and thus at most c − 7 colors would appear on A1. We conclude that
|f(Z)| ≥ |Z|/6, and thus t+ 4 ≥ |Qx| ≥ |Z|+ |f(Z)| ≥ 7

6 |Z| ≥
7
6 (2c− t− 21) ≥ (6t+ 25)/6.

This is a contradiction. J

Combining Lemma 18 with Theorem 17 (coloring G[L] using at most χ(G) colors in linear
time [1], using the fact that G[L] has bounded tree-width, and coloring G[C] using a disjoint
set of colors), we obtain Theorems 4, 7, and 8.
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describing a generic plane embedding of the graph instances, we show that our hardness results
translate to the geometric instances of the problem.
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Figure 1 Illustration of instances of the problem under consideration drawn within a bounding
box. The left figure shows an instance in which the optimal path crosses two obstacles, zigzagging
between the other obstacles. The right figure shows an instance and its auxiliary plane graph.

1 Introduction

We consider the following problem: Given a set of obstacles and two designated points in the
plane, is there a path between the two points that does not cross more than k obstacles?
Equivalently, can we remove k obstacles so that there is an obstacle-free path between the two
designated points? We refer to this problem as Obstacle Removal, and to its restriction
to instances in which each obstacle is connected as Connected Obstacle Removal.

By considering the auxiliary plane graph that is the dual of the plane subdivision
determined by the obstacles, Obstacle Removal was formulated and generalized into the
following graph problem, referred to as Colored Path (see Figure 1 for illustrations):
Colored Path
Given: A planar graph G; a set of colors C; χ : V −→ 2C ; two designated vertices
s, t ∈ V (G); and k ∈ N
Question: Does there exist an s-t path in G that uses at most k colors?

Denote by Colored Path-Con the restriction of Colored Path to instances in which
each color induces a connected subgraph of G.

As we discuss next, Connected Obstacle Removal and Colored Path are funda-
mental problems that have undergone a tremendous amount of work, albeit under different
names and contexts, by researchers in various areas, including computational geometry, graph
theory, wireless computing, and motion planning.

1.1 Related Work
In motion planning, the goal is generally to move a robot from a starting position to a
final position, while avoiding collision with a set of obstacles. This is usually referred to
as the piano-mover ’s problem. Obstacle Removal is a variant of the piano-mover’s
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problem, in which the obstacles are in the plane and the robot is represented as a point.
Since determining if there is an obstacle-free path for the robot in this case is solvable
in polynomial time, if no such path exists, it is natural to seek a path that intersects as
few obstacles as possible. Motivated by planning applications, Connected Obstacle
Removal and Colored Path were studied under the name Minimum Constraint
Removal [7, 9, 10, 11]. Connected Obstacle Removal has also been studied extensively,
motivated by applications in wireless computing, under the name Barrier Coverage or
Barrier Resilience [1, 2, 12, 13, 15, 16]. In such applications, we are given a field covered
by sensors (usually simple shapes such as unit disks), and the goal is to compute a minimum
set of sensors that need to fail before an entity can move undetected between two given sites.

Kumar et al. [13] were the first to study Connected Obstacle Removal. They
showed that for unit-disk obstacles in some restricted setting, the problem can be solved in
polynomial time. The complexity of the general case for unit-disk obstacles remains open.
Several works showed the NP-hardness of the problem, even when the obstacles are very
simple geometric shapes such as line segments (e.g., see [1, 15, 16]). The complexity of the
problem when each obstacle intersects a constant number of other obstacles is open [9, 11].

Bereg and Kirkpatrick [2] designed approximation algorithms when the obstacles are unit
disks by showing that the length, referred to as the thickness [2] (i.e., number of regions
visited), of a shortest path that crosses k disks is at most 3k; this follows from the fact that
a shortest path does not cross a disk more than a constant number of times.

Korman et al. [12] showed that Connected Obstacle Removal is FPT parameterized
by k for unit-disk obstacles, and extended this result to similar-size fat-region obstacles with
a constant overlapping number, which is the maximum number of obstacles having nonempty
intersection. Their result draws the observation, which was also used in [2], that for unit-disk
(and fat-region) obstacles, the length of an optimal path can be upper bounded by a linear
function of the number of obstacles crossed (i.e., the parameter). This observation was
then exploited by a branching phase that decomposes the path into subpaths in (simpler)
restricted regions, enabling a similar approach to that of Kumar et al. [13].

Motivated by its applications to networking, among other areas, the problem of computing
a minimum-colored path in a graph received considerable attention (e.g., see [3, 17]). The
problem was shown to be NP-hard in several works [3, 4, 11, 17]. Most of the NP-hardness
reductions start from Set Cover, and result in instances of Colored Path (i.e., planar
graphs), as was also observed by [2]. These reductions are FPT-reductions, implying the
W[2]-hardness of Colored Path. Moreover, these reductions imply that, unless P = NP,
the minimization version of Colored Path cannot be approximated to within a factor of
c lg n, for any constant c < 1. Hauser [11], and Gorbenko and Popov [10], implemented exact
and heuristic algorithms for the problem on general graphs. Very recently, Eiben et al. [7]
designed exact and heuristic algorithms for Colored Path and Obstacle Removal, and
proved computational lower bounds on their subexponential-time complexity, assuming the
Exponential Time Hypothesis.

1.2 Our Results and Techniques
We study the complexity and parameterized complexity of Colored Path and Colored
Path-Con, eyeing the implications on their geometric counterparts Obstacle Removal
and Connected Obstacle Removal, respectively. The proofs of the hardness results we
obtain are too long and technical to be included, and for those we refer to the full paper [8].

Clearly, Colored Path is in the parameterized class XP. We show that the color-
connectivity property is crucial for any hope for an FPT-algorithm, since even very restricted
instances and combined parameterizations of Colored Path are W[1]-complete:

ICALP 2018



48:4 How to Navigate Through Obstacles?

I Theorem 1.1. Colored Path, restricted to instances of pathwidth at most 4, and in
which each vertex contains at most one color and each color appears on at most 2 vertices, is
W[1]-complete parameterized by k.

I Theorem 1.2. Colored Path, parameterized by both k and the length of the sought path
`, is W[1]-complete.

Without restrictions, the problem sits high in the parameterized complexity hierarchy:

I Theorem 1.3. Colored Path, parameterized by k, is W[SAT]-hard and is in W[P].

A corollary of Theorem 1.3 is that, unless W[2] = FPT, Colored Path cannot be
approximated in FPT time to within a factor that is a function of k.

We can produce a generic construction [8] that can be used to realize any graph instance
of Colored Path as a geometric instance of Obstacle Removal. Using this generic
construction, the hardness results in Theorems 1.1–1.3, and the inapproximability result
discussed above, translate to Obstacle Removal. Previously, Colored Path was only
known to be W[2]-hard, via the standard reduction from Set Cover [3, 11, 17]. Our results
refine the parameterized complexity and approximability of Colored Path and Obstacle
Removal.

As it turns out, the color-connectivity property without planarity is hopeless: We can
tradeoff planarity for color-connectivity by adding a single vertex that serves as a color-
connector, thus establishing the W[SAT]-hardness of the problem on apex graphs.

The above hardness results show that we can focus our attention on Colored Path-Con.
We show the following algorithmic result:

I Theorem 1.4 (Theorem 4.7). Colored Path-Con, parameterized by both k and the
treewidth ω of the input graph, is FPT.

We remark that bounding the treewidth does not make Colored Path-Con much
easier, as we can show that Colored Path-Con is NP-hard even for 2-outerplanar graphs
of pathwidth at most 3 [8].

The folklore dynamic programming approach based on tree decomposition, used for the
Hamiltonian Path/Cycle problems, does not work for Colored Path-Con to prove
the result in Theorem 1.4 for the following reasons. As opposed to the Hamiltonian
Path/Cycle problems, where it is sufficient to keep track of how the path/cycle interacts
with each bag in the tree decomposition, this is not sufficient in the case of Colored
Path-Con because we also need to keep track of which color sets are used on both sides of
the bag. Although (by color connectivity) any subset of colors appearing on both sides of a
bag must appear on vertices in the bag as well, there can be too many such subsets (up to
|C|k, where C is the set of colors), and certainly we cannot afford to enumerate all of them
if we seek an FPT algorithm. To overcome this issue, we develop in Section 3 topological
structural results that exploit the planarity of the graph and the connectivity of the colors to
show the following. For any vertex w ∈ V (G), and for any pair of vertices u, v ∈ V (G), the
set of (valid) u-v paths in G− w that use colors appearing on vertices in the face of G− w
containing w can be “represented” by a minimal set of paths whose cardinality is a function
of k.

In Section 4, we extend the notion of a minimal set of paths w.r.t. a single vertex to a
“representative set” of paths w.r.t. a specific bag, and a specific enumerated configuration
for the bag, in a tree decomposition of the graph. This enables us to use the upper bound
on the size of a minimal set of paths, derived in Section 3, to upper bound the size of a
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representative set of paths w.r.t. a bag and a configuration. This, in turn, yields an upper
bound on the size of the table stored at a bag, in the dynamic programming algorithm, by a
function of both k and the treewidth of the graph, thus yielding the desired result.

In Section 5, we extend the FPT result for Colored Path-Con in Theorem 1.4 w.r.t. the
parameters k and ω, to the parameterization by both k and the length ` of the path:

I Theorem 1.5 (Theorem 5.1). Colored Path-Con, and hence Connected Obstacle
Removal, parameterized by both k and ` is FPT.

The dependency on both ` and k is essential for the result in Theorem 1.5, as we can show
that if we parameterize only by k, or only by `, then the problem becomes W[1]-hard [8].

The result in Theorem 1.5 generalizes and explains Korman et al.’s results [12] showing
that Connected Obstacle Removal is FPT parameterized by k for unit-disk obstacles,
which they also generalized to similar-size fat-region obstacles with bounded overlapping
number. Their results exploit the obstacle shape to upper bound the length of the path by
a linear function of k, and then use branching to reduce the problems to a simpler setting.
Our result directly implies that, regardless of the (connected) obstacle shapes, as long as the
path length is upper bounded by some function of k (Corollary 5.2), the problem is FPT.
The FPT result in Theorem 1.5 also implies that:

I Corollary 1.6 (Corollary 5.3). For any computable function h, Colored Path-Con re-
stricted to instances in which each color appears on at most h(k) vertices, is FPT parameterized
by k.

The result in Corollary 1.6 has applications to Connected Obstacle Removal, in
particular, to the interesting case when the obstacles are convex polygons, each intersecting
a constant number of other polygons. The question about the complexity of this problem
was posed in [9, 11], and remains open. The result in Corollary 1.6 implies that this problem
is FPT.

We finally mention that it remains open whether Colored Path-Con and Connected
Obstacle Removal are FPT parameterized by k only.

2 Preliminaries

We assume familiarity with graph theory and parameterized complexity. We refer the reader
to the standard books [5, 6].

For a set S, we denote by 2S the power set of S. Let G = (V,E) be a graph, let C ⊂ N
be a finite set of colors, and let χ : V −→ 2C . A vertex v in V is empty if χ(v) = ∅. A color
c appears on, or is contained in, a subset S of vertices if c ∈

⋃
v∈S χ(v). For two vertices

u, v ∈ V (G), ` ∈ N, a u-v path P = (u = v0, . . . , vr = v) in G is `-valid if |
⋃r
i=0 χ(vi)| ≤ `;

that is, if the total number of colors appearing on the vertices of P is at most `. A color
c ∈ C is connected in G, or simply connected, if

⋃
c∈χ(v){v} induces a connected subgraph of

G. The graph G is color-connected, if for every c ∈ C, c is connected in G.
For an instance (G,C, χ, s, t, k) of Colored Path or Colored Path-Con, if s and t

are nonempty vertices, we can remove their colors and decrement k by |χ(s) ∪ χ(t)| because
their colors appear on every s-t path. If afterwards k becomes negative, then there is no
k-valid s-t path in G. Moreover, if s and t are adjacent, then the path (s, t) is a path with
the minimum number of colors among all s-t paths in G. Therefore, we will assume:

I Assumption 2.1. For an instance (G,C, χ, s, t, k) of Colored Path or Colored Path-
Con, we can assume that s and t are nonadjacent empty vertices.

ICALP 2018
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3 Structural Results

Let G be a color-connected plane graph, C a set of colors, and χ : V −→ 2C . In this section,
we present structural results that are the cornerstone of the FPT-algorithm for Colored
Path-Con presented in the next section. We start by giving an intuitive description of the
plan for this section.

As mentioned in Section 1, the main issue facing a dynamic programming algorithm
based on tree decomposition, is how to upper bound, by a function of k and the treewidth,
the number of k-valid paths between (any) two vertices u and v that use color sets contained
in a certain bag. As it turns out, this number cannot be upper bounded as desired. Instead,
we “represent” those paths using a minimal set P of k-valid u-v paths, in the sense that any
k-valid u-v path can be replaced by a path from P that is not “worse” than it. To do so, it
suffices to represent the k-valid u-v paths that use color sets contained in a third vertex w,
by a set whose cardinality is a function of k. This will enable us to extend the notion of a
minimal set of k-valid u-v paths w.r.t. a single vertex to a representative set for the whole
bag, which is the key ingredient of the dynamic programming FPT-algorithm – based on tree
decomposition – in the next section.

As it turns out, the paths that matter are those that use “external” colors w.r.t. w
(defined below), since those colors have the potential of appearing on both sides of a bag
containing w. Therefore, the ultimate goal of this section is to define a notion of a minimal
set P of k-valid u-v paths with respect to w (Definition 3.5), and to upper bound |P| by a
function of k. Upper bounding |P| by a function of k turns out to be quite challenging, and
requires ideas and topological results that will be discussed later in this section.

Throughout this section, we shall assume that G is color-connected. We start with the
following simple observation that holds because of this assumption:

I Observation 3.1. Let x, y ∈ V (G) be such that there exists a color c ∈ C that appears on
both x and y. Then any x-y vertex-separator in G contains a vertex on which c appears.

Let G′ be a plane graph, let w ∈ V (G′), and let f be the face in G′ − w such that w is
interior to f ; we call f the external face w.r.t. w in G′ − w, and the vertices incident to f
external vertices w.r.t. w in G′ − w. A color c ∈ C is an external color w.r.t. w in G′ − w,
or simply external to w in G′ − w, if c appears on an external vertex w.r.t. w in G′ − w;
otherwise, c is internal to w in G′ − w. The following observation is easy to see:

I Observation 3.2. Let G be a color-connected graph, and let w ∈ V (G). Let H be any
subgraph of G− w. If c is an external color to w in G− w and c appears on some vertex in
H, then c is an external color to w in H. This also implies that the set of internal colors to
w in H is a subset of the set of internal colors to w in G− w.

I Definition 3.3. Let s, t be two designated vertices in G, and let x, y be two adjacent
vertices in G such that χ(x) = χ(y). Define the following operation to x and y, referred to
as a color contraction operation, that results in a graph G′, a color function χ′, and two
designated vertices s′, t′ in G′, obtained as follows:

G′ is obtained from G by contracting the edge xy, which results in a new vertex z;
s′ = s (resp. t′ = t) if s /∈ {x, y} (resp. t /∈ {x, y}), and s′ = z (resp. t′ = z) otherwise;
and
χ′ : V (G′) −→ 2C is defined as χ′(w) = χ(w) if w 6= z, and χ′(z) = χ(x) = χ(y).

G is irreducible if there does not exist two vertices in G to which the color contraction
operation is applicable.
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I Lemma 3.4. Let G be a color-connected plane graph, C a color set, χ : V −→ 2C ,
s, t ∈ V (G), and k ∈ N. Suppose that the color contraction operation is applied to two
vertices in G to obtain G′, χ′, s′, t′, as described in Definition 3.3. Then G′ is a color-
connected plane graph, and there is a k-valid s-t path in G if and only if there is a k-valid
s′-t′ path in G′.

I Definition 3.5. Let u, v, w ∈ V (G). A set P of k-valid u-v paths in G− w is said to be
minimal w.r.t. w if:
(i) There does not exist two paths P1, P2 ∈ P such that χ(P1) ∩ χ(w) = χ(P2) ∩ χ(w);
(ii) there does not exist two paths P1, P2 ∈ P such that χ(P1) ⊆ χ(P2); and
(iii) for any P ∈ P , there does not exist a u-v path P ′ in G− w such that χ(P ′) ( χ(P ).

Clearly, for any u, v, w ∈ V (G), a minimal set of k-valid u-v paths in G− w exists.

I Observation 3.6. Let u, v, w ∈ V (G). Any set of u-v paths that is minimal w.r.t. w
contains at most one path whose vertices contain only internal colors w.r.t. w in G− w.

To derive an upper bound on the cardinality of a minimal set P of k-valid u-v paths
w.r.t. a vertex w, we select a maximal setM of color-disjoint paths in P. We first upper
bound |M| by a function of k, which requires developing several results of topological nature.
The key ingredient for upper bounding |M| is showing that the subgraph induced by the
paths inM has a u-v vertex-separator of cardinality O(k) (Lemma 3.10). We then upper
bound |M| (Lemma 3.12) by upper bounding the number of different traces of the paths of
M on this small separator, and inducting on both sides of the separator. Finally, we show
(Theorem 3.13) that |P| is upper bounded by a function of |M|, which proves the desired
upper bound on |P|. We proceed to the details.

For the rest of this section, let u, v, w ∈ V (G), and let P be a set of minimal k-valid u-v
paths in G− w. LetM be a set of minimal k-valid color-disjoint u-v paths in G− w, and
let M be the subgraph of G− w induced by the edges of the paths inM.

I Observation 3.7. If P ∈M contains a color c that is external to w in M , then c appears
on a vertex in P that is incident to the external face to w in M .

I Lemma 3.8. Let G′ be a plane graph with a face f , let u, v ∈ V (G′), and let u1, . . . , ur,
r ≥ 3, be the neighbors of u. Suppose that, for each i ∈ [r], there exists a u-v path Pi
containing ui and a vertex incident to f different from v, and such that Pi does not contain
any uj, j ∈ [r], j 6= i. Then there exist two paths Pi, Pj, i, j ∈ [r], i 6= j, such that
V (Pi) ∪ V (Pj)− {v} is a vertex-separator separating {u1, . . . , ur} \ {ui, uj} from v.

I Lemma 3.9. Let x, y be two vertices in an irreducible subgraph G′ of G, and let f be a
face in G′. Then there are at most two color-disjoint x-y paths in G′ that contain only colors
that appear on f .

I Lemma 3.10. Suppose that M is irreducible, then there exist paths P1, P2, P3 ∈M such
that M − P1 − P2 − P3 has a u-v vertex-separator of cardinality at most 2k + 3.

Proof. By Observation 3.6 and Observation 3.2,M contains at most one path that contains
only internal colors w.r.t. w in M . Therefore, it suffices to show thatM contains two paths
P1, P2 such that M − P1 − P2 has a u-v vertex-separator of cardinality at most 2k + 3,
assuming that every path inM contains an external color w.r.t. w in M .

By Observation 3.7, every path inM passes through an external vertex w.r.t. w in M
that contains a color external to w in M . Because the paths inM are pairwise color-disjoint
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and u and v are empty vertices, every path inM passes through a vertex on the external face
of w in M that is different from u and v. Let u1, . . . , uq be the neighbors of u in M , and note
that since u is empty and M is irreducible, each ui, i ∈ [q], contains a color. Let P1, . . . , Pq
be the paths inM containing u1, . . . , uq, respectively, and note that since the paths inM
are color-disjoint, no Pi passes through uj , for j 6= i. By Lemma 3.8, there are two paths in
P1, . . . , Pq, say P1, P2 without loss of generality, such that V12 = V (P1) ∪ V (P2)− {v} is a
vertex-separator that separates {u3, . . . , uq} from v.

We proceed by contradiction and assume that M− = M − P1 − P2 does not have a u-v
vertex-separator of cardinality 2k + 3. By Menger’s theorem [5], there exists a set D of
r′ ≥ 2k + 3 vertex-disjoint u-v paths in M−. Since V12 separates {u3, . . . , uq} from v in M ,
every u-v path in M− intersects at least one of P1, P2 at a vertex other than v. It follows
that there exists a path in {P1, P2}, say P1, that intersects at least k + 2 paths in D at
vertices other than v. Since the paths in D are vertex-disjoint and incident to u, we can order
the paths in D that intersect P1 around u (in counterclockwise order) as 〈Q1, . . . , Qr〉, where
r ≥ k + 2, and Qi+1 is counterclockwise from Qi, for i ∈ [r − 1]. P1 intersects each path Qi,
i ∈ [r], possibly multiple times. Moreover, since the paths in M are pairwise color-disjoint,
each intersection between P1 and a path Qi, i ∈ [r], must occur at an empty vertex. We
choose r − 1 subpaths, P 1

1 , . . . , P
r−1
1 , of P1 satisfying the property that the endpoints of P i1

are on Qi and Qi+1, for i = 1, . . . , r − 1, and the endpoints of P i1 are the only vertices on P i1
that appear on a path Qj , for j ∈ [r]. It is easy to verify that the subpaths P 1

1 , . . . , P
r−1
1 of

P1 can be formed by following the intersection of P1 with the sequence of (ordered) paths
Q1, . . . , Qr.

Recall that the endpoints of P 1
1 , . . . , P

r−1
1 are empty vertices. Since M is irreducible, no

two empty vertices are adjacent, and hence, each subpath P i1 must contain an internal vertex
vi that contains at least one color. We claim that no two vertices vi, vj , 1 ≤ i < j ≤ r − 1,
contain the same color. Suppose not, and let vi, vj , i < j, be two vertices containing a color c.
Since vi, vj are internal to P i1 and P j1 , respectively, Q1, . . . , Qr are vertex-disjoint u-v paths,
and by the choice of the subpaths P 1

1 , . . . , P
r−1
1 , the paths Qi and Qi+1 form a Jordan curve,

and hence a vertex-separator in G, separating vi from vj .
By Observation 3.1, color c must appear on a vertex in Qp, p ∈ {i, i+ 1}, and this vertex

is clearly not in P1 since P1 intersects Qp at empty vertices. Since every vertex in M appears
on a path inM, and c appears on P1 ∈M and on a vertex not in P1, this contradicts that
the paths inM are pairwise color-disjoint, and proves the claim.

Since no two vertices vi, vj , 1 ≤ i < j ≤ r, contain the same color, the number r − 1 of
subpaths P 1

1 , . . . , P
r−1
1 is upper bounded by the number of distinct colors that appear on P1,

which is at most k. It follows that r is at most k + 1, contradicting our assumption above
and proving the lemma. J

I Lemma 3.11. Let S be a minimal u-v vertex-separator in M . Let Mu,Mv be a partition
of M − S containing u and v, respectively, and such that there is no edge between Mu and
Mv. For any vertex x ∈ S, Mu is contained in a single face of Mv + x.

I Lemma 3.12. |M| ≤ g(k), where g(k) = O(ckk2k), for some constant c > 1.

Proof (sketch). By Observation 3.6, there is at most one path in M that contains only
internal colors w.r.t. w in G− w. Therefore, it suffices to upper bound the number of paths
inM that contain at least one external color to w in G−w. By Observation 3.2, every such
path inM contains a color that is external to w in M .

The proof is by induction on k, over every color-connected plane graph G, every triplet
of vertices u, v, w in G, and every minimal setM w.r.t. w of k-valid pairwise color-disjoint
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u-v paths in G− w. If k = 1, any path inM contains exactly one external color w.r.t. w in
M . By Lemma 3.9, at most two paths inM contain only external colors. Assume by the
inductive hypothesis that, for each 1 ≤ i < k, we have |M| ≤ g(i). We can assume that M
is irreducible; otherwise, we can apply the color contraction operation and replace M with a
set of paths satisfying the same properties.

By Lemma 3.10, there are (at most) 3 paths inM, such that the subgraph of M induced
by the remaining paths ofM has a u-v vertex-separator S satisfying |S| ≤ 2k + 3. Remove
these 3 paths fromM, and now we can assume thatM has a u-v vertex-separator S satisfying
|S| ≤ 2k + 3; we will add 3 to the upper bound on |M| at the end. We can assume that S is
minimal. S separates M into two subgraphs Mu and Mv such that u ∈ V (Mu), v ∈ V (Mv),
and there is no edge between Mu and Mv. We partitionM into the following groups, where
each group excludes the paths satisfying the properties of the groups defined before it: (1)
The set of paths in M that contain a nonempty vertex in S; (2) the set of paths Mk

u

consisting of each path P inM such that all colors on P appear on vertices in Mu (these
colors could still appear on vertices in Mv as well); (3) the set of paths Mk

v consisting of
each path P inM such that all colors on P appear on vertices in Mv; and (4) the setM<k

of remaining paths inM, satisfying that each path contains a nonempty external vertex to
w in M and contains less than k colors from each of Mu and Mv.

Since the paths inM are pairwise color-disjoint, no nonempty vertex in S appears on
two distinct paths from group (1). Therefore, the number of paths in group (1) is at most
|S| ≤ 2k + 3. Observe that the vertices in S contained in any path from groups (2)-(4) are
empty vertices. To upper bound the number of paths in group (2), for each path P , there is
a last vertex xP (i.e., farthest from u) in P that is in S. Fix a vertex x ∈ S, and let us upper
bound the number of paths P in group (2) for which x = xP . Let Pv be the subpath of P
from x to v. Note that since v is empty and all the vertices in S that are contained in paths
in group (2) are empty, and since M is irreducible, Pv must contain at least one color. Since
all colors appearing on P appear on vertices in Mu, all colors appearing on Pv appear in Mu.
By Lemma 3.11, Mu is contained in a single face f of Mv + x. Since f is a vertex-separator
that separates V (Mu) from V (Pv) in G, by Observation 3.1, every color that appears on Pv
appears on f . By Lemma 3.9, there are at most two x-v paths that contain only colors that
appear on f . This shows that there are at most two paths in group (2) for which x is the
last vertex in S. Since |S| ≤ 2k + 3, this upper bounds the number of paths in group (2) by
2(2k + 3) = 4k + 6. By symmetry, the number of paths in group (3) is upper bounded by
4k + 6.

To upper bound the number of paths in group (4), let S = {s2, . . . , sr−1}, and extend S
by adding the two vertices s1 = u and sr = v to form the set A = {s1, s2, . . . , sr}. For every
two (distinct) vertices sj , sj′ ∈ A, we define a set of paths Pjj′ in G− w whose endpoints
are sj and sj′ as follows. For each path P in group (4), partition (the edges in) P into
subpaths P1, . . . , Pq satisfying the property that the endpoints of each Pi, i ∈ [q], are in A,
and no internal vertex to Pi is in A. For each Pi, i ∈ [q], such that Pi contains a vertex that
contains an external color to w in G−w, let P ′i (possibly Pi) be a subpath in G−w between
the endpoints of Pi satisfying that χ(P ′i ) ⊆ χ(Pi) and χ(P ′i ) is minimal w.r.t. containment.
Since P contains a vertex that contains an external color to w in G − w, it is easy to see
that there exists an i ∈ [q] such that P ′i contains a vertex containing an external color to w
in G− w. Pick any i ∈ [q] satisfying that P ′i contains a vertex containing an external color
to w in G− w, associate P with P ′i , and assign P ′i to the set of paths Pjj′ such that sj and
sj′ are the endpoints of P ′i . The map that takes each P to its P ′i is clearly a bijection.
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Therefore, it suffices to upper bound the number of paths assigned to the sets Pjj′ . Fix a
set Pjj′ . The paths in Pjj′ have sj , sj′ as endpoints, and are pairwise color-disjoint. It is
not difficult to show that Pjj′ is a minimal set of (k− 1)-valid sj-sj′ paths in G−w w.r.t. w.
By the inductive hypothesis, we have |Pjj′ | ≤ g(k − 1). Since the number of sets Pjj′ is at
most

(2k+5
2
)
, the number of paths in group (4) is O(k2) · g(k − 1).

It follows that |M| ≤ g(k), where g(k) satisfies:

g(k) ≤ 3 + (2k + 3) + 2(4k + 6) +O(k2) · g(k − 1) = O(k2) · g(k − 1),

where 3 accounts for the 3 paths removed fromM. Solving the aforementioned recurrence
relation gives g(k) = O(ckk2k), where c > 1 is a constant. J

Applying Lemma 3.12 to a maximal set M of color-disjoint paths in P, and using an
inductive proof, we can show the following theorem:

I Theorem 3.13. Let G be a plane color-connected graph, and let w ∈ V (G). Let G′ be a
subgraph of G − w, and let u, v ∈ V (G′). Every set P of minimal k-valid u-v paths in G′

w.r.t. w satisfies |P| ≤ h(k), where h(k) = O(ck2
k2k2+k), for some constant c > 1.

4 The Algorithm

In this section, we highlight how the FPT algorithm for Colored Path-Con, parameterized
by both k and the treewidth of the input graph works. As pointed out in Section 3, there can
be too many (i.e., more than FPT-many) subsets of colors that appear in a bag, and hence,
that the algorithm may need to store/remember. To overcome this issue, we extend the
notion of a minimal set of k-valid u-v paths w.r.t. a vertex – from the previous section – to a
“representative set” of paths w.r.t. a specific bag and a specific enumerated configuration for
the bag. This allows us to upper bound the size of the table, in the dynamic programming
algorithm, stored at a bag by a function of both k and the treewidth of the graph.

Let (G,C, χ, s, t, k) be an instance of Colored Path-Con. Let (V, T ) be a nice tree
decomposition of G. By Assumption 2.1, we can assume that s and t are nonadjacent empty
vertices. We add s and t to every bag in T , and now we have {s, t} ⊆ Xi, for every bag
Xi ∈ T . For a bag Xi, we say that v ∈ Xi is useful if |χ(v)| ≤ k. Let Ui be the set of all
useful vertices in Xi and let Ui = Xi \ Ui. We denote by Vi the set of vertices in the bags of
the subtree of T rooted at Xi. For any two vertices u, v ∈ Xi, let Giuv = G[(Vi \Xi)∪{u, v}].
We extend the notion of a minimal set of k-valid u-v paths w.r.t. a vertex, developed in the
previous section, to the set of vertices in a bag of T .

I Definition 4.1. A set of k-valid u-v paths Puv in Giuv is minimal w.r.t. Xi if it satisfies
the following properties:
(i) There does not exist two paths P1, P2 ∈ Puv such that χ(P1) ∩ χ(Xi) = χ(P2) ∩ χ(Xi);
(ii) there does not exist two paths P1, P2 ∈ Puv such that χ(P1) ⊆ χ(P2); and
(iii) for any P ∈ Puv there does not exist a u-v path P ′ in Giuv such that χ(P ′) ( χ(P ).

The following lemma uses the upper bound on the cardinality of a minimal set of k-valid
u-v paths w.r.t. a vertex, derived in Theorem 3.13 in the previous section, to obtain an upper
bound on the cardinality of a minimal set of k-valid u-v paths w.r.t. a bag of T :

I Lemma 4.2. Let Xi be bag, u, v ∈ Xi, and Puv a set of k-valid u-v paths in Giuv
that is minimal w.r.t. Xi. Then the number of paths in Puv is at most h(k)|Xi|, where
h(k) = O(ck2

k2k2+k), for some constant c > 1.
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I Definition 4.3. Let Xi be a bag in T . A pattern π for Xi is a sequence
(v1 = s, σ1, v2, σ2, . . . , σr−1, vr = t), where σi ∈ {0, 1} and vi ∈ Ui. For a bag Xi, and
a pattern (v1 = s, σ1, v2, σ2, . . . , σr−1, vr = t) for Xi, we say that a sequence of paths
S = (P1, . . . , Pr−1) conforms to (Xi, π) if:

For each j ∈ [r − 1], σj = 1 implies that Pj is an induced path from vj to vj+1 whose
internal vertices are contained in Vi \Xi and Pj is empty otherwise; and
|χ(S)| = |

⋃
j∈[r−1] χ(Pj)| ≤ k.

I Definition 4.4. Let Xi be a bag, π a pattern for Xi, and S1,S2 two sequences of paths
that conform to (Xi, π). We write S1 �i S2 if |χ(S1) ∪ (χ(S2) ∩ χ(Xi))| ≤ |χ(S2)|.

Using the relation �i on the set of sequences that conform to (Xi, π), we can define the
key notion of representative sets that makes the dynamic programming approach work:

I Definition 4.5. Let Xi be a bag and π = (v1, σ1, v2 . . . , σr−1, vr) a pattern for Xi. A set
Rπ of sequences that conform to (Xi, π) is a representative set for (Xi, π) if:
(i) For every sequence S1 ∈ Rπ, and for every sequence S2 6= S1 that conforms to (Xi, π),

if S1 �i S2 then S2 /∈ Rπ;
(ii) for every sequence S ∈ Rπ, and for every path P ∈ S between vj and vj+1, j ∈ [r − 1],

there does not exist a vj-vj+1 path P ′ in Givjvj+1
such that χ(P ′) ( χ(P ); and

(iii) for every sequence S /∈ Rπ that conforms to (Xi, π) and satisfies that no two paths in
S share a vertex that is not in Xi, there is a sequence W ∈ Rπ such that W �i S.

The following lemma uses the upper bound on the cardinality of a minimal set of k-valid
u-v paths w.r.t. a bag Xi, derived in Lemma 4.2, to obtain an upper bound on the cardinality
of a representative set w.r.t. a bag and a fixed pattern (Xi, π):

I Lemma 4.6. Let Xi be bag, π a pattern for Xi, and Rπ be a representative set for (Xi, π).
Then the number of sequences in Rπ is at most h(k)|Xi|2 , where h(k) = O(ck2

k2k2+k), for
some constant c > 1.

For each bag Xi, we maintain a table Γi that contains, for each pattern for Xi, a
representative set of sequences Rπ for (Xi, π). The rest is a technical dynamic programming
algorithm over (V, T ) that computes the table Γi at a bag Xi for each bag type (introduce,
forget, join) in the nice tree decomposition. We conclude with the following theorem:

I Theorem 4.7. There is an algorithm that on input (G,C, χ, s, t, k) of Colored Path-
Con, either outputs a k-valid s-t path in G or decides that no such path exists, in time
O?(f(k)6ω2), where ω is the treewidth of G and f(k) = O(ck2

k2k2+k), for some constant
c > 1. Therefore, Colored Path-Con parameterized by both k and the treewidth ω of the
input graph is FPT.

5 Extensions and Applications

In this section, we explain how to extend the FPT result for Colored Path-Con w.r.t. the
parameterization by both k and the treewidth of the graph, to the parameterization by both
k and the length ` of the sought path, and discuss important applications of this extended
result. We formally define the problem w.r.t. the parameterization by k and `:
Bounded-length Colored Path-Con
Given: A planar graph G; a set of colors C; χ : V −→ 2C ; two designated vertices
s, t ∈ V (G); and k, ` ∈ N
Question: Does there exist a k-valid s-t path of length at most ` in G?
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48:12 How to Navigate Through Obstacles?

To extend Theorem 4.7, we repeatedly contract every edge uv incident to a vertex v whose
distance to s is more than `+ 1; we assign the resulting vertex the color set χ(u)∪χ(v). (We
do not delete such vertices in order to preserve the color-connectivity property.) Afterwards,
the radius of G is at most `+1, and hence G has treewidth at most 3 · (`+1)+1 = 3`+4 [14].
Although the treewidth of G is bounded by a function of `, we cannot use the FPT algorithm
for Colored Path-Con, parameterized by k and the treewidth of G, to solve Bounded-
length Colored Path-Con because a k-valid path returned by the algorithm for Colored
Path-Con may have length more than `. We can extend the FPT results for Colored
Path-Con to Bounded-length Colored Path-Con to show the following:

I Theorem 5.1. Bounded-length Colored Path-Con parameterized by both k and the
length of the path is FPT.

We now describe applications of Theorem 5.1. The first application is a direct consequence
of this theorem.

I Corollary 5.2. For any computable function h, the restriction of Colored Path-Con to
instances in which the length of the path is at most h(k) is FPT parameterized by k.

We note that the above restriction of Colored Path-Con can be shown to be NP-hard.
Corollary 5.2 directly implies Korman et al.’s results [12], showing that Obstacle

Removal is FPT for unit-disk obstacles and for similar-size fat-region obstacles with constant
overlapping number. Using Bereg and Kirkpatrick’s result [2], the length of a shortest k-valid
path for unit-disk obstacles is at most 3k (see also Lemma 3 in Korman et al. [12]). By
Corollary 2 in [12], the length of a shortest k-valid path for similar-size fat-region obstacles
with constant overlapping number is linear in k. Corollary 5.2 generalizes these FPT results,
which required quite some effort, and provides an explanation to why the problem is FPT for
such restrictions, namely because the path length is upper bounded by a function of k.

The second application is related to an open question posed in [9, 11]. For an instance
I = (G,C, χ, s, t, k) of Colored Path-Con, and a color c ∈ C, define the intersection
number of c, denoted ι(c), to be the number of vertices in G on which c appears. Define the
intersection number of G, ι(G), as max{ι(c) | c ∈ C}.

I Corollary 5.3. For any computable function h, Colored Path-Con restricted to instances
(G,C, χ, s, t, k) satisfying ι(G) ≤ h(k) is FPT parameterized by k.

Corollary 5.3 has applications pertaining to instances of Connected Obstacle Removal
whose auxiliary graphs have intersection number bounded by a function of k. An interesting
case that was studied is when the obstacles are convex polygons, each intersecting at most
a constant number of other polygons. The complexity of this problem was posed as an
open question in [9, 11], and remains unresolved. Corollary 5.3 implies that the problem is
FPT, even for the more general setting in which the obstacles are arbitrary convex regions
satisfying that the number of regions intersected by any region is a constant. (Note that
convexity is important here.)
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Abstract
We consider integer programming problems max{cTx : Ax = b, l ≤ x ≤ u, x ∈ Znt} where
A has a (recursive) block-structure generalizing n-fold integer programs which recently received
considerable attention in the literature. An n-fold IP is an integer program where A consists of
n repetitions of submatrices A ∈ Zr×t on the top horizontal part and n repetitions of a matrix
B ∈ Zs×t on the diagonal below the top part. Instead of allowing only two types of block matrices,
one for the horizontal line and one for the diagonal, we generalize the n-fold setting to allow for
arbitrary matrices in every block. We show that such an integer program can be solved in time
n2t2ϕ · (r s∆)O(rs2+sr2) (ignoring logarithmic factors). Here ∆ is an upper bound on the largest
absolute value of an entry of A and ϕ is the largest binary encoding length of a coefficient of c.
This improves upon the previously best algorithm of Hemmecke, Onn and Romanchuk that runs
in time n3t3ϕ · ∆O(st(r+t)). In particular, our algorithm is not exponential in the number t of
columns of A and B.

Our algorithm is based on a new upper bound on the `1-norm of an element of the Graver
basis of an integer matrix and on a proximity bound between the LP and IP optimal solutions
tailored for IPs with block structure. These new bounds rely on the Steinitz Lemma.

Furthermore, we extend our techniques to the recently introduced tree-fold IPs, where we
again present a more efficient algorithm in a generalized setting.
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49:2 Faster Algorithms for IPs with Block Structure

1 Introduction

An integer program (IP) is an optimization problem of the form

max{cTx : Ax = b, l ≤ x ≤ u, x ∈ Zn} (1)

which is described by a constraint matrix A ∈ Zm×n, an objective function vector c ∈ Zn a
right-hand side vector b ∈ Zm and lower and upper bounds l ≤ x ≤ u. Integer programming
is one of the most important paradigms in the field of algorithms as a breadth of combinatorial
optimization problems have an IP-model, see, e.g. [17, 20]. Since integer programming is
NP-hard, there is a strong interest in restricted versions of integer programs that can be solved
in polynomial time, while still capturing interesting classes of combinatorial optimization
problems. A famous example is the class of integer programs with totally unimodular
constraint matrix, capturing flow, bipartite matching, and shortest path problems for
example. This setting has been extended to bimodular integer programming recently [1].

Another such polynomial-time solvable restriction is n-fold integer programming [6].
Given two matrices A ∈ Zr×t and B ∈ Zs×t and a vector b ∈ Zr+ns for some r, s, t, n ∈ Z+.
An n-fold Integer Program (n-fold IP) is an integer program (1) with constraint matrix

A =



A A . . . A

B 0 . . . 0

0 B
...

...
. . . 0

0 . . . 0 B

 (2)

Clearly, one can assume that t ≥ r and t ≥ s holds, as linearly dependent equations can be
removed. Notice that the number of variables of an n-fold integer program is t · n. The best
known algorithm to solve an n-fold IP is due to Hemmecke, Onn and Romanchuk [10] with a
running time of O(n3t3ϕ) ·∆O(st(r+t)), where ∆ is the absolute value of the largest entry in
A and ϕ is the logarithm of the largest absolute value of a component of c. For fixed ∆, r, s
and t, the running time depends only polynomially (cubic) on the number of variables and
is therefore more efficient than applying algorithms for general IPs based on lattice-basis
reduction [12, 16] or dynamic programming [7, 19].

The n-fold setting has gained strong momentum in the last years, especially in the fields of
parameterized complexity and approximation algorithms. An algorithm is fixed parameter
tractable (fpt) with respect to a parameter k derived from the input, if its running time is of
the form f(k) · nO(1) for some computable function f . The result of Hemmecke et al. [10]
shows that integer programming is fixed parameter tractable with respect to ∆, s, r and t.

This opens the possibility to model combinatorial optimization problems with a fixed
parameter as an n-fold integer program, see for instance [3, 13] and thereby obtain novel
new results in the area of parameterized complixity. Very recently Jansen, Klein, Maack and
Rau [11] used n-fold IPs to formulate an enhanced configuration IP, that is capable to track
additional properties of configurations. With this enhanced IP they were able to develop
approximation algorithms for several scheduling problems that involve setups. Not only for
the scheduling problems, but also in the design of efficient algorithms for string and social
choice problems, n-fold IPs have been successfully applied [14, 15].

A generalization of the classical n-fold IP, called tree-fold IP, was very recently introduced
by Chen and Marx [2]. A matrix A is of tree-fold structure, if it is of recursive n-fold
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structure, i.e. the matrices B(i) in IP (2) are of n′-fold structure themselves, and so on. Chen
and Marx presented an algorithm to solve tree-fold IPs which runs in time f(L) · n3ϕ, where
ϕ is the encoding length and L involves parameters of the tree like the height of the tree and
the number of variables and rows of the involved sub-matrices. They applied the tree-fold
IP to a special case of the traveling salesman problem, where m clients have to visit every
node of a weighted tree and the objective is to minimize the longest tour over all clients.
Using the framework of tree-fold IPs, they obtained an fpt algorithm with a running time of
f(K) · |V |O(1), where K is the longest tour of a client in the optimal solution and V is the set
of vertices of the tree. However, the function f involves a term with a tower of K exponents.

1.1 Graver Bases and Augmentation Algorithms
Before we discuss our contributions, we have to review the core concepts of the algorithm of
Hemmecke, Onn and Romanchuk [10] in a nutshell.

Suppose we are solving a general integer program (1) with constraint matrix A ∈ Zm×n
and that we have a feasible solution z0 at hand. Let z? be an optimal solution. The vector
z? − z0 lies in the kernel of A, i.e., A(z? − z0) = 0. An integer vector y ∈ ker(A) is called a
cycle of A. Two vectors u, v ∈ Rn are said to be sign compatible if ui · vi ≥ 0 for each i. A
cycle y ∈ ker(A) is indecomposable if it is not the sum of two sign-compatible and non-zero
cycles of A. The set of indecomposable and integral elements from the kernel of A is called
the Graver basis of A, [8], see also [18, 5].

A result of Cook, Fonlupt and Schrijver [4] implies that there exist 2n Graver-basis
elements g1, . . . , g2n ∈ ker(A) each sign compatible with z? − z0 such that

z? − z0 =
2n∑
i=1

λigi

holds for λi ∈ N0. For each i one has that z0 + λigi is a feasible integer solution of (1).
Furthermore, there exists one i with cT (z?−z0)/(2n) ≤ λicT gi. Thus there exists an element
g of the Graver basis of A and a positive integer λ ∈ N such that z0 + λ g is feasible and the
gap to the optimum value has been reduced by a factor of 1− 1/(2n).

Why should it be any simpler to find such an augmenting vector g as above? The crucial
ingredient that is behind the power of this approach are bounds on the `1-norm of elements
of the Graver basis of A. In some cases, these bounds are much more restrictive than the
original lower and upper bounds l ≤ x ≤ u and thus help in dynamic programming. In fact,
each element g of the Graver basis of A has `1-norm bounded by ‖g‖1 ≤ δ · (n−m) where δ
is the largest absolute value of a sub-determinant of A, see [18]. Applying the Hadamard
bound, this means that

‖g‖1 ≤ mm/2∆m · (n−m), (3)

where ∆ is a largest absolute value of an entry of A. Let us denote mm/2∆m · (n−m) by
GA. In order to find an augmenting solution which reduces the optimality gap by a factor of
(roughly) 1− 1/n one solves the following augmentation integer program with a suitable λ,

max{cT y : Ay = 0, l − z0 ≤ λ · y ≤ u− z0, ‖y‖1 ≤ GA, y ∈ Zn}. (4)

and replaces z0 by z0 + λ · y?, where y? is the optimal solution of (4). The number of
augmenting steps can be bounded by O(n log(cT (z? − z0))).

At first sight, it seems that one has not gained much with this approach, except that the
right-hand side vector b has disappeared. In the case of n-fold integer programming however,
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the `1-norm of an element of the Graver basis of A is bounded by a function in r, s, t and ∆
and thus much smaller than the bound (3). This can be exploited in dynamic programming
approaches.

Contributions of this paper. We present several elementary observations that, together,
result in a much faster algorithm for integer programs with block structure including n-fold
and tree-fold integer programs. We start with the following.
i) The `1-norm of an element of the Graver basis of a given matrix A ∈ Zm×n is bounded

by (2m ·∆ + 1)m, where ∆ is an upper bound on the absolute value of each entry of A.
This is shown with the Steinitz lemma and uses similar ideas as in [7]. Compared to the
previous best bound (3), this new bound is independent on the number of columns n of
A.

We then turn our attention to integer programming problems

max{cTx : Ax = b, l ≤ x ≤ u, x ∈ Zn×t} (5)

with constraint matrix of the form

A =



A(1) A(2) . . . A(n)

B(1) 0 . . . 0

0 B(2) ...
...

. . . 0
0 . . . 0 B(n)

 ,

where A(1), . . . , A(n) ∈ Zr×t and B(1), . . . , B(n) ∈ Zs×t are arbitrary matrices. This is a more
general setting than n-fold integer programming, since the matrices on the top line and on
the diagonal respectively do not have to repeat. In this setting, we obtain the following
results.
ii) The `1-norm of an element of the Graver basis of A is bounded by O(r s∆)(r+1)(s+1)

which is independent on the number of columns t of the A(i) and B(i).
iii) We next provide a special proximity bound for integer programs with block structure (5).

Let x? be an arbitrary optimal solution of the linear programming relaxation of (5). We
show that there exists an optimal solution z? of (5) with

‖x? − z?‖1 ≤ n t (r s∆)O(r s).

iv) We then exploit the bounds ii) and iii) in a new dynamic program to solve (5). Its
running time is bounded by

n2t2ϕ log2 nt · (rs∆)O(r2s+rs2) + LP

where ϕ denotes the largest binary encoding length of c, and LP denotes the time needed
to solve the LP relaxation of (5).

The main advantage of the running time of our algorithm is the improved dependency
on the parameter t. In contrast, the previous best known algorithm by Hemmecke, Onn
and Romanchuk [10] for classical n-fold IPs invovles a term ∆O(st2) and therefore has an
exponential dependency on t. Recall that we can assume that t ≥ r, s holds. The number of
columns t can be very large. Even if we do not allow column-repetitions, t can be as large as
∆r+s and in applications involving configuration IPs this is often the order of magnitude one
is dealing with. Knop, Koutecky and Mnich [14] improved the dependency of t in a special
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setting of n-fold to a factor tO(r). In their setting, the matrix B on the diagonal consists of
one line of ones only. Our running time is an improvement of their result also in this case.

Next, we generalize the notion of tree-fold IPs of [2] where we allow for arbitrary matrices
at each node. This yields a rather natural description of a generalized tree-fold IP. We refer
to Section 4 for the precise definition.

In this setting we obtain the following result.
v) We present an algorithm for generalized tree-fold IPs with a running time that is roughly

doubly exponential in the height of the tree (for a precise running time we refer to
Lemma 10). With this algorithm we improve upon the algorithm by Chen and Marx [2],
which has a running time involving a term that has a tower of τ exponents, where τ is
the height of the tree.

vi) Using the tree-fold IP formulation of [2], this implies an fpt algorithm for the the
traveling salesman problem on trees with m clients with running time 22poly(K) · |V |O(1),
where K is the longest tour of an optimal solution over all clients.

Notation. We use the following notation throughout this paper. For positive numbers
n, r, s, t ∈ N and index i = 1, . . . , n, let A(i) ∈ Zr×t, B(i) ∈ Zs×t with

∣∣∣∣A(i)
∣∣∣∣
∞,
∣∣∣∣B(i)

∣∣∣∣
∞ ≤ ∆

for some constant ∆. Columns of matrices are denoted with a lower index, i.e. the j-th
column of the matrix A(i) is denoted by A(i)

j , and so on. With log x, we denote the logarithm
to the basis 2 of some number x.

We will often subdivide the set of entries in a vector y ∈ Rnt or a vector Ay ∈ Rr+ns into
bricks. A vector y ∈ Rnt will consist of n bricks with t variables each, i.e.

yT =
(
(y(1))T , (y(2))T , . . . , (y(n))T

)
with the brick y(i) ∈ Rt corresponding to the block B(i). A vector g = Ay ∈ Rr+ns will
consist of n+ 1 bricks,

(Ay)T =
(
(g(0))T , (g(1))T , . . . , (g(n))T

)
,

where the first brick g(0) ∈ Rr consists of the first r entries and corresponds to the block row
(A(1), . . . , A(n)) of A, and every other block g(i), i ≥ 1, consists of s entries and corresponds
to the block B(i). We will always use upper indices with brackets when referring to the
bricks, and the indices will coincide with the index of the block B(i) they correspond to
(except brick g(0)). A simple but crucial observation we will use several times is the following.
If y is a cycle of A, then each brick y(i) is already a cycle of the matrix B(i).

2 The norm of a Graver-basis element

In this section, we provide the details of the contributions i) and ii). We will make use of the
following lemma of Steinitz [9, 21]. Here ‖ · ‖ denotes an arbitrary norm.

I Lemma 1 (Steinitz Lemma). Let v1, . . . , vn ∈ Rm be vectors with ||vi|| ≤ ∆ for i = 1, . . . , n.
If
∑n
i=1 vi = 0, then there is a reordering π ∈ Sn such that for each k ∈ {1, . . . , n} the partial

sum pk :=
∑k
i=1 vπ(i) satisfies ||pk|| ≤ m∆ (for the same norm ‖ · ‖).

I Lemma 2. Let A ∈ Zm×n be an integer matrix, let ∆ be an upper bound on the absolute
value of each component of A, and let y ∈ Zn be an element of the Graver basis of A. Then
‖y‖1 ≤ (2m∆ + 1)m.
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Proof. We define a sequence of vectors v1, . . . , v‖y‖1 ∈ Zm in the following manner. If yj ≥ 0,
we add yj copies of the j-th column of A to the sequence, if yj < 0 we add |yj | copies of the
negative of column j to the sequence.

Clearly, the vi sum up to zero and their `∞-norm is bounded by ∆. Using Steinitz, there
is a reordering uπ(1), . . . , uπ(‖y‖1) of this sequence s.t. each partial sum pk :=

∑k
j=1 uπ(j) is

bounded by m∆ in the l∞-norm. Clearly,

|{x ∈ Zm : ‖x‖∞ ≤ m∆}| = (2m∆ + 1)m .

Thus, if ‖y‖1 > (2m∆ + 1)m, then two of these partial sums are the same and we have
a sequence uπ(k) + · · · + uπ(k+`) = 0. But then we can decompose y into two vectors
corresponding to this sequence and the remaining vectors uπ(i). This shows the claim. J

We will now apply the Steinitz lemma to bound the `1-norm of an element of the Graver
basis of

A =



A(1) A(2) . . . A(n)

B(1) 0 . . . 0

0 B(2) ...
...

. . . 0
0 . . . 0 B(n)

 ,

where A(1), . . . , A(n) ∈ Zr×t and B(1), . . . , B(n) ∈ Zs×t are arbitrary matrices. Lemma 2
shows that the `1-norm of an element of the Graver basis of a matrix B(i) is bounded by
(2 s∆ + 1)s =: LB .

I Lemma 3. Let y be a Graver-basis element of A, then

||y||1 ≤ LB (2r∆LB + 1)r =: LA.

Proof. Let g be a Graver basis element of B(i). Note that as ||g||1 ≤ LB and
∣∣∣∣A(i)

∣∣∣∣
∞ ≤ ∆,

the infinity-norm of the vector A(i)g is bounded by∣∣∣∣∣∣A(i)g
∣∣∣∣∣∣
∞
≤ ∆LB . (6)

Now consider a Graver basis element y ∈ Znt of A and split it according to the matrices
B(i) into bricks, i.e. yT = ((y(1))T , . . . , (y(n))T ) with each y(i) ∈ Zt being a cycle of B(i).
Hence, each y(i) can be decomposed into the sum of Graver basis elements y(i)

j of B(i), i.e.
y(i) = y

(i)
1 + · · ·+ y

(i)
Ni

. Thus, we have a decomposition

0 = (A(1), . . . , A(n))y

= A(1)y(1) + · · ·+A(n)y(n)

= A(1)y
(1)
1 + · · ·+A(1)y

(1)
N1

+ · · ·+A(n)y
(n)
1 + · · ·+A(n)y

(n)
Nn

=: v1 + · · ·+ vN ∈ Zr

for some N =
∑n
i=1Ni and ||vi||∞ ≤ ∆LB for i = 1, . . . , N , using (6). Now we apply

Steinitz to reorder the vi s.t. each partial sum is bounded by r∆LB in the l∞-norm. Again,
if two partial sums were the same, we could decompose y, thus the number N of vectors
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vi is bounded by (2r∆LB + 1)r. Each vi is of the form A(j)y
(j)
k for some j and k with

‖y(j)
k ‖1 ≤ LB , hence

||y||1 ≤ LB (2r∆LB + 1)r

= LA,

finishing the proof. J

As LB ∈ O(s∆)s in our case, this shows LA ∈ O(rs∆)(r+1)(s+1), as stated in point ii) in the
previous chapter.

3 Solving the Generalized n-fold IP

Given a feasible solution x of the IP (5) we now follow the principle that we outlined in
Section 1.1. There exists an element y of the Graver basis of A and a positive integer λ ∈ N
such that x+λ y is feasible and reduces the gap to the optimum value by a factor of 1−1/(2n).
Suppose that we know λ. With our bound on ‖y‖1 ≤ LA we will find an augmenting vector
of at least this quality by solving (a relaxation of) the following augmentation IP:

max cT y (7)
Ay = 0
||y||1 ≤ LA

l − z ≤ λy ≤ u− z
y ∈ Znt

The vector y we compute might violate the condition ||y||1 ≤ LA, but we will have that cT y
is at least as big as the optimum value of (7).

I Lemma 4. Let λ be a fixed positive integer. In time nt (rs∆)O(r2s+rs2), we can find an
integral vector y with Ay = 0, l − z ≤ λy ≤ u− z and cT y ≥ cT y?, where y? is an optimum
solution for (7).

Proof. As λ is fixed, it will be convenient to rewrite the bounds on the variables as

l? ≤ y ≤ u? with (8)

l?i = max
{⌈

li − zi
λ

⌉
,−LA

}
u?i = min

{⌊
ui − zi
λ

⌋
, LA

}
.

In particular, u? <∞. First observe that for each y ∈ Znt with ||y||1 ≤ LA, one has

||Ay||∞ ≤ ∆LA. (9)

We can decompose y = (y(1), . . . , y(n)) into bricks according to the matrices B(i), and
B(k)y(k) = 0 has to hold independently of the other variables. Let U ⊆ Zr+s be the set of
integer vectors of infinity norm at most ∆LA. To find an optimal y? for the augmentation
IP (7) we construct the following acyclic digraph. There are two nodes 0start and 0target,
together with nt copies of the set U , arranged in n blocks of t layers as

U
(1)
1 , . . . , U

(1)
t , U

(2)
1 , . . . , U

(2)
t , . . . , U

(n)
1 . . . U

(n)
t ,
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where the k-th block will correspond to the matrix

M (k) :=
(
A(k)

B(k)

)
(and thus to the brick y(k) of y). Writing M (k)

j for the j-th column of the matrix M (k), the
arcs are given as follows. There is an arc from 0start to v ∈ U (1)

1 if there is an integer y1 such
that

v = y1M
(1)
1 and l?1 ≤ y1 ≤ u?1

holds. The weight of this arc is c1y1.
For two nodes u ∈ Uki−1 and v ∈ Uki of two consecutive layers in the same block, we add

an arc (u, v) if there is an integer y(k−1)t+i such that

v − u = y(k−1)t+iM
(k)
i and l?(k−1)t+i ≤ y(k−1)t+i ≤ u?(k−1)t+i

holds, i.e. if we can get from u to v by adding the i-th column of
(
A(k)

B(k)

)
multiple times. The

weight is c(k−1)t+i · y(k−1)t+i. It remains to define the arcs between two blocks. If we fix a
path through the whole block U (k)

1 , . . . , U
(k)
t , this corresponds to fixing a brick y(k). Note

that M (k)y(k) has to be zero in the last s components, since continuing with this path in
the next block will not change the entries of Ay corresponding to B(k) any more. Thus, for
placing an arc between two nodes u ∈ Ukt and v ∈ Uk+1

1 in two consecutive layers of different
blocks, also the constraints ur+1 = · · · = ur+s = 0 have to be fulfilled.

Finally, we add arcs from u ∈ U (n)
t to 0target if there exists an integer ynt such that

−u = yntM
(n)
t and l?nt ≤ ynt ≤ u?nt

holds. Again, the weight is cntynt.
Clearly, a longest (0start − 0target)-path corresponds to an optimum solution of the

augmentation IP (7), hence it is left to limit the time needed to find such a path.
The out-degree of each node is bounded by u?i − l?i ≤ 2LA + 1 using (8). Therefore, the

number of arcs is bounded by

nt · |U | · (2LA + 1) = nt (2∆LA + 1)r+s (2LA + 1)

≤ nt (2∆LA + 1)r+s+1

≤ nt (2∆LB (2r∆LB + 1)r + 1)r+s+1

= nt · O(∆r)r
2s+rs2+o(r2s+rs2)O(s)r

2+rs+r.

We can find a shortest path by a Breadth-First Search in time linear in the number of
edges. J

In the following lemma we consider the value Γ := maxi(ui − li). In the case u <∞, we can
estimate Γ ≤ 2ϕ and obtain a fixed running time in combination with Lemma 4. However, if
there are variables present that are not bounded from above, we will combine this lemma
with the proximity result of the next Section 3.1 which allows us to introduce artificial upper
bounds u′ <∞.

I Lemma 5. Consider the n-fold IP (5) with u <∞. Let Γ := maxi(ui−li). Given an initial
feasible solution, we can find an optimum solution of the IP by solving the augmentation
IP (7) for a constant λ ∈ Z+ at most

O (nt log(Γ) (log(ntΓ) + ϕ))

times, where ϕ is the logarithm of the largest number occurring in the objective function c.
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Proof (sketch). As previously discussed, for every feasible z there exists a pair (λ, y) s.t.
z + λy is feasible and reducing the gap to the optimum value by 1− 1/(2nt). This leads to
roughly nt log(nt ||c||∞ Γ) iterations. If we only guess values for λ that are a power of 2, we
only lose a constant factor but are able to limit the number of guesses. We refer to the full
version of the paper for details. J

3.1 Proximity for n-fold IPs
If no explicit upper bounds are given (i.e. ui =∞ for some indices i), we cannot bound the
number of necessary augmentation steps directly. To overcome this difficulty, we will present
a proximity result in this section, stating that for an optimum rational solution x?, there
exists an optimum integral solution z? with ||x? − z?||1 ≤ ntLA.

With this proximity result, we can first compute an optimum LP solution x?, and then
introduce artificial box constraints l(x?) ≤ z ≤ u(x?), depending on x?, knowing that at
least one optimum IP solution lies within the introduced bounds.

I Lemma 6. Let x? be an optimum solution to the LP relaxation of (5). There exists an
optimum integral solution z? to (5) with

||x? − z?||1 ≤ ntLA = nt(rs∆)O(rs).

Proof. Let x? be an optimum vertex solution of the LP relaxation of (5) and z? be an
optimum (integral) solution of (5) that minimizes the l1-distance to x?.

We say a vector y dominates a cycle y′ if they are sign-compatible and |y′i| ≤ |yi| for each
i. The idea is to show that if the l1-distance is too large, we can find a cycle dominated
by z? − x? and either add it to x? or subtract it from z? leading to a contradiction in both
cases. However, as z? − x? is fractional, we cannot decompose it directly but have to work
around the fractionality.

To this end, denote with bx?e the vector x? rounded towards z? i.e. bx?i e = bx?i c if z?i ≤ x?i
and bx?i e = dx?i e otherwise. Denote with {x?} the fractional rest i.e. {x?} = x? − bx?e.
Consider the equation

A (z? − x?) = A (z? − bx?e)−A{x?} = 0.

Consider the integral vector A{x?}. For each index i, we will obtain an integral vector wi
out of {x?}iAi by rounding the entries suitably such that

A{x?} =
nt∑
i=1

({x?}iAi) = w1 + · · ·+ wnt.

To be more formal, fix an index j and let a1, . . . , ant denote the j-th entry of the vectors
{x?}iAi. Define f :=

(∑nt
i=1 ai − baic

)
∈ Z+ as the sum of the fractional parts. We round

up f of the fractional entries ai, and we round down all other fractional entries. If some ai is
integral already, it remains unchanged. After doing this for each component j, we obtain the
vectors wi as claimed. As ||{x?}||∞ ≤ 1, each vector wi is dominated by either Ai or −Ai,
in particular it inherits the zero entries.

Define the matrix

A′ := (w1, . . . , wnt) .

After permuting the columns, the matrix (A,−A′) has n-fold structure with parameters
r, s, 2t. As Lemma 3 does not depend on t, the Graver basis elements of (A,−A′) are bounded
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by LA as well. We can now identify

A(z? − x?) = (A,−A′)
(
z? − bx?e

1nt

)
= 0,

and decompose the integral vector
(
z?−bx?e

1nt

)
into Graver basis elements of l1-norm at most

LA. But if

ntLA < ||z? − x?||1 ≤
∣∣∣∣∣∣∣∣(z? − bx?e1nt

)∣∣∣∣∣∣∣∣
1
,

we obtain at least nt+ 1 cycles. As ||1nt||1 = nt, this grants a cycle
(
ȳ

0nt

)
and hence a cycle

ȳ of A.
Case 1: cT ȳ ≤ 0: As ȳ is dominated by z? − bx?e, removing cycle ȳ from the solution

gives a new solution z̄ = z?− ȳ with cT z̄ ≥ cT z?, which is closer to the fractional solution x?.
However, this contradicts the fact that z? was chosen to be a solution with minimal distance
||x? − z?||1.

Case 2: cT ȳ > 0: As we rounded x? towards z? and ȳ is dominated by z? − bx?e, we
can add ȳ to x? and obtain a better solution, contradicting its optimality. J

We are now able to state our main theorem.

I Theorem 7. The generalized n-fold IP (5) can be solved in time

n2t2ϕ log2 nt · (rs∆)O(r2s+rs2) + LP

where ϕ denotes the logarithm of the largest number occurring in the input, and LP denotes
the time needed to solve the LP relaxation of (5).

We refer to the full paper for a detailed analysis of the running time.

4 Tree-Fold IPs

Given matrices A(i) ∈ Zmi×n and vectors b(i) ∈ Zmi for i = 1, . . . , N and c, l, u ∈ Zn for
some n,N ∈ Z+, m1, . . . ,mN ∈ Z+. We consider the following IP consisting of a system of
(systems of) linear equations

max cTx (10)

A(1)x = b(1)

...

A(N)x = b(N)

l ≤ x ≤ u
x ∈ Zn.

We call (10) a tree-fold IP, if for every matrix A(i) there is an index set S(i) containing all
indices of the non-zero columns of A(i), i.e.

S(i) ⊇
{
j | A(i)

j 6= 0
}
,

such that the following two conditions hold. For all i, j, the sets S(i), S(j) are either disjoint,
or one of the sets is contained in the other. There is a matrix A(i0) for which S(i0) contains
all column indices.
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A(4) A(5) A(6) A(7) A(8)

A(2) A(3)

A(1)

Â(1)

Â(2) 0 0 0

0 0 Â(3)

Â(4) 0 0 0 0

0 Â(5) 0 0 0

0 0 Â(6) 0 0

0 0 0 Â(7) 0

0 0 0 0 Â(8)




Figure 1 A matrix tree T and the induced tree-fold matrix T , where Â(i) denotes the part of

A(i) that consists of the columns with index in S(i). Note that if A(1) was not present, the set of
columns of T could be bipartitioned into two sets orthogonal to each other.

Intuitively, the partial ordering induced by the sets S(i) forms a tree T on the matrices
A(i) (if the arcs stemming from transitivity are omitted). The root of this tree is the matrix
A(i0) with the largest set S(i0).

Analogously to our n-fold results, we will provide an upper bound on the l1-norm of
Graver basis elements of tree-fold matrices, together with a proximity result for optimum
solutions. This will be sufficient to obtain an algorithm with a comparable running time.

Throughout this section, T will denote a tree as in Figure 1, we will denote the depth by
τ and enumerate the layers starting at the deepest leaves (the leaves are not necessarily all
in the same layer). The whole matrix induced by a tree-fold IP will be denoted by T . This
is, the IP (10) can be rewritten as

max cTx (11)
T x = b

l ≤ x ≤ u
x ∈ Zn

I Lemma 8. Let T be a tree-fold matrix where the corresponding matrix tree T has τ layers.
Let the matrices of layer i have at most si rows and define s =

∏τ
i=1(si+ 1) and ∆ := ||T ||∞.

Then the Graver basis elements of T are bounded in their l1-norm by

Lτ ≤ (3s∆)s−1
.

Proof (sketch). We enumerate the layers of T starting at the layer with the deepest leaves.
We prove the claim by induction on the number τ of layers in the tree T . First observe that
for τ = 1, the claim follows by Lemma 2, as

L1 ≤ (2s1∆ + 1)s1 ≤ (3s∆)s−1.

For the induction step, note that every child matrix A(i) of the root in T can be seen as
the root matrix of a subtree Ti in T of depth τ − 1 with at most s1, . . . , sτ−1 rows in the
corresponding layers. More formal, delete the root A(1) in T and let Ti be the connected
component A(i) is in. Write

s̃ =
τ−1∏
i=1

(si + 1),
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i.e. s = s̃(sτ + 1). By induction, we know that all Graver basis elements of the subtree-fold
IPs Ti induced by Ti are bounded by

Lτ−1 ≤ (3s̃∆)s̃−1 ≤ (3s∆)s̃−1. (12)

The rest of the induction step works similar to the proof of Lemma 3. We pick a cycle y of T ,
decompose it into Graver basis elements for the subtree-fold matrices Ti and obtain a Steinitz
sequence of vectors bounded by the induction hypothesis. However, due to space constraints,
we omit the remaining part of this proof and refer to the full version of the paper. J

The following lemma states a proximity result for tree-fold IPs in the flavour of Lemma 6
for n-fold IPs. The proof uses that the bound in Lemma 8 only depends on the shape of
the matrix but is independent of the number of columns in each block A(i), precisely as in
Lemma 6. We refer to the full version of the paper for details on the proof.

I Lemma 9. Let T be a matrix of tree-fold structure corresponding to the IP (10) and let
x? be an optimum solution to the LP relaxation of (10). There exists an optimum integral
solution z? to (10) with

||x? − z?||1 ≤ nLτ .

We conclude with the following theorem that states the running time of our algorithm to
solve a tree-fold IP. For a detailed analysis of the running time, we refer to the full version of
the paper.

I Theorem 10. Let T be of tree-fold structure with infinity-norm ∆ and corresponding tree
T . Let τ denote the number of layers of T and let the matrices of layer i have at most si
rows.

Define s =
∏τ
i=1(si + 1) and σ =

∑τ
i=1 si. Let n denote the number of columns of T and

l, u ∈ (Z ∪ {∞})n. We can solve the IP (11),

max cTx
T x = b

l ≤ x ≤ u
x ∈ Zn

in time

n2ϕ log2 n(s∆)O(σs) + LP

where ϕ denotes the logarithm of the largest number occurring in the input, and LP denotes
the time needed to solve the LP relaxation of (11).
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Abstract
In the Local Computation Algorithms (LCA) model, the algorithm is asked to compute a part
of the output by reading as little as possible from the input. For example, an LCA for coloring
a graph is given a vertex name (as a “query”), and it should output the color assigned to that
vertex after inquiring about some part of the graph topology using “probes”; all outputs must be
consistent with the same coloring. LCAs are useful when the input is huge, and the output as a
whole is not needed simultaneously. Most previous work on LCAs was limited to bounded-degree
graphs, which seems inevitable because probes are of the form “what vertex is at the other end
of edge i of vertex v?”. In this work we study LCAs for unbounded-degree graphs. In particular,
such LCAs are expected to probe the graph a number of times that is significantly smaller than
the maximum, average, or even minimum degree. We show that there are problems that have
very efficient LCAs on any graph - specifically, we show that there is an LCA for the weak coloring
problem (where a coloring is legal if every vertex has a neighbor with a different color) that uses
log∗ n + O(1) probes to reply to any query. As another way of dealing with large degrees, we
propose a more powerful type of probe which we call a strong probe: given a vertex name, it
returns a list of its neighbors. Lower bounds for strong probes are stronger than ones in the edge
probe model (which we call weak probes). Our main result in this model is that roughly Ω(

√
n)

strong probes are required to compute a maximal matching.
Our findings include interesting separations between closely related problems. For weak

probes, we show that while weak 3-coloring can be done with probe complexity log∗ n + O(1),
weak 2-coloring has probe complexity Ω(log n/ log log n). For strong probes, our negative result
for maximal matching is complemented by an LCA for (1− ε)-approximate maximum matching
on regular graphs that uses O(1) strong probes, for any constant ε > 0.
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1 Introduction

In classical algorithmic models, an algorithm is given an input and is required to compute an
output. When dealing with truly massive data, such as the Internet, just reading the entire
input may be impractical. The model of local computation algorithms (LCAs), as studied
by Rubinfeld et al. [33], proposes the following approach. An algorithm in the LCA model
is required to produce only a part of the output specified by a “query,” and is expected to
access only a small part of the input (without any pre-processing) using some simple “probes.”
For example, an LCA for maximal independent set (MIS) is given a vertex ID as a query,
and is expected to return a “yes/no” answer, indicating whether the queried vertex is or is
not in the MIS; all replies to queries must be consistent with the same MIS. To do that, the
LCA can use probes of the form “which vertex is the ith neighbor of vertex v?”, where v and
i are the probe arguments. One of the main goals in LCA design is to minimize the number
of probes required to produce an answer to a query.

In this paper we consider LCAs for graph problems. Almost exclusively, known LCAs for
graph problems are efficient only for graphs of bounded degrees (with the notable exception
of [20], which gives LCAs with polylog probe complexity for graphs with polylog degree).
This may appear inevitable, because edge probes don’t allow sublinear solutions to even learn
a complete neighborhood of a linear-degree vertex. Our goal in this paper is to understand
what can be done efficiently for graphs with unbounded degrees. We give two types of answers.
First, we point to problems that admit efficient solutions for any graph. In particular, we
give efficient LCAs for weak coloring [29], where the goal is to color vertices so that each
vertex has a neighbor of a different color. Weak coloring has played a key role in the study
of distributed algorithms e.g., [29, 10], in part due to its applications to resource allocations
in distributed settings [25]. Hence it is natural that we study it in the context of LCAs.
Moreover, this study has turned out to be worthwhile, because the results were unexpected:
in our model there is a separation between weak 2-coloring and weak 3-coloring that was not
observed in other models.

As another way of dealing with large degrees, we propose a more powerful probe model,
where probing a vertex returns a list of all its neighbors. We call such probes “strong,” as
opposed to the “weak” edge probes. Lower bounds in this model consider the number of
connections the LCA needs to make in order to probe the graph, even if communication
along these channels is unbounded, and are stronger than lower bounds in the weak probe
model. Strong probes can be thought of as an intermediate model that lies between the weak
probe model and the distributed LOCAL model, and helps clarify the sources of differences
between these two extremes. Our main negative result in this model is that approximately
Ω(
√
n) strong probes are required to compute a maximal matching.
Our results include the following. Let WP and SP stand for weak and strong probes,

respectively and let n denote the number of nodes in the underlying graph. We give tight
upper and lower bounds for weak 3-coloring. Our algorithm is deterministic and uses weak
probes, whereas our lower bound holds also for randomized LCAs that may use strong probes.

https://arxiv.org/abs/1703.07734
https://arxiv.org/abs/1703.07734
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I Theorem 1. There exists a deterministic WP LCA for weak 3-coloring that uses log∗ n+
O(1) probes.

I Theorem 2. Every (randomized or deterministic) SP LCA for weak 3-coloring of the cycle
graph requires Ω(log∗ n) probes.

We describe a deterministic WP LCA for weak 2-coloring, and give a matching lower
bound for graphs with maximal degree d = O

(
logn

log logn

)
.

I Theorem 3. There exists a deterministic WP LCA for weak 2-coloring that uses log∗ n+
2dv +O(1) weak probes, where dv is the degree of the queried vertex.

I Theorem 4. Any deterministic WP LCA for weak 2-coloring d-regular graphs with d =
O

(
logn

log logn

)
requires at least d/2 probes.

We design a randomized LCA for weak 2-coloring, whose probe complexity is independent
of the maximal degree and show how it can be implemented in both the strong and weak
probe models.

I Theorem 5. There exists a randomized WP LCA for weak 2-coloring that uses Θ
(

log2 n
log logn

)
probes, and a randomized SP LCA for weak 2-coloring that uses Θ

(
logn

log logn

)
probes.

We give a lower bound for vertex cover in the strong probe model. Specifically, we show
that for high degree graphs, many strong probes are necessary to approximate a minimal
vertex cover to any interesting precision.

I Theorem 6. For any ε < 1
2 , any randomized SP LCA that computes a vertex cover whose

size is a ( 1
2n

1−2ε)-approximation to the size of the minimal vertex cover requires at least εnε
probes.

A corollary of Theorem 6 is the following.

I Corollary 7. Any SP LCA for maximal matching on arbitrary graphs requires n1/2−o(1)

probes.

We describe an LCA that finds a matching that is a (1−ε)-approximation to the maximum
matching, for regular graphs, using a constant number of probes.

I Theorem 8. There exists an SP LCA that finds a (1− ε)-approximate maximum matching
in expectation on d-regular graphs that uses ε−O(ε−2) probes per query.

Finally, we show that for graphs with sufficiently high girth and degree, polynomially (in
ε−1) many strong probes suffice.

I Theorem 9. There exists an SP LCA that finds a (1− ε)-approximate maximum matching
in expectation on d-regular graphs of girth g, with d ≥ ε−1 and g ≥ ε−3, that uses O(ε−7)
probes per query.

1.1 Overview of Our Techniques
Our main result in this abridged version is the proof of Theorem 6. We construct a family of
bipartite graphs in which a large subset of vertices have “almost” the same view at distance
2. Exactly one of these vertices, v0, needs to be added to the vertex cover; however, there
are many vertices for which a small number of strong probes does not suffice in order to
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verify that they are not v0, and hence they must add themselves to the vertex cover. In our
construction we use vertex naming schemes based on low degree polynomials to ensure that
certain vertices do not share many neighbors. This result gives a separation between the SP
model (and hence also the WP model) and the LOCAL model, as it is possible to compute
a maximal matching in the LOCAL model in O(log n) rounds w.h.p. [24].

In the full version of the paper [9] we discuss deterministic and randomized methods of
sampling a “parent” for each vertex. No matter how the parents are chosen, the resulting
graph is a disjoint set of directed subgraphs, each one containing exactly one cycle. The
main technical content of here is the analysis of the diameter of these subgraphs, depending
on the choice of parent selection scheme.

We then address the problem of weak 3-coloring. Our LCA (the proof of Theorem 1) is
based on the following approach. Given an arbitrary graph, the directed subgraphs formed
by the parent relation (as above) span all vertices, and each of their connected components
has at least two vertices. Hence any weak coloring of every component separately induces
a weak coloring of the whole graph. Each component has one cycle, but it turns out that
the 3-coloring algorithm for rooted trees of Goldberg, Plotkin and Shannon [13] can be
adapted in order to legally 3-color (and hence also weakly 3-color) such a component. When
implemented as an LCA, the upper bound of log∗ n+O(1) on the number of probes follows
from a similar upper bound on the number of rounds of the (modified) algorithm of [13]. To
prove a nearly matching lower bound (Theorem 2) we use a reduction to the lower bound of
Naor [28] (extending [21]) for distributed algorithms that legally 6-color a cycle. Adapting
lower bounds from the distributed setting to the LCA setting also involves an argument of
Göös et al. [15].

We show how to augment the previous algorithm in order to reduce the number of colors
to 2, thus proving Theorem 3. It takes only one more probe to transform the weak 3-coloring
to a weak 2-coloring that is legal for all vertices except for those vertices that do not serve as
parents (which we refer to as leaves). The final step involves changing the colors of (some)
leaves. In order to determine whether a vertex v is a leaf, we probe all of its neighbors,
making the probe complexity linear in the degree of the queried vertex.

One natural method of proving lower bounds for LCAs is by reduction to the distributed
LOCAL model, as was done in [15] (and as we do in the proof of Theorem 2). The relationship
between LCAs and distributed algorithms has been studied before (e.g., [6, 31, 32, 33]) –
given a distributed algorithm to a problem that takes t rounds, one immediately obtains an
LCA that uses O (d t) probes (where d is the maximal degree), by probing all nodes within
distance t. The inverse reduction doesn’t work, as an LCA may probe remote (disconnected)
nodes. Consider, for example, the following artificial problem: each vertex has to color itself
blue if the node with ID 1 has an odd number of neighbors, and red otherwise. An LCA for
this problem needs a single probe, while a distributed algorithm requires time proportional
to the graph’s diameter. Göös et al. [15] show that for many natural problems, probing
remote vertices does not help. But even if we consider only probes to neighbors of discovered
vertices, the best lower bound we can hope for using such a reduction is the distributed time
lower bound: a lower bound of t rounds in the distributed model implies a lower bound of t
probes in the LCA model (recall that an upper bound of t rounds in the distributed model
implies an upper bound of O (d t) probes!). This suggests that we may need new tools to
obtain stronger lower bounds. In the proof of Theorem 4, we iteratively construct families of
d-regular graphs, where graphs in family Fi (for i ≤ d/2) contain roughly di vertices, and we
show that weak 2-coloring of graphs in family Fi requires at least i deterministic weak probes.
Every graph G in family Fi is composed of d disjoint copies of graphs H1, . . . ,Hd from family
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Fi−1 and two auxiliary vertices ai and bi. From each graph Hj a single edge is removed, and
instead one of its endpoints is connected to ai and the other to bi. Intuitively, it is reasonable
to expect that ai cannot decide on a color before it knows the color of at least one of its
neighbors. Likewise, it is reasonable to expect that each neighbor, being a member of a
graph in Fi−1, requires (by an induction hypothesis) i− 1 probes. The combination of these
two non-rigorous claims would imply that ai requires at least i probes (one to determine the
name of one of its neighbors, and i− 1 probes so as to determine the color of that neighbor).
Turning this informal intuition into a rigorous proof is nontrivial, and this is the main content
of our proof of Theorem 4.

We design a randomized LCA for weak 2-coloring. A key aspect in our randomized LCA
is that each vertex first chooses a random temporary color. This induces a weak 2-coloring
for most vertices of the graph: each vertex whose temporary color differs from the temporary
color of a neighbor can keep its color. Extending this weak 2-coloring to the remaining
vertices is done by associating a parent with each vertex, with the intended goal that the color
of the vertex will differ from the color of the parent (determining the color of the parent uses
an inductive process). This aspect has several different implementations, leading to different
probe complexities. Namely, for an arbitrary parent choice, the number of strong probes
is Θ(log n). If we implement the arbitrary choice using weak probes, the probe complexity
is Θ(log2 n). For a more clever randomized choice of parent, we get that the strong probe
complexity is Θ

(
logn

log logn

)
, and the weak probe complexity is Θ

(
log2 n

log logn

)
. All these bounds

on probe complexity hold with high probability.
We note that our results do not prove a separation between the complexities of determ-

inistic and randomized WP LCAs for weak 2-coloring (although we conjecture that there
is one), as our lower bound that is linear in the degree is proved only for regular graphs
of degree at most O

(
logn

log logn

)
, and our upper bound for randomized WP LCAs for weak

2-coloring is O
(

log2 n
log logn

)
.

Randomized LCAs generally use a pseudo-random generator in order to limit the number
of bits that they use, while ensuring consistency (e.g., [1, 20, 32]). In order to explore the
theoretical limitations of the probe complexity of LCAs, we assume that our randomized
LCAs have unbounded access to random bits. Nevertheless, we show that one can implement
the randomized WP LCA for weak 2-coloring (the one using the arbitrary parent choice
scheme) using a pseudo-random generator with a seed of length O(log n).

We give an LCA for approximate maximum matching in regular graphs. We first describe
an LCA for (1−ε) matching on graphs of degree bounded by d, that uses at most

(
d+ 1

ε

)O(ε−2)

probes per query. (Alternatively, if we wish to have a better dependency on ε and are willing
to have a dependency on n, then an LCA of Even, Medina and Ron [6] has probe complexity
dO( 1

ε ) +O
( 1
ε2

)
log∗ n.) Our LCA A is a simple variation on a randomized LCA of Yoshida,

Yamamoto and Ito [40]: whereas [40] does not limit the number of probes used by their
LCA but instead analyze and provide upper bounds on the expected number of probes used
by their LCA (expectation taken both other choice of random edge and randomness of the
LCA), we run essentially the same LCA, but with a strict upper bound on the number of
probes. This upper bound is a factor of dε larger than the expectation. Markov’s inequality
implies that this gives a (1− ε)-approximation to the maximum matching in expectation.

To obtain an LCA for a d-regular graph G, if d < 1
ε2 we use LCA A. If d > 1

ε2 , we sparsify
the graph: for some universal constant c (independent of ε), each edge remains in the graph
with probability c

dε , and then all vertices that still have degree higher than 2c
ε are removed

from the graph. This results in a graph G′ of degree bounded by 2c
ε . Every matching in G′
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is a matching in G. Moreover, we show that the expected size of a maximum matching in
G′ (expectation taken over choice of random sparsification) is at least (1− ε

2 ) times the size
of the maximum matching in G. Hence it suffices to find a (1− ε

2 )-approximate maximum
matching in the bounded degree graph G′, and it will serve as a (1−ε)-approximate maximum
matching in G. A sufficiently large matching in G′ can be found by A, using

( 1
ε

)O( 1
ε2 ) probes

to G′ per query. To implement A on G′, but using only probes to G, we show that each
strong probe to G′ can be simulated by O(1/ε) strong probes to G.

We show that we can find a (1− ε)-approximation to the maximum matching for regular
graphs with sufficiently high degree and girth using polynomially (in 1/ε) many probes.
Gamarnik and Goldberg [11] show that the randomized greedy algorithm finds a (1 − ε)
approximation to the maximum matching on regular graphs with sufficiently high degree and
girth. Similarly to the previous result, if the vertex degrees are sufficiently small (say, below
1
ε3 ), we can use an LCA of [40] (an implementation of the randomized greedy algorithm
that uses in expectation O(d) probes in graphs of maximum degree d), while placing a strict
upper bound on the number of probes (this upper bound is a factor of 1

εO(1) larger than
the expectation). If the degrees are large, our approach is once again to sparsify the graph
G prior to using the LCA of [40] (modified to have a strict upper bound on the number
of probes). Unfortunately, the resulting graph G′ is only nearly regular but not actually
regular. This requires us to extend the result of [11] from regular graphs to nearly regular
graphs. We do so without relying on the proofs of [11], by the following approach. We add
imaginary edges to G′, making it regular (while maintaining high girth). The LCA now
runs on a regular graph, and hence the bounds of [11] apply. The new problem that arises
is that the matching that is output by the LCA might contain imaginary edges. However,
we prove that the expected fraction of imaginary edges in that matching is similar to their
fraction within the input graph (our proof uses both the high girth assumption and the fact
that the randomized greedy algorithm is local in nature). This, combined with the fact that
the fraction of imaginary edges in the input graph was small (because G′ is nearly regular),
implies that the imaginary edges can be discarded from the solution without significantly
affecting the approximation ratio.

1.2 Related Work
Measures

There are several criteria by which one can measure the performance of LCAs. Rubinfeld et
al. [33] focus on the time complexity of LCAs: how long it takes to reply to a query; Alon
et al. [1] emphasize the space complexity, in particular, the length of the random seed used
(randomized LCAs need a global random seed to ensure consistency). Mansour, Patt-Shamir
and Vardi [26] introduce a unified model, that takes into account all four complexity measures:
probe complexity, time complexity (per query) and space complexity, divided into enduring
memory (in all known LCAs, this includes only the random seed) and transient space (the
computational space used per query). They show that it is possible to obtain LCAs for
which all of these are independent of n for certain problems, such as a (1− ε) approximation
to a maximal acyclic subgraph, using dO(1/ε) probes, where d is the maximal degree of the
graph. LCAs that do not use any enduring memory are called stateless [6]. Indeed, the
deterministic algorithms in this paper are stateless. Another property that is considered
desirable in LCAs is query-obliviousness [33]: the property that the replies to different queries
do not depend on the order in which the queries are given. Again, the LCAs of this paper
are all query-oblivious.
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LCAs and high-degree graphs

As mentioned above, most known results assume bounded degrees. For example, Mansour et
al. [27] describe LCAs for maximal matching and other problems that use polylogarithmic
(in the size of the graph; exponential in the degree) time and space when the degrees of the
graph are bounded by a constant. Even, Medina and Ron [6], focusing on probe complexity,
give deterministic LCAs for MIS, maximal matching and (d + 1)-coloring for graphs of
degree bounded by a constant d, which use dO(d2) log∗ n probes. Fraigniaud, Heinrich and
Kosowski [10] investigate local conflict coloring, a general distributed labeling problem, and
use their results to improve the probe complexity of (d+ 1)-vertex coloring to approximately
dO(
√
d) log∗ n probes.

Some papers allow for slightly super-constant degrees: Levi, Rubinfeld and
Yodpinyanee [20] give LCAs for MIS and maximal matching for graphs of degree 2O(

√
log logn),

using an improvement of Ghaffari [12]. Reingold and Vardi [32] give LCAs for MIS, maximal
matching and other problems that apply to graphs that are sampled from some distribu-
tion. This limitation allows them to address graphs with higher maximal degree, as long
as the average degree is O(log log n), and the tail of the distribution is sufficiently light. If
we restrict ourselves to LCAs that use polylogarithmic time and space, the approximate
maximum matching LCA of [20] accommodates graphs of polylogarithmic degree. Levi, Ron
and Rubinfeld [19] describe an LCA that constructs spanners using a number of probes
polynomial in d.

Lower bounds

There are few explicit impossibility results LCAs. Göös et al. [15] show that any LCA for
MIS requires Ω(log∗ n) probes, by showing that probing vertices that have not yet been
discovered is not useful. This implies that, on a ring, the number of probes that an LCA
needs to make is “roughly the same” as the number of rounds required by a distributed
LOCAL algorithm, implying that the lower bounds of Linial [21] and Naor [28] hold for
LCAs as well. Levi, Ron and Rubinfeld [19] show that an LCA that determines whether an
edge belongs to a sparse spanning subgraph requires Ω(

√
n) probes. Feige, Mansour and

Schapire [8], adapting a lower bound from the property testing literature [14], show that
approximating the minimum vertex cover in bounded degree bipartite graphs within a ratio
of 1 + ε (for some explicit fixed ε > 0) cannot be done with o(

√
n) probes.

Weak coloring

Weak coloring was introduced by Naor and Stockmeyer [29]. They give a LOCAL distributed
algorithm that requires log∗ d+O(1) rounds for weak 2-coloring graphs of maximal degree d,
assuming all degrees are odd. In contrast, they show that there is no constant time LOCAL
algorithm for weak c-coloring all graphs with vertices with even degrees, for constant c. Our
deterministic weak 2-coloring LCA (Theorem 3) uses log∗ n+O(dv) probes, but when cast
within the LOCAL model it takes log∗ n+O(1) rounds (independently of dv).

Additional LCA background

LCAs are not restricted to graphs. Well known examples include locally-decodable codes
(LDCs) (e.g., [18, 39]) and local reconstruction (e.g., [17, 34]). LDCs are error-correcting
codes that allow a single bit of the original message to be decoded with high probability by
querying a small number of bits of a codeword. Local reconstruction involves recovering the

ICALP 2018



50:8 Probe Complexity of LCAs

value of a function f for a particular input x given oracle access to a closely related function
g. LCAs have recently been applied to solving convex problems in a distributed fashion [22].
Traditional methods for solving distributed optimization, such as iterative descent methods
(e.g., [23]) and consensus methods (e.g., [4]), require global communication, and any edge
failure or lag in the system immediately affects the entire solution, by delaying computation
or causing it not to be computed at all; furthermore, if the network changes in a small way,
the entire solution needs to be recomputed. If an LCA is used, most of the system remains
unaffected by local changes or failures. Hence LCAs can be used to make systems more
robust to edge failures, lag, and dynamic changes. LCAs have also been used in the context of
mechanism design [16], machine learning [8], and designing distributed algorithms [7]. There
are other situations when LCAs may be useful - say we wish to perform some computation
on each of the vertices of an MIS of some huge graph. LCAs allow us to be able to begin
work on some vertices before the entire MIS is computed, and guarantee that the local replies
to the queries will be consistent with the same global solution, that will be available at some
point in the future.

LCAs can also be used as subroutines in approximation algorithms e.g., [5, 31, 30, 40].
The goal of such algorithms is to output an approximation to the size of the solution to some
combinatorial problem (such as Vertex Cover, Maximum Matching, Minimum Spanning
Tree), in time sublinear in the input size. In particular, if one has an LCA whose running
time is t that solves some problem, one can obtain an approximation to the size of the
solution (with some constant probability) by executing this LCA on a sufficiently large (but
constant) number of vertices k chosen uniformly at random, to obtain an approximation
algorithm whose running time is kt (see e.g., [30, 36] for more details).

The concept of LCAs is related to but should not be confused with local algorithms as
in [2, 3, 35]. The difference is that these local algorithms do not require the output for
different probes to satisfy a global consistency property, but rather to satisfy some local
criteria. For example, the goal might be for each vertex to output a small dense subgraph
that contains it, without requiring two different vertices to agree on whether they share the
same dense subgraph or not.

1.3 Paper Outline
Due to space restriction, we include a single result with complete proof in this version. See [9]
for the full version of this paper.

2 Preliminaries

We denote the set of integers {1, 2, . . . , n} by [n]. All logarithms are base 2. Our input is
a simple undirected graph G = (V,E), |V | = n, in which every vertex has an ID and all
IDs are distinct. For simplicity, we assume that the IDs are taken from the set [n]. The
neighborhood of a vertex v, denoted N(v), is the set of vertices that share an edge with
v: N(v) = {u : (u, v) ∈ E}. The degree of a vertex v, is |N(v)|. The girth of G, denoted
girth(G) is the length of the shortest cycle in G.

LCAs

Our definition of LCAs is slightly different from previous definitions in that it focuses on
probe complexity. We do this so as not to introduce unnecessary notation. See [26, 36] for
definitions that also take into account other complexity measures.
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I Definition 10 (Probe). We assume that the input graph is represented as a two dimensional
n by d+ 1 array, where d is the maximum degree. Rows are labeled from 1 to n by the vertex
names. For any v, the cell (v, 0) specifies the degree dv of v, the cell (v, j) for 1 ≤ j ≤ dv
specifies the name of the neighbor connected to v’s jth port. Cells (v, j) for dv < j ≤ d

contain 0. We define strong and weak probes as follows.
A strong probe (SP) specifies the ID of a vertex v; the reply to the probe is the entire
row corresponding to v (namely, the list of all neighbors of v).
A weak probe (WP) specifies a single cell (v, j) and receives its content (namely, only the
jth neighbor of v).

We note that knowing that u is v’s ith neighbor does not give us information regarding
which one of u’s ports v is connected to. This property is crucial for the proof of Theorem 4.

I Definition 11 (Local computation algorithm). A deterministic p(n)-probe local computation
algorithm A for a computational problem is an algorithm that receives an input of size n.
Given a query x, A makes at most p(n) probes to the input in order to reply. A must be
consistent; that is, the algorithm’s replies to all of the possible queries combine to a single
feasible solution to the problem.

A randomized (p(n), s(n), δ(n))-local computation algorithm A differs from a deterministic
one in the following aspects. Before receiving its input, it is allowed to write s(n) random bits
(referred to as the random seed) to memory.4 Thereafter, it must behave like a deterministic
LCA, except that when answering queries it may also read and use the random seed. For
any input G, |G| = n, the probability (over the choice of random seed) that there exists
a query in G for which A uses more than p(n) probes is at most δ(n), which is called A’s
failure probability.

When LCA A is given input graph G = (V,E) and queried on vertex v ∈ V , we denote
this by A(G, v). An LCA A is said to require k probes on a graph G = (V,E), if there is at
least one query for which A uses k probes. We say that an LCA A requires k probes for a
family F of graphs, if for some graph G ∈ F , A requires k probes.

I Definition 12 (Approximation algorithm). Given a maximization problem over graphs and a
real number 0 ≤ α ≤ 1, a (possibly randomized) α-approximation algorithm A is guaranteed,
for any input graph G, to output a feasible solution whose expected value is at least an α
fraction of the value of an optimal solution (in expectation over the random bits used by A).5

3 Lower Bound for Vertex Cover

In this section we prove Theorem 6:

I Theorem 6. For any ε < 1
2 , any randomized SP LCA that computes a vertex cover whose

size is a ( 1
2n

1−2ε)-approximation to the size of the minimal vertex cover requires at least εnε
probes.

In order to prove Theorem 6 , we use the minimax theorem of Yao [38], by showing a
lower bound on the expected number of probes required by a deterministic LCA when the
input is selected from a certain distribution. To this end we construct, for infinitely many
values of n, a family of graphs, parametrized by a constant k ≥ 3.

4 In this work, except where explicitly mentioned, we allow the random seed to be unbounded.
5 The definition of approximation algorithms to minimization problems is analogous, with α ≥ 1.
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Figure 1 The graph fusion(G, (u′, w′), (u′′, w′′)). The dashed edges e′ = (u′, w′) and e′′ = (u′′, v′′)
have been removed and the edge (u′, u′′) has been added.

Let p be a prime number, and Z(p) its associated field. Let G∗ = (U∗ ∪W ∗, E) be
a bipartite graph, where |U∗| = pk, |W ∗| = p2. Label each vertex in U∗ by a k-tuple
(a0, a1, . . . , ak−1), ai ∈ Z(p), i ∈ {0, 1, . . . , k − 1} and the vertices in W ∗ by a pair (b0, b1),
bi ∈ Z(p), i ∈ {0, 1}. Associate each vertex uj = (a0, a1, . . . , ak−1) ∈ U∗ with the polynomial
fj(x) = a0 + a1x+ · · ·+ ak−1x

k−1. Connect (b0, b1) ∈W ∗ to uj iff b1 = fj(b0).

I Lemma 13. For every two different vertices ui, uj ∈ U∗, N(ui) ∩N(uj) ≤ k − 1.

Proof. Consider fi and fj , the polynomials associated with ui and uj respectively. Let
g(x) = fi(x)− fj(x). As g is not the zero polynomial, it has at most k− 1 roots in Z(p). J

Let G to be a graph consisting of two identical copies of G∗. We denote these two copies
by G′ = (U ′ ∪W ′, E′) and G′′ = (U ′′ ∪W ′′, E′′). Let U = U ′ ∪ U ′′; let W = W ′′ ∪W ′′; let
n = |U ∪W | = 2(pk + p2).

We define the following operation on G (see Figure 1). Let e′ and e′′ be edges such that
e′ = (u′, w′) : u′ ∈ U ′, w′ ∈ W ′ and e′′ = (u′′, w′′) : u′′ ∈ U ′′, w′′ ∈ W ′′. Remove e′ and e′′
from G, and add an edge e = (u′, u′′). We call this operation fusion(G, e′, e′′), and call u
and u′ the fusion vertices. Note that there are pk+1 possible choices for e′ and pk+1 possible
choices for e′′.

Given a graph G = fusion(G, (u′, w′), (u′′, w′′)), the optimal size of the vertex cover of G
is at most 2p2 + 1, as W and a fusion vertex constitute a vertex cover.

Note that a vertex can locally detect whether it is in U or in W just by looking at its
own degree. However, to detect whether it is one of the fusion vertices, it needs to determine
the degrees of its neighbors, which is impossible to do with number of probes significantly
smaller than its degree.6

We now describe the graph family we use. Let G = (U ∪W,E) be as above. Let Π be the
set of all possible namings of U ∪W by the ID set [n]. Let T = E′ × E′′. Given a naming
π ∈ Π and a pair of edges τ = (e′, e′′) ∈ T , the graph G(τ, π) is defined as follows:
1. The topology of G(τ, π) is given by fusion(G, e′, e′′).
2. The vertices of G(τ, π) are named according to π.
The family of graphs we consider is G(Π, T ) = {G(τ, π) | τ ∈ T, π ∈ Π}. We now analyze
the behavior of a given deterministic LCA A with proble complexity less than p/k on a

6 Compare this with a distributed algorithm in the LOCAL model, for which one round suffices to
determine this.
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graph chosen uniformly at random from G(Π, T ). We first make the following simplification.
Suppose that A running on some G(τ, π) is given v as a query. If A probes w′τ or w′′τ , it
knows that v is neither u′τ nor u′′τ and hence A need not include v in the VC. For simplicity,
we also assume that if A probes u′τ or u′′τ , it knows not to add v to the VC. Note that this
only strengthens A, hence we can make this assumption without loss of generality.

We use the following definition.

I Definition 14 (View). Let A be a deterministic SP LCA. We denote by View(A, G, v) the
subgraph that A discovers when queried on vertex v in graph G, i.e., the set of all probed
vertices and their neighbors.

I Lemma 15. Let A be an SP LCA with probe complexity less than p/k. Let G ∈ G(Π, T ).
Assume that A is queried on G with vertex v. Then there is some vertex w ∈ N(v) such that
w has no neighbors except v in View(A, G, v). (That is, neither w nor any of its neighbors
(except v) is probed in A(G, v).)

Proof. A probes v and, say, a vertices from U and b vertices from W , for some a, b ∈ N such
that a+ b < p/k. From Lemma 13, A sees at most a(k− 1) vertices from N(v) as a result of
probing vertices in U \ {v}. Furthermore, A sees at most b vertices from N(v) as a result of
probing vertices in W . As a(k− 1) + b < p = |N(v)|, at least one vertex in N(v) is only seen
once, while probing v. J

Consider an input graph G(τ, π), where τ = ((u′τ , w′τ ), (u′′τ , w′′τ )). We use the following
notation.

Av denotes the event that A is given v as a query. Note that Av is independent of π and
τ .
Xτ,π,i denotes the event that none of u′τ , w′τ , u′′τ , w′′τ is probed when A is queried on
i ∈ [n].

I Lemma 16. Fix π and τ . Let v be a vertex in U ′ \ {u′τ}. If Av and Xτ,π,π(v) hold, there
exist π1 ∈ Π, τ1 ∈ T such that View(A,G(π1, τ1), u′τ1

) = View(A,G(π, τ), v).

Proof. By Lemma 15, there is some vertex w ∈ N(v) that has no neighbors other than v in
View(A, G(π, τ), v). Let π1 be identical to π except that v and u′τ are interchanged. Set
τ1 = ((v, w), e′′τ ). The lemma follows. J

A symmetrical argument holds for v ∈ U ′′ \ {u′′τ}.

I Lemma 17. Fix G, and let i ∈ [n] be the ID of the vertex given to a deterministic SP
LCA A as a query. If the probe complexity of A is less than p/k, then Pr[Xτ,π,i] ≥ 1− 1

kp ,
where the probability is over the choice of π and τ .

Proof. Fix π. If A probes a vertices in U and b vertices in W , it will hit one of u′τ , w′τ , u′′τ , w′′τ
with probability at most a

pk
+ b

p2 , over the choice of τ . Since a, b ≥ 0 and a + b ≤ p/k,
the probability is maximized for a = 0, b = p/k. As this bound holds for any π, the result
follows. J

Lemma 16 and Lemma 17 imply that when a deterministic SP LCA is queried on a vertex
u ∈ U from a random graph in G(T,Π), it cannot discern in less than p/k probes whether u
is a fusion vertex with probability greater than 1

kp . Hence the LCA must add vertex u to
the VC, because at least one fusion vertex must be in the VC. Therefore, the size of the VC
that A computes is at least pk −O(1), whereas the optimal VC has size at most p2 + 1:
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I Theorem 18. There does not exist a deterministic SP LCA A that computes a VC that is
an ( 1

2n
1−2ε)-approximation to the optimal VC and uses fewer than εnε probes with probability

greater than 1
kp on a graph chosen uniformly at random from G(Π, T ).

Proof. Let ε = 1/k. Recall that n = Θ(pk). We have shown that if the number of probes is less
than p/k = Θ(nε ·ε), then the approximation ratio is at least pk/p2−o(1) = n1−2/k−o(1). J

Applying Yao’s principle [38] to Theorem 18 completes the proof of Theorem 6.

I Corollary 19. Any SP LCA for maximal matching on arbitrary graphs requires Ω(n1/2−o(1))
probes.

Proof. It is well known that, given any maximal matching, taking both end vertices of every
edge gives a 2-approximation to the VC (e.g., [37]). Therefore, an LCA for maximal matching
would immediately give a 2-approximation to the minimal vertex cover. Setting 2 = Θ(n1−2ε)
in Theorem 6 gives ε = 1/2. The result follows. J
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arrive and old items may depart. We want algorithms with low asymptotic competitive ratio
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1 Introduction

Consider the problem of data backup on the cloud, where multiple users’ files are stored on
disks (for simplicity, of equal size). This is modeled by the bin packing problem, where the
items are files and the bins are disks, and we want to pack the items in a minimum number
of bins. However, for the backup application, files are created and deleted over time. The
storage provider wants to use a small number of disks, and also keep the communication
costs incurred by file transfers to a minimum. Specifically, we want bounded “recourse”, i.e.,
items should be moved sparingly while attempting to minimize the number of bins used in
the packing. These objectives are at odds with each other, and the natural question is to
give optimal tradeoffs between them.

Formally, an instance I of the bin packing problem consists of a list of n items of sizes
s1, s2, . . . , sn ∈ [0, 1]. A bin packing algorithm seeks to pack the items of I into a small
number of unit-sized bins; let OPT (I) be the minimum number of unit-sized bins needed to
pack all of I’s items. This NP-hard problem has been studied since the 1950s, with hundreds
of papers addressing its many variations; see e.g., [18, Chapter 2] and [7] for surveys. Much
of this work (e.g. [27, 39, 29, 30, 31, 37, 36, 33, 16, 2]) starting with [35] studies the online
setting, where items arrive sequentially and are packed into bins immediately and irrevocably.
While the offline problem is approximable to within an additive term of O(logOPT ) [17],
in the online setting there is a 1.540-multiplicative gap between the algorithm and OPT in
the worst case, even as OPT →∞ [2]. Given the wide applicability of the online problem,
researchers have studied the problem where a small amount of repacking is allowed upon
item additions and deletions. Our work focuses on the bounded recourse setting, and we
give optimal tradeoffs between the number of bins used and amount of repacking required in
the fully-dynamic setting for several settings.

A fully-dynamic bin packing algorithm A, given a sequence of item insertions and
deletions, maintains at every time t a feasible solution to the bin packing instance It given
by items inserted and not yet deleted until time t. Every item i has a size si and a movement
cost ci, which A pays every time A moves item i between bins. Different approaches have
been developed to measure the amount of repacking, in the context of data backup these
measures corresponds to the communication or energy cost. For example, the movement cost
ci may be proportional to the size of the file (which is the communication cost if the files are
all large), or may be a constant (if the files are small, and the overhead is entirely in setting
up the connections), or may depend on the file in more complicated ways.

Formally, the fully-dynamic bin packing problem is as follows.

I Definition 1.1. A fully-dynamic algorithm A has (i) an asymptotic competitive ratio α,
(ii) additive term β and (iii) recourse γ, if at each time t it packs the instance It in at most
α ·OPT (It) + β bins, while paying at most γ ·

∑t
i=1 ci movement cost until time t. If at each

time t algorithm A incurs at most γ · ct movement cost, for ct the cost of the item updated at
time t, we say A has worst-case recourse γ, otherwise we say it has amortized recourse γ.
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Any algorithm must pay 1
2
∑t
i=1 ci movement cost just to insert the items, so an algorithm

with γ recourse spends at most 2γ times more movement cost than the absolute minimum.
The goal is to design algorithms which simultaneously have low asymptotic competitive ratio
(a.c.r), additive term, and recourse. There is a natural tension between the a.c.r and recourse,
so we want to find the optimal a.c.r-to-recourse trade-offs.

1.1 Related Work
Based on the classical bin packing Problem [14], different online and dynamic variants have
been developed and investigated. Due to space constraints we focus on the scenarios which
share the most important properties with our model and only mention the best results for
them. In the Online Bin Packing Problem [35], the items are unknown to the algorithm at
the beginning and appear one after another. Balogh et al. [2] show a lower bound of 1.54037
for this problem and Seiden [33] presents an approximation algorithm with a competitive
ratio of 1.58889. In the Dynamic Bin Packing setting [28], additionally to arrivals as in the
Online Bin Packing Problem departures of items are also allowed. Here, a lower bound of
8/3 by Wong et al. [38] and an upper bound of 2.897 by Coffman et al. [28] exist.

We now turn our attention to the models which allow repacking of items. In the Relaxed
Online Bin Packing Problem, first studied by Gambosi et al. [12, 13], online arrivals and no
departures occur, but repacking of items is allowed. Repacking means that items can be
assigned to another bin in the course of the execution, while in a setting without repacking
decisions are irrevocable. Gambosi et al. gave a 4/3-a.c.r algorithm for the insertion-only
setting which moves each item O(1) times, which in terms of recourse translates into O(1)
amortized recourse for general movement costs. Following Sanders et al. [32], who studied
makespan minimization with recourse, Epstein et al. [9] re-introduced the dynamic bin
packing problem with the movement costs ci equaling the size si (the size cost setting,
where worst-case recourse is also called migration factor). Epstein et al. gave a solution with
a.c.r (1 + ε) and bounded (exponential in ε−1) recourse for the insertion-only setting. Jansen
and Klein [23] improved the recourse to poly(ε−1) for insertion-only algorithms. The best
known lower bound for an algorithm which uses only constant recourse in the unit cost model
(i.e. ci = 1 for all items) is originally given for our model, but it also applies to this setting
with 1.3871 by Balogh et al. [4]. From the positive perspective Balogh et al. [5] give an
approximation algorithm based on the Harmonic Fit Algorithm [29] for which they achieve a
competitive ratio of 3/2 and O(ε−1) movements per update. Since our algorithms are also
applicable to this setting we improve this result to also close the gap between the lower and
upper bound for this problem.

Our setting is the most powerful model among the presented ones, the Fully-Dynamic
Bin Packing [21], in which we allow arrivals and departures of items as well as repacking.
Ivković and Lloyd [21, 22] introduced the model of Fully-Dynamic Bin Packing and developed
an algorithm called Mostly Myopic Packing (MMP) which achieves a 5

4 -competitive ratio.
Their algorithm is based on an offline algorithm by Johnson [25, 26] and utilizes a technique
whereby the packing of an item is done with a total disregard for already packed items of a
smaller size. In contrast to our work, they use the concept of bundling smaller elements in
their analysis, i.e. a group of items smaller than ε may be moved as a single item for unit
costs. They can show that the number of single items or bundles of very small elements
that need to be repacked is bounded by a constant. Additionally, Ivković [19] also gives a
slightly simpler version of this algorithm, called Myopic Packing (MP). It uses similar ideas
but ignores one step of MMP that results in a much easier analysis and a competitive ratio
of 4

3 . Berndt et al. [6] consider exactly the same setting, also allowing the bundling of very
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small elements in the analysis. Their algorithm achieves a 1 + ε approximation ratio and a
bound of O (1/ε4 log (1/ε)) for the recourse in both the size costs and unit costs model.

In addition to the positive algorithmic results, researchers also explored lower bounds for
this setting. All results assume that no bundling is allowed in the unit cost model (otherwise
there can only be the trivial lower bound of one [6]), hence allowing only a constant number
of shifted items per time step. Ivković and Lloyd [20] show a lower bound of 4

3 . Their
construction uses the inability of an algorithm to react to insertions and deletions of items
with size slightly larger than 1

2 when the remaining items may be of arbitrarily small size.
Balogh et al. [3, 4] improve this bound to roughly 1.3871. They extend the technique of the
previous lower bound by constructing multiple lists of large items whose sizes are chosen
through the construction of a linear program. Their results are the inspiration for some of the
parameter choices in this work. For size costs, Berndt et al. [6] showed that any (1 + ε) a.c.r
algorithm must have worst-case recourse Ω(ε−1). While these give nearly-tight results for
“size costs” ci = si, the unit cost (ci = 1) and general cost cases were not so well understood
prior to this work.

1.2 Our Results
We give (almost) tight characterizations for the recourse-to-asymptotic competitive ratio
trade-off for fully-dynamic bin packing under (a) unit movement costs, (b) general movement
costs and (c) size movement costs. Our results are summarized in the following theorems.
(See Tables 1 and 2 for a tabular listing of our results contrasted with the best previous
results.) Note that an amortized recourse bound is a weaker (resp. stronger) upper (resp.
lower) bound. In the context of sensitivity analysis (see [32]), our bounds provide a tight
characterization of the average change between approximately-optimal solutions of slightly
modified instances.

Unit Costs. Consider the most natural movement costs, unit costs, where ci = 1 for all
items i. Here we give tight upper and lower bounds. Let α = 1 − 1

W−1(−2/e3)+1 ≈ 1.3871
(here W−1 is the lower real branch of the Lambert W -function [8]). Balogh et al. [4] showed
that α is a lower bound on the a.c.r with constant recourse. We present an alternative and
simpler proof of this lower bound, also giving tighter bounds: doing better than α requires
either polynomial additive term or recourse. Moreover, we give two matching algorithms
proving α is tight for this problem: The first one uses directly the insights from the lower
bound while the second one drives deeper into the structural insights of the current problem
instance and reaches a slightly better result.

I Theorem 1.2 (Unit Costs Tight Bounds). For any ε > 0, there exists fully-dynamic bin
packing algorithms with amortized competitive ratio (α+ ε) with worst case recourse O(ε−2)
under unit movement costs and additive term O(ε−1). Conversely, any algorithm with a.c.r
(α − ε) has additive term and amortized recourse whose product is Ω(ε4 · n) under unit
movement costs.

General Costs. Next, we consider the most general problem, with arbitrary movement
costs. Theorem 1.2 showed that in the unit cost model, we can get a better a.c.r than for
online bin packing without repacking, whose optimal a.c.r is at least 1.540 ([2]). Alas, the
fully-dynamic bin packing problem with the general costs is not easier than the arrival-only
online problem (with no repacking).
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Table 1 Fully-dynamic bin packing with limited recourse: Positive results
(Big-O notation dropped for notational simplicity)

Costs A.C.R Additive Recourse W.C. Notes Reference

Unit
1.5 + ε ε−1 ε−1 3 insertions only Balogh et al. [5]

α+ ε ε−1 ε−2 3 α ≈ 1.387 Theorem 2.11

General 1.589 1 1 7 Theorem 3.5

1.333 1 1 7 insertions only Gambosi et al. [13]

Size

1 + ε 1 ε−O(ε−2) 3 insertions only Epstein & Levin [10]
1 + ε ε−2 ε−4 3 insertions only Jansen & Klein [23]
1 + ε poly(ε−1) ε−3 log(ε−1) 3 insertions only Berndt et al. [6]
1 + ε poly(ε−1) ε−4 log(ε−1) 3 Berndt et al. [6]
1 + ε ε−1 ε−2 7 Fact 4.1

Table 2 Fully-dynamic bin packing with limited recourse: Negative results.

Costs A.C.R Additive Recourse W.C. Notes Reference

Unit

1.333 o(n) 1 3 Ivković & Lloyd [20]

α− ε o(n) 1 3 α ≈ 1.387 Balogh et al. [4]

α− ε o(ε2 · nδ) Ω(ε2 · n1−δ) 7 for all δ ∈ (0, 1/2] Theorem 2.1
General 1.540 o(n) ∞ 7 as hard as online Theorem 3.1

Size 1 + ε o(n) Ω(ε−1) 3 Berndt et al. [6]
1 + ε o(n) Ω(ε−1) 7 Theorem 4.2

I Theorem 1.3 (Fully Dynamic as Hard as Online). Any fully-dynamic bin packing algorithm
with bounded recourse under general movement costs has a.c.r at least as high as that of any
online bin packing algorithm. Given current bounds ([2]), this is at least 1.540.

Given this result, is it conceivable that the fully-dynamic model is harder than the
arrival-only online model, even allowing for recourse? We show this is likely not the case, as
we can almost match the a.c.r of the current-best algorithm for online bin packing.

I Theorem 1.4 (Fully Dynamic Nearly as Easy as Online). Any algorithm in the Super
Harmonic family of algorithms can be implemented in the fully-dynamic setting with constant
recourse under general movement costs. This implies an algorithm with a.c.r 1.589 using [33].

The current best online bin packing algorithm [1] is not from the Super Harmonic
family but is closely related to it. It has an a.c.r of 1.578, so our results for fully-dynamic
bin packing are within a hair’s width of the best bounds known for online bin packing.
It remains an open question as to whether our techniques can be extended to achieve the
improved a.c.r bounds while maintaining constant recourse. While we are not able to give a
black-box reduction from fully-dynamic algorithms to online algorithms, we conjecture that
such a black-box reduction exists and that these problems’ a.c.r are equal.

Size Costs. Finally, we give an extension of the already strong results known for the size
cost model (where ci = si for every item i). We show that the lower bound known in the
worst-case recourse model extends to the amortized model as well, for which it is easily
shown to be tight.
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I Theorem 1.5 (Size Costs Tight Bounds). For any ε > 0, there exists a (1+ε)-a.c.r algorithm
with O(ε−2) additive term and O(ε−1) amortized recourse under size costs. Conversely, for
infinitely many ε > 0, any (1 + ε)-a.c.r algorithm with o(n) additive term requires Ω(ε−1)
amortized recourse under size costs.

The hardness result above was previously only known for worst-case recourse [6]; this
previous lower bound consists of a hard instance which effectively disallowed any recourse,
while lower bounds against amortized recourse can of course not do so.

1.3 Techniques and Approaches
Unit Costs. For unit costs, our lower bound is based on a natural instance consisting of small
items, to which large items of various sizes (greater than 1

2 ) are repeatedly added/removed [4].
The near-optimal solutions oscillate between either having most bins containing both large
and small items, or most bins containing only small items. Since small items can be moved
rarely, this effectively makes them static, giving us hard instances. We can optimize for the
lower bound arising thus via a gap-revealing LP, similar to [4]. However, rather than bound
this LP precisely, we exhibit a near-optimal dual solution showing a lower bound of α− ε.

For the first upper bound, the same LP now changes from a gap-revealing LP to a
factor-revealing LP. The LP solution shows how the small items should be packed in order
to “prepare” for arrival of large items, to ensure (α + ε)-competitiveness. An important
building block of our algorithms is the ability to deal with (sub)instances made up solely of
small items. In particular, we give fully-dynamic bin packing algorithms with a.c.r (1 + ε)
and only O(ε−2) worst-case recourse if all items have size O(ε). The ideas we develop are
versatile, and are used, e.g., to handle the small items for general costs – we discuss them in
more detail below. We then extend these ideas to allow for (approximately) packing items
according to a “target curve”, which in our case is the solution to the above LP. At this point
the LP makes a re-appearance, allowing us to analyze a simple packing of large items “on
top” of the curve (which we can either maintain dynamically using the algorithm of Berndt
et al. [6] or recompute periodically in linear time); in particular, using this LP we are able
to prove this packing of large items on top of small items has an optimal a.c.r of α+O(ε).
This implies that lazily repacking the large items near-optimally and packing them on top
of the small items easily yields O(ε−2) amortized recourse. Relying on the fully-dynamic
poly(ε−1) migration factor AFPTAS algorithms of [6] with some additional ideas allows us
to leverage this LP to obtain worst-case recourse bounds.

In the second upper bound, we take a different, more recourse-efficient method to pack
the large items, which results in improved worst-case recourse. Specifically, we utilize an
algorithm called Myopic Packing (MP) by Ivković [19]. This algorithm has a competitive
ratio of 4/3 (it is below the lower bound for our model since it uses bundling, i.e., it allows
the repacking of a group of small items as one) and modifies only a constant number of bins
per time step. Applying this algorithm to only items of a size of at least ε/15 restricts the
amount of repacking to O(1/ε) per time step. We develop a new view of this algorithm to
derive structural properties of the solution which are needed for the combination of major
and minor items. Small items are handled similarly to the previous algorithm, however,
we provide a fixed solution to the LP from before in order to use it in the analysis of the
combined solution. Finally, the bins with small items are merged with the bins with large
items by utilizing a greedy-like approach, where small chunks of reserved space and a big
cumulative size of major items is prioritized in order to guarantee an efficient utilization
of the reserved space. The combination has two main challenges: Firstly, we ensure that
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this greedy process only has to modify O(1/ε) bins per time step. Secondly, we guarantee
a space-efficient combination resulting in an overall good solution quality. The analysis
carefully utilizes the structural insights about the solution for major items to estimate the
solution quality within the bins that did not get merged.

General Costs. To transform any online lower bound to a lower bound for general costs
even with recourse, we give the same sequence of items but with movement costs that drop
sharply. This prohibits worst-case recourse, but since we allow amortized recourse, the large
costs ci for early items can still be used to pay for movement of the later items (with smaller
ci values). Hence, if the online algorithm moves an element e to some bin j, we delete all
the elements after e and proceed with the lower bound based on assigning e 7→ j. Now a
careful analysis shows that for some sub-sequence of items the dynamic algorithm effectively
performs no changes, making it a recourse-less online algorithm – yielding the claimed bound.

For the upper bound, we show how to emulate any algorithm in the Super Harmonic
class of algorithms [33] even in the fully-dynamic case. We observe that the analysis for SH
essentially relies on maintaining a stable matching in an appropriate compatibility graph.
Now our algorithm for large items uses a subroutine similar to the Gale-Shapley algorithm.
Our simulation also requires a solution for packing similarly-sized items. The idea here is to
sort items by their cost (after rounding costs to powers of two), such that any insertion or
deletion of items of this size can be “fixed” by moving at most one item of each smaller cost,
yielding O(1) worst-case recourse.

The final ingredient of our algorithm is packing of small items into (1− ε)-full bins. Unlike
the online algorithm which can just use FirstFit, we have to extend the ideas of Berndt et
al. [6] for the size-cost case. Namely we group bins into buckets of Θ(1/ε) bins, such that all
but one bin in a bucket are 1−O(ε) full, guaranteeing these bins are 1−O(ε) full on average.
While for the size-cost case, bucketing bins and sorting the small items by size readily yields
an O(ε−1) recourse bound, this is more intricate for general case where size and cost are not
commensurate. Indeed, we also maintain the small items in sorted order according to their
size-to-movement-cost ratio (i.e., their Smith ratio), and only move items to/from a bin once
it has Ω(ε)’s worth of volume removed/inserted (keeping track of erased, or “ghost” items).
This gives an amortized O(ε−2) recourse cost for the small items.

Size Costs. The technical challenge for size costs is in proving the lower bound with
amortized recourse that matches the easy upper bound. Our proof uses item sizes which are
roughly the reciprocals of the Sylvester sequence [34]. While this sequence has been used
often in the context of bin packing algorithms, our sharper lower bound explicitly relies
on its divisibility properties (which have not been used in similar contexts, to the best of
our knowledge). We show that for these sizes, any algorithm A with a.c.r (1 + ε) must, on
an instance containing N items of each size, have Ω(N) many bins with one item of each
size. In contrast, on an instance containing N items of each size except the smallest size ε,
algorithm A must have some (smaller) O(N) many bins with more than one distinct size in
them. Repeatedly adding and removing the N items of size ε, the algorithm must suffer a
high amortized recourse.

We give a more in-depth description of our algorithms and lower bounds for unit, general
and size costs, highlighting some salient points of their proofs in §2,§3 and §4, respectively.
Due to space constraints we defer most proofs to the full versions of this paper ([15, 11]).
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`

dW/(1− `)e

Figure 1 A packing of instance I`. The `-sized items (in yellow) are packed “on top” of the small
items (in grey).

2 Unit Movement Costs

We consider the natural unit movement costs model. First, we show that an a.c.r better than
α = 1− 1

W−1(−2/e3)+1 ≈ 1.387 implies either polynomial additive term or recourse. Next, we
give tight (α+ ε)-a.c.r algorithms, with both additive term and recourse polynomial in ε−1.
Our key idea is to use an LP that acts both as a gap-revealing LP for a lower bound, and
also as a factor-revealing LP (as well as an inspiration) for our algorithm.

2.1 Impossibility results

Alternating between two instances, where both have 2n − 4 items of size 1/n and one
instance also has 4 items of size 1/2 + 1/2n, we get that any

( 3
2 − ε

)
-competitive online bin

packing algorithm must have Ω(n) recourse. However, this only rules out algorithms with a
zero additive term. Balogh et al. [4] showed that any O(1)-recourse algorithm (under unit
movement costs) with o(n) additive term must have a.c.r at least α ≈ 1.387. We strengthen
both this impossibility result by showing the need for a large additive term or recourse to
achieve any a.c.r below α. Specifically, arbitrarily small polynomial additive terms imply
near-linear recourse. Our proof is shorter and simpler than in [4]. As an added benefit, the
LP we use to bound the competitive ratio will inspire our algorithm in the next section.

I Theorem 2.1 (Unit Costs: Lower Bound). For any ε > 0 and 1
2 > δ > 0, for any algorithm

A with a.c.r (α− ε) with additive term o(ε · nδ), there exists an dynamic bin packing input
with n items on which A uses recourse at least Ω(ε2 · n1−δ) under unit movement cost.

The Instances: The set of instances is the a natural one, and was also considered by [4].
Let 1/2 > δ > 0, c = 1/δ− 1, and let W ≥ 1/ε be a large integer. Our hard instances consist of
small items of size 1/W c, and large items of size ` for all sizes ` ∈ Sε , {` = 1/2 + i · ε | i ∈
N>0, ` ≤ 1/α}. Specifically, input Is consists of bW c+1c small items, and for each ` ∈ Sε,
the input I` consists of bW c+1c small items followed by b W1−`c size-` items. The optimal
bin packings for Is and I` require precisely OPT (Is) = W and OPT (I`) = d W1−`e bins
respectively. Consider any fully-dynamic bin packing algorithm A with limited recourse and
bounded additive term. When faced with input Is, algorithm A needs to distribute the small
items in the available bins almost uniformly. And if this input is extended to I` for some
` ∈ Sε, algorithm A needs to move many small items to accommodate these large items
(or else use many new bins). Since A does not know the value of t beforehand, it cannot
“prepare” simultaneously for all large sizes ` ∈ Sε.
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As a warm-up we show that the linear program (LPε) below gives a lower bound on the
absolute competitive ratio αε of any algorithm A with no recourse. Indeed, instantiate the
variables as follows. On input Is, let Nx be the number of bins in which A keeps free space
in the range [x, x + ε) for each x ∈ {0} ∪ Sε. Hence the total volume packed is at most
N0+

∑
x∈Sε

(1−x)·Nx. This must be at least V ol(Is) ≥W−1/W c, implying constraint (Volε).
Moreover, as OPT (Is) = W , the αε-competitiveness of A implies constraint (smallε). Now
if instance Is is extended to I`, since A moves no items, these `-sized items are placed
either in bins counted by Nx for x ≥ ` or in new bins. Since A is αε-competitive and
OPT (I`) ≤ d W1−`e we get constraint (CRε). Hence the optimal value of (LPε) is a valid
lower bound on the competitive ratio αε.

minimize αε (LPε)
s.t. N0 +

∑
x∈Sε

(1− x) ·Nx ≥W − 1/W c (Volε)
N0 +

∑
x∈Sε

Nx ≤ αε ·W (smallε)

N0 +
∑
x∈Sε,x≤`−εNx +

⌈
W

1−`

⌉
≤ αε ·

⌈
W

1−`

⌉
∀` ∈ Sε (CRε)

Nx ≥ 0

The claimed lower bound on the a.c.r of recourse-less algorithms follows from Lemma 2.2.

I Lemma 2.2. The optimal value α?ε of (LPε) satisfies α?ε ∈ [α−O(ε), α+O(ε)].

To extend the above argument to the fully-dynamic case, we observe that any solution
to (LPε) defined by packing of Is as above must satisfy some constraint (CRε) for some
` ∈ Sε with equality, implying a competitive ratio of at least αε. Now, to beat this bound,
a fully-dynamic algorithm must move at least ε volume of small items from bins which
originally had less than x− ε free space. As small items have size 1/W c = 1/nδ, this implies
that Ω(εnδ) small items must be moved for every bin affected by such movement. This
argument yields Lemma 2.3, which together with Lemma 2.2 implies Theorem 2.1.

I Lemma 2.3. For all ε > 0 and 1
2 > δ > 0, if α?ε is the optimal value of (LPε), then any

fully-dynamic bin packing algorithm A with a.c.r α?ε − ε and additive term o(ε2 · nδ) has
recourse Ω(ε2 · n1−δ) under unit movement costs.

2.2 Matching Algorithmic Results
As mentioned earlier, LPε also guides our algorithm. For the rest of this section, items
smaller than ε are called small, and the rest are large. Items of size si > 1/2 are huge.

To begin, imagine a total of W volume of small items come first, followed by large items.
Inspired by the LP analysis above, we pack the small items such that an N`/W fraction of
bins have ` free space for all ` ∈ {0} ∪ Sε, where the N` values are near-optimal for (LPε).
We call the space profile used by the small items the “curve”; see Figure 1. In the LP analysis
above, we showed that this packing can be extended to a packing with a.c.r α + O(ε) if
W/(1− `) items of size ` are added. But what if large items of different sizes are inserted
and deleted? In §2.2.1 we show that this approach retains its (α+O(ε))-a.c.r in this case
too, and outline a linear-time algorithm to obtain such a packing.

The next challenge is that the small items may also be inserted and deleted. In §2.2.2 we
show how to dynamically pack the small items with bounded recourse, so that the number
of bins with any amount of free space f ∈ Sε induce a near-optimal solution to LPε.

Finally, in §2.2.3 we combine the two ideas together to obtain our fully-dynamic algorithm.
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Figure 2 A packing of instance I′. Large items are packed “on top” of the small items (in grey).
Parts of large items not in the instance Ik` are indicated in red.

2.2.1 LPε as a Factor-Revealing LP
In this section we show how we use the linear program LPε to analyze and guide the following
algorithm: pack the small items according to a near-optimal solution to LPε, and pack the
large items near-optimally “on top” of the small items.

To analyze this approach, we first show it yields a good packing if all large items are
huge and have some common size ` > 1/2. Consider an instance Is consisting solely of small
items with total volume W , packed using Nx bins with gaps in the range [x, x+ ε) for all
x ∈ {0} ∪ Sε, where {αε, N0, Nx : x ∈ Sε} form a feasible solution for (LPε). We say such a
packing is αε-feasible. By the LP’s definition, any αε-feasible packing of small items can be
extended to an αε-competitive packing for any extension I` of Is with ` ∈ Sε, by packing
the size ` items in the bins counted by Nx for x ≥ ` before using new bins. In fact, this
solution satisfies a similar property for any extension Ik` obtained from Is by adding any
number k of items all of size `. (Note that I` is the special case of Ik` with k = bW/(1− `)c.)

I Lemma 2.4 (Huge Items of Same Size). Any αε-feasible packing of small items of Is
induces an αε-competitive packing for all extensions Ik` of Is with ` > 1/2 and k ∈ N.

Now, to pack the large items of the instance I, we first create a similar new instance I ′
whose large items are all huge items. To do so, we first need the following observation.

IObservation 2.5. For any input I made up of solely large items and function f(·), a packing
of I using at most (1+ε) ·OPT (I)+f(ε−1) bins has all but at most 2ε ·OPT (I)+2f(ε−1)+3
of its bins containing either no large items or being more than half-filled by large items.

Now, consider a packing P of the large items of I using at most (1 + ε) ·OPT (I) + f(ε−1)
bins. By Observation 2.5, at most 2ε · OPT (I) + O(f(ε−1)) bins in P are at most half
full. We use these bins when packing I. For each of the remaining bins of P we “glue” all
large items occupying the same bin into a single item, yielding a new instance I ′ with only
huge items, with any packing of I ′ “on top” of the small items of I trivially inducing a
similar packing of I with the same number of bins. We pack the huge items of I ′ on top of
the curve greedily, repeatedly packing the smallest such item in the fullest bin which can
accommodate it. See §2.3.3 for a description of an implementation of this idea with limited
recourse. Now, if we imagine we remove and decrease the size of some of these huge items,
this results in a new (easier) instance of the form Ik` for some k and ` > 1/2, packed in
no more bins than I ′ (see Figure 2). By Lemma 2.4, our packing of I ′ (and of I) uses at
most αε ·OPT (Ik` ) ≤ αε ·OPT (I ′) ≤ (αε +O(ε)) ·OPT (I) +O(f(ε−1)) bins. Performing
the same while only near-optimally packing large items of size exceeding 1/4, and packing
the large items of size in the range (ε, 1/4] so that we only open a new bin if all bins are
at least 3/4 full (in which case we would obtain a 4/3 < α a.c.r) allows us to obtain even
better recourse bounds. These ideas underlie the following theorem (a more complete proof
of which appears in [15]).
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Clump #1 Clump #O(1
ε
) Clump #1

Bucket #1 Bucket #2

Figure 3 Buckets have O(ε−1) clumps, clumps have T bins.

I Theorem 2.6. An αε-feasible packing of the small items of an instance I can be extended
into a packing of I using at most (αε + O(ε)) · OPT (I) + O(ε−2) bins in linear time.
Moreover, given a fully-dynamic (1 + ε) ·OPT (I) + f(ε−1) packing of items of size greater
than 1/4 of It and an αε-feasible packing of its small items, one can maintain a packing
using (αε +O(ε)) ·OPT (It) +O(max{ε−2, f(ε−1))} bins with O(ε−1) worst-case recourse
per item move in the near-optimal dynamic packing of the items of size exceeding 1/4.

It remains to address the issue of maintaining an αε-feasible packing of small items
dynamically using limited recourse.

2.2.2 Dealing With Small Items: “Fitting a Curve”
We now consider the problem of packing ε-small items according to an approximately-optimal
solution of (LPε). We abstract the problem thus.

I Definition 2.7 (Bin curve-fitting). Given a list of bin sizes 0 ≤ b0 ≤ b1 ≤ . . . , bK ≤ 1 and
relative frequencies f0, f1, f2, . . . , fK , such that fx ≥ 0 and

∑K
x=0 fx = 1, an algorithm for

the bin curve-fitting problem must pack a set of m of items with sizes s1, . . . , sm ≤ 1 into a
minimal number of bins N such that for every x ∈ [0,K] the number of bins of size bx that
are used by this packing lie in {bN · fxc, dN · fxe}.

If we have K = 0 with b0 = 1 and f0 = 1, we get standard bin packing. We want
to solve the problem only for (most of the) small items, in the fully-dynamic setting. We
consider the special case with relative frequencies fx being multiples of 1/T , for T ∈ Z;
e.g., T = O(ε−1). Our approach is inspired by the algorithm of [23], and maintains bins in
increasing sorted order of item sizes. The number of bins is always an integer product of T .
Consecutive bins are aggregated into clumps of exactly T bins each, and clumps aggregated
into Θ(ε−1) buckets each. Formally, each clump has T bins, with fx · T ∈ N bins of size bx
for x = 0, . . . ,K. The bins in a clump are ordered according to their capacity bx, so each
clump looks like its target curve. Each bucket except the last consists of some s ∈ [1/ε, 3/ε]
consecutive clumps (the last bucket may have fewer than 1/ε clumps). See Figure 3. For
each bucket, all bins except those in the last clump are full to within an additive ε.

Inserting an item adds it to the correct bin according to its size. If the bin size becomes
larger than the target size for the bin, the largest item overflows into the next bin, and so on.
Clearly this maintains the invariant that we are within an additive ε of the target size. We
perform O(T/ε) moves in the same bucket; if we overflow from the last bin in the last clump
of the bucket, we add a new clump of T new bins to this bucket, etc. If a bucket contains
too many clumps, it splits into two buckets, at no movement cost. An analogous (reverse)
process happens for deletes. Loosely, the process maintains that on average the bins are full
to within O(ε) of the target fullness – one loss of ε because each bin may have ε space, and
another because an O(ε) fraction of bins have no guarantees whatsoever.

We now relate this process to the value of LPε. We first show that setting T = O(ε−1)
and restricting to frequencies which are multiples of ε does not hurt us. Indeed, for us, b0 = 1,
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and bx = (1− x) for x ∈ Sε. Since (LPε) depends on the total volume W of small items, and
fx may change if W changes, it is convenient to work with a normalized version normalized
by W , which is essentially (LPε) with W = 1. Now nx = Nx/W can be interpreted as just
being proportional to number of bins of size bx, and we can define fx = nx/

∑
x nx to the

fraction of bins of size bx in our solution. However, we also need each fx to be an integer
multiple of 1/T for some integer T = O(ε−1). We achieve this by slightly modifying the LP
solution, obtaining the following.

I Lemma 2.8 (Multiples of ε). For any optimal solution {nx} to (LPε) (with W = 1) with
objective value αε, we can construct in linear time a solution {ñx} ⊆ ε · N with objective
value αε +O(ε).

Using a near-optimal solution to (LPε) as in the above lemma, we obtain a bin curve-fitting
instance with T = O(ε−1). Noting that if we ignore the last bucket’s O(T/ε−1) = O(ε−2)
bins in our solution, we obtain an (α?ε +O(ε))-feasible packing (with additive term O(ε−2))
of the remaining items by our algorithm above, using O(ε−2) worst-case recourse. We obtain
the following.

I Lemma 2.9 (Small Items Follow the LP). Let ε ≤ 1/6. Using O(ε−2) worst-case recourse
we can maintain packing of small items such that the content of all but O(ε−2) designated
bins in this packing form an (α?ε +O(ε))-feasible packing.

2.2.3 Our Algorithm
From Lemma 2.8 and Lemma 2.9, we can maintain an (α?ε+O(ε))-feasible packing of the small
items (that is, a packing of inducing a solution to (LPε) with objective value (α?ε +O(ε))), all
while using O(ε−2) worst-case recourse. From Theorem 2.6, using a (1+ε)-a.c.r packing of the
large items one can extend such a packing of the small items into an (α?ε +O(ε))-approximate
packing for It, where α?ε ≤ α + O(ε), by Lemma 2.2. It remains to address the recourse
incurred by extending this packing to also pack the large items.

Amortized Recourse. Here we periodically recompute in linear time the extension guaran-
teed by Theorem 2.6. Dividing the time into epochs and lazily addressing updates to large
items (doing nothing on deletion and opening new bins on insertion) for ε ·N steps, where N
is the number of bins we use at the epoch’s start, guarantees a (α+O(ε))-a.c.r throughout
the epoch. Finally, as the number of large items at the end of an epoch of length ε ·N is at
most O(N/ε), repacking them incurs O(N/ε)/(ε ·N) = O(ε−2) amortized recourse.

Worst Case Recourse. To obtain worst-case recourse we rely on the fully-dynamic (1 + ε)-
a.c.r algorithm of Berndt al. [6] to maintain a (1+ε)-approximate packing of the sub-instance
made of items of size exceeding 1/4 using Õ(ε−3) size cost recourse, and so at most Õ(ε−3)
item moves (as these items all have size Θ(1)). By Theorem 2.6, our (α + O(ε))-feasible
solution for the small items of It can be extended dynamically to an (α + (O(ε)))-a.c.r
packing of all of It, using O(ε−1) worst-case recourse per item change in the dynamic packing
of the items of size exceeding 1/4 of It, yielding an Õ(ε−4) worst-case recourse bound overall.

From the above discussions we obtain this section’s main result – tight algorithms for
unit costs with polynomial additive term and recourse.

I Theorem 2.10 (Unit Costs: Upper Bound). There is a polytime fully-dynamic bin packing
algorithm which achieves α+O(ε) a.c.r, additive term O(ε−2) and O(ε−2) amortized recourse,
or additive term poly(ε−1) and Õ(ε−4) worst-case recourse, under unit movement costs.
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2.3 An Algorithm with Improved Worst-Case Recourse
In this section, we present a second algorithm for the Unit Costs model, which uses only
O(ε−2) worst-case recourse. The previous algorithm mainly used the lower bound as borders,
and then applied two different algorithms for small and large items, combining the two in
a greedy fashion. A near-optimal packing of the large items “on top” of the small items
yields the claimed competitive ratio. In this section, we show that a simple fully-dynamic
4/3-competitive algorithm of Ivković [19] which has recourse only O(ε−1) for the large items
(and only modifies a constant number of bins) combined in the same way yields the same
α+ ε a.c.r, but with better worst-case recourse.

For the remainder of the section, we refer to items of size at most δ = ε/15 as minor
items and items larger than this size as major items. In §2.3.1 we outline our packing of
the minor items, which differs slightly from that of §2.2.2 (in particular it only incurs an
O(ε−1), rather than O(ε−2), additive term). In §2.3.2 we outline Ivković’s algorithm and
some of its structural properties we rely on for our analysis. Finally, in §2.3.3 we prove that
the combination of these solutions in a greedy manner as discussed in §2.2.1 yields an a.c.r
of α+O(ε). The full proofs of this section are deferred to [11].

The result of this section is summarized in the following theorem:

I Theorem 2.11 (Unit Cost: Improved Upper Bound). For each ε ∈ (0, 1), there exists an
algorithm for the Fully-Dynamic bin packing Problem with a.c.r. (1 + ε) · α, additive term
O(ε−1) and O(ε−2) worst-case recourse, under unit movement costs.

2.3.1 Prospective Packing of Minor Items
For our improved recourse bound, our packing of small items here is essentially identical to
that of 2.2.2, so we only highlight the differences here. As before, we pack the small items
in bins which are sorted by item sizes, with bins partitioned into buckets of O(ε−1) clumps
of size O(ε−1), with a prescribed height for each bin in the clump, and one “buffer” clump
in each bucket which is potentially empty (with none of its bins exceeding its target filling
height). Now, unlike the solution of 2.2.2, the number of bins of each target height will be
the same in each clump, which will imply that the fraction of bins of type at most some
j (i.e., filling height at most some wj) is at most some O(ε) times the value assigned to it
by the LP solution. This is sufficient to obtain the required competitive ratio for instances
comprised solely of small items. The advantage of each clump having the same number of
bins of each type however has the added benefit that it implies that once a particular clump
is “full”, (has all its bin of height at least its target height minus ε/15), we can begin packing
major items “on top” of the obtained “curve”. In particular this implies an additive term of
O(ε−1), rather than O(ε−2). As before, the worst-case recourse is at most O(ε−2).

Choice of Parameters

What remains open in the description of the algorithm is the concrete assignment of bin
types and the choice of the parameters k and T . Our choice of filling heights is inspired by
the parameters from the lower bound by Balogh et al. [4] (or equivalently, of §2.1), but in
order to get the desired upper bound instead, each filling height is essentially replaced by
the next smaller filling height from the lower bound. Let α := 1− 1/(W−1(−2/e3)+1) ≈ 1.3871
be the value of the lower bound.

For each bin clump of size T , we need to take care of the correct fraction of bins of a
certain type j, which we implicitly determine by parameters zj (for notational convenience,
we also write z′j :=

∑j
i=1 zi). For a minor item workload of W , we aim to create roughly
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z′k ·W bins, where we choose z′k := (1 + ε/4)α, hence achieving the desired tight bound for
minor items. Note that the frequencies of each bin type as defined in 2.7 can be obtained by
fi = zi/z

′
k. The filling height corresponding to bin type k is defined as wk := yk := (z′k−1)/z′k.

Bins of this type have the largest remaining space, which is 1/z′k. Intuitively, the reason is
that we do not need to reserve space for major items of size at least 1/z′k as packing these
items in exclusive bins still results in an approximation ratio of z′k.

For the other bin types j < k, we now choose the parameters yj according to the geometric
series yj = 1

2 (2 · yk)
j−1
k−1 (see also [4] for the background on why this is a good choice). The

filling heights wj of the different bin types depend almost directly on these parameters: We
set wj := yj ∀j > 1 and w1 := 1 = y1 + 1

2 . This perceived inconsistency is due to the shift of
the other wj (w.r.t. the lower bound) as explained above.

The remaining values for zj are set such that z′j := yk/(yj(1−yk)) holds for all j. The
values for z′j are a result of optimizing the number of bins of type ≤ j against a class of bad
instances where many items of size 1 − yj + ε′ (for some tiny ε′ > 0) are inserted. These
items can not be packed into the same bins with such types, however fit into bins of type
> j. Note that the choice of these parameters results in 1/4 < 1− 1/z′k = yk < . . . < y1 = 1/2

and 3/4 < 2 · (z′k − 1) = z′1 < . . . < z′k = (1 + ε/4) · α.
Based on these parameters, a clump of T bins is organized as follows: We choose the size

of a bin clump to be T = d4z′k/εαe = d4/εe+ 1 and the total number of bins of type ≤ j to be
dz′j/z′k · T e. Hence, the number of bins of type 1 is dz1/z′k · T e, whereas for bin types j > 1, it
is determined by dz′j/z′k · T e − dz

′
j−1/z′k · T e. Note that the rounding implies that the number

of bins of some types may be zero.
Finally, we choose the number of bin types to be k = d3/εe+ 1.

Analysis

The main goal of the upcoming analysis is to bound the number of bins used for a given
payload W of minor items. In the following we state properties of the structure of the
algorithm’s solution.

In order to count the number of bins in our solution, we need the following technical
lemma, which essentially resembles the volume constraint Volε of LPε. Remember that
δ = ε/15 denotes the maximum size of a minor item.

I Lemma 2.12. A set of full bins which consists of at least zj ·W bins of type j for each
bin type j contains a workload of at least W of minor items; i.e.,

∑k
j=1 zjW · (wj − δ) ≥W .

I Lemma 2.13. For all 1 ≤ j ≤ k, the total number of bins of any type i ≤ j is at most
(z′j + 3

4εα)W .

This bound is mainly used for the analysis in §2.3.3, showing that a packing with the
parameters as defined above indeed fits the target curve as desired. However, it also directly
implies the approximation ratio for instances where only minor items are present (constraint
smallε in LPε).

I Corollary 2.14. For an instance with only minor items, the algorithm achieves an a.c.r.
of z′k + 3

4εα = (1 + ε)α.

I Lemma 2.15. The recourse (regarding minor items) during an insertion or deletion of a
minor item is bounded by O(ε−2).
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2.3.2 Dealing with Major Items
For major items, i.e. items with a size larger than δ = ε/15, we use an algorithm called
Myopic Packing (MP) by Ivković [19] which is a simplified version of the MMP algorithm by
Ivković and Lloyd [21]. The algorithm is essentially a fully-dynamic variant of Johnson’s
First Fit Grouping Algorithm [24, 25]. For the sake of completeness, and since [19] is not
freely available on the Internet and the algorithm is an essential component of our algorithm,
we give a detailed description of this algorithm below.

We divide the major items in four sub-groups, depending on their size: A B (big) item
has a size in

( 1
2 , 1
]
, an L (large) item in

( 1
3 ,

1
2
]
, an S (small) item in

( 1
4 ,

1
3
]
and an O

(other) item in
(
ε

15 ,
1
4
]
. Ignoring additional O items for now, the following bin types of

interest can occur: BL, BS, B, LLS, LL, LSS and SSS. The name of the bin type
represents the items of type B, L and S contained in that bin. The additional bin types
LS,L, SS, S can only occur at most two times in a packing in total, so they induce an
additive constant of at most 2 and thus can be ignored for the analysis. Each different type
τ ∈ T := {BL,BS,B,LLS,LL,LSS, SSS} is given a priority such that we have a total
ordering < on T which is BL > BS > B > LLS > LL > LSS > SSS. Out of the listed
bin types above, the MP algorithm utilizes all but bins of type LSS.

The general idea of the algorithm is to insert items in a First Fit manner with disregard
of items of a smaller type. This is realized by a recursive procedure which takes items out
of a dedicated auxiliary storage and inserts them into the regular packing. When an item
is inserted into a bin, items of lower types are removed from this bin and added to the
auxiliary storage. It is important that the algorithm maintains a structural property called
thoroughness, which reflects the structure of the packing as done by the First Fit Grouping
Algorithm by Johnson. This property is formally defined in Lemma 2.16.

In more detail, the algorithm does the following: For an insertion of an item a, it is simply
added to the auxiliary storage and a procedure to clear the storage is called. For a deletion
of a, all items in the same bin as a are removed from the regular packing and added to the
auxiliary storage. Then the procedure to clear the storage is called. At the end of an insert
or delete operation, only a constant number of items remains in the auxiliary storage and is
packed into at most 2 bins. The procedure to clear the auxiliary storage works as follows:
1. Every B item from the auxiliary storage is inserted into the regular packing. The

thoroughness property is maintained by successively searching for fitting L and then S
items in bins of a lower type to pair with the new B item. The remaining items from the
bins from which the L or S item was removed are moved to the auxiliary storage.

2. L and S items from the auxiliary storage are paired with B bins from the regular packing
whenever possible. Bins of the same or higher type are not changed in the process, i.e.
an L item can only be paired with a B item of a BS or B bin. Other items from the bin
in which these items are inserted are moved to the auxiliary storage.

3. As long as there are at least two L items in the auxiliary storage, they are inserted in a
new bin and potentially paired with an S item either from the auxiliary storage or from
an existing SSS bin to form an LLS bin. If no fitting S item exists, an LL bin is created.
If an S item is taken from a regular bin, the remaining items are moved to the auxiliary
storage.

4. As long as there are at least three S items in the auxiliary storage, new bins of type SSS
are formed with these items and inserted into the regular packing. At the end of this
step, the auxiliary storage contains at most one L item and two S items which can be
packed into at most two bins.

5. All remaining O items in the auxiliary storage are moved to the regular packing in a
first fit manner. This implies that bins that contain any other item type than O are
prioritized over bins that exclusively contain O items.
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Properties of the Algorithm

For our analysis of the packing, we mainly use the thoroughness property which is ensured
by the algorithm and proven in [19]:

I Lemma 2.16 ([19]). A bin of type τ ∈ T is thorough if there do not exist two bins B1
and B2 with lower types τ1, τ2 ∈ T , τ1, τ2 < τ such that items from B1 and B2 can be used
to form a bin of type τ . In the solution of the MP algorithm, bins of type BL, BS and LLS
are thorough.

We denote by Algτ and Optτ (e.g. AlgBL and OptBL) the number of bins of type
τ ∈ T in Alg and Opt, respectively. The same notation is adapted for multiple types of
bins (e.g. AlgBL,LLS = AlgBL + AlgLLS). Using this notation, we get:
Alg ≤ AlgBL + AlgBS + AlgB + AlgLLS + AlgLL + AlgSSS + 2, and
Opt ≥ OptBL + OptBS + OptB + OptLLS + OptLL + OptSSS + OptLSS .

Note that the only reason these are not equalities is that the number of bins of type
LS,L, SS or S is between 0 and 2.

We first argue that we may assume that no O items are part of the input: Consider the
case that there is a bin containing only O items in Alg. Then every bin in Alg except one
is filled with items of a cumulative size of at least 3/4. Together with Lemma 2.13 we then
directly get an approximation factor of (1 + ε)α even if we would not combine our solutions
for minor and major items at all. Regarding the case that there is no such O bin, since MP
packs items in a myopic manner, it would produce the same solution if the O items were not
part of the input. Hence we may compare the solution to an instance of the optimal solution,
which does not need to consider any O items in its instance.

In order to ease the analysis of the algorithm, we introduce assumptions to the optimal
solution and show that these do not increase the value of the optimal solution.

I Lemma 2.17. Let Alg be the packing of the MP algorithm of a set of major items. For
an optimal solution Opt of a packing of the same items, the following properties can be
assumed without increasing the number of used bins in Opt:
1. Opt does not pack a BS bin containing a B item that is part of a BL bin in Alg.
2. Opt does not pack a B bin containing a B item that is part of a BL bin in Alg.

We use the thoroughness of the MP algorithm (cf. Lemma 2.16) to show the following
four statements that compare the solutions of Alg and Opt with each other. They will
later be used in the analysis of the combination of our two approaches.

I Lemma 2.18. Let Alg be the packing of the MP algorithm and Opt an optimal solution:
1. AlgBL + AlgBS + AlgB = OptBL + OptBS + OptB
2. AlgBL + OptLSS ≥ 2 (AlgLLS,LL −OptLLS,LL)
3. AlgBS + AlgLL + 2OptLSS ≥ 3 (AlgSSS −OptSSS)
4. AlgBS + OptLLS + 2OptLSS ≥ 3 (AlgSSS −OptSSS)

We finally determine the recourse that occurs during the insertion or deletion of a major
item. Note that while considering this, we need to also account for possible O items.

I Lemma 2.19. The recourse of the MP algorithm (for major items) is bounded by O(ε−1).
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2.3.3 Combining Major and Minor Items

The two presented approaches for the packing of minor and major items treat these items
independently. These independent solutions now have to be combined into one to reach
a good approximation guarantee. Assume we obtain these solutions as two sets of bins,
where the bins (Bmin

1 , . . . , Bmin
m ) are the result of the algorithm for minor items and the

bins
(
Bmaj

1 , . . . , Bmaj
n

)
are the result of the algorithm for major items. Note that although

we temporarily ignored items of a size in (ε/15, 1/4] in the analysis for the major items, the
algorithm that combines the two solutions of course does not ignore the potential O items.

We first describe the structure of the packing we want to achieve and then show how to
maintain that structure over time. The goal is to create pairs of bins with one bin from each
solution while not modifying too many pairs in each time step. For ease of description, we
still refer to two bins Bmin

i and Bmaj
j as two different bins even though their contents may

be packed into the same bin. In such a case, we say that Bmin
i is paired with Bmaj

j .
We want to maintain a greedy-style combination of the two lists of bins, which can

be described by the following combination process: The list of bins with minor items is
(partially) sorted by their type (1, . . . , k), i.e. bins potentially filled with more minor items
appear earlier (the ordering here is different compared to the ordering in §2.3.1 when the
minor items are actually packed). The list of bins with major items is sorted by their filling
height in decreasing order (regardless of their type). The process iterates over the k bin
types in the solution of minor items starting with type 2 (since there is no reserved space
in bins of type 1) in increasing order. For each bin Bmin

i of type j, we iterate over the bins
with major items starting with the bins that have the largest filling height. We pair Bmin

i

with a bin with major items Bmaj` that has a filling height of at most 1−wj and for which `
is minimal, i.e., the first bin with major items whose items fit into the reserved space of the
respective (minor item) bin type.

Note that this process incorporates all bins of the minor solution that contain at least
one item, including the ones that are part of a buffer clump. We do not use bins that contain
no minor items at all (even if they are already present in the minor algorithm as part of a
buffer clump). Such a greedy-style packing can be maintained while only modifying O(k)
pairings per changed bin in either one of the two solutions. A major reason for this is that
for the bins with minor items, only their type is of interest. The pairings of bins need to be
changed if one of the following happens:

A change in the solution of major items: For each insertion or deletion of a major item,
the solution of major items is modified independently first. The above described greedy
process is then used to determine which bins with major items need to be matched with
which types of bins of minor items. The combination is then modified to fit the new solution
by switching out the major bins where needed, starting with those which are paired with
bins of minor items of type 2.
A change in the solution of minor items: As for the major items, the solution of
minor items is first modified independently upon insertion or deletion of a minor item. The
modification may add or remove at most one bin of minor items. In this case, the above
greedy approach is used to recalculate which bins with major items need to be matched with
which types of bins of minor items. The solution is modified accordingly, starting with the
matching with bins with minor items of type 2.
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type 1 type 2 type 3

B
A B

B
B

C

type 4

minor
bins

major
bins

Figure 4 The gray bins represent current bins of the two solutions, the arrows indicate the
current combination. The bin BA is now inserted into the solution for the major items. BA only
fits into minor bins of type 3 or higher. The black arrows indicate the switching process. Bin BA
displaces BB to a minor bin of type 4. Since there is no bin left for BC , it is not combined with any
minor bin after the changes.

Analysis

Due to the described greedy approach for changes and Lemma 2.15 and 2.19, we can bound
the total recourse.

I Lemma 2.20. The recourse is bounded by O(ε−2) for each insertion or deletion.

I Lemma 2.21. Let Bmin be a bin with minor items of type j. If Bmin is not combined with
a bin of major items, all non-combined bins with major items have a filling height of at least
1− wj.

It remains to show that our algorithm achieves the desired approximation quality.

I Lemma 2.22. Let Alg be the number of bins our algorithm uses for an arbitrary input
sequence and Opt the number of bins used by an optimal solution. Then this yields Alg ≤
(1 + ε) · α ·Opt.

Proof. We reuse the notation of Sections 2.3.1 and 2.3.2. For the bins with major items of
Alg, we introduce a collection of bins called L-S-quartet, consisting of three LL bins and one
SSS bin. The number of such collections is denoted by QAlg :=

⌊
min{AlgSSS , 1

3 AlgLL}
⌋
.

We split the number of LL and SSS bins in Alg in the number of bins that can be put
in such quartets, denoted by AlgQLL := 3QAlg and AlgQSSS := QAlg, and the respective
number of bins that cannot be put in such a collection, denoted by Alg−QLL and Alg−QSSS .
Note that it therefore holds AlgLL = AlgQLL + Alg−QLL and AlgSSS = AlgQSSS + Alg−QSSS .
Furthermore, due to the definition of QAlg, it holds Alg−QLL ≤ 2 or Alg−QSSS = 0.

Note that we assume that the solution of Alg for the major items does not contain bins
with only O items, otherwise the approximation ratio would follow directly as argued in the
previous section.

We estimate the optimal solution by adding up all the items which need to be packed. As
before, we denote by W the cumulative size of all minor items. We estimate the cumulative
size of major items by considering the different types of bins with major items τ ∈ T and
their minimal filling height F (τ) resulting from the minimum size of the respective items
(e.g., for bins of type BL, we have F (BL) = 1/2 + 1/3 = 5/6). By incorporating the fact that
all bins in quartets have an average filling height of 3/4 we get

Opt ≥W +
∑
τ∈T

F (τ) ·Alg−Qτ + 3
4AlgQLL + 3

4AlgQSSS as well as (1)

Opt ≥W +
∑
τ∈T

F (τ) ·Alg−Qτ + 3QAlg. (2)
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From Lemma 2.21 we get the following: Suppose j is the maximum index such that a bin
of type j is not combined with a bin of major items (pick j = 1 if such a bin does not exist).
Then all remaining bins with major items must have a size of at least 1− wj . Note that if
j = k, then Alg ≤ (z′k + 3

4εα)W + z′k ·Wmaj directly follows, where Wmaj is the workload
of major items, and hence the approximation ratio. We assume j < k in the following. We
introduce Alg≥(1−wj);−Q

BL,BS,B,LLS,LL,SSS as the number of bins (with major items) of the given
types used by our algorithm, limited to bins with a filling height of at least 1 − wj and
excluding all quartets. Hence we have

Alg ≤ (z′j + 3
4εα)W + Alg≥(1−wj );−Q

BL,BS,B,LLS,LL,SSS + AlgQLL,SSS

≤ (z′j + 3
4εα)Opt +

∑
τ∈T

(1− z′j · F (τ)) ·Alg≥(1−wj );−Q
τ + (1− 3

4z
′
j)AlgQLL,SSS (3)

from (1) as well as

Alg ≤ (z′j + 3
4εα)W + Alg≥(1−wj);−Q

BL,BS,B,LLS,LL,SSS + 4QAlg

≤ (z′j + 3
4εα)Opt +

∑
τ∈T

(1− z′j · F (τ)) ·Alg≥(1−wj);−Q
τ + (4− 3z′j)QAlg. (4)

from (2). We use one of these estimations depending on QAlg.
Let ẑj := z′k − z′j . For the two cases with Alg−QLL ≤ 2 or Alg−QSSS = 0 we show the

following lemmas:

I Lemma 2.23. Let Alg−QLL ≤ 2. Then it holds that

Opt ≥ 1
ẑj
·

(∑
τ∈T

(1− z′j · F (τ)) ·Alg≥(1−wj);−Q
τ + (1− 3

4z
′
j)AlgQLL,SSS

)
.

I Lemma 2.24. Let Alg−QSSS = 0. Then it holds that

Opt ≥ 1
ẑj
·

(∑
τ∈T

(1− z′j · F (τ)) ·Alg≥(1−wj);−Q
τ + (4− 3z′j)QAlg

)
.

Hence, from (3) together with Lemma 2.23 or (4) together with Lemma 2.24, we conclude

Alg ≤ (z′j + 3
4εα)Opt + ẑj ·Opt ≤ (z′k + 3

4εα)Opt = (1 + ε)αOpt.

J

Finally, Theorem 2.11 now directly follows from our analysis: Lemma 2.22 gives the approx-
imation ratio of (1 + ε) · α and Lemma 2.20 bounds the worst-case recourse to O(ε−2).

3 General Movement Costs

We now consider the case of general movement costs, and show a close connection with the
(arrival-only) online problem. We first show that the fully-dynamic problem under general
movement costs cannot achieve a better a.c.r than the online problem. Next, we match the
a.c.r of any super-harmonic algorithm for the online problem in the fully-dynamic setting.
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3.1 Matching the Lower Bounds for Online Algorithms
Formally, an adversary process B for the online bin packing problem is an adaptive process
that, depending on the state of the system (i.e., the current set of configurations used to
pack the current set of items) either adds a new item to the system, or stops the request
sequence. We say that an adversary process shows a lower bound of c for online algorithms
for bin packing if for any online algorithm A, this process starting from the empty system
always eventually reaches a state where the a.c.r is at least c.

I Theorem 3.1. Let β ≥ 2. Any adversary process B showing a lower bound of c for the a.c.r
of any online bin packing algorithm can be converted into a fully-dynamic bin packing
instance with general movement costs such that any fully-dynamic bin packing algorithm
with amortized recourse at most β must have a.c.r at least c.

Such a claim is simple for worst-case recourse. Indeed, given a recourse bound β, set the
movement cost of the i-th item to be (β + ε)n−i for ε > 0. When the i-th item arrives we
cannot repack any previous item because their movement costs are larger by a factor of > β.
So this is a regular online algorithm. The argument fails, however, if we allow amortization.

To construct our lower bound instance, we start with an adversary process and create a
dynamic instance as follows. Each subsequent arriving item has exponentially decreasing (by
a factor β) movement cost. When the next item arrives, our algorithm could move certain
existing items. These items would have much higher movement cost than the arriving item,
and so, this process cannot happen too often. Whenever this happens, we reset the state of
the process to an earlier time and remove all jobs arriving in the intervening period. This
will ensure that the algorithm always behaves like an online algorithm which has not moved
any of the existing items. Since it cannot move jobs too often, the set of existing items which
have not been moved by the algorithm grow over time. This idea allows us to show: implies:

I Corollary 3.2. No fully-dynamic bin packing algorithm with bounded recourse under
general movement costs and o(n) additive term is better than 1.540-asymptotically competitive.

3.2 (Nearly) Matching the Upper Bounds for Online Algorithms
We outline some of the key ingredients in obtaining an algorithm with competitive ratio
nearly matching our upper bound of the previous section. The first is an algorithm to pack
similarly-sized items.

I Lemma 3.3 (Near-Uniform Sizes). There exists a fully-dynamic bin packing algorithm
with constant worst-case recourse which given items of sizes si ∈ [1/k, 1/(k − 1)) for some
integer k ≥ 1, packs them into bins of which all but one contain k− 1 items and are hence at
least 1− 1/k full. (If all items have size 1/k, the algorithm packs k items in all bins but one.)

Lemma 3.3 readily yields a 2-a.c.r algorithm with constant recourse (see [15]). We now
discuss how to obtain 1.69-a.c.r based on this lemma and the Harmonic algorithm [29].

The Harmonic Algorithm. The idea of packing items of nearly equal size together is
commonly used in online bin packing algorithms. For example, the Harmonic algorithm
[29] packs large items (of size ≥ ε) as in Lemma 3.3, while packing small items (of size ≤ ε)
into dedicated bins which are at least 1 − ε full on average, using e.g., FirstFit. This
algorithm uses (1.69 +O(ε)) ·OPT +O(ε−1) bins [29]. Unfortunately, due to item removals,
FirstFit won’t suffice to pack small items into nearly-full bins.
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To pack small items in a dynamic setting we extend our ideas for the unit cost case,
partitioning the bins into buckets of Θ(1/ε) many bins, such that all but one bin in a bucket
are 1−O(ε) full, and hence the bins are 1−O(ε) full on average. Since the size and cost are
not commensurate, we maintain the small items in sorted order according to their Smith
ratio (ci/si). However, insertion of a small item can create a large cascade of movements
throughout the bucket. We only move items to/from a bin once it has Ω(ε)’s worth of volume
removed/inserted (keeping track of erased, or “ghost” items). A potential function argument
allows us to show amortized O(ε−2) recourse cost for this approach, implying the following
lemma, and by [29], a (1.69 +O(ε))-a.c.r algorithm with O(ε−2) recourse.

I Lemma 3.4. For all ε ≤ 1
6 there exists an asymptotically (1 +O(ε))-competitive bin

packing algorithm with O(ε−2) amortized recourse if all items have size at most ε.

Seiden’s Super-Harmonic Algorithms. We now discuss our remaining ideas to match
the bounds of any Super-Harmonic algorithm [33] in the fully-dynamic setting. A Super-
harmonic (SH) algorithm partitions the unit interval [0, 1] into K + 1 intervals [0, ε], (t0 =
ε, t1](t1, t2], . . . , (tK−1, tK = 1]. Small items (of size ≤ ε) are packed into dedicated bins
which are 1− ε full. A large item has type i if its size is in the range (ti−1, ti]. The algorithm
also colors items blue or red. Each bin contains items of at most two distinct item types i and
j. If a bin contains only one item type, all its items are colored the same. If a bin contains
two item types i 6= j, all type i items are colored blue and type j ones are colored red (or
vice versa). The SH algorithm is defined by four sequences (αi)Ki=1, (βi)Ki=1, (γi)Ki=1, and a
bipartite compatibility graph G = (V,E). A bin with blue (resp., red) type i items contains at
most βi (resp., γi) items of type i, and is open if it contains less than this many type i items.
The compatibility graph G = (V,E) has vertex set V = {bi | i ∈ [K]} ∪ {rj | j ∈ [K]}, with
an edge (bi, rj) ∈ E indicating blue items of type i and red items of type j are compatible
and may share a bin. In addition, an SH algorithm must satisfy the following invariants.
(P1) The number of open bins is O(1).
(P2) If ni is the number of type-i items, the number of red type-i items is bαi · nic.
(P3) If (bi, rj) ∈ E (blue type i items and red type j items are compatible), there is no pair

of bins with one containing only blue type i items and one containing only red type j
items.

Appropriate choice of (ti)K+1
i=1 , (αi)Ki=1, (βi)Ki=1, (γi)Ki=1 and G allows one to bound the

a.c.r of any SH algorithm. (E.g., Seiden gives an SH algorithm with a.c.r 1.589 [33].)

Simulating SH algorithms. In a sense, SH algorithms ignore the exact size of large items,
so we can take all items of some type and color. This extends Lemma 3.3 to pack at most βi
or γi of them per bin to satisfy Properties 1 and 2. The challenge is in maintaining Property
3: consider a bin with βi blue type i items and γj type-j items, and suppose the type i items
are all removed. Suppose there exists an open bin with items of type i′ 6= i compatible with j.
If the movement costs of both type j and type i′ items are significantly higher than the cost
of the type i items, we cannot afford to place these groups together, violating Property 3.
To avoid such a problem, we use ideas from stable matchings. We think of groups of βi blue
type-i items and γj red type-j items as nodes in a bipartite graph, with an edge between
these nodes if G contains the edge (bi, rj). We maintain a stable matching under updates,
with priorities being the value of the costliest item in a group of same-type items packed
in the same bin. The stability of this matching implies Property 3; we maintain this stable
matching using (a variant of) the Gale-Shapley algorithm. Finally, relying on our solution
for packing small items as in §3.2, we can pack the small items in bins which are 1− ε full
on average. Combined with the SH bound of Seiden [33], we obtain the following:
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I Theorem 3.5. There exists a fully-dynamic bin packing algorithm with a.c.r 1.589 and
constant additive term using constant recourse under general movement costs.

4 Size Movement Costs (Migration Factor)

In this section, we settle the optimal recourse to a.c.r tradeoff for size movement cost (referred
to as migration factor in the literature); that is, ci = si for each item i. For worst-case
recourse in this model (studied in [9, 23, 6]), poly(ε−1) upper and lower bounds are known
for (1 + ε)-a.c.r. algorithms [6], though the optimal tradeoff remains elusive. We show that
for amortized recourse the optimal tradeoff is Θ(ε−1) recourse for (1 + ε)-a.c.r.

I Fact 4.1. For all ε ≤ 1/2, there exists an algorithm requiring (1+O(ε)) ·OPT (It)+O(ε−2)
bins at all times t while using only O(ε−1) amortized migration factor.

This upper bound is trivial – it suffices to repack according to an AFPTAS whenever
the volume changes by a multiplicative (1 + ε) factor. The challenge here is in showing this
algorithm’s a.c.r to recourse tradeoff is tight. We do so by constructing an instance where
addition or removal of small items of size ≈ ε causes every near-optimal solution to be far
from every near-optimal solution after addition/removal.

I Theorem 4.2. For infinitely many ε > 0, any fully-dynamic bin packing algorithm with
a.c.r (1 + ε) and additive term o(n) must have amortized migration factor of Ω(ε−1).

Our matching lower bound relies on the well-known Sylvester sequence [34], given by
the recurrence relation k1 = 2 and ki+1 =

(∏
j≤i kj

)
+ 1, the first few terms of which

are 2, 3, 7, 43, 1807, . . . While this sequence has been used previously in the context of bin
packing, our proof relies on more fine-grained divisibility properties. In particular, letting c
be a positive integer specified later and ε := 1/

∏c
`=1 k`, we use the following properties:

(P1) 1
k1

+ 1
k2

+ . . .+ 1
kc

= 1− 1∏c

`=1
k`

= 1− ε.

(P2) If i 6= j, then ki and kj are relatively prime.
(P3) For all i ∈ [c], the value 1/ki =

∏
`∈[c]\{i} k`/

∏c
`=1 k` is an integer product of ε.

(P4) If i 6= j ∈ [c], then 1/ki =
∏
`∈[c]\{i} k`/

∏c
`=1 k` is an integer product of kj · ε.

We define a vector of item sizes ~s ∈ [0, 1]c+1 in our instances as follows: for i ∈ [c] we
let si = 1

ki
· (1− ε

2 ), and sc+1 = ε · ( 3
2 −

ε
2 ). The adversarial input sequence will alternate

between two instances, I and I ′. For some large N a product of
∏c
`=1 k`, Instance I consists

of N items of sizes si for all i ∈ [c+ 1]. Instance I ′ consists of N items of all sizes but sc+1.
Properties 1-4 imply on the one hand that I can be packed into completely full bins

containing one item of each size, while any bin which does not contain exactly one item of
each size has at least Ω(ε) free space. Similarly, an optimal packing of I ′ packs items of the
same size in one set of bins, using up exactly 1− ε

2 space, while any bin which contains items
of at least two sizes has at least ε free space. These observations imply the following.

I Lemma 4.3. Any algorithm A with (1 + ε/7)-a.c.r and o(n) additive term packs instance
I such that at least 2N/3 bins contain exactly one item of each size si, and packs instance
I ′ such that at least N/2 bins contain items of exactly one size.

Theorem 4.2 follows from Lemma 4.3 in a rather straightforward fashion. The full details
of this proof and the lemmas leading up to it can be found in [15].
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Abstract
We consider one-sided error property testing of F -minor freeness in bounded-degree graphs for
any finite family of graphs F that contains a minor of K2,k, the k-circus graph, or the (k × 2)-
grid for any k ∈ N. This includes, for instance, testing whether a graph is outerplanar or a
cactus graph. The query complexity of our algorithm in terms of the number of vertices in the
graph, n, is Õ(n2/3/ε5). Czumaj et al. (2014) showed that cycle-freeness and Ck-minor freeness
can be tested with query complexity Õ(

√
n) by using random walks, and that testing H-minor

freeness for any H that contains a cycles requires Ω(
√
n) queries. In contrast to these results, we

analyze the structure of the graph and show that either we can find a subgraph of sublinear size
that includes the forbidden minor H, or we can find a pair of disjoint subsets of vertices whose
edge-cut is large, which induces an H-minor.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near
linear time algorithms

Keywords and phrases graph property testing, minor-free graphs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.52

Related Version A full version of the paper is available at [7], https://arxiv.org/abs/1707.
06126.

1 Supported by ERC grant n◦ 307696.
2 Supported by ERC-CoG grant 772839.
3 Supported by ERC grant n◦ 307696.
4 Supported by ERC grant n◦ 307696, the Spanish Ministerio de Economía y Competitividad projects

MTM2014-54745-P, MTM2017-82166-P and an FPI grant under the María de Maetzu research grant
MDM-2014-0445.

EA
T

C
S

© Hendrik Fichtenberger, Reut Levi, Yadu Vasudev, and Maximilian Wötzel;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 52; pp. 52:1–52:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hendrik.fichtenberger@tu-dortmund.de
https://orcid.org/0000-0003-3246-5323
mailto:reut.levi@weizmann.ac.il
https://orcid.org/0000-0003-3167-1766
mailto:yadu@cse.iitm.ac.in
https://orcid.org/0000-0001-7918-7194
mailto:maximilian.wotzel@upc.edu
https://orcid.org/0000-0001-7591-0998
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.52
https://arxiv.org/abs/1707.06126
https://arxiv.org/abs/1707.06126
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


52:2 A Tester for Outerplanarity and Other Forbidden Minors With One-Sided Error

Acknowledgements We would like to thank Christian Sohler for his helpful suggestions and his
comments on a draft of this paper.

1 Introduction

The study of graph minors began with the work of Wagner [18] and Kuratowski [14]. In
a seminal work on graph minors, Robertson and Seymour [17] proved the Graph-Minor
Theorem, which states that every family of graphs that is closed under forming minors is
characterized by a finite list of forbidden minors. As a consequence of their work, they gave
a classical decision algorithm with a running time of Õ(n3) to verify whether a fixed graph
H is a minor of G.

If time complexity which is polynomial, or even linear, in n is considered too costly, then
it is often useful to study a relaxed version of the decision problem. In graph property testing,
the goal is to test whether a given input graph has a property or is far from the property
(according to some metric) while looking at a very small part of the graph (sublinear in the
number of vertices). This was first studied by Goldwasser, Goldreich and Ron [10], where
the graph was represented as an adjacency matrix. While this model captures properties
of dense graphs well, a more natural one for sparse graphs is the bounded degree model,
first studied by Goldreich and Ron [12], where the graph is given as adjacency lists. In the
bounded degree model, the metric is the fraction ε of edges of the input graph that have to
be modified out of the maximum possible number of edges (the number of vertices times
the bound on the maximum degree), and the query complexity of a tester is the number
of adjacency list entries that the tester looks at. Two-sided (error) property testers are
randomized algorithms that are allowed to err on all graphs, while one-sided (error) property
testers are required to present a witness against the property when they reject (for more
information on property testing, refer to [9, 8]).

In the setting of property testing, Benjamini, Schramm and Shapira [1] conjectured that
for any fixed H, H-minor freeness can be tested with Õ(

√
n) queries by a one-sided tester on

bounded degree graphs. Czumaj et al. [3] provided H-minor freeness testers with one-sided
error. They showed that Ck-freeness is testable with Õ(

√
n) queries for bounded degree

graphs for k ≥ 3 and that any one-sided tester for H-minor freeness requires Ω(
√
n) queries

when H contains a cycle. When H is a forest, they showed that there is a one-sided tester
for H-minor freeness whose query complexity depends only on ε. They consider the problem
whether H-minor freeness can be tested with query complexity o(n) for every minor H “the
most begging open problem” [3] left open by their work. Apart from cycles and forests,
the only further progress they make towards answering this question is for H which is the
4-vertex graph consisting of a triangle and an additional edge. In this paper we make a
significant progress on answering this question and on closing the gap between the conjecture
of Benjamini et al. [1] and what is known for one-sided error testing of general forbidden
minors that contain a cycle.

1.1 Our results
We extend the study of testing H-minor freeness for a fixed graph H with one-sided error.
For a finite family of minors F , we say that a graph is F -minor free if it is H-minor free for
every H ∈ F . We obtain a property tester with query complexity Õ(n2/3/ε5) for F-minor
freeness, where F is any family of forbidden minors that contains some graph H that is
a minor of either the complete bipartite graph K2,k, the k-circus graph (see [2]) or the
(k × 2)-grid. This implies, for example, that one can test with one-sided error whether a
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graph is outerplanar or a cactus graph. We prove the following result (see Theorem 26 for a
more general, technical version).

I Theorem 1. Given a graph G with degree at most ∆, and a parameter ε, for every constant
k, there is a one-sided (error) ε-tester with query complexity Õ(n2/3/ε5) for F-minor freeness,
where F is a family of forbidden minors such that there exists H ∈ F and H is a minor of
K2,k, the k-circus graph or the (k × 2)-grid.

Setting F = {K2,3,K4} and F to consist of the diamond graph (C4 with a chord), it
follows that outerplanarity, and being a cactus graph, can be tested with one-sided error,
respectively.

I Corollary 2. Testing outerplanarity with one-sided error has query complexity Õ(n2/3/ε5).

I Corollary 3. Testing the property of being a cactus graph with one-sided error has query
complexity Õ(n2/3/ε5).

1.2 Related Work
As described above, the work most closely related to ours is the paper by Czumaj et al. [3].
Other work in property testing on H-minor freeness studies two-sided error testers. Goldreich
and Ron [12] showed that K3-minor freeness (i.e. cycle-freeness) can be tested with two-sided
error and query complexity that is a polynomial in 1/ε only. Czumaj, Shapira and Sohler [4]
studied a partitioning of graphs that have low expansion (like minor free graphs), which
yields two-sided tests for hereditary properties. The problem of testing general H-minor
freeness was studied by Benjamini, Schramm and Shapira in [1], where they showed that every
minor-closed property of sparse graphs is testable with two-sided error and query complexity
independent of the graph’s size, although they could only give an upper bound on the query
complexity that was triple-exponential in 1/ε. Hassidim et al. [13] used partition oracles to
give an easier two-sided tester for the property of H-minor freeness with query complexity
2poly(1/ε). This was further improved by Levi and Ron [16] to obtain a two-sided tester with
query complexity that is quasi-polynomial in 1/ε. Yoshida and Ito [19] provided testers with
two-sided error for outerplanarity and being a cactus graph with query complexity which is
only polynomial in 1/ε and the bound on the maximum degree.

1.3 Challenges and Techniques
The results of Benjamini et al. [1] imply that the optimal complexity of a two-sided H-minor
freeness tester may depend on the size of H (and ε and ∆) only. On the other hand, it was
proved by Czumaj et al. [3] that the hardness of the one-sided error problem depends on the
structure of H. Since all embeddings of H into G may be much larger than H itself, the
challenge lies in exploring the proper subgraph to find a witness. However, finding a witness
can be worthwhile because it can make the decision of the tester more comprehensible (cf.
the discussion in [3]). In [3], the problem of finding Ck-minors is reduced to a tester for
bipartiteness [11], which in turn finds odd cycles when two random walks that start from the
same vertex collide.

Our algorithm is based on a different approach that employs a partitioning of the graph
into sublinear parts. Specifically, the main ingredients in our algorithm are a method to
employ a partition of the graph that is derived from a partition into connected parts of size
roughly n1/3 by Lenzen and Levi [15], and combinatorial lemmas about the existence of
H-minors that depends on the number of cut edges between two parts.

ICALP 2018
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In contrast to testing via partition oracles [13, 16], it is not sufficient to only approximate
the number of edges between the parts of our partition and, in turn, to reject if this
approximated value is too high. This would seem like a limitation to obtaining sublinear
query complexity since we can no longer assume that the graph is Θ(ε)-far from being
H-minor free after removing the edges going across the parts. In particular, we might have
to find a minor that crosses the cut of two parts. An additional obstacle is that we cannot
recover the part of a vertex in general because it can be rather large. However, we can show
that if the input graph is ε-far from being H-minor free, then we can either find a large cut
between two parts, which implies the existence of an H-minor, or we can recover a superset
of a part that contains an H-minor.

Suppose that G is ε-far from being F -minor free, where F is a family of forbidden minors
as in Theorem 1. The algorithm uses a partition into core clusters and remote clusters of size
Õ(n1/3). We draw a uniform sample of edges of constant size (which contains an edge of a
minor with constant probability) and distinguish two cases. If an edge belongs to a forbidden
minor that is contained in a single cluster, then it suffices to check the cluster for this minor.
For core clusters, we can do this by using a partition oracle, but for remote clusters we use a
promise on the diameter of the cluster to recover a superset of the remote cluster.

The other case is that a forbidden minor lies across clusters. In particular, we argue that
the minor must then lie across core clusters. We show that if the cut between two clusters is
greater than some threshold f = f(H), this implies an H-minor (recall that H is either K2,k,
the k-circus graph or the (k × 2)-grid). In fact, we show that this is true for every pair of
disjoint subsets of vertices such that their respective induced subgraphs are connected. Given
that, we analyze the edge cut of a coarser partition into super clusters and show that if the
total size of all cuts that exceed the above-mentioned threshold is small, then actually all
edges between clusters can be removed. To obtain access to the partition into super clusters
we make use of another coarser partition into Voronoi cells for which we also do not have a
partition oracle but, roughly speaking, can answer membership queries efficiently.

While we do not attain the upper bound of Õ(
√
n) conjectured by Benjamini et al. [1],

our techniques are significantly different from the ones of Czumaj et al. [3], which is the
only other work that gives one-sided testers for minor freeness that we are aware of. Our
work throws open two natural questions. The first is whether the technique of partitioning
can be used to obtain a one-sided tester for H-minor freeness that matches the conjectured
Õ(
√
n) upper bound. Roughly speaking, the complexity of the algorithm given in Theorem 1,

in terms of n, results from the fact that the size of the parts is Õ(n1/3), and the fact that
checking to which part a vertex belongs to takes Õ(n1/3) as well. The second question
is whether similar techniques can be used to design one-sided testers for a larger class of
minors with sublinear query complexity. The limitation of our current approach to the
aforementioned minors arises from the inner structure of the parts that we can assume,
namely connectivity and bounded diameter. Extending these guarantees, one may hope to
find other minors, for example: (k × k)-grid minors; or K3,3, which implies testing planarity
in sublinear time.

2 Preliminaries

The graphs we consider are simple, undirected, and have a known degree bound ∆. We
denote the number of vertices in the graph at hand by n and we assume that each vertex
v has a unique id, which for simplicity we also denote by v. There is a total order on the
ids, i.e., given any two distinct ids u and v, we can decide whether u < v or v < u. The
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total order on the vertices induces a total order r on the edges of the graph in the following
straightforward manner: r({u, v}) < r({u′, v′}) if and only if min{u, v} < min{u′, v′} or
min{u, v} = min{u′, v′} and max{u, v} < max{u′, v′}. The total order over the vertices also
induces an order over those vertices visited by a Breadth First Search (BFS) starting from
any given vertex v, and whenever we refer to a BFS, we mean that it is performed according
to this order. Whenever referring to one of the above orders, we may refer to the rank of
an element in the respective order. This is simply the index of the respective element when
listing all the elements according to the order starting with the smallest.

Let G = (V,E) be a graph, where V = [n]. We will say that a graph G is ε-far
from a property P if at least εn∆ edges of G have to be modified in order to convert
it into a graph that satisfies the property P . In this paper, the property P that is of
interest is H-minor freeness. We will assume that the graph G is represented by a function
fG : [n] × [∆] → [n] ∪ {?}, where f(v, i) denotes the ith neighbor of v if v has at least i
neighbors. Otherwise, fG(v, i) = ?. We will now define the notion of one-sided (error)
property testers.

I Definition 4 (One-sided testers). A one-sided (error) ε-tester for a property P of bounded
degree graphs with query complexity q is a randomized algorithm A that makes q queries to
fG for a graph G. The algorithm A accepts if G has the property P . If G is ε-far from P ,
then A rejects with probability at least 2/3.

We denote the distance between two vertices u and v in G by dG(u, v). For vertex v ∈ V
and an integer r, let Γr(v,G) denote the set of vertices at distance at most r from v. When
the graph G is clear from the context, we shall use the shorthands d(u, v) and Γr(v) for
dG(u, v) and Γr(v,G), respectively. For a subset of vertices S ⊆ V , we denote by G[S] the
subgraph induced on S in G.

I Definition 5 (Graph minors). A graph H is a minor of G, if H can be obtained from G by
a sequence of vertex deletions, edge deletions and edge contractions: For an edge (u, v) ∈ G,
delete the vertices u, v, and create a new vertex w. For each neighbor z of either u or v in
the graph, add a new edge (w, z).

I Definition 6 ((k×2)-grid). The (k×2)-grid is the graph whose vertex set is {xi}ki=1∪{yi}ki=1
and edge set is {xi, xi+1}k−1

i=1 ∪ {yi, yi+1}k−1
i=1 ∪ {xi, yi}ki=1.

I Definition 7 (k-circus graph ([2])). The k-circus graph is the graph whose vertex set is
{x} ∪ {yi}ki=1 ∪ {zi}ki=1 and edge set is {(yi, zi)}ki=1 ∪ {zi, zi+1}k−1

i=1 ∪ {x, yi}ki=1.

For a graph G = (V,E) and a pair of disjoint subsets of vertices A ⊂ V and B ⊂ V let
EG(A,B) def= {(u, v) ∈ E |u ∈ A ∧ v ∈ B}. When it is clear from the context, we omit the
subscript. We say that a pair of subsets of vertices A and B is adjacent if EG(A,B) 6= ∅.

I Definition 8 (Separability). A graph G = (V,E) is (f, g)-separable if for every disjoint sets
of vertices A and B such that G[A] and G[B] are connected and the diameter of G[A] is at
most g it holds that |E(A,B)| ≤ f .

We shall use the following theorem by Erdős and Szekeres.

I Lemma 9 (Erdős and Szekeres [6]). Given a sequence of natural numbers S = (si)i∈[n] of
length n, there exists a subsequence of length

√
n that is either monotonically increasing or

monotonically decreasing.
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3 Separability and Evidence for Minors

In this section we prove combinatorial lemmas that give sufficient conditions for the existence
of a (k × 2)-grid minor, a k-circus minor and a K2,k minor in a graph. To that end, we will
consider the following auxiliary graph, which is defined with respect to a partition of another
graph’s vertex set.

I Definition 10. Let G = (V,E) be a graph and P a partition of its vertex set. The graph
G[P] is defined as the graph with vertex set P, and {P, P ′} ⊆ P is an edge if and only if
there are vertices v ∈ P, u ∈ P ′ such that {u, v} ∈ E.

Notice that if G[P ] is connected for every P ∈ P, then G[P] is isomorphic to the minor
of G obtained by contracting every edge of G[P ], for all P ∈ P , so we will often refer to this
minor also by G[P].

I Lemma 11. Given a tree T = (V,E) of bounded degree ∆ and a subset of relevant vertices
Q ⊆ V , there exists a partitioning P of V such that T [P] is a path minor of T of length
log∆ |Q| and for every P ∈ P, it holds that P ∩Q 6= ∅.

Proof. We will construct the claimed partition. Initially, let P = {{v} | v ∈ V }. While there
exists an edge {P, P ′} in T [P ] such that P ′ does not contain a relevant vertex and the degree
of P ′ is at most two, update P = P \ P ′ and P = P ∪ P ′. Repeat this process until no such
edges remain. Note that the resulting T [P] is still a tree of maximum degree ∆ and that
every part contains at most one relevant vertex, that is, |P ∩Q| ≤ 1 for all P ∈ P.

Since T [P] is a tree with at least |Q| vertices, it has diameter ` ≥ log∆ |Q|. Let
L = (P1, P2, . . . , P`) be a simple path in T [P] between a pair of leaves, of maximum
length. For every part Pi ∈ L, let Ti be the subtree rooted at Pi in T [P ] that is obtained by
(virtually) removing the (at most two) edges between Pi and its neighbors in L. Every part
Pi ∈ L that contains no relevant vertex has at least one neighbor that is not in L, otherwise
it is of degree at most two and would have been merged previously. For every such part, the
tree Ti must contain at least one part that has non-empty intersection with Q, otherwise
it would have been contracted. We update the partition by setting Pi =

⋃
P∈Ti

P for every
part i ∈ [`] and setting P = {Pi}`i=1.

Now, we have that for every i ∈ [`] , Pi ∩Q 6= ∅, and we have also not shortened the path.
Therefore, T [P] is the desired path minor of T . J

I Lemma 12. Given a rooted tree T = (V,E) of bounded degree ∆ with height h (for some
h ∈ N) and a subset of relevant vertices Q ⊆ V , there exists a partition, P, of V such that
T [P ] is a star minor of T with |Q|/(2h) leaves and for every P ∈ P, it holds that P ∩Q 6= ∅.

Proof. W.l.o.g., assume that the root is not in Q. Let S be the set of maximal paths in T
that start at the root and end at some vertex in Q. The length of each path in S is bounded
by h, and therefore there exist at least |Q|/h such paths. Since all paths in S start at the
same vertex and they are maximal, their end vertices are pairwise distinct. Removing all
vertices that are not contained in any path of S and contracting all but the end edges of the
paths in S, gives a star minor with at least |Q|/h relevant leaves. Finally, we can contract
an arbitrary leaf into the root to make the part of the root relevant. J

The common idea of the following proofs is to consider a partition of a graph into two
parts such that there is a large cut, and to apply Lemma 11 and / or Lemma 12 to these
parts in order to construct the desired minors.
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I Lemma 13. Let G = (V,E) be a graph of bounded degree ∆ that does not contain the
(k × 2)-grid as a minor. Then, G is (∆1+∆k2+1

, n)-separable.

Proof. We prove the contrapositive of the statement of the lemma. Let V1∪̇V2 be a partition
of V such that E(V1, V2) > ∆1+∆k2+1 . Let T1 (resp. T2) be a spanning tree of G[V1]
(resp. G[V2]). Let Q1 be the set of vertices in V1 that have a neighbor in V2. Since
|E(V1, V2)| ≥ ∆1+∆k2+1 , the size of the set Q1 is at least ∆∆k2+1 . By Lemma 11, there exists
a partition P1 of V1 such that T1[P1] is a path minor of T1 of length r ≥ log∆ |Q1| ≥ ∆k2+1.
Let (u1, u2, · · · , ur) be this path minor. For each vertex uj in the path minor T1[P1], it holds
that |Γ(uj) ∩ V2| ≥ 1. Now, for each vertex uj in the path minor, remove all the edges to V2
except the one of lowest rank, so that |Γ(uj) ∩ V2| = 1.

Since the degree of G is at most ∆, the number of vertices in V2 adjacent to Q1 that
remain after these edge deletions is at least ∆k2 . Denote this set of vertices by Q2. By
Lemma 11, there exists a partition P2 of V2 such that T2[P2] is a path minor of length
t ≥ log∆ |Q2| ≥ k2. Let {v1, v2, · · · , vt} be this path. Since |Γ(uj) ∩ T2[P2]| = 1 for all
uj ∈ T1[P1], we have t ≤ r. Furthermore, each vertex vj ∈ T2[P2] has at least one neighbor
in T1[P1]. Therefore, by Hall’s theorem, there is matching of size at least k2 between T1[P1]
and T2[P2].

By Lemma 9, there is a set of k vertices, say ui1 , ui2 , · · · , uik and vj1 , vj2 , · · · , vjk
, such

that i1 ≤ i2 ≤ · · · ≤ ik and j1 ≤ j2 ≤ · · · ≤ jk, and (uil , vjl
) is an edge in the matching.

Contract the edges in the path to the vertices ui1 , ui2 , · · · , uik and vj1 , vj2 , · · · , vjk
to obtain

the (k × 2)-grid minor. J

I Lemma 14. Let G = (V,E) be a graph of bounded degree ∆ that does not contain the
k-circus as a minor. Then, G is (2h∆2+k2

, h)-separable for every h ∈ N.

Proof. We prove the contrapositive of the statement of the lemma. This proof is very similar
to the proof of Lemma 13. The only difference is that (i) we consider a partition V1∪̇V2 of
V such that E(V1, V2) > 2h∆2+k2 and the diameter of G[V1] is at most h and (ii) we apply
Lemma 12 instead of Lemma 11 to G[V1]. In particular, let T1 (resp. T2) be a spanning
tree of G[V1] (resp. G[V2]). Let Q1 be the set of vertices in V1 that have a neighbor in V2.
Since |E(V1, V2)| ≥ 2h∆2+k2 , the size of the set Q1 is at least 2h∆1+k2 . By Lemma 12, there
exists a partition P1 of V1 such that T1[P1] is a star minor of T1 with r ≥ ∆1+k2 leaves. Let
{u1, u2, · · · , ur} be the leaves of this star minor. For each leaf uj of the star minor T1[P1], it
holds that |Γ(uj) ∩ V2| ≥ 1. Now, for each leaf uj in the star minor, remove all the edges to
V2 except the one of lowest rank, so that |Γ(uj) ∩ V2| = 1. The remaining proof is analogous
to the proof of Lemma 13. J

The proof of the following lemma appears in the arXiv version [7].

I Lemma 15. Let G = (V,E) be a graph of bounded degree ∆ that does not contain the
complete bipartite graph K2,k as a minor. Then, G is (2∆kh, h)-separable for every h ∈ N.

4 Underlying Partitions

In this section we describe a method to partition the graph into small connected parts with
certain properties that enable us to apply Lemmas 13 to 15. The partition technique is very
similar to the one that appears in [15], which is used for the local construction of sparse
spanning subgraphs. We make minor adaptations to suit our needs. Omitted proofs appear
in the arXiv version [7]. In Section 5, we will show how to utilize these partitions for testing
the forbidden minors.
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Three different partitions are described next, one of which is a refinement of the other
two. As described in more detail in the next sections, the properties of these partitions are
as follows. The refined partition into core clusters can be locally recovered. The edge cut of
this partition is not necessarily small, even if the input graph excludes the forbidden minor.
The second partition into Voronoi cells will be useful for checking the edge cut of the third
partition into super clusters, which in turn is guaranteed to have a small edge cut in case
the graph excludes the forbidden minor. See the arXiv version [7] for an illustration of the
following definitions.

Parameters. The input parameters are α and γ. We sample ` uniformly at random from
[b log n/ log(1 + γ), b log n/ log(1 + γ) + ∆/γ], and let t def= cn1/3 lnn · `∆/α where c and b
are sufficiently large constants. The parameter ` affects the diameter of the parts of the
partition. It is picked randomly so as to ensure that only a small fraction of the edges are in
the edge cut of the partition.

Centers. Pick a set S ⊂ |V | of Θ(αn2/3/ lnn) vertices at random. We shall refer to the
vertices in S as centers. For each vertex v ∈ V , its center, denoted by c(v), is the center
which is closest to v among all centers (break ties between centers according to the rank).

Remote Vertices. Define R def= {v |Γ`(v) ∩ S = ∅} where S is the set of centers. We call
the vertices in R remote and abbreviate R̄ def= V \R.

Voronoi cells. The Voronoi cell of a vertex v ∈ R̄ is Vor(v) def= {u ∈ R̄ | c(u) = c(v)}.

We deal with the partitioning of remote vertices later. Given a vertex v ∈ R̄, one can
determine its center by exploring its `-hop neighborhood. However, it is much more costly to
find all vertices that belong to its Voronoi cell, which may have size Ω(n). We now describe
how to further refine the partition given by the Voronoi cells so that the number of vertices
in each cluster is Õ(n1/3∆/α).

Core clusters. For each Voronoi cell, consider the BFS tree spanning it, as described
in Section 2, which is rooted at the respective center. For every v ∈ V , let p(v) denote the
parent of v in this BFS tree. If v is a center then p(v) = v. For every v ∈ V \ S, let T (v)
denote the subtree of v in the above-mentioned BFS tree when we remove the edge {v, p(v)}.
Now consider a Voronoi cell. We define the core cluster of a vertex v as follows:
1. If |Vor(v)| ≤ t then the core cluster of v is Vor(v).
2. If |T (v)| ≥ t, where |T (v)| denotes the number of vertices in T (v), then the core cluster

of v is the singleton {v}.
3. Otherwise, v has a unique ancestor u for which |T (u)| < t and |T (p(u))| ≥ t. The core

cluster of v is the set of vertices in T (u).
For a vertex v ∈ R̄, let cluster(v) denote the cluster of v. For a cluster C, let c(C) denote the
center of the vertices in C (all the vertices in the cluster have the same center). Let Vor(C)
denote the Voronoi cell of the vertices in C.

This describes a partition of V into R and R̄, a refinement of R̄ into Voronoi cells, and a
refinement of this partition into core clusters. It was shown in [15] that the number of core
clusters is not much higher than the number of Voronoi cells.

I Lemma 16 (Lemma 1 in [15]). The number of core clusters, denoted by s, is at most
|S|+ n`(∆ + 1)/t.

Note that core clusters are, like Voronoi cells, connected.

I Lemma 17. For every vertex v ∈ R̄, cluster(v) is connected.

Even more, Voronoi cells are still connected if one removes a cluster that is not a singleton.
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I Lemma 18. Let v ∈ R̄ be a vertex such that cluster(v) is not a singleton. Then, G[Vor(v)\
cluster(v)] is connected.

In contrast to Voronoi cells, core clusters are guaranteed to be sufficiently small by
construction, which allows us to fully explore them in an efficient manner. An explicit
procedure for this is given in Section 5.1. However, it might still be possible for the overall
edge cut to be large, even if there are only few edges in individual cuts between two core
clusters. To this end, we group core clusters and consider the cut between pairs of a core
cluster and such a resulting super cluster instead.

I Definition 19. For a core cluster A, define its adjacent vertices ∂A def= {v |u ∈ A ∧ v ∈
R̄ \A ∧ {u, v} ∈ E}, i.e., the set of vertices that are adjacent to a vertex in A, excluding A.

I Definition 20. Define the adjacent centers of a set of vertices A ⊆ R̄ to be {c(v) | v ∈ A}.

Marked Clusters. Each center is marked independently with probability p def= 1/n1/3. If
a center is marked, then we say that its Voronoi cell is marked and all the clusters in this
cell are marked as well.

Super Clusters. Let A be a cluster which is not marked but is adjacent to at least one
marked cluster. Let {u, v} be the edge with minimum rank such that u ∈ A and v ∈ B,
where B is a marked cluster. We say that the cluster A joins the cluster B. The super
cluster of B consists of B and all the clusters which join B.

After considering pairs of clusters and super clusters (and bounding the number of edges
between them), only few pairs of core clusters (A,B) are left such that neither A nor B are
member of a super cluster with high probability.

I Lemma 21. With probability at least 1− o(1), it holds that |c(∂A)| ≤ n1/3 log n for every
core cluster A that is not adjacent to a marked cluster.

This settles the three partitions of vertices from R̄ into Voronoi cells, core clusters and
super clusters. We now describe a way to partition the remote vertices into remote clusters
such that (with high probability) the total number of edges that go out from each remote
cluster is at most O(γn∆) even if the graph is far from being H-minor free. Basically, this
implies that one can test a remote cluster isolated from the remaining graph because all
outgoing edges can be removed such that G which was (α+ γ)-far from being H-minor free
is still α-far from the property. The partitioning uses ideas of Elkin and Neiman [5].

Remote clusters. We will first describe the algorithm of Elkin and Neiman [5]. Given an
integer h and a parameter 0 < δ ≤ 1, each vertex v draws rv according to the exponential
distribution with parameter β = ln(n/δ)/h. By Claim 2.3 in [5], with probability at least
1 − δ, it holds that rv < h for all v ∈ V . Each vertex v receives ru from every vertex
u within distance at most h, and stores the values mu(v) = ru − d(u, v). We use this
technique to obtain a partition of R as follows. Every vertex v ∈ R is assigned to the
vertex u ∈ R such that mu(v) = maxw∈R{mw(v)}, if there is more than one such vertex,
pick the one with minimum rank. We say that u is the leader of v denoted by L(v) and
that {w ∈ R |L(w) = L(v)} is the remote cluster of v. We note that we run this algorithm
on G[R] (namely, we calculate mu(v) = ru − dG[R](u, v)), therefore a vertex u can not be
assigned to a vertex on a different connected component in G[R].

Like core clusters, remote clusters are also connected.

I Lemma 22. For every v ∈ R, the subgraph induced on the remote cluster of v is connected.
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Similarly5 as in [5], we define C(v) = {u |mu(v) ≥ maxw∈V {mw(v)−1}}, for every v ∈ R.
We will use an observation about the size of this set to argue that the number of cut-edges
between remote clusters is small.

I Lemma 23 (Proof of Lemma 2.2 in [5]). For every v ∈ R, Exp[C(v)] ≤ (n/δ)1/h.

For δ = 1/nb−1 and h = `, we obtain that Exp[C(v)] ≤ (1 + γ). Define the edge-cut of R to
be K = {{u, v} ∈ E |v ∈ R ∧ u ∈ R ∧ (L(u) 6= L(v))}.

I Lemma 24. With probability at least 99/100, |K| ≤ 100γ∆|R| ≤ 100γ∆n.

It remains to bound the number of edges between remote clusters and core clusters.

I Lemma 25 (Lemma 6 in [15]). Exp[|E(R, R̄)|] ≤ γn.

5 The Algorithm

We prove the following result. Theorem 1 follows by plugging in Lemmas 13 to 15.

I Theorem 26. Let F be a finite family of graphs such that there exists H ∈ F and
f = f(n,F ,∆), g = g(n,F ,∆), g ≥ ` (where ` is defined in Section 4) such that every
n-vertex graph that is H-minor free is (f, g)-separable. For every ε > 0, there is a one-
sided ε-tester that given query access to an n-vertex graph, G, with maximum degree ∆,
tests whether G is F-minor free (i.e., G is R-minor free, for every R ∈ F). The query
complexity of the tester is Õ(n2/3f3/ε5). If F includes a planar graph, then the running time
is Õ(n2/3f3/ε5) as well.

We first analyze a global version of the tester (see Algorithm 1) and show how to turn it
into a local algorithm in Section 5.1. Our tester draws Θ(f/ε) edges at random from the
input graph G. It follows that at least one of these edges is part of a forbidden minor with
constant probability if G is ε-far from being F-minor free. For the sake of this exposition,
think of the graph being partitioned into core clusters and remote clusters. To reveal a
forbidden minor from F , the algorithm employs this partitioning.

We conduct the following case analysis. Either, an edge that is one out of many that
connect a cluster A and an adjacent (disjoint) super cluster B will be sampled. Since
non-remote clusters have diameter at most ` ≤ g, by the (f, g)-separability of F -minor free
graphs, a large cut between A and B implies the existence of H as a minor (see steps 2c
and 2d). Otherwise, one can show that the total number of edges between clusters is at most
εn∆/2. This implies that the edges between clusters can be removed such that the graph
is still ε/2-far from being F-minor free. Then, it suffices to look for a minor-instance of a
graph from F inside the clusters of each edge (see step 2b).

Therefore, it suffices to bound the number of edges between clusters under the promise
that the edge-cut between every cluster and an adjacent (disjoint) super cluster is small.
Since a naive bound over all pairs of clusters is quite costly, we classify edges and analyze
each class independently. First, we observe that the total number of edges between remote
clusters and clusters is O(εn∆) with constant probability. It remains to bound the number of
edges between core clusters. To this end, we analyze the total number of edges between core
clusters within the same Voronoi cell, the total number of edges between two unmarked core
clusters and the total number of edges between core clusters and super clusters separately.

5 This set is defined slightly differently in [5], but Lemma 23 applies to this definition as well.
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Algorithm 1 Test F -minor freeness.

1. Partition V according to the partition described in Section 4 with parameters γ = Θ(ε)
and α = Θ(ε/f).

2. Sample Θ (f/ε) random edges from G. For each sampled edge {u, v}:
a. Find the cluster for each endpoint, denoted by Cv and Cu, respectively.
b. If both u and v belong to the same cluster C, check that G[C] is F -minor free, if it is

not, then return REJECT.
c. If either for w = u or for w = v it holds that: w ∈ R̄, cluster(w) is not a singleton, and
|E(Vor(w) \ cluster(w), cluster(w))| > f , then return REJECT.

d. If both u and v are in R̄ and and both Cu and Cv are not singletons then:
i. If |E(Cv, Cu)| > f then return REJECT.
ii. If Cv (and symmetrically for Cu) joins a cluster C 6= Cu, then let A

def=⋃
v∈∂C\Cu

Vor(v). If |E((A ∪ C) \ Cu, Cu)| > f then return REJECT.
3. Return ACCEPT.

This covers all relevant edges between clusters at least once and gives an upper bound on
their total number.

Theorem 26 follows from the the efficient implementation (Section 5.1) and the correctness
of the tester (Section 5.2).

The proof of the running time appears in the arXiv version [7].

5.1 Efficient Implementation
In this subsection we describe how Algorithm 1 can be implemented in query complexity
Õ(n2/3f3/ε5) · poly(∆). For a vertex v ∈ V , define iv

def= mini{Γi(v) ≥ y} where y def=
Θ(n1/3 log2 n/α). Let E denote the event that Γiv (v) ∩ S 6= ∅ for all v ∈ V . Since w.h.p. E
occurs, henceforth we condition on this event. The following subroutines are sufficient in
order to implement Algorithm 1:
1. Given a vertex v ∈ R̄, finding cluster(v). The query complexity of finding c(v) is bounded

by y · ∆. That is, c(v) is found after performing a BFS from v for at most iv levels.
Furthermore, the path connecting v and c(v) in T (c(v)) is also found (this is the shortest
path between v and c(v) of smallest lexicographical order). Therefore it is possible to
explore T (c(v)) with query complexity O(y ·∆) per step. In order to determine cluster(v),
it is sufficient to explore T (v) and T (a) up to t vertices, for any ancestor, a, of v. Therefore,
the total query complexity is at most O(`ty∆) = Õ(n2/3f2/ε4) · poly(∆) per iteration.

2. Given a subset of vertices A, finding c(∂A) can be done in query complexity y ·∆ times
the total number of edges which are incident to vertices in A. If A is a cluster then the
latter is bounded by t∆. Therefore we obtain a bound of Õ(n2/3f2/ε3) · poly(∆) queries
per iteration of step 2c and step 2(d)ii.

3. Finally, instead of finding the remote-cluster of a vertex v ∈ R it suffices to find a
connected induced subgraph that contains the remote-cluster of v. This is achievable
by first finding the corresponding leader and then exploring the `-hop neighborhood of
the leader. To find the leader, it is sufficient to explore the `-hop neighborhood of v and
then for every vertex in it, to determine whether it is in R or not (determining whether
a vertex is in R takes O(y ·∆) time). With this at hand, it is possible to simulate the
result of the leader-decomposition algorithm for v. Observe that both v and the leader of
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v are in R, therefore (under the assumption that E occurred) it is possible to explore
their `-hop neigberhood in O(y ·∆) time. The query complexity for each iteration of this
step is bounded by Õ(n2/3f2/ε2) · poly(∆).

5.2 Correctness
I Lemma 27. Algorithm 1 accepts every graph G that is F-minor free.

Proof. The completeness of the test is based on the separability of H-minor free graphs. We
show that if the algorithm rejects, then G contains a graph from F as minor.

Step 2b rejects only if G contains a graph from F as a minor. To apply (f, g)-separability
to step 2c, it suffices to note that for any w ∈ R̄ such that cluster(w) is not a singleton,
G[Vor[w] \ cluster(w)] is connected by Lemma 18.

To apply the separability to step 2(d)i, it suffices to note that Cv and Cu are disjoint
and that G[Cv] and G[Cu] are both connected by Lemma 17. To apply the separability to
step 2(d)ii, we need to show that G[(A ∪ C) \ Cu] is connected, since it is clearly disjoint
from Cu, the correctness then follows. There are two cases. If (A ∪ C) ∩ Cu = ∅, then
G[(A ∪ C) \ Cu] = G[A ∪ C] is connected. Otherwise, since Cu is not a singleton and since
∂C contains a vertex v which is in Vor(Cu) \ Cu, the claim follows from Lemma 18. J

I Lemma 28. Algorithm 1 rejects every graph G that is ε-far from being H-minor free with
probability 2/3.

Proof. Assume that G is ε-far from being H-minor free. Let P denote the partition obtained
by the algorithm (namely, the partition of the entire graph as described in Section 4 with
parameters γ = Θ(ε) and α = Θ(ε/f)). We say that an edge e = {u, v} violates the
separability property with respect to P if either:
1. There exist a core cluster A ∈ R̄ and a cluster or a super cluster, B ∈ R̄ such that

e ∈ E(A,B) and |E(A,B)| > f ,
2. or, if either for w = u or for w = v it holds that: w ∈ R̄, cluster(w) is not a singleton,

and |E(Vor(w) \ cluster(w), cluster(w))| > f .
Let E denote the set of edges which violate the f -separability property with respect to P . If
|E| > αn∆, then with probability at least 99/100, the algorithm finds a violation in one of
the steps: step 2c, step 2(d)i or step 2(d)ii. Note that we do not need to check any edges
between a core cluster and a remote cluster nor any edges between two remote clusters. By
Markov’s inequality and Lemma 25, with probability at least 99/100, |E(R, R̄)| ≤ 100γn.
By Lemma 24, with probability at least 99/100, |K| ≤ 100γn∆. Thus, after removing these
|E(R, R̄) ∪K| ≤ εn∆/3 edges, the graph is still ε/3-far from being F -minor free.

Assume that |E| ≤ αn∆. We will show that with probability at least 96/100, we can
separate G into clusters by removing at most αn∆ · 500f = εn∆/2 edges. Therefore, the
resulting graph is ε/2-far from being F-minor free, and with probability at least 2/3, the
algorithm rejects in step 2b.

Separating G into clusters

1. As argued above, |E(R, R̄) ∪K| ≤ 200γn∆ with probability at least 98/100. Therefore,
we can separate G into G[R̄] and G[R1], . . . , G[Rj ], where R1, . . . , Rj is the partition of
R into remote clusters.

2. Next, we remove all the edges in E (at most αn∆). In order to separate each Voronoi
cell into its core clusters we simply remove all the edges between different clusters in
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the same Voronoi cell. The number of edges which are incident to singleton clusters are
at most ∆s. Since we removed the edges in E , for a cluster A which is not a singleton,
we have that E(A,Vor(A) \A) ≤ f . Therefore by removing at most s(∆ + f) edges we
separate all the Voronoi cells into clusters.

3. By Lemma 21, with probability at least 1− o(1), we can separate all the clusters, A, for
which c(∂A) does not contain a marked center by removing at most 3sfp−1 lnn edges.

4. The expected number of marked clusters is sp, therefore with probability at least 99/100
the number of marked clusters is at most 100sp. Thus, with probability at least 99/100
the number of pairs A,B ∈ R̄ such that A is a cluster and B is a super cluster is at most
s · 100sp. Since we removed all edges in F , we have that E(A,B) < f for each such pair.
Therefore, the number of edges between clusters and super clusters is at most 100fs2p.

Recalling from Lemma 16 that s = Θ(αn2/3/ lnn), we can choose the constants in α and γ
to be small enough such that

200γn∆ +
[
αn∆ + Θ

(
αn2/3

lnn

)
(∆ + f)

]
+ Θ(αnf) + Θ

(
α2nf

ln2 n

)
≤ εn∆/2.

Hence, with probability at least 96/100, we can separate G into clusters and remote clusters
by removing at most εn∆/2 edges. J
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Abstract
We provide a number of algorithmic results for the following family of problems: For a given
binary m × n matrix A and a nonnegative integer k, decide whether there is a “simple” binary
matrix B which differs from A in at most k entries. For an integer r, the “simplicity” of B is
characterized as follows.

Binary r-Means: Matrix B has at most r different columns. This problem is known to be
NP-complete already for r = 2. We show that the problem is solvable in time 2O(k log k) ·
(nm)O(1) and thus is fixed-parameter tractable parameterized by k. We also complement this
result by showing that when being parameterized by r and k, the problem admits an algorithm
of running time 2O(r3/2·

√
k log k)(nm)O(1), which is subexponential in k for r ∈ o((k/ log k)1/3).

Low GF(2)-Rank Approximation: Matrix B is of GF(2)-rank at most r. This problem
is known to be NP-complete already for r = 1. It is also known to be W[1]-hard when
parameterized by k. Interestingly, when parameterized by r and k, the problem is not only
fixed-parameter tractable, but it is solvable in time 2O(r3/2·

√
k log k)(nm)O(1), which is subex-

ponential in k for r ∈ o((k/ log k)1/3).
Low Boolean-Rank Approximation: Matrix B is of Boolean rank at most r. The
problem is known to be NP-complete for k = 0 as well as for r = 1. We show that it is
solvable in subexponential in k time 2O(r2r·

√
k log k)(nm)O(1).

2012 ACM Subject Classification Mathematics of computing→ Combinatorial algorithms, The-
ory of computation → Fixed parameter tractability

Keywords and phrases Binary matrices, clustering, low-rank approximation, fixed-parameter
tractability

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.53

Related Version A full version of the paper is available at [22], https://arxiv.org/abs/1803.
06102.

Funding The research leading to these results have been supported by the Research Council of
Norway via the projects “CLASSIS” and “MULTIVAL".

EA
T

C
S

© Fedor V. Fomin, Petr A. Golovach, and Fahad Panolan;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 53; pp. 53:1–53:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Fedor.Fomin@uib.no
https://orcid.org/0000-0003-1955-4612
mailto:Petr.Golovach@uib.no
https://orcid.org/0000-0002-2619-2990
mailto:Fahad.Panolan@uib.no
https://orcid.org/0000-0001-6213-8687
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.53
https://arxiv.org/abs/1803.06102
https://arxiv.org/abs/1803.06102
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


53:2 Parameterized Low-Rank Binary Matrix Approximation

Acknowledgements We thank Daniel Lokshtanov, Syed Mohammad Meesum and Saket Saurabh
for helpful discussions on the topic of the paper.

1 Introduction

In this paper we consider the following generic problem. Given a binary m× n matrix, that
is a matrix with entries from domain {0, 1}, A = (aij) ∈ {0, 1}m×n, the task is to find a
“simple” binary m× n matrix B which approximates A subject to some specified constrains.
One of the most widely studied error measures is the Frobenius norm, which for a matrix A
is defined as

‖A‖F =

√√√√ m∑
i=1

n∑
j=1
|aij |2.

Here the sums are taken over R. Then for a given nonnegative integer k, we want to decide
whether there is a matrix B with certain properties such that ‖A−B‖2

F ≤ k.
We consider the binary matrix approximation problems when for a given integer r, the

approximation binary matrix B
(A1) has at most r pairwise-distinct columns,
(A2) is of GF(2)-rank at most r, and
(A3) is of Boolean rank at most r.
Each of these variants is very well-studied. Before defining each of the problems formally and
providing an overview of the relevant results, the following observation is in order. Since we
approximate a binary matrix by a binary matrix, in this case minimizing the Frobenius norm
of A−B is equivalent to minimizing the `0-norm of A−B, where the measure ‖A‖0 is the
number of non-zero entries of matrix A. We also will be using another equivalent way of
measuring the quality of approximation of a binary matrix A by a binary matrix B by taking
the sum of the Hamming distances between their columns. Let us recall that the Hamming
distance between two vectors x,y ∈ {0, 1}m, where x = (x1, . . . , xm)ᵀ and y = (y1, . . . , ym)ᵀ,
is dH(x,y) =

∑m
i=1 |xi − yi| or, in words, the number of positions i ∈ {1, . . . ,m} where xi

and yi differ. Then for binary m× n matrix A with columns a1, . . . , an and matrix B with
columns b1, . . . ,bn, we define dH(A,B) =

∑n
i=1 dH(ai,bi). In other words, dH(A,B) is the

number of positions with different entries in matrices A and B. Then we have the following.

‖A−B‖2
F = ‖A−B‖0 = dH(A,B) =

n∑
i=1

dH(ai,bi). (1)

Problem (A1): Binary r-Means. By (1), the problem of approximating a binary m × n
matrix A by a binary m× n matrix B with at most r different columns (problem (A1)) is
equivalent to the following clustering problem. For given a set of n binary m-dimensional
vectors a1, . . . , an (which constitute the columns of matrix A) and a positive integer r,
Binary r-Means aims to partition the vectors in at most r clusters, as to minimize the
sum of within-clusters sums of Hamming distances to their binary means. More formally,

Input: An m× n matrix A with columns (a1, . . . , an), r ∈ N and a nonnegative integer k.
Question: Is there a positive integer r′ ≤ r, a partition {I1, . . . , Ir′} of {1, . . . , n} and vectors

c1, . . . , cr′
∈ {0, 1}m such that

∑r′

i=1

∑
j∈Ii

dH(ci, aj) ≤ k?

Binary r-Means
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To see the equivalence of Binary r-Means and problem (A1), it is sufficient to observe
that the pairwise different columns of an approximate matrix B such that ‖A−B‖0 ≤ k can
be used as vectors c1, . . . , cr′ , r′ ≤ r. As far as the mean vectors are selected, a partition of
columns of A can be obtained by assigning each column-vector ai to its closest mean vector
cj (ties breaking arbitrarily). Then for such clustering the total sum of distances from vectors
within cluster to their centers does not exceed k. Similarly, a solution to Binary r-Means
can be used as columns (with possible repetitions) of matrix B such that ‖A−B‖0 ≤ k. For
that we put bi = cj , where cj is the closest vector to ai.

This problem was introduced by Kleinberg, Papadimitriou, and Raghavan [37] as one of
the examples of segmentation problems. Approximation algorithms for optimization versions
of this problem were given by Alon and Sudakov [3] and Ostrovsky and Rabani [53], who
referred to it as clustering in the Hamming cube. In bioinformatics, the case when r = 2 is
known under the name Binary-Constructive-MEC (Minimum Error Correction) and
was studied as a model for the Single Individual Haplotyping problem [13].

Binary r-Means can be seen as a discrete variant of the well-known k-Means Cluster-
ing. (Since in problems (A2) and (A3) we use r for the rank of the approximation matrix, we
also use r in (A1) to denote the number of clusters which is commonly denoted by k in the
literature on means clustering.) This problem has been studied thoroughly, particularly in
the areas of computational geometry and machine learning. We refer to [1, 6, 39] for further
references to the works on k-Means Clustering.

Problem (A2): Low GF(2)-Rank Approximation. Let A be a m × n binary matrix. In
this case we view the elements of A as elements of GF(2), the Galois field of two elements.
Then the GF(2)-rank of A is the minimum r such that A = U · V, where U and V are
m × r and r × n binary matrices respectively, and arithmetic operations are over GF(2).
Equivalently, this is the minimum number of binary vectors, such that every column (row) of
A is a linear combination (over GF(2)) of these vectors. Then (A2) is the following problem.

Input: An m× n-matrix A over GF(2), r ∈ N and a nonnegative integer k.
Question: Is there a binary m× n-matrix B with GF(2)-rank ≤ r and ‖A−B‖2

F ≤ k?

Low GF(2)-Rank Approximation

Low GF(2)-Rank Approximation arises naturally in applications involving binary data
sets and serves as an important tool in dimension reduction for high-dimensional data sets
with binary attributes, see [17, 35, 31, 38, 54, 57, 62] for further references and numerous
applications of the problem.

Low GF(2)-Rank Approximation can be rephrased as a special variant (over GF(2))
of the problem finding the rigidity of a matrix. (For a target rank r, the rigidity of a matrix
A over a field F is the minimum Hamming distance between A and a matrix of rank at most
r.) Rigidity is a classical concept in Computational Complexity Theory studied due to its
connections with lower bounds for arithmetic circuits [29, 30, 58, 55]. We refer to [41] for an
extensive survey on this topic.

Low GF(2)-Rank Approximation is also a special case of a general class of problems
approximating a matrix by a matrix with a small non-negative rank. Already Non-negative
Matrix Factorization (NMF) is a nontrivial problem and it appears in many settings. In
particular, in machine learning, approximation by a non-negative low rank matrix has gained
extreme popularity after the influential article in Nature by Lee and Seung [40]. NMF is
an ubiquitous problem and besides machine learning, it has been independently introduced
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and studied in combinatorial optimization [21, 61], and communication complexity [2, 42].
An extended overview of applications of NMF in statistics, quantum mechanics, biology,
economics, and chemometrics, can be found in the work of Cohen and Rothblum [15] and
recent books [12, 51, 25].

Problem (A3): Low Boolean-Rank Approximation. Let A be a binary m×n matrix. This
time we view the elements of A as Boolean variables. The Boolean rank of A is the minimum
r such that A = U∧V for a Boolean m× r matrix U and a Boolean r× n matrix V, where
the product is Boolean, that is, the logical ∧ plays the role of multiplication and ∨ the role of
sum. Here 0∧0 = 0, 0∧1 = 0, 1∧1 = 1 , 0∨0 = 0, 0∨1 = 1, and 1∨1 = 1. Thus the matrix
product is over the Boolean semi-ring (0, 1,∧,∨). This can be equivalently expressed as the
normal matrix product with addition defined as 1+1 = 1. Binary matrices equipped with such
algebra are called Boolean matrices. Equivalently, A = (aij) ∈ {0, 1}m×n has the Boolean
rank 1 if A = xᵀ∧y, where x = (x1, x2, . . . , xm) ∈ {0, 1}m and y = (y1, y2, . . . , yn) ∈ {0, 1}n
are nonzero vectors and the product is Boolean, that is, aij = xi ∧ yj . Then the Boolean
rank of A is the minimum integer r such that A = a(1) ∨ · · · ∨ a(r), where a(1), . . . , a(r) are
matrices of Boolean rank 1; zero matrix is the unique matrix with the Boolean rank 0. Then
Low Boolean-Rank Approximation is defined as follows.

Input: A Boolean m× n matrix A, r ∈ N and a nonnegative integer k.
Question: Is there a Boolean m× n matrix B of Boolean rank ≤ r and dH(A, B) ≤ k?

Low Boolean-Rank Approximation

For r = 1 Low Boolean-Rank Approximation coincides with Low GF(2)-Rank
Approximation but for r > 1 these are different problems.

Boolean low-rank approximation has attracted much attention, especially in the data
mining and knowledge discovery communities. In data mining, matrix decompositions are
often used to produce concise representations of data. Since much of the real data is binary
or even Boolean in nature, Boolean low-rank approximation could provide a deeper insight
into the semantics associated with the original matrix. There is a big body of work done on
Low Boolean-Rank Approximation, see e.g. [7, 9, 17, 43, 48, 49].

P-Matrix Approximation. While at first glance Low GF(2)-Rank Approximation and
Low Boolean-Rank Approximation look very similar, algorithmically the latter problem
is more challenging. The fact that GF(2) is a field allows to play with different equivalent
definitions of rank like row rank and column ranks. We exploit this strongly in our algorithm
for Low GF(2)-Rank Approximation. For Low Boolean-Rank Approximation the
matrix product is over the Boolean semi-ring and nice properties of the GF(2)-rank cannot
be used here (see, e.g. [32]). Our algorithm for Low Boolean-Rank Approximation is
based on solving an auxiliary P-Matrix Approximation problem, where the task is to
approximate a matrix A by a matrix B whose block structure is defined by a given pattern
matrix P. It appears, that P-Matrix Approximation is also an interesting problem on its
own.

More formally, let P = (pij) ∈ {0, 1}p×q be a binary p × q matrix. We say that a
binary m× n matrix B = (bij) ∈ {0, 1}m×n is a P-matrix if there is a partition {I1, . . . , Ip}
of {1, . . . ,m} and a partition {J1, . . . , Jq} of {1, . . . , n} such that for every i ∈ {1, . . . , p},
j ∈ {1, . . . , q}, s ∈ Ii and t ∈ Jj , bst = pij . In words, the columns and rows of B can be
permuted such that the block structure of the resulting matrix is defined by P.
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Input: An m× n binary matrix A, a pattern binary matrix P and a nonnegative integer k.
Question: Is there an m× n P-matrix B such that ‖A−B‖2

F ≤ k?

P-Matrix Approximation

The notion of P-matrix was implicitly defined by Wulff et al. [60] as an auxiliary tool for
their approximation algorithm for the related monochromatic biclustering problem. Since
Low GF(2)-Rank Approximation remains NP-complete for r = 1 [26], we have that
P-Matrix Approximation is NP-complete already for the very simple pattern matrix

P =
(

0 0
0 1

)
.

1.1 Related work
In this subsection we give an overview of previous related algorithmic and complexity
results for problems (A1)–(A3), as well as related problems. Since each of the problems has
many practical applications, there is a tremendous amount of literature on heuristics and
implementations. In this overview we concentrate on known results about algorithms with
proven guarantee, with emphasis on parameterized complexity.

Problem (A1): Binary r-Means. Binary r-Means is trivially solvable in polynomial time
for r = 1, and as was shown by Feige in [20], is NP-complete for every r ≥ 2.

PTAS (polynomial time approximation scheme) for optimization variants of Binary
r-Means were developed in [3, 53]. Approximation algorithms for more general k-Means
Clustering is a thoroughly studied topic [1, 6, 39]. Inaba et al. [33] have shown that the
general k-Means Clustering is solvable in time nmr+1 (here n is the number of vectors,
m is the dimension and r the number of required clusters). We are not aware of any, except
the trivial brute-force, exact algorithm for Binary r-Means prior to our work.

Problem (A2): Low GF(2)-Rank Approximation. When the low-rank approximation mat-
rix B is not required to be binary, then the optimal Frobenius norm rank-r approximation of
(not necessarily binary) matrix A can be efficiently found via the singular value decomposition
(SVD). This is an extremely well-studied problem and we refer to surveys for an overview of
algorithms for low rank approximation [36, 44, 59]. However, SVD does not guarantee to
find an optimal solution in the case when additional structural constrains on the low-rank
approximation matrix B (like being non-negative or binary) are imposed.

In fact, most of these constrained variants of low-rank approximation are NP-hard. In
particular, Gillis and Vavasis [26] and Dan et al. [17] have shown that Low GF(2)-
Rank Approximation is NP-complete for every r ≥ 1. Approximation algorithms for
the optimization version of Low Boolean-Rank Approximation were considered in
[34, 35, 17, 38, 57, 10] among others.

Most of the known results about the parameterized complexity of the problem follows
from the results for Matrix Rigidity. Fomin et al. have proved in [24] that for every
finite field, and in particular GF(2), Matrix Rigidity over a finite field is W[1]-hard being
parameterized by k. This implies that Low GF(2)-Rank Approximation is W[1]-hard
when parameterized by k. However, when parameterized by k and r, the problem becomes
fixed-parameter tractable. For Low GF(2)-Rank Approximation, the algorithm from
[24] runs in time 2O(f(r)

√
k log k)(nm)O(1), where f is some function of r. While the function

f(r) is not specified in [24], the algorithm in [24] invokes enumeration of all 2r × 2r binary
matrices of rank r, and thus the running time is at least double-exponential in r.
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Meesum, Misra, and Saurabh [46], and Meesum and Saurabh [47] considered parameterized
algorithms for related problems about editing of the adjacencies of a graph (or directed
graph) targeting a graph with adjacency matrix of small rank.

Problem (A3): Low Boolean-Rank Approximation. It follows from the rank definitions
that a matrix is of Boolean rank r = 1 if and only if its GF(2)-rank is 1. Thus by the results
of Gillis and Vavasis [26] and Dan et al. [17] Low Boolean-Rank Approximation is
NP-complete already for r = 1.

While computing GF(2)-rank (or rank over any other field) of a matrix can be performed in
polynomial time, deciding whether the Boolean rank of a given matrix is at most r is already
an NP-complete problem. Thus Low Boolean-Rank Approximation is NP-complete
already for k = 0. This follows from the well-known relation between the Boolean rank and
covering edges of a bipartite graph by bicliques [28]. Let us briefly describe this equivalence.
For Boolean matrix A, let GA be the corresponding bipartite graph, i.e. the bipartite graph
whose biadjacency matrix is A. By the equivalent definition of the Boolean rank, A has
Boolean rank r if and only if it is the logical disjunction of r Boolean matrices of rank 1.
But for every bipartite graph whose biadjacency matrix is a Boolean matrix of rank at
most 1, its edges can be covered by at most one biclique (complete bipartite graph). Thus
deciding whether a matrix is of Boolean rank r is exactly the same as deciding whether
edges of a bipartite graph can be covered by at most r bicliques. The latter Biclique
Cover problem is known to be NP-complete [52]. Biclique Cover is solvable in time
22O(r)(nm)O(1) [27] and unless Exponential Time Hypothesis (ETH) fails, it cannot be solved
in time 22o(r)(nm)O(1) [11].

For the special case r = 1 Low Boolean-Rank Approximation and k ≤ ‖A‖0/240,
Bringmann, Kolev and Woodruff gave an exact algorithm of running time 2k/

√
‖A‖0(nm)O(1)

[10]. (Let us remind that the `0-norm of a matrix is the number of its non-zero entries.)
More generally, exact algorithms for NMF were studied by Cohen and Rothblum in [15].
Arora et al. [5] and Moitra [50], who showed that for a fixed value of r, NMF is solvable in
polynomial time. Related are also the works of Razenshteyn et al. [56] on weighted low-rank
approximation, Clarkson and Woodruff [14] on robust subspace approximation, and Basu et
al. [8] on PSD factorization.

Observe that all these problems could be seen as matrix editing problems. For Binary
r-Means, we can assume that r ≤ n as otherwise we have a trivial YES-instance. Then the
problem asks whether it is possible to edit at most k entries of the input matrix, that is,
replace some 0-s by 1-s and some 1-s by 0-s, in such a way that the obtained matrix has at
most r pairwise-distinct columns. Respectively, Low GF(2)-Rank Approximation asks
whether it is possible to edit at most k entries of the input matrix to obtain a matrix of rank
at most r. In P-Matrix Approximation, we ask whether we can edit at most k elements
to obtain a P-matrix. A lot of work in graph algorithms has been done on graph editing
problems, in particular parameterized subexponential time algorithms were developed for a
number of problems, including various cluster editing problems [19, 23].

1.2 Our results and methods

We study the parameterized complexity of Binary r-Means, Low GF(2)-Rank Approx-
imation and Low Boolean-Rank Approximation. We refer to the recent books of Cygan
et al. [16] and Downey and Fellows [18] for the introduction to Parameterized Algorithms
and Complexity. Our results are summarized in Table 1.
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Table 1 Parameterized complexity of low-rank approximation. GF(2) Approx stands for Low
GF(2)-Rank Approximation and Bool Approx for Low Boolean-Rank Approximation. We
omit the polynomial factor (nm)O(1) in running times.

k r k + r

Binary r-Means 2O(k log k), Thm 1 NP-c for r ≥ 2 [20] 2O(r3/2·
√

k log k), Thm 3
GF(2) Approx W[1]-hard [24] NP-c for r ≥ 1 [26, 17] 2O(r3/2·

√
k log k), Thm 4

Boolean Approx NP-c for k = 0 [52] NP-c for r ≥ 1 [26, 17] 2O(r2r·
√

k log k), Thm 2

Our first main result concerns Binary r-Means. We show (Theorem 1) that the problem
is solvable in time 2O(k log k) · (nm)O(1). Therefore, Binary r-Means is FPT parameterized
by k. Since Low GF(2)-Rank Approximation parameterized by k is W[1]-hard and Low
Boolean-Rank Approximation is NP-complete for any fixed k ≥ 0, we find Theorem 1
quite surprising. The proof of Theorem 1 is based on a fundamental result of Marx [45] about
the complexity of a problem on strings, namely Consensus Patterns. We solve Binary
r-Means by constructing a two-stage FPT Turing reduction to Consensus Patterns.
First, we use the color coding technique of Alon, Yuster, and Zwick from [4] to reduce Binary
r-Means to some special auxiliary problem and then show that this problem can be reduced
to Consensus Patterns, and this allows us to apply the algorithm of Marx [45].

Our second main result concerns Low Boolean-Rank Approximation. As we men-
tioned above, the problem is NP-complete for k = 0, as well as for r = 1, and hence is
intractable being parameterized by k or by r only. On the other hand, a simpler Low GF(2)-
Rank Approximation is not only FPT parameterized by k+ r, by [24] it is solvable in time
2O(f(r)

√
k log k)(nm)O(1), where f is some function of r, and thus is subexponential in k. It is

natural to ask whether a similar complexity behavior could be expected for Low Boolean-
Rank Approximation. Our second main result, Theorem 2, shows that this is indeed the
case: Low Boolean-Rank Approximation is solvable in time 2O(r2r·

√
k log k)(nm)O(1).

The proof of this theorem is technical and consists of several steps. We first develop a
subexponential algorithm for solving auxiliary P-Matrix Approximation, and then con-
struct an FPT Turing reduction from Low Boolean-Rank Approximation to P-Matrix
Approximation.

Let us note that due to the relation of Boolean rank computation to Biclique Cover, the
result of [11] implies that unless Exponential Time Hypothesis (ETH) fails, Low Boolean-
Rank Approximation cannot be solved in time 22o(r)

f(k)(nm)O(1) for any function f .
Thus the dependence in r in our algorithm cannot be improved significantly unless ETH fails.

Interestingly, the technique developed for solving P-Matrix Approximation can be
used to obtain algorithms of running times 2O(r3/2·

√
k log k)(nm)O(1) for Binary r-Means

and Low GF(2)-Rank Approximation (Theorems 3 and 4 respectively). For Binary
r-Means, Theorems 3 provides much better running time than Theorem 1 for values of
r ∈ o((k log k)1/3).

For Low GF(2)-Rank Approximation, comparing Theorem 4 and the running time
2O(f(r)

√
k log k)(nm)O(1) from [24], let us note that Theorem 4 not only slightly improves

the exponential dependence in k by
√

log k; it also drastically improves the exponential
dependence in r, from 22r to 2r3/2 .

Due to space restrictions, we only give high level descriptions of our algorithms. In
Section 2 we sketch the algorithm for Binary r-Means parameterized by k, and in Section 3
we explain how we construct FPT algorithms for Binary r-Means and Low GF(2)-Rank
Approximation parameterized by k and r that are subexponential in k. The full proofs
and further results can be found in [22].
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2 Binary r-Means parameterized by k

In this section we give a description of our FPT algorithm for Binary r-Means that runs in
time 2O(k log k) · (nm)O(1) (Theorem 1).

Let (A, r, k) be an instance of Binary r-Means where A is a matrix with columns
(a1, . . . , an). We say that a partition {I1, . . . , Ir′} of {1, . . . , n} for r′ ≤ r is a solution for
this instance if there are vectors c1, . . . , cr′ ∈ {0, 1}m such that

∑r′

i=1
∑
j∈Ii

dH(ci,aj) ≤ k.
We say that each Ii or, equivalently, the multiset of columns {aj | j ∈ Ii} (some columns
could be the same) is a cluster and ci the mean of the cluster. Observe that given a cluster
I ⊆ {1, . . . , n}, one can easily compute an optimal mean c = (c1, . . . , cm)ᵀ as follows. Let
aj = (a1j , . . . , amj)ᵀ for j ∈ {1, . . . , n}. For each i ∈ {1, . . . ,m}, consider the multiset
Si = {aij | j ∈ I} and put ci = 0 or ci = 1 according to the majority of elements in Si, that
is, ci = 0 if at least half of the elements in Si are 0-s and ci = 1 otherwise. We refer to this
construction of c as the majority rule.

An initial cluster is an inclusion maximal set I ⊆ {1, . . . , n} such that all the columns in
the initial cluster are equal. The property of initial clusters we build upon is that there is
always an optimal solution that does not split any of the initial clusters. More formally, we
say that a partition {I1, . . . , Ir′} of the columns of matrix A is regular if for every initial
cluster I, there is i ∈ {1, . . . , r′} such that I ⊆ Ii. Respectively, if (A, r, k) is a yes-instance
of Binary r-Means, then there is a solution {I1, . . . , Ir′} forming a regular partition and
we call such a solution regular. In words, in a regular solution every two equal columns of
A are placed in the same cluster. Thus in a regular solution {I1, . . . , Ir′}, each cluster Ii is
either simple, that is, contains exactly one initial cluster and all its columns are equal, or Ii
is composite, that is composed of several initial clusters. One can show that there is always
an optimal solution to Binary r-Means that is regular.

Moreover, we can assume that a solution we seek for is not only regular but has stronger
property. Indeed, let {I1, . . . , Ir′} be a regular solution for instance (A, r, k). Denote
by c1, . . . , cr′ the corresponding means of the clusters. Let Ii be a composite cluster of
{I1, . . . , Ir′} that contains h ≥ 2 initial clusters. Then

∑
j∈Ii

(ci,aj) ≥ h− 1. Therefore, for
every yes-instance, a regular solution {I1, . . . , Ir′} contains at most k composite clusters; all
the remaining clusters are simple. Moreover, the total number of initial clusters used to
form the composite clusters is at most 2k. Note also that if Ii is a simple cluster then for
ci = ah for an arbitrary h ∈ Ii, we have that

∑
j∈Ii

(ci,aj) = 0, that is, simple clusters do
not contribute to the total cost of the solution.

Thus the essence of the problem is to find the way of composing initial clusters into
composite ones. More precisely, for the instance (A, r, k), let I be the family of the initial
clusters. Let s = |I|. Then finding a solution for Binary r-Means is equivalent to finding a
set I ′ ⊆ I of size at most 2k such that I ′ can be used to form at most r− s+ |I ′| composite
clusters. In other words, we are looking for I ′ ⊆ I of size at most 2k such that there is a
partition {P1, . . . , Pt} of I ′ with t ≤ r − s+ |I ′| (each set Pi says which initial clusters of I ′
are used to form a composite cluster) and vectors s1, . . . , st ∈ {0, 1}m with the property that

t∑
i=1

∑
I∈Pi

∑
j∈I

dH(si,aj) ≤ k.

If s ≤ r, then (A, r, k) is a trivial yes-instance of the problem with I being a solution. If
r + k < s, then (A, r, k) is a trivial no-instance. From now on we assume that r < s ≤ r + k.

If we color uniformly at random initial clusters with 2k colors, then with a “reasonable”
probability each composite cluster is composed from initial clusters of different colors. This
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will provide us with an additional structural information, which will bring us much closer to
a solution. We use the classic color coding technique of Alon, Yuster, and Zwick from [4]
to distinguish initial clusters of I ′ from each other. At the end we obtain a deterministic
algorithm but, for simplicity, we describe a randomized Monte-Carlo algorithm here. We color
the elements of I independently and uniformly at random by 2k colors 1, . . . , 2k. Observe
that if (A, r, k) is a yes-instance, then at most 2k initial clusters in a solution that are
included in composite clusters are colored by distinct colors with the probability at least

(2k)!
(2k)2k ≥ e−2k. We say that a solution {I1, . . . , Ir′} for (A, r, k) is a colorful solution if all
initial clusters that are included in composite clusters of {I1, . . . , Ir′} are colored by distinct
colors. We construct an algorithm for finding a colorful solution (if it exists).

Let us fix some coloring of initial clusters in 2k colors. For i ∈ {1, . . . , 2k}, let Ii be the set
of initial clusters colored by color i. Note that some sets Ii could be empty. We consider all
possible partitions P = {P1, . . . , Pt} of nonempty subsets of {1, . . . , 2k} such that each set of
P contains at least two elements. Notice that if (A, r, k) has a colorful solution {I1, . . . , Ir′},
then there is P = {P1, . . . , Pt} such that a cluster Ii of the solution is formed from initial
clusters colored with colors Pj for some j ∈ {1, . . . , t}. Moreover, two different composite
clusters are colored with colors from different sets of P . We go through all possible partitions
P , and if (A, r, k) has a colorful solution, we will find the corresponding partition P . Let us
fix a partition P = {P1, . . . , Pt}. If s− |P1| − · · · − |Pt|+ t > r, we discard the current choice
of P . Assume from now that this is not the case. For each i ∈ {1, . . . , t}, we do the following.
Let Pi = {i1, . . . , ip} ⊆ {1, . . . , 2k}. Then with this notation Iij is the set of initial clusters
colored by color ij . For j ∈ {1, . . . , p}, we use J ij =

⋃
I∈Iij

I to denote the set of indices
contained in clusters colored by ij . We also define J i = J i1 ∪ · · · ∪ J ip, which is the set of
indices contained in clusters colored by colors from {i1, . . . , ip}. Denote by Ai the submatrix
of A containing the columns ah with h ∈ J i. We want to solve an auxiliary problem of
finding the minimum integer di ≤ k such that there is a set of initial clusters Li1, . . . , Lip and
a vector si ∈ {0, 1}m such that Lij ⊆ J ij for i ∈ {1, . . . , p} and

∑p
i=1
∑
j∈Li

j
dH(si,aj) ≤ di.

In words, for a set of colors Pi = {i1, . . . , ip}, we want to find the best selection of initial
clusters Li1, . . . , Lip such that each of the clusters Lij is colored by ij ; the best is in the sense
that the total Hamming distance di from the columns corresponding to the selected set of
clusters to their means is the minimum over all such selections.

Assume that we have an algorithm for this auxiliary problem. If such a value of di does
not exist for some i ∈ {1, . . . , t}, we discard the current choice of P . Otherwise, we find the
set of clusters Li1, . . . , Lip and si. Let Li = Li1 ∪ · · · ∪Lip. We check whether d1 + · · ·+ dt ≤ k.
If it holds, we return the colorful solution with the composite clusters L1, . . . , Lt whose means
are s1, . . . , st respectively and the remaining clusters are simple. Otherwise, we discard the
choice of P. If for one of the choices of P we find a colorful solution, we return it and stop.
If we fail to find a solution for all possible P, we return the answer NO and stop. If the
described algorithm produces a solution, then because simple clusters do not contribute to
the total cost of the solution it is possible to verify that the produced solution is a colorful
solution to (A, r, k).

So everything boils down to finding the optimal value di together with the corresponding
initial clusters and their means. Let us remind that a regular partition {I1, . . . , Ip} of
{1, . . . , n} is a partition where any two indices corresponding to equal columns of A are
assigned to the same cluster Ii. We call this the auxiliary problem Cluster Selection.
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Input: An m × n-matrix A with columns a1, . . . , an, a regular partition {I1, . . . , Ip} of
{1, . . . , n}, and a nonnegative integer d.

Question: Is there a set of initial clusters J1, . . . , Jp and a vector c ∈ {0, 1}m such that Ji ⊆ Ii

for i ∈ {1, . . . , p} and
∑p

i=1

∑
j∈Ji

dH(c, aj) ≤ d?

Cluster Selection

Thus in Cluster Selection, for each cluster Ii, we have to select exactly one initial cluster
Ji contained in Ii such that the total Hamming distance of the columns of the selected
clusters to their means does not exceed d.

We prove that Cluster Selection is FPT when parameterized by d. The proof of this
result is based on a reduction to the problem about strings. More precisely, we apply the
result of Marx [45] about the Consensus Patterns problem. Recall that for two strings a
and b of the same length, the Hamming distance dH(a, b) between strings is defined as the
number of position where the strings differ.

Input: A set of p strings {s1, . . . , sp} over an alphabet Σ, a positive integer t and a
nonnegative integer d.

Question: Is there a string s of length t over Σ, and a length t substring s′i of si for every
i ∈ {1, . . . , p} such that

∑p

i=1 dH(s, s′i) ≤ d?

Consensus Patterns

Marx proved in [45] that Consensus Patterns can be solved in time δO(δ) · |Σ|δ · L9

where δ = d/p and L the input size, i.e., the total length of all the strings in the input. This
implies that Consensus Patterns can be solved in time 2O(d log d) · L9 if |Σ| is fixed. We
construct an FPT Turing reduction from Cluster Selection to Consensus Patterns.
The reduction is technical but the rough idea is the following. We guess the number of
elements in every cluster of the solution J1, . . . , Jp. For each guess, (`1 = |J1|, . . . , `p = |Jp|),
we delete from Ii all initial clusters which size is not equal to `i. Then for each Ii, we make `i
equal strings. Each of theses strings consists of substrings corresponding to distinct columns
of A with indices from Ii which are separated by special splitting substrings constructed by
making use of two additional symbols. Thus in total we use alphabet Σ with 4 letters. This
way, the choice of substrings corresponds to the choice of initial clusters.

Summarizing, our algorithm for Binary r-Means consists of two FPT Turing reduc-
tions. First, we design a reduction to Cluster Selection that, in its turn, is reduced to
Consensus Patterns. This gives our first main result.

I Theorem 1. Binary r-Means is solvable in time 2O(k log k) · (nm)O(1).

3 Subexponential algorithms

The main result of this section is an FPT algorithm for Low Boolean-Rank Approxima-
tion parameterized by k and r that is subexponential in k. Note that Low Boolean-Rank
Approximation is more complicated than Low GF(2)-Rank Approximation. The main
reason to that is that the elements of the matrices do not form a field and thus many nice
properties of matrix-rank cannot be used here. The way we handle this issue is to solve the
P-Matrix Approximation problem.

Let A be a Booleanm×n-matrix with the Boolean rank r ≥ 1. Then A = A(1)∨. . .∨A(r)

where A(1), . . . ,A(r) are matrices of Boolean rank 1. It implies that A has at most 2r pairwise-
distinct rows and at most 2r pairwise-distinct columns. Hence, the Boolean rank of A is
at most r if and only if there is a 2r × 2r-matrix P of Boolean rank at most r such that
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A is a P-matrix. Respectively, the Low Boolean-Rank Approximation problem can
be reformulated as follows: Decide whether there is a 2r × 2r-pattern matrix P with the
Boolean rank at most r and an m× n P-matrix B such that ‖A−B‖2

F ≤ k. We generate
all 2r × 2r-matrices P of Boolean rank at most r, and then for each matrix P, we solve
P-Matrix Approximation for the instance (A,P, k). We return YES if we obtain at least
one yes-instance of P-Matrix Approximation, and we return NO otherwise. Thus, using
the algorithm for P-Matrix Approximation from Theorem 5 (See later in this section),
we obtain the following theorem.

I Theorem 2. Low Boolean-Rank Approximation is solvable in 2O(r2r
√
k log k)·(nm)O(1)

time.

Now we sketch the main ideas behind our algorithm for P-Matrix Approximation. In
fact, we exploit the same ideas to construct subexponential in k time algorithms for Binary
r-Means and Low GF(2)-Rank Approximation, and these algorithms are great deal less
technical. Hence, we concentrate here on these problems.

Let (A, r, k) be an instance of Binary r-Means where A is a matrix with columns
(a1, . . . , an). Recall that given a solution {I1, . . . , Ir′}, one can compute the corresponding
means c1, . . . , cr′ ∈ {0, 1}m using the majority rule. Note that in the opposite direction,
given a set of means c1, . . . , cr′ , we can construct clusters {I1, . . . , Ir′} as follows: for each
column aj , find the closest ci, i ∈ {1, . . . , r′}, that is such that dH(ci,aj) is minimum and
assign j to Ii. Note that this procedure does not guarantee that all clusters are nonempty
but we can simply delete empty clusters. Hence, we can define a solution as a set of means
C = {c1, . . . , cr′}.

It can be observed that we can restrict ourself by considering only solutions of special
type. Let a1, . . . , am be the rows of A. We say that a vector c = (c1, . . . , cm)ᵀ ∈ {0, 1}m
agrees with A if ci = cj whenever ai = aj for i, j ∈ {1, . . . ,m}. If (A, r, k) is a yes-instance
of Binary r-Means, then it can be shown that (A, r, k) has a solution such that for each
cluster of the solution its mean agrees with A. Also it could be seen that if (A, r, k) is a
yes-instance of Binary r-Means, then A has at most r + k pairwise-distinct columns and
at most 2r + k pairwise-distinct rows. These observations allow us to construct a recursive
branching algorithm for Binary r-Means.

First, we preprocess the instance (A, r, k): if A has at least r + k + 1 pairwise-distinct
columns or at least 2r + k + 1 distinct rows, we return the answer NO and stop. Now on we
assume that this is not the case.

Assume that we are given a partial clustering of some columns of A represented by a
family of means {c1, . . . , cs}, a budget d and the set I of remaining columns of A which
have to be clustered. The algorithm tries to extend the partial solution by not exceeding
the budget d ≤ k. Some of the columns from I can go to the existing cluster and some
can form new clusters. Suppose that we know the minimum Hamming distance h ≤ d

from vectors in new clusters to their means (in the algorithm we consider all possible
values of h). Then all vectors which are within distance less than h to the already existing
means, can be assigned to the existing clusters. Then we will be basically left with two
options. Either the number of columns to be assigned to new clusters does not exceed√
d log(2r + d) ≤

√
k log(2r + k); in this case we brute-force in all possible partitions of

I. Or we can upper bound h ≤
√
d/ log(2r + d) ≤

√
k/ log(2r + k). In the latter case we

branch on all possible vectors that agree with A and are at distance at most h from one of
the at most r + k columns of I. Due to the fact that the number of distinct rows of A is
at most 2r + k, the number of branches for each column of I is at most (2r + k)h. In each
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branch of our algorithm, we add a new mean to the partial solution and call our algorithm
recursively. Note that the depth of the recursion is upper bounded by r.

This way we obtain the following theorem.

I Theorem 3. Binary r-Means is solvable in time 2O(r
√
k log(2r+k)) · (nm)O(1).

The general idea of the subexponential time algorithm for Low GF(2)-Rank Approx-
imation is similar but the algorithm is more complicated. Let (A, r, k) be an instance of
Low GF(2)-Rank Approximation where a1, . . . , an are the columns of A. We observe
that (A, r, k) is a yes-instance if and only if there is a positive integer r′ ≤ r and linearly
independent vectors c1, . . . , cr′ ∈ {0, 1}m over GF(2) such that

n∑
i=1

min{dH(s, ai) | s =
⊕
j∈I

cj , I ⊆ {1, . . . , r′}} ≤ k;

we use “
⊕

” to denote the summation over GF(2). Respectively, we construct the recursive
branching algorithm for Low GF(2)-Rank Approximation that tries to extend a partial
solution represented by a family of linearly independent vectors. We use the properties that if
(A, r, k) is a yes-instance, then the number of pairwise distinct columns and rows is at most
2r + k and we can select new vectors that agree with A. We obtain the following theorem.

I Theorem 4. Low GF(2)-Rank Approximation is solvable in time 2O(r
√
k log(2r+k)) ·

(nm)O(1).

For P-Matrix Approximation, we use the same approach based on the combination of
branching and local search but because we have to follow the structure of the pattern matrix
P , the algorithm becomes technical. We get the following running time for the problem.

I Theorem 5. P-Matrix Approximation is solvable in time
2O((p+q)

√
k log(p+k)+p log p+q log q+q log(q+k)) · (nm)O(1).

Note that the running time in Theorem 5 is asymmetric in p and q due to the fact that we
treat rows and columns in different way but, trivially, the instances (A,P, k) and (Aᵀ,Pᵀ, k)
of P-Matrix Approximation are equivalent.

4 Conclusion and open problems

In this paper we provide a number of parameterized algorithms for a number of binary
matrix-approximation problems. Our results uncover some parts of the complexity landscape
of these fascinating problems. We hope that our work will facilitate further investigation of
this important and exciting area. We conclude with the following concrete open problems
about bivariate complexity of Binary r-Means, Low GF(2)-Rank Approximation, and
Low Boolean-Rank Approximation.

For Binary r-Means we have shown that the problem is solvable in time 2O(k log k) ·
(nm)O(1). A natural question is whether this running time is optimal. While the lower bound
of the kind 2o(k) · (nm)O(1) or 2o(k log k) · (nm)O(1) seems to be most plausible here, we do
not know any strong argument against, say a 2o(k) · (nm)O(1)-time algorithm. At least for
the number of distinct columns r ∈ o((k/ log k)1/3) we have a subexponential in k algorithm,
so maybe we can solve the problem in time subexponential in k for any value of r?

For Low GF(2)-Rank Approximation we have an algorithm solving the problem in
time 2O(r3/2·

√
k log k)(nm)O(1). Here, shaving off the

√
log k factor in the exponent seems to
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be a reasonable thing. However, we do not know how to do it even at the cost of a worse
dependence in r. In other words, could the problem be solvable in time 2O(f(r)·

√
k)(nm)O(1)

for some function f? On the other hand, we also do not know how to rule out algorithms
running in time 2o(r)·o(k)(nm)O(1).

For Low Boolean-Rank Approximation, how far is our upper bound
2O(r2r·

√
k log k)(nm)O(1) from the optimal? For example, we know that for any function

f , the solvability of the problem in time 22o(r)
f(k)(nm)O(1) implies the failure of ETH. Could

we rule out any 2o(
√
k)f(r)(nm)O(1) algorithm?
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Abstract
Derandomization of blackbox identity testing reduces to extremely special circuit models. After
a line of work, it is known that focusing on circuits with constant-depth and constantly many
variables is enough (Agrawal,Ghosh,Saxena, STOC’18) to get to general hitting-sets and circuit
lower bounds. This inspires us to study circuits with few variables, eg. logarithmic in the size s.

We give the first poly(s)-time blackbox identity test for n = O(log s) variate size-s circuits
that have poly(s)-dimensional partial derivative space; eg. depth-3 diagonal circuits (or Σ∧Σn).
The former model is well-studied (Nisan,Wigderson, FOCS’95) but no poly(s2n)-time identity
test was known before us. We introduce the concept of cone-closed basis isolation and prove its
usefulness in studying log-variate circuits. It subsumes the previous notions of rank-concentration
studied extensively in the context of ROABP models.
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1 Introduction

Polynomial Identity Testing (PIT) problem is to decide whether a multivariate polynomial is
zero, where the input polynomial is given as an algebraic circuit. Algebraic circuits are the
algebraic analog of boolean circuits that use ring operations {+,×} and computes polynomials
(say) over a field. Since a polynomial computed by a circuit can have exponentially many
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monomials wrt the circuit size, one cannot solve PIT in polynomial time by explicitly
expanding the polynomial. On the other hand, using circuits we can efficiently evaluate
polynomials at any point. This helps us to get a polynomial time randomized algorithm for
PIT by evaluating the circuit at a random point, since any non-zero polynomial evaluated
at a random point outputs a non-zero value with high probability [10, 58, 54]. However,
finding a deterministic polynomial time algorithm for PIT is a longstanding open question in
algebraic complexity theory. The PIT problem has been studied in two different paradigms:
1) whitebox – allowed to see the internal structure of the circuit, and 2) blackbox – can
only use the circuit as an oracle to evaluate at points (from a small field extension). It has
deep connections with both circuit lower bounds [29, 31, 1, 2] and many other algorithmic
problems [41, 4, 35, 11, 13]. For more details on PIT, see the surveys [51, 52, 55] or review
articles [56, 42].

Despite a lot of effort, little progress has been made on the PIT problem in general.
However, efficient (deterministic poly-time) PIT algorithms are known for many special
circuit models. For example, blackbox PIT for depth-2 circuits (or sparse polynomials)
[8, 34, 39], PIT algorithms for subclasses of depth-3 circuits [33, 50, 53], subclasses of depth-4
circuits [5, 7, 46, 15, 36, 37, 45], read-once algebraic branching programs (ROABP) and
related models [19, 6, 18, 3, 26, 25], certain types of symbolic determinants [12, 27], as well
as non-commutative models [38, 22].

1.1 Our results

In the first result, we give a polynomial time blackbox PIT algorithm of log-variate depth-3
diagonal circuits Σ ∧ Σ (i.e. number of variables is logarithmic wrt circuit size). Depth-3
diagonal circuits compute a sum of power of linear polynomials. This model was first
introduced by [51] and has since drawn significant attention of PIT research community.
Saxena [51] first gave a polynomial time whitebox algorithm and exponential lower bound
for this model, by introducing a duality trick. In a subsequent work Kayal [32] gave an
alternate polynomial time whitebox algorithm for depth-3 diagonal circuits based on the
partial derivative method, which was first introduced by [44] to prove circuit lower bounds; as,
Σ∧Σ circuits have a low-dimension partial derivative space. However, one limitation of these
approaches was that they depend on the characteristic of the underlying field. Later, [16]
gave an alternative proof of duality trick which depends only on the field size (as mentioned
in [24, Lem.4.7]) and Saptharishi [48, Chap.3] extended Kayal’s idea for large enough field.

Although this model is very weak (it cannot even compute x1 · · ·xn efficiently), studying
this model has proved quite fruitful. Duality trick was crucially used in the work by [23],
where they showed that depth-3 circuits, in some sense, capture the complexity of general
arithmetic circuits.

Like whitebox PIT, a series of work has been done on blackbox PIT for depth-3 diagonal
circuits. Both [6] and [19] gave two independent and different quasi-polynomial time blackbox
PIT algorithms for this model. Later, [18] gave an sO(log log s)-time (s is the circuit size)
blackbox PIT algorithm for this model. Mulmuley [43, 40] related depth-3 diagonal blackbox
PIT to construction of normalization maps for the invariants of the group SLm for constant
m. We can not give the detailed notation here and would like to refer to [40, Sec.9.3]. Despite
a lot of effort, no polynomial time blackbox PIT for this model is known. After depth-2
circuits (or sparse polynomials), this can be thought of as the simplest model for which no
polynomial time blackbox PIT is known. Because of its simplicity, this model is a good test
case for generating new ideas for the PIT problem.



M.A. Forbes, S. Ghosh, and N. Saxena 54:3

Log-variate models: Now we discuss why studying PIT for log-variate models is so im-
portant. The PIT algorithms in current literature always try to achieve a sub-exponential
dependence on n, the number of variables. In a recent development, [2] showed that for some
constant c a poly(s)-time blackbox PIT for size-s degree-s and log◦c s-variate1 circuits is
sufficient to completely solve PIT. Most surprisingly, they also showed that a poly(s)-time
blackbox PIT for size-s and log? s-variate2 Σ ∧ ΣΠ circuits will ‘partially’ solve PIT (in
quasi-polynomial time) and prove that “either E 6⊆#P/poly or VP 6=VNP” (a weaker version of
[2, Thm.21]). For example, even a poly(s)-time blackbox PIT for size-s and (log log s)-variate
depth-4 circuits would be tremendous progress. A similar result also holds for Σ ∧a ΣΠ(n)
circuits, where both a and n are ‘arbitrarily small’ unbounded functions (i.e. time-complexity
may be arbitrary in terms of both a and n), see [2, Thm.21].

The above discussion motivates us to discover techniques and measures that are specialized
to this low-variate regime. Many previous works are based on ‘support size of a monomial’
as a measure for rank-concentration [6, 18, 26]. For a monomial m, its support is the set of
variables whose exponents are positive. We investigate a ‘larger’ measure: cone-size (see
Definition 3) which is the number of monomials that divide m (also see [14]). Using cone-size
as a measure for rank-concentration, we give a blackbox PIT algorithm for circuit models
with ‘low’ dimensional partial derivative space.

I Theorem 1. Let F be a field of characteristic 0 or greater than d. Let P be a set of
n-variate d-degree polynomials, over F, computed by circuits of bitsize s such that: ∀P ∈ P,
the dimension of the partial derivative space of P is at most k. Then, blackbox PIT for P
can be solved in (sdk)O(1) · (3n/ log k)O(log k) time.

Note that for n = O(log k) = O(log sd), the above bound is poly-time and we get a
polynomial time blackbox PIT algorithm for log-variate circuits (i.e. number of variables
is logarithmic wrt circuit size) with low-dimensional partial derivative space. This was not
known before our work. Prior to our work, [18] gave a (sdk)O(log log sdk)-time algorithm for
P, using support size as the measure in the proof. Unlike our algorithm, in the log-variate
case their algorithm remains super-polynomial time.

In particular, diagonal depth-3 circuit is a prominent model with low partial derivative
space. So, our method gives a polynomial time PIT algorithm for log-variate depth-3
diagonal circuits. No poly-time blackbox PIT for this model was known before our work;
again, sO(log log s) was the prior best [18].

Structure of log-variate polynomials? In the second result, we investigate a structural
property of polynomials over vector spaces. For a polynomial f(x) with coefficients over Fk,
let sp(f) be the subspace spanned by its coefficients. Informally, in rank concentration we try
to concentrate the rank of sp(f) to the coefficients of “few” monomials. It was first introduced
by [6]. Many works in PIT achieve rank concentration on low-support monomials, mainly, in
the ROABP model [6, 18, 26, 25]. One way of strengthening low-support concentration is
through low-cone concentration, where rank is concentrated in the low cone-size monomials.
This concept was not used before in designing PIT algorithms. Our first result (Theorem 1)
can be seen from this point of view. There, we developed a method to get polynomial time
blackbox PIT for log-variate models which satisfy ‘low-cone concentration property’.

1 The function log◦c denotes c times composition of the log function. For e.g. log◦2 s = log log s.
2 For any positive integer s, log? s = min{i | log◦i s ≤ 1}.
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We introduce the concept of cone-closed basis, a much stronger notion of concentration
than the previous ones. We say f has a cone-closed basis, if there is a set of monomials B
whose coefficients form a basis of sp(f) and B is closed under sub-monomials. This definition
is motivated by a special depth-3 diagonal model, which have this property naturally (see
Lemma 18). We prove that this notion is a strengthening of both low-support and low-cone
concentration ideas (see Lemma 11). Recently, and independently, this notion of closure has
also appeared as an ‘abstract simplicial complex’ in [21].

In the following result, we relate cone-closed basis with ‘basis isolating weight assignment’
(Defn.12)– another well studied concept in PIT. It was first introduced by [3] and also used
in many other subsequent works [26, 12, 28]. Here, we show that a general polynomial
f over Fk, when shifted by a basis isolating weight assignment [3], becomes cone-closed.
It strengthens some previously proven properties; eg., a polynomial over Fk when shifted
‘randomly’ becomes low-support concentrated [17, Cor.3.22] (extended version of [18]) or,
when shifted by a basis isolating weight assignment becomes low-support concentrated [26,
Lem.5.2].

Notations. For any n ∈ N, [n] denotes the set of first n positive integers. By x, we denote
(x1, . . . , xn), a tuple of n-variables. For any e = (e1, . . . , en) ∈ Nn, xe denotes the monomial∏n

i=1 x
ei
i . For a polynomial f and a monomial m, coefm(f) denotes the coefficient of the

monomialm in f . An weight assignment w on the variables x is an n-tuple (w1, . . . , wn) ∈ Nn,
where wi is the weight assigned to the variable xi.

I Theorem 2. Let f(x) ∈ F[x]k be an n-variate d-degree polynomial over Fk and char F = 0
or > d. Let w = (w1, . . . , wn) ∈ Nn be a basis isolating weight assignment of f(x). Then,
f(x + tw) := f(x1 + tw1 , . . . , xn + twn) has a cone-closed basis over F(t).

1.2 Proof ideas
Proof idea of Theorem 1: The proof of Theorem 1 has two steps. In the first step, we
show that with respect to any monomial ordering (say lexicographic monomial ordering), the
dimension k of the partial derivative space of a polynomial is lower bounded by the cone-size
of its leading monomial. For a polynomial f ∈ F[x], the leading monomial, wrt a monomial
ordering, is the largest monomial in the set {xe | coefxe(f) 6= 0}. So, for every nonzero P ∈ P
there is a monomial with nonzero coefficient and cone-size ≤ k. The second step is to check
whether the coefficients of all the monomials in P , with cone-size ≤ k, are zero. We show
that the number of such monomials is small (Lemma 5); the number is quasi-polynomial
in general, but, merely polynomial in the log-variate case. Next, we give a new method
to efficiently extract a monomial of cone-size≤ k, out of a potentially exponential space of
monomials (Lemma 4). These facts, combined with the estimates stated in Theorem 1, prove
Corollary 6; which gives a polynomial time blackbox PIT algorithm for log-variate circuits
with low dimensional partial derivative space.

Next, we discuss the idea to get a polynomial time blackbox PIT algorithm for depth-3
diagonal circuits where rank of the linear polynomials is logarithmic wrt the circuit size (see
Definition 7 & Theorem 9). Here, the proof has two steps. First, in Lemma 8, we show how
to efficiently reduce a low-rank depth-3 diagonal circuit to a low-variate depth-3 diagonal
circuit while preserving nonzeroness. This we do by a Vandermonde based linear map on
the variables. Since a depth-3 diagonal circuit has low-dimensional partial derivative space
(i.e. polynomial wrt circuit size), we apply Corollary 6 on the low-variate depth-3 diagonal
circuits and get Theorem 9.
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Proof idea of Theorem 2: First, wrt the weight assignment w, we define an ordering
among the set of bases (see Section 3). Then, we show that wrt the basis isolating weight
assignment w, there exists a unique minimum basis and its weight is strictly less than the
weight of every other basis (Lemma 13). Let B be the set of monomials whose coefficients
form the least basis, wrt w, of f .

Now, we consider the set of all sub-monomials of those in B and identify a subset A that
is cone-closed. We define A in an algorithmic way (see Algorithm 1). Besides the cone-closed
property, A also satisfies an algebraic property (Lemma 17)— In the transfer matrix T , that
captures the variable-shift transformation (Equation 3), the sub-matrix TA,B is full rank.
We prove that A is exactly a basis of the shifted f by studying the action of the shift on the
coefficient vectors. The properties proved above and Cauchy-Binet Formula [57] are crucially
used in the study of the coefficient vectors after the variable-shift.

Theorem 2 has an immediate consequence that any polynomial f over Fk, when shifted
by formal (or random) variables, becomes cone-closed; since the weight induced by the
formal variables on the monomials is a basis isolating weight assignment. This seems quite a
nontrivial and an interesting property of general polynomials (over vector spaces).

2 Low-cone concentration and hitting-sets– Proof of Theorem 1

In this section we initiate a study of properties that are relevant for low-variate circuits (or
the log-variate regime).

Notations. For a circuit C, |C| denotes the size of C. For a monomial m, by coefm(C), we
denote the coefficient of monomial m in the polynomial computed by C. For a circuit C, we
also use C to denote the polynomial computed by C.

I Definition 3 (Cone of a monomial). A monomial xe is called a sub-monomial of xf , if
e ≤ f (i.e. coordinate-wise). We say that xe is a proper sub-monomial of xf , if e ≤ f and
e 6= f .

For a monomial xe, the cone of xe is the set of all sub-monomials of xe. The cardinality of
this set is called cone-size of xe. It equals

∏
(e + 1) :=

∏
i∈[n](ei+1), where e = (e1, . . . , en).

A set S of monomials is called cone-closed if for every monomial in S all its sub-monomials
are also in S.

I Lemma 4 (Coef. extraction). Let C be a blackbox circuit which computes an n-variate and
degree-d polynomial over a field of size greater than d. Then for any monomial m =

∏
i∈[n] x

ei
i ,

we have a poly(|C|d, cs(m))-time algorithm to compute the coefficient of m in C, where cs(m)
denotes the cone-size of m.

Proof. Our proof is in two steps. First, we inductively build a circuit computing a polynomial
which has two parts; one is coefm(C) ·m and the other one is a “junk” polynomial where
every monomial is a proper super-monomial of m. Second, we construct a circuit which
extracts the coefficient of m. In both these steps the key is a classic interpolation trick.

We induct on the variables. For each i ∈ [n], let m[i] denote
∏
j∈[i] x

ej

j . We will construct
a circuit C(i) which computes a polynomial of the form,

C(i)(x) = coefm[i](C) ·m[i] + C
(i)
junk (1)

where, for every monomial m′ in the support of C(i)
junk, m[i] is a proper submonomial of m′[i].
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Base case: Since C =: C(0) computes an n-variate degree-d polynomial, C(x) can be
written as C(x) =

∑d
j=0 cjx

j
1 where, cj ∈ F[x2, . . . , xn]. Let α0, . . . , αe1 be some e1 + 1

distinct elements in F. For every αj , let Cαjx1 denote the circuit C(αjx1, x2, . . . , xn) which
computes c0 + c1αjx1 + . . .+ ce1α

e1
j x

e1
1 + · · ·+ cdα

d
jx
d
1 . Since

M =

1 α0 . . . αe1
0

...
...

...
...

1 αe1 . . . αe1
e1


is an invertible Vandermonde matrix, one can find an a = [a0, . . . , ae1 ] ∈ Fe1+1, a ·M =
[ 0, 0, . . . , 1] . Using this a, we get the circuit C(1) :=

∑e1
j=0 ajC

(0)
αjx1 . Its least monomial

wrt x1 has degx1
≥ e1, which is the property that we wanted.

Induction step (i→ i+ 1): From induction hypothesis, we have the circuit C(i) with the
properties mentioned in Eqn.1. The polynomial can also be written as b0 + b1xi+1 + . . .+
bei+1x

ei+1
i+1 + . . . bdx

d
i+1 , where every bj is in F[x1, . . . , xi, xi+2, . . . , xn]. Like the proof of the

base case, for ei+1 + 1 distinct elements α0, . . . , αei+1 ∈ F, we get C(i+1) =
∑ei+1
j=0 ajC

(i)
αjxi+1 ,

for some a = [a0, . . . , aei+1 ] ∈ Fei+1+1 and the structural constraint of C(i+1) is easy to verify,
completing the induction.

Now we describe the second step of the proof. After first step, we get

C(n)(x) = coefm(C) ·m + C
(n)
junk ,

where for every monomial m′ in the support of C(n)
junk , m is a proper submonomial of m′.

Consider the polynomial C(n)(x1t, . . . , xnt) for a fresh variable t. Then, using interpolation
wrt t we can construct a O(|C(n)| ·d)-size circuit for coefm(C) ·m, by extracting the coefficient
of tdeg(m), since the degree of every monomial appearing in C(n)

junk is > deg(m). Now evaluating
at 1, we get coefm(C). The size, or time, constraint of the final circuit clearly depends
polynomially on |C|, d and cs(m). J

But, how many low-cone monomials can there be? Fortunately, in the log-variate regime
they are not too many [47]. Though, in general, they are quasi-polynomially many.

I Lemma 5 (Counting low-cones). The number of n-variate monomials with cone-size at
most k is O(rk2), where r := (3n/ log k)log k

.

Proof. First, we prove that for any fixed support set, the number of cone-size ≤ k monomials
is less than k2. Next, we multiply by the number of possible support sets to get the estimate.

Let T (k, `) denote the number of cone-size≤ k monomials m with support set, say, exactly
{x1, . . . , x`}. Since the exponent of x` in such an m is at least 1 and at most k − 1, we have
the following by the disjoint-sum rule: T (k, `) ≤

∑k
i=2 T (k/i, `− 1). This recurrence affords

an easy inductive proof as, T (k, `) <
∑k
i=2(k/i)2 < k2 ·

∑k
i=2

(
1
i−1 −

1
i

)
< k2.

From the definition of cone, a cone-size ≤ k monomial can have support size at most
` := blog kc. The number of possible support sets, thus, is

∑`
i=0
(
n
i

)
. Using the binomial

estimates [30, Chapter 1], we get
∑`
i=0
(
n
i

)
≤ (3n/`)`. J

The partial derivative space of polynomials was first used by Nisan and Wigderson [44]
to prove circuit lower bounds. Later, it was used in many other works. For more details see
the following surveys [9, 49]. Here, using cone-size as a measure, we describe a blackbox PIT
algorithm for circuits models with low dimensional partial derivative space. This algorithm
runs in polynomial time when we are in log-variate regime. For a polynomial f(x) ∈ F[x], by
∂x<∞(f) we denote the space generated all partial derivatives of f .
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Proof of Theorem 1. The proof has two steps. First, we show that with respect to any
monomial ordering ≺ (say lexicographic monomial ordering), for all nonzero P ∈ P, the
dimension of the partial derivative space of P is lower bounded by the cone-size of the
leading monomial in P . Using this, we can get a blackbox PIT algorithm for P by testing
the coefficients of all the monomials of P of cone-size ≤ k for zeroness. Next, we analyze the
time complexity to do this.

The first part is the same as the proof of [14, Corollary 4.14] (with origins in [20]). Here,
we give a brief outline. Let LM(·) be the leading monomial operator wrt the monomial
ordering ≺. It can be shown that for any polynomial f(x), the dimension of its partial
derivative space ∂x<∞(f) is the same as D := # {LM(g) | g ∈ ∂x<∞(f)} (see [14, Lemma
8.4.12]). This means that dim ∂x<∞(f) is lower-bounded by the cone-size of LM(f) [14,
Corollary 8.4.13], which completes the proof of our first part.

Next, we apply Lemma 4, on the circuit of P and a monomial m of cone-size ≤ k, to get
the coefficient of m in C in poly(sdk)-time. Finally, Lemma 5 tells that we have to access at
most k2 · (3n/ log k)log k many monomials m. Multiplying these two expressions gives us the
time bound. J

This gives us immediately,

I Corollary 6. Let F be a field of characteristic 0 or > d. Let P be a set of n-variate d-degree
polynomials, over F, computable by circuits of bitsize s; with n = O(log sd). Suppose that,
for all P ∈ P, the dimension of the partial derivative space of P is poly(sd). Then, blackbox
PIT for P can be solved in poly(sd)-time.

Now we discuss our result regarding depth-3 diagonal circuits Σ ∧ Σ.

I Definition 7 (Depth-3 diagonal circuit and its rank). A depth-3 diagonal circuit is of the
form Σ ∧ Σ (sum-power-sum). It computes a polynomial presented as C(x) =

∑
i∈[k] ci`

di
i ,

where `i’s are linear polynomials over F and ci’s in F.
By rk(C) we denote the linear rank of the polynomials {`i}i∈[k].

The next lemma introduces an efficient nonzeroness preserving variable reduction map
(n 7→ rk(C)) for depth-3 diagonal circuits. For a set of n-variate circuits C over F, a polynomial
map Ψ : Fm → Fn is called nonzeroness preserving variable reduction map for C, if m < n

and for all C ∈ C, C 6= 0 if and only if Ψ(C) 6= 0.

I Lemma 8 (Variable reduction). Let P (x) be an n-variate d-degree polynomial computed
by a size-s depth-3 diagonal circuit over some sufficiently large field F. Then, there exists a
poly(nds)-time computable nonzeroness preserving variable reduction map which converts
P to another rk(P )-variate degree-d polynomial computed by poly(s)-size depth-3 diagonal
circuit.

For proof, see the full version linked on the first page.

I Theorem 9 (Log-rank Σ ∧ Σ). Let F be a field of characteristic 0 or > d. Let P be the
set of n-variate d-degree polynomials P , computable by depth-3 diagonal circuits of bitsize s,
with rk(P ) = O(log sd). Then, blackbox PIT for P can be solved in poly(sd)-time.

Proof. The above description gives us a non-zeroness preserving variable reduction (n 7→
rk(P )) method that reduces P to an O(log(sd))-variate and degree-d polynomial P ′ computed
by poly(s)-size depth-3 diagonal circuit.

Since the dimension of the partial derivative space of P ′ is poly(sd) [14, Lem.8.4.8],
Corollary 6 gives us a poly(sd)-time hitting-set for P ′. J
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3 Cone-closed basis after shifting– Proof of Theorem 2

In this section we will consider polynomials over a vector space, say Fk. This viewpoint
has been useful in studying algebraic branching programs (ABP), eg. [6, 18, 3, 26]. Let
D ∈ Fk[x] and let sp(D) be the vector space spanned by its coefficients. Now, we formally
define various kinds of rank concentrations of D.

I Definition 10 (Rank Concentration). We say that D has a
1. cone-closed basis if there is a cone-closed set of monomials B (see Definition 3) whose

coefficients in D form a basis of sp(D).
2. `-support concentration, if there is a set of monomials B with support size less than `

whose coefficients form a basis of sp(D).
3. `-cone concentration, if there is a set of monomials B with cone size less than ` (see

Definition 3) whose coefficients form a basis of sp(D).

In the next lemma, we show that cone-closed basis notion subsumes the other two notions.

I Lemma 11. Let D(x) be a polynomial in Fk[x]. Suppose that D(x) has a cone-closed
basis. Then, D(x) has (k + 1)-cone concentration and (lg 2k)-support concentration.

Proof. Let B be a cone-closed set of monomials forming the basis of sp(D). Clearly, |B| ≤ k.
Thus, each m ∈ B has cone-size ≤ k. In other words, D is (k + 1)-cone concentrated.

Moreover, each m ∈ B has support-size ≤ lg k. In other words, D is (lg 2k)-support
concentrated. J

Next, we define the notions which will be used in the proof of Theorem 2.

Basis & weights. Consider a weight assignment w = (w1, . . . , wn) ∈ Nn on the variables
x = (x1, . . . , xn). It extends to monomials m = xe as w(m) := 〈e,w〉 =

∑n
i=1 eiwi.

Sometimes, we also use w(e) to denote w(m). Similarly, for a set of monomials B, the weight
of B is w(B) :=

∑
m∈B w(m).

Let B = {m1, . . . ,m`} resp. B′ = {m′1, . . . ,m′`} be an ordered set of monomials (non-
decreasing wrt w) that forms a basis of the span of coefficients of f ∈ Fk[x]. Let w be a
weight assignment on the variables. We say that B < B′ wrt w, if there exists i ∈ [`] such
that ∀j < i, w(mj) = w(m′j) but w(mi) < w(m′i).

We say that B ≤ B′ if either B < B′ or if ∀i ∈ [`], w(mi) ≤ w(m′i). A basis B is called
a least basis, if for any other basis B′, B ≤ B′. Next, we describe a condition on w such that
least basis will be unique.

I Definition 12. (Basis Isolating Weight Assignment [3, Defn.5]). A weight assignment w
is called a basis isolating weight assignment for a polynomial f(x) ∈ Fk[x] if there exists a
set of monomials B such that:
1. the coefficients of the monomials in B form a basis for sp(f),
2. weights of all monomials in B are distinct, and
3. the coefficient of every m ∈ supp(f) \ B is in the linear span of {coefm′(f) | m′ ∈ B,

w(m′) < w(m)}.

I Lemma 13. If w is a basis isolating weight assignment for f ∈ Fk[x], then f has a unique
least basis B wrt w. In particular, for any other basis B′ of f , we have w(B) < w(B′).
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Algorithm 1 Finding cone-closed set.
Input: A subset B of the n-tuples M .
Output: A cone-closed A ⊆M with full rank TA,B .
function Find-Cone-closed(B, n)

if n = 1 then
s← |B|;

return {0. . . . , s− 1};
else

Let πn be the map which projects the set of monomials B on the first n−1 variables;
Let ` be the maximum number of preimages under πn;
∀i ∈ [`], Fi collects those elements in Img(πn) whose preimage size≥ i;
A0 ← ∅;
for i← 1 to ` do

Si ← Find-Cone-closed(Fi, n− 1);
Ai ← Ai−1

⋃(
Si × {i− 1}

)
;

end for
return A;

end if
end function

For proof, see the full version linked on the first page. Next, we want to study the effect of
shifting f by a basis isolating weight assignment. To do that we require an elaborate notation.
As before f(x) is a n-variate and degree-d polynomial over Fk. For a weight assignment
w, by f(x + tw) we denote the polynomial f(x1 + tw1 , . . . , xn + twn). For a = (a1, . . . , an)
and b = (b1, . . . , bn) in Nn,

(a
b
)
denotes

∏n
i=1
(
ai

bi

)
, where

(
ai

bi

)
= 1 for bi = 0 and

(
ai

bi

)
= 0

for ai < bi. Let Mn,d = {a ∈ Nn : |a|1 ≤ d} corresponds to the set of all n-variate d-degree
monomials. For every a ∈ Mn,d, coefxa(f(x + tw)) can be expanded using the binomial
expansion, and we get:∑

b∈Mn,d

(
b
a

)
· tw(b)−w(a) · coefxb(f(x)) . (2)

We express this data in matrix form as

F ′ = D−1TD · F, (3)

where the matrices involved are,
1. F and F ′: rows are indexed by the elements of Mn,d and columns are indexed by [k]. In

F resp. F ′ the a-th row is coefxa(f(x)) resp. coefxa(f(x + tw)).
2. D: is a diagonal matrix with both the rows and columns indexed by Mn,d. For a ∈Mn,d,

Da,a := tw(xa) .
3. T : both the rows and columns are indexed by Mn,d. For a,b ∈Mn,d, Ta,b :=

(b
a
)
. It is

known as transfer matrix.

We will prove the following combinatorial property of T : For any B ⊆Mn,d, there is a
cone-closed A ⊆Mn,d such that the submatrix TA,B has full rank. Our proof is an involved
double-induction, so we describe the construction of A as Algorithm 1.

I Lemma 14 (Comparison). Let B and B′ be two nonempty subsets of M such that B ⊆ B′.
Let A = Find-Cone-closed(B,n) and A′ = Find-Cone-closed(B′, n) in Algorithm 1.
Then A ⊆ A′.
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I Lemma 15 (Closure). Let B be a nonempty subset of M . If A = Find-Cone-closed(B,n)
in Algorithm 1, then A is cone-closed. Moreover, |A| = |B|.

For proofs of the above two lemmas, see the full version linked on the first page. Next,
we recall a fact that has been used for ROABP PIT.

I Lemma 16. [25, Claim 3.3] Let a1, . . . , an be distinct non-negative integers and char F = 0
or greater than the maximum of all ais. Let A be an n×n matrix with, i, j ∈ [n], Ai,j :=

(
aj

i−1
)
.

Then, A is full rank.

In the following lemma, we prove that the sub-matrix TA,B has full rank, where B ⊆Mn,d

and A is the output of Algorithm 1 on input A. It requires char F = 0 or greater than d.

I Lemma 17 (Full rank). If A = Find-Cone-Closed(B,n), then TA,B has full rank.

Proof. The proof will be by double-induction– outer induction on n and an inner induction
on iteration i of the ‘for’ loop (Algorithm 1).

Base case: For n = 1, the claim is true due to Lemma 16.
Induction step (n−1→ n): To show TA,B full rank, we prove that for any vector b ∈ F|B|:

if TA,B · b = 0 then b = 0. For this we show that the following invariant holds at the end of
each iteration i of the ‘for’ loop (Algorithm 1). Here, we assume the coordinates of b are
indexed by the elements of B and for all f ∈ B, bf denotes the value of b at coordinate f .

Invariant (n-variate & i-th iteration): For each f ∈ B such that the preimage size of
πn(f) is at most i, the product TAi,B · b = 0 implies that bf = 0. Here,

At the end of iteration i = 1, we have the vector TA1,B · b. Recall that A1 = S1 × {0}
and F1 = πn(B). So TA1,B · b = TS1,F1 · c, where c ∈ F|F1| and for e ∈ F1, ce :=∑

(e,k) ∈ π−1
n (e)

(
k
0
)
b(e,k). Thus, TA1,B · b = 0 implies TS1,F1 · c = 0. Since S1 = Find-Cone-

closed(F1, n− 1), using induction hypothesis, we get that c = 0. This means that for e ∈ B
such that the preimage size of πn(e) is at most 1, we have ce = 0. This proves our invariant
at the end of the iteration i = 1.

(i − 1 → i): Suppose that at the end of (i − 1)-th iteration, the invariant holds. We
show that it also holds at the end of the i-th iteration. For each j ∈ [i], let vj denote the
projection of TAi,B ·b on the coordinates indexed by Sj ×{j−1}. By focusing on the rows of
TAj ,B , we can see that vj = TSj ,F1 · cj where the vector cj ∈ F|F1| is defined as, for e ∈ F1,

cje :=
∑

(e,k) ∈ π−1
n (e)

(
k

j − 1

)
· b(e,k) . (4)

Suppose that TAi,B · b = 0. Because of the invariant at i − 1th round, for all f ∈ B with
preimage size of πn(f) is less than i, bf = 0. So all we have to argue is that for every f ∈ B
such that the preimage size of e := πn(f) is i, the coordinate bf = 0.

To prove our goal, first we show that each cj is a zero vector. Since TAi,B · b = 0, its
projection vj = TSj ,F1 · cj is zero too. By induction hypothesis (on i− 1), for each e ∈ F1
with preimage size < i, the coordinate cje = 0. Thus, the vector TSj ,F1 · cj = TSj ,Fj

· c′j
where the vector c′j ∈ F|Fj | is defined as, for e ∈ Fj , c′je := cje. Consequently, TSj ,Fj

· c′j = 0,
for j ∈ [i]. By induction hypothesis (on n− 1), we know that TSj ,Fj is full rank. So c′j = 0,
which tells us that cj = 0, for j ∈ [i].

Fix an e ∈ F1, with preimage size = i, and let the preimages be {(e, k1), . . . , (e, ki)}
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where kj ’s are distinct nonnegative integers. From Equation 4, we can write
c1e
c2e
...

cie

 =


(
k1
0
) (

k2
0
)

. . .
(
ki

0
)(

k1
1
) (

k2
1
)

. . .
(
ki

1
)

...
... . . .

...(
k1
i−1
) (

k2
i−1
)

. . .
(
ki

i−1
)
 ·


b(e,k1)
b(e,k2)

...
b(e,ki)

 .
Since for each j ∈ [i], cj is a zero vector, from the above equation we get

0
0
...
0

 =


(
k1
0
) (

k2
0
)

. . .
(
ki

0
)(

k1
1
) (

k2
1
)

. . .
(
ki

1
)

...
... . . .

...(
k1
i−1
) (

k2
i−1
)

. . .
(
ki

i−1
)
 ·


b(e,k1)
b(e,k2)

...
b(e,ki)

 .
Now invoking Lemma 16, we get b(e,kj) = 0 for all j ∈ [i]. In other words, for any f ∈ B
such that the preimage size of πn(f) is i, the coordinate bf = 0.

(i = `): Since A = A`, the output of Find-Cone-closed(B,n), using our invariant at
the end of `-th iteration we deduce that TA,B · b = 0 implies b = 0. Thus, TA,B has full
rank. J

Now we are ready to prove our main theorem using the transfer matrix equation.

Proof of Theorem 2. As we mentioned in Equation 2, the shifted polynomial f(x + tw)
yields a matrix equation F ′ = D−1TD ·F . Let k′ be the rank of F . We consider the following
two cases.

Case 1 (k′ < k): We reduce this case to the other one where k′ = k. Let S be a
subset of k′ columns such that FM,S has rank k′. The matrix FM,S denotes the polynomial
fS(x) ∈ F[x]k′ , where fS(x) is the projection of the ‘vector’ f(x) on the coordinates indexed
by S. So, any linear dependence relation among the coefficients of f(x) is also valid for fS(x).
So w is also a basis isolating weight assignment for fS(x). Now from our Case 2, we can claim
that fS(x + tw) has a cone-closed basis A. Thus, coefficients of the monomials, corresponding
to A, in f(x) form a basis of sp(f). This implies that f(x + tw) has a cone-closed basis A.

Case 2 (k′ = k): Let B be the least basis of f(x) wrt w and A = Find-Cone-
closed(B,n). We prove that the coefficients of monomials in A form a basis of the coefficient
space of f(x + tw). To prove this, we show that det(F ′A,[k]) 6= 0. Define T ′ := TDF so that
F ′ = D−1T ′. Using Cauchy-Binet formula [57], we get that

det(F ′A,[k]) =
∑

C∈(M
k )

det(D−1
A,C) · det(T ′C,[k]) .

Since for all C ∈
(
M
k

)
\ {A}, the matrix D−1

A,C is singular, we have det(F ′A,[k]) = det(D−1
A,A) ·

det(T ′A,[k]). Again applying Cauchy-Binet formula for det(T ′A,[k]), we get

det(F ′A,[k]) = det(D−1
A,A) ·

∑
C∈(M

k )
tw(C) det(TA,C) · det(FC,[k]) .

From Lemma 13, we have that for all basis C ∈
(
M
k

)
\ {B}, w(C) > w(B). The matrix

TA,B is nonsingular by Lemma 17, and the other one FB,[k] is nonsingular since B is a basis.
Hence, the sum is a nonzero polynomial in t. In particular, det(F ′A,[k]) 6= 0, which ensures
that the coefficients of the monomials corresponding to A form a basis of spF(t)(f(x + tw)).
Since Lemma 15 says that A is also cone-closed, we get that f(x + tw) has a cone-closed
basis. J
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3.1 Models with a cone-closed basis
We give a simple proof showing that a typical diagonal depth-3 circuit is already cone-closed.
Consider the polynomial D(x) = (1 + a1x1 + . . .+ anxn)d in Fk[x], where Fk is seen as an
F-algebra with coordinate-wise multiplication.

I Lemma 18. D(x) has a cone-closed basis.

Proof. Consider the n-tuple L := (a1, . . . , an). Then for every monomial xe, the coefficient
of xe in D is Le :=

∏n
i=1 aei

i , with some nonzero scalar factor (note: here we seem to
need char(F) zero or large). We ignore this constant factor, since it does not affect linear
dependence relations. Consider deg-lex monomial ordering, i.e. first order the monomials by
lower to higher total degree, then within each degree arrange them according to a lexicographic
order. Now we prove that the ‘least basis’ of D(x) with respect to this monomial ordering is
cone-closed.

We incrementally devise a monomial set B as follows: Arrange all the monomials in
ascending order. Starting from least monomial, put a monomial in B if its coefficient
cannot be written as a linear combination of its previous (thus, smaller) monomials. From
construction, the coefficients of monomials in B form the least basis for the coefficient space
of D(x). Now we show that B is cone-closed. We prove it by contradiction.

Let xf ∈ B and let xe be its submonomial that is not in B. Then we can write

Le =
∑

xb≺xe

cbL
b with cb’s in F .

Multiplying by Lf−e on both sides, we get

Lf =
∑

xb≺xe

cbL
b+f−e =

∑
xb′≺xf

c′b′L
b′ .

Note that xb′ ≺ xf holds true by the way a monomial ordering is defined. This equation
contradicts the fact that xf ∈ B, and completes the proof. J

4 Conclusion

Since it is known that one could focus solely on the PIT of VP circuits that depend only on
the first o(log s) variables, we initiate a study of properties that are useful in that regime.
These properties are– low-cone concentration and cone-closed basis. Their usefulness is
proved in our monomial counting and coefficient extraction results. Using these concepts we
solve an interesting special case of diagonal depth-3 circuits.

An open question is to make our approach work for field characteristic smaller than the
degree. Another interesting problem is to employ the cone-closed basis properties of the
Σ ∧ Σn model to devise a poly-time blackbox PIT for general n.

In our second result, we proved that after shifting the variables by a basis isolating
weight assignment, a polynomial has a cone-closed basis. Basis isolating weight assignment
is much weaker than the one induced by lexicographic monomial ordering (or the Kronecker
map). An interesting open question is to efficiently design a weight assignment (or, in
general, polynomial map) that ensures a cone closed basis. Till now, no known blackbox PIT
algorithm for ROABPs gives a polynomial time blackbox PIT algorithm for log (or sub-log)
variate ROABPs. So, achieving cone-closed basis or low-cone concentration property (in
polynomial time) for log (or sub-log) variate ROABPs is also interesting; then, the counting
& extraction techniques developed in our first result will give a polynomial time blackbox
PIT. This will solve some open problems posed in [2, Sec.6].
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1 Introduction

There has been an enormous amount of important work over the past 15 years on models for
capturing the special structure of social networks. This literature is almost entirely driven
by the quest for generative (i.e., probabilistic) models. Well-known examples of such models
include preferential attachment [6], the copying model [38], Kronecker graphs [13, 39], and
the Chung-Lu random graph model [14, 15]. There is little consensus about which generative
model is the “right” one. For example, already in 2006, the survey by Chakrabarti and
Faloutsos [12] compares 23 different probabilistic models of social networks, and multiple
new such models are proposed every year.

Generative models articulate a hypothesis about what “real-world” social networks look
like, how they are created, and how they will evolve in the future. They are directly useful
for generating synthetic data and can also be used as a proxy to study the effect of random
processes on a network [3, 41, 43]. However, the plethora of models presents a quandary for
the design of algorithms for social networks with rigorous guarantees: which of these models
should one tailor an algorithm to? One idea is to seek algorithms that are tailored to none
of them, and to instead assume only determinstic combinatorial conditions that share the
spirit of the prevailing generative models. This is the approach taken in this paper.

There is empirical evidence that many NP-hard optimization problems are often easier to
solve in social networks than in worst-case graphs. For example, lightweight heuristics are
unreasonably effective in practice for finding the maximum clique of a social network [52].
Similar success stories have been repeatedly reported for the problem of recovering dense
subgraphs or communities in social networks [60, 54, 42, 59]. To define our notion of “social-
network-like” graphs, we turn to one of the most agreed upon properties of social networks –
triadic closure, the property that when two members of a social network have a friend in
common, they are likely to be friends themselves.

1.1 Properties of social networks
There is wide consensus that social networks have relatively predictable structure and features,
and accordingly are not well modeled by arbitrary graphs. From a structural viewpoint, the
most well studied and empirically validated statistical properties of social networks include
heavy-tailed degree distributions [6, 11, 23], a high density of triangles [64, 53, 63] and other
dense subgraphs or “communities” [26, 32, 46, 47, 40], low diameter and the small world
property [35, 36, 37, 45], and triadic closure [53, 63, 56].

For the problem of finding cliques in networks, it does not help to assume that the graph
has small diameter (every network can be rendered small-diameter by adding one extra vertex
connected to all other vertices). Similarly, merely assuming a power-law degree distribution
does not seem to make the clique problem easier [24]. On the other hand, as we show, the
clique problem is tractable on graphs with strong triadic closure properties.

1.2 Our model: c-closed graphs
Motivated by the empirical evidence for triadic closure in social networks, we define the class
of c-closed graphs. Figure 1 shows the triadic closure of the network of email communications
at Enron [1] and other social networks have been shown to behave similarly [8]. In particular,
the more common neighbors two vertices have, the more likely they are to be adjacent to
each other. The definition of c-closed graphs is a coarse version of this property: we assert
that every pair of vertices with c or more common neighbors must be adjacent to each other.
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Figure 1 Triadic closure properties of the Enron email graph (36K nodes and 183K edges). Nodes
of this network are Enron employees, and there is an edge connecting two employees if one sent at
least one email to the other. Given an x value, the y-axis shows the cumulative closure rate: the
fraction of pairs of nodes with at least x common neighbors that are themselves connected by an
edge.

I Definition 1 (c-closed graph). For a positive integer c, an undirected graph G = (V,E) is
c-closed if, whenever two distinct vertices u, v ∈ V have at least c common neighbors, (u, v)
is an edge of G.

The parameter c interpolates between a disjoint unions of cliques (when c = 1) and all
graphs (when c = |V | − 1). The class of 2-closed graphs is already non-trivial. These are
exactly the graphs that do not contain K2,2 or a diamond (K4 minus an edge) as an induced
subgraph. For example, graphs with girth at least 5, e.g. constant-degree expanders, are
2-closed. For every c, membership in the class of c-closed graphs can be checked by squaring
the adjacency matrix in O(nω) time, where ω < 2.373 is the matrix multiplication exponent.

While the definition of c-closed captures important aspects of triadic closure, it is fragile
in the sense that a single pair of non-adjacent vertices with many common neighbors prevents
the graph from being c-closed for a low value of c. To address this, we define the more
robust notion of weakly c-closed graphs and show that our results carry over to these graphs.
Well-studied social networks with thousands of vertices are typically weakly c-closed for
modest values of c (see the full version [29] for experimental results).

I Definition 2. Given a graph and a value of c, a bad pair is a non-adjacent pair of vertices
with at least c common neighbors.

I Definition 3 (Weakly c-closed graph). A graph is weakly c-closed if there exists an ordering
of the vertices {v1, v2, . . . , vn} such that for all i, vi is in no bad pairs in the graph induced
by {vi, vi+1, . . . , vn}.

A graph can be c-closed only for large c but weakly c-closed for much smaller c. Consider
the graph G that is a clique of size k with one edge (u, v) missing. G is not c-closed for any
c < k − 2. The only bad pair in G is (u, v). The vertex ordering that places u and v at
the end demonstrates that G is weakly 1-closed. Also, the properties of being c-closed and
weakly c-closed are hereditary, meaning that they are closed under taking induced subgraphs.
We will use this basic fact often.

ICALP 2018
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1.3 Our contributions
One can study a number of computational problems on c-closed (and weakly c-closed) graphs.
We focus on the problem of enumerating all maximal cliques, an important problem in social
network analysis [16, 58, 18, 21, 57]. We study fixed-parameter tractability4 with respect
to c. There is a rich literature on fixed-parameter tractability for other graph parameters
including treewidth, arboricity, and the size of the output [17].

In a graph G, a clique is a subgraph of G in which there is an edge between every pair of
vertices. A maximal clique in G is a clique that cannot be made any larger by the addition
of some other vertex in G. In any graph, all maximal cliques can be listed in O(mn) time
per maximal clique [61]. We focus on the following two problems:
1. determining the maximum possible number of maximal cliques in a c-closed graph on n

vertices.
2. finding algorithms to enumerate all maximal cliques in c-closed graphs (that run faster

than O(mn) time per maximal clique).

Our main result is that for constant c the number of maximal cliques in a c-closed graph
on n vertices is O(n2−21−c). More specifically, we prove the following bound.

I Theorem 4. Any c-closed graph on n vertices has at most min{3(c−1)/3n2, 4(c+4)(c−1)/2n2−21−c}
maximal cliques.

For example, 3-closed, 4-closed, and 5-closed graphs have O(n3/2), O(n7/4), and O(n15/8)
maximal cliques respectively.

The proof of the first bound listed in Theorem 4 extends to weakly c-closed graphs, giving
the following result.

I Theorem 5. Any weakly c-closed graph on n vertices has at most 3(c−1)/3n2 maximal
cliques.

See the full version [29] for experimental results showing that well-studied social networks
are weakly c-closed for modest values of c. Note that Theorem 5 is exponential in the even
smaller value of (c− 1)/3.

Since in any graph all maximal cliques can be listed in O(mn) time per maximal clique,
Theorem 4 proves that listing all maximal cliques in a c-closed graph is fixed-parameter
tractable (i.e. has running time f(c)nα for constant α). We give an algorithm for listing all
maximal cliques in a c-closed graph that runs faster than applying the O(mn)-per-clique
algorithm as a black box. Our algorithm follows naturally from the proof of Theorem 4 and
gives the following theorem, where p(n, c) denotes the time to list all wedges (induced 2-paths)
in a c-closed graph on n vertices. A result of Gąsieniec, Kowaluk, and Lingas [31] implies that
p(n, c) = O(n2+o(1)c + c(3−ω−α)/(1−α)nω + nω log n) where ω is the matrix multiplication
exponent and α > 0.29.

I Theorem 6. In any c-closed graph, a set of cliques containing all maximal cliques can be
generated in time O(p(n, c) + 3c/3n2). The exact set of all maximal cliques in any c-closed
graph can be generated in time O(p(n, c) + 3c/32ccn2).

Non-trivial lower bounds for the number of maximal cliques in a c-closed graph were
previously known only for extreme values of c. A 2-closed graph can have n3/2 maximal

4 A problem is said to be fixed-parameter tractable with respect to a parameter k if there is an algorithm
that solves it in time at most f(k)nα where f can be an arbitrary function but α is a constant.
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cliques [22]. The classic Moon-Moser graph (with additional isolated vertices) is (n−2)-closed
and has 3bn/3c maximal cliques [44]. This graph consists of the complete multipartite graph
with bn/3c parts of size 3, and possibly additional isolated vertices. By taking a disjoint
union of n/(c+ 2) Moon-Moser graphs on (c+ 2) vertices, we can construct a c-closed graph
on n vertices with Ω(c−13c/3n) maximal cliques for all n ≥ c. We give improved lower bounds
for intermediate values of c.

I Theorem 7. For any positive integer c, there are c-closed graphs with n vertices and
Ω(c−3/22c/2n3/2) maximal cliques.

It is an open problem to determine the exact exponent of n (between 3/2 and 2− 21−c)
in the expression for the maximum number of maximal cliques in a c-closed graph.

1.4 Related work
There are only a few algorithmic results for graph classes motivated by social networks.
Although a number of NP-hard problems remain NP-hard on graphs with a power-law degree
distribution [25], several problems in P have been shown to be easier on such graphs. Brach,
Cygan, Lacki, and Sankowski [10] give faster algorithms for transitive closure, maximum
matching, determinant, PageRank and matrix inverse. Borassi, Crescenzi, and Trevisan [9] as-
sume several axioms satisfied by real-world graphs, one being a power-law degree distribution,
and give faster algorithms for diameter, radius, distance oracles, and computing the most
“central” vertices. Motivated by triadic closure, Gupta, Roughgarden, and Seshadhri [33]
define triangle-dense graphs and prove relevant structural results. Intuitively, they prove
that if a constant fraction of two-hop paths are closed into triangles, then the graph must
contain many dense clusters.

For general graphs, Moon and Moser prove that the maximum possible number of maximal
cliques in a graph on n vertices is 3n/3 (realized by a complete n/3-partite graph) [44]. Tomita,
Tanaka, and Takahashi prove that the time to generate all maximal cliques in any n-vertex
graph is also O(3n/3) [58].

The clique problem has been studied on 2-closed graphs (under a different name). Eschen,
Hoang, Spinrad, and Sritharan [22] show that the maximum number of maximal cliques in a
2-closed graph is O(n3/2). They also show a matching lower bound via a projective planes
construction. Suppose n = p2 + p+ 1 for a positive integer p and consider a finite projective
plane on n points (and hence with n lines, see e.g. [2]). Let G denote the bipartite graph
representing the point-line incidence matrix. The defining properties of finite projective
planes imply that no two vertices have two common neighbors, so the 2-closed condition is
vacuously satisfied. Every vertex of G has degree p+ 1, so the graph has Θ(n3/2) edges, each
a maximal clique.

The clique problem has also been studied on other special classes of graphs such as
graphs embeddable on a surface [19] and graphs of bounded degeneracy [20]. Degeneracy
is a measure of everywhere sparsity. More formally, the degeneracy of a graph G is the
smallest value d such that every nonempty subgraph of G contains a vertex of degree at
most d. Eppstein et al. show that the maximum number of maximal cliques in a graph of
degeneracy d is O(n3d/3). The degeneracy of a graph, however, can be much larger than its
c-closure. For example, the degeneracy of a graph is at least the size of a maximum clique,
while even in 1-closed graphs, the size of the maximum clique can be arbitrarily large.

Clique counting is a classical problem in extremal combinatorics. One fundamental
question is to count the minimum number of cliques in graphs with fixed number of edges
i.e. to show that graphs with few cliques must have few edges. This simple question turns
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out to be a complex problem, and is settled for K3 by Razborov [50] by flag algebra, K4 by
Nikiforov [48] by a combination of combinatorics and analytical arguments, and all Kt by
Reiher [51] by generalizing the argument of flag algebra to all sizes of cliques.

There has also been a long line of work in combinatorics on counting (not necessarily
maximal) cliques in graphs with certain excluded subgraphs, subdivisions, or minors. Most
recently, Fox and Wei give an asymptotically tight bound on the maximum number of cliques
in graphs with forbidden minors [28], and an upper bound on the maximum number of
cliques in graphs with forbidden subdivisions or immersions [27].

Many problems in combinatorics can be phrased as counting the number of cliques or
independent sets in a (hyper)graph. For example, the problems of finding the volume of the
metric polytope and counting the number of n-vertex H-free graphs (for any fixed subgraph
H) can be translated into clique counting problems. The recently developed “container
method” [5, 55] is a powerful tool to bound the number of cliques in (hyper)graphs and can
be used to tackle a great range of problems.

1.5 Organization
In Section 2 we prove the first bound listed in Theorem 4, state Theorem 5, and introduce
the proof of Theorem 6. In Section 3 we prove the second bound listed in Theorem 4 (which
has improved dependence on n). In Section 4 we prove Theorem 7.

See the full version [29] for the proof of Theorem 6.

1.6 Notation
All graphs G(V,E) are simple, undirected and unweighted. For any v ∈ V , let N(v) denote
the neighborhood of v. When the current graph is ambiguous, NG(v) will denote the
neighborhood of v in G. For any S ⊆ V , let G[S] denote the subgraph of G induced by S.

2 Initial Bound and Algorithm

2.1 Bound on number of maximal cliques
In this section, we prove the following bound on the number of maximal cliques in a c-closed
graph and show that this bound carries over to weakly c-closed graphs. Let F (n, c) denote
the maximum possible number of maximal cliques in a c-closed graph on n vertices. The
following theorem uses a natural peeling process and obtain an initial upper bound on the
number of maximal cliques. A more involved analysis, Theorem 11 which gives a tighter
upper bound, is delayed to later.

I Theorem 8 (restatement of part of Theorem 4). For all positive integers c, n, we have
F (n, c) ≤ 3(c−1)/3n2.

Proof. Let G be a c-closed graph on n vertices and let v ∈ V (G) be an arbitrary vertex.
Every maximal clique K ⊆ G is of one of the following types:
1. The clique K does not contain vertex v; and K is maximal in G \ {v}.
2. The clique K contains vertex v; and K \ {v} is maximal in G \ {v}.
3. The clique K contains vertex v; and K \ {v} is not maximal in G \ {v}.

Bounding the number of maximal cliques of type 1 and 2 is straightforward because every
such clique can be obtained by starting with a clique maximal in G \ {v} and extending it
to include vertex v if possible. Therefore, the number of maximal cliques of types 1 and 2
combined is at most F (n− 1, c).



J. Fox, T. Roughgarden, C. Seshadhri, F. Wei, and N. Wein 55:7

v
v( 

< c

N(v)

K \ {v}
v

u

G \ (N(v)∪{v})

Figure 2 A maximal clique K of type 3: K contains vertex v and K \ {v} is not maximal in
G \ {v}. Property C asserts that there exists a vertex u 6∈ N(v) whose neighborhood contains
K \ {v}. Since G is c-closed, |N(u) ∩N(v)| < c.

Type 3 cliques are maximal in N(v), but not in G\{v}. We will prove that the number of
maximal cliques of type 3 is at most 3(c−1)/3n, crucially using the c-closed property. Figure 2
shows a maximal clique K of type 3.

We claim that each type 3 maximal clique K satisfies the following three properties.

A) K \ {v} is a clique in the neighborhood of v, and
B) K \ {v} is not in the neighborhood of any other vertex in N(v).
C) There exists a vertex u 6∈ N(v) whose neighborhood contains K \ {v}.
Property A is clear since K is a clique containing v. Property B is true because if we can
extend K \ {v} to include some vertex w ∈ N(v), then K can also be extended to include w
which contradicts the fact that K is maximal. To see property C, note that since K \ {v} is
not a maximal clique in G \ {v} we can extend the clique K \ {v} to include some vertex in
G \ {v}. By property B, we can extend K \ {v} to include some vertex u not in N(v).

Let u be as in property C. Then K \ {v} must be a maximal clique in G[N(v) ∩N(u)]
because otherwise we could extend K \ {v} to some other vertex in N(v) ∩ N(u), which
contradicts property B.

Thus, the number of type 3 maximal cliques is at most∑
u∈G\(N(v)∪{v})

F (|N(u) ∩N(v)|, c). (1)

Since G is c-closed, |N(u) ∩ N(v)| < c for all vertices u 6∈ N(v). Then since any k-vertex
graph has at most 3k/3 maximal cliques [44],

F (|N(u) ∩N(v)|, c) ≤ 3(c−1)/3.

Thus, the number of type 3 maximal cliques in G is at most 3(c−1)/3n.
Counting all three types of maximal cliques, we have the following recursive inequality:

F (n, c) ≤ F (n− 1, c) + 3(c−1)/3n.

By induction on n with the base case F (1, c) = 1, this gives

F (n, c) ≤ 3(c−1)/3
(
n+ 1

2

)
≤ 3(c−1)/3n2. J

Note that v was chosen arbitrarily and the proof is valid as long as “|N(u)∩N(v)| < c for
all vertices u 6∈ N(v)”. Thus, in each recursive level, we only require the existence of a vertex
v in no bad pairs. Equivalently, it suffices to have an ordering of the vertices {v1, v2, . . . , vn}
such that for all i, vi is in no bad pairs in the graph induced by {vi, vi+1, . . . , vn}. This is
exactly the definition of a weakly c-closed graph. Thus, we get the following theorem.
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I Theorem 9 (Restatement of Theorem 5). For any positive integers c, n, there are at most
3(c−1)/3n2 maximal cliques in an n-vertex weakly c-closed graph.

2.2 Algorithm to generate all maximal cliques
Recall that p(n, c) denotes the time to list all wedges (induced 2-paths) in a c-closed graph
on n vertices. A result of Gąsieniec, Kowaluk, and Lingas [31] implies that p(n, c) =
O(n2+o(1)c + c(3−ω−α)/(1−α)nω + nω log n) where ω is the matrix multiplication exponent
and α > 0.29.

I Theorem 10 (restatement of Theorem 6). A superset of the maximal cliques in any c-closed
graph can be generated in time O(p(n, c) + 3c/3n2). The exact set of all maximal cliques in
any c-closed graph can be generated in time O(p(n, c) + 3c/32ccn2).

The algorithm follows naturally from the proof of Theorem 8 with two additional ingredi-
ents:

A preprocessing step to enumerate all wedges in the graph speeds up the later process of
finding the intersection of the neighborhoods of two vertices (i.e. N(u) ∩N(v) from the
proof of Theorem 8).
An algorithm of Tomita, Tanaka, and Takahashi [58] generates all maximal cliques in any
n-vertex graph in time O(3n/3). We apply this to the recursive calls on the small induced
subgraphs G[N(u) ∩N(v)], which have less than c vertices, that arise in handling the
type 3 cliques in the proof of Theorem 8.

We defer the full algorithm description and runtime analysis to the full version [29].

3 Improved Bound

Recall that F (n, c) is the maximum number of maximal cliques in a c-closed graph on n

vertices.

I Theorem 11 (restatement of part of Theorem 4). For all positive integers c, n, we have
F (n, c) ≤ 4(c+4)(c−1)/2n2−21−c .

The structure of the proof is similar to that of Theorem 8. We get an improved bound by a
separate analysis depending on whether G has a vertex of “high” degree. This idea appears
in the result of Eschen et al. [22], who prove the result for the c = 2 case.

We will require the following simple lemma.

I Lemma 12. For any v, G[N(v)] is a (c− 1)-closed graph.

Proof. Consider pair x, y ∈ N(v) with c − 1 common neighbors in G[N(v)]. Since vertex
v /∈ N(v) is also a common neighbor of x and y, x and y have c common neighbors in G.
Thus, (x, y) is an edge. J

Proof of Theorem 11. Let G = (V,E) be a c-closed graph on n vertices with F (n, c)
maximal cliques. Let ∆(G) be the maximum degree of G.

Case 1: ∆(G) ≤ n1/2.

By Lemma 12 for all v ∈ V (G), G[N(v)] is (c−1)-closed. Then, since the number of maximal
cliques containing v is exactly the number of maximal cliques in G[N(v)], we have

F (n, c) ≤ nF (∆(G), c− 1).
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Case 2: ∆(G) > n1/2.

Let v ∈ V be a vertex of degree ∆(G). We will count the maximal cliques containing at least
one vertex in N(v) ∪ {v}, delete N(v) ∪ {v}, and recurse.

Since the number of maximal cliques containing v is exactly the number of maximal
cliques in G[N(v)], v is in at most F (∆(G), c− 1) maximal cliques. It remains to bound the
number the maximal cliques that contain some vertex in N(v) but not v itself. Such a clique
must contain some vertex in u ∈ V \ (N(v) ∪ {v}) (otherwise, it would not be maximal).
Let K be the set of such cliques. We will bound |K| by grouping the maximal cliques K
in K based on which vertices of N(v) are in K. For nonempty S ⊆ N(v), let N(S) denote⋂
u∈S N(u). Also, let N2(v) denote the set of vertices of distance exactly 2 from v. Let us

bound the number of cliques K ∈ K such that K ∩N(v) = S. The other vertices in K must
be in N(S) ∩N2(v). By Lemma 12, G[N(S) ∩N2(v)] is a (c− 1)-closed graph. The number
of cliques K ∈ K such that K ∩ N(v) = S is at most F (|N(S) ∩ N2(v)|, c − 1). Summing
over all subsets S ⊆ N(v), we have

|K| ≤
∑

S⊆N(v)

F (|N(S) ∩N2(v)|, c− 1). (2)

For all u ∈ N2(v), since u and v are not adjacent, |N(u) ∩ N(v)| < c (because G is
c-closed). Each vertex in N2(v) can be in N(S) for only 2c−1 sets S ⊆ N(v), implying∑

S⊆N(v)

|N(S) ∩N2(v)| ≤ |N2(v)|2c−1 ≤ min{(∆(G))2, n}2c−1. (3)

We want to determine for all S the value of |N(S) ∩N2(v)| that maximizes the upper bound
for |K| in Inequality (2) subject to the constraint in Inequality (3). Later, we prove our
bound on F (from the theorem statement) by induction on n and c. In fact, we show that
F (n, c) is bounded by

F0(n, c) = 4(c+4)(c−1)/2n2−21−c

,

the desired upper bound for F (n, c) that we are trying to prove by induction. Since
F0(n, c) is convex in n, by the inductive hypothesis we can apply Jenson’s inequality on
Inequality (2). Jenson’s inequality implies that the upper bound on |K| is maximized by
setting |N(S) ∩ N2(v)| to be as large as possible (note that it cannot exceed ∆(G)) for
as many S as possible until the bound in Inequality (3) is met and setting the rest to
be 0. By Inequality (3), the number of non-zero terms |N(S) ∩ N2(v)| we sum over is at
most ∆(G)−1 min{(∆(G))2, n}2c−1 ≤ min{∆(G), n

∆(G)}2
c−1. Thus, we have the following

continuation of Inequality (2).

|K| ≤
∑

S⊆N(v)

F (|N(S) ∩N2(v)|, c− 1) ≤ min{∆(G), n

∆(G)}2
c−1F0(∆(G), c− 1). (4)

Recall |K| is the number of maximal cliques that contain some vertex in N(v) but not v
itself, so we combine Inequality (4) with the observation (from the beginning of case 2) that
v is in at most F (∆(G), c − 1) maximal cliques to conclude that the number of maximal
cliques containing at least one vertex in N(v) ∪ {v} is at most

F0(∆(G), c− 1)(1 + min{∆(G), n

∆(G)}2
c−1) ≤ F0(∆(G), c− 1) min{∆(G), n

∆(G)}2
c.

Then, recursing on G \ (N(v) ∪ {v}), we have:

F (n, c) < F0(∆(G), c− 1) min{∆(G), n

∆(G)}2
c + F (n−∆(G), c).
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Combining the low and high degree bounds on F (n, c), we get the following recurrence.

F (n, 1) = n, F (1, c) = 1

F (n, c) ≤
{
nF (∆(G), c− 1) ∆(G) ≤ n1/2

F0(∆(G), c− 1) n
∆(G)2c + F (n−∆(G), c) ∆(G) > n1/2

The remainder of the proof shows inductively that the recurrence implies the desired bound
F (n, c) ≤ F0(n, c) ≤ n2−21−c2(c+4)(c−1)/2. The desired bound holds in the two base cases.
For the inductive case, we need to show that

n2−21−c

2(c+4)(c−1)/2 ≥


n∆(G)2−22−c2(c+3)(c−2)/2 ∆(G) ≤ n1/2

∆(G)2−22−c2(c+3)(c−2)/2 n
∆(G)2c

+(n−∆(G))2−21−c2(c+4)(c−1)/2 ∆(G) > n1/2.

In the ∆(G) ≤ n1/2 case, the expression is maximized when ∆(G) = n1/2. Thus,

n∆(G)2−22−c

2(c+3)(c−3)/2 ≤ n1+ 1
2 (2−22−c)2(c+3)(c−2)/2 < n2−21−c

2(c+4)(c−1)/2,

as desired.
For the ∆(G) > n1/2 case, the second term of the expression can be written as

(n(1− ∆(G)
n ))2−21−c2(c+4)(c−1)/2. We use the following claim.

I Claim 13. (1− x)k ≤ 1− xk
2 for any 0 < x ≤ 1/2 and 1 ≤ k ≤ 2

Proof. For any y ∈ (0, 1), (1−y) ≤ e−y and e−y ≤ 1−y/2. Thus, (1−x)k ≤ e−xk ≤ 1−xk/2.
J

Applying the claim with x = ∆(G)
n and k = 2− 21−c, it suffices to show that

n2−21−c

2(c+4)(c−1)/2 ≥ ∆(G)2−22−c

2(c+3)(c−2)/2 n

∆(G)2c+n2−21−c

(
1− ∆(G)(2− 21−c)

2n

)
2(c+4)(c−1)/2.

or equivalently that

∆(G)2−22−c

2(c+3)(c−2)/2 n

∆(G)2c − n2−21−c ∆(G)(2− 21−c)
2n 2(c+4)(c−1)/2 ≤ 0.

Simplifying the left-hand side of the above inequality and using the fact that c ≥ 1:

∆(G)2−22−c

2(c+3)(c−2)/2 n

∆(G)2c − n2−21−c ∆(G)(2− 21−c)
2n )2(c+4)(c−1)/2

= n∆(G)1−22−c

2(c2+c−6)/2 − n1−21−c

∆(G)(1− 2−c)2(c2+3c−4)/2

≤ 2(c2+c−6)/2(n∆(G)1−22−c

− n1−21−c

∆(G)(1− 2−c)2c+1)

= 2(c2+c−6)/2(n∆(G)1−22−c

− n1−21−c

∆(G)(2c+1 − 2))

≤ 2(c2+c−6)/2(n∆(G)1−22−c

− n1−21−c

∆(G))

= 2(c2+c−6)/2n1−21−c

∆(G)1−22−c

(n21−c

−∆(G)22−c

) ≤ 0.

The last inequality holds because ∆ ≥ n1/2. J

Like the proof of the initial bound (Theorem 8), the proof of the improved bound
(Theorem 11) also suggests an algorithm for generating the set of maximal cliques involving
the preprocessing step of listing the set of all wedges in the graph. However, this algorithm
is not asymptotically faster than the algorithm from Theorem 10 since its dependence on n
still includes p(n, c) and we omit it.
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4 Lower bound

I Theorem 14 (restatement of Theorem 7). For any positive integer c, we can construct
graphs which are c-closed and with Ω(c−3/22c/2n3/2) maximal cliques.

Construction

We suppose that c is even and n is a multiple of c. We can do this with only an absolute
constant factor loss in the bound, which is allowable. We start with a graph H on v = 2n/c
vertices with girth 5 and the maximum possible number of edges, which is Ω(v3/2) [30].

We construct our c-closed graph G on n vertices from H in the following way. For each
vertex x ∈ V (H), we replace it with a vertex set Ux with c/2 vertices. Therefore, there are
|V (H)| · c/2 = n vertices in G. The adjacency relation of G is as follows.

Add all edges within each Ux so that Ux is a clique for all x ∈ V (H).
For any edge (x, y) of H, we place edges between the vertex sets Ux and Uy such that
the bipartite graph between Ux and Uy consists of a complete bipartite graph minus a
perfect matching.
For any distinct and nonadjacent x, y ∈ V (H), there are no edges between Ux and Uy.

Theorem 14 follows from the next two claims.

I Claim 15. The graph G constructed is c-closed.

Proof. It suffices to check that for any two non-adjacent vertices in G, they have at most
c − 1 common neighbors. By the construction, there are only two types of non-adjacent
vertices:

Case 1: The non-adjacent pair u, v ∈ V (G) are such that u ∈ Ux, v ∈ Uy and x, y ∈ V (H)
are disitinct and non-adjacent in H.

In this case, there are no edges between Ux, Uy, and the common neighbors of u, v are
such that there is a vertex z ∈ V (H) such that (x, z), (y, z) are both edges in H. Since H
has girth 5, there is at most one such z ∈ H given x, y, as otherwise H would contain a C4.
Vertex u ∈ V (G) is adjacent to exactly |Uz| − 1 = (c/2)− 1 vertices in Uz, so u, v can have
at most (c/2)− 1 common neighbors.

Case 2: The non-adjacent pair u, v ∈ V (G) is such that u ∈ Ux, v ∈ Uy and x, y ∈ V (H)
are adjacent in H.

In this case, u and v are adjacent to all other vertices in Ux ∪ Uy, so they have c − 2
common neighbors in Ux ∪ Uy. Suppose for contradiction that u, v have some other common
neighbor w and w ∈ Uz for some z 6= x, y. This implies that (w, x), (w, y) are both edges in
H . However, (x, y) is already an edge in H by the assumption of this case. This implies that
H contains a triangle, which contradicts the fact that H has girth 5.

Combining both cases, we know that G is c-closed. J

I Claim 16. There are Ω(c−3/22c/2n3/2) maximal cliques in G.

Proof. For any edge (x, y) of H, picking one endpoint of each non-edge in Ux ∪ Uy gives
a maximal clique. Thus for each edge (x, y) of H, there are exactly 2|Ux| = 2c/2 maximal
cliques.

There are Ω(|V (H)|3/2) = Ω((2n/c)3/2) edges in H. As each of the maximal cliques
obtained are distinct, we obtain Ω(2c/2 · (2n/c)3/2) = Ω(c−3/22c/2n3/2) maximal cliques. J
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5 Open problems and future directions

Direct improvement of our results

Determine the exact dependence on n for the maximum possible number of of maximal
cliques in a c-closed graph. We have proven (up to constant dependence on c) that this
number is between n3/2 and n2−21−c .
Find a faster algorithm for listing the set of all wedges (induced 2-paths) in a c-closed
graph (this would improve the runtime of Algorithm from Theorem 10).

Further exploration of c-closed graphs

Study the densest k-subgraph problem, a generalization of the clique problem, on c-closed
graphs. The input to the problem is a graph G and a parameter k, and the goal is
to to find the subgraph of G on k vertices with the most edges. Unlike the clique
problem, densest k-subgraph is NP-hard even for 2-closed graphs (more specifically, for
graphs of girth 6) [49]. For general graphs, the best-known approximation algorithm
has approximation ratio roughly O(n1/4) [7] and under certain average-case hardness
assumptions (concerning the planted clique problem), constant-factor approximation
algorithms do not exist [4].
Determine which other NP-hard problems are fixed-parameter tractable with respect to c.
Determine which problems in P have faster algorithms on c-closed graphs.

Other model-free definitions of social networks

Explore other graph classes motivated by the well-established signatures of social networks
(described in the introduction): heavy-tailed degree distributions, high triangle density,
dense “communities”, low diameter and the small world property, and triadic closure.
Determine other model-free definitions of social networks, for example, those motivated
by 4-vertex subgraph frequencies. Ugander et al. [62] and subsequently Seshadhri [34]
computed 4-vertex subgraph counts in a variety of social networks and the frequencies
observed are far different than what one would expect from a random graph. In particular,
social networks tend to have far fewer induced 4-cycles than random graphs.
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Abstract
We develop a framework for obtaining polynomial time approximation schemes (PTAS) for a
class of stochastic dynamic programs. Using our framework, we obtain the first PTAS for the
following stochastic combinatorial optimization problems:
1. Probemax [19]: We are given a set of n items, each item i ∈ [n] has a value Xi which is

an independent random variable with a known (discrete) distribution πi. We can probe a
subset P ⊆ [n] of items sequentially. Each time after probing an item i, we observe its value
realization, which follows the distribution πi. We can adaptively probe at most m items and
each item can be probed at most once. The reward is the maximum among the m realized
values. Our goal is to design an adaptive probing policy such that the expected value of the
reward is maximized. To the best of our knowledge, the best known approximation ratio
is 1 − 1/e, due to Asadpour et al. [2]. We also obtain PTAS for some generalizations and
variants of the problem.

2. Committed Pandora’s Box [24, 22]: We are given a set of n boxes. For each box i ∈ [n], the
cost ci is deterministic and the value Xi is an independent random variable with a known
(discrete) distribution πi. Opening a box i incurs a cost of ci. We can adaptively choose to
open the boxes (and observe their values) or stop. We want to maximize the expectation of
the realized value of the last opened box minus the total opening cost.

3. Stochastic Target [15]: Given a predetermined target T and n items, we can adaptively insert
the items into a knapsack and insert at most m items. Each item i has a value Xi which is an
independent random variable with a known (discrete) distribution. Our goal is to design an
adaptive policy such that the probability of the total values of all items inserted being larger
than or equal to T is maximized. We provide the first bi-criteria PTAS for the problem.

4. Stochastic Blackjack Knapsack [16]: We are given a knapsack of capacity C and probability
distributions of n independent random variables Xi. Each item i ∈ [n] has a size Xi and
a profit pi. We can adaptively insert the items into a knapsack, as long as the capacity
constraint is not violated. We want to maximize the expected total profit of all inserted
items. If the capacity constraint is violated, we lose all the profit. We provide the first
bi-criteria PTAS for the problem.
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1 Introduction

Consider an online stochastic optimization problem with a finite number of rounds. There
are a set of tasks (or items, boxes, jobs or actions). In each round, we can choose a task
and each task can be chosen at most once. We have an initial “state” of the system (called
the value of the system). At each time period, we can select a task. Finishing the task
generates some (possibly stochastic) feedback, including changing the value of the system
and providing some profit for the round. Our goal is to design a strategy to maximize our
total (expected) profit.

The above problem can be modeled as a class of stochastic dynamic programs which was
introduced by Bellman [3]. There are many problems in stochastic combinatorial optimization
which fit in this model, e.g., the stochastic knapsack problem [9], the Probemax problem
[19]. Formally, the problem is specified by a 5-tuple (V,A, f, g, h, T ). Here, V is the set of
all possible values of the system. A is a finite set of items or tasks which can be selected
and each item can be chosen at most once. This model proceeds for at most T rounds. At
each round t ∈ [T ], we use It ∈ V to denote the current value of the system and At ⊆ A
the set of remaining available items. If we select an item at ∈ At, the value of the system
changes to f(It, at). Here f may be stochastic and is assumed to be independent for each
item at ∈ A. Using the terminology from Markov decision processes, the state at time t is
st = (It,At) ∈ V × 2A. 1 Hence, if we select an item at ∈ At, the evolution of the state is
determined by the state transition function f :

st+1 = (It+1,At+1) = (f(It, at),At \ at) t = 1, . . . , T. (1)

Meanwhile the system yields a random profit g(It, at). The function h(IT+1) is the terminal
profit function at the end of the process.

We begin with the initial state s1 = (I1,A). We choose an item a1 ∈ A. Then the system
yields a profit g(I1, a1), and moves to the next state s2 = (I2,A2) where I2 follows the
distribution f(I1, a1) and A2 = A \ a1. This process is iterated yielding a random sequence

s1, a1, s2, a2, s3, . . . , aT , sT+1.

The profits are accumulated over T steps. 2 The goal is to find a policy that maximizes the

1 This is why we do not call It the state of the system.
2 If less than T steps, we can use some special items to fill which satisfy that f(I, a) = I and g(I, a) = 0

for any value I ∈ V.
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expectation of the total profits E
[∑T

t=1 g(It, at) +h(IT+1)
]
. Formally, we want to determine:

DP∗(s1) = max
{a1,...,aT }⊆A

E
[ T∑
t=1

g(It, at) + h(IT+1)
]

(DP)

subject to: It+1 = f(It, at), t = 1, . . . , T.

By Bellman’s equation [3], for every initial state s1 = (I1,A), the optimal value DP∗(s1) is
given by DP1(I1,A). Here DP1 is the function defined by DPT+1(IT+1) = h(IT+1) together
with the recursion:

DPt(It,At) = max
at∈At

E
[
DPt+1(f(It, at),At \ at) + g(It, at)

]
, t = 1, . . . , T. (2)

When the value and the item spaces are finite, and the expectations can be computed,
this recursion yields an algorithm to compute the optimal value. However, since the state
space S = V × 2A is exponentially large, this exact algorithm requires exponential time.
Since this model can capture several stochastic optimization problems which are known (or
believed) be #P-hard or even PSPACE-hard, we are interested in obtaining polynomial-time
approximation algorithms with provable performance guarantees.

1.1 Our Results
In order to obtain a polynomial time approximation scheme (PTAS) for the stochastic
dynamic program, we need the following assumptions.

I Assumption 1. In this paper, we make the following assumptions.
1. The value space V is discrete and ordered, and its size |V| is a constant. W.l.o.g., we

assume V = (0, 1, . . . , |V| − 1).
2. The function f satisfies that f(It, at) ≥ It, which means the value is nondecreasing.
3. The function h : V → R≥0 is a nonnegative function. The expected profit E[g(It, at)] is

nonnegative (although the function g(It, at) may be negative with nonzero probability).

Assumption (1) seems to be quite restrictive. However, for several concrete problems
where the value space is not of constant size (e.g., Probemax in Section 1.2), we can discretize
the value space and reduce its size to a constant, without losing much profit. Assumption (2)
and (3) are quite natural for many problems. Now, we state our main result.

I Theorem 1. For any fixed ε > 0, if Assumption 1 holds, we can find an adaptive
policy in polynomial time n2O(ε−3) with expected profit at least OPT − O(ε) · MAX where
MAX = maxI∈V DP1(I,A) and OPT denotes the expected profit of the optimal adaptive
policy.

Our Approach: For the stochastic dynamic program, an optimal adaptive policy σ can
be represented as a decision tree T (see Section 2 for more details). The decision tree
corresponding to the optimal policy may be exponentially large and arbitrarily complicated.
Hence, it is unlikely that one can even represent an optimal decision for the stochastic
dynamic program in polynomial space. In order to reduce the space, we focus a special class
of policies, called block adaptive policy. The idea of block adptive policy was first introduced
by Bhalgatet al. [6] and further generalized in [17] to the context of the stochastic knapsack.
To the best of our knowledge, the idea has not been extended to other applications. In this
paper, we make use of the notion of block policy as well, but we target at the development
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of a general framework. For this sake we provide a general model of block policy (see Section
3). Since we need to work with the more abstract dynamic program, our construction of
block adaptive policy is somewhat different from that in [6, 17].

Roughly speaking, in a block adaptive policy, we take a batch of items simultaneously
instead of a single one each time. This can significantly reduce the size of the decision tree.
Moreover, we show that there exists a block-adaptive policy that approximates the optimal
adaptive policy and has only a constant number of blocks on the decision tree (the constant
depends on ε). Since the decision tree corresponding to a block adaptive policy has a constant
number of nodes, the number of all topologies of the block decision tree is a constant. Fixing
the topology of the decision tree corresponding to the block adaptive policy, we still need
to decide the subset of items to place in each block. Again, there is exponential number of
possible choices. For each block, we can define a signature for it, which allows us to represent
a block using polynomially many possible signatures. The signatures are so defined such
that two subsets with the same signature have approximately the same reward distribution.
Finally, we show that we can enumerate the signatures of all blocks in polynomial time using
dynamic programming and find a nearly optimal block-adaptive policy. The high level idea
is somewhat similar to that in [17], but the details are again quite different.

1.2 Applications
Our framework can be used to obtain the first PTAS for the following problems.

1.2.1 The Probemax Problem
In the Probemax problem, we are given a set of n items. Each item i ∈ [n] has a value
Xi which is an independent random variable following a known (discrete) distribution πi.
We can probe a subset P ⊆ [n] of items sequentially. Each time after probing an item i,
we observe its value realization, which is an independent sample from the distribution πi.
We can adaptively probe at most m items and each item can be probed at most once. The
reward is the maximum among the m realized values. Our goal is to design an adaptive
probing policy such that the expected value of the reward is maximized.

Despite being a very basic stochastic optimization problem, we still do not have a complete
understanding of the approximability of the Probemax problem. It is not even known whether
it is intractable to obtain the optimal policy. For the non-adaptive Probemax problem
(i.e., the probed set P is just a priori fixed set), it is easy to obtain a 1− 1/e approximation
by noticing that f(P ) = E[maxi∈P Xi] is a submodular function (see e.g., Chen et al. [8]).
Chen et al. [8] obtained the first PTAS. When considering the adaptive policies, Munagala
[19] provided a 1

8 -approximation ratio algorithm by LP relaxation. His policy is essentially a
non-adaptive policy (it is related to the contention resolution schemes [23, 10]). They also
showed that the adaptivity gap (the gap between the optimal adaptive policy and optimal
non-adaptive policy) is at most 3. For the Probemax problem, the best-known approximation
ratio is 1 − 1

e . Indeed, this can be obtained using the algorithm for stochastic monotone
submodular maximization in Asadpour et al. [2]. This is also a non-adaptive policy, which
implies the adaptivity gap is at most e

e−1 . In this paper, we provide the first PTAS, among
all adaptive policies. Note that our policy is indeed adaptive.

I Theorem 2. There exists a PTAS for the Probemax problem. In other words, for any fixed
constant ε > 0, there is a polynomial-time approximation algorithm for the Probemax problem
that finds a policy with the expected profit at least (1−ε)OPT, where OPT denotes the expected
profit of the optimal adaptive policy.
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Let the value It be the maximum among the realized values of the probed items at the time
period t. Using our framework, we have the following system dynamics for Probemax:

It+1 = f(It, i) = max{It, Xi}, g(It, i) = 0, and h(IT+1) = IT+1 (3)

t = 1, 2, . . . , T . Clearly, Assumption 1 (2) and (3) are satisfied. But Assumption 1 (1) is
not satisfied because the value space V is not of constant size. We can discretize the value
space and reduce its size to a constant. See full version for more details. If the reward
is the summation of top-k values (k = O(1)) among the m realized values, we obtain the
ProbeTop-k problem. Our techniques also allow us to derive the following result.

I Theorem 3. For the ProbeTop-k problem where k is a constant, there is a polynomial time
algorithm that finds an adaptive policy with the expected profit at least (1− ε)OPT, where
OPT denotes the expected profit of the optimal adaptive policy.

1.2.2 Committed ProbeTop-k Problem
We are given a set of n items. Each item i ∈ [n] has a value Xi which is an independent
random variable with a known (discrete) distribution πi. We can adaptively probe at most m
items and choose k values in the committed model, where k is a constant. In the committed
model, once we probe an item and observe its value realization, we must make an irrevocable
decision whether to choose it or not, i.e., we must either add it to the final chosen set C
immediately or discard it forever. 3 If we add the item to the final chosen set C, the realized
profit is collected. Otherwise, no profit is collected and we are going the probe the next item.
Our goal is to design an adaptive probing policy such that the expected value E[

∑
i∈C Xi] is

maximized, where C is the final chosen set.

I Theorem 4. There is a polynomial time algorithm that finds a committed policy with the
expected profit at least (1− ε)OPT for the committed ProbeTop-k problem, where OPT is the
expected total profit obtained by the optimal policy.

Let bθi represent the action that we probe item i with the threshold θ (i.e., we choose item i

if Xi realizes to a value s such that s ≥ θ). Let It be the the number of items that have been
chosen at the period time t. Using our framework, we have following transition dynamics for
the ProbeTop-k problem.

It+1 = f(It, bθi ) =
{
It + 1 if Xi ≥ θ, It < k,

It otherwise; g(It, bθi ) =
{
Xi if Xi ≥ θ, It < k,

0 otherwise; (4)

for t = 1, 2, . . . , T , and h(IT+1) = 0. Since k is a constant, Assumption 1 is immediately
satisfied. There is one extra requirement for the problem: in any realization path, we can
choose at most one action bθi from the set Bi = {bθi }θ.

1.2.3 Committed Pandora’s Box Problem
For Weitzman’s “Pandora’s box” problem [24], we are given n boxes. For each box i ∈ [n], the
probing cost ci is deterministic and the value Xi is an independent random variable with a
known (discrete) distribution πi. Opening a box i incurs a cost of ci. When we open the box i,
its value is realized, which is a sample from the distribution πi. The goal is to adaptively open

3 In [10, 11], it is called the online decision model.
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a subset P ⊆ [n] to maximize the expected profit: E
[
maxi∈P {Xi} −

∑
i∈P ci

]
. Weitzman

provided an elegant optimal adaptive strategy, which can be computed in polynomial time.
Recently, Singla [22] generalized this model to other combinatorial optimization problems
such as matching, set cover and so on.

In this paper, we focus on the committed model, which is mentioned in Section 1.2.2.
Again, we can adaptively open the boxes and choose at most k values in the committed way,
where k is a constant. Our goal is to design an adaptive policy such that the expected value
E
[∑

i∈C Xi −
∑
i∈P ci

]
is maximized, where C ⊆ P is the final chosen set and P is the set

of opened boxes. Although the problem looks like a slight variant of Weitzman’s original
problem, it is quite unlikely that we can adapt Weitzman’s argument (or any argument at
all) to obtain an optimal policy in polynomial time. When k = O(1), we provide the first
PTAS for this problem. Note that a PTAS is not known previously even for k = 1.

I Theorem 5. When k = O(1), there is a polynomial time algorithm that finds a committed
policy with the expected value at least (1− ε)OPT for the committed Pandora’s Box problem.

Similar to the committed ProbeTop-k problem, let bθi represent the action that we open
the box i with threshold θ. Let It be the number of boxes that have been chosen at the
time period t. Using our framework, we have following system dynamics for the committed
Pandora’s Box problem:

It+1 = f(It, bθi ) =
{

It + 1 if Xi ≥ θ, It < k,

It otherwise; g(It, bθi ) =
{

Xi − ci if Xi ≥ θ, It < k,

−ci otherwise; (5)

for t = 1, 2, · · · , T , and h(IT+1) = 0. Notice that we never take an action bθi for a value
It < k if E[g(It, bθi )] = Pr[Xt ≥ θ] ·E[Xi |Xi ≥ θ]−ci < 0. Then Assumption 1 is immediately
satisfied.

1.2.4 Stochastic Target Problem
İlhan et al. [15] introduced the following stochastic target problem. 4 In this problem, we
are given a predetermined target T and a set of n items. Each item i ∈ [n] has a value Xi

which is an independent random variable with a known (discrete) distribution πi. Once we
decide to insert an item i into a knapsack, we observe a reward realization Xi which follows
the distribution πi. We can insert at most m items into the knapsack and our goal is to
design an adaptive policy such that Pr[

∑
i∈P Xi ≥ T] is maximized, where P ⊆ [n] is the set

of inserted items. For the stochastic target problem, İlhan et al. [15] provided some heuristic
based on dynamic programming for the special case where the random profit of each item
follows a known normal distribution. In this paper, we provide an additive PTAS for the
stochastic target problem when the target is relaxed to (1− ε)T.

I Theorem 6. There exists an additive PTAS for stochastic target problem if we relax the
target to (1− ε)T. In other words, for any given constant ε > 0, there is a polynomial-time
approximation algorithm that finds a policy such that the probability of the total rewards
exceeding (1− ε)T is at least OPT− ε, where OPT is the resulting probability of an optimal
adaptive policy.

4 [15] called the problem the adaptive stochastic knapsack instead. However, their problem is quite
different from the stochastic knapsack problem studied in the theoretical computer science literature.
So we use a different name.
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Let the value It be the total profits of the items in the knapsack at time period t. Using our
framework, we have following system dynamics for the stochastic target problem:

It+1 = f(It, i) = It +Xi, g(It, i) = 0, and h(IT+1) =
{

1 if IT+1 ≥ T,
0 otherwise; (6)

for t = 1, 2, · · · , T . Then Assumption 1 (2,3) is immediately satisfied. But Assumption 1 (1)
is not satisfied for that the value space V is not of constant size. We can discretize the value
space and reduce its size to a constant.

1.2.5 Stochastic Blackjack Knapsack
Levin et al. [16] introduced the stochastic blackjack knapsack. In this problem, we are given
a capacity C and a set of n items, each item i ∈ [n] has a size Xi which is an independent
random variable with a known distribution πi and a profit pi. We can adaptively insert
the items into a knapsack, as long as the capacity constraint is not violated. Our goal is
to design an adaptive policy such that the expected total profits of all items inserted is
maximized. The key feature here different from classic stochastic knapsack is that we gain
zero if overflow, i.e., we will lose the profits of all items inserted already if the total size is
larger than the capacity. This extra restriction might induce us to take more conservative
policies. Levin et al. [16] presented a non-adaptive policy with expected value that is at least
(
√

2−1)2/2 ≈ 1/11.66 times the expected value of the optimal adaptive policy. Chen et al. [7]
assumed each size Xi follows a known exponential distribution and gave an optimal policy
for n = 2 based on dynamic programming. In this paper, we provide the first bi-criteria
PTAS for the problem.

I Theorem 7. For any fixed constant ε > 0, there is a polynomial-time approximation
algorithm for stochastic blackjack knapsack that finds a policy with the expected profit at least
(1− ε)OPT, when the capacity is relaxed to (1 + ε)C, where OPT is the expected profit of the
optimal adaptive policy.

Denote It = (It,1, It,2) and let It,1, It,2 be the total sizes and total profits of the items in the
knapsack at the time period t respectively. When we insert an item i into the knapsack and
observe its size realization, say si, we define the system dynamics function to be

It+1 = f(It, i) = (It,1 + si, It,2 + pi), h(IT+1) =
{
IT+1,2 if IT+1,1 ≤ C,

0 otherwise; (7)

and g(It, i) = 0 for t = 1, 2, · · · , T . Then Assumption 1 (2,3) is immediately satisfied. But
Assumption 1 (1) is not satisfied for that the value space V is not of constant size. We can
discretize the value space and reduce its size to a constant.

1.3 Related Work
Stochastic dynamic program has been widely studied in computer science and operation
research (see, for example, [4, 20]) and has many applications in different fields. It is
a natural model for decision making under uncertainty. In 1950s, Richard Bellman [3]
introduced the “principle of optimality” which leads to dynamic programming algorithms for
solving sequential stochastic optimization problems. However, Bellman’s principle does not
immediate lead to efficient algorithms for many problems due to “curse of dimensionality”
and the large state space.
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There are some constructive frameworks that provide approximation schemes for certain
classes of stochastic dynamic programs. Shmoys et al. [21] dealt with stochastic linear
programs. Halman et al. [12, 13, 14] studied stochastic discrete DPs with scalar state and
action spaces and designed an FPTAS for their framework. As one of the applications, they
used it to solve the stochastic ordered adaptive knapsack problem. As a comparison, in our
model, the state space S = V × 2A is exponentially large and hence cannot be solved by
previous framework.

Stochastic knapsack problem (SKP) is one of the most well-studied stochastic combinat-
orial optimization problem. We are given a knapsack of capacity C. Each item i ∈ [n] has
a random value Xi with a known distribution πi and a profit pi. We can adaptively insert
the items to the knapsack, as long as the capacity constraint is not violated. The goal is
to maximize the expected total profit of all items inserted. For SKP, Dean et al. [9] first
provide a constant factor approximation algorithm. Later, Bhalgat et al. [6] improved that
ratio to 3

8 − ε and gave an algorithm with ratio of (1− ε) by using ε extra budget for any
given constant ε ≥ 0. In that paper, the authors first introduced the notion of block adaptive
policies, which is crucial for this paper. The best known single-criterion approximation factor
is 2 [5, 17, 18].

The Probemax problem and ProbeTop-k problem are special cases of the general stochastic
probing framework formulated by Gupta et al. [11]. They showed that the adaptivity gap
of any stochastic probing problem where the outer constraint is prefix-closed and the inner
constraint is an intersection of p matroids is at most O(p3 log(np)), where n is the number
of items. The Bernoulli version of stochastic probing was introduced in [10], where each
item i ∈ U has a fixed value wi and is “active” with an independent probability pi. Gupta
et al. [10] presented a framework which yields a 1

4(kin+kout) -approximation algorithm for the
case when Iin and Iout are respectively an intersection of kin and kout matroids. This ratio
was improved to 1

(kin+kout) by Adamczyk et al. [1] using the iterative randomized rounding
approach. Weitzman’s Pandora’s Box is a classical example in which the goal is to find
out a single random variable to maximize the utility minus the probing cost. Singla [22]
generalized this model to other combinatorial optimization problems such as matching, set
cover, facility location, and obtained approximation algorithms.

2 Policies and Decision Trees

An instance of stochastic dynamic program is given by J = (V,A, f, g, h, T ). For each item
a ∈ A and values I, J ∈ V, we denote Φa(I, J) := Pr[f(I, a) = J ] and Ga(I) := E[g(I, a)].
The process of applying a feasible adaptive policy σ can be represented as a decision tree
Tσ. Each node v on Tσ is labeled by a unique item av ∈ A. Before selecting the item av, we
denote the corresponding time index, the current value and the set of the remaining available
items by tv, Iv and A(v) respectively. Each node has several children, each corresponding to a
different value realization (one possible f(Iv, av)). Let e = (v, u) be the s-th edge emanating
from s ∈ V where s is the realized value. We call u the s-child of v. Thus e has probability
πe := πv,s = Φav (Iv, s) and weight we := s.

We use P(σ) to denote the expected profit that the policy σ can obtain. For each node v
on Tσ, we define Gv := Gav(Iv). In order to clearly illustrate the tree structure, we add a
dummy node at the end of each root-to-leaf path and set Gv = h(Iv) if v is a dummy node.
Then, we recursively define the expected profit of the subtree Tv rooted at v to be

P(v) = Gv +
∑

e=(v,u)

πe · P(u), (8)
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if v is an internal node and P(v) = Gv = h(Iv) if v is a leaf (i.e., the dummy node). The
expected profit P(σ) of the policy σ is simply P(the root of Tσ). Then, according to Equation
(2), we have

P(v) ≤ DPtv (Iv,A(v)) ≤ DP1(Iv,A) ≤ max
I∈V

DP1(I,A) = MAX

for each node v. For a node v, we say the path from the root to it on Tσ as the realization path
of v, and denote it by R(v). We denote the probability of reaching v as Φ(v) = Φ(R(v)) =∏
e∈R(v) πe. Then, we have

P(σ) =
∑
v∈Tσ

Φ(v) · Gv. (9)

We use OPT to denote the expected profit of the optimal adaptive policy. For each node
v on the tree Tσ, by Assumption 1 (2) that f(Iv, av) ≥ Iv, we define µv := Pr[f(Iv, av) >
Iv] = 1− Φav (Iv, Iv). For a set of nodes P , we define µ(P ) :=

∑
v∈P µv.

I Lemma 8. Given an policy σ, there is a policy σ′ with profit at least OPT−O(ε)·MAX which
satisfies that for any realization path R, µ(R) ≤ O(1/ε), where MAX = maxI∈V DP1(I,A).

W.l.o.g, we assume that all (optimal or near optimal) policies σ considered in this paper
satisfy that for any realization R, µ(R) ≤ O(1/ε).

3 Block Adaptive Policies

The decision tree corresponding to the optimal policy may be exponentially large and
arbitrarily complicated. Now we consider a restrict class of policies, called block-adaptive
policy. The concept was first introduced by Bhalgat et al. [6] in the context of stochastic
knapsack. Our construction is somewhat different from that in [6, 17]. Here, we need to
define an order for each block and introduce the notion of approximate block policy.

Formally, a block-adaptive policy σ̂ can be thought as a decision tree Tσ̂. Each node on
the tree is labeled by a block which is a set of items. For a block M , we choose an arbitrary
order ϕ for the items in the block. According to the order ϕ, we take the items one by one,
until we get a bigger value or all items in the block are taken but the value does not change
(recall from Assumption 1 that the value is nondecreasing). Then we visit the child block
which corresponds to the realized value. We use IM to denote the current value right before
taking the items in the block M . Then for each edge e = (M,N), it has probability

πϕe =
∑
a∈M

[( ∏
ϕb<ϕa

Φb(IM , IM )
)
· Φa(IM , IN )

]

if IN > IM and πϕe =
∏
a∈M Φa(IM , IM ) if IN = IM .

Similar to Equation (8), for each block M and an arbitrary order ϕ for M , we recursively
define the expected profit of the subtree TM rooted at M to be

P(M) = GϕM +
∑

e=(M,N)

πϕe · P(N) (10)

if M is an internal block and P(M) = h(IM ) if M is a leaf (i.e., the dummy node). Here GϕM
is the expected profit we can get from the block which is equal to

GϕM =
∑
a∈M

[( ∏
ϕb<ϕa

Φb(IM , IM )
)
· Ga(IM )

]
.

ICALP 2018



56:10 A PTAS for a Class of Stochastic Dynamic Programs

Since the profit GϕM and the probability πϕe are dependent on the order ϕ and thus difficult
to deal with, we define the approximate block profit and the approximate probability which
do not depend on the choice of the specific order ϕ:

G̃M =
∑
a∈M
Ga(IM ) and π̃e =

∑
a∈M

 ∏
b∈M\a

Φb(IM , IM )

 · Φa(IM , IN )

 (11)

if IN > IM and π̃e =
∏
a∈M Φa(IM , IM ) if IN = IM . Then we recursively define the

approximate profit

P̃(M) = G̃M +
∑

e=(M,N)

π̃e · P̃(N), (12)

if M is an internal block and P̃(M) = P(M) = h(IM ) if M is a leaf. For each block M , we
define µ(M) :=

∑
a∈M [1− Φa(IM , IM )]. Lemma 9 below can be used to bound the gap

between the approximate profit and the original profit if the policy satisfies the following
property.Then it suffices to consider the approximate profit for a block adaptive policy σ̂ in
this paper.
(P1) Each block M with more than one item satisfies that µ(M) ≤ ε2.

I Lemma 9. For any block-adaptive policy σ̂ satisfying Property (P1), we have(
1 +O(ε2)

)
· P̃(σ̂) ≥ P(σ̂) ≥

(
1− ε2) · P̃(σ̂).

3.1 Constructing a Block Adaptive Policy
In this section, we show that there exists a block-adaptive policy that approximates the
optimal adaptive policy. In order to prove this, from an optimal (or nearly optimal) adaptive
policy σ, we construct a block adaptive policy σ̂ which satisfies certain nice properties and
can obtain almost as much profit as σ does. Thus it is sufficient to restrict our search to the
block-adaptive policies. The construction is similar to that in [17].

I Lemma 10. An optimal policy σ can be transformed into a block adaptive policy σ̂ with
approximate expected profit P̃(σ̂) at least OPT−O(ε) ·MAX. Moreover, the block-adaptive
policy σ̂ satisfies Property (P1) and (P2):
(P1) Each block M with more than one item satisfies that µ(M) ≤ ε2.
(P2) There are at most O(ε−3) blocks on any root-to-leaf path on the decision tree.

Proof (sketch). For a node v on the decision tree Tσ and a value s ∈ V , we use vs to denote
the s-child of v, which is the child of v corresponding to the realized value s (see Figure 1).
We say an edge ev,u is non-increasing if Iv = Iu and define the leftmost path of v to be the
realization path which starts at v, ends at a leaf, and consists of only the non-increasing
edges.

We say a node v is a starting node if v is the root or v corresponds to an increasing value
of its parent v′ (i.e., Iv > Iv′). For each staring node v, we greedily partition the leftmost
path of v into several segments such that for any two nodes u,w in the same segment M
and for any value s ∈ V , we have

|P(us)− P(ws)| ≤ ε2 ·MAX and µ(M) ≤ ε2. (13)

For each root-to-leaf path R, Equation (13) can yield at most O(ε−3) blocks. Now, we are
ready to describe the algorithm, which takes a policy σ as input and outputs a block adaptive
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Figure 1 Decision tree and block policy.

Algorithm 1 A policy σ̂.
Input: A policy σ.
1: We start at the root of Tσ.
2: repeat
3: Suppose we are at node v on Tσ. Take the items in seg(v) one by one in the original

order (the order of items in policy σ) until some node u makes a transition to an
increasing value, say s.

4: Visit the node l(v)s, the s-child of l(v) (i.e., the last node of seg(v)).
5: If all items in seg(v) have been taken and the value does not change, visit l(v)Iv .
6: until A leaf on Tσ is reached.

policy σ̂. For each node v, we denote its segment seg(v) and use l(v) to denote the last node
in seg(v). In Algorithm 1, we can see that the set of items which the policy σ̂ attempts to
take always corresponds to some realization path in the original policy σ. Property (P1) and
(P2) hold immediately following from the partition argument. Then we can show that the
expected profit P(σ̂) that the new policy σ̂ can obtain is at least OPT−O(ε2) ·MAX. J

3.2 Enumerating Signatures
To search for the (nearly) optimal block-adaptive policy, we want to enumerate all possible
structures of the block decision tree. Fixing the topology of the decision tree, we need to
decide the subset of items to place in each block. To do this, we define the signature such that
two subsets with the same signature have approximately the same profit distribution. Then,
we can enumerate the signatures of all blocks in polynomial time and find a nearly optimal
block-adaptive policy. Formally, for an item a ∈ A and a value I ∈ V = (0, 1, . . . , |V| − 1),
we define the signature of a on I to be the following vector

SgI(a) =
(
Φ̄a(I, 0), Φ̄a(I, 1), . . . , Φ̄a(I, |V| − 1), Ḡa(I)

)
,

where Φ̄a(I, J) =
⌊
Φa(I, J) · nε4

⌋
· ε

4

n and Ḡa(I) =
⌊
Ga(I) · n

ε4MAX
⌋
· ε

4MAX
n for any J ∈ V. 5

For a block M of items, we define the signature of M on I to be SgI(M) =
∑
a∈M SgI(a).

I Lemma 11. Consider two decision trees T1, T2 corresponding to block-adaptive policies
with the same topology ( i.e., T1 and T2 are isomorphic) and the two block adaptive policies

5 If MAX = maxI∈V DP1(I,A) is unknown, for some several concrete problems (e.g., Probemax), we can
get a constant approximation result for MAX, which is sufficient for our purpose. In general, we can
guess a constant approximation result for MAX using binary search.
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satisfy Property (P1) and (P2). If for each block M1 on T1, the block M2 at the corresponding
position on T2 satisfies that SgI(M1) = SgI(M2) where I = IM1 = IM2 , then |P̃(T1)−P̃(T2)| ≤
O(ε) ·MAX.

Since |V | = O(1), the number of possible signatures for a block is O
(
(n/ε4)|V|

)
= nO(1),

which is a polynomial of n. By Lemma 10, for any block decision tree T , there are at most
(|V|)O(ε−3) = 2O(ε−3) blocks on the tree which is a constant.

3.3 Finding a Nearly Optimal Block-adaptive Policy
In this section, we find a nearly optimal block-adaptive policy and prove Theorem 1. To do
this, we enumerate over all topologies of the decision trees along with all possible signatures
for each block. This can be done by a standard dynamic programming.

Consider a given tree topology T . A configuration C is a set of signatures each corres-
ponding to a block. Let t1 and t2 be the number of paths and blocks on T respectively. We
define a vector CA = (u1, u2, . . . , ut1) where uj is the upper bound of the number of items
on the jth path. For each given i ∈ [n],C and CA, letM(i,C,CA) = 1 indicate that we can
reach the configuration C using a subset of items {a1, . . . , ai} such that the total number
of items on each path j is no more than uj and 0 otherwise. Set M(0,0,0) = 1 and we
computeM(i,C,CA) in an lexicographically increasing order of (i,C,CA) as follows:

M(i,C,CA) = max
{
M(i− 1,C,CA),M(i− 1,C′,CA′)

}
(14)

Now, we explain the above recursion as follows. In each step, we should decide how to place
the item ai on the tree T . Notice that there are at most t2 = (|V|)O(ε−3) = 2O(ε−3) blocks
and therefore at most 2t2 possible placements of item ai and each placement is called feasible
if there are no two blocks on which we place the item ai have an ancestor-descendant relation.
For a feasible placement of ai, we subtract Sg(ai) from each entry in C corresponding to the
block we place ai and subtract 1 from CA on each entry corresponding to a path including
ai, and in this way we get the resultant configuration C′ and CA′ respectively. Hence, the
max is over all possible such C′,CA′.

We have shown that the total number of all possible configurations on T is nt2 . The
total number of vectors CA is T t1 ≤ nt1 ≤ nt2 = nt2 where T is the number of rounds. For
each given (i,C,CA), the computation takes a constant time O(2t2). Thus we claim for a
given tree topology, finding the optimal configuration can be done within O(n2O(ε−3)) time .

The proof of Theorem 1. Suppose σ∗ is the optimal policy with expected profit P(σ∗) =
OPT. We use the above dynamic programming to find a nearly optimal block adaptive policy
σ. By Lemma 10, there exists a block adaptive policy σ̂ such that

P̃(σ̂) ≥ OPT−O(ε)MAX.

Since the configuration of σ̂ is enumerated at some step of the algorithm, our dynamic
programming is able to find a block adaptive policy σ with the same configuration (the same
tree topology and the same signatures for corresponding blocks). By Lemma 11, we have

P̃(σ) ≥ P̃(σ̂)−O(ε)MAX ≥ OPT−O(ε)MAX.

By Lemma 9, we have P(σ) ≥
(
1− ε2) · P̃(σ) ≥ OPT − O(ε)MAX. Hence, the proof of

Theorem 1 is completed. J
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Abstract
We study k-means clustering in a semi-supervised setting. Given an oracle that returns whether
two given points belong to the same cluster in a fixed optimal clustering, we investigate the
following question: how many oracle queries are sufficient to efficiently recover a clustering that,
with probability at least (1− δ), simultaneously has a cost of at most (1 + ε) times the optimal
cost and an accuracy of at least (1− ε)?
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oracle queries, when the k clusters can be learned with an ε′ error and a failure probability δ′
using m(Q, ε′, δ′) labeled samples in the supervised setting, where Q is the set of candidate
cluster centers. We show that m(Q, ε′, δ′) is small both for k-means instances in Euclidean
space and for those in finite metric spaces. We further show that, for the Euclidean k-means
instances, we can avoid the dependency on n in the query complexity at the expense of an
increased dependency on k: specifically, we give a slightly more involved algorithm that uses
O(k4/(ε2δ) + (k9/ε4) log(1/δ) + k ·m(Rr, ε4/k, δ)) oracle queries.
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1 Introduction

Clustering is a fundamental problem that arises in many learning tasks. Given a set P of data
points, the goal is to output a k-partition C1∪̇ . . . ∪̇Ck of P according to some optimization
criteria. In unsupervised clustering, the data points are unlabeled. The classic k-means
problem and other well-studied clustering problems such as k-median fall into this category.

In a general k-means clustering problem, the input comprises a finite set of n points
P that is to be clustered, a set of candidate centers Q, and a distance metric d giving
the distances between each pair of points in P ∪ Q. The goal is to find k cluster centers
c1, . . . , ck ∈ Q that minimizes the cost, which is the sum of squared distances between
each point in P and its closest cluster center. In this case, the clustering C is defined by
setting Ci = {x ∈ P : ci is the closest center to x} for all i = 1, . . . , k and breaking ties
arbitrarily. Two widely studied special cases are the k-means problem in Euclidean space
(where P ⊂ Rr, Q = Rr, and d is the Euclidean distance function) and the k-means problem
in finite metric spaces (where (P ∪Q, d) forms a finite metric space).

Despite its popularity and success in many settings, there are two known drawbacks of
the unsupervised k-means problem:
1. Finding the centers that satisfy the clustering goal is computationally hard. For example,

even the special case of 2-means problem in Euclidean space is NP-hard [8].
2. There could be multiple possible sets of centers that minimize the cost. However, in

practical instances, not all such sets are equally meaningful, and we would like our
algorithm to find one that corresponds to the concerns of the application.

Since k-means is NP-hard, it is natural to seek approximation algorithms. For the general
k-means problem in Euclidean space, notable approximation results include the local search
by Kanungo et al. [13] with an approximation guarantee of (9 + ε) and the recent LP-based
6.357-approximation algorithm by Ahmadian et al. [1]. On the negative side, Lee et al. [14]
ruled out arbitrarily good approximation algorithms for the k-means problem on general
instances. For several special cases, however, there exist PTASes. For example, in the case
where k is constant, Har-Peled and Mazumdar [11] and Feldman et al. [9] showed how to get
a PTAS using weak coresets, and in the case where the dimension d is constant, Cohen-Addad
et al. [7] and Friggstad et al. [10] gave PTASes based on a basic local search algorithm.
In addition, Awasthi et al. [4] presented a PTAS for k-means, assuming that the input is
“clusterable” (satisfies a certain stability criterion).

Even if we leave aside the computational issues with unsupervised k-means, we still have
the problem that there can be multiple different clusterings that minimize the cost. To see
this, consider the 2-means problem on the set of vertices of an equilateral triangle. In this
case, we have three different clusterings that give the same minimum cost, but only one of the
clusterings might be meaningful. One way to avoid this issue is to have strong assumptions
on the input. For example, Balcan et al. [5] considered the problem in a restricted setting
where any c-approximation to the problem also classifies at least a (1 − ε) fraction of the
points correctly.

Ashtiani et al. [3] recently proposed a different approach for addressing the aforementioned
drawbacks. They introduced a semi-supervised active clustering framework where the
algorithm is allowed to make queries of the form same-cluster(x, y) to a domain expert, and
the expert replies whether the points x and y belong to the same cluster in some fixed optimal
clustering. Under the additional assumptions that the clusters are contained inside k balls in
Rr that are sufficiently far away from each other, they presented an algorithm that makes
O(k2 log k+ k(log n+ log(1/δ))) same-cluster queries, runs in O(kn log n+ k2 log(1/δ)) time,
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and recovers the clusters with probability at least (1− δ). Their algorithm finds approximate
cluster centers, orders all points by their distances to the cluster centers, and performs binary
searches to determine the radii of the balls. Although it recovers the exact clusters, this
approach works only when the clusters are contained inside well-separated balls. When the
clusters are determined by a general Voronoi partitioning, and thus distances to the cluster
boundaries can differ in different directions, this approach fails.

A natural question arising from the work of Ashtiani et al. [3] is whether such strong
assumptions on the input structure are necessary. Ailon et al. [2] addressed this concern and
considered the problem without any assumptions on the structure of the underlying true
clusters. Their main result was a polynomial-time (1 + ε)-approximation scheme for k-means
in the same semi-supervised framework as in Ashtiani et al. [3]. However, in contrast to
Ashtiani et al. [3], their work gives no assurance on the accuracy of the recovered clustering
compared to the true clustering. To achieve their goal, the authors utilized importance
sampling to uniformly sample points from small clusters that significantly contribute to the
cost. Their algorithm makes O(k9/ε4) same-cluster queries, runs in O(nr(k9/ε4)) time, and
succeeds with a constant probability.

In this work, we investigate the k-means problem in the same semi-supervised setting as
Ailon et al. [2], but in addition to approximating the cost, we seek a solution that is also
accurate with respect to the true clustering. We assume that the underlying true clustering
minimizes the cost, and that there are no points on cluster boundaries (i.e., the margin
between each pair of clusters can be arbitrarily small but not zero). This last assumption is
what differentiates our setup from that of Ailon et al. [2]. It is reasonable to assume that no
point lies on the boundary of two clusters, as otherwise, to achieve constant accuracy, we
would have to query at least a constant fraction of the boundary points. Without querying
each boundary point, we have no way of determining to which cluster it belongs.

Observe that if we label all the points correctly with respect to the true clustering, the
resulting clustering automatically achieves the optimal cost. However, such perfect accuracy
is difficult to achieve as there may be points that are arbitrarily close to each other but
belong to different clusters. Using only a reasonable number of samples, the best we can
hope for is to recover an approximately accurate solution. PAC (Probably Approximately
Correct) learning helps us achieve this goal and provides a trade-off between the desired
accuracy and the required number of samples.

Suppose that we have a solution where only a small fraction of the input points is
incorrectly classified. In this case, one would hope that the cost is also close to the optimal
cost. Unfortunately, the extra cost incurred by the incorrectly classified points can be very
high depending on their positions, true labels, and the labels assigned to them. Our main
concern in this paper is controlling this additional cost.

We show that if we start with a constant-factor approximation for the cost, we can
refine the clustering using a PAC learning algorithm. This yields a simple polynomial-time
algorithm that, given a k-means instance and (ε, δ) ∈ (0, 1)2 as parameters, with probability
at least (1 − δ) outputs a clustering that has a cost of at most (1 + ε) times the optimal
cost and that classifies at least a (1− ε) fraction of the points correctly with respect to the
underlying true clustering. To do so, the algorithm makes O((k2 log n) ·m(Q, ε4, δ/(k log n)))
same-cluster queries. Here, m(Q, ε′, δ′) is the sufficient number of labeled samples for a
PAC learning algorithm to learn k clusters in a k-means instance with an ε′ error and a
failure probability δ′ in the supervised setting (recall that Q is the set of candidate centers).
We further show that our algorithm can be easily adapted to k-median and other similar
problems that use the `’th power of distances in place of squared distances for some fixed
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` > 0. We formally present this result as Theorem 6 in Section 3. In Theorem 1 below, we
give an informal statement for the case of k-means.

I Theorem 1 (An informal version of Theorem 6). There exists a semi-supervised learning
algorithm that, given a k-means instance, oracle access to same-cluster queries that are
consistent with some fixed optimal clustering, and parameters (ε, δ) ∈ (0, 1)2, outputs a
clustering that, with probability at least (1− δ), correctly labels (up to a permutation of the
labels) at least a (1− ε) fraction of the points and, simultaneously, has a cost of at most (1+ ε)
times the optimal cost. In doing so, the algorithm makes O((k2 log n) ·m(Q, ε4, δ/(k log n)))
same-cluster queries.

Our algorithm is general and applicable to any family of k-means, k-median, or similar
distance based clustering instances that can be efficiently learned with PAC learning. As
discussed later in this work, these include Euclidean and general finite metric space clustering
instances. In contrast, both Ashtiani et al. [3] and Ailon et al. [2], considered only the
Euclidean k-means problem. To the best of our knowledge, ours is the first such result
applicable to finite metric space k-means and both Euclidean and finite metric space k-median
problems.

Ideally, we want m(Q, ε, δ) to be small. Additionally, the analysis of our algorithm relies
on two natural properties of learning algorithms. Firstly, we require PAC learning to always
correctly label all the sampled points. Secondly, we also require it to not ‘invent’ new
labels and only output labels that it has seen on the samples. We show that such learning
algorithms with small m(Q, ε, δ) exist both for k-means instances in Euclidean space and for
those in finite metric spaces with no points on the boundaries of the optimal clusters. For
r-dimensional Euclidean k-means, m(Q = Rr, ε, δ) has a linear dependency on r. For the
case of finite metric spaces, m(Q, ε, δ) has a logarithmic dependency on |Q|, which is the size
of the set of candidate centers. In fact, these learning algorithms are applicable not only to
k-means instances but also to instances of other similar center-based clustering problems
(where clusters are defined by assigning points to their closest cluster centers). We discuss
our learning algorithms in detail in the full version of this paper.

Our semi-supervised learning algorithm is inspired by the work of Feldman et al. [9] on
weak coresets. Their construction of the weak coresets first obtains an intermediate clustering
using a constant-factor approximation algorithm and refines each intermediate cluster by
taking random samples. In order to get a good guarantee for the cost, their algorithm
partitions each cluster into an inner ball that contains the majority of the points, and an
outer region that contains the remaining points. We proceed similarly to this construction;
however, we further partition the outer region into O(log n) concentric rings and use PAC
learning to label the points in the inner ball and in each of the outer rings separately. For
Euclidean k-means instances, the number of same-cluster queries needed by the algorithm has
a logarithmic dependency on the number n of points, which is similar (up to a poly(log log n)
factor) to that of the algorithm by Ashtiani et al. [3]. The advantage of our algorithm is
that it works for a much broader range of k-means instances whereas the applicability of the
algorithm of Ashtiani et al. [3] is restricted to those instances whose clusters are contained
in well-separated balls in Euclidean space.

This algorithm is effective in many natural scenarios where the number of clusters k is
larger than log n. However, as the size of the k-means instance (i.e., the number of points)
becomes large, the log n factor becomes undesirable. In Euclidean k-means, the number of
samples needed by the learning algorithm for an ε error and a failure probability δ does
not depend on n. The log n dependency in the final query complexity is exclusively due
to repeating the PAC learning step on Ω(k log n) different partitions of P . To overcome
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this problem, we present a second algorithm, which is applicable only to Euclidean k-means
instances, inspired by the work of Ailon et al. [2]. This time, we start with a (1 + ε)-
approximation for the cost and refine it using PAC learning. Unlike our first algorithm, we
only run the PAC learning once on the whole input, and thus we completely eliminate the
dependency on n. The disadvantages of this algorithm compared to our first algorithm are
the slightly more involved nature of the algorithm and the increased dependency on k in its
query complexity. Theorem 2 below formally states this result. We present our algorithm
in Section 4 and discuss the key ideas that lead to its construction. The complete proof of
Theorem 2 is given in the full version.

I Theorem 2. There exists a polynomial-time algorithm that, given a k-means instance in
r-dimensional Euclidean space, oracle access to same-cluster queries that are consistent with
some fixed optimal clustering, and parameters (ε, δ) ∈ (0, 1)2, outputs a clustering that, with
probability at least (1− δ), correctly labels (up to a permutation of the labels) at least a (1− ε)
fraction of the points and, simultaneously, has a cost of at most (1 + ε) times the optimal
cost. The algorithm makes O(k4/(ε2δ) + (k9/ε4) log(1/δ) + k ·m(Rr, ε4/k, δ)) same-cluster
queries.

For the Euclidean setting, the query complexities of both our algorithms have a linear
dependency on the dimension of the Euclidean space. The algorithm of Ashtiani et al. [3]
does not have such a dependency due to their strong assumption on the cluster structure,
whereas the one by Ailon et al. [2] does not have that as it only approximates the cost. We
show that, in our scenario, such a dependency is necessary to achieve the accuracy guarantees
of our algorithms. For the finite metric space k-means, the query complexity of our general
algorithm has an O(poly(log |P |, log |Q|)) dependency. The dependency on |P | comes from
the repeated application of the learning algorithm on Ω(k log |P |) different partitions, and
whether we can avoid this is an open problem. However, we show that an Ω(log |Q|) query
complexity is necessary for the accuracy. We formalize these results in Theorem 3 below (the
proof is in the full version).

I Theorem 3. Let K be a family of k-means instances. Let A be an algorithm that, given a
k-means instance in K, oracle access to same-cluster queries for some fixed optimal clustering,
and parameters (ε, δ) ∈ (0, 1)2, outputs a clustering that, with probability at least (1 − δ),
correctly labels (up to a permutation of the cluster labels) at least a (1− ε) fraction of the
points. Then, the following statements hold:
1. If K is the family of k-means instances in r-dimensional Euclidean space that have no

points on the boundaries of optimal clusters, A must make Ω(r) same-cluster queries.
2. If K is the family of finite metric space k-means instances that have no points on the

boundaries of optimal clusters, A must make Ω(log |Q|) same-cluster queries.

The outline of this extended abstract is as follows. In Section 2 we introduce the notation,
formulate the problem and present the learning theorems that we use in the subsequent
sections. In Section 3 we present our first algorithm, which is simple and applicable to
general k-means instances that admit efficient learning algorithms, but has a dependency
of log n in its query complexity. Finally, in Section 4 we discuss how to remove the log n
dependency in the query complexity for the special case of Euclidean k-means instances and
present our second algorithm.

In the full version, we present formal proofs of all the stated results, where we also
introduce the basic concepts and tools of PAC learning and explain how to design learning
algorithms for Euclidean and finite metric space k-means instances.
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2 Preliminaries

In this section, we introduce the basic notation and two common families of k-means instances,
and formally define the k-means problem that we address in this work. We also introduce
the notion of learnability for families of k-means instances and state two learning theorems
that will be used in the later sections.

2.1 k-Means Problem in a Semi-supervised Setting

Let P and Q be two sets of points where |P | = n, and let d : (P ∪Q)× (P ∪Q)→ R+ be a
distance metric. We denote a k-means instance by the triple (P,Q, d). Two common families
of k-means instances we consider in this work are:

1. k-means instances in Euclidean space, where P ⊂ Rr, Q = Rr, and d(x1, x2) = ‖x1− x2‖
is the Euclidean distance between x1 and x2, and

2. k-means instances in finite metric spaces, where (P ∪Q, d) forms a finite metric space.

Let [k] := {1, . . . , k}. We identify a k-clustering C of (P,Q, d) by a labeling function
fC : P → [k], and a set of k centers, c1, . . . , ck ∈ Q, associated with each label, 1, . . . , k.
For each label i ∈ [k] of a clustering C, let Ci := {p ∈ P : fC(p) = i} be the set of points
whose label is i. For convenience, we may use the labeling function fC or the set of clusters
{C1, . . . , Ck} interchangeably to denote a clustering C.

For a subset C ⊆ P and a point q ∈ Q, define cost(C, q) :=
∑
p∈C d2(p, q). For each i,

define center ci := argminq∈Q cost(Ci, q), i.e., each center is a point in Q that minimizes
the sum of squared distances between itself and each of the points assigned to it. For a
k-clustering C, we define its k-means cost as cost(C) :=

∑
i∈[k] cost(Ci, ci). Let C∗ be the set

of all k-clusterings of (P,Q, d). Then, the optimal k-means cost of (P,Q, d) is defined as
OPT := minC∈C∗ cost(C). We say that a k-clustering C α-approximates the k-means cost if
cost(C) ≤ αOPT .

Let O be a fixed k-clustering of (P,Q, d) that achieves the optimal k-means cost, and let
C be any k-clustering of P . Let fO and fC be the labeling functions that correspond to O
and C respectively. We assume that we have oracle access to the labeling function fO of the
optimal target clustering up to a permutation of the labels. We can simulate a single query
to such an oracle with O(k) queries to a same-cluster oracle (see the full version for details).
A same-cluster oracle is an oracle that answers same-cluster(p1, p2) queries with ‘yes’ or ‘no’
based on whether p1 and p2 belong to the same cluster in the fixed optimal clustering O.

The error of a clustering C with respect to the clustering O for a k-means instance (P,Q, d)
is now defined as error(C,O) := minσ |{p ∈ P : fO(p) 6= σ(fC(p))}|, where the minimization
is over all permutations σ : [k]→ [k]. In other words, error(C,O) is the minimum number
of points incorrectly labeled by the clustering C with respect to the optimal clustering O,
considering all possible permutations of the cluster labels. The reason for defining error in
this manner is because we use a simulated version of fO (which is only accurate up to a
permutation of the cluster labels) instead of the true fO to learn cluster labels. We say that
a k-clustering C is (1− α)-accurate with respect to O if error(C,O) ≤ αn.

Given (P,Q, d), parameters k and (ε, δ) ∈ (0, 1)2, and oracle access to fO, our goal
is to output a k-clustering Ô of (P,Q, d) that, with probability at least (1 − δ), satisfies
error(Ô,O) ≤ εn and cost(Ô) ≤ (1 + ε)OPT .
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2.2 PAC Learning for k-Means

Let K be a family of k-means instances, and let m(Q, ε, δ) be a positive integer-valued
function. We say such a family K is learnable with sample complexity m if there exists a
learning algorithm AL such that the following holds: Let ε ∈ (0, 1) be an error parameter and
let δ ∈ (0, 1) be a probability parameter. Let (P,Q, d) be a k-means instance that belongs to
K. Let O be a fixed optimal k-means clustering and let fO be the associated labeling function.
Let T be a fixed subset of P , and let S be a multiset of at least m(Q, ε, δ) independently
and uniformly distributed samples from T . The algorithm AL, given input (P,Q, d) and
(s, fO(s)) for all s ∈ S, outputs a function h : P → [k]. Moreover, with probability at least
(1− δ) over the choice of S, the output h agrees with fO on at least a (1− ε) fraction of the
points in T (i.e., |{p ∈ T : h(p) = fO(p)}| ≥ (1− ε)|T |). This simpler notion of learnability
is sufficient for the purpose of this work although it deviates from that of the general PAC
learnability, which concerns with samples drawn from arbitrary distributions.

We say that such a learning algorithm AL has the zero sample error property if the
output h of AL assigns the correct label to all the sampled points (i.e., h(s) = fO(s) for
all s ∈ S). Furthermore, we say that such a learning algorithm AL is non-inventive if it
does not ‘invent’ labels that it has not seen. This means that the output h of AL does not
assign labels that were not present in the input (sample, label) pairs (i.e., if h(x) = c for
some x ∈ P , then for some sample point s ∈ S, fO(s) = c).

In Section 3, we present a simple algorithm for (1 + ε)-approximate and (1− ε)-accurate
k-means clustering for a family K of k-means instances, assuming that K is learnable with a
zero sample error, non-inventive learning algorithm. In the analysis, zero sample error and
non-inventive properties play a key role in the crucial step of bounding the cost of incorrectly
labeled points in terms of that of correctly labeled nearby points.

We now present two learning theorems for the Euclidean setting and the finite metric space
setting (see the full version for the proofs). Assuming no point lies on cluster boundaries,
the theorems state that the labeling function fO of the optimal clustering is learnable with
a zero sample error, non-inventive learning algorithm in both settings. We say that a k-
means instance (P,Q, d) has no boundary points if in any optimal clustering O with clusters
O1, . . . , Ok and respective centers o1, . . . , ok, the closest center to any given point p ∈ P is
unique (i.e., if p ∈ Oi, d(p, oi) < d(p, oj) for all j 6= i).

I Theorem 4 (Learning k-Means in Euclidean Space). Let d(p1, p2) = ‖p1−p2‖ be the Euclidean
distance function. Let K = {(P,Rr, d) : P ⊂ R, |P | <∞, (P,Rr, d) has no boundary points}
be the family of k-means instances that are in r-dimensional Euclidean space and that
have no boundary points. The family K is learnable with sample-complexity1 m(Rr, ε, δ) =
Õ((k2r log(k2r)(log(k3r/ε)) + log(1/δ))/ε).

I Theorem 5 (Learning k-Means in Finite Metric Spaces). Let K = {(P,Q, d) : (P ∪ Q, d)
is a finite metric space, and (P,Q, d) has no boundary points} be the family of finite metric
space k-means instances that have no boundary points. The family K is learnable with
sample-complexity2 m(Q, ε, δ) = Õ((k2(log k)(log |Q|)(log k + log 1/ε) + log(1/δ))/ε).

1 Õ hides poly(log log k, log log r) factors.
2 Õ hides poly(log log k, log log |Q|) factors.
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3 A Simple Algorithm for (1 + ε) Cost and (1 − ε) Accuracy

Let K be a family of k-means instances that is learnable with sample complexity m using
a zero sample error, non-inventive learning algorithm AL. Let Aα be a constant-factor
approximation algorithm (in terms of cost) for k-means, and let A1 be a polynomial-time
algorithm for the 1-means problem (i.e., given (P,Q, d) ∈ K, A1 finds argminq∈Q cost(P, q)
in polynomial time). We present a simple semi-supervised learning algorithm that, given
a k-means instance (P,Q, d) of class K and oracle access to the labeling function fO of a
fixed optimal clustering O of (P,Q, d), outputs a clustering Ô that, with probability at least
(1− δ), satisfies cost(Ô) ≤ (1 + ε)OPT and error(Ô,O) ≤ ε|P |. Our algorithm uses Aα, A1,
and AL as subroutines and makes O((k log |P |) ·m(Q, ε4, δ/(k log |P |))) oracle queries. We
show that our algorithm can be easily modified for (1 + ε)-approximate and (1− ε)-accurate
k-median and other similar distance-based clustering problems. Towards the end of this
section, we discuss several applications of this result, namely, for Euclidean and finite metric
space k-means and k-median problems.

Let us start by applying the learning algorithm AL to learn all the cluster labels. If we
get perfect accuracy, the cost will be optimal. A natural question to ask in this case is: what
happens to the cost if the learning output has ε error? In general, even a single misclassified
point can incur an arbitrarily large additional cost. To better understand this, consider the
following: Let Oi, Oj ⊆ P be two distinct optimal clusters in the target clustering, and let
oi, oj be their respective cluster centers. Let p ∈ Oi be a point that is incorrectly classified
and assigned label j 6= i by AL. Also assume that the number of misclassified points is
small enough so that the centers of the clusters output by the learning algorithm are close to
those of the optimal clustering. Thus, in the optimal clustering, p incurs a cost of d2(p, oi),
whereas according to the learning outcome, p incurs a cost that is close to d2(p, oj). In the
worst case, d(p, oj) can be arbitrarily larger than d(p, oi).

Now suppose that, within distance ρ from p, there exists some point q ∈ Oj . In this case,
we can bound the cost incurred due to the erroneous label of p using the true cost of p in
the target clustering. To be more specific, using the triangle inequality, we get the following
bound for any metric space: d(p, oj) ≤ d(p, q) + d(q, oj) ≤ ρ+ d(q, oj). Furthermore, due to
the optimality, d(q, oj) ≤ d(q, oi) ≤ d(q, p) + d(p, oi) ≤ ρ + d(p, oi). Hence, it follows that
d(p, oj) ≤ 2ρ + d(p, oi). To utilize this observation in an algorithmic setting, we need to
make sure that, for every point that is misclassified into cluster j, there exists a correctly
classified nearby point q that belongs to the optimal cluster Oj . Luckily, this is ensured
by the combination of zero sample error and non-inventive properties of AL. If a point is
misclassified into cluster j, the non-inventive property says that AL must have seen a sample
point q from cluster j. The zero sample error property ensures that q is labeled correctly by
AL. To make sure that such correctly labeled points are sufficiently close to their incorrectly
labeled counterparts, we run AL separately on certain suitably bounded partitions of P .

The formal description of our algorithm is given in Algorithm 1. The outline is as follows:
First, we run Aα on (P,Q, d) and obtain an intermediate clustering C = {C1, . . . , Ck}. For
each Ci, we run A1 to find a suitable center ci. Next, we partition each intermediate cluster
Ci into an inner ball and O(log |P |) outer rings centered around ci. We run the learning
algorithm AL separately on each of these partitions. We choose the inner and outer radii of
the rings so that, in each partition, the points that are incorrectly classified by the learning
algorithm only incur a small additional cost compared to that of the correctly classified
points. The final output is a clustering Ô that is consistent with the learning outputs on each
of the partitions. For each cluster Ôi, we associate the output of running A1 on (Ôi, Q, d) as
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Algorithm 1: A simple algorithm for (1 + ε)-approximate (1− ε)-accurate k-means.
Input : k-Means instance (P,Q, d), oracle access to fO, constant-factor approximation

algorithm Aα for k-means, 1-means algorithm A1, learning algorithm AL with sample
complexity m, accuracy parameter 0 < ε < 1, and failure probability 0 < δ < 1.

Output : The clustering Ô = {Ô1, . . . , Ôk} defined by the labeling fÔ : P → [k] computed
below. The respective cluster centers are ôi = argminq∈Q cost(Ôi, q), which can be
found by running A1 on (Ôi, Q, d).

1 Let n = |P |, and let γ = ε2/(288α).
2 Run Aα and obtain an α-approximate k-means clustering C = {C1, . . . , Ck}. For each i ∈ [k], run
A1 on (Ci, Q, d) and find centers ci = argminq∈Q cost(Ci, q).

3 for Ci ∈ C do
4 Let ri =

√
cost(Ci, ci)/(γ|Ci|).

5 Let Ci,0 be all points in Ci that are at most ri away from ci.
6 Let Ci,j be the points in Ci that are between 2j−1ri and 2jri away from ci for

j = 1, . . . , (log n)/2.
7 Let m′ = m(Q, γ2, δ/(k log n)).
8 for each non-empty Ci,j do
9 Sample m′ points x1, . . . , xm′ ∈ Ci,j independently and uniformly at random.

10 Query the oracle on x1, . . . , xm′ and let Si,j = {(xi, fO(xi)) : i = 1, . . . ,m′}.
11 Run AL on input (P,Q, d) and Si,j , and obtain a labeling hi,j : Ci,j → [k].

12 Output the clustering Ô defined by the following labeling function:
13 for each i, j, x ∈ Ci,j do
14 Set fÔ(x) = hi,j(x).

its center. Note that, due to the accuracy requirements, the cluster center to which a point
is assigned in the output may not be the cluster center closest to that point in the output. It
remains an interesting problem to find an accurate clustering in which every point is always
assigned to its nearest cluster center.

With probability at least (1− δ), Algorithm 1 outputs a (1 + ε)-approximately optimal,
(1− ε)-accurate k-means clustering (the complete analysis is in the full version). In Algorithm
1, instead of an exact algorithm A1 for the 1-means problem, we can also use a PTAS.
Using a PTAS to approximate 1-means up to a (1 + ε) factor will only cost an additional
(1 + ε) factor in our cost analysis. As a result, we get the same approximation and accuracy
guarantees if we replace ε with ε/3.

Algorithm 1 makes O((k log n) ·m(Q, ε4, δ/(k log n))) queries to the oracle fO in total.
Recall that simulating an oracle query to fO takes O(k) same-cluster queries. Therefore, the
total number of same-cluster queries is O((k2 log n) ·m(Q, ε4, δ/(k log n))).

Our definition of a learning algorithm in Section 2.2 has nothing to do with whether the
input is a k-means instance or a k-median instance, which is similar to k-means except that
the cost of a cluster C with respect to a center q is defined as cost(C, q) :=

∑
p∈C d(p, q). In

fact, it applies to any similar clustering scenario where the cost is defined in terms of the `’th
power (` > 0) of distances instead of squared distances. The analysis of Algorithm 1 can be
adapted to any fixed ` once we have a suitable triangle inequality. (For example, in k-means
(i.e., when ` = 2), we use (a + b)2 ≤ (1 + ε)a2 + (1 + 1/ε)b2. When ` ≤ 1, we can simply
use the trivial triangle inequality (a + b)` ≤ a` + b`.) Thus, for such clustering problems,
Algorithm 1, with a slight modification on choice of radii in Step 4 and a little adjustment to
the parameter γ, will give the same guarantees. Hence, we have the following theorem which
is the formal version of Theorem 1. The proof follows from the analysis of Algorithm 1.

I Theorem 6. Let K be a family of k-means (k-median) instances. Suppose that K is
learnable with sample complexity m(Q, ε, δ) using a zero sample error, non-inventive learning
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algorithm AL. Let Aα be a constant-factor approximation algorithm, and let A1 be a PTAS
for the 1-means (1-median) problem. There exists a polynomial-time algorithm that, given an
instance (P,Q, d) ∈ K, oracle access to same-cluster queries for some fixed optimal clustering
O, and parameters (ε, δ) ∈ (0, 1)2, outputs a clustering that, with probability at least (1− δ),
is (1− ε)-accurate with respect to O, and simultaneously has a cost of at most (1 + ε)OPT .
The algorithm uses AL, Aα, and A1 as subroutines. The number of same-cluster queries
made by the algorithm is
1. O((k2 log |P |) ·m(Q, ε4, δ/(k log |P |))) for the k-means setting and
2. O((k2 log |P |) ·m(Q, ε2, δ/(k log |P |))) for the k-median setting.

For k-means and k-median instances in Euclidean space and those in finite metric
spaces, there exist several constant-factor approximation algorithms (for example, Ahmadian
et al. [1] and Kanungo et al. [13]). Solving the 1-means problem in Euclidean space is
straightforward: The solution to argminq∈Rr cost(P, q) is simply q = (

∑
p∈P p)/|P |. For the

k-median problem in Euclidean space, the problem of 1-median does not have an exact
algorithm but several PTASes exist (for example, Cohen et al. [6]). In a finite metric space,
to solve argminq∈Q cost(P, q), we can simply try all possible q ∈ Q in polynomial time, and
this holds for the k-median setting as well. Thus, for Euclidean and finite metric space
k-means and k-median instances that have no boundary points, Theorem 6, together with
Theorem 4 and Theorem 5, gives efficient algorithms for (1 + ε)-approximate, (1− ε)-accurate
semi-supervised clustering.

4 Removing the Dependency on Problem Size in the Query
Complexity for Euclidean k-Means

For the family of Euclidean k-means instances, the query complexity of Algorithm 1 suffers
from a Õ(log n) dependency (where n is the number of points in the input k-means instance,
and Õ hides poly(log log n) factors) due to the repeated use of the learning algorithm AL.
Specifically, we run AL with a failure probability of δ/(k log n), O(log n) times per cluster.
Note that the sample complexity of AL itself, in the case of Euclidean k-means instances,
does not have this dependency.

In this section, we show that we can avoid this dependency on n using a slightly more
involved algorithm at the cost of increasing the query complexity by an extra poly(k) factor.
Nevertheless, this algorithm has superior performance when the size of the input instance
(i.e., the number of points) is very large (when log n = Ω(k10) for example).

Recall that, for a set C ⊂ Rr, cost(C, y) is minimized when y is the centroid of C, denoted
by µ(C) = (

∑
x∈C x)/|C|. Define the fractional size of an optimal cluster Oi as the fraction

of points that belong to Oi, i.e., the ratio |Oi|/n. Suppose we only want to get a good
approximation for the cost, and that we know that all the clusters in the target solution
have sufficiently large fractional sizes. In this case, naive uniform sampling will likely pick a
large number of samples from each of the clusters. This observation, together with Lemma 7,
allows us to approximate the centroid and the cost of each cluster to any given accuracy.

I Lemma 7 (Lemma 1 and Lemma 2 of Inaba et al. [12]). Let (ε, δ) ∈ (0, 1)2, let m ≥ 1/(εδ)
be a positive integer, and let S = {p1, . . . , pm} be a multiset of m i.i.d. samples from
the uniform distribution over some finite set C ⊂ Rr. With probability at least (1 − δ),
d2(µ(S), µ(C)) ≤ ε · cost(C, µ(C))/|C| and cost(C, µ(S)) ≤ (1 + ε) cost(C, µ(C)).

However, the above approach fails when some clusters in the optimal target solution
contribute significantly to the cost, but have small fractional sizes (that is because uniform
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sampling is not guaranteed to pick sufficient numbers of samples from the small clusters).
Ailon et al. [2] circumvented this issue with an algorithm that iteratively approximates the
centers of the clusters using a distance-based probability distribution (D2-sampling). We
will refer to their algorithm as A∗.

Note that when it comes to accuracy, we can totally disregard clusters with small fractional
sizes; we only have to correctly label a sufficiently large fraction of the points in large clusters.
With this intuition, we present the outline of our algorithm.

Let (P,Rr, d) be a k-means instance in Euclidean space that has no boundary points.
For simplicity, we refer to the instance (P,Rr, d) by just P where possible, as for Euclidean
k-means, the other two parameters are fixed. We start with a naive uniform sampling
step that gives a good approximation for the centers of large clusters. Starting with these
centers, we run a slightly modified version of algorithm A∗ to approximate the centers of
the remaining small clusters. Thus, at this point, we have a clustering with a good cost and
we know which clusters are large. We now run the learning algorithm AL on input P and
obtain a labeling of the points. For each point, we assign its final label based on (1) the label
assigned to it by the learning algorithm AL, and (2) its proximity to large cluster centers. In
particular, if the output of AL decides that a point p should be in some large cluster i, and
if p is sufficiently close to the approximate center for cluster i, we label it according to the
learning output; otherwise, we label it according to its nearest approximate center. We show
that this approach retains a cost that is close to the cost of the clustering output by A∗. The
accuracy guarantee comes from the facts that a large fraction of the points are sufficiently
close to the centers of large clusters, and that AL labels most of them correctly with a good
probability.

We now review the key properties of algorithm A∗ (the algorithm of Ailon et al. [2]). Let
0 < ε < 1. We say a k-means instance P is (k, ε)-irreducible if no (k − 1)-means clustering
gives an (1 + ε)-approximation for the k-means problem, i.e., if OPT k denotes the optimal
k-means cost of P , then P is (k, ε)-irreducible if OPT k−1 > (1 + ε)OPT k. Suppose that P is
(k, ε)-irreducible. Let O = {O1, . . . , Ok} be the target optimal clustering, and let o1, . . . , ok be
the respective centers. Let Ci = {c1, . . . , ci} denote a set of i centers and let Z(i) denote the
following statement: There exists a set of i distinct indices j1, . . . , ji such that, for all r ∈ [i],
cost(Ojr

, cr) ≤ (1 + ε/16) cost(Ojr
, ojr

). To put it differently, Z(i) says that Ci is a set of
good candidate centers for i-many distinct clusters in the target optimal solution. Assuming
P is (k, ε)-irreducible, the algorithm A∗ yields a method to incrementally construct sets
C1, . . . , Ck (i.e., Ci+1 = Ci∪{ci+1}) such that, conditioned on Z(i) being true, Z(i+1) is true
with probability at least (1− 1/k). Now suppose that P is (k, ε/(4k))-irreducible. Then A∗
gives a (1 + ε/(4 · 16k))-approximation for k-means with probability at least (1−1/k)k ≥ 1/4.
Otherwise, A∗ gives a (1+ ε/(4 · 16k))-approximation for the i-means problem for some i < k,
where i is the largest integer such that P is (i, ε/4k)-irreducible. In the latter case, it will
give a (1 + ε/(4 · 16k))(1 + ε/(4k))k−i-approximation with probability at least 1/4. In either
case, the output of A∗ is a (1 + ε)-approximation.

In our algorithm, we first find the centers of large clusters using uniform sampling, and
then run A∗ to find the remaining centers. This allows us to know which clusters are large,
which is a crucial information needed for the final labeling. Suppose that in the target
optimal solution we have k0 ≤ k clusters whose fractional sizes are at least ε/k. Note that k0
is at least 1 due to the Pigeonhole Principle, since at least one cluster should have a fractional
size of at least 1/k > ε/k. By Lemma 7, using uniform sampling, we can approximate the
centroid of each of these large clusters with a good accuracy. Hence, we can have a set Ck0

of k0 centers such that Z(k0) is true with probability (1 − δ). Afterwards, we use A∗ to
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Algorithm 2: Algorithm whose query complexity is independent of n
Input :Point set P ⊂ Rr, the oracle access to fO, parameter k, accuracy parameter ε, failure

probability δ, and algorithms Acost and AL.
Output :The clustering Ô = {Ô1, . . . , Ôk} defined by the labeling fÔ : P → [k] computed

below. For each i ∈ [k], the respective cluster center ôi is the centroid of Ôi.
1 Draw Q1(k, ε, δ) samples from P independently and uniformly at random, and query fO to get

their true cluster labels in O. Denote the set of sampled points by S, and for all i ∈ [k], denote
the set of sampled points that belong to class i by Si.

2 Let k′ be the number of distinct cluster labels with more than (ε/(2k))Q1(k, ε, δ) samples. Let
Ck′ := {µ(Si) : |Si| > (ε/(2k))Q1(k, ε, δ)}. Without loss of generality, assume that the class
labels for centers in Ck′ are 1, . . . , k′.

3 Run the algorithm Acost, starting from Ck′ as the partial set of centers. This takes Q2(k, ε, δ)
more queries. Let Ck = {c1, . . . , ck} be the output, and let OPT ∗ be the cost of the clustering
obtained by assigning each point to its nearest ci.

4 Use the PAC learning algorithm AL on Q3(k, r, ε4/k, δ) uniform i.i.d. samples from P to learn a
classifier for the k classes that is (1− ε4/k)-accurate with probability at least (1− δ). Let
H1, . . . , Hk be the sets of points that are labeled 1, . . . , k respectively by the classifier.

5 Output the clustering Ô defined by the following labeling function: for each i ∈ [k′] and p ∈ Hi
such that d2(p, ci) ≤ kOPT ∗/(nε3), set fÔ(p) = i. For any other point p, set fÔ(p) = i if the
nearest cluster center to p in Ck is ci.

incrementally construct Ck0+1, . . . , Ck. Conditioned on Z(k0) being true, the output Ck will
be a (1 + ε)-approximation with probability (1 − 1/k)k−k0 ≥ (1 − 1/k)k ≥ 1/4 for k ≥ 2.
However, by independently running this incremental construction O(log(1/δ)) times and
choosing the set of centers with the minimum total cost, we can boost this probability to
(1− δ). This observation gives the following generalization of Theorem 10 of Ailon et al. [2].

I Theorem 8. Consider a Euclidean k-means instance (P,Rr, d). Let O1, . . . , Ok be a fixed
optimal clustering with respective centers o1, . . . , ok. Let k0 ≤ k and let Ck0 = {c1, . . . , ck0} be
a set of points such that, with probability at least p0, cost(Oi, ci) ≤ (1 + ε/(64k)) cost(Oi, oi)
for all i ∈ [k0]. There exists an algorithm Acost that, given P , Ck0 , and parameters
(ε, δ) ∈ (0, 1)2 as input, outputs a set of centers Ck = Ck0 ∪ {ck0+1, . . . , ck} such that∑

i∈[k] cost(Oi, ci) ≤ (1 + ε)
∑
i∈[k] cost(Oi, oi) with probability at least p0(1− δ). Moreover,

Acost uses O((k9/ε4) log(1/δ)) same-cluster queries and runs in time O(nr(k9/ε4) log(1/δ)).

Theorem 8 implies a method to get a good approximation for the cost that also reveals
which clusters are large. Specifically, we first perform uniform sampling over the whole set P
and approximate the centers of the large clusters. If we get a sufficient number of samples,
the approximate centers will satisfy the precondition of Theorem 8 with a good probability.
Thus, using algorithm Acost from Theorem 8, we get the desired approximation for the cost.
What remains now is to use PAC learning and to appropriately label the points according to
the learning outcome.

We present the pseudo-code of our algorithm in Algorithm 2, where we use the algorithm
Acost from Theorem 8 and the learning algorithm AL guaranteed by Theorem 4. In Algo-
rithm 2, Q1(k, ε, δ) = 256k3/(ε2δ) is the number of samples needed to ensure that we pick a
sufficient number of samples from each of the clusters with fractional sizes of at least ε/k,
Q2(k, ε, δ) is the sample complexity of the algorithm Acost, and Q3(k, r, ε, δ) = m(Rr, ε, δ) is
the sample complexity of the learning algorithm AL for an error ε and a failure probability δ.
As with Algorithm 1, the center that a point is assigned to in the final output may not be
the closest center to that point.

With probability at least (1− δ), the output of Algorithm 2 is (1 + ε)-approximate and
(1− ε)-accurate (refer to the full version for the complete analysis). As for the claim on the
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query complexity, recall that we only need O(k) same-cluster queries per single fO query,
and Algorithm 2 makes a total number of Q1(k, ε, δ) +Q2(k, ε, δ) +Q3(k, r, ε4/k, δ) queries
to fO. This observation together with the analysis of Algorithm 2 proves Theorem 2. We
remark that the query complexity Q3(k, r, ε4/k, δ) for learning Euclidean k-means instances
is independent of P .
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Abstract
We consider the problem of sketching the p-th frequency moment of a vector, p > 2, with
multiplicative error at most 1 ± ε and with high confidence 1 − δ. Despite the long sequence
of work on this problem, tight bounds on this quantity are only known for constant δ. While
one can obtain an upper bound with error probability δ by repeating a sketching algorithm with
constant error probability O(log(1/δ)) times in parallel, and taking the median of the outputs,
we show this is a suboptimal algorithm! Namely, we show optimal upper and lower bounds
of Θ(n1−2/p log(1/δ) + n1−2/p log2/p(1/δ) log n) on the sketching dimension, for any constant
approximation. Our result should be contrasted with results for estimating frequency moments
for 1 ≤ p ≤ 2, for which we show the optimal algorithm for general δ is obtained by repeating
the optimal algorithm for constant error probability O(log(1/δ)) times and taking the median
output. We also obtain a matching lower bound for this problem, up to constant factors.
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1 Introduction

The frequency moments problem is a very well-studied and foundational problem in the data
stream literature. In the data stream model, an algorithm may use only sub-linear memory
and a single pass over the data to summarize a data stream that appears as a sequence
of incremental updates. A data stream may be viewed as a sequence of m records of the
form ((i1, v1), (i2, v2), . . . , (im, vm)), where, ij ∈ [n] = {1, 2, . . . , n} and vj ∈ R. The record
(ij , vj) changes the ijth coordinate xij of an underlying n-dimensional vector x to xij + vj .
Equivalently, for i ∈ [n], xi =

∑
j:ij=i vj . Note that vj may be positive or negative, which

corresponds to the so-called turnstile model in data streams. Also, the i-th coordinate of
x is sometimes referred to as the frequency of item i, though note that it can be negative
in the turnstile model. The p-th moment of x is defined to be Fp =

∑
i∈[n]|xi|p, for a real

number p ≥ 0, which for p ≥ 1 corresponds to the p-th power of the `p-norm ‖x‖pp of x.
The Fp estimation problem with approximation parameter ε and failure probability δ is:

design an algorithm that makes one pass over the input stream and returns F̂p such that
Pr
[
|F̂p−Fp| ≤ εFp

]
≥ 1− δ. Such an algorithm is also referred to as an (ε, δ)-approximation

of Fp. This is a problem that is among the ones that has received the most attention
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58:2 High Probability Frequency Moment Sketches

Table 1 Here, g(p, n) = minc constant gc(n), where g1(n) = log n, gc(n) = log(gc−1(n))/(1− 2/p).
We start the upper bound timeline with [19], since that is the first work which achieved an exponent
of 1− 2/p for n. For earlier work which achieved worse exponents for n, see [1, 12, 14, 15].

Fp Algorithm Sketching Dimension
[19] O(n1−2/pε−O(1) logO(1) n log(1/δ))
[7] O(n1−2/pε−2−4/p log n log(M) log(1/δ))
[31] O(n1−2/pε−O(1) logO(1) n log(1/δ))
[3] O(n1−2/pε−2−6/p log n log(1/δ))
[8] O(n1−2/pε−2−4/p log n · g(p, n) log(1/δ))
[2] O(n1−2/p log nε−O(1) log(1/δ))

[16], Best upper bound O(n1−2/pε−2 log(1/δ) + n1−2/pε−4/p log n log(1/δ))

in the data stream literature, and we only give a partial list of work on this problem
[1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 16, 20, 19, 25, 26, 27, 30, 31, 34].

We study the class of algorithms based on linear sketches, which store only a sketch S · x
of the input vector x and a (possibly randomized) matrix A. This model is well-studied, both
for the problem of estimating norms and frequency moments [4, 18, 30, 32], and for other
problems such as estimating matrix norms [29], and matching size [5, 28]. The efficiency is
measured in terms of the sketching dimension which is the maximum number of rows of a
matrix S used by the algorithm. Since the algorithm is randomized, it may choose different
S based on its randomness, so the maximum is taken over its randomness. Linear sketches
are particularly useful for data streams since given an update (ij , vj), one can update Sx
as S(x+ vjeij ) = Sx+ Svjeij , where eij is the standard unit vector in the ij-th direction.
They are also used in distributed environments, since given S · x and618 S · y, one can add
these to obtain S · (x+ y), the sketch of x+ y.

When 0 < p ≤ 2, one can achieve a sketching dimension of O(ε−2 log(1/δ)) independent of
n [1, 25, 27], while for p = 0 the sketching dimension is O(ε−2(log(1/ε) + log log n) log(1/δ))
[26]. For p = 2 there is a sketching lower bound of Ω(ε−2 log(1/δ)) [24], which implies an
optimal algorithm for general δ is to run an optimal algorithm with error probability 1/3
and take the median of O(log(1/δ)) independent repetitions. As a side result, we show in the
full version a lower bound of Ω(ε−2 log(1/δ)) for any 1 ≤ p < 2, which shows this strategy of
amplifying the success probability by O(log 1/δ) independent repetitions is also optimal for
any 1 ≤ p < 2.

Perhaps surprisingly, for p > 2, the sketching dimension needs to be polynomial in n, as
first shown in [32], with the best known lower bounds being Ω(n1−2/p log n) [4] for constant
ε and δ, and Ω(n1−2/pε−2) for constant δ [30]. Regarding upper bounds, we present the
long list of bounds in Table 1. The best known upper bound is O(n1−2/pε−2 log(1/δ) +
n1−2/pε−4/p log n log(1/δ)) [16]. This is tight only when ε and δ are constant, in which case
it matches [4], or when δ is constant and ε < 1/poly(log n), since it matches [30].

1.1 Our Contributions
In this work, we show optimal upper and lower bounds of Θ(n1−2/p log(1/δ) + n1−2/p

log2/p(1/δ) log n) on the sketching dimension for Fp-estimation, for any p > 2, and for
any constant ε. Our upper bound shows, perhaps surprisingly, that the optimal bound is
not to run O(log(1/δ)) independent repetitions of a constant success probability algorithm
and report the median of the outputs. Indeed, such an algorithm would give a worse
O(n1−2/p log(1/δ) log n) sketching dimension.
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Figure 1 Shelf structure and level sets for each shelf index j whose contribution to Fp is estimated
accurately.

For general ε, our upper bound is O(n1−2/pε−2 log(1/δ) + n1−2/pε−4/p log2/p(1/δ) log n)
and our lower bound is Ω(n1−2/pε−2 log(1/δ) +n1−2/pε−2/p log2/p(1/δ) log n), which differ by
at most an ε−2/p factor. Our results thus come close to resolving the complexity for general
ε as well.

Our results should be contrasted to 1 ≤ p ≤ 2, for which the optimal sketching dimension
for such p is Θ(ε−2 log(1/δ)), and so for these p it is optimal to run O(log(1/δ)) independent
repetitions of a constant probability algorithm. Here we strengthen the Ω(ε−2 log(1/δ))
bound for p = 2 of [24] by showing the same bound for 1 ≤ p ≤ 2.

1.1.1 Overview of Upper Bound

In order to obtain a confidence of 1− δ, we use the d = dlog(1/δ)eth moment of an estimate
F̂p of Fp. Since we are unable to use the dth moment of the Taylor polynomial estimator of
[17], we employ a different estimator Xi for estimating individual coordinates |xi| and use
it as Xp

i to estimate |xi|p. This estimator is based on (a) using random qth roots of unity
for sketches instead of standard Rademacher variables, and (b) taking the average of the
estimates from those tables where the item does not collide with the set of top-k estimated
heavy hitters.

The Shelf Structure. The algorithm uses two structures, namely, a ghss-like structure
from [17] and a new shelf structure , which is our main algorithmic novelty (both formally
defined later). The shelf structure is necessary when the failure probability is δ = n−ω(1);
otherwise, for δ = n−Θ(1), somewhat surprisingly the ghss structure of [17] alone suffices with
parameter C = n1−2/p(ε−2 log(1/δ)/ log(n)+ε−4/p log2/p(1/δ)) and number of measurements
O(C log n), which requires an intricate d-th moment analysis of the ghss structure.

The shelf structure is partitioned into shelves, indexed from j = 0, . . . , J , for a value J
which is specified below. Each shelf consists of a pair of CountSketch like structures, HHj
and AvgEstj . The number of buckets in the tables of the jth shelf is Hj and the number of
tables in the jth shelf of the HHj structure is wj and of the AvgEstj structure is 2wj . We
set HJ = Θ(n1−2/pε−2) and wJ = Θ(log(1/δ)), while H0 = Θ(n1−2/pε−4/p log2/p(1/δ)) and
w0 = s = Θ(log n).

ICALP 2018
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The input vector x is provided as input to all the shelves’ structures. The table height
Hj = H0b

j decays geometrically with parameter 0 < b < 1 and the table width wj = w0a
j

increases geometrically with parameter a > 1. Note that the parameters a and b determine
J . By requiring that |1 − ab| = Ω(1), we ensure that the total number of measurements
of the shelf structure is

∑J
j=0Hjwj = O(H0w0 + HJwJ), no matter which value of J we

choose. For the shelf structure, frequency-wise thresholds are defined as Uj = O(F̂2/Hj)1/2,
for j = 0, 1, . . . , J . The shelf frequency group corresponding to shelf j is Sj = [Uj , Uj+1),
where, UJ+1 = ∞ and U0 = T0. We sometimes conflate Sj with the set of items whose
frequency belongs to Sj . The frequency group G0 is defined as [T0, U1] and coincides with
S0. See Figure 1.

So why a shelf structure? Suppose for simplicity that ε is a constant. Consider a vector
x which has a constant number of “large” coordinates of value Θ(n1/p), and Θ(n) remaining
“small” coordinates of absolute value O(1). Then we need to find all the large coordinates
to accurately estimate Fp up to a small constant factor. This is well-known to be possible
with Θ(n1−2/p) buckets in the J-th shelf, since with probability 1 − δ, each of the large
coordinates will not collide with any other large coordinate in more than a small constant
fraction of tables. Note that in each table, in each bucket containing a large coordinate, the
“noise” in the bucket from small coordinates will be Cn1/p for an arbitrarily small constant
C > 0 with constant probability, and so this will happen in most buckets containing a large
coordinate in most tables with probability 1− δ.

However, now consider a vector x which has Θ(log(1/δ)) “large-ish” coordinates of value
Θ(n1/p/ log1/p(1/δ)), and Θ(n) remaining “small” coordinates of absolute value O(1), as
before. Then we again need to find most of the “large-ish” coordinates to accurately estimate
Fp up to a constant factor. We also cannot subsample and try to estimate how many large-ish
coordinates there are from a subsample. Indeed, since there are only O(log(1/δ)) total
large-ish coordinates, sub-sampling would not accurately estimate this total with probability
at least 1− δ. However, to find these “large-ish” coordinates, we need to increase the number
of buckets from Θ(n1−2/p) to Θ(n1−2/p · log2/p(1/δ)) just so that in a bucket containing one
of these coordinates, with constant probability the noise will not be too large. But if we then
want this to happen for a 1 − δ fraction of tables, we still need Θ(log(1/δ)) tables, which
gives overall Θ(n1−2/p · log1+2/p(1/δ)) measurements, which is above our desired total of
O(n1−2/p(log(1/δ) + log(n) log2/p(1/δ))) measurements.

So what went wrong? The key idea in our analysis is to relax the requirement of trying
to recover all the larg-ish coordinates with probability 1− δ. Suppose instead of Θ(log(1/δ))
tables we just use Θ(log n) tables. Then with probability 1− 1/n, there may be two large-ish
coordinates which collide and cancel with each other in every single table, and we have no
way of recovering them. However, we are able to show that with probability 1 − δ, only
O(log(1/δ)/ log n) large-ish coordinates will fall into this category, and neglecting this roughly
(1− 1/ log n) fraction of the large-ish coordinates will not affect our estimate of Fp by more
than a constant factor. And indeed, our 0-th shelf has exactly Θ(n1−2/p · log2/p(1/δ)) buckets
and Θ(log n) tables, so is exactly suited for finding these large-ish coordinates. In general,
we can show that one of our shelves will be able to handle every vector with coordinates
of magnitude between the large and large-ish coordinates. Again, by choosing the shelf
structure carefully, the total number of measurements is dominated by that in the zero-th
plus the J-th shelf, giving us O(n1−2/p(log(1/δ) + log(n) log2/p(1/δ))) total measurements,
and explaining where the log2/p(1/δ) in the upper bound comes from.
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The Non-Large-ish Coordinates. Our shelves are designed to estimate the contribution to
Fp from all coordinates of absolute value at least Θ(n1/p/ log1/p(1/δ)). For coordinates of
smaller value, we can now afford to sub-sample and apply the same 0-th shelf structure to
estimate their contribution to Fp. We apply the ghss structure, which is analogous to the
structure presented in [17] and has L+ 1 levels corresponding to l = 0, . . . , L, and consists
of a pair of CountSketch like structures HHl and AvgEstl at each level. The sub-sampling
technique and the associated frequency-wise thresholds and frequency groups are defined
analogously (with new parameters) to [17].

A notable difference with [17] is that the AvgEst structures in the ghss and shelf structures
use complex qth roots of unity and return the average of table estimates instead of the median
of table estimates used by CountSketch, which are novelties in this context, though have been
used for other data stream problems [23]. We have that E [Xp

i ] = |xi|p(1± n−Ω(1)) for our
estimator Xi of |xi|, and thus Xp

i provides a nearly unbiased estimator of |xi|p. Additionally,
we use averaging in the definition of Xi instead of the median to allow for a tractable, though
intricate calculation of the d-th moment of the sum of the p-th powers of Xi.

1.1.2 Overview of Lower Bounds
We give an overview for the case of constant ε. In both cases we start by applying Yao’s
minimax principle for which we fix S and then design a pair of distributions α and β which
must be distinguished by an (ε, δ)-approximation algorithm for Fp. We can also assume
the rows of S are orthonormal, since a change of basis to the row space of S can always be
applied in post-processing.

Our Ω(n1−2/pε−2/p(log2/p 1/δ) logn) bound. This is our technically more involved
lower bound. We first upper bound the variation distance using the χ2-divergence as in [4]
and work only with the latter. We let α = N(0, In) be an n-dimensional isotropic Gaussian
distribution, while β is a distribution formed by sampling an x ∼ N(0, In), together with
a random subset T ⊂ [n] of size O(log(1/δ)), and outputting z = x+

∑
i∈T (Cn1/p/t1/p)ei,

where ei is the i-th standard unit vector and C > 0 is a constant. For y ∼ α and z ∼ β, one
can show that with probability 1−O(δ), one has that ‖z‖pp is a constant factor larger than
‖y‖pp, since ‖y‖pp and ‖x‖pp are concentrated at Θ(n), while

∑
i∈T C

pn/t = Θ(n).
A common technique in upper bounds, including our own, is the notion of subsampling,

whereby a random fraction of roughly 1/2i of the n coordinates are sampled, for each value
of i ∈ O(log n), and information is then gathered for each i and combined into an overall
estimate of Fp. We choose our hard distributions so that subsampling does not help. Indeed,
if one subsamples half of the coordinates of z ∼ β, with probability Ω(δ) all of the coordinates
in T will be removed, at which point z is indistinguishable from y ∼ α. Therefore, our pair
of distributions suggests itself as being hard for (Θ(1), δ)-approximate Fp algorithms.

What drives our analysis is conditioning our distributions on an event G which only
happens with probability Ω(δ). Note that for any algorithm which can distinguish samples
from α from those from β with probability at least 1− δ, it must still have probability 9/10,
say, of distinguishing the distributions given an event G which occurs for samples drawn
from β. The event G corresponds to every i ∈ T having the property that the corresponding
column Si of our sketching matrix S has squared length at most 2r/n, where r is the number
of rows of S. By a Markov bound, half of the columns of S have this property, and since T
has size O(log 1/δ), with probability Ω(δ), event G occurs.

We analyze the χ2-divergence of the distributions α and β conditioned on G. One
technique helpful for this is an equality that we show in the full version, which states that for
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58:6 High Probability Frequency Moment Sketches

p a distribution on Rn, that χ2(N(0, In) ∗ p,N(0, In)) = E[e〈X,X′〉]− 1, where X and X ′ are
independently drawn from p. This equality was used in [4, 29, 35] among other places. In our
case, the inner product of X and X ′ corresponds to an inner product P of two independent
random sums of t columns of S, restricted to only those columns with squared length at
most 2r/n. Let the t columns forming X be denoted by T and the t columns forming X ′ be
denoted by U .

Critical to our analysis is bounding E[P j ] for large powers of j, as shown in the lemma
the full version. One can think of indexing the rows of STS by T and the columns of STS
by U , where STS is an n × n matrix. Let M denote the resulting submatrix. The inner
product of interest is then eTTMeU , where eT =

∑
i∈T ei and eU =

∑
i∈U ei.

Our bound, given in the above-referred to lemma in the full version, is very sensitive
to minor changes. Indeed, if instead of showing E[P j ] ≤

(
t2

r1/2

)
·
( 16r
n

)j , we had shown

E[P j ] ≤
(

t2

r1/2

)
·
( 16rt

n

)j or E[P j ] ≤
(

t2

r1/2

)
·
(

16r logn
n

)j
, our resulting bound for the χ2-

divergence would be larger than 1. For instance, a natural approach is to instead consider
eT =

∑
i∈T σiei and eU =

∑
i∈U σiei where the σi are independent random signs (i.e.,

Pr[σi = 1] = Pr[σi = −1] = 1/2), which would correspond to redefining the distribution
β above to sample z = x +

∑
i∈T (Cn1/p/t1/p)σiei. Without further conditioning the σi

variables, the χ2-divergence can be as large as nΘ(log(1/δ)). This is because with probability
roughly 2−2t, over the choice of the σi, one has

∑
i∈T σiei and

∑
i∈U σiei both being very well

aligned with the top singular vector of M (if say, S were a random matrix with orthonormal
rows), at which point our desired inner product is too large. Instead, by setting all σi = 1,
that is, by considering eT =

∑
i∈T ei and eU =

∑
i∈U ei as we do, we rule out this possibility.

We prove our lemma by expanding E[P j ] into a sum of products, each having the form∏j
w=1 |〈Saw , Sbw〉| where the Saw , Sbw are columns of S. One thing that matters in such

products is the multiplicities of duplicate columns that appear in a product. We split
the summation by what we call y-patterns. We can think of a y-pattern as a partition
of {1, 2, . . . , j} into y non-empty pieces. We can also define a z-pattern as a partition of
{1, 2, . . . , j} into z non-empty pieces. We analyze the expectation for a particular pair
P,Q, where P is a y-pattern and Q is a z-pattern for some y, z ∈ {1, 2, . . . , j}, that is, we
only sum over pairs of j-tuples a1, . . . , aj and b1, . . . , bj for which for each non-empty piece
{d1, . . . , d`} in P , where di ∈ {1, 2, . . . , j} for all i and ` ≤ j, we have ad1 = ad2 = · · · = ad` .
Similarly for each {e1, . . . , em} in Q, where ei ∈ {1, 2, . . . , j} for all i and m ≤ j, we have
be1 = be2 = · · · = bem . We also require if d, d′ ∈ {1, 2, . . . , j} are in different pieces of P , then
ad 6= ad′ . Similarly, if e, e′ ∈ {1, 2, . . . , j} are in different pieces of Q, then be 6= be′ . Thus,
each pair of j-tuples is valid for exactly one pair P,Q of patterns.

The valid pairs of j-tuples for P and Q define a bipartite multi-graph as follows. In the
left partition we create a node for each non-empty piece of P , and in the right partition
we create a node for each non-empty piece of Q. We include an edge from a node a in the
left to a node b in the right if i ∈ a and i ∈ b for some i ∈ {1, 2, . . . , j}. If there is more
than one such i, we include an edge with multiplicity corresponding to the number of such i.
This bipartite graph only depends on P and Q. We consider a maximum matching in this
multi-graph, and we upper bound the contribution of valid pairs for P and Q based on that
matching. By summing over all pairs P,Q, we obtain our bound on E[P j ].

Our Ω(n1−2/pε−2 log(1/δ)) bound. This bound uses the same distributions α and β as
in [30], where an Ω(n1−2/pε−2) bound was shown, but we strengthen it to hold for general δ.
To do so, we use an exact characterization of the variation distance between multi-variate
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Gaussians with shifted mean by relating it to the univariate case (given in the full version),
and a strong concentration of bounded Lipshitz functions with respect to the Euclidean
norm (given in the full version). These enable us to show with probability 1−O(δ), vectors
sampled from α and β have łp-norm differing by a 1 + ε factor. By the definition of α and β,
we can then reduce the problem to distinguishing an isotropic Gaussian from an isotropic
Gaussian plus a small multiple of a fixed column of S, which typically has small norm since
S has orthonormal rows. We then apply a bound as derived above (see full version).

Our Ω(ε−2 log(1/δ)) bound for 1 ≤ p < 2. This lower bound uses similar techniques to
our lower bound of Ω(n1−2/pε−2 log(1/δ)), but considers distinguishing an isotropic Gaussian
N(0, In) from an N(0, (1+ε)In) random variable. Here we set n = Θ(ε−2 log(1/δ)), and show
the p-norms of samples from the two distributions differ by a (1 + ε)-factor with probability
1 − δ. Using that S has orthonormal rows, the images of the two distributions under our
sketching matrix S correspond to N(0, Ir) and N(0, (1 + ε)Ir), where r is the number of rows
of S. The result then follows by using the product structure of Hellinger distance.

2 Our Lower Bounds

We first describe our lower bounds in a little more detail. Due to space constraints,
we present a highly abridged version without proofs here (see full version). We defer
both our Ω(n1−2/pε−2 log(1/δ)) lower bound for p > 2 and our Ω(ε−2 log(1/δ)) lower
bound for 1 ≤ p < 2 entirely to the full version. Here we focus on our lower bound
of Ω(n1−2/pε−2/p(log2/p(1/δ)) log n) for p > 2. See also Section 1 for an overview of all of
our lower bounds.

We assume δ-Bound4, which is that log(1/δ) ≤ (n1−2/pε−2/p(log2/p 1/δ) log n)1/4n−c
′ ,

for a sufficiently small constant c′ > 0. Since p > 2 is an absolute constant, independent of
n, this just states that δ ≥ 2−nc

′′

for a sufficiently small constant c′′ > 0. There are other
bounds - δ-Bound1, δ-Bound2, and δ-Bound3 - see the full version, but these are not
assumptions but rather implied by relations between the various parameters (e.g., otherwise
the Ω(n1−2/pε−2 log(1/δ)) lower bound is stronger).

Let p and q be probability density functions of continuous distributions. The χ2-divergence
from p to q is χ2(p, q) =

∫
x

(
p(x)
q(x) − 1

)2
q(x)dx.

I Fact 1. ([33], p.90) For any two distributions p and q, we have DTV (p, q) ≤
√
χ2(p, q).

We need a fact about the distance between a Gaussian location mixture to a Gaussian
distribution.

I Fact 2. (p.97 of [21]) Let p be a distribution on Rn. Then χ2(N(0, In) ∗ p,N(0, In)) =
E[e〈X,X′〉]− 1, where X and X ′ are independently drawn from p.

Let T be a sample of t def= log3(1/
√
δ) coordinates i ∈ [n] without replacement.

Case 1: Suppose y ∼ N(0, In), and let α′ be the distribution of y.
Case 2: Let z = x+

∑
i∈T

C′ε1/pEn−t
t1/p

ei, where x ∼ N(0, In) and En−t = Ex∼N(0,In−t)[‖x‖p].
Note that x and T are independent. Also, C ′ > 0 is a sufficiently large constant. Let β′
be the distribution of z.

In the full version we show that for the sketching algorithm to be correct, DTV (ᾱ′, β̄′) ≥
1− 2δ, where ᾱ′ is the distribution of S · y for y ∼ α′ and β̄′ is the distribution of S · z for
z ∼ β′.
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Fix an r×n matrix S with orthonormal rows. Important to our proof will be the existence
of a subset W of n/2 of the columns for which ‖Si‖2 ≤ 2r/n for all i ∈W . To see that W
exists, consider a uniformly random column Si for i ∈ [n]. Then E[‖Si‖2] = r/n and so by
Markov’s inequality, at least a 1/2-fraction of columns Si satisfy ‖Si‖2 ≤ 2r/n. We fix W to
be an arbitrary subset of n/2 of these columns.

Suppose we sample t columns of S without replacement, indexed by T ⊂ [n]. Let G be
the event that the set T of sampled columns belongs to the set W .

I Lemma 3. Pr[G] ≥
√
δ.

Let αG = ᾱ′ | G and βG = β̄′ | G. By the triangle inequality, 1 − 2δ ≤ DTV (ᾱ′, β̄′) ≤
Pr[G]DTV (αg, βG) + 1− Pr[G] ≤

√
δ

2 DTV (αG, βG) + 1−
√
δ

2 , which implies that 1− 4
√
δ ≤

DTV (αG, βG). We can assume δ is less than a sufficiently small positive constant, and
so it suffices to show for sketching dimension r = o(n1−2/pε−2/p(log2/p 1/δ) log n), that
DTV (αG, βG) ≤ 1/2. By Fact 1, it suffices to show χ2(αG, βG) ≤ 1/4.

Since S has orthonormal rows, ᾱ′ is distributed as N(0, Ir). Note that, by definition of α,
we in fact have ᾱ′ = αG since conditioning on G does not affect this distribution. On the
other hand, βG is a Gaussian location mixture, that is, it has the form N(0, Ir)∗p, where p is
the distribution of a random variable chosen by sampling a set T subject to event G occurring
and outputting

∑
i∈T

C′ε1/pEn−tSi
t1/p

. We can thus apply Fact 2 and it suffices to show for

r = o(n1−2/pε−2/p(log2/p 1/δ) log n) that E[e
(C′)2ε2/pE2

n−t
t2/p

〈
∑

i∈T
Si,
∑

j∈U
Sj〉]− 1 ≤ 1

4 , where
the expectation is over independent samples T and U conditioned on G. Note that under
this conditioning T and U are uniformly random subsets of W .

To bound the χ2-divergence, we define variables xT,U , where xT,U = (C′)2ε2/pE2
n−t

t2/p
〈
∑

i∈T Si,∑
j∈U Sj〉. Consider the following, where the expectation is over independent samples T and

U conditioned on G:

E
[

exp
{

(C′)2ε2/pE2
n−t

t2/p
〈
∑
i∈T

Si,
∑
j∈U

Sj〉
}]

= E
[
exT,U

]
=
∑

0≤j<∞

E
[
xjT,U
j!

]

= 1 +
∑
j≥1

(C′)2jε2j/pE2j
n−t

t2j/pj!
E

[
〈
∑
i∈T

Si,
∑
j∈U

Sj〉j
]

= 1 +
∑
j≥1

O(1)2jε2j/pn2j/p

t2j/pj!
E

[
〈
∑
i∈T

Si,
∑
j∈U

Sj〉j
]
.

The final equality uses that En−t = Θ(n1/p) and here O(1)2j denotes an absolute constant
raised to the 2j-th power. We can think of T as indexing a subset of rows of STS and U
indexing a subset of columns. Let M denote the resulting t × t submatrix of STS. Then
〈
∑
i∈T Si,

∑
j∈U Sj〉 =

∑
i,j∈[t]Mi,j ≤

∑
i,j∈[t] |Mi,j |

def= P , and we seek to understand the
value of E[P j ] for integers j ≥ 1.

The following lemma is the key to the argument; its proof is described in Section 1. The
proof is based on defining y-patterns and looking at matchings in an associated bipartite
multi-graph.

I Lemma 4. For integers j ≥ 1, E[P j ] ≤
(

t2

r1/2

)
·
( 16r
n

)j
.

Given the previous lemma, by δ-Bound4, we have t2

r1/2 = 1
nΩ(1) , and therefore Lemma 4 estab-

lishes that E[P j ] ≤ 1
nΩ(1) ·

( 16r
n

)j
.We thus have, E

[
exp
{

(C′)2ε2/pE2
n−t

t2/p
〈
∑

i∈T Si,
∑

j∈U Sj〉
}]

=
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E[exT,U ] = 1+ 1
nΩ(1) ·

∑
j≥1

O(1)2jε2j/pn2j/p

j!t2j/p ·
(
r
n

)j = 1+ 1
nΩ(1) ·

∑
j≥1

(c logn)j
j! ≤ 1+ 1

nΩ(1) ·ec(logn) ≤
1 + 1

4 , since c > 0 is an arbitrarily small constant independent of the constant in the nΩ(1).
The proof is complete.

For 1 ≤ p < 2, we now show that the sketching dimension is Ω(ε−2 log(1/δ)), which as
discussed in Section 1, matches known upper bounds up to a constant factor.

I Theorem 5. The sketching dimension for (ε, δ)-approximating Fp for 1 ≤ p < 2 is
Ω(ε−2 log(1/δ)).

3 Algorithm

As outlined earlier, the algorithm uses two level-based structures, namely, ghss, which is
similar to the ghss structure presented in [17], and the shelf structure. The shelf structure
is needed only when δ = n−ω(1), otherwise, the ghss structure suffices. The ghss has
L+ 1 levels, corresponding to l = 0, 1, . . . , L, and the shelf structure has J shelves numbered
0, 1, . . . , J . In particular, shelf 0 is identical to ghss level 0.

3.1 Estimating Fp
ghss structure. Corresponding to each ghss level l ∈ {0, 1, . . . , L − 1}, a pair of Count-
Sketch like structures named HHl = HH(Cl, s) (denoting that the number of buckets per
table is 16Cl and number of independent repetitions is s) and AvgEstl = AvgEst(Cl, 2s)
are kept. Here, s = Θ(log n), recall C = n1−2/p(ε−2 log(1/δ)/ log(n) + ε−4/p log2/p(1/δ)),
C = C0 = Θ(p2n1−2/pε−4/p log2/p(1/δ)) and Cl = C0α

l, for l = 0, 1, 2, . . . , L − 1, where,
α = 1− (1− 2/p)ν and ν is a constant. The number of levels is L = dlog2α(n/C)e. The final
level L of the ghss structure uses an `2/`1 deterministic sparse-recovery algorithm [9, 13]. We
will show that the number of items that are subsampled into level L is O(CL) with probability
1 − O(δ) and therefore from [9, 13], by using O(CL log(n/CL)) measurements, these item
frequencies are recovered deterministically. Following [17], the ghss structure subsamples
the stream hierarchically using independent random hash functions g1, . . . , gL : [n]→ {0, 1}.
All items are mapped to level 0; an item is mapped to each of levels 1 through l iff
g1(i) = . . . = gl(i) = 1, where, the gl’s are O(log(1/δ) + log n)-wise independent.

HH and AvgEst structures. The HH(Cl, s) is a CountSketch structure [11]. The
AvgEst(Cl, 2s) structure is similar, except that instead of Rademacher sketches, it uses
random qth roots of unity sketches, where, q = O(log(1/δ) + log n). At level l and for table
indexed r ∈ [2s], the corresponding hash function is hlr : [n] → [16Cl], and the sketch for
bucket index b is given by Tlr[b] =

∑
hlr(i)=b xiωlr(i), where, {ωlr(i)}i∈[n] is a random family

of qth roots of unity that is O(log(1/δ) + log n)-wise independent. The hash functions across
the tables and distinct levels, and the seeds of the family of the random roots of unity, are
independent.

Shelf structure. The shelves, indexed from j = 0, . . . , J , each also consist of an analogous
pair of structures, namely, HH(Hj , wj) and AvgEst(Hj , 2wj), where, O(Hj) is the number of
buckets per hash table in these structures, and there are O(wj) independent repetitions per
structure. The AvgEst structures of the shelves also use sketches using qth roots of unity,
instead of Rademacher sketches. In particular, H0 = C0 and w0 = s, ensuring that shelf 0
coincides with level 0 of ghss. Further, HJ = Θ(n1−2/pε−2) and wJ = O(log(1/δ)). There
are two cases, namely, (1) HJ = Ω(H0), or, (2) HJ = o(H0). In the first case, J = 1 and
there are only two shelves, considerably simplifying the analysis. The other case HJ = o(H0)
is more interesting. Here, we let Hj = H0b

j , for a parameter b < 1 and b = Ω(1). The table
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widths increase geometrically as wj = w0a
j , for a parameter a > 1. The total measurements

used by the shelf structure is
∑J
j=0Hjwj = H0w0

∑J
j=0(ab)j = O(max(H0w0, HJwJ)),

provided, |1− ab| = Ω(1), or, |ln(ab)| = Ω(1). The entire stream S is provided as input to
each of the shelves j = 0, 1, . . . , J .
Frequency groups, thresholds, estimates and samples. Let B = Θ(C) and ε̄ = (B/C)1/2 =
Θ(1/p). Let F̂2 be an estimate for F2 = ‖x‖22 satisfying F2 ≤ F̂2 ≤ (1 + O(1/p))F2 with
probability 1−O(δ). Define frequency thresholds for ghss levels as follows: T0 = (F̂2/B)1/2,
Tl = (2α)−l/2 T0 and Ql = Tl(1 − ε̄), for l ∈ [L − 1]. Let QL, TL = 0+ (i.e., a ≥ TL iff
a > 0). For shelf j = 0, . . . , J , let Ej = ε̄2Hj . For shelf j, define the frequency threshold
Uj = (F̂2/Ej)1/2 and let UJ+1 =∞. For ghss level indices l = 0, . . . , L−1, let x̂il denote the
estimate for xi obtained using HHl, and (overloading notation), for shelf indices, j = 0, . . . , J ,
let x̂ij denote the estimate for xi obtained from the HH structure of shelf j. x̂iL denotes the
estimate returned from the `2/`1 sparse recovery structure at level L.
Discovering Items. We say that i is discovered at shelf j ∈ [J ], provided, (1− ε̄)Uj ≤ |x̂ij | ≤
(1 + ε̄)Uj+1 and j ∈ [J ] is the highest numbered shelf with this property. We say that i is
discovered at ghss level l ∈ {0, . . . , L}, if i is not discovered at any shelf indexed j ∈ [J ], and
l is the smallest level such that Tl(1− ε̄) < x̂il ≤ Tl−1(1+ ε̄). If i is discovered at shelf j, then,
i is included in the shelf sample S̄j . If i is discovered at level l ∈ [0, 1, . . . , L] and |x̂il| ≥ Tl,
then, i is included in the level sample Ḡl. If i is discovered at level l and Tl(1− ε̄) < |x̂il| < Tl
then, i is placed in Ḡl+1 iff the random toss of an unbiased coin Ki lands heads; and upon
tails, it is not placed in any sample group. The ghss level sampling scheme is similar to [17].
The averaged estimator and nocollision. For each item i included in a group sample Ḡl or
shelf sample S̄j , an estimate Xi for |xi| is obtained using the corresponding AvgEst structure
of that level or shelf, provided the event nocollision(i) succeeds. If i is sampled into Ḡl, then
nocollision(i) holds if there is a set Rl(i) ⊂ [2s] of table indices of the AvgEstl structure such
that for each r ∈ Rl(i), i does not collide under the hash function hlr with any of the items that
are the top-Cl absolute estimated frequencies using HHl. An analogous definition holds if i is
included in the jth shelf sample. Assuming nocollision(i) holds, the estimate Xi is defined
as the average of the estimates obtained from the tables whose indices are in the set Rl(i) ( resp.
Rj(i) if i was discovered in shelf j), that is, Xi = (1/|R(i)|)

∑
r∈R(i) Tr[hr(i)] ·ωr(i) · sgn(x̂i).

Further, we check whether (1− ε̄)Tl ≤ Xi ≤ (1 + ε̄)Tl−1 (resp. (1− ε̄)Uj ≤ Xi ≤ (1 + ε̄)Uj+1,
if i is in shelf j sample), otherwise, i is dropped from the sample.
Estimating Fp. The estimate for the pth frequency moment, F̂p, is the sum of the contri-
bution from the shelf samples S̄j , j ∈ [J ], and the contribution from the sample groups
Ḡl, l = 0, . . . , L. For an item i ∈ Ḡl, let ld(i) be the level at which an item i is dis-
covered. Let F̂ shelf

p =
∑J
j=1

∑{
Xp
i | i ∈ S̄j , (1− ε̄)Uj ≤ |Xj | ≤ (1 + ε̄)Uj+1

}
, and F̂ ghss

p =∑L
l=0 2L

∑{
Xp
i | i ∈ Ḡl, ld(i) < L, (1− ε̄)Tld ≤ Xi < (1 + ε̄)Tld−1

}
+ 2L

∑
ld(i)=L|x̂i|p. The

final estimate is F̂p = F̂ shelf
p + F̂ ghss

p .

3.2 Analysis
Notation. Let F res

2 (k) be the sum of the squares of all coordinates except the top-k absolute
coordinates. For a ghss level l ∈ [L], F res

2 (l, k) is the random k-residual second moment
of the frequency vector in the sampled substream Sl. Let (1) goodf2 ≡ F2 ≤ F̂2 ≤ (1 +
0.001/(2p))F2, (2) smallresl ≡ F res

2 (2Cl, l) ≤ 1.5F res
2
(
d(2α)lCe

)
/2l−1, l = 0, 1, . . . , L,

(3) smallres ≡ ∀l ∈ {0, 1, . . . , L} smallresl, (4) goodlastlevel ≡ (f̂iL = fi) and ∀i 6∈
SL, (f̂iL = 0). We condition the analysis on the “good event” G ≡ goodf2 ∧ smallres ∧
goodlastlevel, that we show holds with probability 1−min(O(δ), n−Ω(1)).
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I Lemma 6. G holds with probability 1−min(O(δ), n−Ω(1)).

The range of item frequencies is subdivided into frequency groups , so that each item
belongs to exactly one shelf frequency group or to exactly one ghss frequency group. The
frequency group corresponding to the shelf j is [Uj , Uj+1), for j = 1, . . . , J , where, UJ+1 =∞
and U0 = T0. The frequency group corresponding to level l of ghss is [Tl, Tl−1), where,
TL = 0 and T−1 = U1. Let Sj (resp. Gl) denote the set of items whose frequency belongs
to the frequency group corresponding to shelf j (resp. group l). A few other events are
used in the analysis. If i ∈ Gl, then, Pr [nocollision(i)] ≥ 1− exp {−Θ(log n)} as shown
in [17] (Lemma 30). If i ∈ Sj , Pr [nocollision(i)] ≥ 1 − exp {−Θ(wj)}. We condition on
the following events.

(5) goodest(i) ≡ ∀l ∈ [0, . . . , L], i ∈ Sl ⇒ |x̂il − xi| ≤
(
F res

2 (2Cl, l) /Cl
)1/2

(6) accuest(i) ≡ ∀l ∈ [0, . . . , L], i ∈ Sl ⇒ |x̂il − xi| ≤
(
F res

2
(
(2α)lC

)
/(2(2α)lC)

)1/2
.

As shown in [17], (a) goodest(i) and accuest(i) each hold with probability 1−n−Ω(1), and,
(b) goodest(i) ∧ smallres imply the event accuest(i). For an item i that is discovered
at some shelf j, goodest(i) is the same as accuest(i) and is defined as |x̂ij − xi| ≤(
F res

2 (Uj) /Uj
)1/2 and holds with probability 1− exp {−Θ(wj)}.

Lemma 7 extends the approximate 2-wise independence property of the sampling scheme of
[17] to an approximate d-wise independence property.

I Lemma 7. Let I = {i1, . . . , id} ⊂ [n] and 1 ≤ h ≤ d. Let accuest({i1, . . . , ih}) ≡∧h
k=1 accuest(ik). Then, assuming d-wise independence of the hash functions,∑
lj=0,1,...,L,
∀j=1,2,...,h

2l1+l2+...+lhPr
{∧h

j=1 ij ∈ Ḡlj
∣∣∧d

j=h+1 ij ∈ Slj ,G,accuest({i1, . . . , ih})
}
∈∏h

j=1
(
1± 2level(ij)+1n−c

)
.

Lemma 8 bounds |Xi −E [Xi]| using the 2dth moment method.

I Lemma 8. Suppose d ≤ O(log n) and even and let s ≥ 300 log(n). Then we have that

Pr
{
|Xi − |xi|| >

(
dF res

2 (2C)
(s/9)C

)1/2
| nocollision,goodest

}
< 2−2d+1 .

I Lemma 9 ([22]).
∣∣E [Xp

i ]− |xi|p | G,goodest,nocollision
∣∣ ≤ |xi|pn−Ω(1).

For i ∈ [n], let xli be an indicator variable that is 1 iff i ∈ Sl. Let Xi denote |x̂i| when
ld(i) = L and otherwise, let its meaning be unchanged. Let zil be an indicator variable that
is 1 if i ∈ Ḡl and 0 otherwise. Define F̂p =

∑
i∈[n] Yi. where, Yi =

∑L
l′=0 2l′zil′Xp

i . Let
H = G ∩ nocollision ∩ goodest and G′ = lmargin(G0) ∪Ll=1 Gl.

I Lemma 10. Let B ≥ O(n1−2/pε−4/p log2/p(1/δ))). For integral 0 ≤ d1, d2 ≤ dlog(1/δ)e,

we have, E
[(∑

i∈G′(Yi −E [Yi | H])
)d1 (∑

i∈G′(Yi −E
[
Yi | H

]
)
)d2 ∣∣H] ≤ ( εFp20

)d1+d2
.

3.3 Analysis for the case δ ≥ n−O(1)

For the case δ = n−O(1), the shelf structure is not needed. Redefine the group G0 to
correspond to the frequency range [T0,∞]. The lemmas in this section assume that the
family {ωlr(i)}i∈[n] are O(log(1/δ) + log(n))-wise independent, and independent across l, r
and all hash functions are also O(log(1/δ) + log(n))-wise independent.
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I Lemma 11. Let 1 ≤ e, g ≤ dlog(1/δ)e, l ∈ mid(G0) and |xl| ≥
(F res

2 (C)
C

)1/2. Then,

E
[
(Yl −E [Yl | H])e

(
Yl −E

[
Yl | H

])
| H
]
is real and is at most

(
a|xl|2p−2F res

2 (C)
ρC

)(e+g)/2
for

some constant a. Further,
∣∣E [(Yl −E [Yl | H])e] | H

∣∣ ≤ |xl|pen−Ω(e) .

The calculation of the dth central moment for the contribution to F̂p from the items
in mid(G0) requires an upper bound on the following combinatorial sums. Q(S1, S2) =∑min(S1,S2)
q=1

∑
e1+...+eq=S1

e′js≥1

∑
g1+...+gq=S2

g′js≥1

(
S1

e1,...,eq

)(
S2

g1,...,gq

)
, and

R(S) =
∑bS/2c
q=1

∑
h1+...+hq=S,h′js≥2

(
S

h1,...,hq

)∑
{i1,...,iq}

∏
r∈[q]|xir |(p−1)hr

∏
r∈[q] h

hr/2
r .

I Lemma 12. Q(S1, S2) ≤ R(S1 + S2) ≤ (16e(S1 + S2)F2p−2)(S1+S2)/2.

I Lemma 13. Let C ≥ O(n1−2/p/ log(n))ε−2 log(1/δ)). Then, for 0 ≤ d1, d2 ≤ log(1/δ),

E
[(∑

i∈mid(G0)(Yi −E [Yi | H])
)d1(∑

i∈mid(G0)(Yi −E
[
Yi | H

]
)
)d2 | H

]
≤
(
εFp
10

)d1+d2
.

I Lemma 14. Let C ≥ Kn1−2/pε−2 log(1/δ)/ log(n) + Ln1−2/pε−4/p log2/p(1/δ), where,
K,L are constants. Then, for d = dlog(1/δ)e, E

[(∑
i∈S(Yi − E [Yi | H])

)d(∑
i∈S(Yi −

E
[
Yi | H

]
)
)d | H] ≤ ( εFp5

)2d
. It follows that Pr

[∣∣F̂p − Fp∣∣ ≥ (ε/2)Fp
]
≤ δ.

Since, H holds with probability 1 − 1/n−c, for any constant c by choosing s = Θ(log n)
appropriately, we have the following theorem.

I Theorem 15. For each 0 < ε < 1 and 7/8 ≥ δ ≥ n−c, for any constant c, there is a sketch-
ing algorithm that (ε, δ)-approximates Fp with sketching dimension O

(
n1−2/p(ε−2 log(1/δ) +

ε−4/p log2/p(1/δ) log n
))

and update time (per stream update) O((log n) log(1/δ))).

3.4 Analysis for the case δ = n−ω(1)

We now extend the analysis for failure probability δ smaller than n−Θ(1) and up to δ = 2−nΩ(1) .
For the ghss structure, nocollision and goodest may hold only with probability 1−n−Θ(1).
We first show that the number of items that fail to satisfy nocollision or goodest is
at most O(log(1/δ)/ log n) with probability 1 − O(δ). The following lemmas assume the
parameter sizes for B,C,Cl, HJ and Hj as described earlier.

I Lemma 16. With probability 1 − O(δ), the number of elements for which goodest or
nocollision fails is at most O(log(1/δ))/(log n).

Thus, it is possible that legitimate items are not discovered, or are dropped due to collisions,
or mistakenly classified and their contribution added to samples. Let Errorghss denote the
total contribution of such items to F̂ ghss

p and let Errorshelf denote the error arising in the
estimate of F̂ shelf

p due to analogous errors. As described earlier, we mainly emphasize the
more interesting and complicated case when HJ = o(H0) (otherwise, J = 1).

I Lemma 17. Errorghss ≤ O(ε2Fp/ log n) and Errorshelf ≤ O(max(ε2Fp/(log n), O(εpFp))),
each with probability 1− δ/nΩ(1).

We first prove a refinement of Lemma 11.

I Lemma 18. [Refinement of Lemma 11.] Let 1 ≤ e, g ≤ dlog(1/δ)e, l ∈ Sj and
log(1/δ) = ω(log n). Assume that accuest(l) holds and Hj ≥ Ω(p2EJ) and |xl| ≥

(F2/Ej)1/2. Then, E
[((

1 + Zl
|xl|

)p
− 1
)e ((

1 + Zl
|xl|

)p
− 1
)g
| H
]
is real and bounded above

by ch|xl|−h
(
F2
Hj

)h/2(min
(
h
wj
, 1
))h/2, where, h = e+ g and c is an absolute constant.
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Lemma 19 considers the 2dth central moment of the contribution to F̂ shelf
p from all but

the outermost shelf, and from the set of outermost shelf items denoted SJ , separately. Let
S′ = S1 ∪ . . . ∪ SJ−1.

I Lemma 19. Let 0 ≤ d1, d2 ≤ dlog(1/δ)e and integral and c1, c2 be constants. Then,
E
[(∑

i∈S′(Yi−E [Yi | H])
)d1(∑

i∈S′(Yi−E [Yi | H])
)d2 | H

]
≤ (c1εFp)d1+d2 . E

[(∑
i∈SJ (Yi−

E [Yi | H])
)d1(∑

i∈SJ (Yi −E [Yi | H])
)d2 | H

]
≤ (c2εFp)d1+d2 .

Combining Lemmas 10, 13 and 19 with Lemma 17, we obtain the following.

I Lemma 20. ∃ constant c s.t. for 1 ≤ d ≤ dlog(1/δ)e, E
[(∑

i∈[n](Yi − E [Yi | H])
)d(∑

i∈[n](Yi −E
[
Yi | H

]
)
)d | H] ≤ (cεFp)2d. Hence, Pr

[∣∣F̂p − Fp∣∣ ≤ εFp)] < δ .

I Theorem 21. For each 0 < ε < 1 and 7/8 ≥ δ ≥ 2−nΩ(1) , there is a sketching
algorithm that (ε, δ)-approximates Fp with sketching dimension O

(
n1−2/p(ε−2 log(1/δ) +

ε−4/p log2/p(1/δ) log n
))

and update time (per stream update) O((log n) log(1/δ)).
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Abstract
A central problem in scheduling is to schedule n unit size jobs with precedence constraints on
m identical machines so as to minimize the makespan. For m = 3, it is not even known if
the problem is NP-hard and this is one of the last open problems from the book of Garey and
Johnson.

We show that for fixed m and ε, polylog(n) rounds of Sherali-Adams hierarchy applied to a
natural LP of the problem provides a (1+ε)-approximation algorithm running in quasi-polynomial
time. This improves over the recent result of Levey and Rothvoss, who used r = (log n)O(log logn)

rounds of Sherali-Adams in order to get a (1 + ε)-approximation algorithm with a running time
of nO(r).
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1 Introduction

A central problem in scheduling is the following: suppose we are given n unit jobs which
have to be processed non-preemptively on m identical machines. There is also a precedence
order among the jobs: if i ≺ j, then job i has to be completed before j can begin. The goal
is to find a schedule of the jobs with the minimum makespan, which is defined as the time
by which all the jobs have finished.

This problem admits an easy (2 − 1
m ) approximation algorithm which was given by

Graham [5] in the 60’s and is one of the landmark results in scheduling. This algorithm is
known as the list-scheduling algorithm and works as follows: at every time t = 1, 2, . . . , if
there is an empty slot on any of the m machines, schedule any available job there, where a job
is available if it is not yet scheduled and all the jobs which must precede it have already been
scheduled. This simple greedy algorithm is essentially the best algorithm for the problem and
for almost half a century it was an open problem whether one can get a better approximation
algorithm. In fact, this was one of the ten open problems in Schuurman and Woeginger’s
influential list of open problems in scheduling [11]. It was known since the 70’s that it is
NP-hard to get an approximation factor better than 4/3 [8]. Slight improvements were given
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by Lam and Sethi [6] who gave a 2− 2
m approximation algorithm, and Gengal and Ranade

[3] who gave a 2− 7
3m+1 approximation algorithm for m ≥ 4. Finally in 2010, Svensson [13]

showed that assuming a variant of Unique Games conjecture due to Bansal and Khot [1], for
any constant ε > 0 there is no (2− ε) approximation algorithm for the problem.

However, this still leaves open the problem for the important case when m is a constant.
In fact in practice, usually the number of jobs are very large but there are only a few machines.
Surprisingly, for m = 3, it is not even known if the problem is NP-hard. This is one of the
four problems from the book of Garey and Johnson [4] whose computational complexity is
still unresolved.

In order to get a better algorithm for the case when m is a constant, a natural strategy
is to write a linear program (LP), and for this problem, one such LP is the time-indexed LP
(1), in which we first make a guess T of the makespan and then solve the LP. The value of
the LP is the smallest T for which the LP is feasible, and the worst case ratio of the optimal
makespan and the value of the LP is known as the integrality gap of the LP. It is well known
that LP (1) has an integrality gap of at least 2 − 2

m+1 (see e.g. [9]), which suggests that
one needs to look at stronger convex relaxations in order to get a better algorithm. Such a
stronger convex relaxation can be obtained by applying a few rounds of a hierarchy to the
LP, and in this paper, we will use the Sherali-Adams hierarchy [12]. It is known that just
one round of Sherali-Adams hierarchy reduces the integrality gap to 1 for m = 2 and thus,
the problem can be solved exactly in this case (credited to Svensson in [10]). Claire Mathieu
in a workshop in Dagstuhl 2010 asked if one can get a (1 + ε)-approximation algorithm using
f(ε,m) rounds of Sherali-Adams hierarchy for some function f independent of n, which
would imply a PTAS for the problem when m is a constant. This is also Open Problem 1 in
Bansal’s recent list of open problems in scheduling presented at MAPSP 2017.

To get some intuition behind why hierarchies should help in this problem, let us first
look at the analysis for Graham’s list-scheduling algorithm. At the end of this algorithm,
the number of time slots which are busy, that is where all the m machines have some job
scheduled on them, is a lower bound on the optimum. Also, the number of non-busy time
slots is a lower bound on the optimum. This is because there must be a chain of jobs
j1 ≺ j2 ≺ · · · ≺ jk such that one job from this chain is scheduled at each non-busy time,
and the length of any chain in the instance is clearly a lower bound on the optimum. This
implies that the makespan given by the algorithm, which is the sum of the number of busy
and non-busy time slots, is a 2-approximation of the optimum makespan, and a slightly more
careful argument gives the guarantee of (2− 1/m). Now the key idea is that if the instance
given to us has a maximum chain length of at most ε times the optimal makespan, then
Graham’s list-scheduling algorithm already gives a (1 + ε)-approximation, and hierarchies
provide, via conditionings, a good way to “effectively" reduce the length of the chains in any
given instance.

Though the question of whether one can get a (1 + ε)-approximation algorithm using
f(ε,m) rounds of Sherali-Adams hierarchy is still unresolved, a major breakthrough was
made recently by Levey and Rothvoss [9], who gave a (1 + ε)-approximation algorithm using
r = (log n)O(m2 log logn/ε2) rounds of Sherali-Adams. This gives an algorithm with a running
time of nO(r), which is faster than exponential time but worse than quasi-polynomial time.

1.1 Our Result
In this paper, we improve over the result of Levey and Rothvoss [9] by giving a (1 + ε)-
approximation algorithm which runs in quasi-polynomial time. Formally, we show the
following:
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I Theorem 1. The natural LP (1) for the problem augmented with r rounds of Sherali-Adams
hierarchy has an integrality gap of at most (1 + ε), where r = Om,ε(logO(m2/ε2) n). Moreover,
there is a (1 + ε)-approximation algorithm for this problem running in time nO(r).

Throughout the paper, we use the notation Om,ε(.) to hide factors depending only on m
and ε. The natural LP for the problem is the following:

T∑
t=1

yjt = 1 ∀j ∈ [n]∑
j

yjt ≤ m ∀t ≤ T (1)

∑
t′≤t

yjt′ ≥
∑

t′≤t+1
yit′ ∀t ≤ T, ∀j ≺ i

yjt ≥ 0 ∀t ≤ T, ∀j ∈ [n]

Here T is our guess on the optimum makespan. In an integral solution, yjt = 1 if job j is
scheduled at time t, and 0 otherwise. The first constraint ensures that each job is scheduled
at exactly one time and the second constraint ensures that no more than m jobs are scheduled
at any time. The third constraint ensures that if j ≺ i, then job i can only be scheduled at a
time strictly later than job j.

1.2 Overview of Our Algorithm
Let us first give an overview of the algorithm of Levey-Rothvoss [9] since our algorithm builds
up on it.

Previous approach

At a high-level, the algorithm of Levey-Rothvoss [9] works by constructing a laminar family
of intervals, where the topmost level has one interval [1, T ] and each succeeding level is
constructed by dividing each interval of the previous level into two equal sized intervals,
as shown in the figure below. Thus, there are (1 + log T ) levels where level ` contains 2`
intervals, each of size T

2` for ` = 0, 1, . . . , log T . This laminar family can be thought of as
being a binary tree of depth log T with the interval [1, T ] as the root and the level ` intervals
being vertices at depth `.

Level 0

Level 1

Level 2

1 2

Level log T

T

Figure 1 Construction of the laminar family used in the algorithm.
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Each job j is first assigned to the smallest interval in this laminar family which fully
contains the fractional support of j as per the solution of the LP. Let k = O(log log n) and
let us call the top k2 levels in the laminar family as the top levels and the level succeeding
it, that is the level k2 as the bottom level. Their algorithm conditions (see Section 2 for the
definition of conditioning) roughly 2k2 times in order to reduce the maximum chain length
among the jobs assigned to the top levels. Once the length of the chains in the top levels is
reduced, the last k of the top levels are discarded from the instance, and the sub-instances
corresponding to each interval in the bottom level is recursively solved in order to get a
partial schedule for all the jobs except those assigned to the top levels. The discarding of
the k levels is done in order to create a large gap between the top levels and the bottom
level. Having such a gap makes it easier to schedule the remaining jobs in the top levels in
the gaps of the partial schedule and Levey-Rothvoss [9] give an elegant algorithm to do this,
provided that the maximum chain length among the jobs in the top levels is small. This step
increases the makespan by at most a (1 + ε/ log n) factor, which adds up to a loss of a (1 + ε)
factor in total over the at most log n depth of the recursion. Finally, one must also schedule
the jobs in the k levels which were discarded; to do this without increasing the makespan by
more than a (1 + ε) factor, it suffices to ensure that these k discarded levels contain at most
an ε fraction of the jobs contained in the top levels. Let us call such a set of k consecutive
levels, which contains at most an ε fraction of the number of jobs in the levels above it, as a
good batch.

Now the reason they had to condition 2k2 = 2O((log logn)2) times, which leads to the
running time of nO(2k

2
), comes from the fact that they condition on every interval in the

top k2 levels. And this is necessary to ensure that a good batch exists. For example, the
number of jobs contained in the levels [pk, (p + 1)k) may be about eεp · (εT/ log n) for all
p < (1/ε) ln(m log n) ≈ k, in which case there is no good batch in the first o(k2) levels.

Our approach

To get around the above issue, we observe the following: if, after conditioning on only the top
Ck levels, where C = O(1/ε2) is a big enough constant, there does not exist a good batch in
the top Ck levels, then in fact a (1 − ε) fraction of the jobs in the top Ck levels must lie
in the last (1/ε2)k levels, that is, in levels from Ck − (1/ε2)k to Ck − 1. This implies that
we can discard the jobs in the first Ck − (1/ε2)k levels by charging them to the jobs in the
levels from Ck− (1/ε2)k to Ck− 1, and in doing so we only discard an ε fraction of the total
number of jobs.

Notice that we have only conditioned about 2Ck = polylog(n) times till now as there are
these many intervals in the top Ck levels. The next crucial observation is that after deleting
the top Ck − (1/ε2)k levels, the sub-instances defined by each of the subtrees rooted at the
intervals on the level Ck − (1/ε2)k can be solved independently of each other. This means
that we can perform conditioning in parallel on each such sub-instance, and thus in total, we
will condition at most 2Ck · log T = polylog(n) times, since the depth of the recursion is at
most the height of the tree.

Now it might also happen that we already find a good batch in the top Ck levels and
in this case, we follow a strategy similar to Levey-Rothvoss [9] by recursing on the bottom
intervals to find a partial schedule and fitting the jobs in the top levels in this partial schedule.
This step might discard an ε fraction of the jobs in the top levels. These two cases, one
where we recurse because there is no good batch in the top Ck levels and one where we
recurse because there is a good batch in the top Ck levels, might interleave in a complicated
manner. We show that the number of jobs ever discarded in the algorithm due to each type
of recursion is at most an O(ε) fraction of the total number of jobs, which implies that we
can achieve a makespan of (1 + ε)T .
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The above high-level description skims over a few important issues. One big challenge in
the above approach is to ensure that the number of jobs discarded in the cases where we do
not find a good batch stays small during the whole algorithm. Even though this is the case
in one such recursive call, this might not happen over all the recursive calls taken together
and we might end up discarding a constant fraction of the jobs. To get over this obstacle, we
carefully control which interval each job is assigned to: if a job j is assigned to an interval
I but after conditioning on some job i 6= j which is assigned to a level lower than j, the
fractional support of j shrinks to a sub-interval of I, then we will still keep j assigned to I,
rather than moving it down the laminar family. This ensures that each job is not charged
more than once for discarded jobs and thus the total number of discarded jobs is at most
εn. This however slightly changes the way jobs are assigned to intervals and the techniques
developed by Levey and Rothvoss [9] cannot be immediately applied to fit the jobs of the
top levels in the partial schedule of the bottom levels in the case when a good batch exists.
To tackle this issue, we will allow each job in the top levels to be scheduled outside of its
(current) fractional support as long as it doesn’t violate the precedence constraints with
the jobs in the bottom levels. With this modification, we will be able to fit the jobs in the
top levels in the partial schedule of the bottom levels without discarding more than an ε

fraction of the top jobs. This implies that in both types of recursions, we only discard an
O(ε) fraction of the jobs.

2 Preliminaries on Sherali-Adams Hierarchy

In this section, we state the basic facts about Sherali-Adams hierarchy which we will need.
We refer the reader to the excellent surveys [7, 2, 10] for a more extensive introduction to
hierarchies.

Consider a linear program with n variables y1, . . . , yn where for each i ∈ [n], 0 ≤ yi ≤ 1.
For s ≥ 0, the sth-round Sherali-Adams lift of this linear program is another linear program
with variables y(s)

S for each S ⊆ [n] satisfying |S| ≤ s+ 1, and some additional constraints.
We will often denote y(s)

{i} by y
(s)
i for simplicity.

If we think of yi as the probability that yi = 1, intuitively the variables y(s)
S should equal

the probability that each i ∈ S has yi = 1, that is we would like to have that y(s)
S = Πi∈Syi.

As these constraints are not convex, we can only impose some linear conditions implied
by them. In particular, for every constraint aT y ≤ b of the starting LP, we add, for every
S, T ⊆ [n] such that |S|+ |T | ≤ s, a new constraint given by

∑
T ′⊆T

(−1)|T
′|

(
n∑
i=1

aiy
(s)
S∪T ′∪{i} − by

(s)
S∪T ′

)
≤ 0. (2)

If y(s)
S = Πi∈Syi was indeed true for all |S| ≤ s+1, then the above inequality can be succinctly

written as (aT y − b) ·Πi∈Syi ·Πi∈T (1− yi) ≤ 0, and are thus valid constraints for all 0− 1
solutions.

Observe that an sth-round Sherali-Adams lift of an LP with n variables and m constraints
is just another LP with nO(s) variables and m · nO(s) constraints. Letting y(s) denote a
feasible solution of the sth-round Sherali-Adams lift, y(s) is also feasible for all s′ ≤ s rounds
of Sherali-Adams and in particular is a feasible solution of the starting LP.

ICALP 2018
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Conditioning

Given a feasible solution y(s) of the sth-round Sherali-Adams lift and i ∈ [n] such that
y

(s)
i > 0, then we can condition on the event yi = 1 to get a feasible solution z(s−1) of the

(s− 1)th-round Sherali-Adams lift defined as

z
(s−1)
S =

y
(s)
S∪{i}

y
(s)
i

∀S : |S| ≤ s.

The fact that z(s−1) is a feasible solution of the (s− 1)th-round Sherali-Adams lift follows
easily from (2). Moreover, z satisfies z(s−1)

i = 1 and the following useful property:

I Observation 2. If for some j ∈ [n], y(s)
j = 0 and we condition on yi = 1 for any i ∈ [n],

then z(s−1)
j = 0.

Proof. Using the Sherali-Adams lift (2) of the constraint yi ≤ 1 with S = {j} and T = φ,

we get y(s)
{i,j} ≤ y

(s)
j . This gives z(s−1)

j =
y

(s)
{i,j}

y
(s)
i

≤ y
(s)
j

y
(s)
i

= 0. J

One can think of the solution z(s−1)
S as giving the conditional probability of y(s)

S = 1 given
y

(s)
i = 1. By conditioning on a variable yi to be 1, we will mean that we replace the current
fractional solution y(s) with the fractional solution z(s−1) as in above. Observation 2 implies
that conditioning can never increase the support of any variable, or in other words, if the
probability that yj = 1 is zero, then the conditional probability that yj = 1 conditioned on
yi = 1, is also zero.

3 Algorithm

Before we describe our algorithm, we first develop some notation. Let T denote the value
of the LP (1) and let y(s) denote the feasible solution of the sth-round Sherali-Adams lift
of the LP we get after we condition r − s times in the algorithm. We will say that we are
in round s of the algorithm if we have conditioned r − s times so far. So we will start the
algorithm in round r with solution y(r), and if we condition in round s, we go to round s− 1
with solution y(s−1).

For each job j, define the fractional support interval of j in round s as F (s)
j := [rsj , dsj ],

where rsj is the smallest time t for which y(s)
jt > 0 and dsj is the largest time for which y(s)

jt > 0
(rj and dj are used to symbolize release time and deadline). In other words, F (s)

j is the
minimal interval which fully contains the fractional support of job j in y(s). By Observation 2,
upon conditioning, the fractional support interval can only shrink, that is F (s−1)

j ⊆ F (s)
j .

For each job j, we also define a support interval S(s)
j . We will initially set S(r)

j := F
(r)
j .

In later rounds, we will update S(s)
j in such a way that F (s)

j ⊆ S(s)
j ⊆ F (r)

j . Intuitively, S(s)
j

reflects our knowledge in round s of where j can be scheduled. Notice that we might schedule
j outside of the fractional support interval F (s)

j .
A schedule of jobs is called a feasible schedule if it satisfies the precedence constraints

among all the jobs and a partial feasible schedule if it schedules some of the jobs and satisfies
the precedence constraints among them. In order to get a feasible schedule of all the jobs
with a makespan of at most (1 + ε)T , it suffices to show the following:

I Theorem 3. We can find a partial feasible schedule σ : [n]→ [T ] ∪ {DISCARDED} such
that σ(j) = DISCARDED for at most εT jobs.
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Clearly a schedule σ as in Theorem 3 has makespan at most T . Having such a partial
feasible schedule, we can easily convert it to a feasible schedule of all the n jobs with a
makespan of at most (1 + ε)T : iterate through every job j discarded in σ and find the earliest
time t by when all the jobs which must precede j have either already been scheduled or are
as of yet discarded. Create a new time slot between times t and t+ 1 containing only job j.
This increases the makespan by one for every job discarded in σ.

Laminar Family.

A laminar family of intervals is defined in the following manner. The topmost level, level
0, has one interval [1, T ]. Each succeeding level is constructed by dividing each interval of
the previous level into two equal sized intervals2. Thus there are (1 + log T ) levels, where
level ` contains 2` intervals each of size T

2` for ` = 0, 1, . . . , log T . This laminar family can be
thought of as being a binary tree of depth log T with the interval [1, T ] as the root, and the
level ` intervals as being vertices at depth `.

Let I` denote the set of intervals at level ` of the laminar family. For an interval I ∈ I`, a
sub-interval of I is any interval I ′ ⊆ I of the laminar family, including I itself; and Ileft, Iright
will denote the left and right sub-intervals respectively of I in I`+1. By the midpoint of I,
we will mean the right boundary of Ileft.

Job j is assigned to interval I in round s if I is the smallest interval in the laminar family
such that S(s)

j ⊆ I. This assignment of jobs to intervals depends on S(s)
j and will change as s

and S(s)
j change during the algorithm. Let I(s)(j) denote the interval to which j is assigned

in round s of the algorithm. For an interval I in the laminar family, let J (s)(I) denote the
set of jobs assigned to I, and let J (s)(I`) denote the set of jobs assigned to intervals in I` in
round s of the algorithm.

Batches.

Let k = log( 32m
ε · log n). For p ≥ 0, define the pth batch as

Bp = {Ipk, Ipk+1, . . . , I(p+1)k−1}.

That is, it denotes the set of k consecutive levels starting from level pk till level (p+ 1)k − 1.
Let J (s)(Bp) denote the set of jobs assigned to intervals in batch p in round s. Batch Bp for
p ≥ 1 is called a good batch with respect to [T ] in round s if

|J (s)(Bp)| ≤
ε

4m

p−1∑
i=0
|J (s)(Bi)|. (3)

We will omit the “with respect to [T ]" if it is clear from the context that we start the
summation in the right hand side of (3) from the first batch in [T ]. Similarly, we will omit
the “in round s" if s is clear from the context.

Algorithm.

We can now describe our algorithm and split its description in two steps for clearer exposition.
Let C = 2(4m/ε)2 + 1, k = log( 32m

ε · log n) and δ = ε
8mCk2Ck logn . The reader can think of

2 Without loss of generality, T is a power of 2. Otherwise, we can add a few dummy jobs at the end
which must succeed all other jobs and which make T a power of 2.
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these parameters as being k = Θm,ε(log log n) and δ = Θm,ε(1/polylog(n)). s will always
denote the current round of the algorithm, unless otherwise specified. We initialise s := r

and for each job j, S(r)
j := F

(r)
j .

Schedule(y(r), T ):3
1. Step 1: Reducing chain length in the top qk ≤ Ck levels

In this step, we will reduce the length of the chains in each interval I in the top qk levels
of the laminar family to at most δ|I|, for some q ≤ C. This is done by going down the
levels, starting from level 0 till level qk − 1, where q is chosen such that
a. after having conditioned on all the levels from 0 to qk − 1, Bq−1 is a good batch, or
b. we have already conditioned on the top Ck levels and found no good batch, in which

case we set q = C.
The conditioning on the levels and update of Sj ’s is done as follows. For ` = 0, 1, . . . , qk−1:

Let sold = s and for each j, let `(j) denote the level of the interval I(sold)(j), that is
the level to which j is assigned at the beginning of this iteration of the loop.
We go over every interval I ∈ I` and do the following: if J (s)(I) has a chain of length
more than δ|I|, let j be the first job in this chain. We condition on j lying in Iright.
After every conditioning, update s := s− 1 and set S(s)

j for every job j as follows:
if `(j) < `, letmj denote the midpoint of I(sold)(j) and [tr, td] := F

(s)
j . If F (s)

j ⊆ Ileft,
then we set S(s)

j := [tr,mj + 1], and if F (s)
j ⊆ Iright, then we set S(s)

j := [mj , td].
Otherwise, set S(s)

j := F
(s)
j .

if `(j) ≥ `, set S(s)
j := F

(s)
j .

That is, the support intervals S(s)
j are set such that if we condition on jobs in level `,

then the jobs assigned to a level `′ < ` before the conditionings stay assigned to level `′,
and for all other jobs, S(s)

j equals the fractional support interval F (s)
j .

2. Step 2: Recursion
There are two cases to consider here, depending on which of (a) or (b) took place in the
previous step.
(i) If (a) occurred, perform a recursion of type 1.

This step is similar to the algorithm of [9]. We discard all the jobs in the good
batch Bq−1. Then for each interval I ∈ Iqk, we recursively call Schedule(y(s), I) to
obtain a schedule σ̃I , which are put together to form a partial feasible schedule σ̃
for the jobs assigned to a level ` ≥ qk.
Then we fit the jobs in the top levels, that is the jobs in J (s)(B0)∪ · · · ∪ J (s)(Bq−2)
in the empty slots in σ̃. We give more details of how this is done in Section 4.2.1.
Some jobs in the top levels will be discarded while doing this.
Call this step a recursion of type 1. The number of jobs discarded in this step, that
is the jobs in batch Bq−1 along with the jobs in the top levels which are discarded,
will be referred to as the jobs discarded due to this step. Notice that this does not
include the jobs discarded in each recursive call to the intervals in Iqk.

(ii) If (b) occurred, perform a recursion of type 2.
In this case, we discard all the jobs in J (s)(B0) ∪ · · · ∪ J (s)(BC−(4m/ε)2−1). Then
for each interval I ∈ I(C−(4m/ε)2)k, we recursively call Schedule(y(s), I) to get a

3 When the algorithm is called on an interval of length L ≤ 2Ck, we can just “brute force" by conditioning
mL times to find an exact solution. We avoid writing this explicitly in the algorithm for simplicity.
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schedule σI which are put together to form a partial feasible schedule σ for all the
jobs assigned to a level ` ≥ (C − (4m/ε)2)k.
Call this step a recursion of type 2. The number of jobs discarded in this step, that
is the jobs in batches B0, . . . ,BC−(4m/ε)2−1 will be referred to as the jobs discarded
due to this step. Just like before, this does not include the jobs discarded in each
recursive call to the intervals in I(C−(4m/ε)2)k.

In each type of recursion, we recurse on multiple sub-instances defined by intervals of some
level. It is important that the recursions on these sub-instances are done independently of
each other. That is, we pass the same (current) Sherali-Adams solution to each recursive
call, and conditionings done in one recursive call are independent of conditionings done
in any other recursive call, and thus do not affect the fractional solution of any other
recursive call.

4 Analysis

In this section, we prove Theorem 3 which will imply Theorem 1. We split the analysis into
two parts: in the first part, we give a bound on the number of rounds of Sherali-Adams
needed in the algorithm. In the second part, we show that we discard at most εT jobs during
the algorithm and schedule all other jobs by time T , thus proving Theorem 3.

But first, we need to show that the algorithm is well-defined.

I Observation 4. In step 1, when we condition on an interval I by finding a chain C in I
and conditioning the first job j in this chain to lie in Iright, this is possible to do. Moreover,
this assigns every job in C to a sub-interval of Iright.

Proof. For the first part of the observation, we need to show that F (s)
j ∩ Iright 6= φ, where s

is the round of the algorithm just before we condition on j in I. As j is assigned to I in
round s, it must be that S(s)

j ∩ Iright 6= φ. The support intervals are updated in a way such
that we can only have S(s)

j 6= F
(s)
j after we condition on a level below that of j. But because

we always condition on the levels from top to bottom, we must have S(s)
j = F

(s)
j . This proves

the first part of the observation.
The moreover part follows easily now since every other job i ∈ C satisfies j ≺ i and must

start scheduling only after j. J

4.1 Bounding number of rounds of Sherali-Adams
Let r(|I|) denote the number of rounds of Sherali-Adams the algorithm uses when run on
the instance defined by the subtree rooted at interval I of the laminar family. Our goal in
this subsection is to show r(T ) ≤ r for r = Om,ε(logO(m2/ε2) n).

We first give an upper bound on the number of conditionings done in one interval I.

I Lemma 5. The algorithm conditions at most m/δ times on any interval I in step 1.

Proof. Let sold denote the round of the algorithm just before we start to condition in I, and
let ` ≥ 0 be such that I ∈ I`. Each time we condition in I, we assign at least δ|I| jobs in I
to a sub-interval of Iright (by Observation 4).

Also, no job assigned to a level `′ < ` in round sold moves down the laminar family during
conditionings done in I. And for all other jobs, they only get assigned to a sub-interval.
Thus no new job is assigned to I while we are conditioning in I.
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Using F (sold)
j ⊆ S

(sold)
j and the second constraint of LP (1), there can be at most m|I|

jobs in total assigned to I in round sold. Thus, the number of times we condition in I is at
most m|I|

δ|I| = m
δ . J

I Lemma 6. The algorithm conditions at most 2Ckm/δ times in step 1 of the algorithm.

Proof. By Lemma 5, we condition at most m/δ times per interval. As we condition on the
topmost qk levels and hence on at most 2qk ≤ 2Ck intervals, we condition at most 2Ckm/δ
times in step 1. J

In step 2 of the algorithm, if we do a recursion of type 1 then we recurse on every interval
at level qk ≥ k. Otherwise, if we do a recursion of type 2 then we recurse on every interval at
level (C − (4m/ε)2)k ≥ k. In either case we recurse on every interval of some level ` ≥ k and
thus on an interval of size at most T/2k. Because the conditionings done in one recursive
call are done independently of the conditionings in any other recursive call, the total number
of rounds of Sherali-Adams we need can be bounded by the following recurrence:

r(T ) ≤ 2Ckm
δ

+ r(T/2k)

where the base case is r(2Ck) = 2Ckm, and thus we get

r(T ) ≤ 2Ckm log T
δ

≤ 8m2Ck(log2 n)22Ck

ε
= Om,ε((log n)5+ 64m2

ε2 ) = r.

4.2 Bounding number of jobs discarded
In this subsection, we bound the number of jobs discarded in the algorithm and show that it
is at most εT . We will separately bound the number of jobs discarded due to recursions of
type 1 and recursions of type 2 and show that each is at most εT/2. The former uses a result
proved by Levey and Rothvoss [9] but which needs to be heavily adapted to our algorithm.
The latter uses a simple charging argument.

4.2.1 Jobs discarded due to recursions of type 1.
Suppose we perform a recursion of type 1 when the algorithm is called on the interval I of
the laminar family. To be consistent with the notation of [9], we will call the set of jobs
J (s)(Bq−1) as Jmiddle, the set of jobs J (s)(B0)∪ · · · ∪ J (s)(Bq−2) as Jtop and the jobs in the
levels below these as Jbottom (here we are reindexing the batches such that the first level
starts from interval I).

I Claim 7.

|Jmiddle| ≤
ε

4m |Jtop|.

Proof. Follows from the fact that Bq−1 is a good batch and (3). J

After discarding all the jobs in Jmiddle, the algorithm recursively finds a partial feasible
schedule σ̃ of the jobs in Jbottom. Let J ′ ⊆ Jbottom be the set of jobs scheduled by σ̃. The
algorithm will then attempt to extend σ̃ to a schedule σ of the jobs in Jtop ∪ J ′. We will be
able to do this by discarding only a few jobs from Jtop. More formally:
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I Lemma 8. When the algorithm is called on an interval I, we can extend σ̃ to a feasible
schedule σ of the jobs in (Jtop \ Jdiscard) ∪ J ′ where

|Jdiscard| ≤
ε|I|

4 logn.

We defer the proof of Lemma 8 to the full version of the paper. We show below how
Lemma 8 implies that we discard at most εT/2 jobs in all recursions of type 1.

I Lemma 9. Total number of jobs discarded in all recursions of type 1 during the algorithm
is at most εT/2.

Proof. Using Claim 7 and Lemma 8, if we perform a recursion of type 1 when the algorithm
is called on the interval I, the number of jobs discarded is at most

ε

4m |Jtop|+
ε|I|

4 logn.

Over all recursions of type 1, the first term sums up to at most εn/4m ≤ εT/4. For any
` ≥ 0, the second term sums up to εT

4 logn over all intervals I ∈ I`. As there are at most log n
levels, the second term also sums up to εT/4 over all recursions of type 1. J

4.2.2 Jobs discarded due to recursions of type 2.
Let ε′ = ε/4m. Recall that in a recursion of type 2, we delete all the jobs assigned to levels 0
to (C − (1/ε′)2)k − 1 and retain only the later (1/ε′)2 batches. We show below that in such
a case, at least a (1 − ε′) fraction of the jobs in the top C batches are in the last (1/ε′)2

batches and thus, by deleting the jobs in the first C − (1/ε′)2 batches we only delete an ε′
fraction of the jobs.

I Lemma 10. If case (b) occurs in step 1 of the algorithm, then

C−(1/ε′)2−1∑
i=0

|J (s)(Bi)| ≤ ε′
C−1∑

i=C−(1/ε′)2

|J (s)(Bi)|. (4)

Proof. Let S =
∑C−(1/ε′)2−1
i=0 |J (s)(Bi)|, the left hand side of (4). Case (b) occurs in step 1

of the algorithm if none of the batches Bp for p ∈ [C − (1/ε′)2, C − 1] are good. But then for
p ∈ [C − (1/ε′)2, C − 1], we must have

|J (s)(Bp)| > ε′
p−1∑
i=0
|J (s)(Bi)| ≥ ε′

C−(1/ε′)2−1∑
i=0

|J (s)(Bi)| = ε′S.

This implies (4) as

C−1∑
i=C−(1/ε′)2

|J (s)(Bi)| ≥
C−1∑

i=C−(1/ε′)2

ε′S =
(

1
ε′

)2
ε′S = S

ε′
. J

This implies that when we discard the top C − (1/ε′)2 batches, we are only discarding at
most an ε′ fraction of the jobs in the next (1/ε′)2 batches. We can imagine this as putting a
charge of ε′ on every job in the last (1/ε′)2 batches. Thus the total charge on all the jobs at
the end of the algorithm is an upper bound on the number of jobs discarded in recursions of
type 2 during the algorithm.
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I Lemma 11. For every job j, we put a charge on j at most once.

Proof. Fix a job j and suppose we put a charge on j at least once. When we put a charge
on j for the first time, then in some recursion of type 2 it must have been assigned to the
lowest (1/ε′)2 batches among the top C batches. The algorithm will then recurse on every
interval at level (C − (1/ε′)2)k and thus job j is now in the top (1/ε′)2 batches in one of the
recursive calls.

Let I ∈ I(C−(1/ε′)2)k be such that j is assigned to a sub-interval of I. When we recursively
call the algorithm on I, the first (1/ε′)2 batches already satisfy the property that any interval
I ′ in them has maximum chain length at most δ|I ′|. Thus in step 1 of the algorithm, we will
not condition on any interval in the top (1/ε′)2 batches. This implies that job j always stays
assigned to the top (1/ε′)2 batches; this is because the assignment of a job to an interval can
only change when we condition on an interval at the same level or at a level above that of
the job.

Now suppose we put a charge on j again. Then we must have once again done a recursion
of type 2 within the recursive call to I. But j is assigned to the topmost (1/ε′)2 batches in
this instance and in a recursion of type 2, we delete the topmost C− (1/ε′)2 > (1/ε′)2 batches
and put a charge on only the later (1/ε′)2 batches, which leads to a contradiction. J

I Lemma 12. Number of jobs discarded in recursions of type 2 throughout the algorithm is
at most εT/2.

Proof. Because the number of jobs discarded in recursions of type 2 throughout the algorithm
is at most the total charge on all the jobs and by Lemma 11, each job is charged at most
once, we get that the number of jobs discarded in recursions of type 2 is at most

ε′n = εn/4m ≤ εT/4 ≤ εT/2. J
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Abstract
We study the computational complexity of Arrival, a zero-player game on n-vertex switch
graphs introduced by Dohrau, Gärtner, Kohler, Matoušek, and Welzl. They showed that the
problem of deciding termination of this game is contained in NP ∩ coNP. Karthik C. S. recently
introduced a search variant of Arrival and showed that it is in the complexity class PLS. In
this work, we significantly improve the known upper bounds for both the decision and the search
variants of Arrival.

First, we resolve a question suggested by Dohrau et al. and show that the decision variant
of Arrival is in UP ∩ coUP. Second, we prove that the search variant of Arrival is contained
in CLS. Third, we give a randomized O(1.4143n)-time algorithm to solve both variants.

Our main technical contributions are (a) an efficiently verifiable characterization of the unique
witness for termination of the Arrival game, and (b) an efficient way of sampling from the state
space of the game. We show that the problem of finding the unique witness is contained in
CLS, whereas it was previously conjectured to be FPSPACE-complete. The efficient sampling
procedure yields the first algorithm for the problem that has expected runtime O(cn) with c < 2.
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1 Introduction

Variants of switch graphs have applications and are studied for example in combinatorics
and in automata theory (cf. [11] and the references therein). Dohrau et al. [5] introduced
Arrival, a natural computational problem on switch graphs, which they informally described
as follows:

Suppose that a train is running along a railway network, starting from a designated
origin, with the goal of reaching a designated destination. The network, however, is
of a special nature: every time the train traverses a switch, the switch will change
its position immediately afterwards. Hence, the next time the train traverses the
same switch, the other direction will be taken, so that directions alternate with each
traversal of the switch.
Given a network with origin and destination, what is the complexity of deciding
whether the train, starting at the origin, will eventually reach the destination? [5]

The above rather straightforward question remains unresolved. Dohrau et al. [5] showed
that deciding Arrival is unlikely to be NP-complete (by demonstrating that it is in NP ∩
coNP), but it is currently not known to be efficiently solvable.

To determine whether the train eventually reaches its destination, it is natural to consider
a run profile, i.e., the complete transcript describing how many times the train traversed each
edge. Dohrau et al. [5] presented a natural integer programming interpretation of run profiles
called switching flows, which have the advantage of being trivial to verify. The downside of
switching flows is that they do not guarantee to faithfully represent the number of times each
edge has been traversed; a switching flow might contain superfluous circulations compared
to a valid run profile. Nevertheless, Dohrau et al. [5] proved that the existence of a switching
flow implies that the train reaches its destination, and thus a switching flow constitutes an
NP witness for Arrival.

The coNP membership was shown by an insightful observation about the structure of
switch graphs. Specifically, the train reaches its destination d if and only if it never enters a
node from which there is no directed path to d. The railway network can thus be altered so
that all such vertices point to an additional “dead-end” vertex d̄. The coNP witness is then
simply a switching flow from the origin to the dead-end d̄.

Given that the decision variant of Arrival is in NP ∩ coNP, it is natural to study the
search complexity of Arrival in the context of total search problems with the guaranteed
existence of a solution, i.e., within the complexity class TFNP (which contains the search
analogue of NP ∩ coNP). Total search problems are classified into subclasses of TFNP using
the methodology proposed by Papadimitriou [13] that clusters computational problems
according to the type of argument assuring the existence of a solution. Karthik C. S. [14]
noticed that the search for a switching flow is a prime candidate to fit into the hierarchy
of TFNP problems. He introduced S-Arrival, a search version of Arrival that seeks a
switching flow to either the destination d or the dead-end vertex d, and showed that it is
contained in the complexity class PLS [10] of total problems amenable to local search.
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Fearnley et al. [6] recently studied multiple variants of reachability games on switch graphs
and as one of their results gave a lower bound on the complexity of deciding ARRIVAL.
Specifically, they showed that Arrival is NL-hard.

1.1 Our Results
One of the open problems suggested by Dohrau et al. [5] was whether deciding the termination
of Arrival is contained in UP ∩ coUP (recall that UP is a subclass of NP such that for each
YES-instance there is a unique certificate). Recall that given a railway network with an
origin o and a destination d, the transcript of the route of the train captured in the run
profile from o to d (if it exists) is unique. We show that it is possible to efficiently decide
whether a switching flow corresponds to a run profile, which provides a positive answer to
the above question and places Arrival inside UP ∩ coUP. We similarly also improve the
upper bound on the search complexity of Arrival: We show that S-Arrival is contained
in the complexity class CLS. Daskalakis and Papadimitriou [4] introduced CLS to classify
problems that can be reduced to local search over continuous domains. CLS contains multiple
important search problems such as solving simple stochastic games, finding equilibria in
congestion games, and solving linear complementarity problems on P-matrices. For all of
these problems, as well as for S-Arrival, we currently do not have a polynomial time
algorithm, and they are not known to be complete for some subclass of TFNP.

We establish the containment in CLS through a reduction to End-Of-Metered-Line
(EOML), a total search problem that was recently introduced by Hubáček and Yogev [9]
who also showed that it is in CLS. In EOML we are given a source in a directed graph
with vertices of in-degree and out-degree at most one, and the task is to find a sink or a
source different from the given trivial source. The access to the graph is given locally via
information about the successor and predecessor of each vertex together with its distance
from the trivial source (for the formal definition see Definition 18).

Our result makes it unlikely for S-Arrival to be PLS-hard, which was one of the possibil-
ities suggested by the containment in PLS shown by Karthik C. S. [14]. This is due to known
black-box separations among subclasses of TFNP [12, 2], which suggest that CLS is a proper
subclass of PLS. Note that our reduction from S-Arrival to End-Of-Metered-Line
results in instances with a significantly restricted structure: the End-Of-Metered-Line
graph consists only of a single path and many isolated vertices. We believe that this structure
may in future work be used to show that S-Arrival is contained in FP.

Our reduction from S-Arrival to End-Of-Metered-Line also implies that we can use
an algorithm by Aldous [1] to solve S-Arrival. The algorithm is randomized and runs in
O(2n/2poly(n)) expected time on switch graphs with n vertices. This is the first algorithm
with expected runtime O(cn) for c < 2. (A trivial O(2npoly(n)) time algorithm can be
obtained by following the path of the train through the network.) Aldous’ algorithm, in
fact, solves any problem in PLS. It samples a large number of candidate solutions and then
performs a local search from the best sampled solution. The advantage of our reduction
is that the resulting search space for End-Of-Metered-Line is small enough to make
Aldous’ algorithm useful, unlike in the previous reduction by Karthik C. S. [14] that showed
containment in PLS.

Fearnley et al. [7] recently gave a reduction from P -matrix linear complementarity
problems (PLCP) to End-Of-Metered-Line. As in our case for Arrival, this implies
that Aldous’ algorithm can be used to solve PLCP. In fact this gives the fastest known
randomized algorithm for PLCP, running in expected time O(2n/2poly(n)) for input matrices
of dimension n × n. Fearnley et al. do not make this observation themselves, but it is
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straightforward to check that their reduction also gives an efficient representation of the
search space. Although Aldous’ algorithm is very simple, it non-trivially improves the best
runtime of algorithms for multiple problems. We believe that this way of applying Aldous’
algorithm is a powerful technique that will produce additional results in the future.

1.2 Technical remarks
Recall that a switching flow is a run profile with additional superfluous circulations compared
to the valid run profile. Our main technical observation is a characterization of switching
flows that correspond to the valid run profile. Given a switch graph G and a switching
flow f , we consider the subgraph G∗ induced over the railway network by the “last-used”
edges; for every vertex v, we include in G∗ only the outgoing edge that was, according to the
switching flow, used by the train last time it left from v. Note that such last-used edges can
be efficiently identified simply by considering the parity of the total number of visits at every
vertex. When f is a valid run profile, then it is straightforward to see that the subgraph G∗
is acyclic. We show that this property is in fact a characterization, i.e., any switching flow
for which the induced graph G∗ is acyclic must be a run profile. Given that this property
is easy to check, we can use it to efficiently verify run profiles as UP witnesses. (The coUP
witness is then a run profile to the dead-end at d̄.)

For our reduction from S-Arrival to End-Of-Metered-Line we extend the above
observation to partial switching flows that are not required to end at the destination. The
vertices of the End-Of-Metered-Line graph created by our reduction correspond to partial
switching flows in the S-Arrival instance. The directed edges connect partial run profiles
to their natural successors and predecessors, i.e., the partial run extended or shortened by a
single step of the train. Any switching flow that does not correspond to some partial run
profile is an isolated vertex in the End-Of-Metered-Line graph. Finally, the trivial source
is the empty switching flow, and the distance from it can be computed for any partial run
simply as the number of steps taken by the train so far. Given that there is only a single path
in the resulting End-Of-Metered-Line graph and that its sink is exactly the complete
run, we get that the unique solution to the End-Of-Metered-Line instance gives us a
solution for the original instance of S-Arrival.

To make the reduction efficiently computable, we need to address the verification of
partial run profiles. As it turns out, partial run profiles can be efficiently verified using the
graph G∗, in a similar way to complete run profiles discussed above. The main difference is
that the graph of last-used edges for a partial run profile can contain a cycle, as the train
might visit the same vertex multiple times on its route to the destination. However, we show
that there is at most one cycle in G∗, which always contains the current end-vertex of the
partial run. The complete characterization of partial run profiles (which covers also full run
profiles) is given in Lemma 9, and the formal reduction is described in Section 4.2.1.

Finally, we show that every partial run profile is uniquely determined by its last-used
edges and its end-vertex. This limits the size of the search space for the EOML instances
that are produced by our reduction, which allows us to efficiently use Aldous’ algorithm [1]
to solve Arrival and S-Arrival.

2 Preliminaries

In the rest of the paper we use the following standard notation. For k ∈ N, we denote by [k]
the set {1, . . . , k}. For a graph G = (V,E), we reserve n = |V | for the number of vertices.
The basic object that we study are switch graphs, as defined by Dohrau et al. [5].
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Algorithm 1: Run.
Input : a switch graph G = (V, E, s0, s1) and two vertices o, d ∈ V

Output : for each edge e ∈ E, the number of times the train traversed e

1 v ← o // position of the train
2 ∀u ∈ V set s_curr[u]← s0(u) and s_next[u]← s1(u)
3 ∀e ∈ E set r[e]← 0 // initialize the run profile
4 step← 0 while v 6= d do
5 (v, w)← s_curr[v] // compute the next vertex
6 r[s_curr[v]]++ // update the run profile
7 swap(s_curr[v], s_next[v])
8 v ← w // move the train
9 step← step + 1

10 return r

I Definition 1 (switch graph). A switch graph is a tuple G = (V,E, s0, s1) where s0, s1 : V →
V and E = {(v, s0(v)), (v, s1(v)) | ∀v ∈ V }.5 In order to avoid cumbersome notation, we
slightly overload the use of s0, s1 and treat both as functions from vertices to edges; that is
by sb(v) we denote the edge (v, sb(v)) for b ∈ {0, 1}. We use this convention throughout the
paper unless stated otherwise.

The Arrival problem was formally defined by Dohrau et al. [5] as follows.

I Definition 2 (Arrival [5]). Given a switch graph G = (V,E, s0, s1) and two vertices o, d ∈ V ,
the Arrival problem is to decide whether the algorithm Run (Algorithm 1) terminates, i.e.,
whether the train reaches the destination d starting from the origin o.

To simplify theorem statements and our proofs, we assume without loss of generality that
both s0(d) and s1(d) end in d.

A natural witness for termination of the Run procedure considered in previous work
(e.g. [5]) is a switching flow. We extend the definition of a switching flow to allow for partial
switching flows that do not necessarily end in the desired destination d.

I Definition 3 ((partial) switching flow, end-vertex). Let G = (V,E, s0, s1) be a switch graph.
For o, d ∈ V , we say that f ∈ N2n is a switching flow from o to d if the following two
conditions hold.
Kirchhoff’s Law (flow conservation):

∀v ∈ V :
∑

e=(u,v)∈E

fe −
∑

e=(v,w)∈E

fe = [v = d]− [v = o] ,

where [·] is the indicator variable of the event in brackets.
Parity Condition:

∀v ∈ V : fs1(v) ≤ fs0(v) ≤ fs1(v) + 1 .

Kirchoff’s law means that o emits one unit of flow, d absorbs one unit of flow, and at all
other vertices, in-flow equals out-flow. If d = o, we have a circulation.

Given an instance (G = (V,E, s0, s1), o, d) of Arrival, we say that f is a switching flow
if it is a switching flow from o to d. A vector f ∈ N2n is called a partial switching flow iff f

is a switching flow from o to v for some vertex v ∈ V . We say that v is the end-vertex of the
partial switching flow. We denote the end-vertex of f by vf .

5 Whenever s0(v) = s1(v) for some vertex v ∈ V we depict them as multiple edges in figures.
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Figure 1 An example of a switch graph G and cycles in the graphs G∗ corresponding to partial
run profiles after 3, 4, and 5 steps of the train (respectively from left to right). We use hatching to
highlight the current end-vertex.

I Definition 4 ((partial) run profile). A run profile is the switching flow r returned by the
algorithm Run (Algorithm 1) upon termination. A partial run profile is a partial switching
flow corresponding to some intermediate value of r in the algorithm Run (Algorithm 1).

I Observation 5 (Dohrau et al. [5, Observation 1]). Each (partial) run profile is a (partial)
switching flow.

I Observation 6. An end-vertex vf of a switching flow f is computable in polynomial time.

Proof. It is sufficient to determine which vertex has a net in-flow of one. J

3 The Complexity of Run Profile Verification

Dohrau et al. [5] proved that it is possible to efficiently verify whether a given vector is a
switching flow. In this section we show that we can also efficiently verify whether a switching
flow is a run profile. Combining this with the results by Dohrau et al. [5], we prove that the
decision problem of Arrival is in UP ∩ coUP (see Section 4.1) and that the search problem
of Arrival lies in the complexity class CLS (see Section 4.2). As outlined in Section 1.2,
our approach for verification of run profiles is based on finding a cycle in a natural subgraph
of the railway network G defined below. Specifically, we consider the subgraph of G that
contains only the last visited outgoing edge of each vertex, i.e., every vertex has out-degree
at most one.

I Definition 7 (G∗f ). Let (G = (V,E, s0, s1), o, d) be an instance of Arrival, and let
f ∈ N2n be a partial switching flow. We define a graph G∗f = (V,E∗) as follows

E∗ =
{
s0(v) : ∀v ∈ V s.t. fs0(v) 6= fs1(v)

}
∪{

s1(v) : ∀v ∈ V s.t. fs0(v) = fs1(v) > 0
}
.

I Observation 8. Given a partial switching flow f , the graph G∗f can be computed in
polynomial time.

I Lemma 9. A partial switching flow f is a partial run profile iff fs0(d) = fs1(d) = 0 and
one of the following two conditions holds:
1. There exists no cycle in G∗f .
2. There exists exactly one cycle in G∗f and this cycle contains the end-vertex of f .

The main idea of the proof is based on the following fact: a switching flow f which is not
a run profile must contain a circulation (as shown by Dohrau et al. [5]). Let f be a switching
flow that we get from a run profile r by adding some flows on cycles, then the last added
circulation (the last added cycle) must form a cycle in the corresponding graph G∗f . On the
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other hand, a cycle containing the end-vertex is formed in G∗f whenever the train arrives
to a previously visited vertex. An illustration of the graph G∗ at consecutive steps of the
algorithm Run, with the corresponding evolution of the end-vertices and cycles, is given in
Figure 1.

The complete proof of Lemma 9 is provided in the full version [8].

I Lemma 10. It is possible to verify in polynomial time whether a vector is a run profile.

Proof. We can check that a vector f is a switching flow in polynomial time due to
Dohrau et al. [5]. The construction of the graph G∗f is polynomial by Observation 8.
Lemma 9 gives us a polynomial time procedure to check if f is also a run profile as it is
sufficient to check if G∗f contains more than one cycle or whether it has a cycle not containing
the end-vertex. This check can be done by a simple modification of the standard depth-first
search on G∗f . J

4 The Computational Complexity of Arrival

In this section we use our efficient structural characterization of run profiles from Lemma 9 to
improve the known results about the computational complexity of Arrival. Specifically, we
show that the decision version of Arrival is in UP ∩ coUP and the search version is in CLS.

4.1 The Decision Complexity of Arrival
Our upper bound on the decision complexity of Arrival follows directly from the work of
Dohrau et al. [5] by application of Lemma 10.

I Theorem 11. Arrival is in UP ∩ coUP.

Proof. The unique UP certificate for a YES-instance of Arrival is the run profile r returned
by the algorithm Run. Clearly, for each YES-instance there exists only one such vector r

and r does not exist for NO-instances. By Lemma 10, we can determine whether a candidate
switching flow r is a run profile in polynomial time.

The coUP membership follows directly from the reduction of NO-instances of Arrival
to YES-instances of Arrival as suggested by Dohrau et al. [5]. The reduction adds to the
original graph G a new vertex d̄, and for each vertex v ∈ V such that there is no directed path
from v to the destination d, the edges s0(v) and s1(v) are replaced with edges (v, d̄). This
alteration of the original switch graph can be performed in polynomial time. Dohrau et al. [5]
proved that the train eventually arrives either at d or d̄. The unique coUP witness for
Arrival is then a run profile from o to the dead-end d. J

4.2 The Search Complexity of Arrival
The search complexity of Arrival was first studied by Karthik C. S. [14], who introduced a
total search variant of Arrival as follows.

I Definition 12 (S-Arrival [14]). Given a switch graph G = (V,E, s0, s1) and a pair of
vertices o, d ∈ V , define a graph G′ as follows:
1. Add a new vertex d̄.
2. For each vertex v such that there is no directed path from v to d, replace edges s0(v) and

s1(v) with edges (v, d̄).
3. Edges s0(d), s1(d), s0(d̄), and s1(d̄) are self-loops.
The problem S-Arrival is to find a switching flow in G′ either from o to d or from o to d̄.
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The above Definition 12 is motivated by the proof of membership in NP ∩ coNP by
Dohrau et al. [5]. Namely, in order to ensure that a solution for S-Arrival always exists, it
was necessary to add to the switch graph G the dead-end vertex d̄.

Note that our method for efficient verification of run profiles from Lemma 10 allows
us to define a more natural version of S-Arrival directly on the graph G without any
modifications. Instead of relying on the dead-end vertices, we can use the fact that a partial
run profile with an edge that was visited for 2n + 1 times is an efficiently verifiable witness
for NO-instances of Arrival.

I Definition 13 (S-Arrival - simplified). Given a switch graph G = (V,E, s0, s1) and a
pair of vertices o, d ∈ V , the S-Arrival problem asks us to find one of the following:
1. a run profile r ∈ N[2n] from o to d, or
2. a run profile r ∈ N[2n] from o to any v ∈ V such that

r(u,v) = 2n + 1, where u is the last vertex visited by the train before it reached the
end-vertex v of r, and
re′ ≤ 2n for all e′ 6= (u, v).

The correspondence of the above version of S-Arrival to the original one follows formally
from the following lemma.

I Lemma 14 (Karthik C. S. [14, Lemma 1]). For any G = (V,E, s0, s1) and a pair of vertices
o, d ∈ V . Let r be a run profile (thus vr = d), then re ≤ 2n for each edge e ∈ E.

To argue membership of our version of S-Arrival in TFNP, we need to show that both
types of solutions in Definition 13 can be verified efficiently. Solutions of the first type are
simply run profiles, and we have already shown that they can be verified in polynomial
time in Lemma 10. In order to be able to verify solutions of the second type, it remains to
argue that for any partial run profile, the immediate predecessor of its end-vertex can be
determined in polynomial time.

I Lemma 15. Let r be a partial run profile after R ≥ 1 steps and u be the vertex visited by
the train at step R− 1. Then
1. either u is the unique predecessor of vr in G∗r, or
2. there is a single cycle in G∗r containing vr and u is the predecessor of vr on this cycle.

Proof. First, note that if u is the end-vertex one step before vr becomes the end-vertex
then G∗r must contain the edge (u, vr), as it is the last edge used by the train to leave u.
Thus, in the first case (when vr has only one predecessor in G∗r) the immediate predecessor
of vr in the partial run r is unambiguously given by the only predecessor of vr in G∗r.

For the second case we show that G∗r contains a directed cycle C (containing the end-
vertex vr) and u is unambiguously given by the predecessor of vr in G∗r that lies on C. We
find the cycle C by constructing the longest possible directed path c0 = vr, c1, . . . , ck in G∗r
without repeating vertices. Note that it cannot happen that ck has no outgoing edge in G∗r.
Otherwise, r would have two different end-vertices vr and ck (as having no outgoing edge
in G∗r means that the train has never left this vertex). By Lemma 9, the directed edge from
ck has to end in the end-vertex vr, or else there would be a cycle in G∗r that avoids vr.

The algorithm Run takes R steps to generate the run profile r, i.e.,
∑

e∈E re = R. Let
tr : V → {0, 1, . . . , R − 1} be the function returning the last step after which a vertex was
left by the train in the partial run profile r. Observe that, except for the edge through which
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the train arrived to vr,6 it holds for all edges (x, y) ∈ G∗r that tr(x) < tr(x) + 1 ≤ tr(y).
However, the above inequality cannot hold for all edges on the cycle C, and thus C has to
contain the last used edge and the train had to be in ck at step R− 1. J

I Observation 16. S-Arrival from Definition 12 reduces to simplified S-Arrival from
Definition 13.

Proof. Given a solution of the second type of the simplified S-Arrival, i.e., the long run
profile, we can get a run profile r to d̄ in polynomial time. For each vertex u we can determine
whether there is an oriented path from it to the destination d, and if there is no such path
we set rs0(v) = rs1(v) = 0. We compute the end vertex vr and set s0(vr) = 1. All other
components of r are set according to the original solution of the simplified S-Arrival. J

4.2.1 S-Arrival is in CLS
Karthik C. S. [14] showed that S-Arrival is contained in the class PLS. We improve this
result and prove that S-Arrival is in fact contained in CLS. As a by-product, we also
obtain a randomized algorithm for S-Arrival with runtime O(1.4143n) which is the first
algorithm for this problem with expected runtime O(cn) for c < 2.

The class of total search problems that are amenable to “continuous” local search was
defined by Daskalakis and Papadimitriou [4] using the following canonical problem.

I Definition 17 (CLS [4]). CLS is the class of total search problems reducible to the following
problem called CLOpt.

Given two arithmetic circuits f : [0, 1]3 → [0, 1]3 and p : [0, 1]3 → [0, 1], and two real
constants ε, λ > 0, find either a point x ∈ [0, 1]3 such that p(f(x)) ≤ p(x) + ε or a pair of
points x, x′ ∈ [0, 1]3 certifying that either p or f is not λ-Lipschitz.

Instead of working with CLOpt, we use as a gateway for our reduction a problem called
End-Of-Metered-Line (EOML) which was recently defined and shown to lie in CLS by
Hubáček and Yogev [9].

I Definition 18 (End-Of-Metered-Line). Given circuits S, P : {0, 1}m → {0, 1}m, and
V : {0, 1}m → [2m] ∪ {0} such that P (0m) = 0m 6= S(0m) and V (0m) = 1, find a string
x ∈ {0, 1}m satisfying one of the following:
1. either P (S(x)) 6= x or S(P (x)) 6= x 6= 0m,
2. x 6= 0m and V (x) = 1,
3. either V (x) > 0 and V (S(x))− V (x) 6= 1 or V (x) > 1 and V (x)− V (P (x)) 6= 1.

The circuits S, P from Definition 18 implicitly represent a directed graph with vertices
labelled by binary strings of length m, where each vertex has both out-degree and in-degree at
most one. The circuit P represents the predecessor and the circuit S represents the successor
of a given vertex as follows: there is an edge from a vertex u to a vertex v iff S(u) = v

and P (v) = u. Finally, the circuit V can be thought of as an odometer that returns the
distance from the trivial source at 0m or value 0 for vertices lying off the path starting at the
trivial source. The task in End-Of-Metered-Line is to find a sink or a source different
from the trivial one at 0m (the solutions of the second and of the third type in Definition 18
ensure that V behaves as explained above).

We are now ready to present our reduction from S-Arrival to End-Of-Metered-Line.

6 The inequality does not hold for vr , since t(vr) has not been updated to the time R yet.
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I Theorem 19. S-Arrival can be reduced to End-Of-Metered-Line, and thus it is
contained in CLS.

Proof. Let (G, o, d) be an instance of S-Arrival. We construct an instance of EOML that
contains a vertex for each candidate partial switching flow over the switch graph G, i.e., for
each vector with 2n coordinates and values from [2n + 1] ∪ {0}. The EOML instance will
comprise of a directed path starting at the initial (empty) partial run profile 02n. Each vertex
on the path has an outgoing edge to its consecutive partial run profile. Any vertex that does
not correspond to a partial run profile becomes a self-loop. Finally, the valuation circuit V
returns either the number of steps in the corresponding partial run profile or the zero value if
the vertex does not correspond to a partial run profile. Formal description of the circuits S, P ,
and V defining the above EOML graph is provided in the full version [8]. A polynomial bound
on the size of the circuits S, P , and V follows directly from Observation 8 (computing G∗),
Lemma 10 (testing whether a given vector is a partial run profile), Observation 6 (computing
the end-vertex), and Lemma 15 (computing the previous position of the train).

Lemma 9 and Lemma 15 imply that the EOML graph indeed consists of a single directed
path and isolated vertices with self-loops. By the construction of V (it outputs the number
of steps of the train), there are no solutions of the second or the third type (cf. Definition 18).
Thus, the EOML instance has a unique solution which has to correspond to a run profile in
the original S-Arrival instance or to a partial run profile certifying that the train ran for
too long (see the second type of solution in Definition 13). J

5 An O(1.4143n) Algorithm for S-Arrival

Consider any problem that can be put into the complexity class PLS, i.e., can be reduced to
the canonical PLS-complete problem LocalOpt (see also [14, Definition 1]):

I Definition 20 (LocalOpt). Given circuits S : {0, 1}m → {0, 1}m, and V : {0, 1}m →
[2m] ∪ {0}, find a string x ∈ {0, 1}m such that V (x) ≥ V (S(x)).

Aldous [1] introduced the following simple algorithm that can be used to solve LocalOpt:
pick 2m/2 binary strings uniformly and independently at random from {0, 1}m, and let xmax
be the selected string that maximizes the value V (x). Starting from x = xmax, repeatedly
move to the successor S(x), until V (x) ≥ V (S(x)). He showed that the expected number
of circuit evaluations performed by the algorithm before finding a local optimum is at
most O(m2m/2). Note that in the case of EOML it is possible that all sampled solutions are
isolated vertices in the EOML graph. In this case the 0m string has the best known value,
and the search is started from there.

In the case of S-Arrival, the PLS membership proof of Karthik C. S. constructs the
circuits for successor and valuation with O(n2) input bits [14, Theorem 2]; the EOML
instance constructed in Theorem 19 – proving CLS and in particular PLS membership – yields
circuits of O(n2) input bits as well. This number is too high to yield a randomized algorithm
of non-trivial runtime.

This number of O(n2) input bits comes from the obvious encoding of a partial run profile:
each of the 2n edges has a nonnegative integer flow value of at most 2n + 1. But in fact,
a terminating run has at most n2n partial run profiles, as no vertex-state pair (v, s_curr)
can repeat in Algorithm 1. In other words, a partial run profile f is determined by its
end-vertex vf as well as the positions of all switches at the time of the corresponding visit of
vf . This means that a partial run profile can be encoded with n+ log2 n bits, and if we had
a PLS or CLS membership proof of S-Arrival with circuits of this many inputs only, we
could solve S-Arrival in time O(poly(n)× 2n/2).
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Next, we show that such membership proofs indeed exist. For this, we show that the
above encoding (of a partial run profile by an end-vertex and the positions of all switches)
can be efficiently decoded: given an end-vertex and the positions of all switches, we can
efficiently compute a unique candidate for a corresponding partial run profile. The resulting
encoding and decoding circuits can be composed with the ones in Theorem 19 to obtain
PLS and CLS membership proofs with circuits of n + log2 n input bits, and hence yield a
randomized algorithm of runtime O(poly(n)× 2n/2) = O(1.4143n), as explained above.

5.1 Decoding Partial Run Profiles
We work with instances of S-Arrival as in Definition 12, i.e., there is always a run profile
either to d or to d̄. This is without loss of generality [5, 14].

I Definition 21. Let G = (V,E, s0, s1) be a switch graph, and let o, d, d̄ ∈ V be as in
Definition 12. The parity of a run profile f ∈ N2n is the vector pf ∈ {0, 1}n−2 defined by
pv = fs0(v) − fs1(v) ∈ {0, 1}, v ∈ V \ {d, d̄}.

Note that we do not care about (the parity of) the switches at d and d̄, since the algorithm
stops as soon as d or d̄ is reached.

Here is the main result of this section. For a given target vertex t ∈ V and given parity p,
there is exactly one candidate for a partial run profile from o to t with parity p. Moreover,
this candidate can be computed by solving a system of linear equations.

I Lemma 22. Let (G, o, d, d̄) be an instance of S-Arrival, let t ∈ V and p ∈ {0, 1}n−2.
Then there exists exactly one vector f ∈ R2(n−2) such that the following conditions hold.
Kirchhoff’s Law (flow conservation):

∀v ∈ V \ {d, d̄} :
∑

e=(u,v)∈E

fe −
∑

e=(v,w)∈E

fe = [v = t]− [v = o] (1)

where [·] is the indicator variable of the event in brackets.
Parity Condition: pf = p, i.e.,

∀v ∈ V \ {d, d̄} : fs0(v) − fs1(v) = pv. (2)

Before we prove Lemma 22, let us draw a crucial conclusion: The unique partial run profile
f ∈ N2n with end-vertex t and parity p (if such f exists – note that we are only guaranteed
a real-valued f) necessarily satisfies (1) and (2). Hence, we may use Lemma 22 to get the
entries fe for all edges except the ones leaving d and d̄. Only if all the entries are nonnegative
and integral and satisfy (1) at d and d̄ (under fs0(d) = fs1(d) = fs0(d̄) = fs1(d̄) = 0) do we
have a candidate for a partial run profile. Hence, there is a unique candidate, and given t
and a p, this candidate can be efficiently found.

Proof of Lemma 22. Set m = 2(n− 2), V ′ = V \ {d, d̄} and let A ∈ Zm×m be the coefficient
matrix of the linear system (1), (2) in the variables fe. We show that A is invertible.

Let q ∈ Rm be the vector such that q(v,si(v)) = −1 if si(v) = d and q(v,si(v)) = 0
otherwise. We show that q can be expressed as a linear combination of the rows of A in a
unique way, from which invertibility of A and the statement of the lemma follow.

Let us use coefficients λv for each v ∈ V ′ for the rows corresponding to the flow con-
servation constraints (1), and coefficients µv for each v ∈ V ′ for the rows corresponding to
the parity constraints (2). The column of A corresponding to variable f (v,si(v)), has a −1
entry from the flow conservation constraint at v, and a 1 entry (if i = 0) or a −1 entry (if
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i = 1) from the parity constraint at v. If si(v) 6= d, d̄, there is another 1 entry from the flow
conservation constraint at si(v). All other entries are zero. The equations that express q as
a linear combination of rows of A are therefore the following.

∀v ∈ V ′ : −λv + µv + λs0(v) · [s0(v) 6= d, d̄] = q(v,s0(v)),

∀v ∈ V ′ : −λv − µv + λs1(v) · [s1(v) 6= d, d̄] = q(v,s1(v)).

Or equivalently:

λv − µv =


λs0(v), if s0(v) 6= d, d̄

1, if s0(v) = d

0, if s0(v) = d̄

v ∈ V ′, (3)

λv + µv =


λs1(v), if s1(v) 6= d, d̄

1, if s1(v) = d

0, if s1(v) = d̄

v ∈ V ′. (4)

We now show that there are unique coefficients λv, µv satisfying these equations. Let us
define λd = 1 and λd̄ = 0. Adding corresponding equations of (3) and (4) then yields

λd = 1, λd̄ = 0, λv = 1
2
(
λs0(v) + λs1(v)

)
, ∀v ∈ V ′.

These are exactly the equations for the vertex values in a stoppping simple stochastic game on
the graph G with only average or degree-1 vertices and sinks d and d̄ (stopping means that
d or d̄ are reachable from everywhere which is exactly what we require in a switch graph).
Condon proved that these values are unique [3]. This also determines the µv’s uniquely. J

6 Conclusion and Open Problems

We showed that candidate run profiles in Arrival can be efficiently verified due to their
structure. This allowed us to improve the known upper bounds for the search complexity of
Arrival and S-Arrival. Here we mention some natural questions arising from our work.

Are there any non-trivial graph properties that make Arrival or S-Arrival efficiently
solvable? Given that we currently do not know of any polynomial time algorithm for
Arrival on general switch graphs, we could study the complexity of Arrival on some
interesting restricted classes of switch graphs.
Are there other natural problems in UP ∩ coUP such that their corresponding search
variant is reducible to EOML? Does End-Of-Metered-Line capture the computational
complexity of any TFNP problem with unique solution? Fearnley et al. [7] recently gave
a reduction from the PLCP to EOML. Given that Arrival and PLCP can be both
reduced to EOML, yet another intriguing question is whether there exists any reduction
between the two.
As mentioned in Section 1.1, the reduction from PLCP to EOML by Fearnley et al. [7]
implies that PLCP can be solved faster with Aldous’ algorithm [1] than with any other
known algorithm. It would be interesting to see whether Aldous’ algorithm can similarly
give improved runtimes for other problems than Arrival and PLCP.
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Abstract
We study the problem of computing shortest paths in so-called dense distance graphs, a basic
building block for designing efficient planar graph algorithms. Let G be a plane graph with a
distinguished set ∂G of boundary vertices lying on a constant number of faces of G. A distance
clique of G is a complete graph on ∂G encoding all-pairs distances between these vertices. A dense
distance graph is a union of possibly many unrelated distance cliques.

Fakcharoenphol and Rao [7] proposed an efficient implementation of Dijkstra’s algorithm
(later called FR-Dijkstra) computing single-source shortest paths in a dense distance graph. Their
algorithm spends O(b log2 n) time per distance clique with b vertices, even though a clique has
b2 edges. Here, n is the total number of vertices of the dense distance graph. The invention of
FR-Dijkstra was instrumental in obtaining such results for planar graphs as nearly-linear time
algorithms for multiple-source-multiple-sink maximum flow and dynamic distance oracles with
sublinear update and query bounds.

At the heart of FR-Dijkstra lies a data structure updating distance labels and extracting
minimum labeled vertices in O(log2 n) amortized time per vertex. We show an improved data
structure with O

(
log2 n

log2 logn

)
amortized bounds. This is the first improvement over the data

structure of Fakcharoenphol and Rao in more than 15 years. It yields improved bounds for
all problems on planar graphs, for which computing shortest paths in dense distance graphs is
currently a bottleneck.
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1 Introduction

Finding a truly subquadratic, strongly polynomial algorithm for many of the most basic
real-weighted graph problems like the single-source shortest paths or the maximum flow on
sparse digraphs seems to be very difficult. However, the situation changes significantly if we
restrict ourselves to planar digraphs, which constitute an important class of sparse graphs.
In this regime the ultimate goal is to obtain linear or almost linear time complexity.

In their breakthrough paper, Fakcharoenphol and Rao gave the first nearly-linear time
algorithm for single-source shortest paths in real-weighted planar graphs [7]. Their algorithm
had O(n log3 n) time complexity. Although their upper bound was eventually improved
to O

(
n log2 n

log logn

)
by Mozes and Wulff-Nilsen [22], the techniques introduced in [7] proved

very useful in obtaining not only nearly-linear time algorithms for other static planar graph
problems, but also first sublinear dynamic algorithms for shortest paths and maximum flows.

A major contribution of Fakcharoenphol and Rao was introducing the general concept
of a dense distance graph. Let G be a real-weighted plane digraph and let ∂G denote some
subset of its vertices, called boundary vertices, such that there exist ` = O(1) faces f1, . . . , f`
of G satisfying ∂G ⊆ V (f1) ∪ . . . V (f`). Such graphs with a topologically nice boundary
typically emerge after decomposing a plane graph using a cycle separator. For example, by
using a cycle separator of Miller [19], one can decompose any n-vertex triangulated plane
graph H into two subgraphs Hin and Hout such that (i) Hin ∪Hout = H, (ii) Hin and Hout
are smaller than H by a constant factor, (iii) the set ∂Hin = ∂Hout = V (Hin) ∩ V (Hout) has
size O(

√
n) and lies both on a single face of Hin and on a single face of Hout.

We define a distance clique of G, denoted DC(G), to be a complete graph on ∂G such
that the weight of an edge uv is equal to the length of the shortest path from u to v in G.
A dense distance graph is a union of possibly many unrelated distance cliques.

We note that such a definition of a dense distance graph (also used in [23]) is a bit more
general than that of Fakcharoenphol and Rao [7], who defined it only with respect to a
recursive decomposition of G using cycle-separators. In fact, subsequently dense distance
graphs have been also defined a bit differently with respect to so-called r-divisions [13], and
even the two sides of a cycle-separator [15] (i.e., DC(Hin)∪DC(Hout) in the above example).
The definition we assume in this paper captures all these cases.

Suppose we are given q distance cliques DC(G1), . . . ,DC(Gq) explicitly. Let DDG =⋃q
i=1 DC(Gi), V = ∂G1 ∪ . . . ∪ ∂Gq and n = |V |. Clearly, DDG has

∑q
i=1 |∂Gi|2 edges in

total. Fakcharoenphol and Rao showed how to compute single-source shortest paths in such
graph DDG with non-negative edge weights in only O

(∑
i |∂Gi| log2 n

)
time, i.e., for each

DC(Gi) one only needs to spend time nearly-linear in the number of vertices of DC(Gi), as
opposed to its number of edges, i.e., |∂Gi|2. Their method is often called the FR-Dijkstra,
as it follows the overall approach of Dijkstra’s algorithm. Whereas Dijkstra’s algorithm
uses a priority queue to maintain its distance labels and extract a non-visited vertex with
minimum label, a much more sophisticated data structure is used in FR-Dijkstra. This
data structure is capable of relaxing many edges in a single step, by leveraging the fact that
certain submatrices of the adjacency matrix of a distance clique are Monge matrices.

Applications of Dense Distance Graphs and FR-Dijkstra. Fakcharoenphol and Rao origi-
nally employed FR-Dijkstra to construct their dense distance graph recursively and answer
distance queries on it. However, the applications of FR-Dijkstra proved much broader and thus
it has become an important planar graph primitive used to obtain numerous breakthrough
results in recent years. We briefly cover the most important of these results below.
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The dense distance graphs and FR-Dijksta have been used to break the long-standing
O(n log n) barrier for computing minimal s, t-cuts [12] in undirected planar graphs and
global min-cuts in both undirected [17] and directed [20] planar graphs. Borradaile et al. [5]
developed an oracle answering arbitrary min s, t-cut queries in an weighted undirected
planar graph after only near-linear preprocessing. This result has been later generalized to
bounded-genus graphs [3], thus proving the usefulness of FR-Dijkstra in more general graph
classes.

The most sophisticated applications of FR-Dijkstra are probably those related to com-
puting maximum flow in directed planar graphs. Borradaile et al. [4] gave a nearly-linear
time max-flow algorithm for the case of multiple source and multiple sinks and maximum
bipartite matching. Later, Łącki et al. [18] gave a nearly-linear time algorithm computing
the maximum flow values between a specified source and all possible sinks.

Most recently, Asathulla et al. [2] used FR-Dijkstra to break through the O(n3/2) barrier
for minimum-cost bipartite weighted matching with integer weights. Cabello [6] showed the
first truly subquadratic algorithm for computing a diameter of a weighted planar graph.
Even though it mainly builds on a new concept of additively weighted Voronoi diagrams
for planar graphs, dense distance graphs and FR-Dijkstra are still used extensively in his
work. The diameter algorithm was later improved by Gawrychowski et al. [9] to run in
O(n5/3 polylog n). Currently, [9] does not require FR-Dijkstra, but it seems that using it
would be again required if one gave a more efficient Voronoi diagrams construction algorithm
for planar graphs. Last but not least, FR-Dijkstra has been instrumental to obtaining
virtually all exact dynamic algorithms for shortest paths, maximum flows and minimum cuts
in planar graphs, with sublinear update/query bounds [7, 12, 13, 14, 17].

Significance. Dense distance graphs are pivotal in designing efficient planar graph algo-
rithms, and therefore obtaining fine-grained bounds for computing and manipulating them is
an important direction. Although a better algorithm (in comparison to the recursive method
of [7]) running in O((|V |+ |∂G|2) log n) time has been proposed for computing a distance
clique [14], improving the FR-Dijkstra itself proved very challenging and no progress over [7]
has been made so far in the most general setting that we study.

Related Work. For the important case of a dense distance graph over an r-division, i.e.,
when the individual graphs Gi are the pieces of an r-division with few holes of a single planar
graph (see e.g., [16]), Mozes et al. [21] gave an algorithm for computing single source shortest
paths in O

(
n√
r

log2 r
)
time. The original FR-Dijkstra runs in O

(
n√
r

log n log r
)
time in

that case. Hence, [21] does not improve over it in the case of r = polyn, which emerges in
many important applications, e.g., [2, 3, 4, 13, 18]. However, dense distance graphs over
r-divisions with r = polylog(n) have also found applications, most notably in O(n log log n)
algorithms for minimum cuts [12, 17, 20]. Computing shortest paths in dense distance graphs
is not a bottleneck in those algorithms, though. For other applications of dense distance
graphs over r-divisions with small r, consult [21].

Our Contribution. In this paper we show an algorithm for computing single-source shortest
paths in a DDG in O

(∑q
i=1 |∂(Gi)| log2 n

log2 logn

)
time, which is asymptotically faster than

FR-Dijkstra in all cases. Specifically, for a dense distance graph defined over an r-division,
the algorithm runs in O

(
n√
r

log2 n
log2 logn

)
time.

We treat the problem of computing shortest paths in DDG from a purely data-structural
perspective. At a high level, instead of developing an entirely new shortest paths algorithm,
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we propose a new data structure for maintaining distance labels and extracting minimum
labeled vertices in amortized O

(
log2 n

log2 logn

)
time, as opposed to O(log2 n) time in [7].

In [7], a distance clique is first partitioned into square Monge matrices, each handling a
subset of its edges. For any such matrix, a separate data structure is used for relaxing the cor-
responding edges and extracting the labels possibly induced by these edge relaxations. Recall
that in the case of Dijkstra’s algorithm, the improvement from O(m log n) to O(m+ n log n)
is obtained by noticing that relaxing edges is cheaper than extracting minimum labeled
vertices. Consequently, one can use a Fibonacci heap [8] in place of a binary heap. We show
that in the case of the data structure originally used in [7] for handling Monge matrices,
the situation is in a sense the opposite: label extractions can be made cheaper than edge
relaxations. We make use of this fact by proposing a biased scheme of partitioning distance
cliques into rectangular (as opposed to square) Monge matrices, different than in [7]. Whereas
in [7], the partition follows from a very natural idea of splitting face boundary into halves,
our partition is tailored to exploit this asymmetry between the cost of processing a row and
the cost of processing a column.

Our result implies an immediate improvement by a factor of O(log2 log n) in the time
complexity for a number of planar digraph problems such as multiple-source multiple-sink
maximum flows, maximum bipartite matching [4], single-source all-sinks maximum flows [18],
for which the best known time bounds were O(n log3 n), i.e., already nearly-linear. It also
yields polylog-logarithmic speed-ups to both preprocessing and query/update algorithms
of dynamic algorithms for shortest paths and max-flows [12, 13, 14]. More generally, we
make polylog-logarithmic improvements to all previous results (such as [2]). for which the
bottleneck of the best known algorithm is computing shortest paths in a dense distance
graph. A more detailed discussion on the implications of our result and on how FR-Dijkstra
is used in different algorithms for planar graphs can be found in the full version [11].

It should be noted that for small values of r, such as r = polylog(n), our algorithm does
not improve on [21] for the case of a dense distance graph over an r-division.

Model of Computation. We assume the standard word-RAM model with word size Ω(log n).
However, we stress that our algorithm works in the very general case of real edge lengths,
i.e., we are only allowed to perform arithmetical operations on lengths and compare them.

Outline of the Paper. In Section 2 we introduce the matrix notation that we use and
state some important properties of Monge matrices. In Section 3 we give an overview of our
shortest paths algorithm and also discuss the main ideas behind the improved data structure
for reporting column minima of a staircase Monge matrix in an online fashion.

In Sections 4, 5 and 6 we develop the increasingly more powerful data structures for
reporting column minima in online Monge matrices. Each of these data structures is used in
a black-box manner in the following section.

Due to space limitations, many technical details, most proofs and discussion of the
applications can be found in the full version [11].

2 Monge Matrices and Their Minima

In this paper we define a matrix to be a partial functionM : R× C → R, where R (called
rows) and C (called columns) are some totally ordered finite sets. Set R = {r1, . . . , rk} and
C = {c1, . . . , cl}, where r1 ≤ . . . ≤ rk and c1 ≤ . . . ≤ cl. If for ri, rj ∈ R we have ri ≤ rj , we
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also say that ri is (weakly) above rj and rj is (weakly) below ri. Similarly, when ci, cj we
have ci < cj , we say that ci is to the left of cj and cj is to the right of ci.

For some matrixM defined on rows R and columns C, for r ∈ R and c ∈ C we denote
byMr,c an element ofM. An element is the value ofM on pair (r, c), if defined.

For R′ ⊆ R and C ′ ⊆ C we defineM(R′, C ′) to be a submatrix ofM. M(R′, C ′) is a
partial function on R′ ×C ′ satisfyingM(R′, C ′)r,c =Mr,c for any (r, c) ∈ R′ ×C ′ such that
Mr,c is defined. We sometimes abuse this notation by writingM(R′, c′) orM(r′, C ′) when
R′ or C ′ are single-element, i.e., when R′ = {r′} or C ′ = {c′}.

The minimum of a matrix min{M} is defined as the minimum value of the partial
functionM. The column minimum ofM in column c is defined as min{M(R, {c})}.

We call a matrixM rectangular ifMr,c is defined for every r ∈ R and c ∈ C. A matrix
is called staircase (flipped staircase) if |R| = |C| andMri,cj is defined iff i ≤ j (i ≥ j resp.).

Finally, a subrectangle of M is a rectangular matrix M({ra, . . . , rb}, {cx, . . . , cy}) for
1 ≤ a ≤ b ≤ k, 1 ≤ x ≤ y ≤ l. We define a subrow to be a subrectangle with a single row.

For a matrix M and a function d : R → R, define the offset matrix off(M, d) to be a
matrixM′ such that for all r, c such thatMr,c is defined, we haveM′r,c =Mr,c + d(r).

We say that a matrixM with rows R and columns C is a Monge matrix, if for each r1, r2 ∈
R, r1 ≤ r2 and c1, c2 ∈ C, c1 ≤ c2 such that all elementsMr1,c1 ,Mr1,c2 ,Mr2,c1 ,Mr2,c2 are
defined, the Monge property holds, i.e., we have

Mr2,c1 +Mr1,c2 ≤Mr1,c1 +Mr2,c2 .

I Fact 1. Let M be a Monge matrix. For any R′ ⊆ R and C ′ ⊆ C, M(R′, C ′) is also a
Monge matrix.

I Fact 2. LetM be a rectangular Monge matrix. Assume that for some c ∈ C and r ∈ R,
Mr,c is a column minimum of c. Then, for each column c− to the left of c, there exists a
row r− ≥ r, such that Mr−,c− is a column minimum of c−. Similarly, for each column c+
to the right of c, there exists a row r+ ≤ r, such that Mr+,c+ is a column minimum of c+.

I Fact 3. LetM be a Monge matrix and let d : R→ R. Then off(M, d) is also Monge.

I Fact 4. LetM be a rectangular Monge matrix and assume R is partitioned into disjoint
blocks R = R1, . . . , Ra such that each Ri is a contiguous group of subsequent rows and
each Ri is above Ri+1. Assume also that the set C is partitioned into blocks C = C1, . . . , Cb
so that Ci is to the left of Ci+1. Then, a matrix M′ with rows R and columns C defined as
M′Ri,Cj = min{M(Ri, Cj)}, is also a Monge matrix.

I Fact 5. LetM be a rectangular Monge matrix. Let r ∈ R and C = {c1, . . . , cl}. The set
of columns Cr ∈ C having one of their column minima in row r is contiguous, that is either
Cr = ∅ or Cr = {ca, . . . , cb} for some 1 ≤ a ≤ b ≤ l.

3 Shortest Paths in a Dense Distance Graph: an Overview

Recall that we are explicitly given q graphs DC(G1), . . . ,DC(Gq), such that each DC(Gi)
is a complete digraph encoding the distances between boundary vertices ∂Gi of a plane
digraph Gi. Additionally, we assume that ∂Gi is distributed into some O(1) faces of Gi. We
also assume that the distances between the boundary vertices of Gi are non-negative.

Let DDG = DC(G1) ∪ . . . ∪DC(Gq), V = ∂G1 ∪ . . . ∪ ∂Gq and n = |V |. Our goal is to
find an efficient algorithm for computing single-source shortest paths in DDG.
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As the graphs DC(Gi) are given explicitly, we can assume that we are allowed to preprocess
each DC(Gi) once in time asymptotically no more than the time used to construct it, which
is clearly Ω(|∂Gi|2). To the best of our knowledge, in all known applications this time is
Θ((|V (Gi)|+ |∂Gi|2) log |V (Gi)|), which is the running time of Klein’s algorithm [14]. After
the preprocessing stage, we may need to handle multiple shortest-path queries.

In order to obtain the speedup over FR-Dijkstra we use a subtle combination of techniques.
The single-source shortest paths in DDG are computed with an optimized implementation of
Dijkstra’s algorithm. Recall that Dijkstra’s algorithm run from the source s grows a set S of
visited vertices of the graph such that the lengths d(v) of the shortest paths s→ v for v ∈ S
are already known. Initially S = {s} and we repeatedly choose a vertex y ∈ V \ S such that
the value (a distance estimate) z(y) := minx∈S{d(x) + `(x, y) : (x, y) ∈ E} is the smallest.
The vertex y is then added to S with d(y) = z(y). The vertices y ∈ V \S are typically stored
in a priority queue with keys z(y), which allows to choose the best y efficiently.

Since the vertices of ∂Gi lie on O(1) faces of a planar digraph Gi, we can exploit the
fact that many of the shortest paths represented by DC(Gi) have to cross. Formally, this is
captured by the following lemma. Denote by DC(Gi)[u, v] the weight of uv in DC(Gi).

I Lemma 1 ([22]). Each DC(Gi) can be decomposed into O(1) (possibly flipped) staircase
Monge matrices Di of at most |∂Gi| rows and columns. For each u, v ∈ ∂Gi we have:

for eachM∈ Di such thatMu,v is defined, Mu,v ≥ DC(Gi)[u, v].
there exists M∈ Di such thatMu,v is defined and Mu,v = DC(Gi)[u, v].

The decomposition can be computed in O(|∂Gi|)2) time if ∂Gi is a subset of a single face
of Gi and in O((|V (Gi)|+ |∂Gi|2) log |V (Gi)|) time otherwise.

In other words, the adjacency matrix of DC(Gi) can be partitioned into a constant number
of staircase Monge matrices. Consequently, a natural approach to maintaining the minimum
distance estimate z(y), for y /∈ S, is to split the work needed to accomplish this task between
the individual matricesM∈

⋃q
i=1Di that encode the edges of DDG. Then, it is sufficient

to design a data structure reporting the column minima of the offset matrix off(M, d) in
an online fashion. Specifically, the data structure has to handle row activations intermixed
with extractions of the column minima in non-decreasing order. Once Dijkstra’s algorithm
establishes the distance d(v) to some vertex v, the row of off(M, d) corresponding to v is
activated and becomes available to the data structure. This row contains values d(v)+`(v, w),
where `(v, w) is, by Lemma 1, no less than the length of the edge vw in DDG. Alternatively,
a minimum in some column corresponding to v (in the revealed part of off(M, d)) may be
used by Dijkstra’s algorithm to establish a new distance label z(v) = d(v), even though not
all rows of off(M, d) have been revealed so far. In this case, we can guarantee that all the
inactive rows of off(M, d) contain entries not smaller than d(v) and hence we can safely
extract the column minimum of off(M, d).

Such an approach was also used by Fakcharoenphol and Rao [7] and Mozes et al. [21],
who both dealt with staircase Monge matrices by using a recursive partition into square
Monge matrices, which are easier to handle. In particular, Fakcharoenphol and Rao showed
that a sequence of row activations and column minima extractions can be performed on an
m×m square Monge matrix in O(m logm) time. The recursive partition assigns each row
and column to O(log |∂Gi|) square Monge matrices. As a result, in [7], the total time for
handling all the square matrices is O(|∂Gi| log2 |∂Gi|). The details and the pseudocode of
the above shortest path algorithm can be found in the full version [11].
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The Data Structure. Developing an improved data structure reporting the column minima
of an online offset staircase Monge matrix is the main contribution of this paper. This goal
is achieved in three steps, presented in the following three sections in a bottom-up fashion.
Below we sketch the main ideas behind these steps.

Our first component is a refined data structure for handling row activations and column
minima extractions on a rectangular Monge matrix, described in Section 4. We show a data
structure supporting any sequence of operations on a k × l matrix in O

(
k logm

log logm + l logm
)

total time, where m = max(k, l). In comparison to [7], we do not map all the columns to
active rows containing the current minima. Instead, the columns are assigned potential row
sets of bounded size that are guaranteed to contain the “currently optimal” rows. This
relaxed notion allows to remove the seemingly unavoidable binary search at the heart of [7]
and instead use the SMAWK algorithm [1] to split the potential row sets once they become
too large. The maintenance of a priority queue used for reporting the column minima in
order is possible with the recent efficient data structure supporting subrow minimum queries
in Monge matrices [10] and priority queues with O(1) time Decrease-Key operation [8].

The second step is to relax the requirements posed on a data structure handling rectangular
k × l Monge matrices. It is motivated by the following observation. Let ∆ > 0 be an integer.
Imagine we have found the minima of l/∆ evenly spread, pivot columns c1, . . . , cl/∆. Denote
by r1, . . . , rl/∆ some rows containing the corresponding minima. A well-known property of
Monge matrices implies that for any column c′ lying between ci and ci+1, we only have to
look for a minimum of c′ in rows ri, . . . , ri+1. Thus, the minima in the remaining columns
can be found in O(k∆ + l) total time. In Section 5 we show how to adapt this idea to an
online setting that fits our needs. The columns are partitioned into O(l/∆) blocks of size
at most ∆. Each block is conceptually contracted to a single column: an entry in row r

is defined as the minimum in row r over the contracted columns. For sufficiently small
values of ∆, such a minimum can be computed in O(1) time using the data structure of [10].
Locating a block minimum can be seen as an introduction of a new pivot column. We handle
the block matrix with the data structure of Section 4 and prove that the total time needed to
correctly report all the column minima is O

(
k logm

log logm + k∆ + l + l
∆ logm

)
. In particular,

for ∆ = log1−εm, this bound becomes O
(
k logm

log logm + l logεm
)
.

Finally, in Section 6 we exploit the asymmetry of per-row and per-column costs of
the developed block data structure for rectangular matrices by using a different partition
of a staircase Monge matrix. Our partition is biased towards columns, i.e., the matrix
is split into rectangular (as opposed to square) Monge matrices, each with roughly poly-
logarithmically more columns than rows. Consequently, the total number of rows in these
matrices is O

(
|∂Gi| log |∂Gi|

log log |∂Gi|

)
, whereas the total number of columns is only slightly larger,

i.e., O
(
|∂Gi| log1+ε |∂Gi|

)
. This yields a data structure handling staircase Monge matrices

in O
(
|∂Gi| log2 |∂Gi|

log2 log |∂Gi|

)
total time. By plugging this data structure into our shortest path

algorithm, we obtain the following theorem.

I Theorem 2. The single-source shortest paths computations in DDG can be performed in
O
(∑q

i=1 |∂Gi|
log2 n

log2 logn

)
time. The required preprocessing time per each Gi is O(|∂Gi|2) if

∂Gi lies on a single face of Gi, and O
(
|V (Gi)|+ |∂Gi|2) log |V (Gi)|

)
otherwise.
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4 Online Column Minima of a Rectangular Offset Monge Matrix

LetM0 be a rectangular k × l Monge matrix. Let R = {r1, . . . , rk} and C = {c1, . . . , cl} be
the sets of rows and columns ofM0, respectively. Set m = max(k, l).

Let d : R → R be an offset function and set M = off(M0, d). By Fact 3, M is also
a Monge matrix. Our goal is to design a data structure capable of reporting the column
minima of M in increasing order of their values. However, the function d is not entirely
revealed beforehand, as opposed to the matrixM0. There is an initially empty, growing set
R ⊆ R containing the rows for which d(r) is known. Alternatively, the set R can be seen as
“active” rows ofM that can be accessed by the data structure. There is also a set C ⊆ C
containing the remaining columns for which we have not reported the minima yet. Initially,
C = C and C shrinks over time. We also provide a mechanism to guarantee that the rows
that have not been revealed do not influence the smallest of the column minima ofM(R,C).

The exact set of operations we support is the following:
Activate-Row(r), where r ∈ R \R – add r to the set R.
Lower-Bound() – compute the number min{M(R,C)}.
Ensure-Bound-And-Get() – inform the data structure that we indeed have
min{M(R \R,C)} ≥ min{M(R,C)} = Lower-Bound(), that is, the smallest element
ofM(R,C) does not depend on the values ofM located in rows R \R.
Observe that such claim implies that for some column c ∈ C we have min{M(R, c)} =
min{M(R,C)}, which in turn means that we are able to find the minimum element in
column c. The function returns any such c and removes it from the set C.
Current-Min-Row(c), where c ∈ C – compute r, where r ∈ R is a row such that
min{M(R, c)} =Mr,c. If R = ∅, return nil. Note that c is not necessarily in C.
Additionally, we require Current-Min-Row to have the following property: once the col-
umn c is moved out of C, Current-Min-Row(c) always returns the same row. Moreover,
for c1, c2 ∈ C, c1 < c2, we have Current-Min-Row(c1) ≥ Current-Min-Row(c2).

Note that Activate-Row increases the size of R and thus cannot be called more than k
times. Analogously, Ensure-Bound-And-Get decreases the size of C so it cannot be called
more than l times. Actually, in order to reveal all the column minima with this data structure,
the operation Ensure-Bound-And-Get has to be called exactly l times.

4.1 The Components
The Subrow Minimum Query Data Structure. Given r ∈ R and a, b, 1 ≤ a ≤ b ≤ l, a
subrow minimum query S(r, a, b) computes a column c ∈ {ca, . . . , cb} such that Mr,c =
min{M(r, {ca, . . . , cb})}. We use the following theorem of Gawrychowski et al. [10].

I Theorem 3 ([10]). Given a k× l rectangular Monge matrixM, a data structure supporting
subrow minimum queries in O(log log (k + l)) time can be constructed in O(l log k) time.

Recall thatM = off(M0, d). Adding the offset d(r) to all the elements in row r ofM0
does not change the relative order of elements in row r. Hence, the answer to a subrow
minimum query S(r, a, b) inM is the same as the answer to S(r, a, b) inM0.

Therefor, by building a data structure of Theorem 3 forM0 we can answer any subrow
minimum query inM in O(log logm) time.

The Column Groups. The set C is internally partitioned into disjoint, contiguous column
groups C1, . . . , Cq (where C1 is the leftmost and Cq is the rightmost), so that

⋃
i Ci = C. For

each c /∈ C, there is a group consisting of a single element c. Such a group is called done.
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As the groups constitute contiguous segments of columns, we can represent the partition
with a subset F ⊆ C containing the first columns of individual groups. Each group is
identified with its leftmost column. We use a dynamic predecessor data structure [24] for
maintaining the set F . Such representation also allows to split groups and merge neighboring
groups in O(log logm) time.

The Potential Row Sets. For each Ci we store a set P (Ci) ⊆ R, called a potential row set.
Between consecutive operations, the potential row sets satisfy the following invariants:
P.1 For any c ∈ Ci there exists a row r ∈ P (Ci) such that min{M(R, c)} =Mr,c.
P.2 The size of any set P (Ci) is less than 2α, where α =

√
logm.

P.3 For any i < j and any r ∈ P (Ci), r′ ∈ P (Cj), we have r ≥ r′.
The sets P (Ci) are stored as balanced binary search trees, sorted bottom to top. Intuitively,
invariant 3 can be maintained because, by Fact 1, M(R,C) is a Monge matrix, so Fact 2
applies. Then, we have |P (Ci) ∩ P (Ci+1)| ≤ 1, so the sum of sizes of sets P (Ci) is O(k + l).

I Lemma 4. An insertion or deletion of some r to P (Ci) (along with the update of the
auxiliary structures) can be performed in O(logα+ log logm) time.

Clearly, one can answer the Current-Min-Row(c) query by finding the relevant group Ci,
c ∈ Ci, and examining the entriesMr,c for r ∈ P (Ci). This takes O(log logm+ α) time.

Upon activation of a new row r, we first merge the groups Cj such that r contains a
current minimum for each column in Cj . The potential row set of the newly formed group is
set to {r}. Next, we insert r to some (at most two) of the existing potential row sets. This
might make some P (Ci) break invariant 2. In such case the group Ci along with P (Ci) is split,
so that the resulting potential row sets are of size α. The splitting algorithm summarized by
the following lemma which leverages the SMAWK algorithm [1] to decrease the per-row cost
of a split.

I Lemma 5. LetM be a u×v rectangular Monge matrix with rows {r1, . . . , ru} and columns
C = {c1, . . . , cv}. For any i ∈ [1, u], in O

(
u log v

logu

)
time we can find such cs ∈ C that:

1. Some minima of columns c1, . . . , cs lie in rows ri+1, . . . , ru.
2. Some minima of columns cs+1, . . . , cv lie in rows r1, . . . , ri.
As the split of some fixed P (Ci) happens at most once per α insertions, we charge the
O
(
α logm

logα

)
cost of splitting P (Ci) to the α elements inserted since the last split of P (Ci).

The total number of insertions performed on the potential row sets is O(k + l).

The Priority Queue. A priority queue H contains an element c for each c ∈ C. The queue
H satisfies the following invariants between any two operations.
H.1 For each c ∈ C, the key of c in H is greater than or equal to min{M(R, c)}.
H.2 For each group Cj that is not done, there exists such column cj ∈ Cj that the key of cj

in H is equal to min{M(R, cj)} = min
{
M(R, Cj)

}
.

Note that by invariants 1 and 2, the key at the top of H is in fact equal to min{M(R,C)}.
Hence, Lower-Bound can be implemented trivially in O(1) time. The following lemma
follows easily from invariant 1 and Theorem 3.

I Lemma 6. We can ensure 2 is satisfied for a single group Cj in O(α log logm) time.

The detailed description of how the individual operations are implemented can be found
in the full version [11]. The performance of our data structure can be summarized as follows.
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I Lemma 7. LetM be a k × l offset Monge matrix. There exists a data structure built in
O(k+ l logm) time, supporting Lower-Bound in O(1) time and both Current-Min-Row
and Ensure-Bound-And-Get in O(logm) time. Additionally, any sequence of operations
Activate-Row is performed in O

(
(k + l) logm

log logm

)
total time, where m = max(k, l).

5 Online Column Minima of a Block Monge Matrix

LetM = off(M0, d), R, C, l, k,m be defined as in Section 4. In this section we consider
the problem of reporting the column minima of a rectangular offset Monge matrix, but
in a slightly different setting. Again, we are given a fixed rectangular Monge matrix M0
and we also have an initially empty, growing set of rows R ⊆ R for which the offsets d(·)
are known. Let ∆ > 0 be an integral parameter not larger than l. We partition C into
a set B = {B1, . . . , Bb} of at most dl/∆e blocks, each of size at most ∆. The columns
in each Bi constitute a contiguous fragment of c1, . . . , cl, and each block Bi is to the left
of Bi+1. We also maintain a shrinking subset B ⊆ B containing the blocks Bi, such that the
minima min{M(R,Bi)} are not yet known. More formally, for each Bi ∈ B \ B, we have
min{M(R,Bi)} = min{M(R,Bi)}. Initially B = B.

For each c ∈ C not contained in the blocks of B, the data structure explicitly maintains
the current minimum, i.e., the value min{M(R, c)}. Moreover, when a new row is activated,
we provide the user with columns of

⋃
(B \ B) for which the current minima have changed.

For blocks B, the data structure only maintains the value min{M(R,
⋃
B)}. Once the user

can guarantee that min{M(R,
⋃
B)} does not depend on the “hidden offsets” of rows R \R,

the data structure moves a block Bi ∈ B such that min{M(R,
⋃
B)} = min{M(R,Bi)} out

of B and makes it possible to access the current minima in the columns of Bi.
More formally, we support the following set of operations:
Activate-Row(r), where r ∈ R \R – add r to the set R.
Block-Lower-Bound() – return min{M(R,

⋃
B)}.

Block-Ensure-Bound() – tell the data structure that indeed min{M(R \ R,C)} ≥
Block-Lower-Bound() = min{M(R,Bi)}, for some Bi ∈ B, i.e., the smallest element
ofM(R,

⋃
B) does not depend on the entries ofM located in rows R \R.

As the minimum ofM(R,Bi) can now be computed, Bi is removed from B.
Current-Min(c), where c ∈ C – for c ∈

⋃
(B \B), return the explicitly maintained value

min{M(R, {c})}. For c ∈
⋃
B, set Current-Min(c) =∞.

Additionally, the data structure provides access to the queue Updates containing
the columns c ∈

⋃
(B \ B) such that the most recent call to either Activate-Row or

Block-Ensure-Bound resulted in a change (or an initialization, if c ∈ Bi and the last up-
date was Block-Ensure-Bound, which moved Bi out of B) of the value Current-Min(c).

Note that there can be at most k calls to Activate-Row and no more than dl/∆e calls to
Block-Ensure-Bound.

5.1 The Data Structure

An Infrastructure for Short Subrow Minimum Queries. In this section we assume that
for any r ∈ R and 1 ≤ i, j ≤ l, j− i+ 1 ≤ ∆, it is possible to compute an answer to a subrow
minimum query S(r, i, j) (see Section 4) on matrixM0 (equivalently: M) in constant time.
We call such a subrow minimum query short.
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The Block Minima Matrix. Define a k × b matrixM′ with rows R and columns B, such
that for all ri ∈ R and Bj ∈ B,M′ri,Bj = min{M(ri, Bj)}. We build the data structure of
Section 4 for matrixM′.

I Lemma 8. M′ is a Monge matrix and its entries can be accessed in O(1) time.

The Exact Minima Array. For each column c ∈
⋃

(B\B), the value cmin(c) = min{M(R, c)}
is stored explicitly. The operation Current-Min(c) returns cmin(c).

Rows Containing the Block Minima. For each Bj ∈ (B \ B) we store the value yj =
M′.Current-Min-Row(Bj). Note that the data structure of Section 4 guarantees that for
Bi, Bj ∈ (B \ B) such that i < j, we have yi ≥ yj . The set of defined yj ’s grows over time.

The Row Candidate Sets. Two subsets D0 and D1 of R are maintained. The set Dq for
q = 0, 1 contains the rows of R that may still prove useful when computing the initial value
of cmin(c) for c ∈

⋃
{Bi : Bi ∈ B ∧ i mod 2 = q}. For each such c, Dq contains a row r such

that min{M(R, c)} =Mr,c. The sets Dq are also stored in dynamic predecessor structures.

Implementation. We now sketch how the data structure’s components are used. Clearly,
a call to Block-Lower-Bound translates into a single call Lower-Bound executed on
M′. When Block-Ensure-Bound is called, some block Bi is moved out of B. Apart from
calling Ensure-Bound-And-Get onM′, we have to initialize the values cmin(c) for c ∈ Bi.
For each such c, we examine multiple rows of Di mod 2 when looking for minima, but it can
be shown that most of these rows can be discarded from Di mod 2 afterwards. This in turn
allows us to charge the work to the insertions into row candidate sets.

When Activate-Row is called, one has to call Activate-Row onM′ first. Moreover,
the values cmin(c) for some c ∈

⋃
(B \ B) have to be updated. It turns out that all such

columns reside in at most two blocks and thus only O(∆) additional time is needed.
The detailed implementation of each operation can be found in the full version [11].

I Lemma 9. Let M = off(M0, d) be a k × l rectangular offset Monge matrix. Let ∆
be the block size. Assume we can perform subrow minima queries spanning at most ∆
columns of M0 in O(1) time. There exists a data structure initialized in O(k + l + l

∆ logm)
time and supporting both Block-Lower-Bound and Current-Min in O(1) time. Any
sequence of Activate-Row and Block-Ensure-Bound operations can be performed in
O
(
k
(

logm
log logm + ∆

)
+ l + l

∆ logm
)
time, where m = max(k, l).

6 Online Column Minima of a Staircase Offset Monge Matrix

In this section we show a data structure supporting a similar set of operations as in Section 4,
but in the case when the matricesM0 andM = off(M0, d) are staircase Monge matrices
with m rows R = {r1, . . . , rm} and m columns C = {c1, . . . , cm}. We still aim at reporting
the column minima ofM, while the set R of revealed rows is extended and new bounds on
min{M(R \R,C)} are available.

In comparison to the data structure of Section 4, we loosen the conditions posed on the
operations Lower-Bound and Ensure-Bound-And-Get. Now, Lower-Bound might
return a value smaller than min{M(R,C)} and a single call to Ensure-Bound-And-Get
might not report any new column minimum at all. However, Ensure-Bound-And-Get can
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still only be called if min{M(R \R,C)} ≥ Lower-Bound() and the data structure we de-
velop in this section guarantees that a bounded number of calls to Ensure-Bound-And-Get
suffices to report all the column minima ofM. The exact set of supported operations is:

Activate-Row(r), where r ∈ R \R – add r to the set R.
Lower-Bound() – return a number v such that min{M(R,C)} ≥ v.
Ensure-Bound-And-Get() – tell the data structure that the inequality
min{M(R \R,C)} ≥ Lower-Bound() holds.
With this knowledge, the data structure may report some column c ∈ C such that
min{M(R, c)} is known. However, it’s also valid to not report any new column minimum
(in such case nil is returned) and only change the known value of Lower-Bound().
Current-Min(c), where c ∈ C – if c ∈ C \ C, return the known minimum in column c.

6.1 The Data Structure

The Short Subrow Minimum Queries Infrastructure. Let ∆ = dlog1−ε/2me. The following
lemma allows us to use the data structure of Lemma 9 with block size ∆.

I Lemma 10. The staircase Monge matrix M0 can be preprocessed in O(m∆ logm) time
so that subrow minimum queries on M0 spanning at most ∆ columns take O(1) time.

The Partition of M into Rectangular Matrices M1, . . . , Mq. We partition the stair-
case Monge matrix M into O(m logε/2m) non-overlapping rectangular Monge matrices
M1, . . . ,Mq using the below lemma. EachMi is a subrectangle ofM, each row r (column
c) appears in a set Wr (W c, resp.) of O

(
logm

log logm

)
(O
(

log1+ε/2 m
log logm

)
, resp.) subrectangles.

I Lemma 11. For any ε ∈ (0, 1), a staircase matrix M with m rows and m columns can be
partitioned in O(m) time into O(m logε/2m) non-overlapping rectangular matrices so that
each row appears in O

(
logm

log logm

)
matrices of the partition, whereas each column appears in

O
(

log1+εm
log logm

)
matrices of the partition.

We build the block data structure of Section 5 for each Mi. For each Mi we use
the same block size ∆. As each Mi is a subrectangle of M, Lemma 10 guarantees
that we can perform subrow minimum queries on Mi spanning at most ∆ columns in
O(1) time. Recall that the blocks of the matrix Mi are partitioned into two sets Bi and
Bi \ Bi. Denote by block(Mi) the submatrixMi(Ri,

⋃
Bi) and by exact(Mi) the submatrix

Mi(Ri,
⋃

(Bi \ Bi)). Here, Ri and Ci denote the row and column sets ofMi, respectively.

The Priority Queue H. The core of our data structure is a priority queue H . At any time,
H contains an element c for each c ∈ C and at most one elementMi for each matrixMi. Thus
the size of H never exceeds O(m logε/2m). We maintain the following invariants after the
initialization and each call Activate-Row or Ensure-Bound-And-Get resulting in C 6= ∅:
H.1 For each c ∈ C, the key of c in H is equal to min{Mi.Current-Min(c) :Mi ∈W c}.
H.2 For each Mi such that block(Mi) is not empty, the key of Mi in H is equal to

min{block(Mi)} =Mi.Block-Lower-Bound().

I Lemma 12. Assume invariants 1 and 2 are satisfied. Then H.Min-Key() ≤M(R,C).
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Implementation. The data structure always returns the top key of H when Lower-Bound
is called. Each call to Ensure-Bound-And-Get removes the top element e of H. If e
is a column c, the minimum of c is reported. Otherwise e = Mi and it can be seen that
Mi.Block-Ensure-Bound can now be called. Afterwards,Mi is reinserted into H. Note
that the number of times someMj gets reinserted into H is no more than the total number
of blocks in the matricesM1, . . . ,Mq, i.e., O(m logεm). The row activations are propagated
to the relevant matricesMj of the partition.

Both Ensure-Bound-And-Get and Activate-Row may make invariants 1 and 2
violated. However, the keys in H may only need to be decreased. Given that each operation
Decrease-Key on H takes only O(1) time, the time needed to update H is dominated by
the cost of operations on the individual matricesMj .

The detailed implementation of the individual operations and analysis can be found in
the full version [11]. The following lemma summarizes the performance of our data structure.

I Lemma 13. LetM = off(M0, d) be an m×m offset staircase Monge matrix and let ε ∈
(0, 1). There exists a data structure that can be initialized in O

(
m log2−εm

)
time, supporting

both Lower-Bound and Current-Min in O(1) time. Any sequence of Activate-Row
and Ensure-Bound-And-Get operations takes O

(
m log2 m

log2 logm

)
total time. All the column

minima are computed after O(m logεm) calls to Ensure-Bound-And-Get.
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Abstract
Computing the distance between a given pattern of length n and a text of length m is defined
as calculating, for every m-substring of the text, the distance between the pattern and the sub-
string. This naturally generalizes the standard notion of exact pattern matching to incorporate
dissimilarity score. For both Hamming and L1 distance only relatively slow Õ(n

√
m) solutions

are known for this generalization. This can be overcome by relaxing the question. For Hamming
distance, the usual relaxation is to consider the k-bounded variant, where distances exceeding k
are reported as ∞, while for L1 distance asking for a (1± ε)-approximation seems more natural.
For k-bounded Hamming distance, Amir et al. [J. Algorithms 2004] showed an Õ(n

√
k) time

algorithm, and Clifford et al. [SODA 2016] designed an Õ((m + k2) · n/m) time solution. We
provide a smooth time trade-off between these bounds by exhibiting an Õ((m + k

√
m) · n/m)

time algorithm. We complement the trade-off with a matching conditional lower bound, show-
ing that a significantly faster combinatorial algorithm is not possible, unless the combinatorial
matrix multiplication conjecture fails. We also exhibit a series of reductions that together allow
us to achieve essentially the same complexity for k-bounded L1 distance. Finally, for (1 ± ε)-
approximate L1 distance, the running time of the best previously known algorithm of Lipsky and
Porat [Algorithmica 2011] was Õ(ε−2n). We improve this to Õ(ε−1n), thus essentially matching
the complexity of the best known algorithm for (1± ε)-approximate Hamming distance.
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1 Introduction

The basic question in algorithms on strings is pattern matching, which asks for reporting
(or detecting) occurrences of a given pattern P of length m in a text T of length n. A
particularly relevant variant of this fundamental question is approximate pattern matching,
where the goal is to detect fragments of the text that are similar to the pattern. This can
be restated as computing the text-to-pattern distance, defined as the distance between P

and every m-substring of T . If both P and T are over an integer alphabet Σ, two most
natural distance functions are Hamming and L1. Abrahamson [1] showed how to compute
the text-to-pattern Hamming distance with a clever application of boolean convolution: a
single convolution can be used to count matches generated by a particular letter in time close
to linear, and by carefully partitioning the letters into frequent and non-frequent the overall
running time can be guaranteed to be O(n

√
m logm). With a somewhat similar approach,

the same complexity can be achieved for L1 distance [5]. Naturally, one would like to design
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an Õ(n) time algorithm. However, an unpublished result attributed to Indyk [6] is that
any significant improvement for Hamming distance by a combinatorial algorithm implies a
significant improvement for combinatorial matrix multiplication, which is believed to be very
hard. Later, a direct reduction from Hamming distance to L1 distance was shown [14], as well
as a reverse reduction [8] together with a full suite of two-way reductions between these two
metrics and other functions, linking the corresponding complexities (up to poly-logarithmic
factors).

A natural relaxation of computing the text-to-pattern distance is to ask for its (1± ε)-
approximation. Karloff [10] showed how to use random Σ → {0, 1} projections together
with boolean convolution to approximate the Hamming distance in O(ε−2n log3m). The ε−2

dependency was believed to be tight, given the similarly looking lower bound for sketching
Hamming distance [16, 9, 4], but Porat and Kopelowitz [11] refuted this by exhibiting a
(complicated) O(ε−1n log ε−1 log n logm log |Σ|) time algorithm. Later, they presented a
much simpler solution with a slightly better complexity of O(ε−1n log n logm) [12]. For
approximating the L1 distance, it was only known how to achieve O(ε−2n logm log |Σ|) time
complexity [15], and breaking the ε−2 barrier was open.

Another natural relaxation is to cap the distances at k, that is, return ∞ if the distance
exceeds k. We will call this variant the k-bounded distance. For k-bounded Hamming distance,
the classical solution by Landau and Vishkin [13] works in O(nk) time by checking every m-
substring with k+1 constant-time longest common extension queries (also known as “kangaroo
jumps”). Later, Amir et al. [2] improved this to O(n

√
k log k) using boolean convolution

similarly as in the classical algorithm of Abrahamson, and also showed an O((k3 log k +m) ·
n/m) time algorithm. Later, Clifford et al. [7] introduced a new repertoire of tools allowing
them to further improve the latter complexity to O((k2 log k + m polylogm) · n/m). In
particular, this is near linear-time for k = O(

√
m). At a very high level, the improvement was

obtained by partitioning both the pattern and the text into O(k) subpatterns and subtexts,
such that the total number of blocks in their run-length encoding is small. This reduces
the original problem to O(k2) instances of pattern matching with mismatches on run-length
encoded inputs, which can be solved in Õ(k2) total time, leading to an Õ((k2 +m) ·n/m) time
algorithm. For k-bounded L1 distance, only an O(n

√
k log k) time algorithm was known [3],

and designing an almost linear-time algorithm for polynomially large (in m) values of k was
open.

Our results. We provide a smooth transition between the Õ(n
√
k) time algorithm of Amir

et al. [2] and the Õ((m + k2) · n/m) solution given by Clifford et al. [7] for k-bounded
Hamming distance. This is obtained by reducing k-bounded Hamming distance to O(k)-RLE
Hamming distance, in which the run-length encodings of both the pattern and the text
consist of O(k) blocks, and then designing an efficient algorithm for the latter.

I Theorem 1. There is a deterministic algorithm that outputs k-bounded text-to-pattern
Hamming distance in time O((m log2m log |Σ|+ k

√
m logm) · n/m).

The complexity from Theorem 1 matches the previous solutions at the extreme points
k = O(

√
m) and k = Ω(m), but provides a better trade-off in-between. See Figure 1.

Furthermore, we prove that this trade-off is essentially the best possible. More precisely,
we complement the algorithm with a matching conditional lower bound, showing that a
significantly faster combinatorial algorithm is not possible, unless the popular combinatorial
matrix multiplication conjecture fails.
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Figure 1 Running time O(mβ) of algorithm from Theorem 1 on instances with n = Θ(m) and
k = mα. Previous algorithms are represented by dashed lines and our algorithm is represented by
the solid line. For example, for k = Θ(m2/3) we improve the complexity from Õ(m4/3) to Õ(m7/6).

I Theorem 2. For any positive ε, α, κ, such that 1
2α ≤ κ ≤ α ≤ 1 there is no combinatorial

algorithm solving pattern matching with k = Θ(nκ) mismatches in time O((k
√
m)1−ε · n/m)

for a text of length n and a pattern of length m = Θ(nα), unless the combinatorial matrix
multiplication conjecture fails.

Next, we move to computing L1 distance. For computing (1± ε)-approximate text-to-
pattern L1 distance we are able to break the quadratic dependency on 1/ε present in the
previous algorithms by designing an Õ(ε−1n) solution, thus making the complexities of the
best known algorithms for (1± ε)-approximate text-to-pattern L1 distance and Hamming
distance essentially equal.

I Theorem 3. There is a randomized Monte Carlo algorithm that outputs (1± ε)-approx-
imation of L1 distance in time O(ε−1n log3 n logm). The algorithm is correct with high
probability.

For k-bounded L1 distance we are able to obtain essentially the same trade-off as for
k-bounded Hamming distance.

I Theorem 4. There is a deterministic algorithm that outputs k-bounded text-to-pattern L1
distance in time O((m log3m+m log2 n+ k

√
m logm · log2 n) · n/m).

In fact, instead of designing a new algorithm for k-bounded L1 distance we exhibit a series
of generic reductions that together allow us to reduce computing k-bounded L1 distance to
computing k-bounded Hamming distance.

I Theorem 5. Let T (n,m, k) be the complexity for k-bounded text-to-pattern Hamming
distance. Then k-bounded L1 text-to-pattern distance can be computed in time O(n log3m+
T (m,m,O(k)) · log2 n · n/m).

Thus, if k-bounded Hamming distance can be computed in time Õ(n+ (k
√
m)1−δ · n/m)

for some δ ≥ 0 then k-bounded L1 distance can be computed in time Õ(n+ (k
√
m)1−δ ·n/m)

as well. Together with a reduction from k-RLE to k-bounded Hamming distance this gives
us a clear (although not yet complete) picture of connections between k-bounded and k-RLE
text-to-pattern distance under Hamming and L1 distance summarized in Figure 2.
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k-bounded
Hamming distance

k-bounded
L1 distance

Boolean Matrix
Multiplication

k-RLE
Hamming distance

k-RLE
L1 distance

Thm. 10 Thm. 17

[8], Cor. 16

Thm. 2

Thm. 15

Figure 2 Existing (dashed lines) and new (solid lines) reductions.

Overview of the techniques. Our algorithm for k-bounded Hamming distance (and then
also L1 distance), is a refinement of the approach of Clifford et al. [7]. The general idea is
to first consider the periodic structure of the pattern. If the pattern is not very periodic,
then m-substrings of the text with a small distance to the pattern cannot occur too often.
This allows us to filter the possible occurrences with an algorithm for (1± ε)-approximate
Hamming distance and then manually verify the remaining possibilities. Otherwise, the
problem can be reduced to multiple smaller instances, in which both the pattern and the
text are highly compressible, i.e. their run-length encodings consist of only O(k) blocks. The
first new insight is that, instead of many small instances, it is possible to obtain a single
instance of O(k)-bounded Hamming distance, in which the run-length encoding of both the
pattern and the text consist of O(k) blocks. The second observation is that, because the
pattern and the text are still of length O(m), it (again) makes sense to partition the letters
into frequent and non-frequent, except that now the threshold is defined with respect to
the number of blocks of the pattern containing that letter. For non-frequent letters, we
produce a compact representation of their contribution by iterating through every block of
the pattern and every block of the text. For frequent letters, we essentially uncompress the
corresponding fragments and run the classical convolution.

Our algorithm for (1 ± ε)-approximate L1 distance is based on generalized weighted
mismatches, similarly as in the previous work [15]: given an arbitrary weight function
σ : Σ × Σ → Z, we output an array Sσ such that S[i] =

∑m
j=1 σ(ti+j , pj). This can be

computed as follows. For every letter c ∈ Σ, construct a new text T c by setting T c[i] = 1 if
ti = c and T c[i] = 0 otherwise. Similarly, construct a new pattern P c such that P c[i] = σ(c, pi).
Then, σ(ti+j , pj) =

∑
c∈Σ T

c[i+ j] · P c[j], so Sσ can be computed with |Σ| convolutions in
O(|Σ|n logm) time.

To connect the complexities of computing the text-to-pattern Hamming and L1 distance
we use the recently introduced notion of linearity preserving reductions [8] as a formalization
of previously existing reductions between metrics (cf. [14]). The main idea is that in order to
show a reduction between two pattern-matching problems, one can represent them as a (+, �)
convolution and a (+,�) convolution, and show how to represent � as a linear combination
of many copies of �.

2 Preliminaries

Distance between strings. Let X = x1x2 . . . xn and Y = y1y2 . . . yn be two strings
over an integer alphabet [M ], for some M = poly(n). We define their L1 distance as
L1(X,Y ) =

∑
i |xi − yi|, and their Hamming distance as Ham(X,Y ) = |{i : xi 6= yi}|.
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Text-to-pattern distance. The text-to-pattern distance between a text T = t1t2 . . . tn
and a pattern P = p1p2 . . . pm is defined as an array S such that, for every i, S[i] =
d(T [i + 1 .. i + m], P ). Thus, for L1 distance S[i] =

∑m
j=1 |ti+j − pj |, while for Hamming

distance S[i] = |{j ∈ {1, . . . ,m} : t[i + j] 6= p[j]}|. Then, (1 ± ε)-approximate distance is
an array Sε such that, for every i, (1− ε) · S[i] ≤ Sε[i] ≤ (1 + ε) · S[i]. Finally, k-bounded
distance is an array Sk such that, for every i, Sk[i] = S[i] when S[i] ≤ k and Sk[i] = ∞
otherwise. Finally, in k-RLE distance we assume that the run-length encoding of both the
pattern and the text consist of O(k) blocks, that is, they contain only O(k) maximal runs of
identical letters.

Model. We assume the standard word RAM model, in which arithmetic operations on
integers from [M ] take constant time.

Linearity preserving reductions. Say that we want to show a reduction between binary
operators � and �. In order for such a reduction to be relevant in the convolutional setting,
it needs to be of a specific form. Let t be a fixed integer called the size of the reduction, and
suppose there exist integer coefficients α1, . . . , αt, and functions f1, . . . , ft, g1, . . . , gt such
that, for any x and y, there is x � y =

∑t
`=1 α` · (f`(x) � g`(y)). Then (+,�)-convolution

of T and P is computed as a linear combination of (+, �)-convolutions f`(T ) with g`(P ),
where f(X) = f(x1)f(x2) . . . f(xn) for X = x1x2 . . . xn. That is, a following equality holds∑

i+j=k x[i]�y[j] =
∑t
`=1 α` ·

(∑
i+j=k x[i] � y[j]

)
.

3 k-bounded Distance

The goal of this section is to prove Theorem 1. We first show how to reduce k-bounded
Hamming distance to O(n/m) instances of O(k)-RLE Hamming distance on inputs of length
O(m). We start with the standard trick of reducing the original problem to dn/me instances
with pattern P of length m and text T of length 2m and work with such formulation from now
on. Thus, now we need to reduce one such instance to an instance of O(k)-RLE Hamming
distance on inputs of length O(k).

We now highlight the kernelization technique of Clifford et al. [7]. An integer π > 0 is
an x-period of a string S[1,m] if Ham(S[π + 1,m], S[1,m− π]) ≤ x (cf. Definition 1 in [7]).
Note that compared to the original formulation, we drop the condition that π is minimal
from the definition.

I Lemma 6 (Fact 3.1 in [7]). If the minimal 2x-period of the pattern is `, then the starting
positions of any two occurrences with x mismatches of the pattern are at distance at least `.

The first step of the algorithm is to determine the minimal O(k)-period of the pattern.
More specifically, we run the (1 + ε)-approximate algorithm of Karloff [10] with ε = 1
matching the pattern P against itself. Since Karloff’s algorithm is convolution-based, it
can be adapted to computing mismatches for partial alignments, that is, between suffixes
and prefixes of equal length of the same string. This takes O(m log2m log |Σ|) time and, by
looking at the approximate outputs for offsets not larger than k, allows us to distinguish
between two cases: (1) every 4k-period of the pattern is at least k, or (2) there is an 8k-period
of the pattern that is at most k. Then we run the appropriate algorithm as described below.

No small 4k-period. We again run Karloff’s algorithm with ε = 1, but now we match the
pattern with the text. We look for positions i where the 2-approximate algorithm reports
at most k mismatches, meaning that Ham(P, T [i, i + m − 1]) ≤ 2k. By Lemma 6, there

ICALP 2018
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T ′ = hokuspokusopensezame

h s u e z
o p s n a
k o o s m
u k p e e

s u e z #
p s n a #
o o s m #
k p e e #

P = abracadabrab

a c b $ $
b a r $ $
r d a $ $
a a b $ $

T ? = hsuez opsna koosm ukpee suez# psna# oosm# kpee#
P ? = acb$$ bar$$ rda$$ aab$$

Figure 3 Example of rearranging the text and the pattern with ` = 4.

are O(m/k) such positions, and we can safely discard all the others. Then, we test every
such position using the “kangaroo jumps” technique of Landau and Vishkin [13], using O(k)
constant-time operations per position, in total O(m) time.

Small 8k-period. Let ` ≤ k be any 8k-period of the pattern. For a string S and 1 ≤ i ≤ `,
let
{
S
}
`,i

= S[i]S[i+ `]S[i+ 2`] . . . up until end of S. We denote by
{
S
}
`
an `-encoding of

S, that is the string
{
S
}
`,1

{
S
}
`,2 . . .

{
S
}
`,`−1,

{
S
}
`,`
. Let runs(S) be the number of runs in

S. Denote runs`(S) =
∑`
i=1 runs(

{
S
}
`,i

), and observe that it upperbounds the number of
runs in

{
S
}
`
.

I Lemma 7 (Lemma 6.1 in [7]). If P has an 8k-period ` for ` ≤ k, then runs`(P ) ≤ 9k.

We proceed with the kernelization argument. Let TL be the longest suffix of T [1,m]
such that runs`(TL) ≤ 11k. Similarly, let TR be the longest prefix of T [m+ 1, 2m] such that
runs`(TR) ≤ 11k. Let T ′ = TLTR. Obviously, runs`(T ′) ≤ 22k.

I Lemma 8 (Lemma 6.2 in [7]). Every T [i, i + m − 1] that is an occurrence of P with k

mismatches is fully contained in T ′.

Thus we see that k-mismatch pattern matching is reduced to a kernel where the `-encoding
of both the text and the pattern have few runs, that is, they both compress well with RLE.

From now on assume that both T ′ and P are of lengths divisible by `. If this is not the
case, we can pad them separately with at most ` − 1 < k characters each, not changing
the complexity of our solution. Let m1 and m2 be integers such that m1 · ` = |T ′| and
m2 · ` = |P |, m1 ≥ m2.

We rearrange both P and T ′ to take advantage of their regular structure. That is, we
define T ? =

{
T ′
}
`

{
T ′′
}
`
, where T ′′ = T ′[` + 1,m1 · `] #`. Observe that T ? is a string of

length 2m1 · `, composed first of m1 blocks of the form T ′[i]T ′[i + `] . . . T ′[i + (m1 − 1)`]
for 1 ≤ i ≤ `, and then of m1 blocks of the form T ′[i+ `] . . . T ′[i+ (m1 − 1)`] #. Similarly,
we define P ? =

{
P $(m1−m2)`}

`
. Again we observe that P ? is the string of length m1 · `,

composed of blocks of the form P [i]P [i+ `] . . . P [i+ (m2 − 1)`] $m1−m2 for 1 ≤ i ≤ `. An
example of this reduction is presented in Figure 3.

Next we show that T ? and P ? preserve the Hamming distance between P and any
m-substring of T ′ in the following sense:

I Lemma 9. For any integer 0 ≤ α ≤ (m1 −m2)`, let x = bα/`c and y = α mod `. Let
β = x+ y ·m1. Then

Ham(T ′[α+ 1, α+m2 · `], P ) = Ham(T ?[β + 1, β +m1 · `], P ?)− (m1 −m2) · `.
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Proof. Observe that

Ham(T ′[α+ 1, α+m2 · `], P ) =
m2−1∑
i=0

∑̀
j=1

δ(T ′[x`+ y + i`+ j], P [i`+ j]), (1)

where δ is indicator of character inequality. Observe that P [i` + j]) = P ?[i + j ·m1], for
1 ≤ j ≤ ` − y there is T ′[x` + y + i` + j] = T ?[(x + i) + (y + j)m1], and for ` − y < j ≤ `

there is T ′[x`+ y+ i`+ j] = T ′′[(x+ i)`+ (y+ j − `)] = T ?[(x+ i) + (y+ j − `)m1 + `m1] =
T ?[(x + i) + (y + j)m1]. Additionally, for m2 ≤ i < m1, P ?[i + j ·m1] = $, which always
generates a mismatch with any character in T ?. Thus

(1) =
m2−1∑
i=0

∑̀
j=1

δ(T ?[(x+ i) + (y + j)m1], P ?[i+ j ·m1]) =

=− (m1 −m2)`+
m1−1∑
i=0

∑̀
j=1

δ(T ?[(x+ i) + (y + j)m1], P ?[i+ j ·m1]). J

We see that it is enough to find all occurrences of P ? in T ? with (k + (m1 −m2) · `)
mismatches, where k + (m1 − m2) · ` ≤ 2k, |P ?| = |T ′| ≤ m and |T ?| = 2|T ′| ≤ 2m.
Additionally, runs(P ?) ≤ 9k + ` ≤ 10k and runs(T ?) ≤ 22k + ` ≤ 23k. This gives us the
following theorem.

I Theorem 10. k-bounded text-to-pattern Hamming distance reduces in O(n log3m) time to
O(n/m) instances of O(k)-RLE text-to-pattern Hamming distance on inputs of length O(m).

Now we describe how to solve an instance of O(k)-RLE Hamming distance.

I Lemma 11. There is a deterministic algorithm that outputs k-RLE Hamming text-to-
pattern distance on inputs of length O(m) in time O(m+ k

√
m logm).

Proof. Consider a letter c ∈ Σ. For a string S, we denote by runs(S, c) the number of runs in
S consisting of occurrences of c. Fix a parameter t. Call a letter c such that runs(P ?, c) > t

a heavy letter, and otherwise call it light. Now we describe how to count the number
of mismatches for each type of letters. This is reminiscent to a trick originally used by
Abrahmson [1] and later refined by Amir et al. [2].

Heavy letters. For every heavy letter c separately we use a convolution scheme. Since
both P ? and T ? are of size O(m), this takes time O(m logm) per every such letter. Since∑
c∈Σ runs(P ?, c) = runs(P ?) ≤ 10k, there are O(k/t) heavy letters, making the total time

O(mk/t · logm).

Light letters. First, we preprocess P ?, and for every light letter c we compute a list of runs
consisting of occurrences of c. Our goal is to compute the array A[0, |T ?| − |P ?|], where A[i]
counts the number of matching occurrences of light letters in T ?[i+ 1, i+ |P ?|] and P ?.

We scan T ?, and for every run of a particular light letter, we iterate through the
precomputed list of runs of this letter in P ?. Observe that, given a run of the same letter
in P ? and in T ?, denoted T ?[u, v] and P ?[y, z], respectively, their corresponding matches
can be seen as a piecewise linear function. More precisely, for all integers u ≤ i ≤ v and
y ≤ j ≤ z, we need to increase A[i− j] by one. To see that we can process pair of runs in
constant time, we work with discrete derivative, instead of original arrays.
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DA = 1 0 0 -1

DB = 1 0 0 0 0 -1

D2(A ·B) = 1 0 0 -1 0 -1 0 0 1

Figure 4 Left: a run in the pattern and a run in the text (both represented by black boxes)
consisting of the same character and a histogram of the matches they generate. Right: first derivatives
of the indicator arrays and second derivative of the match array, without padding zeroes.

Given a sequence F , we define its discrete derivative DF as follows: (DF )[i] = F [i] −
F [i − 1]. Correspondingly, if we consider a generating function F (x) =

∑
i F [i]xi, then

(DF )(x) = F (x) · (1− x) (for convenience, we assume that arrays are indexed from −∞ to
∞).

Now consider indicator sequences Tu,v[i] = 1(u ≤ i ≤ v) and Py,z[j] = 1(−z ≤ j ≤ −y).
To perform the update, we set A[i + j] += Tu,v[i] · Py,z[j] for all i, j, or simpler using
generating functions:

A(x) += Tu,v(x) · Py,z(x), (2)

where Tu,v(x) =
∑v
i=u x

i and Py,z(x) =
∑z
j=y x

−j . However, we observe that DTu,v and
DPy,z have particularly simple forms: DTu,v(x) = xu − xv+1 and DPy,z(x) = x−z − x−y+1.
Thus it is easier to maintain second derivative of A, and (2) becomes:

D2A(x) += xu−z − xv−z+1 − xu−y+1 + xv−y+2.

All in all, we can maintain D2A in constant time per pair of runs, or in O(k · t) total
time, since every list of runs is of length at most t, and there are at most 23k runs in T ?.
Additionally, in O(m) time we can compute A[0] and A[1], allowing us to recover all other
A[i]s from the formula A[i] = (D2A)[i] + 2A[i− 1]−A[i− 2].

Setting t =
√
m logm gives the total running time O(k

√
m logm) in both cases as

claimed. J

Combining the reduction from Theorem 10 with Lemma 11 gives us Theorem 1.

4 Lower Bound for k-bounded Hamming Distance

In this section, we present a conditional lower bound for computing k-bounded Hamming
distance. The main idea expands upon the proof attributed to Indyk [6], except that we use
rectangular matrices instead of square, and use the padding accordingly. We pad using the
same character in both text and pattern, increasing the number of mismatches only by a
factor of 2.

Recall the combinatorial matrix multiplication conjecture stating that, for any ε > 0,
there is no combinatorial1 algorithm for multiplying two n× n boolean matrices working in
time O(n3−ε). The following formulation is equivalent to this conjecture.

1 It is not clear what does combinatorial mean precisely. However, FFT and so boolean convolution often
used in algorithms on strings are considered not to be combinatorial.
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I Conjecture 12 (Combinatorial matrix multiplication). For any α, β, γ, ε > 0, there is no
combinatorial algorithm for multiplying an nα × nβ matrix with an nβ × nγ matrix in time
O(nα+β+γ−ε).

The equivalence can be seen by simply cutting the matrices into square blocks (in one
direction) or in rectangular blocks (in the other direction).

Now, consider two boolean matrices, A of dimension M ′×N and B of dimension N ×M ,
for M ′ ≥M ≥ N . We encode A as a text T by writing down its elements row-by-row and
adding some padding. Namely:

T = #M2
r1 #M−N+1 r2 #M−N+1 . . . #M−N+1 rM ′#M2

where ri = ri,1 . . . ri,N and ri,j = 0 when Ai,j = 0 and ri,j = j when Ai,j = 1. Similarly, we
encode B as a pattern P by writing down its elements column-by-column, except that here
the padding is shorter by one character:

P = c1 #M−N c2 #M−N . . . #M−N cM

where cj = c1,j . . . cN,j and ci,j = 0′ when Bi,j = 0 and ci,j = i when Bi,j = 1.
Observe that, since we encode 0s from A and B using different symbols, and encoding of

1s is position-dependent, ri and cj will generate a match only if they are perfectly aligned and
there is k such that ri,k = ck,j , or equivalently Ai,k = Bk,j = 1. Since each block (encoded
row plus following padding) is either of length N + 1 for rows or N for columns, there will
be at most one aligned row-column pair for each pattern-text alignment.

The total number of mismatches, for each alignment, is at most 2NM (since there are at
most MN non-# text characters that are aligned with pattern, and at most MN non-#
pattern characters). We can determine whether any given entry of A ·B is a 1, since if so
the number of mismatches for the corresponding alignment is decreased by 1.

We have |T | = Θ(M ′M) and |P | = Θ(M2). By setting M =
√
m, M ′ = n√

m
and

N = k√
m

we obtain Theorem 2.
If we denote by ω(α, β, γ) the exponent of fastest algorithm to multiply a matrix of

dimension nα × nβ with a matrix of dimension nβ × nγ , we also have:

I Corollary 13. For any positive ε, α, κ, such that 1
2α ≤ κ ≤ α ≤ 1 there is no algorithm

solving pattern matching with Θ(nκ) mismatches in time O(nω(2−α,2κ−α,α)/2−ε) for a text of
length n and a pattern of length Θ(nα).

5 (1 ± ε)-approximation of L1 Distance

In this section we prove Theorem 3. We use a procedure generalized_weighted_matching
(T, P, score) that computes, for a text T = t1t2 . . . tn and a pattern P = p1p2 . . . pm and an
arbitrary weight function σ : Σ× Σ→ Z, the array Sσ such that S[i] =

∑m
j=1 σ(ti+j , pj) in

in O(|Σ|n logm) time.
Let δ = ε

24·(3+logM) = Θ(ε/ log n), and let b be the smallest positive integer such that
2b ≥ 1/δ. We claim that with such parameters, Algorithm 1 outputs the desired (1 ± ε)-
approximation in the claimed time. Let Sε be its output.

I Theorem 14. For any i, S[i] · (1− ε) ≤ Sε[i] ≤ S[i] · (1 + ε) with probability at least 2/3.

Proof. Consider first x = xa and y = yb, two characters of the input. We analyze how
well Algorithm 1 approximates |x − y| = sgn(x − y) · (x − y) in the consecutive calls of
generalized_weighted_matching. First, fix value of ∆ and consider the binary representa-
tions of x′ = x+ ∆ and y′ = y + ∆. More precisely, let x′ =

∑
i 2i · αi and y′ =

∑
i 2i · βi for

ICALP 2018
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Algorithm 1: (1± ε)-approximation of text-to-pattern L1 distance.
Input: Integer strings T and P .
Output: Score vector Sε.

1 def score(x, y):
2 x0 ← x mod 2
3 y0 ← y mod 2
4 if x0 = y0 then
5 return 0
6 else if sgn(x− y) = sgn(x0 − y0) then
7 return 1
8 else
9 return −1

10

11 def approximate(T, P ):
12 ∆← u.a.r. integer from 0 to 2dlogMe − 1
13 T ′ ← T + ∆
14 P ′ ← P + ∆
15 Sε ← [0 . . . 0]
16 for i← 0 to dlogMe do
17 T ′′ ← bT ′/2ic mod 2b
18 P ′′ ← bP ′/2ic mod 2b
19 S ← generalized_weighted_matching(T ′′, P ′′, score)
20 Sε ← Sε + S · 2i

21 return Sε

some αi, βi ∈ {0, 1}. Algorithm 1 in essence estimates |x−y| = sgn(x−y)
∑
i 2i(αi−βi) with

C =
∑
i 2iγi where γi ∈ {−1, 0, 1} is the estimation of a contribution of (αi − βi) · sgn(x− y)

to (x′ − y′) and depends only on values of αj − βj ∈ {−1, 0, 1} for i ≤ j < i + b in the
following way:

If, for every i ≤ j < i+ b we have αj = βj , then γi = 0.
Otherwise, let j′ be the largest j such that i ≤ j < i+b and αj 6= βj . If αj′−βj′ = 1, then
the local estimation is that x′ > y′ and so γi = αi − βi, and otherwise γi = −1 · (αi − βi).

Consider c = max{i : αi 6= βi} and d = max{i : 2i ≤ (x′ − y′)}, that is c is the position
of the highest bit on which x′ and y′ differ, and d is the position of the highest bit of x′ − y′.
In general, c ≥ d, and we say that pair x′, y′ is t-bad, if c− d = t.

We first observe that for a x, y pair to be at least t-bad, a following condition must be
met: bx′/2d+tc 6= by′/2d+tc. Since ∆ is chosen uniformly at random from a large enough
range of integers, there is∑

τ≥t

Pr(x′, y′ is τ -bad
∣∣ x, y) ≤ |x− y|/2d+t ≤ 2−t+1.

We also observe following: for any pair x′, y′, in C, all the coefficients γc, γc−1, . . . , γc−b+1
are computed correctly, since for any j such that c ≥ j ≥ c− b+ 1 there is j′ = c, and then
γj = (αj − βj) · sgn(x− y). Therefore

∣∣C − |x′ − y′| ∣∣ =

∣∣∣∣∣∣
∑
i≤c−b

2i(γi − (αi − βi) · sgn(x− y))

∣∣∣∣∣∣ ≤
∑
i≤c−b

2 · 2i < 2 · 2c−b+1.
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If a pair x′, y′ is t-bad, it immediately follows that the absolute error of estimation is at most
2c−b+2 = 2d+t−b+2 ≤ |x′ − y′|2t+2δ.

We now estimate expected error in estimation based on choice of ∆. If a particular pair
x, y is t-bad, then t ≤ 1 + dlogMe. Using the previous observations, we have

E
[∣∣C − ∣∣x′ − y′∣∣ ∣∣ ∣∣∣ x, y] =

∑
t

Pr(x′, y′ is t-bad
∣∣ x, y) · E

[∣∣C − ∣∣x′ − y′∣∣ ∣∣ ∣∣∣ x′, y′ is t-bad ]
≤

1+dlogMe∑
t=0

2−t+1|x− y|2t+2δ = (3 + logM)8δ|x− y| = ε

3 |x− y|.

By linearity of expectation E
[∣∣Sε[i] − S[i]

∣∣] ≤ ε
3S[i], and by Markov’s inequality the

claim follows. J

Now, a standard amplification technique applies: it is enough to repeat Algorithm 1
independently p times and take the median value from S

(1)
ε [i], S(2)

ε [i], . . . , S(p)
ε [i] as the final

estimate Ŝε[i]. Taking p = Θ(log n) to be large enough makes the final estimate good with
high probability, and by the union bound whole Ŝε is a good estimate of S.

The complexity of Algorithm 1 is dominated by generalized_weighted_matching being
invoked O(log n) times on alphabet of size 2b = Θ(ε−1 log n). Each such invocation takes
O(2bn logm) = O(ε−1n log n logm), and Algorithm 1 takes O(ε−1n log2 n logm) time and
the total time for computing (1± ε)-approximation is O(ε−1n log3 n logm).

6 Reductions

In this section we design a series of reductions to complete the picture from Figure 2. We
start with an L1 version of Theorem 10.

I Theorem 15. k-bounded text-to-pattern L1 distance problem reduces in O(n log3m) time
to O(n/m) instances of O(k)-RLE text-to-pattern L1 distance on inputs of length O(m),
where both the pattern and the text might contain wildcards.

Proof. As in the proof of Theorem 10, we can assume that the length of T is 2m. We
observe that if the L1 distance of an m-substring of T is at most k, so must be its Hamming
distance. Therefore, we can use exactly the same filtering approach. In the case of no small
4k-period, after filtering m-substrings with more than 2k mismatches we are left with O(m/k)
possibilities, which are then verified using the “kangaroo jumps” technique of Landau and
Vishkin [13]. The only required modification is that now for every found mismatch we
calculate the corresponding increase in the L1 distance. In the case of a small 8k-period, we
use the same transformation, except that all special characters become identical wildcards ∗
with L1 distance 0 to every letter. This preserves the L1 distance by the same argument. J

Then, instead of designing an algorithm for computing k-RLE L1 distance, we apply the
following reduction.

I Corollary 16 (Theorem 2.1, Theorem 2.2 and Lemma A.1 in [8]). For any M ≥ 0, there is
a linearity preserving reduction from L1 distance between integers from [M ] to O(log2M)
instances of Hamming distance. There is a converse reduction from Hamming distance to
O(1) instances of L1 distance. Both reductions allow for wildcards in the input and output
wildcard-less instances.
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By inspecting the proof of the above reduction we see that it does not create any new
runs, that is, allows us to reduce k-RLE L1 distance to O(log2M) instances of k-RLE
Hamming distance. Therefore, together with Theorem 15 and Lemma 11, we obtain an
O((m+ k

√
m logm) · log2 n+n log3m) time algorithm for k-bounded L1 distance as claimed

in Theorem 4.
To complete the picture, we show a reduction from k-RLE Hamming distance to 2k-

bounded Hamming distance, that is, a converse to Theorem 10.

I Theorem 17. k-RLE text-to-pattern Hamming distance on inputs of length O(m) reduces
to O(1) instances of 2k-bounded Hamming distance on inputs of length O(m).

Proof. We proceed similarly as in Lemma 11. We observe that it is enough to compute
the second discrete derivative of the output array S, that is D2S defined as (D2S)[i] =
S[i+ 2]− 2S[i+ 1] + S[i], since D2S and two initial values of S (computed naively in time
O(m)) are enough to recover S. For any two blocks tutu+1 . . . tv−1tv and pypy+1 . . . pz−1pz
of the same letter, D2S needs to be updated in only 4 places, that is D2S[u − z]+ = 1,
D2S[v− z + 1]− = 1, D2S[u− y+ 1]− = 1 and D2S[v− y+ 2]. We now explain how to deal
with the first kind of updates, with the other three being implemented similarly.

We first reduce the problem to k-sparse text-to-pattern Hamming distance, where the
text and the pattern are of length O(m) and have each at most k regular characters, with
every other character being wildcard ∗ (special character having distance 0 to every other
character). We construct sparse instance as follows: for every position tu in T that starts a
block, we set Tsparse[u] = tu, and similarly in pattern for a position pz (that ends a block), we
set Psparse[z] = pz. Observe, that if tu 6= pz, then in the answer there is Ssparse[u− z]+ = 1,
and if tu = pz then Ssparse remains unchanged. That is, the answer counts mismatches, while
we want to count matches. To invert the answer, we create Tbin such that Tbin[i] = 1 iff
Tsparse[i] 6= ∗ and Tbin[i] = 0 otherwise, and Pbin in an analogous manner. Convolving Tbin
and Pbin gives us, for every alignment, the total number of non-special text characters aligned
with non-special pattern characters, and we obtain the answer with a single subtraction.

To reduce from k-sparse instances of Hamming distance to 2k-bounded Hamming distance,
we follow an analogous reduction from Lemma A.1 in [8] that reduces Hamming distance on
N+ + {∗} to Hamming distance on N. First, create a new text T1 such that T1[i] = T [i] iff
T [i] 6= ∗ and T1[i] = 0 iff T [i] = ∗, and similarly to obtain P1. Second, create a new text T2
such that T2[i] = 1 iff T2[i] 6= ∗ and T2[i] = 0 iff T [i] = ∗, and similarly to obtain P2. Now
we observe that Ham(T [i], P [j]) = Ham(T1[i], P1[j])−Ham(T2[i], P2[j]), thus it is enough to
compute exact Hamming text-to-pattern distances on these two instances and subtract them.
However, we observe that in both of them, there are in total at most 2k characters different
than 0, thus 2k-bounded Hamming distance works just as fine. J

7 Conclusion and Open Problems

Showing a reduction from either bounded RLE L1 distance, or sparse L1 distance to k-
approximated L1 distance would suffice in completing a converse to Theorem 5, and prove
that complexity of k-bounded L1 and Hamming distances is the same, up to poly-logarithmic
factors.
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Abstract
A consensus tree is a phylogenetic tree that captures the similarity between a set of conflicting
phylogenetic trees. The problem of computing a consensus tree is a major step in phylogenetic
tree reconstruction. It is also central for predicting a species tree from a set of gene trees, as
indicated recently in [Nature 2013].

This paper focuses on two of the most well-known and widely used consensus tree methods:
the greedy consensus tree and the frequency difference consensus tree. Given k conflicting trees
each with n leaves, the previous fastest algorithms for these problems were O(kn2) for the greedy
consensus tree [J. ACM 2016] and Õ(min{kn2, k2n}) for the frequency difference consensus tree
[ACM TCBB 2016]. We improve these running times to Õ(kn1.5) and Õ(kn) respectively.
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1 Introduction

A phylogenetic tree describes the evolutionary relationships among a set of n species called
taxa. It is an unordered rooted tree whose leaves represent the taxa and whose inner nodes
represent their common ancestors. Each leaf has a distinct label from [n]. The inner nodes
are unlabelled and have at least two children.

Numerous phylogenetic trees, reconstructed from data sources like fossils or DNA se-
quences, have been published in the literature since the early 1860s. However, the phylogenetic
trees obtained from different data sources or using different reconstruction methods result
in conflicts (similar though not identical phylogenetic trees over the same set [n] of leaf
labels). The conflicts between phylogenetic trees are usually measured by their difference
in signatures: The signature of a phylogenetic tree T is the set {L(u) : u ∈ T} where L(u)
denotes the set of labels of all leaves in the subtree rooted at node u of T (the set L(u) is
sometimes called a cluster). To deal with the conflicts between k phylogenetic trees in a
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systematic manner, the concept of a consensus tree was invented. Informally, the consensus
tree is a single phylogenetic tree that summarizes the branching structure (signatures) of all
the conflicting trees. That is, given a collection of k phylogenetic trees with the same set of
leaf labels [n], we would like to build a single phylogenetic tree that captures as much of
their structure as possible (in practice, we might want to relax this assumption and only
require that each set of leaf labels is a subset of [n], but we assume that it is exactly [n] as
in the previous theoretical work). Of course, there are many possibilities of how this single
phylogenetic tree should be chosen.

Many different types of consensus trees have been proposed in the literature. For almost
all of them, optimal or near-optimal Õ(kn) time constructions are known. These include
Adam’s consensus tree [1], strict consensus tree [27], loose consensus tree [4, 13], majority-
rule consensus tree [17, 13], majority-rule (+) consensus tree [11], and asymmetric median
consensus tree [20, 21]2. Two of the most notable exceptions are the frequency difference
consensus tree [10] and the greedy consensus tree [5, 9] whose running time remains quadratic
in either k or n. In particular, the former can be constructed in Õ(min{kn2, k2n}) time [11]
and the later in O(kn2) time [13]. For more details about different consensus trees and their
advantages and disadvantages see the survey in [5], Chapter 30 in [8], and Chapter 8.4 in [31].

In this paper we propose novel worst-case efficient algorithms for the frequency difference
consensus tree problem and the greedy consensus tree problem.

First, we present an O(kn log2 n) time deterministic labeling method. The labeling
method counts the frequency (number of occurrences) of every cluster S in the input
trees. Based on this labeling method, we obtain an O(kn log2 n) time construction of the
frequency difference consensus tree. Then, for the greedy consensus tree, we present our
main technical contribution: a method that uses micro-macro decomposition to verify if a
cluster S is compatible with a tree T in O(n0.5 log n) time and, if so, modify T to include
S in O(n0.5 log n) amortized time. Using this procedure, we obtain an O(kn1.5 log n) time
construction of the greedy consensus tree.

The frequency difference consensus tree. The frequency f(S) of a cluster S (a set of
labels of all leaves in some subtree) is the number of trees that contain S. A cluster is said
to be compatible with another cluster if they are either disjoint or one is included in the
other. A frequent cluster is a cluster that occurs in more trees than any of the clusters
that are incompatible with it. The frequency difference consensus tree is a tree whose
signature is exactly all the frequent clusters. Such a tree always exists because, for any
pair of incompatible clusters, at most one will be included, and so all included clusters are
pairwise compatible.

The frequency difference consensus tree was initially proposed by Goloboff et al. [10],
and its relationship with other consensus trees was studied in [7]. In particular, it can be
seen as a refinement of the majority-rule consensus tree [17, 13]. Moreover, it is known to
give less noisy branches than the greedy consensus tree defined below. Steel and Velasco [30]
concluded that “the frequency difference method is worthy of more widespread usage and
serious study”. A naive construction of the frequency difference consensus tree takes O(k2n2)
time. The free software TNT [10] has implemented a heuristics method to construct it more
efficiently. However, its time complexity remains unknown.

2 Constructing the asymmetric median consensus tree was proven to be NP-hard for k > 2 [20] and
solvable in Õ(n) time for k = 2 [21].
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Recently, Jansson et al. [11] presented an O(min{kn2, k2n + kn log2 n}) time construc-
tion (implemented in the FACT software package [12]). Their algorithm first computes
the frequency f(S) of every cluster S with non-zero frequency. This is done in total
O(min{kn2, k2n}) time. They then show that given these computed frequencies, the fre-
quency difference consensus tree can be computed in additional O(kn log2 n) time. In
Section 2 we show how to compute all frequencies in total O(kn log2 n) time leading to the
following theorem:

I Theorem 1. The frequency difference consensus tree of k phylogenetic trees T1, T2, . . . , Tk

on the same set of leaves [n] can be computed in O(kn log2 n) time.

To prove the above theorem, we first develop an O(kn log2 n) time algorithm for assigning
a number id(u) ∈ [kn] to every u ∈ Ti such that id(u) = id(u′) iff L(u) = L(u′). With
these numbers in hand, we can then compute the frequencies of all clusters in O(kn) time
using counting sort (since there are only kn clusters with non-zero frequencies, and each
was assigned an integer bounded by kn). Notice that this also generates a sorted list of all
clusters with non-zero frequencies.

The greedy consensus tree. We say that a given collection C of subsets of [n] is consistent
if there exists a phylogenetic tree T such that the signature of T is exactly C. The greedy
consensus tree is defined by the following procedure: We begin with an initially empty C and
then consider all clusters S in decreasing order of their frequencies. In this order, for every
S, we check if C ∪ {S} is consistent, and if so we add S to C.

The greedy consensus tree is one of the most well-known consensus trees. It has been
used in numerous papers such as [6, 23, 14, 18, 2, 24, 29, 19, 3, 15, 16, 26, 33] to name a
few. For example, in a recent landmark paper in Nature [23], it was used to construct the
species tree from 1000 gene trees of yeast genomes, and in [6] it was asserted that “The greedy
consensus tree offers some robustness to gene-tree discordance that may cause other methods
to fail to recover the species tree. In addition, the greedy consensus method outperformed our
other methods for branch lengths outside the too-greedy zone.”.

The greedy consensus tree is a refinement of the majority-rule consensus tree, and is
sometimes called the extended majority-rule consensus (eMRC) tree. It is implemented in
popular phylogenetics software packages like PHYLIP [9], PAUP* [32], MrBayes [22], and
RAxML [28]. A naive construction of the greedy consensus tree requires O(kn3) time [5].
To speed this up, these software packages often use hashing to improve the running time.
Thus, if one is interested in analyzing worst-case complexity of the algorithms used in these
packages, it would be necessary to allow randomization, as otherwise there is no guarantee
on the efficiency of hashing. Even with randomization, the worst-case time complexities of
these solutions are not known. Recently, Jansson et al. [13] gave the best known provable
construction with an O(kn2) deterministic running time (their implementation is also part of
the FACT package). In Section 3 we present our main contribution, a deterministic Õ(kn1.5)
construction as stated by the following theorem:

I Theorem 2. The greedy consensus tree of k phylogenetic trees T1, T2, . . . , Tk on the same
set of leaves [n] can be computed in O(kn1.5 log n) time.

To prove the above theorem, we develop a generic procedure that takes any ordered list
of clusters S1, S2, . . . , S` ⊆ [n] and tries adding them one-by-one to the current solution C.
We assume that every cluster Si is specified by providing a tree Ti and a node ui ∈ Ti such
that Si = L(ui). Our procedure requires O(n0.5 log n) time per cluster (to add this cluster to
C or assert that it cannot be added) and needs not to assume anything about the order of
the clusters. In particular, it does not rely on the clusters being sorted by frequencies.
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63:4 A Faster Construction of Greedy Consensus Trees

2 Computing the Identifiers

We process the nodes of every Ti in a bottom-up order. For every node u ∈ Ti, we compute the
identifier id(u) by updating the following structure called the dynamic set equality structure:

I Lemma 3 (the dynamic set equality structure). There exists a data structure that maintains
a set of integers under the following operations: (1) create a new empty set in constant time,
(2) add x ∈ [n] to the set in O(log2 n) time, (3) return the identifier of the set in constant
time, and (4) list all ` elements of the set in O(`) time. The structure ensures that the
identifiers are bounded by the total number of update operations performed so far, and that
two sets are equal iff their identifiers are equal.

Proof. To allow for listing all elements of the current set S, we store them in a list. Before
adding the new element x to the list, we need to check if x ∈ S. This will be done using the
representation described below.

Conceptually, we work with a complete binary tree B on n leaves labelled with 0, 1, . . . , n−1
when read from left to right (without losing generality, n is a power of 2), where every
node u corresponds to a set D(u) ⊆ [n] defined by the leaves in its subtree (note that
D(u) = {i, i + 1, . . . , j}, where 0 ≤ i ≤ j < n). Now, any set S is associated with a binary
tree B, where we write 1 in a leaf if the corresponding element belongs to S and 0 otherwise.
Then, for every node we define its characteristic vector by writing down the values written
in the leaves of its subtree in the natural order (from left to right). Clearly, the vector of
an inner node is obtained by concatenating the vector of its children. We want to maintain
identifiers of all nodes, so that the identifiers of two nodes are equal iff their characteristic
vectors are identical. If we can keep the identifiers small, then the identifier of the current
set can be computed as the identifiers of the root of B.

Assume that we have already computed the identifiers of all nodes in B and now want to
add x to S. This changes the value in the leaf u corresponding to x and, consequently, the
characteristic vectors of all ancestors of u. However, it does not change the characteristic
vectors of any other node. Therefore, we traverse the ancestors of u starting from u and
recompute their identifiers. Let v be the current node. If we have never seen the characteristic
vector of v before, we can set the identifier of v to be the largest already used identifier plus
one. Otherwise, we have to set the identifier of v to be the same as the one previously used
for a node with such a characteristic vector. As mentioned above, the characteristic vector
of an inner node v is the concatenation of the characteristic vectors of its children v` and vr.
We maintain a dictionary mapping a pair consisting of the identifier of v` and the identifier
of vr to the identifier of v. The dictionary is global, that is, shared by all instances of the
structure. Then, assuming that we have already computed the up-to-date identifiers of v`

and vr, we only need to query the dictionary to check if the identifier of v should be set to
the largest already used identifier plus one (which is exactly when the dictionary does not
contain the corresponding pair) or retrieve the appropriate identifier. Therefore, adding x to
B reduces to log n queries to the dictionary. By implementing the dictionary with balanced
search trees, we therefore obtain the claimed O(log2 n) time for adding an element.

We are not completely done yet, because creating a new complete binary tree B takes
O(n) time and therefore the initialization time is not constant yet. However, we can observe
that it does not make sense to explicitly maintain a node u of B such that S ∩D(u) = ∅,
because we can assume that the identifier of such an u is 0. In other words, we can maintain
only the part of B induced by the leaves corresponding to S. Adding an element x ∈ S is
implemented as above, except that we might need to create (at most O(log n)) new nodes
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on the leaf-to-root path corresponding to x (if such a leaf already exists, we terminate
the procedure as x ∈ S already) and then recompute the identifiers on the whole path as
described above. J

Armed with Lemma 3, we process every Ti bottom-up. Consider an inner node v ∈ Ti and
let v1, v2, . . . , vd be its children ordered so that |L(v1)| = maxj |L(vj)|, that is, the subtree
rooted at v1 is the largest. Assuming that we have already stored every L(vj) in a dynamic
set equality structure, we construct a dynamic set equality structure storing L(v) by simply
inserting all elements of L(v2) ∪ L(v3) ∪ · · · ∪ L(vd) into the structure of L(v1). This takes
O(log2 n) time per element. Then, we set id(u) to be the identifier of the obtained structure.
By a standard argument (heavy path decomposition), every leaf of Ti is inserted into at most
log n structures and therefore the whole Ti is processed in O(n log3 n) time. This gives us
the claimed O(kn log3 n) total time.

We now proceed with a faster O(kn log2 n) total time solution. While this is irrelevant
for our O(kn1.5 log n) time construction of the greedy consensus tree, it implies a better
complexity for constructing the frequency difference consensus tree.

We start with a high-level intuition. Lemma 3 is, in a sense, more than we need, as it is
not completely clear that we need to immediately compute the identifier of the current set.
Indeed, applying heavy path decomposition we can partially delay computing the identifiers
by proceeding in O(log n) phases. In each phase, we can then replace the dynamic dictionary
used to store the mapping with a radix sort. Intuitively, this shaves one log from the time
complexity. We proceed with a detailed explanation.

I Theorem 4. The numbers id(u) can be found for all nodes of the k phylogenetic trees
T1, T2, . . . , Tk in O(kn log2 n) total time.

Proof. For a node v ∈ Ti, define its level level(v) to be `, such that 2` ≤ |L(v)| < 2`+1. Thus,
the levels are between 0 and log n, level of a node is at least as large as the levels of its
children, and a node on level ` has at most one child on the same level. We work in phases
` = 0, 1, . . . , log n. In phase `, we assume that the numbers id(v) are already known for all
nodes v, such that level(v) < `, and want to assign these numbers to all nodes v, such that
level(v) = `. We will show how to achieve this in O(kn log n) time, thus proving the theorem.

Consider all nodes v, such that level(v) = `. Because every such v has at most one child
at the same level, all level-` nodes in Ti can be partitioned into maximal paths of the form
p = v1 − v2 − . . .− vs, where the level of the parent of v1 is larger than ` (or v1 is the root
of Ti), and the levels of all children of vj (except for vj+1, if defined) are smaller than `.
v1 is called the head of p and denoted head(p). Now, our goal is to find id(vj) with the
required properties for every j = 1, 2, . . . , s. We will actually achieve a bit more. The sets
L(head(p)) are disjoint in every tree Ti, and thus we can define, for every i, a partition
Pi = {Pi(1), Pi(2), . . . , Pi(ti)} of the set of leaves [n], where every Pi(z) corresponds to a
level-` path p = v1 − v2 − . . .− vs in Ti, such that L(head(p)) = Pi(z). The elements of Pi(z)
are then ordered, and we think that Pi(z) is a sequence of length |Pi(z)|. The ordering is
chosen so that, for every j = 1, 2, . . . , s, the set L(vj) corresponds to some prefix of Pi(z).
Pi(z)[1..r] denotes the prefix of Pi(z) of length r. We will assign identifiers to all such
prefixes Pi(z)[1..r], for every i = 1, 2, . . . , k, z = 1, 2, . . . , ti and r = 1, 2, . . . , |Pi(z)|, with the
property that the identifiers of two prefixes are equal iff the sets of leaves appearing in both
of them are equal. Then, we can extract the required id(vj) in constant time each by taking
the identifiers of some Pi(z)[1..r].

Recall that in the slower solution we worked with a complete binary tree B on n leaves.
For every set S in the collection and every u ∈ B, we computed an identifier of the set
S ∩ D(u). This was possible, because if u` and ur are the left and the right child of u,
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63:6 A Faster Construction of Greedy Consensus Trees

respectively, then the identifier of S ∩D(u) can be found using the identifiers of S ∩D(u`)
and S ∩D(ur). We need to show that retrieving these identifiers can be batched.

Fix a node u ∈ B and, for every i = 1, 2, . . . , k and z = 1, 2, . . . , ti, consider all prefixes
Pi(z)[1..r] for r = 1, 2, . . . , |Pi(z)|. We create a version of u for every such prefix. The version
corresponds to the set containing all elements of D(u) occurring in the prefix Pi(z)[1..r]. We
want to assign identifiers to all versions of u. First, observe that we only have to create a
new version if Pi(z)[r] ∈ D(u), as otherwise the set is the same as for r − 1. Thus, the total
number of required versions, when summed over all nodes u ∈ B on the same depth in B, is
only kn, as a leaf of Ti creates exactly one new version for some u. For every node u ∈ B, we
will store a list of all its versions. A version consists of its identifier (such that the identifier
of two versions is the same iff the corresponding sets are equal) together with the indices i, z

and r. We describe how to create such a list for every node u ∈ B at the same depth d given
the lists for all nodes at depth d + 1 next.

Let u1 and u2 be the left and the right child of u ∈ B, respectively. Then, we need to
create a new version of u for every new version of u1 and every new version of u2, because
for the set corresponding to u to change either the set corresponding to u1 or the set
corresponding to u2 must change, and every change is adding one new element. Fix i and
z and consider all versions of u1 corresponding to i and z sorted according to r. Let the
sorted list of their r’s be a1 < a2 < . . .. Similarly, consider all versions of u2 corresponding
to i and z sorted according to r, and let the sorted list of their r’s be b1 < b2 < . . .. For
every x ∈ {a1, a2, . . .} ∪ {b1, b2, . . .}, we create a new version of u corresponding to i, z, and
r equal to x. This is done by retrieving the version of u1 with r equal to ap, such that
ap ≤ x and p is maximized, and the version of u2 with r equal to bq, such that bq ≤ x and
q is maximized. Then, the identifier of the new version of u can be constructed from the
pair consisting of the identifiers of these versions of u1 and u2 (this is essentially the same
reasoning as in the slower solution). We could now use a dictionary to map these pairs to
identifiers. However, we can also observe that, in fact, we have reduced finding the identifiers
of all versions of all nodes u ∈ B at the same depth d to identifying duplicates on a list of
kn pairs of numbers from [kn]. This can be done by radix sorting all pairs in linear time
(more precisely, O(kn) time and O(kn) space), and then sweeping through the sorted list
while assigning the identifiers. This takes only O(kn) time for every depth d, so O(kn log n)
for every level as claimed. J

The proof of Theorem 1 follows immediately from Theorem 4.

3 Simulating the Greedy Algorithm

We consider k trees T1, . . . , Tk on the same set of leaves [n], and assume that every node u

has an identifier id(u) such that id(u) = id(u′) iff L(u) = L(u′). We next develop a general
method for maintaining a solution C (i.e., a set of compatible identifiers) so that, given any
node u ∈ Ti, we are able to efficiently check if L(u) is compatible with C, meaning that
C ∪ L(u) is consistent, and if so add L(u) to C. Our method does not rely on the order in
which the sets arrive and in particular can be used to run the greedy algorithm.

We represent C with a phylogenetic tree Tc such that C = {L(u) : u ∈ Tc}. Tc is called
the current consensus tree. By Lemma 2.2 of [13], S is compatible with C iff the node v ∈ Tc

defined as the lowest common ancestor of all leaves with labels from S has the property that,
for every child v′ of v, either L(v′) ∩ S = ∅ or L(v′) ⊆ S. Recall that the lowest common
ancestor (lca) of u and v is the deepest node w that is an ancestor of both u and v. Also,
adding L(u) to C can be done by creating a new child w of v and reconnecting every original
child v′ of v such that L(v′) ⊆ S to the new w. This is illustrated in Figure 1 (left).
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Figure 1 Left: adding {a, b, g, h, i} to S. Right: checking if S = {m, n, o, b, g, h, i, k} is compatible
with Tc. Leaves corresponding to the elements of S are shown in red and their lca is v. S is not
compatible with Tc because the counter of the middle child of v is equal to 5 yet there are 7 leaves
in its subtree.

Initially, Tc consists only of n leaves attached to the common root (which corresponds to
C = {{x} : x ∈ [n]}). Our goal is to maintain some additional information so that given any
node u ∈ Ti, we can check if L(u) is compatible with C in O(n0.5 log n) time. After adding
L(u) to C the information will be updated in amortized O(kn0.5 log n) time. To explain the
intuition, we first show how to check if L(u) is compatible with C in roughly O(|L(u)|) time.

Let L(u) = {`1, `2, . . . , `s} and let ui be the leaf of Tc labelled with `i. Let v be the lowest
common ancestor of u1, u2, . . . , us found by asking s− 1 lca queries: we start with u1 and
then iteratively jump to the lca of the current node and ui. Assuming that we represent Tc in
such a way that an lca query can be answered efficiently, this takes roughly O(s) time. Then,
we need to decide if for every child v′ of v it holds that L(v′) ⊆ L(u) or L(v′)∩ L(u) = ∅. This
can be done by computing, for every such v′, how many ui’s belong to the subtree rooted at
v′, and then checking if this number is either 0 or |L(v′)|. To compute these numbers, we
maintain a counter for every v′. Then, for every ui we retrieve the child v′ of v such that
ui belongs to the subtree rooted at v′ and increase the counter of v′. Assuming that we
represent Tc so that such v′ can be retrieved efficiently, this again takes roughly O(s) time.
Finally, we iterate over all ui again, retrieve the corresponding v′ and check if its counter is
equal to |L(v′)| (so our representation of Tc should also allow retrieving the number of leaves
in a subtree). If not, then L(u) is not compatible with C, see Figure 1 (right). Otherwise, we
create the new node w and reconnect to w all children v′ of v, such that the counter of v′ is
equal to |L(v′)|.

We would like to avoid explicitly iterating over all elements of L(u). This will be done
by maintaining some additional information, so that we only have to iterate over up to n0.5

elements. To explain what is the additional information we need the (standard) notion of a
micro-macro decomposition. Let b be a parameter and consider a binary tree on n nodes.
We want to partition it into O(n/b) node-disjoint subtrees called micro trees. Each micro
tree is of size at most b and contains at most two boundary nodes that are adjacent to nodes
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63:8 A Faster Construction of Greedy Consensus Trees

in other micro trees. One of these boundary nodes, called the top boundary node, is the root
of the whole micro tree, and the other is called the bottom boundary node. Such a partition
is always possible and can be found in O(n) time.

We binarize every Ti to obtain T ′
i (this could be avoided by working with edge-disjoint

subtrees in the decomposition, but we find node-disjoint subtrees easier to think about;
binarization adds a number of artificial nodes u for which we do not check if L(u) is compatible
with C)). Then, we find a micro-macro decomposition of T ′

i with b = n0.5 (where b has been
chosen as to minimize the total running time). By properties of the decomposition we have
the following:

I Proposition 5. For any u ∈ Ti such that |L(u)| > n0.5, there exists a boundary node v ∈ T ′
i

such that L(u) can be obtained by adding at most n0.5 elements to L(v). Furthermore, v and
these up to n0.5 elements can be retrieved in O(n0.5) time after O(n) preprocessing.

The total number of boundary nodes is only O(kn0.5). For each such boundary node u,
we maintain a pointer to a node finger(u) ∈ Tc called the finger of u, defined as the lowest
common ancestor in Tc of all leaves with labels belonging to L(u). Additionally, the children
of finger(u) are partitioned into three groups: (1) vi such that L(vi) ⊆ L(u), (2) vi such that
L(vi) ∩ L(u) = ∅, and (3) the rest. We call them full, empty, and mixed, respectively (with
respect to u). For each group we maintain a list storing all nodes in the group, every node
knows its group, and the group knows it size. Additionally, every group knows the total
number of leaves in all subtrees rooted at its nodes.

We also need to augment the representation Tc to allow for efficient extended lca queries.
An extended lca query, denoted lca_ext(u, v), returns the first edge on the path from the
lca of u and v to u, and -1 if u is an ancestor of v. For example, in Figure 1 (right),
lca_ext(v, k) = −1 whereas lca_ext(h, k) is the edge between v and its leftmost child. The
following lemma follows by slightly tweaking the link/cut trees of Sleator and Tarjan [25].

I Lemma 6. We can maintain a collection of rooted trees under: (1) create a new tree
consisting of a single node, (2) make the root of one tree a child of a node in another tree,
(3) delete an edge from a node to its parent, (4) count leaves in the tree containing a given
node, and (5) extended lca queries, all in O(log n) amortized time, where n is the total size
of all trees in the collection.

We next show how to efficiently check for any u if L(u) is compatible with C. By the
following lemma, this can be done in O(n0.5 log n) time, assuming we have stored the required
additional information. Recall that this additional information includes:
1. The tree Tc maintained using Lemma 6.
2. For every boundary node w, we store finger(w).
3. For every boundary node w, we store three lists containing the full, the mixed, and the

empty children of finger(w) respectively. Each list also stores the total number of leaves
in all subtrees rooted at its nodes.

I Lemma 7. Assuming access to the above additional information, given any node u ∈ Ti

we can check if L(u) is compatible with C in O(n0.5 log n) time.

Proof. By Lemma 2.2 of [13], to check if L(u) is compatible with C we need to check if, for a
node v defined as the lowest common ancestor of all leaves with labels belonging to L(u), it
holds that for every child v′ of v either L(v′)∩ L(u) = ∅ or L(v′) ⊆ L(u). By properties of the
micro-macro decomposition, we can retrieve a boundary node w and a set S of up to n0.5

labels such that L(u) = L(w) ∪ S (if |L(u)| < n0.5, there is no w). See Figure 2. Then, the
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Figure 2 A schematic illustration of the micro-macro decomposition. v is a boundary node
and L(v) = {h, i, j, k, `, m, n, o, p, q}. Then, L(u) = {a, b, c, f, g, h, i, j, k, `, m, n, o, p, q} so L(u) =
L(v) ∪ {a, b, c, f, g}.

lowest common ancestor of all leaves with labels belonging to L(u) is the lowest common
ancestor of finger(w) and all leaves with labels belonging to S. Therefore, v can be found
with |S| lca queries in O(n0.5 log n) time. Second, to check if L(vi)∩ L(u) = ∅ or L(vi) ⊆ L(u)
for every child vi of v we distinguish two cases:

(1) If v is a proper ancestor of finger(w) we can calculate |L(vi) ∩ L(u)| for every vi in
O(|S| log n) = O(n0.5 log n) time as follows. Every edge has its associated counter. We
assume that all counters are set to zero before starting the procedure and will make sure
that they are cleared at the end. First, we use an lca_ext(w, v) query to access the edge
leading to the subtree containing w and set its counter to |L(w)|. Then, we iterate over all
` ∈ S, retrieve the leaf u of Tc labelled with `, and use an lca_ext(u, v) query to access the
edge leading to the subtree of v containing u and increase its counter by one. Additionally,
whenever we access an edge for the first time (in this particular query), we add it to a
temporary list Q. After having processed all ` ∈ S, we iterate over (v, vi) ∈ Q and check
if the counter of (v, vi) is equal to the number of leaves in the subtree rooted at vi (which
requires retrieving the number of leaves). If this condition holds for every (v, vi) ∈ Q then
L(u) is compatible with C and furthermore, the nodes vi such that (v, vi) ∈ Q are exactly
the ones that should be reconnected. Finally, we iterate over the edges in Q again and reset
their counters.

(2) If v = finger(w) the situation is a bit more complicated because we might not
have enough time to explicitly iterate over all children of v that should be reconnected.
Nevertheless, we can use a very similar method. Every edge has its associated counter (again,
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we assume that the counter are set to zero before starting the procedure and will make sure
that they are cleared at the end). We also need a global counter g, that is set to the total
number of leaves in all subtrees rooted at either full or mixed children of v decreased by
|L(w)|. g can be initialized in constant time in the first step of the procedure due to the
additional information stored with every list of children. Intuitively, g is how many leaves not
belonging to L(w) we still have to see to conclude that indeed L(vi)∩L(u) = ∅ or L(vi) ⊆ L(u)
for every child vi of v. We iterate over ` ∈ S and access the edge (v, vi) leading to the subtree
containing u labelled with `. We decrease g by one and, if vi is an empty child of v and this
is the first time we have seen vi (in this query) then we add the number of leaves in the
subtree rooted at vi to g. If, after having processed all ` ∈ S, g = 0 then we conclude that
L(u) is compatible with C. The whole process takes O(|S| log n) = O(n0.5 log n) time. J

Before explaining the details of how to update the additional information, we present
the intuition. Recall that adding L(u) to C is done by creating a new child v′ of v and
reconnecting some children of v to v′. Let the set of all children of v be C and the set of
children that should be reconnected be Cr. Note that if |Cr| = 1 or |C| = |Cr| then we do
not have to change anything in Tc. Otherwise, updating Tc can be implemented using two
different methods:
1. Delete edges from nodes in Cr to v. Create a new tree consisting of a single node v′ and

make it a child of v. Then, make all nodes in Cr children of v′.
2. Delete edges from nodes in C \Cr to v. Delete the edge from v to its parent w. Create a

new tree consisting of a single node v′ and make it a child of w. Then, make v a child of
v′ and also make all nodes in C \ Cr children of w. See Figure 3.

Thus, by using Cr or C \Cr, the number of operations can be either O(|Cr|) or O(|C|− |Cr|).
We claim that by choosing the cheaper option we can guarantee that the total time for
modifying the link-cut tree representation of Tc is O(n log2 n). Intuitively, every edge of the
final consensus tree participates in O(log n) operations, and there are at most n such edges.
This is formalized in the following lemma.

I Lemma 8. min{|Cr|, |C| − |Cr|} summed over all updates of Tc is n log n.

Proof. We assume that 2 ≤ |Cr| < |C| in every update, as otherwise there is nothing to
change in Tc. Then, there are at most n updates, as each of them creates a new inner node
and there are never any nodes with degree 1 in Tc.

We bound the sum of min{|Cr|, |C| − |Cr|} by assigning credits to inner nodes of Tc.
During the execution of the algorithm, a node u with b siblings should have log b credits.
Thus, whenever we create a new inner node we need at most log n new credits, thus the
total number of allocated credits is n log n. It remains to argue that, whenever we create a
new child v′ of v and reconnect some of its children, the original credits of v can be used to
pay for the update and make sure that all children of v and v′ have enough credits after the
update.

Denoting x = |Cr| and y = |C| − |Cr|, the cost of the update is min{x, y}. The total
number of credits of all children of v before the update is (x + y) log(x + y − 1). After the
update, the number of credits of all children of v is (y + 1) log y ≤ y log y + log n and the
number of credits of all children of v′ is x log(x− 1). Ignoring the log n new credits allocated
to v′, the number of available credits is thus:

(x + y) log(x + y− 1)− y log y− x log(x− 1) = x log(1 + y/(x− 1)) + y log(1 + (x− 1)/y)

which is at least min{x, y} for x ≥ 2, so enough to pay min{|Cr|, |C| − |Cr|} for the update.
Hence, the sum is at most n log n. J
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Figure 3 Reconnecting children v3, v5, v6, v7, v9 of v using the second method.

Before presenting the whole update procedure, we need one more technical lemma.

I Lemma 9. The procedure for checking if L(u) is compatible with C can be requested to
return Cr in O(|Cr|+ n0.5) time or C \ Cr in O(|C| − |Cr|+ n0.5) time.

Proof. By inspecting the proof of Lemma 7, we see that there are two cases depending on
whether v is a proper ancestor of finger(w) or not.
1. If v is a proper ancestor of finger(w) then Cr can be obtained from Q. More precisely, for

every (v, vi) ∈ Q we add vi to Cr in O(|Cr|) total time. We can also obtain C \ Cr in
O(|C|) = O(|C \ Cr|+ |S|) = O(|C| − |Cr|+ n0.5) time.

2. If v = finger(w) then, while iterating over ` ∈ S, if this is the first time we have seen
vi then we add vi to Cr. Additionally, we add all full children of v to Cr. Thus, Cr

can be generated in O(|Cr|) time. Similarly, C \ Cr consists of all empty children of
v without the nodes vi seen when iterating over ` ∈ S, and so can be generated in
O(|C \ Cr|+ |S|) = O(|C| − |Cr|+ n0.5) time.

Thus, we can always generate Cr in O(|Cr|+ n0.5) time and C \ Cr in O(|C| − |Cr|+ n0.5)
time. J

To add L(u) to C, we will need to iterate over either Cr or C \ Cr (depending on which
is smaller). After paying additional O(n0.5) time we can assume that we have access to a
list of the elements in the appropriate set. The additional time sums up to O(n1.5), because
there can be only n distinct new sets added to C.

I Lemma 10. If L(u) is compatible with C then, after adding L(u) to C and modifying Tc we
can update all additional information in amortized O(kn0.5 log n) time assuming that we add
n such sets.

Proof. Recall that Tc is maintained using the data structure from Lemma 6, and adding
L(u) to C is implemented by creating a new child v′ of v and reconnecting some of the
children of v to v′. C is the set of all children of v and Cr is the set of children of v that are
reconnected to v′. If |Cr| ≤ |C| − |Cr| we iterate over Cr and reconnect them one-by-one. If
|Cr| > |C| − |Cr| we iterate over C \Cr and reconnect them to a new node w that is inserted
between v and its parent. To iterate over either Cr or C \Cr, we extend the query procedure
as explained in Lemma 9. This adds O(n0.5) to the time complexity, but then we can assume
that the requested set can be generated in time proportional to its size. To unify the case of
|Cr| ≤ |C| − |Cr| and |Cr| > |C| − |Cr|, we think that v is replaced with two nodes v′ and
v′′, where v′ is the parent of v′′. All nodes in Cr become children of v′′ while all nodes of
C \Cr become children of v′ after iterating over either Cr or C \Cr, depending on which set
is smaller, so by Lemma 8 in the whole process we iterate over sets of total size n log n, so
only amortized log n assuming that we add n sets L(u).

Consider a boundary node u. If finger(u) 6= v then there is no need to update the
additional information concerning u. If finger(u) = v then we need to decide if the finger of
u should be set to v′ or v′′ and update the partition of the children of finger(u) accordingly.
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finger(u) should be set to v′ exactly when, for any w ∈ C \ Cr, L(w) ∩ L(u) = ∅ or, in other
words, all nodes in C \ Cr are empty with respect to u. The groups should be updated as
follows:
1. If finger(u) is set to v′′ then we should remove all nodes in C \ Cr from the list of empty

nodes with respect to u (as they are no longer children of finger(u)). Other groups remain
unchanged.

2. If finger(u) is set to v′ then we should remove all nodes in Cr from the lists. Additionally,
we need to insert v′′ into the appropriate group: full if all nodes in Cr were full, empty if
all nodes in Cr were empty, and mixed otherwise.

We need to show that all these conditions can be checked by either iterating over the nodes of
C or over the nodes of C \Cr, because we want to iterate over the smaller of these. This then
guarantees that the amortized cost of updating the additional information for a boundary
node is only O(log n), so amortized O(kn0.5 log n) overall.

To check if all nodes in C \Cr are empty with respect to u, we can either iterate over the
nodes in C \ Cr or iterate over all nodes in Cr and check if all nodes in C that are full or
empty in fact belong to Cr (this is possible because we also keep the total number of full
and empty nodes in C). Thus, we can check if finger(u) should be set to v′.

If finger(u) is set to v′ we need to decide where to put v′′. We only explain how to decide
if all nodes in Cr are full, as the procedure for empty is symmetric. We can either iterate
over all nodes in Cr and check that they are full or iterate over all nodes in C \Cr and check
that all nodes in C that are empty or mixed in fact belong to C \Cr (and thus do not belong
to Cr, so all nodes in Cr are full). Finally, we add the number of leaves in the subtree rooted
at v′′ (extracted in O(log n) time) to the appropriate sum.

It remains to describe how to remove all unnecessary nodes from the lists. Here we do not
worry about having to iterate over the smaller set, because there are only O(n) new edges
created during the whole execution of the algorithm, so we can afford to explicitly iterate
over the nodes that should be removed, that is, over C or C \ Cr. For every removed node,
we also subtract the number of leaves in its subtree (extracted in O(log n) time) from the
appropriate sum. Overall, this adds O(n log n) per boundary node to the time complexity,
so only amortized O(kn0.5 log n) overall. J
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Abstract
Given a setW = {w1, . . . , wn} of non-negative integer weights and an integer C, the #Knapsack
problem asks to count the number of distinct subsets of W whose total weight is at most C. In
the more general integer version of the problem, the subsets are multisets. That is, we are also
given a set {u1, . . . , un} and we are allowed to take up to ui items of weight wi.

We present a deterministic FPTAS for #Knapsack running in O(n2.5ε−1.5 log(nε−1) log(nε))
time. The previous best deterministic algorithm [FOCS 2011] runs in O(n3ε−1 log(nε−1)) time
(see also [ESA 2014] for a logarithmic factor improvement). The previous best randomized
algorithm [STOC 2003] runs in O(n2.5

√
log(nε−1) + ε−2n2) time. Therefore, for the case of con-

stant ε, we close the gap between the Õ(n2.5) randomized algorithm and the Õ(n3) deterministic
algorithm.

For the integer version with U = maxi {ui}, we present a deterministic FPTAS running in
O(n2.5ε−1.5 log(nε−1 logU) log(nε) log2 U) time. The previous best deterministic algorithm [TCS
2016] runs in O(n3ε−1 log(nε−1 logU) log2 U) time.
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1 Introduction

Given a set W = {w1, . . . , wn} of non-negative integer weights and an integer C, the
#Knapsack problem asks to count the number of distinct subsets of W whose total weight
is at most C. This problem is the counting version of the well known Knapsack problem
and is #P-hard. While there are many, celebrated, randomized polynomial-time algorithms
for approximately counting #P-hard problems, the #Knapsack problem is one of the
few examples where there is also a deterministic approximation algorithm (other notable
examples are [8, 14, 1]).

From a geometric view, the #Knapsack problem is equivalent to finding the number
of vertices of the n-dimensional hypercube that lie on one side of a given n-dimensional
hyperplane. The problem is also related to pseudorandom generators for halfspaces (see
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e.g. [2, 9, 11]) as these imply deterministic (though not polynomial-time) approximation
schemes for #Knapsack by enumerating over all input seeds to the generator.

Approximately counting knapsack solutions. The #Knapsack problem can be solved
with the following simple recursion: S(i, j) = S(i − 1, j) + S(i − 1, j − wi) where S(i, j)
is the number of subsets of {w1, ..., wi} whose weight sums to at most j. This recurrence
immediately implies a pseudo-polynomial O(nC) time algorithm. More interestingly, this
recurrence is the basis of all existing fully polynomial-time approximation schemes (FPTAS).
That is, algorithms that for any ε > 0 estimate the number of solutions to within relative
error (1± ε) in time polynomial in n and in 1/ε.

Dyer et al. [4] were the first to show how to approximate this recurrence with random
sampling. They gave a randomized sub-exponential 2O(

√
n log2.5 n))ε−2 time algorithm. Using

a more complicated random sampling (with a rapidly mixing Markov chain), Morris and Sin-
clair [10] obtained the first FPRAS (fully-polynomial randomized approximation scheme) run-
ning in O(n4.5+ε+ε−2n2) time. Dyer [3] further improved this to O(n2.5

√
log(nε−1)+ε−2n2)

by using a surprisingly simple sampling procedure (combined with randomized rounding).
This to date is the fastest known randomized solution. As for deterministic solutions, the
fastest solution to date is by Rizzi and Tomescu [12] and runs in O(n3ε−1 log ε−1/ log n)
time. It is a logarithmic factor improvement (obtained by discretizing the recursion S(i, j)
with floating-point arithmetic) over the previous fastest O(n3ε−1 log(nε−1)) time solutions
of Gopalan et al. [6] (who used read-once branching programs inspired by related work on
pseudorandom generators for halfspaces [9]) and of Štefankovič et al. [13] (who approximated
a “dual” recursion S∗(i, j) defined as the smallest capacity c such that there exist at least j
subsets of {w1, . . . , wi} with weight c).

Approximately counting integer knapsack solutions. In the more general integer version
of #Knapsack, the subsets are multisets. That is, in addition to W = {w1, . . . , wn} we are
also given a set {u1, . . . , un} and we are allowed to take up to ui items of weight wi.

The first (randomized) FPRAS for counting integer knapsack solution was given by Dyer [3]
who presented a strongly polynomial O(n5 + n4ε−2) time algorithm. A (deterministic)
FPTAS for this problem was then given by Gopalan et al. [6] with a running time of
O(n5ε−2 log2 U logw) (see also [5]) where U = maxi {ui} and w =

∑
i wiui +C. The fastest

solution to date is by Halman [7] with a running time of O(n3ε−1 log(nε−1 logU) log2 U).

Our results. In this paper we present improved algorithms for both #Knapsack and its
integer version. Our algorithms improve the previous best algorithms by polynomial factors.
For constant ε, we close the gap between the Õ(n2.5) randomized and the Õ(n3) deterministic
running times. More formally, with the standard assumption of constant time arithmetics on
the input numbers, we prove the following two theorems:

I Theorem 1. There is a FPTAS running in O(n2.5ε−1.5 log(nε−1) log(nε)) time and
O(n1.5ε−1.5) space for counting knapsack solutions.

I Theorem 2. There is a FPTAS running in O(n2.5ε−1.5 log(nε−1 logU) log(nε) log2 U)
time and O(n1.5ε−1.5 logU) space for counting integer knapsack solutions.

Our algorithm is the first algorithm to deviate from the standard recursion. In particular,
on large enough sets, instead of recursing on all but the last item, we recurse in the middle
and use convolution to merge the two sub-solutions. This requires extending the recent
technique of K-approximation sets and functions used by Halman [7] and introduced in [8].
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Our extended technique (which we call sum approximations) is simple to state and leads to a
surprisingly simple solution to #Knapsack with an improved running time. In a nutshell,
for any function f : Z+ → Z+ (think of f(x) = the number of subsets with total weight
exactly x) let f≤ denote the function f≤(x) =

∑
y≤x f(y) (hence f≤(x) = the number of

subsets with total weight at most x). Then, in order to approximate the function f≤ it is
enough to find any function F such that F≤ approximates f≤.

We examine the properties of such sum approximations F in Section 2, and introduce a
number of useful computational primitives on sum approximations. With these primitives in
hand, we give a simplified version of Halman’s algorithm for #Knapsack in Section 3. Then,
in Section 4 we present an improved divide and conquer algorithm based on convolutions of
sum approximations. Finally, in Section 5 we adapt our algorithm to the integer version,
where every item has a corresponding multiplicity. Instead of the binding constraints approach
used by Halman [7], we show that it is enough to perform a single scan of a sum approximation
using nothing more than a standard binary search tree.

2 Approximation of a Function

Consider the following two functions: f(x) = the number of subsets with total weight exactly
x, and f≤(x) = the number of subsets with total weight at most x. More generally:

I Definition 3. Given a function f : Z+ → Z+ we define the function f≤(x) as

f≤(x) =
∑
y≤x

f(y).

Our goal is to approximate f≤(C) but we will actually approximate the entire function
f≤(x) for all x. We now describe what it means to approximate a function and present some
properties of such approximations.

I Definition 4 ((1 + ε)-approximation of a function). Given a function f : Z+ → Z+ and a
parameter ε > 0, a function F : Z+ → Z+ is a (1 + ε)-approximation of f if for every x,

f(x) ≤ F (x) ≤ (1 + ε)f(x).

The above definition is similar to the definition of K-approximation sets [7] for K = (1 + ε).

I Definition 5 ((1 + ε)-sum approximation of a function). Given a function f : Z+ → Z+ and
a parameter ε > 0, a function F : Z+ → Z+ is a (1 + ε)-sum approximation of f if F≤ is a
(1 + ε)-approximation of f≤.

We next examine some useful properties of sum approximations. For a function f : Z+ → Z+

define its shift by w as follows:

f |w(x) =
{
f(x− w), x ≥ w,
0 x < w,

and for two functions f, g : Z+ → Z+ define their convolution to be:

(f ∗ g)(w) =
∑

x+y=w
f(x)g(y).

The following lemma describes four operations on sum approximations. The first three
are similar to the ones used in [7, Property 2.1]. The fourth operation (convolution) is novel.
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I Lemma 6 (operations on sum approximations). Let F be a (1 + ε)-sum approximation of f
and G be a (1 + ε)-sum approximation of g, then the following properties hold:
Approximation: A (1 + δ)-sum approximation of F is a (1 + δ)(1 + ε)-sum approximation

of f .
Summation: (F +G) is a (1 + ε)-sum approximation of (f + g).
Shifting: F |w is a (1 + ε)-sum approximation of f |w for any w > 0.
Convolution: (F ∗G) is a (1 + ε)2-sum approximation of (f ∗ g).

Proof.
Approximation: Let F ′ be a (1 + δ)-approximation of F . For every x, f≤(x) ≤ F≤(x) ≤

(1 + ε)f≤(x) and F≤(x) ≤ F ′≤(x) ≤ (1 + δ)F≤(x). We therefore have that f≤(x) ≤
F ′≤(x) ≤ (1 + δ)(1 + ε)f≤(x).

Summation: For every x we have that f≤(x) ≤ F≤(x) ≤ (1 + ε)f≤(x) and g≤(x) ≤
G≤(x) ≤ (1 + ε)g≤(x), adding these two equations we get (f + g)≤(x) ≤ (F +G)≤(x) ≤
(1 + ε)(f + g)≤(x).

Shifting: For x < w, f |w(x) = 0 = F |w(x). For x ≥ w let y = x− w. Since y ≥ 0 we have
that f≤(y) ≤ F≤(y) ≤ (1 + ε)f≤(y) and therefore f |≤w(x) ≤ F |≤w(x) ≤ (1 + ε)f |≤w(x).

Convolution: We first prove that (F ∗G)≤(w) ≥ (f ∗ g)≤(w):

(F ∗ G)≤(w) =
∑

x+y≤w

F (x)G(y) =
∑
x≤w

∑
y≤w−x

F (x)G(y) =
∑
x≤w

[
F (x)

∑
y≤w−x

G(y)

]
=
∑
x≤w

F (x)G≤(w − x) ≥
∑
x≤w

F (x)g≤(w − x) =
∑
x≤w

F (x)
∑

y≤w−x

g(y)

=
∑

x+y≤w

F (x)g(y) =
∑
y≤w

∑
x≤w−y

F (x)g(y) =
∑
y≤w

[
g(y)

∑
x≤w−y

F (x)

]
=
∑
y≤w

g(y)F ≤(w − y) ≥
∑
y≤w

g(y)f≤(w − y) =
∑
y≤w

g(y)
∑

x≤w−y

f(x)

=
∑

x+y≤w

f(x)g(y) = (f ∗ g)≤(w).

Next we prove that (F ∗G)≤(w) ≤ (1 + ε)2(f ∗ g)≤(w):

(F ∗ G)≤(w) =
∑

x+y≤w

F (x)G(y) =
∑
x≤w

∑
y≤w−x

F (x)G(y) =
∑
x≤w

[
F (x)

∑
y≤w−x

G(y)

]
=
∑
x≤w

F (x)G≤(w − x) ≤
∑
x≤w

F (x)(1 + ε)g≤(w − x) =

= (1 + ε)
∑
x≤w

F (x)
∑

y≤w−x

g(y) = (1 + ε)
∑

x+y≤w

F (x)g(y)

= (1 + ε)
∑
≤w

∑
x≤w−y

F (x)g(y) = (1 + ε)
∑
y≤w

[
g(y)

∑
x≤w−y

F (x)

]
= (1 + ε)

∑
y≤w

g(y)F ≤(w − y) ≤ (1 + ε)
∑
y≤w

g(y)(1 + ε)f≤(w − y) =

= (1 + ε)2
∑
y≤w

g(y)
∑

x≤w−y

f(x) = (1 + ε)2
∑

x+y≤w

f(x)g(y)

= (1 + ε)2(f ∗ g)≤(w). J

We next describe the way that we represent functions.
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f≤(x)

x

f≤(x)

x
r1
r2
r3

r4

r5

r6

x1 x2
x3

x4 x5 x6

Figure 1 On the left, f≤(x) compared to f(x). The red point at position x is wider as f(x) is
larger. On the right, the blue points are the first entries that have value of at least ri.

I Definition 7 (a function representation). Given a function f : Z+ → Z+, the representation
of f is defined to be a list of all the pairs (x, f(x)) where f(x) > 0. The list is kept sorted by
the x value. The size of f (denoted by |f |) is the number of pairs in the representation of f .
To simplify our presentation, we allow the representation to include multiple pairs with the
same value of x. This can be easily fixed with a single scan over the representation.

In the following paragraphs we show how to efficiently implement the following operations
on functions: sparsification, summation, shifting, convolution, and query. The output of each
operation is a sum approximation.

Sparsification. Sparsification is the operation of constructing a (1 + δ)-sum approximation
of f (see Definition 5). The input is a function f : Z+ → Z+ and a sparsification parameter
δ > 0, the output is a function F : Z+ → Z+ that is a (1 + δ)-sum approximation of f . The
goal is to construct a function F that has a compact representation (i.e. a small number of
points with non-zero values). The general idea is based on the one in [7] (function Compress)
but tailored towards our particular application. We partition the values of f≤ into segments
with elements belonging to [ri, ri+1) (see Figure 1), where:

r0 = 0,
ri+1 = max{ri + 1, b(1 + δ)ric}.

We call xi = minx
{
f≤(x) ≥ ri

}
the i-th breakpoint. For any x, let succ(x) be the strict

successor of x among {xi}, i.e. succ(x) = mini {xi > x} We define the function f̃≤ (see
Figure 2) as:

f̃≤(x) = f≤(succ(x)− 1),

where f̃≤(x) = limx→inf f
≤(x) if succ(x) =∞.

I Lemma 8. f̃≤ is a (1 + δ)-approximation of f≤.

Proof. First observe that f≤(x) ≤ f̃≤(x) (since succ(x) > x and f≤ is monotone). Consider
any x and let i be the unique index such that ri ≤ f≤(x) < ri+1. If succ(x) = ∞ then
f̃≤(x) = limx→inf f

≤(x) < ri+1. Otherwise, xi+1 > x and f̃≤(x) = f≤(xi+1 − 1) < ri+1.
We need to consider two cases: If ri+1 ≤ (1 + δ)ri, then f̃≤(x) < ri+1 ≤ (1 + δ)f≤(x). If
ri+1 = ri + 1 and because the values of f̃≤(x) are integer, f̃≤(x) ≤ ri+1 − 1 = ri. So in both
cases f̃≤(x) ≤ (1 + δ)f≤(x). J

ICALP 2018



64:6 A Faster FPTAS for #Knapsack

f̃≤(x)

x
x1 x2

x3
x4 x5 x6

f̃≤(x)

x
x1 x2

x3
x4 x5 x6

Figure 2 On the left, f̃≤ (in blue) is defined from f≤ and has the same value in any segment
[xi, xi+1). On the right, the construction of F (x). The blue points are only at positions xi and are
wider as F (xi) is larger.

Algorithm 1 Sparsify(f, δ).
Input: a function f represented by a sorted list of all pairs (x, f(x)) where f(x) > 0 and a

sparsification parameter δ > 0.
Output: a function F that is a (1 + δ)-sum approximation of f and is represented by a

sorted list of at most log1+δM pairs (where M is the maximum value of f≤).
1: initialize r = accum = prevaccum = prevx = 0
2: for every pair (x, f(x)) in sorted order do
3: r ← max{r + 1, b(1 + δ)rc}
4: while accum < r do
5: accum← accum+ f(x)
6: get the next pair (x, f(x)) in the list
7: end while
8: add the pair (prevx, accum− f(x)− prevaccum) to F
9: prevaccum← accum− f(x)

10: prevx← x

11: end for

We can now define the function F (the (1 + δ)-sum approximation of f). Observe that
by Lemma 8, every F such that F≤ = f̃≤ is a (1 + δ)-sum approximation. We define F as
the discrete derivative of f̃≤. That is,

F (x) =
{
f̃≤(x)− f̃≤(x− 1) x > 0,
f̃≤(x) x = 0.

It is easy to see that F≤ = f̃≤. It is also easy to construct the representation of F in
linear time with a single scan over the representation of f (see Algorithm 1). Let M be
the maximum value of f≤. Notice that f̃≤ can have at most |{xi}| = |{ri}| = log1+δM

different values. This means that |F | is at most log1+δM . The total running time is therefore
O(|f |+ log1+δM).

Summation. Given two (1 + ε)-sum approximations F and G of functions f and g respect-
ively, we wish to construct the function F +G (that is a (1 + ε)-sum approximation of f + g
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by Lemma 6). We construct F +G naively by setting (F +G)(x) = F (x) +G(x). The sorted
list of F +G can be obtained in linear time given two sorted lists of F and of G. The total
space and time is therefore O(|F |+ |G|).

Shifting. Given a (1 + ε)-sum approximation F of f , the function shifted by w, F |w is a
(1 + ε)-sum approximation of f |w by Lemma 6. In order to create F |w, we take every pair in
the representation of F , namely (x, y = F (x)) and change it to (x+ w, y). F |w(x) will be
the sum of all the pairs where the first coordinate is x. The total space and time is O(|F |).

Convolution. The convolution F ∗G contains all the combinations of taking some x value
from F and some y value from G. For every pair x, y such that F (x) 6= 0 and G(x) 6= 0 we
add the value F (x)G(y) to the value of F ∗G at point x+ y.

We sort these pairs in order to get the representation of F ∗G. For a certain y we have
all the points (x+ y, F (x)) sorted already, those are |G| sorted sequences that we have to
merge. The total space of the output F ∗G is at most the number of such pairs x, y, that is
|F | · |G|. But it is possible to obtain a stream of the sorted pairs with their value using less
space, by using a heap to merge the lists. Assuming without loss of generality that |G| ≤ |F |,
each list is a value y and a pointer to a point in F , and the heap extracts the minimum value
of the sum of y and the value in the pointer. The total time to create F ∗ G is therefore
O(|F | · |G| · log(min{|F |, |G|})) and the space O(|F |+ |G|).

Query. Given a (1 + ε)-sum approximation F of f and a point x, we can query the value
F≤(x) that satisfies f≤(x) ≤ F≤(x) ≤ (1 + ε)f≤(x) in time O(|F |). This is because
computing the function F≤(x) =

∑
y≤x F (y) takes O(|F |) time by considering every y.

Moreover, if we store the representation of F in a balanced binary search tree T then a query
can be done in O(log |F |) time with a prefix sum query on T .

3 The Algorithm of Halman [7] (Simplified)

In this section we present a simplified version of the algorithm of Halman [7] for #Knapsack
using sum approximations. The running time of this simple deterministic algorithm is
O(n3ε−1) and the space is O(n2ε−1).

For a set of weights S, let kS(x) denote the number of subsets of S with total weight
exactly x. The output of the algorithm is the function KW that is a (1+ε)-sum approximation
of kW . The desired answer, K≤W (C), can then be easily obtained using the query operation.

Recall that kS |w(x) = kS(x− w) if x ≥ w and 0 otherwise. The algorithm is based on
the following observation:

I Lemma 9. Let S be a set of integer weights and w be an additional integer weight, then:

kS∪{w} = kS + kS |w

Proof. Any subset of S ∪ {w} with weight x either includes w (the number of such solutions
is kS(x − w)) or does not include w (the number of such solutions is kS(x)). Since these
options are disjoint, we have that kS∪{w}(x) = kS(x) + kS |w(x). J

The algorithm. The algorithm uses the above lemma to construct the set S by inserting
one element at a time (until S = W ), keeping KS updated. The algorithm starts by setting
K∅(0) = 1 and K∅(x) = 0 for any x 6= 0. In the i-th step, we compute the function
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K{w1,...,wi} from K{w1,...,wi−1}. Computing K{w1,...,wi} can be done with one shifting and
one summation operation: K{w1,...,wi} = K{w1,...,wi−1} + K{w1,...,wi−1}|wi

. Notice that the
size |K{w1,...,wi}| = 2|K{w1,...,wi−1}| doubles from the summation operation. To overcome this
blowup, at the end of each step of the algorithm, we sparsify with parameter δ = (1 + ε) 1

n −1.

Correctness. From Lemmas 6 and 9, it follows that if KS is a (1 + α)-sum approximation
of kS , then KS + KS |w is a (1 + α)-sum approximation of kS∪{w}. Furthermore, the
approximation factor of K{w1,...,wi} after the sparsification is the approximation factor of
K{w1,...,wi−1} multiplied by (1 + δ). We get that KW is a ((1 + ε) 1

n )n-sum approximation of
kW , as required.

Time complexity. The size of K{w1,...,wi} after the sparsification is bounded by log1+δ 2i.
The time complexity is therefore:

n∑
i=1

O
(
log1+δ 2i

)
= O

(
n∑
i=1

i

log(1 + δ)

)
= O

(
1

1
n log(1 + ε)

n∑
i=1

i

)
= O

(
n3ε−1) .

Space complexity. The space is O(|KW |) = O(log1+δ 2n) = O
(

n
log(1+δ)

)
= O

(
n2

log(1+ε)

)
=

O(n2ε−1), where we have used that ln(1 + ε) ≥ ε/2 for ε ∈ (0, 1).

4 The Algorithm for Counting Knapsack Solutions

In this section we present a deterministic O(n2.5ε−1.5 log(nε−1) log(nε)) time O(n1.5ε−1.5)
space algorithm for counting knapsack solutions. The algorithm is based upon a similar
observation to the one in Lemma 9:

I Lemma 10. Let S and T be two sets of integer weights, then:

kS∪T = kS ∗ kT
Proof. A subset of S ∪T of weight w must be obtained by taking a subset of weight wS from
S and a subset of weight wT from T where wS+wT = w. Thus, kS(wS) subsets of S of weight
wS and kT (wT ) subsets of T weight wT generate kS(wS)kT (wT ) subsets of S ∪ T of weight
wS + wT . Overall, we get that kS∪T (w) =

∑
wS+wT =w

kS(wS)kT (wT ) = (kS ∗ kT )(w). J

The algorithm. As in Section 3, our algorithm computes a (1 + ε)-sum approximation KW

of kW recursively. This time however, we do two things differently: (1) The value of the
approximation factor is different for each recursion depth. In a recursive call of depth i, we
are given a set S and we compute a (1 + εi)-sum approximation KS of kS for some εi to be
chosen later. (2) Given a set S we recurse differently depending on the size of S:
1. If |S| >

√
n/ε, then we partition the set S into two sets A and B each of size |S|/2 = n/2i

and make two recursive calls: One computes a (1 + εi+1)-sum approximation KA of kA
and the other computes a (1 + εi+1)-sum approximation KB of kB . We then find KS by
computing the convolution KA ∗KB and sparsifying with parameter

δi = ε3/4

2c · 2i/2 · n1/4 ,

where ε is the original approximation parameter and c =
√

2√
2−1 .

2. If |S| ≤
√
n/ε, then we apply the algorithm from Section 3 on the set S with parameter

δlog(
√
nε) = Ω(

√
ε/n). Observe that in such a case the recursion depth is at least log(

√
nε).
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Correctness. From Lemmas 6 and 10, it follows that if KA is a (1+εi+1)-sum approximation
of kA and KB is a (1 + εi+1)-sum approximation of kB , then KS is a (1 + εi+1)2(1 + δi)-sum
approximation of kS . This means that εi satisfies the following relation:

(1 + εi) = (1 + εi+1)2(1 + δi)

From the above equation and since on the bottom of the recursion with δi = δlog(
√
nε), the

final approximation factor of KW is:

(1 + ε0) = (1 + δlog(
√
nε))

√
nε

log(
√
nε)−1∏

i=0
(1 + δi)2i

=
log(
√
nε)∏

i=0
(1 + δi)2i

We need to prove that the above product is not larger than (1 + ε). Since
x∑
i=0

2i/2 <

√
2√

2−1 · 2
x/2 = c · 2x/2 and (1 + δi)2i = (1 + δi)1/δi·2iδi ≤ e2iδi = e

ε3/4
2c n−1/42i/2 we obtain:

log(
√
nε)∏

i=0
(1 + δi)2i

≤ e
ε3/4

2c n−1/2
∑log(

√
nε)

i=0
2i/2

< e
ε3/4

2 n−1/42log(
√

nε)/2
= e

ε
2 ≤ (1 + ε),

where the last inequality follows from ln(1 + ε) ≥ ε/2 for ε ∈ (0, 1). Moreover, since the
recursion changes at depth log(

√
nε) we further need to assume that ε ≥ 1/n. These

assumptions are without loss of generality since for ε > 1 we could simply use ε = 1 and for
ε < 1/n the previous algorithms are faster.

Time complexity. We analyze the time complexity of every recursion depth i. For depth
i = log(

√
nε), we apply the simple algorithm from Section 3 b

√
nεc times on sets of size

Θ(
√
n/ε) with δlog(

√
nε) = Ω(

√
ε/n), the running time is therefore O(n2.5ε−1.5).

For depth i < log(
√
nε), we apply 2i convolutions and sparsifications. The time of the

convolutions is dominant. The total running time is therefore:

(log
√
nε)−1∑

i=0
2i
(

n

2i+1 · δi+1

)2
log
(

n

2i+1 · δi+1

)
≤ 1

2

log
√
nε∑

i=1
2i
(

n

2i · δi

)2
log(nε−1)

= O

log
√
nε∑

i=1

n2.5

ε1.5 log(nε−1)


= O(n2.5ε−1.5 log(nε−1) log(nε)).

Space complexity. Since each recursive call makes at most two recursive calls, we do
not need to keep more than two representation of sum approximations on every level of
the recursion. We have seen in Section 2 that it is possible to construct sparsification of
convolution in linear space. The space complexity of all recursive calls of depth i < log(

√
nε)

is therefore:
log(
√
nε)∑

i=0

(
2 · n

2i · δi

)
= O

log(
√
nε)∑

i=0

n1.25

2i/2 · ε0.75

 = O
(
n1.25ε−0.75)

One call to the algorithm from Section 3 uses O
((√

n/ε
)2

δlog(
√

nε)

)
= O

((√
n/ε
)2

√
ε/n

)
= O(n1.5ε−1.5)

space, and therefore the total space complexity is O(n1.5ε−1.5) .
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5 The Algorithm for Counting Integer Knapsack Solutions

In this section we show how to generalize the algorithms of Sections 3 and 4 to the integer
version of counting knapsack solutions.

5.1 Generalizing the algorithm of Section 3
In Section 3 we showed how to insert into a set S a single item with weight w. We now
need to show how to insert a single item with weight w and multiplicity u. The proof of the
following lemma is similar to that of Lemma 9.

I Lemma 11. Let S be a set of integer pairs representing weights and multiplicity of items,
and let (w, u) be the weight and multiplicity of an additional item, then:

kS∪{(w,u)} = kS + kS |w + kS |2w + . . .+ kS |u·w

We will describe a new operation on sum approximations that creates the sparsification
of G = (KS + KS |w + KS |2w + . . . + KS |u·w) without actually computing G, i.e. without
actually computing all the points with non-zero value.

Events. Observe that a point (x, y) with non-zero value y = KS(x) implies u+ 1 points in
the above sum: (x, y), (x+w, y), (x+ 2w, y), . . . , (x+u ·w, y). We call the first point (x, y) a
start event (with position x and value y) and the last point (x+ u · w, y) an end event (with
position x+ u ·w and value y). Overall, for every x with non-zero value y = KS(x) there are
two events, a total of 2|KS | events. It is possible to sort in linear time the sequence of events
by their positions {x}i ∪ {x+ u · w}i because KS is given sorted. We call the sorted list of
events the event list.

Similarly to Algorithm 1, we could construct the sparsification of G = (KS + KS |w +
KS |2w+ . . .+KS |u·w) by scanning all points in G. This however would be too costly. Instead,
we next present a new operation that constructs the sparsification of G while only scanning
the O(|KS |) events in the event list.

InsertAndSparsify. While scanning the event list, when we see a start event (x, y) then
we say that this event is an active event and that all the points (x, y), (x + w, y), (x +
2w, y), . . . , (x+u ·w, y) are active points. These points will become inactive when we will see
the end event (x+ u ·w, y). As in Algorithm 1, we would like to accumulate the values of all
points seen so far. When the accumulator is larger than r, we introduce a new breakpoint (i.e.,
output a new point to the sparsification of G) and set the new r to be max{r+ 1, b(1 + δ)rc}.
During the scan, apart from the accumulator, we also maintain a value Y = the sum of
values of all currently active events.

When we scan a start event (x, y), we add the value y to both the accumulator and to Y .
This is not enough. We also need to add to the accumulator the values of all active points
whose position is x. These are precisely the points whose start events were at positions
x−w, x− 2w, . . . , x−u ·w. Notice that all these points have the same start position modulo
w. For this reason, we maintain a balanced binary search tree T that stores all active events
keyed by their start position modulo w. Each node v in T with key r ∈ {0, . . . , w− 1} stores
a field Yv = the sum of values of all active points whose start position is x such that x = r

(mod w). When we see a start event (x, y), we search in T for the node v with key x mod w
(or create one if no such node exists), we increase the node’s Yv field by y, and increase the
accumulator by y. If (x, y) is an end event we subtract y from Yv and from Y .
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After processing event (x, y) as explained above, we want to process the next event (x′, y′)
in the event list. Before doing so, we need to: (1) increase the accumulator by the total
value of all points in the segment [x, x′), and (2) if the updated accumulator is larger than
r, find and output the (possibly many) new breakpoints whose positions are between x and x′.

(1) We partition the segment [x, x′) into three segments: [x, k1w), [k1w, k2w), [k2w, x
′) such

that the lengths of the first and last segments are smaller than w, and the length of the
middle segment is a multiple of w. Notice that every segment of length w contains an active
point from every active event exactly once. Therefore, to obtain the total value of points
in the segment [x, x′) we query T for the total value in segment [x, k1w) (with a suffix sum
query on the Yv values) and in segment [k2w, x

′) (with a prefix sum query on the Yv values),
and add to it Y · (k2 − k1) (the total value in segment [k1w, k2w)).

(2) After increasing the accumulator by the above total value, if the accumulator becomes
larger than r, then we will find all the new breakpoints in [x, x′) in O(log |KS |) time per
breakpoint. Suppose the accumulated value at x was prevaccum. To find the first breakpoint
in the segment [x, k1w) we query T for the the first node after x mod w such that the sum of
Yv values between x mod w and that node is at least r−prevaccum (we call this a succeeding
sum query on T , and we symmetrically define a preceding sum query in which we seek the first
node before x mod w rather than after). We then output this breakpoint, set prevaccum to
be the accumulated value in this breakpoint, set r = max{r + 1, b(1 + δ)rc}, and continue in
the same way to find the next breakpoint in the segment [x, k1w). Next, we find the break-
points in the segment [k1w, k2w). Since this segment is composed of (k2 − k1) subsegments
of length w, and since each of these subsegments contributes exactly Y to the accumulator,
it is easy (in O(1) time) to find which subsegment contains the next breakpoint. On this
subsegment we proceed similarly as on [x, k1w). Finally, we need to find the breakpoints in
segment [k2w, x

′), again similarly as in [x, k1w). See Algorithm 2.

Time and space complexity. Each operation on the binary search tree T takes O(log |KS |)
time thus the total time for InsertAndSparsify is O

(
(|KS∪{(w,u)}|+ |KS |) · log |KS |

)
. If

S = {w1, . . . , wi} then |KS | = log1+δ U
i and |KS∪{(w,u)}| = O

(
log1+δ U

i
)
. The total time

complexity of the algorithm is therefore:

n∑
i=1

O
(
log1+δ U

i · log(log1+δ U
i
)
) = O

(
n∑
i=1

i logU
log(1 + δ) · log

(
i logU

log(1 + δ)

))

= O

(
logU

1
n log(1 + ε)

· log
(

n logU
1
n log(1 + ε)

) n∑
i=1

i

)
= O

(
n3ε−1 logU log

(
nε−1 logU

))
.

The space complexity is O(|KW |) = O
(
log1+δ U

n
)

= O
(
n logU

log(1+δ)

)
= O(n2ε−1 logU).

5.2 Generalizing the algorithm of Section 4
The only change to the algorithm of Section 4 is that when the set size is small (i.e. when we
call the algorithm of Section 3) we use InsertAndSparsify as in the previous subsection.

Time and space complexity. We observe that the size of the representation of a (1+ε)-sum
approximation has been changed to |KS | = log1+δ U

|S| = |S| logU
δ . As in Section 4, we
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Algorithm 2 InsertAndSparsify(KS , w, u, δ).
Input: a sum approximation KS of kS , a new item with weight of w and multiplicity u, and

a sparsification parameter δ.
Output: a function G that is a (1 + δ)-sum approximation of kS∪(w,u).
1: initialize T as an empty binary search tree of pairs (x, y) indexed by (x mod w)
2: initialize Y = x = accum = prevaccum = 0, and r = 1
3: for every event (x′, y′) in sorted order do
4: k1 ← d xw e, k2 ← bx

′

w c
5: while accum+ T.suffixSum(x) + Y · (k2 − k1) + T.prefixSum(x′ − 1) ≥ r do
6: if accum+ T.suffixSum(x) ≥ r then
7: bp← T.succeedingSum(x, r − accum)
8: accum← accum+ T.suffixSum(x)− T.suffixSum(bp)
9: else

10: k3 ← k1 + b(r − accum− T.suffixSum(x))/Y c
11: bp← T.precedingSum(x′, r − (accum+ T.suffixSum(x) + Y · (k3 − k1)))
12: accum← accum+ T.suffixSum(x) + Y · (k3 − k1) + T.prefixSum(bp− 1)
13: end if
14: add the pair (x′, accum− prevaccum− T [bp mod w]) to G
15: prevaccum← accum, x← bp, k1 ← d xw e, r ← max{r + 1, b(1 + δ)rc}
16: end while
17: if (x′, y′) is a start event then
18: Y ← Y + y′, T [x′ mod w]← T [x′ mod w] + y′

19: else
20: Y ← Y − y′, T [x′ mod w]← T [x′ mod w]− y′
21: end if
22: accum← accum+ T.suffixSum(x) + Y · (k2 − k1) + T.prefixSum(x′ − 1)
23: x← x′

24: end for

calculate the total time complexity for depth log(
√
nε):

O

(√
nε ·

((√
n/ε
)3 (√

ε/n
)−1

logU log
(√

nε
(√

ε/n
)−1

logU
)))

which is O
(
n2.5ε−1.5 logU log(nε−1 logU)

)
. The total time for depths i < log(

√
nε) is:

(log
√
nε)−1∑

i=0
2i
(

n logU
2i+1 · δi+1

)2
log
(

n logU
2i+1 · δi+1

)

≤ 1
2

log
√
nε∑

i=1
2i
(
n logU
2i · δi

)2
log(nε−1 logU)

= O

log
√
nε∑

i=1

n2.5 log2 U

ε1.5 log(nε−1 logU)


= O(n2.5ε−1.5 log(nε−1 logU) log(nε) log2 U).

The space complexity is dominated by the space used for InsertAndSparsify on a set
of size

√
n/ε and δ =

√
ε/n, that is O(n1.5ε−1.5 logU).
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Abstract
Recently, there has been a growing focus in solving approximate pattern matching problems
in the streaming model. Of particular interest are the pattern matching with k-mismatches
(KMM) problem and the pattern matching with w-wildcards (PMWC) problem. Motivated by
reductions from these problems in the streaming model to the dictionary matching problem,
this paper focuses on designing algorithms for the dictionary matching problem in the multi-
stream model where there are several independent streams of data (as opposed to just one in the
streaming model), and the memory complexity of an algorithm is expressed using two quantities:
(1) a read-only shared memory storage area which is shared among all the streams, and (2) local
stream memory that each stream stores separately.

In the dictionary matching problem in the multi-stream model the goal is to preprocess a
dictionary D = {P1, P2, . . . , Pd} of d = |D| patterns (strings with maximum length m over
alphabet Σ) into a data structure stored in shared memory, so that given multiple independent
streaming texts (where characters arrive one at a time) the algorithm reports occurrences of
patterns from D in each one of the texts as soon as they appear.

We design two efficient algorithms for the dictionary matching problem in the multi-stream
model. The first algorithm works when all the patterns in D have the same length m and
costs O(d logm) words in shared memory, O(logm log d) words in stream memory, and O(logm)
time per character. The second algorithm works for general D, but the time cost per character
becomes O(logm + log d log log d). We also demonstrate the usefulness of our first algorithm in
solving both the KMM problem and PMWC problem in the streaming model. In particular, we
obtain the first almost optimal (up to poly-log factors) algorithm for the PMWC problem in the
streaming model. We also design a new algorithm for the KMM problem in the streaming model
that, up to poly-log factors, has the same bounds as the most recent results that use different
techniques. Moreover, for most inputs, our algorithm for KMM is significantly faster on average.
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65:2 Towards Optimal Approximate Streaming Pattern Matching

1 Introduction

In the popular streaming model [2, 48] the input is given as a sequence of elements (the data
stream) that may be scanned only once, the storage space is limited, and the amount of time
spent on each element needs to be minimized. In many problems there is also a preprocessing
phase involved. For example, in the basic streaming pattern matching problem, the goal is to
find occurrences of a given pattern (to be preprocessed) of size m in the data stream [52, 18].
The preprocessing phase receives the pattern and creates a sub-linear sized data structure
that is used to locate the pattern in streaming input. Following the breakthrough result of
Porat and Porat [52], there has recently been a rising interest in solving pattern matching
problems in the streaming model [18, 30, 47, 19, 42, 23, 24, 37, 38].

Approximate Streaming Pattern Matching. While Porat and Porat [52] and Breslauer
and Galil [18] addressed the exact match case, which is the purest form of streaming pattern
matching, several papers have focused on approximate versions in the streaming model. The
term approximate pattern matching refers to any pattern matching problem that is not exact
matching. Examples include pattern matching with up to k-mismatches [46, 53, 11, 22,
21, 27, 24, 26, 28], pattern matching with w-wildcards [33, 49, 41, 43, 29, 20, 37], pattern
matching with up to e-edits [56], parameterized pattern matching [6, 12, 42, 15, 16, 17, 39],
function pattern matching [13, 4], swapped matching [10, 3, 5] and many more.

Remarkably, recent results in the streaming model for both the pattern matching with
k-mismatches (KMM) problem [24] and the pattern matching with w-wildcards (PMWC)
problem [37] (both formally defined below) use a similar approach which, in particular,
reduce the approximate pattern matching problem in the streaming model that is being
solved to the dictionary matching (DM) problem in the streaming model. In the dictionary
matching problem ([23, 31, 8, 9, 45, 34, 14, 35, 32, 7, 38]) the goal is to preprocess a dictionary
D = {P1, P2, . . . , Pd} of d = |D| patterns (strings over alphabet Σ) so that given a text T we
quickly report all of the occurrences of patterns from D in T . In the streaming model [23, 38]
the text T arrives online, one character at a time, and the goal is to report, for each arriving
character, the id of the longest pattern ending at this character1. Moreover, a pattern must
be reported as soon as it appears.

The motivation for this paper is due to realizing that the reductions to the dictionary
matching problem mentioned above all suffer from an inefficiency that is due reducing a
single stream approximate pattern matching problem to several instances of the dictionary
matching problem, where all of the instances use the same dictionary but have different
input texts. The results in [24] and [37] use a separate block of space for each instance of the
dictionary matching, even though the dictionaries are the same. If it would be possible to
share the space usage representing the dictionary among all of the instances then that would
imply an immediate improvement in the total space usage. More formally, we introduce the
dictionary matching in the multi-stream model that captures this challenge.

Dictionary matching in the multi-stream model. In the dictionary matching in the multi-
stream (DMMS) problem the input is a dictionary D to be processed, there are s independent
input streams of text T1, T2, . . . , Ts, and the goal is to report all of the occurrences of

1 This is a common simplification in which one must only report the longest pattern that has arrived (if
several patterns end at the same text location), since converting such a solution to one that reports all
the patterns is straightforward, and this way the focus is on the time cost that is independent from the
output size.
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patterns from D in any Ti, for 1 ≤ i ≤ s, as soon as the occurrence arrives. An algorithm
for the DMMS problem is allowed to set up a read-only block of shared memory during a
preprocessing phase, whose contents depend solely on D, and s blocks of stream memory, one
for each text stream, to be used privately for each text stream as the text is being processed.
Notice that it is enough to describe an algorithm that works on one stream, as long as the
description details which data is stored in each type of memory. Also notice that a naïve
algorithm would be to use a separate solution for dictionary matching in one stream for each
one of the text streams, where each instance is stored completely in stream memory and
there is no use of the shared memory. The most efficient algorithm for dictionary matching
in the streaming model is due to Golan and Porat [38] using O(d logm) words and the time
per character is O(log log |Σ|), which could be as large as O(log log(m · d)). All of these
complexities are in the worst-case, and their algorithm is correct with high probability. With
the naïve method, the algorithm of [38] implies a solution for DMMS that uses a total of
O(s · d logm) words. This space complexity is inherent in the algorithm of [38] since, in
particular, their algorithm always stores the last Θ(d logm) text characters in each stream,
which does not benefit from shared memory. Thus, algorithms are only of interest if they
can beat this naïve method.

1.1 Our Results
We introduce a new algorithm for the dictionary matching problem in the multi-stream
model, which is summarized in the following theorem.

I Theorem 1. There exists an algorithm for the multi-stream dictionary matching problem
where each pattern has length m that uses O(d logm) words of shared memory, O(logm log d)
words of stream memory, and O(logm) time per character. All of these complexities are in
the worst-case, and the algorithm is correct with high probability.

Notice that we focus on the case where all of the patterns in D have the same length m,
since this case suffices for our applications. Due to space limitations, the following extension
of the results to different length patterns is left for the full version.

I Theorem 2. There exists an algorithm for the multi-stream dictionary matching problem
that uses O(d logm) words of shared memory, O(logm log d) words of stream memory, and
O(logm + log d log log d) time per character, where m = mD is the length of the longest
pattern in D. All of these complexities are in the worst-case, and the algorithm is correct
with high probability.

Thus, if there are s streams of data, the total space usage becomes O(d logm+s logm log d)
words, which is substantially less than the total space usage of the naïve method. By using the
algorithm of Theorem 1 we are able to reduce the space usage for solving several approximate
streaming pattern matching problems, as we discuss next.

Streaming pattern matching with w wildcards. A wildcard character, denoted by ′?′ /∈ Σ,
is a special character that matches every character in Σ. In the streaming PMWC problem
the goal is to preprocess a pattern P [1..m] that contains w wildcard characters, so that given
a streaming text T the algorithm reports, for each arriving character, whether the current
text suffix of length m matches the pattern. The most efficient known algorithm for the
PMWC problem was given in [37] where we introduced a trade-off algorithm, which for every
0 ≤ δ ≤ 1 uses Õ(w1−δ) amortized time per character and Õ(w1+δ) words of space, where
Õ hides poly-logarithmic factors. Our results use a reduction from the PMWC problem to
the DMMS problem. Using Theorem 1 we are able to obtain the following result which is
optimal, up to polylog(m,w) factors.
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I Theorem 3. There exists a randomized Monte Carlo algorithm for the pattern matching
with w-wildcards problem in the streaming model that succeeds with high probability, uses Õ(w)
words of space and spends Õ(1) time per arriving text character. Moreover, any algorithm
which solves the streaming pattern matching with w wildcards with high probability must use
Ω(w) bits of space.

The proof of the upper bound for Theorem 3 is obtained by directly plugging the algorithm
from Theorem 1 into the reduction of [37]. The lower bound is based on a straightforward
reduction from the communication complexity INDEXING problem the proof of Theorem 3
is left for the full version.

Streaming pattern matching with k-mismatches. Another application is the KMM prob-
lem in the streaming model. In this problem the goal is to preprocess a pattern P [1..m]
so that given a streaming text T the algorithm reports for each arriving character whether
the number of mismatches between P and the current text suffix of length m is at most
k, and if so then the algorithm also reports the number of mismatches. The most efficient
algorithm currently published for this problem is by Clifford et al. [24]. This algorithm uses
O(k2 polylogm) words of space and takes O(

√
k log k+ polylogm) time per character. Their

results use a reduction from the streaming KMM problem to the DMMS problem. Using
Theorem 1 we are able to obtain the following result.

I Theorem 4. There exists a randomized Monte Carlo algorithm for the streaming k-
mismatch problem that succeeds with high probability, uses Õ(k) words of space and spends
Õ(k) time per arriving text character.

A proof of Theorem 4 is obtained by plugging the algorithm from Theorem 1 into
the reduction of [24] (with some minor details) which uses group testing techniques [54,
53, 51, 50, 36]. The space usage of this algorithm is optimal up to polylogm factors [40].
Clifford, Kociumaka and Porat [26] recently posted another algorithm that obtains the same
complexities (ignoring poly-logarithmic factors) but using different techniques. Nevertheless,
we provide a second stronger result.

k-mismatches and periodicity. Clifford et al. [24] introduced the notion of x-period which
captures the generalization of periodicity to work with a bounded number of mismatches.
The number of mismatches between two equal length strings S and S′ is known as the
Hamming Distance and is denoted by Ham(S, S′). The x-period of a string P of length m
is the smallest integer π > 0 such that Ham(P [1 + π..m], P [1..m− π]) ≤ x. Notice that for
small x, most strings have a high x-period.

I Theorem 5. There exists a randomized Monte Carlo algorithm for the streaming k-
mismatch problem that succeeds with high probability, uses Õ(k) words of space and spends
Õ(k) time per arriving text character. Moreover, if the 4k-period of P is Ω(k), then the
algorithm spends an average of Õ(1) time per character.

Since the typical assumption is that k is fairly small, the algorithm of Theorem 5 spends
an average of Õ(1) time per character for most patterns. Notice that Theorem 5 immediately
implies Theorem 4. Due to space considerations, the proof of Theorem 5 is left for the full
version.

Organization. In the rest of this paper we give an overview focusing on intuition and the
general ideas of how to prove Theorem 1. The missing proofs and details are left for the full
version.
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1.2 Related Work
As mentioned above, the current most efficient algorithm for DM in the streaming model
is due to Golan and Porat [38] where the space usage is O(d logm) words and the time
per character in T is O(log log |Σ|). Another relevant result is that of Clifford et al. [25],
which deals with pattern matching (one pattern) in multiple streams, but not in the classic
streaming model (since the space usage is not sublinear). They show how for s streams
and a pattern of size m, one can report occurrences of the pattern in all of the streams,
concurrently, using O(m+ s) words of space.

We emphasize that the Aho-Corasick automata [1] is not a multi-stream solution for the
dictionary matching problem since the shared memory usage is not sub-linear. However, the
stream memory usage is O(1) words.

2 Preliminaries

A string S of length |S| = ` is a sequence of characters S[1]S[2] . . . S[`] over alphabet Σ. A
substring of S is denoted by S[x..y] = S[x]S[x+ 1] . . . S[y] for 1 ≤ x ≤ y ≤ `. If x = 1 the
substring is called a prefix of S, and if y = `, the substring is called a suffix of S.

A prefix of S of length y ≥ 1 is called a period of S if and only if S[i] = S[i+ y] for all
1 ≤ i ≤ `− y. The shortest period of S is called the principal period of S, and its length is
denoted by ρS . If ρS ≤ |S|2 we say that S is periodic.

Fingerprints For a natural number n we denote [n] = {1, 2, . . . , n}. For the following let
u, v ∈

⋃n
i=0 Σi be two strings of size at most n. Porat and Porat [52] and Breslauer and

Galil [18] extended the fingerprint method of Karp and Rabin [44], and proved that for every
constant c > 1 there exists a fingerprint function φ :

⋃n
i=0 Σi → [nc], such that:

1. If |u| = |v| and u 6= v then φ(u) 6= φ(v) with high probability (at least 1− 1
nc−1 ).

2. The sliding property: Let w=uv be the concatenation of u and v. If |w| ≤ n then given
the length and the fingerprints of any two strings from u,v and w, one can compute the
fingerprint of the third string in constant time.

For two strings u and v and a fingerprint function φ, we say that the fingerprint concat-
enation of φ(u) and φ(v) is φ(uv). If we are given the lengths of u and v then computing the
fingerprint concatenation takes constant time due to the sliding property.

Remark. Our algorithm often uses fingerprints in order to quickly test if two strings are
equal or not. To ease presentation, in the rest of the paper we assume that fingerprints never
give false positives. This assumption is acceptable since the algorithm is allowed to fail with
small probability.

3 Same Length Patterns – Proof of Theorem 1

Throughout the paper, let q denote the current index of the last character in T . The
algorithm initially considers every text location as a candidate for an occurrence of a pattern.
Conceptually, a text location c is considered to be a candidate until the algorithm encounters
proof that there cannot be any pattern in D that appears at location c. This leads to a
naïve solution which stores all of the candidates, and each time a new character arrives
the candidates are tested to see if they are still candidates. Regardless of the method of
testing, this solution is too expensive, in terms of both space and time, since the number of
candidates could be Ω(m).
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In order to reduce the time cost per character, we borrow a technique introduced in [52]
which considers prefixes of the dictionary strings of exponentially growing length. This
technique has been extensively used for streaming pattern matching algorithms [30, 18, 23,
24, 37, 38, 42, 26, 55], but in our case the details are more delicate than usual. Our algorithm
makes use of an increasing sequence of O(logm) shift values ∆ = (δ0, δ1, . . . , δ|∆|−1) where

δk =
{

25 if k = 0
min(5b 6

25δk−1c,m) otherwise.

Notice that for 1 ≤ k < |∆| − 1 we have δk − δk−1 ≤ δk/5. Denote `k = δk/5. For each
0 ≤ k ≤| ∆| − 1 let Dk = {P [1..δk]|P ∈ D} be the set of prefixes of patterns from D of
length δk. Let Fk = {φ(P )|P ∈ Dk} be the set of fingerprints of patterns in Dk.

The intuition behind the sets Dk for δk ∈ ∆ is that our algorithm first finds occurrences of
patterns from Dk−1, and those occurrences are then used for finding occurrences of patterns
from Dk. Notice that D0 contains only constant sized prefixes of patterns (of length 25). It is
straightforward to find occurrences of these prefixes using O(d) words in shared memory, O(1)
words in stream memory and O(1) time per text character. Also notice that D|∆|−1 = D,
and so once a pattern from D|∆|−1 is found, it is reported immediately. Most of the technical
work is on patterns in Dk for 1 ≤ k < |∆| − 1. Thus, the rest of the discussion primarily
focuses on δ1, δ2, . . . , δ|∆|−2.

Testing candidates. Testing whether a candidate c is still a candidate takes place only
when q = c+ δk − 1 for some δk ∈ ∆ (so there are only O(logm) tests per each arrival of a
text character). At this point in time, the suffix of T starting at location c is of length δk.
Notice that for c to end up being an occurrence of some pattern it must be that T [c..q] ∈ Dk.
The text fingerprint φ(T [1..q]) is the fingerprint of the text up to the last character that has
arrived, and is maintained with O(1) space and in O(1) time per character. The candidate
fingerprint φ(T [1..c− 1]) is the fingerprint of the text prefix up to location c. With access to
the candidate fingerprint (which we describe below) and the text fingerprint, the algorithm
uses the sliding property to compute in constant time the fingerprint φ(T [c..q]), and then
tests whether φ(T [c..q]) ∈ Fk (thereby testing whether T [c..q] ∈ Dk) via a static hash table.

One almost trivial way of providing access to the candidate fingerprints is to store (in
local stream memory) the candidates via a linked list together with some additional O(1)
information per candidate to help compute the candidate fingerprint. Unfortunately, the
number of candidates could be as large as Ω(m), and so we cannot afford to store explicit
information for each candidate. Instead, we devise a new method for implicitly storing
the candidates so that whenever a new text character arrives we can quickly infer which
candidates need to be tested (if any), and then quickly extract the candidate fingerprints of
the tested candidates. This task is accomplished with the aid of guiding graphs.

The guiding graph. For each Dk the algorithm stores a directed edge-weighted graph Gk
in shared memory, called a guiding graph. In order to simplify the presentation, we focus
on a simplified version of the guiding graph. A pseudo-forest is an undirected graph where
each connected component contains at most one cycle. Gk is a directed pseudo-forest in
which the out-degree of each vertex is at most 1. Each edge e in Gk has a weight w(e)
and label λ(e) such that there exists a non-empty edge string Se where λ(e) = φ(Se) and
w(e) = |Se| ≥ 1. For each P ∈ Dk there is an associated vertex vP ∈ Gk. The total size of
Gk is O(|Dk|) = O(d).
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The algorithmic usefulness of Gk is due to a directed path (DP) property which captures
the combinatorial guarantees given by the guiding graph. We first state a stronger version
of the DP property, which unfortunately we do not know how to guarantee as stated. In
Section 4 we give a weaker version, which we do know how to guarantee, but the weaker
version introduces an extra O(log d) factor in stream memory.

I Property 1 (Strong Directed Path Property). Let S be a string where δk ≤ |S| < δk+1,
such that the prefix and suffix of S of length δk are Pb, Pe ∈ Dk, respectively. Then there
exists a single directed path π in Gk from vb to ve (which may contain cycles) such that
the concatenation of the edge strings for the sequence of edges on π is exactly S[1..|S| − δk],
which is the prefix of S until the occurrence of the suffix Pe.

If P ∈ Dk is a substring of S at location h, then the path starting from vb with total edge
weight h− 1 must exist and end at vP , so vP ∈ π2. Moreover, for any prefix of π, with total
edge weight w, the concatenation of the edge strings on this path prefix is S[1..w].

The intuition behind the usage of the guiding graph is that the guiding graph cleverly
represents all possible linked lists of candidates in the text interval Ik = (q−δk+1+1, q−δk+1]
that can ever be encountered by the algorithm. For a location c in Ik, let the entrance prefix
of c be T [c..c+ δk − 1]. Notice that c is a candidate if and only if the entrance prefix of c is
some pattern P ∈ Dk. For a candidate c with entrance prefix P ∈ Dk, we denote vc = vP .
Thus, all of the candidates in Ik are the candidates c for which the last verification took
place when the character T [c+ δk − 1] arrived, and so the entrance prefixes of candidates in
Ik are patterns from Dk. Let L be the list of candidates in Ik. Let cb (ce) be the first (last)
candidate in L, and let Pb ∈ Dk (Pe ∈ Dk) be the string of length δk occurring at location
cb (ce) in T . Both cb and ce are in Ik, and so ce − cb < δk+1 − δk. Since |Pb| = |Pe| = δk,
the substring S = T [cb..ce + |Pe| − 1] has Pb and Pe as its prefix and suffix, respectively, and
δk ≤ |S| < δk+1. Thus, by the strong DP property, there exists a path πL in Gk from vcb

to vce , and the concatenation of edge strings on πL is exactly S[1..|S| − δk] = T [cb..ce − 1].
Moreover, for any candidate c in L we have vc ∈ πL and the concatenation of the edge strings
on a prefix πc of πL from vcb

to vc is exactly S[1..c− cb] = T [cb..c− 1]. Being that T [1..c− 1]
is the concatenation of T [1..cb− 1] and T [cb..c− 1], the candidate fingerprint of c is derivable
from the candidate fingerprint of cb and concatenation of the edge strings on πc. Thus, if
Gk is stored in shared memory, then we are able to recover the candidate fingerprints of
all of the candidates in L by storing, in stream memory, a pointer to the beginning and of
πL together with locations cb, ce3, and the fingerprint candidate of cb. In some sense this
feature allows us to access information about the history of the text stream, although this
information is not stored explicitly.

Phantom Candidates. While the strong DP property guarantees that every candidate c
in L has a corresponding vertex in πL, the property does not guarantee that every vertex
in πL corresponds to a candidate in L. In particular, let πL = (v1, v2, . . . , vx) and notice
that πL may contain duplicate vertices (since πL may contain a cycle). By the strong DP
property, if the ordered list of candidates in L is (c1, c2 . . . , cy) then there exist indices
1 = i1 < i2 < · · · < iy = x such that for all 1 ≤ j ≤ y, vij corresponds to cj . However, for

2 Notice that if π contains a cycle, then there may be several prefixes of π ending at vP but only one of
them can have a specific weight.

3 The reason for storing ce is in order to know where πL ends. This is particularly important when Gk

contains a cycle.
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every 1 ≤ z ≤ x such that for every 1 ≤ j ≤ y, z 6= ij , we have that vz at location z in the
list4 does not correspond to a candidate in L. This means that the implicit representation of
L through πL may contain irrelevant information.

To overcome this issue, we allow the vertices on πL that do not correspond to candidates
to be considered as if they are candidates, which we call phantom candidates. A phantom
candidate is a text location that failed a test in the past, but now is implicitly considered
again because its corresponding vertex lies on a directed path that is implicitly stored via
the path’s endpoints. A crucial aspect of phantom candidates is that they do not affect the
complexity bounds or correctness of our algorithm. This will be made clear in the complexity
analysis. If c is a phantom candidate due to vertex vi ∈ πL, we say that vc = vi.

Updating πL. If L is empty and a new candidate c enters Ik, then πL becomes the single
vertex vc. If L is not empty, let cb and ce be the first and last candidates in L, respectively.
At this time it is possible that cb is a phantom candidate, but we guarantee that ce is not.
Assume by induction that πL is currently the path from vcb

to vce
where the sum of the

weights on edges of πL is ce − cb.
If a new candidate c enters Ik then by the strong DP property there must exist a path

from vce to vc. Moreover, by the strong DP property, the concatenation of edge strings (as
seen when traversing πL) from vce

to vc is T [ce..c − 1]. Thus, the only change in memory
needed for storing πL is changing the stored location of the last candidate in Ik to be c,
which is not a phantom candidate.

If cb leaves Ik, then vcb
is removed from the beginning of πL. If cb was the only candidate

in Ik then πL becomes empty and we are back to the base case. Otherwise, the new first
candidate c in Ik is reached by following the single outgoing edge e = (vcb

, vc) in Gk. By
the strong DP property, c = cb + w(e), and φ(T [1..c− 1]) is the fingerprint concatenation of
φ(T [1..cb − 1]) and λ(e).

Information stored in shared memory. For each Dk the data structure stores the guiding
graph Gk. In addition the data structure stores the fingerprints in Fk via a perfect hash
table that maps each fingerprint φ(P ) to the id of P . Since the space usage per each δ ∈ ∆
is O(d) words, the total space used in shared memory is O(d logm) words.

Information stored in stream memory. The algorithm maintains the text fingerprint of
the entire text which is the fingerprint of the text up to the last character that has arrived.
This information is updated in constant time per each new character arrival, using the sliding
property of φ.

The algorithm uses a separate data structure for each of the O(logm) text intervals. The
data structure for text interval Ik maintains all the candidates in Ik by storing a pointer to
the beginning of πL, the locations of the first and last candidates in Ik, and the candidate
fingerprint of the first candidate.

Thus, the total space usage per each text interval Ik is O(1), and the total amount of
stream memory used is O(logm).

Character Arrival. We now describe the fairly straightforward processing of a new text
character. In particular, we show that the algorithm spends O(1) time per text interval
each time a text character arrives, for a total of O(logm) time per character. Let T [q] be

4 The reason for addressing the index of vz directly is due to the possibility of cycles.
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the new character that arrives to the stream of text T . The algorithm first updates the
text fingerprint of T in the stream memory, and if φ(T [q − 24..q]) ∈ F0 then the algorithm
inserts q − 24 as a candidate into the first text interval (recall that the last 25 characters in
the text are dealt with via maintaining their fingerprint for this purpose). The candidate
fingerprint for q − 24 is computed via the sliding window property from the text fingerprint
and φ(T [q − 24..q]).

For δk ∈ ∆ the algorithm checks for the existence of a candidate c = q− δk + 1 by probing
the head of the path for Ik. If so, the algorithm has to (1) test c, (2) remove c from Ik, and
(3) if c is still a candidate and k ≤ |∆| − 3 then add c to the data structure for Ik+1, while if
k = |∆| − 2 then use F|∆|−1 to report the id of a pattern occurrence.

To test a candidate c = q− δk + 1 the algorithm uses the sliding property of φ to compute
φ(T [c..q]) from the candidate fingerprint of c (which is stored in stream memory) and the
text fingerprint. This takes constant time. We assume from now that c is a candidate. The
process for removing a candidate from Ik and adding a candidate to Ik+1 is described above,
and costs O(1) time.

Phantom candidates do not affect complexities and correctness. The treatment of
phantom candidates is exactly the same as the treatment of non-phantom candidates since in
our algorithm we cannot distinguish between the two. In particular, a location c = q−δk+1 +1
that was a phantom candidate before the last character arrived is tested to see if c is an
occurrence of a pattern in Dk+1. Since c is a phantom candidate this test must fail and c
will not be added to the data structure of Dk+1 (but c could potentially become a phantom
candidate again later on). Thus, allowing for phantom candidates does not affect the correct-
ness of the algorithm. Notice that allowing for phantom candidates to exist does not increase
the space or time complexities: the space usage is unaffected since the phantom candidates
are maintained implicitly within the directed paths, and the time complexity is unaffected
since for each arriving character and for each δ ∈ ∆, at most one candidate (phantom or
not) needs to be considered.

4 Constructing Guiding Graphs

The main technical difficulty is in constructing the guiding graphs. We focus on the
construction of the guiding graph for Dk. Recall that `k = δk

5 and that the length of every
string in Dk is δk. A string P ∈ Dk whose prefix of length 3`k appears at least twice in P
is said to be of type τpr, (the “pr" stands for “prefix repetition"). Since the goal here is to
convey the main ideas and intuition of how to construct Gk we begin by making a simplifying
assumption that there are no strings in Dk of type τpr. Removing this assumption requires
introducing periodicity properties of strings, which we briefly address at the end of this
section.

We define the distance between two strings P, P ′ ∈ Dk to be the smallest possible distance
between an occurrence of P and an occurrence of P ′ in any text. Notice that distances are
never negative, and they do not define a metric (P may be at distance 1 from P ′ and P ′
may be at distance 1 from P ′′ but P and P ′′ might be at distance much larger than 2).

Intuition. The general idea is based on the following observation: if two strings in Dk are
within distance at most `k in the text, then the two strings must share a common substring
of length at least 4`k. However, the converse is not true. That is, not every two strings
that share a common substring of length at least 4`k have distance at most `k; see Figure 1.
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𝑃1 = prefsharedsubstringsuf
𝑃2 = efsharedsubstringsuffi
𝑃3 = insharedsubstringabcde
𝑃4 = minsharedsubstringabcd
𝑃5 = abcdesharedsubstringxy

Figure 1 An example of strings in the same cluster. Notice that P1 and P2 could occur in a text
within distance 2. Similarly P3 and P4 could occur in a text within distance 1. However, every other
pair of strings cannot appear in any text within distance less than 15.

cd

ab

m

abcd

𝑃4

𝑃1

𝑃2
𝑃3, 𝑃5

𝑃6

aaaadc 𝑃1 = abcdxyzxyzxyzxyaab
𝑃2 = cdxyzxyzxyzxyaabbc
𝑃3 = mcdxyzxyzxyzxyaabx
𝑃4 = aaaadcxyzxyzxyzxyx
𝑃5 = mcdxyzxyzxyzxyxyx
𝑃6 = abcdxxxxxxxxxxxxba

Figure 2 Examples of tries for clusters of strings of type τnpr.

Nevertheless, we would still benefit from clustering the strings in Dk in a way that guarantees
the following two properties: (1) if two strings from Dk are at distance at most `k then these
strings appear in the same cluster, and (2) all of the strings in the same cluster share a
common substring (possibly at different locations) of length 3`k which we call the seed of the
cluster. Notice that a string in a cluster may contain more than one occurrence of the seed.
In order for seeds to be useful, we require that for a given seed of a cluster and a string P in
that cluster, the location of the seed in P is the location of the first occurrence of the seed
in P .

Given such a clustering, for each cluster separately we construct part of the guiding graph
as follows (for an example, see Figure 2). For any pair of strings in the same cluster with
distance at most `k, the algorithm synchronizes the two strings, based on the position of
the seed in each one of the strings, as follows. Consider the prefix of each such string up
to the occurrence of the seed. Then one of the prefixes must be a suffix of the other prefix.
Thus, we consider all of the prefixes of all of the strings in a cluster, where each prefix of
a string ends right before the occurrence of the seed in that string. We then construct a
compacted trie from the reversal of all of the prefixes and associate each string P ∈ Dk with
the vertex in the trie corresponding to the reverse prefix of P . Each vertex in the trie has
a single outgoing edge e to its parent (the root has out-degree 0), and the edge string of
e is exactly the string corresponding to that edge in the compacted trie. Let T be a text
and let c and c′ be any two non-phantom candidates in Ik. Let P and P ′ be the entrance
prefixes of c and c′, respectively. The distance between P and P ′ is at most c′ − c ≤ `k, and
so P and P ′ must be in the same cluster. Moreover, T [c..(c′ − 1)] corresponds exactly to the
concatenation of the labels in the compacted trie on the single path from vP to vP ′5.

5 Notice that if we were to allow strings of type τpr then this statement would no longer be true.
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4.1 Creating Clusters
We consider two separate cases for the strings in Dk that are not of type τpr. The first are
strings in P ∈ Dk that have a substring of length 3`k that occurs at least twice, but since we
do not consider strings from type τpr then the prefix of P of length 3`k does not occur more
than once in P . Such strings are said to be of type τnpr (the “npr" stands for “non-prefix
repetition"). The second are strings that do not have a substring of length 3`k that occurs at
least twice. Such strings are said to be of type τnr (the “nr" stands for “no repetition").

Clustering for type τnpr. Notice that a string P of type τnpr could potentially have several
substrings of length 3`k such that each one of them appears at least twice in P . In order to
remove the ambiguity, we treat the leftmost repeated string of length 3`k in P as the only
one that counts, and call it the base of P .

We cluster the strings of type τnpr according to their base. That is, all of the strings
in the same cluster have the same base, and this base is the seed of the cluster. Thus, we
only need to show that if two strings of type τnpr are at distance at most `k then these
strings appear in the same cluster. The proof that this property holds is based on periodicity
properties and is left for the full version.

Clustering for type τnr. Unfortunately, for type τnr it is impossible to guarantee both
desired clustering properties at the same time. To see this, consider S1, S2, S3, . . . , S7 ∈ Dk

and a text that contains all of these 7 strings, where for every 1 ≤ i ≤ 6, the occurrence of
Si is exactly `k − 1 positions before the occurrence of Si+1. Then based on the properties
that we are aiming for, all of these strings must appear in the same cluster. However, it
is straightforward to construct such an example in which S1 and S7 do not share a single
common character.

To solve this problem we modify the definition of guiding graphs by generalizing the
definition of vP for P ∈ Dk, using a weaker version of the DP property, and refining the
properties that we require from the clustering. Instead of requiring each P ∈ Dk to have
a single associated vertex vP , we now allow P to be associated with a set of vertices VP .
Recall that it is possible for a vertex to be associated with more than one string.

I Property 2 (Weak Directed Path Property). Let S be a string where δk ≤ |S| < δk +
⌊
`k

log d

⌋
,

such that the prefix and suffix of S of length δk are Pb, Pe ∈ Dk, respectively, where Pb and Pe
are of type τnr. Then there exists vb ∈ Vb to ve ∈ Ve such that there exists a single directed
path π in Gk from vb to ve and the concatenation of the edge strings for the sequence of edges
on π is exactly S[1..|S| − δk], which is the prefix of S until the occurrence of the suffix Pe.

If P ∈ Dk of type τnr is a substring of S at location h, then the path starting from vb
with total edge weight h− 1 must exist and end at a vertex vP ∈ VP , so vP ∈ π. Moreover,
for any prefix of π with total edge weight w, the concatenation of the edge strings on this
prefix is S[1..w].

The strong DP property refers to strings of distance up to δk+1 − δk, but the weak DP
property only refers to strings of distance up to

⌊
`k

log d

⌋
≤
⌊
δk+1−δk

log d

⌋
. Thus, the algorithm

uses O(log d) separate paths in order to cover the candidates in Ik which is of length δk+1−δk.
This increases the space usage by a O(log d) factor, but the time cost remains the same.

Finally, the two properties we require from the clustering for type τnr are: (1) if two
strings of type τnr are at distance at most b `k

log dc then these strings appear together in some
cluster, and (2) all of the strings in a cluster share a common seed of length 3`k. The details
for finding such a clustering are non-obvious and are left for the full version.
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x

y
bcd

a
𝑃",𝑃$

𝑃% 𝑃& 𝑃'

𝑃" = abcdabcdabcdabcccd
𝑃# = abcdabcdabcdabcdab
𝑃$ = bcdabcdabcdabcdabc
𝑃% = xyxyxyxyxyxyxyxyx
𝑃& = yxyxyxyxyxyxyxyxy

Figure 3 Example of connected components for clusters of pattern prefixes of type τpr.

Clustering for type τpr. The general idea for treating strings of type τpr is based on the
following properties. Recall the definition of base from the clustering of τnpr. Let P ∈ Dk be
of type τpr. Notice that Since P is of length 5`k and the base of P is of length 3`k, then
the two leftmost occurrences of the base in P (one of which is the prefix of P ) must overlap.
Denote the location of the second occurrence of the base by r(P ) + 1. We prove (in the full
version) that the prefix of P which ends after the second occurrence of the base in P (that is
at location r(P ) + 3`k) must be periodic, and the principal period of this prefix is exactly
the prefix P [1..r(P )], which is the prefix of P up to the second occurrence of the base. Using
periodicity techniques we are able to prove that for every two strings P, P ′ ∈ Dk of type τpr,
if the distance between the strings is at most `k ≥ δk+1 − δk, then: (1) r(P ) = r(P ′), and
(2) P [1..r(P ′)] is a cyclic shift of P ′[1..r(P ′)]. Thus, we cluster the strings in τpr such that
for every two strings P and P ′ in the same cluster: (1) r(P ) = r(P ′), and (2) P [1..r(P ′)]
is a cyclic shift of P ′[1..r(P ′)]. This will help us guarantee that the strong DP property
holds. Finally, the cyclic shift naturally defines a directed cycle in Gk which captures the
synchronization between the strings in a cluster, see Figure 3. Notice that it is possible that
the same string will occur several times in a text at locations in a range shorter than `k. This
case occurs only for strings that have a short period (less than `k), and is straightforward
to show that all of these strings must be of type τpr. Thus, the cyclic graph description
captures the relationship between possible occurrences of such a periodic string in the text,
but also leads to the possibility of having a non-simple path represent many candidates.

Combining the three types. For type τnr we are able to guarantee the weak DP property,
while for τnpr and τpr we are able to guarantee the strong DP property, but for each type
separately. That is, for two strings P, P ′ ∈ Dk of different types, there is no path in Gk from
a vertex corresponding to P to a vertex corresponding to P ′. Thus, our algorithm creates a
separate instance for each one of the three types, and runs them concurrently. Notice that it
is possible for a candidate c to be of one type when c is in Ik and of a different type when c
enters Ik+1. This is permissable since there are separate graphs for different values of k.
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Abstract
We consider the problem of constructing a cyclic listing of all bitstrings of length 2n + 1 with
Hamming weights in the interval [n+ 1− `, n+ `], where 1 ≤ ` ≤ n+ 1, by flipping a single bit in
each step. This is a far-ranging generalization of the well-known middle two levels problem (` = 1).
We provide a solution for the case ` = 2 and solve a relaxed version of the problem for general
values of `, by constructing cycle factors for those instances. Our proof uses symmetric chain
decompositions of the hypercube, a concept known from the theory of posets, and we present
several new constructions of such decompositions. In particular, we construct four pairwise edge-
disjoint symmetric chain decompositions of the n-dimensional hypercube for any n ≥ 12.
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1 Introduction

Gray codes are named after Frank Gray, a researcher at Bell Labs, who described a simple
method to generate all 2n bitstrings of length n by flipping a single bit in each step [8],
now known as the binary reflected Gray code. This code found widespread use, e.g., in
circuit design and testing, signal processing and error correction, data compression, etc.;
many more applications are mentioned in the survey [28]. The binary reflected Gray code
is also implicit in the well-known Towers of Hanoi puzzle and the Chinese ring puzzle
that date back to the 19th century. The theory of Gray codes has developed considerably
in the last decades, and the term is now used more generally to describe an exhaustive
listing of any class of combinatorial objects where successive objects in the list differ by a
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small amount. In particular, such generation algorithms have been developed for several
fundamental combinatorial objects of interest for computer scientists, such as bitstrings,
permutations, partitions, trees, etc., all of which are covered in depth in the most recent
volume of Knuth’s seminal series The Art of Computer Programming [20].

Since the discovery of the binary reflected Gray code, there has been continued interest
in developing Gray codes for bitstrings of length n that satisfy various additional constraints.
For instance, a Gray code with the property that each bit is flipped (almost) the same
number of times was first constructed by Tootill [35]. Goddyn and Gvozdjak constructed an
n-bit Gray code in which any two flips of the same bit are almost n steps apart [7], which is
best possible. These are only two examples of a large body of work on possible Gray code
transition sequences; see also [3, 5, 34]. Savage and Winkler constructed a Gray code that
generates all 2n bitstrings such that all bitstrings with Hamming weight k appear before
all bitstrings with weight k + 2, for each 0 ≤ k ≤ n− 2 [29], where the Hamming weight of
a bitstring is the number of its 1-bits. They used this construction to tackle the infamous
middle two levels problem, which asks for a cyclic listing of all bitstrings of length 2n + 1
with weights in the interval [n, n+ 1] by flipping a single bit in each step. This problem was
raised in the 1980s and received considerable attention in the literature (a detailed historic
account is given in [22]). A general existence proof for such a Gray code for any n ≥ 1 has
been found only recently [12, 22], and an algorithm for computing it using O(1) amortized
time and O(n) space was subsequently presented in [23]. The starting point of this work is
the following more general problem raised in [13, 27].

I Problem M (middle 2` levels problem). For any n ≥ 1 and 1 ≤ ` ≤ n+1, construct a cyclic
listing of all bitstrings of length 2n+ 1 with Hamming weights in the interval [n+ 1− `, n+ `]
by flipping a single bit in each step.

The special case ` = 1 of Problem M is the middle two levels problem mentioned before.
The case ` = n+ 1 is solved by the binary reflected Gray code discussed in the beginning.
Moreover, the cases ` = n and ` = n− 1 were settled in [6, 21] and [13], respectively.

A natural framework for studying such Gray code problems is the n-dimensional hy-
percube Qn, or n-cube for short, the graph formed by all bitstrings of length n, with an
edge between any two bitstrings that differ in exactly one bit. The 5-cube is illustrated in
Figure 1 (a). The kth level of the n-cube is the set of all bitstrings with Hamming weight
exactly k. In this terminology, Problem M asks for a Hamilton cycle in the subgraph of the
(2n+ 1)-cube induced by the middle 2` levels.

The most general version of this problem is whether the subgraph of the n-cube induced
by all levels in an arbitrary weight interval [a, b] has an (almost) Hamilton cycle. This was
solved in [11] for all possible values of n ≥ 1 and 0 ≤ a ≤ b ≤ n, except in the cases when
the length n of the bitstrings is odd and the levels a and b are symmetric around the middle,
which is exactly Problem M. For all other cases that paper provides algorithms that generate
each bitstring in those Gray codes in constant time.

1.1 Our results

In this work we solve the case ` = 2 of Problem M, i.e., we construct a cyclic listing of all
bitstrings of length 2n+ 1 with Hamming weights in the interval [n− 1, n+ 2].

I Theorem 1. For any n ≥ 1, the subgraph of the (2n+ 1)-cube induced by the middle four
levels has a Hamilton cycle.
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Figure 1 (a) The 5-cube with the (standard) symmetric chain decomposition D0, where the
edges along the chains are highlighted by thick lines. (b) Building a cycle factor through the middle
four levels of the 5-cube as explained in the proof of Theorem 2 with SCDs D := D0 (black) and
D′ := D0 (red). The edges that are removed from D and D′ are dotted, so the solid and dashed
edges are the two matchings M and M ′ whose union forms the cycle factor. It has three cycles of
lengths 4, 4 and 22, visiting all 30 bitstrings with Hamming weight in the interval [1, 4].

Combining Theorem 1 with the results from [11] shows more generally that the subgraph
of the n-cube induced by any four consecutive levels has an ‘almost’ Hamilton cycle.1

As another partial result towards Problem M, we show that the subgraph of the (2n+ 1)-
cube induced by the middle 2` levels has a cycle factor. A cycle factor is a collection of
disjoint cycles which together visit all vertices of the graph. In particular, a Hamilton cycle
is a cycle factor consisting only of a single cycle. Note here that the existence of a cycle
factor for general values of ` is not an immediate consequence of Hall’s theorem, which is
applicable only for ` = 1 and ` = n+ 1, as only in those cases all vertices of the underlying
graph have the same degree.

I Theorem 2. For any n ≥ 1 and 1 ≤ ` ≤ n+ 1, the subgraph of the (2n+ 1)-cube induced
by the middle 2` levels has a cycle factor.

Our proof of Theorem 2 is concise and illustrative, and it motivates the subsequent
discussion, so we present it right now. It uses a well-known concept from the theory of
partially ordered sets (posets), a so-called symmetric chain decomposition. Here we define
this term for the n-cube using graph-theoretic language. A symmetric chain in Qn is a
path (xk, xk+1, . . . , xn−k) in the n-cube where xi is from level i for all k ≤ i ≤ n− k, and a
symmetric chain decomposition, or SCD for short, is a partition of the vertices of Qn into
symmetric chains. For illustration, an SCD of Q5 is shown in Figure 1 (a). We say that two
SCDs are edge-disjoint if the corresponding paths in the graph Qn are edge-disjoint, i.e., if
there are no two consecutive vertices in one chain of the first SCD that are also contained in
one chain of the second SCD. There is a well-known construction of two edge-disjoint SCDs
in the n-cube for any n ≥ 1 [31], which we will discuss momentarily.

1 If the four levels are not symmetric around the middle, then this subgraph of the n-cube has two
partition classes of different sizes, and thus cannot have a Hamilton cycle. However, it was shown in [11]
that in those cases the graph has a cycle that visits all vertices in the smaller partition class, and also a
cyclic listing of all vertices in which only few transitions flip two instead of one bit, where ‘few’ means
only as many as the difference in size between the two partition classes. Both of these notions are
natural generalizations of a Hamilton cycle.

ICALP 2018



66:4 Gray Codes and Symmetric Chains

1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 1
1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1
1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 1
1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 1
1 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 1
1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
) ) ) ( ( ( ) ( ( ) ( ( ) ( ( ) ) ( ( ( ( )

1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1

x =

Figure 2 The parenthesis matching approach for constructing the symmetric chain containing a
bitstring x, yielding the symmetric chain decomposition D0. The highlighted bits are the leftmost
unmatched 0 and the rightmost unmatched 1 in each bitstring.

Proof of Theorem 2. The proof is illustrated in Figure 1 (b). Consider two edge-disjoint
SCDs D and D′ in the (2n+ 1)-cube. Let R and R′ be the chains obtained from D and D′,
respectively, by restricting them to the middle 2` levels, so chains that are longer than 2`− 1
get shortened on both sides. As all chains in R and R′ start and end at symmetric levels
and the dimension 2n + 1 is odd, all these paths have odd length (possible lengths are
1, 3, . . . , 2`− 1). Therefore, by taking every second edge on every path from R and R′, we
obtain two perfect matchings M and M ′ in the subgraph of the (2n+ 1)-cube induced by
the middle 2` levels. As the paths in R and R′ are edge-disjoint, the matchings M and M ′
are also edge-disjoint. Therefore, the union of M and M ′ is the desired cycle factor. J

This proof motivates the search for a large collection of pairwise edge-disjoint SCDs in
the n-cube. We can then use any two of them to construct a cycle factor as described in the
previous proof, and use this cycle factor as a starting point for building a Hamilton cycle.
This two-step approach of building a Hamilton cycle via a cycle factor proved to be very
successful for such problems (see e.g. [15, 16, 17, 18, 22, 24, 30]). Consequently, for the rest
of this section we focus on edge-disjoint SCDs in the n-cube.

There is a well-known construction of an SCD for the n-cube that is best described by the
following parenthesis matching approach pioneered by Greene and Kleitman [9]; see Figure 2.
For any vertex x of the n-cube, we interpret the 0s in x as opening brackets and the 1s as
closing brackets. By matching closest pairs of opening and closing brackets in the natural
way, the chain containing x is obtained by flipping the leftmost unmatched 0 to move up the
chain, or the rightmost unmatched 1 to move down the chain, until no more unmatched bits
can be flipped. It is easy to see that this indeed yields an SCD of the n-cube for any n ≥ 1.
We denote this standard SCD by D0; it is shown in Figure 1 (a) for n = 5.

By taking complements, we obtain another SCD, which we denote by D0. It is not hard
to see that D0 and D0 are in fact edge-disjoint for any n ≥ 1 [31]. Figure 1 (b) shows both
SCDs for n = 5, and how they are used for building a cycle factor. Apart from this standard
construction, we are not aware of any other construction of an SCD in the n-cube, even
though there are several different ways to describe the same SCD (see e.g. [1, 4, 36]).

Our next result is a simple construction of another SCD in the n-cube for even values
of n ≥ 2, which we call D1. This construction is based on lattice paths and will be explained
in Section 4 below. It has the additional feature that D0, D0, D1 and D1 are pairwise
edge-disjoint for n ≥ 6.

I Theorem 3. For any even n ≥ 6, the n-cube contains four pairwise edge-disjoint SCDs.
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Figure 3 The edge-disjoint SCDs D0 (dashed vertical paths) and D1 (solid paths; chains of the
same length are drawn with the same color) in the 6-cube. The bitstrings are drawn with white
squares representing 0s and black squares representing 1s.

Table 1 Known pairwise edge-disjoint SCDs in the n-cube for n = 1, 2, . . . , 11. The definitions
of X5, Y5, Z5 and X7, Y7 are given in Section 4.3.

n 1 2 3 4 5 6 7 8 9 10 11
bn/2c + 1 1 2 2 3 3 4 4 5 5 6 6
SCDs D0 D0, D0 D0, D0 D0, D0, X5, Y5, D0, D0, X7, X7 D0, D0, D0, D0 D0, D0, D0, D0

D1 Z5 D1, D1 Y7, Y7 D1, D1 D1, D1

Figure 3 shows the SCDs D0 and D1 in Q6. Their complements D0 and D1 are not shown
for clarity. Note that four edge-disjoint SCDs are best possible for Q6, as they use up all
edges incident with the middle level.

For odd values of n, we can still construct four edge-disjoint SCDs in the n-cube (except
in a few small cases). However, the construction is not as direct and explicit as for even n.

I Theorem 4. For n = 7 and any odd n ≥ 13, the n-cube contains four pairwise edge-disjoint
SCDs.

For odd n, we can combine any two of the four edge-disjoint SCDs in the n-cube guaranteed
by Theorem 4 to a cycle factor in the middle 2` levels, as explained before, yielding in total(4

2
)

= 6 distinct cycle factors, four of which are non-isomorphic. To prove Theorem 4, we
construct four edge-disjoint SCDs in the 7-cube in an ad hoc fashion and then apply the
following product construction.

I Theorem 5. If Qa and Qb each contain k pairwise edge-disjoint SCDs, then Qa+b contains k
pairwise edge-disjoint SCDs.

Theorem 5 shows in particular that from k edge-disjoint SCDs in a hypercube of fixed di-
mension n, we obtain k edge-disjoint SCDs for infinitely many larger dimensions 2n, 3n, 4n, . . ..

We conjecture that the n-cube has bn/2c+ 1 pairwise edge-disjoint SCDs, but so far we
only know that this holds for n ≤ 7. Clearly, finding this many edge-disjoint SCDs would
be best possible, as they use up all middle edges of the cube. Maximum sets of pairwise
edge-disjoint SCDs in the n-cube we found for n = 1, 2, . . . , 11 are shown in Table 1, together
with the aforementioned upper bound.
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1.2 Related work
Apart from building Gray codes, symmetric chain decompositions have many other interesting
applications, e.g., to construct rotation-symmetric Venn diagrams for n sets when n is a
prime number [14, 26], and to solve the Littlewood-Offord problem on sums of vectors [2].

A notion that is closely related to edge-disjoint SCDs is that of orthogonal chain decompo-
sitions, which were first considered by Shearer and Kleitman [31]. Two chain decompositions
are called orthogonal if every pair of chains has at most one vertex in common, where one
also allows chains that are not symmetric around the middle or chains that skip some levels.
Shearer and Kleitman showed in their paper that D0 and D0 are almost orthogonal (only
the longest chains have two elements in common), and they conjectured that the n-cube has
bn/2c+ 1 pairwise orthogonal chain decompositions where each decomposition consists of(

n
bn/2c

)
many chains. Spink recently made some progress towards this conjecture, by showing

that the n-cube has three orthogonal chain decompositions [32].
Pikhurko showed via a parenthesis matching argument that all edges of the n-cube can

be decomposed into symmetric chains [25]. However, it is not clear whether these chains
contain a subset that forms an SCD. Another interesting construction relating Hamilton
cycles and SCDs in the n-cube was presented by Streib and Trotter [33]. They inductively
construct a Hamilton cycle in the n-cube for any n ≥ 2 that can be partitioned into symmetric
chains forming an SCD. This Hamilton cycle has the minimal number of ‘peaks’ where the
differences in the Hamming weight change sign.

1.3 Outline of this paper
In Section 2 we introduce several definitions that will be used throughout this paper. In
Section 3 we sketch the main ideas for proving Theorem 1. The full proof is omitted due to
space constraints and can be found in the preprint [10]. In Section 4 we present the proofs
of Theorems 3–5, and we describe the construction of the SCD D1 and of the SCDs in Q5
and Q7 referred to in Table 1. We conclude in Section 5 with some open problems.

2 Preliminaries

We begin by introducing some terminology that is used throughout the following sections.

2.1 Bitstrings and lattice paths
We use Ln,k to denote the set of all bitstrings of length n with Hamming weight k, so this is
exactly the kth level of Qn. For any bitstring x, we write x for its complement and rev(x)
for the reversed bitstring. We often interpret a bitstring x as a path in the integer lattice Z2

starting at the origin (0, 0), where every 1-bit is interpreted as an ↗-step that changes the
current coordinate by (+1,+1) and every 0-bit is interpreted as a ↘-step that changes the
current coordinate by (+1,−1); see Figure 4. Note that for any bitstring x, the inverted
bitstring x corresponds to mirroring the lattice path horizontally, and the inverted and
reversed bitstring rev(x) corresponds to mirroring the lattice path vertically.

2.2 Lexical matchings
We now introduce certain matchings between two consecutive levels of the hypercube, which
were first described by Kierstead and Trotter [19]. Originally, these matchings were defined
and analyzed for the graph between the middle two levels of the (2n+ 1)-cube in an attempt
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6
9

12

11x = 1110001001001001100001

x = M11,↓
n,k (y)

x↑

level k = 9
n = 22

M11,↑
n,kM11,↓

n,k

2
1

0

3

5 7

10

8
1211 9

6

4

y = 1110001001001001100101

y = M11,↑
n,k (x)

y↓

level k + 1 = 10

Figure 4 Definition of i-lexical matchings between levels 9 and 10 of Q22, where steps flipped
along the i-lexical matching edge are marked with i. Between those two levels, the vertex x is
incident with i-lexical matching edges for each i ∈ {0, 1, . . . , 12}, and the vertex y is incident with
i-lexical matching edges for each i ∈ {0, 1, . . . , 12} \ {4, 6, 9}.

to tackle the middle two levels problem. We first generalize them to the n-cube for arbitrary n
and an arbitrary pair of consecutive levels k and k + 1. For i ∈ {0, 1, . . . , n− 1} the i-lexical
matching is defined as follows; see Figure 4. We interpret a bitstring x as a lattice path,
and we let x↑ denote the lattice path that is obtained by appending ↘-steps to x until the
resulting path ends at height −1. If x ends at a height less than −1, then x↑ := x. Similarly,
we let x↓ denote the lattice path obtained by appending ↗-steps to x until the resulting
path ends at height +1. If x ends at a height more than +1, then x↓ := x. We define the
matching by two partial mappings M i,↑

n,k : Ln,k → Ln,k+1 and M i,↓
n,k : Ln,k+1 → Ln,k defined

as follows: For any x ∈ Ln,k we consider the lattice path x↑ and scan it row-wise from top
to bottom, and from right to left in each row. The partial mapping M i,↑

n,k(x) is obtained by
flipping the ith↘-step encountered in this fashion, where counting starts with 0, 1, . . ., if this
↘-step is part of x; otherwise x is left unmatched. Similarly, for any x ∈ Ln,k+1 we consider
the lattice path x↓ and scan it row-wise from top to bottom, and from left to right in each
row. The partial mapping M i,↓

n,k(x) is obtained by flipping the ith ↗-step encountered in
this fashion if this ↗-step is part of x; otherwise x is left unmatched. It is straightforward
to verify that these two partial mappings are inverse to each other, so they indeed define a
matching between levels k and k + 1 of Qn, which we denote by M i

n,k.
The following properties of lexical matchings are direct consequences of these definitions.

I Lemma 6. Let 0 ≤ k ≤ n− 1 and l := max{k, n− k − 1}. The lexical matchings defined
before have the following properties.
(i) For every 0 ≤ i ≤ l, the matching M i

n,k saturates all vertices in the smaller of the two
levels k and k + 1.

(ii) The matchings M i
n,k, i = 0, 1, . . . , l, form a partition of all edges of the subgraph of Qn

between levels k and k + 1.
(iii) For every 0 ≤ i ≤ l we have M i

n,k = M l−i
n,n−k−1 and rev(M i

n,k) = M l−i
n,k . Consequently,

we have rev(M i
n,k) = M i

n,n−k−1.
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C ′

C1

C2

Figure 5 Joining two cycles C1 and C2 (black) from our cycle factor by taking the symmetric
difference with a 6-cycle C′ (gray).

Property (i) holds as in the smaller of the two levels k and k+ 1, no steps are appended to
the lattice paths when computing the i-lexical matching between those levels. Property (ii)
holds as the vertices in the smaller of the two levels k and k + 1 have degree l + 1 and the
matchings M i

n,k, i = 0, 1, . . . , l, are all disjoint. Property (iii) follows from the observation
that complementing a bitstring corresponds to mirroring the lattice path horizontally, and
reverting a bitstring corresponds to mirroring the lattice path horizontally and vertically.

3 The middle four levels problem

In this section we outline the main steps for proving Theorem 1. The proof proceeds similarly
as the proof of the middle two levels problem [12, 22]. In a first step, we construct a cycle
factor in the middle four levels of the (2n + 1)-cube, and in a second step we modify the
cycles in the factor locally to join them to a Hamilton cycle. The cycle factor is constructed
by taking the union of the following edge sets: all n-lexical and (n + 1)-lexical matching
edges between the upper two levels n+ 1 and n+ 2 and between the lower two levels n− 1
and n, as well as certain carefully chosen edges from the (n− 2)-lexical, the (n− 1)-lexical,
and the n-lexical matching between the middle two levels n and n+ 1. The most technical
step here is to choose an appropriate set of edges between the middle two levels, so that the
resulting subgraph has degree two at every vertex. When this is accomplished, we define
a set of 6-cycles between levels n + 1 and n + 2 such that any two of these 6-cycles are
edge-disjoint and every such 6-cycle C ′ intersects with two cycles C1 and C2 from our cycle
factor as shown in Figure 5. Consequently, taking the symmetric difference of the edge sets
of C1, C2, and C ′ results in a single cycle on the same vertex set as C1 and C2. We repeat
this joining process until we end up with a single Hamilton cycle. In this process, we exploit
that all of the 6-cycles used for the joining are edge-disjoint, and that on any cycle of the
factor, no pairs of edges that two 6-cycles have in common with this cycle are interleaved, so
there are never any conflicts between them. The main advantage of this two-step approach
to proving Hamiltonicity is that it effectively reduces the problem of proving that a graph
has a Hamilton cycle to the problem of proving that a suitably defined auxiliary graph is
connected, which is much easier. All details of this proof can be found in [10].

4 Pairwise edge-disjoint SCDs

We proceed to prove Theorems 3–5.

4.1 Proof of Theorem 3
To prove Theorem 3, we first give an equivalent definition of the SCD D0 defined in the
introduction via the parenthesis matching approach, which is valid only for even values of
n ≥ 2; recall Figure 1 (a) and Figure 2.
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1100001001001001100001
1000001001001001100001
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1
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C0(x)
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n
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1111111001101101100001
1111111001101001100001
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1111101001001001100001
1111100001001001100001
1110100001001001100001
1110000001001001100001
1010000001001001100001
1000000001001001100001

5
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2
1
1
2
3
4
5

x =

C1(x)

Figure 6 The labeling procedures that define the symmetric chains C0(x) (top) and C1(x)
(bottom). The markers that define the upward and downward steps of the chains are drawn as a
square and a diamond, respectively. The chain C0(x) is the same as the one shown in Figure 2.

For even n ≥ 2, we consider a vertex x ∈ Ln,n/2 in the middle level n/2 of Qn, and we
define the sequence of vertices reached from x when moving up the corresponding chain,
and the sequence of vertices reached when moving down the chain. For this we consider the
lattice path corresponding to the bitstring x. This lattice path ends at the coordinate (n, 0)
as the number of 0s equals the number of 1s. We now label a subsequence of ↘-steps of this
lattice path with integers j = 1, 2, . . . according to the following procedure; see the top part
of Figure 6 for an illustration:
(a0) We place a marker at the rightmost highest point of x and set j := 1.
(b0) If the marker is at height h ≥ 1, we label the ↘-step starting at the marker with j,

and we move the marker to the starting point of the rightmost ↘-step starting at
height h− 1. We set j := j + 1 and repeat.

(c0) If the marker is at height h = 0, we stop.
Flipping the ↘-steps of x marked with 1, 2, . . . in this order yields the sequence of vertices
reached from x when moving up the chain containing x. An analogous labeling procedure
obtained by interchanging left and right, ↘-steps and ↗-steps, and starting with ending
points yields the sequence of vertices reached from x when moving down this chain. We
denote this chain by C0(x). Observe that C0(x) is a symmetric chain, as the height of the
marker decreases by 1 in each step, so the number of edges we move up from x equals the
number of edges we move down from x. It is easy to verify that the SCD D0 defined before
via the parenthesis matching approach satisfies D0 =

⋃
x∈Ln,n/2

C0(x).

Proof of Theorem 3. We first define a set D1 of chains in Qn for even values of n ≥ 2 via
a labeling rule similar to the rule for D0 described before. From this definition it follows
immediately that all chains in D1 are symmetric. We then use an equivalent characterization
of D0 and D1 as the unions of certain lexical matchings to show that the chains in D1 form
a partition of all vertices of Qn, proving that D1 is an SCD, and that D0, D0, D1, and D1
are pairwise edge-disjoint.

For even n ≥ 2, we consider a vertex x ∈ Ln,n/2 in the middle level of Qn. We interpret
it as a lattice path, and label some of its ↘-steps as follows; see the bottom part of Figure 6:
(a1) We place a marker at the rightmost highest point of x and set j := 1. If there is a

↘-step to the left of the marker starting at the same height, we label the nearest such
step with 1 and set j := 2.

ICALP 2018
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level 0

level 1

level 2

level 3

level 4

level 5

level 6

M0 M1 M2 M3

M0 M1 M2 M3

M0 M1 M2 M3

M0 M1 M2 M3

M0 M1 M2 M3

M0 M1 M2 M3

M4

M4

M4

M4

M5

M5

D0 D1 D1 D0

Figure 7 Unions of lexical matchings M i = M i
n,k yielding edge-disjoint chain decompositions

in Qn for n = 6. The resulting chains in D0 and D1 in Q6 are shown in Figure 3.

(b1) If the marker is at height h ≥ 2, we label the rightmost ↘-step starting at height h− 1
with j. We consider all ↘-steps starting at height h − 2 to the right of the labeled
step and the ↘-step starting at the marker, we label the second step from the right
from this set with j + 1, and we move the marker to the starting point of the rightmost
↘-step starting at height h− 2. We set j := j + 2 and repeat.

(c1) If the marker is at height h = 1 or h = 0, we stop.
We let C1(x) denote the chain obtained by flipping bits according to this labeling rule and
the corresponding symmetric rule obtained by interchanging left and right, ↘-steps and
↗-steps, and starting with ending points. Observe that C1(x) is a symmetric chain, as the
height of the marker decreases by 2 in each iteration (and we label two steps in each iteration)
and the conditional marking in step (a1) occurs if and only if the highest point of x is unique,
so the number of edges we move up from x equals the number of edges we move down from x.
At this point it is not clear yet that the chains C1(x), x ∈ Ln,n/2, are disjoint, nor that they
cover all vertices of Qn. This is what we will argue about next, which will prove that

D1 :=
⋃

x∈Ln,n/2
C1(x) (1)

is actually an SCD of Qn.
By property (i) from Lemma 6, for any sequence i := (i0, i1, . . . , in−1) of indices

ik ∈ {0, 1, . . . ,max{k, n− k − 1}} the union

Di :=
⋃n−1

k=0
M ik
n,k (2)

is a chain decomposition of Qn. The resulting chains are not necessarily symmetric, though.
From the definitions in Section 2.2 it also follows that D0 equals the union of the 0-lexical
matchings, and that for even n ≥ 2, D1 as defined in (1) equals the union of the 1-lexical
matchings; formally we have

D0 = D(0,0,...,0) =
⋃n−1

k=0
M0
n,k , D1 = D(1,1,...,1) =

⋃n−1

k=0
M1
n,k .

Consequently, D1 is indeed a chain decomposition, and by the definition of D1 via the labeling
procedure, all chains in this decomposition are symmetric, so D1 is indeed an SCD. The fact
that D0, D0, D1, and D1 are pairwise edge-disjoint can be seen by applying property (iii)
from Lemma 6 and by observing that by property (ii), Di and Dj as defined in (2) are
edge-disjoint if and only if the sequences i and j differ in every position; see Figure 7. J
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Qa Qb Qa+b = Qa ×Qb
A

A1
A2

B

B1
B2

A×B C1

C1

(x1, y1)

(x1, yβ)

(xα, yβ)

Figure 8 Illustration of the proof of Theorem 5. Construction of two edge-disjoint SCDs in Q5

from two edge-disjoint SCDs in Q2 and two edge-disjoint SCDs in Q3. The chains of the SCD C1

of Q5 as constructed in the proof are highlighted in gray.

Clearly, D(0,0,...,0) as defined in (2) equals D0 for every n ≥ 1, so the union of all 0-lexical
matchings forms an SCD in any dimension. In contrast to that, the union of all 1-lexical
matchings D(1,1,...,1) only forms an SCD for even n ≥ 2.

4.2 Proof of Theorem 5
Proof of Theorem 5. For the reader’s convenience, this proof is illustrated in Figure 8.
Let A1,A2, . . . ,Ak and B1,B2, . . . ,Bk denote k pairwise edge-disjoint SCDs of Qa and Qb,
respectively. We will think of Qa+b as the Cartesian product Qa ×Qb of Qa and Qb. We
show how to construct for every i ∈ [k] an SCD Ci of Qa+b = Qa ×Qb which uses only edges
of the form ((u, v), (u′, v′)) where (u, u′) is an edge from Ai or (v, v′) is an edge from Bi.
From this it follows that the SCDs C1, C2, . . . , Ck are pairwise edge-disjoint.

The SCD Ci of Qa+b is defined as follows: The Cartesian products A×B of chains A ∈ Ai
and B ∈ Bi partition the vertices of Qa+b into two-dimensional grids. Ci is obtained by
partitioning each of those grids into symmetric chains in the natural way; see Figure 8 (cf. [4]):
Specifically, let A =: (x1, . . . , xα) and B =: (y1, . . . , yβ) be the vertices in the chains A and B
from bottom to top. As A and B are symmetric, we know that |x1| + |xα| = a and
|y1|+ |yβ | = b, where |x| denotes the Hamming weight of the bitstring x. This implies that
|(x1, y1)|+ |(xα, yβ)| = |x1|+ |y1|+ |xα|+ |yβ | = a+ b, i.e., the bottom and top vertex of
the grid A×B are on symmetric levels in Qa+b. We may therefore decompose A×B into
disjoint symmetric chains Cj , j = 1, 2, . . . ,min{α, β}, by setting

Cj :=
(
(x1, yj), (x2, yj), . . . , (xα−j+1, yj), (xα−j+1, yj+1), . . . , (xα−j+1, yβ)

)
. J

4.3 Proof of Theorem 4
We begin by constructing the SCDs in Q5 and Q7 mentioned in Table 1.

I Lemma 7. Q5 contains three pairwise edge-disjoint SCDs, Q7 contains four pairwise
edge-disjoint SCDs, and this is best possible.

Proof. We consider the graph Qn with the two vertices in the outermost levels 0 and n

removed, and we identify all bitstrings that differ only by rotation into so-called necklaces.
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N7

1110000 1011000 1101000
10101001001100

1111000 1011100 1101100
10101101001110
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1100000 1010000 1001000

1000000

1111110

X5

Y5

Z5

X7

X7

Y7

Y7(a) (b)Z5

Figure 9 Illustration of the three edge-disjoint SCDs in N5 (a) and four edge-disjoint SCDs
in N7 (b). The names of the SCDs correspond to the ones used in Table 1.

The resulting graph Nn is a multigraph version of the cover graph of the necklace poset.
Specifically, the multiplicity of the edges in Nn corresponds to the number of ways a bit
from a necklace can be flipped to reach the corresponding adjacent necklace. E.g., in N5
the necklace x := 10000 has two edges leading to y := 11000, as we can flip the second
or the fifth bit in x to reach y. This way, a necklace on level k has n − k edges going up,
and k edges going down, like the vertices in Qn. The multigraphs N5 and N7 are shown in
Figure 9. If n is prime, then every SCD in Nn corresponds to an SCD in Qn, by turning each
chain from Nn into n chains in Qn obtained by rotating a representative of each necklace
in all possible ways. Moreover, one of the chains of length n− 2 needs to be extended by
the all-zero and all-one bitstring to a chain of length n in Qn. Observe that in this way, k
edge-disjoint SCDs in Nn give rise to k edge-disjoint SCDs in Qn.

As n = 5 and n = 7 are prime, we thus obtain three edge-disjoint SCDs in Q5 from the
SCDs in N5 shown in Figure 9 (a), and four edge-disjoint SCDs in Q7 from the SCDs in N7
shown in Figure 9 (b). These SCDs use up all middle edges, so this is best possible. J

Proof of Theorem 4. For n = 7 the statement follows from Lemma 7. For odd n ≥ 13
we apply Theorem 5 to Qn−7 and Q7, using the four edge-disjoint SCDs in Qn−7 given
by Theorem 3 (note that n − 7 ≥ 6), and the four edge-disjoint SCDs in Q7 given by
Lemma 7. J

5 Open problems

Understanding the structure of the cycle factors constructed as in the proof of Theorem 2
is an important step towards a general solution of Problem M. We performed some
computer experiments in this direction; see [10]. What is the number and length of cycles
in these factors? Is there a combinatorial interpretation of those numbers?
Are there other explicit constructions of SCDs in the n-cube, different from D0, D1, and
their complements?
We conjecture that the n-cube has bn/2c + 1 pairwise edge-disjoint SCDs. The main
difficulty here is that we are missing a simple criterion like Hall’s matching condition
guaranteeing the existence of an SCD. Even finding five edge-disjoint SCDs in the n-cube
for some small fixed n would be interesting, as this solution would extend to infinitely
many larger values of n by Theorem 5. Beyond that, it would be very nice to construct
more than constantly many edge-disjoint SCDs in the n-cube as n grows.



P. Gregor, S. Jäger, T. Mütze, J. Sawada, and K. Wille 66:13

References
1 M. Aigner. Lexicographic matching in Boolean algebras. J. Combin. Theory Ser. B, 14:187–

194, 1973.
2 B. Bollobás. Combinatorics: set systems, hypergraphs, families of vectors and combinatorial

probability. Cambridge University Press, Cambridge, 1986.
3 B. Bultena and F. Ruskey. Transition restricted Gray codes. Electron. J. Combin., 3(1):Pa-

per 11, 11 pp., 1996. URL: http://www.combinatorics.org/Volume_3/Abstracts/
v3i1r11.html.

4 N. de Bruijn, C. van Ebbenhorst Tengbergen, and D. Kruyswijk. On the set of divisors of
a number. Nieuw Arch. Wiskunde (2), 23:191–193, 1951.

5 D. Dimitrov, T. Dvořák, P. Gregor, and R. Škrekovski. Linear time construction of a
compressed Gray code. European J. Combin., 34(1):69–81, 2013. doi:10.1016/j.ejc.
2012.07.015.

6 M. El-Hashash and A. Hassan. On the Hamiltonicity of two subgraphs of the hypercube. In
Proceedings of the Thirty-second Southeastern International Conference on Combinatorics,
Graph Theory and Computing (Baton Rouge, LA, 2001), volume 148, pages 7–32, 2001.

7 L. Goddyn and P. Gvozdjak. Binary Gray codes with long bit runs. Electron. J. Com-
bin., 10:Paper 27, 10 pp., 2003. URL: http://www.combinatorics.org/Volume_10/
Abstracts/v10i1r27.html.

8 F. Gray. Pulse code communication, 1953. March 17, 1953 (filed Nov. 1947). U.S. Patent
2,632,058.

9 C. Greene and D. J. Kleitman. Strong versions of Sperner’s theorem. J. Combin. Theory
Ser. A, 20(1):80–88, 1976.

10 P. Gregor, S. Jäger, T. Mütze, J. Sawada, and K. Wille. Gray codes and symmetric chains.
arXiv:1802.06021. Preprint version of the present article, 2018.

11 P. Gregor and T. Mütze. Trimming and gluing Gray codes. Theoret. Comput. Sci., 714:74–
95, 2018. doi:10.1016/j.tcs.2017.12.003.

12 P. Gregor, T. Mütze, and J. Nummenpalo. A short proof of the middle levels theorem. To
appear in Discrete Analysis. arXiv:1710.08249, 2018.

13 P. Gregor and R. Škrekovski. On generalized middle-level problem. Inform. Sci.,
180(12):2448–2457, 2010. doi:10.1016/j.ins.2010.02.009.

14 J. Griggs, C. E. Killian, and C. D. Savage. Venn diagrams and symmetric chain decom-
positions in the Boolean lattice. Electron. J. Combin., 11(1):Paper 2, 30 pp., 2004. URL:
http://www.combinatorics.org/Volume_11/Abstracts/v11i1r2.html.

15 A. E. Holroyd. Perfect snake-in-the-box codes for rank modulation. IEEE Trans. Inform.
Theory, 63(1):104–110, 2017. doi:10.1109/TIT.2016.2620160.

16 A. E. Holroyd, F. Ruskey, and A. Williams. Shorthand universal cycles for permutations.
Algorithmica, 64(2):215–245, 2012. doi:10.1007/s00453-011-9544-z.

17 J. R. Johnson. Universal cycles for permutations. Discrete Math., 309(17):5264–5270, 2009.
doi:10.1016/j.disc.2007.11.004.

18 J. R. Johnson. An inductive construction for Hamilton cycles in Kneser graphs. Electron.
J. Combin., 18(1):Paper 189, 12 pp., 2011.

19 H. A. Kierstead and W. T. Trotter. Explicit matchings in the middle levels of the Boolean
lattice. Order, 5(2):163–171, 1988. doi:10.1007/BF00337621.

20 D. E. Knuth. The Art of Computer Programming. Vol. 4A. Combinatorial Algorithms.
Part 1. Addison-Wesley, Upper Saddle River, NJ, 2011.

21 S. Locke and R. Stong. Problem 10892: Spanning cycles in hypercubes. Amer. Math.
Monthly, 110:440–441, 2003.

22 T. Mütze. Proof of the middle levels conjecture. Proc. Lond. Math. Soc., 112(4):677–713,
2016. doi:10.1112/plms/pdw004.

ICALP 2018

http://www.combinatorics.org/Volume_3/Abstracts/v3i1r11.html
http://www.combinatorics.org/Volume_3/Abstracts/v3i1r11.html
http://dx.doi.org/10.1016/j.ejc.2012.07.015
http://dx.doi.org/10.1016/j.ejc.2012.07.015
http://www.combinatorics.org/Volume_10/Abstracts/v10i1r27.html
http://www.combinatorics.org/Volume_10/Abstracts/v10i1r27.html
http://dx.doi.org/10.1016/j.tcs.2017.12.003
http://dx.doi.org/10.1016/j.ins.2010.02.009
http://www.combinatorics.org/Volume_11/Abstracts/v11i1r2.html
http://dx.doi.org/10.1109/TIT.2016.2620160
http://dx.doi.org/10.1007/s00453-011-9544-z
http://dx.doi.org/10.1016/j.disc.2007.11.004
http://dx.doi.org/10.1007/BF00337621
http://dx.doi.org/10.1112/plms/pdw004


66:14 Gray Codes and Symmetric Chains

23 T. Mütze and J. Nummenpalo. A constant-time algorithm for middle levels Gray codes. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2238–2253. SIAM, Philadelphia, PA, 2017. doi:10.1137/1.9781611974782.147.

24 T. Mütze, J. Nummenpalo, and B. Walczak. Sparse Kneser graphs are Hamiltonian. To
appear in Proceedings of the 50th Annual ACM Symposium on the Theory of Computing
(STOC 2018). arXiv:1711.01636, 2018.

25 O. Pikhurko. On edge decompositions of posets. Order, 16(3):231–244 (2000), 1999. doi:
10.1023/A:1006419611661.

26 F. Ruskey, C. D. Savage, and S. Wagon. The search for simple symmetric Venn diagrams.
Notices Amer. Math. Soc., 53(11):1304–1312, 2006.

27 C. D. Savage. Long cycles in the middle two levels of the Boolean lattice. Ars Combin.,
35(A):97–108, 1993.

28 C. D. Savage. A survey of combinatorial Gray codes. SIAM Rev., 39(4):605–629, 1997.
doi:10.1137/S0036144595295272.

29 C. D. Savage and P. Winkler. Monotone Gray codes and the middle levels problem. J.
Combin. Theory Ser. A, 70(2):230–248, 1995. doi:10.1016/0097-3165(95)90091-8.

30 J. Sawada and A. Williams. A Hamilton path for the sigma-tau problem. In Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 568–575, 2018. doi:
10.1137/1.9781611975031.37.

31 J. Shearer and D. J. Kleitman. Probabilities of independent choices being ordered. Stud.
Appl. Math., 60(3):271–276, 1979. doi:10.1002/sapm1979603271.

32 H. Spink. Orthogonal symmetric chain decompositions of hypercubes. arXiv:1706.08545,
June 2017.

33 N. Streib and W. T. Trotter. Hamiltonian cycles and symmetric chains in Boolean lattices.
Graphs Combin., 30(6):1565–1586, 2014. doi:10.1007/s00373-013-1350-8.

34 I. N. Suparta and A. J. van Zanten. A construction of Gray codes inducing complete graphs.
Discrete Math., 308(18):4124–4132, 2008. doi:10.1016/j.disc.2007.07.116.

35 G. C. Tootill. The use of cyclic permuted codes in relay counting circuits. Proceedings IEE,
Part B Supplement, 103, 1956.

36 D. E. White and S. G. Williamson. Recursive matching algorithms and linear orders on
the subset lattice. J. Combin. Theory Ser. A, 23(2):117–127, 1977.

http://dx.doi.org/10.1137/1.9781611974782.147
http://dx.doi.org/10.1023/A:1006419611661
http://dx.doi.org/10.1023/A:1006419611661
http://dx.doi.org/10.1137/S0036144595295272
http://dx.doi.org/10.1016/0097-3165(95)90091-8
http://dx.doi.org/10.1137/1.9781611975031.37
http://dx.doi.org/10.1137/1.9781611975031.37
http://dx.doi.org/10.1002/sapm1979603271
http://dx.doi.org/10.1007/s00373-013-1350-8
http://dx.doi.org/10.1016/j.disc.2007.07.116


An Improved Isomorphism Test for
Bounded-Tree-Width Graphs
Martin Grohe
RWTH Aachen University, Aachen, Germany
grohe@informatik.rwth-aachen.de

Daniel Neuen
RWTH Aachen University, Aachen, Germany
neuen@informatik.rwth-aachen.de

Pascal Schweitzer
Technische Universität Kaiserslautern, Kaiserslautern, Germany
schweitzer@cs.uni-kl.de

Daniel Wiebking
RWTH Aachen University, Aachen, Germany
wiebking@informatik.rwth-aachen.de

Abstract
We give a new fpt algorithm testing isomorphism of n-vertex graphs of tree width k in time
2k polylog(k) poly(n), improving the fpt algorithm due to Lokshtanov, Pilipczuk, Pilipczuk, and
Saurabh (FOCS 2014), which runs in time 2O(k5 log k) poly(n). Based on an improved version of
the isomorphism-invariant graph decomposition technique introduced by Lokshtanov et al., we
prove restrictions on the structure of the automorphism groups of graphs of tree width k. Our
algorithm then makes heavy use of the group theoretic techniques introduced by Luks (JCSS 1982)
in his isomorphism test for bounded degree graphs and Babai (STOC 2016) in his quasipolynomial
isomorphism test. In fact, we even use Babai’s algorithm as a black box in one place. We give a
second algorithm which, at the price of a slightly worse run time 2O(k2 log k) poly(n), avoids the
use of Babai’s algorithm and, more importantly, has the additional benefit that it can also be
used as a canonization algorithm.
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1 Introduction

Already early on in the beginning of research on the graph isomorphism problem (which asks
for structural equivalence of two given input graphs) a close connection to the structure and
study of the automorphism group of a graph was observed. For example, Mathon [11] argued
that the isomorphism problem is polynomially equivalent to the task of computing a generating
set for the automorphism group and also to computing the size of the automorphism group.
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With Luks’s polynomial time isomorphism test for graphs of bounded degree [10], the
striking usefulness of group theoretic techniques for isomorphism problems became apparent
and they have been exploited ever since (e.g. [2, 12, 15, 13]). In his algorithm, Luks shows
and uses that the automorphism group of a connected graph of bounded degree, after a
vertex has been fixed, has a very restricted structure. More precisely, the group is in the class
Γk of all groups whose composition factors are isomorphic to a subgroup of the symmetric
group Sym(k).

Most recently, Babai’s quasipolynomial time algorithm for general graph isomorphism [1]
adds several novel techniques to tame and manage the groups that may appear as the
automorphism group of the input graphs.

A second approach towards isomorphism testing is via decomposition techniques (e.g.
[3, 5, 7]). These decompose the graph into smaller pieces while maintaining control of the
complexity of the interplay between the pieces. When taking this route it is imperative to
decompose the graph in an isomorphism-invariant fashion so as not to compare two graphs
that have been decomposed in structurally different ways.

A prime example of this strategy is Bodlaender’s isomorphism test [3] for graphs of
bounded treewidth. Bodlaender’s algorithm is a dynamic programming algorithm that takes
into account all k-tuples of vertices that separate the graph, leading to a running time
of O(nk+c) to test isomorphism of graphs of tree width at most k.

Only recently, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh [9] designed a fixed-
parameter tractable isomorphism test for graphs of bounded tree width which has a running
time of 2O(k5 log k) poly(n). This algorithm first “improves” a given input graph G to a
graph Gk by adding an edge between every pair of vertices between which more than
k pairwise internally vertex disjoint paths exist. The improved graph Gk isomorphism-
invariantly decomposes along clique separators into clique-separator free parts, which we
will call basic throughout the paper. The decomposition can in fact be extended to an
isomorphism-invariant tree decomposition into basic parts, as was shown in [4] to design a
logspace isomorphism test for graphs of bounded tree width. For the basic parts, Lokshtanov
et al. [9] show that, after fixing a vertex of sufficiently low degree, is it possible to compute
an isomorphism-invariant tree decomposition whose bags have a size at most exponential in k
and whose adhesion is at most O(k3). They use this invariant decomposition to compute a
canonical form essentially by a brute-force dynamic programming algorithm.

The problem of computing a canonical form is the task to compute, to a given input
graphG, a graphG′ isomorphic to G such that the output G′ depends only on the isomorphism
class of G and not on G itself.

The isomorphism problem reduces to the task of computing a canonical form: for two
given input graphs we compute their canonical forms and check whether the canonical forms
are equal (rather than isomorphic).

As far as we know, computing a canonical form could be algorithmically more difficult
than testing isomorphism. It is usually not very difficult to turn combinatorial isomorphism
tests into canonization algorithms, sometimes the algorithms are canonization algorithms in
the first place. However, canonization based on group theoretic isomorphism tests is more
challenging. For example, it is still open whether there is a graph canonization algorithm
running in quasipolynomial time.

Our Results
Our main result is a new fpt algorithm testing isomorphism of graphs of bounded tree width.

I Theorem 1. There is a graph isomorphism test running in time 2k polylog(k) poly(n), where
n is the size and k the minimum tree width of the input graphs.
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In the first part of the paper, we analyze the structure of the automorphism group of a
graph G of tree width k. Following [9] and [4], we pursue a two-stage decomposition strategy
for graphs of bounded tree width, where in the first step we decompose the improved graph
along clique separators into basic parts. We observe that these basic parts are essential
for understanding the automorphism groups. We show (Theorem 8) that with respect to a
fixed vertex v of degree at most k, we can construct for each basic graph H an isomorphism-
invariant tree decomposition of width at most 2O(k log k) and adhesion at most O(k2) where,
in addition, each bag is equipped with a graph of small degree which is defined in an
isomorphism-invariant way and gives us insight about the structure of the bag. In particular,
using Luks’s results [10], this also restricts the structure of the automorphism group.

Our construction is based on a similar construction of an isomorphism-invariant tree
decomposition in [9]. Compared to that construction, we improve the adhesion (that is, the
maximum size of intersections between adjacent bags of the decomposition) from O(k3) to
O(k2). More importantly, we expand the decomposition by assigning a group and a graph to
each bag.

Using these groups, we can prove that Aut(H)v (the group of all automorphisms of H that
keep the vertex v fixed) is a Γk+1 group. This significantly restricts possible automorphism
groups. Moreover, using the graph structure assigned to each bag, we can also compute
the automorphism group of a graph of tree width k within the desired time bounds. The
first, already nontrivial step towards computing the automorphism group, is a reduction
from arbitrary graphs of tree width k to basic graphs. The second step reduces the problem
of computing the automorphism group of a basic graph to the problem of computing the
automorphism group of a structure that we call an expanded d-ary tree. In the reduction,
the parameter d will be polynomially bounded in k. Then as the third step, we can apply a
recent result [6] due to the first three authors that allows us to compute the automorphism
groups of such expanded d-ary trees. This result is heavily based on techniques introduced
by Babai [1] in his quasipolynomial isomorphism test. In fact, it even uses Babai’s algorithm
as a black box in one place.

We prove a second result that avoids the results of [6, 1] and even allows us to compute
canonical forms, albeit at the price of an increased running time.

I Theorem 2. There is a graph canonization algorithm running in time 2O(k2 log k) poly(n),
where n is the size and k the tree width of the input graph.

Even though it does not employ Babai’s new techniques, this algorithm still heavily
depends on the group theoretic machinery. As argued above, the design of group theoretic
canonization algorithms often requires extra work, and can be slightly technical, compared to
the design of an isomorphism algorithm. Here, we need to combine the group theoretic can-
onization techniques going back to Babai and Luks [2] with graph decomposition techniques,
which poses additional technical challenges and requires new canonization subroutines.

2 Preliminaries

Graphs. We use standard graph notation. All graphs G = (V,E) considered are undirected
finite simple graphs. We denote an edge {u, v} ∈ E by uv. Let U,W ⊆ V be subsets of
vertices. We write E(U,W ) for the edges with one vertex in U and the other vertex from W ,
whereas E(U) are the edges with both vertices in U . By N(U), we denote the neighborhood
of U , i.e., all vertices outside U that are adjacent to U . For the induced subgraph on U ,
we write G[U ], whereas G − U is the induced subgraph on V \ U . A rooted graph is a
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triple G = (V,E, r) where r ∈ V is the root of the graph. For two vertices v, w ∈ V we
denote by distG(v, w) the distance between v and w, i.e. the length of the shortest path
from v to w. The depth of a rooted graph is the maximum distance from a vertex to the
root, that is, depth(G) = maxv∈V distG(r, v). The forward-degree of a vertex v ∈ V is
fdeg(v) = |{w ∈ N(v) | dist(w, r) = dist(v, r) + 1}|. Note that |V | ≤ (d+ 1)depth(G) where
d = maxv∈V fdeg(v) is the maximal forward-degree.

Separators. A pair (A,B) where A∪B = V (G) is called a separation if E(A\B,B \A) = ∅.
In this case we call A ∩B a separator. A separation (A,B) is an (L,R)-separation if L ⊆ A
and R ⊆ B and in this case A ∩ B is called an (L,R)-separator. A separation (A,B) is a
called a clique separation if A ∩B is a clique and A \B 6= ∅ and B \A 6= ∅. In this case we
call A ∩B a clique separator.

Tree Decompositions. A tree decomposition of a graph G is a pair (T, β), where T is a
rooted tree and β : V (T )→ Pow(V (G)) is a mapping into the power set of V (G) such that:
1. for each vertex v ∈ V (G), the set {t ∈ V (G) | v ∈ β(t)} induces a nonempty and

connected subtree of T, and
2. for each edge e ∈ E(G), there exists t ∈ V (T ) such that e ⊆ β(t).
Sets β(t) for t ∈ V (T ) are called the bags of the decomposition, while sets β(s) ∩ β(t) for
st ∈ E(T ) are called the adhesions sets. The width of a tree decomposition T is equal to
its maximum bag size decremented by one, i.e. maxt∈V (T ) |β(t)| − 1. The adhesion width of
T is equal to its maximum adhesion size, i.e. maxst∈E(T ) |β(s) ∩ β(t)|. The tree width of a
graph, denoted by tw(G), is equal to the minimum width of its tree decompositions.

A graph G is k-degenerate if every subgraph of G has a vertex with degree at most k. It
is well known that every graph of tree width k is k-degenerate.

Groups. For a function φ : V → V ′ and v ∈ V we write vφ for the image of v under φ, that is,
vφ = φ(v). We write composition of functions from left to right, e.g, v(σρ) = (vσ)ρ = ρ(σ(v)).
By [t] we denote the set of natural numbers from 1 to t. By Sym(V ) we denote the symmetric
group on a set V and we also write Sym(t) for Sym([t]). We use upper case Greek letters
∆,Φ,Γ,Θ and Ψ for permutation groups.

Labeling cosets. A labeling coset of a set V is a set of bijective mappings τ∆ where τ
is a bijection from V to [|V |] and ∆ is a subgroup of Sym(|V |). By Label(V ), we denote
the labeling coset τ Sym(|V |). We say that τ∆ is a labeling subcoset of a labeling coset ρΘ,
written τ∆ ≤ ρΘ, if τ∆ is a subset of ρΘ and τ∆ forms a labeling coset again. Sometimes
we will choose a single symbol to denote a labeling coset τ∆. For this will usually use the
Greek letter Λ. Recall that Γk denotes the class of all finite groups whose composition factors
are isomorphic to subgroups of Sym(k). Let Γ̃k be the class of all labeling cosets Λ = τ∆
such that ∆ ∈ Γk.

Orderings on sets of natural numbers. We extend the natural ordering of the natural
numbers to finite sets of natural numbers. For two such sets M1,M2 we define M1 ≺ M2
if |M1| < |M2| or if |M1| = |M2| and the smallest element of M1 \M2 is smaller than the
smallest element of M2 \M1.
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Isomorphisms. In this paper we will always define what the isomorphisms between our
considered objects are. But this can also be done in a more general context. Let φ : V → V ′.
For a vector (v1, . . . , vk) we define (v1, . . . , vk)φ as (vφ1 , . . . , v

φ
k ) inductively. Analogously, for

a set we define {v1, . . . , vn}φ as {vφ1 , . . . , vφn}. For a labeling coset Λ ≤ Label(V ) we write
Λφ for φ−1Λ. In the paper we will introduce isomorphisms Iso(X,X ′) for various objects
X and X ′. Unless otherwise stated these are all φ : V → V ′ such that Xφ = X ′ where we
apply φ as previously defined. For example, the isomorphism between two graphs G and G′
are all φ : V → V ′ such that Gφ = G′ which means that G has an edge uv, if and only if G′
has the edge uφvφ.

3 Clique separators and improved graphs

To perform isomorphism tests of graphs of bounded tree width, a crucial step in [9] is to
deal with clique separators. For this step the concept of a k-improved graph is the key.

I Definition 3 ([9]). The k-improvement of a graph G is the graph Gk obtained from G by
connecting every pair of non-adjacent vertices v, w for which there are more than k pairwise
internally vertex disjoint paths connecting v and w. We say that a graph G is k-improved
when Gk = G.

A graph is k-basic if it is k-improved and does not have any separating cliques. In
particular, a k-basic graph is connected.

We summarize several structural properties of Gk.

I Lemma 4 ([9]). Let G be a graph and k ∈ N.
1. The k-improvement Gk is k-improved, i.e., (Gk)k = Gk.
2. Every tree decomposition (T, β) of G of width at most k is also a tree decomposition of

Gk.
3. There exists an algorithm that, given G and k, runs in O(k2n3) time and either correctly

concludes that tw(G) > k, or computes Gk.

Since the construction of Gk from G is isomorphism-invariant, the concept of the improved
graph can be exploited for isomorphism testing and canonization. A k-basic graph has severe
limitations concerning its structure as we explore in the following sections. In the canonization
algorithm from [9] a result of Leimer [8] is exploited that says that every graph has a tree
decomposition into clique-separator free parts, and the family of bags is isomorphism-invariant.
While it is usually sufficient to work with an isomorphism-invariant set of bags (see [14]) we
actually require an isomorphism invariant decomposition, which can indeed be obtained.

I Theorem 5 ([8],[4]). There is an algorithm that, given a connected graph G, computes
a tree decomposition (T, β) of G, called clique separator decomposition, with the following
properties.
1. For every t ∈ V (T ) the graph G[β(t)] is clique-separator free (and in particular connected).
2. Each adhesion set of (T, β) is a clique.
3. |V (T )| ∈ O(|V (G)|).
4. For each bag β(t) the adhesion sets of the children are all equal to β(t) or the adhesion

sets of the children are all distinct.
The algorithm runs in polynomial time and the output of the algorithm is isomorphism-
invariant (w.r.t. G).
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4 Decomposing basic graphs

In this section, we shall construct bounded-width tree decompositions of k-basic graphs of
tree width at most k. Crucially, these decompositions will be isomorphism-invariant after
fixing one vertex of the graph. Our construction refines a similar construction of [9].

Let us define three parameters cS, cM, and cL (small, medium and large) that depend on k:
cS := 6(k+1) ∈ O(k), cM := cS+cS(k+1) ∈ O(k2) and cL := cM+2(k+1)

(
cM
k+2
)2 ∈ 2O(k log k).

The interpretation of these parameters is that cM will bound the size of the adhesion sets
and cL will bound the bag size. The parameter cS is used by the algorithm which in certain
situations behaves differently depending on sets being larger than cS or not.

The bound cM ∈ O(k2) improves the corresponding bound cM ∈ O(k3) in [9]. However,
the more significant extension of the construction in [9] is that in addition to the tree
decomposition we also construct both an isomorphism-invariant graph of bounded forward-
degree and depth and an isomorphism-invariant Γk+1-group associated with each bag.

The weight of a set S ⊆ V (G) with respect to a (weight) function w : V (G) → N is∑
v∈S w(v). The weight of a separation (A,B) is the weight of its separator A ∩ B. For

sets L,R ⊆ V (G), among all (L,R)-separations (A,B) of minimal weight there exists a
unique separation with an inclusion minimal A. For this separation we call A∩B the leftmost
minimal separator and denote it by SL,R(w). Moreover, we define SL,R = SL,R(1) where 1
denotes the function that maps every vertex to 1.

For U ⊆ V (G) we define a weight function wU,k such that wU,k(u) = k for all u ∈ U and
wU,k(v) = 1 for all v ∈ V \ U . Given a weight function w, using Menger’s theorem and the
Ford-Fulkerson algorithm it is possible to compute SL,R(w). The following lemma generalizes
Lemma 3.2 of [9]. Through this generalization we obtain the adhesion bound O(k2) for our
decomposition.

I Lemma 6. Let G be a graph, let S ⊆ V (G) be a subset of vertices, and let {Ti ⊆ V (G)}i∈[t]
and {wi : V (G)→ N}i∈[t] be families where each Ti is a minimum weight (Li, Ri)-separator
with respect to wi for some Li, Ri ⊆ S. Let w : V (G)→ N be another weight function such
that for all i ∈ [t]:
1. w(v) = wi(v) for all v ∈ V (G) \ S, and
2. w(v) ≥ wi(v) for all v ∈ V (G).
Let D := S ∪

⋃
i∈[t] Ti. Suppose that Z is the vertex set of any connected component of G−D.

Then w(N(Z)) ≤ w(S).

The lemma can be used to extend a set of vertices S that is not a clique separator to a
set D in an isomorphism-invariant fashion while controlling the size of the adhesion sets of
the components of G−D. It will be important for us that we can also extend a labeling coset
of S to a labeling coset of D and furthermore construct a graph of bounded forward-degree
and depth associated with D and S.

I Lemma 7. Let k ∈ N and let G be a graph that is k-improved. Let S ⊆ V (G) and let
Λ ≤ Label(S) be a labeling coset such that
1. ∅ ( S ( V (G),
2. |S| ≤ cM,
3. S is not a clique,

4. G− S is connected,
5. S = NG(V (G) \ S), and
6. Λ ∈ Γ̃k+1.

There is an algorithm that either correctly concludes that tw(G) > k, or finds a proper
superset D of S and a labeling coset Λ̂ ≤ Label(D) and a connected rooted graph H with the
following properties:



M. Grohe, D. Neuen, P. Schweitzer, and D. Wiebking 67:7

(A) D ) S,
(B) |D| ≤ cL,
(C) Λ̂ ∈ Γ̃k+1,

(D) if Z is the vertex set of any connected
component of G−D, then |N(Z)| ≤ cM,

(E) D ⊆ V (H), depth(H) ≤ k + 3 and
fdeg(v) ∈ kO(1) for all v ∈ V (H).

The algorithm runs in time 2O(k log k)|V (G)|O(1) and the output (D, Λ̂, H) is isomorphism-
invariant (w.r.t. the input data G,S,Λ and k).

Here, the output of an algorithm A is isomorphism-invariant if all isomorphisms between
two input data (G,S,Λ, k) and (G′, S′,Λ′, k′) extend to an isomorphism between the output
(D, Λ̂, H) and (D′, Λ̂′, H ′) (an isomorphism between (G,S,Λ, k) and (G′, S′,Λ′, k′) is a
mapping φ : V (G) → V (G′) such that (G,S,Λ, k)φ = (G′, S′,Λ′, k′) where we apply φ as
defined in the preliminaries).

Proof. We consider two cases depending on the size of S.
Case |S| ≤ cS: Let I := {({x}, {y}) | x, y ∈ S, x 6= y, xy /∈ E(G)} and let D = S ∪⋃

(L,R)∈I SL,R(wL∪R,k+1). We set w := wS,k+1 and then we have the following for every
vertex set Z of a connected component of G−D by Lemma 6.

|N(Z)| ≤ w(N(Z))
6
≤ w(S) ≤ cS(k + 1) ≤ cM.

For every xy /∈ E(G) there is a ({x}, {y})-separator of size at most k disjoint from {x, y},
because G is k-improved. Thus |D| ≤ |S| + k|S|2 ≤ cS + kc2

S ≤ cL. Moreover, since
G − S is connected and S = NG(V (G) \ S), for all distinct x, y ∈ S every minimum
weight ({x}, {y})-separator contains a vertex that is not in S. It follows that D 6= S.

Case cS < |S| ≤ cM: Let I := {(L,R) | |L| = |R| ≤ k + 2, |SL,R| ≤ k + 1} and D =
S ∪

⋃
(L,R)∈I SL,R.

The properties of D follow from similar arguments as in the first case. The fact that
I is nonempty follows from the existence of a balanced separation (for details see [9]).
Next, we show how to find Λ̂ in both cases. To each x ∈ D \ S we associate the set
Ax := {(L,R) ∈ I | x ∈ SL,R}. Two vertices x and y occur in exactly the same separators if
Ax = Ay. In this case we call them equivalent and write x ≡ y. Let A1, . . . , At ⊆ D \ S be
the equivalence classes of “≡”. Since each x is contained in some separator of size at most
k + 1 we conclude that the size of each Ai is at most k + 1.

For each labeling λ ∈ Label(S) we choose an extension λ̂ : D → {1, . . . , |D|} such that
λ̂|S = λ and for x, y ∈ D\S we have xλ̂ < yλ̂ if Aλx ≺ Aλy . (Recall that ≺ is the linear order of
subsets of N as defined in the preliminaries). Inside each equivalence class Ai, the ordering is
chosen arbitrarily. Define Λ̂ := ({idS}× Sym(A1)× . . .× Sym(At)) · {λ̂ | λ ∈ Λ} ≤ Label(D).
By construction the coset Λ̂ does not depend on the choices of the extensions λ̂. Since
|Ai| ≤ k + 1 for all 1 ≤ i ≤ t we conclude that Λ̂ ∈ Γ̃k+1, as desired.

It remains to explain how to efficiently compute Λ̂. For this we simply remark that it
suffices to use a set of extensions M ⊆ Λ such that Λ is the smallest coset containing all
elements of M (i.e., we can use a coset analogue of a generating set). We conclude that Λ̂
can be computed in polynomial time in the size of I.

Last but not least, we show how to construct the graph H. The Case |S| ≤ cS is easy
to handle. In this case we define H as the complete graph on the set D ∪ {r} where r is
some new vertex, which becomes the root of H. The forward-degree of r is bounded by
|D| which in turn is bounded by kO(1). We consider the Case cS < |S| ≤ cM. We define
V (H) := {(L,R) | L,R ⊆ S, |L| = |R| ≤ k+2}∪D. Clearly, we have I ⊆ V (H). For the root
we choose (∅, ∅) ∈ V (H). We define the edges E(H) := {(L,R)(L′, R′) | L ⊆ L′, R ⊆ R′, |L|+
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1 = |R|+1 = |L′| = |R′|}∪{x(L,R) | x ∈ D,x ∈ SL,R, (L,R) ∈ I}. Since for each pair (L,R)
there are at most |S|2 different extensions (L′, R′) with |L|+ 1 = |R|+ 1 = |L′| = |R′| and
since each separator SL,R contains at most k+1 vertices, we conclude that the forward-degree
of each vertex in H is bounded by |S|2 + k+ 1 ∈ kO(1). The depth of H is at most k+ 3. J

A labeled tree decomposition (T, β, α, η) is a 4-tuple where (T, β) is a tree decomposition
and α is a function that maps each t ∈ V (T ) to a labeling coset α(t) ≤ Label(β(t)) and η is
a function that maps each t ∈ V (T ) to a graph η(t).

The previous lemma can be used as a recursive tool to compute our desired isomorphism-
invariant labeled tree decomposition.

I Theorem 8. Let k ∈ N and let G be a k-basic graph and let v be a vertex of degree at
most k. There is an algorithm that either correctly concludes that tw(G) > k, or computes a
labeled tree decomposition (T, β, α, η) with the following properties.
1. the width of (T, β) is bounded by cL,
2. the adhesion width of (T, β) is bounded by cM,
3. the degree of T is bounded by kc2

L and the number of children of t with common adhesion
set is bounded by k for each t ∈ V (T ),

4. |V (T )| is bounded by O(|V (G)|),
5. for each bag β(t) the adhesion sets of the children are all equal to β(t) or the adhesion

sets of the children are all distinct. In the former case the bag size is bounded by cM,
6. for each t ∈ V (T ) the graph η(t) = Ht is a connected rooted graph such that β(t) ∪

β(t)2 ⊆ V (Ht) and for each adhesion set S there is a corresponding vertex S ∈ V (Ht),
depth(Ht) ∈ O(k) and fdeg(v) ∈ kO(1) for all v ∈ V (Ht), and

7. α(t) ∈ Γ̃k+1.
The algorithm runs in time 2O(k2 log k)|V (G)|O(1) and the output (T, β, α, η) of the algorithm
is isomorphism invariant (w.r.t. G, v and k). Furthermore, if we drop Property 7 as a
requirement, the triple (T, β, η) can be computed in time 2O(k log k)|V (G)|O(1).

Here, the output of an algorithm A is isomorphism-invariant, if all isomorphisms between
two input data extend to an isomorphism between the output. More precisely, an isomorphism
φ ∈ Iso((G, v, k), (G′, v′, k′)) extends to an isomorphism between (T, β, α, η) and (T ′, β′, α′, η′)
if there is a bijection between the tree decompositions φT : V (T ) → V (T ′) and for each
node t ∈ V (T ) a bijection between the vertices of graphs φt : V (η(t))→ V (η′(φT (t))) which
extends φ, i.e. φt(x) = xφ for all x ∈ β(t) ∪ β(t)2 ∪ 2β(t) where we naturally apply φ as
defined in the preliminaries. Furthermore, these extensions define an isomorphism between
the output data, i.e. for all nodes t ∈ V (T ) we have that β(t)φ = β′(φT (t)), α(t)φ = α′(φT (t))
and η(t)φt = η′(φT (t)).

I Remark. We later use the isomorphism-invariance of the labeled tree decomposition
(T, β, α, η) from the previous theorem in more detail. Let t ∈ V (T ) be a non-root node and
let S ⊆ V (G) be the adhesion set to the parent node of t and let It = (Tt, βt, αt, ηt) be the
decomposition of the subtree rooted at t and Gt the graph corresponding to It. Then ηt is
isomorphism-invariant w.r.t. Tt, βt, Gt and S.

5 Coset-Hypergraph-Isomorphism

After having computed isomorphism-invariant tree decompositions in the previous sections
we now want to compute the set of isomorphisms from one graph to another in a bottom up
fashion. Let G1, G2 be the two input graphs and suppose we are given isomorphism-invariant
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tree decompositions (T1, β1) and (T2, β2). For a node t ∈ V (Ti) we let (Gi)t be the graph
induced by the union of all bags contained in the subtree rooted at t. The basic idea is to
compute for all pairs t ∈ V (T1), t′ ∈ V (T2) the set of isomorphisms from (G1)t to (G2)t′ (in
addition the isomorphisms shall also respect the underlying tree decomposition) in a bottom
up fashion.

The purpose of this section is to give an algorithm that solves this problem at a given
bag (assuming we have already solved the problem for all pairs of children of t and t′). Let
us first give some intuition for this task. Suppose we are looking for all bijections from β1(t)
to β2(t′) that can be extended to an isomorphism from (G1)t to (G2)t′ . Let t1, . . . , t` be the
children of t and t′1, . . . , t′` the children of t′. Then we essentially have to solve the following
two problems. First, we have to respect the edges appearing in the bags β1(t) and β2(t′). But
also, every adhesion set β(t) ∩ β(ti) has to be mapped to another adhesion set β(t′) ∩ β(t′j)
in such a way that the corresponding bijection (between the adhesion sets) extends to an
isomorphism from (G1)ti to (G2)t′

j
. In order to solve this problem we first consider the case

in which the adhesion sets are all distinct and define the following abstraction.
An instance of coset-hypergraph-isomorphism is an 8-tuple I = (V1, V2,S1,S2, χ1, χ2,F , f)

such that
1. Si ⊆ Pow(Vi),
2. χi : Si → N is a coloring,
3. F = {ΘS ≤ Sym(S) | S ∈ S1}, and
4. f = {τS1,S2 : S1 → S2 | S1 ∈ S1, S2 ∈ S2 such that χ1(S1) = χ2(S2)} such that

a. every τS1,S2 ∈ f is bijective, and
b. for every color i ∈ N and every S1, S

′
1 ∈ χ−1

1 (i) and S2, S
′
2 ∈ χ−1

2 (i) and θ ∈ ΘS1 , θ
′ ∈

ΘS′
1
it holds that

θτS1,S2(τS′
1,S2)−1θ′τS′

1,S
′
2
∈ ΘS1τS1,S′

2
. (N)

The instance is solvable if there is a bijective mapping φ : V1 → V2 such that
1. S ∈ S1 if and only if Sφ ∈ S2 for all S ∈ Pow(V1),
2. χ1(S) = χ2(Sφ) for all S ∈ S1, and
3. for every S ∈ S1 it holds that φ|S ∈ ΘSτS,Sφ .
In this case we call φ an isomorphism of the instance I. Moreover, let Iso(I) be the set of
all isomorphisms of I. Observe that property (N) describes a consistency condition: if we
can use σ1 to map S1 to S2, σ2 to map S′1 to S2, and σ3 to map S′1 to S′2, then the mapping
σ1σ

−1
2 σ3 can be used to map S1 to S′2. As a result the set of all isomorphisms of the instance

I forms a coset, that is Iso(I) = Θφ for some Θ ≤ Sym(V1) and φ ∈ Iso(I).
In the application in the main recursive algorithm, the sets Vi = β(ti), the hyperedges

Si are the adhesion sets of ti (and we will also encode the edges appearing in the bag in
this way), and the cosets ΘS1τS1,S2 tell us which mappings between the adhesion sets S1
and S2 extend to an isomorphism between the corresponding subgraphs. The colorings χ1
and χ2 are used to indicate which subgraphs can not be mapped to each other (and also to
distinguish between the adhesion sets and edges of the bags which will both appear in the
set of hyperedges).

The next Lemma gives us one of the central subroutines for our recursive algorithm.

I Lemma 9. Let I = (V1, V2,S1,S2, χ1, χ2,F , f) be an instance of coset-hypergraph-isomor-
phism. Moreover, suppose there are isomorphism-invariant rooted graphs H1 = (W1, E1, r1)
and H2 = (W2, E2, r2) such that
1. Vi ∪ Si ⊆Wi,
2. fdeg(w) ≤ d for all w ∈Wi,
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3. depth(Hi) ≤ h, and
4. |S| ≤ d for all S ∈ Si
for all i ∈ {1, 2}. Then a representation for the set Iso(I) can be computed in time 2O(h·(log d)c)

for some constant c.

Here, isomorphism-invariant means that for every isomorphism φ ∈ Iso(I) there is an
isomorphism φH from H1 to H2 such that vφ = vφH for all v ∈ V1 and {vφ | v ∈ S} = SφH

for all S ∈ S1.
The proof of this lemma is based on the following theorem.

I Theorem 10 ([6]). Let x, y : V → Σ be two strings, let Γ ≤ Sym(V ) be a Γd-group and
γ ∈ Sym(V ). Then one can compute a representation of the set of all permutations γ′ ∈ Γγ
mapping x to y in time nO((log d)c) for some constant c where n = |V |.

Actually, we shall only need the following corollary. A rooted tree T = (V,E, r) is d-ary
if every node has at most d children. An expanded rooted tree is a tuple (T,C) where
T = (V,E, r) is a rooted tree and C : L(T )2 → rg(C) is a coloring of pairs of leaves of T
(L(T ) denotes the set of leaves of T ). Isomorphisms between expanded trees (T,C) and
(T,C ′) are required to respect the colorings C and C ′.

I Corollary 11. Let (T,C) and (T ′, C ′) be two expanded d-ary trees and let Γ ≤ Aut(T )
and γ ∈ Iso(T, T ′). Then one can compute a representation of the set {φ ∈ Γγ | (T,C)φ =
(T ′, C ′)} in time nO((log d)c) for some constant c.

Proof sketch of Lemma 9. The proof essentially proceeds in three steps. First, the two
graphs Hi (i = 1, 2) are extended by adding a vertex (Si, v) for every Si ∈ Si, v ∈ Si which
is connected to the vertex Si. Moreover, we compute the tree unfoldings Ti of both extended
graphs.

Then, in the second step, we compute the set of isomorphisms γ from T1 to T2 such
that for every S ∈ S1 the set {S} × S is mapped to ({S} × S)γ according to the restrictions
given by the cosets from the instance I. This is possible since all the sets may be mapped
independently of each other. In particular, at this point, identical elements v ∈ V1 appearing
in different sets S, S′ ∈ S1 may be mapped to different elements v′, v′′ ∈ V2.

To resolve this problem we use the coloring on the pairs of leaves of T1 and T2 to encode
which elements in the tree unfolding correspond to identical elements in the original graph.
The set of isomorphisms respecting these additional constraints can be computed using
Corollary 11. J

Looking at the properties of the tree decompositions computed in Theorem 5 and 8 we
have for every node t that either the adhesion sets to the children are all equal or they are
all distinct. Up to this point we have only considered the problem that all adhesion sets are
distinct (i.e. the coset-hypergraph-isomorphism problem). Next we consider the case that all
adhesion sets are equal. Towards this end we define the following variant.

An instance of multiple-colored-coset-isomorphism is a 6-tuple I = (V1, V2, χ1, χ2,F , f)
such that
1. χi : [t]→ N is a coloring,
2. F = {Θi ≤ Sym(V ) | i ∈ [t]}, and
3. f = {τi,j : V1 → V2 | i, j ∈ [t] such that χ1(i) = χ2(j)} such that

a. every τi,j ∈ f is bijective, and
b. for every color i ∈ N and every j1, j

′
1 ∈ χ−1

1 (i) and j2, j
′
2 ∈ χ−1

2 (i) and θ ∈ Θj1 , θ
′ ∈ Θj′

1

it holds that

θτj1,j2τ
−1
j′

1,j2
θ′τj′

1,j
′
2
∈ Θj1τj1,j′

2
. (N2)
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The instance is solvable if there is a bijective mapping φ : V1 → V2 and a π ∈ Sym(t) such
that
1. χ1(i) = χ2(π(i)) for all i ∈ [t], and
2. for every i ∈ [t] it holds that φ ∈ Θiτi,π(i).
The set Iso(I) is defined analogously.

I Lemma 12. Let I = (V1, V2, χ1, χ2,F , f) be an instance of multiple-colored-coset-isomor-
phism. Then a representation for the set Iso(I) can be computed in time

min((|V1|!|F|)O(1), |F|!O(1)2O((log |V1|)c)).

6 The isomorphism and the canonization algorithm

6.1 The isomorphism test
Before describing the main algorithm we need to state the following auxiliary lemma.

I Lemma 13. Let G = (D,E) be a graph of tree width at most k and let H be a rooted
graph such that D ⊆ V (H). Then, one can compute an isomorphism-invariant rooted graph
H ′ such that
1. H is an induced subgraph of H ′,
2. fdegH′(w) ≤ max{d, k + 1}+ 1 for all w ∈ V (H ′) where d = maxw∈V (H) fdegH(w),
3. depth(H ′) ≤ depth(H) + k + 2, and
4. for every clique C ⊆ D there is a corresponding vertex C ∈ V (H ′)
in time 2O(k) · |V (H)|O(1).

Here, isomorphism invariant means that every isomorphism φ ∈ Iso(H1, H2), which
naturally restricts to an isomorphism from G1 to G2, can be extended to an isomorphism
from H ′1 to H ′2.

I Theorem 14. Let k ∈ N and let G1, G2 be connected graphs. There is an algorithm that
either correctly concludes that tw(G1) > k, or computes the set of isomorphisms Iso(G1, G2)
in time 2O(k(log k)c)|V (G)|O(1) for some constant c.

Proof sketch. The first step is to decompose the given graphs. Notice that the decomposition
techniques in Theorem 8 can only be applied to k-basic graphs, i.e. k-improved and clique-
separator free. Therefore, we proceed as follows. First, we consider the k-improvement Gk1
and Gk2 of G1 and G2, respectively. We build the clique-separator decompositions of the
k-improvements using Theorem 5. Secondly, we refine each (k-basic) bag of the decomposition
by constructing a labeled decomposition for each bag using Theorem 8. (In fact, we need to
fix a vertex in order to apply Theorem 8. For this reason we are just able to construct a
family of decompositions in each k-basic bag. But it turns out, that we are also able to handle
this. Also note that we use the version of Theorem 8 that runs in time 2O(k log k)|V (G)|O(1)

and omits the labeling cosets α(t).) The crucial point is that in our final decomposition the
size of each bag is bounded by cL ∈ 2O(k log k) and more importantly each bag is assigned to
a graph that restricts possible automorphisms of the corresponding graph structure. More
precisely each bag β(t) is assigned to a graph η(t) of bounded degree such that V (η(t))
contains the vertices of β(t), the edges of β(t) and also the adhesion sets of t. In fact, we
also need to embed the clique separators of the outer decomposition into the graph η(t).
However, this can be achieved using Lemma 13.

From now on, we start to compute isomorphisms preserving the decompositions T1 and T2
in a bottom up fashion. (In order to compute edge-preserving bijections, we need to consider
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the edges of G1 and G2 rather than the “improved” edges in Gk1 and Gk2). The decomposition
of both graphs have a root bags denoted t1 and t2, respectively. Both roots have children
t11, . . . , t1` and t21, . . . , t2`. By Tji we denote the decomposition rooted at tji and consisting
of all bags that are descendants of tji. By using a dynamic programming approach we assume
that the isomorphisms from T1i to T2i′ are already computed. To compute the isomorphisms
from T1 to T2 we use our subroutine, namely coset-hypergraph-isomorphism, which is defined
and algorithmically solved in Section 5. For a moment, assume that all adhesion sets of t1
(and t2, respectively) are distinct. We restrict the computed isomorphisms from T1i to T2i′

to their corresponding adhesions sets of t1 and t2, respectively. These restrictions are used
to define F and f. The edge relation can also be encoded in F and f. More precisely, we add
each edge uv ∈ E(β1(t1)) and u′v′ ∈ E(β2(t2)) to S1 and S2, and define Θuvτuv,u′v′ as the set
of bijections mapping uv to u′v′. The colorings χ1 and χ2 help to define the right instance,
e.g. they distinguish the edges from the adhesion sets in S1 and S2, respectively. Finally, we
solve the instance (β1(t1), β2(t2),S1,S2, χ1, χ2,F , f) with the algorithm from Lemma 9. In
case all adhesion sets are equal we simply use Lemma 12 instead. J

I Remark. The degree of the polylogarithmic term (i.e. the constant c) in the running time
of the previous theorem is related to the corresponding constant in Babai’s quasipolynomial
time isomorphism test [1]. Since the constant that Babai’s algorithm achieves is not specified
in [1], we also do not specify the constant.

6.2 Canonization
We briefly describe how to adapt our techniques to obtain an algorithm which computes a
canonization for a given graph of tree width of at most k. Since Babai’s quasipolynomial
time algorithm [1] only tests isomorphism of two given input graphs and can not be used for
canonization purposes, we need to replace the methods introduced in Section 5. To achieve
this we still use group theoretic techniques, but compared to isomorphism the machinery is
quite lengthy and technical.

I Theorem 15. There is a graph canonization algorithm running in time 2O(k2 log k) poly(n),
where n is the size and k the tree width of the input graph.

Proof sketch. The basic approach for the canonization algorithm is very similar to the
approach presented in Theorem 14. One of the main differences is how the algorithm gets
its insight into the structure of the bags of the decomposition of the k-basic graphs. In the
isomorphism algorithm the graph η(t) serves as a tool to exploit the structure of each bag t.
For the canonization algorithm we instead use the fact that each bag can be guarded with a
labeling coset α(t) of bounded composition-width.

We then define the corresponding variant of the coset-hypergraph-isomorphism problem
suited for canonization. For the algorithm we assume that, instead of graphs of small degree
and depth, we get a labeling coset of composition width at most k + 1. This problem can
then be solved in time nO(k) using the group theoretic techniques from [2, 12, 15] where n
denotes the number of vertices (i.e. the number of vertices in a single bag in the application
in the main canonization algorithm). Since the bag size is bounded by 2O(k log k) this gives
the overall running time of 2O(k2 log k) poly(n). J
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1 Introduction

Network reliability problems are extensively studied #P-hard problems [5] (see also [3, 22,
18, 2]). In fact, these problems are amongst the first of those shown to be #P-hard, and
the two-terminal version is listed in Valiant’s original thirteen [24]. The general setup is
that in a given (undirected or directed) graph, every edge (or arc) e has an independent
probability pe to fail, and we are interested in various kinds of connectivity notions of the
remaining graph. For example, the two-terminal connectedness [24] asks for the probability
that for two vertices s and t, s is connected to t in the remaining graph, and the (undirected)
all-terminal network reliability asks for the probability of all vertices being connected after
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68:2 Approximating Network Reliability

edges fail. The latter can also be viewed as a specialization of the Tutte polynomial TG(x, y)
with x = 1 and y > 1, yet another classic topic whose computational complexity is extensively
studied [12, 25, 6, 7].

Prior to our work, the approximation complexity of network reliability problems remained
elusive despite their importance. There is no known efficient approximation algorithm (for
any variant), but nor is there any evidence that such an algorithm does not exist. A notable
exception is Karger’s fully polynomial-time randomized approximation scheme (FPRAS)
for (undirected) all-terminal network unreliability [15] (see also [11, 16, 17] for more recent
developments). Although approximating unreliability is potentially more useful in practice,
it does not entail an approximation of its complement.

In this paper, we give an FPRAS for the all-terminal network reliability problem, defined
below and denoted Reliability.

Name Reliability
Instance A (undirected) graph G = (V,E), and failure probabilities p = (pe)e∈E .
Output Zrel(G; p), which is the probability that if each edge e fails with probability pe, the

remaining graph is connected.

When pe is independent of e, Reliability is an evaluation of the Tutte polynomial. The
Tutte polynomial is a two-variable polynomial TG(x, y) associated with a graph G, which
encodes much interesting information about G. As (x, y) ranges over R2 or C2 we obtain
a family of graph parameters, the so-called Tutte plane. As already noted, the study of
the computational complexity of these parameters has a long history. Reliability with
a uniform failure probability 0 < p < 1 is equivalent to evaluating the Tutte polynomial
TG(x, y) on the line x = 1 and y = 1

p > 1. Our algorithm is the first positive result on the
complexity of the Tutte plane since Jerrum and Sinclair presented an FPRAS for the partition
function of the ferromagnetic Ising model, which is equivalent to the Tutte polynomial on the
positive branch of the hyperbola (x− 1)(y − 1) = 2 [14]. It also answers a well-known open
problem from 1980s, when the #P-hardness of Reliability was established [13, 22] and the
study of approximate counting initiated. This problem is explicitly proposed in, for example,
[26, Conjecture 8.7.11] and [15]. We note that many conjectures by Welsh ([26, Chapter 8.7]
and [27]) remain open, and we hope that our work is only a beginning to answering these
questions.

Another related and important reliability measure is reachability, introduced and studied
by Ball and Provan [3]. A directed graph G = (V,A) with a distinguished root r is said
to be root-connected if all vertices can reach r. Reachability, denoted Zreach(G, r; p) for
failure probabilities p = (pe)e∈A, is the probability that, if each arc e fails with probability
pe independently, the remaining graph is still root-connected.

We define the computational problem formally.

Name Reachability
Instance A directed graph G = (V,A) with root r, and failure probabilities p = (pe)e∈A.
Output Zreach(G, r; p).

Exact polynomial-time algorithms are known when the graph is acyclic [3] or has a small
number of cycles [10]. However, in general the problem is #P-hard [22].
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Ball [1] showed that Reliability is equivalent to Reachability in bi-directed graphs.
A bi-directed2 graph is one where every arc has an anti-parallel twin with the same failure
probability. It is shown [1] that Zrel(G; p) = Zreach(−→G, r; p′), where −→G and p′ are obtained
by replacing every undirected edge in G with a pair of anti-parallel arcs having the same
failure probability in either direction, and r is chosen arbitrarily. See Lemma 12.

Our FPRAS for Reliability utilizes this equivalence via approximating Reachability
in bi-directed graphs. The core ingredient is the “cluster-popping” algorithm introduced by
Gorodezky and Pak [8]. The goal is to sample root-connected subgraphs with probability
proportional to their weights, and then the reduction from counting to sampling is via
a sequence of contractions. A cluster is a subset of vertices not including the root and
without any out-going arc. The sampling algorithm randomizes all arcs independently, and
then repeatedly resamples arcs going out from minimal clusters until no cluster is left, at
which point the remaining subgraph is guaranteed to be root-connected. This approach is
similar to Wilson’s “cycle-popping” algorithm [28] for rooted spanning trees, and to the
“sink-popping” algorithm [4] for sink-free orientations. Gorodezky and Pak [8] have noted
that cluster-popping can take exponential time in general, but they conjectured that in
bi-directed graphs, the algorithm runs within polynomial-time.

We confirm this conjecture. Let pmax be the maximum failure probability of edges (or
arcs). Let m be the number of edges (or arcs) and n the number of vertices.

I Theorem 1. There is an FPRAS for Reliability (or equivalently, Reachability in
bi-directed graphs). The expected running time is O

(
ε−2pmax(1− pmax)−3m2n3) for an

(1 ± ε)-approximation. There is also an exact sampler to draw (edge-weighted) connected
subgraphs with expected running time at most pmax(1− pmax)−1m2n.

We analyze the “cluster-popping” algorithm [8] under the partial rejection sampling
framework [9], which is a general approach to sampling from a product distribution conditioned
on avoiding a number of “bad” events. Partial rejection sampling is inspired by the Moser-
Tardos algorithm for the Lovász Local Lemma [20]. It starts with randomizing all variables
independently, and then gradually eliminating “bad” events. At every step, we need to find
an appropriate set of variables to resample. We call an instance extremal [19, 23], if any
two bad events are either disjoint or independent. For extremal instances, the resampling
set can be simply chosen to be the set of all variables involved in occurring bad events [9],
and the algorithm becomes exactly the same as the Moser-Tardos resampling algorithm [20].
In particular, all three “popping” algorithms [28, 4, 8] are special cases of partial rejection
sampling for extremal instances. In case of “cluster-popping”, the bad events are exactly
minimal clusters.

The advantage of the partial rejection sampling treatment is that we have an explicit
formula for the expected number of resampling events for any extremal instance [19, 9],
which equals to the ratio between the probability of having exactly one bad event and the
probability of avoiding all bad events. In order to bound this ratio, we use a combinatorial
encoding idea and design a mapping from subgraphs with a unique minimal cluster to
root-connected subgraphs. To make this mapping injective, we record an extra vertex and an
arc so that we can recover the pre-image. This extra cost is upper-bounded by a polynomial
in the size of the graph.

2 There are other definitions of “bi-directed graphs” in the literature. Our definition is sometimes also
called a symmetric directed graph.
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Cluster-popping only draws root-connected subgraphs in the bi-directed setting. In order
to sample connected subgraphs in the undirected setting, we provide an alternative proof
of the equivalence between Reliability and Reachability in bi-directed graphs, which
essentially is a coupling argument. This coupling has a new consequence that, once we have
a sample of a root-connected subgraph, it is easy to generate a connected subgraph according
to the correct distribution.

In Section 2 we introduce the “cluster-popping” algorithm and the partial rejection
framework. In Section 3 we analyze its running time in bi-directed graphs. For completeness,
in Section 4 we include the approximate counting algorithm due to Gorodezky and Pak
[8]. In Section 5 we give a coupling proof of the equivalence between Reliability and
Reachability in bi-directed graphs. In Section 6 we conclude by mentioning a few open
problems.

2 Cluster-popping

Let G = (V,A) be a directed3 graph with root r. The graph G is called root-connected
if there is a directed path in G from every non-root vertex to r. Let 0 < pe < 1 be
the failure probability of arc e, and define the weight of a subgraph S to be wt(S) :=∏

e∈S(1− pe)
∏

e6∈S pe. Then reachability, Zreach(G, r; p), is defined as follows,

Zreach(G, r; p) :=
∑
S⊆A

(V, S) is root-connected

wt(S).

Here, p = (pe : e ∈ A) denotes the vector of failure probabilities.
Let πG(·) (or π(·) for short) be the distribution resulting from choosing each arc e

independently with probability 1− pe, and conditioning on the resulting graph being root-
connected. In other words, the support of π(·) is the collection of all root-connected
subgraphs, and the probability of each subgraph S is proportional to its weight wt(S). Then
Zreach(G, r; p) is the normalizing factor of the distribution π(·). Gorodezky and Pak [8] have
shown that approximating Zreach(G, r; p) can be reduced to sampling from π(·) when the
graph is bi-directed.

The “cluster-popping” algorithm of Gorodezky and Pak [8], to sample root-connected
subgraphs from π(·), can be viewed as a special case of partial rejection sampling [9] for
extremal instances. With every arc e of G we associate a random variable that records
whether that arc has failed. Bad events are characterized by the following notion of clusters.

I Definition 2. In a directed graph (V,A) with root r, a subset C ⊆ V of vertices is called
a cluster if r 6∈ C and there is no arc u→ v ∈ A such that u ∈ C and v 6∈ C.

We say C is a minimal cluster if C is a cluster and for any proper subset C ′ ⊂ C, C ′ is
not a cluster.

If (V,A) contains no cluster, then it is root-connected. For each vertex v, let Aout(v) be
the set of outgoing arcs from v. We also abuse the notation to write Aout(S) =

⋃
v∈S Aout(v)

for a subset S ⊂ V of vertices. Notice that Aout(S) contains edges between vertices inside S.
To “pop” a cluster C, we re-randomize all arcs in Aout(C). However, re-randomizing clusters
does not yield the desired distribution. We will instead re-randomize minimal clusters.

3 It is easy to see that in a undirected graph, reachability is the same as all-terminal reliability.
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Algorithm 1 Cluster Popping.
Let S be a subset of arcs by choosing each arc e with probability 1− pe independently.
while There is a cluster in (V, S). do
Let C1, . . . , Ck be all minimal clusters in (V, S), and C =

⋃k
i=1 Ci.

Re-randomize all arcs in Aout(C) to get a new S.
end while
return S

I Claim 3. Any minimal cluster is strongly connected.

Proof. Let C be a minimal cluster, and v ∈ C be an arbitrary vertex in C. We claim that v
can reach all vertices of C. If not, let C ′ be the set of reachable vertices of v and C ′ ( C.
Since C ′ does not have any outgoing arcs, C ′ is a cluster. This contradicts to the minimality
of C. J

I Claim 4. If C1 and C2 are two distinct minimal clusters, then C1 ∩ C2 = ∅.

Proof. By Claim 3, C1 and C2 are both strongly connected components. If C1 ∩ C2 6= ∅,
then they must be identical. J

For every subset C ⊆ V of vertices, we define a bad event BC , which occurs if C is a
minimal cluster. Observe that BC relies only on the status of arcs in Aout(C). Thus, if
C1 ∩ C2 = ∅, then BC1 and BC2 are independent, even if some of their vertices are adjacent.
By Claim 4, we know that two bad events BC1 and BC2 are either independent or disjoint.
Thus the aforementioned extremal condition is met. Moreover, it was shown [9, Theorem
8] that if the instance is extremal, then at every step, we only need to resample variables
involved in occurring bad events. This leads to the cluster-popping algorithm of Gorodezky
and Pak [8], which is formally described in Algorithm 1.

The correctness of Algorithm 1 is first shown by Gorodezky and Pak [8]. It can also be
easily verified using [9, Theorem 8].

I Theorem 5 ([8, Theorem 2.2]). The output of Algorithm 1 is drawn from πG.

An advantage of thinking in the partial rejection sampling framework is that we have a
closed form formula for the expected running time of these algorithms on extremal instances.
Let Ωk be the collection of subgraphs with k minimal clusters, and Zk :=

∑
S∈Ωk

wt(S). Then
Z0 = Zreach(G, r; p), since any subgraph in Ω0 has no cluster and is thus root-connected.

I Theorem 6 ([9]). Let T be the number of resampled events of the partial rejection sampling
algorithm for extremal instances. Then ET = Z1

Z0
. In particular, for Algorithm 1, T is the

number of popped clusters.

The less-than-or-equal-to direction of Theorem 6 was shown by Kolipaka and Szegedy [19],
which is the direction we will need later. The other direction is useful to show running-time
lower bounds, but that is not our focus in this paper.

3 Running time of Algorithm 1 in bi-directed graphs

Gorodezky and Pak [8] have given examples of directed graphs in which Algorithm 1 requires
exponential time. In the following we focus on bi-directed graphs. A graph G is called
bi-directed if u → v is present in G, then v → u is present in G as well, and the failure
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(V, S)
r

RU

u
u′

Figure 1 An illustration of R, U , and u→ u′.

probabilities are the same for these two arcs. We use Bi-directed Reachability to denote
Reachability in bi-directed graphs. For an arc e = u→ v, let e := v → u denote its reverse
arc. Then in a bi-directed graph, pe = pe.

I Lemma 7. Let G = (V,A) be a root-connected bi-directed graph with root r. We have that
Z1 ≤ maxe∈A

{
pe

1−pe

}
mnZ0, where n = |V |, and m = |A|.

Proof. We construct an injective mapping ϕ : Ω1 → Ω0 × V ×A. For each subgraph S ∈ Ω1,
ϕ(S) is defined by “repairing” S so that no minimal cluster is present. We choose in advance
an arbitrary ordering of vertices and arcs. Let C be the unique minimal cluster in S and v
be the first vertex in C. Let R denote the set of all vertices which can reach the root r in
the subgraph S. Since S ∈ Ω1, R 6= V . Let U = V \R. Since G is root-connected, there is
an arc in A from U to R. Let u→ u′ be the first such arc, where u ∈ U and u′ ∈ R. We let

ϕ(S) := (Sfix, v, u→ u′),

where Sfix ∈ Ω0 is defined next. Figure 1 is an illustration of these objects.
Consider the subgraph H = (U, S[U ]), where

S[U ] := {x→ y | x ∈ U, y ∈ U, x→ y ∈ S}.

We consider the directed acyclic graph (DAG) of strongly connected components of H, and
call it Ĥ. (We use the decoration ̂ to denote arcs, vertices, etc. in Ĥ.) To be more precise,
we replace each strongly connected component by a single vertex. For a vertex w ∈ U , let
[w] denote the strongly connected component containing w. For example, [v] is the same as
the minimal cluster C by Claim 3. We may also view [w] as a vertex in Ĥ and we do not
distinguish the two views. The arcs in Ĥ are naturally induced by S[U ]. Namely, for [x] 6= [y],
an arc [x]→ [y] is present in Ĥ if there exists x′ ∈ [x], y′ ∈ [y] such that x′ → y′ ∈ S.

We claim that Ĥ is root-connected with root [v]. This is because [v] must be the unique
sink in Ĥ and Ĥ is acyclic. If there is another sink [w] where v 6∈ [w], then [w] is a minimal
cluster in H. This contradicts S ∈ Ω1.

Since Ĥ is root-connected, there is at least one path from [u] to [v]. Let Ŵ denote the set
of vertices of Ĥ that can be reached from [u] in Ĥ (including [u]), and W := {x | [x] ∈ Ŵ}.
Then W is a cluster and [u] is the unique source in Ĥ[Ŵ ]. As Ĥ is root-connected, [v] ∈ Ŵ .
Define

Sflip :=
{
x→ y

∣∣ [x] 6= [y], x, y ∈W, and x→ y ∈ S
}
,

which is the set of edges to be flipped. Notice that S[W ] is different from Sflip, namely all
arcs that are inside strongly connected components are ignored in Sflip. Now we are ready to
define Sfix. We reverse all arcs in Sflip and add the arc u → u′ to fix the minimal cluster.
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r

u′
u

v

R

U

Figure 2 An example of Sflip (red arcs) in the subgraph (V, S). Dashed arcs are to be added to
Sfix. The underlying graph has more arcs than are drawn here.

Formally, let

Sfix := S ∪ {u→ u′} ∪ {y → x | x→ y ∈ Sflip} \ Sflip.

Figure 2 is an example of these objects we defined.
Let Ĥfix be the graph obtained from Ĥ by reversing all arcs induced by Sflip. Observe

that [u] becomes the unique sink in Ĥfix[Ŵ ] (and [v] becomes the unique source).
We verify that Sfix ∈ Ω0. For any x ∈ R, x can still reach r in (V, Sfix) since the path

from x to r in (V, S) is not changed. Since u→ u′ ∈ Sfix, u can reach u′ ∈ R and hence r.
For any y ∈W , y can reach u as [u] is the unique sink in Ĥfix[Ŵ ]. For any z ∈ U \W , z can
reach v ∈W since the path from z to v in (V, S) is not changed.

Next we verify that ϕ is injective. To do so, we show that we can recover S given Sfix,
u → u′, and v. First remove u → u′ from Sfix. The set of vertices which can reach r in
(V, Sfix \{u→ u′}) is exactly R in (V, S). Namely we can recover U and R. As a consequence,
we can recover all arcs in S that are incident with R, as these arcs are not changed.

What is left to do is to recover arcs in S[U ]. To do so, we need to find out which arcs
have been flipped. We claim that Ĥfix is acyclic. Suppose there is a cycle in Ĥfix. Since Ĥ
is acyclic, the cycle must involve flipped arcs and thus vertices in Ŵ . Let [x] ∈ Ŵ be the
lowest one under the topological ordering of Ĥ[Ŵ ]. Since Ŵ is a cluster, the outgoing arc
[x]→ [y] along the cycle in Ĥfix must have been flipped, implying that [y] ∈ Ŵ and [y]→ [x]
is in Ĥ[Ŵ ]. This contradicts to the minimality of [x].

Since Ĥfix is acyclic, the strongly connected components of Hfix := (U, Sfix[U ]) are
identical to those of H = (U, S[U ]). Hence contracting all strongly connected components of
Hfix results in exactly Ĥfix. All we need to recover now is the set Ŵ . Let Ŵ ′ be the set of
vertices reachable from [v] in Ĥfix. It is easy to see that Ŵ ⊆ Ŵ ′. We claim that actually
Ŵ = Ŵ ′. For any [x] ∈ Ŵ ′, there is a path from [v] to [x] in Ĥfix. Suppose [x] 6∈ Ŵ . Since
[v] ∈ Ŵ , we may assume that [y] is the first vertex along the path such that [y]→ [z] where
[z] 6∈ Ŵ . Thus [y]→ [z] has not been flipped and is present in Ĥ. However, this contradicts
the fact that Ŵ is a cluster in Ĥ.

To summarize, given Sfix, u→ u′, and v, we may uniquely recover S. Hence the mapping
ϕ is injective. Moreover, flipping arcs does not change the weight as pe = pe, and only adding
the arc u→ u′ would. We have that wt(Sfix) = 1−pu→u′

pu→u′
wt(S). The lemma follows. J

We remark that an alternative way of repairing S in the proof above is to reverse all arcs
in S[W ] without defining Sflip. The key point is that doing so leaves the strongly connected
components intact. However this makes the argument less intuitive.
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Let pmax = maxe∈A pe. Combining Theorem 6 and Lemma 7, we have the following
theorem. Notice that for each popping, we resample only a subset of arcs.

I Theorem 8. Let T be the expected number of popped clusters in Algorithm 1. For a
root-connected bi-directed graph G = (V,A), ET ≤ pmax

1−pmax
mn, where n = |V |, and m = |A|.

The expected running time is at most pmax
1−pmax

m2n.

4 Approximate counting

We include the approximate counting algorithm of Gorodezky and Pak [8] for completeness.
Let G = (V,A) be an instance of Bi-directed Reachability with root r and parameters p.
We construct a sequence of graphs G0, .., Gn−1 where n = |V | and G0 = G. Given Gi−1,
choose two arbitrary adjacent vertices ui and vi, remove all arcs between ui and vi (in either
direction), and identify ui and vi to get Gi = (Vi, Ai). Namely we contract all arcs between
ui and vi, but parallel arcs in the resulting graph are preserved. If one of ui and vi is r, the
new vertex is labelled r. Thus Gn−1 = ({r}, ∅). Since Ai is always a subset of A, we denote
by pi the parameters p restricted to Ai.

For i = 1, . . . , n− 1, define a random variable Ri as follows:

Ri :=
{

1 (Vi−1, Si−1) is root-connected in Gi−1;
0 otherwise,

where Si−1 ⊂ Ai−1 is a random root-connected subgraph drawn from the distribution πGi
(·),

together with all arcs e between ui and vi added independently with probability 1− pe. It is
easy to see that

ERi = Zreach(Gi−1, r; pi−1)
Zreach(Gi, r; pi)

, and Zreach(G, r; p) =
n−1∏
i=1

ERi.

Let pmax = maxe∈A pe and s = d5(1−pmax)−2(n−1)ε−2e where s is the desired precision.
We estimate ERi by the empirical mean of s independent samples of Zi, denoted by R̃i, and
let Z̃ =

∏n−1
i=1 R̃i and Z = Zreach(G, r; p). Gorodezky and Pak [8] showed the following.

I Proposition 9 ([8, Section 9]). Pr
(∣∣∣Z − Z̃∣∣∣ > εZ

)
≤ 1/4.

In order to sample Zi, we use Algorithm 1 to draw independent samples of root-connected
subgraphs. Theorem 8 implies that each sample takes at most pmax

1−pmax
m2n time in expectation.

We need O
(

n
ε2(1−pmax)2

)
samples for each Zi. Putting everything together, we obtain the

following theorem.

I Theorem 10. There is an FPRAS for Bi-directed Reachability. The expected running
time is O

(
ε−2pmax(1− pmax)−3m2n3) for an (1± ε)-approximation.

A natural question is what if 1 − pmax is close to 0. Intuitively, this means that some
arc is very likely to fail. We note that, if 1 − pe = O(n−3) for every arc e, then with
high probability, sampling from the distribution π(·) yields a rooted spanning tree (with
probability proportional to its weight). Thus, in this case, we can approximate π(·) by an
efficient rooted spanning tree sampler, for example, the cycle-popping algorithm [28] (which
runs in time O(mn) in expectation).
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5 Coupling between reliability and bi-directed reachability

In this section, we give an alternative proof of Ball’s equivalence between Reliability and
Bi-directed Reachability [1, Corollary 1]. Our proof constructs a coupling, between the
(edge-weighted) distribution of connected subgraphs in the undirected setting, and the (edge-
weighted) distribution of root-connected subgraphs in the bi-directed setting. This coupling,
together with Algorithm 1, yields an efficient exact sampler for connected subgraphs.

We use {u, v} to denote an undirected edge, and (u, v) or (v, u) to denote a directed
one (namely an arc). Let G = (V,E) be an undirected graph, and p = (pe)e∈E be a vector
of failure probabilities. Let −→G = (V,A) be the bi-directed graph obtained by replacing
every edge in G with a pair of anti-parallel arcs. Namely, A = {(u, v), (v, u) | {u, v} ∈ E}.
Moreover, let p(u,v) = p(v,u) = p{u,v} and denote these failure probabilities by p′. For S ⊆ E
or S ⊆ A, let wt(S) =

∏
e∈S(1− pe)

∏
e6∈S pe.

Consider the following coupling between the product distribution over edges of G and
the one over arcs of −→G . We reveal edges in a breadth-first search (BFS) fashion in both
graphs, from the same “root” vertex r. If an edge {u, v} is present in the subgraph of G, we
couple it with the arc (u, v) or (v, u), whose direction is pointing towards r in the subgraph
of −→G . The arc in the other direction is drawn independently from everything else. The key
observation is that to decide the set of vertices that can reach r, at any point, only one
direction of a bi-directed edge is useful and the other is irrelevant. One can verify that in
the end, the subgraph of G is connected if and only if the subgraph of −→G is root-connected.
We will formalize this intuition next.

Fix an arbitrary ordering of V , which will be used for the exploration, and let the first
vertex be a distinguished root r. Let P(S) denote the power set of S for a set S. Define a
mapping Φ : P(E)→ P(A) as follows. For S ⊆ E, we explore all vertices that can reach r in
(V, S) in a deterministic order, and add arcs to Φ(S) in the direction towards r. To be more
specific, we maintain the set of explored and the set of active vertices, denoted by Ve and
Va, respectively. At the beginning, Ve = ∅ and Va = {r}. Given Ve and Va, let v be the first
vertex (according to the predetermined ordering) in Va. For all u ∈ V \ Ve, if {u, v} ∈ S, add
(u, v) to Φ(S) and add u to Va (u may be in Va already). Then move v from Va to Ve. This
process ends when all vertices that can reach r in (V, S) are explored. Let σS be the arriving
order of Ve. We will call σS the traversal order. We remark that if {u, v} ∈ S then exactly
one of the arcs (u, v) and (v, u) is in Φ(S), and otherwise neither arc is in Φ(S).

Strictly speaking, the exploration above is not a BFS (Va may contain a newly added
vertex that is lower in the predetermined ordering than all other older vertices). To perform
a BFS we need to in addition maintain a layer ordering, which seems unnecessary. The key
properties of the exploration are: 1) all edges incident to the current vertex are processed; 2)
Ve is always connected (or root-connected for Ψ below).

Similarly, define Ψ : P(A)→ P(E) as follows. For S′ ⊆ A, we again maintain Ve and Va,
and initialize Ve = ∅ and Va = {r}. Given Ve and Va, let v be the first vertex in Va. For all
u ∈ V \ Ve, if (u, v) ∈ S, add {u, v} to Ψ(S′) and add u to Va. Then move v from Va to Ve.
This process ends when all vertices that can reach r in (V, S′) are explored. Analogously, let
σS′ be the arriving order of Ve. We remark that if (u, v) 6∈ S′, and v is visited before u, then
{u, v} 6∈ Ψ(S′), even in case of (v, u) ∈ S′.

Let Ω := {S ⊆ E | (V, S) is connected}, and −→Ω := {S ⊆ A | (V, S) is root-connected}.
We have the following lemma.
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I Lemma 11. Let Φ, Ψ, Ω, and −→Ω be defined as above. Then the following hold:

1. if S ∈ Ω, then Φ(S) ∈ −→Ω ;
2. if S′ ∈ −→Ω , then Ψ(S′) ∈ Ω;
3. if S ∈ Ω, then Ψ(Φ(S)) = S;
4. Ψ(−→Ω ) = Ω;
5. for any S ∈ Ω, wt(S) =

∑
S′∈Ψ−1(S) wt(S′).

Proof. 1. It is easy to verify that, at any point of the construction of Φ, all vertices in Ve

can reach r, in both (V, S) and (V,Φ(S)). If S ∈ Ω, then Ve = V at the end of Φ. Hence
(V,Φ(S)) is root-connected, and Φ(S) ∈ −→Ω .

2. This item is completely analogous to item (1).
3. If {u, v} ∈ S and u is processed first during the exploration, then (v, u) ∈ Φ(S). The

traversal orderings σS and σΦ(S) are the same. Hence, during the construction of Ψ(Φ(S)),
u is still processed first, and {v, u} ∈ Ψ(Φ(S)). On the other hand, if {u, v} 6∈ S, then
neither (u, v) nor (v, u) is in Φ(S) and thus {u, v} 6∈ Ψ(Φ(S)).

4. This item is a straightforward consequence of items (1), (2), and (3).
5. By item (3), we have that Φ(S) ∈ Ψ−1(S). Let

Φc(S) :=
{

(u, v) | (u, v) 6∈ Φ(S) and v < u in the traversal order σΦ(S)
}
.

Note that Φ(S) ∪ Φc(S) covers all unordered pairs of vertices as S ∈ Ω. Moreover,∏
e∈Φ(S)

(1− pe)
∏

e∈Φc(S)

pe = wt(S). (∗)

Call S′ consistent with Φ(S) if Φ(S) ⊆ S′ and S′ ∩ Φc(S) = ∅.
We claim that S′ ∈ Ψ−1(S) if and only if S′ is consistent with Φ(S). Suppose S′ is not
consistent with Φ(S). Consider the exploration of Φ(S) and S′ in the construction of Ψ
simultaneously. Since S′ is not consistent with Φ(S), either Φ(S)\S′ 6= ∅ or S′∩Φc(S) 6= ∅.
Let v be the first vertex during the exploration so that there is an arc (u, v) ∈ Φ(S) \ S′,
or (u, v) ∈ S′ ∩ Φc(S) for some u 6∈ Ve. Since S ∈ Ω, all vertices will be processed,
and such a v must exist. (In the latter case, since (u, v) ∈ Φc(S), v is active first.) If
(u, v) ∈ Φ(S) \ S′, then {u, v} 6∈ Ψ(S′) but {u, v} ∈ Ψ(Φ(S)). If (u, v) ∈ S′ ∩ Φc(S),
{u, v} 6∈ Ψ(Φ(S)) but {u, v} ∈ Ψ(S′). In either case, Ψ(S′) 6= Ψ(Φ(S)) = S (by item (3)).
On the other hand, if Φ(S) ⊆ S′ and S′ ∩ Φc(S) = ∅, then we can trace through the
construction of Ψ(Φ(S)) and Ψ(S′) to verify that Ψ(S′) = Ψ(Φ(S)) = S.
The claim together with (∗) implies that∑

S′∈Ψ−1(S)

wt(S′) =
∑

S′ is consistent with Φ(S)

wt(S′) =
∏

e∈Φ(S)

(1− pe)
∏

e∈Φc(S)

pe = wt(S). J

I Lemma 12. Zrel(G; p) = Zreach(−→G, r; p′).

Proof. First notice that Zrel(G; p) =
∑

S∈Ω wt(S) and Zreach(−→G, r; p′) =
∑

S∈
−→Ω wt(S).

By item (4) of Lemma 11, Ψ(−→Ω) = Ω, implying that
(
Ψ−1(S)

)
S∈Ω is a partition of −→Ω .

Combining this with item (5) of Lemma 11,∑
S∈Ω

wt(S) =
∑
S∈Ω

∑
S′∈Ψ−1(S)

wt(S′) =
∑

S′∈
−→Ω

wt(S′).

The lemma follows. J
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Lemma 12 is first shown by Ball [1, Corollary 2] via modifying edges one by one. Instead,
our proof is essentially a coupling argument and has a new consequence that Algorithm 1
can be used to sample edge-weighted connected subgraphs. Recall our notation πG(·), and
generalise it to undirected graphs. Thus, for an undirected (or directed) graph G, πG(·) is
the distribution resulting from drawing each edge (or arc) e independently with probability
1− pe, and conditioning on the graph drawn being connected (or root-connected).

I Lemma 13. If a random root-connected subgraph S′ is drawn from π−→
G

(·), then Ψ(S′) has
distribution πG(·).

Proof. Since S′ ∈
−→
G′, by item (2) of Lemma 11, Ψ(S′) ∈ Ω. Moreover, for any s ∈ Ω,

Pr[Ψ(S′) = s] =
∑

s′∈Ψ−1(s)

Pr[S′ = s′] =
∑

s′∈Ψ−1(s)

wt(s′)
Zreach(−→G, r; p′)

= wt(s)
Zrel(G; p) = πG(s),

where we used item (5) of Lemma 11 and Lemma 12 in the last line. J

There is also a coupling going the reversed direction of Lemma 13, by drawing a random
connected subgraph S from πG(·), mapping it to Φ(S), and excluding all arcs in Φc(S). All
other arcs are drawn independently. The resulting S′ has distribution π−→

G
(·). Its correctness

is not hard to prove, given Lemma 11, but it is not the direction of use to us and we omit its
proof.

Theorem 10 and Lemma 12 imply the counting part of Theorem 1. Theorem 8 and
Lemma 13 imply the sampling part of Theorem 1.

6 Concluding remarks

In this paper we give an FPRAS for Reliability (or, equivalently, Bi-directed Reachab-
ility), by confirming a conjecture of Gorodezky and Pak [8]. We also give an exact sampler
for edge-weighted connected subgraphs with polynomial running time in expectation. The
core ingredient of our algorithms is the cluster-popping algorithm to sample root-connected
subgraphs, namely Algorithm 1. We manage to analyze it using the partial rejection sampling
framework.

Reliability is equivalent to counting weighted connected subgraphs, which is the
evaluation of the Tutte polynomial TG(x, y) for points x = 1 and y > 1. An interesting
question is about the dual of this half-line, namely for points x > 1 and y = 1, whose
evaluation is to count weighted acyclic subgraphs. It is well known that for a planar graph
G, TG(x, 1) = TG∗(1, x) where G∗ is the planar dual of G [21]. Hence, Theorem 1 implies
that in planar graphs, TG(x, 1) can be efficiently approximated for x > 1. Can we remove
the restriction of planar graphs?

Another interesting direction is to generalize Algorithm 1 beyond bi-directed graphs.
What about Eulerian graphs? Is approximating Reachability NP-hard in general?
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Abstract
We present a perfect simulation of the hard disks model via the partial rejection sampling method.
Provided the density of disks is not too high, the method produces exact samples in O(log n)
rounds, where n is the expected number of disks. The method extends easily to the hard spheres
model in d > 2 dimensions. In order to apply the partial rejection method to this continuous
setting, we provide an alternative perspective of its correctness and run-time analysis that is
valid for general state spaces.
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1 Introduction

The hard disks model is one of the simplest gas models in statistical physics. Its configurations
are non-overlapping disks of uniform radius r in a bounded region of R2. For convenience, in
this paper, we take this region to be the unit square [0, 1]2. This model was precisely the
one studied by Metropolis et al. [12], in their pioneering work on the Markov chain Monte
Carlo (MCMC) method. They used Los Alamos’ MANIAC computer to simulate a system
with 224 disks.

There are two variants of this model. To obtain the canonical ensemble, we fix the
number (or equivalently, density) of disks and decree that all configurations are “equally
likely”, subject only to the disks not overlapping. In the grand canonical ensemble, we fix
the “average” number of disks. To be more specific, centers of the disks are distributed
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according to a Poisson point process of intensity λr = λ/(πr2), conditioned on the disks being
non-overlapping. The hard disks model, and its higher dimensional generalization (called the
hard spheres model) are also related to the optimal sphere packing density [4, 18, 2]. See
[6, 1] and references therein for more details. See also [11] for the physics perspective.

Our main aim in this work is to describe and analyse a very simple algorithm for exactly
sampling from the grand canonical ensemble, based on the partial rejection sampling paradigm
introduced by Guo, Jerrum and Liu [3].

More precisely, the challenge is the following: produce a realisation P ⊂ [0, 1]2 of a
Poisson point process of intensity λr in the unit square, conditioned on the event that no
pair of points in P are closer than 2r in Euclidean distance. We refer to this target measure
as the hard disks distribution. It describes an arrangement of open disks of radius r with
centres in [0, 1]2 that are not allowed to overlap, but which otherwise do not interact. It is a
special case of the Strauss process [17]. Note that, although the disks do not overlap each
other, they may extend beyond the boundary of the unit square. Also, the intensity of the
underlying Poisson process is normalised so that the expected number of points of P lying in
a disk of radius r is λ. This normalisation gives us sensible asymptotics as the radius of the
disks tends to zero (equivalently, the number of disks tends to infinity).

Classical rejection sampling applied to this problem yields the following algorithm:
repeatedly sample a realisation P of the Poisson process of intensity λ in the unit square until
P satisfies the condition that no two points are closer than 2r, and return P . Unfortunately,
for every λ > 0, however small, the expected number of unsuccessful trials using this approach
increases exponentially in r−1, as r → 0. Partial rejection sampling [3] requires only a subset
of P to be resampled at each iteration. Algorithm 1 below arises from a routine application
of the paradigm to the problem at hand.

The original partial rejection method [3] and its analysis are tailored for the discrete
case. In this paper we provide an alternative view on the correctness of the method, which
is also valid in the continuous setting. In other words, as with classical rejection sampling,
Algorithm 1 terminates with probability 1, producing a realisation of the exact hard disks
distribution. In contrast to classical rejection sampling, the expected number of iterations
(resampling steps) is now asymptotically O(log(r−1)) as r → 0, provided λ is not too large.
We prove that rapid termination occurs when λ < 0.21027. This analysis is not tight, and
experiments suggests that the actual threshold for rapid termination is around λ ≈ 0.51.2
The experimental advantage of partial rejections is its simple termination rule, unlike MCMC,
where it is difficult to determine how long the algorithm should run.

The method extends naturally to the hard spheres model in d > 2 dimensions. Here,
the desired distribution is a Poisson point process in [0, 1]d conditioned on no pair of points
being closer than 2r. The natural normalisation for the intensity of the Poisson process in d
dimensions is λr,d = λ/(vdrd), where vd is the volume of a ball of radius 1 in Rd. With this
convention, we prove that rapid termination occurs in d dimensions provided λ < 2−(d+ 1

2 ).
The expected packing density α(λ) or simply α for this model is the expected total volume

of balls. (Note that, neglecting boundary effects, α is the proportion of the unit cube occupied
by balls.) The quantity α(λ) grows monotonically with λ, but intuitively we expect its
rate of growth to slow down dramatically as the balls pack more tightly. The connection
between expected packing density α and intensity λ has recently been thoroughly explored
by Jenssen, Joos and Perkins [6]. Using their results, we show that partial rejection sampling

2 The physics prediction of phase transitions, for the canonical ensemble in two dimensions, is ≈ 0.7. This
threshold is more related to the expected packing density α(λ) discussed below.
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Algorithm 1 Partial Rejection Sampling for the hard disks model.
PRS for Hard Disks(λ, r) // r is the disk radius and λr = λ/(πr2) the intensity
Let P be a sample from the Poisson point process of intensity λr on the unit square
while B ← BadPoints(P ) 6= ∅ do
S ← B +D2r(0) // Resampling set is the Minkowski sum of B with a disk of radius
2r
Let PS be a sample from the Poisson point process of intensity λr on S
P ← (P \B) ∪ PS

end while
return P

can achieve expected packing density Ω(2−d) while retaining runtime O(log(r−1)). Although
sphere packings of density Ω(d2−d) have been proved to exist, there is no polynomial-time
sampler that provably achieves packing density beyond O(2−d), as far as we are aware.

Other approaches to exact sampling include Coupling From The Past (CFTP), which
was adapted to point processes by Kendall [8] and Kendall and Møller [9]. Recently, Moka,
Juneja and Mandjes [13] proposed an algorithm based on rejection and importance sampling.
Although this algorithm, like ours, is based on rejection sampling, it does not share our
asymptotic performance guarantee. Indeed, its running time appears to grow exponentially
as the number of disks goes to infinity, with the density of disks held constant. See also
[6, 14] for rigorous bounds on packing densities of grand canonical ensembles.

Approximate sampling via Markov chain simulation has been studied by Kannan, Mahoney
and Montenegro [7] and Hayes and Moore [5] in the context of the canonical ensemble, where
the number of disks in a configuration is fixed. The best rigorous density bound to guarantee
rapid mixing is below ≈ 0.154 [5]. It is should be noted that this is not directly comparable
with our λ < 0.21027 due to the difference in models. To obtain canonical ensembles, we
could use Algorithm 1 and further condition on the number of desired disks. However, the
only rigorous guarantee of this approach, via [6], is α(0.21027) > 0.0887.

2 The sampling algorithm

The following notation will be used throughout. If P is a finite subset of [0, 1]2 then

BadPairs(P ) =
{
{x, y} : x, y ∈ P ∧ x 6= y ∧ ‖x− y‖ < 2r

}
,

where ‖ · ‖ denotes Euclidean norm, and

BadPoints(P ) =
⋃

BadPairs(P ).

The open disk of radius r with centre x ∈ [0, 1]2 is denoted by Dr(x). The finite set Π ⊂ [0, 1]2
always denotes a realisation of the Poisson point process of intensity λr on [0, 1]2. For a
random variable X and event E we use D(X) to denote the distribution (law) of X, and
D(X | E) the distribution of X conditioned on E occurring. Thus, D(Π | BadPoints(Π) = ∅)
is the hard disks distribution that we are interested in.

Our goal is to analyse the correctness and running time of a sampling algorithm for the
hard disks model (see Algorithm 1 below), specifically to determine the largest value of λ
for which it terminates quickly, i.e., in O(log r−1) iterations. The algorithm is an example
application of “Partial Rejection Sampling” [3], adapted to the continuous state space setting.

ICALP 2018
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3 Correctness

Let B be any finite subset of [0, 1]2. We say that B is a feasible set of bad points if
BadPoints(B) = B; this is equivalent to saying that there is a finite subset R ⊂ [0, 1]2 with
B = BadPoints(R). The key to establishing correctness of Algorithm 1 is the following loop
invariant:

D(P | BadPoints(P ) = B) = D(Π | BadPoints(Π) = B),

for every feasible set B, where P is any intermediate set of points during the execution of
the algorithm, and Π is a realisation of the Poisson point process. Let us consider what the
right hand side means operationally. Let S = B +D2r(0). (This is the resampling set used
by the algorithm.) Let Q be a sample from the distribution D(Π | BadPoints(Π) = B). The
only points in Q that lie inside S are the points in B. (Any extra points would create more
bad pairs than there actually are.) Thus Q ∩ S = B. Outside of S there are no bad pairs;
thus Q ∩ S is a sample from the hard disks distribution on S = [0, 1]2 \ S. Note that, setting
B = ∅, we see that D(Π | BadPoints(Π) = ∅) is just the hard disks distribution on [0, 1]2.

I Theorem 1. Algorithm 1 is correct: conditional on halting, Algorithm 1 produces a sample
from the hard disks distribution with intensity λr = λ/(πr2).

Theorem 1 follows from Lemma 2 below.
Let T (a random variable) be the number of iterations of the while-loop. On each

iteration, the while loop terminates with probability bounded away from 0; thus T is finite
with probability 1. (Indeed, T has finite expectation.) Let Pt, for 1 ≤ t ≤ T , be the point
set P after t iterations of the loop, and P0 be the initial value of P (which is just a realisation
of the Poisson point process on [0, 1]2). We say that B0, B1, . . . , Bt ⊂ [0, 1]2 is a feasible
sequence of (finite) point sets if there exists a run of Algorithm 1 with BadPoints(P0) =
B0, . . . ,BadPoints(Pt) = Bt.

I Lemma 2. Let B0, B1, . . . , Bt ⊂ [0, 1]2 be a feasible sequence. Then

D
(
Pt
∣∣ BadPoints(P0) = B0 ∧ · · · ∧ BadPoints(Pt) = Bt

)
= D(Pt

∣∣ BadPoints(Pt) = Bt)
= D(Π

∣∣ BadPoints(Π) = Bt).

Proof. We prove the result by induction on t. The base case, t = 0, holds by construction:
P0 is just a realisation of the Poisson point process on [0, 1]2. Our induction hypothesis is

D
(
Pt
∣∣ BadPoints(P0) = B0 ∧ · · · ∧BadPoints(Pt) = Bt

)
= D(Π

∣∣ BadPoints(Π) = Bt), (1)

for every feasible sequence B0, . . . , Bt. Extend the feasible sequence to Bt+1. For the
inductive step, we assume (1) and aim to derive

D
(
Pt+1

∣∣ BadPoints(P0) = B0 ∧ · · · ∧ BadPoints(Pt+1) = Bt+1
)

= D(Π | BadPoints(Π) = Bt+1). (2)

The resampling set on iteration t+ 1 is S = Bt+D2r(0). As a first step we argue below that

D
(
Pt+1

∣∣ BadPoints(P0) = B0 ∧ · · · ∧BadPoints(Pt) = Bt

)
= D(Π | BadPairs(Π)∩ S(2) = ∅), (3)

where S(2) denotes the set of unordered pairs of elements from S. We have noted that
(1) implies that, outside of the resampling set S, the point set Pt is a realisation of the
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hard disks distribution. Also, the algorithm does not resample points outside of S. Thus
Pt+1 ∩ S = Pt ∩ S is Poisson distributed, conditioned on there being no bad pairs. Inside S,
resampling has left behind a fresh Poisson point process Pt+1 ∩ S. These considerations give
(3).

Next, we condition on Bt+1:

D
(
Pt+1

∣∣ BadPoints(P0) = B0 ∧ · · · ∧ BadPoints(Pt) = Bt ∧ BadPoints(Pt+1) = Bt+1
)

= D
(
Π
∣∣ BadPairs(Π) ∩ S(2) = ∅ ∧ BadPoints(Π) = Bt+1

)
.

Since Bt+1 contains no bad pairs with both endpoints in S, the event BadPoints(Π) = Bt+1

entails the event BadPairs(Π) ∩ S(2) = ∅. Thus, we have

D
(
Pt+1

∣∣ BadPoints(P0) = B0 ∧ · · · ∧ BadPoints(Pt) = Bt ∧ BadPoints(Pt+1) = Bt+1
)

= D(Π | BadPoints(Pt+1) = Bt+1).

The right hand side of this equation does not involve B0, . . . , Bt, and so

D(Pt+1 | BadPoints(Pt+1) = Bt+1) = D(Π | BadPoints(Π) = Bt+1).

This completes the induction step (2) and the proof. J

Proof of Theorem 1. As we observed earlier, T , the number of iterations of the while-loop,
is finite with probability 1. By Lemma 2, noting that BT = ∅,

D(PT ) = D(Π | BadPoints(Π) = ∅).

In other words, at termination, Algorithm 1 produces a realisation of the hard disks distribu-
tion on [0, 1]2. J

4 Run-time analysis

We consider how the number of “bad events”, i.e., the cardinality of the set BadPairs(Pt),
evolves with time. As usual Π denotes a realisation of the Poisson point process of intensity λr.
Also denote by ∆ a realisation of the hard disks process of the same intensity. We need the
following stochastic domination result.

I Lemma 3. The hard disks distribution is stochastically dominated by the Poisson point
process with the same intensity. That is, we can construct a joint sample space for Π and ∆
such that ∆ ⊆ Π.

Holley’s criterion is a useful test for stochastic domination, but it is not of direct use
to us in the proof of Lemma 3, because it applies only to finite state spaces. Fortunately,
Preston [15, Theorem 9.1], has derived a version of Holley’s criterion that fits our situation.
We will mostly follow Preston’s notation, except that, to save confusion, we will use P and
Q, rather than x and y, to denote finite sets of points. In order to state his result, we need
some notation. In our application, ω̃n is the distribution on ([0, 1]2)(n) obtained by sampling
n points independently and uniformly at random from [0, 1]2, and regarding the points as
indistinguishable; furthermore, ω̃ =

∑∞
n=0 ω̃n/n!. (For consistency with Preston, we have

left ω̃ unnormalised. If we had made it into a probability distribution by division by e, then
ω̃ could be thought of as follows: sample an integer k from the Poisson distribution with
mean 1, and then pick k (unlabelled) points uniformly and independently.) Denote by Ω
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the set of all finite subsets of [0, 1]2, and by F the set of non-negative measurable functions
Ω→ R satisfying∫

f dω̃ = 1, (4)

and

f(P ) = 0 and P ⊆ Q implies f(Q) = 0. (5)

(See Preston [15, Section 9] for detailed formal definitions of the concepts here.)

I Lemma 4 (Theorem 9.1 of [15]). Let f1, f2 ∈ F and suppose that

f1(P + ξ)
f1(P ) ≥ f2(Q+ ξ)

f2(Q) , for all Q ⊆ P ∈ Ω and ξ ∈ [0, 1]2 \ P (6)

(where, by convention, 0/0 = 0). Then, for all bounded, measurable, non-decreasing functions
g : Ω→ R,∫

gf1 dω̃ ≥
∫
gf2 dω̃,

i.e., if µi is the probability measure having density fi with respect to ω̃, then µ1 stochastically
dominates µ2.

Proof of Lemma 3. We set

f1(P ) = C1λ
|P |
r

and

f2(P ) =
{
C2λ

|P |
r , if BadPairs(P ) = ∅;

0, otherwise.

The normalising constants C1 and C2 are chosen so that both f = f1 and f = f2 satisfy (4).
(There is an explicit expression for C1, namely C1 = exp(−λr), but not for C2.) Notice that
both f1 and f2 also satisfy (5). Notice also that the probability measures µ1 and µ2 of the
Poisson point process and the hard disks process have densities f1 and f2 with respect to ω̃.
The premise (6) of Lemma 4 holds, since the left-hand side is always λr and the right-hand
side is either λr or 0. The conclusion is that µ1 dominates µ2. Strassen’s Theorem [10, 16],
allows us to conclude the existence of a coupling of Π and ∆ as advertised in the statement
of the lemma (except, possibly, on a set of measure zero). J

I Lemma 5. There is a bound λ̄ > 0 such that the expected number of iterations of the
while-loop in Algorithm 1 is O(log r−1) when λ < λ̄.

Proof. First observe that BadPairs(P ) determines BadPoints(P ) and vice versa. So condi-
tioning on the set BadPairs(P ) is equivalent to conditioning on BadPoints(P ).

Introduce random variables Zt = |BadPairs(Pt)|, for 1 ≤ t ≤ T . Our strategy is to show
that

E(Zt+1 | Z0, . . . , Zt) ≤ α−1Zt, (7)

for some α > 1. Then Z0, αZ1, α
2Z2, α

3Z3, . . . is a supermartingale (with the convention
that Zt = 0 for all t > T ). Therefore, EZt ≤ α−t EZ0 ≤ 1

2λ
2
rα
−t. Here, we have used the

fact that |P0| is a Poisson random variable with expectation λr, and

Z0 = |BadPairs(P0)| ≤ 1
2 |P0| (|P0| − 1),
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and hence

EZ0 ≤ E
[
|P0| (|P0| − 1)

]
= 1

2λ
2
r.

Setting t = O(log r−1 + log ε−1), we obtain EZt < 1/ε, and hence Pr(T > t) ≤ ε. It follows
that the expected number of iterations of the while-loop of Algorithm 1 is O(log r−1). Note
that the probability of non-termination decreases exponentially with t, so the probability of
large deviations above the expected value of T is low.

Crude estimates give λ̄ = 1/(4
√

2). The calculation goes as follows. Suppose, in (7),
we condition on the random variables BadPoints(P0), . . . ,BadPoints(Pt), rather than simply
on Z0, . . . , Zt. This is more stringent conditioning, since the former random variables
determine the latter. It is enough to establish (7) under the more stringent conditioning.
So fix BadPoints(P0) = B0, . . . ,BadPoints(Pt) = Bt, and note that this choice also fixes the
resampling sets S0, . . . , St. Suppose Zt = |BadPairs(Pt)| = k. Inside the resampling set St
we have a Poisson point process Pt+1 ∩ St of intensity λr. Outside, by Lemma 2, there is a
realisation of the hard disks process. Since we are seeking an upper bound on Zt+1 we may,
by Lemma 3, replace Pt+1 ∩ St by a Poisson point process of intensity λr.

Let k′ = E(Zt+1 | Z0, . . . , Zt). From the above considerations we have

k′ ≤
∫
St

λr

∫
[0,1]2

λr 1‖x−y‖≤2r dy dx. (8)

This is an overestimate, as we are double-counting overlapping disks whose centres both lie
within St. Now, St is a union of at most 2k disks of radius 2r. Thus

k′ ≤ 2kλ2
r

∫
D2r(0)

∫
R2

1‖x−y‖≤2r dy dx (9)

= 2kλ2
r

∫
D2r(0)

∫
D2r(x)

dy dx

= 2kλ2
r × 4πr2 × 4πr2

= 32λ2k.

There are further sources of slack here: there may be fewer than 2k disks, the disks comprising
St certainly overlap, and, for points x near the boundary, some of disks D2r(x) will lie partly
outside the unit square. (The last of these presumably has no effect asymptotically, as r → 0.)
Setting λ̄ = 1/(4

√
2) = 0.17677+, we see that α = k/k′ > 1 for any λ < λ̄, and (Zt)∞t=0 is a

supermartingale, as required. J

The constant λ̄ may seem quite small. Note, however, that classical rejection sampling
cannot achieve any λ̄ > 0. The argument goes as follows. Divide [0, 1]2 into r × r squares.
If there are two points in the same square then they will certainly be less than distance 2r
apart. The number of points in each square is Poisson distributed with mean λ/π. Thus for
any λ > 0 the probability that a particular square has at least two points is bounded away
from zero. The number of points in each square is independent of all the others. It follows
that the running time of classical rejection sampling is exponential in r−2.

The above derivation for λ̄ is quite crude and can be improved.

I Lemma 6. The constant λ̄ in Lemma 5 can be taken to be 0.21027.

Proof. For each of the 2k disks, the right-hand side of inequality (9) counts pairs of points
(x, y) with x in the disk, and y anywhere within distance 2r of x. Since a bad event is
determined by an unordered pair of points, this gives rise to significant double counting.
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xy

L

%
2r

Figure 1 An illustration of double counting.

In particular, pairs (x, y) with x and y lying in the same ball are double counted. We can
subtract off these pairs to obtain a better estimate.

For a single ball, the correction is

C = 1
2

∫
D2r(0)

λr

∫
D2r(0)

λr1‖x−y‖≤2r dy dx.

(The initial factor of one half arises because we want to count unordered pairs.) With the
change of variables x = 2rx′ and y = 2ry′ this expression simplifies to

C = 1
2 × 16r4λ2

r

∫
D1(0)

∫
D1(0)

1‖x′−y′‖≤1 dy
′ dx′

= 8λ2
rr

4
∫
D1(0)

L(‖x′‖) dx′,

where L(‖x′‖) is the area of the “lens” D1(0) ∩D1(x′). Letting % denote the offset of the
centres of the two disks, the area of the lens is given by

L(%) = 2 arccos(%/2)− 1
2%
√

4− %2.

(This is by elementary geometry: the lens is the intersection of two sectors, one from each
of the disks, and its area can be computed by inclusion-exclusion.) An illustration (before
shifting y to 0) is given in Figure 1. The shaded area is L.

Translating to polar coordinates (%, θ),

C = 8λ2
rr

4
∫
D1(0)

L(‖x′‖2) dx′

= 8λ2
rr

4
∫ 2π

0

∫ 1

0
%L(%) d% dθ

= 8λ2

π2 × 2π
∫ 1

0
%L(%) d%

= 16λ2

π

[
π

2 + (%2 − 1) arccos
(%

2

)
−
(%

4 + %3

8

)√
4− %2

]1

0

=
(

8− 6
√

3
π

)
λ2.

(The integral was evaluated using the Maple computer algebra system.) Our revised upper
bound on k′ is thus

k′ ≤ 2k(16λ2 − C) = 2kλ2
(

8 + 6
√

3
π

)
, (10)
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Solving

λ̄2
(

16 + 12
√

3
π

)
= 1

yields the improved bound of λ̄ = 0.21027+. J

There are other factors that could in principle be used to increase λ̄ further — each disk
necessarily overlaps with at least one other disk, some bad events are triple or quadruple
counted — but the computational difficulties rapidly increase when attempting to account
for these.

5 Three or more dimensions

In higher dimensions, the hard disk model is known as the hard spheres model. Everything
in Sections 3 and 4 carries across to d > 2 dimensions with little change. For general d,
the appropriate scaling for the intensity is λr,d = λ/(vdrd), where vd is the volume of a ball
of unit radius in d dimensions. Note that in a realisation of a Poisson point process with
intensity λr,d, the expected number of points in a ball of radius r is λ.

The analogue of equation (8) is

k′ ≤
∫
St

λr,d

∫
[0,1]d

λr,d 1‖x−y‖≤2r dy dx,

which leads to

k′ ≤ 22d+1λ2k.

So setting λ̄ = 2−(d+ 1
2 ) we find that α = k/k′ > 1 for any λ < λ̄. It follows that the running

time of partial rejection sampling is O(log r) for any λ < λ̄.
By a result of Jenssen, Joos and Perkins [6], we lose just a constant factor when translating

from intensity λ to packing density α. (It is partly to connect with their work, we measure
intensity in terms of the expected number of points in a ball of radius r.) In the proof of [6,
Thm 2], the following inequality is derived:

α ≥ inf
z

max
{
λe−z, 2−d exp[−2 · 3d/2λ] · z

}
.

Assuming λ ≤ λ̄, which holds in the range of validity of our algorithm, we have
√

2λ ≤ 2−d
and hence

α ≥ inf
z

max
{
λe−z,

√
2λ exp[−

√
2(3/4)d/2] · z

}
= cdλ,

where
cd = inf

z
max

{
e−z,

√
2 exp[−

√
2(3/4)d/2] · z

}
.

Note that (cd) is monotonically increasing, with c2 = 0.42220+, and limd→∞ cd = 0.63724+.
It follows that we can reach expected packing density Ω(2−d) with O(log r−1) expected
iterations. This is currently the best that can be achieved by any provably correct sampling
algorithm with polynomial (in 1/r) runtime [7]. The asymptotically best packing density
currently rigorously known is d2−d, but achieving this would require λ to grow exponentially
fast in d. This is clearly beyond the capability of partial rejection sampling, but also beyond
the capability of any known efficient sampling algorithm.
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Non-Preemptive Flow-Time Minimization via
Rejections
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Abstract
We consider the online problem of minimizing weighted flow-time on unrelated machines. Al-
though much is known about this problem in the resource-augmentation setting, these results
assume that jobs can be preempted. We give the first constant-competitive algorithm for the
non-preemptive setting in the rejection model. In this rejection model, we are allowed to reject
an ε-fraction of the total weight of jobs, and compare the resulting flow-time to that of the offline
optimum which is required to schedule all jobs. This is arguably the weakest assumption in which
such a result is known for weighted flow-time on unrelated machines. While our algorithms are
simple, we need a delicate argument to bound the flow-time. Indeed, we use the dual-fitting
framework, with considerable more machinery to certify that the cost of our algorithm is within
a constant of the optimum while only a small fraction of the jobs are rejected.
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1 Introduction

Consider the problem of scheduling jobs for weighted flow-time minimization. Given a set of
m unrelated machines, jobs arrive online and have to be processed on one of these machines.
Each job j is released at some time rj , has a potentially different processing requirement
(size) pij on each machine i, and a weight wj which is a measure of its importance. The
objective function is the weighted flow time (or response time): if the job j completes its
processing at time Cj , the flow/response time is (Cj − rj), i.e., the time the job spends in
the system. The goal is now to minimize the weighted sum

∑
j wj(Cj − rj).

The problem of flow-time minimization has been extensively studied both from theoretical
and practical perspectives. The theoretical analyses have to assume that the jobs can be
pre-empted in order to prove any meaningful competitive ratio, and it is easy to see why.
If we schedule a long low-weight job and a large number of short high-weight items arrive
meanwhile, we cannot afford to delay the latter (else we suffer large flow-time), so the only
solution would be to preempt the former (See [14] for strong lower bounds.) And even with
pre-emption, the problem turns out to be difficult for multiple machines: e.g., [11] show no
bounded competitive ratio is possible for the case of unrelated machines. Hence, it is natural
to consider models with “resource augmentation” where the algorithm has slightly more
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resources than the adversary. E.g., in the speed-augmentation setting, where the algorithm
uses machines of speed (1 + ε)-times those of the adversary, Chadha et al. [7] showed how to
get a preemptive schedule with weighted flow time at most poly(1/ε) times the optimal flow
time.

A different model of resource augmentation was proposed by Choudhury et al. [8] in the
context of load balancing and maximum weighted flow-time, where we are allowed to reject at
most ε-fraction of the total weight of the incoming jobs, but we compare with the optimum
off-line algorithm which is required to process all the jobs. The motivation was two-fold: (a)
the model is arguably more natural, since it does not involve comparing to an imaginary
optimal schedule running on a slower machine, and (b) even with speed-augmentation, there
are problems, e.g. on-line load balancing, where even a constant factor speed-up does not
suffice to give meaningful results. Indeed, getting a non-preemptive schedule for weighted
flow-time is one of these problems. Consider for example the following input: a job of
unit size and unit weight at time 0 arrives. As soon as the algorithm schedules it, the
adversary releases L jobs of size ε� 1/L2. The optimal off-line flow-time is O(1), but the
algorithm will incur total flow-time of Ω(L). The model of job rejection is intuitively more
powerful than speed-augmentation (although no such formal connection is known): loosely,
the speed-augmentation model only allows us to uniformly reject an ε-fraction of each job,
whereas the rejection model allows us to “non-uniformly” reject an arbitrary subset of jobs,
as long as they contribute only an ε-fraction of the total weight.

1.1 Our Results
We consider the problem of non-preemptive scheduling on unrelated machines where the
objective is to minimize total weighted flow-time of jobs. Our main result is the following:

I Theorem 1 (Main Theorem). For the problem of online weighted flow-time minimization
on unrelated machines, there is a deterministic algorithm that rejects at most an ε-fraction
of the total weight of incoming jobs, and ensures that the total weighted flow time for the
remaining jobs is at most an O(1/ε3) factor times the optimal weighted flow time without
rejections.

Note that we compare with the off-line optimum which is allowed to be preemptive (in fact,
migratory), but is required to process all the jobs. Our guarantees are, in fact, stronger.
Define the notion of a “departure time” Dj for the job, which is the time at which either the
job completes non-preemptively (in which case Dj = Cj) or is the time at which the job is
rejected. A different natural definition of the total weighted response time in the presence of
rejections would be the following:

total weighted response time :=
∑
j

wj(Dj − rj).

Keeping this quantity small forces us to decide on jobs early, and discourages us from letting
jobs linger in the system for a long time, only to reject them at some late date. (Such a
behaviour would be very undesirable for a scheduling policy, and would even be considered
“unprofessional” in real-world settings.)

In fact the bulk of our work is in handling the single machine case. For this case, we get a
slightly stronger bound.

I Theorem 2 (Single Machine). For the problem of online weighted flow-time minimization
on a single machine, there is a deterministic algorithm that rejects at most an ε-fraction of the
total weight of incoming jobs, and ensures that the total weighted flow time for the remaining
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jobs is at most O(1/ε2) factor times the optimal weighted flow time without rejections even
when the offline optimum is given (1 + ε)-extra speedup.

The fact that we can compare with an optimum offline algorithm which has faster machine
allows us to use known immediate-dispatch algorithms for the setting of unrelated machines
in a black-box manner [7, 2].

1.2 Our Techniques
Let us first focus on the single-machine case. Our algorithm rejects jobs in two different ways:
some of the jobs are rejected immediately upon arrival, and others are rejected after receiving
some processing. Moreover, assume for the moment that we are running a preemptive
schedule, but without speed-augmentation. The high-level idea is to reject a “random”
ε-fraction of jobs that come in. At an intuitive level, this rejects only ε-fraction of the weight
(although this only in expectation, whereas we want this to hold deterministically at all
times), and should create the effect of ε-speed augmentation. To implement this, let αj be the
“effect” of job j on the system – i.e., the increase in the total flow-time of the jobs currently
in the system (assuming no future jobs arrive). The value of αj also naturally corresponds to
settings of dual variables for a natural flow-time LP. Using this we can (more-or-less) show
that (a) the αj values of the rejected jobs give us a lower bound on OPT, whereas (b) the αj
values of the non-rejected jobs upper-bound our cost. Hence, our goal becomes: at each time
cancel at most an ε-fraction of the total weight

∑
j wj , while cancelling at least an ε-fraction

(say) of the total “dual” value
∑
j αj .

A little thought shows that this abstract task is hopeless in general for any deterministic
strategy (say, if the α values rise very sharply), so we have to take the structure of the αj
values into account. We do this in two steps: we break the αj contribution into α+

j , the effect
of job j on items denser than j, and α−j , its effect on less-dense items. Now we put jobs into
buckets based on having the same (α+, w) or (α−, w) values, and rejecting each 1/εth job in
each bucket. (The actual bucketing is a little finer, see §3.) Moreover, we reject the first job
in each (α+, w) bucket. The complications arise because we are more aggresive for each such
(α+, w) bucket, and because we may not have rejected any jobs in the (α−, w) if it had less
than 1/ε items. In §4.3.1 we perform a delicate charging to relate our aggressive rejections for
the former to the total running time of the jobs, and show that (i) this aggressive rejection
does not reject too much weight, and (b) also compensates for our timid rejections in the
latter bucketing.

This high-level argument was done assuming preemptions. Since we want a non-preemptive
schedule, only immediate rejections do not suffice, and we also must reject some jobs which we
have started processing – indeed, if a large number of high-density (“important”) jobs arrive
right after we start processing some long low-density job j, delaying these more important
jobs would cause large flow-time. So we must reject job j. However, as long as the total
weight of these new jobs is wj/ε, we can charge the rejection to these new jobs. This rejection
makes the schedule very “unstable” and hence complicates the analysis. To get around this
problem, we mark the job j as “preemptible”. We then run a version of HDF with some
preemptible and other non-preemptible jobs, and show that its performance can also be
related to the LP variables.

Finally, for the multiple machines case we can perform a modular reduction to the
single-machines case. We first use the immediate dispatch algorithm of Anand et al. [2] to
assign jobs to machines, assuming speed augmenation. We then show our algorithm does
well even compared to a stronger benchmark (i.e., where the offline schedule – instead of the
online schedule – gets the speed augmentation). This gives us the theorem for the unrelated
machines.
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1.3 Related Work
There has been considerable work on the problem of minimizing total flow-time in the online
setting, though most of it is in the preemptive setting. Several logarithmic competitive
algorithms are known for unweighted flow-time on identical machines setting [15, 3], and in
the related machines setting [10, 1], but there are strong lower bounds for the case of weighted
flow-time even on a single machine [5]. In the restricted assignment settings with preemption,
the unweighted flow-time problem becomes considerably harder even for 3 machines [7]. The
situation for non-preemptive flow-time is much harder. Kellerer et al. [14] showed that one
cannot achieve o(n)-competitive algorithm even for a single machine.

Much stronger results are known in the speed augmentation model, where machines in the
online algorithm have ε-fraction more speed than the corresponding machines in the offline
setting. This model was first proposed by Kalyanasundaram and Pruhs [13] for the problem
of non-clairvoyant preemptive total flow-time minimization on a single machine. They gave an
O(1/ε)-competitive algorithm for this problem. Chadha et al. [7] gave O(1/ε2)-competitive
preemptive algorithm for weighted flow-time in the unrelated machines setting. This was
extended to the non-clairvoyant setting by Im et al. [12]. However, the non-preemptive
weighted flow-time problem has strong lower bounds in the speed augmentation model even
on a single machine [16].

The rejection model was proposed by Choudhury et al. [8] in the context of load balancing
and maximum weighted flow-time in the restricted assignment setting. Lucarelli et al. [16]
considered the non-preemptive scheduling problem of minimizing weighted flow-time in the
unrelated machines setting. They showed that one can get O(1/ε)-competitive algorithm
if we allow both (1 + ε)-speed augmentation and rejection of jobs of total weight ε-times
the total weight. Assuming both, we can design a much simpler algorithm and use the dual
fitting techniques developed for speed augmentation models to give a simple analysis of this
algorithm. Independently of us, Lucarelli et al. [17] recently announced an algorithm where
they can remove the speed augmentation assumption for the simpler unweighted setting.

In the prize-collection model, one is allowed to incur a penalty term for the rejected jobs.
This model has been widely studied, see e.g. Bartal et al. [6], Eppstein et al. [9], and Bansal
et al. [4], though is considerably different from our model because here one can reject a large
fraction of the jobs.

2 Definitions and Preliminaries

We consider the unrelated machine scheduling problem, as defined in §1. Our schedules will
be non-preemptive. For a schedule S, let CSj denote the completion time of j. We use FSj to
denote the flow-time of j, and the objective function is given by FS :=

∑
j wj · FSj . We may

remove the superscript S if it is clear from the context. We use O to denote the optimal
off-line schedule. In Section 3, when considering the special case of a single machine, we use
pj to denote the processing time of job j (on this machine). Define the density ρj of a job as
the ratio wj/pj . We assume that the parameter ε satisfies ε2 ≤ 1/2, and that 1/ε ∈ Z.

Fractional weighted flow-time. Given a schedule A, let pj(t) denote the remaining pro-
cessing time of job j at time t (assuming t ≥ rj). The remaining weight of j at time t is
defined as wj(t) := ρj · pj(t). The weighted flow-time of j in this schedule is defined as
wj(Cj − rj), where Cj is the completion time of j. The fractional weighted flow-time of j is
defined as

∑
t≥rj wj(t). Since wj(t) = 0 for t 6∈ [rj , Cj ], and wj(t) ≤ wj for any time t, it is

clear that the fractional weighted flow-time is at most the (integral) weighted flow-time of j.
The following claim is easy to check.
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I Claim 3. If a job j is processed without interruption during [t, t+ pj ], then its fractional
weighted flow-time is wj(t − rj) + wjpj/2. Moreover, if a job j gets rejected at time t′, its
weighted fractional flow-time is at least wj(t′−rj)/2.

Since the integral weighted flow-time of a job as in the claim above is wj(t− rj) + wjpj , we
see the integer and fractional flow times are within factor of 2 of each other. Thus, for jobs
which do not get preempted, we can argue about weighted fractional flow-time.

3 Algorithm for Single-Machine Weighted Flow Time

In this section, we consider the single-machine setting. For ease of algorithm description, we
assume that all quantities are integers so that we can schedule jobs at the level of integer
time-slots. We first describe an algorithm A which both rejects and preempts jobs. We
subsequently show how to modify this algorithm (in an online manner) to another schedule
which only rejects jobs, and does no preemptions. During our algorithm, we shall say that a
job j is active at time t if it has been released by time t, but has not finished processing until
time t, and has not been rejected. Let A(t) denote the set of active jobs at time t in our
algorithm. A subset of these jobs, denoted by L(t), will be special – these jobs are allowed
to be preempted (at time t). Once a job enters the set L(t) at some time t, it stays in L(t′)
for all subsequent times t′ ≥ t until it finishes processing.

For a job j ∈ A(t) and time t, recall that pj(t) denotes the remaining processing time.
At every point of (integer) time t, the algorithm performs the following steps (in this order):
1. If job j arrives at time t, the algorithm may choose to reject it immediately upon arrival.

We will call such rejections immediate rejections. If the job is not rejected, it gets added
to the active set A(t). For the moment, this is the only way in which a job gets rejected.

2. Let j be the job getting processed just before time t (i.e., in the time-slot [t− 1, t]). If
job j was not already in the set L(t), the algorithm may move it to the set L(t) if “many”
jobs smaller than j have arrived during its execution. We will specify the precise rule
soon. Recall that once added, the job j will remain in the set L(t) until it finishes.

3. If the job j getting processed in the time-slot [t− 1, t] did not finish at time t and it is
not in L(t), the algorithm will continue to process j during the next time-slot [t, t+ 1].
Otherwise, if j finishes or j ∈ L(t), the algorithm chooses a job in A(t) which has the
highest density (the HDF rule) and processes it during [t, t+ 1].

Note that if multiple jobs arrive at a time t, we consider them in arbitrary order, and
carry out the first two steps above iteratively for each such job, before executing step 3. This
completes the description of the algorithm, except that we have not specified the rules for
the first two steps.

We first explain the rule for adding a job to L(t). Suppose the algorithm processes a
job j during [t − 1, t], and suppose j /∈ L(t − 1). Let t′ be the time when the algorithm
started processing j. Since it was not allowed to preempt j, it must have processed j without
interruption during [t′, t]. If the total weight of jobs arriving during (t′, t] exceeds wj/ε, we
add job j to the set L(t). The intuition behind this rule is simple – the final algorithm will
eventually reject all jobs which get added to the set L(t), for all t. We can charge the weight
of the rejected job j to the weight of the jobs which arrived during [t′, t]. Moreover, consider
a job j that does not get added to L(t) over its lifetime. In a preemptive setting, we may
have preempted such a job j on the arrival of a new shorter job, whereas here we perform
such a preemption only when enough shorter jobs arrive. Since j was not added to L(t),
the total weight of such shorter jobs waiting on j is at most wj/ε, so we can pay for the
additional flow-time incurred by these shorter jobs (up to an 1/ε factor) by the flow-time
of j.
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The rule for immediate rejections is more involved. We maintain two tables T+ and T−.
Each arriving job may get assigned to either T+ or T−, or both. We refer to each entry
of these tables as a bucket. At a high level, every (1/ε)th job arriving in each bucket in
either table suffers immediate rejection, though the details differ for the two tables. Let us
elaborate on this further.

With every newly arriving job j, we specify a quantity αj , which is the increase in the
total flow-time of all the jobs in the system, assuming (i) no further jobs arrive after job j,
and (ii) the scheduling algorithm follows the preemptive HDF policy from rj onwards for all
the jobs in A(rj). As in [2], we can write an expression for αj as follows.

αj :=
(
wj

∑
j′∈A(rj): ρj′≥ρj

pj′(rj)
)

+ wjpj/2 +
(
pj

∑
j′∈A(rj): ρj′<ρj

wj′(rj)
)
. (1)

We establish the convention that A(rj) does not contain job j. Moreover, if multiple jobs
are released at time rj , we consider them in arbitrary but fixed order, and add only those
jobs to A(rj) which are considered before j.

For x ∈ R, let bbxcc denote the largest integer i such that 2i ≤ x. For a job j, define its
density-class as bbρjcc. We partition jobs in A(rj) depending on their density-class as follows:

D+
j := {j′ ∈ A(rj) | bbρj′cc ≥ bbρjcc} and D−j := {j′ ∈ A(rj) | bbρj′cc < bbρjcc}. (2)

Now let α+
j be the terms in the expression for αj involving jobs in D+

j , and define α−j
similarly. In other words,

α+
j :=

(
wj

∑
j′∈D+

j
: ρj′≥ρj

pj′(rj)
)

+
(
pj

∑
j′∈D+

j
: ρj′<ρj

wj′(rj)
)

; (3)

α−j :=
(
pj

∑
j′∈D−

j
: ρj′<ρj

wj′(rj)
)
. (4)

Clearly, αj = α+
j + wjpj/2 + α−j . We now specify the definitions of the two tables.

Table T+: Buckets in this table are indexed by ordered pairs of integers (κ, λ). If an
arriving job j satisfies α+

j ≥ wjpj/ε, we assign it to the bucket indexed (bbα+
j /wjcc, bbwjcc)

in this table, and add it to the set J+ of jobs assigned to T+. For each bucket, we
cancel the first job that is assigned to that bucket, and then every (1/ε)th subsequent job
assigned to it.
Table T−: Buckets in this table are indexed by ordered triplets of integers (γ, δ, η).
Each arriving job which satisfies α−j > wjpj/ε is assigned to the bucket indexed
(bbα−j cc, bbρjcc, bbpjcc), and added to the set J− of jobs assigned to T−. For each bucket,
cancel every (1/ε)th job assigned to this bucket. Note the subtle difference with respect
to T+: here the first job to be canceled in a bucket is the (1/ε)th job assigned to it.

3.1 The Final Algorithm B
The actual online algorithm B is almost the same as A, except when the algorithm A
processes a job in L(t) during time-slot [t, t + 1], the algorithm B idles, leaving this slot
empty. In other words, when a job being executed is added to L(t), the algorithm B rejects
the job instead of eventually finishing it, perhaps after some preemptions. (We can think
of this as being a delayed rejection, as opposed to the immediate rejection that A performs
based on the above bucketing strategy.) Clearly, we can implement B in an online manner.
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4 Analyzing the Single-Machine Algorithm

In this section, we provide the analysis of our single-machine algorithm B. Naturally, the
two main steps are to show that (i) an O(ε) fraction of jobs by weight get rejected, and (ii)
the total flow time is competitive with the optimal offline algorithm.

Showing (i) is relatively straightforward: a rejected job is either immediately rejected or
is later rejected in B due to its preemption in A. We will show that the rejected jobs falling
under each of the two categories is an O(ε) fraction by weight, with a separate analysis for
each category. Both of the analyses are in Section 4.1.

To show flow time competitiveness of algorithm B, we instead focus on bounding the tota
flow time of algorithm A. By Claim 3, the total (integer) flow-time of jobs that B does not
reject is within a factor of two of their fractional flow-time in A, since these are precisely the
jobs that A does not preempt. Therefore, to prove Theorem 2, it suffices to show that A is
O(1/ε2) factor competitive with the optimal offline algorithm.

Let Jimmed denote the set of jobs which get rejected immediately upon arrival, and let
O denote the optimal offline schedule and FO its fractional weighted flow time. Roughly
speaking, our goal is to establish the following chain of approximate inequalities:

εFA . ε
∑
j

αj .
∑

j∈Jimmed

αj . FO, (5)

where . hides additive
∑
j
wjpj/εO(1) factors. Since FO ≥

∑
j wjpj/2, these additive losses

still provide a 1/εO(1) competitive ratio.
For the first inequality, we will bound the flow time of algorithm A, modulo an additive∑
j
wjpj/ε factor, by the sum of αj over all jobs j /∈ Jimmed, which are precisely the jobs that

are finished by A. We do so by exploiting the facts that the αj values indicate an increase
in flow time to an HDF algorithm, and that A is “approximately” an HDF algorithm. The
details are in Lemma 5.

The second inequality is the most technically involved section of the paper. Not only
does the immediate rejection scheme reject an O(ε) fraction of jobs, but it also rejects jobs
constituting an ε fraction of the total αj value. The analysis is in Section 4.3.

Finally, the last inequality relates the optimal offline flow time to the sum of the αj values
of immediately rejected jobs. It is restated as Lemma 6 and proved in the appendix.

4.1 Bounding Weight of Rejected Jobs
In this section, we show that the total weight of rejected jobs is only an O(ε) fraction of
total. Recall that jobs either suffer immediate rejection, or are added to L(t) for some time
t, and hence suffer delayed rejection.

Let us first bound the total weight of the set L := ∪tL(t). For a job j in L(t), let sj
be the first time when it gets processed and lj be the time at which it enters the set L(t).
Since j must be processed uninterrupted in this interval (sj , lj ], the intervals associated with
different jobs are disjoint. Moreover job j entered L(t) because the total weight of jobs
released during (sj , lj ] is at least wj/ε. Thus the total weight of jobs in L can be upper
bounded by ε times the weight of all the jobs.

We now account for the weight of jobs which are rejected immediately on arrival. For job
j, let bbwjcc denote the weight-class of this job. Jobs assigned to a bucket in T+ have the
same weight-class, by construction of the buckets. Jobs assigned to a bucket in T− have the
same bbρjcc and bbpjcc, which pins down their weight wj = ρj · pj up to a factor of 4. This
gives us the following facts:
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70:8 Non-Preemptive Flow-Time Minimization via Rejections

Since we reject every (1/ε)th job in each bucket of T−, the total weight of jobs in J−
which get rejected immediately is at most 4ε times the weight of all jobs in J−.
Let J+

f be the subset of jobs in J+ which happen to be the first jobs to be assigned to
their respective buckets in T+. Then the weight of all jobs in J+ \ J+

f which get rejected
immediately on arrival is at most 2ε times the total weight of all the jobs in J+.

So it remains to account for the items items in J+
f , which are all rejected. Recall that a

job in J+ is assigned to the bucket indexed (bbα+
j /wjcc, bbwjcc) in T+. Jobs in J+

f are assigned
to distinct buckets in T+. Fix an integer γ, and let Jγ denote the jobs in J+

f which are
mapped to a bucket indexed (γ, κ) for some κ. The jobs in Jγ have distinct weight-classes
and so it suffices to bound the weight of the highest weight job in Jγ – let this heaviest job
be jγ . Let S denote the set of such jobs jγ as we range over all γ. Jobs in S have distinct
bbα+

j /wjcc values. Let Γ = {γ1 < γ2 < . . . < γk} be the integers γ for which there is a job
jγ ∈ S, and let the corresponding jobs in S be called j1, j2, . . . , jk.

Now starting from the smallest index in Γ, we charge each job jr ∈ S to a subset of jobs
of total weight at least wjr/ε. The job jr may charge to a job fractionally – if it charges to a
fraction δ of some job j, then it can only use δwj amount of weight of j for its charging (and
we say that “jr charges to δpj size of this job j”). Of course, we need to ensure that the
total fraction charged to a job is at most 1. We inductively maintain the following invariant
for all r ∈ 1 . . . k:

The job jr charges to jobs of total (fractional) weight at least wjr/8ε.
Jobs j1, . . . , jr charge to jobs of total (fractional) size at most 2γr .

Assuming these invariants hold for r−1, we show that they hold for r as well. Let ρ? := bbρjrcc
be the density class for job jr. By jr’s choice of bucket, bbαjr/wjrcc = γr, so

α+
jr
≥ 2γr · wjr . (6)

Recall from (2) that D+
jr

is the set of jobs of density class ρ? or higher which are active at
the time jr is released. Let Pr :=

∑
j∈D+

jr

pj be the total processing time of these jobs. By
(3), it follows that

α+
jr
≤ wjrPr. (7)

Combining (6) and (7), Pr ≥ 2γr . By the second invariant, the first r jobs j1, . . . , jr−1 have
only charged to jobs of total size at most 2γr−1 , so we can find jobs in D+

jr
of total (fractional)

size 2γr − 2γr−1 ≥ 2γr−1 which have not been charged yet, and charge to them. This proves
the second invariant.

To prove the first invariant, we know that α+
jr
≥ wjrpjr/ε, else jr would not be assigned

to T+. Moreover, α+
jr
≤ wjr2γr+1 by the bucketing, so 2γr ≥ pjr/2ε. Consequently, we

charge to jobs of total size at least 2γr−1 ≥ pjr/4ε, and these jobs have density class at least
ρ?. Since 2ρ? ≥ ρjr = wjr/pjr , we get their total (fractional) weight is at least wjr/8ε. This
proves the first invariant, and hence the following theorem.

I Theorem 4 (Few Rejections). The weight of jobs suffering immediate rejection, plus those
in ∪tL(t), is at most an O(ε) fraction of the weight of all jobs released.

4.2 Bounding the Weighted Fractional Flow-time
Next we show that the total fractional flow-time of A can be bounded in terms of total αj
values. We first focus on relating FA to the sum of the αj values, as described in (5).
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Observe that αj denotes the increase in objective function due to the arrival of j if we
had followed the preemptive HDF policy for all the jobs from time rj onwards. However, we
follow a slightly different policy – if j′ denotes the job that was running on the machine at
time j’s release time rj , we let j′ run until it finishes, or else until j′ belongs to the set L(t′)
at some time t′ ≥ rj . If no further jobs are released after j, the HDF policy after this time
t′ would be non-preemptive. Thus, we would still expect that the total fractional weighted
flow-time of our algorithm to be close to

∑
j αj . We formalise this intuition now. For every

job j, we define a job φ(j) as follows: let j′ be the job which was running just before time rj
(i.e., in the slot [rj − 1, rj ]). If j′ /∈ L(rj), we define φ(j) to be j′, otherwise we leave φ(j)
undefined. Our policy for adding a job to the set L(t) ensures that for every job j, w(φ−1(j))
is at most wj/ε. 1 Recall that Jimmed is the set of jobs which get rejected immediately upon
arrival. The following lemma, whose proof is deferred to the full version, states that the
fractional weighted flow-time of the algorithm can be charged to the αj values of the jobs
which get immediately rejected.

I Lemma 5. The fractional weighted flow-time of A is at most
∑
j:j /∈Jimmed αj +

∑
j wjpj/ε.

Proof. Jobs in Jimmed get rejected immediately, so their flow-time is 0. We now consider the
jobs which are not immediately rejected in the rest of the proof. Consider the jobs in order
of increasing release times. Let ∆j denote the increase in the objective function value due to
arrival of j. In other words, if J1 is the set of jobs released before j, then ∆j equals the total
fractional weighted flow-time of A on the input J2 := J1 ∪ {j} minus that on the input J1.
The total weighted flow time of A on the entire input would be

∑
j ∆j , the sum of these

increases. We now show that

∆j ≤ αj + wjpφ(j). (8)

Since w(φ−1(j′)) ≤ wj′/ε, we get that
∑
j wjpφ(j) =

∑
j′ w(φ−1(j′))pj′ ≤

∑
j′ wj′pj′/ε.

Hence, summing (8) over all j which are not in Jimmed proves the lemma.
Now we prove (8). Since we will be dealing with two inputs, J1 and J2, we parameterise

all quantities by J1 or J2 to clarify which input we refer to. For example, A(Jk, t), k = 1, 2
will refer to the active set A(t) on input Jk. Let F (Jk, t) denote the fractional weighted
flow-time of jobs in A(Jk, t) beyond time t, i.e., F (Jk, t) :=

∑
t′≥t

∑
j∈A(Jk,t′) wj(t

′).
There are two cases when job j arrives. If φ(j) is undefined, the job j′ running in slot

[rj − 1, rj ] belongs to L(rj). Hence the algorithm A on both inputs J1, J2 just runs HDF
starting at time rj . The difference between the corresponding flow times is precisely αj , by
definition.

Otherwise φ(j) is well-defined. Since j is the latest arrival, the job φ(j) will not be
preempted, and runs to completion. Say job φ(j) completes at time t′. During the time
[rj , t′] the difference in fractional weighted flow-time between the two runs is precisely
wj · (t′ − rj) ≤ wjpφ(j). After time t′ we run HDF on the remaining jobs, and the difference
in the fractional weighted flow-time of the two runs is precisely what αj would have been
had j arrived at time t′ instead of time rj . In other words, if J ′ := A(Jk, rj) \ {φ(j)},

F (J2, t
′)− F (J1, t

′) = wjpj/2 +
∑

j′∈J ′:ρj′≥ρj

wjpj′(t′) +
∑

j′∈J ′:ρj′<ρj

wj′(t′)pj

= wjpj/2 +
∑

j′∈J ′:ρj′≥ρj

wjpj′(rj) +
∑

j′∈J ′:ρj′<ρj

wj′(rj)pj

1 For a set S of jobs, let w(S) denote the total weight of jobs in S.
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But this is a subset of the terms of αj : indeed, we’re just missing the term corresponding to
job φ(j). Hence, the total difference is at most αj + wjpφ(j), proving (8). J

To bound our flow time against the optimum using this lemma, note that
∑
j wjpj/ε ≤

2FO/ε, where we recall that O denotes the optimal offline schedule, and FO its fractional
weighted flow time. So we just need to bound

∑
j αj =

∑
j
wjpj/2 +

∑
j α

+
j +

∑
j α
−
j . The

first term is again bounded by FO, so the work is in bounding the other two terms. We first
record a convenient lemma – its proof is based on LP duality arguments and construction of
dual variables are similar to those in [2], and is deferred to the full version.

I Lemma 6 (Duality-based Lower Bound on OPT).
∑
j∈Jimmed αj ≤ FO +

∑
j
wjpj/ε.

4.3 Controlling the α Terms
In this section, our goal is to establish the approximate inequality ε

∑
j αj .

∑
j∈Jimmed αj ,

introduced in (5).

I Lemma 7.
∑
j α

+
j ≤ O(1/ε) ·

(∑
j wjpj +

∑
j∈Jimmed α

+
j

)
.

Proof. The definition of J+ implies that
∑
j /∈J+ α

+
j ≤

∑
j /∈J+ wjpj/ε. It remains to bound∑

j∈J+ α
+
j . We do an accounting per bucket in T+. Fix a bucket B indexed by a pair (κ, λ),

i.e., all jobs j in this bucket have bbα+
j /wjcc = κ, and bbwjcc = λ. Hence, if j is any job in this

bucket, then 2κ ≤ α+
j /wj ≤ 2κ+1, and 2λ ≤ wj ≤ 2λ+1. Multiplying, 2κ+λ ≤ α+

j ≤ 4 · 2κ+λ,
i.e., the α+

j values of any two jobs in this bucket differ by a factor of at most 4.
Let JB denote the jobs in J+ assigned to this bucket B, and nB denote their cardinality

|JB |. Since we reject the first job and then every subsequent (1/ε)th job in JB , we immediately
reject at least ε nB jobs in JB . Therefore,∑

j∈JB

α+
j ≤

4
ε
·

∑
j∈JB∩Jimmed

α+
j .

Summing over all buckets, the lemma follows. J

I Lemma 8.
∑
j α
−
j ≤ O(1/ε) ·

(∑
j wjpj +

∑
j∈Jimmed αj

)
.

Proof. The argument is similar to Lemma 7 in spirit, but technically more involved. The
reason is that we do not remove any jobs from a bucket of T− until it has 1/ε jobs assigned
to it. Hence, for a bucket B, if JB is non-empty but |JB | ≤ 1/ε, we have JB ∩ Jimmed = ∅.
However, if J−f is the set of jobs in J− which are the first jobs assigned to their corresponding
buckets in T−, then we get (as in the proof of Lemma 7) that

∑
j

α−j ≤ O(1/ε) ·
(∑

j

wjpj +
∑

j∈Jimmed

α−j +
∑
j∈J−

f

α−j

)
. (9)

It remains to bound
∑
j∈J−

f
α−j , which we accomplish via the following claim. Since the

proof is more technical, we defer it to the next section.

I Claim 9.
∑
j∈J−

f
α−j ≤ O(ε) ·

(∑
j wjpj +

∑
j α

+
j

)
.

Combining this with (9) and Lemma 7, using that α+
j + wjpj/2 + α−j = αj , the lemma

follows. J

Combining Lemmas 7 and 8 along with Lemma 5 and Lemma 6, we get

I Theorem 10. The fractional weighted flow-time of the non-rejected jobs in A is O(FO/ε2).
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4.3.1 Proof of Claim 9
Define Λ+ :=

∑
j α

+
j . Recall that for a job j, its density class is given by bbρjcc = bbwj/pjcc.

For each density class δ ∈ Z, let us define some notation:
Let Aδ(t) := {j ∈ A(t) | bbρjcc = δ} denote jobs in A(t) whose density class is δ.
Let P δ(t) :=

∑
j∈Aδ(t) pj(t) and W δ(t) :=

∑
j∈Aδ(t) wj(t) be the total processing time

and residual weight of jobs in Aδ(t), respectively. Since all jobs in this set have the same
density class, observe that W δ(t)

P δ(t) also lies in the range [2δ, 2δ+1).
Define P δ := maxt P δ(t) and W δ := maxtW δ(t).

Our proof shows that
∑
δ P

δW δ is small; then we bound
∑
j∈J−

f
α−j by

∑
δ P

δW δ. The
proof of the following technical lemma is deferred to the full version.

I Lemma 11.
∑
δ P

δW δ ≤ O(1) ·
(∑

j wjpj + Λ+
)
.

I Lemma 12.
∑
j∈J−

f
α−j ≤ O(ε) ·

∑
δ P

δW δ.

Proof. Let us first give a general method for bounding α−j of any job j ∈ J−, and then we
can apply it to the jobs in J−f ⊆ J−. Recall that the jobs which contribute to α−j are the
ones with a strictly smaller density class than that of j. We now show that one need not
look at jobs of all such classes, and a subset of these classes suffice. Fix a job j ∈ J− of
density class δ, and define an index set Ij as {θ < δ | P θ(rj) ≥ (1.5)δ−θpj/8ε}.

I Claim 13. For any job j ∈ J− with density class δ, α−j ≤ 4pj ·
∑
θ∈Ij W

θ.

Proof. Let j′ be a job in A(rj) of strictly lower density class than j. Its contribution towards
α−j is pjwj′(rj). Therefore, α−j is at most∑

θ<δ

pjW
θ(rj) = pj ·

∑
θ∈Ij

W θ(rj) + pj ·
∑

θ/∈Ij ,θ<δ

W θ(rj). (10)

Let us bound the summation from the second expression.

∑
θ/∈Ij ,θ<δ

W θ(rj) ≤
∑

θ/∈Ij ,θ<δ

2θ+1 P θ(rj) ≤
∑
θ<δ

(1.5)δ−θ

2δ−θ · 2δpj
4ε ≤

3wj
4ε . (11)

Substituting (11) into (10), and using that α−j ≥ wjpj/ε for all jobs j ∈ J−, we get that
αj/4 ≤ pj

∑
θ∈Ij W

θ(rj) ≤ pj
∑
θ∈Ij W

θ, which proves the desired result. J

Recall that job j ∈ J− is mapped in table T− to the bucket indexed by (bbα−j cc, bbρjcc, bbpjcc).
For a fixed pair (δ, η), consider the jobs in J−f which are mapped to buckets indexed (γ, δ, η)
with various values of γ, and denote these jobs by J(δ,η). Since J−f only contains the first job
in each bucket, the bbα−j cc values of the various jobs in J(δ,η) are all distinct. It follows that if
j? is the job in J(δ,η) with the highest α−j value, then

∑
j∈J(δ,η)

α−j ≤ 4α−j? . Thus, we just
need to worry about one job per J(δ,η) – let S denote this set of jobs.

The ordered pairs (bbρjcc, bbpjcc) corresponding to jobs j ∈ S are all distinct. For density
class δ, let Sδ denote the jobs in S with density class δ. Using Claim 13,∑

j∈Sδ
α−j ≤ 4

∑
j∈Sδ

pj
∑
θ∈Ij

W θ = 4
∑
θ<δ

W θ
∑

j∈Sδ:θ∈Ij

pj . (12)
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The jobs in Sδ also have different bbpjcc values, so the sum
∑
j∈Sδ:θ∈Ij pj ≤ 4pj′ for the job

j′ := arg max{pj | j ∈ Sδ, θ ∈ Ij}. By definition of Ij , pj′ ≤ 8εP θ/(1.5)δ−θ. Substituting
into (12),∑

j∈Sδ
α−j ≤ 16

∑
θ<δ

8ε W θP θ

(1.5)δ−θ . (13)

To complete the argument,
∑
j∈J−

f
α−j is at most

4
∑
δ

∑
j∈Sδ

α−j
eq.(13)
≤ 29ε

∑
δ

∑
θ<δ

W θP θ

(1.5)δ−θ = 29ε
∑
θ

W θP θ ·
∑
δ>θ

1
(1.5)δ−θ = O

(
ε
∑
θ

W θP θ
)
.

This completes the proof of Lemma 12. J

Combining Lemmas 11 and 12 completes the proof of Claim 9, and hence for Theorem 10.
In the full version of the paper we show that the algorithm is competitive even against an
optimal algorithm that is allowed (1 + ε)-speed augmentation – and hence prove Theorem 2.

5 Extension to Unrelated Machines

The extension of our result on single machine to the more general scenario of unrelated
machines can be done very modularly. We shall use the following result from [7, 2].

I Theorem 14. There is an online algorithm D which dispatches each arriving job j imme-
diately upon arrival to one of the m machines such that the following property holds: if J (i)

is the set of jobs which are dispatched to machine i and Oε′,i is the optimal solution to J (i)

when we have only one machine with speed (1 + ε′), then
∑
i F
Oε
′,i is at most 1/ε′ times the

optimal weighted flow-time of J .

The algorithms in [7, 2] actually build a schedule as well and use this schedule to immediately
dispatch a job. The algorithm D can build this schedule in the background and use it to
dispatch jobs, but not use it for actual processing. It follows from Theorem 14 and our
result showing that our algorithm is also competitive against an optimal algorithm that is
allowed (1 + ε)-speed augmentation (which we defer to the full version), that if we run our
algorithm on each of the machines i (with input J (i) arriving on-line) independently, then
the total weighted flow-time of non-rejected jobs in our algorithm is at most O(1/ε3) times
the optimal value.
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Abstract
Suppose a set of requests arrives online: each request gives some value vi if accepted, but requires
using some amount of each of d resources. Our cost is a convex function of the vector of total
utilization of these d resources. Which requests should be accept to maximize our profit, i.e., the
sum of values of the accepted demands, minus the convex cost?

We consider this problem in the random-order a.k.a. secretary model, and show an O(d)-
competitive algorithm for the case where the convex cost function is also supermodular. If the set
of accepted demands must also be independent in a given matroid, we give an O(d3α)-competitive
algorithm for the supermodular case, and an improved O(d2α) if the convex cost function is also
separable. Here α is the competitive ratio of the best algorithm for the submodular secretary
problem. These extend and improve previous results known for this problem. Our techniques are
simple but use powerful ideas from convex duality, which give clean interpretations of existing
work, and allow us to give the extensions and improvements.
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1 Introduction

The problem we consider is a basic convex optimization problem in the online setting: n
items appear one-by-one. Each item/element e has a d-dimensional size s(e) ∈ Rd+ and a
value v(e) ∈ R+, which are both revealed to us when the item arrives.We must either accept
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or reject an item when it arrives, before seeing the future items. If we accept a certain subset
A ⊆ [n] of the items, we get their total value v(A) :=

∑
e∈A ve, but incur a production cost

g(s(A)) := g(
∑
e∈A s(e)), where g : Rd+ → R+ is a non-decreasing convex cost function with

g(0) = 0. Optionally, we may also be given a downwards-closed family of subsets F ⊆ 2[n],
and now the accepted set of elements A must lie in F . More formally, we want to solve

max
A∈F

profit π(A) :=
[
v(A)− g(s(A))

]
. (1.1)

This question arises, e.g., when we are selling some service that depends on d commodities,
where the value is the amount of money customer e is willing to pay for the service, and the
size vector s(e) is the amount of resources she will require. The cost function g(·) captures
our operating expenses; its convexity models diseconomies of scale that arise when dealing
with scarce commodities. In particular, it can capture d-dimensional knapsack constraints,
by setting g(z) = 0 until the knapsack size, and ∞ afterwards. When the cost function
is linear g(z) = 〈a, z〉, we want to pick a max-weight subset from F using item weights
v(e)− 〈a, s(e)〉, which is tractable/approximable for F being a matroid, p-system, etc.

Blum et al. [6] defined this problem in the adversarial model, and gave posted-price
algorithms for “low-degree” separable cost functions g, that is, of the form g(z) =

∑d
i=1 gi(zi)

for 1-dimensional functions gi’s. This result was tightened by Huang and Kim [16], still for
separable functions with additonal growth control. More recently, Azar et al. [3] studied this
problem for more general supermodular non-separable convex functions g (see also [9]). A
differentiable function g is supermodular if for any vectors x ≤ x′ we have ∇g(x) ≤ ∇g(x′).
Equivalently, if g is twice-differentiable, it is supermodular if ∂2g

∂xi∂xj
≥ 0 for all i 6= j, i.e.,

increasing the consumption of a resource cannot decrease the marginal cost for another.
However, to handle the worst-case ordering, Azar et al. also require the cost functions to
have essentially low-degree.

Can we do better by going beyond the worst-case model? In this paper, we focus on the
random-order or “secretary” setting, where the set of items is fixed by an adversary but they
arrive in random order. In the single-dimensional case d = 1, it is easy to see that a solution
that learns a “good” threshold λ and picks all further items with density v(e)/s(e) at least λ
essentially gives a constant approximation, much like in the secretary and knapsack secretary
problems [13, 4]. The multi-dimensional case is much more challenging. This was studied by
Barman et al. [5], again assuming a separable cost function g(z) =

∑d
i=1 gi(zi). They give an

O(d)-competitive algorithm for the unconstrained case, and an O(d5α)-competitive algorithm
for the problem with a downward closed constraint set F , where α is the competitive ratio
for the F -secretary problem. Their main idea is to perform a clever decomposition of the
value of each item into “subvalues” vi(e) for each of the coordinate cost functions gi’s; this
effectively decomposes the problem into d 1-dimension problems with values vi’s and costs
gi’s. Unfortunately, since their solution explicitly relies on the decomposability of the cost
function, it is unclear how to extend it to general supermodular functions. We note that
when the cost function is supermodular, the profit function is a submodular set function
(Section 2.1). However, the profit can take negative values, and then existing algorithms for
submodular maximization break down.

Our work is then motivated by trying to better understand the multi-dimensional nature
of this problem, and provide a more principled algorithmic approach.

1.1 Our Results
We use techniques from convex duality to re-interpret, simplify, and improve the existing
results. First, we obtain the first approximation for non-separable supermodular cost
functions. (We omit some mild regularity conditions for brevity; see Section 3 for full details.)
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I Theorem 1 (Unconstrained & Supermodular). For the unconstrained problem with super-
modular convex cost functions g, we give an O(d)-competitive randomized algorithm in the
random-order model.

This result generalizes the O(d)-approximation of Barman et al. [5] to the non-separable
case. The factor d seems unavoidable, since our problem inherits the (offline) Ω(d1−ε)
hardness of the d-dimensional knapsack, assuming NP 6= ZPP [7].

Next, we consider the constrained case. For simplicity, we focus on the most interesting
case where F is a matroid constraint; more general results can be obtained from the results
and techniques in Section 5.

I Theorem 2 (Constrained & Separable). For the constrained problem with F being a matroid
constraint, and the cost function g being separable, we get an O(d2 log log rank)-competitive
randomized algorithm in the random-order model.

This improves by a factor of d3 the O(d5 log log rank)-approximation given by [5]. Finally,
we give a general reduction that takes an algorithm for separable functions and produces an
algorithm for supermodular functions, both with respect to a matroid constraint, implying:

I Theorem 3 (Constrained & Supermodular). For the constrained problem with F being a
matroid constraint, and the cost function g being supermodular, we get an O(d3 log log rank)-
competitive randomized algorithm in the random-order model.

On conceptual contributions are in bringing techniques from convex duality to obtain, in
a principled way, threshold-based algorithms for non-linear secretary problems. Since this is
a classical and heavily used algorithmic strategy for secretary problems [13, 4, 18, 2, 20] we
hope that the perspectives used here will find use in other contexts.

1.2 Other Related Work
There is a vast literature on secretary problems [13]. Closest to our setting, Agrawal and
Devanur study an online convex optimization problem in the random order model, and give
a powerful result showing strong regret bounds in this setting [1]. They extend this result to
give algorithms for online packing LPs with “large” right-hand sides. However, it is unclear
how to use their algorithm to obtain results in our setting. Other algorithms solving packing
LPs with large right-hand sides appear in [2, 8, 20, 17, 14, 10].

Feldman and Zenklusen [12] show how to transform any algorithm for (linear) matroid
secretary into one for submodular matroid secretary. They give an O(log log rank)-algorithm
for the latter, based on results of [19, 11]. All these algorithms critically assume the
submodular function is non-negative everywhere, which is not the case for us, since picking
too large a set may cause the profit function to go negative. Indeed, one technical contribution
is a procedure for making the profit function non-negative while preserving submodularity
(Section 4.1), which allows us to use these results as part of our solution.

1.3 Structure of the paper
Section 3 develops the convex duality perspective used in the paper for the offline version of
the unconstrained case, hopefully in an manner accessible to non-experts. Section 4 gives
the small changes required to extend this to the constrained case. Section 5 shows how
transform these into online algorithms. Section 6 shows how to convert an algorithm for
separable functions into one for supermodular functions, both subject to matroid constraints.
To improve the presentation, we make throughout mild assumptions, which are discharged in
the full version of the paper.
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2 Preliminaries

Elements from a universe U of size n are presented in random order. Each element e has
value v(e) ∈ R+ and size s(e) ∈ Rd+. We are given a convex cost function g : Rd+ → R+.
On seeing each element we must either accept or discard it. A downwards-closed collection
F ⊆ 2U of feasible sets is also given. When F = 2U , we call it the unconstrained problem.
The goal is to pick a subset A ∈ F to maximize the profit

π(A) :=
∑
e∈A

v(e)− g
(∑
e∈A

s(e)
)
. (2.2)

We often use vectors in {0, 1}n to denote subsets of U ; χA denotes the indicator vector for
set A. Hence, F ⊆ {0, 1}n is a down-ideal on the Boolean lattice, and we can succinctly
write our problem as

max
x∈F

π(x) := 〈v, x〉 − g(Sx), (2.3)

where columns of S ∈ Rd×n are the item sizes. Let opt denote the optimal value. For a subset
A ⊆ U , v(A) and s(A) denote

∑
e∈A v(e) = 〈v, χA〉 and

∑
e∈A s(e) = SχA respectively.

I Definition 4 (Exceptional). Item e ∈ U is exceptional if arg maxθ∈[0,1]
{
θ v(e)−g(θ s(e))} ∈

(0, 1).

I Definition 5 (Marginal Function). Given g : Rd → R, define the ith marginal function
gi : R→ R as gi(x) := g(xei), where ei is the ith standard unit vector.

I Definition 6 (Convex Dual). For any function g : Rd → R, its convex dual is the function
g? : Rd → R given by g?(y) := supx

[
〈y, x〉 − g(x)

]
.

2.1 Supermodular Functions
While supermodular functions defined over the Boolean lattice are widely considered, one
can define supermodularity for all real-valued functions.

I Definition 7 (Supermodular). Let X ⊆ Rd be a lattice. A function f : X → R is
supermodular if for all x, y ∈ X, f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y), where x ∧ y and x ∨ y
are the component-wise minimum and maximum operations.

This corresponds to the usual definition of (discrete) supermodularity when X = {0, 1}d. For
proof of the lemma below and other equivalent definitions, see, e.g., [21].

I Lemma 8 (Supermodularity and Gradients). A convex function f : Rd+ → R is supermodular
if and only if any of the following are true.
∇f is increasing in each coordinate, if f is differentiable.
∂2f(x)
∂xi∂xj

≥ 0 for all i, j, if f is twice-differentiable.

I Lemma 9 (Superadditivity). If f : Rd+ → R is differentiable, convex, and supermodular,
then for x, x′, y ∈ Rd+ such that x′ ≤ x, f(x′ + y)− f(x′) ≤ f(x+ y)− f(x). In particular, if
f(0) = 0, setting x′ = 0 gives f(x) + f(y) ≤ f(x+ y).

I Corollary 10 (Subadditivity of profit). The profit function π is subadditive.

The next fact shows that the cost g is also supermodular when seen in a discrete way.

I Fact 11 (Continuous vs. Discrete Supermodularity). Given a convex supermodular function
g : Rd → R and n items with sizes s1, . . . , sn ∈ Rd+, define the function h : {0, 1}n → R as
h(v) = g(

∑
i sivi) = g(Sv). Then h(·) is a (discrete) supermodular function.
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3 The Offline Unconstrained Problem

We first present an offline algorithm for supermodular functions in the unconstrained case
(where F = {0, 1}n). We focus on the main techniques and defer some technicalities and all
computational aspects for now. Just for this section, we assume item sizes are “infinitesimal”.
We make the following assumptions on the cost function g and the elements.

I Assumption 12. We assume that cost function g is non-negative, strictly convex, closed,
and differentiable. We assume g(0) = 0, g is supermodular, and that gradients of g go to
∞ along every positive direction. We assume elements are in general positionand that there
are no exceptional items. We also assume that every individual item has profit at most
M := opt/ηd for η ≥ 104 (see the full version to remove these assumptions).

Classifiers. The offline algorithm will be based on linear classifiers, where a set of weights
is used to aggregates the multidimensional size of an item into a scalar, and the algorithm
picks all items that have high-enough value/aggregated-size ratio.

I Definition 13 (Classifiers and Occupancy). Given a vector λ ∈ Rd+ (a “classifier”), define the
set of items picked by λ as Uλ := {e ∈ U | v(e) ≥ 〈λ, s(e)〉}. Let occλ :=

∑
e:v(e)≥〈λ,s(e)〉 s(e)

denote the multidimensional occupancy induced by choosing items in Uλ.

To understand the importance of classifier-based solutions it is instructive to consider the
problem with single-dimensional size. A little thought shows that an optimal solution is to
pick items in decreasing order of value density v(e)/s(e). Adding these items causes the total
occupancy – and hence the incurred cost – to increase, so we stop when the value density of the
current item becomes smaller than the derivative of the cost function at the current utilization.
That is, we find a density threshold λ such that g′(total size of items having v(e) ≥ λ s(e)) ≈
λ, and take all these high-density items. Thus, the optimal solution is one based on the
classifier λ.

To see that this holds in the multi-dimensional case, express g in terms of linearizations

g(z) = max
λ∈Rd+

(〈λ, z〉 − g?(λ)), (3.4)

where g? is its Fenchel dual. (Note we are maximizing over positive, but this is WLOG.)
Then our unconstrained problem (2.2) becomes a minimax problem:

max
x∈{0,1}n

min
λ∈Rd+

[
〈v, x〉 −

(
〈λ, Sx〉 − g?(λ)

)]
.

Consider an optimal pair (x∗, λ∗); i.e., a pair that is a saddle-point solution, so neither
x∗ nor λ∗ can be improved keeping the other one fixed. This saddle-point optimality implies:
(a) Since λ∗ = argmaxλ∈Rd+(〈λ, Sx∗〉 − g?(λ)), it is the right linearization of g at Sx∗ and

thus λ∗ = ∇g(Sx∗) (see [15, Theorem E.1.4.1] and [15, Corollary E.1.3.6]).
(b) x∗ is such that x∗i = 1 if vi > 〈λ∗, Si〉 and x∗i = 0 if vi < 〈λ∗, Si〉, with Si being the ith

column of S and the size of the ith item.

From part (b) we see the optimal solution x∗ is essentially the one picked by the classifier
λ∗ (ignoring coordinates with “0 marginal value” vi = 〈λ∗, Si〉). The converse also holds.

I Claim 14. For a classifier λ ∈ Rd+, let x be the items picked by it. If we have λ =
∇g(Sx) def= ∇g(occλ), then x is an optimal solution.

ICALP 2018
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Proof. For any solution x′,

π(x′) = 〈v, x′〉 − g(Sx′) ≤ 〈v, x′〉 − 〈λ, Sx′〉+ g?(λ)

≤ 〈v, x〉 − 〈λ, Sx〉+ g?(λ) (λ=∇g(Sx))= 〈v, x〉 − g(Sx) = π(x),

where the second inequality holds since, by definition, x maximizes 〈v, x〉 − 〈λ, Sx〉. J

Restricting the Set of Classifiers. The existence of such good classifiers is not enough,
since we need to find them online. This is difficult not only because of d degrees of freedom
and no control over the magnitude of the values/sizes (to be exploited in concentration
inequalities), but also because picking too few or too many items could lead to low profits.

So we restrict the set of candidate classifiers to be a monotone41-dimensional curve
C ⊆ Rd+, satisfying additional properties given below. The main motivation is that it imposes
a total ordering on the set of items picked by the classifiers: given λ ≤ µ on such a curve C,
the sets of items picked satisfy the inclusion Uλ ⊇ Uµ. This allows us to select a “minimally
good” classifier in C in a robust way, avoiding classifiers that select too many items.

To design the curve C so it contains a classifier with profit ≈ opt
d , we relax the condition

∇g(occλ) = λ from Claim 14 (too much to ask) and require the existence of λ ∈ C satisfying:
(P1) (don’t pick too many items) ∇g(occλ) ≤ λ.
(P2) (partial gradient equality) There is a coordinate i∗ where (∇g(occλ))i∗ = λi∗ .
(P3) (balanced curve) g?i (λi) = g?j (λj) ∀i, j ∈ [d].

Property (P1) enforces half of the equality in Claim 14, and (P2) guarantees that equality
holds for some coordinate. Now for property (P3). Since λ 6= ∇g(occλ) the optimality proof
of Claim 14 does not go though, since g(occλ) 6= 〈λ, occλ〉 − g?(λ). As we prove later, the
difference between these terms can be at most g?(λ) ≤

∑
i g
?
i (λi). Property (P3) is used

to control this sum, by charging it to the coordinate i∗ where we know we have “the right
linearization” (by property (P2)). Reinterpreting the construction of [5] in our setting, we
then define C as any monotone curve where every λ ∈ C satisfies (P3).

I Lemma 15. The curve C exists and contains a λ satisfying properties (P1)-(P3).

Proof. We first show existence, that is, the set {λ ∈ Rd+ | g?i (λi) = g?j (λj) ∀i, j} contains a
monotone curve. Notice that this set is the union of the box {λ ∈ Rd+ | g?i (λi) = 0 ∀i} =∏
i[0, g′i(0)] (range of slopes where we can swivel around gi(0) = 0) and a monotone curve
{λ(τ) | τ > 0}, where λ(τ) is the unique vector satisfying g?i (λi(τ)) = τ ; uniqueness follows
from the fact g?i stays at value zero in the interval [0, g′i(0)], but after that is strictly increasing
due to its convexity, and monotonicity of this curve also follows from monotonicity of the
g?i ’s. Thus, C is this curve plus any monotone curve extending it to the origin.

To see that C satisfies properties (P1) and (P2), we note that since the g?i ’s are increasing
and not identically 0, C is unbounded in all coordinates. Thus, a sufficiently large λ ∈ C
satisfies (P1), and we can start with such λ and move down the curve (decreasing in each
coordinate) until we obtain λ′ ∈ C with λ′ = ∇g(occλ′), since the g has increasing gradients.
(The equality in this final step uses the assumption that item sizes are infinitesimal, which
we made for simplicity in this section). J

Making the above discussion formal, we show that C has a high-value classifier. Recall
that Uλ is the set of items picked by λ (Definition 13).

4 A curve C is monotone if for every pair λ, λ′ ∈ C, one is coordinate-wise smaller than the other.
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I Theorem 16. Given Assumption 12, let λ∗ be a classifier in C satisfying properties (P1)-
(P3). Then for all x′ ∈ [0, 1]n we have π(Uλ∗) ≥ 1

d+1 · π(x′).

Proof. Let x∗ = χU∗
λ
be the solution picked by the classifier λ∗, and note that occλ∗ = Sx∗.

Let L(y, µ) := 〈v, y〉 − [〈µ, Sy〉 − g?(µ)] be the linearization of π(y) at some slope µ. From
(3.4) we know g(y) ≥ L(y, µ) for all µ ≥ 0. Since x∗ is optimal for the linearization L(y, λ∗)
(because x∗i = 1 iff vi − 〈λ∗, Si〉 ≥ 0), we have

L(x∗, λ∗) ≥ L(x′, λ∗) ≥ π(x′) for all x′ ∈ [0, 1]n. (3.5)

Now we relate the true profit π(x∗) to this linearized value. Observe that

π(x∗) = 〈v, x∗〉 − g(Sx∗) = 〈v, x∗〉 − [〈∇g(Sx∗), Sx∗〉 − g?(∇g(Sx∗))]
≥ 〈v, x∗〉 − 〈λ∗, Sx∗〉︸ ︷︷ ︸

≥0

+ g?(∇g(Sx∗))︸ ︷︷ ︸
≥0

, (3.6)

where the inequality uses that λ∗ ≥ ∇g(Sx∗) by property (P1) and Sx∗ ≥ 0. The first term
is non-negative because we only pick items for which vi − 〈λ, Si〉 ≥ 0. The second term is
non-negative because g(0) = 0. We can now prove three lemmas that imply the theorem.

I Lemma 17. For any x′ ∈ [0, 1]n, π(x∗) ≥ L(x∗, λ∗)− g?(λ∗) ≥ π(x′)− g?(λ∗).

Proof. Drop the second term from (3.6), then use the definition of L(·, ·) and (3.5). J

I Lemma 18. g?(λ∗) ≤ d · g?i∗(λ∗i∗).

Proof. Using the superadditivity of g, one can show g?(λ∗) ≤
∑
i g
?
i (λ∗i ). Now from property

(P3) of the classifier λ∗, all the terms in the sum are equal. J

I Lemma 19. π(x∗) ≥ g?i∗(λ∗i∗).

Proof. We claim that g?(∇g(Sx∗)) ≥ g?i∗(λ∗i∗); plugging this into (3.6) proves the lemma.
For the claim, define λ′ = ∇g(Sx∗). By Property (P2), λ′i∗ = λ∗i∗ , so we want to show
g?(λ′) ≥ g?i∗(λ′i∗) = g?(λ′i∗ei∗). This follows because g? is monotone. J

This completes the proof of Theorem 16. J

4 The Offline Constrained Case

Having built up tools and intuition in the unconstrained case, we turn to the case where
there is a downwards-closed constraint F ⊆ {0, 1}n, and the goal is to maximize the profit
subject to x ∈ F . We again work with Assumption 12, but do not assume anything about
items sizes. We discuss computational aspects at the end of this section.

The general idea is again to use classifiers λ ∈ Rd+, and only consider items in Uλ, namely
those with “high-enough” value vi ≥ 〈λ, Si〉. However, because of the constraints F we may
no longer be able to pick all these items. Thus, we need to consider the most profitable
solution from F in this filtered feasible set Uλ (whose quality is less clear how to analyze).

Again we restrict to the 1-dimensional curve C defined in the previous section; however,
it only satisfies slightly modified versions of properties (P1)-(P2), since we do not assume
the item sizes to be infinitesimal anymore. To make this precise, define the “open” set
U °
λ := {e ∈ U | v(e) > 〈λ, s(e)〉}; note the strict inequality. Under the assumption of

items being in general position, there is at most one “threshold” item with vi = 〈λ, Si〉, i.e.,
|Uλ \ U °

λ| ≤ 1. Now a “good” classifier is one that satisfies the following:
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(P1’) For all binary x with support(x) ⊆ U °
λ and x ∈ F , ∇g(Sx) ≤ λ.

(P2’) There exists a binary xocc with support(xocc) ⊆ Uλ and xocc ∈ F , and index i∗ such
that (∇g(Sxocc))i∗ ≥ λi∗ . (Note that if support(xocc) ⊆ U °

λ, then by property (P1’) the
above inequality holds at equality; else xocc contains the unique element in Uλ \ U °

λ.)
(P3’) This is the same as before: g?i (λi) = g?j (λj) ∀i, j ∈ [d].

The arguments of Lemma 15 show the following.

I Lemma 20. Given Assumption 12, the curve C defined in the previous section contains a
λ satisfying properties (P1’)-(P3’).

Next, we show that for a good classifier λ ∈ C, the maximum profit solution from F contained
within U °

λ essentially gives an O(1/d)-approximation.

I Theorem 21 (Offline Approach). Suppose Assumption 12 holds. Let λ∗ be a classifier in C
satisfying properties (P1’)–(P3’). Then the better of the two solutions: (a) the maximum
profit solution in F containing elements only from U °

λ∗ , and (b) the optimal single element
in Uλ∗ , has profit at least π(x′)/(2d+ 1) for any vector x′ ∈ Conv(F ) ⊆ [0, 1]n.

Proof. The idea is to follow the development in Theorem 16. There same solution x∗ satisfied
the value lower bounds of Lemmas 17 and 19; to satisfy the first lemma, we needed the
solution to be optimal for the linearization of π using “slope” λ∗; to satisfy the second, we
needed to satisfy (P2). Here, we construct two solutions in F intersect Uλ∗ to satisfy these
lemmas separately:

xlin := argmax{〈v, y〉 − 〈λ∗, Sy〉 | y ⊆ U °
λ∗ , y ∈ F}

xocc := the solution promised by property (P2’).

Since property (P1’) and (P3’) holds for xlin, Lemmas 17 and 18 hold essentially un-
changed, and thus for any vector x′ ∈ Conv(F ) we have

π(xlin) ≥ π(x′)− d · g?i∗(λ∗i∗). (4.7)

The solution xocc may not belong to the set U °
λ∗ , since it may contain the threshold item

e◦ = 〈λ∗, s(e◦)〉, if it exists (let x◦ = χ{e◦} be its characteristic vector, all 0’s vector if does
not exists). Let xrest = xocc − x◦.

I Lemma 22. These solutions satisfy π(xrest) + π(x◦) ≥ g?i∗(λ∗i∗).

Proof. Property (P1’) gives∇g(Sxrest) ≤ λ∗, and Property (P2’) implies∇g(S(xrest+x◦)) =
∇g(Sxocc) is at least λ∗ at some coordinate i∗. Since g is convex and differentiable, the
gradients are continuous [15, Remark D.6.2.6], so there is δ ∈ [0, 1] where the vector
x̂ := xrest + δx◦ satisfies ∇g(Sx̂) ≤ λ∗ and ∇g(Sx̂)i∗ = λ∗i∗ for some coordinate i∗. Due to
these properties, the proof of Lemma 19 holds for x̂ and shows π(x̂) ≥ g?i∗(λ∗i∗).

The assumption of no exceptional items gives π(δx◦) ≤ π(x◦). From subadditivity of
profit π, g?i∗(λ∗i∗) ≤ π(x̂) ≤ π(xrest)+π(δx◦) ≤ π(xrest)+π(x◦). This concludes the proof. J

Combining Lemma 22 with inequality (4.7) we have π(x′) ≤ π(xlin) + d π(xrest) + d π(x◦) for
any x′ ∈ F . Since xlin, xrest are feasible for (a) in the theorem statement, and x◦ is feasible
for (b), the best of them gives a (2d+ 1)-approximation. This proves Theorem 21. J
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Picking the most profitable singleton is trivial offline, and well-approximable online by
the secretary algorithm [13]. Moreover, we need to approximately optimize the submodular
function π (Fact 11) over F |U°

λ∗
(i.e., the sets in F with only elements of U °

λ∗). For
several constraint structures (e.g., matroids, p-systems), there are known algorithms for
approximately optimizing non-negative (and sometimes also monotone) submodular functions.
Unfortunately, our profit function π may take negative values, so we cannot directly use
these algorithms. Simply considering the truncated function max{π(z), 0} does not work
because it may be non-submodular. In the next section, when g is separable, we introduce a
way of making our profit function non-negative everywhere, while maintaining submodularity
and preserving the values at the region of interest F |U°

λ∗
.

4.1 Making the Profit Function π Non-negative
We first show that π already satisfies the desired properties over the sets in F |U°

λ∗
.

I Lemma 23. The profit function π is non-negative monotone over F |U°
λ∗
.

Proof. Since π(∅) = 0 it suffices to show monotonicity. Consider x ∈ F |U°
λ∗

and let χe be
the indicator os an item in x. Comparing the costs with and without e we have

g(Sx)
(convexity)
≤ g(S(x− χe)) + 〈∇g(Sx), Sχe〉

(Property (P1’))
≤ g(S(x− χe)) + 〈λ∗, s(e)〉.

Since x ∈ U °
λ∗ , we have v(e) > 〈λ∗, s(e)〉 and thus π(x) > π(x− χe), i.e., monotonicity. J

However, to run algorithms that approximately optimize π over F |U°
λ∗

in a black-box
fashion, non-negativity over the feasible sets F |U°

λ∗
is not enough, even if the algorithm only

probes π over these sets, since their proof of correctness may require this property outside of
feasible sets. Thus, we need to modify π to ensure non-negativity outside of F |U°

λ∗
.

For that, the idea is to truncate the gradient of the cost g so ∇g(Sx) becomes at most
λ∗ for all subsets x ⊆ U °

λ∗ (i.e., so Property (P1’) holds for all subsets); this was the crucial
element for the monotonicity (and hence non-negativity) proof above. Notice that since
Property (P1’) guarantees already ∇g(Sx) ≤ λ∗ for all x ∈ F |U°

λ∗
, this does not change the

value of π over these points. The proof of the lemma is deferred to the full version.

I Lemma 24. If g is separable, there is a submodular function π+ satisfying the following:
(i) π+ is non-negative and monotone over all subsets of U °

λ∗ , and
(ii) π+(x) = π(x) for every x ∈ F |U°

λ∗
.

4.2 The Offline Algorithm: Wrap-up
Using this non-negativization procedure, we get an O(d)-approximation offline algorithm for
constrained profit maximization for separable cost functions g; this is an offline analog of
Theorem 2. For the unconstrained case, Lemma 23 implies that the profit function π it itself
monotone, so we get an O(d)-approximation offline algorithm for the supermodular case. In
the next section we show how to convert these algorithms into online algorithms.

One issue we have not discussed is the computational cost of finding λ∗ satisfying (P1’)–
(P3’). In the full version of the paper, we show that for any ε > 0 we can efficiently find a λ∗
satisfying (P1’), (P2’), and a slightly weaker condition: |g?i (λ∗i )−g?j (λ∗j )| ≤ 2ε for all i, j ∈ [d].
Using this condition in Theorem 21 means we get a profit of at least opt−2dε

2d+1 ≥ [opt/(2d+1)]− ε;
the running time depends on log ε−1 so we can make this loss negligible.
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5 The Online Algorithm

In the previous sections we were working offline: in particular, in computing the “good”
classifier λ ∈ C, we assumed knowledge of the entire element set. We now present the online
framework for the setting where elements come in random order. Recall the definition of the
curve C from §3, and the fact that there is a total order among all λ ∈ C. Recall that for
simplicity we restrict the constraints F to be matroid constraints.

For a subset of elements A ⊆ U , let opt(A) and fopt(A) denote the integer and fractional
optimal profit for F |A, the feasible solutions restricted to elements in A. Note that in
the fractional case this means the best solution in the convex hull Conv(F |A). Clearly,
fopt(A) ≥ opt(A). We use opt and fopt to denote opt(U) and fopt(U) for the entire instance U .

Again we work under Assumption 12. We will also make use of any algorithm for
maximizing submodular functions over F in the random-order model satisfying the following.

I Assumption 25. Algorithm SubmodMS takes a nonnegative monotone submodular function
f with f(∅) = 0, and a number N . When run on a sequence X of N elements presented
in random order, it returns a (random) subset Xalg ∈ F with expected value E[f(Xalg)] ≥
1
α maxX′∈F f(X). Moreover, the it only evaluates the function f on feasible sets.

Our algorithm is very simple:

Algorithm 5.1 Online Algorithm for Profit Maximization
1: L← first Binomial(n, 1/2) items.
2: µ← largest vector on curve C s.t. fopt(Lµ) ≥ 1

12d fopt(L).
3: R← remaining instance, namely the last n− |L| items.
4: R◦µ ← {e ∈ R | v(e) > 〈µ, s(e)〉} be the (strictly) “filtered” remaining instance.
5: Un-constrained: Select items in R◦µ not decreasing the current value of the solution.

Constrained: Run algorithm SubmodMS on R◦µ using profit function π, selecting items accord-
ing to this algorithm, but do not add items that decrease the current value of the solution.

Note that Lµ denotes the set of items in the sample L picked by µ (Definition 13). In
Step 2, we can use the Ellipsoid method to find fopt within negligible error. Moreover, we
must do this for several sets Lµ and pick the largest one on C using a binary-search procedure.
We defer the technical details to the full version of the paper.

5.1 Analysis
To analyze the algorithm, we need to show that the classifier µ learned in Step 2 is large
enough that we do not waste space with useless items, but low enough that we admit enough
useful items. For that we need the following concentration bound.

I Lemma 26. Consider a submodular function f : 2U → R. Consider a set Y ⊆ U such that
f is non-negative over all of its subsets, and that for some M :

For all Y ′ ⊆ Y and element e ∈ Y ′, |f(Y ′)− f(Y ′ − e)| ≤M. (5.8)

Let Y be the random subset obtained by picking each element from Y independently with some
probability (possibly different for each item). Then Pr(|f(Y)− E[f(Y)]| ≥ t) ≤ 2M E[f(Y)]

t2 .

We then also need π to satisfy (5.8) on the optimal solutions of any given sub-instance.
For a vector y ∈ Rn and subset A ⊆ U , let yA be the same as y on A, and zero outside A.
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I Claim 27. Consider any U ′ ⊆ U , and let y be an optimal fractional solution on F |U ′ (so
π(y) = fopt(U ′)). Then for any B ⊆ A ⊆ U ′ with |A \B| = 1, we have |π(yA)−π(yB)| ≤M ,
where M is an upper bound on the profit from any single item.

From Section 4, recall λ∗ ∈ Rd+ is a classifier that satisfies properties (P1’)–(P3’).

I Lemma 28. Given Assumption 12, the classifier µ of Line 2 of Algorithm 5.1 satisfies:
(a) (Not too small) µ ≥ λ∗, with probability at least 19/20.
(b) (Not too big) fopt(Uµ) ≥ fopt

48d with probability at least 1− 1/20d ≥ 19/20.

Proof sketch. For the first part, we show that the classifier λ∗ satisfies the properties needed
in Line 2 with probability 1− 1/20; since µ is the largest such vector, we get µ ≥ λ∗. Using
Theorem 21 and the assumption that no item has large profit, we have fopt(Uλ∗) ≥ fopt

3d .
Moreover, the sample obtains at least half of this profit in expectation, i.e., E fopt(Lλ∗) ≥ fopt

3d .
Then using Lemma 26 with the Lipschitz property of Claim 27 and the no-high-profit-item
assumption, we have fopt(Lλ∗) ≥ fopt

12d ≥
fopt(L)

12d with probability at least 19/20. Thus, with
this probability λ∗ satisfies the properties needed in Line 2 of the algorithm, as desired.

For the part (b) of the lemma, notice that for each scenario fopt(Uµ) ≥ fopt(Lµ), since
feasible solutions for the sample are feasible for the whole instance. Next, by definition of
µ, fopt(Lµ) ≥ fopt(L)

12d . Finally, if x is the fractional optimal solution on U with π(x) = fopt,
then E[π(xL)] ≥ fopt/2, since g is superadditive. Again using Lemma 26, the profit π(xL) is
at least fopt

4 with probability at least (1− 1/20d). Of course, fopt(L) ≥ π(xL). Chaining these
inequalities, fopt(Uµ) ≥ fopt

48d with this probability. J

In view of Theorem 21, we show the filtered out-of-sample instance R◦µ behaves like U °
λ∗ .

I Lemma 29. The filtered out-of-sample instance R◦µ satisfies the following w.p. 19/20:
(a) For all e ∈ R◦µ, v(e) ≥ 〈λ∗, s(e)〉.
(b) For all x with support(x) ⊆ R◦µ such that x ∈ F , ∇g(Sx) ≤ λ∗.
(c) fopt(R◦µ) ≥ fopt

200d .

Proof. By Lemma 28(a), threshold µ ≥ λ∗ with probability 19/20. When that happens,
U °
µ ⊆ U °

λ∗ . Since the first two properties hold for U °
λ∗ , they also hold for U °

µ, and by
downward-closedness, also for R◦µ.

For the third part, let λ+ be the largest threshold in C such that fopt(Uλ+) ≥ fopt
48d .

From Lemma 28(b), with good probability we have µ ≤ λ+. Since µ is a smaller threshold,
the instance Uλ+ is contained in the instance Uµ, which implies that for every scenario
fopt(Rµ) ≥ fopt(Rλ+). Next we show that that with good probability fopt(Rλ+) ≥ fopt

200d ,
and hence get the same lower bound for fopt(Rµ). If y is the optimal fractional solution for
Uλ+ , then yR is feasible for Rλ+ with E[π(yR)] = 1

2 fopt(Uλ+) ≥ fopt
96d . Moreover, using the

concentration bound again, we get that π(yR) ≥ fopt
192d with probability at least 19/20. Finally,

by the assumption of general position, there is at most one item in Rµ \R◦µ. Dropping this
item from the solution y to get y◦ reduces the value by at most M = fopt

104d ; here we use
subadditivty of the profit, and that there are no exceptional items. Hence, with probability
at least 19/20: fopt(R◦µ) ≥ fopt(R◦λ+) ≥ π(y◦R) ≥ fopt

196d −M ≥
fopt
200d . J

Finally, we are ready to prove the main theorems in the online setting.

I Theorem 30 (Unconstr. Case: Supermodular Cost). Algorithm 5.1 gives an O(d)-approxi-
mation in expectation for the unconstrained case, if the cost function is supermodular.

ICALP 2018



71:12 Maximizing Profit with Convex Costs in the Random-order Model

Proof. Define the event E that Lemmas 28 and 29 hold; Pr(E) ≥ 17/20. Now, by Lemma 29(c),
the optimal fractional solution for R◦µ has profit at least fopt/200d. Moreover, since there
are no constraints, the profit function is monotone submodular over all of U◦λ∗ by Lemma 23.
Conditioning on the good event E , Lemma 28(a) gives that R◦µ ⊆ U◦λ∗ , so the algorithm to
maximize the monotone submodular function (both integrally and fractionally) is to pick all
elements. Hence, conditioned on E , the profit we get is at least fopt/200d. In the other case, we
never pick an item that gives negative marginal value, so our solution is always non-negative.
Hence our expected profit is at least Pr[E ] · opt(Rµ) = Ω(fopt/d) ≥ Ω(opt/d). J

The analysis of the algorithm for the constrained separable-cost case is similar, only using
the constrained offline guarantees of Theorem 21, and the non-negativization Lemma 23 to
argue that SubmodMS maintains its guarantees.

I Theorem 31 (Constr. Case: Separable Cost). Suppose algorithm SubmodMS satisfies
Assumption 25 and is α-competitive in expectation. Then Algorithm 5.1 gives a O(αd2)-
approximation in expectation.

6 Separability versus Supermodularity

In this section, we show that an β-approximation algorithm for the separable-cost case gives
a O(dβ)-approximation for a slight generalization of the supermodular-cost case. Consider
the problem of picking a set A to solve

π(A) := max
A∈F

(
v(A)− g

(∑
e∈A

s(e)
))
,

where v(A) is a (discrete) submodular function over {0, 1}n with v(∅) = 0, g is a convex,
(continuous) supermodular function over Rd, and F is some downward-closed constraint set.
We show that for the case of matroid constraints, this problem can be reduced to the setting
where the cost function is separable over its d coordinates, suffering a loss of O(d).

I Theorem 32 (Reduction). Given an β-approximation algorithm for profit-maximization
for separable convex cost functions under matroid constraints, we can get an d(β + 2ed)-
approximation algorithm for the profit-maximization problem with supermodular costs g,
submodular values v, and F being a matroid constraint.

The reduction is the following:
1. Define separable costs g(y) := 1/d

∑d
i=1 gi(dyi), where gi are marginal functions for g.

2. W.p. p = β
β+2ed , run single-secretary algorithm to return element with maximum profit.

3. W.p. 1− p = 2ed
β+ed , run algorithm for value function v(·) and separable cost fn. g(·).

This reduction relies on the following simple but perhaps surprising observation that relates
separability with supermodularity, which may find other applications.

I Lemma 33. Given a monotone convex superadditive function g with g(0) = 0, let gi be
the marginal functions. Then for all y ∈ Rd+:
1. g(y) ≥

∑
i gi(yi)

2. g(y) ≤ 1
d

∑
i gi(dyi) = g(y).

Proof. The first property follows from the superadditivity of g, and the second follows from
Jensen’s inequality. J
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While the full proof of Theorem 32 is deferred to the full version of the paper, the main
idea is clean. Given an optimal integer solution x∗ for the original problem (with the original
cost function), we use Lemma 33 and the Lovász (convex) extension of submodular functions
to show that x∗/d is a good fractional solution for the separable cost function. Now using
polyhedral properties of d-dimensional faces of the matroid polytope, and other properties
of the Lovász extension, we show the existence of a good integer solution to the separable
problem. Combining this reduction with Theorem 2 proves Theorem 3.
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Abstract
Given an undirected unweighted graph G and a source set S of |S| = σ sources, we want to
build a data structure which can process the following query Q(s, t, e) : find the shortest distance
from s to t avoiding an edge e, where s ∈ S and t ∈ V . When σ = n, Demetrescu, Thorup,
Chowdhury and Ramachandran (SIAM Journal of Computing, 2008) designed an algorithm with
Õ(n2) space1 and O(1) query time. A natural open question is to generalize this result to
any number of sources. Recently, Bilò et. al. (STACS 2018) designed a data-structure of size
Õ(σ1/2n3/2) with the query time of O(

√
nσ) for the above problem. We improve their result by

designing a data-structure of size Õ(σ1/2n3/2) that can answer queries in Õ(1) time.
In a related problem of finding fault tolerant subgraph, Parter and Peleg (ESA 2013) showed

that if detours of replacement paths ending at a vertex t are disjoint, then the number of such
paths is O(

√
nσ). This eventually gives a bound of O(n

√
nσ) = O(σ1/2n3/2) for their problem.

Disjointness of detours is a very crucial property used in the above result. We show a similar
result for a subset of replacement path which may not be disjoint. This result is the crux of our
paper and may be of independent interest.
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1 Introduction

Real life graph networks like communication network or road network are prone to link or
node failure. Thus, algorithms developed for these networks must be resilient to failure. For
example, the shortest path between two nodes may change drastically even if a single link
fails. So, if the problem forces us to find shortest paths in the graph, then it should find the
next best shortest path after a link failure. There are many ways to model this process: one
of them is fault-tolerant graph algorithm. In this model, we have to preprocess a graph G and
build a data-structure that can compute a property of the graph after any k edges/vertices
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of the graph have failed. Note the difference between this model and dynamic graph model.
In a dynamic graph algorithm, we have to maintain a property of a continuously changing
graph. However, in the fault tolerant model, we expect the failure to be repaired readily and
restore our original graph.

In this paper, we study the shortest path problem in the fault tolerant model. Formally,
we are given an undirected and unweighted graph G and a source set S of |S| = σ sources.
We want to build a data structure which can process the following query Q(s, t, e) : find
the shortest distance from s to t avoiding an edge e, where s ∈ S and t ∈ V . Such a
data-structure is also called a distance oracle. When there are n sources, Demetrescu et al.
[9] designed an oracle that can find the shortest path between any two vertices in G after
a single vertex/edge failure in Õ(n2) space and O(1) query time. Recently, Bilò et. al. [5]
generalized this result to any number of sources. They designed a data-structure of size
Õ(σ1/2n3/2) with the query time of O(

√
nσ) for the above problem.

To understand our problem, we should also understand a closely related problem of
finding fault tolerant subgraph. Here, we have to find a subgraph of G such that BFS tree
from s ∈ S is preserved in the subgraph after any edge deletion. In an unweighted graph,
a BFS tree preserves the shortest path from s to all vertices in G. Parter and Peleg [17]
showed that a subgraph of size O(σ1/2n3/2) is both necessary and sufficient to solve the above
problem. The above result indicates that there should be a better fault-tolerant distance
oracle for any value of σ.

Inspired by this result, we generalize the result of [9] to any number of sources – by
showing that there exists a distance oracle of size Õ(σ1/2n3/2) which can answer queries in
Õ(1) time. Note that our result nearly matches the space bound achieved by Parter and
Peleg[17] – up to polylog n factors. We now state the main result of this paper formally:
I Theorem 1. There exists a data-structure of size Õ(σ1/2n3/2) for multiple source single
fault tolerant exact distance oracle that can answer each query in Õ(1) time.

This generalization turns out to be much more complex than the result in [9]. Indeed, the
techniques used by Demetrescu et al. [9] are also used by us to weed out easy replacement
paths. To take care of other paths, we take an approach similar to Parter and Peleg[17].
They used the following trick: if the detour of replacement paths are disjoint, then the
number of such paths can be bounded easily by a counting argument. The main challenge is
then to show that paths in question are indeed disjoint – which is also easy in their problem.
We use a technique similar to above – however, our paths are not disjoint, they may intersect.
We believe that this technique can be of independent interest and may be used in solving
closely related fault tolerant subgraph problems.

1.1 Related Work
Prior to our work, the work related to fault tolerant distance oracle was limited to two
special cases, σ = 1 or σ = n. As stated previously, Demetrescu et al. [9] designed a single
fault tolerant distance oracle of size Õ(n2) with a query time of O(1). The time to build the
data-structure is O(mn2) – which was improved to O(mn log n) by Bernstein and Karger [4].
The above result also works for a directed weighted graph. Pettie and Duan [10] were able
to extend this result to two vertex faults. The size and query time of their distance oracle is
Õ(n2) and Õ(1) respectively. If the graph is weighted, then Demetrescu et al. [9] showed
that there exists a graph in which a single vertex fault tolerant distance oracle will take Ω(m)
space. Recently, Bilò et. al. [5] designed the following data-structure: for every S, T ⊆ V , a
data-structure of size Õ(n

√
|S||T |) and query time O(

√
|S||T |), where the query asks for

the shortest distance from s ∈ S to t ∈ T avoiding any edge. If |S| = σ and |T | = n, then
the size of their data-structure is Õ(σ1/2n3/2) and the query time is O(

√
nσ).
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The next set of results are not exact but approximate, that is, they return an approximate
distance (by a multiplicative stretch factor) between two vertices after an edge/vertex fault.
Also, these oracles work for a single source only. Baswana and Khanna [14] showed that
a 3-stretch single source single fault tolerant distance oracle of size Õ(n) can be built in
Õ(m + n) time and a constant query time. Bilò et. al.[6] improved the above result: a
distance oracle with stretch 2 of size O(n) and O(1) query time. In another result, Bilò et. al.
[7] designed a k fault tolerant distance oracle of size Õ(kn) with a stretch factor of (2k + 1)
that can answer queries in Õ(k2) time. The time required to construct this data-structure
is O(knα(m,n)), where α(m,n) is the inverse of the Ackermann’s function. If the graph is
unweighted, then Baswana and Khanna[14] showed that a (1 + ε)-stretch single source fault
tolerant distance oracle of size Õ( nε3 ) can be built in O(m

√
n/ε) time and a constant query

time. Bilò et. al [6] extended this result for weighted graph by designing a distance oracle
with stretch (1 + ε) of size O(nε log 1

ε ) and a logarithmic query time.
There is another line of work, called the replacement path problem. In this problem, we

are given a source s and destination t and for each edge e on the shortest st path, we need
to find shortest s to t path avoiding e. The problem can be generalized to finding k shortest
s to t path avoiding e. The main goal of this problem is to find all shortest paths as fast as
possible. Malik et al. [15] showed that in an undirected graphs, replacement paths can be
computed in O(m+ n log n) time. For directed, unweighted graphs, Roditty and Zwick [19]
designed an algorithm that finds all replacement paths in O(m

√
n) time. For the k-shortest

paths problem, Roditty [18] presented an algorithm with an approximation ratio 3/2, and
the running time O(k(m

√
n+ n3/2 log n)). Bernstein [3] improved the above result to get an

approximation factor of (1 + ε) and running time O(km/ε). The same paper also gives an
improved algorithm for the approximate st replacement path algorithm. See also [11, 22, 21].

As mentioned previously, a problem closely related to our problem is the fault tolerant
subgraph problem. The aim of this problem is to find a subgraph of G such that BFS tree from
s ∈ S is preserved in the subgraph after any edge deletion. Parter and Peleg [17] designed an
algorithm to compute single fault tolerant BFS tree with O(n3/2) space. They also showed
their result can be easily extended to multiple source with O(σ1/2n3/2) space. Moreover,
their upper bounds were complemented by matching lower bounds for both their results.
This result was later extended to dual fault BFS tree by Parter [16] with O(n5/3) space.
Gupta and Khan [12] extended the above result to multiple sources with O(σ1/3n5/3) space.
All the above results are optimal due to a result by Parter [16] which states that a multiple
source k fault tolerant BFS structure requires Ω(σ

1
k+1n2− 1

k+1 ) space. Very recently, Bodwin
et. al. [8] showed the existence of a k fault tolerant BFS structure of size Õ(kσ1/2k

n2−1/2k ).
Other related problems include fault-tolerant DFS and fault tolerant reachability. Baswana

et al. [1] designed an Õ(m) sized fault tolerant data structure that reports the DFS tree of
an undirected graph after k faults in Õ(nk) time. For single source reachability, Baswana et
al. [2] designed an algorithm that finds a fault tolerant reachability subgraph for k faults
using O(2kn) edges.

2 Preliminaries

We use the following notation throughout the paper:

xy : Given two vertices x and y, let xy denote a path between x and y. Normally this
path will be the shortest path from x to y in G. However, in some places in the paper,
the use of xy will be clear from the context.
|xy| : It denotes the number of edges in the path xy.

ICALP 2018
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(· � ·) : Given two paths sx and xt, sx � xt denotes the concatenation of paths sx and xt.
after or below/before or above x : We will assume that the st path (for s ∈ S and t ∈ V )
is drawn from top to bottom. Assume that x ∈ st. The term after or below x on st path
refers to the path xt. Similarly before or above x on st path refers to the path sx.
replacement path: The shortest path that avoids any given edge is called a replacement
path.

3 Our Approach

We will randomly select a set of terminals T by sampling each vertex with probability
√

σ
n .

Note that the size of T is Õ(
√
σn) with high probability. For a source s and t ∈ V , let ts be

the last terminal encountered on the st path. The following lemma is immediate:
I Lemma 2. If |st| ≥ c

√
n
σ log n (c ≥ 3), then |tst| = Õ(

√
n
σ ) with a very high probability

for all s ∈ S and t ∈ V .
Let Gp denote the graph where each edge is perturbed by a weight function that ensures

unique shortest paths. Our st path is the shortest s to t path in Gp, let us denote its
length by |st|p. Note that Gp contains a unique shortest path between any two vertices,
even the ones that avoid an edge – such a graph has been used before in related problems
[4, 17, 13]. We can use Gp even to find all the replacement paths. However, we want our
replacement paths to have other nice property, that is, the length replacement paths(without
perturbation) from s to t are different. This property is not satisfied by replacement paths
in Gp. We employ another simple strategy to find a replacement path. Following [12], we
define preferred replacement paths:
I Definition 3. A path P is called a preferred replacement path from s to t avoiding e if
(1) it diverges and merges the st path just once (2) it divergence point from the st path is as
close to s as possible (3) it is the shortest path in Gp satisfying (1) and (2).
The replacement path has to diverge from the st path before e. Ideally, we want a replacement
path that diverges from st path as close to s as possible. This is a crucial feature which
will ensure that all replacement paths from s to t have different lengths. The first condition
ensures that we do not diverge from st path just to get a higher point of divergence. If
many shortest paths are diverging from a same vertex, the third condition is used to break
ties. In the ensuing discussion, we will assume that we are always working with a preferred
replacement path.

The initial st path is found out by finding the unique shortest path in Gp. Consider the
query Q(s, t, e). If the failed edge e does not lie on st path, then we can report |st| as the
shortest distance from s to t avoiding e. To this end, we should be able to check whether e
lies in the shortest path from s to t. At this point, we will use the property of graph Gp. If
e(u, v) lies in st path, then we have to check if u and v lie on st path. To this end, we check
if |su|p + |ut|p = |st|p and |sv|p + |vt|p = |st|p. If both the above two equations are satisfied
then the st path passes through e (as the shortest path from u to v is 1). We can also find
whether u or v is closer to s on st path. Without loss of generality assume that u is closer to
s than v on st path.

However, we do not have space to store all these distances. Specifically, the second term
on the LHS of above two equations mandates that we store the distance of every pair of
vertices in the graph. This implies that the size of our data structure is O(n2) which is not
desirable.

To solve the above problem, we observe that if e lies in the tst path, then we have just
enough space to store this fact. So, given any e, we can easily find if e ∈ tst. If e ∈ sts, then



M. Gupta and A. Singh 72:5

we know that |su|p + |uts|p + |tst|p = |st|p and |sv|p + |vts|p + |tst|p = |st|p. This equality is
easier to check with the space at hand. So, we have the following two cases:
1. (Near Case) e lies on tst.
2. (Far Case) e lies on sts.

3.1 Handling the Near Case
For each e(u, v) ∈ tst, let Pe be the preferred replacement path from s to t avoiding e. We
put (e, |Pe|) in a balanced binary search tree Bst(s, t) with the key being e. Given any query
Q(s, t, e), we now need to check if e lies in Bst(s, t). This can be done in Õ(1) time and the
length of the preferred replacement path can be reported.

The space required for Bst(s, t) is directly proportional to the size of path tst. By Lemma
2, we know that |tst| = Õ(

√
n
σ ). Thus, the size of Bst(s, t) = Õ(

√
n
σ ). This implies that

the cumulative size of all the associated binary search tree is ∪t∈V ∪s∈S |tst| = Õ(nσ
√

n
σ ) =

Õ(σ1/2n3/2).

3.2 Handling the Far Case
We first need to check if e ∈ sts. To this end we use the following data-structures.

B0: For each pair of vertices x and y where x ∈ (S ∪ T ) and y ∈ V , the shortest path
between x and y in G and Gp is stored in B0(x, y) and Bp0(x, y) respectively. The total
size of B0 is Õ((σ +

√
nσ)n) = Õ(σ1/2n3/2).

B1: For each pair of vertices s ∈ S and t ∈ V , B1(s, t) contains the vertex in T closest to
t on st path, that is ts. The total size of B1 is O(σn) = Õ(σ1/2n3/2).

To check if e(u, v) ∈ sts, we first find ts ← B1(s, t). Then we check if Bp0(s, u) + Bp0(u, ts) +
Bp0 (ts, t) = Bp0 (s, t) and Bp0 (s, v) + Bp0 (v, ts) + Bp0 (ts, t) = Bp0 (s, t). If yes, then e ∈ sts. We
subdivide the far case into two more sub-cases:
1. The preferred replacement path avoiding e passes through ts.
2. The preferred replacement path avoiding e avoids ts.
The first case turns out to be a generalization of techniques used by Demetrescu et. al.[9] to
solve the all pair distance oracle under single edge/vertex failure – we will use the compact
version of this algorithm presented by Pettie and Duan [10]. The second case is a new and
unexplored case. We will show that we can bound the number of preferred replacement paths
in this case to O(

√
nσ) for a fixed vertex t. This would imply that the total number of such

paths is O(σ1/2n3/2). We are able to bound the number of paths even though these paths
may intersect with each other – this is a new feature of our analysis which is much different
from the analysis done by Parter and Peleg [17] on a related problem.

Section 4 deals with the first case. In Section 5, we will apply our new approach to
the special case when σ = 1, or there is a single source. In Section 6, we will discuss the
potential problems in extending our approach to multiple sources. Section 7 and 8 extends
our approach to multiple sources and in Section 9 we develop our data-structure that can
answer queries in Õ(1) time. To save space, we have omitted proofs in this extended abstract.
The concerned reader may read the proof in the full version of the paper.

4 Preferred replacement path passes through ts

Since this case is a generalization of the techniques developed by Demetrescu et. al. [9],
concerned reader may read the full version of the paper for details – where we show that
there exists a data-structure of size Õ(σ1/2n3/2) which takes O(1) time to find a replacement
path from s to t that avoids e but passes through ts.

ICALP 2018
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s

t

a

b

P
×e

×ts

Figure 1 P does not intersect any path in (> P ).

Now, we move on to the harder case, that is, replacement paths avoid ts too. For this,
we will fix a vertex t. We will show that the query Q(s, t, e(u, v)) can be answered in Õ(1)
using Õ(

√
σn) space. This immediately implies that we can answer exact queries in Õ(1)

time using Õ(σ1/2n3/2) space.

5 Preferred Replacement path avoids ts

Handling preferred replacement paths that avoid ts turns out to be a challenging and
unexplored case. For better exposition, we will first solve the problem for the case when
σ = 1, that is there is only one source. Let R be the set of all preferred replacement paths
from s to t that do not pass through ts. We make two important observations:
1. The size of R is O(

√
n).

2. Preferred replacement paths in R avoid one contiguous sub path of st.
Few remarks are in order. If the preferred replacement paths in R were disjoint, then
bounding the size of R is easy. However, we are able to bound the size of R even if paths
are intersecting. The second observation implies that we can build a balanced binary search
tree containing paths in R. Each node in this tree will contain a preferred replacement path
P . The key for each node will be the start and end vertex of the sub path P avoids. We will
use this BST to find an appropriate replacement path that avoids an edge e.
I Definition 4. (Detour of a replacement path) Let P be a preferred replacement path
avoiding an edge e on st path. Then detour of P is defined as, Detour(P ) := P \ st. That
is, detour is a path the leaves st before e till the point it merges back to st again.
Since our replacement path P also avoids ts, the following lemma is immediate by the
definition of preferred path.
I Lemma 5. Let P be a preferred replacement path in R that avoids e and ts on st path,
then (1) Detour(P ) cannot merge back to sts path and (2) Detour(P ) is a contiguous
path.
I Lemma 6. Let P, P ′ ∈ R avoid e and e′ respectively on sts path. Also assume that e is
closer to s than e′. Then (1) P avoids e′ (2) Detour(P ′) starts after e on sts path and (3)
|P | > |P ′|.
The converse of the third part of the lemma is also true. Since we will be using it in future,
we prove it now.
I Lemma 7. Let P and P ′ be two preferred replacement paths that avoid e and e′ on st path
respectively. If |P | > |P ′|, then e is closer to s than e′.
By Lemma 6(3), we know that all preferred replacement paths in R have different lengths.
In fact, it is the main reason we defined a preferred replacement path. We can thus arrange
these paths in decreasing order of their lengths. Thus, we get the following corollary.
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I Corollary 8. Given a set R of preferred replacement paths from s to t (that also avoid ts),
we can arrange paths in decreasing order of their lengths.
Given a path P ∈ R, let (< P ) be the set of all preferred replacement paths with length less
than P . Similarly, let (> P ) be the set of all preferred replacement paths with length greater
than P . If P avoids e, then by Lemma 7, it also avoids all edges avoided by paths in (< P ).
By Lemma 6, for any path P ′ ∈ (< P ), Detour(P ′) starts after e on sts path. We will now
show a simple but important property of a path P in R.
I Lemma 9. Let P ∈ R be the shortest path from s to t avoiding e such that |P | = |st|+ `

where ` ≥ 0, then the size of the set (< P ) is ≤ `.
I Definition 10. (Unique path of P ) Let Unique(P ) be the prefix of Detour(P ) which
does not intersect with any detours in ∪P ′∈(>P )Detour(P ′).
We now arrange all preferred replacement paths in R in decreasing order of their lengths.
Assume that we are processing a path P according to this ordering such that P avoids e on
st path. If |Unique(P )| ≥

√
n, then we have associated O(

√
n) vertices on Unique(P ) to

P . Else Unique(P ) <
√
n and we have the following two cases:

5.1 Detour(P ) does not intersect with detour of any path in (> P )
Let Detour(P ) start at a and end at b – the vertex where it touches tst path. Let ab denote
the path from a to b on P . By our assumption Unique(P ) = ab and |ab| <

√
n. By Lemma

6, all replacement paths in (< P ) pass through e (as detour of these replacement paths start
below e) and by Lemma 7, these replacement paths avoid edges that are closer to t than
e. We can view the replacement paths as if they are starting from the vertex a. That is,
consider paths {P \ sa} ∪ {P ′ \ sa| P ′ ∈ (< P )}. These replacement paths avoid edges in at.
|P \ sa| = |ab|+ |bt| ≤ |ab| + |at| < |at|+

√
n. Applying Lemma 9, we infer that the number

of paths in {P ′ \ sa|P ′ ∈ (< P )} is ≤
√
n

5.2 Detour(P ) intersects with detour of a path in (> P )
Assume that P first intersects with P ′ ∈ (> P ). Let P ′ avoid e′ and Detour(P ′) start at
a′ and end at b′ (see Figure 2). Let us assume that Detour(P ) starts at a and it intersects
Detour(P ′) at c. This implies that Unique(P ) = ac.
Consider the path sa′ � a′c � ca � at. We claim that this path avoids e′. This is due to the
fact that by Lemma 6, Detour(P ) starts after e′ on st path. So, ca and at avoids e′. Since
P ′ = sa′ � a′c � cb′ � b′t, length of P ′ must be ≤ length of the alternate path. Thus,

|sa′|+ |a′c|+ |cb′|+ |b′t| ≤ |sa′|+ |a′c|+ |ca|+ |at|
=⇒ |cb′|+ |b′t| ≤ |ca|+ |at|
=⇒ |ac|+ |cb′|+ |b′t| ≤ 2|ca|+ |at|

On the left hand of the in-

equality, we have a path from a to t avoiding e. So, its length should be ≥ length of the
preferred path P \sa. Thus |P \sa| ≤ 2|ca|+ |at| ≤ 2

√
n + |at|. By Lemma 6, all replacement

paths in (< P ) pass through e (as detour of these replacement paths start below e) and by
Lemma 7, these replacement paths avoid edges that are closer to t than e. We can view
the replacement paths as if they are starting from the vertex a. That is, consider paths
{P \ sa} ∪ {P ′ \ sa|P ′ ∈ (< P )}. Applying lemma 9, we infer that the number of paths in
{P ′ \ sa|P ′ ∈ (< P )} is ≤ 2

√
n.

Our arguments above point to the following important observation: Once we find a
replacement path in R with unique path length <

√
n, then there are at most 2

√
n replacement

paths in R left to process. Since there can be at most
√
n paths in R with unique path length

≥
√
n, we have proven the following lemma:
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Figure 2 P intersects first with P ′ ∈ (> P ) at c.
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Figure 3 The bad case for us: P ′ ∈ (> P ) intersects with P and then passes through the edge e

that P avoids

I Lemma 11. |R| = O(
√
n).

We now build a data-structure which will exploit Lemma 11. However, we need another
key but simple observation. By Lemma 6, if |P | > |P ′|, then Detour(P ′) starts below the
edge avoided by P . This lemma implies that Detour(P ′) starts below all edges avoided by
P . Thus P avoids some contiguous path in sts and detour of all replacement paths in (< P )
start below the last edge (which is closer to ts) in this subpath. Thus, we have proved the
second key lemma:

I Lemma 12. A replacement path P avoids a contiguous subpath of st.

Let First(P ) and Last(P ) denote the first and the last vertex of the contiguous path that
P avoids. Given a vertex v, let v.depth denote the depth of v in the BFS tree of s. We can
store the depth of all vertices in an array (takes O(n) space). Lastly, we build a balanced
binary search tree BST(t) in which each node represents a path P . The key used to search
the node is the range: [First(P ).depth,Last(P ).depth]. By Lemma 12, all replacement
paths avoid contiguous subpaths of sts. These contiguous paths are also disjoint as there
is only one preferred path avoiding an edge. Thus, the key we have chosen forms a total
ordered set with respect to the relation {<,>}. The size of BST(t) is O(

√
n) as the size of

R is O(
√
n). We are now ready to process any query Q(s, t, e(u, v)). We just need to search

for an interval in BST(t) that contains u.depth and v.depth. This can be done in Õ(1) time.
Thus we have proved the following theorem:

I Theorem 13. There exists a data-structure of size Õ(n3/2) for single source single fault
tolerant exact distance oracle that can answer each query in Õ(1) time.
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6 From Single Source to Multiple Sources

Unfortunately, the analysis for the single source case is not easily extendible to multiple
source case. We identify the exact problem here. Consider the case described in Section
5.2. In this case, we show that if |P ′| > |P | and P intersects with P ′, then there is a path
available for P (that is ac � cb′ � b′t). We can use this path because it also avoids e (the
edge avoided by path P ). First, we show that the above assertion is not true when we move
to multiple source case. Consider the following example (See Figure 3). Here, P avoids e
on st path and P ′ avoids e′ on s′t path. Detour(P ) starts at a and its intersects P ′ at
c. Detour(P ′) starts at a′ and it hits st path at b′ and then passes through e. Note that
the full path P from s to t is not shown in Figure 3. The reader can check that the path
ac � cb′ � b′t is not an alternate path for P as it passes through e. We say that such a path is
a bad path because it breaks the easy analysis of single source case (we will formally define
bad paths in Section 8.2). However, we are able to show that the total number of good paths
(paths which are not bad) is ≥ the number of bad paths. Good paths exhibit properties
similar to the set R in Section 5. This will help us in bounding them (and thus bad paths
too). Once again we will fix a vertex t and show that the number of replacement paths from
s ∈ S to t that also avoids ts is O(

√
σn). Let BFS(t) denote the union of all shortest paths

from t to s ∈ S. The reader can check that the union of these paths does not admit a cycle,
so we can assume that its a tree rooted at t. Since BFS(t) has at most σ leaves, the number
of vertices with degree > 2 in BFS(t) is O(σ). We now contract all the vertices of degree 2
(except t and s ∈ S) in BFS(t) to get a tree that only contains leaves of BFS(t), the root t,
all the sources and all other vertices with degree > 2 in BFS(t).
I Definition 14. (σ-BFS(t)) σ-BFS(t) is a tree obtained by contracting all the vertices
with degree exactly 2 in BFS(t) except t and source s ∈ S.
I Definition 15. (Intersection vertex and segment in σ-BFS(t))
Each node σ-BFS(t) is called an intersection vertex. An edge xy ∈ σ-BFS(t) denotes a path
between two vertices in BFS(t). We call such an edge in σ-BFS a segment. We use this
term in order to differentiate between edges in BFS(t) and σ-BFS(t). Also, we will use the
following convention: if xy is a segment, then y is closer to t than x.
σ-BFS(t) has at most σ vertices with degree ≤ 2. This implies that there are at most O(σ)
intersection vertices and segments in σ-BFS(t).

As in the single source case, we would like to find the preferred path for each avoided
edge on the st path where s ∈ S. However, we don’t have enough space to store all these
paths. Also storing all paths seems wasteful. Consider two preferred replacement paths P
and P ′ that start from s and s′ respectively. These two paths meet at an intersection vertex
x after which they are same, that is, they take the same detour to reach t. Storing both P
and P ′ seems wasteful as they are essentially the same path once they hit x. To this end, we
only store preferred path corresponding to each segment in σ-BFS(t). We now describe our
approach in detail.

Let xy be a segment in σ-BFS(t). We divide replacement paths whose detour start in xy
into two types:
R1(xy): Preferred replacement paths from x to t whose detour starts in xy but the
avoided edge lies in ytx.
R2(xy): Preferred replacement paths from x to t whose start of detour and avoided edge
both lie strictly inside segment xy (that is, detour cannot start from x or y).

Let R1 := ∪xy∈σ-BFS(t)R1(xy) and R2 := ∪xy∈σ-BFS(t)R2(xy). The set R1 helps us to
weed out simple preferred replacement paths. We will show that we can store preferred
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replacement paths in R1 in O(σ) space – one per segment in σ-BFS(t). The hardest case
for us in R2, which contains bad paths. Let B denote the set of bad paths in R2. We will
show that |B| ≤ |R2 \ B| (the number of bad paths is ≤ number of good paths in R2) and
|R2 \B| = O(

√
nσ) (the number of good path is O(

√
nσ)). This implies that |R2| = O(

√
nσ).

Since R1 and R2 are of size O(
√
nσ), we can make a data-structure of size O(

√
nσ). In

this data-structure, we have stored a preferred path for each segment. However, we have to
answer queries of type Q(s, t, e) where s is a source. In Section 9, we will see how to use
preferred paths of segments to answer queries in Õ(1) time.

7 Analysing preferred replacement paths in R1

We first show the following:
I Lemma 16. For each segment xy ∈ σ-BFS(t), |R1(xy)| = 1
The above lemma implies that |R1| = ∪xy∈σ-BFS(t)|R1(xy)| = O(σ) = O(

√
nσ).

8 Analysing preferred replacement paths in R2

We first show that one special kind of path will never lie in R2. This characterization will
help in analyzing bad paths in R2.
I Lemma 17. Let P be a preferred path from x to t avoiding e on xt path. If P merges with
any segment x′y′ and then diverges from x′t path, then P /∈ R2.
We will now analyze paths in R2. Consider two replacement paths P, P ′ avoiding edges
e, e′ (respectively) on xy, x′y′ segment respectively. Let a, a′ be the starting vertex of
Detour(P ),Detour(P ′) respectively. We say that P ≺ P ′ if |at| < |a′t|. If |at| = |a′t|,
then the tie is broken arbitrarily.
Given a path P ∈ R2, let (< P ) be the set of all replacement paths in R2 that are ≺ P

in the ordering. Similarly, (> P ) is the set of all replacement paths P ′ ∈ R2 for which
P ≺ P ′. Define Unique(P ) according to this ordering (see definition 10). Assume that we
are processing a replacement path P according to this ordering. If |Unique(P )| ≥

√
n/σ,

then we can associate O(
√
n/σ) unique vertices to P . Otherwise |Unique(P )| <

√
n/σ and

we have the following two cases:

8.1 Detour(P ) does not intersect with any other detour in (> P )
This case is similar to the first case in Section 5.1. We can show that once we get a replacement
path P ∈ R2(xy) with |Unique(P )| <

√
n/σ, then there are at most O(

√
n/σ) replacement

paths in R2(xy) remaining to be processed. This will bound the total number of such paths
to O(

√
nσ). Please see the full version for details.

8.2 Detour(P ) intersects with detour of a path in (> P )
We first give a formal definition of a bad path that was defined informally in Section 6.
I Definition 18. (Bad Path) A path P ∈ R2 is called a bad path if there exists another path
P ′ ∈ (> P ) such that (1) Detour(P ) intersects with Detour(P ′) and (2) Detour(P ′)
passes through the edge avoided by P after their intersection. We also say that P is a bad
replacement path due to P ′ if P ′ satisfies the above two conditions.

A path that is not bad is called a good path. In Section 6, we saw that bad paths break
the easy analysis of the single source case. So, we have two cases depending on whether the
path is good or bad. Let us look at the easier case first.
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Figure 4 The figure shows two representative examples when ca and at does not pass through e′.

(1) P is a good path.
Assume that P ∈ R2(xy) and it avoids an edge e ∈ xy. Assume that P intersects first
with P ′ ∈ (> P ) and P ′ avoids e′ on x′y′ segment. Note that x may be equal to x′. Let
Detour(P ′) start at a′ and end at b′. Assume that Detour(P ) starts at a and it intersects
Detour(P ′) at c. Consider the path x′a′ � a′c � ca � at. Since x′a′ � a′c is a part of P ′, it
avoids e′. However, it is not clear whether ca � at avoids e′ too. In Figure 4, we see two
representative examples in which ca and at avoid e′.

In the full version of the paper, we show that ca and at cannot pass through e′. Thus,
the path x′a′ � a′c � ca � at is indeed a valid replacement path from x′ to t avoiding e′. Since
P ′ = x′a′ � a′c � cb′ � b′t, length of P ′ must be ≤ length of this alternate path. Thus,

|x′a′|+ |a′c|+ |cb′|+ |b′t| ≤ |x′a′|+ |a′c|+ |ca|+ |at|
=⇒ |cb′|+ |b′t| ≤ |ca|+ |at|
=⇒ |ac|+ |cb′|+ |b′t| ≤ 2|ca|+ |at|
On the left hand of the inequality, we have a path from a to t avoiding e (since we know

that P is a good path, so P ′ and thus cb′ � b′t does not pass through e). So, its length should
be ≥ length of the preferred path P \ xa. Thus |P \ xa| ≤ 2|ca| + |at| ≤ 2

√
n/σ + |at|

(since |Unique(P )| = |ac| <
√
n/σ). Consider the following set of replacement paths

(< P )x := {P ′ ∈ (< P ) | P ′ avoids an edge on xy segment}. By Lemma 6, all replacement
paths in (< P )x pass through e (as detour of these replacement paths start below e) and by
Lemma 7, these replacement paths avoid edges that are closer to y than e. Applying Lemma
9, we get that the number of replacement paths (< P )x is ≤ 2

√
n/σ. Thus, once we get a

replacement path P ∈ R2(xy) with |Unique(P )| <
√
n/σ, then there are at most 2

√
n/σ

replacement paths in R2(xy) remaining to be processed. Thus, total number of paths ∈ R2
with |Unique(P )| <

√
n/σ is

∑
xy∈σ-BFS(t) 2

√
n/σ = O(

√
nσ) (as there are O(σ) segments

in σ-BFS(t)).
(2) P is a bad path.
We now arrive at our hardest scenario. We will first show that the number of good paths in
R2 is greater than the number of bad paths in R2. To this end, we will prove the following
lemma:
I Lemma 19. For each P ′ ∈ R2, there exists only one replacement path P ∈ R2 which is
bad due to P ′.

The above lemma can be used to discard bad paths from R2. For each such discarded
path, there exists at least one good path. And by the above lemma, each such good path
can be used to discard at most one bad path. Thus the number of good paths in R2 is ≥
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Figure 5 The shortest path from s2 to t avoiding e can be R1(xy) or R1(s2x).

number of bad paths in R2. We have already shown that the total number of good paths in
R2 is O(

√
nσ). Thus the total number of paths in R2 is also O(

√
nσ).

9 Building the Data Structure

Let us first recognize a potential problem in using R1(·). Let s1t and s2t path meet at vertex
x (See Figure 5). Another path s3t meets s2t path at y where y is closer to t. R1(s2x) is the
shortest path from s1 to t avoiding e and R1(xy) is the shortest path from x to t avoiding
e ∈ yt. This immediately leads to the following problem. Assume that the query is Q(s2, t, e)
and the preferred path avoiding e is in R1. Then there are two candidate paths that avoid
e: one that goes from s2 to the intersection vertex x and then take path R1(xy) and the
other R1(s2x). Thus, we need to check these two paths and return the minimum of the two.
One can make a bigger example in which there are σ segments between s2 and t and thus
we have to check O(σ) path before we can answer the query. The problem appears because
we don’t know from which segment the shortest path avoiding e started its detour. If this
information is not there, then it seems that we have to look at all the segments between s2
ans t. To end this dilemma, we use heavy light decomposition of σ-BFS(t) [20]. For any
segment xy ∈ σ-BFS(t) (by our convention y is closer to t), x is a heavy child of y if the
number of nodes in the subtree under x is ≥ 1/2(number of nodes in the subtree under y)
else it is called a light child (or light segment in our case). It follows that each intersection
vertex has exactly one heavy child and each vertex is adjacent to atmost two heavy edges.
A heavy chain is a concatenation of heavy edges. A heavy subpath is a subpath of a heavy
chain. The following lemma notes a well known property of heavy-light decomposition.
I Lemma 20. The path from a source s to t in σ-BFS(t) can be decomposed into O(log n)
heavy subpaths and light segments .

Given any source s ∈ S, by Lemma 20, the path from t to s may contain many heavy
subpaths. Let C(pq) be a heavy chain that starts at p and ends at q (where q is closer to t
than p). A ts path may follow a heavy chain C(pq) but may exit this chain from a vertex
midway, say at r. Let (C(pq), r) be a tuple associated with s such that the shortest path
from t to s enters this heavy chain via q and leaves this chain at r. We keep a list Heavy(s, t)
which contains all the tuples (C(pq), r) sorted according to the distance of heavy chain from
t (that is distance qt). By Lemma 20, the size of Heavy(s, t) = O(log n). Similarly, we have
one more list to store the light segments. Light(s, t) contains all the light segments on the
st path again ordered according to their distance from t in σ-BFS(t). Again by Lemma 20,
the size of Light(s, t) = O(log n). Note that the size of these additional two data-structures
is

∑
s∈S O(log n) = Õ(σ) = Õ(

√
nσ).
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Our main problem was that we have to find the minimum R1(·) of O(σ) segments if
there is a path of length σ between s and t. The trick we use here is that finding minimum
on any heavy subpath takes Õ(1) time. Since there are O(log n) heavy subpaths, the total
time taken to find the minimum on heavy subpaths in Õ(1). Also, since the number of light
segments is also O(log n) finding the minimum among these also takes Õ(1) time.

We now describe our intuition in detail. Let xy be a segment in a heavy chain C(pq).
We want to represent R1(xy) in a balanced binary search tree Bst(C). To this end, we
will add a node with the tuple (x.depth, |px � R1(xy)|, |px|) in Bst(C). The first element
in this tuple is the depth of x in BFS(t) – it also acts as the key in this binary search tree.
The second element is the path R1(xy) concatenated with px. This concatenation is done
so that all paths in Bst(C) start from p and comparing two paths in Bst(C) is possible.
The third element will be used to get the path length R1(xy) (by subtracting it from the
second element) when need arises. Now we can augment this tree so that the following
range minimum query can be answered in Õ(1) time: Rmq(C(pq), [a, b]) : Find minimum of
{|px�R1(xy)| | xy is a segment in heavy chain C(pq) and x.depth ≥ a.depth and x.depth ≤
b.depth}. The size of ∪C∈Heavy(s,t)Bst(C) is O(σ) = O(

√
nσ) as there are at most O(σ)

segments in σ-BFS(t).
Given any edge e(u, v) on st path, we can now find the shortest path in R1 from s to

t avoiding e (Please refer to Algorithm 1 in the full version of the paper). We first find
the first intersection vertex on the us path from u. Let this vertex be x. We will see that
finding x is also not a trivial problem – we will say more about this problem later. Now, we
will go over all possible replacement paths from u to s. Thus, we search if there exists any
heavy chain in Heavy(s, t) that contains x. To this end, we first check if x lies in some light
segment (this can be checked in Õ(1) time). If not, then x lies in some heavy chain. We now
search each heavy chain in Heavy(s, t) to find a node x′ with the smallest depth such that
x′.depth > x.depth. Let this node be x′. Thus we have found the segment x′x where x is
closer to t than x′. We can easily calculate x.depth as |st| − |sx| or B0(s, t)−B0(s, x). Since
there are Õ(1) heavy chain in Heavy(s, t), the time taken to find if x′x exists in some heavy
chain is Õ(1).

Assume that we found out that x′x ∈ C(pq), and ts path leaves the chain C at r, then we
want to find the shortest replacement path from r to t avoiding e. This can be found out via
the range minimum query Rmq(C(p, q), [x, r]). However, note that each replacement path in
C starts from p. So, we need to remove |pr| from the replacement path length returned by
Rmq query. The length pr can be found out in the node r ∈ Bst(C). Finally, we add |sr|
to get the path from s to t.

Similarly, we can process a light segment in O(1) time (please refer to Algorithm 1 in the
full version). Thus, the time taken by Algorithm 1 is Õ(1) as the while loop runs at most
O(log n) times and each step in the while loop runs in Õ(1) time.

9.1 Answering queries in Õ(1) time
Given a query Q(s, t, e(u, v)), we process it as follows (assuming that e lies on sts path (that
is the far case) and v is closer to t than u)
1. Find the first intersection vertex on us path.

In the full version of the paper, we show that we can find the first intersection vertex on
us path in Õ(1) time using O(

√
nσ) space.

2. Find the replacement path avoiding u if it lies in R1.
To this end, we use our Algorithm 1. The first non-trivial part of this algorithm, that is,
finding the first intersection vertex on the us path has already been tackled in the point
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above. So we can find such a replacement path (if it exists) in Õ(1) time and Õ(
√
nσ)

space.
3. Find the replacement path avoiding e(u, v) if it lies in R2.

This part is similar to our data-structure in single source case. Let x← Int(u, t). Using
Heavy(s, t) and Light(s, t), in Õ(1) time, we can find the segment xy ∈ σ-BFS(t) such
that y is closer to t than x. In this case, we want to check if there exists any replacement
path that starts in the same segment in which e resides. This replacement path first takes
sx path and then takes the detour strictly inside the segment xy. All such paths are
stored in R2(xy) with the contiguous range of edges that they avoid on xy. We now just
need to check if u and v lie in the range of some replacement path. To this end, we find
u.depth← |st| − |su| = B0(s, t)−B0(s, u) and v.depth← |st| − |sv| = B0(s, t)−B0(s, v).
Now we check if u.depth and v.depth lie in contiguous range of some replacement path
in R2(xy). If yes, then we return the length of that path concatenated with sx. Note
that we have already stored |sx| in B0(s, x). The time taken in this case is dominated by
searching u and v in R2(xy), that is Õ(1).

Thus, the total query time of our algorithm is Õ(1), and we can return the minimum of
replacement paths found in Step 2 and 3 as our final answer. The reader can check that the
space taken by our algorithm for a vertex t is Õ(

√
nσ). Thus the total space taken by our

algorithm is Õ(σ1/2n3/2). Thus we have proved the main result, that is Theorem 1 of our
paper.
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Interactive proofs of proximity allow a sublinear-time verifier to check that a given input is close
to the language, using a small amount of communication with a powerful (but untrusted) prover.
In this work we consider two natural minimally interactive variants of such proofs systems, in
which the prover only sends a single message, referred to as the proof.

The first variant, known as MA-proofs of Proximity (MAP), is fully non-interactive, meaning
that the proof is a function of the input only. The second variant, known as AM-proofs of
Proximity (AMP), allows the proof to additionally depend on the verifier’s (entire) random string.
The complexity of both MAPs and AMPs is the total number of bits that the verifier observes –
namely, the sum of the proof length and query complexity.

Our main result is an exponential separation between the power of MAPs and AMPs. Spe-
cifically, we exhibit an explicit and natural property Π that admits an AMP with complexity
O(log n), whereas any MAP for Π has complexity Ω̃(n1/4), where n denotes the length of the
input in bits. Our MAP lower bound also yields an alternate proof, which is more general and
arguably much simpler, for a recent result of Fischer et al. (ITCS, 2014).

Lastly, we also consider the notion of oblivious proofs of proximity, in which the verifier’s
queries are oblivious to the proof. In this setting we show that AMPs can only be quadratically
stronger than MAPs. As an application of this result, we show an exponential separation between
the power of public and private coin for oblivious interactive proofs of proximity.
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1 Introduction

The field of property testing [47, 23] deals with sublinear algorithms for deciding whether a
given object has a predetermined property or is far from any object having this property.
Such algorithms, called testers, obtain local views of the object by performing queries; that
is, the object is seen as a function and the tester receives oracle access to this function. The
goal of the tester is to ascertain a global property of the function based only on its local view.

In the last couple of decades, the area of property testing has attracted much attention
(see surveys [44, 45, 11] and recent textbook [22]). However, while much success was found
in designing testers for a myriad of natural properties, which only make a small number of
queries, many other natural properties were shown to require a very large number of queries
to test (often linear in the length of the input).

Proofs of proximity, first considered by Ergün, Kumar and Rubinfeld [18], are both
intrinsically interesting as a natural notion of proof systems for sublinear algorithms, as well
as provide means to significantly reduce the number of queries that the tester needs to make
in order to verify, rather than decide. These probabilistic proof systems can be viewed as
augmenting testers with a help from a powerful, yet untrusted prover. In a recent line of
works [46, 33, 20, 27, 36, 25, 43, 34, 9, 14] various types of interactive [46] and non-interactive
proofs of proximity [35] were studied, including arguments of proximity [36], zero-knowledge
proofs of proximity [9], and proofs of proximity for distribution testing [14].

In this work we study the relation between two types of proofs of proximity that are
minimally interactive; namely, MA and AM proofs of proximity, which can be viewed as the
property testing analogue of the class MA (i.e., “randomized NP”) and AM, respectively, and
are described in more detail next.

Informally speaking, an MA proof of proximity (MAP) protocol consists of a tester (or
rather a verifier) that receives oracle access to an input function f but also receives explicit
access to a short purported proof w. Based on the proof string and a few oracle queries to
f , the verifier should decide whether f has some property Π (i.e., whether f ∈ Π). More
specifically, after reading the proof w, the verifier tosses random coins, makes queries to the
oracle f , and decides whether to accept or reject. We require the following completeness and
soundness conditions: if f ∈ Π, then there exists a proof w that the verifier accepts with
high probability, and if f is “far” (in Hamming distance) from any function in Π, then the
verifier rejects with high probability. Following the literature, the complexity of an MAP is
the total number of bits that the verifier observes - namely, the sum of its proof length and
query complexity.3

The reason that the foregoing model is referred to as a “Merlin-Arthur” protocol is that
we think of the prover as being Merlin (the all powerful magician) and the verifier as Arthur
(a mere mortal). Then in the MAP model Merlin “speaks” first (i.e., sends the proof) and
Arthur “speaks” second (i.e., tosses his random coins).

It is natural to ask what happens if we switch the order - letting Arthur toss his coins first
and Merlin send his proof after seeing Arthur’s coin tosses. This type of protocol is typically
referred to as an “Arthur-Merlin” protocol. More precisely, an AM proof of proximity (AMP)
is defined similarly to an MAP, except that now the proof oracle is a function of the verifier’s
entire random string. We view AMPs as minimally interactive, since given a common random

3 Alternatively, one could view the running time of the verifier (which serves as an upper bound on the
query and communication complexities) as the main resource to be minimized. However, for simplicity
(and following the property testing literature), we focus on combinatorial resources. This only makes our
lower bounds stronger, whereas for all of our upper bounds the verifier is also computationally efficient.
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string, the protocol consists of a single message (i.e., the proof). Analogously to MAPs, the
complexity of an AMP is the sum of its proof length and query complexity. We emphasize
that the prover’s message can depend on all of the verifier’s coin tosses. Namely, the verifier
cannot toss an additional coins after receiving its message from the prover.4

While the difference between these two proof systems may appear minor, MA-type and
AM-type proofs naturally admit very different types of strategies. In particular, note that
AM proofs provide the additional power of allowing the prover and verifier to jointly restrict
their attention to a random subset of the input function’s domain. On the other hand, the
AM model also significantly hampers the power of the verifier to detect malicious prover
strategies, since the prover knows the entire randomness of the verifier, and in particular the
prover knows which queries the verifier will make.

At first glance, it may seem that AMPs are extremely limited, since the prover can
predict exactly what the verifier will check (knowing the verifier’s entire random string
allows the prover to deduce which queries the verifier will make). However, it turns out
that a straightforward adaptation of the classical MA ⊆ AM inclusion [6] implies that any
MAP can be emulated by an AMP at a quadratic cost. (More precisely, an MAP with proof
complexity p and query complexity q can be emulated by an AMP with proof length p and
query complexity O(p · q).5)

It is natural to ask the following converse question:

Can any AMP protocol be emulated by an MAP, or is there a gap between the power of these
two models?

Note that any AMP can be easily emulated by an MAP with at most an exponential overhead.6
Thus, the question that we would really like to answer is whether such an exponential overhead
is inherent.

1.1 Our results
Our main result shows that it is indeed the case that AMPs can be exponentially stronger
than MAPs and so the foregoing emulation strategy is optimal, up to polynomial factors:

I Theorem 1. There exists a property Π ⊆ {f : [n]→ [n]} such that:
Π has an AMP of complexity O (log(n)/ε), with respect to proximity parameter ε > 0;
and
Every MAP for Π, with respect to proximity parameter ε ≤ 1

10 , must have complexity
Ω(n 1

4 ).

The property Π that we use to prove Theorem 1 is actually very simple and natural.
Specifically, Π is the set of all permutations over [n]; the goal of the verifier is to check

4 In contrast, the complexity class AM is sometimes defined as any constant-round public-coin interactive
proof-system. Indeed, if one does not care about polynomial factors, then by a result of Babai and
Moran [6], any public-coin constant-round interactive proof can be reduced to just 2 messages.

5 The idea is to first reduce the soundness error of the MAP to 2−O(p) (by repetition). Now suppose
that the verifier reveals its randomness to the prover before receiving the proof-string. For soundness,
observe that when f is far from the having the property, for any fixed proof-string the probability that
the verifier would accept is at most 2−Ω(p) and so by a union bound, with high probability there simply
does not exist a proof-string that will make the verifier accept.

6 Any AMP with proof complexity p and query complexity q can be emulated by a tester (i.e., an MAP
which does not use a proof at all) with query complexity q · 2p by simply trying all possible candidate
proof strings.
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whether a given function f : [n] → [n] is close to being a permutation by querying the
function in a few locations and with a short interaction with the prover.

The AMP protocol for deciding whether a given function f : [n]→ [n] is a permutation is
extremely simple. The idea is that the random string specifies some random element y ∈ [n]
and the prover should specify an inverse x of y (under f). If f is a permutation such an
element must exist whereas if f is ε-far from being a permutation, then with probability ε it
holds that y simply does not have an inverse. We can repeat the base protocol O(1/ε) times
to get constant soundness error. This protocol can actually be traced back to a result of
Bellare and Yung [7] who used it resolve a gap in the [19] construction of non-interactive
zero-knowledge proofs for NP based on trapdoor permutations.

Our MAP lower bound is the technically more challenging part of this work, and is
actually a special case of a more general MAP lower bound that we prove. We show that
any property that satisfies a relaxed notion of k-wise independence requires MAPs with
complexity roughly

√
k. This result generalizes a recent result of Fischer, Goldhirsh and

Lachish [20] which can be interpreted as an MAP lower bound of
√

k for properties that are
exactly k-wise independent.7 Our proof is also (arguably) significantly simpler than that of
[20] and in particular uses only elementary arguments, see further discussion in Section 1.2.

1.1.1 Oblivious Proofs of Proximity
Having established Theorem 1, we revisit the MA versus AM problem within the context of
proofs of proximity with prover-oblivious queries (a notion first considered in [46] and further
explored in [35]), or in short oblivious proofs of proximity. These are proofs of proximity
that have the special feature that the queries that the verifier makes are independent of the
proof. Viewed from a temporal perspective, in these proof systems the verifier first makes its
queries to the input function, and only after making all of its queries does it receive the proof.
One reason that makes this feature appealing is because it allows the verifier to probe the
object and obtain a certificate, which can then be used later when interacting with a prover,
even if the object is no longer accessible. Another reason is that many of the interactive
proof systems from the literature (e.g., the sumcheck protocol of [39]) are oblivious.

Surprisingly, it turns out that the gap between the power of oblivious AMPs and MAPs
is dramatically smaller than the one exhibited in Theorem 1. Loosely speaking, we show
that oblivious AMPs can only be quadratically stronger than oblivious MAPs, and in fact,
standard testers (that do not use a proof).

I Theorem 2. For any property Π, if there exists an oblivious AMP for Π with proof
complexity p and query complexity q, then there also exists a tester (i.e., MAP with proof
complexity 0) for Π with query complexity O(p · q).

As an application, we use Theorem 2 to derive lower bounds on public-coin oblivious
interactive proofs of proximity, and show an exponential separation between public-coin and
private-coin protocols in this setting. See further discussion in the full version [31].

1.2 Related works
The notion of proofs of proximity was originally proposed by Ergün, Kumar and Rubinfeld.
Ben Sasson et al. [8] and Dinur and Reingold [17] considered such proofs in the context of

7 More precisely, [20] show that any linear code with large dual distance requires MAPs of complexity
that is roughly square root of the code’s blocklength.
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PCPs. Rothblum, Vadhan and Wigderson [46], considered interactive proofs of proximity
and showed that every language computable by a low-depth circuit has an interactive proof
of proximity (IPP) with a sublinear time verifier. Reingold, Rothblum, and Rothblum [43]
showed constant-round IPPs for any language computable in polynomial-time and bounded
polynomial-space. Goldreich and Gur [24, 25] showed general-purpose IPP with only 3 rounds,
albeit for a much smaller class.

Proofs of proximity were further studied by [27] who showed more efficient constructions
for certain restricted complexity classes, such as functions accepted by small read-once
branching programs and context-free languages. Gur and Rothblum proved a round hierarchy
theorem for IPPs [34], showing that the power of IPPs gradually increases with the number
of rounds of interaction. Several works focused on studying non-interactive (MA) proofs of
proximity [35, 20, 26] (see also [30]). In addition, recent works studied (computationally
sound) interactive arguments of proximity [36], zero-knowledge proofs of proximity [9],
and proofs of proximity for distribution testing [14]. Proofs of proximity have also found
applications to property testing and related models [33, 21, 34]. We remark that a concurrent
work of Berman et al. [9], utilizes our results (specifically Theorem 1) to derive a separation
between the power of MAPs and zero-knowledge IPPs.

The notion of MA and AM proofs plays a central role in the study of proofs system in
various computational models, other than in the setting of polynomial-time Turing machines
in which they were originally conceived [6]. For example, in quantum computation, the
class QMA (quantum MA proofs) captures the most fundamental type of quantum proof
systems (since quantum algorithms are inherently randomized) and it has been extensively
studied in the last couple of decades (see survey [4]). Of particular relevance, Aaronson [1]
considered the problem of deciding whether a function is close to a permutation to derive a
quantum query complexity separation between the class QMA and the class of statistical
zero knowledge SZK, showing that every QMA query complexity algorithm with a w-qubit
witness and query complexity q must satisfy q + w = Ω(n1/6).

In addition, MA and AM proof systems received much attention in the setting of commu-
nication complexity [5, 37, 41, 38, 29, 48] and streaming algorithms [15, 16, 12, 32, 13, 49].
The former also has an interesting connection to the algebrization barrier [2] and recently
found important applications to distributed PCPs and hardness of approximation [3].8 The
latter can be viewed as the property testing analogue of online annotated data streams (there,
instead of oracle access to the input, the algorithm has one-pass sequential access to the
input, and the goal is to minimize space complexity rather than query complexity). Indeed,
part of our results concerning oblivious proofs of proximity are inspired by the techniques for
online annotated data streams in [13].

Perhaps most relevant to us, the notion of MA and AM proofs for decision tree complexity
(or the “query complexity model”), which can be thought of as property testing for exact
(rather than approximate) decision problems, is closely related to proofs of proximity, though
the query complexity model is much simpler to analyze than property testing. We remark
that the high-level approach of our main lower bound for MAPs is inspired by the work of
Raz et al. [42].

8 We remark that there are several similarities between MA and AM proof systems in the setting
of property testing and communication complexity. In particular, simulating MA communication
complexity protocols by their AM counterparts can also be done while only incurring a quadratic
blow-up in complexity, and on the other hand AM protocols can also be exponentially more powerful
than MA protocols [38]. In addition, oblivious MA proofs of proximity can be viewed as analogous to
online MA communication complexity protocols [13].
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Comparison with the techniques in [20]. As we discussed above, our MAP lower bound
generalizes the main result of Fischer, Goldhirsh, and Lachish [20]. The latter result can be
interpreted as an MAP lower bound for any k-wise independent property. Our lower bound
extends to a natural generalization of this family. We stress that this extension is crucial for
our main result, as the permutation property (with respect to which we prove Theorem 1) is
not k-wise independent, but does satisfy our more general notion.9

The proof in [20] is technically quite involved and includes several subtle and non-
trivial arguments. For example, while typically property testing lower bounds are shown by
exhibiting two distributions that are chosen only as a function of the property, the argument
in [20] crucially relies on distributions that are functions of both the property and the
description of the specific analyzed algorithm. This entails the usage of several complex
mechanisms. For example, they rely on an involved treatment of adaptivity, which consists
of procedures for “grafting” decision trees, and use a special type of algorithms (called
“readers”) that expose low-entropy portions. Perhaps the most significant complication is
that their argument uses a delicate information theoretic analysis to handle MAPs that have
a two-sided error.

In contrast, our proof is much shorter and consists purely of a combinatorial argument,
which does not require any special treatment of adaptivity and two-sided error, and does not
use information theory.

1.3 Organization
In Section 2, we introduce the notations and definitions that we use throughout this work.
In Section 3, we prove our main technical contribution, which is an MAP lower bound for
relaxed k-wise independent properties. Finally, in Section 4, we conclude with a discussion
and raise open problems. See full version [31] for the proof of our main result: an exponential
separation between MAPs and AMPs, as well as for our results regarding oblivious proofs of
proximity.

2 Preliminaries

In this section we establish the definitions and notions that we will need throughout this
work.

2.1 Properties and Distance
We focus on testing properties of functions and identify a “property” with the set of functions
having that property. More accurately, for each n ∈ N, let Dn and Rn be sets. Let Fn be
the set of functions from Dn to Rn. We define a property as an ensemble Π =

⋃
n Πn, where

Πn ⊆ Fn for all n.
For an alphabet Σ, we denote the Hamming distance between two strings x, y ∈ Σn

by ∆(x, y) := |{xi 6= yi : i ∈ [n]}|. If ∆(x, y) ≤ ε · n, we say that x is ε-close to y,
otherwise we say that x is ε-far from y. For a non-empty set S ⊆ Σn, we similarly define
∆(x, S) := miny∈S ∆(x, y). Again, if ∆(x, S) ≤ ε · n, we also say that x is ε-close to S and
otherwise x is ε-far from S. We extend these definitions to functions by identifying functions
with their truth tables (viewed as strings).

9 Jumping ahead, we remark that our relaxed notion of k-wise independence refers to distributions for
which the probability that any subset of k indices is equal to any given sequence of k values is upper
bounded by the same probability given the uniform distribution up to a multiplicative constant (whereas
the standard (i.e., non-relaxed) notion requires exact equality). See further details in Section 3.
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Integrality. Throughout this work, for simplicity of notation, we use the convention that
all (relevant) integer parameters that are stated as real numbers are implicitly rounded to
the closest integer.

2.2 Proofs of Proximity
We recall the definitions of MA and AM proofs of proximity (i.e., MAPs and AMPs), following
[35]. Throughout, for an algorithm V we denote by V f (n, ε, w) the output of V given oracle
access to a function f and explicit access to inputs n, ε, and w; if V is a probabilistic algorithm,
we write Pr[V f (n, ε, w) = z] to represent the probability over the internal randomness of V

that this outcome is z.

I Definition 3 (MAP). A Merlin-Arthur proof of proximity (MAP) for a property Π =
⋃

n Πn

consists of a probabilistic algorithm V , called the verifier, that is given as explicit inputs an
integer n ∈ N, a proximity parameter ε > 0, and a proof string w ∈ {0, 1}∗; in addition, it is
given oracle access to a function f ∈ Fn. The verifier satisfies the following conditions.
1. Completeness: For every n ∈ N and f ∈ Πn, there exists a string w (the proof) such that

for every ε > 0 the verifier accepts with high probability; that is,

Pr
[
V f (n, ε, w) = 1

]
≥ 2

3 .

2. Soundness: For every n ∈ N, function f ∈ Fn, string w, and proximity parameter ε > 0,
if f is ε-far from Πn, then the verifier rejects with high probability; that is,

Pr
[
V f (n, ε, w) = 0

]
≥ 2

3 .

A MAP is said to have query complexity q : N× R+ → N if for every n ∈ N, ε > 0, f ∈ Fn,
and string w ∈ {0, 1}∗, the verifier reads at most q(n, ε) bits in its queries to f . We say
that a MAP has proof complexity p : N → N if for every n ∈ N, there always exists a
w ∈ {0, 1}p(n) satisfying the conditions of Definition 3. We define the complexity of the MAP
to be t(n, ε) = q(n, ε) + p(n).

Next, we define AM proofs of proximity (AMPs) similarly to MAPs, except that here the
proof is also a function of the inner randomness of the verifier (alternatively, the verifier first
sends the prover its entire random string).

I Definition 4 (AMP). An Arthur-Merlin proof of proximity (AMP) for a property Π =
⋃

n Πn

consists of a probabilistic algorithm V , called the verifier, that is given as explicit inputs
an integer n ∈ N, a proximity parameter ε > 0, and a proof string w that depends on the
verifier’s random string r, as well as oracle access to a function f ∈ Fn. The verifier must also
be deterministic given the random string r. The protocol satisfies the following conditions.
1. Completeness: For every n ∈ N and f ∈ Πn,

Pr
r

[
∃w = w(r) such that V f (n, ε, w; r) = 1

]
≥ 2

3 .

2. Soundness: For every n ∈ N, function f ∈ Fn, and proximity parameter ε > 0, if f is
ε-far from Πn, then:

Pr
r

[
∃w such that V f (n, ε, w; r) = 1

]
≤ 1

3 .
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Analogously to MAPs, an AMP is said to have query complexity q : N× R+ → N if for
every n ∈ N, ε > 0, f ∈ Fn, and string w ∈ {0, 1}∗, the verifier reads at most q(n, ε) bits
in its queries to f ; and proof complexity p : N × R+ → N if for every n ∈ N and f ∈ Fn,
with probability at least 2

3 over coin tosses in the first round, there exists a w ∈ {0, 1}p(n,ε)

satisfying the completeness condition of Theorem 4. We define the complexity of the AMP
to be t(n, ε) = q(n, ε) + p(n, ε).

We note that we do not include the randomness complexity of the verifier in the complexity
of the protocol (although the randomness complexity in all the protocols described in this
work is not large). This is a similar choice to what is done in similar contexts such as AM
query and communication complexities. Moreover, we show in the full version [31] that if
a property Π of functions f : Dn → Rn, such that |Rn||Dn| = O(exp(poly(n))), admits an
AMP verifier with query complexity q and proof complexity p, then it also admits an AMP
verifier with query complexity O(q), proof complexity O(p), and randomness complexity
O(log n).10 This transformation is similar to known results of Newman[40] in the context
of communication complexity, Goldreich and Sheffet [28] in the context of property testing,
and Gur and Rothblum [35] for MAPs. Its main disadvantage however is that it does not
preserve the computational complexity of the verifier.

3 MAP Lower Bound for (Relaxed) k-wise Independence

In this section we show a general MAP lower bound for a large class of properties. More
specifically, we show that any MAP for a (non-degenerate) property that is k-wise independent,
must have complexity Ω(

√
k). By a k-wise independent property we mean that if we sample a

random element having the property, than its restriction to any k coordinates looks uniform.
As mentioned in the introduction, this generalizes a result due to Fischer et al. [20].

We would like to apply this lower bound to the permutation property. However, the
permutation property is not k-wise independent and so we cannot apply it directly.11. Rather,
we give a relaxed notion of k-wise independence that does capture the permutation property
and for which we can similarly derive an MAP lower bound.

We proceed to define our relaxed notion of k-wise independence. Recall that we use Fn

to denote the set of all functions from Dn to Rn (see Section 2).

I Definition 5 (Relaxed k-wise Independence). Let Π =
⋃

n≥1 Πn be a property, where
Πn ⊂ Fn for every n. We say that Π is relaxed k-wise independent, for k = k(n), if there
exists a constant C ≥ 1 such that for all positive integers n, all pairwise distinct k-tuples
(i1, i2, . . . , ik) ∈ (Dn)k and arbitrary (t1, t2, . . . , tk) ∈ (Rn)k, we have that

Pr
f∈Πn

[
f(ij) = tj for all j ∈ [k]

]
≤ C

|Rn|k
. (1)

Note that standard definition of a k-wise independence corresponds to the special case of
Definition 5 when C = 1 (in which case the inequality in Eq. (1) can be replaced with an
equality).

At first glance it may seem that the relaxation that we allow in Definition 5 is relatively
minor and any lower bound that holds for the full-fledged definition should easily be extendable
to our relaxed variant. We argue that it is not the case. For example, in a seminal

10 For most properties, we have that both the domain and range have size that is polynomial in n. Indeed,
the case that |Rn||Dn| = ω(exp(poly(n))) seems quite pathological.

11 Indeed, it is not even pairwise independent: the chance of seeing the same element twice is zero.
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work, Braverman [10] showed that any k-wise independent distribution (for k that is poly-
logarithmic) fools AC0 circuits. Now consider the permutation property (defined formally in
the full version [31]) which as noted above is not even pairwise independent but does satisfy
our relaxed variant (with k =

√
n). It is not too hard to see that there is a very simple

AC0 circuit for checking whether a function is a permutation: simply by checking whether
there exist a pair of entries in the truth table that are identical - thus, our seemingly minor
relaxation completely sidesteps Braverman’s result. As a matter of fact, a similar situation
occurs in the context of AMPs: Rothblum et al. [46] showed an AMP lower bound for exact
k-wise independent distribution, whereas we show a protocol for the permutation property
with logarithmic complexity.

Having defined our notion of relaxed k-wise independence, we proceed to describe a
second important condition that we require: namely, that the property is sparse, in the sense
that a random function is far from the property. Sparsity is essential for our result since
there are trivial properties that are k-wise independent but are testable with very few queries
(e.g., the property that consists of all functions).

I Definition 6 (Sparse Property). Fix the proximity parameter ε = 1
10 . We say that a

property Πn =
⋃

n∈N Πn is t(n)-sparse if:

Pr
f∈Fn

[f is ε-far from Πn] ≥ 1− |Rn|−t(n).

We can now state our main theorem for this section.

I Theorem 7. Let Π be a relaxed k-wise independent and k-sparse property. Then, any
MAP for Π, with respect to proximity parameter ε = 1/10, with proof complexity p and query
complexity q must satisfy p · q = Ω(k).

The intuition and high level approach for the proof are as follows. First, we use the
duality of an MAP as a collection of partial testers [20]. More specifically, the existence of an
MAP for a property Π implies that there is some large “sub-property” Π′ ⊆ Π and a tester
T that distinguishes between inputs in Π′ from those that are far from Π.

This simple observation reduces lower bounding MAPs for Π to lower bounding a partial
tester for an arbitrary, but large, sub-property. To show such a lower bound, consider the
uniform distribution on Π′ vs. the uniform distribution over functions that are far from Π.
We would like to argue that these two distributions look the same to T , which therefore
cannot distinguish between them.

As a matter of fact, we will argue that both these distributions are “close” to being k-wise
independent, which suffices as long as k is larger than the tester’s query complexity. First,
by the sparsity condition we have that the uniform distribution over functions that are far
from Π is close to the uniform distribution over all functions. Clearly the latter is k-wise
independent.

As for the uniform distribution over Π′, we would like to argue that since Π′ covers a
substantial part of Π, which is relaxed k-wise independent, then also Π′ is relaxed k-wise
independent. The problem with this argument is that Π′ only consists of a 2−p fraction of Π,
and so it could be quite far from being even relaxed k-wise independent (e.g., it could be
that the value of functions in Π′ on some fixed elements of Rn is constant over all functions
in Π′).

This seems like a significant difficulty and was overcome using highly elaborate techniques
in [20]. In contrast, we suggest a much simpler argument. The idea is that we first reduce
the soundness error of the MAP to 2−O(p) by repetition. This increases the query complexity
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of the tester to O(p · q) but now that the soundness error is so small, that the fact that Π′
covers a 2−p fraction of Π is sufficient to make the argument go through.

We proceed to the actual proof.

3.1 Proof of Theorem 7
Let C be a constant such that Πn satisfies the constraints of Definition 5.

Let V be an MAP verifier, with respect to proximity parameter ε, for Πn, and denote
its proof complexity by p and query complexity by q. Note that any MAP with standard
2/3 completeness and soundness probability (as in Definition 3) can be amplified, via O(p)
repetitions, to have completeness and soundness errors 1

10C · 2
−p at the cost of increasing

the query (but not the proof) complexity by a multiplicative factor of O(p), to O(p · q). For
concreteness, let us fix a constant C ′ such that a (C ′ ·p)-fold repetition of V has completeness
and soundness errors 1

10C · 2
−p (while having proof complexity p and query complexity

C ′ · p · q). Assume towards a contradiction that p · q ≤ k
10C′ .

Recall that for Π′ ⊆ Π, a (Π, Π′)-partial tester (a notion due to [20]) is a tester that is
required to accept functions in the subset Π′ and reject functions that are ε-far from the
superset Π. As pointed out by Fischer et al. [20] an MAP as we assumed above, implies
a covering of the property by partial testers as follows. For every possible proof string
w ∈ {0, 1}p, let

Sw =
{

f ∈ Πn : Pr
[
V f (n, ε, w) = 1

]
≥ 1− 1

10C
· 2−p

}
.

By the completeness requirement of an MAP, these sets cover the property Πn. That is,⋃
w Sw = Πn.
Since the number of sets Sw is at most 2p, there exists a proof w that corresponds to a

large Sw. Namely, such that |Sw| ≥ |Πn| · 2−p. We fix such a proof w and argue that the
corresponding (Πn, Sw)-partial tester must make Ω(k) queries, which would contradict our
assumption, thereby proving Theorem 7. Hence, we have reduced proving an MAP lower
bound for Πn to proving a partial testing lower bound for (Πn, Sw).

Let V f
w (n, ε) := V f (n, ε, w) be the (Sw, Πn)-partial tester that is induced by V when

we fix the proof string w (and with respect to parameters n and ε). We use the notation
V f

w (n, ε; r) to denote the deterministic output V f
w when its random string is set to r.

Let Bε = {f ∈ Fn : f is ε-far from Πn} (i.e., the no-instances). As standard in the
property testing literature, we prove a lower bound on the query complexity q′ of a tester by
presenting a distribution over YES-instances (f ∈ Sw) and a distribution over NO-instances
(f ∈ Bε) and bounding away from 1 the distinguishing probability for every deterministic
algorithm making q′ queries. Specifically, we give distributions over Sw and Bε such that
any deterministic algorithm making q′ queries to f has at most a 1− 1

4C · 2
−p probability of

distinguishing between them, which is sufficient for our purposes. In our case, we simply
consider the uniform distributions over Sw and Bε.

More formally, we first observe that

Ef∈Sw

[
Pr
r

[
V f

w (n, ε; r) = 1
]]
− Ef∈Bε

[
Pr
r

[
V f

w (n, ε; r) = 1
]]

= Er

[
Pr

f∈Sw

[
V f

w (n, ε; r) = 1
]
− Pr

f∈Bε

[
V f

w (n, ε; r) = 1
]]

, (2)

By Eq. (2), it suffices to bound the distinguishing probably for any deterministic verifier.
We do this via the following lemma.
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I Lemma 8. For any deterministic verifier W with query complexity at most k
10 , we have

that

Pr
f∈Sw

[
W f (n, ε) = 1

]
− Pr

f∈Bε

[
W f (n, ε) = 1

]
≤ 1− 1

4C
· 2−p.

Proof. We first show that

Pr
f∈Bε

[
W f (n, ε) = 1

]
≥ 1

2C
· 2−p · Pr

f∈Sw

[
W f (n, ε) = 1

]
. (3)

We can view the verifier W as a decision tree of depth q′ = k/10. Each leaf of the
decision tree is associated with indices i1, i2, . . . , iq′ ∈ Dn and values t1, t2, . . . , tq′ ∈ Rn such
that a function f ∈ Fn is accepted at that leaf if and only if f(ij) = tj for all j ∈ [q′]. We
may assume without loss of generality that the sets of indices i1, . . . , iq′ for all paths in the
decision tree are pairwise distinct. Fix such a sequence of indices i1, . . . , iq′ ∈ Dn and values
t1, . . . , tq′ ∈ Rn. Then,

Pr
f∈Bε

[
f(ij) = tj for all j ∈ [q′]

]
≥ | {f ∈ Fn : f(ij) = tj for all j ∈ [q′]} | − |Fn\Bε|

|Bε|

≥ 1
|Rn|q′ −

1
|Rn|k − 1

≥ 1
2|Rn|q′ . (4)

Here we have used k-sparsity to note that |Fn\Bε|
|Bε| ≤

1
|Rn|k−1 , and we used that q′ = k

10 .
On the other hand, we also have that:

Pr
f∈Sw

[
f(ij) = tj for all j ∈ [q′]

]
≤

Prf∈Πn

[
f(ij) = tj for all j ∈ [q′]

]
Prf∈Πn

[f ∈ Sw] ≤ C · 2p

|Rn|q′ (5)

by relaxed q′-wise independence and the lower bound on the size of Sw.
Dividing Eq. (4) by Eq. (5), we obtain that

Pr
f∈Bε

[f(ij) = tj for all j ∈ [q′]] ≥ 1
2C
· 2−p · Pr

f∈Sw

[f(ij) = tj for all j ∈ [q′]] .

Now, summing the above equation over all leaves of the decision tree corresponding to W

(since these correspond to disjoint events) gives us Eq. (3).
Given Eq. (3), we now consider two cases. First, if

Pr
f∈Sw

[
W f (n, ε) = 1

]
≤ 1− 1

2C
· 2−p

we are obviously done. Otherwise, we can assume that Prf∈Sw

[
W f (n, ε) = 1

]
> 1− 1

2C · 2
−p

and so:

Pr
f∈Sw

[
W f (n, ε) = 1

]
− Pr

f∈Bε

[
W f (n, ε) = 1

]
≤ 1− 1

2C
· 2−p · Pr

f∈Sw

[
W f (n, ε) = 1

]
≤ 1− 1

2C
· 2−p ·

(
1− 1

2C
· 2−p

)
≤ 1− 1

4C
· 2−p,

where the first inequality is by Eq. (3). The lemma follows. J
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Now we are ready to use Lemma 8 to complete our proof of Theorem 7. Because V f
w has

completeness and soundness errors 1
10C · 2

−p, we have that

Ef∈Sw

[
Pr
r

[
V f

w (n, ε; r) = 1
]]
− Ef∈Bε

[
Pr
r

[
V f

w (n, ε; r) = 1
]]
≥ 1− 1

10C
· 2−p − 1

10C
· 2−p

= 1− 1
5C
· 2−p.

On the other hand, by Eq. (2) and Lemma 8, it holds that

Ef∈Sw

[
Pr
r

[
V f

w (n, ε; r) = 1
]]
− Ef∈Bε

[
Pr
r

[
V f

w (n, ε; r) = 1
]]
≤ 1− 1

4C
· 2−p,

which is a contradiction. Therefore, we can conclude that p · q ≥ k
10C′ , as desired.

4 Discussion and Open Problems

The complexity of the permutation property for testers, which do not use a proof, is Θ̃(
√

n).
In this work we showed a lower bound of Ω̃(n 1

4 ) for MAPs for Perm. Thus, the MAP
complexity of Perm is somewhere between Ω̃(n 1

4 ) and Õ(
√

n) - resolving the exact complexity
is an interesting open problem:

I Problem 9. Does every MAP for Permutation have complexity Ω̃(
√

n)?

Second, our work shows that AMPs can be exponentially more efficient than MAPs. It
is natural to ask whether the converse also holds - can MAPs be much more efficient than
AMPs? A partial answer to this question is known. As mentioned in Footnote 5, every MAP
with complexity c can be emulated by an AMP with complexity (roughly) c2.

Thus, MAPs can be at most quadratically more efficient than AMPs. However, we do not
know a property for which this gap is tight. In particular, the following problem is open:

I Problem 10. Does this exist a property Π that has an MAP with complexity O(
√

n) but
every AMP for Π must have complexity Ω(n)?
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Abstract
We present a geometric approach towards derandomizing the Isolation Lemma by Mulmuley,
Vazirani, and Vazirani. In particular, our approach produces a quasi-polynomial family of weights,
where each weight is an integer and quasi-polynomially bounded, that can isolate a vertex in any
0/1 polytope for which each face lies in an affine space defined by a totally unimodular matrix.
This includes the polytopes given by totally unimodular constraints and generalizes the recent
derandomization of the Isolation Lemma for bipartite perfect matching and matroid intersection.
We prove our result by associating a lattice to each face of the polytope and showing that if there
is a totally unimodular kernel matrix for this lattice, then the number of vectors of length within
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then it has found numerous other applications, in both algorithms and complexity: e.g., a
reduction from CLIQUE to UNIQUE-CLIQUE [14], NL/poly ⊆ ⊕L/poly [29], NL/poly =
UL/poly [17], an RNC-algorithm for linear matroid intersection [15], and an RP-algorithm
for disjoint paths [3]. In all of these results, the Isolation Lemma is the only place where
they need randomness. Thus, if the Isolation Lemma can be derandomized, i.e., if a
polynomially bounded isolating weight assignment can be deterministically constructed, then
the aforementioned results that rely on it can also be derandomized. In particular, it will
give a deterministic parallel algorithm for matching.

A simple counting argument shows that a single weight assignment with polynomially
bounded weights cannot be isolating for all possible families of subsets of E. We can
relax the question and ask if we can construct a poly-size list of poly-bounded weight
assignments such that for each family B ⊆ 2E , one of the weight assignments in the list is
isolating. Unfortunately, even this can be shown to be impossible via arguments involving
the polynomial identity testing (PIT) problem. The PIT problem asks if an implicitly given
multivariate polynomial is identically zero. Derandomization of PIT is another important
consequence of derandomizing the Isolation Lemma. Here, the Isolation Lemma is applied
to the family of monomials present in the polynomial. In essence, if we have a small list of
weight assignments that works for all families, then we will have a small hitting-set for all
small degree polynomials, which is impossible (see [2]). Once we know that a deterministic
isolation is not possible for all families, a natural question is to solve the isolation question for
families B, that have a succinct representation, for example, the family of perfect matchings
of a graph.

For the general setting of families with succinct representations, no deterministic isolation
is known, other than the trivial construction with exponentially large weights. In fact,
derandomizing the isolation lemma in this setting will imply circuit lower bounds [2]. Efficient
deterministic isolation is known only for very special kinds of families, for example, perfect
matchings in some special classes of graphs [1, 5, 6, 9], s-t paths in directed graphs [4, 12, 28].
Recently, there has been significant progress on deterministic isolation for perfect matchings
in bipartite graphs [7] and subsequently, in general graphs [25], and matroid intersection [10],
which implied quasi-NC algorithms for these problems.

Motivated by these recent works, we give a generic approach towards derandomizing
the Isolation Lemma. We show that the approach works for a large class of combinatorial
polytopes and conjecture that it works for a significantly larger class. For a family of sets
B ⊆ 2E , define the polytope P (B) ⊆ RE to be the convex hull of the indicator vectors of
the sets in B. Our main result shows that for m := |E|, there exists an mO(logm)-sized
family of weight assignments on E with weights bounded by mO(logm) that is isolating for
any family B whose corresponding polytope P (B) satisfies the following property: the affine
space spanned by any face of P (B) is parallel to the null space of some totally unimodular
(TU) matrix ; see Theorem 2.3. This is a black-box weight construction in the sense that it
does not need the description of the family or the polytope.

A large variety of polytopes satisfy this property and, as a consequence, have been
extensively studied in combinatorial optimization. The simplest such class is when the
polytope P (B) has a description Ax ≤ b with A being a TU matrix. Thus, a simple
consequence of our main result is a resolution to the problem of derandomizing the isolation
lemma for polytopes with TU constraints, as raised in a recent work [25]. This generalizes
the isolation result for perfect matchings in a bipartite graph [7], since the perfect matching
polytope of a bipartite graph can be described by the incidence matrix of the graph, which
is TU. Other examples of families whose polytopes are defined by TU constraints are vertex
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covers of a bipartite graph, independent sets of a bipartite graph, and, edge covers of a
bipartite graph. Note that these three problems are computationally equivalent to bipartite
matching and thus, already have quasi-NC algorithms due to [7]. However, the isolation
results for these families are not directly implied by isolation for bipartite matchings.

Our work also generalizes the isolation result for the family of common bases of two
matroids [10]. In the matroid intersection problem, the constraints of the common base
polytope are a rank bound on every subset of the ground set. These constraints, in general,
do not form a TUM. However, for every face of the polytope there exist two laminar families
of subsets that form a basis for the tight constraints of the face. The incidence matrix for
the union of two laminar families is TU (see [20, Theorem 41.11]).

Since our condition on the polytope P (B) does not require the constraint matrix defining
the polytope itself (or any of its faces) to be TU, it is quite weak and is also well studied.
Schrijver [19, Theorem 5.35] shows that this condition is sufficient to prove that the polytope
is box-totally dual integral. The second volume of Schrijver’s book [20] gives an excellent
overview of polytopes that satisfy the condition required in Theorem 2.3 such as

R− S bibranching polytope [20, Section 54.6]
directed cut cover polytope [20, Section 55.2]
submodular flow polyhedron [20, Theorem 60.1]
lattice polyhedron [20, Theorem 60.4]
submodular base polytope [20, Section 44.3]
many other polytopes defined via submodular and supermodular set functions [20, Sections
46.1, 48.1, 48.23, 46.13, 46.28, 46.29, 49.3, 49.12, 49.33, 49.39, 49.53].

We would like to point out that it is not clear if our isolation results in the above settings
lead to any new derandomization of algorithms. Finding such algorithmic applications of our
isolation result would be quite interesting.

To derandomize the Isolation Lemma, we abstract out ideas from the bipartite matching
and matroid intersection isolation [7, 10], and give a geometric approach in terms of certain
lattices associated to polytopes. For each face F of P (B), we consider the lattice LF of
all integer vectors parallel to F . We show that, if for each face F of P (B), the number of
near-shortest vectors in LF is polynomially bounded then we can construct an isolating
weight assignment for B with quasi-polynomially bounded weights; see Theorem 2.4. Our
main technical contribution is to give a polynomial bound on the number of near-shortest
vectors in LF (whose `1-norm is less than 3/2 times the smallest `1-norm of any vector in LF ),
when this lattice is the set of integral vectors in the null space of a TUM; see Theorem 2.5.

The above lattice result is in contrast to general lattices where the number of such
near-shortest vectors could be exponential in the dimension.

Our result on lattices can be reformulated using the language of matroid theory: the
number of near-shortest circuits in a regular matroid is polynomially bounded; see The-
orem 2.6. In fact, we show how Theorem 2.5 can be deduced from Theorem 2.6. One crucial
ingredient in the proof of Theorem 2.6 is Seymour’s remarkable decomposition theorem for
regular matroids [21]. Theorem 2.6 answers a question raised by Subramanian [24] and is a
generalization of (and builds on) known results in the case of graphic and cographic matroids,
that is, the number of near-minimum length cycles in a graph is polynomially bounded
(see [24, 26]) and the result of Karger [13] that states that the number of near-mincuts in a
graph is polynomially bounded.

Thus, not only do our results make progress in derandomizing the isolation lemma
for combinatorial polytopes, they make interesting connections between lattices (that are
geometric objects) and combinatorial polytopes. Our structural results about the number of
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near-shortest vectors in lattices and near-shortest circuits in matroids should be of independent
interest and raise the question: to what extent are they generalizable?

A natural conjecture would be that for any (0, 1)-matrix, the lattice formed by its
integral null vectors has a small number of near-shortest vectors. In turn, this would give us
the isolation result for any polytope which is defined by a (0, 1)-constraint matrix. Many
combinatorial polytopes have this property. One such interesting example is the perfect
matchings polytope for general graphs. The recent result of [25], which showed a quasi-NC
algorithm for perfect matchings, does not actually go via a bound on the number of near-
shortest vectors in the associated lattice. Obtaining a polynomial bound on this number
would give a proof for their quasi-NC result in our unified framework and with improved
parameters. Another possible generalization is for (0, 1)-polytopes that have this property
that the integers occurring in the description of each supporting hyperplane are bounded
by a polynomial in the dimension of the polytope. Such polytopes generalize almost all
combinatorial polytopes and yet seem to have enough structure – they have been recently
studied in the context of optimization [22,23].

2 Our Results

2.1 Isolating a vertex in a polytope
For a set E and a weight function w : E → Z, we define the extension of w to any set S ⊆ E
by w(S) :=

∑
e∈S w(e). Let B ⊆ 2E be a family of subsets of E. A weight function w : E → Z

is called isolating for B if the minimum weight set in B is unique. In other words, the set
arg minS∈B w(S) is unique. The Isolation Lemma of Mulmuley, Vazirani, and Vazirani [14]
asserts that a uniformly random weight function is isolating with a good probability for
any B.

I Lemma 2.1 (Isolation Lemma). Let E be a set, |E| = m, and let w : E → {1, 2, . . . , 2m}
be a random weight function, where for each e ∈ E, the weight w(e) is chosen uniformly and
independently at random. Then for any family B ⊆ 2E, w is isolating with probability at
least 1/2.

The task of derandomizing the Isolation Lemma requires the deterministic construction of
an isolating weight function with weights polynomially bounded in m = |E|. Here, we view
the isolation question for B as an isolation over a corresponding polytope P (B), as follows.
For a set S ⊆ E, its indicator vector xS := (xSe )e∈E is defined as xSe = 1 if e ∈ S and xSe = 0
otherwise. For any family of sets B ⊆ 2E , the polytope P (B) ⊆ Rm is defined as the convex
hull of the indicator vectors of the sets in B, i.e., P (B) := conv

{
xS | S ∈ B

}
. Note that

P (B) is contained in the m-dimensional unit hypercube.
The isolation question for a family B is equivalent to constructing a weight vector w ∈ ZE

such that 〈w, x〉 has a unique minimum over P (B). The property we need for our isolation
approach is in terms of total unimodularity of a matrix.

I Definition 2.2 (Totally unimodular matrix). A matrix A ∈ Rn×m is said to be totally
unimodular (TU), if every square submatrix has determinant 0 or ±1.

Our main theorem gives an efficient quasi-polynomial isolation for a family B when each face
of the polytope P (B) lies in the affine space defined by a TU matrix.

I Theorem 2.3 (Main Result). Let E be a set with |E| = m. Consider a class C of families
B ⊆ 2E that have the following property: for any face F of the polytope P (B), there exists
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a TU matrix AF ∈ Rn×m such that the affine space spanned by F is given by AFx = bF
for some bF ∈ Rn. We can construct a set W of mO(logm) weight assignments on E with
weights bounded by mO(logm) such that for any family B in the class C, one of the weight
assignments in W is isolating.

2.2 Short vectors in lattices associated to polytopes
Our starting point towards proving Theorem 2.3 is a reformulation of the isolation approach
for bipartite perfect matching and matroid intersection [7, 10]. For a set E and a family
B ⊆ 2E , we define a lattice corresponding to each face of the polytope P (B). The isolation
approach works when this lattice has a small number of near-shortest vectors. For any face
F of P (B), consider the lattice of all integral vectors parallel to F ,

LF :=
{
v ∈ ZE | v = α(x1 − x2) for some x1, x2 ∈ F and α ∈ R

}
.

Let λ(L) := min { ‖v‖ | 0 6= v ∈ L } denote the length of the shortest nonzero vector of a
lattice L, where ‖·‖ denotes the `1-norm. We prove that if, for all faces F of P (B) the number
of near-shortest vectors in LF is small, then we can efficiently isolate a vertex in P (B).

I Theorem 2.4 (Isolation via Lattices). Let E be a set with |E| = m and let B ⊆ 2E be a
family such that there exists a constant c > 1, such that for any face F of polytope P (B), we
have |{ v ∈ LF | ‖v‖ < cλ(LF ) }| ≤ mO(1). Then one can construct a set of mO(logm) weight
functions with weights bounded by mO(logm) such that at least one of them is isolating for B.

The main ingredient of the proof of Theorem 2.3 is to show that the hypothesis of Theorem 2.4
is true when the lattice LF is the set of all integral vectors in the nullspace of a TU matrix.
For any n×m matrix A we define a lattice:

L(A) := { v ∈ Zm | Av = 0 } .

I Theorem 2.5 (Near-shortest vectors in TU lattices). For an n × m TU matrix A, let
λ := λ(L(A)). Then |{ v ∈ L(A) | ‖v‖ < 3/2λ }| = O(m5).

A similar statement can also be shown with any `p-norm for p ≥ 2, but with an appropriate
multiplicative constant. Theorem 2.5 together with Theorem 2.4 implies Theorem 2.3.

Proof of Theorem 2.3. Let F be a face of the polytope P (B) and let AF be the TU matrix
associated with F . Thus AFx = bF defines the affine span of F . In other words, the set
of vectors parallel to F is precisely the solution set of AFx = 0 and the lattice LF is given
by L(AF ). Theorem 2.5 implies the hypothesis of Theorem 2.4 for any LF = L(AF ), when
the matrix AF is TU. J

2.3 Near-shortest circuits in regular matroids
The proof of Theorem 2.5 is combinatorial and uses the language and results from matroid
theory. We recall a few basic definitions from matroid theory. A matroid is said to be
represented by a matrix A, if its ground set is the column set of A and its independent sets
are the sets of linearly independent columns of A. A matroid represented by a TU matrix
is said to be a regular matroid. A circuit of a matroid is a minimal dependent set. The
following is one of our main results which gives a bound on the number of near-shortest
circuits in a regular matroid, which, in turn, implies Theorem 2.5. Instead of the circuit size,
we consider the weight of a circuit and present a more general result.
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I Theorem 2.6 (Near-shortest circuits in regular matroids). Let M = (E, I) be a regular
matroid with m = |E| ≥ 2 and let w : E → N be a weight function. Suppose M does not have
any circuit C with w(C) < r for some number r. Then

|{C | C circuit in M and w(C) < 3r/2 }| ≤ 240m5.

I Remark. An extension of this result would be to give a polynomial bound on the number
of circuits of weight at most αr for any constant α. Our current proof technique does not
extend to this setting.

3 Isolation via the Polytope Lattices: Proof of Theorem 2.4

This section is dedicated to a proof of Theorem 2.4. That is, we give a construction of
an isolating weight assignment for a family B ⊆ 2E assuming that for each face F of the
corresponding polytope P (B), the lattice LF has small number of near-shortest vectors. First,
let us see how the isolation question for a family B translates in the polytope setting. For
any weight function w : E → Z, we view w as a vector in ZE and consider the function 〈w, x〉
over the points in P (B). Note that 〈w, xB〉 = w(B), for any B ⊆ E. Thus, a weight function
w : E → Z is isolating for a family B if and only if 〈w, x〉 has a unique minimum over the
polytope P (B).

Observe that for any w : E → Z, the points that minimize 〈w, x〉 in P (B) will form a face
of the polytope P (B). The idea is to build the isolating weight function in rounds. In every
round, we slightly modify the current weight function to get a smaller minimizing face. Our
goal is to significantly reduce the dimension of the minimizing face in every round. We stop
when we reach a zero-dimensional face, i.e., we have a unique minimum weight point in P (B).

In the following, we will denote the size of the set E by m. The following claim asserts
that if we modify the current weight function on a small scale, then the new minimizing face
will be a subset of the current minimizing face. See the full version [11] for a proof.

I Claim 3.1. Let w : E → Z be a weight function and F be the face of P (B) that minimizes w.
Let w′ : E → {0, 1, . . . , N−1} be another weight function and let F ′ be the face that minimizes
the combined weight function mN w + w′. Then F ′ ⊆ F .

Thus, in each round, we will add a new weight function to the current function using a
smaller scale and try to get a sub-face with significantly smaller dimension. Henceforth, N
will be a sufficiently large number bounded by poly(m). The following claim gives a way to
go to a smaller face.

I Claim 3.2. Let F be the face of P (B) minimizing 〈w, x〉 and let v ∈ LF . Then 〈w, v〉 = 0.

Proof. Since v ∈ LF , we have v = α(x1−x2), for some x1, x2 ∈ F and α ∈ R. As x1, x2 ∈ F ,
we have 〈w, x1〉 = 〈w, x2〉. The claim follows. J

Now, let F0 be the face that minimizes the current weight function w0. Let v be in LF0 . Choose
a new weight function w′ ∈ {0, 1, . . . , N − 1}E such that 〈w′, v〉 6= 0. Let w1 := mN w0 + w′

and let F1 be the face that minimizes w1. Clearly, 〈w1, v〉 6= 0 and thus, by Claim 3.2,
v 6∈ LF1 . This implies that F1 is strictly contained in F0. To ensure that F1 is significantly
smaller than F0, we choose many vectors in LF0 , say v1, v2, . . . , vk, and construct a weight
vector w′ such that for all i ∈ [k], we have 〈w′, vi〉 6= 0. The following well-known lemma
actually constructs a list of weight vectors such that one of them has the desired property
(see [8, Lemma 2]).
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I Lemma 3.3. Given m, k, t, let q = mk log t. In time poly(q) one can construct a set
of weight vectors w1, w2, . . . , wq ∈ {0, 1, 2, . . . , q}m such that for any set of nonzero vectors
v1, v2, . . . , vk in {−(t− 1), . . . , 0, 1, . . . , t− 1}m there exists a j ∈ [q] such that for all i ∈ [k]
we have 〈wj , vi〉 6= 0. (see the full version [11] for a proof).

There are two things to note about this lemma: (i) It is black-box in the sense that we do not
need to know the set of vectors {v1, v2, . . . , vk}. (ii) We do not know a priori which function
will work in the given set of functions. So, one has to try all possibilities.

The lemma tells us that we can ensure that 〈w′, v〉 6= 0 for polynomially many vec-
tors v whose coordinates are polynomially bounded. Below, we formally present the weight
construction.

To prove Theorem 2.4, let c be the constant in the assumption of the theorem. Let
N = mO(1) be a sufficiently large number and p = blogc(m+ 1)c. Let w0 : E → Z be a weight
function such that 〈w0, v〉 6= 0 for all nonzero v ∈ ZE with ‖v‖ < c. For i = 1, 2, . . . , p, define

Fi−1: the face of P (B) minimizing wi−1
w′i: a weight vector in {0, 1, . . . , N − 1}E such that 〈w′i, v〉 6= 0 for all nonzero v ∈ LFi−1

with ‖v‖ < ci+1.
wi: mNwi−1 + w′i.

Observe that Fi ⊆ Fi−1, for each i by Claim 3.1. Hence, also for the associated lattices we
have LFi

⊆ LFi−1 . As we show in the next claim, the choice of w′i together with Claim 3.2
ensures that there are no vectors in LFi

with norm less than ci+1.

I Claim 3.4. For i = 0, 1, 2, . . . , p, we have λ(LFi
) ≥ ci+1.

Proof. Consider a nonzero vector v ∈ LFi . By Claim 3.2, we have

〈wi, v〉 = mN〈wi−1, v〉+ 〈w′i, v〉 = 0. (1)

Since v is in LFi , it is also in LFi−1 and again by Claim 3.2, we have 〈wi−1, v〉 = 0. Together
with (1) we conclude that 〈w′i, v〉 = 0. By the definition of w′i, this implies that ‖v‖ ≥ ci+1. J

Finally we argue that wp is isolating.

I Claim 3.5. The face Fp is a point.

Proof. Let y1, y2 ∈ Fp be vertices and thus belong to {0, 1}m. Then y1 − y2 ∈ LFp and
‖y1 − y2‖ ≤ m < cp+1. By Claim 3.4, we have that y1 − y2 must be zero, i.e., y1 = y2. J

We get a bound of mO(logm) on both the number of weight vectors we need to try and the
weights involved, which finishes the proof of Theorem 2.4 (see the full version [11]).

4 Number of Short Vectors in Lattices: Proof of Theorem 2.5

In this section, we show that Theorem 2.5 follows from Theorem 2.6. We define a circuit of a
matrix and show that to prove Theorem 2.5, it is sufficient to upper bound the number of
near-shortest circuits of a TU matrix. We argue that this, in turn, is implied by a bound
on the number of near-shortest circuits of a regular matroid. Just as a circuit of a matroid
is a minimal dependent set, a circuit of matrix is a minimal linear dependency among its
columns. Recall that for an n×m matrix A, the lattice L(A) is defined as the set of integer
vectors in its kernel,

L(A) := { v ∈ Zm | Av = 0 } .
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I Definition 4.1 (Circuit). For an n×m matrix A, a vector u ∈ L(A) is a circuit of A if
there is no nonzero v ∈ L(A) with supp(v) ( supp(u), and
gcd(u1, u2, . . . , um) = 1.

Note that if u is a circuit of A, then so is −u. The following property of the circuits of a TU
matrix is well known (see [16, Lemma 3.18]).

I Fact 4.2. Let A be a TU matrix. Then every circuit of A has its coordinates in {−1, 0, 1}.

Now, we define a notion of conformality among two vectors.

I Definition 4.3 (Conformal [16]). Let u, v ∈ Rm. We say that u is conformal to v, denoted
by u v v, if uivi ≥ 0 and |ui| ≤ |vi|, for each 1 ≤ i ≤ m.

I Observation 4.4. For vectors u and v with u v v, we have ‖v − u‖ = ‖v‖ − ‖u‖.

The following lemma follows from [16, Lemma 3.19].

I Lemma 4.5. Let A be a TU matrix. Then for any nonzero vector v ∈ L(A), there is a
circuit u of A that is conformal to v.

We use the lemma to argue that any small enough vector in L(A) must be a circuit.

I Lemma 4.6. Let A be a TU matrix and let λ := λ(L(A)). Then any nonzero vector
v ∈ L(A) with ‖v‖ < 2λ is a circuit of A.

Proof. Suppose v ∈ L(A) is not a circuit of A. We show that ‖v‖ ≥ 2λ. By Lemma 4.5,
there is a circuit u of A with u v v. Since v is not a circuit, v − u 6= 0. Since both u

and v − u are nonzero vectors in L(A), we have ‖u‖ , ‖v − u‖ ≥ λ. By Observation 4.4, we
have ‖v‖ = ‖v − u‖+ ‖u‖ and thus, we get that ‖v‖ ≥ 2λ. J

Recall that a matroid represented by a TU matrix is a regular matroid. The following lemma
shows that the two definitions of circuits, 1) for TU matrices and 2) for regular matroids,
coincide. See the full version [11] for a proof.

I Lemma 4.7. Let M = (E, I) be a regular matroid, represented by a TU matrix A. Then
there is a one to one correspondence between the circuits of M and the circuits of A (up to
change of sign).

To prove Theorem 2.5, let A be TU matrix. By Lemma 4.6, it suffices to bound the number
of near-shortest circuits of A. By Lemma 4.7, the circuits of A and the circuits of the regular
matroid M represented by A, coincide. Moreover, the size of a circuit of M is same as the
`1-norm of the corresponding circuit of A, as a circuit of A has its coordinates in {−1, 0, 1}
by Fact 4.2. Now Theorem 2.5 follows from Theorem 2.6 when we define the weight of each
element being 1.

5 Proof Overview of Theorem 2.6

Here we give a proof overview of Theorem 2.6; see the full version [11] for a complete proof.
Theorem 2.6 states that for a regular matroid, the number of near-shortest circuits – circuits
whose size is a constant multiple of the shortest circuit size – is polynomially bounded. The
starting point of the proof of this theorem is a remarkable result of Seymour [21] which
showed that every regular matroid can be decomposed into a set of much simpler matroids.
Each of these building blocks for regular matroids either belongs to the classes of graphic
and cographic matroids – the simplest and well-known examples of regular matroids, or is a
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special 10-element matroid R10 (see the full version [11] for the definitions). One important
consequence of Seymour’s result is a polynomial time algorithm, the only one known, for
testing the total unimodularity of a matrix; see [18] (recall that a TU matrix represents a
regular matroid). Our strategy is to leverage Seymour’s decomposition theorem in order to
bound the number of circuits in a regular matroid.

Seymour’s Theorem and a simple inductive approach

Seymour’s decomposition involves a sequence of binary operations on matroids, each of which
is either a 1-sum, a 2-sum or a 3-sum. Formally, it states that for every regular matroid M ,
we can build a decomposition tree – which is a binary rooted tree – in which the root node
is the matroid M , every node is a k-sum of its two children for k = 1, 2, or 3, and at the
bottom we have graphic, cographic and the R10 matroids as the leaf nodes. Note that the
tree, in general, is not necessarily balanced and can have large depth (linear in the ground
set size).

This suggests that to bound the number of near-shortest circuits in a regular matroid,
perhaps one can use the tree structure of its decomposition, starting from the leaf nodes and
arguing, inductively, all the way up to the root. It is known that the number of near-shortest
circuits in graphic and cographic matroids is polynomially bounded. This follows from the
polynomial bounds on the number of near-shortest cycles of a graph [24] and on the number
of near min-cuts in a graph [13]. The challenge is to show how to combine the information
at an internal node.

The k-sum M of two matroids M1 and M2 is defined in a way such that each circuit of M
can be built from a combination of two circuits, one from M1 and another from M2. Thus, if
we have upper bounds for the number of circuits in M1 and M2, their product will give a
naive upper bound for number of circuits in M . Since there can be many k-sum operations
involved, the naive product bound can quickly explode. Hence, to keep a polynomial bound
we need to take a closer look at the k-sum operations.

k-sum operations

1-sum. A 1-sum M of two matroids M1 and M2 is simply their direct sum. That is, the
ground set of M is the disjoint union of the ground sets of M1 and M2, and any circuit of
M is either a circuit of M1 or a circuit of M2.

The 2-sum and 3-sum are a bit more intricate. It is known that the set of circuits of a
matroid completely characterizes the matroid. The 2-sum and 3-sum operations are defined
by describing the set of circuits of the matroid obtained by the sum. To get an intuition
for the 2-sum operation, we first describe it on two graphic matroids. A graphic matroid is
defined with respect to a graph, where a circuit is a simple cycle in the graph.

2-sum on graphs. For two graphs G1 and G2, their 2-sum G = G1 ⊕2 G2 is any graph
obtained by identifying an edge (u1, v1) in G1 with an edge (u2, v2) in G2, that is, identifying
u1 with u2 and v1 with v2 and then, deleting the edge (u1, v1) = (u2, v2). It would be
instructive to see how a cycle in G, i.e., a circuit of the associated graphic matroid, looks
like. A cycle in G is either a cycle in G1 or in G2 that avoids the edge (u1, v1) = (u2, v2),
or it is a union of a path u1  v1 in G1 and a path v2  u2 in G2. This last possibility is
equivalent to taking a symmetric difference C14C2 of two cycles C1 in G1 and C2 in G2
such that C1 passes through (u1, v1) and C2 passes through (u2, v2).
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2-sum on matroids. The 2-sumM1⊕2M2 of two matroidsM1 andM2 is defined analogously.
The grounds sets of M1 and M2, say E1 and E2 respectively, have an element in common,
say e (this can be achieved by identifying an element from E1 with an element from E2). The
sum M1⊕2 M2 is defined on the ground set E = E1∆E2, the symmetric difference of the two
given ground sets. Any circuit of the sum M1 ⊕2 M2 is either a circuit in M1 or in M2 that
avoids the common element e, or it is the symmetric difference C14C2 of two circuits C1 and
C2 of M1 and M2, respectively, such that both C1 and C2 contain the common element e.

3-sum on matroids. A 3-sum is defined similarly. A matroid M is a 3-sum of two matroids
M1 and M2 if their ground sets E1 and E2 have a set S of three elements in common such
that S is a circuit in both the matroids and the ground set of M is the symmetric difference
E14E2. Moreover, a circuit of M is either a circuit in M1 or in M2 that avoids the common
elements S, or it is the symmetric difference C14C2 of two circuits C1 and C2 of M1 and
M2, respectively, such that both C1 and C2 contain a common element e from S and no
other element from S.

The inductive bound on the number of circuits
Our proof is by a strong induction on the ground set size.
Base case: For a graphic or cographic matroid with a ground set of size m, if its shortest
circuit has size r then the number of its circuits of size less than αr is at most m4α. For the
R10 matroid, we present a constant upper bound on the number of circuits.
Induction hypothesis: For any regular matroid with a ground set of size m < m0, if its
shortest circuit has size r, then the number of its circuits of size less than αr is bounded by
mcα for some sufficiently large constant c.
Induction step: We prove the induction hypothesis for a regular matroid M with a ground
set of size m0. Let the minimum size of a circuit in M be r. We want to show a bound
of mcα

0 on the number of circuits in M of size less than αr. The main strategy here is as
follows: by Seymour’s Theorem, we can write M as a k-sum of two smaller regular matroids
M1 and M2, with ground sets of size m1 < m0 and m2 < m0 respectively. As the circuits of
M can be written as a symmetric differences of circuits of M1 and M2, we derive an upper
bound on the number circuits of M from the corresponding bounds for M1 and M2, which
we get from the induction hypothesis.

The 1-sum case. In this case, any circuit of M is either a circuit of M1 or a circuit of M2.
Hence, the number of circuits in M of size less than αr is simply the sum of the number
of circuits in M1 and M2 of size less than αr. Using the induction hypothesis, this sum is
bounded by mcα

1 +mcα
2 , which is less than mcα

0 since m0 = m1 +m2.

The 2-sum and 3-sum cases. Let the set of common elements in the ground sets of M1
and M2 be S. Note that m0 = m1 +m2 − |S|. Recall from the definition of a k-sum that
any circuit C of M is of the form C14C2, where C1 and C2 are circuits in M1 and M2
respectively, such that either (i) one of them, say C1, has no element from S and the other
one C2 is empty or (ii) they both contain exactly one common element from S. We will refer
to C1 and C2 as projections of C. Note that |C1|, |C2| ≤ |C|. In particular, if circuit C is of
size less than αr, then so are its projections C1 and C2.

An obstacle. The first step would be to bound the number of circuits C1 of M1 and C2 of
M2 using the induction hypothesis. However, we do not have a lower bound on the minimum
size of a circuit in M1 or M2, which is required to use the induction hypothesis. What we do
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know is that any circuit in M1 or M2 that does not involve elements from S is also a circuit
of M , and thus, must have size at least r. However, a circuit that involves elements from S

could be arbitrarily small. We give different solutions for this obstacle in case (i) and case
(ii) mentioned above.

Case (i): deleting elements in S. Let us first consider the circuits C1 of M1 that do not
involve elements from S. These circuits can be viewed as circuits of a new regular matroid
M1 \ S obtained by deleting the elements in S from M1. Since we know that the minimum
size of a circuit in M1 \ S is r, we can apply the induction hypothesis to get a bound of
(m1 − |S|)cα for the number of circuits C1 of M1 \ S of size less than αr. Summing this with
a corresponding bound for M2 \ S gives us a bound less than mcα

0 for the number of circuits
of M in case (i).

Case (ii): stronger induction hypothesis. The case when circuits C1 and C2 contain an
element from S turns out to be much harder. For this case, we actually need to strengthen our
induction hypothesis. Let us assume that for a regular matroid of ground set size m < m0, if
the minimum size of a circuit that avoids a given element ẽ is r, then the number of circuits
containing ẽ and of size less than αr is bounded by mcα. This statement will also be proved
by induction, but we will come to its proof later.

Since we know that any circuit in M1 (or M2) that avoids elements from S has size
at least r, we can use the above stronger inductive hypothesis to get a bound of mcα

1 on
the number of circuits C1 in M1 containing a given element from S and of size less than
αr. Similarly, we get an analogous bound of mcα

2 for circuits C2 of M2. Since C can be a
symmetric difference of any C1 and C2, the product of these two bounds, that is, (m1m2)cα
bounds the number of circuits C of M of size less than αr. Unfortunately, this product can
be much larger than mcα

0 . Note that this product bound on the number of circuits C is not
really tight since C1 and C2 both cannot have their sizes close to αr simultaneously. This is
because C = C14C2 and thus, |C| = |C1|+ |C2| − 1. Hence, a better approach is to consider
different cases based on the sizes of C1 and C2.

Number of circuits C when one of its projections is small. We first consider the case
when the size of C1 is very small, i.e., close to zero. In this case, the size of C2 will be close
to αr and we have to take the bound of mcα

2 on the number of such circuits C2. Now, if
number of circuits C1 with small size is N then we get a bound of Nmcα

2 on the number of
circuits C of M of this case. Note that Nmcα

2 is dominated by mcα
0 only when N ≤ 1, as m2

can be comparable to m. While N ≤ 1 does not always hold, we show something weaker
which is true.

Uniqueness of C1. We can show that for any element s in the set of common elements S,
there is at most one circuit C1 of size less than r/2 that contains s and no other element
from S. To see this, assume that there are two such circuits C1 and C ′1. It is known that
the symmetric difference of two circuits of a matroid is a disjoint union of some circuits of
the matroid. Thus, C14C ′1 will be a disjoint union of circuits of M1. Since C14C ′1 does not
contain any element from S, it is also a disjoint union of circuits of M . This would lead us
to a contradiction because the size of C14C ′1 is less than r and M does not have circuits of
size less than r. This proves the uniqueness of C1. Our problem is still not solved since the
set S can have three elements in case of a 3-sum, and thus, there can be three possibilities
for C1 (i.e., N=3).
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Assigning weights to the elements. To get around this problem, we use a new idea of
considering matroids elements with weights. For each element s in S, consider the unique
circuit C1 of size at most r/2 that contains s. In the matroid M2, we assign a weight of
|C1| − 1 to the element s. The elements outside S get weight 1. The weight of element
s ∈ S signifies that if a circuit C2 of M2 contains s then it has to be summed up with the
unique circuit C1 containing s, which adds a weight of |C1| − 1. Essentially, the circuits of
the weighted matroid M2 that have weight γ will have a one-to-one correspondence with
circuits C = C14C2 of M that have size γ and have |C1| < r/2. Hence, we can assume there
are no circuits in the weighted matroid M2 of weight less than r. Thus, we can apply the
induction hypothesis on M2, but we need to further strengthen the hypothesis to a weighted
version. By this new induction hypothesis, we will get a bound of mcα

2 on the number of
circuits of M2 with weight less that αr. As mentioned above, this will bound the number of
circuits C = C14C2 of M with size less than αr and |C1| < r/2. Note that the bound mcα

2
is smaller than the desired bound mcα

0 .

Number of circuits C when none of its projections is small. It is relatively easier to
handle the other case when C1 has size at least r/2 (and less than αr). In this case, C2 has
size less than (α− 1/2)r. The bounds we get by the induction hypothesis for the number of
circuits C1 and C2 are mcα

1 and mc(α−1/2)
2 respectively. Their product mcα

1 m
c(α−1/2)
2 bounds

the number of circuits C in this case. However, this product is not bounded by mcα
0 .

Stronger version of Seymour’s Theorem. To get a better bound we need another key idea.
Instead of Seymour’s Theorem, we work with a stronger variant given by Truemper [27]. It
states that any regular matroid can be written as a k-sum of two smaller regular matroids
M1 and M2 for k = 1, 2 or 3 such that one of them, say M1, is a graphic, cographic or R10
matroid. The advantage of this stronger statement is that we can take a relatively smaller
bound on the number of circuits of M1, which gives us more room for the inductive argument.
Formally, we know from above that when M1 is a graphic or cographic matroid, the number
of its circuits of size less than αr is at most m4α

1 . One can choose the constant c in our
induction hypothesis to be sufficiently large so that the product m4α

1 m
c(α−1/2)
2 is bounded by

mcα
0 .

A stronger induction hypothesis
To summarize, we work with an inductive hypothesis as follows: If a regular matroid (with
weights) has no circuits of weight less than r that avoid a given set R of elements then the
number of circuits of weight less than αr that contain the set R is bounded by mcα. As the
base case, we first show this statement for the graphic and cographic case.

When we rerun the whole inductive argument with weights and with a fixed set R, we
run into another issue. It turns out that in the case when the size of C1 is very small,
our arguments above do not go through if C1 has some elements from R. To avoid such a
situation we use yet another strengthened version of Seymour’s Theorem. It says that any
regular matroid with a given element ẽ can be written as a k-sum of two smaller regular
matroids M1 and M2, such that M1 is a graphic, cographic or R10 matroid and M2 is a
regular matroid containing ẽ. When our R is a single element set, say {ẽ}, we use this
theorem to ensure that M1, and thus C1, has no elements from R. This rectifies the problem
when R has size 1. However, as we go deeper inside the induction, the set R can grow in size.
Essentially, whenever α decreases by 1/2 in the induction, the size of R grows by 1. Thus, we
take α to be 3/2, which means that to reach α = 1 we need only one step of decrement, and
thus, the size of R at most becomes 1. This is the reason our main theorem only deals with
circuits of size less than 3/2 times the smallest size.
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Abstract
We present many new results related to reliable (interactive) communication over insertion-
deletion channels. Synchronization errors, such as insertions and deletions, strictly generalize
the usual symbol corruption errors and are much harder to protect against.

We show how to hide the complications of synchronization errors in many applications by
introducing very general channel simulations which efficiently transform an insertion-deletion
channel into a regular symbol corruption channel with an error rate larger by a constant factor
and a slightly smaller alphabet. We utilize and generalize synchronization string based methods
which were recently introduced as a tool to design essentially optimal error correcting codes
for insertion-deletion channels. Our channel simulations depend on the fact that, at the cost
of increasing the error rate by a constant factor, synchronization strings can be decoded in
a streaming manner that preserves linearity of time. Interestingly, we provide a lower bound
showing that this constant factor cannot be improved to 1+ε, in contrast to what is achievable for
error correcting codes. Our channel simulations drastically and cleanly generalize the applicability
of synchronization strings.

We provide new interactive coding schemes which simulate any interactive two-party protocol
over an insertion-deletion channel. Our results improve over the interactive coding schemes
of Braverman et al. [TransInf ‘17] and Sherstov and Wu [FOCS ‘17] which achieve a small
constant rate and require exponential time computations with respect to computational and
communication complexities. We provide the first computationally efficient interactive coding
schemes for synchronization errors, the first coding scheme with a rate approaching one for small
noise rates, and also the first coding scheme that works over arbitrarily small alphabet sizes. We
also show tight connections between synchronization strings and edit-distance tree codes which
allow us to transfer results from tree codes directly to edit-distance tree codes.

Finally, using on our channel simulations, we provide an explicit low-rate binary insertion-
deletion code that improves over the state-of-the-art codes by Guruswami and Wang [TransInf
‘17] in terms of rate-distance trade-off.
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1 Introduction

Communication in the presence of synchronization errors, which include both insertions and
deletions, is a fundamental problem of practical importance which eluded a strong theoretical
foundation for decades. This remained true even while communication in the presence
of half-errors, which consist of symbol corruptions and erasures, has been the subject of
an extensive body of research with many groundbreaking results. Synchronization errors
are strictly more general than half-errors, and thus synchronization errors pose additional
challenges for robust communication.

In this work, we show that one-way and interactive communication in the presence of
synchronization errors can be reduced to the problem of communication in the presence
of half-errors. We present a series of efficient channel simulations which allow two parties
to communicate over a channel afflicted by synchronization errors as though they were
communicating over a half-error channel with only a slightly larger error rate. This allows us
to leverage existing coding schemes for robust communication over half-error channels in
order to derive strong coding schemes resilient to synchronization errors.

One of the primary tools we use are synchronization strings, which were recently introduced
by Haeupler and Shahrasbi in order to design essentially optimal error correcting codes
(ECCs) robust to synchronization errors [19]. For every ε > 0, synchronization strings allow
a sender to index a sequence of messages with an alphabet of size ε−O(1) in such a way that k
synchronization errors are efficiently transformed into (1 + ε)k half-errors for the purpose of
designing ECCs. Haeupler and Shahrasbi provide a black-box construction which transforms
any ECC into an equally efficient ECC robust to synchronization errors. However, channel
simulations and interactive coding in the presence of synchronization errors present a host of
additional challenges that cannot be solved by the application of an ECC. Before we describe
our results and techniques in detail, we begin with an overview of the well-known interactive
communication model.

Interactive communication. Throughout this work, we study a scenario where there are
two communicating parties, whom we call Alice and Bob. The two begin with some input
symbols and wish to compute a function of their input by having a conversation. Their
goal is to succeed with high probability while communicating as few symbols as possible. In
particular, if their conversation would consist of n symbols in the noise-free setting, then
they would like to converse for at most αn symbols, for some small α, when in the presence
of noise. One might hope that Alice and Bob could correspond using error-correcting codes.
However, this approach would lead to poor performance because if a party incorrectly decodes
a single message, then the remaining communication is rendered useless. Therefore, only a
very small amount of noise could be tolerated, namely less than the amount to corrupt a
single message.

There are three major aspects of coding schemes for interactive communication that
have been extensively studied in the literature. The first is the coding scheme’s maximum
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tolerable error-fraction or, in other words, the largest fraction of errors for which the
coding scheme can successfully simulate any given error-free protocol. Another important
quality of coding schemes for interactive communication, as with one-way communication, is
communication rate, i.e., the amount of communication overhead in terms of the error
fraction. Finally, the efficiency of interactive coding schemes have been of concern in the
previous work.

Schulman initiated the study of error-resilient interactive communication, showing how
to convert an arbitrary two-party interactive protocol to one that is robust to a δ = 1/240
fraction of adversarial errors with a constant communication overhead [22, 23]. Braverman
and Rao increased the bound on the tolerable adversarial error rate to δ < 1/4, also with a
constant communication overhead [9]. Brakerski et al. [2] designed the first efficient coding
scheme resilient to a constant fraction of adversarial errors with constant communication
overhead. The above-mentioned schemes achieve a constant overhead no matter the level
of noise. Kol and Raz were the first to study the trade-off between error fraction and
communication rate [21]. Haeupler then provided a coding scheme with a communication
rate of 1 − O(

√
δ log log(1/δ)) over an adversarial channel [17]. Further prior work has

studied coding for interactive communication focusing on communication efficiency and noise
resilience [18, 7, 14] as well as computational efficiency [4, 3, 2, 12, 13, 14]. Other works have
studied variations of the interactive communication problem [15, 11, 10, 1, 5].

The main challenge that synchronization errors pose is that they may cause the parties to
become “out of sync.” For example, suppose the adversary deletes a message from Alice and
inserts a message back to her. Neither party will know that Bob is a message behind, and if
this corruption remains undetected, the rest of the communication will be useless. In most
state-of-the-art interactive coding schemes for symbol corruptions, the parties communicate
normally for a fixed number of rounds and then send back and forth a series of checks to detect
any symbol corruptions that may have occurred. One might hope that a synchronization error
could be detected during these checks, but the parties may be out of sync while performing
the checks, thus rendering them useless as well. Therefore, synchronization errors require us
to develop new techniques.

Very little is known regarding coding for interactive communication in the presence of
synchronization errors. A 2016 coding scheme by Braverman et al. [8], which can be seen
as the equivalent of Schulman’s seminal result, achieves a small constant communication
rate while being robust against a 1/18− ε fraction of errors. The coding scheme relies on
edit-distance tree codes, which are a careful adaptation of Schulman’s original tree codes [23]
for edit distance, so the decoding operations are not efficient and require exponential time
computations. A recent work by Sherstov and Wu [25] closed the gap for maximum tolerable
error fraction by introducing a coding scheme that is robust against 1/6− ε fraction of errors
which is the highest possible fraction of insertions and deletions under which any coding
scheme for interactive communication can work. Both Braverman et al. [8] and Sherstov and
Wu [25] schemes are of constant communication rate, over large enough constant alphabets,
and inefficient. In this work we address the next natural questions which, as arose with
ordinary corruption interactive communication, are on finding interactive coding schemes
that are computationally efficient or achieve super-constant communication efficiency.

Our results. We present very general channel simulations which allow two parties com-
municating over an insertion-deletion channel to follow any protocol designed for a regular
symbol corruption channel. The fraction of errors on the simulated symbol corruption channel
is only slightly larger than that on the insertion-deletion channel. Our channel simulations
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are made possible by synchronization strings. Crucially, at the cost of increasing the error
rate by a constant factor, synchronization strings can be decoded in a streaming manner
which preserves linearity of time. Note that the similar technique is used in Haeupler and
Shahrasbi [19] to transform synchronization errors into ordinary symbol corruptions as a
stepping-stone to obtain insertion-deletion codes from ordinary error correcting codes in a
black-box fashion. However, in the context of error correcting codes, there is no requirement
for this transformation to happen in real time. In other words, in the study of insertion-
deletion codes by Haeupler and Shahrasbi [19], the entire message transmission is done and
then the receiving party uses the entire message to transform the synchronization errors into
symbol corruptions. In the channel simulation problem, this transformation is required to
happen on the fly. Interestingly, we have found out that in the harder problem of channel
simulation, the factor by which the number of synchronization errors increase by being
transformed into corruption errors cannot be improved to 1 + o(1), in contrast to what is
achievable for error correcting codes. This work exhibits the widespread applicability of
synchronization strings and opens up several new use cases, such as coding for interactive
communication over insertion-deletion channels. Namely, using synchronization strings, we
provide techniques to obtain the following simulations of corruption channels over given
insertion-deletion channels with binary and large constant alphabet sizes.

I Theorem 1 (Informal Statement).
(a) Suppose that n rounds of a one-way/interactive insertion-deletion channel over an alpha-

bet Σ with a δ fraction of insertions and deletions are given. Using an ε-synchronization
string over an alphabet Σsyn, it is possible to simulate n (1−Oε(δ)) rounds of a one-
way/interactive corruption channel over Σsim with at most Oε (nδ) symbols corrupted so
long as |Σsim| × |Σsyn| ≤ |Σ|.

(b) Suppose that n rounds of a binary one-way/interactive insertion-deletion channel with
a δ fraction of insertions and deletions are given. It is possible to simulate n(1 −
Θ(
√
δ log(1/δ))) rounds of a binary one-way/interactive corruption channel with

Θ(
√
δ log(1/δ)) fraction of corruption errors between two parties over the given channel.

Based on the channel simulations presented above, we present novel interactive coding
schemes which simulate any interactive two-party protocol over an insertion-deletion channel.

We use our large alphabet interactive channel simulation along with constant-rate efficient
coding scheme of Ghaffari and Haeupler [14] for interactive communication over corruption
channels to obtain a coding scheme for insertion-deletion channels that is efficient, has a
constant communication rate, and tolerates up to 1/44 − ε fraction of errors. Note that
despite the fact that this coding scheme fails to protect against the optimal 1/6−ε fraction of
synchronization errors as the recent work by Sherstov and Wu [25] does, it is an improvement
over all previous work in terms of computational efficiency as it is the first efficient coding
scheme for interactive communication over insertion-deletion channels.

I Theorem 2. For any constant ε > 0 and n-round alternating protocol Π, there is an
efficient randomized coding scheme simulating Π in presence of δ = 1/44 − ε fraction of
edit-corruptions with constant rate (i.e., in O(n) rounds) and in O(n5) time that works with
probability 1− 2Θ(n). This scheme requires the alphabet size to be a large enough constant
Ωε(1).

Next, we use our small alphabet channel simulation and the corruption channel interactive
coding scheme of Haeupler [17] to introduce an interactive coding scheme for insertion-deletion
channels. This scheme is not only computationally efficient, but also the first with super
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constant communication rate. In other words, this is the first coding scheme for interactive
communication over insertion-deletion channels whose rate approaches one as the error
fraction drops to zero. Our computationally efficient interactive coding scheme achieves a
near-optimal communication rate of 1−O(

√
δ log(1/δ)) and tolerates a δ fraction of errors.

Besides computational efficiency and near-optimal communication rate, this coding scheme
improves over all previous work in terms of alphabet size. As opposed to coding schemes
provided by the previous work[8, 25], our scheme does not require a large enough constant
alphabet and works even for binary alphabets.

I Theorem 3. For sufficiently small δ, there is an efficient interactive coding scheme for
fully adversarial binary insertion-deletion channels which is robust against δ fraction of
edit-corruptions, achieves a communication rate of 1 − Θ(

√
δ log(1/δ)), and works with

probability 1− 2−Θ(nδ).

We also utilize the channel simulations in one-way settings to provide efficient binary
insertion-deletion codes correcting δ-fraction of synchronization errors–for δ smaller than
some constant–with a rate of 1 − Θ(

√
δ log(1/δ)). This is an improvement in terms of

rate-distance trade-off over the state-of-the-art low-rate binary insertion-deletion codes by
Guruswami and Wang [16]. The codes by Guruswami and Wang [16] achieve a rate of
1−O(

√
δ log(1/δ)).

Finally, we introduce a slightly improved definition of edit-distance tree codes, a general-
ization of Schulman’s original tree codes defined by Braverman et al. [8]. We show that under
our revised definition, edit-distance tree codes are closely related to synchronization strings.
For example, edit-distance tree codes can be constructed by merging a regular tree code and
a synchronization string. This transfers, for example, Braverman’s sub-exponential time tree
code construction [6] and the candidate construction of Schulman [24] from tree codes to
edit-distance tree codes. Lastly, as a side note, we will show that with the improved definition,
the coding scheme of Braverman et al. [8] can tolerate 1/10− ε fraction of synchronization
errors rather than 1/18− ε fraction that the scheme based on their original definition did.
This improved definition is independently observed by Sherstov and Wu [25].

1.1 Definitions and preliminaries
In this section, we define the channel models and communication settings considered in this
work. We also provide notation and define synchronization strings.

Error model and communication channels. In this work, we study two types of channels,
which we call corruption channels and insertion-deletion channels. In the corruption channel
model, two parties communicate with an alphabet Σ, and if one party sends a message c ∈ Σ
to the other party, then the other party will receive a message c̃ ∈ Σ, but it may not be the
case that c = c̃.

In the one-way communication setting over an insertion-deletion channel, messages to the
listening party may be inserted, and messages sent by the sending party may be deleted. The
two-way channel requires a more careful setup. We emphasize that we cannot hope to protect
against arbitrary insertions and deletions in the two-way setting because in the message-
driven model, a single deletion could cause the protocol execution to “hang.” Therefore,
following the standard model of Braverman et al.’s work [8] that is employed in all other
previous works on this problem [25], we restrict our attention to edit corruptions, which
consist of a single deletion followed by a single insertion, which may be aimed at either party.
Braverman et al. [8] provide a detailed discussion on their model and show that it is strong

ICALP 2018



75:6 Synch Strings: Channel Sim and Interactive Coding for Insertions and Deletions

enough to generalize other natural models one might consider, including models that utilize
clock time-outs to overcome the stalling issue.

In both the one- and two-way communication settings, we study adversarial channels
with error rate δ. Our coding schemes are robust in both the fully adversarial and the
oblivious adversary models.

Interactive and one-way communication protocols. In an interactive protocol Π over a
channel with an alphabet Σ, Alice and Bob begin with two inputs from Σ∗ and then engage
in n rounds of communication. In a single round, each party either listens for a message
or sends a message, where this choice and the message, if one is generated, depends on
the party’s state, its input, and the history of the communication thus far. After the n
rounds, the parties produce an output. We study alternating protocols, where each party
sends a message every other round and listens for a message every other round. In this
message-driven paradigm, a party “sleeps” until a new message comes, at which point the
party performs a computation and sends a message to the other party. In the presence of
noise, we say that a protocol Π′ robustly simulates a deterministic protocol Π over a channel
C if given any inputs for Π, the parties can decode the transcript of the execution of Π on
those inputs over a noise-free channel from the transcript of the execution of Π′ over C.

Finally, we also study one-way communication, where one party sends all messages and
the other party listens. Coding schemes in this setting are known as error-correcting codes.

Synchronization Strings. In short, synchronization strings [19] allow communicating parties
to protect against synchronization errors by indexing their messages without blowing up
the communication rate. We describe this technique by introducing two intermediaries, CA
and CB, that conduct the communication over the given insertion-deletion channel. CA
receives all symbols that Alice wishes to send to Bob, CA sends the symbols to CB, and
CB communicates the symbols to Bob. CA and CB handle the synchronization strings and
all the extra work that is involved in keeping Alice and Bob in sync by guessing the actual
index of symbols received by CB . In this way, Alice and Bob communicate via CA and CB
as though they were communicating over a half-error channel.

Unfortunately, trivially attaching the indices 1, 2, . . . , n to each message will not allow us
to maintain a near optimal communication rate. If CA attaches an index to each of Alice’s
messages, it would increase the size of Σ by a factor of n and the rate would increase by a factor
of 1/ log n, which is far from optimal. Synchronization strings allow the communicating
parties to index their messages using an alphabet size that is independent of the total
communication length n.

Suppose that with each of Alice’s n messages, CA sends an encoding of her index using a
symbol from Σ. Let S be a “synchronization string” consisting of all n encoded indices sent
by CA. Further, suppose that the adversary injects a total of nδ insertions and deletions,
thus transforming the string S to the string Sτ . Let some element of S like S[i] pass through
the channel without being deleted by the adversary and arrive as Sτ [j]. We call Sτ [j] a
successfully transmitted symbol.

We assume that CA and CB know the string S a priori. The intermediary CB will receive
a set of transmitted indices Sτ [1], . . . , Sτ [n]. Upon receipt of the jth transmitted index, CB
guesses the actual index of the received symbol when sent by CA. We call the algorithm
that CB runs to determine this an (n, δ)-indexing algorithm. The algorithm can also return
a symbol > which represents an “I don’t know” response. Any successfully transmitted
symbols that is decoded incorrectly is called a misdecoding. The number of misdecodings that
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an (n, δ)-indexing algorithm might produced is used as a measure to valuate its quality. An
indexing algorithm is streaming if its guess for a received symbol only depends on previously
arrived symbols.

Haeupler and Shahrasbi [19] defined a family of synchronization strings that admit an
(n, δ)-indexing algorithm with strong performance.

I Definition 4 (ε-Synchronization String). A string S ∈ Σn is an ε-synchronization string if
for every 1 ≤ i < j < k ≤ n+ 1 we have that ED (S[i, j), S[j, k)) > (1− ε)(k − i).

Haeupler and Shahrasbi [19, 20] prove the existence and provide several fast constructions
for ε-synchronization strings and provide a streaming (n, δ)-indexing algorithm that returns
a solution with ci

1−ε + cdε
1−ε misdecodings. The algorithm runs in time O(n5), spending O(n4)

on each received symbol.

2 Channel Simulations

In this section, we show how ε-synchronization strings can be used as a powerful tool to
simulate corruption channels over insertion-deletion channels. In Section 3, we use these
simulations to introduce coding schemes resilient to insertion-deletion errors.

2.1 One-way channel simulation over a large alphabet
Assume that Alice and Bob have access to n rounds of communication over a one-way insertion-
deletion channel where the adversary is allowed to insert or delete up to nδ symbols. In this
situation, we formally define a corruption channel simulation over the given insertion-deletion
channel as follows:

I Definition 5 (Corruption Channel Simulation). Let Alice and Bob have access to n rounds of
communication over a one-way insertion-deletion channel with the alphabet Σ. The adversary
may insert or delete up to nδ symbols. Intermediaries CA and CB simulate n′ rounds of a
corruption channel with alphabet Σsim over the given channel as follows. First, the adversary
can insert a number of symbols into the insertion-deletion channel between CA and CB.
Then for n′ rounds i = 1, . . . , n′, the following procedure repeats:
1. Alice gives Xi ∈ Σsim to CA.
2. Upon receiving Xi from Alice, CA wakes up and sends a number of symbols (possibly

zero) from the alphabet Σ to CB through the given insertion-deletion channel. The
adversary can delete any of these symbols or insert symbols before, among, or after them.

3. Upon receiving symbols from the channel, CB wakes up and reveals a number of symbols
(possibly zero) from the alphabet Σsim to Bob. We say all such symbols are triggered by
Xi.

Throughout this procedure, the adversary can insert or delete up to nδ symbols. However,
CB is required to reveal exactly n′ symbols to Bob regardless of the adversary’s actions. Let
X̃1, · · · , X̃n′ ∈ Σsim be the symbols revealed to Bob by CB. This procedure successfully
simulates n′ rounds of a corruption channel with a δ′ fraction of errors if for all but n′δ′
elements i of the set {1, . . . , n′}, the following conditions hold: 1) X̃i = Xi; and 2) X̃i is
triggered by Xi.

When X̃i = Xi and X̃i is triggered by Xi, we call X̃i an uncorrupted symbol. The second
condition, that X̃i is triggered by Xi, is crucial to preserving linearity of time, which is the
fundamental quality that distinguishes channel simulations from channel codings. It forces
CA to communicate each symbol to Alice as soon as it arrives. Studying channel simulations
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satisfying this condition is especially important in situations where Bob’s messages depends
on Alice’s, and vice versa.

Conditions (1) and (2) also require that CB conveys at most one uncorrupted symbol
each time he wakes up. As the adversary may delete nδ symbols from the insertion-deletion
channel, CB will wake up at most n(1− δ) times. Therefore, we cannot hope for a corruption
channel simulation where Bob receives more than n(1 − δ) uncorrupted symbols. In the
following theorem, we prove something slightly stronger: no deterministic one-way channel
simulation can guarantee that Bob receives more than n(1− 4δ/3) uncorrupted symbols and
if the simulation is randomized, the expected number of uncorrupted transmitted symbols is
at most n(1− 7δ/6). This puts channel simulation in contrast to channel coding as one can
recover 1− δ − ε fraction of symbols there (as shown in [19]).

I Theorem 6. Assume that n uses of a one-way insertion-deletion channel over an arbit-
rarily large alphabet Σ with a δ fraction of insertions and deletions are given. There is no
deterministic simulation of a corruption channel over any alphabet Σsim where the simulated
channel guarantees more than n (1− 4δ/3) uncorrupted transmitted symbols. If the simulation
is randomized, the expected number of uncorrupted transmitted symbols is at most n(1−7δ/6).

We now provide a channel simulation using ε-synchronization strings. Every time CA
receives a symbol from Alice (from an alphabet Σsim), CA appends a new symbol from a
predetermined ε-synchronization string over an alphabet Σsyn to Alice’s symbol and sends
it as one message through the channel. On the other side of channel, suppose that CB has
already revealed some number of symbols to Bob. Let IB be the index of the next symbol CB
expects to receive. Upon receiving a new symbol from CA, CB uses the part of the message
coming from the synchronization string to guess the index of the message Alice sent. We will
refer to this decoded index as ĨA and its actual index as IA. If ĨA < IB, then CB reveals
nothing to Bob and ignores the message he just received. Meanwhile, if ĨA = IB , then CB
reveals Alice’s message to Bob. Finally, if ĨA > IB , then CB sends a dummy symbol to Bob
and then sends Alice’s message.Theorem 7 details the simulation guarantees.

I Theorem 7. Assume that n uses of a one-way insertion-deletion channel over an alphabet Σ
with a δ fraction of insertions and deletions are given. Using an ε-synchronization string over
an alphabet Σsyn, it is possible to simulate n(1− δ) rounds of a one-way corruption channel
over Σsim with at most 2nδ(2 + (1− ε)−1) symbols corrupted so long as |Σsim| × |Σsyn| ≤ |Σ|
and δ < 1/7.

2.2 Interactive channel simulation over a large alphabet
We now turn to channel simulations for interactive channels. As in Section 2.1, we formally
define a corruption interactive channel simulation over a given insertion-deletion interactive
channel. We then use synchronization strings to present one such simulation.

I Definition 8 (Corruption Interactive Channel Simulation). Let Alice and Bob have access
to n rounds of communication over an interactive insertion-deletion channel with alphabet
Σ. The adversary may insert or delete up to nδ symbols. The intermediaries CA and CB
simulate n′ rounds of a corruption interactive channel with alphabet Σsim over the given
channel as follows. The communication starts when Alice gives a symbol from Σsim to CA.
Then Alice, Bob, CA, and CB continue the communication as follows:
1. Whenever CA receives a symbol from Alice or CB , he either reveals a symbol from Σsim

to Alice or sends a symbol from Σ through the insertion-deletion channel to CB .
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2. Whenever CB receives a symbol from Bob or CA, he either reveals a symbol from Σsim
to Bob or send a symbols from Σ through the insertion-deletion channel to CA.

3. Whenever CB reveals a symbol to Bob, Bob responds with a new symbol from Σsim.
4. Whenever CA reveals a symbol to Alice, Alice responds with a symbol in Σsim except for

the n′

2 th time.
Throughout this procedure, the adversary can inject up to nδ edit corruptions. However,
regardless of the adversary’s actions, CA and CB have to reveal exactly n′/2 symbols to
Alice and Bob respectively.

Let X1, . . . , Xn′ be the symbols Alice gives to CA and X̃1, . . . , X̃n′ ∈ Σsim be the
symbols CB reveals to Bob. Similarly, Let Y1, . . . , Yn′ be the symbols Bob gives to CB
and Ỹ1, . . . , Ỹn′ ∈ Σsim be the symbols CA reveals to Alice. We call each pair of tuples
(Xi, X̃i) and (Yi, Ỹi) a round of the simulated communication. We call a round corrupted if
its elements are not equal. This procedure successfully simulates n′ rounds of a corruption
interactive channel with a δ′ fraction of errors if for all but n′δ′ of the rounds are corrupted.

The protocol and analysis in this large alphabet setting are similar to the harder case
where the alphabet is binary. We cover interactive communication for the binary setting in
the next section.

I Theorem 9. Assume that n uses of an interactive insertion-deletion channel over an
alphabet Σ with a δ fraction of insertions and deletions are given. Using an ε-synchronization
string over an alphabet Σsyn, it is possible to simulate n − 2nδ(1 + (1 − ε)−1) uses of an
interactive corruption channel over Σsim with at most a 2δ(5−3ε)

1−ε+2εδ−4δ fraction of symbols
corrupted so long as |Σsim| × |Σsyn| ≤ |Σ| and δ < 1/14.

2.3 Binary interactive channel simulation
We now show that with the help of synchronization strings, a binary interactive insertion-
deletion channel can be used to simulate a binary interactive corruption channel, inducing a
Õ(
√
δ) fraction of bit-flips. In this way, the two communicating parties may interact as though

they are communicating over a corruption channel. They therefore can employ corruption
channel coding schemes while using the simulator as a black box means of converting the
insertion-deletion channel to a corruption channel.

The key difference between this simulation and the one-way, large alphabet simulation is
that Alice and Bob communicate through CA and CB for blocks of r rounds, between which
CA and CB check if they are in sync. Due to errors, there may be times when Alice and Bob
are in disagreement about which block, and what part of the block, they are in. CA and CB
ensure that Alice and Bob are in sync most of the time.

When Alice sends CA a message from a new block of communication, CA holds that
message and alerts CB that a new block is beginning. CA does this by sending CB a header
that is a string consisting of a single one followed by s− 1 zeros (10s−1). Then, CA indicates
which block Alice is about to start by sending a synchronization symbol to CB . Meanwhile,
when CB receives a 10s−1 string, he listens for the synchronization symbol, makes his best
guess about which block Alice is in, and then communicates with Bob and CA accordingly.
This might entail sending dummy blocks to Bob or CA if he believes that they are in different
blocks. To describe the guarantee that our simulation provides, we first define block corruption
channels.

I Definition 10 (Block Corruption Channel). An n-round adversarial corruption channel is
called a (δ, r)-block corruption channel if the adversary is restricted to corrupt nδ symbols
which are covered by nδ/r blocks of r consecutively transmitted symbols.
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I Theorem 11. Suppose that n rounds of a binary interactive insertion-deletion channel
with a δ fraction of insertions and deletions are given. For sufficiently small δ, it is
possible to deterministically simulate n(1−Θ(

√
δ log(1/δ))) rounds of a binary interactive

(Θ(
√
δ log(1/δ)),

√
(1/δ) log(1/δ))-block corruption channel between two parties, Alice and

Bob, assuming that all substrings of form 10s−1 where s = c log(1/δ) that Alice sends can be
covered by nδ intervals of

√
(1/δ) log(1/δ) consecutive rounds. The simulation is performed

efficiently if the synchronization string is efficient.

Proof Sketch. Suppose Alice and Bob communicate via intermediaries CA and CB who
act according to the algorithm described above. In total, Alice and Bob will attempt
to communicate ns bits to one another over the simulated channel, while CA and CB
communicate a total of n bits to one another. The adversary is allowed to insert or delete up
to nδ symbols and CA sends n/2 bits, so CB may receive between n/2− nδ and n/2 + nδ

symbols. To prevent CB from stalling indefinitely, CB only listens to the first n(1− 2δ)/2
bits he receives.

For r =
√

(1/δ) log(1/δ), we define a chunk to be rc := (s + |Σsyn| + r/2) consecutive
bits that are sent by CA to CB. In particular, a chunk corresponds to a section header
and synchronization symbol followed by r/2 rounds of messages sent from Alice. As CB
cares about the first n(1− 2δ)/2 bits it receives, there are n(1−2δ)

2rc chunks in total. Hence,
ns = n(1−2δ)

2rc · r since CB and CA’s communication is alternating.
Note that if Alice sends a substring of form 10s−1 in the information part of a chunk,

then Bob mistakenly detects a new block. With this in mind, we say a chunk is good if:
1. No errors are injected in the chunk or affecting CB ’s detection of the chunk’s header,
2. CB correctly decodes the index that CA sends during the chunk, and
3. CA does not send a 10s−1 substring in the information portion of the chunk.

If a chunk is not good, we call it bad. If the chunk is bad because CB does not decode
CA’s index correctly even though they were in sync and no errors were injected, then we call
it decoding-bad. If it is bad because Alice sends a 10s−1 substring, we call it zero-bad and
otherwise, we call it error-bad. Throughout the protocol, CB uses the variable IB to denote
the next index of the synchronization string CB expects to receive and we use IA to denote
the index of the synchronization string CA most recently sent. Notice that if a chunk is good
and IA = IB , then all messages are correctly conveyed.

We now bound the maximum number of bad chunks that occur over the course of the
simulation. Suppose the adversary injects errors into the ith chunk, making that chunk bad.
The (i + 1)th chunk may also be bad, since Bob may not be listening for 10s−1 from CA
when CA sends them, and therefore may miss the block header. However, if the adversary
does not inject any errors into the (i + 1)th and the (i + 2)th chunk, then the (i + 2)th
chunk will be good. In effect, a single error may render at most two chunks useless. Since
the adversary may inject nδ errors into the insertion-deletion channel, this means that the
number of chunks that are error-bad is at most 2nδ. Additionally, by assumption, the number
of zero-bad chunks is also at most nδ.

We also must consider the fraction of rounds that are decoding-bad. In order to do this,
we appeal to Theorem 6.24 from [19], which guarantees that if an ε-synchronization string
of length N is sent over an insertion-deletion channel with a δ′ fraction of insertions and
deletions, then the receiver will decode the index of the received symbol correctly for all but
2Nδ′/(1− ε) symbols. In this context, N is the number of chunks, i.e. N = n(1− 2δ)/(2rc),
and the fraction of chunks corrupted by errors is δ′ = 4nδ/N . Therefore, the total number
of bad chunks is at most 4δn+ 2Nδ′/(1− ε) = 4δn(3− ε)/(1− ε).
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In the rest of the proof, which is available in the extended version of this paper, we show
that all but 12 3−ε

1−ε · δn chunks are good chunks and have IA = IB upon their arrival on
Bob’s side and we conclude that the simulated channel is a

(
3−ε
1−ε

24δ
1−2δ rc, r

)
-block corruption

channel. For the asymptotically optimal choice of r =
√

(1/δ) log(1/δ), we derive the
simulation described in the theorem statement. J

The simulation stated in Theorem 11 burdens an additional condition on Alice’s stream of
bits by requiring it to have a limited number of substrings of form 10s−1. We now introduce
a high probability technique to modify a general interactive communication protocol in a
way that makes all substrings of form 10s−1 in Alice’s stream of bits fit into nδ intervals of
length r =

√
(1/δ) log(1/δ).

I Lemma 12. Assume that n rounds of a binary interactive insertion-deletion channel with
an oblivious adversary who is allowed to inject nδ errors are given. There is a pre-coding
scheme that can be utilized on top of the simulation introduced in Theorem 11. It modifies the
stream of bits sent by Alice so that with probability 1− e− c−3

2 nδ log 1
δ (1+o(1)), all substrings of

form 10s−1 where s = c log(1/δ) in the stream of bits Alice sends over the simulated channel
can be covered by nδ intervals of length r =

√
(1/δ) log(1/δ). This pre-coding scheme comes

at the cost of a Θ(
√
δ log(1/δ)) fraction of the bits Alice sends through the simulated channel.

Proof sketch. In the simulation process, each r/2 consecutive bits Alice sends forms one of
the chunks CA sends to CB alongside some headers. The idea of this pre-coding scheme is
simple. Alice uses the first s/2 data bits (and not the header) of each chunk to share s/2
randomly generated bits with Bob (instead of running the interactive protocol) and then
both of them extract a string S′ of r/2 (s/2)-wise independent random variables. Then,
Alice XORs the rest of data bits she passes to CA with S′ and Bob XORs those bits with S′
again to retrieve the original data. In the extended version, we show that this pre-coding
scheme guarantees the requirements mentioned in the theorem statement. J

Applying this pre-coding for c ≥ 3 on top of the simulation from Theorem 11 implies the
following.

I Theorem 13. Suppose that n rounds of a binary interactive insertion-deletion channel
with a δ fraction of insertions and deletions performed by an oblivious adversary are given.
For sufficiently small δ, it is possible to simulate n(1−Θ(

√
δ log(1/δ))) rounds of a binary

interactive (Θ(
√
δ log(1/δ)),

√
(1/δ) log 1/δ)-block corruption channel between two parties

over the given channel. The simulation works with probability 1− exp(−Θ(nδ log(1/δ))) and
is efficient if the synchronization string is efficient.

I Lemma 14. Suppose that n rounds of a binary, interactive, fully adversarial insertion-
deletion channel with a δ fraction of insertions and deletions are given. The pre-coding
scheme proposed in Lemma 12 ensures that the stream of bits sent by Alice contains fewer than
nδ substrings of form 10s−1 for s = c log(1/δ) and c > 5 with probability 1− e−Θ(nδ log(1/δ)).

Theorem 11 and Lemma 14 allow us to conclude that one can perform the simulation
stated in Theorem 11 over any interactive protocol with high probability. Note that one
can trivially extend the results of Theorems 11 and 13 to one-way binary communication by
ignoring the bits Bob sends.
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3 Applications: New Interactive Coding Schemes

Efficient Coding Scheme Tolerating 1/44 Fraction of Errors. In this section, we will
provide an efficient coding scheme for interactive communication over insertion-deletion
channels by first making use of large alphabet interactive channel simulation provided in
Theorem 9 to effectively transform the given channel into a simple corruption interactive
channel and then use the efficient constant-rate coding scheme of Ghaffari and Haeupler [14]
on top of the simulated channel. This will give an efficient constant-rate interactive commu-
nication over large enough constant alphabets as described in Theorem 2. We review the
following theorem of Ghaffari and Haeupler [14] before proving Theorem 2.

I Theorem 15 (Theorem 1.1 from [14]). For any constant ε > 0 and n-round protocol Π there
is a randomized non-adaptive coding scheme that robustly simulates Π against an adversarial
error rate of ρ ≤ 1/4 − ε using N = O(n) rounds, a near-linear n logO(1) n computational
complexity, and failure probability 2−Θ(n).

Proof of Theorem 2. For a given insertion-deletion interactive channel over alphabet Σ
suffering from δ fraction of edit-corruption errors, Theorem 9 enables us to simulate n −
2nδ(1 + (1 − ε′)−1) rounds of ordinary interactive channel with 2δ(5−3ε′)

1−ε′+2ε′δ−4δ fraction of
symbol by designating log |Σsyn| bits of each symbol to index simulated channel’s symbols
with an ε′-synchronization string over Σsyn.

One can employ the scheme of Ghaffari and Haeupler [14] over the simulated channel as
long as error fraction is smaller than 1/4. Note that 2δ(5−3ε′)

1−ε′+2δε′−4δ

∣∣∣
ε′=0

= 10δ
1−4δ <

1
4 ⇔ δ < 1

44 .

Hence, as long as δ = 1/44− ε for ε > 0, for small enough ε′ = Oε(1), the simulated channel
has an error fraction that is smaller than 1/4. Therefore, by running the efficient coding
scheme of Theorem 15 over this simulated channel one gets a constant rate coding scheme for
interactive communication that is robust against 1/44− ε fraction of edit-corruptions. Note
that this simulation requires the alphabet size to be large enough to contain synchronization
symbols (which can come from a polynomially large alphabet in terms of ε′) and also meet
the alphabet size requirements of Theorem 15. This requires the alphabet size to be Ωε(1),
i.e., a large enough constant merely depending on ε. The success probability and time
complexity are direct consequences of Theorem 15 and Theorem 6.24 from [19]. J

Efficient Coding Scheme with Near-Optimal Rate over Small Alphabets. In this section
we present another insertion-deletion interactive coding scheme that achieves near-optimal
communication efficiency as well as computation efficiency by employing a similar idea as in
Section 3.

In order to derive a rate-efficient interactive communication coding scheme over small
alphabet insertion-deletion channels, simulations described above can be used to simulate
a corruption channel and then the rate-efficient interactive coding scheme for corruption
channels introduced by Haeupler [17] can be used on top of the simulated channel.

I Theorem 16 (Interactive Coding against Block Corruption). By choosing an appropriate
block length in the Haeupler [17] coding scheme for oblivious adversaries, one obtains a robust
efficient interactive coding scheme for (δb, rb)-block corruption channel with communication
rate 1−Θ(

√
δb max {δb, 1/rb}) that works with probability 1− 2−Θ(nδb/rb).

Applying the coding scheme of Theorem 16 over the simulation from Theorem 13 implies
the following.
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I Theorem 17. For sufficiently small δ, there is an efficient interactive coding scheme over
binary insertion-deletion channels which, is robust against δ fraction of edit-corruptions by
an oblivious adversary, achieves a communication rate of 1 − Θ(

√
δ log(1/δ)), and works

with probability 1− 2−Θ(nδ).

Moreover, in the extended version, we show that this result is extendable for the fully
adversarial setup, as summarized in Theorem 3.

This insertion-deletion interactive coding scheme is, to the best of our knowledge, the
first to be computationally efficient, to have communication rate approaching one, and to
work over arbitrarily small alphabets.
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Abstract
We study codes that are list-decodable under insertions and deletions (“insdel codes”). Specific-
ally, we consider the setting where, given a codeword x of length n over some finite alphabet Σ of
size q, δ ·n codeword symbols may be adversarially deleted and γ ·n symbols may be adversarially
inserted to yield a corrupted word w. A code is said to be list-decodable if there is an (efficient)
algorithm that, given w, reports a small list of codewords that include the original codeword
x. Given δ and γ we study what is the rate R for which there exists a constant q and list size
L such that there exist codes of rate R correcting δ-fraction insertions and γ-fraction deletions
while reporting lists of size at most L.

Using the concept of synchronization strings, introduced by the first two authors [Proc. STOC
2017], we show some surprising results. We show that for every 0 ≤ δ < 1, every 0 ≤ γ < ∞
and every ε > 0 there exist codes of rate 1− δ − ε and constant alphabet (so q = Oδ,γ,ε(1)) and
sub-logarithmic list sizes. Furthermore, our codes are accompanied by efficient (polynomial time)
decoding algorithms. We stress that the fraction of insertions can be arbitrarily large (more than
100%), and the rate is independent of this parameter. We also prove several tight bounds on the
parameters of list-decodable insdel codes. In particular, we show that the alphabet size of insdel
codes needs to be exponentially large in ε−1, where ε is the gap to capacity above. Our result
even applies to settings where the unique-decoding capacity equals the list-decoding capacity and
when it does so, it shows that the alphabet size needs to be exponentially large in the gap to
capacity. This is sharp contrast to the Hamming error model where alphabet size polynomial in
ε−1 suffices for unique decoding. This lower bound also shows that the exponential dependence
on the alphabet size in previous works that constructed insdel codes is actually necessary!

Our result sheds light on the remarkable asymmetry between the impact of insertions and
deletions from the point of view of error-correction: Whereas deletions cost in the rate of the
code, insertion costs are borne by the adversary and not the code! Our results also highlight the
dominance of the model of insertions and deletions over the Hamming model: A Hamming error
is equal to one insertion and one deletion (at the same location). Thus the effect of δ-fraction
Hamming errors can be simulated by δ-fraction of deletions and δ-fraction of insertions — but
insdel codes can deal with much more insertions without loss in rate (though at the price of
higher alphabet size).
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1 Introduction

We study the complexity of “insdel coding”, i.e., codes designed to recover from insertion and
deletion of characters, under the model of “list-decoding”, i.e., when the decoding algorithm
is allowed to report a (short) list of potential codewords that is guaranteed to include the
transmitted word if the number of errors is small enough. Recent work by the first two
authors and collaborators [12] has shown major progress leading to tight, or nearly tight,
bounds on central parameters of codes (with efficient encoding and decoding algorithms
as well) under the setting of unique decoding. However the list-decoding versions of these
questions were not explored previously. Our work complements the previous studies by
exploring list-decoding. In the process our results also reveal some striking features of the
insdel coding problem that were not exposed by previous works. To explain some of this, we
introduce our model and lay out some of the context below.

1.1 Insdel Coding and List Decoding
We use the phrase “insdel coding” to describe the study of codes that are aimed to recover
from insertions and deletions. The principal question we ask is “what is the rate of a code
that can recover from γ fraction insertions and δ fraction deletions over a sufficiently large
alphabet?”. Once the answer to this question is determined we ask how small an alphabet
suffices to achieve this rate. We define the terms “rate”, “alphabet”, and “recovery” below.

An insdel encoder over alphabet Σ of block length n is an injective function E : Σk → Σn.
The associated “code” is the image of the function C. The rate of a code is the ratio k/n. We
say that an insdel code C is (γ, δ, L(n))-list-decodable if there exists a function D : Σ∗ → 2C
such that |D(w)| ≤ L(n) for every w ∈ Σ∗ and for every codeword x ∈ C and every word w
obtained from x be δ · n deletions of characters in x followed by γ · n insertions, it is the case
that x ∈ D(w). In other words the list-decoder D outputs a list of at most L(n) codewords
that is guaranteed to include the transmitted word x if the received word w is obtained
from x by at most δ-fraction deletions and γ-fraction insertions. Our primary quest in this
paper is the largest rate R for which there exists an alphabet of size q , |Σ| and an infinite
family of insdel codes of rate at least R, that are (γ, δ, L(n))-list-decodable. Of course we
are interested in results where L(n) is very slowly growing with n (if at all). In all results
below we get L(n) which is polynomially large in terms of n. Furthermore, when a given
rate is achievable we seek codes with efficient encoder and decoder (i.e., the functions E and
D are polynomial time computable). Finally we also explore the dependence of the rate on
the alphabet size (or vice versa).

Previous Work. Insdel coding was first studied by Levenshtein [18] and since then many
bounds and constructions for such codes have been given. With respect to unique decoding,
Schulman and Zuckerman [21] gave the first construction of efficient insdel codes over a
constant alphabet with a (small) constant relative distance and a (small) constant rate in
1999. Guruswami and Wang [9] gave the first efficient codes over fixed alphabets to correct a
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deletion fraction approaching 1, as well as efficient binary codes to correct a small constant
fraction of deletions with rate approaching 1. A follow-up work gave new and improved
codes with similar rate-distance tradeoffs which can be efficiently decoded from insertions
and deletions [5]. Finally, [12] gave codes that can correct δ fraction of synchronization errors
with a rate approaching 1− δ − ε for any ε > 0.

A recent work by Wachter-Zeh [23] considers insdel coding with respect to list decoding and
provides Johnson-like upper-bounds for insertions and deletions, i.e., bounds on the list size
in terms of the minimum edit-distance of a given code. Moreover, for Varshamov-Tenengolts
codes, [23] presents lower bounds on the maximum list size as well as a list-decoding algorithm
against a constant number of insertions and deletions.

Several other variants of the insdel coding problem have been studied in the previous
work and are summarized by the following surveys [22, 20, 19].

1.2 Our Results
We now present our results on the rate and alphabet size of insdel coding under list-decoding.
Two points of contrast that we use below are corresponding bounds in (1) the Hamming
error setting for list-decoding and (2) the insdel coding setting with unique-decoding.

1.2.1 Rate Under List Decoding
Our main theorem for list-decoding shows that, given γ, δ, ε ≥ 0 there is a q = qε,γ and a
slowly growing function L = Lε,γ(n) such that there are q-ary insdel codes that achieve a
rate of 1− δ − ε that are (γ, δ, L(n))-list decodable. Furthermore the encoding and decoding
are efficient! The formal statement of the main result is as follows.

I Theorem 1. For every 0 < δ, ε < 1 and γ > 0, there exist a family of list-decodable
insdel codes that can protect against δ-fraction of deletions and γ-fraction of insertions and
achieves a rate of at least 1− δ − ε or more over an alphabet of size

(
γ+1
ε2

)O( γ+1
ε3 ) = Oγ,ε (1).

These codes are list-decodable with lists of size Lε,γ(n) = exp (exp (exp (log∗ n))), and have
polynomial time encoding and decoding complexities.

The rate in the theorem above is immediately seen to be optimal even for γ = 0. In
particular an adversary that deletes the last δ ·n symbols already guarantees an upper bound
on the rate of 1− δ.

We now contrast the theorem above with the two contrasting settings listed earlier.
Under unique decoding the best possible rate that can be achieved with δ-fraction deletions
and γ-fraction insertions is upper bounded by 1 − (γ + δ). Matching constructions have
been achieved, only recently, by Haeupler and Shahrasbi [12]. In contrast our rate has no
dependence on γ and thus dominates the above result. The only dependence on γ is in the
alphabet size and list-size and we discuss the need for this dependence later below.

We now turn to the standard “Hamming error” setting: Here an adversary may change
an arbitrary δ-fraction of the codeword symbols. In this setting it is well-known that given
any ε > 0, there are constants q = q(ε) and L = L(ε) and an infinite family of q-ary codes of
rate at least 1− δ − ε that are list-decodable from δ fraction errors with list size at most L.
In a breakthrough from the last decade, Guruswami and Rudra [6] showed explicit codes that
achieve this with efficient algorithms. The state-of-the-art results in this field yield list size
L(n) = o(log(r) n) for any integer r where log(r) is the rth iterated logarithm and alphabet
size 2Õ(ε−2) [11], which are nearly optimal.
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The Hamming setting with δ-fraction errors is clearly a weaker setting than the setting
with δ-fraction deletions and γ ≥ δ fraction of insertions in that an adversary of the latter
kind can simulate the former. (A Hamming error is a deletion followed by an insertion at
the same location.) The insdel setting is thus stronger in two senses: it allows γ > δ and
gives greater flexibility to the adversary in choosing locations of insertions and deletions. Yet
our theorem shows that the stronger adversary can still be dealt with, without qualitative
changes in the rate. The only difference is in the dependence of q and L on γ, which we
discuss next.

We briefly remark at this stage that, while our result simultaneously “dominates” the
results of Haeupler and Shahrasbi [12] as well as Guruswami and Rudra [6], this happens
because we use their results in our work. We elaborate further on this in Section 3. Indeed
our first result (see Theorem 13) shows how we can obtain Theorem 1 by using capacity
achieving “list-recoverable codes” in combination with synchronization strings in a modular
fashion.

We believe that using the codes from Theorem 1 in the construction of long-distance
synchronization strings from [13] will give synchronization strings that allow us to reduce
the decoding complexity of insdel codes of Theorem 1 and [12] to near-linear time.

1.2.2 Rate versus Alphabet Size
We now turn to understanding how large the alphabet size needs to be as a function of δ, ε
and γ. We consider two extreme cases, first with only deletions (i.e., γ = 0 and then with
only insertions (i.e., with δ = 0).

We start first with the insertion-only setting. We note here that one cannot hope to
find a constant rate family of codes that can protect n symbols out of an alphabet of size q
against (q − 1)n many insertions or more. This is so since, with (q − 1)n insertions, one can
turn any string y ∈ [1..q]n into the fixed sequence 1, 2, · · · , q, 1, 2, · · · , q, · · · , 1, 2, · · · , q by
simply inserting q − 1 many symbols around each symbol of y to construct a 1, · · · , q there.
Hence, Theorem 2 only focuses on codes that protect n rounds of communication over an
alphabet of size q against γn insertions for γ < q − 1.

I Theorem 2. Any list-decodable family of codes C that protects against γ fraction of
insertions for some γ < q−1 and guarantee polynomially-large list size in terms of block length
cannot achieve a rate R that is strictly larger than 1− logq(γ + 1)− γ

(
logq

γ+1
γ − logq

q
q−1

)
.

In particular, the theorem asserts that if the code has rate R = 1− ε, then its alphabet
size must be exponentially large in 1/ε, namely, q ≥ (γ + 1)1/ε.

Next, we turn to the deletion-only case. Here again we note that no constant rate q-ary
code can protect against δ ≥ q−1

q fraction of deletions since such a large fraction of deletions
may remove all but the most frequent symbol of codewords. Therefore, Theorem 3 below
only concerns codes that protect against δ ≤ q−1

q fraction of deletions.

I Theorem 3. Any list-decodable family of insdel codes that protect against δ-fraction of
deletions (and no insertions) for some 0 ≤ δ < q−1

q that are list-decodable with polynomially-
bounded list size has rate R upper bounded as below:

R ≤ f(δ) , (1− δ)
(

1− logq 1
1−δ

)
where δ = d

q for some integer d.

R ≤ (1− qδ′)f
(
d
q

)
+ qδ′f

(
d+1
q

)
where δ = d

q + δ′ for some integer d and 0 ≤ δ′ < 1
q .

In particular if δ = d/q for integer d and rate is 1− δ − ε then the theorem above asserts

that q ≥
(

1
1−δ

) 1−δ
ε , or in other words q must be exponentially large in 1/ε. Indeed such a

statement is true for all δ as asserted in the corollary below. (A detailed proof is available in
the extended version.)
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I Corollary 4. There exists a function f : (0, 1)→ (0, 1) such that any family of insdel codes
that protects against δ-fraction of deletions with polynomially bounded list sizes and has rate
1− δ − ε must have alphabet size q ≥ exp

(
f(δ)
ε

)
.

Implications for Unique Decoding. Even though the main thrust of this paper is list-
decoding, Corollary 4 also has implications for unique-decoding. (This turns out to be a
consequence of the fact that the list-decoding radius for deletions-only equals the unique-
decoding radius for the same fraction of deletions.) We start by recalling the main result of
Haeupler and Shahrasbi [12]: Given any α, ε > 0 there exists a code of rate 1− α− ε over
an alphabet of size q = exp(1/ε) that uniquely decodes from any α-fraction synchronization
errors, i.e., from γ-fraction insertions and δ-fraction deletions for any pair 0 ≤ γ, δ satisfying
γ + δ ≤ α. Furthermore, this is the best possible rate one can achieve for α-fraction
synchronization error. (See the extended version for a more detailed description with proof.)

Till now this exponential dependence of the alphabet size on ε was unexplained. This is
also in sharp contrast to the Hamming error setting, where codes are known to get ε close to
unique decoding capacity (half the “Singleton bound” on the distance of code) with alphabets
of size polynomial in 1/ε. Indeed given this contrast one may be tempted to believe that the
exponential growth is a weakness of the “synchronization string” approach of Haeupler and
Shahrasbi [12]. But Corollary 4 actually shows that an exponential bound is necessary. We
state this result for completeness even though it is immediate from the Corollary above, to
stress its importance in understanding the nature of synchronization errors.

I Corollary 5. There exists a function f : (0, 1)→ (0, 1) such that for every α, ε > 0 every
family of insdel codes of rate 1− α− ε that protects against α-fraction of synchronization
errors with unique decoding must have alphabet size q ≥ exp

(
f(δ)
ε

)
.

Corollary 5 follows immediately from Corollary 4 by setting δ = α and γ = 0 (so we get
to the zero insertion case) and noticing that a unique-decoding insdel code for α-fraction
synchronization error is also a list-decoding insdel code for δ-fractions of deletions (and no
insertions). The alphabet size lower bound for the latter is also an alphabet size lower bound
for the former.

1.2.3 Analysis of Random Codes

Finally, in Section 5, we provide an analysis of random codes and compute the rates they
can achieve while maintaining list-decodability against insertions and deletions. Such rates
are essentially lower-bounds for the capacity of insertion and deletion channels and can be
compared against the upper-bounds provided in Section 4.

Theorem 6 shows that the family of random codes over an alphabet of size q can, with
high probability, protect against δ-fraction of deletions for any δ < 1− 1/q up to a rate of
1−(1−δ) logq 1

1−δ−δ logq 1
δ−δ logq(q−1) = 1−Hq(δ) using list decoding with super-constant

list sizes in terms of their block length where Hq represents the q-ary entropy function.

I Theorem 6. For any alphabet of size q and any 0 ≤ δ < q−1
q , the family of random codes

with rate R < 1− (1− δ) logq 1
1−δ − δ logq 1

δ − δ logq(q − 1)− 1−δ
l+1 is list-decodable with list

size of l from any δ fraction of deletions with high probability. Further, the family of random
deletion-codes with rate R > 1− (1− δ) logq 1

1−δ − δ logq 1
δ − δ logq(q− 1) is not list-decodable

with high probability.
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Further, Theorem 7 shows that the family of random block codes over an alphabet of size
q can, with high probability, protect against γ fraction of insertions for any γ < q − 1 up
to a rate of 1− logq(γ + 1)− γ logq

γ+1
γ using list decoding with super-constant list sizes in

terms of block length.

I Theorem 7. For any alphabet of size q and any γ < q − 1, the family of random codes
with rate R < 1− logq(γ + 1)− γ logq

γ+1
γ −

γ+1
l+1 is list-decodable with a list size of l from

any γn insertions with high probability.

2 Definitions and Preliminaries

2.1 Synchronization Strings

In this section, we briefly recapitulate synchronization strings, introduced by Haeupler and
Shahrasbi [12] and further studied in [14, 13]. We will review important definitions and
techniques from [12] that will be of use throughout this paper.

Synchronization strings are recently introduced mathematical objects that turn out to be
useful tools to overcome synchronization errors, i.e., symbol insertion and symbol deletion
errors. The general idea employed in [12, 14] to obtain resilience against synchronization
errors in various communication setups is indexing each symbol of the communication with
symbols of a synchronization string and then guessing the actual position of received symbols
on the other side using indices. [12] provides a variety of different guessing strategies that
guarantee a large number of correct guesses and then overcome the incorrect guesses by
utilizing classic error correcting codes. As a matter of fact, synchronization strings essentially
translate synchronization errors into ordinary Hamming type errors which are strictly easier
to handle. We now proceed to review some of the above-mentioned definitions and techniques
more formally.

Suppose that two parties are communicating over a channel that suffers from α-fraction
of insertions and deletions and one of the parties sends a pre-shared string S of length n
to the other one. A distorted version of S will arrive at the receiving end that we denote
by S′. A symbol S[i] is called to be a successfully transmitted symbol if it is not removed
by the adversary. A decoding algorithm on the receiving side is an algorithm that, for any
received symbol, guesses its actual position in S by either returning a number in [1..n] or >
which means the algorithm is not able to guess the index. For such a decoding algorithm,
a successfully transmitted symbol whose index is not guessed correctly by the decoding
algorithm is called a misdecoding.

Haeupler and Shahrasbi [12] introduce synchronization strings and find several decoding
algorithms for them providing strong misdecoding guarantees and then design insertion-
deletion codes based on those decoding algorithms. As details of those algorithms are not
relevant to this paper we avoid further discussion of those techniques. To conclude this
section we introduce ε-synchronization strings and an important property of them.

I Definition 8 (ε-synchronization string). String S ∈ Σn is an ε-synchronization string if
for every 1 ≤ i < j < k ≤ n+ 1 we have that EditDistance (S[i, j), S[j, k)) > (1− ε)(k − i)
where EditDistance(x, y) is the smallest number of insertions and deletions needed to convert
x to y.

The key idea in the construction of insdel codes in [12] is to index an error correcting code
with a synchronization string. Here we provide a formal definition of indexing operation.
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I Definition 9 (Indexing). The operation of indexing code C with block length n and String
S of length n is to simply replace each codeword w1, w2, · · · , wn with (w1, s1), (w2, s2), · · · ,
(wn, sn). Clearly, this operations expands the alphabet of the code.

It is shown in [12, 13] that ε-synchronization strings exist over alphabets of sizes polyno-
mially large in terms of ε−1 and can be efficiently constructed. An important property of
ε-synchronization strings discussed in [12] is the self matching property defined as follows.

I Definition 10 (ε-self-matching property). String S satisfies ε-self-matching property if for
any two sequences of indices 1 ≤ a1 < a2 < · · · < ak ≤ |S| and 1 ≤ b1 < b2 < · · · < bk ≤ |S|
that satisfy S[ai] = S[bi] and ai 6= bi, k is not larger than ε|S|.

In the end, we review the following theorem from [12] that shows the close connection
between synchronization string property and the self-matching property.

I Theorem 11 (Theorem 6.4 from [12]). If S is an ε-synchronization string, then all substrings
of S satisfy ε-self-matching property.

2.2 List Recoverable Codes
A code C given by the encoding function E : Σnr → Σn is called to be (α, l, L)-list recoverable
if for any collection of n sets S1, S2, · · · , Sn ⊂ Σ of size l or less, there are at most L codewords
for which more than αn elements appear in the list that corresponds to their position, i.e.,

|{x ∈ C | |{i ∈ [n] | xi ∈ Si}| ≥ αn}| ≤ L.

The study of list-recoverable codes was inspired by Guruswami and Sudan’s list-decoder
for Reed-Solomon codes [7]. Since then, list-recoverable codes have became a very useful tool
in coding theory [1, 2, 3, 4] and there have been a variety of constructions provided for them
by several works [6, 8, 10, 17, 16, 11, 15]. In this paper, we will make use of the following
capacity-approaching polynomial-time list-recoverable codes given by Hemenway, Ron-Zewi,
and Wootters [15] that is obtained by altering the approach of Guruswami and Xing [10].

I Theorem 12 (Hemenway et. al. [15, Theorem A.7]). Let q be an even power of a prime,
and choose l, ε > 0, so that q ≥ ε−2. Choose ρ ∈ (0, 1). There is an mmin = O(l logq(l/ε)/ε2)
so that the following holds for all m ≥ mmin. For infinitely many n (all n of the form
qe/2(√q − 1) for any integer e), there is a deterministic polynomial-time construction of
an Fq-linear code C : Fρnqm → Fnqm of rate ρ and relative distance 1 − ρ − O(ε) that is
(1 − ρ − ε, l, L)-list-recoverable in time poly(n,L), returning a list that is contained in a
subspace over Fq of dimension at most

(
l
ε

)2log∗(mn)

.

3 List Decoding for Insertions and Deletions

In this section, we prove Theorem 1 by constructing a list-decodable code of rate 1− δ − ε
that provides resilience against 0 < δ < 1 fraction of deletions and γ fraction of insertions
over a constant-sized alphabet. Our construction heavily relies on the following theorem that,
in the same fashion as [12], uses the technique of indexing an error correcting code with a
synchronization string to convert a given list-recoverable code into an insertion-deletion code.

I Theorem 13. Let C : ΣnR → Σn be a (α, l, L)-list recoverable code with rate R, encoding
complexity TEnc and decoding complexity complexity TDec. For any ε > 0 and γ ≤ lε

2 − 1,
by indexing C with an ε2

4(1+γ) -synchronization string, one can obtain an L-list decodable
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insertion-deletion code C′ : Σnr → [Σ × Γ]n that corrects from δ < 1 − α − ε fraction of
deletions and γ fraction of insertions where |Γ| =

(
ε2/(1 + γ)

)−O(1). C′ is encodable and
decodable in O(TEnc + n) and O(TDec + n2(1 + γ2)/ε) time respectively.

We take two major steps to prove Theorem 13. In the first step (Theorem 15), we use the
synchronization string indexing technique from [12] and show that by indexing the symbols
that are conveyed through an insertion-deletion channel with symbols of a synchronization
string, the receiver can make lists of candidates for any position of the sent string such that
1−δ−ε fraction of lists are guaranteed to contain the actual symbol sent in the corresponding
step and the length of the lists is guaranteed to be smaller than some constant Oγ,ε(1).

In the second step, we use list-recoverable codes on top of the indexing scheme to obtain
a list decoding using lists of candidates for each position produced by the former step.

We start by the following lemma that directly implies the first step stated in Theorem 15.

I Lemma 14. Assume that a sequence of n symbols denoted by x1x2 · · ·xn is indexed with
an ε-synchronization string and is communicated through a channel that suffers from up
to δn deletions for some 0 ≤ δ < 1 and γn insertions. Then, on the receiving end, it
is possible to obtain n lists A1, · · · , An such that, for any desired integer K, for at least
n ·
(
1− δ − 1+γ

K −K · ε
)
of them, xi ∈ Ai. All lists contain up to K elements and the average

list size is at most 1 + γ. These lists can be computed in O
(
K(1 + γ)n2) time.

Proof. The decoding algorithm we propose to obtain the lists that satisfy the guarantee
promised in the statement is the global algorithm introduced in Theorem 6.14 of Haeupler
and Shahrasbi [12].

Let S be the ε-synchronization string used for indexing and S′ be the index portion of
the received string on the other end. Note that S is pre-shared between the sender and the
receiver. The decoding algorithm starts by finding a longest common substring M1 between
S and S′ and adding the position of any matched element from S′ to the list that corresponds
to its respective match from side S. Then, it removes every symbol that have been matched
from S′ and repeats the previous step by finding another longest common subsequence M2
between S and the remaining elements of S′. This procedure is repeated K times to obtain
M1, · · · ,MK . This way, lists Ai are formed by including every element in S′ that is matched
to S[i] in any of M1, · · · ,MK .

Ai contains the actual element that corresponds to S[i], denoted by S′[j], if and only if
S[i] is successfully transmitted (i.e., not removed by the adversary), appears in one of Mks,
and matches to S[i] in Mk. Hence, there are three scenarios under which Ai does not contain
its corresponding element S[i].
1. S[i] gets deleted by the adversary.
2. S[i] is successfully transmitted but, as S′[j] on the other side, it does not appear on any

of Mks.
3. S[i] is successfully transmitted and, as S′[j] on the other side, it appears in some Mk

although it is matched to another element of S.

The first case happens for at most δn elements as adversary is allowed to delete up to δn
many elements.

To analyze the second case, note that the sizes of Mks descend as k grows since we pick
the longest common subsequence in each step. If by the end of this procedure p successfully
transmitted symbols are still not matched in any of the matchings, they form a common
subsequence of size p between S and the remainder of S′. This leads to the fact that
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|M1| + · · · + |MK | ≥ K · p. As |M1| + · · · + |MK | cannot exceed |S′|, we have p ≤ |S′|/K.
This bounds above the number of symbols falling into the second category by |S′|/K.

Finally, as for the third case, we draw the reader’s attention to the fact that each
successfully transmitted S[i] which arrives at the other end as S′[j] and mistakenly gets
matched to another element of S like S[k] in some Mt, implies that S[i] = S[k]. We call
the pair (i, k) a pair of similar elements in S implied by Mt. Note that there is an actual
monotone matching M ′ from S to S′ that corresponds to adversary’s actions. As Mt and
M ′ are both monotone, the set of similar pairs in S implied by Mt is a self-matching in S.
As stated in Theorem 11, the number of such pairs cannot exceed nε. Therefore, there can
be at most nε successfully transmitted symbols that get mistakenly matched in Mt for any t.
Hence, the number of elements falling into the third category is at most nKε.

Summing up all above-mentioned bounds gives that the number of bad lists can be bounded
above by nδ + |S′|

K + nKε ≤ n
(
δ + 1+γ

K +Kε
)
. This proves the list quality guarantee. As

proposed decoding algorithm computes longest common substring K many times between
two strings of length n and (1 + γ)n or less, it will run in O(K(1 + γ) · n2) time. J

I Theorem 15. Suppose that n symbols denoted by x1, x2, · · · , xn are being communicated
through a channel suffering from up to δn deletions for some 0 ≤ δ < 1 and γn insertions
for some constant γ ≥ 0. If one indexes these symbols with an ε′ = ε2

4(1+γ) -synchronization
string, then, on the receiving end, it is possible to obtain n lists A1, · · · , An of size 2(1 + γ)/ε
such that, for at least n · (1− δ − ε) of them, xi ∈ Ai. These lists can be computed in
O
(
n2(1 + γ)2/ε

)
time.

Proof. Using an ε′ = ε2

4(1+γ) -synchronization string in the statement of Lemma 14 and
choosing K = 2(1+γ)

ε directly gives that the runtime is O
(
n2(1 + γ)2/ε

)
and list hit ratio is

at least n ·
(
1− δ − 1+γ

K −K · ε′
)

= n · (1− δ − ε/2− ε/2) = n · (1− δ − ε) J

Theorem 15 facilitates the conversion of list-recoverable error correcting codes into
list-decodable insertion-deletion codes as stated in Theorem 13.

Proof of Theorem 13. To prove this, we simply index code C, entry by entry, with an
ε′ = ε2

4(1+γ) synchronization string. In the decoding procedure, according to Theorem 15,
the receiver can use the index portion of the received symbol to maintain lists of up to
2(1 + γ)/ε ≤ l candidates for each position of the sent codeword of C so that 1− δ − ε > α

fraction of those contain the actual corresponding sent message. Having such lists, the
receiver can use the decoding function of C to obtain an L-list-decoding for C′. Finally, the
alphabet size and encoding complexity follow from the fact that synchronization strings over
alphabets of size ε′−O(1) can be constructed in linear time [12, 13]. J

One can use any list-recoverable error correcting code to obtain insertion-deletion codes ac-
cording to Theorem 13. In particular, using the efficient capacity-approaching list-recoverable
code introduced by Hemenway, Ron-Zewi, and Wootters [15], one obtains the insertion-
deletion codes as described in Theorem 1.

Proof of Theorem 1. By setting parameters ρ = 1 − δ − ε
2 , l = 2(γ+1)

ε , and ε = ε
4 in

Theorem 12, one can obtain a family of codes C that achieves rate ρ = 1−δ− ε
2 and is (α, l, L)-

recoverable in polynomial time for α = 1− δ− ε/4 and some L = exp (exp (exp (log∗ n))) (by
treating γ and ε as constants). Such family of codes can be found over an alphabet ΣC of size
q = (l/ε)O(l/ε2) =

(
γ+1
ε2

)O( γ+1
ε3 ) = Oγ,ε(1) or infinitely many integer numbers larger than q.
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Plugging this family of codes into the indexing scheme from Theorem 13 by choosing
the parameter ε′ = ε

4 , one obtains a family of codes that can recover from 1 − α − ε′ =
1 − (1 − δ − ε/4) − ε/4 = δ fraction of deletions and γ-fraction of insertions and achieves
a rate of 1−δ−ε/2

1+log|ΣS |/log|ΣC| which, by taking |ΣC | large enough in terms of ε, is larger than
1− δ − ε. As C is encodable and decodable in polynomial time, the encoding and decoding
complexities of the indexed code will be polynomial as well. J

I Remark. We remark that by using capacity-approaching near-linear-time list-recoverable
code introduced in Theorem 7.1 of Hemenway, Ron-Zewi, and Wootters [15] in the framework
of Theorem 13, one can obtain similar list-decodable insertion-deletion codes as in Theorem 1
with a randomized quadratic time decoding. Further, one can use the efficient list-recoverable
in the recent work of Guruswami and Xing [11] to obtain same result as in Theorem 1 except
with polylogarithmic list sizes.

4 Upper Bounds on the Rate of List-Decodable Synchronization
Codes

4.1 Deletion Codes (Theorem 3)

Proof of Theorem 3. To prove this claim, we propose a strategy for the adversary which
can reduce the number of strings that may possibly arrive at the receiving side to a number
small enough that implies the claimed upper bound for the rate.

We start by proving the theorem for the case where δq is integer. For an arbitrary code
C, upon transmission of any codeword, the adversary can remove all occurrences of δq least
frequent symbols as the total number of appearances of such symbols does not exceed δn. In
case there are more deletions left, adversary may choose to remove arbitrary symbols among
the remaining ones. This way, the received string would be a string of n(1 − δ) symbols
consisted of only q−qδ many distinct symbols. Therefore, one can bound above the size of the
ensemble of strings that can possibly be received by the |E| ≤

(
q

q(1−δ)
)

[q(1− δ)]n(1−δ). As the
best rate that any L = poly(n)-list decodable code can get is at most log(|E|·L)

n log q = log |E|
n log q +o(1),

the following would be an upper bound for the best rate one might hope for.

log |E|
n log q + o(1) =

log
(

q
q(1−δ)

)
+ n(1− δ)(log(q(1− δ)))

n log q + o(1) = (1− δ)
(

1− logq
1

1− δ

)
+ o(1)

This shows that for the case where qδ is an integer number, there are no family of codes
that achieve a rate that is strictly larger than (1− δ)

(
1− logq 1

1−δ

)
.

We now proceed to the general case where δ = d/q+ δ′ for some integer d and 0 ≤ δ′ < 1
q .

We closely follow the idea that we utilized for the former case. The adversary can partition n
sent symbols into two parts of size nqδ′ and n(1− qδ′), and then, similar to the former case,
removes the d+1 least frequent symbols from the first part by performing d+1

q ·nqδ
′ deletions

and d least frequent symbols from the second one by performing d
q · n(1− qδ′) ones. This is

possible because d+1
q · nqδ

′ + d
q · n(1− qδ′) = nδ. Doing so, the string received after deletions

would contain up to q − d− 1 distinct symbols in its first nqδ′ (1− (d+ 1)/q) positions and
up to q − d distinct symbols in the other n(1− qδ′) (1− d/q) positions. Therefore, the size
of the ensemble of strings that can be received is bounded above as follows.

|E| ≤
(

q

q − d− 1

)
[q − d− 1]nqδ

′(1− d+1
q ) ·

(
q

q − d

)
[q − d]n(1−qδ′)(1− dq )
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This bounds above the rate of any family of list-decodable insdel codes by the following.

log |E|
n log q

=
log
(

q
q−d−1

)
+ nqδ′

(
1− d+1

q

)
log(q − d− 1) + log

(
q
q−d

)
+ n(1− qδ′)

(
1− d

q

)
log(q − d)

n log q

= qδ′
[(

1− d+ 1
q

)(
1− logq

1
1− (d+ 1)/q

)]
+ (1− qδ′)

[(
1− d

q

)(
1− logq

1
1− d/q

)]
J

4.2 Insertion Codes (Theorem 2)
Before providing the proof of Theorem 2, we first point out that any q − 1 insertions can be
essentially used as a single erasure. As a matter of fact, by inserting q − 1 symbols around
the first symbol adversary can make a 1, 2, · · · , q substring around first symbol and therefore,
essentially, make the receiver unable to gain any information about it. In fact, with γn

insertions, the adversary can repeat this procedure around any
⌊
γn
q−1

⌋
symbols he wishes.

This basically gives that, with γn insertions, adversary can erase
⌊
γn
q−1

⌋
many symbols. Thus,

one cannot hope for finding list-decodable codes with rate 1− γ
q−1 or more protecting against

γn insertions.

Proof of Theorem 2. To prove this, consider a code C with rate R ≥ 1 − logq(γ + 1) −
γ
(

logq
γ+1
γ − logq

q
q−1

)
+ε for some ε > 0. We will show that there exist cn0 many codewords

in C that can be turned into one specific string z ∈ [1..q]n(γ+1) with γn insertions for some
constant c0 > 1 that merely depends on q and ε.

First, the lower bound assumed for the rate implies that

|C| = qnR ≥ qn(1−logq(γ+1)−γ(logq
γ+1
γ −logq

q
q−1 )+ε). (1)

Let Z be a random string of length (γ + 1)n over the alphabet [1..q]. We compute the
expected number of codewords of C that are subsequences of Z denoted by X.

E[X] =
∑
y∈C

Pr{y is a subsequence of Z}

=
∑
y∈C

∑
1≤a1<a2<···<an≤n(γ+1)

1
qn

(
1− 1

q

)an−n
(2)

= |C| (q − 1)−n
n(1+γ)∑
l=n

(
l

n

)(
q − 1
q

)l
≤ |C| (q − 1)−n nγ

(
n(1 + γ)

n

)(
q − 1
q

)n(1+γ)
(3)

= nγ|C|(q − 1)nγq−n(1+γ)2n(1+γ)H( 1
1+γ )+o(n)

= nγ|C|qn(γ logq(q−1)−1−γ+logq(1+γ)+γ logq
1+γ
γ )+o(1)

= qnε+o(n) (4)

Step (2) is obtained by conditioning the probability of y being a subsequence of Z over the
leftmost occurrence of y in Z indicated by a1, a2, · · · , an as indices of Z where the leftmost
occurrence of y is located. In that event, Zai has to be similar to yi and yi cannot appear
in Z[yi−1 + 1, yi − 1]. Therefore, the probability of this event is

(
1
q

)n (
1− 1

q

)an−n
. To
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verify Step (3), we show that the summation in previous step takes its largest value when

l = n(1 + γ) and bound the summation above by nγ times that term. To see that
(
l
n

) (
q−1
q

)l
is maximized for l = n(1 + γ) in n ≤ l ≤ n(1 + γ) it suffices to show that the ratio of
consecutive terms is larger than one for l ≤ n(1 + γ):

(
l
n

) (
q−1
q

)l
(
l−1
n

) (
q−1
q

)l−1 = l

l − n
· q − 1

q
=

1− 1
q

1− n
l

≥ 1

The last inequality follows from the fact that l ≤ n(γ + 1) ≤ nq ⇒ 1
q <

n
l .

Finally, by (4), there exists some z ∈ [1..q](a+1)n to which at least qεn+o(n), i.e., exponen-
tially many codewords of C are subsequences. Therefore, polynomial-sized list decoding for
received message z is impossible and proof is complete. J

5 Analysis of Random Codes

5.1 Random Insertion Codes (Theorem 7)
Proof of Theorem 7. We prove the claim by considering a random insertion code C that
maps any x ∈ [1..q]Rn to some uniformly at random chosen member of [1..q]n denoted by
EC(x) and showing that it is possible to list-decode C with high probability.

Note that in an insertion channel, the original message sent by Alice is a substring of the
message received on Bob’s side. Therefore, a random insertion code C is l-list decodable if
for any z ∈ [1..q](γ+1)n, there are at most l codewords of C that are subsequences of z. For
some fixed z ∈ [1..q](γ+1)n, the probability of some uniformly at random chosen y ∈ [1..q]n
being a substring of z can be bounded above as follows.

Pr
y
{y is a subsequence of z} ≤

(
(γ + 1)n

n

)
q−n

= 2n(γ+1)H( 1
γ+1 )+o(n)q−n

= qn(logq(γ+1)+γ logq
γ+1
γ −1+o(1))

Therefore, for a random code C of rate R and any m1, · · · ,ml+1 ∈ [1..q]nR and some fixed
z ∈ [1..q]n(γ+1):

Pr {EC(m1), · · · , EC(ml+1) are subsequences of z} ≤ qn(l+1)(logq(γ+1)+γ logq
γ+1
γ −1+o(1))

Hence, using the union bound over z ∈ [1..q]n(γ+1), for the random code C:

Pr
C

{
∃z ∈ [1..q]n(γ+1),m1, · · · ,ml+1 ∈ qnR s.t. EC(m1), · · · are subsequences of z

}
≤ qn(γ+1) (qRn)l+1

qn(l+1)(logq(γ+1)+γ logq
γ+1
γ −1+o(1))

= qn(γ+1)+Rn(l+1)+n(l+1)(logq(γ+1)+γ logq
γ+1
γ −1+o(1)) (5)

As long as q’s exponent in (5) is negative, this probability is less than one and drops
exponentially to zero as n grows.

n(γ + 1) +Rn(l + 1) + n(l + 1)
(

logq(γ + 1) + γ logq
γ + 1
γ
− 1 + o(1)

)
< 0

⇔ R < 1− logq(γ + 1)− γ logq
γ + 1
γ
− γ + 1
l + 1 + o(1) (6)
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Therefore, the family of random codes with any rate R that satisfies (6) is list-decodable
with a list of size l with high probability. J

The analysis for random deletion codes (Theorem 6) can be found in the extended version
of this article.

References
1 Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of efficiently decod-

able codes. In Proceedings of the Annual Symposium on Foundations of Computer Science
(FOCS), pages 658–667. IEEE, 2001.

2 Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes for unique decod-
ing and new list-decodable codes over smaller alphabets. In Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing, pages 812–821. ACM, 2002.

3 Venkatesan Guruswami and Piotr Indyk. Linear time encodable and list decodable codes.
In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages
126–135. ACM, 2003.

4 Venkatesan Guruswami and Piotr Indyk. Linear-time list decoding in error-free settings.
In International Colloquium on Automata, Languages, and Programming, pages 695–707.
Springer, 2004.

5 Venkatesan Guruswami and Ray Li. Efficiently decodable insertion/deletion codes for
high-noise and high-rate regimes. In Information Theory (ISIT), 2016 IEEE International
Symposium on, pages 620–624. IEEE, 2016.

6 Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity:
Error-correction with optimal redundancy. IEEE Transactions on Information Theory,
54(1):135–150, 2008.

7 Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and
algebraic-geometric codes. In Foundations of Computer Science, 1998. Proceedings. 39th
Annual Symposium on, pages 28–37. IEEE, 1998.

8 Venkatesan Guruswami and Carol Wang. Optimal rate list decoding via derivative codes.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, pages 593–604. Springer, 2011.

9 Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate
regimes. IEEE Transactions on Information Theory, 63(4):1961–1970, 2017.

10 Venkatesan Guruswami and Chaoping Xing. List decoding reed-solomon, algebraic-
geometric, and gabidulin subcodes up to the singleton bound. In Proceedings of the forty-
fifth annual ACM symposium on Theory of computing, pages 843–852. ACM, 2013.

11 Venkatesan Guruswami and Chaoping Xing. Optimal rate list decoding over bounded
alphabets using algebraic-geometric codes. arXiv preprint arXiv:1708.01070, 2017.

12 Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: Codes for in-
sertions and deletions approaching the singleton bound. In Proceedings of the Annual
Symposium on Theory of Computing (STOC), 2017.

13 Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: Explicit con-
structions, local decoding, and applications. In Proceedings of the Annual Symposium on
Theory of Computing (STOC), 2018.

14 Bernhard Haeupler, Amirbehshad Shahrasbi, and Ellen Vitercik. Synchronization strings:
Channel simulations and interactive coding for insertions and deletions. Proceedings of the
International Conference on Automata, Languages, and Programming (ICALP), 2017.

15 Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. Local list recovery of high-rate
tensor codes and applications. Proceedings of the Annual Symposium on Foundations of
Computer Science (FOCS), 2017.

ICALP 2018



76:14 Synchronization Strings: List Decoding for Insertions and Deletions

16 Brett Hemenway and Mary Wootters. Linear-time list recovery of high-rate expander codes.
In International Colloquium on Automata, Languages, and Programming, pages 701–712.
Springer, 2015.

17 Swastik Kopparty. List-decoding multiplicity codes. Theory of Computing, 11(5):149–182,
2015.

18 Vladimir Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Doklady Akademii Nauk SSSR 163, 4:845–848, 1965.

19 Hugues Mercier, Vijay K Bhargava, and Vahid Tarokh. A survey of error-correcting codes
for channels with symbol synchronization errors. IEEE Communications Surveys & Tutori-
als, 12(1), 2010.

20 Michael Mitzenmacher. A survey of results for deletion channels and related synchronization
channels. Probability Surveys, 6:1–33, 2009.

21 Leonard J. Schulman and David Zuckerman. Asymptotically good codes correcting inser-
tions, deletions, and transpositions. IEEE transactions on information theory, 45(7):2552–
2557, 1999.

22 Neil JA Sloane. On single-deletion-correcting codes. Codes and designs, 10:273–291, 2002.
23 Antonia Wachter-Zeh. List decoding of insertions and deletions. IEEE Transactions on

Information Theory, 2017.



Approximate Sparse Linear Regression
Sariel Har-Peled1

Department of Computer Science, University of Illinois, Urbana, IL, USA
sariel@illinois.edu

Piotr Indyk
Department of Computer Science, MIT, Cambridge, MA, USA
indyk@mit.edu

Sepideh Mahabadi2

Data Science Institute, Columbia University, New York, NY, USA
mahabadi@mit.edu

Abstract
In the Sparse Linear Regression (SLR) problem, given a d × n matrix M and a d-dimensional
query q, the goal is to compute a k-sparse n-dimensional vector τ such that the error ‖Mτ − q‖
is minimized. This problem is equivalent to the following geometric problem: given a set P of n
points and a query point q in d dimensions, find the closest k-dimensional subspace to q, that is
spanned by a subset of k points in P . In this paper, we present data-structures/algorithms and
conditional lower bounds for several variants of this problem (such as finding the closest induced
k dimensional flat/simplex instead of a subspace).

In particular, we present approximation algorithms for the online variants of the above prob-
lems with query time Õ(nk−1), which are of interest in the "low sparsity regime" where k is small,
e.g., 2 or 3. For k = d, this matches, up to polylogarithmic factors, the lower bound that relies on
the affinely degenerate conjecture (i.e., deciding if n points in Rd contains d+ 1 points contained
in a hyperplane takes Ω(nd) time). Moreover, our algorithms involve formulating and solving
several geometric subproblems, which we believe to be of independent interest.
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where the matrix M is given in advance (so that it can be preprocessed) and the goal is to
quickly find τ given q.

Various variants of SLR have been extensively studied, in a wide range of fields including
(i) statistics and machine learning [15, 16],
(ii) compressed sensing [6], and
(iii) computer vision [17].
The query/online variant is of particular interest in the application described by Wright et al.
[17], where the matrix M describes a set of image examples with known labels and q is a
new image that the algorithm wants to label.

If the matrix M is generated at random or satisfies certain assumptions, it is known
that a natural convex relaxation of the problem finds the optimum solution in polynomial
time [3, 4]. However, in general the problem is known to be NP-Hard [13, 5], and even hard
to approximate up to a polynomial factor [8] (see below for a more detailed discussion). Thus,
it is likely that any algorithm for this problem that guarantees "low" approximation factor
must run in exponential time. A simple upper bound for the offline problem is obtained by
enumerating

(
n
k

)
possible supports of τ and then solving an instance of the d×k least squares

problem. This results in nk(d+ k)O(1) running time, which (to the best of our knowledge)
constitutes the fastest known algorithm for this problem. At the same time, one can test
whether a given set of n points in a d-dimensional space is degenerate by reducing it to n
instances of SLR with sparsity d. The former problem is conjectured to require Ω(nd) time [7]
– this is the affinely degenerate conjecture. This provides a natural barrier for running time
improvements (we elaborate on this below in Section 1.1.1).

In this paper, we study the complexity of the problem in the case where the sparsity
parameter k is constant. In addition to the formulation above, we also consider two more
constrained variants of the problem. First, we consider the Affine SLR where the vector τ is
required to satisfy ‖τ‖1 = 1, and second, we consider the Convex SLR where additionally τ
should be non-negative. We focus on the approximate version of these problems, where the
algorithm is allowed to output a k-sparse vector τ ′ such that ‖Mτ ′ − q‖2 is within a factor
of 1 + ε of the optimum.

Geometric interpretation. The SLR problem is equivalent to the Nearest Linear Induced
Flat problem defined as follows. Given a set P of n points in d dimensions and a d-dimensional
vector q, the task is to find a k-dimensional flat spanning a subset B of k points in P and the
origin, such that the (Euclidean) distance from q to the flat is minimized. The Affine and
Convex variants of SLR respectively correspond to finding the Nearest Induced Flat and the
Nearest Induced Simplex problems, where the goal is to find the closest (k − 1)-dimensional
flat/simplex spanned by a subset of k points in P to the query.

Motivation for the problems studied. Given a large3 set of items (e.g., images), one would
like to store them efficiently for various purposes. One option is to pick a relatively smaller
subset of representative items (i.e., support vectors), and represent all items as a combination
of this supporting set. Note, that if our data-set is diverse and is made out of several distinct
groups (say, images of the sky, and images of children), then naturally, the data items would
use only some of the supporting set for representation (i.e., the representation over the

3 Bigger than the biggest thing ever and then some. Much bigger than that in fact, really amazingly
immense, a totally stunning size, “wow, that’s big”, time. – The Restaurant at the End of the Universe,
Douglas Adams.
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Table 1 Summary of results. Here, S(n, d, ε) denotes the preprocessing time and space used by a
(1 + ε)-ANN (approximate nearest-neighbor) data-structure, and TQ(n, d, ε) denotes the query time
(we assume all these bounds are at least linear in the dimension d). All the data-structures, except
the last one, provide (1 + ε)-approximation. In the nearest induced segment case (i.e., this is the
offline convex SLR case) the algorithm answers a single query.

Comment Space Query See

SLR nk−1S(n, d, ε) nk−1TQ(n, d, ε) Theorem 12

Affine SLR nk−1S(n, d, ε) nk−1TQ(n, d, ε) Theorem 11

Convex SLR nk−1S(n, d, ε) logk n nk−1TQ(n, d, ε) logk n Lemma 25

k = 2 & ε ≤ 1 nS(n, d, ε) log n nTQ(n, d, ε)ε−2 log n Full version
Approximate

nearest
k = 2
2(1 + ε) Approx n

1+O( 1
(1+ε)2 ) Full version

induced segment d = O(1) O(n log n+ n/εd) Full version

supporting set is naturally sparse). As such, it is natural to ask for a sparse representation
of each item over the (sparse but still relatively large) supporting set. (As a side note,
surprisingly little is known about how to choose such a supporting set in theory, and the
problem seems to be surprisingly hard even for points in the plane.)

Now, when a new item arrives to the system, the task is to compute its best sparse
representation using the supporting set, and we would like to do this as fast as possible
(which admittedly is not going to be that fast, see below for details).

1.1 Our results
Data-structures. We present data-structures to solve the online variants of the SLR, Affine
SLR and Convex SLR problems, for general value of k. Our algorithms use a provided
approximate nearest-neighbor (ANN) data-structure as a black box. The new results are
summarized in Table 1.

For small values of k, our algorithms offer notable improvements of the query time over
the aforementioned naive algorithm, albeit at a cost of preprocessing. Below in Section 1.1.1,
we show how our result matches the lower bound that relies on the affinely degenerate
conjecture. Moreover, our algorithms involve formulating and solving several interesting
geometric subproblems, which we believe to be of independent interest.

Conditional lower bound. We show a conditional lower bound of Ω(nk/2/(ek logΘ(1) n)),
for the offline variants of all three problems. Improving this lower bound further, for the
case of k = 4, would imply a nontrivial lower bound for famous Hopcroft’s problem. See full
version of the paper for the description. Our conditional lower bound result presented in the
full version of the paper follows by a reduction from the k-sum problem which is conjectured
to require Ω(ndk/2e/ logΘ(1) n) time (see e.g., [14], Section 5). This provides further evidence
that the off-line variants of the problem require nΩ(k) time.

1.1.1 Detecting affine degeneracy
Given a point set P in Rd (here d is conceptually small), it is natural to ask if the points
are in general position – that is, all subsets of d + 1 points are affinely independent. The
affinely degenerate conjecture states that this problem requires Ω(nd) time to solve [7]. This
can be achieved by building the arrangement of hyperplanes in the dual, and detecting

ICALP 2018
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any vertex that has d + 1 hyperplanes passing through it. This problem is also solvable
using our data-structure. (We note that since the approximation of our data structure is
multiplicative, and in the reduction we only need to detect distance of 0 from larger than 0,
we are able to solve the exact degeneracy problem as described next). Indeed, we instantiate
Theorem 11, for k = d, and using a low-dimensional (1 + ε)-ANN data-structure of Arya
et al. [1]. Such an ANN data-structure uses S(n, d, ε) = O(n) space, O(n log n) preprocessing
time, and TQ(n, d, ε) = O(log n+ 1/εd) = O(log n) query time (for a fixed constant ε < 1).
Thus, by Theorem 11, our data structure has total space usage and preprocessing time of
Õ(nk) and a query time of Õ(nk−1). Detecting affine degeneracy then reduces to solving for
each point of q ∈ P , the problem of finding the closest (d− 1)-dimensional induced flat (i.e.,
passing through d points) of P \ {q} to q. It is easy to show that this can be solved using our
data-structure with an extra log factor4. This means that the total runtime (including the
preprocessing and the n queries) will be Õ(nk) = Õ(nd). Thus, up to polylogarithmic factor,
the data-structure of Theorem 11 provides an optimal trade-off under the affinely degenerate
conjecture. We emphasize that this reduction only rules out the existence of algorithms for
online variants of our problems that improve both the preprocessing time from O(nk), and
query time from O(nk−1) by much; it does not rule out for example the algorithms with
large preprocessing time (in fact much larger than nk) but small query time.

1.2 Related work
The computational complexity of the approximate sparse linear regression problem has been
studied, e.g., in [13, 5, 8]. In particular, the last paper proved a strong hardness result,
showing that the problem is hard even if the algorithm is allowed to output a solution with
sparsity k′ = k2log1−δ n whose error is within a factor of ncm1−α from the optimum, for any
constants δ, α > 0 and c > 1.

The query/online version of the Affine SLR problem can be reduced to the Nearest k-flat
Search Problem studied in [11, 2, 12], where the database consists of a set of k-flats (affine
subspaces) of size N and the goal is to find the closest k-flat to a given query point q. Let P
be a set of n points in Rd that correspond to the columns of M . The reduction proceeds by
creating a database of all N =

(
n
k

)
possible k-flats that pass through k points of P . However,

the result of [2] does not provide multiplicative approximation guarantees, although it does
provide some alternative guarantees and has been validated by several experiments. The
result of [11], provides provable guarantees and fast query time of (d+ logN + 1/ε)O(1), but
the space requirement is quasi-polynomial of the form 2(logN)O(1) = 2(k logn)O(1) . Finally the
result of [12] only works for the special case of k = 2, and yields an algorithm with space
usage O

(
n14ε−3S

(
n2, d, ε

))
and query time O

(
TQ
(
n2ε−4, d, ε

)
log2 n

)5. Similar results can
be achieved for the other variants.

The SLR problem has a close relationship with the Approximate Nearest Neighbor (ANN)
problem. In this problem, we are given a collection of N points, and the goal is to build a
data structure which, given any query point q, reports the data point whose distance to the
query is within a (1 + ε) factor of the distance of the closest point to the query. There are

4 The details are somewhat tedious – one generates O(log n) random samples of P where each point is
picked with probability half. Now, we build the data-structure for each of the random samples. With
high probability, for each of the query point q ∈ P , one of the samples contains, with high probability,
the d points defining the closest flat, while not containing q.

5 The exact exponent is not specified in the main theorem of [12] and it was obtained by an inspection of
the proofs in that paper.
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many efficient algorithms known for the latter problem. One of the state of the art results
for ANN in Euclidean space answers queries in time (d log(N)/ε2)O(1) using (dN)O(1/ε2)

space [10, 9].

1.3 Our techniques and sketch of the algorithms

Affine SLR (nearest flat). To solve this problem, we first fix a subset B ⊆ P of k − 1
points, and search for the closest (k − 1)-flat among those that contain B. Note, that there
are at most n− k + 1 such flats. Each such flat f, as well as the query flat Qflat (containing
B and the query q), has only one additional degree of freedom, which is represented by a
vector vH (vQ, resp.) in a d− k + 1 space. The vector vH that is closest to vQ corresponds
to the flat that is closest to q. This can be found approximately using standard ANN data
structure, resulting in an algorithm with running time O(nk−1 · TQ(n, d, ε)). Similarly, by
adding the origin to the set B, we could solve the SLR problem in a similar way.

Convex SLR (nearest simplex). This case requires an intricate combination of low and
high dimensional data structures, and is the most challenging part of this work. To find the
closest (k − 1)-dimensional induced simplex, one approach would be to fix B as before, and
find the closest corresponding flat. This will work only if the projection of the query onto the
closest flat falls inside of its corresponding simplex. Because of that, we need to restrict our
search to the flats of feasible simplices, i.e., the simplices S such that the projection of the
query point onto the corresponding flat falls inside S. If we manage to find this set, we can
use the algorithm for affine SLR to find the closest one. Note that finding the distance of the
query to the closest non-feasible simplex can easily be computed in time nk−1 as the closest
point of such a simplex to the query lies on its boundary which is a lower dimensional object.

Let S be the unique simplex obtained from B and an additional point p. Then we can
determine whether S is feasible or not only by looking at (i) the relative positioning of p
with respect to B, that is, how the simplex looks like in the flat going through S, (ii) the
relative positioning of q with respect to B, and (iii) the distance between the query and the
flat of the simplex. Thus, if we were given a set of simplices through B such that all their
flats were at a distance r from the query, we could build a single data structure for retrieving
all the feasible flats. This can be done by mapping all of them in advance onto a unified
(k − 1) dimensional space (the “parameterized space”), and then using k − 1 dimensional
orthogonal range-searching trees in that space.

However, the minimum distance r is not known in general. Fortunately, as we show the
feasibility property is monotone in the distance: the farther the flat of the simplex is from the
query point, the weaker constraints it needs to satisfy. Thus, given a threshold value r, our
algorithm retrieves the simplices satisfying the restrictions they need to satisfy if they were
at a distance r from the query. This allows us to use binary search for finding the right value
of r by random sampling. The final challenge is that, since our access is to an approximate
NN data structure (and not an exact one), the above procedure yields a superset of feasible
simplices. The algorithm then finds the closest flat corresponding to the simplices in this
superset. We show that although the reported simplex may not be feasible, its distance to
the query is still approximately at most r.

For overview of the offline nearest segment, and conditional lower bound, see the full
version.
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2 Preliminaries

2.1 Notations
Throughout the paper, we assume P ⊆ Rd is the set of input points which is of size n. In
this paper, for simplicity, we assume that the point-sets are non-degenerate, however this
assumption is not necessary for the algorithms. We use the notation X ⊂i B to denote that
X is a subset of B of size i, and use 0 to denote the origin. For two points y, u ∈ Rd, the
segment the form is denoted by yu, and the line formed by them by line(y, u).

I Definition 1. For a set of points S, let fS = aff(S) =
{∑|S|

i=1 αipi

∣∣∣ pi ∈ S, and
∑|S|

i=1 αi = 1
}

be the (|S| − 1)-dimensional flat (or (|S| − 1)-flat for short) passing through the points in
the set S (aka the affine hull of S). The (|S| − 1)-dimensional simplex ((|S| − 1)-simplex for
short) that is formed by the convex-hull of the points of S is denoted by 4S . We denote the
interior of a simplex 4S by int(4S).

I Definition 2 (distance and nearest-neighbor). For a point q ∈ Rd, and a point p ∈ Rd, we
use d(q, p) = ‖q − p‖2 to denote the distance between q and p. For a closed set X ⊆ Rd,
we denote by d(q,X) = minp∈X ‖q − p‖2 the distance between q and X. The point of X
realizing the distance between q and X is the nearest neighbor to q in X, denoted by nn(q,X).
We sometimes refer to nn(q,X) as the projection of q onto X.

More generally, given a finite family of such sets G =
{
Xi ⊆ Rd

∣∣ i = 1, . . . ,m
}
, the

distance of q from G is d(q,G) = minX∈G d(q,X). The nearest-neighbor nn(q,G) is defined
analogously to the above.

I Assumption 3. Throughout the paper, we assume we have access to a data structure that
can answer (1 + ε)-ANN queries on a set of n points in Rd. We use S(n, d, ε) to denote the
space requirement of this data structure, and by TQ(n, d, ε) to denote the query time.

2.1.1 Induced stars, bouquets, books, simplices and flats
I Definition 4. Given a point b and a set P of points in Rd, the star of P , with the
base b, is the set of segments star(b, P ) = {bp | p ∈ P \ {b}} . Similarly, given a set B of
points in Rd, with |B| = k − 1 ≤ d, the book of P , with the base B, is the set of simplices
∆(B,P ) =

{
4B∪{p}

∣∣ p ∈ P \B} . Finally, the set of flats induced by these simplices, is the
bouquet of P , denoted by bqt(B,P ) =

{
fB∪{p}

∣∣ p ∈ P \B} .
If B is a single point, then the corresponding book is a star, and the corresponding bouquet
is a set of lines all passing through the single point in B.

I Definition 5. For a set P ⊆ Rd, let Lk(P ) =
{

fS∪{0}
∣∣ S ⊂k P} be the set of all linear

k-dimensional subspaces induced by P , and Fk(P ) = {fS | S ⊂k P} be the set of all (k − 1)-
flats induced by P . Similarly, let ∆k(P ) = {4S | S ⊂k P} be the set of all (k − 1)-simplices
induced by P .

2.2 Problems
In the following, we are given a set P of n points in Rd, a query point q and parameters k
and ε > 0. We are interested in the following problems:

I. SLR (nearest induced linear subspace): Compute nn
(
q,Lk(P )

)
.

II. ANLIF (approximate nearest linear induced flat): Compute a k-flat f ∈ Lk(P ), such
that d(q, f) ≤ (1 + ε)d(q,Lk(P )).
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III. Affine SLR (nearest induced flat): Compute nn
(
q,Fk(P )

)
.

IV. ANIF (Approximate Nearest Induced Flat): Compute a (k − 1)-flat f ∈ Fk(P ), such
that d(q, f) ≤ (1 + ε)d(q,Fk(P )).

V. Convex SLR (Nearest Induced Simplex): Compute nn
(
q,∆k(P )

)
.

VI. ANIS (Approximate Nearest Induced Simplex): Compute a (k− 1)-simplex 4 ∈∆k(P ),
such that d(q,4) ≤ (1 + ε)d(q,∆k(P )).

Here, the parameter k corresponds to the sparsity of the solution.

3 Approximating the nearest induced flats and subspaces

Here, we show how to solve approximately the online variants of SLR and affine SLR problems.
These are later used in Section 4. We start with the simplified case of the uniform star.

3.1 Approximating the nearest neighbor in a uniform star
Input & task. We are given a base point b, a set P of n points in Rd, and a parameter
ε > 0. We assume that ‖b− p‖ = 1, for all p ∈ P . The task is to build a data structure that
can report quickly, for a query point q that is also at distance one from b, the (1 + ε)-ANN
segment to q in star(b, P ).

Preprocessing. The algorithm computes the set V = {p− b | p ∈ P \ {b}}, which lies on a
unit sphere in Rd. Next, the algorithm builds a data structure DV for answering (1 + ε)-ANN
queries on V .

Answering a query. For a query point q, the algorithm does the following:
(A) Compute τ = q − b.
(B) Compute (1 + ε)-ANN to τ in V , denoted by u using DV .
(C) Let y be the point in P corresponding to u.
(D) Return min

(
d(q, by), 1

)
.

I Lemma 6. Consider a base point b, and a set P of n points in Rd all on S(b, 1), where
S = S(b, 1) is the sphere of radius 1 centered at b. Given a query point q ∈ S, the above
algorithm reports correctly a (1 + ε)-ANN in star(b, P ). The query time is dominated by the
time to perform a single (1 + ε)-ANN query. (Proof in the full version)

3.2 Approximating the nearest flat in a bouquet
I Definition 7. For a set X and a point p in Rd, let p′ = nn(p,X). We use dir(X, p) to
denote the unit vector (p− p′)/ ‖p− p′‖, which is the direction of p in relation to X.

Input & task. We are given sets B and P of k − 1 and n points, respectively, in Rd, and a
parameter ε > 0. The task is to build a data structure that can report quickly, for a query
point q, a (1 + ε)-ANN flat to q in bqt(B,P ), see Definition 4.

Preprocessing. Let F = fB . The algorithm computes the set

V = {dir(F, p),−dir(F, p) | p ∈ P \B} ,

which lies on a d− k+ 2 dimensional unit sphere in Rd−k+1, and then builds a data structure
DV for answering (standard) ANN queries on V .
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Answering a query. For a query point q, the algorithm does the following:
(A) Compute τ = dir(F, q).
(B) Compute ANN to τ in V , denoted by u using the data structure DV .
(C) Let p be the point in P corresponding to u.
(D) Return the distance d(q, fB∪{p}).

I Definition 8. For sets X,Y ⊆ Rd, let projX(Y ) = {nn(q,X) | q ∈ Y } be the projection of
Y on X.

I Lemma 9. Consider two affine subspaces F ⊆ H with a base point b ∈ F , and the orthogonal
complement affine subspace F⊥ =

{
b+ τ

∣∣ 〈τ, u− v〉 = 0 for all u, v ∈ F, τ ∈ Rd
}
. For an

arbitrary point q ∈ Rd, let q⊥ = projF⊥(q).We have that d(q,H) = d(q⊥, projF⊥(H)). (Proof
in the full version)

Using the notation of Assumption 3 and Definition 4, we have the following:

I Lemma 10 (ANN flat in a bouquet). Given sets B and P of k−1 and n points, respectively,
in Rd, and a parameter ε > 0, one can preprocess them, using a single ANN data structure,
such that given a query point, the algorithm can compute a (1 + ε)-ANN to the closest
(k − 1)-flat in bqt(B,P ). The algorithm space and preprocessing time is O(S(n, d, ε)), and
the query time is O(TQ(n, d, ε)). (Proof in the full version)

3.3 The result
Here, we show simple algorithms for the ANIF and the ANLIF problems by employing
Lemma 10. We assume ε > 0 is a prespecified approximation parameter.

Approximating the affine SLR. As discussed earlier, the goal is to find an approximately
closest (k − 1)-dimensional flat that passes through k points of P , to the query. To this end,
we enumerate all possible k − 1 subsets of points of B ⊂k−1 P , and build for each such base
set B, the data structure of Lemma 10. Given a query, we compute the ANN flat in each one
of these data structures, and return the closest one found.

I Theorem 11. The aforementioned algorithm computes a (1+ε)-ANN to the closest (k−1)-
flat in Fk(P ), see Definition 5. The space and preprocessing time is O(nk−1S(n, d, ε)), and
the query time is O(nk−1TQ(n, d, ε)).

Approximating the SLR. The goal here is to find an approximately closest k-dimensional
flat that passes through k points of P and the origin 0, to the query. We enumerate all
possible k − 1 subsets of points of B′ ⊂k−1 P , and build for each base set B = B′ ∪ {0}, the
data structure of Lemma 10. Given a query, we compute the ANN flat in each one of these
data structures, and return the closest one found.

I Theorem 12. The aforementioned algorithm computes a (1 + ε)-ANN to the closest k-flat
in Lk(P ), see Definition 5, with space and preprocessing time of O(nk−1S(n, d, ε)), and the
query time of O(nk−1TQ(n, d, ε)).

4 Approximating the nearest induced simplex

In this section we consider the online variant of the ANIS problem. Here, we are given the
parameter k, and the goal is to build a data structure, such that given a query point q, it
can find a (1 + ε)-ANN induced (k − 1)-simplex.
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As before, we would like to fix a set B of k − 1 points and look for the closest simplex
that contains B and an additional point from P . The plan is to filter out the simplices for
which the projection of the query on to them falls outside of the interior of the simplex. Then
we can use the algorithm of the previous section to find the closest flat corresponding to the
feasible simplices (the ones that are not filtered out). First we define a canonical space and
map all these simplices and the query point to a unique (k + 1)-dimensional space. As it
will become clear shortly, the goal of this conversion is to have a common lower dimensional
space through which we can find all feasible simplices using range searching queries.

4.1 Simplices and distances
4.1.1 Canonical realization
In the following, we fix a sequence B = (p1, . . . , pk−1) of k−1 points in Rd. We are interested
in arguing about simplices induced by k+ 1 points, i.e., B, an additional input point pk, and
a query point q. Since the ambient dimension is much higher (i.e., d), it would be useful to
have a common canonical space, where we can argue about all entities.

I Definition 13. For a given set of points B, let F = fB . Let p /∈ F be a given point in Rd,
and consider the two connected components of fB∪{p} \ F , which are halfflats. The halfflat
containing p is the positive halfflat, and it is denoted by f+(B, p).

Fix some arbitrary point s∗ ∈ Rd \ F , and let G = f+(B, s∗) be a canonical such halfflat.
Similarly, for a fixed point s∗∗ ∈ Rd \ fB∪{s∗}, let H = f+(B ∪ s∗, s∗∗). Conceptually, it is
convenient to consider H = Rk−2 × R× R+, where the first k − 2 coordinates correspond to
F , and the first k−1 coordinates correspond to G (this can be done by applying a translation
and a rotation that maps H into this desired coordinates system). This is the canonical
parameterization of H.

The following observation formalizes the following: Given a (k− 1) dimensional halfflat G
passing through B, a point on G is uniquely identified by its distances from the points in B.

I Observation 14. Given a sequence of distances ` = (`1, . . . , `k−1), there might be only
one unique point p = pG(`) ∈ G, such that ‖p− pi‖ = `i, for i = 1, . . . , k − 1. Such a point
might not exist at all6.

Next, given G and H, a point q and a value ` < d(q, F ), we aim to define the points
qG(`) and qH(`). Consider a point q ∈ Rd \F (not necessarily the query point), and consider
any positive (k − 1)-halfflat g that contains B, and is in distance ` from q. Furthermore
assume that ` = d(q, g) < d(q, F ). Let qg be the projection of q to g. Observe that, by the

Pythagorean theorem, we have that di =
∥∥qg − pi

∥∥ =
√
‖q − pi‖2 − `2, for i = 1, . . . , k − 1.

Thus, the above observation implies, that the canonical point qG(`) = pG
(
d1, . . . , dk−1

)
(see

Observation 14) is uniquely defined. Note that this is somewhat counterintuitive as the flat g
and thus the point qg are not uniquely defined. Similarly, there is a unique point qH(`) ∈ H,
such that:
(i) the projection of qH(`) to G is the point qG(`),
(ii) ‖qH(`)− qG(`)‖ = `, and these two also imply that
(iii) ‖qH(`)− pi‖ = ‖q − pi‖, for i = 1, . . . , k − 1.

6 Trilateration is the process of determining the location of p ∈ G given `. Triangulation is the process of
determining the location when one knows the angles (not the distances).
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Therefore, given G and H, a point q and a value ` < d(q, F ), the points qG(`) and qH(`)
are uniquely defined. Intuitively, for a halfflat that passes through B and is at distance `
from the query, qG(`) models the position of the projection of the query onto the halfflat,
and qH(`) models the position of the query point itself with respect to this halfflat. Next, we
prove certain properties of these points.

4.1.2 Orbits
I Definition 15. For a set of points B in Rd, define ΦB to be the open set of all points in
Rd, such that their projection into F lies in the interior of the simplex 4B = ConvexHull(B).
The set ΦB is a prism.

Consider a query point q ∈ ΦB, and its projection qB = nn(q, F ). Let r = rB(q) =
‖q − qB‖ be the radius of q in relation to B. Using the above canonical parameterization, we
have that qG(0) = (qB , r), and qH(0) = (qG(0), 0) = (qB , r, 0). More generally, for ` ∈ [0, r],
we have

qG(`) =
(
qB ,
√
r2 − `2

)
and qH(`) =

(
qB ,
√
r2 − `2, `

)
. (1)

The curve traced by qH(`), as ` varies from 0 to r, is the orbit of q – it is a quarter circle
with radius r. The following lemma states a monotonicity property that is the basis for the
binary search over the value of `.

I Lemma 16. (i) Define q̂(`) =
(√
r2 − `2, `

)
, and consider any point p = (x, 0), where

x ≥ 0. Then, the function d(`) = ‖q̂(`)− p‖ is monotonically increasing for ` ∈ [0, r].
(ii) For any point p in the halfflat G, the function ‖qH(`)− p‖ is monotonically increasing.

(Proof in the full version).

4.1.3 Distance to a simplex via distance to the flat
I Definition 17. Given a point q, and a distance `, let 4G(q, `) be the unique simplex in G,
having the points of B and the point qG(`) as its vertices. Similarly, let 4G(q) = 4G(q, 0).

Next, we provide the necessary and sufficient conditions for a simplex to be feasible. This
lemma lies at the heart of our data structure.

I Lemma 18. (Proof in the full version) Given a query point q ∈ ΦB, and a point pk ∈ P \B,
for a number 0 < x ≤ d(q, F ) we have
(A) qG(x) ∈ 4G(pk) and d(q, f+(B, pk)) ≤ x =⇒ d(q,4B∪{pk}) ≤ x.
(B) d(q,4B∪{pk}) ≤ x and q ∈ ΦB∪{pk} =⇒ qG(x) ∈ 4G(pk) and d(q, f+(B, pk)) ≤ x.

4.2 Approximating the nearest page in a book
I Definition 19. Let P be a set of n points in Rd, and let B be a sequence of k − 1
points. Consider the set of simplices having B and one additional point from P ; that is,
∆ = ∆(B,P ) =

{
4B∪{p}

∣∣ p ∈ P \B} . The set ∆ is the book induced by (B,P ), and to a
single simplex in this book is (naturally) a page.

The task at hand, is to preprocess ∆ for ANN queries, as long as (i) the nearest point
lies in the interior of one of these simplices and (ii) q ∈ ΦB. To this end, we consider the
canonical representation of this set of simplices ∆G = {4G(p) | p ∈ P \B} .
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Pbase

α2(p) α1(p)
p2

p

p1

Figure 1 Example base angles when k = 3

Idea. The algorithm follows Lemma 18 (A). Given a query point, using standard range-
searching techniques, we extract a small number of canonical sets of the points, that in the
parametric space, their simplex contains the parameterized query point. This is described in
Section 4.2.1. For each of these canonical sets, we use the data structure of Lemma 10 to
quickly query each one of these canonical sets for their nearest positive flat (see Remark 4.2.2
below). This would give us the desired ANN.

4.2.1 Reporting all simplices containing a point

I Definition 20. Let B = (p1, . . . , pk−1) be a sequence of k − 1 points in Rd. For a point
p ∈ Rd, consider the (k − 1)-simplex 4B∪{p}, which is a full dimensional simplex in the
flat fB∪{p} (see Definition 1). The base angles of p (with respect to B), is the (k − 1)-
tuple αB(p) =

(
α1(p), . . . , αk−1(p)

)
, where αi(p) is the dihedral angle between the facet

4B∪{p}\{pi} and the base facet 4B . See Figure 1, where k = 3.

I Observation 21 (Inclusion and base angles). Let B be a set of k − 1 points in Rk−1 all
with their (k − 1)th coordinate being zero, and let p be an additional point with its (k − 1)th
coordinate being a positive number. Then, for a point q ∈ Rk−1, we have that q ∈ 4B∪{p}
⇐⇒ αB(q) ≤ αB(p) (i.e., (∀i : αi(q) ≤ αi(p)).

I Lemma 22. Given a set n of (k − 1)-simplices ∆G in Rk−1, that all share common k − 1
vertices, one can build a data structure of size O(n logk−1 n), such that given a query point
q ∈ Rk−1, one can compute O(logk−1 n) disjoint canonical sets, such that the union of these
sets, is the set of all simplices in ∆G that contain q. The query time is O(logk−1 n). (Proof
in the full version)

I Lemma 23. The data structure of Lemma 22 can be used to report all simplices that
contain a specific point p, and do not contain another point p′, which is vertically above
p (i.e., the same point with larger (k − 1)th coordinate). This corresponds to k (possibly
unbounded) box queries instead of quadrant query in the orthogonal data structure. The query
time and number of canonical sets will be multiplied by at most k. The space bound remains
the same. Moreover, we ensure these set of k boxes are disjoint. (Proof in the full version)

4.2.2 Data structure and correctness

I Remark. For a set of points P and a base set B, consider the set of positive halfspaces
(the positive bouquet) bqt+(B,P ) = {f+(B, p) | p ∈ P \B} . We can preprocess such a set
for ANN queries readily, by using the data structure of Lemma 10. The only modification is
that for every positive flat we assign one vector (in the positive direction), instead of two
vectors in both directions which we put in the data structure of Section 3.2.
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Preprocessing. The algorithm computes the set of canonical simplices ∆G, see Eq. (4.2).
Next, the algorithm builds the data structure of Lemma 22 for this set of simplices. For
each canonical set V in this data structure, for the corresponding set of original points, we
build the data structure of Remark 4.2.2 to answer ANN queries on the positive bouquet
bqt+(B, V ). (Observe that the total size of these canonical sets is O(n logk−1 n).)

Answering a query. Given a query point q ∈ ΦB, the algorithm computes its projection
qB = nn(q, F ), where F = fB . Let r = ‖q − qB‖ be the radius of q. The desired ANN distance
is somewhere in the interval [0, r], and the algorithm maintains an interval [α, β] where this
distance lies, and uses binary search to keep pruning away on this interval, till reaching the
desired approximation.

Observe that for every point p ∈ P , there is a critical value γ(p), such that for x ≥ γ(p),
the parameterized point qG(x) is inside the simplex 4G(p), and is outside if x < γ(p). Note
that this statement only holds for queries in ΦB (otherwise it could have been false on
simplices 4B∪{p} with obtuse angles, see Remark 4.3 for handling the case of q /∈ ΦB).

Now, by Lemma 23, we can compute a polylogarithmic number of canonical sets, such
that the union of these sets, are (exactly) all the points with critical values in the range
[α, β). As long as the number of critical values is at least one, we randomly pick one of these
values (by sampling from the canonical sets – one can assume each canonical set is stored in
an array), and let γ be this value. We have to decide if the desired ANN is smaller or larger
than γ. To this end, we compute a representation, by polylogarithmic number of canonical
sets, of all the points of P such that their simplex contains the parameterized point qG(γ),
using Lemma 22. For each such canonical set, the algorithm computes the approximate
closest positive halfflat, see Remark 4.2.2. Let τ be the minimum distance of such a halfflat
computed. If this distance is smaller than γ, then the desired ANN is smaller than γ, and
the algorithm continues the search in the interval [α, γ), otherwise, the algorithm continues
the search in the interval [γ, β).

After logarithmic number of steps, in expectation, we have an interval [α′, β′), that
contains no critical value in it, and the desired ANN distance lies in this interval. We compute
the ANN positive flats for all the points that their parameterized simplex contains qG(β′),
and we return this as the desired ANN distance.

For proof of correctness and query time analysis see the full version.

I Lemma 24 (Approximate nearest induced page). Given a set P of n points in Rd, a set B of
k − 1 points, and a parameter ε > 0, one can preprocess them, such that given a query point,
the algorithm computes an (1 + ε)-ANN to the closest page in ∆(B,P ), see Definition 19.
This assumes that (i) the nearest point to the query lies in the interior of the nearest page,
and (ii) q ∈ ΦB. The algorithm space and preprocessing time is O(S(n, d, ε) logk n), and the
query time is O(TQ(n, d, ε) logk n).

4.3 Result: nearest induced simplex
The idea is to use brute-force to handle the distance of the query to the ≤ (k − 2)-simplices
induced by the given point set which takes O(nk−1) time. As such, the remaining task is to
handle the (k− 1)-simplices, and thus we can assume that the nearest point to the query lies
in the interior of the nearest simplex, as desired by Lemma 24. To this end, we generate the(
n
k−1
)

= O(nk−1) choices for B ⊆ P , and for each one of them we build the data structure of
Lemma 24, and query each one of them, returning the closet one found.
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I Remark. Note that for a set of k points X ⊂k P , if the projection of the query onto the
simplex 4A falls inside the simplex, i.e. q ∈ ΦA, then there exists a subset of k − 1 points
B ⊂k−1 X such that the projection of the query onto the simplex 4B falls inside the simplex,
i.e., q ∈ ΦB . Therefore, either the brute-force component of the algorithm finds an ANN, or
there exists a set B for which the corresponding data structure reports the correct ANN.

We thus get the following result.

I Theorem 25 (Convex SLR). Given a set P of n points in Rd, and parameters k and ε > 0,
one can preprocess them, such that given a query point, the algorithm can compute a (1 + ε)-
ANN to the closest (k− 1)-simplex in ∆k(P ), see Definition 5. The algorithm space and pre-
processing time is O(nk−1S(n, d, ε) logk n), and the query time is O(nk−1TQ(n, d, ε) logk n).
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Abstract
This paper presents the first polynomial time algorithm to compute geodesics in a CAT(0) cubical
complex in general dimension. The algorithm is a simple iterative method to update breakpoints
of a path joining two points using Miller, Owen and Provan’s algorithm (Adv. in Appl. Math,
2015) as a subroutine. Our algorithm is applicable to any CAT(0) space in which geodesics
between two close points can be computed, not limited to CAT(0) cubical complexes.
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1 Introduction

Computing a shortest path in a polyhedral domain in Euclidean space is a fundamental and
important algorithmic problem, which is intensively studied in computational geometry [16].
This problem is relatively easy to solve in the two-dimensional case; it can generally be
reduced to a discrete graph searching problem where some combinatorial approaches can be
applied. In three or more dimensions, however, the problem becomes much harder; it is not
even discrete. In fact, it was proved by Canny and Reif [8] that the shortest path problem
in a polyhedral domain is NP-hard. Mitchell and Sharir [17] have shown that the problem
of finding a shortest obstacle-avoiding path is NP-hard even for the case of a region with
obstacles that are disjoint axis-aligned boxes. On the other hand, there are some cases where
one can obtain polynomial time complexity. For instance, it was shown by Sharir [24] that
a shortest obstacle-avoiding path among k disjoint convex polyhedra having altogether n
vertices, can be found in nO(k) time, which implies that this problem is polynomially solvable
if k is a small constant.

What determines the tractability of the shortest path problem in geometric domains?
One of promising answers to this challenging question is global non-positive curvature, or
CAT(0) property [14]. CAT(0) spaces are metric spaces in which geodesic triangles are
“not thicker” than those in the Euclidean plane, and enjoy various fascinating properties
generalizing those in Euclidean and hyperbolic spaces. As Ghrist and LaValle [13] observed,
no NP-hard example in [17] is a CAT(0) space. One of the significant properties of CAT(0)
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spaces is the uniqueness of geodesics: Every pair of points can be joined by a unique geodesic.
Computational and algorithmic theory on CAT(0) spaces is itself a challenging research
field [5].

One of fundamental and familiar CAT(0) spaces is a CAT(0) cubical complex. A cubical
complex is a polyhedral complex where each cell is isometric to a unit cube of some dimension
and the intersection of any two cells is empty or a single face. Gromov [14] gave a purely
combinatorial characterization of cubical complexes of non-positive curvature as cubical
complexes in which the link of each vertex is a flag simplicial complex. Chepoi [9] and
Roller [22] established that the 1-skeletons of CAT(0) cubical complexes are exactly median
graphs, i.e., graphs in which any three vertices admit a unique median vertex. It is also
shown by Barthélemy and Constantin [4] that median graphs are exactly the domains of
event structures [18]. These nice combinatorial characterizations are one of the main reasons
why CAT(0) cubical complexes frequently appear in mathematics, for instance, in geometric
group theory [22, 23], metric graph theory [3], concurrency theory in computer science [18],
theory of reconfigurable systems [1, 12], and phylogenetics [6].

There has been several polynomial time algorithms to find shortest paths in some CAT(0)
cubical complexes. A noteworthy example is for a tree space, introduced by Billera, Holmes
and Vogtmann [6] as a continuous space of phylogenetic trees. This space is shown to be
CAT(0), and consequently provides a powerful tool for comparing two phylogenetic trees
through the unique geodesic. Owen and Provan [19, 20] gave a polynomial time algorithm for
finding geodesics in tree spaces, which was generalized by Miller et al. [15] to CAT(0) orthant
spaces, i.e., complexes of Euclidean orthants that are CAT(0). Chepoi and Maftuleac [10] gave
an efficient polynomial time algorithm to compute geodesics in a two dimensional CAT(0)
cubical complex. These meaningful polynomiality results naturally lead to a question: What
about arbitrary CAT(0) cubical complexes?

Ardila, Owen and Sullivant [2] gave a combinatorial description of CAT(0) cubical
complexes, employing a poset endowed with an additional relation, called a poset with
inconsistent pairs (PIP). This can be viewed as a generalization of Birkhoff’s theorem that
gives a compact representation of distributive lattices by posets. In fact, they showed that
there is a bijection between CAT(0) cubical complexes and PIPs. (Through the above-
mentioned equivalence, this can be viewed as a rediscovery of the result of Barthélemy and
Constantin [4], who found a bijection between PIPs and pointed median graphs.) This
relationship enables us to express an input CAT(0) cubical complex as a PIP: For a poset
with inconsistent pairs P , the corresponding CAT(0) cubical complex KP is realized as a
subcomplex of the |P |-dimensional cube [0, 1]P in which the cells of KP are specified by
structures of P . Adopting this embedding as an input, they gave the first algorithm to
compute geodesics in an arbitrary CAT(0) cubical complex. Their algorithm is based on an
iterative method to update a sequence of cubes that may contain the geodesic, where at each
iteration it solves a touring problem using second order cone programming [21]. They also
showed that the touring problem for general CAT(0) cubical complexes has intrinsic algebraic
complexity, and geodesics can have breakpoints whose coordinates have nonsolvable Galois
group. This implies that there is no exact simple formula for the geodesic and therefore in
general, one can only obtain an approximate one. Unfortunately, even if the touring problem
could be solved exactly, it is not known whether or not their algorithm is a polynomial one;
that is, no polynomial time algorithm has been known for the shortest path problem in a
CAT(0) cubical complex in general dimension.
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Main result. In this paper, we present the first polynomial time algorithm to compute
geodesics in a CAT(0) cubical complex in general dimension, answering the open question
suggested by these previous work; namely we show that:

Given a CAT(0) cubical complex K represented by a poset with inconsistent pairs
P and two points p, q in K, one can find a path joining p and q of length at most
d(p, q) + ε in time polynomial in |P | and log(1/ε).

The algorithm is quite simple, without depending on any involved techniques such as
semidefinite programming. To put it briefly, our algorithm first gives a polygonal path
joining p and q with a fixed number (n, say) of breakpoints, and then iteratively updates
the breakpoints of the path until it becomes a desired one. To update them, we compute
the midpoints of the two close breakpoints by using Miller, Owen and Provan’s algorithm.
The resulting number of iterations is bounded by a polynomial in n. Key tools that lead to
this bound are linear algebraic techniques and the convexity of the metric of CAT(0) spaces,
rather than inherent properties of cubical complexes. Due to its simplicity, our algorithm is
applicable to any CAT(0) space where geodesics between two close points can be found, not
limited to CAT(0) cubical complexes. We believe that our result will be an important step
toward developing computational geometry in CAT(0) spaces.

Application. A reconfigurable system [1, 12] is a collection of states which change according
to local and reversible moves that affect global positions of the system. Examples include
robot motion planning, non-collision particles moving around a graph, and protein folding;
see [12]. Abrams, Ghrist and Peterson [1, 12] considered a continuous space of all possible
positions of a reconfigurable system, called a state complex. Any state complex is a cubical
complex of non-positively curved [12], and it becomes CAT(0) in many situations. In the
robotics literature, geodesics (in the l2-metric) in the CAT(0) state complex corresponds to
the motion planning to get the robot from one position to another one with minimal power
consumption. Our algorithm enables us to find such an optimal movement of the robot in
polynomial time.

2 Computing geodesics in CAT(0) spaces

In this section we devise an algorithm to compute geodesics in general CAT(0) spaces, not
limited to CAT(0) cubical complexes.

2.1 CAT(0) space
Let (X, d) be a metric space. A geodesic joining two points x, y ∈ X is a map γ : [0, 1]→ X

such that γ(0) = x, γ(1) = y and d(γ(s), γ(t)) = d(x, y)|s− t| for all s, t ∈ [0, 1]. The image
of γ is called a geodesic segment joining x and y. A metric space X is called (uniquely)
geodesic if every pair of points x, y ∈ X is joined by a (unique) geodesic.

For any triple of points x1, x2, x3 in a metric space (X, d), there exists a triple of points
x̄1, x̄2, x̄3 in the Euclidean plane E2 such that d(xi, xj) = dE2(x̄i, x̄j) for i, j ∈ {1, 2, 3}.
The Euclidean triangle whose vertices are x̄1, x̄2 and x̄3 is called a comparison triangle for
x1, x2, x3. (Note that such a triangle is unique up to isometry.) A geodesic metric space
(X, d) is called a CAT(0) space if for any x1, x2, x3 ∈ X and any p belonging to a geodesic
segment joining x1 and x2, the inequality d(x3, p) ≤ dE2(x̄3, p̄) holds, where p̄ is the unique
point in E2 satisfying d(x̄i, p̄) = dE2(xi, p) for i = 1, 2. See Figure 1.
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Figure 1 CAT(0) space.

This simple definition yields various significant properties of CAT(0) spaces; see [7] for
details. One of the most basic properties of CAT(0) spaces is the convexity of the metric.
A geodesic metric space (X, d) is said to be Busemann convex if for any two geodesics
α, β : [0, 1]→ X, the function f : [0, 1]→ R given by f(t) := d(α(t), β(t)) is convex.

I Lemma 2.1 ([7, Proposition II.2.2]). Every CAT(0) space is Busemann convex.

A Busemann convex space X is uniquely geodesic. Indeed, for any two geodesics α, β :
[0, 1]→ X with α(0) = β(0) and α(1) = β(1), one can easily see that α and β coincide, since
d(α(t), β(t)) ≤ (1− t)d(α(0), β(0)) + td(α(1), β(1)) = 0 for all t ∈ [0, 1]. This implies that:

I Theorem 2.2 ([7, Proposition II.1.4]). Every CAT(0) space is uniquely geodesic.

2.2 Algorithm
Let X be a CAT(0) space. We shall refer to an element x in the product space Xn+1 as a
chain, and write xi−1 to denote the i-th component of x, i.e., x = (x0, x1, . . . , xn). For any
chain x ∈ Xn+1, we define the length of x by

∑n−1
i=0 d(xi, xi+1) and denote it by `(x). We

consider the following problem:

Given two points p, q ∈ X, a chain x ∈ Xn+1 with x0 = p and xn = q, and a
positive parameter ε > 0, find a chain y ∈ Xn+1 such that y0 = p, yn = q and
`(y) ≤ d(p, q) + ε,

(1)

under the situation where we are given an oracle to perform the following operation for some
D > 0:

Given two points p, q ∈ X with d(p, q) ≤ D, compute the geodesic joining p
and q in arbitrary precision. (2)

To explain our algorithm to solve this problem, we need some definitions. Since X
is uniquely geodesic, every pair of points p, q ∈ X has a unique midpoint w satisfying
2d(w, p) = 2d(q, w) = d(p, q). For a nonnegative real number δ ≥ 0, a δ-midpoint of p and q
is a point w′ ∈ X satisfying d(w′, w) ≤ δ, where w is the midpoint of p and q.

I Definition 2.3 (δ-halved chain). Let δ be a nonnegative real number. For any chain
x ∈ Xn+1, a chain z ∈ Xn+1 is called a δ-halved chain of x if it satisfies the following:

z0 = xn, zn = x0 and zi is a δ-midpoint of zi+1 and xn−i for i = 1, 2, . . . , n− 1.

For an integer k ≥ 0, we say that x(k) is a k-th δ-halved chain of x if there exists a sequence
{x(j)}k

j=0 of chains in Xn+1 such that x(0) = x and x(j) is a δ-halved chain of x(j−1) for
j = 1, 2, . . . , k.
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Figure 2 An illustration of Algorithm 1.

Our algorithm can be described as follows. To put it briefly, the algorithm just finds
a k-th δ-halved chain of a given chain x for some large k and small δ; see Figure 2 for an
illustration. In the algorithm the local optimization is done alternatively “from left to right”
and “from right to left” so that the analysis will be easier.

Algorithm 1
Input. Two points p, q ∈ X, a chain x ∈ Xn+1 with x0 = p and xn = q, and parameters
ε > 0, δ ≥ 0.
〈1〉 Set x(0) := x.
〈2〉 For j = 0, 1, 2, . . . , do the following:

〈2-1〉 Set z0 := x
(j)
n and zn := x

(j)
0 .

〈2-2〉 For i = 1, 2, . . . , n− 1, do the following:

Compute a δ-midpoint w of zn−i+1 and x(j)
i , and set zn−i := w. (3)

〈2-3〉 Set x(j+1) := (z0, z1, . . . , zn).

For any chain x ∈ Xn+1, define the gap of x by max{d(x0, x1),max1≤i≤n−1 2d(xi, xi+1)}
and denote it by gap(x). The following theorem states that Algorithm 1 solves problem (1).

I Theorem 2.4. Let p, q ∈ X be given two points, x ∈ Xn+1 be a given chain with x0 = p

and xn = q, and ε > 0, 0 ≤ δ ≤ ε/(16n3) be parameters.
(i) For j ≥ n2 log(4n · `(x)/ε), one has `(x(j)) ≤ d(p, q) + ε.
(ii) If gap(x) ≤ D/2− ε for some D > 0, then for all j ≥ 0 and for i = 1, 2, . . . , n− 1, one

has d(zn−i+1, x
(j)
i ) ≤ D in (3).

In particular, for gap(x) ≤ D/2− ε, one can find a chain y ∈ Xn+1 such that y0 = p, yn = q

and `(y) ≤ d(p, q) + ε, with O(n3 log(nD/ε)) calls of an oracle to perform (2).

I Example 2.5. We give an example of CAT(0) spaces to which our algorithm is applicable.
A B2-complex is a two dimensional piecewise Euclidean complex in which each 2-cell is
isomorphic to an isosceles right triangle with short side of length one [11]. A CAT(0) B2-
complex is called a folder complex [9]; see Figure 3 for an example. One can show that for a
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Figure 3 A folder complex.

folder complex F , computing the geodesic between two points p, q ∈ F with d(p, q) ≤ 1 can
be reduced to an easy calculation on a subcomplex of F having a few cells. This implies that
our algorithm enables us to find geodesics between two points in a folder complex F in time
bounded by a polynomial in the size of F .

2.3 Analysis
For any chain x ∈ Xn+1, we define the reference chain x̂ ∈ Xn+1 of x as follows: x̂0 := x0
and x̂i := γ((i + 1)/(n + 1)) for i = 1, 2, . . . , n, where γ : [0, 1] → X is the geodesic with
γ(0) = x0 and γ(1) = xn. Reference chains are designed not to be equally spaced but to have
a double gap in the beginning so that the analysis of the algorithm will be easier. Note that
the reference chain x̂ of x is determined just by its end components x0, xn, and therefore for
any chain x and any even δ-halved chain x(2k) of x their reference chains coincide: x̂(2k) = x̂.
A key observation that leads to Theorem 2.4 is that: For any chain x ∈ Xn+1 and any k-th
δ-halved chain x(k) of x with k sufficiently large and δ sufficiently small, the distance between
x(k) and its reference chain x̂(k) is small enough for its length `(x(k)) to approximate well
d(x0, xn); moreover, the value of such a k can be bounded by a polynomial in n. The next
lemma states this fact.

I Lemma 2.6. Let x ∈ Xn+1. Any k-th δ-halved chain x(k) of x satisfies

d(x(k)
i , x̂

(k)
i ) ≤ (5/4)`(x)e−k/n2

+ 3n2δ

for i = 1, 2, . . . , n− 1, where e is the base of the natural logarithm.

Proof. Let {x(j)}j≥0 be a sequence of chains in Xn+1 such that x(0) = x and x(j) is a
δ-halved chain of x(j−1) for j ≥ 1. Fix an integer 1 ≤ i ≤ n− 1 and an integer k ≥ 0. Note
that by definition x(k+1)

i is a δ-midpoint of x(k+1)
i+1 and x(k)

n−i and that x̂(k+1)
i is the midpoint

of x̂(k+1)
i+1 and x̂(k)

n−i. Hence, by Lemma 2.1 and the triangle inequality, we have

2d(x(k+1)
i , x̂

(k+1)
i ) ≤ 2d(w, x̂(k+1)

i ) + 2δ ≤ d(x(k+1)
i+1 , x̂

(k+1)
i+1 ) + d(x(k)

n−i, x̂
(k)
n−i) + 2δ, (4)

where w is the midpoint of x(k+1)
i+1 and x(k)

n−i.
Let v(k) be a column vector of dimension n− 1 whose i-th entry equals d(x(k)

i , x̂
(k)
i ) for

i = 1, 2, . . . , n − 1. Let J be a square matrix of order n − 1 whose (i, j) entry equals 1 if
i+ j = n and 0 otherwise. Let K be a square matrix of order n− 1 whose (i, j) entry equals
1 if j = i+ 1 and 0 otherwise. Then, by (4) we have 2v(k+1) ≤ Kv(k+1) + Jv(k) + 2δ1 for
each k ≥ 0, where 1 is a column vector with all entries equal to 1. Let An−1 be a square
matrix of order n − 1 whose (i, j) entry equals (1/2)n+1−i−j if i + j ≤ n and 0 otherwise.
Then one can easily see that (2I −K)−1J = An−1. Hence we have

v(k+1) ≤ An−1v
(k) +An−1J

−1(2δ1) ≤ An−1v
(k) + 2δ1 (5)
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for each k ≥ 0. We show that

v(k) ≤ ((5/4)`(x)e−k/n2
+ 3n2δ)1 (6)

for any integer k ≥ 0. The inequality (5) inductively yields that v(k) ≤ (An−1)kv(0) +
2δ(I +An−1 + · · ·+ (An−1)k−1)1 ≤ `(x)(An−1)k1 + 2δ(I −An−1)−11. Here, the inequality
v(0) ≤ `(x)1 comes from the triangle inequality. Indeed, we have

d(xi, x̂i) ≤ min{d(x0, x̂i) +
∑i−1

j=0 d(xj , xj+1), d(x̂i, xn) +
∑n−1

j=i d(xj , xj+1)}

≤ (d(x0, xn) + `(x))/2 ≤ `(x)

for i = 1, 2, . . . , n− 1. In Lemma 2.7 below, we prove (I −An−1)−11 ≤ (5(n− 1)2/4)1 (for
n−1 ≥ 2). This yields that (I−An−1)−11 ≤ (3/2)n21 for n ≥ 2. Also, we prove (An−1)k1 ≤
(5/4)e−k/(n−1)21 (for n− 1 ≥ 2) in Lemma 2.7. This implies that (An−1)k1 ≤ (5/4)e−k/n21
for n ≥ 2. This proves (6) and therefore completes the proof of the lemma. J

Let us now prove Theorem 2.4.

Proof of Theorem 2.4. We may assume that n ≥ 2. We first show (i). If δ ≤ ε/(16n3)
and j ≥ n2 log(4n · `(x)/ε), then by Lemma 2.6, any j-th δ-halved chain x(j) of x satisfies
d(x(j)

i , x̂
(j)
i ) ≤ 5ε/(16n) + 3ε/(16n) = ε/(2n) for i = 1, 2, . . . , n− 1. Hence one has

d(x(j)
i , x

(j)
i+1) ≤ d(x(j)

i , x̂
(j)
i ) + d(x̂(j)

i , x̂
(j)
i+1) + d(x̂(j)

i+1, x
(j)
i+1)

≤ d(x̂(j)
i , x̂

(j)
i+1) + ε/n

(7)

for i = 0, 1, . . . , n− 1. This implies that `(x(j)) =
∑n−1

i=0 d(x(j)
i , x

(j)
i+1) ≤

∑n−1
i=0 (d(x̂(j)

i , x̂
(j)
i+1) +

ε/n) = d(x0, xn) + ε = d(p, q) + ε, and therefore completes the proof of (i).
To prove (ii), we first show

d(zn−i+1, x
(j)
i ) ≤ gap(x(j)) + 2δ (i = 1, 2, . . . , n; j ≥ 0), (8)

by induction on i. The case i = 1 being trivial, suppose that i ≥ 2. Since zn−i+1 is a δ-
midpoint of zn−i+2 and x(j)

i−1, the triangle inequality and the induction yield d(zn−i+1, x
(j)
i ) ≤

δ + d(zn−i+2, x
(j)
i−1)/2 + d(x(j)

i−1, x
(j)
i ) ≤ δ + (gap(x(j))/2 + δ) + gap(x(j))/2 = gap(x(j)) + 2δ,

which completes the induction.
It follows from (8) that gap(x(j+1)) ≤ gap(x(j)) + 4δ for j ≥ 0. Indeed, the case i = n in

(8) implies that d(z1, z0) = d(z1, x
(j)
n ) ≤ gap(x(j)) + 2δ; on the other hand, by the triangle

inequality and (8), one has d(zn−i+1, zn−i) ≤ d(zn−i+1, x
(j)
i )/2 + δ ≤ gap(x(j))/2 + 2δ for

i = 1, 2, . . . , n− 1. Thus, one has gap(x(j+1)) ≤ max{gap(x(j)) + 2δ, 2(gap(x(j))/2 + 2δ)} =
gap(x(j)) + 4δ.

The inequality (8) implies that in order to prove (ii) it suffices to show that gap(x(j))+2δ ≤
D for all j ≥ 0. Suppose that δ ≤ ε/(16n3). We consider two cases.
Case 1: j ≤ n2 log(4n·`(x)/ε). Note that `(x) ≤ n·gap(x) and that gap(x(j)) ≤ gap(x)+4jδ.

However roughly one estimates an upper bound of 4jδ, one can get

4jδ ≤ 4 · ε

16n3 · n
2 log 4n2 · gap(x)

ε
= ε

4n

(
log gap(x)

ε
+ 2 log 2n

)
≤ gap(x)

4ne + ε

e
,

where the last inequality comes from the fact that log t ≤ t/e for any t > 0. It is
easy to see that gap(x(j)) + 2δ ≤ gap(x) + gap(x)/(4ne) + ε/e+ ε/(8n3) ≤ D, provided
gap(x) ≤ D/2− ε.
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Case 2: j ≥ n2 log(4n · `(x)/ε). Recall (7). Since d(x0, xn)/(n+ 1) ≤ gap(x)/2, we have

gap(x(j)) ≤ max{gap(x) + ε/n, 2(gap(x)/2 + ε/n)} = gap(x) + 2ε/n.

It is easy to see that gap(x(j)) + 2δ ≤ gap(x) + 2ε/n+ ε/(8n3) ≤ D, provided gap(x) ≤
D/2− ε.

From (i) and (ii), we can show the last part of the theorem. Indeed, for k := dn2 log(4n ·
`(x)/ε)e, one can find a k-th δ-halved chain x(k) of x with O(nk) = O(n3 log(nD/ε)) oracle
calls, from (ii); its length `(x(k)) is at most d(p, q) + ε, from (i). J

We end this section by showing the lemma used in the proof of Lemma 2.6. Let An be
an n× n matrix whose (i, j) entry is defined by

(An)ij :=
{

(1/2)n+2−i−j (i+ j ≤ n+ 1),
0 (otherwise)

(9)

for i, j = 1, 2, . . . , n. Since An is a nonnegative matrix, its spectral radius ρ(An) is at most
the maximum row sum of An, which immediately yields that ρ(An) ≤ 1 − (1/2)n. This
inequality, however, is not tight unless n = 1. In fact, one can obtain a more useful upper
bound of ρ(An).

I Lemma 2.7. Let n > 1 be an integer, and let An be an n× n matrix defined by (9). Then
its spectral radius ρ(An) is at most 1− 1/n2. In addition, one has (I −An)−11 ≤ (5n2/4)1
and (An)k1 ≤ (5/4)e−k/n21 for any integer k ≥ 0.

Proof. Let A := An for simplicity. Let u be a positive column vector of dimension n whose
k-th entry is defined by uk := k(n − k) + n2 for k = 1, 2, . . . , n. By the Collatz–Wielandt
inequality, in order to show ρ(A) ≤ 1− 1/n2 it suffices to show that Au ≤ (1− 1/n2)u. The
k-th entry of the vector Au is

(Au)k =
n+1−k∑

j=1

uj

2n+2−k−j
= 1

2n+2−k

n+1−k∑
j=1

2j(−j2 + nj + n2).

Hence, using the general formulas
m∑

j=1
j · 2j = 2 + 2m+1(m− 1) and

m∑
j=1

j2 · 2j = −6 + 2m+1((m− 1)2 + 2),

we have

(Au)k = uk − 2− n2 − n− 3
2n+1−k

.

It is easy to see that for n ≥ 2 and 1 ≤ k ≤ n one has

uk

n2 = 1 + k(n− k)
n2 ≤ 5

4 ≤
(

2− 1
2n+1−k

)
+ (n− 2)(n+ 1)

2n+1−k
,

which implies that

uk

n2 ≤ 2 + n2 − n− 3
2n+1−k

(k = 1, 2, . . . , n).

This completes the proof of the inequality Au ≤ (1− 1/n2)u.
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Let us show the latter part of the lemma. Note that 1 ≤ (1/n2)u ≤ (5/4)1. Since
(1/n2)u ≤ (I−A)u and (I−A)−1 is a nonnegative matrix (as ρ(A) < 1), we have (I−A)−11 ≤
(1/n2)(I −A)−1u ≤ u ≤ (5n2/4)1.

Since Au ≤ (1− 1/n2)u ≤ e−1/n2
u, we have Aku ≤ e−k/n2

u for any integer k ≥ 0. Hence,
Ak1 ≤ (1/n2)Aku ≤ (1/n2)e−k/n2

u ≤ (5/4)e−k/n21. J

I Remark. In proving Theorem 2.4, we utilized only the convexity of the metric of X. Hence
our algorithm works even when X is a Busemann convex space.

3 Computing geodesics in CAT(0) cubical complexes

In this section we give an algorithm to compute geodesics in CAT(0) cubical complexes,
with an aid of the result of the preceding section. In Section 3.1 to 3.4, we recall CAT(0)
cubical complexes, median graphs, PIPs and CAT(0) orthant spaces. Section 3.5 is devoted
to proving our main theorem.

3.1 CAT(0) cubical complex
A cubical complex K is a polyhedral complex where each k-dimensional cell is isometric to
the unit cube [0, 1]k and the intersection of any two cells is empty or a single face. The
underlying graph of K is the graph G(K) = (V (K), E(K)), where V (K) denotes the set of
vertices (0-dimensional faces) of K and E(K) denotes the set of edges (1-dimensional faces) of
K. A cubical complex K has an intrinsic metric induced by the l2-metric on each cell. For two
points p, q ∈ K, a string in K from p to q is a sequence of points p = x0, x1, . . . , xm−1, xm = q

in K such that for each i = 0, 1, . . . ,m− 1 there exists a cell Ci containing xi and xi+1, and
its length is defined to be

∑m−1
i=0 d(xi, xi+1), where d(xi, xi+1) is measured inside Ci by the

l2-metric. The distance between two points p, q ∈ K is defined to be the infimum of the
lengths of strings from p to q.

Gromov [14] gave a combinatorial criterion which allows us to easily decide whether
or not a cubical complex K is non-positively curved. The link of a vertex v of K is the
abstract simplicial complex whose vertices are the edges of K containing v and where k edges
e1, . . . , ek span a simplex if and only if they are contained in a common k-dimensional cell
of K. An abstract simplicial complex L is called flag if any set of vertices is a simplex of L
whenever each pair of its vertices spans a simplex.

I Theorem 3.1 (Gromov [14]). A cubical complex K is CAT(0) if and only if K is simply
connected and the link of each vertex is flag.

3.2 Median graph
Let G = (V,E) be a simple undirected graph. The distance dG(u, v) between two vertices u
and v is the length of a shortest path between u and v. The interval IG(u, v) between u and
v is the set of vertices w ∈ V with dG(u, v) = dG(u,w) + dG(w, v). A vertex subset U ⊆ V is
said to be convex if IG(u, v) is contained in U for all u, v ∈ U . A graph G is called a median
graph if for all u, v, w ∈ V the set IG(u, v)∩ IG(v, w)∩ IG(w, u) contains exactly one element,
called the median of u, v, w. Median graphs are connected and bipartite. A median complex
is a cubical complex derived from a median graph G by replacing all cube-subgraphs of G
by solid cubes. It has been shown independently by Chepoi [9] and Roller [22] that median
complexes and CAT(0) cubical complexes constitute the same objects:
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Figure 4 A poset with inconsistent pairs and the corresponding rooted CAT(0) cubical complex.
Dotted line represents minimal inconsistent pairs, where an inconsistent pair {a, b} is said to be
minimal if there is no other inconsistent pair {a′, b′} with a′ � a and b′ � b.

I Theorem 3.2 (Chepoi [9], Roller [22]). The underlying graph of every CAT(0) cubical
complex is a median graph, and conversely, every median complex is a CAT(0) cubical
complex.

3.3 Poset with inconsistent pairs (PIP)
Barthélemy and Constantin [4] established a Birkhoff-type representation theorem for median
graphs, by employing a poset with an additional relation. This structure was rediscovered
by Ardila et al. [2] in the context of CAT(0) cubical complexes. An antichain of a poset P
is a subset of P that contains no two comparable elements. A subset I of P is called an
order ideal of P if a ∈ I and b � a imply b ∈ I. A poset P is locally finite if every interval
[a, b] = {c ∈ P | a � c � b} is finite, and it has finite width if every antichain is finite.

I Definition 3.3. A poset with inconsistent pairs (or, briefly, a PIP) is a locally finite poset
P of finite width, endowed with a symmetric binary relation ` satisfying:
1) If a ` b, then a and b are incomparable.
2) If a ` b, a � a′ and b � b′, then a′ ` b′.
A pair {a, b} with a ` b is called an inconsistent pair. An order ideal of P is called consistent
if it contains no inconsistent pairs.

For a CAT(0) cubical complex K and a vertex v of K, the pair (K, v) is called a rooted
CAT(0) cubical complex. Given a poset with inconsistent pairs P , one can construct a cubical
complex KP as follows: The underlying graph G(KP ) is a graph GP whose vertices are
consistent order ideals of P and where two consistent order ideals I, J are adjacent if and
only if |I∆J | = 1; replace all cube-subgraphs (i.e., subgraphs isomorphic to cubes of some
dimensions) of GP by solid cubes. See Figure 4 for an example. In fact, the resulting cubical
complex KP is CAT(0), and moreover:

I Theorem 3.4 (Ardila et al. [2]). The map P 7→ KP is a bijection between posets with
inconsistent pairs and rooted CAT(0) cubical complexes.

This bijection can also be derived from Theorem 3.2 and the result of Barthélemy and
Constantin [4], who found a bijection between PIPs and pointed median graphs.

Given a poset with inconsistent pairs P , one can embed KP into a unit cube in the
Euclidean space as follows, which we call the standard embedding of P [2]:

KP = {(xi)i∈P ∈ [0, 1]P | i ≺ j and xi < 1⇒ xj = 0, and i ` j ⇒ xixj = 0}.
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For each pair (I,M) of a consistent order ideal I of P and a subset M ⊆ Imax, where Imax
is the set of maximal elements of I, the subspace

CI
M := {x ∈ KP | i ∈ I\M ⇒ xi = 1, and i /∈ I ⇒ xi = 0} = {1}I\M × [0, 1]M × {0}P\I

corresponds to a unique |M |-dimensional cell of KP .

3.4 CAT(0) orthant space

Let R+ denote the set of nonnegative real numbers. Let L be an abstract simplicial
complex on a finite set V . The orthant space O(L) for L is a subspace of |V |-dimensional
orthant RV

+ constructed by taking a union of all subcones {OS |S ∈ L} associated with
simplices of L, where OS is defined by OS := RS

+ × {0}V \S for each simplex S ∈ L; namely,
O(L) =

⋃
S∈L{x ∈ RV

+ |xv = 0 for each v /∈ S}. The distance between two points x, y ∈ O(L)
is defined in a similar way as in the case of cubical complexes. An orthant space is a special
instance of cubical complexes.

I Theorem 3.5 (Gromov [14]). The orthant space O(L) for an abstract simplicial complex
L is a CAT(0) space if and only if L is a flag complex.

A typical example of CAT(0) orthant spaces is a tree space [6]. Owen and Provan [19, 20]
gave a polynomial time algorithm to compute geodesics in tree spaces, which was generalized
to CAT(0) orthant spaces by Miller et al. [15].

I Theorem 3.6 ([15, 19, 20]). Let L be a flag abstract simplicial complex on a finite set V
and O(L) be the CAT(0) orthant space for L. Let x, y ∈ O(L), and let S1 and S2 be the
inclusion-wise minimal simplices such that x ∈ OS1 and y ∈ OS2 . Then one can find the
explicit description of the geodesic joining x and y in O((|S1|+ |S2|)4) time.

An interesting thing about their algorithm is that it solves as a subproblem a combinatorial
optimization problem: the Maximum Weight Stable Set problem on a bipartite graph whose
color classes have at most |S1|, |S2| vertices, respectively. We should note that the above
explicit descriptions of geodesics are radical expressions. Computationally, for a point p on a
geodesic, one can compute a rational point p′ ∈ O(L) such that d(p′, p) ≤ δ and the number
of bits required for each coordinate of p′ is bounded by O(log(|V |/δ)). For a real number
r > 0, the subspace O(L) ∩ [0, r]V of O(L), denoted by O(L)|[0,r], is called a truncated
CAT(0) orthant space. Actually, from the explicit descriptions of geodesics in O(L), one can
see that O(L)|[0,r] is convex in O(L), and thus:

I Theorem 3.7 ([15]). Given two points x, y in a truncated CAT(0) orthant space O(L)|[0,r],
one can find the explicit description of the geodesic joining x and y in O(|V |4) time.

3.5 Main theorem

Our main result is the following theorem. It should be remarked that as stated in [2] there
are no simple formulas for the breakpoints in geodesics in CAT(0) cubical complexes due to
their algebraic complexity, and hence one can only compute them approximately. Also note
that for the shortest path problem in a general CAT(0) cubical complex there has been no
algorithm that runs in time polynomial in the size of the complex, much less the size of the
compact representation PIP.
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I Problem 3.8. Given a poset with inconsistent pairs P , two points p, q in the standard
embedding KP of P , and a positive parameter ε > 0, find a sequence of points p =
x0, x1, . . . , xn−1, xn = q in KP with

∑n−1
i=0 d(xi, xi+1) ≤ d(p, q) + ε and compute the geodesic

joining xi and xi+1 for i = 0, 1, . . . , n− 1.

I Theorem 3.9. Problem 3.8 can be solved in O(|P |7 log(|P |/ε)) time. Moreover, the number
of bits required for each coordinate of points in KP occurring throughout the algorithm can be
bounded by O(log(|P |/ε)).

Let us show this theorem. Let m denote the number of elements of P and let D < 1 be a
positive constant close to 1 (e.g., set D := 0.9). Theorem 2.4 implies that in order to prove
Theorem 3.9 it suffices to show that:
(a) Given two points p, q ∈ KP , one can find a sequence of points p = x0, x1, . . . , xn−1, xn = q

in KP such that n = O(m) and d(xi, xi+1) ≤ D/4− ε for i = 0, 1, . . . , n− 1.
(b) Given two points p, q ∈ KP with d(p, q) ≤ D, one can compute the geodesic joining p

and q in O(m4) time and find a δ-midpoint w of p and q with O(log(m/δ)) bits enough
for each coordinate of w.

It is relatively easy to show (a), by considering a curve c(p, q) issuing at p, going through an
edge geodesic (a shortest path in the underlying graph of KP ) between some vertices of cells
containing p, q, and ending at q. (Note that one can easily find an edge geodesic between
vertices u and v of KP . Reroot the complex KP at u. In other words, construct a poset P ′
for which KP ′ ∼= KP and u is the root of KP ′ ; this construction is implicitly stated in [2].
Then the edge geodesic in KP ′ from the root u = ∅ to v = I, where I is a consistent order
ideal of P ′, can be found by considering a linear extension of the elements of I.) Since such
a curve c(p, q) has length at most O(m), dividing it into parts appropriately, one can get a
desired sequence of points. To show (b), we need the following two lemmas, whose detailed
proofs can be found in the full version of this work.

I Lemma 3.10. Let K be a CAT(0) cubical complex and v be a vertex of K. Then the star
St(v,K) of v in K, i.e., the subcomplex spanned by all cells containing v, is convex in K.

Sketch of Proof. The lemma follows from the well-known fact that the vertex set of a star
in K is convex in the underlying graph G(K) and the result of [10] that the subcomplex K(S)
of K induced by a convex vertex subset S of G(K) is convex in K in the `2-metric. J

I Lemma 3.11. Let K be a CAT(0) cubical complex. Let p, q be two points in K with d(p, q) <
1 and R1, R2 be the minimal cells of K containing p, q, respectively. Then R1 ∩R2 6= ∅.

Sketch of Proof. One can show that there exists a vertex ui of Ri for i = 1, 2, such that
d(u1, u2) = d(R1, R2) := infx∈R1,y∈R2 d(x, y). Since d(R1, R2) ≤ d(p, q) < 1, one has
d(u1, u2) < 1. Hence u1 and u2 should be the same vertex, and thus R1 ∩R2 6= ∅. J

Using these lemmas, we show (b). Suppose that we are given two points p, q ∈ KP with
d(p, q) ≤ D. First notice that one can find in linear time the minimal cells R1 and R2 of
KP that contain p and q, respectively, just by checking their coordinates. (Indeed, one has
R1 = CI

M for I = {i ∈ P | pi > 0} and M = {i ∈ P | 0 < pi < 1}.) Since d(p, q) ≤ D < 1,
from Lemma 3.11 we know that R1 ∩R2 6= ∅. Let v be a vertex of R1 ∩R2. Then p and q
are contained in the star St(v,KP ) of v. Since St(v,KP ) is convex in KP by Lemma 3.10, we
only have to compute the geodesic in St(v,KP ). Obviously, St(v,KP ) is a truncated CAT(0)
orthant space, and hence one can compute the geodesic between p and q in St(v,KP ) in
O(m4) time, by Theorem 3.7. In addition, one can find a δ-midpoint w ∈ St(v,KP ) of p and
q such that the number of bits required for each coordinate of w is bounded by O(log(m/δ)).
This implies (b) and therefore completes the proof of Theorem 3.9.
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1 Introduction

With a wide range of applications, Online Bipartite Matching and its variants are a focal point
in the online algorithms literature. Consider a bipartite graph G(L∪R,E) on vertices L∪R,
where the set L of offline vertices is known in advance and vertices in R arrive online. On the
arrival of an online vertex, its incident edges are revealed and the algorithm must irrevocably
either match it to one of its unmatched neighbors or leave it unmatched. In a seminal paper,
Karp et al. [19] proposed the Ranking algorithm, which picks at the beginning a random
permutation over the offline vertices L, and matches each online vertex to the first unmatched
neighbor according to the permutation. They proved a tight competitive ratio 1 − 1

e of
Ranking, when online vertices arrive in an arbitrary order. The analysis has been simplified
in a series of subsequent works [14, 5, 12]. Further, the Ranking algorithm has been extended
to other variants of the Online Bipartite Matching problem, including the vertex-weighted
case [2], the random arrival model [18, 21], and the Adwords problem [23, 7, 11].

As a natural generalization, Online Vertex-Weighted Bipartite Matching was considered
by Aggarwal et al. [2]. In this problem, each offline vertex v ∈ L has a non-negative weight
wv, and the objective is to maximize the total weight of the matched offline vertices. A
weighted version of the Ranking algorithm was proposed in [2] and shown to be (1 − 1

e )-
competitive, matching the problem hardness in the unweighted version. They fix a non-
increasing perturbation function ψ : [0, 1] → [0, 1], and draw a rank yv ∈ [0, 1] uniformly
and independently for each offline vertex v ∈ L. The offline vertices are then sorted in
decreasing order of the perturbed weight wv · ψ(yv). Each online vertex matches the first
unmatched neighbor on the list upon its arrival. It is shown that by choosing the perturbation
function ψ(y) := 1 − ey−1, the weighted Ranking algorithm achieves a tight competitive
ratio 1 − 1

e . In a subsequent work, Devanur et al. [12] simplified the analysis under the
randomized primal-dual framework and gave an alternative interpretation of the algorithm:
each offline vertex v makes an offer of value wv · (1 − g(yv)) as long as it is not matched,
where g(y) := ey−1, and each online vertex matches the neighbor that offers the highest.

Motivated by the practical importance of Online Bipartite Matching and its applications
for online advertisements, another line of research seeks for a better theoretical bound beyond
the worst-case hardness result provided by Karp et al. [19]. Online Bipartite Matching with
random arrivals was considered independently by Karande et al. [18] and Mahdian et al. [21].
They both studied the performance of Ranking assuming that online vertices arrive in a
uniform random order and proved competitive ratios 0.653 and 0.696 respectively. On
the negative side, Karande et al. [18] explicitly constructed an instance for which Ranking
performs no better than 0.727, which is later improved to 0.724 by Chan et al. [9]. In terms of
problem hardness, Manshadi et al. [22] showed that no algorithm can achieve a competitive
ratio larger than 0.823.

The natural next step is then to consider Online Vertex-Weighted Bipartite Matching with
random arrivals. Do random arrivals help beating 1− 1

e even in the vertex-weighted case?

Arbitrary Arrivals Random Arrivals
Unweighted 1 − 1

e
≈ 0.632 [19, 5, 12, 14] 0.696 [21]

Vertex-weighted 1 − 1
e

≈ 0.632 [2, 12] 0.6534 (this paper)
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1.1 Our Results and Techniques
We answer this affirmatively by showing that a generalized version of the Ranking algorithm
achieves a competitive ratio 0.6534.

I Theorem 1. There exists a 0.6534-competitive algorithm for the vertex-weighted Online
Bipartite Matching with random arrivals.

Interestingly, we do not obtain our result by generalizing existing works that break the
1− 1

e barrier on the unweighted case [18, 21] to the vertex-weighted case. Instead, we take
a totally different path, and build our analysis on the randomized primal-dual technique
introduced by Devanur et al. [12], which was used to provide a more unified analysis of the
algorithms for the Online Bipartite Matching with arbitrary arrival order and its extensions.

We first briefly review the proof of Devanur et al. [12]. The randomized primal-dual
technique can be viewed as a charging argument for sharing the gain of each matched edge
between its two endpoints. Recall that in the algorithm of [2, 12], each unmatched offline
vertex offers a value of wv · (1 − g(yv)) to online vertices, and each online vertex matches
the neighbor that offers the highest at its arrival. Whenever an edge (u, v) is added to the
matching, where v ∈ L is an offline vertex and u ∈ R is an online vertex, imagine a total gain
of wv being shared between u and v such that u gets wv · (1− g(yv)) and v gets wv · g(yv).
Since g is non-decreasing, the smaller the rank of v, the smaller share it gets. They showed
that by fixing g(y) = ey−1, for any edge (u, v) and any fixed ranks of offline vertices other
than v, the expected gains of u and v (from all of their incident edges) combined is at least
(1− 1

e ) · wv over the randomness of yv, which implies the 1− 1
e competitive ratio.

Now we consider the problem with random arrivals.
Analogous to the offline vertices, as the online vertices arrive in random order, in the gain

sharing process, it is natural to give an online vertex u a smaller share if u arrives early (as
it is more likely be get matched), and a larger share when u arrives late. Thus we consider
the following version of the weighted Ranking algorithm.

Let yu be the arrival time of online vertex u ∈ R, which is chosen uniformly at random
from [0, 1]. Analogous to the ranks of the offline vertices, we also call yu the rank of u ∈ R. Fix
a function g : [0, 1]2 → [0, 1] that is non-decreasing in the first dimension and non-increasing
in the second dimension. On the arrival of u ∈ R, each unmatched neighbor v ∈ L of u
makes an offer of value wv · (1 − g(yv, yu)), and u matches the neighbor with the highest
offer. This algorithm straightforwardly leads to a gain sharing rule for dual assignments:
whenever u ∈ R matches v ∈ L, let the gain of u be wv · (1− g(yv, yu)) and the gain of v be
wv · g(yv, yu). It suffices to show that, for an appropriate function g, the expected gain of u
and v combined is at least 0.6534 · wv over the randomness of both yu and yv.

The main difficulty of the analysis is to give a good characterization of the behavior of
the algorithm when we vary the ranks of both u ∈ R and v ∈ L, while fixing the ranks of
all other vertices arbitrarily. The previous analysis for the unweighted case with random
arrivals [18, 21] heavily relies on a symmetry between the random ranks of offline vertices
and online vertices: Properties developed for the offline vertices in previous work directly
translate to their online counterparts. Unfortunately, the online and offline sides are no longer
symmetric in the vertex-weighted case. In particular, for the offline vertex v, an important
property is that for any given rank yu of the online vertex u, we can define a unique marginal
rank θ such that v will be matched if and only if its rank yv < θ. However, it is not possible
to define such a marginal rank for the online vertex u in the vertex-weighted case: As its
arrival time changes, its matching status may change back and forth. The most important
technical ingredient of our analysis is an appropriate lower bound on the expected gain
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which allows us to partially characterize the worst-case scenario (in the sense of minimizing
the lower bound on the expected gain). Further, the worst-case scenario does admit simple
marginal ranks even for the online vertex u. This allows us to design a symmetric gain
sharing function g and complete the competitive analysis of 0.6534.

1.2 Other Related Works

There is a vast literature on problems related to Online Bipartite Matching. For space reasons,
we only list some of the most related here.

Kesselheim et al. [20] considered the edge-weighted Online Bipartite Matching with random
arrivals, and proposed a 1

e -competitive algorithm. The competitive ratio is tight as it matches
the lower bound on the classical secretary problem [8]. Wang and Wong [24] considered a
different model of Online Bipartite Matching with both sides of vertices arriving online (in an
arbitrary order): A vertex can only actively match other vertices at its arrival; if it fails to
match at its arrival, it may still get matched passively by other vertices later. They showed
a 0.526-competitive algorithm for a fractional version of the problem.

Recently, Cohen and Wajc [10] considered the Online Bipartite Matching (with arbitrary
arrival order) on regular graphs, and provided a (1−O(

√
log d/d))-competitive algorithm,

where d is the degree of vertices. Very recently, Huang et al. [16] proposed a fully online
matching model, in which all vertices of the graph arrive online (in an arbitrary order).
Extending the randomized primal-dual technique, they obtained competitive ratios above 0.5
for both bipartite graphs and general graphs.

Similar but different from the Online Bipartite Matching with random arrivals, in the
stochastic Online Bipartite Matching, the online vertices arrive according to some known
probability distribution (with repetition). Competitive ratios breaking the 1− 1

e barrier have
been achieved for the unweighted case [13, 4, 6] and the vertex-weighted case [15, 17, 6].

The Online Bipartite Matching with random arrivals is closely related to the oblivious
matching problem [3, 9, 1] (on bipartite graphs). It can be easily shown that Ranking has
equivalent performance on the two problems. Thus competitive ratios above 1− 1

e [18, 21]
directly translate to the oblivious matching problem. Generalizations of the problem to
arbitrary graphs have also been considered, and competitive ratios above half are achieved
for the unweighted case [3, 9] and vertex-weighted case [1].

2 Preliminaries

We consider the Online Vertex-Weighted Bipartite Matching with random arrival order. Let
G(L∪R,E) be the underlying graph, where vertices in L are given in advance and vertices in
R arrive online in random order. Each offline vertex v ∈ L is associated with a non-negative
weight wv. Without loss of generality, we assume the arrival time yu of each online vertex
u ∈ R is drawn independently and uniformly from [0, 1]. Mahdian and Yan [21] use another
interpretation for the random arrival model. They denote the order of arrival of online
vertices by a permutation π and assume that π is drawn uniformly at random from the
permutation group Sn. It is easy to see the equivalence between two interpretations4.

4 Mapping from an arrival time vector to a permutation is immediate. Given a permutation π, we
independently draw n random variables uniformly from [0, 1] and assign these values to be the arrival
times of all vertices according to the permutation π, from the smallest to the largest.



Z. Huang, Z. Tang, X. Wu, and Y. Zhang 79:5

Weighted Ranking. Fix a function g : [0, 1]2 → [0, 1] such that ∂g(x,y)
∂x ≥ 0 and ∂g(x,y)

∂y ≤ 0.
Each offline vertex v ∈ L draws independently a random rank yv ∈ [0, 1] uniformly at random.
Upon the arrival of online vertex u ∈ R, u is matched to its unmatched neighbor v with
maximum wv · (1− g(yv, yu)).
I Remark. In the adversarial model, Aggarwal et al.’s algorithm [2] can be interpreted as
choosing g(yv, yu) := eyv−1 in our algorithm. Our algorithm is a direct generalization of
theirs to the random arrival model.

For simplicity, for each u ∈ R, we also call its arrival time yu the rank of u. We use
~y : L ∪R→ [0, 1] to denote the vector of all ranks.

Consider the linear program relaxation of the bipartite matching problem and its dual.

max :
∑

(u,v)∈E wv · xuv min :
∑
u∈V αu

s.t.
∑
v:(u,v)∈E xuv ≤ 1 ∀u ∈ L ∪R s.t. αu + αv ≥ wv ∀(u, v) ∈ E

xuv ≥ 0 ∀(u, v) ∈ E αu ≥ 0 ∀u ∈ L ∪R

Randomized Primal-Dual. Our analysis builds on the randomized primal-dual technique
by Devanur et al. [12]. We set the primal variables according to the matching produced
by Ranking, i.e. xuv = 1 if and only if u is matched to v by Ranking, and set the dual
variables so that the dual objective equals the primal. In particular, we split the gain wv of
each matched edge (u, v) between vertices u and v; the dual variable for each vertex then
equals the share it gets. Given primal feasibility and equal objectives, the usual primal-dual
techniques would further seek to show approximate dual feasibility, namely, αu +αv ≥ F ·wv
for every edge (u, v), where F is the target competitive ratio. Observe that the above primal
and dual assignments are themselves random variables. Devanur et al. [12] claimed that the
primal-dual argument goes through given approximate dual feasibility in expectation. We
formulate this insight in the following lemma and include a proof for completeness.

I Lemma 2. Ranking is F -competitive if we can set (non-negative) dual variables such that∑
(u,v)∈E xuv =

∑
u∈V αu; and

E~y [αu + αv] ≥ F · wv for all (u, v) ∈ E.

Proof. We can set a feasible dual solution α̃u := E~y [αu] /F for all u ∈ V . It’s feasible
because we have α̃u + α̃v = E~y [αu + αv] /F ≥ wv for all (u, v) ∈ E. Then by duality we
know that the dual solution is at least the optimal primal solution PRIMAL, which is also
at least the optimal offline solution of the problem:

∑
u∈V α̃u ≥ PRIMAL ≥ OPT. Then

by the first assumption, we have OPT ≤
∑
u∈V α̃u =

∑
u∈V

E~y [αu]
F = 1

F E~y

[∑
u∈V αu

]
=

1
F E~y

[∑
(u,v)∈E wv · xuv

]
= 1

F E [ALG], which implies an F competitive ratio. J

In the rest of the paper, we set

g(x, y) = 1
2
(
h(x) + 1− h(y)

)
, ∀x, y ∈ [0, 1]

where h : [0, 1]→ [0, 1] is a non-decreasing function (to be fixed later) with h′(x) ≤ h(x) for
all x ∈ [0, 1]. Observe that ∂g(x,y)

∂x = 1
2h
′(x) ≥ 0 and ∂g(x,y)

∂y = − 1
2h
′(y) ≤ 0. By definition of

g, we have g(x, y) + g(y, x) = 1. Moreover, for any x, y ∈ [0, 1], we have the following fact
that will be useful for our analysis.

I Claim 2.1. ∂g(x,y)
∂y ≥ g(x, y)− 1.

Proof. ∂g(x,y)
∂y = − 1

2h
′(y) ≥ − 1

2h(y) ≥ 1
2 (h(x) + 1− h(y))− 1 = g(x, y)− 1. J

ICALP 2018
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3 A Simple Lower Bound

In this section, we prove a slightly smaller competitive ratio, 5
4−e

−0.5 ≈ 0.6434, as a warm-up
of the later analysis.

We reinterpret our algorithm as follows. As time t goes, each unmatched offline vertex
v ∈ L is dynamically priced at wv · g(yv, t). Since g is non-increasing in the second dimension,
the prices do not increase as time goes by. Upon the arrival of u ∈ R, u can choose from its
unmatched neighbors by paying the corresponding price. The utility of u derived by choosing
v equals wv − wv · g(yv, yu). Then u chooses the one that gives the highest utility. Recall
that g is non-decreasing in the first dimension. Thus, u prefers offline vertices with smaller
ranks, as they offer lower prices.

This leads to the following monotonicity property as in previous works [2, 12].

I Fact 3.1 (Monotonicity). For any ~y, if v ∈ L is unmatched when u ∈ R arrives, then when
yv increases, v remains unmatched when u arrives. Equivalently, if v ∈ L is matched when
u ∈ R arrives, then when yv decreases, v remains matched when u arrives.

Gain Sharing. The above interpretation induces a straightforward gain sharing rule: when-
ever u ∈ R is matched to v ∈ L, let αv := wv · g(yv, yu) and αu := wv · (1 − g(yv, yu)) =
wv · g(yu, yv).

Note that the gain of an offline vertex is larger if it is matched earlier, i.e., being matched
earlier is more beneficial for offline vertices (αv is larger). However, the fact does not hold
for online vertices. For each online vertex u ∈ R, the earlier u arrives (smaller yu is), the
more offers u sees. On the other hand, the prices of offline vertices are higher when u comes
earlier. Thus, it is not guaranteed that earlier arrival time yu induces larger αu.

This is where our algorithm deviates from previous ones [2, 12], in which the prices
of offline vertices are static (independent of time). The above observation is crucial and
necessary for breaking the 1− 1

e barrier in the random arrival model.
To apply Lemma 2, we consider a pair of neighbors v ∈ L and u ∈ R. We fix an arbitrary

assignment of ranks to all vertices but u, v. Our goal is to establish a lower bound of
1
wv
·E [αu + αv], where the expectation is simultaneously taken over yu and yv.

I Lemma 3. For each y ∈ [0, 1], there exist thresholds 1 ≥ θ(y) ≥ β(y) ≥ 0 such that when
u arrives at time yu = y,

if yv < β(y), v is matched when u arrives;
if yv ∈ (β(y), θ(y)), v is matched to u;
if yv > θ(y), v is unmatched after u’s arrival.

Moreover, β(y) is a non-decreasing function and if θ(x) = 1 for some x ∈ [0, 1], then θ(x′) = 1
for all x′ ≥ x.

Proof. Consider the moment when u arrives. By Fact 3.1, there exists a threshold β(yu)
such that v is matched when u arrives iff yv < β(yu). Now suppose yv > β(yu), in which
case v is unmatched when u arrives. Thus v is priced at wv · g(yv, yu) and u can get utility
wv · g(yu, yv) by choosing v.

Recall that g(yu, yv) is non-increasing in terms of yv. Let θ(yu) ≥ β(yu) be the minimum
value of yv such that v is not chosen by u. In other words, when β(yu) < yv < θ(yu), v is
matched to u and when yv > θ(yu), v is unmatched after u’s arrival.

Next we show that β is a non-decreasing function of yu. By definition, if yv < β(yu),
then v is matched when u arrives. Straightforwardly, when yu increases to y′u (arrives even
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Figure 1 θ(yu) and β(yu) (left hand side); truncated θ(yu) and β(yu) (right hand side).

later), v would remain matched. Hence, we have β(y′u) ≥ β(yu) for all y′u > yu, i.e. β is
non-decreasing (refer to Figure 1).

Finally, we show that if θ(x) = 1 for some x ∈ [0, 1], then θ(x′) = 1 for all x′ ≥ x. Assume
for the sake of contradiction that θ(x′) < 1 for some x′ > x. In other words, when yu = x′

and yv = 1, v is unmatched when u arrives, but u chooses some vertex z 6= v, such that
wz · g(x′, yz) > wv · g(x′, 1).

Now consider the case when u arrives at time yu = x. Recall that we have θ(x) = 1,
which means that u matches v when yu = x and yv = 1. By our assumption, both v and z
are unmatched when u arrives at time x′. Thus when u arrives at an earlier time x, both v
and z are unmatched. Moreover, choosing z induces utility

wz · g(x, yz) = wz · g(x′, yz) ·
g(x, yz)
g(x′, yz)

> wv · g(x′, 1) · g(x, yz)
g(x′, yz)

= wv · g(x′, 1) · h(x) + 1− h(yz)
h(x′) + 1− h(yz)

≥ wv · g(x′, 1) · h(x) + 1− h(1)
h(x′) + 1− h(1)

= wv · g(x′, 1) · g(x, 1)
g(x′, 1) = wv · g(x, 1),

where the second inequality holds since h is a non-decreasing function and x < x′.
This gives a contradiction, since when yu = x and yv = 1, u chooses v, while choosing z

gives strictly higher utility. J

I Remark. Observe that the function θ is not necessarily monotone. This comes from the
fact that u may prefer v to z when u arrives at time t but prefer z to v when u arrives later
at time t′ > t. Note that this happens only when the offline vertices have general weights:
for the unweighted case, it is easy to show that θ must be non-decreasing.

We define τ, γ ∈ [0, 1], which depend on the input instance, as follows.
If θ(y) < 1 for all y ∈ [0, 1], then let τ = 1; otherwise let τ be the minimum value such

that θ(τ) = 1. Let γ := β(1). Note that it is possible that γ ∈ {0, 1}.
Since β is non-decreasing, we define β−1(x) := sup{y : β(y) = x} for all x ≤ γ.
In the following, we establish a lower bound for 1

wv
·E [αu + αv].

I Lemma 4 (Main Lemma). For each pair of neighbors u ∈ R and v ∈ L, we have

1
wv
·E [αu + αv] ≥ min

0≤γ,τ≤1

{
(1− τ) · (1− γ) +

∫ γ

0
g(x, τ)dx+

∫ τ

0
g(x, γ)dx

}
.

ICALP 2018
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We prove Lemma 4 by the following three lemmas.
Observe that for any yu ∈ [0, 1], if yv ∈ (β(yu), θ(yu)), u, v are matched to each other,

which implies αu + αv = wv. Hence we have the following lemma immediately.

I Lemma 5 (Corner Gain). E [(αu + αv) · 1(yu > τ, yv > γ)] = wv · (1− τ) · (1− γ).

Now we give a lower bound for the gain of v when yv < γ, i.e., αv ·1(yv < γ), plus the gain
of u when yv < γ and yu > τ , i.e., αu · 1(yv < γ, yu > τ). The key to prove the lemma is to
show that for all yv < γ, no matter when u arrives, we always have αv ≥ wv · g(yv, β−1(yv)).

I Lemma 6 (v’s Gain). E [αv · 1(yv < γ) + αu · 1(yv < γ, yu > τ)] ≥ wv ·
∫ γ

0 g(x, τ)dx.

Proof. Fix yv = x < γ. We first show that for all yu ∈ [0, 1], αv ≥ wv · g(x, β−1(x)). By
definition, we have β−1(x) < 1. Hence when yu > β−1(x), v is already matched when
u arrives. Suppose v is matched to some z ∈ R, then we have yz ≤ β−1(x) and hence
αv ≥ wv · g(x, β−1(x)). Now consider when u arrives at time y < β−1(x). If y > yz, then v
is still matched to z when u arrives, and αv ≥ wv · g(x, β−1(x)) holds. Now suppose y < yz.
We compare the two processes, namely when yu > β−1(x) and when yu = y.

We show that for each vertex w ∈ L, the time it is matched is not later in the second case
(compared to the first case). In other words, we show that decreasing the rank of any online
vertex is not harmful for all offline vertices. Suppose otherwise, let w be the first vertex in L
that is matched later when yu = y than when yu > β−1(x). I.e. among all these vertices,
w’s matched neighbor arrives the earliest when yu > β−1(x).

Let u1 be the vertex w is matched to when yu > β−1(x) and u2 be the vertex w is
matched to when yu = y. By assumption, we have yu2 > yu1 . Consider when yu = y and
the moment when u1 arrives, w remains unmatched but is not chosen by u1. However, w is
the first vertex that is matched later than it was when yu > β−1(x), we know that at u1’s
arrival, the set of unmatched neighbor of u1 is a subset of that when yu > β−1(x). This
leads to a contradiction, since w gives the highest utility, but is not chosen by u1.

In particular, this property holds for vertex v, i.e. v is matched earlier or at the arrival of
z and hence αv ≥ wv · g(x, yz) ≥ wv · g(x, β−1(x)), as claimed.

Observe that for yv < γ and yu ∈ (τ, β−1(yv)), we have αu + αv = wv. Thus for
yv = x < γ, we lower bound 1

wv
·Eyu

[αv · 1(yv < γ) + αu · 1(yv < γ, yu > τ)] by

f(x, β−1(x)) := g(x, β−1(x)) + max{0, β−1(x)− τ} · (1− g(x, β−1(x))).

It suffices to show that f(x, β−1(x)) ≥ g(x, τ). Consider the following two cases.
1. If β−1(x) < τ , then f(x, β−1(x)) = g(x, β−1(x)) ≥ g(x, τ), since ∂g(x,y)

∂y ≤ 0.
2. If β−1(x) ≥ τ , then f(x, β−1(x)) is non-decreasing in the second dimension, since

∂f(x, β−1(x))
∂β−1(x) = ∂g(x, β−1(x))

∂β−1(x) + 1− g(x, β−1(x))− (β−1(x)− τ) · ∂g(x, β−1(x))
∂β−1(x) ≥ 0,

where the inequality follows from Claim 2.1 and ∂g(x,β−1(x))
∂β−1(x) ≤ 0. Therefore, we have

f(x, β−1(x)) ≥ f(x, τ) = g(x, τ).

Hence for every fixed yv = x < γ we have Eyu [αv · 1(yv < γ) + αu · 1(yv < γ, yu > τ)] ≥
wv · g(x, τ). Taking integration over x ∈ (0, γ) concludes the lemma. J

Next we give a lower bound for the gain of u when yu < τ , i.e., αu · 1(yu < τ), plus the
gain of v when yu < τ and yv > γ, i.e., αv · 1(yu < τ, yv > γ). The following proof is in the
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same spirit as in the proof of Lemma 6, although the ranks of offline vertices have different
meaning from the ranks (arrival times) of online vertices.

Similar to the proof of Lemma 6, the key is to show that for all yu < τ , no matter what
value yv is, the gain of αu is always at least wv · g(yu, θ(yu)).

I Lemma 7 (u’s Gain). E [αu · 1(yu < τ) + αv · 1(yu < τ, yv > γ)] ≥ wv ·
∫ τ

0 g(x, γ)dx.

Proof. Fix yu = x < τ . By definition we have θ(x) < 1. The analysis is similar to the
previous. We first show that for all yv ∈ [0, 1], we have αu ≥ wv · g(x, θ(x)).

We use θ to denote the value that is arbitrarily close to, but larger than θ(x). By definition,
when yv = θ, u matches some vertex other than v. Thus we have αu ≥ wv · g(x, θ(x)). Hence,
when yv > θ, i.e. v has a higher price, u would choose the same vertex as when yv = θ, and
αu ≥ wv · g(x, θ(x)) still holds.

Now consider the case when yv = y < θ.
As in the analysis of Lemma 6, we compare two processes, when yv = θ and when

yv = y < θ. We show that for each vertex w ∈ R (including u) with yw ≤ x = yu, the utility
of w when yv = y is not worse than its utility when yv = θ. Suppose otherwise, let w be
such a vertex with earliest arrival time.

Let v′ be the vertex that is matched to w when yv = θ. Then we know that (when yv = y)
at w’s arrival, w chooses a vertex that gives less utility comparing to v′. Hence, at this
moment v′ is already matched to some w′ with yw′ < yw. This implies that when yv = θ, v′
(which is matched to w) is unmatched when w′ arrives, but not chosen by w′. Therefore,
w′ has lower utility when yv = y compared to the case when yv = θ, which contradicts the
assumption that w is the first such vertex.

Observe that when yv ∈ (γ, θ(x)), we have αu + αv = wv. Thus for any fixed yu = x < τ ,
we lower bound 1

wv
·Eyv [αu · 1(yu < τ) + αv · 1(yu < τ, yv > γ)] by

f(x, θ(x)) := g(x, θ(x)) + max{0, θ(x)− γ} · (1− g(x, θ(x))).

In the following, we show that f(x, θ(x)) ≥ g(x, γ). Consider the following two cases.
1. If θ(x) ≤ γ, then f(x, θ(x)) = g(x, θ(x)) ≥ g(x, γ), since ∂g(x,y)

∂y ≤ 0.
2. If θ(x) > γ, then

∂f(x, θ(x))
∂θ(x) = ∂g(x, θ(x))

∂θ(x) + 1− g(x, θ(x))− (θ(x)− γ) · ∂g(x, θ(x))
∂θ(x) ≥ 0,

where the inequality follows from Claim (2.1) and ∂g(x,θ(x))
∂θ(x) ≤ 0. Therefore, we have

f(x, θ(x)) ≥ f(x, γ) = g(x, γ).

Finally, take integration over x ∈ (0, τ) concludes the lemma. J

Proof of Lemma 4. Observe that αu + αv = (αu + αv) · 1(yu > τ, yv > γ) + αv · 1(yv <
γ) + αu · 1(yv < γ, yu > τ) + αu · 1(yu < τ) + αv · 1(yu < τ, yv > γ). Combing Lemma 5, 6
and 7 finishes the proof immediately. J

I Theorem 8. Fix h(x) = min{1, ex−0.5}. For any pair of neighbors u and v, and any fixed
ranks of vertices in L ∪R \ {u, v}, we have 1

wv
·Eyu,yv [αu + αv] ≥ 5

4 − e
−0.5 ≈ 0.6434.

Proof. It suffices to show that the RHS of Lemma 4 is at least 5
4−e

−0.5. Since the expression
is symmetric for τ and γ, we assume τ ≥ γ without loss of generality.

ICALP 2018
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Let f(τ, γ) be the term on the RHS of Lemma 4 to be minimized. By our choice of g,

f(τ, γ) =1− τ − γ + τ · γ + 1
2

∫ γ

0

(
h(x) + 1− h(τ)

)
dx+ 1

2

∫ τ

0

(
h(x) + 1− h(γ)

)
dx

=1− τ

2 (1 + h(γ))− γ

2 (1 + h(τ)) + τ · γ + 1
2

∫ γ

0
h(x)dx+ 1

2

∫ τ

0
h(x)dx.

Observe that

∂f(τ, γ)
∂τ

= γ − 1
2(1 + h(γ))− γ

2 · h
′(τ) + 1

2h(τ).

It is easy to check that γ − 1
2h(γ) ≤ 0 when γ ≤ 1

2 ; and γ −
1
2h(γ) > 0 when γ > 1

2 .
Hence when γ ≤ 1

2 , we have ∂f(τ,γ)
∂τ ≤ 0, which means that the minimum is attained

when τ = 1. Note that when γ ≤ 1
2 , we have

f(1, γ) = 1
2(1− h(γ)) + 1

2

∫ γ

0
h(x)dx+ 1

2

∫ 1

0
h(x)dx,

which attains its minimum at γ = 0 (since h′(γ) = h(γ) for γ ≤ 1
2 ):

f(1, 0) = 1
2(1− e−0.5) + 1

2(1
2 + 1− e−0.5) = 5

4 − e
−0.5 ≈ 0.6434.

When τ ≥ γ > 1
2 , we have ∂f(τ,γ)

∂τ = γ − 1
2h(γ) > 0. Hence the minimum is attained

when τ = γ, which is f(γ, γ) = 1− 2γ + γ2 +
∫ γ

0 h(x)dx. Observe that

df(γ, γ)
dγ

= −2 + 2γ + h(γ) ≥ −2 + 1 + 1 = 0.

The minimum is attained when γ = 1
2 , which equals f( 1

2 ,
1
2 ) = 5

4 − e
−0.5 ≈ 0.6434. J

4 Improving the Competitive Ratio

Observe that in Lemma 4, we relax the total gain of αu + αv into two parts: (1) when
yu ≥ τ and yv ≥ γ, αu + αv = wv. (2) for other ranks yu, yv, we lower bound αu and αv by
wv · g(yu, γ) and wv · g(yv, τ) respectively. For the second part, the inequalities used in the
proof of Lemma 6 and 7 are tight only if β, θ are two step functions (refer to Figure 1). On
the other hand, given these β, θ, when yu ≤ τ and yv ≤ γ, we actually have αu + αv = wv,
which is strictly larger than our estimation wv · (g(yu, γ) + g(yv, τ)).

With this observation, it is natural to expect an improved bound if we can retrieve this
part of gain (even partially). In this section, we prove an improved competitive ratio 0.6534,
using a refined lower bound for 1

wv
·E [αu + αv] (compared to Lemma 4) as follows.

I Lemma 9 (Improved Bound). For any pair of neighbors u ∈ R and v ∈ L, we have

1
wv
·E [αu + αv] ≥ min

0≤γ,τ≤1

{
(1− τ)(1− γ) + (1− τ)

∫ γ

0
g(x, τ)dx

+
∫ τ

0
min
θ≤γ

{
g(x, θ) +

∫ θ

0
g(y, x)dy +

∫ γ

θ

g(y, τ)dy
}
dx

}
.

Proof. Let γ and τ be defined as before, i.e., γ = β(1) and τ = min{x : θ(x) = 1}.
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We divide 1
wv
· E [αu + αv] into three parts, namely (1) when yu > τ and yv > γ; (2)

when yu > τ and yv < γ; and (3) when yu < τ :

1
wv
·E [αu + αv] = 1

wv
·E [(αu + αv) · 1(yu > τ, yv > γ)]

+ 1
wv
·E [(αu + αv) · 1(yu > τ, yv < γ)]

+ 1
wv
·E [(αu + αv) · 1(yu < τ)] .

As shown in Lemma 5, the first term is at least (1−τ)·(1−γ), as we have αu+αv = wv for
all yu > τ and yv > γ. Then we consider the second term, the expected gain of αu+αv when
yv < γ and yu > τ . For any yv < γ, as we have shown in Lemma 6, αv ≥ wv · g(yv, β−1(yv))
for all yu > τ . Moreover, when yu < β−1(yv), we have αu + αv = wv. Hence the second
term can be lower bounded by∫ γ

0

(
(1− τ) · g(yv, β−1(yv)) + max{0, β−1(yv)− τ} ·

(
1− g(yv, β−1(yv))

))
dyv.

Now we consider the last term and fix a yu < τ .
As we have shown in Lemma 7, for all yv ∈ [0, 1], αu ≥ wv · g(yu, θ(yu)).
Consider the case when θ(yu) > γ, then for yv ∈ (0, γ), αv ≥ wv · g(yv, yu); for yv ∈

(γ, θ(yu)), αu + αv = wv. Thus the expected gain of αu + αv (taken over the randomness of
yv) can be lower bounded by

wv ·
(
g(yu, θ(yu)) +

∫ γ

0
g(yv, yu)dyv + (θ(yu)− γ) · (1− g(yu, θ(yu)))

)
.

As we have shown in Lemma 7, the partial derivative over θ(yu) is non-negative, thus for
the purpose of lower bounding 1

wv
·E [αu + αv], we can assume that θ(yu) ≤ γ for all yu < τ .

Given that θ(yu) ≤ γ, we have αv ≥ wv · g(yv, yu) when yv ∈ (0, , θ(yu)); and αv ≥
wv · g(yv, β−1(yv)) when yv ∈ (θ(yu), γ).

Hence the third term can be lower bounded by∫ τ

0

(
g(yu, θ(yu)) +

∫ θ(yu)

0
g(yv, yu)dyv +

∫ γ

θ(yu)
g(yv, β−1(yv))dyv

)
dyu

Putting the three lower bounds together and taking the partial derivative over β−1(yv),
for those β−1(yv) > τ , we have a non-negative derivative as follows:

∂g(yv, β−1(yv))
∂β−1(yv)

+ 1− g(yv, β−1(yv))− (β−1(yv)− τ) · ∂g(yv, β−1(yv))
∂β−1(yv)

≥ 0.

Thus for lower bounding 1
wv
·E [αu + αv], we assume β−1(yv) ≤ τ for all yv < γ. Hence

1
wv
·E [αu + αv] ≥ min

0≤γ,τ≤1

{
(1− τ)(1− γ) + (1− τ)

∫ γ

0
g(yv, τ)dyv

+
∫ τ

0

(
g(yu, θ(yu)) +

∫ θ(yu)

0
g(yv, yu)dyv +

∫ γ

θ(yu)
g(yv, τ)dyv

)
dyu

}
.

Taking the minimum over θ(yu) concludes Lemma 9. J
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Observe that for any θ ≤ γ, we have

g(x, θ) +
∫ θ

0
g(y, x)dy +

∫ γ

θ

g(y, τ)dy ≥ g(x, γ) +
∫ γ

0
g(y, τ)dy.

Thus the lower bound given by Lemma 9 is not worse than Lemma 4.

I Theorem 10. Fix h(x) = min{1, 1
2e
x}. For any pair of neighbors u and v, and any fixed

ranks of vertices in L ∪R \ {u, v}, we have 1
wv
·Eyu,yv

[αu + αv] ≥ 1− ln 2
2 ≈ 0.6534.

We give a proof sketch and defer the complete analysis to the full version of the paper.

Proof Sketch. For h(x) = min{1, 1
2e
x}, we have h′(x) = h(x) when x < ln(2), and

h′(x) = 0, h(x) = 1 when x > ln(2).
Let f(τ, γ) be the expression on the RHS to be minimized in Lemma 9. We first show

that for any fixed τ and γ, the minimum (over θ) of f(τ, γ) is obtained when θ = min{ln 2, γ}.
Hence we can lower bound f(τ, γ) by

(1−τ)(1−γ)+ γ

2 (1−h(τ))+ τ

2 (1−h(γ))+ ln 2
2 τ ·h(τ)+ 1

2

∫ γ

0
h(y)dy+ 1− ln 2

2

∫ τ

0
h(x)dx.

Then we show that f(τ, γ) ≥ 1− ln 2
2 ≈ 0.6534 for all τ, γ ∈ [0, 1]. We show that there

exists τ∗ ≈ 0.3574 (solution for 1 + h(τ)− 2τ = 1) such that for τ ≤ τ∗, ∂f(τ,γ)
∂γ ≤ 0. Thus

f(τ, γ) ≥ f(τ, 1). Further more, we show that ∂f(τ,1)
∂τ ≥ 0, which implies

f(τ, γ) ≥ f(τ, 1) ≥ f(0, 1) = 1
2(1− h(0)) + 1

2

∫ 1

0
h(y)dy = 1− ln 2

2 ≈ 0.6534.

For any fixed τ > τ∗, we show that the minimum (over γ) of f(τ, γ) is attained when
γ = ln 2. Hence for τ > τ∗ we have f(τ, γ) ≥ f(τ, ln 2). Finally, we show that ∂f(τ,ln 2)

∂τ < 0
when τ < τ0; and ∂f(τ,ln 2)

∂τ > 0 when τ > τ0, where τ0 ≈ 0.564375, which implies

f(τ, γ) ≥ f(τ, ln 2) ≥ f(τ0, ln 2) =(1− τ0)(1− ln 2) + ln 2
4 · (2− eτ0 + τ0 · eτ0) + 1

4

+ 1− ln 2
4 (eτ0 − 1) ≈ 0.6557 > 1− ln 2

2 .

Thus for all τ, γ ∈ [0, 1], we have f(τ, γ) ≥ 1− ln 2
2 , as claimed.

5 Conclusion

In this paper, we show that competitive ratios above 1 − 1
e can be obtained under the

randomized primal-dual framework when equipped with a two dimensional gain sharing
function. The key of the analysis is to lower bound the expected combined gain of every pair
of neighbors (u, v), over the randomness of the rank yv of the offline vertex, and the arrival
time yu of the online vertex.

Referring to Figure 1, it can be shown that the competitive ratio F ≥
∫ 1

0 f(yu)dyu, where

f(yu) := (1− θ(yu) + β(yu)) · g(yu, θ(yu)) + θ(yu)− β(yu)

+
∫ β(yu)

0
g(yv, β−1(yv))dyv +

∫ 1

θ(yu)
g(yv, β−1(yv))dyv.
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Note that here we assume β−1(yv) = 1 for all yv ≥ γ, and g(x, 1) = 0 for all x ∈ [0, 1].
For every fixed g, there exist threshold functions θ and β that minimize the integration.

Thus the main difficulty is to find a function g such that the integration has a large lower
bound for all functions θ and β (which depend on the input instance). We have shown that
there exists a choice of g such that the minimum is attained when θ and β are step functions,
based on which we can give a lower bound on the competitive ratio.

It is thus an interesting open problem to know how much the competitive ratio can be
improved by (fixing an appropriate function g and) giving a tighter lower bound for the
integration. We believe that it is possible to give a lower bound very close to (or even better
than) the 0.696 competitive ratio obtained for the unweighted case [21].
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Abstract
Given n subspaces of a finite-dimensional vector space over a fixed finite field F, we wish to
find a “branch-decomposition” of these subspaces of width at most k, that is a subcubic tree
T with n leaves mapped bijectively to the subspaces such that for every edge e of T , the sum
of subspaces associated to the leaves in one component of T − e and the sum of subspaces
associated to the leaves in the other component have the intersection of dimension at most k.
This problem includes the problems of computing branch-width of F-represented matroids, rank-
width of graphs, branch-width of hypergraphs, and carving-width of graphs.

We present a fixed-parameter algorithm to construct such a branch-decomposition of width at
most k, if it exists, for input subspaces of a finite-dimensional vector space over F. Our algorithm
is analogous to the algorithm of Bodlaender and Kloks (1996) on tree-width of graphs. To extend
their framework to branch-decompositions of vector spaces, we developed highly generic tools for
branch-decompositions on vector spaces. For this problem, a fixed-parameter algorithm was
known due to Hliněný and Oum (2008). But their method is highly indirect. Their algorithm
uses the non-trivial fact by Geelen et al. (2003) that the number of forbidden minors is finite and
uses the algorithm of Hliněný (2006) on checking monadic second-order formulas on F-represented
matroids of small branch-width. Our result does not depend on such a fact and is completely
self-contained, and yet matches their asymptotic running time for each fixed k.
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1 Introduction

Let F be a finite field and r be a positive integer. A subspace arrangement V is a (multi)set of
subspaces of Fr, which can be represented by an r ×m matrix M with an ordered partition
I = {I1, I2, . . . , In} of {1, 2, . . . ,m} such that for every 1 ≤ i ≤ n, the i-th element of V is
the column space of the submatrix of M induced by the columns in Ii.4 Here, an ordered
partition I = {I1, I2, . . . , In} of {1, 2, . . . ,m} is a partition of {1, 2, . . . ,m} such that x < y

for all x ∈ Ii, y ∈ Ij with i < j.
Robertson and Seymour [12] introduced the notion of branch-width for graphs, hy-

pergraphs, and more generally, for connectivity functions. We are going to define the
branch-width of a subspace arrangement as follows. First, a tree is subcubic if every node
has degree at most 3. We define a leaf of a tree as a node of degree at most 1. A branch-
decomposition of V is a pair (T,L) of a subcubic tree T with no degree-2 nodes and a bijective
function L from the set of all leaves of T to V. For a node v of T and an edge e incident
with v, let us write Av(T − e) to denote the set of all leaves of T in the component of T − e
containing v. For a branch-decomposition (T,L) of V and each edge e = uv of T , we define
the width of e to be dim

(∑
x∈Au(T−e) L(x)

)
∩
(∑

y∈Av(T−e) L(y)
)
. The width of (T,L) is

the maximum width of all edges of T . (If T has no edges, then the width of (T,L) is 0.)
The branch-width of V is the minimum k such that there exists a branch-decomposition of V
having width at most k.

We aim to solve the following problem, and Theorem 1.1 is our main theorem.

Branch-Width
Parameters: A finite field F and an integer k.
Input: An r ×m matrix M over F with an ordered partition I = {I1, I2, . . . , In} of
{1, 2, . . . ,m} and an integer k.

Output: A branch-decomposition (T,L) of width at most k of a subspace arrangement
V consisting of the column space of the submatrix of M induced by the columns in
Ii for each i or a confirmation that the branch-width of V is larger than k.

I Theorem 1.1. Let F be a finite field, let r be a positive integer, and let k be a nonnegative
integer. Let V = {V1, V2, . . . , Vn} be a subspace arrangement of subspaces of Fr where each Vi

is given by its spanning set of di vectors and m =
∑n

i=1 di. In time O(rm2 + (k + 1)rmn+
k3n3 + f(|F|, k)n2) for some function f , one can either find a branch-decomposition of V
having width at most k or confirm that no such branch-decomposition exists.

Various width parameters of discrete structures have been introduced and used for
algorithmic and structural applications. One popular way of creating a width parameter of a
discrete structure is to define it as the branch-width of some connectivity function defined
on that discrete structure. Theorem 1.1 immediately gives rise to analogous algorithms for
many of them, such as carving-width of graphs, rank-width of graphs, and branch-width of
graphs, hypergraphs, and matroids. We will give a brief overview of each application.

Branch-width of matroids represented over a finite field F. Let V = {V1, V2, . . . , Vn} be
a subspace arrangement of subspaces of Fr. If each Vi is the span of a vector vi in Fr for
each i = 1, 2, . . . , n, then V can be identified with the matroid M represented by the vectors
v1, v2, . . ., vn. Furthermore, branch-width and branch-decompositions of M are precisely
branch-width and branch-decompositions of V, respectively.

4 Subspace arrangements can be regarded as representable partitioned matroids used in [6]. A partitioned
matroid is a matroid equipped with a partition of its ground set.
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Rank-width of graphs. Rank-width, introduced by Oum and Seymour [10], is a width
parameter of graphs expressing how easy it is to decompose a graph into a tree-like structure,
called a rank-decomposition, while keeping every edge cut to have a small ‘complexity’, called
the width of a rank-decomposition, where the complexity is measured by the matrix rank
function. Each vertex of a graph G can be associated with a subspace of dimension at most 2
so that the subspace arrangement V consisting of all subspaces associated with the vertices
of G has branch-width 2k if and only if G has rank-width k (See appendix). Furthermore, a
branch-decomposition of V of width 2k corresponds to a rank-decomposition of G of width k.

Branch-width of hypergraphs. Robertson and Seymour defined the notion of a branch-
width [12] not only for graphs but also for hypergraphs. Let F = GF (2) be the binary field
and let {v1, v2, . . . , vn} be the standard basis of Fn. For a hypergraph G with n vertices
v1, v2, . . . , vn, we associate each edge e with the span of the vertices incident with e. Let V be
the subspace arrangement consisting of all subspaces associated with the edges of G. Then
it is not difficult to show that branch-width and branch-decomposition of G are precisely
branch-width and branch-decomposition of V, respectively.

Carving-width of graphs. Seymour and Thomas [13] introduced carving-width of graphs.
Let F = GF (2) be the binary field and let {e1, e2, . . . , em} be the standard basis of Fm. For
a graph G with edges e1, e2, . . . , em, we associate each vertex v with the span of the edges
incident with v. If V is the subspace arrangement consisting of all subspaces associated
with the vertices of G, then carving-width and carving of G are precisely branch-width and
branch-decomposition of V, respectively.

For the first two applications, the analogous theorems were proved earlier by Hliněný
and Oum [6]. However, their approach was completely indirect; they use a non-trivial fact
shown by Geelen et al. [3] that the class of matroids of branch-width at most k has finitely
many forbidden minors, each having at most O(6k) elements. Then they use a monadic
second-order formula to describe whether a matroid contains a fixed minor and use the
dynamic programming algorithm to decide a monadic second-order formula aided by a given
branch-decomposition of bounded width. So far this describes the decision algorithm of
Hliněný [5] that decides whether branch-width is at most k. On top of this algorithm, Hliněný
and Oum use a sophisticated reduction to modify the input and use the decision algorithm
repeatedly to recover a branch-decomposition. Roughly speaking, this reduction attaches
a gadget to the input matroid and this step requires extending the underlying finite field
to an extension field, because this gadget is not representable if the underlying field is too
small. As the list of forbidden minors is unknown, their algorithm should generate the list of
minor-minimal matroids having branch-width larger than k. Thus, even for small values of k,
it would be practically impossible to implement their algorithm. Contrary to the previous
algorithm, our algorithm does not depend on the finiteness of obstructions and yet matches
their asymptotic running time for each fixed k.

We do not know any previous analogous theorems for branch-width of hypergraphs. For
branch-width of graphs, Thilikos and Bodlaender [14] posted a 50-page long technical report
in 2000 proving that for every fixed k, one can check in linear time whether a graph has
branch-width at most k and if so, output a branch-decomposition of minimum width. This
work was presented at a conference in 1997 [2]. For carving-width of graphs, the conference
paper of Thilikos, Serna, and Bodlaender [15] presented a linear-time algorithm for each
fixed k that determines whether the carving-width of an input graph G is at most k, and if
so, constructs a carving of G with minimum carving-width.

ICALP 2018
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Our approach and technical ingredients. We develop a framework inspired by the approach
of Bodlaender and Kloks [1] on their work on tree-width of graphs. (A similar framework was
also given independently by Lagergren and Arnborg [9].) They created a linear-time algorithm
that can find a tree-decomposition of width at most k or confirm that the tree-width of an
input graph is larger than k for each fixed k. They used dynamic programming based on a
given tree-decomposition of bounded width. For the dynamic programming, they designed a
special encoding of all possible tree-decompositions of width at most k that can arise from
certain parts of a graph.

We also use dynamic programming approach, taking advantage of having a tree-like
structure from the given branch-decomposition. Then, how do we generate a branch-
decomposition of small width in the first place? For this purpose, we use the technique called
the iterative compression, which is initiated by Reed, Smith, and Vetta [11] and used by [4]
for computing the branch-width of linear matroid. In Branch-Width Compression, we are
given a branch-decomposition of width at most 2k of a subset of V and solve Branch-width.
The obtained branch-decomposition of width at most k at each step is incremented by a new
element of V , which serves as a given branch-decomposition of width at most 2k for the next
step.

To use a branch-decomposition for dynamic programming, we need a concept of a
‘boundary’, that plays the role of a bag in a tree-decomposition. For a branch-decomposition
(T,L) of a subspace arrangement V and an edge e of T , we consider the boundary B as
the intersection of the sum of subspaces associated to the leaves in one component of T − e
and the sum of subspaces associated to the leaves of the other component of T − e. As
the branch-width is at most k, the boundary B has dimension at most k. Furthermore, we
restrict our attention to the finite field F and so the number of subspaces of B is finite. For
the convenience of dynamic programming on branch-decompositions, we define transcripts of
a branch-decomposition in Section 2, which is essentially a precomputed list of bases and
linear transformations useful for computations with boundaries.

As usual, we need a compact encoding scheme to store partial solutions that may be
extended to a branch-decomposition of width at most k, if it exists. We have two important
aspects here.

First of all, we will restrict our search to a smaller set of branch-decompositions. Namely,
if (T ′,L′) is a given branch-decomposition of width at most 2k in Branch-Width Com-
pression, then the algorithm will find a branch-decomposition of width at most k that is
totally pure with respect to (T ′,L′). In order to efficiently compress the partial solutions
at each step of dynamic programming, it is crucial to ensure that some part of a partial
solution can be forgotten (and can be retrieved from the unforgotten part later). A part
of a partial solution can be ignored only when there is a guarantee that the said part does
not need to be ‘mixed’ with another partial solution in the future. In other words, if there
is a branch-decomposition of width at most k which is obtained via mixing, then there
also exists as good a decomposition which can be obtained while mixing is avoided. This
general idea lies at the core of every dynamic programming based on decomposition of small
width. The first technical barrier to implement this principle for our problem is how to
formalize what constitute those forgettable parts and what it means to avoid mixing. The
‘forgettable part’ is formalized as the notion of ‘blocked’ (plus some more) nodes introduced
in Section 5. Intuitively, a totally pure branch-decomposition with respect to (T ′,L′) is a
decomposition which has successfully avoided the ‘mixing’ at every descendant so far. The
two operations introduced in Section 3, fork and split, are technical tools developed in order
to prove that it is possible to avoid mixing. Using these operations, we show that if there is a
branch-decomposition of width at most k, then there is a branch-decomposition of width at
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most k that is totally pure with respect to (T ′,L′) in Section 3. The procedure of obtaining
a compact encoding of a partial solution, introduced as trimming in Section 4, is essentially
discarding the forgettable parts.

The second technical barrier is to devise an encoding of a (partial) branch-decomposition
and all computational operations, necessary for dynamic programming, compatible with
this encoding scheme. For this purpose, we will define a B-namu5 in Section 4. Here, B
is going to be the boundary for some edge in (T ′,L′). A B-namu is, roughly speaking, a
subcubic tree whose incidences are decorated by subspaces of B and whose edges are labeled
by a nonnegative integer so that it represents the ‘shadow’ of a branch-decomposition of
width at most k on B. We define an operation τ on B-namus that compresses a B-namu
into a ‘compact’ B-namu and prove that there are only finitely many compact B-namus of
width at most k, when B has bounded dimension and F is a finite field. This operation τ on
B-namus consists of two steps: one is the aforementioned trimming, another is compressing
to compress an integer sequence introduced by Bodlaender and Kloks [1] for their work on
tree-decompositions. A part of B-namu processed by compressing step can be potentially
mixed with another partial solution in the future, but a desired decomposition can be always
retrieved if one exists. In contrast, a trimmed part is forgotten and never gets mixed in the
future. Our computational operations on B-namus are designed so that the trimmed parts
can be efficiently retrieved. Computational operations on B-namus for dynamic programming
are defined including comparison.

Difference with our previous work. In the previous work [8], the authors found a similar
algorithm for path-decompositions of a subspace arrangement. A path-decomposition of a
subspace arrangement is a linearized variant of a branch-decomposition that restricts the
subcubic trees to caterpillar trees. Here are the key technical differences.

First, the concept of totally pure branch-decompositions was not needed in [8]. In the
previous work, two linear orderings are merged into another linear ordering and there is
no need to consider the possibility of ‘avoiding mixing’. In the end, compressing an integer
sequence was sufficient to obtain a short encoding. For branch-decompositions, we sometimes
insert a whole subtree into a branch-decomposition and this requests a new concept such as
totally pure branch-decompositions. Also, ‘summing’ two partial solution encodings for join
operation in dynamic programming is much more delicate in this work.

Second, we needed the concept of k-safeness in order to extend our algorithm for path-
decompositions to the algorithm for branch-decompositions. When we sum two B-namus,
some edges of trees in the B-namus are in common but some edges are not shared and will
be forgotten. Although an edge in one B-namu is not in another B-namu, the width assigned
to the edge can potentially increase. We hope the width of an edge not to exceed k even
when this edge is ‘forgotten’, and thus we need to handle this carefully.

Lastly, we improve the running time of an algorithm computing transcripts. In [8], the
idea of transcripts was used as well although the notion was not formally introduced. If
we adapt our new method to the result of [8], we also get an O(n3)-time algorithm for
path-decompositions of subspace arrangements based on iterative compressions, saving a
factor of O(n).

Section 2, Section 3, and Section 4 give both definitions and some properties of transcripts,
totally pure branch-decompositions, and B-namus, respectively. Section 5 presents the
algorithm to solve the Branch-Width problem. We remark that many proofs are omitted
because of the page limit. However, the detailed proofs are contained in the full version.

5 ‘Namu’ is a tree in Korean.
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2 Transcripts

Dynamic programming algorithms on tree-decomposition benefit from the small width by
encoding solutions with respect to the bags. While the bags are explicit in a given tree-
decomposition, a branch-decomposition of a subspace arrangement does not provide an
easy-to-handle metric for encoding solutions to our problem. In order to make it more useful,
we need some extra information.

Let (T,L) be a branch-decomposition of a subspace arrangement V . We will assume that
T is a rooted binary tree by picking an arbitrary edge e and subdividing e to create a degree-2
root node r, and call (T,L) a rooted branch-decomposition. For a node v of T , let Vv be the
set of all elements of V associated with v and its descendants by L. For a set X of vectors
from a vector space over a field F, the span 〈X〉 of X is the subspace consisting of all (finite)
linear combinations of vectors in X, where the scalars are taken from F. For two subspaces
X and Y , we denote the subspace {x+y : x ∈ X, y ∈ Y } by X+Y . For a set X of subspaces,
let 〈X 〉 =

∑
X∈X X. The boundary space Bv at v is defined as Bv = 〈Vv〉 ∩ 〈V − Vv〉. Later,

we shall encode partial branch-decompositions with respect to the boundary spaces of a given
branch-decomposition (T,L). For this, we need to know Bv in advance.

A transcript of (T,L) is a pair Λ = ({Bv}v∈V (T ), {B′v}v∈V (T )) of sets of ordered bases
Bv and B′v of subspaces Bv = 〈Bv〉 and B′v = 〈B′v〉 of Fr, respectively, such that

the first |Bv| elements of B′v are precisely Bv for each node v,
〈B′v〉 = 〈Bw1〉+ 〈Bw2〉 for each node v having two children w1 and w2,
〈B′v〉 = 〈Bv〉 for each leaf v.

If a node u of T is a parent of a node v of T , then Bv = 〈Bv〉 is a subspace of B′u = 〈B′u〉 and
therefore there exists the unique |B′u| × |Bv| matrix Tv over F such that Tv[x]Bv

= [x]B′
u

for all x ∈ Bv. This matrix Tv is called the transition matrix of Λ at a node v. (For the root
node r, let Tr be the null matrix. For a vector x in a vector space with a basis B over a
field F, [x]B denotes the coordinate vector with respect to the basis B, which is a |B| × 1
matrix over F.)

We can compute the transcript of a given branch-decomposition as follows.

I Theorem 2.1. Let V be a subspace arrangement of Fr represented by an r ×m matrix M
in reduced row echelon form with no zero rows such that each V ∈ V has dimension at most
k. Let n = |V|. Given branch-decomposition (T,L) of V, in time O(k3n2), one can correctly
compute a basis of 〈Vv〉 ∩ 〈V − Vv〉 for all nodes v of T or confirm that (T,L) has width
larger than k. In addition, if (T,L) has width at most k, then we can compute the transcript
Λ = ({Bv}, {B′v}) of (T,L) with its transition matrices in time O(k3n2).

3 Pure branch-decompositions

We are going to assume that a subspace arrangement V and its rooted branch-decomposition
(T b,Lb) are given. For two nodes x, y of T b, we say that x ≤ y if either x = y or x is a
descendant of y. We write x < y if x ≤ y and x 6= y. For a node x of T b, let Vx be the set of
all subspaces Lb(`) where ` is a leaf of T b with ` ≤ x and let Bx = 〈Vx〉∩〈V −Vx〉. Let (T,L)
be a branch-decomposition6 of V0 ⊆ V . Let x be a node of T b such that Vx ⊆ V0. We define
L(T, u, v) = {L(w) : w ∈ Av(T − uv)} and write Lx(T, u, v) = L(T, u, v) ∩ Vx. (We remark
that L(T, u, v) is a set of subspaces and 〈L(T, u, v)〉 is the sum of members of L(T, u, v).)

6 One may consider (T,L) as a (partial) solution whereas (T b,Lb) is the given branch-decomposition over
which dynamic programming is executed.



J. Jeong, E. J. Kim, and S. Oum 80:7

u v w

(a) T

u v v′ w

(b) T ′

Figure 1 Constructing T ′ by forking at v by Vx. represents a leaf node mapped to an element
of Vx by L and represents a leaf node mapped to an element of V0 − Vx by L.

We say that an edge uv of T x-guards its end v if 〈Lx(T, u, v)〉 ∩Bx ( 〈Lx(T, v, u)〉 ∩Bx.
An edge uv of T is x-degenerate if 〈Lx(T, u, v)〉∩Bx = 〈Lx(T, v, u)〉∩Bx. A 2-edge path uvw
of T is an x-blocking path if 〈Lx(T, u, v)〉 ∩ Bx = 〈Lx(T, v, w)〉 ∩ Bx, 〈Lx(T,w, v)〉 ∩ Bx =
〈Lx(T, v, u)〉 ∩ Bx, and neither uv nor vw is x-degenerate or x-guarding.

We give a general idea behind the notion of totally pure branch-decompositions. For
Vx ⊆ V0, one can consider the branch-decomposition ‘induced’ by Vx from (T,L); such a
branch-decomposition can be canonically defined by choosing a minimal subtree of T whose
leaf set is mapped to Vx by L (and smoothing degree-2 nodes if necessary). Similarly, the
branch-decomposition ‘induced’ by V0−Vx can be obtained. Let (Tx,Lx) and (Tx̄,Lx̄) be the
respective branch-decompositions. If uvw is an x-blocking path of Tx, then it can be shown
that the connected component of Tx − uv − vw containing v does not need to be mixed with
another branch-decomposition in the future. Specifically, if the subtree of T homeomorphic to
Tx is ‘mixed’ with some subtree of Tx̄ in T , then one can ‘untangle’ the mixing: one ‘lifts’ the
former subtree and ‘plants’ it on the x-blocking path uvw (so as to be rooted at a new node
subdividing vw provided dim〈Lx(T, u, v)〉 ∩ 〈Lx(T, v, u)〉 ≥ dim〈Lx(T, v, w)〉 ∩ 〈Lx(T,w, v)〉).
This operation on (T,L) is called the forking (see Figure 1). It can be proved that forking
operations under above assumption do not increase the width. This is why we can ‘forget’ a
subtree of Tx, namely the subtree of Tx − uv − vw containing v. A similar observation can
be made in regards to x-guarding edges, for which the related operation is splitting.

Then how do we know whether there is unwanted mixing in regards to an x-guarding
edge or an x-blocking path? The following notions formalize this. An edge uv of T that
x-guards v is called improper x-guarding if v has two neighbors v1, v2 in T − uv such that
Lx(T, v, v1), Lx(T, v, v2), and L(T, u, v)∩(V0−Vx) are nonempty. An x-blocking path uvw of
T is improper if v has a neighbor t in T −u−w such that Lx(T, v, u), Lx(T, v, w), Lx(T, v, t),
and L(T, v, t) ∩ (V0 − Vx) are nonempty.

When T has an x-degenerate edge e, it turns out that we can apply splitting operations
at any x-degenerate edge and untangle Tx and Tx̄ so that the new branch-decomposition
is a disjoint union of Tx and Tx̄ connected by a single edge (which will be incident with a
subdividing node of the x-degenerate edge e). Hence, it is conceivable that we might be
able to forget all nodes of Tx, possibly except for one node as a placeholder representing
Tx. In this way, we request that any extension of Tx in the future shall be in the form of
disjoint union plus one edge. However, it is possible that e is also a z-degenerate edge for
some z < x. In this case, forcing the join of Tx and Tx̄ at a subdividing node of e can violate
the disjointness of Tz and Tz̄. We want to prevent this, and it leads us to the definition of
x-degenerate branch-decompositions.

For S ⊆ V0, an edge uv of T is said to cut S if L(T, u, v) ∩ S 6= ∅ and L(T, v, u) ∩ S 6= ∅.
We say that (T,L) is x-degenerate if T has an x-degenerate edge uv such that uv cuts Vx

and for all z < x, if (T,L) is z-degenerate, then uv does not cut Vz. Such an edge uv is
called improper x-degenerate. Note that if x is a leaf of T b, then (T,L) is not x-degenerate
because T has no edge cutting Vx. We say that (T,L) is x-disjoint if V0 = Vx or T has an
edge uv such that L(T, u, v) = Vx and v is incident with an improper x-degenerate edge.
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We say that (T,L) is x-pure if the following hold.
If (T,L) is x-degenerate, then (T,L) is x-disjoint.
If (T,L) is not x-degenerate, then all x-blocking paths and all x-guarding edges of T are
not improper.

We say that a branch-decomposition (T,L) of V0 is totally pure with respect to (T b,Lb) if
(T,L) is x-pure for all nodes x of T b with Vx ⊆ V0. We prove that if the branch-width of a
subspace arrangement is at most k, then there exists a totally pure branch-decomposition
of the subspace arrangement whose width is at most k. The proof strategy is to apply
forking and splitting operations for every node x of T b in a bottom-up manner. If (T,L) is
x-degenerate, then applying the operations will create a new branch-decomposition which is
x-disjoint. If it is not x-degenerate, then the operations will resolve entanglements at the
improper x-guarding edges and at the improper x-blocking paths so that no improper ones
are left. For this approach to work, we need to ensure that applying these operations do not
create new entanglements at nodes z of T b where disentanglement already happened (or is
happening now). That is, z-disjointness is preserved, and no new improper z-guarding edge
or z-blocking path is created.

I Proposition 3.1. Let (T b,Lb) be a rooted branch-decomposition of a subspace arrangement
V and let V0 ⊆ V. If the branch-width of V0 is at most k, then V0 has a branch-decomposition
of width at most k that is totally pure with respect to (T b,Lb).

4 Namus

Let F be a finite field and let B be a subspace of Fr of dimension θ. In this section, we
introduce the data structure for encoding partial solutions and operations on this data
structure required for dynamic programming. For a tree T , an incidence is a pair (v, e) of a
node v of T and an edge e incident with v. Let I(T ) be the union of {(∗, ∅), (0, ∅)} and the
set of all incidences of T . A B-namu Γ is a quadruple (T, α, λ, U) of

a subcubic tree T having at least one node,
a function α from I(T ) to the set of all subspaces of B,
a function λ from the union of {∅} and the set of all edges of T to the set of integers, and
a subspace U of B

such that
(i) for every two-edge path v0, e1, v1, e2, v2 in T , α(v0, e1) is a subspace of α(v1, e2),
(ii) for all incidences (v, e) of T , α(v, e) is a subspace of U ,
(iii) α(∗, ∅) = U , α(0, ∅) = {0}, and λ(∅) = 0,
(iv) for every edge e = uv of T , λ(e) ≥ dimα(v, e) ∩ α(u, e).
The width of a B-namu Γ = (T, α, λ, U) is the maximum of λ(e) over all edges e = uv of T .
(If T has no edges, then the width of Γ is defined to be 0.) For a B-namu Γ = (T, α, λ, U),
we write T (Γ) = T .

Canonical B-namus. The canonical B-namu of a branch-decomposition (T,L) of a subspace
arrangement V is the B-namu (T, α, λ, U) such that

α(v, e) = B ∩
∑

x∈Av(T−e) L(x) for each node v of T and an edge e incident with v,
λ(e) = dim

∑
x∈Au(T−e) L(x) ∩

∑
y∈Av(T−e) L(y) for each edge e = uv of T ,

U = B ∩
∑

x∈A(T ) L(x) where A(T ) is the set of all leaves of a tree T .
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Projections. For two subspaces B and B′ with B′ ⊆ B, we define the projection Γ|B′ of
a B-namu Γ = (T, α, λ, U) on B′ as the B′-namu (T, α′, λ′, U ′) such that U ′ = U ∩ B′,
α′(v, e) = α(v, e) ∩B′ for all incidences (v, e) of T , and λ′(e) = λ(e) for all edges e of T .

Compact B-namus. We have two operations, trimming and compressing, on B-namus,
which will transform a B-namu into a ‘compact’ B-namu. Roughly speaking, trimming
is an operation to remove irrelevant edges and compressing is an operation to suppress
redundant edges. Irrelevant edges are those edges which can be ‘untangled’ by forking or
splitting operations as described in Section 3. As addressed in Proposition 3.1, there exists a
branch-decomposition of minimum width that is totally pure with respect to (T b,Lb). Such
a branch-decomposition is minimally ‘mixed’ at every node x of T b in the sense that forking
and splitting operations has been fully applied at every x without causing additional mixing.
The idea behind trimming is that, for keeping track of totally pure branch-decompositions in
the dynamic programming algorithm, those edges to be untangled by forking or splitting
operations can be ignored. For a B-namu Γ, let trim(Γ) denote the B-namu obtained by
trimming Γ.

For a node x of (T b,Lb), can we bound the size of an arbitrary trimmed Bx-namu Γ,
namely the size of T (Γ)? As T (Γ) is a subcubic tree, bounding the size of T (Γ) is equivalent
to bounding the diameter of T (Γ). By condition (i) in the definition of B-namu, it is not
difficult to see that T (Γ) has a large diameter if and only if T (Γ) contains a long path in which
any length-two path is x-blocking. Assuming that Γ is trimmed, such a long path induces a
substructure in which every internal node has degree two and α maps every incidence to the
same subspace. That is, the information on such a path dictated by Γ is almost uniform
except that the values of λ changes over the edges and the values of λ can be viewed as an
integer sequence. Now, the idea of compressing operation is to keep only the edges associated
with local minimum and maximum values of this integer sequence and ignore all other edges.
An integer sequence obtained in this way is called a typical sequence in the literature [1] and
it is known to have length at most 2k + 1 when the integers are in the range {0, . . . , k}.

We say that a B-namu is compact if it contains no ‘irrelevant’ nodes or edges so that
trimming or compressing does not affect to the B-namu. Let Uk(B) be the set of all compact
B-namus Γ of width at most k such that V (T (Γ)) = {1, 2, . . . , n} for some integer n. The
previous discussion is summarized in the next statement, which ensures in Section 5 that the
number of partial solutions stored at each node of (T b,Lb) for the dynamic programming
algorithm will be bounded.

I Lemma 4.1. The set Uk(B) contains at most f(k, θ, |F|) elements and can be generated
from B in g(k, θ, |F|) steps for some functions f and g.

Sum of two B-namus. For two B-namus Γ1 = (T1, α1, λ1, U1) and Γ2 = (T2, α2, λ2, U2),
we define a sum (T, α, λ, U1 + U2) of Γ1 and Γ2. Roughly speaking, we first take a tree T
such that a subdivision of T1 is a subtree of T and a subdivision of T2 is a subtree of T (see
Figure 2). For each incidence (v, e) of T , if it corresponds to both an incidence (v1, e1) of
T1 and an incidence (v2, e2) of T2, then α(v, e) is the sum of α1(v1, e1) and α2(v2, e2), and
if it corresponds to only one of (v1, e1) and (v2, e2), say (v1, e1), then α(v, e) = α1(v1, e1).
Similarly, we can define λ on every edge of T (with some correction term). The formal
definition is given in the full version. Note that a sum of two B-namus is not unique because
there are many choices of taking a tree T . Given B-namus Γ1 and Γ2, let us denote by
Γ1 ⊕ Γ2 the set of all sums of Γ1 and Γ2.
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T1 T2 T

Figure 2 Obtaining a sum of two B-namus.

I Lemma 4.2. Let Γ1, Γ2 be compact B-namus of width at most k. Then the set Γ1 ⊕ Γ2
contains at most 222(2θk+θ+k+3)

B-namus.

Comparing two B-namus. A B-namu (T ′, α′, λ′, U) is a subdivision of a B-namu Γ =
(T, α, λ, U) if T ′ is a subdivision of T , α′(v′, e′) = α(v, e), and λ′(e′) = λ(e) for every
incidence (v′, e′) of T ′ and its corresponding incidence (v, e) of T .

For two B-namus Γ1 = (T1, α1, λ1, U1) and Γ2 = (T2, α2, λ2, U2), we say that Γ1 ≤ Γ2 if
T1 = T2, α1 = α2, U1 = U2 and λ1(e) ≤ λ2(e) for every edge e of T1. For two B-namus Γ1
and Γ2, we say that Γ1 4 Γ2 if there exist a subdivision Γ′1 of Γ1 and a subdivision Γ′2 of Γ2
such that Γ′1 ≤ Γ′2.

I Lemma 4.3. For two B-namus ∆ and Γ, we can decide whether ∆ 4 Γ by executing at
most f(|V (T (∆))|, |V (T (Γ))|, θ, |F|) comparison operations (on integers and on subspaces of
B) for some function f .

5 The algorithm

We present an algorithm to solve the Branch-Width problem. Given a matrix M and a set
Y of column indices, M [Y ] denotes the submatrix of M induced by columns indexed by Y .

Preprocessing. We will first describe the preprocessing steps to reduce the input size. The
subspace arrangement of n subspaces is given by an r ×m matrix where r and m could be
arbitrary large. Our aim here is to reduce r and m or confirm that branch-width is larger
than k. Eventually, we will convert the input into a smaller one. Furthermore, we will convert
M into the reduced row echelon form, which is crucial for our algorithm for computing the
transcript of a branch-decomposition in Theorem 2.1. In the Branch-Width problem, if a
branch-decomposition of width at most k exists, then we say that (M, I, k) is a YES instance.
Otherwise, it is a NO instance. For a matrix M , let col(M) be the column space of M , that
is the span of all column vectors of M .

I Lemma 5.1. Let F be a finite field and let k be a nonnegative integer. Let n ≥ 2. Let M
be an r×m matrix over F with an ordered partition I = {I1, I2, . . . , In} of {1, 2, . . . ,m} and
let Vi be the column space of M [Ii] for every i. In time O(rm2 + (k + 1)rmn), we can either
find i ∈ {1, 2, . . . , n} such that dim(Vi ∩ (

∑
j 6=i Vi)) > k or find an r′ ×m′ matrix M ′ over F

with an ordered partition I ′ = {I ′1, I ′2, . . . , I ′n} of {1, 2, . . . ,m′} such that
(i) r′ ≤ m′ ≤ kn,
(ii) M ′ is of the reduced row echelon form with no zero rows,
(iii) for each i, the column vectors of M ′[I ′i] are linearly independent and |I ′i| ≤ k,
(iv) for each i, col(M ′[I ′i]) ⊆ col(M ′[{1, 2, . . . ,m′} − I ′i]),
(v) (M, I, k) is a YES instance with a branch-decomposition (T,L) if and only if (M ′, I ′, k)

is a YES instance with (T,L′) where L′ maps a leaf v to col(M ′[I ′i]) whenever L maps
v to col(M [Ii]).
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The full set. Our dynamic programming algorithm constructs a set of compact Bx-namus
of width at most k at each node x of the given branch-decomposition (T b,Lb) in a bottom-up
manner. This set is called the full set at x of width k with respect to (T b,Lb) and written
as FSk(x;T b,Lb) or FSk(x) for brevity. The full set needs to be defined so that at the root
node r of T b, FSk(r) 6= ∅ if and only if the branch-width of V is at most k. Moreover, we
need to ensure that the full set at every node of T b can be constructed from the full sets of
its children.

Roughly speaking, the full set at x is an upward closed set of (Uk(Bx),4), where Uk(Bx)
and 4 are defined in the previous section. Every minimal7 element in this upward closed
set is a B-namu that can be obtained from a branch-decomposition (T,L) of Vx having
width at most k that is totally pure with respect to (T b,Lb) by discarding some subtrees
of T . This concept is captured in the notion of reduced B-namus below. Any discarded
subtrees keep the rest of T connected. The subtrees of T that will not be mixed with
another partial solution shall qualify as the disposable parts. Two types of disposable parts
arise: one is a subtree consisting of x-blocked nodes (which will be defined soon), and the
other type is a subtree whose entire leaf set is precisely mapped with Vz for some z ≤ x

such that (T,L) is z-degenerate. In particular, if (T,L) is x-degenerate, then we discard
all nodes except one node. Because we only consider totally pure branch-decompositions
(T,L), if (T,L) is z-degenerate for some z < x, then (T,L) is a disjoint union of Vz and
Vx − Vz joined via a single edge. It is intuitively easy to understand that we want to keep
the subtree containing Vz intact from any mixing in the future and thus want to discard this
part. However, implementing this idea with full technical details is quite tricky.

Moreover, not every reduced B-namu obtained in this way can be a member of a full set.
A technical condition called k-safeness must be met by any edge that gets discarded. This
condition is expressed as an inequality, indicating that when the current partial solution
grows into a branch-decomposition for V, the width at the forgotten edge is at most k.

For a B-namu Γ = (T, α, λ, U) and a subtree T ′ of T , we say that a B-namu Γ′ =
(T ′, α′, λ′, U) is induced by T ′ from Γ if α′(v, e) = α(v, e) and λ′(e) = λ(e) for every incidence
(v, e) of T ′. For a node x of T b and a branch-decomposition (T,L) of Vx which is totally
pure with respect to (T b,Lb), we obtain the reduced Bx-namu of (T,L) induced by a subtree
T ′ of T from the canonical Bx-namu of (T,L) where T ′ is obtained by the following rule.

If (T,L) is x-degenerate, then T ′ is a subtree having only one node of T .
If (T,L) is not x-degenerate, then T ′ is obtained by deleting every node w if

(i) there is an x-blocking path v1vv2 centered at v 6= w such that there is a path from w

to v in T − vv1 − vv2, or
(ii) some edge uv x-guards v 6= w such that there is a path from w to v in T − uv, or
(iii) w is a node of a subtree T ′′ of T with a root v 6= w having two children such that the

leaf set of T ′′ is precisely mapped to Vz for some z < x and (T,L) is z-degenerate.
A node w satisfying (i) or (ii) is said to be x-blocked. A branch-decomposition (T,L) is k-safe
with respect to x if for every edge uv of T which is not contained in T ′,

dim
∑

s∈Av(T−uv)

L(s) ∩
∑

t∈Au(T−uv)

L(t) + dimBx − dimBx ∩
∑

t∈Au(T−uv)

L(t) ≤ k.

Now, for each node x of T b, the full set at x of width k with respect to (T b,Lb) is defined

7 Technically, a minimal element in our definition might not be a compact Bx-namu but just a trimmed
Bx-namu. However, a compact B-namu of the minimal element defines the same upper set due to the
transitivity of 4.
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as the set of all Γ in Uk(Bx) such that ∆ 4 Γ for the reduced Bx-namu ∆ of some branch-
decomposition (T,L) of Vx having width at most k that is k-safe with respect to x, and
totally pure with respect to (T b,Lb).

Dynamic programming. For computing the full sets, we assume the following are given:
A rooted branch-decomposition (T b,Lb) of V of width at most θ.
A set of transition matrices {Tv}v∈V (T b) of some transcript Λ of (T b,Lb).

A B-namu Γ = (T, α, λ, U) is a k-safe extension of trim(Γ) if for every edge uv in
E(T )−E(trim(T )), we have λ(uv) + dimU −max(dimα(v, uv), dimα(u, uv)) ≤ k. For two
sets R1, R2 of B-namus, we define R1⊕R2 as the set

⋃
Γ1∈R1,Γ2∈R2

Γ1 ⊕ Γ2. Note that
for two children x1, x2 of a node x in T b, when we compute FSk(x1)⊕ FSk(x2), we regard
FSk(x1), FSk(x2) as the sets of (Bx1 +Bx2)-namus. Thus, FSk(x1)⊕FSk(x2) is well defined.
If B′ is a subspace of B, then we define R|B′ as the set of projections Γ|B′ for all Γ ∈ R.
For a subspace B of Fr and a set R of B-namus, the set upk(R, B) is the collection of all
B-namus Γ ∈ Uk(B) with trim(Γ′) 4 Γ for some Γ′ ∈ R such that Γ′ is a k-safe extension of
trim(Γ′).

I Proposition 5.2. Let k be a nonnegative integer. Let (T b,Lb) be a rooted branch-
decomposition of a subspace arrangement V over a finite field F of width at most θ.

For a leaf ` of T b, we have FSk(`) = {∆`} where ∆` = (T, α, λ,B`) is the B`-namu such
that T is a tree with V (T ) = {1}.
For two children x1 and x2 of a node x in T b, FSk(x) = upk((FSk(x1)⊕FSk(x2))|Bx , Bx).
For the root node r of T b, FSk(r) 6= ∅ if and only if the branch-width of V is at most k.

Moreover, we can compute FSk(r), and construct a (rooted) branch-decomposition of V of
width at most k if FSk(r) 6= ∅, in time f(k, θ, |F|)|V| for some function f .

Proposition 5.2 states that when FSk(x) 6= ∅, the same B-namu or a better one can be
constructed by conducting operations on B-namus in the full set at its child nodes. Therefore,
when FSk(r) 6= ∅, one can identify a B-namu Γx at each node x of T b which participates in
the construction of the element in FSk(r). Additionally, we have the information including
how Γx’s are combined and how the combined B-namu is related to the B-namu at its parent.
We construct a branch-decomposition of V having width at most k by backtracking based on
such information. However, proving the correctness of this backtracking algorithm is highly
nontrivial. For this, we introduce the notion of witnesses. Details are in the full version.

Summary. Now we are ready to present the proof of Theorem 1.1.

Proof of Theorem 1.1. We preprocess the input by applying Lemma 5.1 to (M, I, k) in time
O(rm2 +(k+1)rmn) and obtain an equivalent instance (M ′, I ′, k) as described in Lemma 5.1
and otherwise, we confirm that the branch-width of V exceeds k. We may assume that k > 0
because if I ′i = ∅ for all i, then every branch-decomposition has width 0. Henceforth, we
assume M = M ′, I = I ′, Vi = col(M ′[I ′i]) to simplify notations.

We may also assume that dim Vi 6= 0 for all i because otherwise we delete all such Vi

and later we can extend a branch-decomposition of V − {Vi} to that of V of the same width.
After the preprocessing, if n = 1, then an arbitrary branch-decomposition has width 0 and so
we simply output an arbitrary branch-decomposition of V . If n = 2, then the branch-width is
at most k because dim V1, dim V2 ≤ k by (iii) of Lemma 5.1. So we may assume that n ≥ 3.

We will apply iterative compression on Vi = {V1, . . . , Vi} for i = 3, . . . , n. We initially
start with a trivial branch-decomposition (T2,L2) of V2 = {V1, V2} having width at most k.
We carry out a compression step for each i = 3, . . . , n as follows.
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(1) By adding a new leaf v to Ti−1 and extending Li−1 to map v to Vi, we create a branch-
decomposition (T ′i ,L′i) of Vi. Note that the width of (T ′i ,L′i) is at most 2k because
(Ti−1,Li−1) has width at most k and Vi has dimension at most k.

(2) We use the algorithm in Theorem 2.1 to compute transition matrices {Tv}v∈V (T ′
i
) of the

transcript for (T ′i ,L′i) in time O(k3n2). Note that the submatrix M [I1 ∪ I2 ∪ · · · ∪ Ii] is
in reduced row echelon form and so we can apply Theorem 2.1 by ignoring zero rows.

(3) Given a rooted branch-decomposition (T ′i ,L′i) of Vi of width at most 2k and a set of the
transition matrices {Tv}v∈V (T ′

i
), we compute the full set in time g(k, 2k, |F|)i for some

function g by Proposition 5.2. If the full set at the root is empty, then the branch-width
of Vi is larger than k. If so, we conclude that the branch-width of V is larger than k and
stop. If the full set at the root is nonempty, then the algorithm in Proposition 5.2 also
provides a branch-decomposition (Ti,Li) of Vi having width at most k.

If this algorithm finds (Tn,Ln), then (Tn,Ln) is a branch-decomposition of V having width
at most k. For each i, (1)–(3) runs in at most O(k3n2) + f(k, |F|)n time for some function f
and therefore the total running time of this step is O(k3n3) + f(k, |F|)n2. J
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1 Introduction

In the classic version of the sorting problem, we are given a set, S, of n comparable items
coming from a fixed total order and asked to compute a permutation that places the items
from S into non-decreasing order, and it is well-known that this can be done using O(n log n)
comparisons, which is asymptotically optimal (e.g., see [6, 8, 14]). However, there are a
number of interesting applications where this classic version of the sorting problem doesn’t
apply.

For instance, consider the problem of maintaining a ranking of a set of sports teams
based on the results of head-to-head matches. A typical approach to this sorting problem is
to assume there is a fixed underlying total order for the teams, but that the outcomes of
head-to-head matches (i.e., comparisons) are “noisy” in some way. In this formulation, the
ranking problem becomes a one-shot optimization problem of finding the most-likely fixed
total order given the outcomes of the matches (e.g., see [5, 7, 9, 10, 15]). In this paper, we
study an alternative, complementary motivating scenario, however, where instead of there
being a fixed total order and noisy comparisons we have a scenario where comparisons are
accurate but the underlying total order is evolving. This scenario, for instance, captures the
real-world phenomenon where sports teams make mid-season changes to their player rosters
and/or coaching staffs that result in improved or degraded competitiveness relative to other
teams. That is, we are interested in the sorting problem for evolving data.

1.1 Related Prior Work for Evolving Data
Anagnostopoulos et al. [1] introduce the evolving data framework, where an input data set is
changing while an algorithm is processing it. In this framework, instead of an algorithm taking
a single input and producing a single output, an algorithm attempts to maintain an output
close to the correct output for the current state of the data, repeatedly updating its best
estimate of the correct output over time. For instance, Anagnostopoulos et al. [1] mention the
motivation of maintaining an Internet ranking website that displays an ordering of entities,
such as political candidates, movies, or vacation spots, based on evolving preferences.

Researchers have subsequently studied other interesting problems in the evolving data
framework, including the work of Kanade et al. [13] on stable matching with evolving
preferences, the work of Huang et al. [12] on selecting top-k elements with evolving
rankings, the work of Zhang and Li [18] on shortest paths in evolving graphs, the work of
Anagnostopoulos et al. [2] on st-connectivity and minimum spanning trees in evolving graphs,
and the work of Bahmani et al. [3] on PageRank in evolving graphs. In each case, the goal is
to maintain an output close to the correct one even as the underlying data is changing at a
rate commensurate to the speed of the algorithm. By way of analogy, classical algorithms
are to evolving-data algorithms as throwing is to juggling.

1.2 Problem Formulation for Sorting Evolving Data
With respect to the sorting problem for evolving data, following the formulation of
Anagnostopoulos et al. [1], we assume that we have a set, S, of n distinct items that
are properly ordered according to a total order relation, “<”. In any given time step, we are
allowed to compare any pair of items, x and y, in S according to the “<” relation and we
learn the correct outcome of this comparison. After we perform such a comparison, α pairs
of items that are currently consecutive according to the “<” relation are chosen uniformly at
random and their relative order is swapped. As in previous work [1], we focus on the case
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where α = 1, but one can also consider versions of the problem where the ratio between
comparisons and random consecutive swaps is something other than one-to-one. Still, this
simplified version with a one-to-one ratio already raises some interesting questions.

Since it is impossible in this scenario to maintain a list that always reflects a strict ordering
according to the “<” relation, our goal is to maintain a list with small Kendall tau distance,
which counts the number of inversions, relative to the correct order.2 Anagnostopoulos et
al. [1] show that, for α = 1, the Kendall tau distance between the maintained list and the
underlying total order is Ω(n) in both expectation and with high probability. They also show
how to maintain this distance to be O(n log log n), with high probability, by performing a
multiplexed batch of quicksort algorithms on small overlapping intervals of the list. Recently,
Besa Vial et al. [4] empirically show that repeated versions of quadratic-time algorithms
such as bubble sort and insertion sort seem to maintain an asymptotically optimal distance
of O(n). In fact, this linear upper bound seems to hold even if we allow α, the number of
random swaps at each step, to be a much larger constant.

1.3 Our Contributions
The main contribution of the present paper is to prove that repeated insertion sort maintains
an asymptotically optimal Kendall tau distance, with high probability, for sorting evolving
data. This algorithm repeatedly makes in-place insertion-sort passes (e.g., see [6, 8]) over
the list, lt, maintained by our algorithm at each step t. Each such pass moves the item at
position j to an earlier position in the list so long as it is bigger than its predecessor in the
list. With each comparison done by this repeated insertion-sort algorithm, we assume that
a consecutive pair of elements in the underlying ordered list, l′t, are chosen uniformly at
random and swapped. In spite of the uncertainty involved in sorting evolving data in this
way, we prove the following theorem, which is the main result of this paper.

I Theorem 1. Running repeated insertion-sorts algorithm, for every step t = Ω(n2), the
Kendall tau distance between the maintained list, lt, and the underlying ordered list, l′t, is
O(n) with exponentially high probability.

That is, after an initialization period of Θ(n2) steps, the repeated insertion-sort algorithm
converges to a steady state having an asymptotically optimal Kendall tau distance between
the maintained list and the underlying total order, with exponentially high probability.
We also show how to reduce this initialization period to be Θ(n log n) steps, with high
probability, by first performing a quicksort algorithm and then following that with the
repeated insertion-sort algorithm.

Intuitively, our proof of Theorem 1 relies on two ideas: the adaptivity of insertion sort
and that, as time progresses, a constant fraction of the random swaps fix inversions. Ignoring
the random swaps for now, when there are k inversions, a complete execution of insertion
sort performs roughly k + n comparisons and fixes the k inversions (e.g., see [6, 8]). If an ε
fraction of the random swaps fix inversions, then during insertion sort ε(k+ n) inversions are
fixed by the random swaps and (1− ε)(k + n) are introduced. Naively the total change in
the number of inversions is then (1 − 2ε)(k + n) − k and when k > 1−2ε

2ε n, the number of
inversions decreases. So the number of inversions will decrease until k = O(n).

This simplistic intuition ignores two competing forces involved in the heavy interplay
between the random swaps and insertion sort’s runtime, however, in the evolving data model,

2 Recall that an inversion is a pair of items u and v such that u comes before v in a list but u > v. An
inversion in a permutation π is a pair of elements x 6= y with x < y and π(x) > π(y).
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Algorithm 1 Repeated insertion sort pseudocode
function repeated_insertion_sort(l)

while true do
for i← 1 to n− 1 do

j ← i

while j > 0 and l[j] < l[j − 1] do
swap l[j] and l[j − 1]
j ← j − 1

which necessarily complicates our proof. First, random swaps can cause an insertion-sort pass
to end too early, thereby causing insertion sort to fix fewer inversions than normal. Second,
as insertion sort progresses, it decreases the chance for a random swap to fix an inversion.
Analyzing these two interactions comprises the majority of our proof of Theorem 1.

In Section 3, we present a complete proof of Theorem 1. The most difficult component
of Theorem 1’s proof is Lemma 6, which lower bounds the runtime of insertion sort in the
evolving data model. The proof of Lemma 6 is presented separately in Section 4.

Due to space requirements, some proofs are left to the Arxiv version of the paper.

2 Preliminaries

The sorting algorithm we analyze in this paper for the evolving data model is the repeated
insertion-sort algorithm whose pseudocode is shown in Algorithm 1.

Formally, at time t, we denote the sorting algorithms’ list as lt and we denote the
underlying total order as l′t. Together these two lists define a permutation, σt, of the indices,
where σt(x) = y if the element at index x in lt is at position y in l′t. We define the simulated
final state at time t to be the state of l obtained by freezing the current underlying total
order, l′t, (i.e., no more random swaps) and simulating the rest of the current round of
insertion sort (we refer to each iteration of the while-true loop in Algorithm 1 as a round).
We then define a frozen-state permutation, σ̂t, where σ̂t(x) = y if the element at index x in
the simulated final state at time t as at index y in l′t.

Let us denote the number of inversions at time t, in σt, with It. Throughout the paper,
we may choose to drop time subscripts if our meaning is clear. The Kendall tau distance
between two permutations π1 and π2 is the number of pairs of elements x 6= y such that
π1(x) < π1(y) and π2(x) > π2(y). That is, the Kendall tau distance between lt and l′t is
equal to It, the number of inversions in σt. Figure 1 shows the state of l, l′, I, and σ for two
steps of an insertion sort (but not in the same round).

As the inner while-loop of Algorithm 1 executes, we can view l as being divided into
three sets: the set containing just the active element, l[j] (which we view as moving to the
left, starting from position i, as it is participating in comparisons and swaps), the semi-sorted
portion, l[0 : i], not including l[j], and the unsorted portion, l[i+ 1 : n− 1]. Note that if no
random adjacent swaps were occurring in l′ (that is, if we were executing insertion-sort in
the classical algorithmic model), then the semi-sorted portion would be in sorted order.

To understand the nature of the inversions in the semi-sorted portion, we will use the
Cartesian tree [17]. Given a list, L, of m numbers with no two equal numbers, the Cartesian
tree of L is a binary rooted tree on the numbers where the root is the minimum element
L[k], the left subtree of the root is the Cartesian tree of L[0 : k − 1], and the right subtree of
the root is the Cartesian tree of L[k + 1 : m]. In our analysis, we will primarily consider the
Cartesian tree of the simulated final state at time t where L[k] = σ̂t(k) in the frozen-state
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Figure 1 Examples of l, l′, I, and σ over two steps of an algorithm. In the first step the green
and red elements are compared in l and the red and yellow elements are swapped in l′. In the second
step the red and yellow elements are compared and swapped in l and the blue and yellow elements
are swapped in l′.

permutation σ̂t. We also choose to include two additional elements, L[−1] = −1 and L[n] = n,
for boundary cases.

We call the path from the root to the rightmost leaf of the Cartesian tree the (right-to-left)
minima path as the elements on this path are the right-to-left minima in the list. For a
minimum, l[k], denote with M(k) the index of the element in the left subtree of l[k] that
maximizes σ̂(k), i.e., the index of the largest element in the left subtree.

We use the phrase with high probability to indicate when an event occurs with probability
that tends towards 1 as n → ∞. When an event occurs with probability of the form
1− e− poly(n), we say it occurs with exponentially high probability. During our analysis, we
will make use of the following facts.

I Lemma 2 (Poisson approximation (Corollary 5.9 in [16])). Let X(m)
1 , . . . , X

(m)
n be the

number of balls in each bin when m balls are thrown uniformly at random into n bins. Let
Y

(m)
1 , . . . , Y

(m)
n be independent Poisson random variables with λ = m/n. Then for any event

ε(x1, . . . , xn):

Pr
[
ε
(
X

(m)
1 , . . . , X(m)

n

)]
≤ e
√
mPr

[
ε
(
Y

(m)
1 , . . . , Y (m)

n

)]
.

I Lemma 3 (Hoeffding’s inequality (Theorem 2 in [11])). If X1, . . . , Xn are independent
random variables and ak ≤ Xk ≤ bk for k = 1, . . . , n, then for t > 0:

Pr
[∑

k

Xk − E

[∑
k

Xk

]
≥ tn

]
≤ e−2n2t2/(

∑
k
(bk−ak)2).

3 Sorting Evolving Data with Repeated Insertion Sort

Let us begin with some simple bounds with respect to a single round of insertion sort.
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I Lemma 4. If a round of insertion sort starts at time ts and finishes at time te, then
1. te− ts = F +n−1, where F is the number of inversions fixed (at the time of a comparison

in the inner while-loop) by this round of insertion sort.
2. te − ts < n2/2
3. for any ts ≤ t ≤ te, It − Its < n.

Proof. (1): For each iteration of the outer for-loop, each comparison in the inner while-loop
either fixes an inversion (at the time of that comparison) or fails to fix an inversion and
completes the inner while-loop. Note that this “failed” comparison may not have compared
elements of l, but may have short circuited due to j ≤ 0. Nevertheless, every comparison
that doesn’t fail fixes an inversion (at the time of that comparison); hence, each non-failing
comparison is counted in F .

(2): In any round, there are at most n(n− 1)/2 comparisons, by the formulations of the
outer for-loop and inner while-loop.

(3): At time t, the round of insertion sort will have executed t− ts steps. Of those steps,
at least t− ts− (n−1) comparisons resulted in a swap that removed an inversion and at most
n− 1 comparisons did not result in a change to l. The random swaps occurring during these
comparisons introduced at most t− ts inversions. So It − Its ≤ t− ts −

(
t− ts − (n− 1)

)
=

n− 1. J

We next assert the following two lemmas, which are used in the next section.

I Lemma 5. There exists a constant, 0 < ε < 1, such that, for a round of insertion sort that
takes time t∗, at least εt∗ of the random adjacent swaps in l′ decrease I during the round,
with exponentially high probability.

Proof. Proof omitted due to space requirements. J

I Lemma 6. If a round of insertion sort starts at time ts with Its ≥ (12c2 + 2c)n and
finishes at time te, then, with exponentially high probability, te − ts ≥ cn, i.e., the insertion
sort round takes at least cn steps.

Proof. See Section 4. J

3.1 Proof of Theorem 1
Armed with the above lemmas (albeit postponing the proofs of Lemma 5 and Lemma 6), let
us prove our main theorem.

Theorem 1. There exists a constant, 0 < ε < 1, such that, when running the repeated
insertion-sort algorithm, for every step t > (1 + 1/ε)n2, the Kendall tau distance between
the maintained list, lt, and the underlying ordered list, l′t, is O(n), with exponentially high
probability.

Proof. By Lemma 5, there exists a constant 0 < ε < 1 such that at least an ε fraction of
all of the random swaps during a round of insertion sort fix inversions. Consider an epoch
of the last (1 + 1/ε)n2 steps of the repeated insertion-sort algorithm, that is, from time
t′ = t − (1 + 1/ε)n2 to t. During this epoch, some number, m ≥ 1, of complete rounds of
insertion sort are performed from start to end (by Lemma 4). Denote with tk the time at
which insertion-sort round k ends (and round k + 1 begins), and let tm denote the end time
of the final complete round, during this epoch. By construction, observe that t′ ≤ t0 and
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tm ≤ t. Furthermore, because the insertion-sort rounds running before t0 and after tm take
fewer than n2/2 steps (by Lemma 4), tm − t0 ≥ n2/ε.

The remainder of the proof consists of two parts. In the first part, we show that for some
complete round of insertion sort ending at time tk ≤ t, Itk is O(n), with exponentially high
probability. In the second part, we show that once we achieve Itk being O(n), for tk ≤ t,
then It is O(n), with exponentially high probability.

For the first part, suppose, for the sake of a contradiction, Itk >
(
12( 1

ε )2 + 2
ε

)
n, for all

0 ≤ k ≤ m. Then, by a union bound over the polynomial number of rounds, Lemma 6 applies
to every such round of insertion sort. So, with exponentially high probability, each round
takes at least n/ε steps. Moreover, by Lemma 5, with exponential probability, an ε fraction
of the random swaps from tm to t0 will decrease the number of inversions. That is, these
random swaps increase the number of inversions by at most

(1− ε)(tm − t0)− ε(tm − t0) = (1− 2ε)(tm − t0),

with exponentially high probability. Furthermore, by Lemma 4, at least a (1/ε)−1
1/ε = 1− ε

fraction of the insertion-sort steps fix inversions (at the time of a comparison). Therefore,
with exponentially high probability, we have the following:

Itm ≤ It0 − (1− ε)(tm − t0) + (1− 2ε)(tm − t0)
= It0 − ε(tm − t0)
≤ It0 − n2.

But, since It0 < n2, the above bound implies that Itm < 0, which is a contradiction. Therefore,
with exponentially high probability, there is a k ≤ m such that Itk ≤ (12( 1

ε )2 + 2
ε )n.

For the second part, we show that the probability for a round ` > k to have It` >
(12( 1

ε )2 + 2
ε + 1)n is exponentially small, by considering two cases (and their implied union-

bound argument):
If It`−1 ≤ (12( 1

ε )2 + 2
ε )n, then Lemma 4 implies It` ≤ (12( 1

ε )2 + 2
ε + 1)n.

If (12( 1
ε )2 + 2

ε )n ≤ It`−1 ≤ (12( 1
ε )2 + 2

ε + 1)n, then, similar to the argument given above,
during a round of insertion sort, `, at least a 1− ε fraction of the steps fix an inversion,
and an ε fraction of the steps do nothing. Also at least an ε fraction of the random swaps
fix inversions, while a 1− ε fraction add inversions. Finally, the total length of the round
is t` − t`−1. Thus, with exponentially high probability, the total change in inversions is
at most −ε(t` − t`−1) and It` < It`−1 .

Therefore, by a union bound over the polynomial number of insertion-sort rounds, the
probability that any It` > (12( 1

ε )2 + 2
ε + 1)n for k < ` ≤ m is exponentially small. By

Lemma 4, It ≤ Itm+n. So, with exponentially high probability, Itm ≤ (12( 1
ε )2+ 2

ε+1)n = O(n)
and It = O(n), completing the proof. J

3.2 Improved Convergence Rate
In this subsection, we provide an algorithm that converges to O(n) inversions more quickly.
To achieve the steady state of O(n) inversions, repeated insertion sort performs Θ(n2)
comparisons. But this running time to reach a steady state is a worst-case based on the fact
that the running time of insertion sort is O(n+ I), where I is the number of initial inversions
in the list, and, in the worst case, I is Θ(n2). By simply running a round of quicksort on l
first, we can achieve a steady state of O(n) inversions after just Θ(n log n) comparisons. See
Algorithm 2. That is, we have the following.
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Algorithm 2 Quicksort followed by repeated insertion sort pseudocode
function quick_then_insertion_sort(l)

quicksort(l)
while true do

for i← 1 to n− 1 do
j ← i

while j > 0 and l[j] < l[j − 1] do
swap l[j] and l[j − 1]
j ← j − 1

I Theorem 7. When running Algorithm 2, for every t = Ω(n log n), It is O(n) with high
probability.

Proof. By the results of Anagnostopoulos et al. [1], the initial round of quicksort takes
Θ(n log n) comparisons and afterwards the number of inversions (that is, the Kendall tau
distance between the maintained list and the true total order) is O(n log n), with high
probability. Using a nearly identical argument to the proof of Theorem 1, and the fact that
an insertion-sort round takes O(I+n) time to resolve I inversions, the repeated insertion-sort
algorithm will, with high probability, achieve O(n) inversions in an additional O(n log n)
steps. From that point on, it will maintain a Kendall tau distance of O(n), with high
probability. J

4 Proof of Lemma 6

Recall Lemma 6, which establishes a lower bound for the running time of an insertion-sort
round, given a sufficiently large amount of inversions relative to the underlying total order.

Lemma 6. If a round of insertion sort starts at time ts with Its ≥ (12c2 + 2c)n and finishes
at time te, then, with exponentially high probability, te − ts ≥ cn, i.e., the insertion sort
round takes at least cn steps.

The main difficulty in proving Lemma 6 is understanding how the adjacent random swaps
in l′ affect the runtime of the current round of insertion sort on l. Let St be the number of
steps left to perform in the current round of insertion sort if there were no more random
adjacent swaps in l′. In essence, S can be thought of as an estimate of the remaining time in
the current insertion sort round. If a new round of insertion sort is started at time ts, then
Sts−1 = 1 and Its ≤ Sts ≤ Its + n− 1. Each step of an insertion sort round decreases S by
one and the following random swap may increase or decrease S by some amount. Figure 2
illustrates an example where one random adjacent swap in l′ decreases S by a non-constant
amount (relative to n).

A random adjacent swap in l′ involving two elements in the unsorted portion of l will
either increase or decrease S by one depending on whether it introduces or removes an
inversion. Random adjacent swaps involving elements in the semi-sorted portion have more
complex effects on S.

An inversion currently in the list
(
l[a], l[b]

)
will be fixed by insertion sort if l[a] and l[b]

will be compared and the two are swapped. Because a < b, l[b] must be the active element
during this comparison. An inversion

(
l[a], l[b]

)
will not be fixed by insertion sort if l[b] was

already inserted into the semi-sorted portion or there is some element l[c] in the semi-sorted
portion with a < c < b and σ(c) < σ(b). We call an inversion with l[b] in the semi-sorted
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semisorted

unsorted
σt σt+1

Figure 2 An example where swapping the ordering of the red and blue elements in l′ creates
multiple blocked inversions between the blue element and the black elements. Recall that our list is
partitioned into the semisorted region, which contains elements that have already been compared in
this round, and the unsorted region.

unsorted element

minima path

Figure 3 In this Cartesian tree, the green-blue pair is a blocked inversion and the green-yellow
pair is a stuck inversion. Both pairs of inversions blame the red element.

portion a stuck inversion and an inversion with a smaller semi-sorted element between the
pair a blocked inversion. We say an element l[c] in the semi-sorted portion of l blocks an
inversion

(
l[a], l[b]

)
with a ≤ i and l[b] either the active element or in the unsorted portion

of l, if l[c] is in the semi-sorted portion of l with a < c < b and σ(c) < σ(b). Note that there
may be multiple elements blocking a particular inversion. Figure 3 shows examples of these
two types of inversions.

We denote the number of “bad” inversions at time t that will not be fixed with Bt. That
is, Bt is the sum of the blocked and stuck inversions. At the end of an insertion-sort round
every inversion present at the start was either fixed by the insertion sort, fixed by a random
adjacent swap in l′, or is currently stuck. No elements can be blocked at the end of an
insertion-sort round, because the semi-sorted portion is the entire list. Stuck inversions are
either created by random adjacent swaps in l′ or were blocked inversions and insertion sort
finished inserting the right element of the pair. Blocked inversions are only introduced by
the random adjacent swaps in l′. Thus Bt is unaffected by the steps of insertion sort.

Every inversion present at the start must be fixed by a step of insertion sort, be fixed
by a random swap, or it will end up “bad”. Therefore, for any given time, t, by using naive
upper bounds based on the facts that every insertion sort step can fix an inversion and every
random adjacent swap can remove an inversion, we can immediately derive the following:

I Lemma 8. For an insertion sort round that starts at time ts and ends at time te, if
ts ≤ t ≤ te, then St ≥ Its − 2(t− ts)−Bt.

Since, when an insertion sort round finishes, Ste−1 = 1, Lemma 8 implies 2(te − ts − 1) +
Bte + 1 ≥ Its . If we understand how B changes with each random adjacent swap in l′, then
we can bound how long insertion sort needs to run for this inequality to be true.
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We associate the blocked and stuck inversions with elements that we say are blamed for
the inversions. A blocked inversion

(
l[a], l[b]

)
blames the element l[c] with a < c < b and

minimum σ(c). Note than l[c] is on the minima path of the modified Cartesian tree, and
l[a] is in the left subtree of l[c]. A stuck inversion either blames the element on the minima
path whose subtree contains both l[a] and l[b] or if they appear in different subtrees, the
inversion blames the element l[c] with a < c < b and minimum σ(c). Again note that the
blamed element is on the minima path and l[a] is in the blamed element’s left subtree. The
bad inversions in Figure 3 blame the red element.

Whether stuck or blocked, every inversion blames an element on the minima path and
the left element of the inverted pair appears in that minimum’s subtree. If l[k] is on the
minima path, M(k) is the index of the element in l[k]’s subtree with maximum σ(M(k)),
and an inversion

(
l[a], l[b]

)
has l[a] in l[k]’s subtree, then both l[a] and l[b] are in the range

σ(k) to σ(M(k)). So we can upper bound Bt by
∑n−1
k=0(σ(M(k))− σ(k))2, where we extend

M to non-minima indices with M(k) = k if k is not the index of a minima in l.

4.1 Bounding the Number of Blocked and Stuck Inversions with
Counters

For the purposes of bounding Bt, we conceptually associate two counters, Inc(x) and Dec(x),
with each element, x. The counters are initialized to zero at the start of an insertion sort
round. When an element x is increased by a random swap in l′, we increment Inc(x) and
when x is decreased by a random swap in l′, we increment Dec(x). After the random swap
occurs, we may choose to exchange some of the counters between pairs of elements, but we
will always maintain the following invariant:

Invariant 1. For an element, l[k], on the minima path,

Inc
(
l[M(k)]

)
+ Dec

(
l[k]
)
≥ σ

(
M(k)

)
− σ(k).

This invariant allows us to prove the following Lemma:

I Lemma 9. If
∑n−1
k=0 Inc

(
l[k]
)2
< κ and

∑n−1
k=0 Dec

(
l[k]
)2
< κ, then Bt ≤ 4κ.

Proof.

Bt ≤
n−1∑
k=0

(
σ(M(k)

)
− σ(k)

)2

≤
n−1∑
k=0

(
Inc
(
M(k)

)
+ Dec(k)

)2
By Invariant 1 (1)

By the assumptions of this lemma, interpreting Inc and Dec as two n-dimensional vectors,
we know their lengths are both less than

√
κ. Equation 1 is the squared length of the sum of

the Dec and Inc vectors with the entries of Inc permuted by the function M . By the triangle
inequality, the length of their sum is at most 2

√
κ and so the squared length of their sum is

at most 4κ.
Therefore, Bt ≤ 4κ. J

I Lemma 10. There is a counter maintenance strategy that maintains Invariant 1 such that
after each random adjacent swap in l′, the corresponding counters are incremented and then
some counters are exchanged between pairs of elements.

Proof. Proof omitted due to space requirements. J
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4.2 Bounding the Counters with Balls and Bins
We model the Inc and Dec counters each with a balls and bins process and analyze the sum
of squares of balls in each bin. Each element in l is associated with one of n bins. When an
element’s Inc counter is increased, throw a ball into the corresponding bin. If a pair of Inc
counters are exchanged, exchange the set of balls in the two corresponding bins. The Dec
counters can be modeled similarly.

This process is almost identical to throwing balls into n bins uniformly at random. Note
that the exchanging of balls in pairs of bins takes place after a ball has been placed in a
chosen bin, effectively permuting two bin labels in between steps. If every bin was equally
likely to be hit at each time step, then permuting the bin labels in this way would not
change the final sum of squares and the exchanging of counters could be ignored entirely.
Unfortunately the bin for the element at l[n− 1] in the case of Inc counters or l[0] in the
case of Dec counters cannot be hit, i.e., there is a forbidden bin controlled by the counter
swapping strategy. However, even when in each round the forbidden bin is adversarially
chosen, the sum of squares of the number of balls in each bin will be stochastically dominated
by a strategy of always forbidding the bin with the lowest number of balls. Therefore, the
sum of squares of m balls being thrown uniformly at random into n− 1 bins stochastically
dominates the sum of squares of the Inc (or Dec) counters after m steps.

I Theorem 11. If cn balls are each thrown uniformly at random into n bins with c > e,
then the sum over the bins of the square of the number of balls in each bin is at most 3c2n
with exponentially high probability.

Proof. Let X1, . . . , Xn be random variables where Xk is the number of balls in bin k and
let Y1, . . . , Yn be independent Poisson random variables with λ = c.

By the Poisson approximation, Lemma 2,

Pr
[∑

k

X2
k ≥ 3c2n

]
≤ e
√
cnPr

[∑
k

Y 2
k ≥ 3c2n

]
.

Let Zk be the event that Yk ≥ ecn1/6 and Z be the event that at least one Zk occurs.

Pr[Z] ≤ nPr[Z1] by a union bound.

Pr[Z1] = e−c
∞∑

k=ecn1/6

ck

k! ≤ e
−c

∞∑
k=ecn1/6

ck

e
(
k
e

)k
= e−c−1

∞∑
k=ecn1/6

(ec
k

)k
≤ e−c−1

∞∑
k=ecn1/6

(
1

n1/6

)k
= e−c−1(n1/6)−ecn

1/6
∞∑
k=0

1
n1/6

k

≤ e−cn− ec
6 n

1/6
.

⇒ Pr[Z] ≤ n

ecn
ec
6 n

1/6 ≤ e−Ω(n1/6).

Letting Y =
∑
k Y

2
k :

E[Y |¬Z] ≤ E[Y ] = nE[Y 2
1 ] = n

(
c+ c2

)
≤ 2c2n.

Given ¬Z, (Yk)2 ∈ [0, ecn1/3]. So we can apply Hoeffding’s inequality, Lemma 3, to get:

Pr [Y − E [Y |¬Z] ≥ tn|¬Z] ≤ e−2t2n2/
(
n(ecn1/3)2)

.
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Setting t = c2, we have:

Pr
[
Y − E [Y |¬Z] ≥ c2n|¬Z

]
≤ e(−2c4n2)/

(
n(ecn1/3)2)

≤ e−2n1/3
.

Because E [Y |¬Z] ≤ 2c2n, we have Pr[Y ≥ 3c2n|¬Z] ≤ e−Ω(n1/3).

Pr
[
Y ≥ 3c2n

]
= Pr

[
Y ≤ 3c2n and Z

]
+ Pr

[
Y ≤ c2n and ¬Z

]
≤ Pr[Z] + Pr

[
Y ≤ 3c2n|¬Z

]
≤ e−Ω(n1/6) + Pr[Y − E[Y |¬Z] ≥ c2n|¬Z]

≤ e−Ω(n1/6) + e−Ω(n1/3) ≤ 2e−Ω(n1/6).

Thus, we can conclude Pr[
∑
kX

2
k ≥ 3c2n] ≤ 2e

√
cn

eΩ(n1/6)
≤ e− poly(n). J

Recall that by Lemma 8, if an insertion-sort round ends at time t, then Its ≤ 2(t −
ts) + Bt + 1. Theorem 11 and a simple union bound tell us that if t ≤ ts + cn, then∑n−1
k=0 Inc

(
l[k]
)2 ≤ 3c2(n − 1) and

∑n−1
k=0 Dec

(
l[k]
)2 ≤ 3c2(n − 1) with exponentially high

probability. So by Lemma 9, Bt ≤ 12c2n.
Recall that when the insertion sort round finishes, 2(te − ts − 1) +Bte + 1 ≥ Its . If fewer

than cn steps have been performed, the left hand side of this inequality is less than (12c2+2c)n
with exponentially high probability. Therefore, if we started with (12c2 + 2c)n inversions,
the current round of insertion sort must perform at least cn steps with exponentially high
probability; otherwise, there are unfixed but still “good” inversions. This completes the proof
of Lemma 6.

5 Conclusion

We have shown that, although it is much simpler than quicksort and only fixes at most one
inversion in each step, repeated insertion sort leads to the asymptotically optimal number of
inversions in the evolving data model. We have also shown that by using a single round of
quicksort before our repeated insertion sort, we can get to this steady state after an initial
phase of O(n log n) steps, which is also asymptotically optimal.

For future work, it would be interesting to explore whether our results can be composed
with other problems involving algorithms for evolving data, where sorting is a subcomponent.
In addition, our analysis in this paper is specific to insertion sort, and only applies when
exactly one random swap is performed after each comparison. We would like to extend this
to other sorting algorithms that have been shown to perform well in practice and to the case
in which the number of random swaps per comparison is a larger constant. Finally, it would
also be interesting to explore whether one can derive a much better ε value than we derived
in the proof of Lemma 5.
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1 Introduction

Let H ⊂ Rd be a family of |H| = n hyper-planes. H partitions Rd into O(nd) cells. The
point-location problem is to decide, given an input point x ∈ Rd, to which cell it belongs.
That is, to compute the function

AH(x) := (sign(〈x, h〉) : h ∈ H) ∈ {−1, 0, 1}n.

A well-studied computation model for this problem is a linear decision tree (LDT): this is
a ternary decision tree whose input is x ∈ Rd and its internal nodes v make linear/threshold
queries of the form sign(〈x, q〉) for some q = q(v) ∈ Rd. The three children of v correspond
to the three possible outputs of the query : “−”,“0”,“+”. The leaves of the tree are labeled
with {−1, 0, 1}n with correspondence to the cell in the arrangement that contains x. The
complexity of a linear decision tree is its depth, which corresponds to the maximal number
of linear queries made on any input.

Comparison queries

A comparison decision tree is a special type of an LDT, in which all queries are of one of two
types:

Label query: “sign (〈x, h〉) = ?" for h ∈ H.
Comparison query: “sign (〈x, h′ − h′′〉) = ?" for h′, h′′ ∈ H.

In [6] it is shown that when H is “nice" then there exist comparison decision trees that
computed AH(·) and has nearly optimal depth (up to logarithmic factors). For example, for
any H ⊂ {−1, 0, 1}d there is a comparison decision tree with depth O(d log d log|H|). This
is off by a log d factor from the basic information theoretical lower bound of Ω(d log|H|).
Moreover, it is shown there that certain niceness conditions are necessary. Concretely, they
give an example of H ⊂ R3 such that any comparison decision tree that computes AH(·)
requires depth Ω(|H|). This raises the following natural problem: can comparison decision
trees be generalized in a way that allows to handle arbitrary point-location problems?

Generalized comparisons

This paper addresses the above question by considering generalized comparison queries. A
generalized comparison query allows to re-weight its terms: namely, it is query of the form

“sign (〈x, αh′ − βh′′〉) =?"

for h′, h′′ ∈ H and some α, β ∈ R. Note that it may be assumed without loss of generality that
|α|+ |β| = 1. A generalized comparison decision tree, naturally, is a linear decision tree whose
internal linear queries are restricted to be generalized comparisons. Note that generalized
comparison queries include as special cases both label queries (setting α = 1, β = 0) and
comparison queries (setting α = β = 1/2).

Geometrically, generalized comparisons are 1-dimensional in the following sense: let
q = αh′ − βh′′, with α, β ≥ 0 then q lies on the interval connecting h′ and −h′′. If α and β
have different signs, q lies on an interval between some other ±h′ and ±h′′. So comparison
queries are linear queries that lies on the projective lines intervals spanned by {±h : h ∈ H}.
In particular, if each h ∈ H has sparsity at most k (namely, at most k nonzero coordinates)
then each generalized comparison has sparsity at most 2k.

Our main result is:
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I Theorem 1 (Main theorem). Let H ⊂ Rd. Then there exists a generalized comparison
decision tree of depth O(d4 log d log |H|) that computes AH(x) for every input x ∈ Rd.

Why consider generalized comparisons?

We consider generalized comparisons for a number of reasons:
The lower bound against comparison queries in [6] was achieved by essentially scaling
different elements of H ⊂ R3 with exponentially different scales. Allowing for re-scaling
(which is what generalized comparisons allow to do) solves this problem.
Generalized comparisons may be natural from a machine learning perspective, in particular
in the context of active learning. A common type of queries used in practice it to give
a score to an example (say 1-10), and not just label it as positive (+) or negative (-).
Comparing the scores for different examples can be viewed as a “coarse" type of generalized
comparisons.
If the set of original hyperplanes H is “nice", then generalized comparisons maintain some
aspects of niceness in the queries performed. As an example that was already mentioned,
if all hyperplanes in H are k-sparse then generalized comparisons are 2k-sparse. This
is part of a more general line of research, studying what types of “simple queries" are
sufficient to obtain efficient active learning algorithms, or equivalently efficient linear
decision trees for point-location problems.

1.1 Proof outline
Our proof consists of two parts. First, we focus on the case when H ⊂ Rd is in general position,
namely, every d vectors in it are linearly independent. Then, we extend the construction to
arbitrary H. The second part is derived via standard compactness arguments; it is omitted
from here and appears in the full version [8]. The technical crux lies in the first part: let
H ⊆ Rd be in general position; we first construct a randomized generalized comparison
decision tree for H, and then derandomize it. The randomized tree is simple to describe: it
proceeds by steps, where in each step about d2 elements from H are drawn, labelled, and
sorted using generalized comparisons. Then, it is shown that the labels of some 1/d-fraction
of the remaining elements in H are inferred, on average. The inferred vectors are then
removed from H and this step is repeated until all labels in H are inferred.

A central technical challenge lies in the analysis of a single step. It hinges on a result
by Forster [4] that transforms a general-positioned H to an isotropic-positioned H ′ (see
formal definition below) in a way that comparison queries on H ′ correspond to generalized
comparison queries on H . Then, since H ′ is in isotropic position, it follows that a significant
fraction of H ′ has a large margin with respect to the input x. This allows us to employ a
variant of the margin-based inference analysis by [6] on H ′ to derive the desired inference of
some Ω( 1

d )-fraction of the remaining labels in each step.

1.2 Related work
The point-location problem has been studied since the 1980s, starting from the pioneering
work of Meyer auf der Heide [10], Meiser [9], Cardinal et al. [2] and most recently Ezra and
Sharir [3]. This last work, although not formally stated as such, solves the point-location
problem for an arbitrary H ⊂ Rd by a linear decision tree whose depth is O(d2 log d log |H|).
However, in order to do so, the linear queries used by the linear decision tree could be
arbitrary, even when the original family H is very simple (say 3-sparse). This is true for all
previous works, as they are all based on various geometric partitioning ideas, which may

ICALP 2018



82:4 Generalized Comparison Trees for Point-Location Problems

require the use of quite generic hyperplanes. This should be compared with our results
(Theorem 1). We obtain a linear decision tree of a bigger depth (by a factor of d2), however
the type of linear queries we use remain relatively simple; e.g., as discussed earlier, they are
1-dimensional and preserve sparseness.

1.3 Open problems
Our work addresses a problem raised in [7], of whether “simple queries" can be sufficient to
solve the point-location problem for general hyperplanes H, without making any “niceness"
assumptions on H . The solution explored here is to allow for generalized comparisons, which
are a 1-dimensional set of allowed queries. An intriguing question is whether this is necessary,
or whether there are some 0-dimensional gadgets that would be sufficient.

In order to formally define the problem, we need the notion of gadgets. A t-ary gadget in
Rd is a function g : (Rd)t → Rd. Let G = {g1, . . . , gr} be a finite collection of gadgets in Rd.
Given a set of hyperplanes H ⊂ Rd, a G-LDT that solves AH(·) is a LDT where any linear
query is of the form sign(〈q, ·〉) for q = g(h1, . . . , ht) for some g ∈ G and h1, . . . , ht ∈ H . For
example, a comparison decision tree corresponds to the gadgets g1(h) = h (label queries) and
g2(h1, h2) = h1−h2 (comparison queries). A generalized comparison decision tree corresponds
to the 1-dimensional (infinite) family of gadgets {gα(h1, h2) = αh1 − (1− α)h2 : α ∈ [0, 1]}.
It was shown in [6] that comparison decision trees are sufficient to efficiently solve the
point-location problem in 2 dimensions, but not in 3 dimensions. So, the problem is already
open in R3.

I Open problem 1. Fix d ≥ 3. Is there a finite set of gadgets G in Rd, such that for every
H ⊂ Rd there exists a G-LDT which computes AH(·), whose depth is logarithmic in |H|?
Can one hope to get to the information theoretic lower bound, namely to O(d log |H|)?

Another open problem is whether randomized LDT can always be derandomized, without
losing too much in the depth. To recall, a randomized (zero-error) LDT is a distribution
over (deterministic) LDTs which each computes AH(·). The measure of complexity for a
randomized LDT is the expected number of queries performed, for the worst-case input
x. The derandomization technique we apply in this work (see Lemma 16 and its proof for
details) loses a factor of d, but it is not clear whether this loss is necessary.

I Open problem 2. Let H ⊂ Rd. Assume that there exists a randomized LDT which
computes AH(·), whose expected query complexity is at most D for any input. Does there
always exist a (deterministic) LDT which computes AH(·), whose depth is O(D)?

2 Preliminaries and some basic technical lemmas

2.1 Inferring from comparisons
Let x, h ∈ Rd and let S ⊆ Rd.

I Definition 2 (Inference). We say that S infers h at x if sign(〈h, x〉) is determined by the
linear queries sign(〈h′, x〉) for h′ ∈ S. That is, if for any point y in the set{

y ∈ Rd : sign(〈h′, y〉) = sign(〈h′, x〉) ∀h′ ∈ S
}

it holds that sign(〈h, y〉) = sign(〈h, x〉). Define

infer(S;x) := {h ∈ Rd : h is inferred from S at x}.
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The notion of inference has a natural geometric perspective. Consider the partition of Rd
induced by S. Then, S infers h at x if the cell in this partition that contains x is either
disjoint from h or otherwise is contained in h (so in either case, the value of sign(〈h, ·〉) is
constant on the cell).

Our algorithms and analysis are based on inferences from comparisons. Let S − S denote
the set {h′ − h′′ : h′, h′′ ∈ S}.

I Definition 3 (Inference by comparisons). We say that comparisons on S infer h at x if
S ∪ (S − S) infers h at x. Define

InferComp(S;x) := infer
(
S ∪ (S − S);x

)
.

Thus, InferComp(S;x) is determined by querying sign(〈h′, x〉) and sign(〈h′ − h′′, x〉) for all
h′, h′′ ∈ S. Naively, this requires some O(|S|2) linear queries. However, using efficient sorting
algorithm (e.g. merge-sort) achieves it with just O(|S| log |S|) comparison queries. A further
improvement, when |S| > d, is obtained by Fredman’s sorting algorithm that uses just
O(|S|+ d log |S|) comparison queries [5].

2.2 Vectors in isotropic position
Vectors h1, . . . , hm ∈ Rd are said to be in general position if any d of them are linearly
independent. They are said to be in isotropic position if for any unit vectors v ∈ Sd,

1
m

m∑
i=1
〈hi, v〉2 = 1

d
.

Equivalently, if 1
m

∑
hih

T
i is 1

d times the d× d identity matrix. An important theorem of
Forster [4] (see also Barthe [1] for a more general statement) states that any set of vectors in
general position can be scaled to be in isotropic position.

I Theorem 4 ([4]). Let H ⊂ Rd be a finite set in general position. Then there exists an
invertible linear transformation T such that the set

H ′ :=
{

Th

‖Th‖2
: h ∈ H

}
is in isotropic position. We refer to such a T as a Forster transformation for H.

We will also need a relaxed notion of isotropic position. Given vectors h1, . . . , hm ∈ Rd
and some 0 < c < 1, we say that the vectors are in c-approximate isotropic position, if for all
unit vectors v ∈ Sd it holds that

1
m

m∑
i=1
〈hi, v〉2 ≥

c

d
.

We note that this condition is easy to test algorithmically, as it is equivalent to the statement
that the smallest eigenvalue of the positive semi-definite d × d matrix 1

m

∑m
i=1 hih

T
i is at

least c
d .

We summarize it in the following lemma, which follows from basic real linear algebra.

I Claim 5. Let h1, . . . , hm ∈ Rd be unit vectors. Then the following are equivalent.
h1, . . . , hm are in c-approximate isotropic position.
λ1
( 1
m

∑m
i=1 hih

T
i

)
≥ c/d,

where λ1(M) denotes the minimal eigenvalue of a positive semidefinite matrix M .
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We will need the following basic claims. The first claim shows that a set of unit vectors
in an approximate isotropic position has many vectors with non-negligible inner product
with any unit vector.

I Claim 6. Let h1, . . . , hm ∈ Rd be unit vectors in a c-approximate isotropic position, and
let x ∈ Rd be a unit vector. Then, at least a c

2d -fraction of the hi’s satisfy |〈hi, x〉| >
√

c
2d .

Proof. Assume otherwise. It follows that

1
m

m∑
i=1
|〈h, xi〉|2 ≤

c

2d · 1 +
(

1− c

2d

) c

2d <
c

2d + c

2d = c

d
.

This contradicts the assumption that the hi’s are in c-approximate isotropic position. J

The second claim shows that a random subset of a set of unit vectors in an approximate
isotropic position is also in approximate isotropic position, with good probability.

I Claim 7. Let h1, . . . , hm be unit vectors in c-approximate isotropic position. Let i1, . . . , ik ∈
[m] be independently and uniformly sampled. Then for any δ > 0, the vectors hi1 , . . . , hik
are in ((1− δ)c)-approximate isotropic position with probability at least

1− d ·
[

e−δ

(1− δ)1−δ

]ck/d
.

Proof. This is an immediate corollary of Matrix Chernoff bounds [11]. By Claim 5
the above event is equivalent to that λ1

(
1
k

∑k
i=1 hih

T
i

)
≥ (1 − δ) cd . By assumption,

λ1
( 1
m

∑m
i=1 hih

T
i

)
≥ c

d . Now, by the Matrix Chernoff bound, for any δ ∈ [0, 1] it holds that

Pr
[
λ1

(
1
k

k∑
i=1

hih
T
i

)
≤ (1− δ) · c

d

]
≤ d ·

[
e−δ

(1− δ)1−δ

]ck/d
. J

We will use two instantiations of Claim 7: (i) c ≥ 3/4, and (1− δ)c = 1/2, and (ii) c = 1 and
(1− δ)c = 3/4. In both cases the bound simplifies to

1− d ·
(

99
100

)k/d
. (1)

3 Proof of main theorem

Let H ⊂ Rd. Theorem 1 is proved in three steps.
1. First, we assume that H is in general position. In this case, we construct a random-

ized generalized comparison LDT which computes AH(·), whose expected depth is
O(d3 log d log |H|) for any input. This is achieved in Section 3.1, see Lemma 8.

2. Next, we derandomize the construction. This gives for any H in general position a
(deterministic) generalized comparison LDT which computes AH(·), whose depth is
O(d4 log d log |H|). This is achieved in Section 3.2, see Lemma 16.

3. Finally, we handle an arbitrary H (not necessarily in general position), and construct
by a compactness argument a generalized comparisons LDT of depth O(d4 log d log |H|)
which computes AH(·). This step is omitted from this exposition and appears in the full
version [8].
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3.1 A randomized LDT for H in general position

In this section we construct a randomized generalized comparison LDT for H in general
position. Here, by a randomized LDT we mean a distribution over (deterministic) LDT
which compute AH(·). The corresponding complexity measure is the expected number of
queries it makes, for the worst-case input x.

I Lemma 8. Let H ⊆ Rd be a finite set in general position. Then there exists a randomized
LDT that computes AH(·), which makes O

(
d3 log d log|H|

)
generalized comparison queries

on expectation, for any input.

The proof of Lemma 8 is based on a variant of the margin-based analysis of the inference
dimension with respect to comparison queries as in [6] (The analysis in [6] assumed that
all vectors have large margin, where here we need to work under the weaker assumption
that only a noticeable fraction of the vectors have large margin). The crux of the proof
relies on scaling every h ∈ H by a carefully chosen scalar αh such that drawing a sufficiently
large random subset of H, and sorting the values 〈αhh, x〉 using comparison queries (which
correspond to generalized comparisons on the h’s) allows to infer, on average, at least Ω(1/d)
of the labels of H. The scalars αh are derived via Forster’s theorem (Theorem 4). More
specifically, αh = 1

‖Th‖2
, where T is a Forster transformation for H.

Randomized generalized-comparisons tree for H in general position

Let H ⊆ Rd in general position.

Input: x ∈ Rd, given by oracle access for sign(〈·, x〉)
Output: AH(x) = (sign(〈h, x〉))h∈H
(1) Initialize: H0 = H, i = 0, v(h) =? for all h ∈ H. Set k = Θ(d2 log(d)).
(2) Repeat while |Hi| ≥ k:

(2.1) Let Ti be the Forster transformation for Hi. Define H ′i =
{

h
‖Tih‖2

: h ∈ Hi

}
.

(2.2) Sample uniformly Si ⊂ H ′i of size |Si| = k.
(2.3) Query sign(〈h, x〉) for h ∈ Si (using label queries).
(2.4) Sort 〈h, x〉 and 〈−h, x〉 for h ∈ Si (using generalized comparison queries).
(2.5) For all h ∈ Hi, check if h ∈ InferComp(±Si;x), and in case it is, set

v(h) ∈ {−, 0,+} to be the inferred value of h.
(2.6) Remove all h ∈ Hi for which sign (〈h, x〉) was inferred, set Hi+1 to be the

resulting set and go to step (2).
(3) Query sign(〈h, x〉) for all h ∈ Hi, and set v(h) accordingly.
(4) Return v as the value of AH(x).

In order to understand the intuition behind the main iteration (2) of the algorithm,
define x′ = (T−1

i )Tx and for each h ∈ Hi let h′ = Tih
‖Tih‖ . Then sign(〈h, x〉) = sign(〈h′, x′〉),

and so it suffices to infer the sign for many h′ ∈ Hi with respect to x′. The main benefit
is that we may assume in the analysis that the set of vectors H ′i is in isotropic position;
and reduce the analysis to that of using (standard) comparisons on H ′i and x′. These then
translate to performing generalized comparison queries on Hi and the original input x. The
following lemma captures the analysis of the main iteration of the algorithm. Below, we
denote by ±S := S ∪ (−S).

ICALP 2018
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I Lemma 9. Let x ∈ Rd, let H ⊆ Rd be a finite set of unit vectors in c-approximate isotropic
position with c ≥ 3/4, and let S ⊂ H be a uniformly chosen subset of size k = Ω

(
d2 log d

)
.

Then

ES [|InferComp(±S;x) ∩H|] ≥ |H|40d .

Let us first argue how Lemma 8 follows from Lemma 9, and then proceed to prove
Lemma 9.

Proof of Lemma 8 given Lemma 9. By Lemma 9, in each iteration (2) of the algorithm, we
infer on expectation at least Ω(1/d) fraction of the h ∈ H ′i with respect to x′ = T−1

i x. By the
discussion above, this is the same as inferring an Ω(1/d) fraction of the hi ∈ Hi with respect
to x. So, the total expected number of iterations needed is O(d log |H|). Next, we calculate
the number of linear queries performed at each iteration. The number of label queries is O(k)
and the number of comparison queries on H ′i (which translate to generalized comparison
queries on Hi) is O(k log k) if we use merge-sort, and can be improved to O(k + d log k) by
using Fredman’s sorting algorithm [5]. So, in each iteration we perform O(d2 log d) queries,
and the expected number of iterations is O(d log |H|). So the expected total number of
queries by the algorithm is O(d3 log d log |H|). J

From now on, we focus on proving Lemma 9. To this end, we assume from now that
H ⊂ Rd is in c-isotropic position for c ≥ 3/4. Note that h is inferred from comparisons on
±S if and only if −h is, and that replacing an element of S with its negation does not affect
±S. Therefore, negating elements of H does not change the expected number of elements
inferred from comparisons on ±S. Therefore, we may assume in the analysis that 〈h, x〉 ≥ 0
for all h ∈ H. Under this assumption, we will show that

ES [|InferComp(S;x) ∩H|] ≥ |H|40d .

It is convenient to analyze the following procedure for sampling S:
Sample h1, . . . hk+1 random points in H, and r ∈ [k + 1] uniformly at random.
Set S = {hj : j ∈ [k + 1] \ {r}}.

We will analyze the probability that comparisons on S infer hr at x. Our proof relies on the
following observation.

I Observation 10. The probability, according to the above process, that hr ∈ InferComp(S;x)
is equal to the expected fraction of h ∈ H whose label is inferred. That is,

Pr [hr ∈ InferComp(S;x)] = E
[
|InferComp(S;x) ∩H|

|H|

]
.

Thus, it suffices to show that Pr [hr ∈ InferComp(S;x)] ≥ 1/40d. This is achieved by the next
two propositions as follows. Proposition 11 shows that S is in a (1/2)-approximate isotropic
position with probability at least 1/2, and Proposition 12 shows that whenever S is in (1/2)-
approximate isotropic position then hr ∈ InferComp(S;x) with probability at least 1/20d.
Combining these two propositions together yields that Pr [hr ∈ InferComp(S;x)] ≥ 1/40d
and finishes the proof of Lemma 9.

I Proposition 11. Let H ⊂ Rd be a set of unit vectors in c-approximate isotropic position
for c ≥ 3/4. Let S ⊂ H be a uniformly sampled subset of size |S| ≥ Ω(d log d). Then S is in
(1/2)-approximate isotropic position with probability at least 1/2.
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Proof. The proof follows from Claim 7 by plugging k = Ω(d log d) in Equation 1 and
calculating that the bound on the right hand side becomes at least 1/2. J

I Proposition 12. Let x ∈ Rd, S ⊂ Rd be in (1/2)-approximate isotropic position, where
|S| ≥ Ω

(
d2 log d

)
. Let h ∈ S be sampled uniformly. Then

Pr
h∈S

[h ∈ InferComp (S \ {h};x)] ≥ 1
20d .

Proof. We may assume that x is a unit vector, namely ‖x‖2 = 1. Let s = |S| and assume
that S = {h1, . . . , hs} with

〈h1, x〉 ≥ 〈h2, x〉 ≥ . . . ≥ 〈hs, x〉 ≥ 0.

Set ε = 1
2
√
d
. As S is in (1/2)-approximate isotropic position, Claim 6 gives that 〈hi, x〉 ≥ ε

for at least |S|/4d many hi ∈ S. Set t = |S|/8d and define

T = {h1, . . . , ht},

where by out assumption 〈ht, x〉 ≥ ε. Note that in this case, we can compute T from
comparison queries on S. We will show that

Pr
h∈T

[h ∈ InferComp (S \ {h};x)] ≥ 1
2 ,

from which the proposition follows. This in turn follows by the following two claims, whose
proof we present shortly.

I Claim 13. Let ha ∈ T . Assume that there exists a non-negative linear combination v of
{hi − hi+1 : i = 1, . . . , a− 2} such that

‖ha − (h1 + v)‖2 ≤ ε/4.

Then ha ∈ InferComp (S \ {ha};x).

I Claim 14. The assumption in Claim 13 holds for at least half the vectors in T .

Clearly, Claim 13 and Claim 14 together imply that for at least half of ha ∈ T , it holds
that ha ∈ InferComp (S \ {ha};x). This concludes the proof of the proposition. J

Next we prove Claim 13 and Claim 14.

Proof of Claim 13. Let S′ = S \ {ha} and T ′ = T \ {ha}. As S is in (1/2)-approximate
isotropic position then S′ is in c-approximate isotropic position for c = 1/2 − d/|S|. In
particular, as |S| ≥ 4d we have c ≥ 1/4. By applying comparison queries to S′ we can sort
{〈hi, x〉 : hi ∈ S′}. Then T ′ can be computed as the set of the t − 1 elements with the
largest inner product. Claim 6 applied to S′ then implies that 〈hi, x〉 ≥ ε/2 for all hi ∈ T ′.
Crucially, we can deduce this just from the comparison queries on S′, together with our
initial assumption that S is in (1/2)-approximate isotropic position. Thus we deduced from
our queries that:
〈h1, x〉 ≥ ε/2.
〈v, x〉 ≥ 0.

In addition, from our assumption it follows that |〈ha − (h1 + v), x〉| ≤ ε/4. These together
infer that 〈ha, x〉 > 0. J
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The proof of Claim 14 follows from the applying the following claim iteratively. We note
that this claim appears in [6] implicitly, but we repeat it here for clarity.

I Claim 15. Let h1, . . . , ht ∈ Rd be unit vectors. For any ε > 0, if t ≥ 16d ln(2d/ε) then
there exist a ∈ [t] and α1, . . . , αa−2 ∈ {0, 1, 2} such that

ha = h1 +
i−2∑
j=1

αj(hj+1 − hj) + e,

where ‖e‖2 ≤ ε.

In order to derive Claim 14 from Claim 15, we assume that |T | ≥ 32d ln((2d)/(ε/4)) =
Ω(d log d). Then we can apply Claim 15 iteratively |T |/2 times with parameter ε/4, at each
step identify the required ha, remove it from T and continue. Next we prove Claim 15.

Proof of Claim 15. Let B := {h ∈ Rd : ‖h‖2 ≤ 1} denote the Euclidean ball of radius 1, and
let C denote the convex hull of {h2 − h1, . . . , ht − ht−1}. Observe that C ⊂ 2B, as each hi is
a unit vector. For β ∈ {0, 1}t−1 define

hβ =
∑

βj(hj+1 − hj).

We claim that having t ≥ 16d ln(2d/ε) guarantees that there exist distinct β′, β′′ for which

hβ′ − hβ′′ ∈ ε

4(C − C).

This follows by a packing argument: if not, then the sets hβ + ε
4C for β ∈ {0, 1}t−1 are

mutually disjoint. Each has volume (ε/4)dvol(C), and they are all contained in tC which
has volume tdvol(C). As the number of distinct β is 2t−1 we obtain that 2t−1(ε/4)d ≤ td,
which contradicts our assumption on t.

Let i ∈ [t] be maximal such that β′i−1 6= β′′i−1. We may assume without loss of generality
that β′i−1 = 0, β′′i−1 = 1, as otherwise we can swap the roles of β′ and β′′. Thus we have

i−1∑
j=1

(β′j − β′′j )(hj+1 − hj) ∈
ε

4(C − C) ⊂ εB.

Adding hi − h1 =
∑i−1
j=1(hj+1 − hj) to both sides gives

i−1∑
j=1

(β′j − β′′j + 1)(hj+1 − hj) ∈ hi − h1 + εB,

which is equivalent to

hi − h1 ∈
i−1∑
j=1

(β′j − β′′j + 1)(hj+1 − hj) + εB.

The claim follows by setting αj = β′j − β′′j + 1 and noting that by our construction αi−1 = 0,
and hence the sum terminates at i− 2. J
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3.2 A deterministic LDT for H in general position
In this section, we derandomize the algorithm from the previous section.

I Lemma 16. Let H ⊆ Rd be a finite set in general position. Then there exists an LDT that
computes AH(·) with O

(
d4 log d log|H|

)
generalized comparison queries.

Note that the this bound is worse by a factor of d than the one in Lemma 8. In Open
Question 2 we ask whether this loss is necessary, or whether it can be avoided by a different
derandomization technique.

Lemma 16 follows by derandomizing the algorithm from Lemma 8. Recall that Lemma 8
boils down to showing that h ∈ InferComp(Si;x) for an Ω(1/d) fraction of h ∈ Hi on average.
In other words, for every input vector x, most of the subsets Si ⊆ H ′i of size Ω(d2 log d)
allow to infer from comparisons the labels of some Ω(1/d)-fraction of the points in Hi. We
derandomize this step by showing that there exists a universal set Si ⊆ H ′i of size O(d3 log d)
that allows to infer the labels of some Ω(1/d)-fraction of the points in Hi, with respect to
any x. This is achieved by the next lemma.

I Lemma 17. Let H ⊆ Rd be a set of unit vectors in isotropic position. Then there
exists S ⊆ H of size O(d3 log d) such that

(
∀x ∈ Rd

)
: |InferComp(S;x) ∩H| ≥ |H|100d .

Proof. We use a variant of the double-sampling argument due to [12] to show that a random
S ⊆ H of size s = O(d3 log d) satisfies the requirements. Let S = {h1, . . . , hs} be a random
(multi-)subset of size s, and let E = E(S) denote the event

E(S) :=
[
∃x ∈ Rd : |InferComp(S;x) ∩H| < |H|/100d

]
.

Our goal is showing that Pr[E] < 1. To this end we introduce an auxiliary event F . Let
t = Θ(d2 log d), and let T = {h1, . . . , ht} ⊆ S be a subsample of S, where each hi is drawn
uniformly from S and independently of the others. Define F = F (S, T ) to be the event

F (S, T ) :=
[
∃x ∈ Rd : |InferComp(T ;x) ∩H| < |H|/100d and

|InferComp(T ;x) ∩ S| ≥ |S|/50d
]
.

The following claims conclude the proof of Lemma 17.

I Claim 18. If Pr[E] ≥ 9/10 then Pr[F ] ≥ 1/200d.

I Claim 19. Pr[F ] ≤ 1/250d.

This concludes the proof, as it shows that Pr[E] < 9/10. We next move to prove Claim 18
and Claim 19.

Proof of Claim 18. Assume that Pr[E] ≥ 9/10. Define another auxiliary event G = G(S) as

G(S) := [S is in (3/4)-approximate isotropic position] .

Applying Claim 7 by plugging m ≥ 100d ln(10d) in Equation 1 gives that Pr[G] ≥ 9/10,
which implies that Pr[E ∧G] ≥ 8/10. Next, we analyze Pr[F |E ∧G].

To this end, fix S such that both E(S) and G(S) hold. That is: S is in (3/4)-approximate
isotropic position, and there exists x = x(S) ∈ Rd such that |InferComp(S;x)∩H| < |H|/100d.
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If we now sample T ⊂ S, in order for F (S, T ) to hold, we need that (i) |InferComp(T ;x)∩H| <
|H|/100d , which holds with probability one, as |InferComp(S;x) ∩H| < |H|/100d; and (ii)
that |InferComp(T ;x) ∩ S| ≥ |S|/50d. So, we analyze this event next.

Applying Lemma 9 to the subsample T with respect to S gives that

ET [|InferComp(T ;x) ∩ S|] ≥ |S|/40d.

This then implies that

Pr [|InferComp(T ;x) ∩ S| ≥ |S|/100d] ≥ 1/100d.

To conclude: we proved under the assumptions of the lemma that PrS [E(S)∧G(S)] ≥ 8/10;
and that for every S which satisfies E(S) ∧ G(S) it holds that PrT [F (S, T )|S] ≥ 1/100d.
Together these give that Pr[F (S, T )] ≥ 1/200d. J

Proof of Claim 19. We can model the choice of (S, T ) as first sampling T ⊂ H of size t,
and then sampling S \ T ⊂ H of size s− t. We will prove the following (stronger) statement:
for any choice of T ,

Pr [F (S, T )|T ] < 1/250d.

So from now on, fix T and consider the random choice of T ′ = S \ T . We want to show that:

Pr
T ′

[
(∃x ∈ Rd) : |InferComp(T ;x) ∩H| < |H|/100d and

|InferComp(T ;x) ∩ S| ≥ |S|/50d.
]
≤ 1/250d.

We would like to prove this statement by applying a union bound over all x ∈ Rd. However,
Rd is an infinite set and therefore a naive union seems problematic. To this end we introduce
a suitable equivalence relation that is based on the following observation.

I Observation 20. InferComp(T ;x) is determined by sign(〈h, x〉) for h ∈ T ∪ (T − T ).

We thus define an equivalence relation on Rd where x ∼ y if and only if sign(〈h, x〉) =
sign(〈h, y〉) for all h ∈ T ∪ (T − T ). Let C be a set of representatives for this relation. Thus,
it suffices to show that

Pr
T ′

[
(∃x ∈ C) : |InferComp(T ;x) ∩H| < |H|/100d and

|InferComp(T ;x) ∩ S| ≥ |S|/50d.
]
≤ 1/250d.

Since C is finite, a union bound is now applicable. Sepcifically, it is enough to show that

(∀x ∈ C) : Pr
T ′

[
|InferComp(T ;x) ∩H| < |H|/100d and

|InferComp(T ;x) ∩ S| ≥ |S|/50d.
]
≤ 1

250d|C| .

Now, (a variant of) Sauer’s Lemma (see e.g. Lemma 2.1 in [7]) implies that

|C| ≤ (2e · |T ∪ (T − T )|)d ≤
(
2e · t2

)d ≤ (20t)2d. (2)
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Fix x ∈ C. If |InferComp(T ;x) ∩H| ≥ |H|
100d then we are done (note that InferComp(T ;x)

is fixed since it depends only on T and x and not on T ′). So, we may assume that
|InferComp(T ;x) ∩H| < |H|

100d . Then we need to bound

Pr
[
|InferComp(T ;x) ∩ S| ≥ |S|50d

]
≤ Pr

[
|InferComp(T ;x) ∩ T ′| ≥ |T

′|
75d

]
,

where the inequality follows if t ≤ s
150d , which can be satisfied since t = Θ(d2 log d) and s =

Θ(d3 log d). To bound this probability we use the Chernoff bound: let p = |InferComp(T ;x)∩H|
|H| ;

note that |InferComp(T ;x) ∩ T ′| is distributed like Bin(s − t, p). By assumption, p ≤ 1
100d ,

and therefore:

Pr
[
|InferComp(T ;x) ∩ T ′| ≥ |T

′|
75d

]
≤ exp

(
− (1/3)2 · (t/100d)

3

)
≤ 1

250d · (20t)2d ≤
1

250d · |C| ,

where the second inequality follows because t = Θ(d2 ln(d)) with a large enough constant,
and the last inequality follows by Equation 3.2. J

J
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An edge-weighted graph G = (V,E) is called stable if the value of a maximum-weight matching
equals the value of a maximum-weight fractional matching. Stable graphs play an important role
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of a polynomial-time algorithm to compute a basic maximum-weight fractional matching with
minimum number of odd cycles in its support. This generalizes a fundamental and classical result
on unweighted matchings given by Balas more than 30 years ago, which we expect to prove useful
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1 Introduction

Several interesting game theory problems are defined on networks, where the vertices represent
players and the edges model the way players can interact with each other. In many such
games, the structure of the underlying graph that describes the interactions among players
is essential in determining the existence of stable outcomes for the corresponding games,
i.e., outcomes where players have no incentive to deviate. Popular examples are cooperative
matching games, introduced by Shapley and Shubik [17], and network bargaining games,
defined by Kleinberg and Tardos [13], both extensively studied in the game theory community.
Instances of such games are described by a graph G = (V,E) with edge weights w ∈ RE≥0,
where V represents a set of players, and the value of a maximum-weight matching, denoted
as ν(G), is the total value that the players could get by interacting with each other.

An important role in such games is played by so-called stable graphs. An edge-weighted
graph G = (V,E) is called stable if the value ν(G) of a maximum-weight matching equals
the value of a maximum-weight fractional matching, denoted as νf (G). Formally, νf (G) is
given by the optimal value of the standard linear programming relaxation of the matching
problem, defined as

νf (G) := max
{
w>x : x(δ(v)) ≤ 1 ∀v ∈ V, x ≥ 0

}
(P)

Here x is a vector in RE , δ(v) denotes the set of edges incident to the node v, and for a set
F ⊆ E, x(F ) =

∑
e∈F xe. Feasible solutions of the above LP are called fractional matchings.

The relation that interplays between stable graphs and network games is as follows. In
cooperative matching games [17], the goal is to find an allocation of the value ν(G) among
the vertices, given as a vector y ∈ RV≥0, such that no subset S ⊆ V has an incentive to
form a coalition to deviate. This condition is formally defined by the constraints

∑
v∈S yv ≥

ν(G[S]) ∀S ⊆ V , where G[S] denotes the subgraph induced by S, and an allocation y that
satisfies the above set of constraints is called stable. Deng et al. [8] proved that a stable
allocation exists if and only if the graph describing the game is a stable graph. This is an easy
consequence from LP duality. If y is a stable allocation, then y is a feasible solution to the
dual of (P) and has value ν(G), showing that νf (G) = ν(G). Conversely, if νf (G) = ν(G),
then an optimal dual solution yields a stable allocation of ν(G).

In network bargaining games [13], each edge e represents a deal of value we. A player
can enter in a deal with at most one neighbor, and when a deal is made, the players have
to agree on how to split the value of the deal between them. An outcome of the game is
given by a pair (M,y), where M is a matching of G and stands for the set of deals made
by the players, and y ∈ RV≥0 is an allocation vector representing how the deal values have
been split. Kleinberg and Tardos have defined a notion of stable outcome for such games, as
well as a notion of balanced outcome, that are outcomes where players have no incentive to
deviate, and in addition the deal values are “fairly” split among players. They proved that a
balanced outcome exists if and only if a stable outcome exists, and this happens if and only
if the graph G describing the game is stable.

Motivated by the above connection, in the last few years many researchers have investig-
ated the algorithmic problem of turning a given graph into a stable one, by performing a
minimum number of modifications on the input graph [6, 1, 10, 7, 14, 4, 5]. Two natural
operations which have a nice network game interpretation, are vertex-deletion and edge-
deletion. They correspond to blocking players and blocking deals, respectively, in order to
achieve stability in the corresponding games. Formally, a subset of vertices S ⊆ V is called a
vertex-stabilizer if the graph G \ S := G[V \ S] is stable. Similarly, a subset of edges F ⊆ E
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is called an edge-stabilizer if the graph G \ F := (V,E \ F ) is stable. The corresponding
optimization problems, which are the focus of this paper, are:

Minimum Vertex-stabilizer: Given an edge-weighted graph G = (V,E), find a minimum-
cardinality vertex-stabilizer.
Minimum Edge-stabilizer: Given an edge-weighted graph G = (V,E), find a minimum-
cardinality edge-stabilizer.

The above problems have been studied quite intensively in the last few years on unweighted
graphs. In particular, Bock et al. [6] have showed that finding a minimum-cardinality edge-
stabilizer is hard to approximate within a factor of (2−ε), assuming Unique Game Conjecture
(UGC) [11]. On the positive side, they have given an approximation algorithm for the edge-
stabilizer problem, whose approximation factor depends on the sparsity of the input graph
G. In other work, Ahmadian et al. [1] and Ito et al. [10] have shown independently that
finding a minimum-cardinality vertex-stabilizer is a polynomial-time solvable problem. These
(exact and approximate) algorithmic results, developed for unweighted instances, do not
easily generalize when dealing with arbitrary edge-weights, since they heavily rely on the
structure of maximum matchings in unweighted graphs. In fact, unweighted instances of
the above problems exhibit a very nice property, as shown in [6, 1]: the removal of any
inclusion-wise minimal edge-stabilizer (resp. vertex-stabilizer) from a graph G does not
decrease the cardinality of a maximum matching in the resulting graph. This property
ensures that there is at least one maximum-cardinality matching that survives in the modified
graph, and this insight can be successfully exploited when designing (exact and approximate)
algorithms. Unfortunately, it is not difficult to realize that this crucial property does not
hold anymore when dealing with edge-weighted graphs, and in fact, the development of
algorithmic results for weighted graphs requires substantial new ideas.

Our results and techniques

Vertex-stabilizers. We give the first polynomial-time algorithm to find a minimum-car-
dinality vertex-stabilizer S, in any weighted graph G. Our algorithm also ensures that
ν(G \ S) ≥ 2

3ν(G), i.e., the value of a maximum-weight matching is preserved up to a factor
of 2

3 , and we show that this factor is tight in general. Specifically, as previously mentioned, a
minimum-cardinality vertex-stabilizer for a weighted graph might decrease the value of a
maximum-weight matching in the resulting graph. From a network bargaining perspective,
this means we are decreasing the total value which the players are able to get, which is of
course undesirable. However, we can show this is inevitable, since deciding whether there
exists any vertex-stabilizer S that preserves the value of a maximum-weight matching (i.e.,
such that ν(G \ S) = ν(G)) is an NP-complete problem. Furthermore, we give an example of
a graph G where any vertex-stabilizer S decreases the value of a maximum-weight matching
by a factor of essentially 1

3 , i.e. ν(G \ S) ≤
( 2

3 + ε
)
ν(G) (for an arbitrary small ε > 0). This

shows that the bounds of our algorithm are essentially best possible: the algorithm finds a
vertex-stabilizer S whose cardinality is the smallest possible, and preserves the value of a
maximum-weight matching up to a factor of 2

3 , that is the tightest factor that holds for all
instances.

The above result is based on two main ingredients. The first one is giving a lower bound
on the cardinality of a minimum vertex-stabilizer, which generalizes the lower bound used in
the unweighted setting, and is based on the structure of optimal basic solutions of (P). In
particular, it was shown in [1] that a lower bound on the cardinality of a vertex-stabilizer for
unweighted graphs is given by the minimum number of odd-cycles in the support of an optimal
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basic solution to (P). We show that this lower bound holds also for weighted graphs, though
this generalization is not obvious (in fact, as we will show later, the same generalization
does not hold for edge-stabilizers). Consequently, our proof is much more involved, and
requires different ideas. The second main ingredient is giving a polynomial-time algorithm
for computing an optimal basic solution to (P) with the smallest number of odd-cycles in its
support, which is of independent interest, as highlighted in the next paragraph.

Computing maximum fractional matchings with minimum cycle support. The fractional
matching polytope given by (P) has been extensively studied in the literature, and character-
izing instances for which a maximum fractional matching equals an integral one is a natural
graph theory question (see [6, 1]). It is well-known that basic solutions of (P) are half-integral,
and the support of a basic solution is a disjoint union of a matching (given by 1-valued entries)
and a set of odd-cycles (given by half-valued entries). Balas [2] gave a polynomial-time
algorithm to compute a basic maximum fractional matching in an unweighted graph, with
minimum number of odd-cycles in its support. This is a classical result on matching theory,
which has been known for more than 30 years. In this paper, we generalize this result to
arbitrary weighted instances, exploiting structural properties of basic fractional matchings.
Our algorithm is based on combinatorial techniques, and we expect that this result will prove
useful beyond this particular application.

Edge-stabilizers. When dealing with edge-removal operations, the stabilizer problem be-
comes harder, already in the unweighted setting. It is shown in [6] that finding a minimum
edge-stabilizer is as hard as vertex cover, and whether the problem admits a constant factor
approximation algorithm is an interesting open question. We here show that the answer to
this question is negative for weighted graphs, since we prove that the minimum edge-stabilizer
problem for a weighted graph G does not admit any constant-factor approximation algorithm,
unless P = NP . From an approximation point of view, we show that the algorithm we
developed for the vertex-stabilizer problem translates into a O(∆)-approximation algorithm
for the edge-stabilizer problem, where ∆ is the maximum degree of a node in G.

Once again, the analysis relies on proving a lower bound on the cardinality of a minimum
edge-stabilizer. It was shown in [6] that a lower-bound on the cardinality of a minimum
edge-stabilizer for unweighted graphs is again given by the minimum number of odd-cycles
in the support of an optimal solution to (P) (called γ(G)). Interestingly, we show that,
differently from the vertex-stabilizer setting, here this lower bound does not generalize, and
γ(G) is not a lower bound on the cardinality of an edge-stabilizer for arbitrary weighted
graphs. However, we are able to show that dγ(G)/2e is a lower bound on the cardinality of
a minimum edge-stabilizer, and this is enough for our approximation purposes.

Additional results. Lastly, we also generalize a result given in [1] on finding a minimum
vertex-stabilizer which avoids a fixed maximum matching M , on unweighted graphs. We
prove that if M is a maximum-weight matching of a weighted graph G, then finding a
minimum vertex-stabilizer that is element-disjoint from M is a polynomial-time solvable
problem. Otherwise, if M is not a maximum-weight matching, the problem is at least as
hard as vertex cover. We supplement this result with a 2-approximation algorithm for this
case, that is best possible assuming UGC [12].

Related work. Biró et al. [4] were the first to consider the edge-stabilizer problem in
weighted graphs, and they showed NP-hardness for this case. Stabilizing a graph via different
operations on the input graph (other than removing edges/vertices) has also been studied. In
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particular, Ito et al. [10] have given polynomial-time algorithms to stabilize an unweighted
graph by adding edges and by adding vertices. Chandrasekaran et al. [7] have recently
studied the problem of stabilizing unweighted graphs by fractionally increasing edge weights.
Ahmadian et al. [1] have also studied the vertex-stabilizer problem on unweighted graphs,
but in the more-general setting where there are (non-uniform) costs for removing vertices,
and gave approximation algorithms for this case.

Biró et al. [5] and Könemann et al. [14] studied a variant of the problem where the goal is
to compute a minimum-cardinality set of blocking pairs, that are edges whose removal from
the graph yield the existence of a fractional vertex cover of size at most ν(G) (but note that
the resulting graph might not be stable). Mishra et al. [15] studied the problem of converting
a graph into a König-Egerváry graph, via vertex-deletion and edge-deletion operations. A
König-Egerváry graph is a graph where the size of a maximum matching equals the size of an
(integral) minimum vertex cover. They gave an O(log n log log n)-approximation algorithm
for the vertex-removal setting in unweighted graphs, and showed constant-factor hardness
of approximation (assuming UGC) for both the minimum vertex-removal and edge-removal
problem.

Paper Organization. In Section 2, we give some preliminaries and discuss notation. In
Section 3, we give a polynomial-time algorithm to compute an optimal basic solution to (P)
with minimum number of odd cycles in its support. This algorithm will be crucially used in
Section 4, where we give our results on vertex-stabilizers. The sections on edge-stabilizers
and additional results can be found in the full version of this paper. All missing proofs also
appear in the full version.

2 Preliminaries and notation

A key concept that we will use is LP duality. The dual of (P) is given by

τf (G) := min
{
1
>y : yu + yv ≥ wuv ∀uv ∈ E, y ≥ 0

}
. (D)

As feasible solutions to (P) are called fractional matchings, we call feasible solutions to
(D) fractional w-vertex covers. In fact, (D) is the standard LP-relaxation of the problem
of finding a minimum w-vertex cover, obtained by adding integrality constraints on (D).
We also call basic feasible solutions to (P) as basic fractional matchings. An application of
duality theory yields the following relationship ν(G) ≤ νf (G) = τf (G). Recall that a graph
G is stable if ν(G) = νf (G) = τf (G).

For a vector x ∈ RE and any subset F ⊆ E, we denote x−F ∈ RE−F as the subvector
obtained by dropping the entries corresponding to F . For any multisubset F ⊆ E, we define
x(F ) :=

∑
e∈F xe. Note that an element may be accounted for multiple times in the sum if

it appears more than once in F . We denote supp(x) := {e ∈ E : xe 6= 0} as the support of x.
For any positive integer k, [k] represents the set {1, 2, . . . , k}.

Given an undirected graph G, we denote by n the number of vertices and by m the number
of edges. For a matching M in G, a path is called M-alternating if its edges alternately
belong to M and E \M . We say that an M -alternating path is valid if it starts with an
M -exposed vertex or an edge in M , and ends with an M -exposed vertex or an edge in
M . For edge weights w ∈ Rm+ , a valid M -alternating path P is called M-augmenting if
w(P \M) > w(P ∩M). We will need the following classical result on the structure of basic
fractional matchings:
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I Theorem 1 ([3]). A fractional matching x in G = (V,E) is basic if and only if xe ={
0, 1

2 , 1
}
for all e ∈ E and the edges e having xe = 1

2 induce vertex-disjoint odd cycles in G.

Let x̂ be a basic fractional matching in G. We partition the support of x̂ into two parts.
Define

C(x̂) := {C1, . . . , Cq} and M(x̂) := {e ∈ E : x̂e = 1}

as the set of odd cycles such that x̂e = 1
2 for all e ∈ E(Ci) and the set of matched edges

in x̂ respectively. For ease of notation, we use V (C(x̂)) = ∪C∈C(x̂)V (C) and E(C(x̂)) =
∪C∈C(x̂)E(C) to denote the vertex set and edge set of C(x̂) respectively. We define two
operations on the entries of x̂ associated with certain edge sets of G:

I Definition 2. By complementing on E′ ⊆ E, we mean replacing x̂e by x̄e = 1− x̂e for all
e ∈ E′.

I Definition 3. By alternate rounding on C ∈ C(x̂) at v where C = {e1, . . . , e2k+1} and
v = e1 ∩ e2k+1, we mean replacing x̂e by x̄e = 0 for all e ∈ {e1, e3, . . . , e2k+1} and x̄e = 1 for
all e ∈ {e2, e4, . . . , e2k}. When v is clear from the context, we just say alternate rounding on
C.

Let X be the set of basic maximum-weight fractional matchings in G. Define γ(G) :=
minx̂∈X |C(x̂)| . Note that G is stable if and only if γ(G) = 0.

3 Maximum fractional matching with minimum support

In this section, we give a polynomial-time algorithm to compute a basic maximum-weight
fractional matching x̂ for a weighted graph G with minimum number of odd cycles in its
support, i.e., satisfying |C(x̂)| = γ(G). This algorithm will be used as a subroutine by our
vertex-stabilizer algorithm, which we will develop in Section 4.

Our first step is to characterize basic maximum-weight fractional matchings which have
more than γ(G) odd cycles. Balas [2] considered this problem on unweighted graphs, and
gave the following characterization:

I Theorem 4 ([2]). Let x̂ be a basic maximum fractional matching in an unweighted graph
G. If |C(x̂)| > γ(G), then there exists an M(x̂)-alternating path which connects two odd
cycles Ci, Cj ∈ C(x̂). Furthermore, alternate rounding on the odd cycles and complementing
on the path produces a basic maximum fractional matching x̄ such that C(x̄) ⊂ C(x̂).

We generalize this to weighted graphs. Before stating the theorem, we need to introduce
the concept of connector (see Figure 1 for some examples):

I Definition 5. Let C be a cycle and S0, S1, . . . , Sk be a partition of V (C) such that |S0| is
even and k ≥ 2, where S0 is allowed to be empty and S1, . . . , Sk are non-empty. Let M be a
perfect matching on the vertex set S0. We call the graph C ∪M a connector. Each Si is
called a terminal set for i ≥ 1. An edge e ∈M is called a chord if e /∈ E(C).

Connectors are useful because of the following property:

I Lemma 6. Let C ∪M be a connector. For every terminal set Si, there exists an M-
alternating path in the connector from a vertex v ∈ Si to a vertex u ∈ Sj , for some j /∈ {0, i}.

Let y be a minimum fractional w-vertex cover in G. We say that an edge uv is tight if
yu + yv = wuv. Similarly, we say that a path is tight if all of its edges are tight.
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Figure 1 Two examples of connectors. Bold edges indicate M . Vertices of the same color belong
to the same terminal set. White vertices are the ones in S0.

I Theorem 7. Let x̂ be a basic maximum-weight fractional matching and y be a minimum
fractional w-vertex cover in G. If |C(x̂)| > γ(G), then there exists
(i) a vertex v ∈ V (Ci) for some odd cycle Ci ∈ C(x̂) such that yv = 0; or
(ii) a tight M(x̂)-alternating path P which connects two odd cycles Ci, Cj ∈ C(x̂); or
(iii) a tight and valid M(x̂)-alternating path P which connects an odd cycle Ci ∈ C(x̂) and

a vertex v /∈ V (C(x̂)) such that yv = 0.
Furthermore, alternate rounding on the odd cycles and complementing on the path produces
a basic maximum-weight fractional matching x̄ such that C(x̄) ⊂ C(x̂).

Proof. We will start by proving the second part of the theorem, namely that alternate
rounding and complementing produces a basic maximum-weight fractional matching with
lesser odd cycles. For Case (i), let x̄ be the basic fractional matching obtained by alternate
rounding on Ci at v. Since yv = 0, both x̄ and y satisfy complementary slackness. Hence,
x̄ is optimal to (P) and C(x̄) = C(x̂) \ Ci. For Case (ii), denote u = V (P ) ∩ V (Ci) and
v = V (P ) ∩ V (Cj) as the endpoints of P . Let x̄ be the basic fractional matching obtained
by alternate rounding on Ci, Cj at u, v respectively and complementing on P . Note that u
and v are exposed after the alternate rounding, and covered after complementing. Since x̄
and y satisfy complementary slackness, x̄ is optimal to (P) and C(x̄) = C(x̂) \ {Ci, Cj}. For
Case (iii), denote u = V (P ) ∩ V (Ci) and v /∈ V (C(x̂)) as the endpoints of P . Let x̄ be the
basic fractional matching obtained by alternate rounding on Ci at u and complementing on
P . Since yv = 0, both x̄ and y satisfy complementary slackness. Thus, x̄ is optimal to (P)
and C(x̄) = C(x̂) \ Ci.

Next, we prove the first part of the theorem. We may assume yv > 0 for every vertex
v ∈ V (C(x̂)). Let x∗ be a basic maximum-weight fractional matching in G such that
|C(x∗)| = γ(G). Define N(x̂) := M(x̂) \ E(C(x∗)) and N(x∗) := M(x∗) \ E(C(x̂)). Consider
the following subgraph

J = (V,N(x̂)4N(x∗)).

Since N(x̂) and N(x∗) are matchings in G, J is made up of vertex-disjoint paths and cycles of
G. For each such path or cycle, its edges alternately belong to N(x̂) or N(x∗). Moreover, its
intermediate vertices are disjoint from C(x̂) and C(x∗). Since x̂ and x∗ are maximum-weight
fractional matchings in G, every path in J is tight by complementary slackness. If there
exists a path in J which connects two odd cycles from C(x̂), then we are done. If there exists
a path in J which connects an odd cycle from C(x̂) and a vertex v /∈ V (C(x̂) ∪ C(x∗)), then
yv = 0 because v is either exposed by M(x̂) or M(x∗). Hence, we are also done. So we may
assume every path in J belongs to one of the following three categories:
(a) Vertex disjoint from C(x̂) and C(x∗).
(b) Starts and ends at the same cycle of C(x̂) ∪ C(x∗).
(c) Connects an odd cycle from C(x̂) and an odd cycle from C(x∗).
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Note that by the second part of the theorem, there is no path in J which connects two odd
cycles from C(x∗) or an odd cycle from C(x∗) and a vertex v /∈ V (C(x̂)∪ C(x∗)). We say that
two odd cycles Ci and Cj are adjacent if V (Ci) ∩ V (Cj) 6= ∅ or if they are connected by a
path in J .

I Claim 1. Every cycle in C(x̂) is adjacent to a cycle in C(x∗).

Proof. Let C be an odd cycle in C(x̂). For every vertex v ∈ V (C), since we assumed
yv > 0, by complementary slackness it is either M(x∗)-covered or belongs to V (C(x∗)). If
v ∈ V (C(x∗)), then we are done. So we may assume that every vertex in C is M(x∗)-covered.
Let uv ∈M(x∗) where u ∈ V (C) and v /∈ V (C). Observe that uv is the first edge of a path
in J , so it either ends at an odd cycle in C(x∗) or C. Since C has an odd number of vertices,
by the pigeonhole principle there exists a path in J which connects C and an odd cycle in
C(x∗). J

Recall that we assumed no two cycles in C(x̂) are adjacent. We also know that no two
cycles in C(x∗) are adjacent. Since |C(x̂)| > |C(x∗)|, by the previous claim there exists an
odd cycle in C(x∗) which is adjacent to at least two odd cycles in C(x̂). Let C∗ ∈ C(x∗) be
adjacent to C1, . . . , Ck ∈ C(x̂) for some k ≥ 2. For every i ∈ [k], define

Si := {v ∈ V (C∗) : v ∈ V (Ci) or ∃ a path in J from v to Ci}

and S0 := V (C∗) \ ∪ki=1Si. Note that yv > 0 for every vertex v ∈ V (C∗). Hence, by
complementary slackness every vertex in S0 is M(x̂)-covered. Let v ∈ S0. It is either
matched to another vertex in S0 or is an endpoint of a path in J whose other endpoint is also
a vertex in S0. Hence, |S0| is even. Moreover, Si 6= ∅ for all i ≥ 1, and the sets S0, . . . , Sk
partition V (C∗). Let P be the set of paths in J that start and end at C∗, and consider the
subgraph C∗ ∪ P. We claim that there exists an M(x̂)-alternating path from Si to Sj in
C∗ ∪ P where i 6= j and i, j 6= 0. Since every path in P starts and ends with an edge in
M(x̂), we can perform the following reduction: contract every path in P into a single edge in
M(x̂). It is easy to see that an M(x̂)-alternating path from Si to Sj in C∗ ∪ P corresponds
to an M(x̂)-alternating path from Si to Sj in the reduced graph. Then, observe that the
reduced graph along with the matching M(x̂) forms a connector. By Lemma 6, there exists
an M(x̂)-alternating path P from Si to Sj in C∗ ∪ P .

Let vi ∈ Si and vj ∈ Sj be the endpoints of P . Let Pi and Pj be the paths in J connecting
vi to Ci and vj to Cj respectively. If vi ∈ V (Ci), set Pi = ∅. Similarly if vj ∈ V (Cj), set
Pj = ∅. Then, Pi ∪ P ∪ Pj forms a tight M(x̂)-alternating path which connects Ci and
Cj . J

Given a basic maximum-weight fractional matching x̂ in G, we would like to reduce the
number of odd cycles in C(x̂) to γ(G). One way to accomplish this is to search for the
structures described in Theorem 7. Fix a minimum fractional w-vertex cover y in G. Let G′
be the unweighted graph obtained by applying the following operations to G (see Figure 2):
1. Delete all non-tight edges.
2. Add a vertex z.
3. For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add the edge vz.
4. For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the vertex v′ and the edges

vv′, v′z.
5. Shrink every odd cycle Ci ∈ C(x̂) into a pseudonode i.
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z

Figure 2 The auxiliary graph G′ and the matching M ′. Vertices in the ellipse are from the
original graph G. Gray vertices represent pseudonodes.

Note that none of the edges in M(x̂) and C(x̂) were deleted because they are tight. Consider
the edge set M ′ := M(x̂) ∪ {vv′ : v ∈ V }. It is easy to see that M ′ is a matching in G′. The
significance of the auxiliary graph G′ is given by the following lemma:

I Lemma 8. M ′ is a maximum matching in G′ if and only if |C(x̂)| = γ(G).

Thus, searching for the structures in Theorem 7 is equivalent to searching for an M ′-
augmenting path in G′. This immediately gives us the following algorithm.

Algorithm 1: Minimize number of odd cycles.
1 Compute a basic maximum-weight fractional matching x̂ in G
2 Compute a minimum fractional w-vertex cover y in G
3 Construct G′ and M ′
4 while ∃ an M ′-exposed pseudonode r in G′ do
5 Grow an M ′-alternating tree T rooted at r using Edmonds’ algorithm [9]
6 if an M ′-augmenting r-s path P ′ is found in G′ then
7 Let P be the corresponding tight M(x̂)-alternating path in G
8 if s is a pseudonode then
9 Alternate round on Cr, Cs and complement on P

10 else
11 Alternate round on Cr and complement on P
12 Update G′ and M ′

13 else
14 G′ ← G′ \ V (T )

15 return x̂

After an M ′-augmenting path P ′ is found, let x̄ denote the new basic maximum-weight
fractional matching in G obtained by alternate rounding and complementing x̂. We can update
G′ as follows. If s is a pseudonode, we unshrink Cr and Cs inG′ because C(x̄) = C(x̂)\{Cr, Cs}.
Otherwise, s = z and we only unshrink Cr. Then, there are two cases. In the first case,
we have vz ∈ E(P ′) for some v ∈ V . Observe that x̂(δ(v)) = 1 but x̄(δ(v)) = 0. Hence we
replace the edge vz with edges vv′, v′z. In the second case, we have v′z ∈ E(P ′) for some
v ∈ V . This implies x̂(δ(v)) = 0 but x̄(δ(v)) = 1. So we replace edges vv′, v′z with the edge
vz.

I Theorem 9. Algorithm 1 computes a basic maximum-weight fractional matching with γ(G)
odd cycles in polynomial time.

We remark here that in Algorithm 1, we can avoid solving linear programs to obtain
x̂ and y in Steps 1 and 2. They can be computed using a simple duplication technique
by Nemhauser and Trotter [16], which involves solving the problem on a suitable bipartite
graph.
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4 Computing vertex-stabilizers

The goal of this section is to prove the following theorem:

I Theorem 10. There exists a polynomial-time algorithm that computes a minimum vertex-
stabilizer S for a weighted graph G. Moreover, ν(G \ S) ≥ 2

3ν(G).

Let us start with discussing a lower bound on the size of a minimum vertex-stabilizer.

Lower bound. We will here prove that γ(G) is a lower bound on the number of vertices to
remove in order to stabilize a graph. Recall that a graph is stable if and only if γ(G) = 0.
One strategy to achieve this is by showing that γ(G) drops by at most 1 when a vertex is
deleted (Lemma 12). We first develop a couple of claims.

I Claim 2. Let x̂ be a basic maximum-weight fractional matching and y be a minimum
fractional w-vertex cover in G. Pick a vertex s from any odd cycle C ∈ C(x̂). If x̄ is
the fractional matching obtained by alternate rounding on C at s, then x̄−δ(s) is a basic
maximum-weight fractional matching and y−s is a minimum fractional w-vertex cover in
G \ s.

The following operation allows us to switch between fractional matchings on a set of
edges:

I Definition 11. Let x and x′ be fractional matchings in G. By switching on E′ ⊆ E from
x to x′, we mean replacing xe by x′e for all e ∈ E′.

Switching does not necessarily yield a feasible fractional matching. Hence, we will only
use it on the components of a specific subgraph of G:

I Claim 3. Given two basic fractional matchings x and x′, let H be the subgraph of G
induced by supp(x+ x′). For any component K in H, switching on E(K) from x to x′ yields
a basic fractional matching in G.

I Lemma 12. For every vertex v ∈ V , γ(G \ v) ≥ γ(G)− 1.

Proof. Let x∗ be a basic maximum-weight fractional matching in G such that |C(x∗)| = γ(G).
Let y be a minimum fractional w-vertex cover in G. For the purpose of contradiction, suppose
there exists a vertex u ∈ V such that γ(G \ u) < γ(G)− 1. There are two cases:

Case 1: u ∈ V (C) for some odd cycle C ∈ C(x∗). Let x̄ be the fractional matching obtained
from x∗ by alternate rounding on C at u. By Claim 2, we know that x̄−δ(u) is a basic
maximum-weight fractional matching and y−u is a minimum fractional w-vertex cover in
G \ u. We first give a proof sketch for this case. If x̄−δ(u) is not an optimal basic solution
yielding γ(G \ u) odd cycles, then one of the structures given by Theorem 7 must exist. This
same structure would be a structure corresponding to the basic solution x∗, but this yields a
contradiction since x∗ is an optimal basic solution with γ(G) odd cycles.

For notational convenience, we can use C(x̄) and M(x̄) to refer to the odd cycles and
matched edges of x̄−δ(u) respectively because C(x̄) = C

(
x̄−δ(u)

)
and M(x̄) = M

(
x̄−δ(u)

)
.

Since |C(x̄)| = |C(x∗)| − 1 = γ(G) − 1 > γ(G \ u), Theorem 7 tells us that G \ u contains
one of the following structures. The first structure is a vertex v ∈ V (Ci) for some odd cycle
Ci ∈ C(x̄) such that yv = 0. However, since Ci ∈ C(x∗), by Theorem 7 we arrive at the
contradiction |C(x∗)| > γ(G). The second structure is a tight and valid M(x̄)-alternating
path P which connects two odd cycles Ci, Cj ∈ C(x̄), or an odd cycle Ci ∈ C(x̄) and a vertex
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v /∈ V (C(x̄)) such that yv = 0. Note that Ci, Cj ∈ C(x∗). If V (P )∩ V (C) = ∅, then P is also
a tight and valid M(x∗)-alternating path in G which connects Ci and Cj , or Ci and v. So,
let s = V (Ci) ∩ V (P ) and t denote the first vertex of C encountered while traversing along
P from s. Then, the s-t subpath of P is a tight M(x∗)-alternating path which connects
Ci, C ∈ C(x∗). We again obtain the contradiction |C(x∗)| > γ(G) by Theorem 7.

Case 2: u /∈ V (C(x∗)). If u is M(x∗)-exposed, then νf (G \ u) = νf (G) and γ(G \ u) = γ(G).
So we may assume u is M(x∗)-covered. Let x̂ be a basic maximum-weight fractional
matching in G \ u such that |C(x̂)| < γ(G) − 1. Define N(x̂) := M(x̂) \ E(C(x∗)) and
N(x∗) := M(x∗) \ E(C(x̂)). Consider the subgraph J = (V,N(x∗)4N(x̂)). Note that u is
covered by N(x∗) and exposed by N(x̂). Let P be the component in J which contains u.
We know that P is a path with u as an endpoint. Let v be the other endpoint of P . There
are 3 subcases, but before jumping into them, we first give an overview of how we arrive at a
contradiction in each subcase. We show that one can move from x∗ to a new solution x̃ such
that:
(i) x̃ is a basic maximum-weight fractional matching for a subgraph G′ obtained by deleting

at most 1 vertex from a cycle of C(x∗); and
(ii) |C(x̃)| < γ(G′).
Clearly, both of the above properties cannot hold, so this yields a contradiction.

Subcase 2.1: v ∈ C for some odd cycle C ∈ C(x∗). In this subcase, the path P has even
length. Let x̄ be the fractional matching obtained from x∗ by alternate rounding on C at v.
By Claim 2, x̄−δ(v) is a basic maximum-weight fractional matching in G \ v. Let H be the
subgraph of G induced by supp(x̂+ x̄). Note that x̂e + x̄e = 0 for every edge e /∈ E(P ) which
is incident to a vertex in P . Thus, P is a component in H . Since |C(x̄)| = γ(G)− 1 > |C(x̂)|,
there exists a component K in H which has more odd cycles from C(x̄) than C(x̂). Switching
on K from x̄−δ(v) to x̂ yields a basic fractional matching in G \ v with less than γ(G)− 1
odd cycles. To yield a contradiction to Case 1, it is left to show that it is maximum-weight.
This is because we are deleting a vertex v from an odd cycle of C(x∗), but γ(G \ v) decreases
by more than 1. Now, since x̂ and x̄−δ(v) are maximum-weight fractional matchings in G \ u
and G \ v respectively, we have

∑
e∈E(K) wex̂e =

∑
e∈E(K) wex̄e because u, v /∈ V (K). Thus,

the resulting matching is indeed maximum-weight in G \ v.

Subcase 2.2: v ∈ C for some odd cycle C ∈ C(x̂). In this subcase, the path P has odd
length. Let x̄ be the fractional matching obtained from x̂ by alternate rounding on C at v. By
Claim 2, x̄−δ(v) is a basic maximum-weight fractional matching in G \ {u, v}. Let H be the
subgraph of G induced by supp(x∗+x̄). Note that x∗e+x̄e = 0 for every edge e /∈ E(P ) incident
to a vertex in P . Thus, P is a component in H. Since |C(x̄)| = |C(x̂)|−1 < γ(G)−2 < |C(x∗)|,
there exists a component K in H which has more odd cycles from C(x∗) than C(x̄). Switching
on K from x∗ to x̄ yields a basic fractional matching in G with less than γ(G) odd cycles.
To yield a contradiction, it is left to show that it is maximum-weight. Since x∗ and
x̄−δ(v) are maximum-weight fractional matchings in G and G \ {u, v} respectively, we have∑
e∈E(K) wex

∗
e =

∑
e∈E(K) wex̄e because u, v /∈ V (K). Thus, the resulting basic fractional

matching is maximum-weight in G.

Subcase 2.3: v /∈ V (C(x∗) ∪ C(x̂)). Let H be the subgraph of G induced by supp(x∗ + x̂).
Note that x∗e + x̂e = 0 for every edge e /∈ E(P ) which is incident to a vertex in P . Thus, the
path P is a component in H . Since |C(x∗)| > γ(G)− 1 > |C(x̂)|, there exists a component K
in H which has more odd cycles from C(x∗) than C(x̂). Switching on K from x∗ to x̂ yields
a basic fractional matching in G with less than γ(G) odd cycles. To yield a contradiction, it
is left to show that it is maximum-weight. Since x∗ and x̂ are maximum-weight fractional
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matchings in G and G \ u respectively, we have
∑
e∈E(K) wex

∗
e =

∑
e∈E(K) wex̂e because

u /∈ V (K). Hence, the resulting basic fractional matching is maximum-weight in G. J

As a corollary to the above lemma, we obtain the claimed lower bound.

I Lemma 13. For every vertex-stabilizer S of G, |S| ≥ γ(G).

The algorithm. The algorithm we use to stabilize a graph is very simple: it computes a
basic maximum-weight fractional matching x̂ in G with γ(G) odd cycles (this can be done
using Algorithm 1) and a minimum fractional w-vertex cover y in G, and then removes
one vertex from every cycle in C(x̂), namely, the vertex with the least y-value in the cycle.
Algorithm 2 formalizes this.

Algorithm 2: Minimum vertex-stabilizer
1 Initialize S ← ∅
2 Compute a minimum fractional w-vertex cover y in G
3 Compute a basic maximum-weight fractional matching x̂ in G with γ(G) odd cycles
4 Let C(x̂) =

{
C1, C2, . . . , Cγ(G)

}
5 for i = 1 to γ(G) do
6 Let vi = arg minv∈V (Ci) yv

7 S ← S + vi

8 return S

We are now ready to prove the main theorem stated at the beginning of the section, Theorem
10.

Proof of Theorem 10. Let S =
{
v1, v2, . . . , vγ(G)

}
be the set of vertices returned by the

algorithm. Let x̄ be the vector obtained from x̂ by alternate rounding on Ci at vi for all
i respectively. By Lemma 2, x̄−∪γ(G)

i=1 δ(vi)
is a basic maximum-weight fractional matching

in G \ S. Note that it is also a maximum-weight integral matching in G \ S. Thus,
ν(G \ S) = νf (G \ S) and G \ S is stable. Moreover, S is minimum by Lemma 13. It is left
to show that ν(G \ S) ≥ 2

3ν(G). For every odd cycle Ci ∈ C(x̂), we have

yvi ≤
y(V (Ci))
|V (Ci)|

≤ y(V (Ci))
3

because vi has the smallest fractional w-vertex cover in Ci. From Lemma 2, we also know
that y−S is a minimum fractional w-vertex cover in G \ S. Then,

ν(G\S) = τf (G\S) = 1
>y−

γ(G)∑
i=1

yvi ≥ 1
>y− 1

3

γ(G)∑
i=1

y(Ci) ≥ 1
>y− 1

31
>y = 2

3τf (G) ≥ 2
3ν(G)J

Note that removing any single vertex from each cycle of C(x̂) yields a minimum-cardinality
vertex stabilizer. The reason we chose the vertex with the smallest yv is to preserve the value
of the original maximum-weight matching by a factor of 2

3 .

Tightness of the matching bound. A natural question is whether it is possible to design
an algorithm that always returns a vertex-stabilizer S satisfying ν(G \ S) ≥ αν(G), for some
α > 2

3 . We report an example in the full version of this paper showing that, in general, this
is not possible since the bound of 2

3 can be asymptotically tight.
Another natural question is whether one can at least distinguish if, for a specific instance,

there exists a vertex-stabilizer S such that ν(G \ S) = ν(G). Once again, we show that
the answer is negative. Specifically, let us call a vertex-stabilizer S weight-preserving if



Z.K. Koh and L. Sanità 83:13

ν(G \ S) = ν(G). We show that finding such a vertex-stabilizer is hard in general. The proof
is based on a reduction from the independent set problem, similar to the one given by Biró
et al. [4].

I Theorem 14. Deciding whether a graph has a weight-preserving vertex-stabilizer is NP-
complete.
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Abstract
We initiate the study of spectral generalizations of the graph isomorphism problem.
(a) The Spectral Graph Dominance (SGD) problem:

On input of two graphs G and H does there exist a permutation π such that G � π(H)?
(b) The Spectrally Robust Graph Isomorphism (κ-SRGI) problem:

On input of two graphs G and H, find the smallest number κ over all permutations π such
that π(H) � G � κcπ(H) for some c. SRGI is a natural formulation of the network alignment
problem that has various applications, most notably in computational biology.

G � cH means that for all vectors x we have xTLGx ≤ cxTLHx, where LG is the Laplacian G.

We prove NP-hardness for SGD. We also present a κ3-approximation algorithm for SRGI for
the case when both G and H are bounded-degree trees. The algorithm runs in polynomial time
when κ is a constant.
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1 Introduction

Network alignment, a problem loosely defined as the comparison of graphs under permutations,
has a very long history of applications in disparate fields [5]. Notably, alignment of protein
and other biological networks are among the most recent and popular applications [18, 6].
There are several heuristic algorithms for the problem; naturally some of them are based on
generalizations of the graph isomorphism problem, mostly including variants of the robust
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graph isomorphism problem which asks for a permutation that minimizes the number of
‘mismatched’ edges [16].

Robust graph isomorphism may not be always an appropriate problem for applications
where one wants to certify the ‘functional’ equivalence of two graphs. Consider for example
the case when G and H are two random constant-degree expanders. While they can be
arguably functionally equivalent (e.g. as information dispersers), all permutations will incur
a large number of edge mismatches, deeming the two graphs very unsimilar. Functional
equivalence is of course an application-dependent notion. In the case of protein networks,
it is understood that proteins act as electron carriers [9]. Thus it is reasonable to model
them as electrical resistive networks that are algebraically captured by graph Laplacian
matrices [4]. Going back to the graph isomorphism problem, we note the simple fact that
the Laplacian matrices of two isomorphic graphs share the same eigenvalues, with the
corresponding eigenspaces being identical up to the isomorphism. We can them aim for a
spectrally robust version of graph isomorphism (SRGI) which allows for similar eigenvalues
and approximately aligned eigenspaces, up to a permutation.

In lieu of using directly the eigenvalues and eigenspaces to define SRGI, we will rely on
the much cleaner notion of spectral graph similarity, which underlies spectral sparsification
of graphs, a notion that has been proven extremely fruitful in algorithm design [2, 14]. More
concretely, let us introduce the precise notion of similarity we will be using.

I Definition 1 (dominance). We say that graph G dominates graph H (G � H), when for
all vectors x, we have xTLGx ≤ xTLHx, where LG is the standard Laplacian matrix for G.

I Definition 2 (κ-similarity). We say that graphs G and H are κ-similar, when when there
exist numbers β and γ, such that κ = γ/β and βH � G ≤ γH.3

We are now ready to introduce our main problem.

Spectrally Robust Graph Isomorphism (κ-SRGI): Given two graphs G,H, does
there exist a permutation π on V (G) such that G and π(H) are κ-similar?

It can been shown that this definition does imply approximately equal eigenvalues and
aligned eigenspaces [13], thus testing for κ-similarity under permutations is indeed a spectrally
robust version of graph isomorphism. Going back to our example with the two random
expanders, it is well-understood that G and π(H) will be κ-similar for a constant κ and for
all permutations π, which is what we intuitively expect.

We view spectrally robust graph isomorphism as an interesting theoretical problem due
to its close relationship with other fundamental algorithmic questions. In particular, it can
be easily seen that κ-SRGI is equivalent to the graph isomorphism problem when κ = 1. As
we will discuss in more detail, SRGI can also be viewed as a natural generalization of the
minimum distortion problem [10]. Up to our knowledge, the spectral-similarity approach
to network alignment has been mentioned earlier only in [20]. In view of the vast number
of works on GI ([11, 7, 21, 19, 3, 15, 1] to mention a few) as well as the works on the
robust graph isomorphism problem [16] and the minimum distortion problem [10], we find it
surprising that SRGI has not received a wider attention.

The goal of this work is to prove some initial results on SRGI and stimulate further
research. Towards that end, we provide the first algorithm for this problem, for the case
when both graphs are trees.

3 Graphs are weighted and cG is graph G with its edge weights multiplied by c.
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I Theorem 3. Given two κ-similar trees G and H of maximum degree d, there exists an
algorithm running in time O(nO(k2d)) which finds a mapping certifying that the they are at
most κ4-similar.

The algorithm for trees is already highly involved, which gives grounds for speculating
that the problem is NP-hard. We give evidence that this may be indeed true by turning our
attention to the one-sided version of the problem.

Spectral Graph Dominance (SGD): Given two graphs G,H, does there exist a
permutation π such that G dominates π(H)?

Given two graphs G and H that have the same eigenvalues, it is not hard to prove that if
G and H are not isomorphic, then G cannot dominate H (and vice-versa). Combining this
with the fact that isomorphic graphs have the same eigenvalues, we infer that SGD is at least
graph isomorphism-hard. The second contribution of this work is the following theorem.

I Theorem 4. The Spectral Graph Dominance problem is NP-hard.

Theorem 4 is proved in Section 2. We can actually prove a slightly stronger theorem that
restricts one of the input graphs to be a tree.

1.1 Related Work
The Robust Graph Isomorphism problem (RGI) asks for a permutation that minimizes the
number of mismatched edges. O’Donnell et al. [16] gave a constant factor hardness for RGI .
The Minimum Distortion problem (MD) views graphs as distance metrics, using the shortest
path metric. The goal is to find a mapping between the two metrics so as to minimize the
maximum distortion. The connection between SRGI and MD stems from the observation that
if two tree graphs G and H are κ-similar up to a permutation π, then the distortion between
the induced graph distances of G and π(H) is at most κ. For the MD problem, Kenyon et
al. [10] gave an algorithm which finds a solution with distortion at most α (provided that it
exists) in time poly(n) exp(dO(α3)), for a tree of degree at most g and an arbitrary weighted
graph. They also prove that this problem is NP-hard to approximate within a constant
factor.

The term ‘spectral alignment’ has been used before in [6] in the context of spectral
relaxation of the graph matching function. The algorithm in [18] is more spectral ‘in spirit’
because it uses directly the spectral of the normalized Laplacians of several subgraphs to
construct complicated ‘graph signatures’ that are then compared for similarity. There is
no underlying objective function that drives the computation of these signatures, but we
imagine that the proposed algorithm or some variant of it, may be a reasonably good practical
candidate for SRGI. The work by Tsourakakis [20] proposes an algorithm that searches for
the optimal permutation via a sequence of transpositions; however the running time of the
algorithm does not have any non-trivial sub-exponential upper bound.

2 Graph Dominance

Preliminaries. Given a weighted graph G = (V,E,w) we denote by EG its edges. The
Laplacian LG of G is the matrix defined by L(i, j) = −wij and L(i, i) =

∑
i6=j wij . The

quadratic form R(G, x) of G is the function defined as:

R(G, x) = xTLGx =
∑
i,j

wij(xi − xj)2. (1)
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Let G∞ be the infinite graph with vertex set equal to all points on the plane with integer
coordinates. There is an edge between two points of G∞ if they have Euclidean distance one.
A cubic subgrid is a finite subgraph of G∞ such that all of its nodes have degree at most 3.

The main ingredient of the proof is the following theorem.

I Theorem 5. Let G be a cubic subgrid and C be the cycle graph, both on n vertices. There
exists a permutation π such that π(C) � G if and only if G contains a Hamiltonian cycle.

Proof. If G contains a Hamiltonian cycle π(C), then equation 1 directly implies that
π(C) � G. To prove the converse assume that G does not contain a Hamiltonian cycle and
let H be a permutation of C such that |EG ∩ EH | is maximized. We prove a number of
claims and lemmas.

I Claim 1. Let G′, H ′ be the graphs obtained by deleting the common edges between G and
H respectively. Then, R(G, x) < R(H,x) if and only if R(G′, x) < R(H ′, x).

Proof. Let F be the graph induced by the edges shared by G and H . By equation 1 we have
R(G, x) = R(G′, x) +R(F, x) and R(H,x) = R(H ′, x) +R(F, x). The claim follows. J

I Claim 2. Let v be a vertex with degG′(v) = 1, degH′(v) = 0 and let G′′ be the graph
obtained from G′ after deleting the edge incident to v, and set H ′′ = H ′. Then, there exists
a vector x s.t. R(H ′, x) > R(G′, x) iff there exists a vector y s.t. R(H ′′, y) > R(G′′, y).

Proof. Let x be a vector such that R(H ′, x) > R(G′, x). Since G′′ is a subgraph of G′, we
have R(G′′, x) ≤ R(G′, x) < R(H ′, x) = R(H ′′, x), and we can take y = x. For the converse,
assume that there is a vector y such that R(H ′′, y) > R(G′′, y). Let (v, w) be the edge
incident to v in G′. We define a vector x as follows: xu = yu for all u 6= v and xv = yw.
Since, degH′′(v) = 0, we have R(H ′′, y) = R(H ′′, x). On the other hand, G′ and G′′ agree
on all the edges except (v, w). Hence, R(G′, x) = R(G′′, x) + (xv − xw)2 = R(G′′, x). The
two vectors x and y agree on all the entries except at v, and the degree of v in G′′ is zero.
Hence, R(G′′, x) = R(G′′, y). Combining all the inequalities, we get:
R(G′, x) = R(G′′, x) = R(G′′, x) < R(H ′′, y) = R(H ′′, x) = R(H ′, x). J

I Claim 3. Let G′ and H ′ be the graphs obtained by deleting the shared edges between
G and H as in Claim 1. Let G̃ and H̃ be the graphs obtained starting from G′ and H ′

and repeatedly applying the edge deletion operation of Claim 2. Then, for any vertex u,
degG̃(u) ≤ degH̃(u) + 1.

Proof. Since G is a cubic subgrid graph and H is a cycle, degG(u) ≤ 3, degH(u) = 2, for all
vertices u. Deleting edges shared between G and H decreases the degree of any given vertex
by the same amount in G and H . Moreover, at any given step, we only delete edges from G′.
Hence, degG̃(u) ≤ degH̃(u) + 1. J

I Claim 4. Let G′ and H ′ be the graphs obtained by deleting the shared edges between G

and H as in Claim 1. If there exists a vertex v such that degG′(v) = 1, degH′(v) ≥ 1. Then,
there exists a vector x such that R(H ′, x) > R(G′, x).

Proof. Let the edge incident to v in G′ be (v, w) and an edge incident to v in H ′ be (v, u).
Since, H ′ and G′ do not share any edge, we have u 6= w. Let x ∈ Rn be a vector defined as
follows: xv = 0, xw = 1

2 and xt = 1 otherwise. We have R(H ′, x) > (xv − xu)2 = 1, and

R(G′, x) = (xv − xw)2 +
∑

(w,a)∈E′
G
,a6=v

(xw − xa)2
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Vertex w has at most two neighbors other than v in G, since degG′(v) ≤ 3 and for any such
neighbor a, we have (xa−xw)2 = ( 1

2 −1)2 = 1/4. Hence R(G′, x) ≤ 3/4 < 1 ≤ R(H ′, x). J

Let G′ and H ′ be the graphs obtained by deleting the shared edges between G and H as
in Claim 1. Claims 3 and 4 allow us to assume without loss of generality that there is no
degree one vertex in G′ and for all vertices u, degG′(u) ≤ degH′(u) + 1. For convenience, we
will refer to the edges of G′ as black edges and edges of H ′ as blue edges.

I Lemma 6. If there exist five vertices u, v, w1, w2, w3 such that
(u,w1), (w1, w2), (w2, w3) are black edges and (v, w1), (v, w2) are not black edges.
(u, v) is a blue edge and (u,w2) is not a blue edge.

Then, there exists a vector x such that R(H ′, x) > R(G′, x).

Proof. Let x be the vector with xu = 0, xv=2, xw1 = 1
3 and xw2 = 2

3 , and xt = 1 otherwise.
We have

R(H ′, x) ≥ (xu − xv)2 +
∑

(u,a)∈EH′
a6=v

(xu − xa)2 +
∑

(v,b)∈EH′
b6=u

(xv − xb)2

= 4 + (degH′(u)− 1) · (0− 1)2 + (degH′(v)− 1) · (2− 1)2

= degH′(u) + degH′(v) + 2 ≥ degG′(u) + degG′(v) (Claim 3)

and

R(G′, x) = (xu − xw1)2 + (xw1 − xw2)2 + (xw2 − xw3)2 +
∑

(u,a)∈EG′
a6=w1

(xu − xa)2

+
∑

(w1,c)∈EG′
c 6=w2,u

(xw1 − xc)2 +
∑

(v,b)∈EG′

(xv − xb)2 +
∑

(w2,d)∈EG′
d6=w1,w3

(xw2 − xd)2.

We observe that (i) The first three terms are equal to 1
9 . (ii) There is at most one edge

(w1, c) for c 6= w2, u. Also, since w1 is not incident to v, we have xc = 1. Thus the fifth term
is at most 4

9 . (iii) There is at most one edge (w2, d) for d 6= w1, w3. In addition, G′ is a
subgrid, so there is no cycle of length 3 and w2 is not incident to u. Also, w2 is not incident
to v, by assumption. So, it must be that xd = 1 and the last term is at most equal to 1

9 .
(iv) Since G′ and H ′ do not share an edge, u is not connected to v. By assumption u is also
not incident to w2. So, it must be that xa = 1 and the fourth term is equal to degG′(u)− 1.
(v) Vertex v is not connected to u,w1, w2. Thus it must be xb = 1 and the sixth term is
equal to degG′(v). Collecting the terms gives R(G, x) ≤ degG′(u) + degG′(v) − 1

9 and the
Lemma follows. J

I Lemma 7. If there exist four different vertices u, v, w1, w2 such that
w1 has only two black adjacent edges (u,w1) and (w1, w2)
(u, v) is a blue edge.

Then, there exists a vector x such that R(H ′, x) > R(G′, x).

Proof. Let x be a vector with xu = 0, xv = 2, xw1 = 1
2 and xt = 1 otherwise. We have

R(H ′, x) ≥ (xu − xv)2 +
∑

(u,a)∈EH′
a6=v

(xu − xa)2 +
∑

(v,b)∈EH′
b6=u

(xv − xb)2

= 4 + (degH′(u)− 1) · (0− 1)2 + (degH′(v)− 1) · (2− 1)2 (no shared edges)
= degH′(u) + degH′(v) + 2 ≥ degG′(u) + degG′(v) (Claim 3)
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and

R(G′, x) = (xu − xw1)2 + (xw1 − xw2)2 +
∑

(u,a)∈EG′
a6=w1

(xu − xa)2 +
∑

(v,b)∈EG′

(xv − xb)2

Since G′ and H ′ do not share an edge, (xu − xa)2 and (xv − xb)2 terms are (0− 1)2 and
(2− 1)2 respectively. We have

R(G′, x) = 1
4 + 1

4 + (degG′(u)− 1) · 1 + degG′(v) · 1 = degG′(u) + degG′(v)− 1
2 .

The Lemma follows. J

I Lemma 8. If there exists a degree three vertex in G′, then there exists a vector x such that
R(H ′, x) > R(G′, x).

Proof. Since degG′(u) = 3, degH′(u) ≥ 2 by claim 3. Consider the underlying grid of which
G is a subgraph. Pick the edge (u, v) ∈ EH′ which is either not axis-parallel or is axis-parallel
and v is at distance at least 2 in the grid. Since u has degree 3 in G′, there exists a neighbor
w1 of u in G′ such that any path from w1 to v in G′ has length at least 3.

If w1 has degree 2 in G′, then we set w2 to be the neighbor of w1 other than u. It is then
straightforward to check that u, v, w1, w2 satisfy the condition of Lemma 7. Hence, there
exists x such that R(H ′, x) > R(G′, x).

If w1 is not of degree 2 in G′, it must have degree 3 since there are no degree 1 vertices
in G′. Let w2 be the neighbor of w1 other than u such that (u,w2) 6∈ E′H . Such a neighbor
exists since u has at most one neighbor in H ′ other than v and v is not incident to w1 due to
the fact that any path of length from w1 to v has length at least 3. Let w3 be the neighbor
of w2 other than w1. Such a neighbor must exist since there is no vertex of degree 1 in
G′. Now, we prove that these vertices satisfy the condition of Lemma 6. By construction
(u,w1), (w1, w2), (w2, w3) are black eges. Any path from w1 to v in G′ has length at least
3 which implies that (w1, v), (w2, v) are not black edges. Also, by construction, (u, v) is
a blue edge and (u,w2) is not a blue edge. Hence, by lemma 6 there exists x such that
R(H ′, x) > R(G′, x). J

I Lemma 9. If there exists a set S of vertices such that no edges leave S in G′, but at least
one edge leaves S in H ′ then then there exists a vector x ∈ Rn such that R(H ′, x) > R(G′, x).

Proof. Let x be defined as follows: xu = 1 for u ∈ S and xu = 0 for u 6∈ S. The R(G′, x) is
equal to the number of edges leaving S in G′, and similarly for H ′. The lemma follows. J

I Lemma 10. If there exists a cycle of length more than 4 in G′ such that all vertices of
cycle have degree 2 in G′, then there exists x ∈ Rn such that R(H ′, x) > R(G′, x).

Proof. Let C be the set of vertices in the cycle. For any vertex v in C, degG′(v) = 2. By
claim 3, degH′(v) ≥ 1. If there is no blue edge connecting two vertices of C in G′, then there
are at least |C| edges going out of C in H ′ and no edge going out of C in G′. Then, by
lemma 9, there exists x such that R(H ′, x) > R(G′, x).

In the complementary case, suppose there is an edge (a, b) ∈ EH′ such that a, b ∈ C. Let
the two paths from a to b on C be P1 = a,w1, . . . , wk1 , b and P2 = a, v1, . . . , vk2 , b. Since G′
and H ′ do not share any edge, min(k1, k2) ≥ 1. And since the cycle has length at least 5,
max(k1, k2) ≥ 2. Let a vector x be defined as follows: xa = 0, xb = 1, xwi = i

k1+1 , xvi = i
k2+1

and for u 6∈ C, set xu = 0. We have
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R(G′, x) =
∑

(u,v)∈P1

(xu − xv)2 +
∑

(u,v)∈P2

(xu − xv)2

= (k1 + 1) · 1
(k1 + 1)2 + (k2 + 1) · 1

(k2 + 1)2 ≤
5
6 .

The last inequality holds because min(k1, k2) ≥ 1,max(k1, k2) ≥ 2.
On the other hand R(H ′, x) ≥ (xa − xb)2 = 1 and the lemma follows. J

I Lemma 11. If G′ contains a set of disjoint cycles of length 4 and H ′ edges only have
endpoints on the same cycle, then there is a cycle H̃ such that |EH̃ ∩ EG| = |EH ∩ EG|+ 2.

Proof. Consider a cycle C of length 4 in G′ such that there is no blue edge between a
vertex in the cycle and a vertex not in the cycle. Since degG′(v) ≥ 2 for all vertices in the
cycle, degH′(v) ≥ 1 by claim 3. Since G′ and H ′ do not share any edge and the cycle has
length 4, we must have degH′(v) = 1 for all v ∈ C. And for vertices not in the length 4
cycles, degH′(v) = 0. Let the edges of H be F1 ∪ F2 where F1 are the edges shared between
G and H and F2 are the diagonal edges in the disjoint cycles of length 4. Let C be one
such cycle in G′ with vertices v1, v2, v3, v4 in this order and (v1, v3) ∈ F2, (v2, v4) ∈ F2. Let
H1 = (V, F1∪F2\{(v1, v3), (v2, v4)}∪{(v1, v2), (v3, v4)}), H2 = (V, F1∪F2\{(v1, v3), (v2, v4)}∪
{(v1, v4), (v2, v3)}). Then, one of the H1 or H2 is a cycle of length n. We let H̃ be that
cycle. J

Finishing the proof: Recall that we have assumed that G does not contain a Hamiltonian
cycle and let H is a permutation of C such that |EG ∩ EH | is maximized. To show that G
does not dominate H, we need to construct a vector x such that R(H,x) > R(G, x).

Starting with G and H, we form two graphs G′ and H ′ as follows: (i) delete from G and
H all common edges, (ii) iteratively and greedily delete all vertices such that degG(u) =
1, degH(u) = 0. Then Claims 1 and 2 show that it suffices to find a vector x such that
R(H ′, x) > R(G′, x).

If there is still a vertex with degG′(u) = 1, then degH′(u) must be at least 1 and hence,
by Claim 4, there exists a vector x such that R(H ′, x) > R(G′, x). Also, if there is a vertex
u with degree 3 in G′, then by lemma 8 there exists x such that R(H ′, x) > R(G′, x).

If there are no degree 1 or degree 3 vertices G′, then G′ must be a collection of isolated
vertices and cycles. If there is a vertex v such that degG′(v) = 0, degH′(v) ≥ 1, then by
setting S = {v}, lemma 9 implies that there exists a vector x such that R(H ′, x) > R(G′, x).

So, if none of the above cases occurs, then G′ is a collection of disjoint cycles and H ′

edges are only incident to vertices of the cycles. If there is a cycle of length at least 5,
then by lemma 10 there exists x such that R(H ′, x) > R(G′, x). Otherwise, if there is at
least one blue edge with end points on two different cycles of length 4, then by setting S
to be the vertex set of the cycle of length 4 Lemma 9 implies that there exists x such that
R(H ′, x) > R(G′, x).

So, either G′ and H ′ are empty or G′ consists of a collection of disjoint cycles of length 4
such that blue edges have end points in the same cycle. In the first case, G trivially contains
a Hamiltonian cycle since H ′ is empty. This is a contradiction to the assumption that G does
not contain a Hamiltonian cycle. In the second case G Lemma 11 contradicts our assumption
about the maximality of |EG ∩ EH |. J

Proof. (Theorem 4) The problem of detecting if a cubic subgrid contains a Hamiltonian cycle
is NP-complete [17]. Hence Theorem 5 is a direct reduction, and the theorem follows. J
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3 Spectrally Robust Graph Isomorphism on Trees

This section outlines a proof for Theorem 3. We first introduce necessary notation.

I Definition 12. The support σ(G,H) of G by H is the smallest number γ such that γH
dominates G.

I Definition 13. The condition κ(G,H) of a pair of graphs G and H is the smallest number
κ such that G and H are κ-similar. We have κ(G,H) = σ(G,H)σ(H,G).

We denote by dG(u, v) the distance between u and v in G using the shortest path metric.
For S ⊆ V , we denote by δG(S) the set of of edges crossing the cut (S, V − S) in G.

We now briefly review well-known facts [8]; a more detailed version of this paragraph
along with proofs can be found in the appendix of the full version of the paper [12]. Given
two trees G and H there is an obvious way to embed the edges of G into H: each edge (u, v)
is routed over the unique path between vertices (u, v) in H. The dilation of the embedding
is defined by: d = max(u,v)∈EG dH(u, v). The congestion ce of an edge e ∈ EH is the number
of G-edges that are routed over e. The congestion c of the embedding is then defined as
maxe∈EH ce. An upper bound of κ on the condition number implies the same upper bound
on both c and d. On the other hand, the product cd is an upper bound on σ(G,H), which
is at most a quadratic over-estimation of σ(G,H).

Our algorithm finds a mapping that controls both the dilation and the congestion of the
embeddings from G to H and vice versa, thus obtaining a quadratic approximation to the
condition number as a corollary.
I Remark. To simplify the presentation and the proof, we assume uniform upper bounds
on the congestion and the dilation of both embeddings (G to H and H to G), rather than
handling them separately. This formally proves a κ3-approximation to κ-similarity. A
κ-approximation algorithm may be possible with a refined argument that tracks the two
embeddings separately.

Formally, our result can be stated as follows:

I Theorem 14. Suppose G and H are two trees for which there exists a bijective mapping
π : V (G)→ V (H) satisfying the following properties:

For all (u, v) ∈ E(G), dH(π(u), π(v)) ≤ `
For all (u, v) ∈ E(H), dG(π−1(u), π−1(v)) ≤ `
For S ⊂ V (G) such that |δG(S)| = 1, |δH(π(S))| ≤ k.
For S ⊂ V (H) such that |δH(S)| = 1, |δG(π−1(S))| ≤ k.

Then, there exists an algorithm to find such a mapping in time nO(k2d) where d is the
maximum degree of a vertex in G or H.

Our main result, theorem 3, follows immediately as a corollary from the fact that
max{k, l} ≤ σ(H,G) ≤ kl (which is proved in the full version of the paper) and using the
fact that max{σ(G,H), σ(H,G)} ≤ κ(G,H) ≤ σ(G,H)σ(H,G).

I Corollary 15. Given two tree graphs G and H with condition number κ and maximum
degree d, there exists an algorithm running in time nO(κ2d) which finds a mapping certifying
that condition number is at most κ4.

The algorithm uses dynamic programming; it proceeds by recursively finding mappings
for different subtrees and merging them. The challenge is to find partial mappings of
subtrees which also map their boundaries in such a way that enables different mappings to
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be appropriately merged. Notice that it is not enough to consider just the boundary vertices
of the subtrees and their images. Instead, we need to additionally consider the boundary
edges of those vertex sets, which correspond to cuts induced on the graph.

Definitions and Lemmas. To proceed with the proof, we introduce some definitions. We
fix k and ` to be defined as in Theorem 14. Also, we fix an arbitrary ordering L on the edges
of H. Without loss of generality it is convenient to root the trees such that we always map
the two roots to each other. Let rG be the root of tree G and rH be the root of tree H.

Suppose that u is a vertex in G and TGu is the subtree rooted at u in G. If TGu is mapped
to the set T in H, then its boundary includes the vertex u, the edge incident to u, the
boundary vertices of T , and the cuts induced by edges going out of T . Hence, in addition
to considering the mapping of boundary vertices, we need to consider the mapping of sets
T ′ such that δH(T ′) = {e} where e ∈ δH(T ). This notion is formalized in the following two
definitions.

I Definition 16. Let Γ be the set of tuples (u, T, v, u1, . . . , ux, S1, . . . , Sx) satisfying the
following properties:

u, u1, . . . , ux ∈ V (G), v ∈ V (H), T ⊂ V (H), S1, . . . , Sx ⊂ V (G);
rG 6∈ S1, . . . , Sx, rH 6∈ T ;
u, u1, . . . , ux 6= rG, v 6= rH ;
|δH(T )| = x ≤ k and ∀j ∈ [1, x], |δG(Sj)| ≤ k.

For α ∈ Γ, we use the indicator variable zα to denote if there is a mapping π which
realizes α and preserves the distances and cuts for edges in TGu and T . A permutation π
realizing α is formally defined below. Intuitively, this mapping maps the subtree rooted at u
in G to the set T in H , vertex u to vertex v. It also maps u1, . . . , ux to the vertex boundary
of the set T , and maps sets S1, . . . , Sx to the cuts induced by the boundary edges of T . The
formal definition of zα is as follows:

I Definition 17. For α = (u, T, v, u1, . . . , ux, S1, . . . , Sx) ∈ Γ, let δH(T ) = {e1, . . . , ex} be
such that for i < j, ei is ordered before ej in ordering L. Let vj = ej ∩ T , TGu be the vertex
set in the subtree rooted at u in G and for e ∈ E(G), let TGe be the vertex set in the subtree
under edge e. Formally speaking TGe ⊂ V (G) such that δG(TGe ) = {e} and rG 6∈ TGe (THe is
similarly defined). We define zα = 1 if there exists a mapping π : V (G)→ V (H) such that:
1. π(TGu ) = T, π(u) = v, ∀j ∈ [1, x], π(uj) = vj , π(Sj) = THej , π(rG) = rH .
2. ∀(u, v) ∈ E[G[TGu ]], dH(π(u), π(v)) ≤ `
3. ∀(u, v) ∈ E[H[T ]], dG(π−1(u), π−1(v)) ≤ `
4. ∀e ∈ E[G[TGu ]], |δH(π(TGe )| ≤ k.
5. ∀e ∈ E[H[T ]], |δG(π−1(THe )| ≤ k.
We refer to such a mapping π as a certificate of zα = 1. Moreover, we define zα,π = 1 if π is
a certificate of zα = 1 and 0 otherwise.

I Claim 5. There exists a poly(n) time algorithm which given α ∈ Γ, π : V (G) → V (H),
outputs the value of zα,π.

Our goal is to design an algorithm which computes zα for every α ∈ Γ. However, for our
algorithm to run in polynomial time, we need Γ to not be exponentially large.

I Lemma 18. |Γ| ≤ nO(k2).

Proof. Let α = (u, T, v, u1, . . . , ux, S1, . . . , Sx). We prove the lemma by bounding the number
of choices for each parameter.
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The number of choices of u is upper bounded by n.
Since |δH(T )| = x, the number of choices δH(T ) is upper bounded by

(
m
x

)
where m is the

number of edges. By substituting m = n− 1, we get that the number of different δH(T ),
i.e. the number of different T ’s, is upper bounded by

(
n−1
x

)
.

The number of different v and uj is at most n for each j ∈ [1, x].
Similarly to the argument for T , the number of different Sj with |δH(Sj)| ≤ k is at most∑k
t=1
(
n−1
t

)
.

For x ∈ [1, k], the number of different tuples α in Γ with |δH(T )| = x is at most:

n ·
(
n− 1
x

)
n · nx ·

[
k∑
t=1

(
n− 1
t

)]x
= nO(k·x).

Since x ≤ k, this gives us an upper bound of nO(k2) on |Γ|. J

Suppose π is the optimal mapping from G to H which yields a mapping with cut distortion
k and distance distortion ` and also certifies zα = 1 for some α. Our recursive algorithm
does not necessarily obtain the same certificate as π for zα = 1. So, before we show how to
compute zα, we examine certain properties of zα. In particular, we start by proving that
if both π and γ certify zα = 1 so that zα,π = zα,γ = 1, then they not only match on the
boundary vertices but also on the cuts induced by boundary edges.

I Lemma 19. For α = (u, T, v, u1, . . . , ux, S1, . . . , Sx), let π and γ be two mappings such
that zα,π = zα,γ = 1. Then:
1. π(u) = γ(u).
2. π(TGu ) = γ(TGu ).
3. For every boundary vertex w of T (in T with an incident edge in δH(T )), π−1(w) = γ−1(w).

Equivalently, π(uj) = γ(uj) for j ∈ [1, x].
4. For every edge e ∈ δH(T ), π−1(THe ) = γ−1(THe ).
5. For every connected component C in H \ δH(T ), π−1(C) = γ−1(C).

Proof. Items 1-4. follow directly from the definition of zα,π. Consider a connected component
C in H \ δH(T ). Let δH(C) = {ei1 , . . . , eit}. Without loss of generality, assume that ei1 is
the edge closest to the root rH . Then:

γ−1(C) = γ−1(Tei1 ) \ ∪tj=2γ
−1(Teij ).

Item 3 implies that γ−1(Teij ) = π−1(Teij ) for j ∈ [1, t] thus proving π−1(C) = γ−1(C). J

The next lemma is somewhat like a converse of the previous lemma. It shows that if we
have a mapping π such that zα,π = 1 and another mapping γ such that γ matches with π on
the subtree and the boundary vertices and edges, then zα,γ = 1 as well.

I Lemma 20. Let α = (u, T, v, u1, . . . , ux, S1, . . . , Sx) and π : V (G) → V (H) be such that
zα,π = 1. Let γ : V (G)→ V (H) be such that
1. γ(w) = π(w) for w ∈ TGu
2. γ(uj) = π(uj) for j ∈ [1, x]
3. γ(Sj) = π(Sj) for j ∈ [1, x] (π and γ may not be identical on every element of Sj)
Then, zα,γ = 1.

Proof. Follows immediately from definition 17. J
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Next we show how to change the optimal mapping such that it agrees with the mapping
found by our algorithm on the subtree and is still optimal. Following lemma formalizes this
statement:

I Lemma 21. Let π be a mapping such that zα,π = zα1,π = 1 where

α = (a, T, b, u1, . . . , ux, S1, . . . , Sx) ∈ Γ and α1 = (a1, T 1, b1, u1
1, . . . , u

1
x1
, S1

1 , . . . , S
1
x1

) ∈ Γ

such that a1 is a child of a in G. Suppose, γ1 is another mapping such that zα1,γ1 = 1. Let ζ
be defined as follows: ζ(u) = γ1(u) for u ∈ TGa1 and ζ(u) = π(u) otherwise. Then, zα,ζ = 1.

Proof. Items 1-4 of lemma 17 can be easily verified for zα,ζ . Here, we prove that the following
property holds: ∀e ∈ E[H[T ]], |δG(ζ−1(THe ))| ≤ k.

There are three possible cases, that we consider separately.
1. e = (b, b1), e ∈ δH(T 1).

By definition, ζ−1(THe ) = γ−1
1 (THe ). Since, zα1,γ1 = 1, we get |ζ−1(THe )| = |γ−1

1 (THe )| ≤
k.

2. e ∈ E[H[T \ T 1]].
By definition, ζ−1(THe ) = π−1(THe ). Since, zα,π = 1„ we get |ζ−1(THe )| = |π−1(THe )| ≤ k.

3. e ∈ E[H[T 1]].
By definition, ζ−1(THe ) = γ−1

1 (THe ) and since, zα1,γ1 = 1, we get |ζ−1(THe )| ≤ k. J
The above lemmas show that even if we find mappings for subtrees which are different from
the optimal mappings, they can still be merged with the optimal mappings. Hence, we
may just find any of the mappings for each α and then recursively combine mappings. The
following lemma states the result and shows how to make it constructive:

I Lemma 22. Let a ∈ V (G) be a vertex in G with children a1, . . . , at. Let

α = (a, T, b, u1, . . . , ux, S1, . . . , Sx) and
α1 = (a1, T 1, b1, u1

1, . . . , u
1
x1
, S1

1 , . . . , S
1
x1

), . . . , αt = (at, T t, bt, ut1, . . . , utxt , S
t
1, . . . , S

t
xt) ∈ Γ.

Let π : V (G)→ V (H) be a mapping such that zα,π = zα1,π = · · · = zαj ,π = 1 for all j ∈ [1, t].
If for each j ∈ [1, t] there exists a mapping γj : V (G) → V (H) with zαj ,γj = 1, then there
exists π′ : V (G)→ V (H) such that zα,π′ = 1 and π′(w) = γj(w) for w ∈ TGaj where j ∈ [1, t].
Moreover, given {γj | j ∈ [1, t]}, such π′ can be found in time poly(n).

Proof. Let ζ : V (G) → V (H) such that ζ(w) = γj(w) for w ∈ TGaj where j ∈ [1, t] and
ζ(w) = π(w) otherwise. By lemma 21, zα,ζ = 1.

Construction of π′: Let π′(w) = γj(w) for w ∈ TGaj , j ∈ [1, t] and π′(a) = b. For w 6∈ TGa ,
define π′ such that π′(Sj) = Tj for j ∈ [1, x]. Setting π = ζ, γ = π′ in lemma 20, we get
zα,π′ = 1. Easy to see that π′ is constructed in polynomial time. J

Lemma 22 suggests that we can recursively compute zα. Namely, we can show the following:

I Lemma 23. There exists an algorithm with running time poly(n, |Γ|d) which calculates zα
for each α ∈ Γ. Additionally if zα = 1, it also computes πα such that zα,πα = 1.

Proof. Consider α = (a, T, b, u1, . . . , ux, S1, . . . , Sx) ∈ Γ with zα = 1 and π : V (G)→ V (H)
be the mapping such that zα,π = 1. Let the children of a be a1, . . . , at.

I Claim 6. For j ∈ [1, t], ∃αj = (aj , T j , bj , u1
j , . . . , u

1
xj , S

1
1 , . . . , S

1
xj ) ∈ Γ such that zαj ,π = 1.
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To construct a mapping π′ such that zα,π′ = 1, we guess α1, . . . , αt and use lemma 22 to
construct such a mapping. It requires mapping γj such that zαj ,γj = 1 which can be assumed
to be constructed recursively. The number of choices of α1, . . . , αt is upper bounded by |Γ|t
which is upper bounded by |Γ|d, as the degree of any vertex is at most d. For any such choice,
algorithm in lemma 22 runs in time poly(n). Hence, computing zα takes |Γ|dpoly(n) time for
each α and |Γ|d+1poly(n) = poly(n, |Γ|d) time for all α ∈ Γ.

If zα = 0, then for any of the mappings π′ considered above has zα,π′ = 0. This can be
checked in poly(n) time for each π′ (proposition 5). J

Proof. (of theorem 14) Let π be a mapping π : V (G)→ V (H) such that:
(a) For all (u, v) ∈ E(G), dH(π(u), π(v)) ≤ `
(b) For all (u, v) ∈ E(H), dG(π−1(u), π−1(v)) ≤ `
(c) For S ⊂ V (G) s.t. |δG(S)| = 1, |δH(π(S))| ≤ k.
(d) For S ⊂ V (H) s.t. |δH(S)| = 1, |δG(π−1(S))| ≤ k.

First, we start by guessing the roots of G and H and define Γ. Then, using lemma 23, we
can calculate zα for α ∈ Γ. It does not give us a mapping π′ satisfying the conditions above
since for α = (u, T, v, u1, . . . , ux, S1, . . . , Sx) ∈ Γ, we have u 6= rG. However, a proof almost
identical to that of lemma 23 works here as well. Assume rG has children a1, . . . , at. Then
there exists αj = (aj , T j , bj , u1

j , . . . , u
1
xj , S

1
1 , . . . , S

1
xj ) ∈ Γ such that zαj ,π = 1. Then, similarly

to the proof of lemma 23 we can guess αj , j ∈ [1, t] and compute π′ in time poly(n) · |Γ|d,
which satisfies the conditions described above. J

4 Final Remarks

From an algebraic standpoint, the problems we considered in this work have natural gen-
eralizations to pairs of positive definite matrices (A,B), and the corresponding eigenvalue
problem Ax = λPTBPx. SGD generalizes to minimizing the maximum eigenvalue, and
SGRI generalizes to finding the permutation P that minimizes the condition number κ(A,B).
But the problem appears to be much harder in some sense: one can construct ‘pathological’
examples of A and B with just two distinct eigenspaces that are nearly identical, but different
enough to cause unbounded condition numbers due to the eigenvalue gap. This makes
implausible the existence of non-trivial subexponential time algorithms for the general case.

On the other hand, besides their potential for applications, Laplacians seem to offer an
interesting mathematical ground with a wealth of open problems. In this paper we presented
the first algorithmic result, for unweighted trees. The algorithm is admittedly complicated,
but it can at least be viewed as an indication of algorithmic potential, as we are not aware
of any fact that would preclude a similar approximation for general graphs. To make such
algorithmic progress, we would likely have to give up on the combinatorial interpretations of
the condition number, and use deeper spectral properties of Laplacians.
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Abstract
The theory of n-fold integer programming has been recently emerging as an important tool in
parameterized complexity. The input to an n-fold integer program (IP) consists of parameter A,
dimension n, and numerical data of binary encoding length L. It was known for some time that
such programs can be solved in polynomial time using O(ng(A)L) arithmetic operations where
g is an exponential function of the parameter. In 2013 it was shown that it can be solved in
fixed-parameter tractable time using O(f(A)n3L) arithmetic operations for a single-exponential
function f . This, and a faster algorithm for a special case of combinatorial n-fold IP, have led to
several very recent breakthroughs in the parameterized complexity of scheduling, stringology, and
computational social choice. In 2015 it was shown that it can be solved in strongly polynomial
time using O(ng(A)) arithmetic operations.

Here we establish a result which subsumes all three of the above results by showing that n-
fold IP can be solved in strongly polynomial fixed-parameter tractable time using O(f(A)n6 log n)
arithmetic operations. In fact, our results are much more general, briefly outlined as follows.

There is a strongly polynomial algorithm for integer linear programming (ILP) whenever a
so-called Graver-best oracle is realizable for it.
Graver-best oracles for the large classes of multi-stage stochastic and tree-fold ILPs can be
realized in fixed-parameter tractable time. Together with the previous oracle algorithm, this
newly shows two large classes of ILP to be strongly polynomial; in contrast, only few classes
of ILP were previously known to be strongly polynomial.
We show that ILP is fixed-parameter tractable parameterized by the largest coefficient ‖A‖∞
and the primal or dual treedepth of A, and that this parameterization cannot be relaxed,
signifying substantial progress in understanding the parameterized complexity of ILP.
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Related Version A full version of the paper is available at https://arxiv.org/abs/1802.
05859.

1 Introduction

In this article we consider the general linear integer programming (ILP) problem in standard
form,

min {wx | Ax = b , l ≤ x ≤ u , x ∈ Zn} . (ILP)

with A an integer m× n matrix, b ∈ Zm, w ∈ Zn, l,u ∈ (Z ∪ {±∞})n. It is well known to
be strongly NP-hard, which motivates the search for tractable special cases.

The first important special case is ILP in fixed dimension. In the ’80s it was shown by
Lenstra and Kannan [17, 20] that (ILP) can be solved in time nO(n)L, where L is the length
of the binary encoding of the input. Secondly, it is known that if the matrix A is totally
unimodular (all subdeterminants between −1 and 1), all vertices of the feasible region are
integral and thus applying any polynomial algorithm for linear programming (LP) suffices.
Later, Veselov and Chirkov [25] have shown that the more general class of bimodular ILP is
also polynomial-time solvable. Other results exploit certain structural properties of A. These
include the large classes of n-fold [13], tree-fold [4], 2-stage and multi-stage stochastic [3],
and 4-block n-fold [12] ILPs, as well as algorithms for ILPs with bounded treewidth [11],
treedepth [10] and fracture number [7] of certain graphs related to the matrix A.

A fundamental question regarding problems involving large numbers is whether there
exists an algorithm whose number of arithmetic operations does not depend on the length of
the numbers involved; if this number is polynomial, this is a strongly polynomial algorithm [24].
For example, the ellipsoid method or the interior-point method which solve LP take time
which does depend on the encoding length, and the existence of a strongly polynomial
algorithm for LP remains a major open problem. So far, the only strongly polynomial ILP
algorithms we are aware of exist for totally unimodular ILP [14], bimodular ILP [2], so-called
binet ILP [1], and n-fold IP with constant block dimensions [6]. All remaining results, such
as Lenstra’s famous algorithm or the fixed-parameter tractable algorithm for n-fold IP which
has recently led to several breakthroughs [4, 16, 18, 19], are not strongly polynomial.

1.1 Our Contributions
To clearly state our results we introduce the following terminology. The input to a problem
will be partitioned into three parts (α, β, γ), where α is the parametric input, β is the
arithmetic input, and γ is the numeric input. A strongly fixed-parameter tractable (FPT)
algorithm for the problem is one that solves it using f(α)poly(β) arithmetic operations and
g(α)poly(β, γ) time, where f, g are some computable functions. If such an algorithm exists,
we say that the problem is strongly fixed-parameter tractable (FPT) parameterized by α. Thus,
such an algorithm both demonstrates that the problem is FPT parameterized by α because
it runs in FPT time g(α)poly(β, γ), and provides a strongly polynomial algorithm for each
fixed α. Having multiple parameters α1, . . . , αk simultaneously is understood as taking the
aggregate parameter α = α1 + · · · + αk. If the algorithm involves oracles then the oracle
queries are also counted as arithmetic operations and the answers to oracle queries should
be polynomial in (β, γ). Each part of the input may have several entities, which may be
presented in unary or binary, where 〈e〉 denotes the encoding length of an entity e presented
in binary. For the parametric input the distinction between unary and binary is irrelevant.

https://arxiv.org/abs/1802.05859
https://arxiv.org/abs/1802.05859
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ILP abounds in natural parameters: the dimension n, number of inequalities m, largest
coefficient ‖A‖∞, largest right-hand side ‖b‖∞, various structural parameters of A, etc. Here,
we are interested in algorithms which are both strongly polynomial and FPT.

Recently it was shown that, if we have access to the so-called Graver basis of A, the
problem (ILP) is polynomial time solvable even for various nonlinear objective functions [5, 21].
We show that all of these results can be extended to be strongly polynomial with only 〈A〉
as the arithmetic input.

I Theorem 1. The problem (ILP) with arithmetic input 〈A〉 and numeric input 〈w,b, l,u〉,
endowed with a Graver-best oracle for A, is solvable by a strongly polynomial oracle algorithm.

The existence of Graver-best oracles is thus of prime interest. We show such oracles for
the wide classes of multi-stage stochastic and tree-fold ILPs; for precise definitions of these
classes cf. Section 3.1.2. See Table 1 for a summary of improvements over the current state
of the art.

I Theorem 2. Multi-stage stochastic ILP with blocks B1, . . . , Bτ , Bi ∈ Zl×ni , is strongly
FPT parameterized by l + n1 + · · ·+ nτ and ‖A‖∞.

I Theorem 3. Tree-fold ILP with blocks A1, . . . , Aτ , Ai ∈ Zri×t, is strongly FPT parame-
terized by r1 + · · ·+ rτ and ‖A‖∞.

This improves on the algorithm for tree-fold ILP [4] not only by making it strongly FPT, but
also by leaving the block length t out of the parameter. Similarly, the following algorithm
for the special case of n-fold ILP greatly improves both on the previous results of Hemmecke
et al. [13] and Knop et al. [18] and is the currently fastest algorithm for this problem:

I Theorem 4. n-fold ILP with blocks A1 ∈ Zr×t and A2 ∈ Zs×t can be solved in time
aO(r2s+rs2)(nt)6 log(nt) + L(〈A〉), where L(〈A〉) is the runtime of a strongly polynomial LP
algorithm.

Next, we turn our attention to structural parameters of the constraint matrix A. We
focus on two graphs which can be associated with A:

the primal graph GP (A), which has a vertex for each column and two vertices are
connected if there exists a row such that both columns are non-zero, and,
the dual graph GD(A) = GP (Aᵀ), which is the above with rows and columns swapped.

Two standard parameters of structural sparsity are the treewidth (measuring the “tree-likeness”
of a graph) and the more restrictive treedepth (measuring its “star-likeness”). We denote the
treewidth of GP (A) and GD(A) by twP (A) and twD(A); for treedepth we have tdP (A) and
tdD(A). Note that bounded treedepth implies bounded treewidth but not vice versa.

We show that ILP parameterized by tdP (A) + ‖A‖∞ and tdD(A) + ‖A‖∞ can be reduced
to the previously mentioned classes, respectively, implying (ILP) with these parameters is
strongly FPT.

I Theorem 5. (ILP) is strongly FPT parameterized by tdP (A) and ‖A‖∞.

This improves in two ways upon the result of Ganian and Ordyniak [10] who show that (ILP)
with w ≡ 0 (i.e. deciding the feasibility) is FPT parameterized by tdP (A) + ‖A,b‖∞ [10].
First, we use the smaller parameter ‖A‖∞ instead of ‖A,b‖∞, and second, we solve not
only the feasibility but also the optimization problem. An analogous result holds for the
parameter tdD(A), for which previously nothing was known at all.

I Theorem 6. (ILP) is strongly FPT parameterized by tdD(A) and ‖A‖∞.

ICALP 2018
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Table 1 Run time improvements implied by this paper. We denote by L the binary length of the
numeric input b, l, u, w, i.e., L = 〈b, l, u, w〉, and consider 〈A〉 to be part of the arithmetic input.
We denote by a = max{2, ‖A‖∞}, by r, s, t the relevant block dimensions (cf. Section 3.1), and by
L(〈A〉) the runtime of a strongly polynomial LP algorithm [24].

Type of instance Previous best run time Our result

n-fold ILP aO(rst+st2)n3L [13]
aO(r2s+sr2)(nt)6 log(nt) + L(〈A〉) Thm 4

n-fold ILP nf1(a,r,s,t) [6]

n-fold ILP tO(r)(ar)r2
n3L if A2 = (1 1 · · · 1) [18] aO(r2)(nt)6 log(nt) + L(〈A〉) Thm 4

tree-fold ILP ftf′(a, n1, . . . , nτ , t)n3L [4] ftf(a, n1, . . . , nτ )(nt)3 + L(〈A〉) Thm 3

Multi-stage stochastic ILP fmss(a, n1, . . . , nτ , l)n3L [3] fmss(a, n1, . . . , nτ , l)n3 + L(〈A〉) Thm 2

Bounded dual treedepth Open whether fixed-parameter tractable fD(a, tdD(A)(nt)3 + L(〈A〉) Thm 6

Bounded primal treedepth fP ′(a, ‖b‖∞, tdP (A))nL [10] fP (a, tdP (A))n3 + L(〈A〉) Thm 5

We emphasize that the parameterizations cannot be relaxed neither from treedepth to
treewidth, nor by removing the parameter ‖A‖∞: (ILP) is NP-hard already on instances
with twP (A) = 3 and ‖A‖∞ = 2 [10, Thm 12], and it is strongly W[1]-hard parameterized
by tdP (A) alone [10, Thm 11]; the fact that a problem is W[1]-hard is strong evidence that
it is not FPT. Similarly, deciding feasibility is NP-hard on instances with twD(A) = 3 and
‖A‖∞ = 2 (Lemma 18) and strongly W[1]-hard parameterized by tdD(A) alone [19, Thm 5].

1.2 Interpretation of Results
We believe our approach also leads to several novel insights. First, we make it clear that
the central question is finding Graver-best oracles; provided these oracles, Theorem 1 shows
that tasks such as optimization and finding initial solutions can be handled under very mild
assumptions. Even though we show these tasks are routine, they have been reimplemented
repeatedly [4, 12, 13, 18].

Second, we show that the special classes of highly uniform block structured ILPs, namely
multi-stage stochastic and tree-fold ILPs, are in some sense universal for all ILPs of bounded
primal or dual treedepth, respectively. Specifically, we show that any ILP with bounded
primal or dual treedepth can be embedded in an equivalent multi-stage stochastic or tree-fold
ILP, respectively (Lemmas 25 and 26).

Third, we show that, besides bounded primal or dual treedepth, the crucial property
for efficiency is the existence of augmenting steps with bounded `∞- or `1-norms, respec-
tively (Lemmas 19 and 21). This suggests that for ILPs whose primal or dual graph is
somehow “sparse” and “shallow”, finding augmenting steps of bounded `∞- or `1-norm might
be both sufficient for reaching the optimum and computationally efficient.

1.3 Related Work
We have already covered all relevant work regarding strongly polynomial algorithms for ILP.

Let us focus on structural parameterizations. It follows from Freuder’s algorithm [9] and
was reproven by Jansen and Kratsch [15] that (ILP) is FPT parameterized by twP (A) and
the largest domain ‖u− l‖∞. Regarding the dual graph GD(A), the parameters tdD(A) and
twD(A) were only recently considered by Ganian et al. [11]. They show that even deciding
feasibility of (ILP) is NP-hard on instances with twI(A) = 3 (twI(A) denotes the treewidth
of the incidence graph; twI(A) ≤ twD(A) + 1 always holds) and ‖A‖∞ = 2 [11, Theorem 12].
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Furthermore, they show that (ILP) is FPT parameterized by twI(A) and parameter Γ, which
is an upper bound on any prefix sum of Ax for any feasible solution x.

Dvořák et al [7] introduce the parameter fracture number; having a bounded variable
fracture number pV (A) implies that deleting a few columns of A breaks it into independent
blocks of small size; similarly for constraint fracture number pC(A) and deleting a few rows.
Because bounded pV (A) implies bounded tdP (A) and bounded pC(A) implies bounded
tdD(A), our results generalize theirs. The remaining case of mixed fracture number p(A),
where deleting both rows and columns is allowed, reduces to the 4-block n-fold ILP problem,
which is not known to be either FPT or W[1]-hard. Because bounded p(A) implies bounded
tdI(A), ILP parameterized by tdI(A) + ‖A‖∞ is at least as hard as 4-block n-fold ILP,
highlighting its status as an important open problem.

Organization. The paper contains three main parts. In Section 2, we provide the proof of
Theorem 1, showing the existence of a strongly polynomial algorithm whenever a Graver-best
oracle is provided. Then, in Section 3, we provide Graver-best oracles for multi-stage stochastic
and tree-fold ILPs and discuss n-fold ILP, and prove Theorems 2, 3 and 4. Finally, in Section 4
we show how to embed any instance of bounded primal or dual treedepth into a multi-stage
stochastic or tree-fold ILP without increasing the relevant parameters, proving Theorems 5
and 6. Due to space restrictions the proofs of our technical statement and other supplementary
material are moved to the full version available at https://arxiv.org/abs/1802.05859;
the statements whose proofs are presented there are marked with (*) .

2 The Graver-best Oracle Algorithm

2.1 Preliminaries
For positive integers m,n, m ≤ n, we set [m,n] = {m, . . . , n} and [n] = [1, n]. We write
vectors in boldface (e.g., x,y) and their entries in normal font (e.g., the i-th entry of x
is xi). If A is a matrix, Ar denotes its r-th column. For an integer a ∈ Z, we denote by
〈a〉 = 1 + log2 a the binary encoding length of a; we extend this notation to vectors, matrices
and tuples of these objects. For example, 〈A,b〉 = 〈A〉+ 〈b〉, and 〈A〉 =

∑
i,j〈aij〉. For a

graph G we denote by V (G) its set of vertices.

Graver bases and augmentation. Let us now introduce Graver bases and discuss how they
are used for optimization. We define a partial order v on Rn as follows: for x,y ∈ Rn we
write x v y and say that x is conformal to y if xiyi ≥ 0 (that is, x and y lie in the same
orthant) and |xi| ≤ |yi| for i ∈ [n]. It is well known that every subset of Zn has finitely many
v-minimal elements.

I Definition 7 (Graver basis). The Graver basis of an integer m× n matrix A is the finite
set G(A) ⊂ Zn of v-minimal elements in {x ∈ Zn : Ax = 0, x 6= 0}.

We say that x is feasible for (ILP) if Ax = b and l ≤ x ≤ u. Let x be a feasible solution
for (ILP). We call g a feasible step if x + g is feasible for (ILP). Further, call a feasible
step g augmenting if w(x + g) < w(x). An augmenting step g and a step length α ∈ Z
form an x-feasible step pair with respect to a feasible solution x if l ≤ x + αg ≤ u. An
augmenting step h is a Graver-best step for x if w(x + h) ≤ w(x + λg) for all x-feasible
step pairs (g, λ) ∈ G(A)×Z. The Graver-best augmentation procedure for (ILP) with a given
feasible solution x0 works as follows:
1. If there is no Graver-best step for x0, return it as optimal.
2. If a Graver-best step h for x0 exists, set x0 := x0 + h and go to 1.
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I Proposition 8 ([21, Lemma 3.10]). Given a feasible solution x0 for (ILP), the Graver-best
augmentation procedure finds an optimum of (ILP) in at most (2n− 2) logF steps, where
F = wx0 −wx∗ and x∗ is any minimizer of wx.

I Definition 9 (Graver-best oracle). A Graver-best oracle for an integer matrix A is one that,
queried on w,b, l,u and x feasible to (ILP), returns a Graver-best step h for x.

2.2 The Algorithm
It follows from Proposition 8 that given a Graver-best oracle, problem (ILP) can be solved in
time which is polynomial in the binary encoding length 〈A,w,b, l,u〉 of the input. We now
show that, in fact, given such an oracle, the problem admits a strongly polynomial algorithm.
In the next theorem the input has only arithmetic and numeric parts and no parametric part.

I Theorem 1. The problem (ILP) with arithmetic input 〈A〉 and numeric input 〈w,b, l,u〉,
endowed with a Graver-best oracle for A, is solvable by a strongly polynomial oracle algorithm.

I Remark. The partition of the input to the arithmetic input 〈A〉 and the numeric input
〈w,b, l,u〉 is the same as in the classical results for linear programming [8, 24].

Proof. The algorithm which demonstrates the theorem consists of several steps as follows.

Step 1: Reducing b, l, u. Apply the strongly polynomial algorithm of Tardos [24] to
the linear programming relaxation min {wy | y ∈ Rn, Ay = b, l ≤ y ≤ u}; the algorithm
performs L(〈A〉) = poly(〈A〉) arithmetic operations. If the relaxation is infeasible then so is
(ILP) and we are done. If it is unbounded then (ILP) is either infeasible or unbounded too,
and in this case we set w := 0 so that all solutions are optimal, and we proceed as below and
terminate at the end of step 3. Suppose then that we obtain an optimal solution y∗ ∈ Rn
to the relaxation, with round down by∗c ∈ Zn. Let a := max{2, ‖A‖∞}. Let C(A) ⊆ G(A)
be the set of circuits of A, which are those c ∈ G(A) with support which is a circuit of the
linear matroid of A. Let c∞ := maxc∈C(A) ‖c‖∞. We have c∞ ≤ n

n
2 an [21, Lemma 3.18].

We now use the proximity results of [12, 14] which assert that either (ILP) is infeasible or
it has an optimal solution x∗ with ‖x∗−y∗‖∞ ≤ nc∞ and hence ‖x∗−by∗c‖∞ ≤ n

n
2 +1an+1.

Thus, making the variable transformation x = z + by∗c, problem (ILP) reduces to following,

min
{

w(z + by∗c) | z ∈ Zn , A(z + by∗c) = b , l ≤ z + by∗c ≤ u , ‖z‖∞ ≤ n
n
2 +1an + 1

}
,

which is equivalent to the program

min
{

wz | z ∈ Zn , Az = b̄ , l̄ ≤ z ≤ ū
}

(1)

where

b̄ := b−Aby∗c, l̄i := max{li−by∗i c,−(nn2 +1an+1)}, ūi := min{ui−by∗i c, n
n
2 +1an+1} .

If some l̄i > ūi then (1) is infeasible and hence so is (ILP), so we may assume that

−(nn2 +1an + 1) ≤ l̄i ≤ ūi ≤ n
n
2 +1an + 1, for all i .

This implies that if z is any feasible point in (1) then ‖Az‖∞ ≤ na(nn2 +1an + 1) and so
we may assume that ‖b̄‖∞ ≤ na(nn2 +1an + 1) else there is no feasible solution. So we have

‖b̄‖∞, ‖̄l‖∞, ‖ū‖∞ ≤ 2O(n logn)aO(n) and hence 〈b̄, l̄, ū〉 is polynomial in 〈A〉 .
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Step 2: Solving the system of equations. We first search for an integer solution to the
system of equations Az = b̄. This can be done by computing the Hermite normal form of A,
see [23], using a number of arithmetic operations polynomial in 〈A〉 and time polynomial
in 〈A, b̄〉 which is polynomial in 〈A〉, and hence strongly polynomially in our original input.
Then either we conclude that there is no integer solution to Az = b̄ and hence (1) is infeasible,
or we find a solution z ∈ Zn with 〈z〉 polynomially bounded in 〈A, b̄〉 and hence also in 〈A〉.

Step 3: Finding a feasible point. Define relaxed bounds by

l̂i := min{l̄i, zi}, ûi := max{ūi, zi}, i ∈ [n] .

Now for i ∈ [n] iterate the following. If l̄i ≤ zi ≤ ūi then simply increment i and repeat. If
zi < l̄i (and hence l̂i = zi and ûi = ūi) then consider the following auxiliary integer program,

max
{
xi | x ∈ Zn , Ax = b̄ , l̂ ≤ x ≤ û

}
. (2)

Starting from the point z feasible in (2), and using the Graver-best oracle for A, we can
solve program (2) using Proposition 8 in polynomial time and in a number of arithmetic
operations and oracle queries which is polynomial in n and logF (recall F = z∗i − zi for some
minimizer z∗i ), which is bounded by log(ûi − l̂i) = log(ūi − zi), thus polynomial in 〈A〉.

Let x be an optimal solution of (2). If xi < l̄i then (1) is infeasible and we are done.
Otherwise (in which case l̄i ≤ xi ≤ ūi) we update l̂i := l̄i and z := x, increment i and repeat.
The last case zi > ūi is treated similarly where in (2) we minimize rather than maximize xi.

Thus, strongly polynomially we either conclude at some iteration i that program (1) is
infeasible or complete all iterations and obtain l̂ = l̄, û = ū, and a point z feasible in (1).

Step 4: Reducing w. Let N := 2n(nn2 +1an + 1) + 1. Now apply the strongly polynomial
algorithm of Frank and Tardos [8], which on arithmetic input n, 〈N〉 and numeric input
〈w〉, outputs w̄ ∈ Zn with ‖w̄‖∞ ≤ 2O(n3)NO(n2) such that sign(wx) = sign(w̄x) for all
x ∈ Zn with ‖x‖1 < N . Since 〈N〉 = O(logN) = O(n log n+ n log a) is polynomial in 〈A〉,
this algorithm is also strongly polynomial in our original input. Now, for every two points
x, z feasible in (1) we have ‖x− z‖1 < 2n(nn2 +1an + 1) + 1 = N , so that for any two such
points we have wx ≤ wz if and only if w̄x ≤ w̄z, and therefore we can replace (1) by the
equivalent program

min
{

w̄z : z ∈ Zn , Az = b̄ , l̄ ≤ z ≤ ū
}
, (3)

where

‖w̄‖∞ = 2O(n3 logn)aO(n3) and hence 〈w̄, b̄, l̄, ū〉 is polynomial in 〈A〉 .

Step 5: Finding an optimal solution. Starting from the point z which is feasible in (3),
and using the Graver-best oracle for A, we can solve program (3) using again Proposition 8
in polynomial time and in a number of arithmetic operations and oracle queries which is
polynomial in n and in logF , which is bounded by log

(
n‖w̄‖∞‖ū− l̄‖∞

)
, which is polynomial

in 〈A〉, and hence strongly polynomially. J

I Remark. In fact, the reduced objective w̄ in step 4 need not be constructed: already its
existence implies that (1) is solved in the same number of iterations as (3).
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3 Multi-stage Stochastic and Tree-fold ILP

In this section we prove Theorems 2 and 3. We first formalize a common construction for a
Graver-best oracle: one constructs a set of relevant step lenghts Λ and then for each λ ∈ Λ
finds a λ-Graver-best step. A step with the best improvement among these is then guaranteed
to be a Graver-best step. Thus, we reduce our task to constructing a Λ-Graver-best oracle.

Both algorithms for multi-stage stochastic ILP and tree-fold ILP follow the same pattern:
1. show that all elements of G(A) have bounded norms (`∞ and `1, respectively),
2. show that A has bounded treewidth (primal and dual, respectively),
3. apply existing algorithms for (ILP) which are FPT parameterized by ‖A‖∞, max ‖x‖∞

and max ‖x‖1, and twP (A) and twD(A), respectively.

3.1 Preliminaries

3.1.1 Relevant Step Lengths
We say that h ∈ {x ∈ Zn | Ax = 0} is a λ-Graver-best step if λh is a feasible step and
λwh ≤ λwg for any g ∈ G(A) such that λg is a feasible step. We denote by g1(A) =
maxg∈G(A) ‖g‖1 and g∞(A) = maxg∈G(A) ‖g‖∞. The following lemma states that provided
a bound on g∞(A), in order to find a Graver-best step, it is sufficient to find a λ-Graver-best
step for all λ ∈ Λ for some not too large set Λ.

I Definition 10 (Graver-best step-lengths). Let x be a feasible solution to (ILP). We say
that λ ∈ N is a Graver-best step-length for x if there exists g ∈ G(A) with x + λg feasible,
such that ∀λ′ ∈ N and ∀g′ ∈ G(A), x + λ′g′ is either infeasible or w(x + λg) ≤ w(x + λ′g′).
We denote by Λ(x) ⊆ N the set of Graver-best step-lengths for x.

I Lemma 11 (Polynomial Λ ⊇ Λ(x)). (*) Let x be a feasible solution to (ILP), let M ∈ N be
such that g∞(A) ≤M . Then it is possible to construct in time O(Mn) a set Λ ⊆ N of size
at most 2Mn such that Λ(x) ⊆ Λ.

With this Λ at hand, in order to realize a Graver-best oracle, it suffices to realize an
oracle which finds a λ-Graver-best step for a given λ:

I Definition 12 (Λ-Graver-best oracle). A Λ-Graver-best oracle for an integer matrix A is one
that, queried on w,b, l,u, x feasible to (ILP), and an integer λ ∈ N, returns a λ-Graver-best
step h for x.

I Lemma 13 (Λ-Graver-best oracle ⇒ Graver-best oracle). (*) Let A be an integer matrix
and let M ∈ N satisfy g∞(A) ≤ M . Then a Graver-best oracle for A can be realized with
2Mn calls to a Λ-Graver-best oracle for A.

3.1.2 Multi-stage Stochastic and Tree-fold Matrices
Let the height of a rooted tree or forest be the maximum root-to-leaf distance in it (i.e., the
number of edges along the root-to-leaf path). In the following we let T be a rooted tree of
height τ − 1 ∈ N whose all leaves are at depth τ − 1, that is, the length of every root-leaf
path is exactly τ − 1. For a vertex v ∈ T , let Tv be the subtree of T rooted in v and let
`(v) denote the number of leaves of T contained in Tv. Let B1, B2, . . . , Bτ be a sequence of
integer matrices with each Bs having l ∈ N rows and ns columns, where ns ∈ N, ns ≥ 1. We
shall define a multi-stage stochastic matrix TP (B1, . . . , Bτ ) inductively; the superscript P
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refers to the fact that TP (B1, . . . , Bτ ) has bounded primal treedepth tdP , as we will later
see.

For a leaf v ∈ T , TPv (Bτ ) := Bτ . Let d ∈ N, 0 ≤ d ≤ τ − 2, and assume that for all
vertices v ∈ T at depth d + 1, matrices TPv (Bτ−d, . . . , Bτ ) have been defined. For s ∈ N,
1 ≤ s ≤ τ , we set TPv (B[s:τ ]) = TPv (Bs, . . . , Bτ ). Let v ∈ T be a vertex at depth d with δ
children v1, . . . , vδ. We set

TPv (B[τ−d−1:τ ]) :=

 Bτ−d−1,`(v1) TPv1
(B[τ−d:τ ]) · · · 0

...
...

. . .
...

Bτ−d−1,`(vδ) 0 · · · TPvδ(B[τ−d:τ ])


where, for N ∈ N, Bs,N =

(
Bs
...
Bs

)
consists of N copies of the matrix Bs.

The structure of a multi-stage stochastic matrix makes it natural to partition any solution
of a multi-stage stochastic ILP into bricks. Bricks are defined inductively: for TPv (Bτ ) there
is only one brick consisting of all coordinates; for TPv (B[s:τ ]) the set of bricks is composed of
all bricks for all descendants of v, plus the first ns coordinates form an additional brick.

I Example 14. For τ = 3 and T with root r of degree 2 and its children u and v of

degree 2 and 3, we have TPu (B2, B3) =
(
B2 B3
B2 B3

)
, TPv (B2, B3) =

(
B2 B3
B2 B3
B2 B3

)
, and

TP (B1, B2, B2) = TPr (B1, B2, B2) =

B1 B2 B3
B1 B2 B3
B1 B2 B3
B1 B2 B3
B1 B2 B3

, with a total of 8 bricks.

Tree-fold matrices are essentially transposes of multi-stage stochastic ILP matrices. Let
T be as before and A1, . . . , Aτ be a sequence of integer matrices with each As ∈ Zrs×t, where
t ∈ N, rs ∈ N, rs ≥ 1. We shall define TD(A1, . . . , Aτ ) inductively; the superscript D refers
to the fact that TD(A1, . . . , Aτ ) has bounded dual treedepth. The inductive definition is the
same as before except that, for a vertex v ∈ T at depth d with δ children v1, . . . , vδ, we set

TDv (A[τ−d−1:τ ]) :=


Aτ−d−1,`(v1) Aτ−d−1,`(v2) · · · Aτ−d−1,`(vδ)
TDv1

(A[τ−d:τ ]) 0 · · · 0
0 TDv2

(A[τ−d:τ ]) · · · 0
...

...
. . .

...
0 0 · · · TDvδ (A[τ−d:τ ])


where, for N ∈ N, As,N = (As · · ·As) consists of N copies of the matrix As. A solution x of
a tree-fold ILP is partitioned into bricks (x1, . . . ,xn) where n is the number of leaves of T ,
and each xi is a t-dimensional vector.

3.1.3 Structural Parameters
We consider two graph parameters, namely treewidth tw(G) and treedepth td(G). We postpone
the definition of treewidth to the full version as it is not central for us.

I Definition 15 (Treedepth). The closure cl(F ) of a rooted forest F is the graph obtained
from F by making every vertex adjacent to all of its ancestors. The treedepth td(G) of a
graph G is one more than the minimum height of a forest F such that G ⊆ cl(F ).

It is known that tw(G) ≤ td(G). The treedepth td(G) of a graph G with a witness forest
F can be computed in time ftd(td(G)) · |V (G)| for some computable function ftd [22].
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I Definition 16 (Primal and dual graph). Given a matrix A ∈ Zm×n, its primal graph
GP (A) = (V,E) is defined as V = [n] and E = {{i, j} ∈

([n]
2
)
| ∃k ∈ [m] : Ak,i, Ak,j 6= 0}. In

other words, its vertices are the columns of A and two vertices are connected if there is a
row with non-zero entries at the corresponding columns. The dual graph of A is defined as
GD(A) = GP (Aᵀ), that is, the primal graph of the transpose of A.

I Definition 17 (Matrix treewidth). Given a matrix A, its primal treewidth twP (A) is defined
as the treewidth of its primal graph, i.e., tw(GP (A)), and its dual treewidth twD(A) is
tw(GD(A)). Similarly, we define the primal and dual treedepth as tdP (A) = td(GP (A)) and
tdD(A) = td(GD(A)), respectively.

Using a proof of Ganian et al. [11, Theorem 12] we show that we cannot hope to relax
the parameter tdD(A) to twD(A), even if ‖A‖∞ was a constant.

I Lemma 18. (*) (ILP) is NP-hard already when twD(A) = 3, ‖A‖∞ = 2, and w = 0.

3.2 Multi-stage Stochastic ILP is strongly FPT
To prove Theorem 2, we need two ingredients: a bound on g∞(A), and an algorithm for (ILP)
with bounded twP (A) and max ‖x‖∞.

I Lemma 19 (Multi-stage stochastic⇒ bounded g∞(A)).(*) Let A = TP (B1, . . . , Bτ ). Then
g∞(A) ≤ fmss-norm(a, n1, . . . , nτ , l) for some computable function fmss-norm.

I Lemma 20. (*) Let X ∈ N. Problem (ILP) with the additional constraint ‖x‖∞ ≤ X can
be solved in time (X + 1)O(twP (A)) · (n+m).

Proof of Theorem 2. Let A = TP (B1, . . . , Bτ ) be a multi-stage stochastic matrix. By
Lemma 19, g∞(A) is bounded by M = fmss-norm(a, n1, . . . , nτ , l). We show how to construct
a Λ-Graver-best oracle. Given an integer λ ∈ N, use Lemma 20 to solve

min{λwh | Ah = 0, l ≤ x + λh ≤ u, ‖h‖∞ ≤M} .

This returns a λ-Graver-best step, because any optimal solution satisfies λh ≤ λg for all
g ∈ G(A). Using a simple induction and the inductive construction of A, one gets that A has
twP (A) ≤ tdP (A) ≤ n1 + · · ·+nτ + 1 and thus the oracle is realized in FPT time. Lemma 13
then yields a Graver-best oracle, which, combined with Theorem 1, finishes the proof. J

3.3 Tree-fold ILP is strongly FPT
As before, to prove Theorem 3, we need two ingredients: a bound on g1(A), and an algorithm
for (ILP) with bounded twD(A) and max ‖x‖1.

I Lemma 21 (Tree-fold ⇒ bounded g1(A)). (*) Let Ai ∈ Zri×t for i ∈ [τ ] with a =
max{2,maxi∈[τ ] ‖Ai‖∞}, r =

∑τ
i=1 ri. Let A = TD(A1, . . . , Aτ ). There exists a computable

function ftf-norm(a, r1, . . . , rτ ) such that g1(A) ≤ ftf-norm(a, r1, . . . , rτ ).

Proof sketch. Chen and Marx [4] prove a similar result under the assumption that t is also
a parameter; thus, the remaining problem are essentially duplicitous columns. However, De
Loera et al. [5] show that repeating columns of any matrix A′ does not increase g1(A′), and
thus we can take A, delete duplicitous columns, apply the result of Chen and Marx, and our
Lemma follows.

I Lemma 22. (*) Let X ∈ N. Problem (ILP) with the additional constraint ‖x‖1 ≤ X can
be solved in time (aX)O(twD(A)) · n, where a = max{2, ‖A‖∞}.
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Proof sketch. Lemma 22 is proved by reformulating the nonlinear constraint ‖x‖1 ≤ X

by “splitting” each variable xi into two non-negative variables xi = x+
i − x

−
i , imposing the

constraint
∑n
i=1(x+

i +x−i ) ≤ X, and showing that this does not increase twD(A) much; then,
a recent dynamic programming algorithm of Ganian et al. [11, Theorem 6] does the job.

Proof of Theorem 3. Let A = TD(A1, . . . , Aτ ) be a tree-fold matrix. By Lemma 21 we
have that g1(A) ≤ ftf-norm(a, r1, . . . , rτ ) =: M We show how to construct a Λ-Graver-best
oracle. Given an integer λ ∈ N, solve min{λwh | Ah = 0, l ≤ x + λh ≤ u, ‖h‖1 ≤M}
using Lemma 22; clearly the result is a λ-Graver-best step. Using a simple induction and the
inductive construction of A, one gets that A has twD(A) ≤ tdD(A) ≤ r1 + · · ·+ rτ + 1 and
thus the oracle is realized in FPT time. Lemma 13 then yields a Graver-best oracle, which,
combined with Theorem 1, finishes the proof. J

n-fold ILP. A special case of tree-fold ILP is n-fold ILP, obtained by taking T to be the
star with n leaves and A = TD(A1, A2), where A1 ∈ Zr×t and A2 ∈ Zs×t.

Proof of Theorem 4. Before we apply Lemma 22, we need to bound g1(A). It follows from
the proof of [13, Lemma 6.1] that there is a number g(A) = maxv∈G(A1G(A2)) ‖v‖1 such that
g1(A) ≤ g(A) · g1(A2).

Let d2 ≤ (2a+ 1)s be the number of distinct columns of A2. De Loera et al. [5] give a
bound on g1(A) in terms of the number of distinct columns of a matrix A:

I Lemma 23 ([5, Corollary 3.7.4]). Let A ∈ Zm×n be a matrix of rank r, let d be the number
of different columns in A, and let a = max{2, ‖A‖∞}. Then g1(A) ≤ (d− r)(r+ 1)(

√
ma)m .

Thus, g1(A2) ≤ (d2 − s)(s + 1)(
√
sa)s ≤ (as)O(s). Let G2 be a matrix whose columns are

elements of G(A2). We have that ‖A1G2‖∞ ≤ a · (as)O(s) ≤ (as)O(s). Moreover, since
A1G2 has r rows, it has at most d1 =

(
(as)O(s))r = (as)O(rs) distinct columns. Again,

by Lemma 23 we have that g(A) = g1(A1G2) ≤ (d1 − r)(r + 1)(
√
ras)O(s))r ≤ (ars)O(rs).

Combining, we get g1(A) ≤ (ars)O(rs) · (as)O(s) ≤ (ars)O(rs) =: M .
We have twD(A) ≤ r + s+ 1 and thus running the algorithm of Lemma 22 once takes

time
(
(ars)O(rs))r+s

nt ≤ (ars)O(r2s+rs2)nt and finds the λ-Graver-best step. Lemma 13
then yields a Graver-best oracle. The reduced objective function w̄ in Step 4 of the proof of
Theorem 1 satisfies ‖w̄‖∞ ≤ (ant)O((nt)3) and thus the number of calls to the Graver-best
oracle is bounded by (nt)3 log(nt), concluding the proof. J

4 Primal and Dual Treedepth

We prove Theorems 5 and 6 by showing that an ILP with bounded primal (dual) treedepth can
be embedded into a multi-stage stochastic (tree-fold) ILP without increasing the parameters
too much. The precise notion of how one ILP is embedded in another is captured as follows.

I Definition 24 (Extended formulation). Let n′ ≥ n, m′ ∈ N, A ∈ Zm×n, b ∈ Zm, l,u ∈
(Z ∪ {±∞}n and A′ ∈ Zm′×n′ , b′ ∈ Zm′ , l′,u′ ∈ (Z ∪ {±∞})n′ . We say that A′(x,y) =
b′, l′ ≤ (x,y) ≤ u′ is an extended formulation of Ax = b, l ≤ x ≤ u if {x | Ax = b, l ≤ x ≤
u} = {x | ∃y : A′(x,y) = b′, l′ ≤ (x,y) ≤ u′}.

We note that from here on we always assume that if tdP (A) = k or tdD(A) = k, then
there is a tree (not a forest) F of height k − 1 such that GP (A) ⊆ cl(F ) or GD(A) ⊆ cl(F ),
respectively. Otherwise GP (A) is not connected and each component corresponds to a subset
of variables which defines an ILP that can be solved independently; similarly for GD(A).
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4.1 Primal Treedepth
I Lemma 25 (Bounded primal treedepth ⇒ multi-stage stochastic). Let A,b, l and u as
in (ILP) be given, let a = max{2, ‖A‖∞} and τ + 1 = tdP (A). Then there exists C ∈ Zm′×n′ ,
b′ ∈ Zm′ and l′,u′ ∈ (Z∪{±∞})n′ , n′ ≤ nτ , m′ ≤ (2a+1)τ2 , which define an integer program
C(x,y) = b′, l′ ≤ (x,y) ≤ u′, which is an extended formulation of Ax = b, l ≤ x ≤ u.
Moreover, there exist matrices B1, . . . , Bτ−1 ∈ Z(2a+1)τ

2
×τ and Bτ ∈ Z(2a+1)τ

2
×
(
τ+(2a+1)τ

2)
and a tree T such that C = TP (B1, . . . , Bτ ) is a multi-stage stochastic constraint matrix, and
all can be computed in time fP-embed(a, tdP (A)) · n2 for some computable function fP-embed.

Proof. Let F be a rooted tree of height τ such that GP (A) ⊆ cl(F ) (recall that it can be
computed in time ftd(tdP (A)) · |V (GP (A))|).

Step 1: Dummy columns. We make F structured by adding dummy columns. Observe
that every root-leaf path is of length at most τ and thus contains at most τ branching vertices.
Unless F is a path, obtain a matrix A′ from A by inserting zero columns into A in order
to make the path between any two branching vertices of length τ ; a special case is the root
which we force to be in distance τ − 1 from the closest branching vertex. Set lower and upper
bounds on the corresponding new variables to 0. A zero column is an isolated vertex in the
primal graph and thus can be inserted to an arbitrary path of the tree F . Moreover, if any
leaf is at depth less than τ2 − 1, insert zero columns in the same way to make it be at depth
exacty τ2 − 1. Now there exists a rooted tree F ′ of height τ2 − 1 such that GP (A′) ⊆ cl(F ′),
all branching vertices are in distances 0, τ − 1, 2τ − 1, . . . , (τ − 1)τ − 1 from the root, and all
leaves are at depth exactly τ2 − 1. We call all vertices at depth 0 or iτ − 1, for i ∈ [τ ], frets,
including the root and leaves.

Step 2: Multi-stage stochastic extended formulation. Consider a root-leaf path P in F ′:
its vertex set V (P ) corresponds to a certain subset of the columns of A′, with |V (P )| ≤ τ2.
Furthermore, any row a of A′ with supp(a) ⊆ V (P ) can be written as a vector (a1, . . . , aτ ) ∈
Zτ2 with ai ∈ Zτ for each i ∈ [τ ], and with ‖a‖∞ ≤ a. The bricks ai correspond to segments
between frets (including the end fret, i.e., the fret farthest from the root; segments adjacent
to the root also contain the root). Also, for any row a of A′, there exists some root-leaf path
P such that supp(a) ⊆ V (P ).

This inspires the following construction: let B ∈ Z(2a+1)τ
2
×τ2 be the matrix whose

columns are all the possible vectors a ∈ Zτ2 with ‖a‖∞ ≤ ‖A‖∞. Let Bi ∈ Z(2a+1)τ
2
×τ , for

i ∈ [τ ], be the submatrix of B formed by rows (i− 1)τ + 1, . . . , iτ and modify the last such
submatrix Bτ by putting Bτ := (Bτ | I) where I ∈ Z(2a+1)τ

2
×(2a+1)τ

2

is the identity matrix;
the variables corresponding to columns of I will play the role of slack variables. Let T be
the tree of height τ obtained from F ′ by contracting all paths between frets.

Now, let C = TP (B1, . . . , Bτ ). Obtain F̃ from F ′ by appending a leaf to every leaf, and
observe that GP (TP (B1, . . . , Bτ )) ⊆ cl(F̃ ); the new leaves correspond to the slack variables
in Bτ . Our goal now is to construct a right hand side vector b′ and lower and upper bounds
l′,u′ to enforce exactly the constraints present in Ax = b. For every root-leaf path P in F ′
there is a corresponding root-leaf path P̃ in F̃ such that P̃ is P with an additional leaf. Fix
a root-leaf path P in F ′. For every row a of A′ with supp(a) ⊆ V (P ) and right hand side β,
there exists a unique row c of C with supp(c) ⊆ V (P̃ ) such that c = (a, 1), and we set the
right hand side of row c to β.

For every row c of C which was not considered in the previous paragraph, set the right
hand side to 0 and for the slack variable of this row set the lower bound to −∞ and the
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upper bound to ∞. Let us remark in passing that we are not limited by using the standard
equality form of ILP: transforming an instance Ax ≤ b into the standard equality form by
adding slack variables only possibly increases the treedepth by 1. J

4.2 Dual Treedepth
I Lemma 26 (Bounded dual treedepth ⇒ tree-fold). (*) Let A,b, l and u be as in (ILP),
a = max{2, ‖A‖∞} and τ + 1 = tdD(A). Then there exists D ∈ Zm′×n′ , b′ ∈ Zm′ and
l′,u′ ∈ (Z ∪ {±∞})n′ , n′ ≤ nt, t ≤ n, m′ ≤ m · τ , which define an extended formulation of
Ax = b, l ≤ x ≤ u. Moreover, there exist matrices A1, . . . , Aτ ∈ Zτ×t and a tree T such
that D = TD(A1, . . . , Aτ ) is a tree-fold constraint matrix, and all can be computed in time
fD-embed(a, tdD(A)) · n2 for some computable function fD-embed.
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Abstract
We revisit the complexity of the classical k-Coloring problem parameterized by clique-width.
This is a very well-studied problem that becomes highly intractable when the number of colors
k is large. However, much less is known on its complexity for small, concrete values of k. In this
paper, we completely determine the complexity of k-Coloring parameterized by clique-width for
any fixed k, under the SETH. Specifically, we show that for all k ≥ 3, ε > 0, k-Coloring cannot
be solved in time O∗

(
(2k − 2− ε)cw), and give an algorithm running in time O∗

(
(2k − 2)cw).

Thus, if the SETH is true, 2k − 2 is the “correct” base of the exponent for every k.
Along the way, we also consider the complexity of k-Coloring parameterized by the related

parameter modular treewidth (mtw). In this case we show that the “correct” running time, under
the SETH, is O∗

((
k
bk/2c

)mtw). If we base our results on a weaker assumption (the ETH), they
imply that k-Coloring cannot be solved in time no(cw), even on instances with O(log n) colors.
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1 Introduction

Graph Coloring (from now on simply Coloring) is one of the most intensely studied
problems in theoretical computer science. In this classical problem we are given a graph
G = (V,E) and an integer k and are asked if we can partition V into k sets inducing edge-less
graphs. Coloring is a notoriously hard problem as it remains NP-hard even in very restricted
cases (e.g. 4-regular planar graphs [10]) and is essentially completely inapproximable in
general [11, 30]. This intractability has motivated the study of the problem in the framework
of parameterized complexity, especially with respect to structural graph parameters.1

Treewidth is by far the most widely studied among such graph parameters, and Coloring
has long been known to be FPT by treewidth. This can be seen by either invoking Courcelle’s
theorem [4], or by applying a straightforward dynamic programming technique which, for
each bag of a tree decomposition of width tw considers all possible ktw colorings. Remarkably,
thanks to the work of Lokshtanov, Marx, and Saurabh [23], we know that this basic algorithm
is likely to be optimal, or at least that improving it would require a major breakthrough on
SAT-solving, as, for any k ≥ 3, ε > 0, the existence of a (k− ε)tw algorithm would contradict
the Strong Exponential Time Hypothesis of Impagliazzo and Paturi [18, 19]. More recently,
these lower bounds were strengthened, as Jaffke and Jansen showed that a (k− ε)w algorithm
would contradict the SETH when w is the graph’s vertex edit distance from being a path

1 In the remainder, we assume that the reader is familiar with the basics of parameterized complexity,
such as the class FPT, as given in relevant textbooks [8, 13]
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[20]. The same paper showed that the trivial algorithm can, however, be improved when one
considers more restrictive parameters, such as vertex cover, but still not to the point that
the base of the exponent becomes a constant. These results thus paint a very clear picture of
the complexity of Coloring with respect to treewidth and its restrictions.

One of the drawbacks of treewidth is that it does not cover dense graphs, even if they
have a very simple structure. This has led to the introduction of clique-width, which is
by now (arguably) the second most well-studied parameter. The complexity of Coloring
parameterized by clique-width has also been investigated. Even though Coloring is
polynomial-time solvable when clique-width is constant, the best known algorithm for this
case runs in time n2O(cw) [21]. Fomin et al. [14] showed that Coloring is not FPT for
clique-width (under standard assumptions), and this was recently followed up by Golovach
et al. [17] who showed, somewhat devastatingly, that the aforementioned algorithm is
likely to be optimal, as an algorithm running in n2o(cw) would contradict the ETH. The
problem thus seems to become significantly harder for clique-width, and this has, in part,
motivated the study of alternative dense graph parameters, such as split-matching width
[28], modular-width [15], and twin cover [16], all of which make Coloring FPT.

Contribution. Although the results mentioned above demonstrate a clear jump in the
complexity of Coloring when moving from treewidth to clique-width, we observe that
they leave open a significant hole: all the aforementioned hardness results for clique-width
([14, 17]) only apply to the case where k is large (polynomially related to the size of the
graph). It is not hard to see that the problem becomes significantly easier if both cw and
k are assumed to have moderate values; indeed Coloring is FPT when parameterized by
cw+k [21]. Since the case where k is relatively small is arguably the most interesting scenario
for most applications, we are strongly motivated to take a closer look at the complexity
of Coloring parameterized by clique-width, in order to obtain a more fine-grained and
quantitative estimate of the “price of generality” for this problem for each fixed value of
k. Our aim is to reach tight bounds that paint a crisper picture of the complexity of the
problem than what can be inferred by lower bounds parameterized only by clique-width, in
the same way that the results of [23] do for k-Coloring on treewidth.

The main result of this paper is a lower bound which states that for all k ≥ 3, ε > 0,
k-Coloring cannot be solved in time O∗

(
(2k − 2− ε)cw), unless the SETH is false. This

result gives a concrete, detailed answer to the question of how much the complexity of 3-
Coloring, 4-Coloring, and generally k-Coloring, increases as one moves from treewidth
to clique-width. As in the lower bound of [23], this result is established through a reduction
from SAT. The main challenge here is that we need to pack a much larger amount of
information per unit of width, and in particular that the graph induced by most label sets
must be edge-less (otherwise many of the 2k − 2 choices we need to encode would be invalid).
We work around this difficulty by a delicate use of the rename operation used in clique-width
expressions.

Though having 2k − 2 in the base of the running time may seem somewhat curious (and
certainly less natural than the ktw bounds of [23]), we then go on to prove that this is the
“correct” bound by giving a matching algorithm. The algorithm is based on standard DP
techniques (including subset convolution [1, 29]), but requires a non-standard trick that
“looks ahead” in the decomposition to lower the table size from (2k− 1)cw to (2k− 2)cw. This
improves the previously known DP algorithm of [21], which runs in O∗

(
4k·cw).

Beyond these results for clique-width we also consider the closely related parameters
modular treewidth and modular pathwidth, which have more recently been considered as
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more restricted versions of clique-width [25, 27]. The modular treewidth of a graph G is
defined as the treewidth of the graph obtained from G if one collapses each twin class into
a single vertex, where two vertices are twins if they have the same neighbors. By slightly
altering our results for clique-width we tightly characterize the complexity of k-Coloring
for these parameters: the problem is solvable in time O∗

((
k
bk/2c

)mtw), but not solvable in

O∗
(

(
(

k
bk/2c

)
− ε)mpw

)
under the SETH. Using the same reduction but relaxing the hypothesis

to the ETH, we show that k-Coloring cannot be solved in time no(mpw), and hence neither
in time no(cw) even on instances where k = O(log n). This can be seen as a strengthening of
the lower bound of [14], which applies only to clique-width and uses Ω(n) colors. Our result
is incomparable to the more recent double-exponential bound of [17] as it applies to the more
restricted case where the number of colors is logarithmic, and is tight for this case. Indeed,
any reduction giving a double-exponential bound, such as the one in [17], must inevitably
use more than log n colors, otherwise it would contradict the aforementioned algorithms.

Non-binary CSPs. We mention as a secondary contribution of this paper a proof that, under
the SETH, n-variable CSPs over an alphabet of size B cannot be solved in time (B − ε)n,
for any B, ε. The interest of such a result is not so much technical (its proof is implicit
in previous SETH-based bounds, going back to [23]), as conceptual. Such CSPs provide a
convenient starting point for a SETH-based lower bound for any base of the exponential and
hence allow us to isolate a technical part of such proofs from the main part of the reduction.
This explicit statement on the hardness of CPSs has allowed the proofs of this paper to be
significantly shortened, and may facilitate the design of other SETH-based hardness proofs.

2 Definitions and Preliminaries

We use standard graph-theoretic notation and assume that the reader is familiar with the
basics of parameterized complexity, as well as standard notions such as treewidth [8, 13]. Let
us recall the definition of clique-width (see [6, 5] for more details). A labeled graph G has
clique-width w if it can be constructed using w labels and the following four basic operations:
Introduce(i), for i ∈ {1, . . . , w}, which constructs a single-vertex graph whose vertex has label
i; Union(G1, G2), which constructs the disjoint union of two labeled graphs of clique-width w;
Rename(i, j) which changes the label of all vertices labeled i to j; and Join(i, j) which adds
all possible edges between vertices labeled i and vertices labeled j. Computing a graph’s
clique-width is NP-hard [12], and the best currently known approximation is exponential
in clique-width [26]. In this paper, we will often assume that we are given together with a
graph G, a clique-width expression constructing G. Since most of our results are negative,
this only makes them stronger, as it shows that our lower bounds do not rely on the hardness
of computing clique-width. We view a clique-width expression as a rooted binary tree, where
the sub-tree rooted in each internal node represents the corresponding sub-graph of G. We
use cw(G) to denote the minimum number of labels needed to construct a clique-width
expression of G, and tw(G), pw(G) to denote the treewidth and pathwidth of G respectively.

In a graph G = (V,E) we say that u, v ∈ V are false twins if N(u) = N(v) and true twins
if N [u] = N [v], where N [u] = N(u)∪ {u} denotes the closed neighborhood of u. We say that
u, v are twins if they are true or false twins. We note that in any graph G the partition of
vertices into twin classes is always unique, as the property of being twins is an equivalence
relation [22]. Let Gt be the graph obtained from G by deleting from each twin class all but
a single vertex. We define (following [25]) the modular treewidth of G, denoted mtw(G), as
tw(Gt), and similarly the modular pathwidth mpw(G) as pw(Gt).

ICALP 2018
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I Lemma 1. For all G, pw(G) ≥ mpw(G) ≥ cw(G)− 2 and pw(G) ≥ mpw(G) ≥ mtw(G).

The Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [19] states
that there exists a constant c3 > 1 such that 3-SAT on instances with n variables cannot be
solved in time cn

3 . If the ETH is true then we can define, for all q ≥ 3 a constant cq > 1 such
that q-SAT, that is, SAT on instances where clauses have maximum size q, cannot be solved
in time cn

q . The Strong Exponential Time Hypothesis (SETH) [18] states that limq→∞ cq = 2,
or equivalently that, for each ε > 0 there exists a q such that q-SAT cannot be solved in
(2− ε)n. We note that sometimes a slightly weaker form of the SETH is used, which states
simply that SAT cannot be solved in (2− ε)n for any ε > 0. The two formulations are not
currently known to be equivalent. In this paper we use the original, stronger formulation of
[18] (see also e.g. [7]) which assumes that cq tends to 2.

For any q,B ≥ 2 we define the q-CSP-B problem as follows: we are given a set X of n
variables which take values in {1, . . . , B}, and a set C of q-constraints on X. A q-constraint c is
defined by an ordered tuple V (c) of q variables of X, and a set S(c) ⊆ {1, . . . , B}q of satisfying
assignments for c. The question is whether there exists an assignment σ : X → {1, . . . , B}
which satisfies all constraints c ∈ C. We say that a constraint c ∈ C is satisfied if applying σ
to V (c) produces a tuple of assignments that appears in S(c). To simplify presentation, we
will assume that in the input the list S(c) of the at most Bq satisfying assignments of each
constraint is given explicitly, and that a q-CSP-B instance is allowed to contain constraints
on fewer than q variables (as we can add dummy variables to a constraint).

3 SETH and Non-binary CSPs

The SETH states, informally, that as SAT clauses become larger, eventually the best
algorithm for SAT is simply to try out all possible assignments to all variables. In this
section we show that the same is essentially true for CSP with a larger, non-binary alphabet.
The interest in presenting such a result is that very often we seek to prove a SETH-based
lower bound showing that a problem does not admit an algorithm running in cw, for some
constant c and width parameter w (such as treewidth, or in our case clique-width). This
becomes complicated when we reduce directly from SAT if c is not a power of 2 as one
cannot make a one-to-one correspondence between binary SAT variables and “units of width”
(in our case labels) in the new instance, which are intended to encode c choices. As a result,
essentially all known SETH lower bounds of this form include as part of their construction
a group gadget, which maps every t variables of the original SAT instance to p elements
of the new problem, for appropriately chosen integers p, t (see e.g. [3, 9, 20, 23]). Such
gadgets are, however, often cumbersome to design, because they require a problem-specific
trick that expresses a mapping of assignments from a binary to a non-binary domain. We
therefore prefer to construct a custom-made CSP with a convenient running time bound,
which will later allow us to reduce directly to the problem we are interested in (Coloring
on clique-width), in a way that maps exactly one variable to one clique-width label. This
will allow our SETH-based bounds to be significantly simplified, as we will no longer have to
worry about a discrepancy between the bases of the exponentials.

I Theorem 2. For any B ≥ 2, ε > 0 we have the following: if the SETH is true, then there
exists a q such that n-variable q-CSP-B cannot be solved in time O∗ ((B − ε)n).
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4 SETH-based Lower Bound for Clique-width

In this section we present our main lower bound result stating that k-Coloring cannot be
solved in time O∗

(
(2k − 2− ε)cw), for any k ≥ 3, ε > 0, under the SETH. In Section 4.1 we

present some basic gadgets that will also be of use in our lower bound for modular pathwidth
(Section 5). We then present the main part of the proof in Section 4.2.

4.1 List Coloring and Basic Gadgets
The high-level machinery that we will make use of in our reduction consists of two major
points: first, we would like to be able to express implication constraints, that is, constraints
of the form “if vertex u received color c1, then vertex v must receive color c2”; second, we
would like to express disjunction constraints of the form “at least one of the vertices of the
set S ⊆ V must take a special color 1”. We build this machinery in the following steps: first,
we show that we can (almost) equivalently produce an instance of the more general List
Coloring problem; then we use the ability to construct lists to make weak edge gadgets,
which for a given pair of vertices (u1, u2) rule out a specific pair of assigned colors; using
these weak edges we construct the aforementioned implication gadgets; and finally we are
able to implement OR constraints using paths on vertices with appropriate lists.

We give all details for these constructions below. We remark however, for the convenience
of the reader, that a high-level understanding of the informal meaning of implication gadgets
and OR gadgets (precisely stated in Lemmata 7, 10) is already sufficient to follow the
description of the main part of the reduction, given in Section 4.2. See also Figure 1.

List Coloring. To simplify the presentation of our reduction it will be convenient to use
a slightly more general problem. In List Coloring, we are given a graph G and a list of
possible colors associated with each vertex and are asked if there is a proper coloring such
that each vertex uses a color from its list. This problem clearly generalizes k-Coloring, as
all lists may be {1, . . . , k}. We will make use of a reduction in the opposite direction.

I Lemma 3. There is a polynomial-time algorithm which, given an instance of List Col-
oring on a graph G where all lists are subsets of {1, . . . , k}, transforms it into an equivalent
instance of k-Coloring on a graph G′. Furthermore, the algorithm transforms a clique-width
expression of G with cw labels, to a clique-width expression of G′ with cw + k labels. If all
twins of G share the same list, the algorithm transforms a modular path decomposition of
width mpw for G, to a modular path decomposition of G′ of width mpw + k.

Weak Edges and Implications. Normally, the existence of an edge (u, v) in an instance of
Coloring forbids the vertices u, v from obtaining the same color, whatever that color may
be. We will find it convenient to construct edges that forbid only a specific pair of colors
from appearing on u, v, while allowing any other combination of colors to be used on these
two vertices. Similar versions of this gadget have appeared before, for example [23, 24].

I Definition 4. For two vertices u1, u2 of a graph G and two colors c1, c2 a (c1, c2)-weak
edge from u1 to u2 consists of the following:
1. Three new vertices v1, v2, v3 such that {u1, v1, v2, v3, u2} induces a path in this order,

with endpoints u1, u2, and v1, v2, v3 having no edges to the rest of G.
2. If c1 6= c2 let c′ be a color distinct from c1, c2. We assign to v1, v2, v3 the lists
{c1, c2}, {c2, c

′}, {c2, c
′}. If c1 = c2, we assign lists {c1, c

′}, {c′, c′′}, {c1, c
′′} to v1, v2, v3

respectively, where c′, c′′ are two distinct colors, different from c1.
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{1, 5}

{2, 5}

{2, 5}

(1,5)
≡

(1 → 2)
≡

(1, 1)
(1, 3)

(1, k)
. . .

{2, 3}

{1, 2, 3}{1, 2, 3} {1, 2, 3}

{2, 3} {3}{2}

Figure 1 Basic gadgets, where empty vertices are internal and solid vertices are endpoints that
will be connected to the rest of the graph. On the left, a weak edge that forbids the combination
(1, 5) on its endpoints. In the middle, an implication that forces color 2 on the right if color 1 is
used on the left. On the right an OR gadget: one of the solid vertices must take color 1.

I Lemma 5. Let G be an instance of List Coloring that contains a (c1, c2)-weak edge
from u1 to u2. Then G does not admit a valid coloring that assigns colors (c1, c2) to (u1, u2).
Furthermore, if G′ denotes the graph obtained by deleting the internal vertices of the weak
edge, any proper list coloring of G′ that does not assign c1 to u1 or does not assign c2 to u2
can be extended to a proper list coloring of G.

Let us now use the weak edges we have defined above to construct an implication gadget.
The intuitive meaning of placing an implication gadget from a vertex u1 to a vertex u2 is to
impose the constraint that if u1 is assigned color c1, then u2 must be assigned color c2.

I Definition 6. For two vertices u1, u2 and two colors (c1, c2) a (c1 → c2)-implication from
vertex u1 to vertex u2 is constructed as follows: for each color c′ 6= c2, we add a (c1, c

′)-weak
edge from u1 to u2.

I Lemma 7. Let G be an instance of List Coloring that contains a (c1 → c2)-implication
from u1 to u2. Then G does not admit a list coloring that gives color c1 to u1 and a color
c′ 6= c2 to u2. Furthermore, if G′ is the graph obtained from G by deleting the internal
vertices of the implication gadget, any coloring of G′ that either does not assign c1 to u1, or
assigns c2 to u2 can be extended to a coloring of G.

I Lemma 8. Let G be an instance of List Coloring, and G′ be the graph obtained from
G by replacing every (c1, c2)-weak edge or (c1 → c2)-implication gadget with endpoints u1, u2
with an edge (u1, u2) (or simply deleting the internal vertices of the weak edge if (u1, u2)
already exists). Then pw(G) ≤ pw(G′) + 3.

OR gadgets. We will also make use of a gadget that forces any valid list coloring of a
graph to assign a special color 1 to one vertex out of a set of vertices. Invariably, the idea
will be that this will be a color that activates some implications, allowing us to propagate
information about the coloring between parts of the graph. We recall that a similar version
of an OR gadget was also used in [23].

I Definition 9. An OR gadget on an independent set of vertices S, denoted OR(S), is
constructed as follows: we assign list {1, 2, 3} to all vertices of S; we construct a new set S′
of internal vertices (that will not be connected to the rest of G), such that |S′| = |S|+ 1 and
S ∪ S′ induces a path alternating between vertices of S and S′; we assign list {2, 3} to all
vertices of S′, except the two endpoints of the path, which receive lists {2}, {3}, respectively.
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...

S0 S1 S2 S3 S4

V 0
1

U0
1

V 0
2

U0
2

V 4
1

U4
1

V 4
2

U4
2

...

a1 a2 a3 a4

V 0,a1
1

V 0,a2
1

V 0,a3
1 V 0,a4

1

U0,a4
1

U0,a2
1U0,a1

1

U0,a3
1

Figure 2 Left: high-level view of the reduction. Rows correspond to variables, columns to
constraints. Here, variable x1 appears in constraints c0, c1, c3, c4. Right: connections between the
OR gadgets OR(Sj) and the V j

i , U j
i sets. Giving color 1 to a1 represents selecting this assignment.

This forces the use of some colors in V 0,a1
1 and the complementary set in U0,a1

1 .

I Lemma 10. If G is a List Coloring instance that contains an OR(S) gadget then G
does not admit a list coloring that does not use color 1 in any vertex of S. Furthermore, for
any vertex u ∈ S, there exists a proper list coloring of the graph induced by the gadget that
assigns color 1 only to u.

4.2 Reduction for Clique-width
I Theorem 11. For any k ≥ 3, ε > 0, if there exists an algorithm solving k-coloring in time
O∗
(
(2k − 2− ε)cw), where cw is the input graph’s clique-width, then the SETH is false.

The proof of Theorem 11 consists of a reduction from a CSP produced by Theorem 2.
Before giving details, let us give some intuition. Our new instance will be a graph and a
clique-width expression with, roughly, n labels, where n is the number of variables of the
CSP instance. The set of colors used in each label will encode the value given to a variable
in a satisfying assignment. As a result, with k colors, we will have 2k − 2 encodings available,
as every label set uses at least one color, but will never use all k colors. To verify that these
assignments are correct, we will construct for each constraint an OR gadget which forces the
use of color 1 on a vertex representing a particular assignment. This assignment dictates the
value of each variable of the constraint, and therefore the set of colors used in some of our
label sets. To verify that the assignment is consistent we use implication gadgets that force
some auxilliary vertices to receive the complement of the colors dictated by the constraint
assignment, and then connect these with the vertices encoding the true assignment. If the
assignment used is truly consistent, these edges will end up being properly colored.

Construction. We are given k ≥ 3, ε > 0. Let B = 2k−2. Let q be the smallest integer such
that n-variable q-CSP-B does not admit an O∗ ((B − ε)n) algorithm. According to Theorem
2, q exists if the SETH is true, and it depends only on B, ε. Consider an arbitrary n-variable
instance of q-CSP-B, call it φ. We use the existence of the supposed O∗

(
(2k − 2− ε)cw)

algorithm to obtain an O∗ ((B − ε)n) algorithm that decides φ, contradicting the SETH.
We define in some arbitrary way a translation function T which, given a value v ∈

{1, . . . , B} returns a non-empty proper subset of {1, . . . , k}. We make sure that T is defined
in such a way that it is one-to-one; this is possible since the number of non-empty proper
subsets of {1, . . . , k} is exactly B = 2k − 2.

ICALP 2018
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Let X = {x1, . . . , xn} be the set of the n variables of the q-CSP-B instance and C =
{c0, . . . , cm−1} the set of its m constraints. Let L = 3m(nk + 1). We now construct our
graph, where if we don’t specify the list of a vertex it can be assumed to be {1, . . . , k}. For
each j ∈ {0, . . . , L− 1} we do the following:
1. Let j′ = j mod m and let S be the set of satisfying assignments of the constraint cj′ . We

construct an independent set of vertices Sj that contains a vertex for every assignment of
S. We construct an OR(Sj) gadget on these vertices.

2. For each xi which appears in cj′ and for each assignment a ∈ S we do the following:
a. Let v ∈ {1, . . . , B} be the value given to xi by the assignment a. Construct an

independent set V j,a
i of |T (v)| vertices and an independent set U j,a

i of k − |T (v)|
vertices. Recall that T (v), the translation function, returns a set of size between 1 and
k − 1, so both these sets are non-empty.

b. For each color c ∈ T (v) select a distinct vertex in V j,a
i and add a (1→ c)-implication

gadget from the vertex that represents the assignment a in Sj to this vertex of V j,a
i .

c. For each color c ∈ {1, . . . , k} \ T (v) select a distinct vertex in U j,a
i and add a (1→ c)-

implication gadget from the vertex that represents the assignment a in Sj to this
vertex of U j,a

i .
d. Connect all vertices of U j,a

i with all vertices of previously constructed sets V l,a′

i , for
all l < j and all assignments a′.

This completes the construction, and we call the constructed List Coloring instance
G(φ). The intended meaning is that the sets V j,a

i will use a set of colors that encodes the
value of the variable xi, while the sets U j,a

i will use colors from the complement of this set.

I Lemma 12. If φ is a satisfiable q-CSP-B instance, then G(φ) admits a proper list coloring.

Proof. Suppose that we have a satisfying assignment for φ which gives value vi to variable
xi. The invariant we will maintain is that for all j, a, all vertices of sets V j,a

i will use only
colors from T (vi), while all vertices of sets U j,a

i will use only colors from {1, . . . , k} \ T (vi).
As a result, all edges added in step 2d will be properly colored. The rest of the graph will be
easy to color if we respect the informal meaning of OR and implication gadgets.

More specifically, for each OR(Sj) gadget we let j′ = j mod m and consider the constraint
cj′ . The supposed assignment to φ assigns to the variables of the constraint values consistent
with a satisfying assignment a of cj′ . We give color 1 to the corresponding vertex of Sj . We
use colors {2, 3} to color all remaining vertices of the OR gadget. Note that the OR gadget
is connected to the rest of the graph only through implication gadgets activated by color 1.
Hence, by Lemma 7 we can remove all non-activated implication gadgets. For the remaining,
activated implication gadgets we color their other endpoints, which are found in the sets V j,a

i

and U j,a
i with the unique viable color. For every other assignment a′ 6= a we color all vertices

of V j,a′

i using a color we used in V j,a
i , and the vertices of U j,a′

i using a color we used in U j,a
i .

The promised invariant is maintained, as the vertices of V j,a
i are forced to receive colors

from T (vi), while vertices of U j,a
i are forced to receive colors from the complementary set.

Thus, all edges of step 2d are properly colored, and since we also properly colored the OR
gadgets and implication gadgets, we have a proper coloring of the whole graph. J

I Lemma 13. If G(φ) admits a proper list coloring, then φ is a satisfiable q-CSP-B instance.

Proof. Suppose we have a list coloring of G(φ) given by the function c : V → {1, . . . , k}. For
a set V ′ ⊆ V we will write c(V ′) to denote the set of colors used by c for vertices of V ′, that
is, c(V ′) = {c | ∃u ∈ V ′, c(u) = c }. Let j ∈ {0, . . . , L− 1}, j′ = j mod m, and S be the set
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of satisfying assignment of the constraint cj′ , which contains a variable xi. Consider the set
V j

i = ∪a∈SV
j,a

i . We define the candidate assignment of xi at index j as vj
i := T−1(c(V j

i )).
In other words, to obtain the candidate assignment for xi at index j, we take the union of
all colors used in V j,a

i , and then translate this set back into a value in {1, . . . , B}.
We observe that for all i, j, such that xi appears in cj′ , where j′ = j mod m, there exists

an assignment a such that c(V j,a
i ) = {1, . . . , k} \ c(U j,a

i ). To see this, note that by Lemma
10, one of the vertices of the OR(Sj) gadget must have received color 1, say the vertex
that corresponds to assignment a. All the implications incident on this vertex are therefore
activated, which means that, if a gives value v ∈ {1, . . . , B} to xi, then c(V j,a

i ) = T (v) and
c(U j,a

i ) = {1, . . . , k} \ T (v) (because of the implications of steps 2b,2c and Lemma 7).
A key observation now is the following: for all j2 > j1 and for all i such that variable xi

appears in constraints cj′
1
, cj′

2
with j′1 = j1 mod m, j′2 = j2 mod m, we have c(V j1

i ) ⊆ c(V j2
i ).

In other words, the set of colors used in V j
i can only increase as j increases. To see this,

suppose that there exists c ∈ c(V j1
i ) \ c(V j2

i ). As argued in the previous paragraph, there
exists an assignment a2 such that c(V j2

i ) ⊇ c(V j2,a2
i ) = {1, . . . , k} \ c(U j2,a2

i ). Because
c 6∈ c(V j2,a2

i ) we must have c ∈ c(U j2,a2
i ), but because of step 2d, all vertices of U j2,a2

i are
connected to all of V j1

i . Since c ∈ c(V j1
i ), this contradicts the correctness of the coloring.

The property established in the previous paragraph implies that for each i there exist
at most k distinct candidate assignments vj

i we can obtain for different values of j, as each
assignment is obtained by translating the set of colors used in V j

i , this set only increases,
it always contains at least one color and at most k colors. Let us say that an index j1 is
problematic if, for some i ∈ {1, . . . , n} we have the following: xi appears in constraint cj′

1
,

where j′1 = j1 mod m; and if j2 is the minimum index such that j2 > j1 and xi appears in
constraint cj′

2
, where j′2 = j2 mod m, then vj1

i 6= vj2
i . In other words, an index is problematic

if the candidate assignment it produces for a variable disagrees with the candidate assignment
produced for the same variable in the next index that involves this variable. It is not hard
to see that there are at most kn problematic indices, because for each variable there are at
most k problematic indices. Therefore, since L = 3m(nk + 1), by pigeonhole principle, there
exists an interval L′ of at least 3m consecutive non-problematic indices.

We now obtain an assignment for the original instance as follows: for each variable i we
take an index j ∈ L′ such that xi appears in constraint cj′ , where j′ = j mod m, and give xi

the candidate value vj
i from that index. Observe that, by the definition of L′ the index we

select is irrelevant, as all candidate values are constant throughout the interval L′.
We claim that this is a satisfying assignment. Suppose not, so there exists an unsatisfied

constraint cj′ . Because L′ contains 3m consecutive indices, there exists three indices j1 <

j2 < j3 ∈ L′ such that j′ = j1 mod m = j2 mod m = j3 mod m. We observe that for all
variables xi appearing in cj′ we have given value vj2

i , that is the candidate value obtained at
index j2, since all indices in L′ give the same candidate values to all variables.

Now, there exists a vertex in Sj2 that received color 1, representing an assignment a. If
the assignment we produced is not consistent with a, there exists a variable xi such that we
have given xi value v = vj2

i , while a gives it value v′ 6= v. Consider now the set V j2,a
i . Because

of the implication gadgets, it uses the colors T (v′) 6= T (v). If there exists c ∈ T (v) \ T (v′)
then c ∈ c(U j2,a

i ). But U j2,a
i is connected to all vertices of V j1

i , which, we assumed use all
colors of T (v), therefore also color c, contradicting the correctness of the coloring. If on the
other hand there exists c ∈ T (v′) \ T (v), then since c(V j3

i ) = T (v), there exists an a′ such
that c(U j3,a′

i ) = {1, . . . , k} \ T (v). Therefore, c ∈ c(U j3,a′

i ), while c ∈ c(V j2,a
i ), and by step

2d these sets are connected, again obtaining a contradiction. We therefore conclude that we
must have a consistent satisfying assignment. J
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I Lemma 14. G(φ) can be constructed in time polynomial in |φ|, and we have cw(G(φ)) ≤
n+O(qk2Bq) = n+ f(ε, k) for some function f .
Proof. For fixed k ≥ 3, ε > 0, we have that B = 2k− 2 and q is a constant that only depends
on B, ε (that is, on k, ε). Each constraint of the q-CSP-B instance has at most Bq satisfying
assignments. Therefore, it is not hard to see that the whole construction can be performed
in polynomial time, if k, ε, B, q are constants. For clique-width we use the following labels:
1. n main labels, representing the variables of φ.
2. A single junk label. Its informal meaning is that a vertex that receives this label will not

be connected to anything else not yet introduced in the graph.
3. O(Bq) constraint work labels.
4. O(qk2Bq) variable-constraint incidence work labels.

To give a clique-width expression we will describe how to build the graph, following
essentially the steps given in the description of the construction by maintaining the following
invariant: before starting iteration j, all vertices of the set

⋃
j′<j V

j′,a
i (where we take the

union over all assignments a), have label i, and all other vertices have the junk label.
This invariant is vacuously satisfied before the first iteration, since the graph is empty.

Suppose that for some j ∈ {0, . . . , L− 1} the invariant is true. We use the O(Bq) constraint
work labels to introduce the vertices of the OR(Sj) gadget of step 1, giving each vertex a
distinct label. We use join operations to construct the internal edges of the OR gadget.

Then, for each variable xi that appears in the current constraint we do the following:
we use O(k2Bq) of the variable-constraint incidence work labels to introduce the vertices
of V j,a

i , U j,a
i as well as the implication gadgets connecting these to Sj . Again we use a

distinct label for each vertex, but the number of vertices (including internal vertices of the
implication gadgets) is O(k2Bq), so we have sufficiently many labels to use distinct labels for
each of the q variables of the constraint. We use join operations to add the edges inside all
implication gadgets. Then we use join operations to connect U j,a

i to all vertices
⋃

j′<j V
j′,a

i ,
for j′ < j. This is possible, since the invariant states that all the vertices of

⋃
j′<j

V j′,a
i have

the same label. We then rename all the vertices of U j,a
i , for all a to the junk label, and do

the same also for internal vertices of all implication gadgets. We proceed to the next variable
of the same constraint and handle it using its own O(k2Bq) labels. Once we have handled
all variables of the current constraint, we rename all vertices of each V j,a

i to label i for all a.
We then rename all vertices of the OR(Sj) gadget to the junk label and increase j by 1. It is
not hard to see that we have maintained the invariant and constructed all edges induced by
the vertices introduced in steps up to j, so repeating this process constructs the graph. J

5 Modular Pathwidth and ETH

We present a lower bound on the complexity of k-Coloring parameterized by modular
pathwidth. Specifically, we show that, under the SETH, no algorithm can solve k-Coloring
in O∗

(
(
(

k
bk/2c

)
− ε)mpw

)
. This bound is somewhat weaker than the one in Theorem 11,

which is natural since modular pathwidth is more restrictive than clique-width. As we see in
Section 6, however, this bound is tight. We complete this section by performing the same
reduction with the ETH, rather than the SETH, as a starting point. Under this weaker
assumption we prove that k-Coloring does not admit an algorithm running in no(mpw), even
when k = O(log n), which implies that the problem does not admit an algorithm running
in 2o(k·mpw). This is tight, and also applies to clique-width (Lemma 1). In this way, our
reduction gives an alternative proof that k-Coloring is unlikely to be FPT parameterized
by clique-width, even in instances with a logarithmic number of colors.
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5.1 SETH-based Lower Bound
I Theorem 15. For any k ≥ 3, ε > 0, if there exists an algorithm solving k-coloring in time
O∗
(

(
(

k
bk/2c

)
− ε)mpw

)
, where mpw is the graph’s modular pathwidth, then the SETH is false.

As in Theorem 11, we begin our reduction from a q-CSP-B instance, where the alphabet
size B is equal to the base of the exponential in our lower bound. The intuition will be
that the “important” vertices of the bags in a modular tree decomposition of our graph will
correspond to classes of bk/2c true twin vertices. The set of bk/2c colors used to color them
will encode the value of one variable of the original instance.

Construction. We are given some k ≥ 3, ε > 0. Let B =
(

k
bk/2c

)
. Let q be the smallest

integer such that n-variable q-CSP-B does not admit an O∗ ((B − ε)n) algorithm. Consider
an arbitrary n-variable instance of q-CSP-B, call it φ. We use the existence of the supposed
algorithm to obtain an O∗ ((B − ε)n) algorithm that decides φ, contradicting the SETH.

As in Theorem 11 we define a one-to-one translation function T . This time, when T

is given as input a value v ∈ {1, . . . , B}, it returns a subset of {1, . . . , k} of cardinality
bk/2c. Let X = {x1, . . . , xn} be the set of the n variables of the q-CSP-B instance and
C = {c0, . . . , cm−1} the set of its m constraints. We construct our graph G(φ) as follows,
where if we don’t specify a list for a vertex its list is {1, . . . , k}:
1. For each variable i ∈ {1, . . . , n} we construct a clique Vi on bk/2c vertices.
2. For each j ∈ {0, . . . ,m− 1}, let S be the set of satisfying assignments of the constraint cj .

We construct an independent set Sj with one vertex for each element of S. We construct
an OR(Sj) gadget on the set Sj .

3. For each j ∈ {0, . . . ,m− 1}, each satisfying assignment a for the constraint cj , and each
variable xi appearing in cj we do the following:
a. We construct a set U j,a

i of dk/2e vertices.
b. Suppose a assigns value v to xi. For each color c ∈ {1, . . . , k} \ T (v) we select a vertex

of U j,a
i . We construct a (1→ c)-implication gadget from the vertex representing a in

Sj to this vertex of U j,a
i .

c. We connect all vertices of U j,a
i with all vertices of Vi.

I Lemma 16. If φ is a satisfiable q-CSP-B instance, then G(φ) admits a proper list coloring.

I Lemma 17. If G(φ) admits a proper list coloring, then φ is a satisfiable q-CSP-B instance.

I Lemma 18. G(φ) can be constructed in time polynomial in |φ|, and mpw(G) ≤ n+O(1).

5.2 ETH-based Lower Bound
I Theorem 19. If there exists an algorithm that solves k-Coloring on instances with n
vertices and k = O(log n) in time no(mpw), then the ETH is false. As a result, if there is an
algorithm solving k-Coloring in time 2o(k·mpw), then the ETH is false.

6 Algorithms

We present two algorithms establishing that the lower bounds of Sections 4,5 are essentially
tight. Though both algorithms are based on standard techniques, we remark that the
algorithm for clique-width requires some extra effort to obtain a DP of the promised size.

ICALP 2018
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6.1 Clique-width algorithm
Our algorithm is based on standard DP. Its basic idea is that a partial solution is characterized
by the set of colors it uses to color a set of vertices that share the same label. This leads to a
DP table of size (2k − 1)cw, by observing that for any non-empty label set, any viable partial
solution will use at least one color, hence there are 2k − 1 possible subsets of {1, . . . , k} to
consider. To improve this to (2k − 2)cw, which would match the lower bound of Theorem 11
we need a further idea which will allow us to also rule out the set that uses all k colors.

Let t be a node of the binary tree representing the clique-width expression of G, and let
V i

t be the set of vertices that have label i ∈ {1, . . . , cw} in the labeled graph Gt produced by
the sub-expression rooted at t. We will say that V i

t is a live label set if there exists an edge
in G that is incident on a vertex of V i

t and does not appear in Gt. In other words, a label set
is live if there is a join operation that involves its vertices which has not yet appeared in t.
The main observation is that live label sets cannot use all k colors in a valid partial solution,
since then the subsequent join operation will fail. Non-live label sets, on the other hand, are
irrelevant, since if the coloring is already valid for such a set it is guaranteed to remain valid.
Our DP algorithm will therefore keep track of the partial colorings only of live label sets,
and thus produce a DP table of size (2k − 2)cw. In this sense, our DP algorithm is slightly
non-standard, as part of its procedure involves “looking ahead” in the graph to determine if
a label set is live or not. What remains is the problem of implementing the DP so that it
takes time linear in the table size; this is handled using the techniques introduced in [1, 29].

I Theorem 20. There is an algorithm which, given a graph G, an integer k, and a clique-
width expression for G with cw labels decides if G is k-colorable in time O∗

(
(2k − 2)cw).

6.2 Modular Treewidth Algorithm
For modular treewidth, we remark that k-Coloring for this parameter can be seen as an
equivalent version of Multi-Coloring parameterized by treewidth. In Multi-Coloring,
each vertex v has a demand b(v), and we are asked to assign b(v) distinct colors to each
vertex so that neighboring vertices have disjoint colors (see e.g. [2]). In our context, the
vertex representing a class of b true twins corresponds to a vertex with demand b.

I Theorem 21. There is an algorithm which, given a graph G, an integer k, and a modular
tree decomposition of G of width mtw, decides if G is k-colorable in time O∗

((
k
bk/2c

)mtw).
7 Conclusions – Open Problems

We have given tight bounds for k-Coloring parameterized by clique-width, complementing
previously known bounds for treewidth. A natural question is now how robust these bounds
are, especially in the context of approximation. Specifically, does there exist a constant factor
approximation algorithm for k-Coloring running in O∗ ((k − ε)tw) or O∗

(
(2k − 2− ε)cw)?

Current knowledge cannot even rule out the existence of such algorithms with a small additive
approximation error and this area is still largely unexplored.
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Abstract
Constructing a sparse spanning subgraph is a fundamental primitive in graph theory. In this paper,
we study this problem in the Centralized Local model, where the goal is to decide whether an
edge is part of the spanning subgraph by examining only a small part of the input; yet, answers
must be globally consistent and independent of prior queries.

Unfortunately, maximally sparse spanning subgraphs, i.e., spanning trees, cannot be con-
structed efficiently in this model. Therefore, we settle for a spanning subgraph containing at
most (1 + ε)n edges (where n is the number of vertices and ε is a given approximation/sparsity
parameter). We achieve a query complexity of Õ(poly(∆/ε)n2/3),2 where ∆ is the maximum
degree of the input graph. Our algorithm is the first to do so on arbitrary bounded degree
graphs. Moreover, we achieve the additional property that our algorithm outputs a spanning
subgraph of bounded stretch i.e., distances are approximately preserved. With high probability,
for each deleted edge there is a path of O(log n · (∆ + log n)/ε) hops in the output that connects
its endpoints.
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1 Introduction

When operating on very large graphs, it is often impractical or infeasible to (i) hold the
entire graph in the local memory of a processing unit, (ii) run linear-time (or even slower)
algorithms, or even (iii) have only a single processing unit perform computations sequentially.
These constraints inspired the Centralized Local model [17], which essentially views the
input as being stored in a (likely distributed) database that provides query access to external
processing units. To minimize the coordination overhead of such a system, it is furthermore
required that there is no shared memory or communication between the querying processes,
except for shared randomness provided alongside the access to the input. The idea is now to
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run sublinear-time algorithms that extract useful global properties of the graph and/or to
examine the input graph locally upon demand by applications.

Studying graphs in this model, lead to the emergence of algorithms that provide query
access to a variety of graph-theoretical structures like, e.g., independent or dominating sets.
In such a case, it is crucial that locally evaluating whether a node participates in such a
set is consistent with the same evaluation for other nodes. This is a non-trivial task, as
local decisions can only be coordinated implicitly via the structure of the input (which is to
be examined as little as possible) and the shared randomness. Nonetheless, this budding
field brought forth a number of elegant algorithms solving, e.g., maximal independent set,
hypergraph coloring, k-CNF, approximate maximum matching and approximate minimum
vertex cover for bipartite graphs [1, 4, 5, 11, 12, 13, 17].

In this work, we consider another very basic graph structure: sparse spanning subgraphs.
Here, the task is to select a subset of the edges of the (connected) input graph so that the
output is still connected, but has only few edges. By “few” we mean that, for some input
parameter ε > 0, the number of selected edges is at most (1 + ε)n, where n denotes the
number of nodes. One may see this as a relaxed version of the problem of outputting a
spanning tree of the graph, which is a too rigid requirement when looking for fast algorithms:
on a cycle, a single edge has to be deleted, but this necessitates to first verify that the input
graph is not, in fact, a line.

I Definition 1 ([9]). An algorithm A is a Local Sparse Spanning Graph (LSSG) algorithm
if, given n,∆ ≥ 1, a parameter ε ≥ 0, and query access to the incidence list representation of
a connected graph G = (V,E) over n vertices and of degree at most ∆, it provides oracle
access to a subgraph G′ = (V,E′) of G such that:
1. G′ is connected.
2. |E′| ≤ (1 + ε) · n with high probability (w.h.p.),3 where E′ is determined by G and the

internal randomness of A.
By “providing oracle access to G′” we mean that on input {u, v} ∈ E, A returns whether
{u, v} ∈ E′, and for any sequence of edges, A answers consistently with respect to the
same G′.

We are interested in LSSG algorithms that, for each given edge, perform as few queries
as possible to G. Observe that Item 2 implies that the answers of an LLSG algorithm to
queries cannot depend on previously asked queries.

We note that relaxing from requiring a tree as output makes it possible to ask for
additional guarantees that, in general, cannot be met by a spanning tree. Instead of merely
preserving connectivity, it becomes possible to maintain distances up to small factors (for
unweighted graphs). Such subgraphs are known as (sparse, multiplicative) spanners [14, 15].
In fact, choosing ε ∈ o(1) then yields ultra-sparse spanners that are o(n) edges away from
being trees.

1.1 Our Contribution
We give the first non-trivial LSSG algorithm in the Centralized Local model that runs on
arbitrary graphs. We achieve a query complexity of Õ(poly(∆/ε)n2/3) per edge, w.h.p.
Moreover, we guarantee that for each edge that is not selected into the spanner, w.h.p. there

3 That is, with probability at least 1− 1/nc for an arbitrary constant c > 0 that is chosen upfront.
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is a path of O(log n · (∆+log n)/ε) hops consisting of edges that are selected into the spanner;
this is referred to as a stretch of O(log n · (∆ + log n)/ε).

For simplicity, assume for the moment that ∆ and ε are constants. Our algorithm
combines the following key ideas.

We classify edges as expanding if there are sufficiently many (roughly n1/3) nodes within
O(log n) hops of their endpoints. For non-expanding edges, we can efficiently simulate a
standard distributed spanner algorithm at small query complexity, as solutions of running
time O(log n) are known (e.g. [3]).
On the node set induced by expanding edges, we can construct a partition into Voronoi
cells with respect to roughly n2/3 randomly sampled centers. The Voronoi cells are
spanned by trees of depth O(log n), as expanding nodes have their closest center within
O(log n) hops w.h.p. Finding the closest center has query complexity Õ(n1/3).
We refine the partition into Voronoi cells further into clusters of Õ(n1/3) nodes. We
simply let a node be a singleton cluster if its subtree in the spanning tree of its cell
contains more than Õ(n1/3) nodes. This construction has query complexity Õ(n2/3) for
constructing a complete cluster, yet ensures that there are Õ(n2/3) clusters in total due to
the low depth of the trees that span the Voronoi cells; moreover, each cluster is completely
contained in some Voronoi cell.
It remains to select few edges to interconnect the Voronoi cells. This is the main challenge,
for which the above properties of the partition are crucial. To keep the number of selected
edges small in expectation, we mark a subset of expected size Θ̃(n1/3) of the clusters by
marking each Voronoi cell (and thereby its constituent clusters) with probability n−1/3.
We then try to ensure that (i) clusters select an edge to each adjacent marked Voronoi
cell and (ii) for each marked Voronoi cell adjacent to an adjacent cluster, they select one
edge connecting to some cluster adjacent to this cell.
The main issue with the previous step is that we cannot afford to construct each adjacent
cluster, preventing us from guaranteeing (ii). We circumvent this obstacle by identifying
for adjacent clusters in which cell they are and keeping an edge for the purpose of (ii)
if it satisfies a certain minimality requirement with respect to the rank of the cell used
for symmetry breaking purposes. This way, we avoid construction of adjacent clusters,
instead needing to determine the rank of their Voronoi cells only. This way, we maintain
query complexity Õ(n2/3).
However, this now entails an inductive argument for ensuring connectivity, which also
affects stretch. By choosing Voronoi cell ranks uniformly at random, we ensure that
the length of such an inductive chain is bounded by O(log n) w.h.p. Together with the
depth of the Voronoi cell trees of O(log n) and the stretch of the spanner algorithm for
non-expanding edges (also O(log n)), this yields the total bound of O(log2 n) on the
stretch of our scheme.

Finally, we note that we can place the above routine in a wrapper verifying that, w.h.p.,
the number of globally selected edges does not significantly exceed the expectation. If this
is not the case, the wrapper starts the process all over. Since in each attempt the success
probability is constant (and the verifier succeeds w.h.p.), we get within O(log n) attempts
that the bound on the number of selected edges is satisfied w.h.p. and the routine terminates.

Relation to Property Testing. As observed in [10], testing cycle-freeness with one sided-
error in the bounded-degree model can be reduced to the LSSG problem. From this reduction
it follows that we obtain a tester for cycle-freeness that works in Õ(n2/3) time. Czumaj
et al. [2] studied the problem of Ck-minor freeness with one sided-error. For cycle-freeness
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(C3-minor freeness) their complexity is Õ(
√
n), therefore their complexity is better than ours.

However, we would like to point out that an LSSG algorithm gives a stronger guarantee than
a one-sided error tester for cycle-freeness. An LSSG algorithm can be used to find for all but
at most (1 + ε)|V | edges e, a cycle that e belongs to, i.e., a witness for the violation by e can
be provided. In contrast, a one-sided error tester merely guarantees to find a single cycle in
instances that are ε-far from being cycle-free.

Perhaps more importantly, our approach proves useful when testing for other minors.
Recently, Fichtenberger et al. [6] built on our work to construct one-sided error tester for
outerplanarity and other properties that are characterized by a set of forbidden minors.

1.2 Related work

The problem of finding a sparse spanning subgraph in the Centralized Local model was first
studied in [9], where the authors show a lower bound of Ω(

√
n) queries for constant ε and

∆ (see also survey by Rubinfeld [18]). They also present an upper bound with nearly tight
query complexity for graphs that have very good expansion properties. However, for general
(bounded degree) graphs their algorithm might query the entire graph for completing a single
call to the oracle. They also provide an efficient algorithm for minor-free graphs that was
later improved in [8]. The algorithm presented in [8] achieves a query complexity that is
polynomial in ∆ and 1/ε and is independent of n. The stretch factor of this algorithm is
also independent of n and depends only on ∆, 1/ε, and the size of the excluded minor.

A characterization of the query complexity of the problem was presented in [7]. Specifically,
[7] provide an upper bound (which builds on an algorithm in [9]) that has a query complexity
that is independent of n (however, super-exponential in 1/ε) for families of graphs which are,
roughly speaking, sufficiently non-expanding everywhere. On the other hand, they show that,
for a family of graphs with expansion properties that are slightly better, any local algorithm
must have a query complexity that depends on n.

In the (distributed) Local model, Ram and Vicari [16] study the same problem and
provide an algorithm that runs in min{D,O(log n)} rounds, where D is diameter of the input
graph. Their algorithm achieves the sparsity property by breaking all short cycles.

2 Preliminaries

The graphs we consider are undirected and have a known degree bound ∆, and we assume
we have query access to their incidence list representation. Namely, for any vertex v and
index 1 ≤ i ≤ ∆, it is possible to obtain the ith neighbor of v by performing a query to the
graph (if v has less than i neighbors, then a special symbol is returned). Without loss of
generality, we assume that graphs are simple, i.e., contain neither loops nor parallel edges.4
The number of vertices in the graph is n and we assume that each vertex v has a unique id,
which for simplicity we also denote by v. There is a total order on the ids, i.e., given any
two distinct ids u and v, we can decide whether u < v or v < u.

Let G = (V,E) be a graph, where V = [n]. We denote the distance between two vertices
u and v in G by dG(u, v). For vertex v ∈ V and an integer r, let Γr(v,G) denote the set of
vertices at distance at most r from v. When the graph G is clear from the context, we shall
use the shorthands d(u, v) and Γr(v) for dG(u, v) and Γr(v,G), respectively.

4 The answer on a self-loop can always be negative, and we can default to rejecting all but the first edge
between two nodes.
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Figure 1 Partition of a graph into cells and clusters, where k = 6. Black lines are the borders of
Voronoi cells, whose centers have black fillings. Red edges belong to the BFS trees spanning the
clusters, while dashed gray lines are non-tree edges. Red circles indicate singleton clusters (if the
node has a red child) or the roots of subtrees that form a cluster (if the children are black).

The total order on the vertices induces a total order r on the edges of the graph in
the following straightforward manner: r({u, v}) < r({u′, v′}) if and only if min{u, v} <
min{u′, v′} or min{u, v} = min{u′, v′} and max{u, v} < max{u′, v′}. The total order over
the vertices also induces an order over those vertices visited by a Breadth First Search
(BFS) starting from any given vertex v, and whenever we refer to a BFS, we mean that it is
performed according to this order.

Whenever referring to one of the above orders, we may refer to the rank of an element
in the respective order. This is simply the index of the respective element when listing all
elements ascendingly with respect to the order.

For a graph G = (V,E) and a pair of disjoint subsets of vertices A ⊂ V and B ⊂ V let
EG(A,B) def= {(u, v) ∈ E |u ∈ A ∧ v ∈ B}. When it is clear from the context, we omit the
subscript. We say that a pair of subsets of vertices A and B are adjacent if EG(A,B) 6= ∅.

3 An Algorithm that Works under a Promise

We begin by describing an LSSG algorithm which works under the following promise on the
input graph G = (V,E). Sample ` uniformly at random from [b log n/ log(1+ε), b log n/ log(1+
ε) + ∆/ε}], and let k def= cn1/3 lnn · `∆/ε, where c and b are sufficiently large constants. For
every v ∈ V , let iv

def= minr{|Γr(v)| ≥ k}. We are promised that maxv∈V {iv} ≤ `. In words,
we assume that the `-hop neighborhood of every vertex in G contains at least k vertices.
First, we fix a simple partition of V .

3.1 The Underlying Partition

Centers. Pick a set S ⊂ |V | of r def= Θ(εn2/3/ lnn) vertices at random. We shall refer to
the vertices in S as centers. For each vertex v ∈ V , its center, denoted by c(v), is the center
which is closest to v amongst all centers (break ties between centers according to the id of
the center).
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Voronoi cells. The Voronoi cell of a vertex v, denoted by Vor(v), is the set of all vertices u
for which c(u) = c(v). Additionally, we assign to each cell a random rank, so that there is a
uniformly random total order on the cells; note carefully that the rank of a cell thus differs
from the rank of its center (which is given by its identifier, which is not assigned randomly).
We remark that we can determine the rank of the cell from the shared randomness and the
cell’s identifier, for which we simply use the identifier of its center.

Clusters. For each Voronoi cell, consider the BFS tree spanning it, which is rooted at the
respective center. For every v ∈ V , let p(v) denote the parent of v in this BFS tree. If v
is a center then p(v) = v. For every v ∈ V \ S, let T (v) denote the subtree of v in the
above-mentioned BFS tree when we remove the edge {v, p(v)}; for v ∈ S, T (v) is simply the
entire tree. Now consider a Voronoi cell. If the cell contains at most k vertices, then the
cluster of all the vertices in the Voronoi cell is the cell itself. Otherwise, there are two cases.
If T (v) contains at least k vertices, then the cluster of v is the singleton {v}. Otherwise,
v has a unique ancestor u (including v) for which T (u) contains less than k vertices and
T (p(u)) contains at least k vertices. The cluster of v is the set of vertices in T (u). For a
cluster C, let c(C) denote the center of the vertices in C (all the vertices in the same cluster
have the same center as they all belong to the same Voronoi cell). Let Vor(C) denote the
Voronoi cell of the vertices in C.

This describes a partition of V into Voronoi cells, and a refinement of this partition into
clusters. See Figure 1 for an illustration.

3.2 The Edge Set
Our spanner, H = (V,E′), initially contains, for each Voronoi cell Vor the edges of the BFS
tree that spans Vor, i.e., the BFS tree rooted at the center of Vor spanning the subgraph
induced by Vor (see Section 2 for more details). Clearly, these edges also span the clusters.
Next, we describe which edges we add to E′ in order to connect the clusters.

Marked Clusters and Clusters-of-Clusters
Each center in S is marked independently with probability p def= 1/n1/3. If a center is marked,
then we say that its Voronoi cell is marked and all the clusters in this cell are marked as well.

Cluster-of-clusters. For every marked cluster, C, define the cluster-of-clusters of C, denoted
by C(C), to be the set of clusters which consists of C and all the clusters which are adjacent
to C. A cluster B is participating in C(C) if B ∈ C(C) and the edge of minimum rank
in E(B,Vor(C)) also belongs to E(B,C). Thus, if B is adjacent to Vor(C) and Vor(C) is
marked, then there is a unique cluster D ⊆ Vor(C) such that B participates in C(D). See
Figure 2 for a visualization.

The Edges between Clusters
By saying that we connect two adjacent subsets of vertices A and B, we mean that we add
the minimum ranked edge in E(A,B) to E′. For a cluster A, define its adjacent centers
Vor(∂A) def= {Vor(v) | ∃u ∈ A such that {u, v} ∈ E} \ {Vor(A)}, i.e., the set of Voronoi cells
that are adjacent to A. This definition explicitly excludes Vor(A), as there is no need to
connect A to its own Voronoi cell.
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C(C)
C

F

E

D

Figure 2 Illustration of marked clusters and clusters of clusters. Thick red and black ovals
are marked and unmarked cells, respectively. Thin circles are clusters, where cluster C comprises
its entire cell. Thick edges are the ones of minimum rank between their incident clusters, while
the dotted edges do not meet this criterion. The arrows of red edges indicate participation in the
respective adjacent marked cluster; note that D does not participate in C(F ), as for each adjacent
marked cell Vor it exclusively participates in the cluster-of-clusters connected to it by the edge of
minimum rank in E(D, Vor). C(C) is marked in blue; all its constituent clusters also participate in
C(C), as Vor(C) = C.

We next describe how we connect the clusters. The high-level idea is to make sure that
every marked cluster and the clusters that participate in the respective cluster-of-clusters
remains connected. This implies that the cluster-of-clusters remain connected as well, as
every Voronoi cell is connected. For clusters which are not adjacent to any marked cluster
we make sure to keep them connected to all adjacent Voronoi cells. Formally:
1. We connect every cluster to every adjacent marked cluster.
2. Each cluster A that is not participating in any cluster-of-clusters (i.e., no cell adjacent to

A is marked) we connect to each adjacent cell.
3. Suppose cluster A is adjacent to cluster B, where B is adjacent to a marked cell Vor.

Denote by C the (unique) cluster in cell Vor for which B participates in C(C). We connect
A with B if the following conditions hold:

Vor(B) has minimum rank amongst Vor(∂A) ∩Vor(∂C)
the minimum ranked edge in E(A,Vor(B)) is also in E(A,B)

Figure 3 showcases the third rule. Roughly speaking, the idea is that we want to connect
cluster A with C(C) to preserve connectivity, however, at the same time, we want to make
sure that we do not add too many edges to our spanning subgraph. Therefore, we connect
A and B only if we do not see an evidence that A and C(C) remain connected through a
different path.

3.3 Sparsity
I Lemma 1. The number of clusters, denoted by s, is at most |S|+ n`(∆ + 1)/k.

Proof. We first observe that, due to the promise on G, it follows that for every v ∈ V ,
d(v, c(v)) ≤ ` w.h.p. Recall the terminology from Subsection 3.1. Consider v for which
|T (v)| ≥ k and therefore its cluster is the singleton {v}. We say that a vertex u is special
if |T (u)| ≥ k and for every child of u in T (u), t, it holds that |T (t)| < k. By an inductive
argument, it follows that v is an ancestor of a special vertex. Since for every pair of special
vertices u and w, T (u) and T (w) are vertex disjoint, we obtain that there are at most n/k
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D

C

B

A

Figure 3 Illustration of the third edge selection rule. In this example, the thick black edge has
minimum rank in E(A, Vor(B)) and B has minimum rank in ∂A∩ ∂C. However, the rank of Vor(D)
is smaller than that of Vor(B), and hence the dashed edge is not selected. Here, A will select the
direct edge connecting it to D, due to the first rule.

special vertices. Since for every special vertex, there are at most ` ancestors, the total number
of vertices v with |T (v)| ≥ k is bounded by n`/k.

Observe that any cluster either (i) is a singleton {v} with |T (v)| ≥ k, (ii) contains a node
v such that |T (p(v))| ≥ k, or (iii) is an entire Voronoi cell. We just bounded the number of
clusters of type (i) by n`/k, and immediately get a bound on the number of type (ii) clusters
of n`∆/k. The number of type (iii) clusters is bounded by the number of Voronoi cells |S|,
showing the desired bound on s. J

I Lemma 2. Exp(|E′|) ≤ (1 +O(ε))|V |.

Proof. The number of edges which are taken due to Condition 1 is at most s times the
number of marked clusters. In expectation, there are s · p marked clusters, yielding at
most s2p edges in expectation. Since s = O(εn2/3/ lnn) and p = 1/n1/3 we obtain that
s2p = O(εn/ lnn).

Let A be a cluster. The number of edges which are adjacent to A and are taken due
to Condition 3 is bounded by the total number of clusters-of-clusters. The number of
clusters-of-clusters is exactly the number of marked clusters. Thus, the total number of edges
which are taken due to Condition 3 is bounded by s2p.

Observe that the probability that cluster A is not adjacent to a marked cell is (1 −
p)|Vor(∂A)| ≤ e−p|Vor(∂A)|. Hence, if |Vor(∂A)| ≥ 3p−1 lnn, A is adjacent to a marked cell
w.h.p. Using a union bound over all clusters, it follows that w.h.p. each cluster A without an
adjacent marked cell satisfies that |Vor(∂A)| ≤ 3p−1 lnn with probability at least 1− 1/n2;
the probability at most 1/n2 event that this bound is violated cannot contribute more than
|E|/n2 < 1 to the expectation. Therefore, the total number of edges which are taken due to
Condition 2 is bounded by (3s lnn)/p+ 1 = O(εn).

Since the number of edges we add due to the BFS trees of the Voronoi cells is at most
|V | − 1, we conclude that Exp(|E|′) ≤ (1 +O(ε))|V |, as desired. J

3.4 Connectivity and Stretch
I Lemma 3. H is connected.
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Proof. Recall that H contains a spanning tree on every Voronoi cell, hence it suffices to
show that we can connect any pair of Voronoi cells by a path between some of their vertices.
Moreover, the facts that G is connected and the Voronoi cells are a partition of V imply that
it is sufficient to prove this for any pair of adjacent Voronoi cells. Accordingly, let Vor and
Vor1 be two cells such that E(Vor,Vor1) 6= ∅.

Consider clusters A ⊆ Vor and B ⊆ Vor1 such that the edge e of minimum rank in
E(Vor,Vor1) is in E(A,B). If B is not adjacent to a marked cell, then Condition 2 implies
that e is selected into H. Thus, we may assume that B is adjacent to a marked cell Vor′.
Accordingly, there exists a marked cluster C ⊆ Vor′ such that B is participating in C(C).

If the rank of Vor1 is minimum in Vor(∂C) ∩ Vor(∂A), then e is selected into H by
Condition 3 and we are done. Otherwise, observe that Vor1 is connected to Vor′, as the
edge of minimum rank in E(B,C) is selected into H by Condition 1. Therefore, it suffices
to show that Vor gets connected to Vor′. Let Vor2 be the cell of minimum rank among
Vor(∂C) ∩ Vor(∂A). Let D ⊆ Vor2 be the cluster satisfying that the edge e′ of minimum
rank in E(A,Vor2) is in E(A,D). Note that Vor2 is connected to Vor′ (which we saw to be
connected to Vor1), as there is some cluster D′ ⊆ Vor(D) that is adjacent to C and selects
the edge of minimum rank in E(D′, C) by Condition 1.

Overall, we see that it is sufficient to show that Vor gets connected to Vor2, where Vor2
has smaller rank than Vor1. We now repeat the above reasoning inductively. In step i, we
either succeed in establishing connectivity between Vor and Vori, or we determine a cell
Vori+1 that has smaller rank than Vori and is connected to Vori. As any sequence of Voronoi
cells of descending ranks must be finite, the induction halts after finitely many steps. Because
the induction invariant is that Vori+1 is connected to Vori, this establishes connectivity
between Vor and Vor1, completing the proof. J

I Lemma 4. Denote by GVor the graph obtained from G by contracting Voronoi cells and
by HVor its subgraph obtained when doing the same in H. If the cells’ ranks are uniformly
random, w.h.p. HVor is a spanner of GVor of stretch O(log n).

Proof. Recall the proof of Lemma 3. We established connectivity by an inductive argument,
where each step increased the number of traversed Voronoi cells by two. Hence, it suffices to
show that the induction halts after O(log n) steps w.h.p.

To see this, observe first that GVor is independent of the ranks assigned to Voronoi
cells and pick any pair of adjacent cells Vor, Vor1, i.e., neighbors in GVor. We perform the
induction again, assigning ranks from high to low only as needed in each step, according to
the following process. In each step, we query the rank of some cells, and given an answer of
rank r, the ranks of all cells of rank at least r are revealed as well. In step i, we begin by
querying the rank of Vori. Consider the cluster Di ⊆ Vori adjacent to A satisfying that the
edge with minimum rank in E(Vori, A) is also in E(Di, A). We can assume without loss of
generality that Di is adjacent to a marked cluster Fi and that it is participating in C(Fi)
(as otherwise Di connects to A directly and we can terminate the process). If the ranks of
all the cells adjacent to both Fi and A were already revealed, then the process terminates.
Otherwise, we query the rank of all such cells whose rank is still unrevealed. We set the cell
of the queried cluster that has minimum rank to be Vori+1 and we continue to the next step.

We claim that, in each step i, either the process terminates, or the rank of Vori+1 is at
most half of the rank of Vori with probability at least 1/2. To verify this, observe that in
the beginning of step i, any cell center whose rank was not revealed so far has rank which
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is uniformly distributed in [ri − 1], where ri is the rank of Vori.5 With probability at least
1/2, such a rank is at most ri/2. If Vori has no adjacent cells whose ranks have not been
revealed yet, the process terminates. Hence, regardless of whether the process terminates or
not, the claim holds.

By Chernoff’s bound, we conclude that the process terminates within O(log n) steps
w.h.p., as r1 is bounded by the number of Voronoi cells, which itself is trivially bounded by
n. By the union bound over all pairs of cells Vor and Vor1, we get the desired guarantee. J

I Corollary 1. W.h.p., H is a spanner of G of stretch O(log n · (∆ + log n)/ε).

Proof. Due to the promise on G, w.h.p. the spanning trees on Voronoi cells have depth
` ∈ O((∆ + log n)/ε). Hence, for any edge within a Voronoi cell, the claim holds w.h.p.
Moreover, for an edge connecting different Voronoi cells, by Lemma 4, w.h.p. there is a
path of length O(log n) in HVor connecting the respective cells. Navigating with at most
2` ∈ O((∆ + log n)/ε) hops in each traversed cell, we obtain a suitable path of length
O(log n · (∆ + log n)/ε) in H. J

4 The Algorithm for General Graphs

We use a combination of the algorithm in Section 3 with the algorithm by Elkin and Neiman
for ultra-sparse spanners [3]. We call a vertex v remote, with respect to a set of centers, if
the `-hop neighborhood of v does not include a center. Fix S, let R denote the set of remote
vertices with respect to S, and abbreviate R̄ def= V \R.

First Step. Run the algorithm from Section 3 on the subgraph induced by R̄, i.e., {u, v} ∈ E
with u, v ∈ R̄ is added to E′ if and only if the algorithm outputs the edge.

Second Step. Run the algorithm of Elkin and Neiman [3] on the subgraph induced by R,
i.e., {u, v} ∈ E with u, v ∈ R is added to E′ if and only if the algorithm outputs the edge.6
Their algorithm proceeds as follows. Given an integer h, each vertex v draws rv according
to the exponential distribution with parameter β = ln(n/δ)/h, where δ is a parameter that
controls the success probability of the algorithm. Each vertex v receives ru from every
vertex u within distance h, and stores mu(v) = ru − d(u, v) and a neighbor on a shortest
path between v and u, denoted by nu(v). The edges that are added to the spanner are
C(v) = {{v, nu(v)} |mu(v) ≥ maxw∈V {mw(v)− 1}}, for every v ∈ R.

I Corollary 2. M[Claim 2.3 in [3]] With probability at least 1− δ, rv < h for all v ∈ V .

M We choose δ = 1/nb−1, where b ≥ 2 is a constant (see begining of Section 3), and h = `.
The following lemma implies that the total number of edges that we add to H in the second
step is at most |R| · (nb)1/` ≤ |R|(1 + ε) in expectation.

I Lemma 5 (Proof of Lemma 2.2 in [3]). For every v ∈ R, Exp[C(v)] ≤ (n/δ)1/h.

5 In step 1, we first query Vor1 and then observe that this statement holds.
6 The algorithm is described for connected graphs; we simply apply it to each connected component of R.



C. Lenzen and R. Levi 87:11

Third Step. Add to E′ all edges e ∈ E(R, R̄).

The following lemma implies that the expected number of edges which are added in the
third step is at most εn.

I Lemma 6. Exp[|E(R, R̄)|] ≤ εn.

Proof. Observe that for an edge {u, v} ∈ E, there is at most one integer r such that
Γr(u)∩ S = ∅ and Γr(v)∩ S 6= ∅ (or vice versa). If there is no such r or ` 6= r, then the edge
is not in E(R, R̄). Over the random choice of `, the probability of the event that the edge is
included is at most Pr[` = r] ≤ ε/∆. The lemma follows by linearity of expectation. J

4.1 Stretch Factor
Consider any edge e = {u, v} ∈ E \ E′ we removed. If u, v ∈ R̄, e was removed by the
Algorithm from Section 3, which was applied to the subgraph induced by R̄. Applying
Corollary 1 to the connected component of e, we get that w.h.p. there is a path of length
O(log n ·(∆+log n)/ε) from u to v in H . If u, v ∈ R, by Claim 2 and the choice of parameters,
w.h.p. there is a path of length O((∆ + log n)/ε) from u to v in H. As e /∈ E(R, R̄) by the
third step, we arrive at the following corollary.

I Corollary 3. The above algorithm guarantees stretch O(log n · (∆ + log n)/ε) w.h.p. and
satisfies that Exp[|E′|] ∈ (1 +O(ε))n.

5 The Local Algorithm

In this section we prove our main theorem.

I Theorem 2. Algorithm 1 is an LSSG algorithm. For any graph G over n vertices of
maximum degree at most ∆ and ε > 0, its query complexity, space complexity (length of the
random seed), and running time are Õ(n2/3) · poly(1/ε,∆).

Proof. The correctness of the algorithm follows from the previous sections. We shall prove
that its complexity is as claimed. We analyze the complexity in terms of n. There are
additional factors that depend polynomially in ∆ and 1/ε. The following claims hold w.h.p.,
simultaneously, for all vertices.

Recall that a vertex u is remote if Γ`(u) does not contain a center. Due to the sampling
probability for centers, a center is found after exploring Õ(n1/3) vertices. Therefore, we
can decide for any vertex u whether it is in R with query and time complexity Õ(n1/3).
Moreover, if u ∈ R̄, without additional cost the respective subroutine can return c(u), the
center of u, and d(u, c(u)) (as we explore in a BFS fashion).

For Step 1, we need to determine Γ`(u) ∩R. To do this, it suffices to explore Γ`(u), and
for each vertex in it, to determine whether it is in R or not. Since |Γ`(u)| = Õ(n1/3) for
every vertex u ∈ R, we obtain that the query and time complexity of this step is Õ(n2/3), in
total. Accordingly, Step 2 has query and time complexity Õ(n1/3).

If u, v ∈ R̄, the algorithm proceeds as in Section 3. We show first that we can reconstruct
clusters efficiently. W.l.o.g., consider u. We determine c(u) and d(u, c(u)). For each neighbor
w of u, we determine whether it is in R̄ (if not, the node is discarded), its center c(w),
and the distance d(w, c(w)). As u ∈ R̄, and assuming that u 6= c(u), it must have at least
one neighbor w in distance d(u, c(u))− 1 of c(u); any such w satisfies that c(w) = c(u), as
otherwise d(u, c(w)) = d(w, c(w)) and c(w) < c(u), a contradiction to the tie-breaking rule
for centers. Among these candidates w, we know that the one with minimum rank is the
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Algorithm 1 LSSG for general graphs.
Input: {u, v} ∈ E
Output: whether {u, v} is in E′ or not.
1. If u, v ∈ R, compute the output of algorithm of Elkin and Neiman at u and v when

running it on the connected component of u and v in the subgraph induced by R. Return
true if {u, v} ∈ C(u) ∪ C(v) and false otherwise.

2. If {u, v} ∈ E(R, R̄), return true.
3. Otherwise, u, v ∈ R̄ and we proceed according to Section 3, where all nodes in R are

ignored:
a. If Vor(u) = Vor(v), return true if {u, v} is in the BFS tree of Vor(u) and false

otherwise.
b. Otherwise, let Q and W denote the clusters of u and v, respectively. Return true if

at least one of the following conditions hold for A = Q and B = W , or symmetrically,
for A = W and B = Q, and false otherwise.
i. A is a marked cluster and {u, v} has minimum rank amongst the edges in E(A,B).
ii. A is not participating in any cluster-of-clusters. Namely, all the clusters which are

adjacent to A are not marked. In this case, we take {u, v} if it has minimum rank
amongst the edges in E(A,Vor(B)).

iii. There exists a marked cluster C such that A is participating in C(C), and the
following holds:

Vor(A) has minimum rank amongst Vor(∂B) ∩Vor(∂C)
{u, v} has minimum rank amongst the edges in E(B,Vor(A)).

parent of u in the BFS tree of Vor(u) rooted at c(u), due to the tie-breaking rule for the BFS
construction. We can use this subroutine to partially explore the BFS of Vor(u): given any
node w ∈ R̄, we can determine its parent, p(w), and children in Vor(w) at query and time
complexity Õ(n1/3) as follows. The shortest path that has the smallest lexicographical order
from c(w) to w is the path connecting these vertices in the BFS tree. Therefore, the parent
of w in this tree can be found by performing a BFS from w until the first level in which
c(w) is reached. To determine the children we simply run this subroutine for each neighbor,
y, of w and find out whether w = p(y) or not. In order to determine whether T (w) < k

or T (w) ≥ k (by partially or completely exploring T (w)), we need to run this subroutine
O(k) times, therefore this can be obtained with query complexity Õ(n2/3). if T (w) < k, we
determine T (w) completely. We collect this information for u and its `− 1 ancestors, and
determine the cluster Q of u. Finally, we repeat the procedure to reconstruct the cluster W
of v, and determine for all nodes adjacent to either cluster whether they are in R̄ and, if so,
their centers. The query and time complexity of this operation is Õ(n2/3) in total.

For the cases A = Q, B = W and A = W , B = Q, respectively, with the above
information we can determine

whether Vor(u) = Vor(v),
if Vor(u) = Vor(v), whether p(u) = v or p(v) = u,
if Vor(u) 6= Vor(v),

whether A is marked (i.e., c(A) has been marked) and whether {u, v} has minimum
rank in E(A,B),
whether A is not adjacent to any marked cluster (i.e., none of the adjacent nodes’
centers has been marked) and whether {u, v} has minimum rank in E(A,Vor(B)), and
whether there is a marked cluster C adjacent to A so that A participates in C(C),
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Vor(A) has minimum rank in Vor(∂B) ∩ Vor(∂C), and {u, v} has minimum rank in
E(B,Vor(A)). We note that since we have degree bounded by ∆, the number of
vertices in A is Õ(n1/3), and the probability that a cell is marked is n−1/3, the number
of cluster-of-clusters that A participates in is Õ(∆) w.h.p.

In other words, we can perform all necessary checks to decide whether {u, v} ∈ E′ or not.
The algorithm in Section 3 requires Õ(n2/3) random bits for the selection of centers

and marked clusters. For the emulation of the algorithm of Elkin and Neiman it suffices
that the random variables {ru} be Õ(n1/3)-wise independent, because the outcome of the
algorithm for a vertex v ∈ R depends only on the random variables of at most Õ(n1/3)
vertices (the vertices in Γ`(v)). Thus, overall Õ(n2/3) random bits (up to poly(∆/ε) factors)
are sufficient. J
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Abstract
We present the current fastest deterministic algorithm for k-SAT, improving the upper bound
(2− 2/k)n+o(n) due to Moser and Scheder in STOC 2011. The algorithm combines a branching
algorithm with the derandomized local search, whose analysis relies on a special sequence of
clauses called chain, and a generalization of covering code based on linear programming.

We also provide a more intelligent branching algorithm for 3-SAT to establish the upper
bound 1.32793n, improved from 1.3303n.
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1 Introduction

As the fundamental NP-complete problems, k-SAT and especially 3-SAT have been extensively
studied for decades. Numerous conceptual breakthroughs have been put forward via continued
progress of exponential-time algorithms, including randomized and deterministic ones.

The first provable algorithm solving k-SAT on n variables in less than 2n steps is presented
by Monien and Speckenmeyer, using the concept of autark assignment [10]. Later their
bound 1.619n for 3-SAT is improved to 1.579n and 1.505n respectively [15, 8]. One should
note that these algorithms follow a branching manner, i.e., recursively reducing the formula
size by branching and fixing variables deterministically, thus are called branching algorithms.

As for randomized algorithm, two influential ones are PPSZ and Schöning’s local search
[12, 16]. There has been a long line of research improving the bound (4/3)n of local search
for 3-SAT, including HSSW and combining with PPSZ [5, 6], until Hertli closes the gap
between unique and general cases for PPSZ [4] (by unique it means the formula has only one
satisfying assignment). In a word, considering randomized algorithm, PPSZ for k-SAT is
currently the fastest, although with one-sided error (see PPSZ in Table 1). Unfortunately,
general PPSZ seems tough to derandomize due to the excessive usage of random bits [13].

In contrast to the hardness in derandomizing PPSZ, local search can be derandomized
using the so-called covering code [2]. Subsequent deterministic algorithms focus on boosting
local search for 3-SAT to the bounds 1.473n and 1.465n [1, 14]. In 2011, Moser and Scheder
fully derandomize Schöning’s local search with another covering code for the choice of flipping
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Table 1 The rounded up base c in the upper bound cn of our deterministic algorithm for k-SAT
and the corresponding upper bound in previous results [9, 11, 2] and randomized algorithm [12, 4].

k Our Results Makino et al. Moser&Scheder Dantsin et al. PPSZ(randomized)

3 1.32793 1.3303 1.33334 1.5 1.30704
4 1.49857 - 1.50001 1.6 1.46895
5 1.59946 - 1.60001 1.66667 1.56943
6 1.66646 - 1.66667 1.71429 1.63788

variables within the unsatisfied clauses, which is immediately improved by derandomizing
HSSW for 3-SAT, leading to the current best upper bounds for k-SAT (see Table 1) [11, 9].
Since then, all random coins in Schöning’s local search are replaced by deterministic choices,
and the bounds remain untouched. How to break the barrier?

The difficulty arises in both directions. If attacking this without local search, one has
to derandomize PPSZ or propose radically new algorithm. Else if attacking this from
derandomizing local search-based algorithm, one must greatly reduce the searching space.

Our method is a combination of a branching algorithm and the derandomized local search.
As we mentioned in the second paragraph of this paper, branching algorithm is intrinsically
deterministic, therefore it remains to leverage the upper bounds for both of them by some
tradeoff. The tradeoff we found is the weighted size of set of chains, where a chain is a
sequence of clauses sharing variable with the clauses next to them only, such that a branching
algorithm either solves the formula within desired time or returns a large enough set of chains.
The algorithm is based on the study of autark assignment from [10] with further refinement,
whose output can be regarded as a generalization of maximal independent clauses set from
HSSW [5], which reduces the k-CNF to a (k − 1)-CNF. The searching space equipped with
chains is rather different from those in previous derandomizations [2, 9, 11]: It is a Cartesian
product of finite number of non-uniform spaces. Using linear programming, we prove that
such space can be perfectly covered, and searched by derandomized local search within aimed
time. Additionally, unlike the numerical upper bound in HSSW, we give the closed-form.

The rest of the paper is organized as follows. In §2 we give basic notations, definitions
related to chain and algorithmic framework. We show how to generalize covering code to
cover any space equipped with chains in §3. Then we use such code in derandomized local
search in §4. In §5, we prove upper bound for k-SAT, followed by an intelligent branching
algorithm for 3-SAT in §6 for improvement. Some upper bound results are highlighted in
Table 1, with main results formally stated in Theorem 14 of §5 and Theorem 21 of §6.

2 Preliminaries

2.1 Notations
We study formula in Conjunctive Normal Form (CNF). Let V = {vi|i ∈ [n]} be a set of n
boolean variables. For all i ∈ [n], a literal li is either vi or v̄i. A clause C is a disjunction
of literals and a CNF F is a conjunction of clauses. A k-clause is a clause that consists of
exactly k literals, and an ≤ k-clause consists of at most k literals. If every clause in F is
≤ k-clause, then F is a k-CNF.

An assignment is a function α : V 7→ {0, 1} that maps each v ∈ V to truth value {0, 1}.
A partial assignment is the function restricted on V ′ ⊆ V . We use F |α(V ′) to denote the
formula derived by fixing the values of variables in V ′ according to partial assignment α(V ′).
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A clause C is said to be satisfied by α if α assigns at least one literal in C to 1. F is satisfiable
iff there exists an α satisfying all clauses in F , and we call such α a satisfying assignment of
F . The k-SAT problem asks to find a satisfying assignment of a given k-CNF F or to prove
its non-existence if F is unsatisfiable.

LetX be a literal or a clause or a collection of either of them, we use V (X) to denote the set
of all the variables appear in X. We say that X and X ′ are independent if V (X)∩V (X ′) = ∅,
or X overlaps with X ′ if otherwise.

A word of length n is a vector from {0, 1}n. The Hamming space H ⊆ {0, 1}n is a set
of words. Given two words α1, α2 ∈ H, the Hamming distance d(α1, α2) = ‖α1 − α2‖1 is
the number of bits α1 and α2 disagree. The reason of using α for word as same as for
assignment is straightforward: Giving each variable an index i ∈ [n], a word of length n

naturally corresponds to an assignment, which will be used interchangeably.
Throughout the paper, n always denotes the number of variables in the formula and will

be omitted if the context is clear. We use O∗(f(n)) = poly(n) · f(n) to suppress polynomial
factor, and use O(f(n)) = 2o(n) · f(n) to suppress sub-exponential factor.

2.2 Preliminaries for Chain
In this subsection, we propose our central concepts, which are the basis of our analysis.

I Definition 1. Given integers k ≥ 3 and τ ≥ 1, a τ -chain S(k) is a sequence of τ k-clauses
〈C1, . . . , Cτ 〉 satisfies that ∀i, j ∈ [τ ], V (Ci) ∩ V (Cj) = ∅ iff |i− j| > 1.

If the context is clear, we will use S, τ -chain or simply chain for short.

I Definition 2. A set of chains I is called an instance if ∀S,S ′ ∈ I, V (S) ∩ V (S ′) = ∅ for
S 6= S ′.

In other words, each clause in chain only and must overlap with the clauses next to it (if
exist), and chains in an instance are mutually independent.

I Definition 3. Given chain S, define the solution space of S as A ⊆ {0, 1}|V (S)| such that
partial assignment α on V (S) satisfies all clauses in S iff α(V (S)) ∈ A. 1

We define vital algebraic property of chain, which will play a key role in the construction
of covering code.

I Definition 4. Let A be the solution space of chain S(k), define λ ∈ R and π : A 7→ [0, 1]
as the characteristic value and characteristic distribution of S(k) respectively, where λ and π
are feasible solution to the following linear programming LPA:∑

a∈A
π(a) = 1

λ =
∑
a∈A

(
π(a) · ( 1

k − 1)d(a,a∗)
)

∀a∗ ∈ A

π(a) ≥ 0 ∀a ∈ A

I Remark. The variables in LPA are λ and π(a) (∀a ∈ A). There are |A|+ 1 variables and
|A| + 1 equality constraints in LPA. One can work out the determinant of the coefficient
matrix to see it has full rank, so the solution is unique if feasible. Specifically, λ ∈ (0, 1).

1 This essentially defines the set of all satisfying assignments for a chain. As a simple example in 3-CNF,
1-chain 〈x1 ∨ x2 ∨ x3〉 has solution space A = {0, 1}3\03.
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Algorithm 1: Algorithmic Framework.
Input: k-CNF F

Output: a satisfying assignment or Unsatisfiable
1: BR(F ) solves F or returns an instance I
2: if F is not solved then
3: DLS(F, I)
4: end if

2.3 Algorithmic Framework
Our algorithm (Algorithm 1) is a combination of a branching algorithm called BR, and a
derandomized local search called DLS. BR either solves F or provides a large enough instance
to DLS for further use, which essentially reduces the Hamming space exponentially.

3 Generalization of Covering Code

First of all, we introduce the covering code, then show how to generalize it for the purpose
of our derandomized local search.

3.1 Preliminaries for Covering Code
The Hamming ball of radius r and center α Bα(r) = {α′|d(α, α′) ≤ r} is the set of all words
with Hamming distance at most r from α. A covering code of radius r for Hamming space
H is a set of words C(r) ⊆ H satisfies ∀α′ ∈ H, ∃α ∈ C(r), such that d(α, α′) ≤ r, i.e.,
H ⊆

⋃
α∈C(r) Bα(r), and we say C(r) covers H.

Let ` be a non-negative integer and set [`]∗ = [`] ∪ {0}, a set of covering codes {C(r)|r ∈
[`]∗} is an `-covering code for H if ∀r ∈ [`]∗, C(r) ⊆ H and H ⊆

⋃
r∈[`]∗

⋃
α∈C(r) Bα(r), i.e.,

{C(r)|r ∈ [`]∗} covers H.
The following lemma gives the construction time and size of covering codes for the uniform

Hamming spaces {0, 1}n.

I Lemma 5 ([2]). Given ρ ∈ (0, 1
2 ), there exists a covering code C(ρn) for Hamming space

{0, 1}n, such that |C(ρn)| ≤ O∗(2(1−h(ρ))n) and C(ρn) can be deterministically constructed
in time O∗(2(1−h(ρ))n), where h(ρ) = −ρ log ρ − (1 − ρ) log (1− ρ) is the binary entropy
function.

3.2 Generalized Covering Code
In this subsection we introduce our generalized covering code, including its size and construc-
tion time.

First of all we take a detour to define the Cartesian product of σ sets of words as
X1×· · ·×Xσ =

∏
i∈[σ] Xi = {]i∈[σ]αi|∀i ∈ [σ], αi ∈ Xi}, where ]i∈[σ]αi is the concatenation

from α1 to ασ. Then we claim that the Cartesian product of covering codes is also a good
covering code for the Cartesian product of the Hamming spaces they covered separately. The
proof of this general result can be found in the full version of the paper.

I Lemma 6. Given integer χ > 1, for each i ∈ [χ], let Hi be a Hamming space and
Ci(ri) be a covering code for Hi. If Ci(ri) can be deterministically constructed in time
O∗(fi(n)) and |Ci(ri)| ≤ O∗(gi(n)) for all i ∈ [χ], then there exists covering code C of radius∑
i∈[χ] ri for Hamming space

∏
i∈[χ] Hi such that C can be deterministically constructed in

time O∗(
∑
i∈[χ] fi(n) +

∏
i∈[χ] gi(n)) and |C| ≤ O∗(

∏
i∈[χ] gi(n)).
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Algorithm 2: Derandomized Local Search: DLS.
Input: k-CNF F , instance I
Output: a satisfying assignment or Unsatisfiable
1: construct covering code C for Hamming space H(F, I) (Definition 9)
2: for every word α ∈ C do
3: if searchball-fast(F, α, r) find a satisfying assignment α∗ for F then
4: return α∗

5: end if
6: end for
7: return Unsatisfiable

Our result on generalized covering code is given below. We give its proof sketch here,
and the detailed proof can be found in full version of the paper.

I Lemma 7. Let A be the solution space of chain S(k) whose characteristic value is λ, for any
ν = Θ(n), there exists an `-covering code {C(r)|r ∈ [`]∗} for Hamming space H = Aν where
` = b−ν logk−1 λ+2c, such that |C(r)| ≤ O∗(λ−ν/(k−1)r) and C(r) can be deterministically
constructed in time O∗(λ−ν/(k − 1)r), for all r ∈ [`]∗.

Proof Sketch. Firstly, we show the existence of such `-covering code by a probabilistic
method. For each r ∈ [l]∗, we build C(r) from ∅ by repeating the following for O∗(λ−ν/(k−1)r)
times independently: Choose ν words independently from A according to characteristic
distribution π (Definition 4) and concatenate them to get a word α ∈ Aν , then add α to
C(r) with replacement. Clearly, |C(r)| ≤ O∗(λ−ν/(k − 1)r). By deliberately choosing the
repeating rounds, we can prove that the probability of the event that any code in Aν is not
covered by C(r) is extremely small, such that a union bound for all codes is strictly less than
1, therefore proved the existence.

Secondly, we construct the code deterministically. W.l.o.g., let d ≥ 2 be a constant divisor
of ν. By partitioning H into d blocks and applying the approximation algorithm for the set
covering problem in [2], we obtain a good covering code for each block within affordable time.
Then we concatenate all covering code by taking their Cartesian product, and the size and
construction time follows from Lemma 6. J

4 Derandomized Local Search

In this section, we present our derandomized local search (DLS), see Algorithm 2.
The algorithm first constructs the generalized covering code and stores it (Line 1), then

calls searchball-fast (Line 3) to search inside each Hamming ball, where searchball-fast refers
to the same algorithm proposed in [11], whose running time is stated in the following lemma.

I Lemma 8 ([11]). Given k-CNF F , if there exists a satisfying assignment α∗ for F in
Bα(r), then α∗ can be found by searchball-fast in time (k − 1)r+o(r).

Our generalized covering code is able to cover the following Hamming space.

I Definition 9. Given k-CNF F and instance I, the Hamming space for F and I is defined
as H(F, I) = H0 ×

∏
iHi, where:

H0 = {0, 1}n′ where n′ = n− |V (I)|.
Hi = Ai

νi for all i, where Ai is a solution space and νi = Θ(n) is the number of chains in
I with solution space Ai. 2

2 As we shall see in §5 and §6, there are only finite number of different solution spaces and finite elements
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Apparently all satisfying assignments of F lie in H(F, I), because
∏
iHi contains all

assignments on V (I) which satisfy all clauses in I and H0 contains all possible assignments
of variables outside I. Therefore to solve F , it is sufficient to search the entire H(F, I).

I Definition 10. Given ρ ∈ (0, 1
2 ) and Hamming space H(F, I) as above, for L ∈ Z∗, define

covering code C(L) for H(F, I) as a set of covering codes {C(r)|(r − ρn′) ∈ [L]∗} satisfies
that C(r) ⊆ H(F, I) for all r and H(F, I) ⊆

⋃
(r−ρn′)∈[L]∗

⋃
α∈C(r) Bα(r), i.e., C(L) covers

H(F, I).

I Lemma 11. Given Hamming space H(F, I) and Ai, νi as above, let L =
∑
i `i where

`i = b−νi log λi + 2c and λi is the characteristic value of chain with solution space Ai.
Given ρ ∈ (0, 1

2 ), covering code C(L) = {C(r)|(r − ρn′) ∈ [L]∗} for H(F, I) can be determ-
inistically constructed in time O∗(2(1−h(ρ))n′∏

i λi
−νi) and |C(r)| ≤ O∗(2(1−h(ρ))n′/(k −

1)r−ρn′
∏
i λi
−νi) for all (r − ρn′) ∈ [L]∗.

Proof. To construct C(L) for H(F, I), we construct covering code C0(ρn′) for H0 = {0, 1}n′

and `i-covering code for Hi = Ai
νi for all i, then take a Cartesian product of all the codes.

By Lemma 5, the time taken for constructing C0(ρn′) is O∗(2(1−h(ρ))n′), and |C0(ρn′)| ≤
O∗(2(1−h(ρ))n′). By Lemma 7, for each i, the time taken for constructing C(ri) for each
ri ∈ [`i]∗ is O∗(λi−νi/(k− 1)ri) and |C(ri)| ≤ O∗(λi−νi/(k− 1)ri). So by Lemma 6, we have
that |C(r)| can be upper bounded by:

2(1−h(ρ))n′ ·
∑∑

i
ri=r−ρn′

(∏
i

O∗(λi−νi/(k − 1)ri)
)

= O∗(2(1−h(ρ))n′/(k−1)r−ρn
′∏
i

λi
−νi).

The equality holds because L is a linear combination of νi with constant coefficients and
νi = Θ(n), thus there are O(1) terms in the product since

∑
i νi ≤ n. Meanwhile, there are

O∗(1) ways to partition (r − ρn′) into constant number of integers, thus the outer sum has
O∗(1) terms. Together we get an O∗(1) factor in RHS.

The construction time includes constructing each covering code for Hi (i ≥ 0) and
concatenating each of them by Lemma 6, which is dominated by the concatenation time. As
a result, the time taken to construct C(r) for all (r − ρn′) ∈ [L]∗ is:∑

(r−ρn′)∈[L]∗
O∗(2(1−h(ρ))n′/(k − 1)r−ρn

′∏
i

λi
−νi) = O∗(2(1−h(ρ))n′

∏
i

λi
−νi),

because it is the sum of a geometric series. Therefore conclude the proof. J

Using our generalized covering code and applying Lemma 8 for searchball-fast (Line 3 in
Algorithm 2), we can upper bound the running time of DLS.

I Lemma 12. Given k-CNF F and instance I, DLS runs in time TDLS = O(( 2(k−1)
k )n′ ·∏

i λi
−νi), where n′ = n− |V (I)|, λi is the characteristic value of chain Si and νi is number

of chains in I with the same solution space to Si.

Proof. The running time includes the construction time for C(L) and the total searching
time in all Hamming balls. It is easy to show that the total time is dominated by the

in each solution space. Thus for those νi = o(n), we can enumerate all possible combinations of
assignments on them and just get a sub-exponential slowdown, i,e., an O(1) factor in the upper bound.
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Algorithm 3: Branching Algorithm BR for k-SAT.
Input: k-CNF F

Output: a satisfying assignment or Unsatisfiable or an instance I
1: staring from I ← ∅, for 1-chain S : V (I) ∩ V (S) = ∅, do I ← I ∪ S
2: if |I| < νn then
3: for each assignment α ∈ {{0, 1}k\0k} of I do
4: solve F |α by deterministic (k − 1)-SAT algorithm
5: return the satisfying assignment if satisfiable
6: end for
7: return Unsatisfiable
8: else
9: return I

10: end if

searching time using Lemma 11, thus we have the following equation after multiplying a
sub-exponential factor O(1) for the other o(n) chains not in I:

TDLS = O(1) ·
∑

(r−ρn′)∈[L]∗

(
|C(r)| · (k − 1)r+o(r)

)

= O(1) ·
∑

(r−ρn′)∈[L]∗

(
O∗(2(1−h(ρ))n′/(k − 1)r−ρn

′∏
i

λi
−νi) · (k − 1)r+o(r)

)

= O(2(1−h(ρ)+ρ log(k−1))n′ ·
∏
i

λi
−νi) = O((2(k − 1)

k
)n
′
·
∏
i

λi
−νi).

The first equality follows from Lemma 8, the second inequality is from Lemma 11, and the
last equality follows by setting ρ = 1

k . Therefore we proved this lemma. J

5 Upper Bound for k-SAT

In this section, we give our main result on upper bound for k-SAT.
A simple branching algorithm BR for general k-SAT is given in Algorithm 3: Greedily

construct a maximal instance I consisting of independent 1-chains and branch on all satisfying
assignments of it if |I| is small. 3 After fixing all variables in V (I), the remaining formula is
a (k − 1)-CNF due to the maximality of I. Therefore the running time of BR is at most:

TBR = O((2k − 1)|I| · ck−1
n−k|I|), (1)

where O(ck−1
n) is the worst-case upper bound of a deterministic (k − 1)-SAT algorithm.

On the other hand, since there are only 1-chains in I, by Lemma 12 we have:

TDLS = O((2(k − 1)
k

)n−k|I| · λ−|I|). (2)

It remains to calculate the characteristic value λ of 1-chain S(k). We prove the following
lemma for the unique solution of linear programming LPA in Definition 4.

3 W.l.o.g., one can negate all negative literals in I to transform the solution space of 1-chain to {0, 1}k\0k.
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I Lemma 13. For 1-chain S(k), let A be its solution space, then the characteristic distribution
π satisfies

π(a) = (k − 1)k

(2k − 2)k − (k − 2)k · (1− ( −1
k − 1)d(a,0k)) for all a ∈ A,

and the characteristic value λ = kk

(2k−2)k−(k−2)k .

Proof. We prove that this is a feasible solution to LPA. Constraint π(a) ≥ 0 (∀a ∈ A) is
easy to verify. To show constraint

∑
a∈A π(a) = 1 holds, let y = d(a, 0k) and note there are(

k
y

)
different a ∈ A with d(a, 0k) = y, then multiply (2k−2)k−(k−2)k

(k−1)k on both sides:

(2k − 2)k − (k − 2)k

(k − 1)k ·
∑
a∈A

π(a) =
∑

1≤y≤k

(
(1− ( −1

k − 1)y) ·
(
k

y

))

=
∑

0≤y≤k

(
k

y

)
−
∑

0≤y≤k

(
k

y

)
( −1
k − 1)y = 2k − (k − 2

k − 1)k.

Thus
∑
a∈A π(a) = 1 holds.

To prove λ =
∑
a∈A

(
π(a) · ( 1

k−1 )d(a,a∗)
)
, similar to the previous case, we multiply

(2k−2)k−(k−2)k

(k−1)k on both sides. Note that adding the term at a = 0k does not change the sum,
then for all a∗ ∈ A, we have:

RHS =
∑

a∈{0,1}k

(1− ( −1
k − 1)d(a,0k)) · ( 1

k − 1)d(a,a∗)

=
∑

a∈{0,1}k

( 1
k − 1)d(a,a∗) −

∑
a∈{0,1}k

(−1)d(a,0k)( 1
k − 1)d(a,0k)+d(a,a∗).

The first term is equal to ( k
k−1 )k = LHS. To prove the second term is 0, note that ∃i ∈ [k]

such that some bit a∗i = 1. Partition {0, 1}k into two sets S0 = {a ∈ {0, 1}k|ai = 0} and S1 =
{a ∈ {0, 1}k|ai = 1}. We have the following bijection: For each a ∈ S0, negate the i-th bit to
get a′ ∈ S1. Then d(a, 0k) + d(a, a∗) = d(a′, 0k) + d(a′, a∗) and (−1)d(a,0k) = −(−1)d(a′,0k),
so the sum is 0. Therefore we verified the constraint and proved the lemma. J

Observe from (1) and (2) that TBR is an increasing function of |I|, while TDLS is a
decreasing function of it, so TBR = TDLS gives the worst-case upper bound for k-SAT. We
solve this equation by plugging in λ from Lemma 13 to get νn as the worst-case |I|, and
obtain the following theorem as our main result on k-SAT.

I Theorem 14. Given k ≥ 3, if there exists a deterministic algorithm for (k − 1)-SAT that
runs in time O(ck−1

n), then there exists a deterministic algorithm for k-SAT that runs in
time O(ckn), where ck = (2k − 1)ν · ck−1

1−kν and ν = log(2k−2)−log k−log ck−1

log(2k−1)−log(1−( k−2
2k−2 )k)−k log ck−1

.

Note that the upper bound for 3-SAT implied by this theorem is O(1.33026n), but we
can do better by applying Theorem 21 (presented later) for c3 = 3log 4

3/ log 64
21 < 1.32793 to

prove all upper bounds for k-SAT (k ≥ 4) in Table 1 of §1.

6 Upper Bound for 3-SAT

We provide a better upper bound for 3-SAT by a more intelligent branching algorithm.
First of all, we introduce some additional notations in 3-CNF simplification, then we

present our branching algorithm for 3-SAT from high-level to all its components. Lastly we
show how to combine it with derandomized local search to achieve a tighter upper bound.
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Algorithm 4: Branching Algorithm BR for 3-SAT.
Input: 3-CNF F , clause sequence C
Output: a satisfying assignment or Unsatisfiable or a clause sequence C
1: simplify F by procedure P
2: if ⊥ ∈ F then
3: return Unsatisfiable
4: else if condition Φ holds then
5: stop the recursion, transform C to an instance I and return I
6: else if F is 2-CNF then
7: deterministically solve F in polynomial time
8: if F is satisfiable then
9: stop the recursion and return the satisfying assignment

10: else
11: return Unsatisfiable
12: end if
13: else
14: choose a clause C according to rule Υ
15: for every satisfying assignment αC of C, call BR(F |αC , C ∪ CF )
16: return Unsatisfiable
17: end if

6.1 Additional Notations
For every clause C ∈ F , if partial assignment α satisfies C, then C is removed in F |α.
Otherwise, the literals in C assigned to 0 under α are removed from C. If all the literals in C
are removed, which means C is unsatisfied under α, we replace C by ⊥ in F |α. Let G = F |α,
for every C ∈ F , we use CF to denote the clause C in F and CG ∈ G the new clause derived
from C by assigning variables according to α. We use F to denote the original input 3-CNF
without instantiating any variable, and CF is called the original form of clause C.

Let UP(F ) be the CNF derived by running Unit Propagation on F until there is no
1-clause in F . Clearly F is satisfiable iff UP(F ) is satisfiable, and UP runs in polynomial
time [3].

We will also use the set definition of CNF, i.e., for a CNF F =
∧
i∈[m] Ci, it is equivalent

to write F = {Ci|i ∈ [m]}. Define T (F ),B(F ),U(F ) as the set of all the 3-clauses, 2-clauses
and 1-clauses in F respectively. We have that any 3-CNF F = T (F ) ∪ B(F ) ∪ U(F ).

6.2 Branching Algorithm for 3-SAT
In this subsection, we give our branching algorithm for 3-SAT (Algorithm 4). The algorithm
is recursive and follows a depth-first search manner:

Stop the recursion when certain conditions are met (Line 4 and Line 8).
Backtrack when the current branch is unsatisfiable (Line 3, Line 11 and Line 16).
Branch on all possible satisfying assignments on a clause and recursively call itself
(Line 15). Return Unsatisfiable if all branches return Unsatisfiable.
Clause sequence C stores all the branching clauses from root to the current node.

It is easy to show this algorithm is correct as long as procedure P maintains satisfiability.
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In what follows, we introduce (i) the procedure P for simplification (Line 1); (ii) the
clause choosing rule Υ (Line 14); (iii) the transformation from clause sequence to instance
(Line 5); (iv) the termination condition Φ (Line 4). All of them are devoted to analyzing the
running time of BR as a function of instance.

6.2.1 Simplification Procedure
The simplification relies on the following two lemmas.

I Lemma 15 ([10]). Given 3-CNF F and partial assignment α, define T B(F, α) = {C|C ∈
B(UP(F |α), CF ∈ T (F )}. If ⊥ /∈ UP(F |α) and T B(F, α) = ∅, then F is satisfiable iff
UP(F |α) is satisfiable and α is called an autark.

We refer our readers to Chapter 11 in [7] for a simple proof (also see full version of the paper).
We also provide the following stronger lemma to further reduce the formula size.

I Lemma 16. Given 3-CNF F and (l1 ∨ l2) ∈ B(F ), if ∃C ∈ T B(F, l1 = 1) such that l2 ∈ C,
then F is satisfiable iff F\CF ∪ C is satisfiable.

Proof. Clearly F is satisfiable if F\CF ∪C is. Suppose C = l2 ∨ l3 and let α be a satisfying
assignment of F . If α(l1) = 1, then UP(F |l1 = 1) is satisfiable, thus F\CF ∪ C is also
satisfiable since C ∈ UP(F |l1 = 1). Else if α(l1) = 0, then α(l2) = 1 due to l1 ∨ l2, so α
satisfies C and the conclusion follows. J

As a result, 3-CNF F can be simplified by the following polynomial-time procedure P:
for every (l1 ∨ l2) ∈ B(F ), if l1 = 1 or l2 = 1 is an autark, then apply Lemma 15 to simplify
F ; else apply Lemma 16 to simplify F if possible.

I Lemma 17. After running P on 3-CNF F , for any (l1 ∨ l2) ∈ B(F ) and for any 2-clause
C ∈ T B(F, l1 = 1), it must be l2 /∈ C. This also holds when switching l1 and l2.

Proof. If T B(F, l1 = 1) = ∅, then l1 = 1 is an autark and F can be simplified by Lemma 15.
If C ∈ T B(F, l1 = 1) and l2 ∈ C, then F can be simplified by Lemma 16. J

6.2.2 Clause Choosing Rule
Now we present our clause choosing rule Υ. By Lemma 15 we can always begin with
branching on a 2-clause with a cost of factor 2 in the upper bound: Choose an arbitrary
literal in any 3-clause and branch on its two assignments {0, 1}. This will result in a new
2-clause otherwise it is an autark and we fix it and continue to choose another literal.

Now let us show the overlapping cases between the current branching clause to the next
branching clause. Let C0 be the branching clause in the father node where CF0 = l0∨l1∨l2, and
let F0 be the formula in the father node. The rule Υ works as follows: if αC0(l1) = 1, choose
arbitrary C1 ∈ T B(F0, l1 = 1); else if αC0(l2) = 1, choose arbitrary C1 ∈ T B(F0, l2 = 1).

We only discuss the case αC0(l1) = 1 due to symmetry. We enumerate all the possible
forms of CF1 by discussing what literal is eliminated followed by whether l2 or l̄2 is contained:
1. CF1 \C1 = l3. C1 becomes a 2-clause due to elimination of l3. There are three cases: (i)

C1 = l2 ∨ l4, (ii) C1 = l̄2 ∨ l4 or (iii) C1 = l4 ∨ l5.
2. CF1 \C1 = l̄1. C1 becomes a 2-clause due to elimination of l̄1. There are three cases: (i)

C1 = l2 ∨ l3, (ii) C1 = l̄2 ∨ l3 or (iii) C1 = l3 ∨ l4.
3. CF1 \C1 = l2. This means l1 = 1⇒ l2 = 0, and αC0(l1l2) = 11 can be excluded.
4. CF1 \C1 = l̄2. This means l1 = 1⇒ l2 = 1, and αC0(l1l2) = 10 can be excluded.
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Both Case 1.(i) and Case 2.(i) are impossible due to Lemma 17. To sum up, we immediately
have the following by merging similar cases with branch number bounded from above:

Case 1.(iii): it takes at most 3 branches in the father node to get l3 ∨ l4 ∨ l5.
Case 1.(ii), Case 2.(iii) and Case 4: it takes at most 3 branches in the father node to get
l̄1 ∨ l3 ∨ l4 or l̄2 ∨ l3 ∨ l4.
Case 3: it takes at most 2 branches in the father node to get l2 ∨ l3 ∨ l4.
Case 2.(ii): it takes at most 3 branches in the father node to get l̄1 ∨ l̄2 ∨ l3.

To fit rule Υ, there must be at least one literal assigned to 1 in the branching clause.
Except Case 2.(ii), we get a 2-clause C1, and rule Υ still applies.

Now consider the case CF1 = l̄1 ∨ l̄2 ∨ l3. If α(l1l2) = 11, we have CF1 = l3, otherwise we
have CF1 = 1 ∨ l3. In other words, the assignment satisfying C0 ∧ C1 should be α(l1l2l3) ∈
{010, 100, 011, 101, 111}. Note that α(l3) = 0 in the first two assignments, which does not fit
rule Υ. In this case, we do the following: Choose an arbitrary literal in any 3-clause and
branch on its two assignments {0, 1}. Continue this process we will eventually get a new
2-clause (Lemma 15). Now the first two assignments α(l1l2l3) ∈ {010, 100} has 4 branches
because of the new branched literal, and we have that all 7 branches fit rule Υ because either
l3 = 1 or there is a new 2-clause. Our key observation is the following: These 7 branches
correspond to all satisfying assignments of C0 ∧C1, which can be amortized to think that C1
has 3 branches and C0 has 7/3 branches. As a conclusion, we modify the last case to be:

Case 2.(ii): it takes at most 7/3 branches in the father node to get l̄1 ∨ l̄2 ∨ l3.

6.2.3 Transformation from Clause Sequence to Instance
We show how to transform a clause sequence C to an instance, then take a symbolic detour
to better formalize the cost of generating chains, i.e., the running time of BR.

Similar to above, let C1 be the clause chosen by rule Υ and let C0 be the branching
clause in the father node, moreover let C be the branching clause in the grandfather node.
In other words, C1, C0, C are the last three clauses in C. C1 used to be a 3-clause in the
father node since C1 ∈ T (F ), thus C1 is independent with C because all literals in C are
assigned to some values in F , so C1 can only overlap with C0. Therefore, clauses in C can
only (but not necessarily) overlap with the clauses next to them.

By the case discussion in §6.2.2, there are only 4 overlapping cases between C0 and C1,
which we call independent for 〈l0 ∨ l1 ∨ l2, l3 ∨ l4 ∨ l5〉, negative for 〈l0 ∨ l1 ∨ l2, l̄1 ∨ l3 ∨ l4〉
or 〈l0 ∨ l1 ∨ l2, l̄2 ∨ l3 ∨ l4〉, positive for 〈l0 ∨ l1 ∨ l2, l2 ∨ l3 ∨ l4〉 and two-negative for
〈l0 ∨ l1 ∨ l2, l̄1 ∨ l̄2 ∨ l3〉. There is a natural mapping from clause sequence to a string.

I Definition 18. Let C be a clause sequence, define function ζ : C 7→ Γ|C|, where Γ =
{*, n, p, t}, satisfies that the i-th bit of ζ(C) is * if Ci and Ci+1 are independent, or n if
negative, or p if positive, or t if two-negative for all i ∈ [|C| − 1], and the |C|-th bit of ζ(C) is
*. A τ -chain S is also a clause sequence of length τ , so ζ maps S to Γτ . Two chains S1 and
S2 are isomorphic if ζ(S1) = ζ(S2).

Then the transformation from C to I naturally follows: Partition ζ(C) by *, then every
substring corresponds to a chain, just add this chain to I. Now we can formalize the cost.

I Lemma 19. Given 3-CNF F , let C be the clause sequence in time T of running BR(F , ∅),
it must be T ≤ O∗(2κ1 · 3κ2 · (7/3)κ3), where κ1 is the number of p in ζ(C), κ2 is the number
of * and n in ζ(C), and κ3 is the number of t in ζ(C).

Proof. By Definition 18 and case discussion in §6.2.2, the conclusion follows. J
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6.2.4 Termination Condition
We show how the cost of generating chains implies the termination condition Φ. We map
every chain to an integer as the type of the chain such that isomorphic chains have the same
type. Formally, let I(C) be the instance transformed from C, and let Σ = {ζ(S)|S ∈ I(C)}
be the set of distinct strings with no repetition. Define bijective function g : Σ 7→ [θ] that
maps each string ζ(S) in Σ to a distinct integer as the type of chain S, where θ = |Σ| is the
number of types of chain in C and g can be arbitrary fixed bijection. Define branch number
bi of type-i chain S as bi = 2κ1 · 3κ2 · (7/3)κ3 , where κ1 is the number of p in ζ(S), κ2 is the
number of * and n in ζ(S), and κ3 is the number of t in ζ(S). Also define the chain vector
~ν ∈ Zθ for I(C) satisfies νi = |{S ∈ I(C)|(g ◦ ζ)(S) = i}| for all i ∈ [θ], i.e., νi is the number
of type-i chains in I(C). We can rewrite Lemma 19 as the following.

I Corollary 20. Given 3-CNF F , let I be the instance in time T of running BR(F , ∅), it
must be T ≤ TBR = O∗(

∏
i∈[θ] b

νi
i ), where bi is the branch number of type-i chain and ~ν is

the chain vector for I.

To achieve worst-case upper bound O(cn) for solving 3-SAT, we must have TBR ≤
O(cn), which is

∏θ
i=1 b

νi
i ≤ cn. This immediately gives us the termination condition Φ:

(
∑
i∈[θ] νi · log bi)/ log c > n.
Therefore, we can hardwire such condition into the algorithm to achieve the desired upper

bound, as calculated in next subsection.

6.3 Combination of Two Algorithms
By combining BR and DLS as in Algorithm 1, we have that the worst-case upper bound
O(cn) is attained when TBR = TDLS, which is:

cn =
∏
i∈[θ]

bνi
i = (4

3)n
′
·
∏
i∈[θ]

λi
−νi , (3)

followed by Corollary 20 and Lemma 12. Let ηi be the number of variables in a type-i chain
for all i ∈ [θ], we have that n′ = n − |V (I)| = n −

∑
i∈[θ] ηiνi. Taking the logarithm and

divided by n, (3) becomes:

log c =
∑
i∈[θ]

νi
n

log bi = log 4
3 −

∑
i∈[θ]

νi
n

(ηi log 4
3 + log λi). (4)

The second equation is a linear constraint over 1
n · ~ν, which gives that log c is maximized

when νi = 0 for all i 6= arg maxi∈[θ]{log bi/(log bi + ηi log 4
3 + log λi)}.

Based on calculation of LPA (see full version of the paper), we show that chain S with
ζ(S) = * (say, type-1 chain) corresponds to the maximum value above, namely:

arg max
i∈[θ]
{log bi/(log bi + ηi log 4

3 + log λi)} = 1.

In other words, all chains in I are 1-chain. Substitute λ1 = 3
7 , b1 = 3, η1 = 3 and νi = 0 for

all i ∈ [2, θ] into (4), we obtain our main result on 3-SAT as follow.

I Theorem 21. There exists a deterministic algorithm for 3-SAT that runs in time
O(3n log 4

3/ log 64
21 ).

This immediately implies the upper bound O(1.32793n) for 3-SAT in Table 1 of §1.
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Abstract
We study algorithms and combinatorial complexity bounds for stable-matching Voronoi diagrams,
where a set, S, of n point sites in the plane determines a stable matching between the points in
R2 and the sites in S such that (i) the points prefer sites closer to them and sites prefer points
closer to them, and (ii) each site has a quota indicating the area of the set of points that can be
matched to it. Thus, a stable-matching Voronoi diagram is a solution to the classic post office
problem with the added (realistic) constraint that each post office has a limit on the size of its
jurisdiction. Previous work provided existence and uniqueness proofs, but did not analyze its
combinatorial or algorithmic complexity. We show that a stable-matching Voronoi diagram of n
sites has O(n2+ε) faces and edges, for any ε > 0, and show that this bound is almost tight by
giving a family of diagrams with Θ(n2) faces and edges. We also provide a discrete algorithm for
constructing it in O(n3 + n2f(n)) time, where f(n) is the runtime of a geometric primitive that
can be performed in the real-RAM model or can be approximated numerically. This is necessary,
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1 Introduction

The Voronoi diagram is a well-known geometric structure with a broad spectrum of applic-
ations in computational geometry and other areas of Computer Science, e.g., see [3, 5, 8,
18, 20, 22, 24, 7]. The Voronoi diagram partitions the plane into regions. Given a finite
set S of points, called sites, each point in the plane is assigned to the region of its closest
site in S. Although the Voronoi diagram has been generalized in many ways, its standard
definition specifies that each Voronoi cell or region of a site s is the set V (s) defined as{
p ∈ R2 | d(p, s) ≤ d(p, s′) ∀s′ 6= s ∈ S

}
, where d(·, ·) denotes the distance between two

points. The properties of standard Voronoi diagrams have been thoroughly studied (e.g.,
see [3, 5]). For example, it is well-known that in a standard Voronoi diagram for point sites
in the plane every Voronoi cell is a connected, convex polygon whose boundaries lie along
perpendicular bisectors of pairs of sites.

On a seemingly unrelated topic, the theory of stable matchings studies how to match
entities in two sets, each of which has its own preferences about the elements of the other
set, in a “stable” manner. It is used, for instance, to match hospitals and medical students
starting their residencies [21], as well as in on-line advertisement auctions (e.g., see [2]). It
was originally formulated by Gale and Shapley [12] in the context of establishing marriages
between n men and n women, where each man ranks the women by preference, and the
women rank the men. A matching between the men and women is stable if there is no
blocking pair, that is, a man and woman who prefer each other over their assigned partners
according to the matching. Gale and Shapley [12] show that a stable solution always exists
for any set of preferences, and they provide an algorithm that runs in O(n2) time.

When generalized to the one-to-many case, the stable matching problem is also known as
the college admission problem [23] and can be formulated as a matching of n students to k
colleges, where each student has a preference ranking of the colleges and each college has a
preference ranking of the students and a quota indicating how many students it can accept.

In this paper, we are interested in studying the algorithmic and combinatorial complexity
of the diagrams that we call stable-matching Voronoi diagrams, which combine the notions
of Voronoi diagrams and the one-to-many stable matching problem. These diagrams were
introduced by Hoffman et al. [15], who provided a mathematical definition and existence and
uniqueness proofs for such structures for potentially countably infinite sets of sites, but they
did not study their algorithmic or combinatorial complexities. A stable-matching Voronoi
diagram is defined with respect to a set of sites in R2, which in this paper we restrict to finite
sets of n distinct points, each of which has an assigned numerical quota (which is also known
as its “appetite”) indicating the area of the region of points assigned to it. A preference
relationship is defined in terms of distance, so that each point p in R2 prefers sites ordered
by distance, from closest to farthest, and each site likewise prefers points ordered by distance.
The stable-matching Voronoi diagram, then, is a partition of the plane into regions, such that
(i) each site is associated with a region of area equal to its appetite, and (ii) the assignment
of points to sites is stable in the sense that there is no site–point pair whose members prefer
each other over their assigned matches. See Figure 1.

Formally, we can define a stable-matching Voronoi diagram for a set of sites as follows.

I Definition 1. Given a set S of n points (called sites) in R2 and a numerical appetite
As > 0 for each s ∈ S, the stable-matching Voronoi diagram of S is a division of R2 into
n+ 1 regions, such that for each site s ∈ S there is a corresponding region Cs of area As,
and there is an extra region, C∅, for the the remaining “unmatched” points, and such that
there are no blocking pairs. A blocking pair is a site s ∈ S and a point p ∈ R2 such that (i)
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Figure 1 Stable-matching Voronoi diagrams for a set of 25 sites, where each site in the left
diagram has an appetite of 1 and each site in the right diagram has an appetite of 2. Each color
corresponds to an individual cell, which is not necessarily convex or even connected.

Figure 2 A stable-matching Voronoi diagram (left) and a standard Voronoi diagram (right) for
the same set of 25 sites. Each color represents a region.

p 6∈ Cs, (ii) d(p, s) < max {d(p′, s) | p′ ∈ Cs}, and (iii) p ∈ C∅ or d(p, s) < d(p, s′), where s′
is the site such that p ∈ Cs′ .

Figure 2 shows a side-by-side comparison of the standard and stable-matching Voronoi
diagrams. Note that the standard Voronoi diagram is stable in the same sense as the
stable-matching Voronoi diagram. This is because, by definition, every point is matched to
its first choice among the sites, so there can be no blocking pairs. Thus, standard Voronoi
diagram can be seen as a stable-matching Voronoi diagram with infinite appetites, in the
following sense: for any point p in R2, for sufficiently large appetites for all the sites, p will
belong to the region of the same site in the standard and stable-matching Voronoi diagrams.

In this paper, we focus on the case where all the appetites are equal, i.e., As = A, for
some A > 0, but our results are easily adapted to the general case of arbitrary positive
appetites.

A stable-matching Voronoi diagram solves the post office problem [19], of assigning points
to their closest post office, under the (realistic) real-world assumption that each post office has
an upper bound on the size of its jurisdiction. Such notions may also be useful for political
districting, where sites could, for instance, represent polling stations, and appetites could
represent their capacities. In this context, the distance preferences for a stable-matching
Voronoi diagram might determine a type of “compactness” that avoids the strange regions
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that are the subjects of recent court cases involving gerrymandering. Nevertheless, depending
on the appetites and sites, the regions for sites in a stable-matching Voronoi diagram are
not necessarily convex or even connected (e.g., see Figure 1). Thus, we are interested in this
paper in characterizing the worst-case combinatorial complexity of such diagrams as well as
finding an efficient algorithm for constructing them.

Previous Related Work. There are large volumes of work on the topics of Voronoi diagrams
and stable matchings; hence, we refer the interested reader to surveys or books on the
subjects (e.g., see [3, 5, 14, 16]).

A generalization of Voronoi diagram of particular relevance are power diagrams, where
a weight associated to each site indicates how strongly the site draws the points in its
neighborhood. Aurenhammer et al. [4] showed that, given a quota for each site, it is always
possible to find weights for the sites such that, in the power diagram, the region of each site
will have area equal to its prescribed quota. Thus, both stable-matching Voronoi diagrams
and power diagrams are Voronoi-like diagrams with predetermined region sizes. Power
diagrams minimize the total square distance between the sites and their associated points,
while stable-matching Voronoi diagrams result in a stable matching.

As mentioned above, Hoffman et al. [15] gave definitions and existence and uniqueness
proofs for the structures we call stable-matching Voronoi diagrams, albeit for potentially
countably infinite sets of point sites. Rather than giving a discrete algorithm for constructing
such diagrams, however, they described a continuous process that results in the stable-
matching Voronoi diagram: Start growing a circle from all the sites at the same time and
at the same rate, matching the sites with all the points encountered by the circles that are
not matched yet – when a site fulfills its appetite, its circle stops growing. The process ends
when all the circles have stopped growing. Of course, such a continuous process could be
approximated numerically, but it is not an effective discrete algorithm, which is one of the
interests of the present paper.

In other previous work, Eppstein et al. [10] studied the problem of constructing a stable-
matching Voronoi diagram in a discrete n× n grid setting, where both sites and points are
pixels. Later, Eppstein et al. [9] considered a related stable-matching problem in the context
of planar graphs and road networks. In these two previous works, the entities analogous
to sites and points are either pixels or vertices; hence, these previous algorithms did not
encounter the algorithmic and combinatorial challenges raised by stable-matching Voronoi
diagrams for sites and points in the plane.

Our Contributions. In Section 2, we give a geometric interpretation of stable-matching
Voronoi diagrams as the lower envelope of a set of cones, and discuss some basic properties
of stable-matching Voronoi diagrams.

In Section 3, we give an O(n2+ε) upper bound, for any ε > 0, and an Ω(n2) lower bound
for the number of faces and edges of a stable-matching Voronoi diagrams in the worst case,
where n is the number of sites.

In Section 4, we show that stable-matching Voronoi diagrams cannot be computed exactly
in an algebraic model of computation. In light of this, we provide a discrete algorithm for
constructing them that runs in O(n3 +n2f(n)) time, where f(n) is the runtime of a geometric
primitive (which we identify) that encapsulates this difficulty. The geometric primitive can
be computed in the real-RAM model or can be approximated numerically. We conclude in
Section 5.
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Figure 3 View of a stable-matching Voronoi diagram of 3 sites as the lower envelope of a set of
cones.

2 The Geometry of Stable-Matching Voronoi Diagrams

As is now well-known, a (2-dimensional) Voronoi diagram can be viewed as a lower envelope
of cones in 3 dimensions, as follows [11]. Suppose that the sites are embedded in the plane
z = 0. That is, we map each site s = (xs, ys) to the 3-dimensional point (xs, ys, 0). Then,
we draw one cone for each site, with the site as the apex, and growing to +∞ all with the
same slope. If we then view the cones from below, i.e., from z = −∞ towards z = +∞, the
part of the cone of each site that we see corresponds to the Voronoi cell of the site. This is
because two such cones intersect at points that are equally distant to the two apices. As a
result, the xy-projection of their intersection corresponds to the perpendicular bisector of
the apices, and the boundaries of the Voronoi cells in the Voronoi diagram are determined
by the perpendicular bisectors with neighboring sites.

Similarly, a stable-matching Voronoi diagram can also be viewed as the lower envelope
of a set of cones, where, instead of extending to +∞, cones are cut off at a finite height
(which is a potentially different height for each cone, even if the associated sites have the
same appetite). This system of cones can be generated by a dynamic process that begins
with cones of height zero and then grows them all at the same rate, halting the growth of
each cone as soon as its area in the lower envelope reaches its appetite (see Figure 3).
A stable-matching Voronoi diagram consists of three types of elements:

A face is a maximal, closed, connected subset of a stable cell. The stable cells can be
disconnected, that is, a cell can have more than one face. There is also one or more empty
faces, which are maximal connected regions not assigned to any site. One of the empty
faces is the external face, which is the only face with infinite area.
An edge is a maximal line segment or circular arc on the boundary of two faces. We
call the two types of edges straight and curved edges, respectively. For curved edges, we
distinguish between its incident convex face (the one inside the circle along which the
edge lies) and its incident concave face.
A vertex is a point shared by more than one edge. Generally, edges end at vertices, but
curved edges may have no endpoints when they form a complete circle. This situation
arises when the region of a site is isolated from other sites.

For a given appetite, shared by all the sites, we say that sites are not in general position
if two curved boundaries of the stable-matching Voronoi diagram touch at a point, p, that
is not an endpoint (e.g., two circles of radius 1 with centers 2 units apart) and, hence, for
those curved edges, the concave face is the same at both sides of p. In this special case, we
consider that the curved edges end at the vertex p.

In order to study the topology of the distance-stable Voronoi diagram, let the bounding
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s

s′

p

Figure 4 Illustration of the setting in the proof of Lemma 2. It shows the perpendicular bisector
of two sites s and s′ (as a dotted line), the boundary of the bounding disk, Bs, of s (as a dashed
circular arc), and a hypothetical boundary between the regions of sites s and s′ (as a solid curve).
In this setting, s and p would be a blocking pair.

disk, Bs, of a site, s, be the smallest (closed) disk centered at s that contains the stable cell
of s. The bounding disks arise in the topology of the diagram due to the following lemma:

I Lemma 2. If part of the boundary between a face of site s and a face of site s′ lies in the
half-plane closer to s than to s′, then that part of the boundary must lie along the boundary
of the bounding disk Bs of s, and the convex face must belong to s.

Proof. The boundary between the faces of s and s′ cannot lie outside of Bs, by definition of
the bounding disk. If the boundary is in the half-plane closer to s, then it also cannot be in
the interior of Bs, because then there would exist a point p inside Bs and in the half-plane
closer to s, but matched to s′ (see Figure 4). In such a situation, s and p would be a blocking
pair: s prefers p to the point(s) matched to it along Bs, and p prefers s to s′. J

I Lemma 3. The union of non-empty faces of the diagram is the union of the bounding
disks of all the sites.

Proof. For any site s, all the points inside the bounding disk of smust be matched. Otherwise,
there would be a point, say, p, not matched to anyone but closer to s than points actually
matched to s (along the boundary of Bs), which would be unstable, as p and s would be
a blocking pair. Moreover, points outside of all the bounding disks cannot be matched to
anyone, by definition of the bounding disks. J

I Lemma 4 (Characterization of edges).
1. A straight edge separating faces of sites s and s′ can only lie along the perpendicular

bisector of s and s′.
2. A curved edge whose convex face belongs to site s lies along the boundary of the bounding

disk of s. Moreover, if the concave face belongs to a site s′, the edge must be contained in
the half-plane closer to s than s′.

3. Empty faces can only be concave faces of curved edges.

Proof. Claims (1) and (2) are consequences of Lemma 2, and Claim (3) is a consequence of
Lemma 3. J

Generally, every site has at least one curved edge. The only case where that may not
happen is when the appetite of a site is exactly the same as the area of its Voronoi cell.
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3 Combinatorial Complexity

3.1 An Upper Bound on the Number of Faces
As mentioned in Section 2, a stable-matching Voronoi diagram can be viewed as the lower
envelope of a set of cones. The study of Davenport-Schinzel sequences has yielded results that
characterize the combinatorial complexity of the lower envelope of certain sets of functions
(e.g., see Sharir and Agarwal [1]), including cones.

Formally, the lower envelope (also called minimization diagram) of a set of bivariate con-
tinuous functions F = {f1(x, y), . . . , fn(x, y)} is the function EF (x, y) = min1≤i≤n fi(x, y).
The lower envelope of F partitions the plane into maximal connected regions such that EF

is attained by a single function fi (or by no function at all). The combinatorial complexity of
the lower envelope EF , denoted K(F ), is the number of maximal connected regions of EF .
To prove our upper bound, we use the following result:

I Lemma 5. Sharir and Agarwal [1, p. 191] The combinatorial complexity K(F ) of the
lower envelope of a collection F of n (partially defined) functions that satisfy the assumptions
below 1 is O(n2+ε), for any ε > 0.

Each fi ∈ F is a portion of an algebraic surface of the form P (x1, . . . , xd) = 0, for some
polynomial P of constant maximum degree.
The vertical projection of each fi ∈ F onto the xy-plane is a planar region bounded by a
constant number of algebraic arcs of constant maximum degree.

I Corollary 6. A stable-matching Voronoi diagram for n sites has O(n2+ε) faces, for any
ε > 0.

Proof. It is clear that the finite, “upside-down” cones whose lower envelope forms the
stable-matching Voronoi diagram of a set of sites satisfy the assumptions from Lemma 5. In
particular, their projection onto the xy-plane are disks. Note that the bound still applies
if we include the empty faces, as the assumptions still hold if we add an extra bivariate
function fn+1(x, y) = z∗, where z∗ is any value higher than the height of any cone (i.e., fn+1
is a plane that “hovers” over the cones). Such a function would have a face in the lower
envelope for each empty face in the stable-matching Voronoi diagram. J

3.2 An Upper bound on the Number of Edges and Vertices
Euler’s formula relates the number of faces in a planar graph with the number of vertices
and edges. By viewing the stable-matching Voronoi diagram as a graph, we can use Euler’s
formula to prove that the O(n2+ε) upper bound also applies to the number of edges and
vertices. In order to do so, we need the following lemma, for which we defer the proof to the
full version of the paper [6] due to space constraints.

I Lemma 7. The average degree is at least 2.25.

In this section (Lemmas 7 and 8), we assume that sites are in general position (as
defined in Section 2). However, note that non-general-position constructions cannot yield
the worst-case complexity. This is because if two curved boundaries coincide exactly at a
point that is not an endpoint, we can perturb slightly the site locations to move them a little
closer, which creates a new vertex and edge.

1 The theorem, as stated in [1] (Theorem 7.7), includes some additional assumptions, but then shows
that they are not essential.
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I Lemma 8. Let V,E and F be the number of vertices, edges, and faces of the stable-matching
Voronoi diagram of a set of sites S. Then, V ≤ 8F − 16 and E ≤ 9F − 18.

Proof. For this proof, suppose that there are no curved edges that form a full circle. Note
that the presence of such edges can only reduce the number of vertices and edges, as for each
such edge there is a site with a single edge and no vertices.

Without such edges, the vertices and edges of the stable-matching Voronoi diagram
form a planar graph, and V,E, F are the number of vertices, edges, and faces of this graph,
respectively. Moreover, let C be the number of connected components. Due to Euler’s
formula for planar graphs, we have F = E − V +C + 1, and thus F ≥ E − V + 2. Moreover,
by Lemma 7, the sum of degrees is at least 2.25V , so 2E ≥ 2.25V . Combining the two
relations above, we have V ≤ 8F − 16 and E ≤ 9F − 18. J

We conclude by stating the main theorem of this section, which is a combination of
Corollary 6 and Lemma 8:

I Theorem 9. A stable-matching Voronoi diagram for n sites has O(n2+ε) faces, vertices,
and edges, for any ε > 0.

3.3 Lower Bound
I Lemma 10. A stable-matching Voronoi diagram for n sites has Ω(n2) faces in the worst
case.

Proof. Let m = bn/2c. We will construct a diagram in two steps, first placing m sites, and
then m more. If n is odd, the remaining site can be placed anywhere in the plane that does
not intersect with the others.

First, consider the stable-matching Voronoi diagram of m sites, each with appetite one,
placed evenly on a circle with very small radius ε1. Then, perturb them slightly so that the
circular angle between two specific sites s, s′ is slightly bigger than the rest: 2π/n+ ε2, while
the angle between any other pair of sites is 2π/n− ε2/(n− 1), again for a very small ε2 > 0.
As a result, the standard Voronoi regions of the sites are infinite angular regions, but those
of s and s′ are slightly wider than those of the remaining sites.

The result is a diagram such as the one in Figure 5, Left. To see this, consider the
circle-growing method from [15] described in Section 1. All the sites start growing their region
as a circle, which quickly overlap with the other sites. As a result, each site is constrained
to grow in the angular region corresponding to its own Voronoi region. Since s and s′ have
wider angles, they fill their appetite slightly before the rest, which grow at the same rate.
After s and s′ stop growing, the angular regions “available” to grow for the sites adjacent to s
and s′ increases to include the Voronoi regions of s and s′. Since now the neighbors of s and
s′ grow their regions faster than the rest, they also fill their appetite before the remaining
sites. This process continues so that, in the end, one half of the sites “wrap” around the
circle all the way to the Voronoi region of s, and the other half wrap around to the Voronoi
region of s′.

As a result, we get m almost equal-area wedges surrounded by O(m) very thin circular
strips. We can choose ε2 to set exactly how far the stable cell of s and s′ reach, and therefore
the overall width of all the circular strips. Then, we can set ε1 small enough to ensure that
all the circular strips wrap around the entire circle. Note that, as ε1 approaches 0, the entire
diagram approaches a circle of area m where all the sites want to grow equally far in every
angular region.
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Figure 5 Left: A stable-matching Voronoi diagram of 50 sites situated around a small circle
with the perturbed angles. Right: Zoom of a section of the stable-matching Voronoi diagram after
adding 50 more sites situated evenly along a bigger, concentric circle (and with a smaller ε2 than in
the left figure).

Then, we place the remaining m sites evenly along an exterior concentric circle (see
Figure 5, Right), and at a distance so that each outer site will have its appetite satisfied
only by cutting into the circular strip. Because the wedges of the sites along the interior
circle are very thin, the outer sites are closer to the circular strips than the inner sites; hence,
each one can “steal” points in the strips away from the inner sites (which then need to get
additional points from beyond the regions of the outer sites). At least half of the strips are
as long as half the circle, and hence they get each broken into Θ(m) faces. Therefore, the
circular strips are collectively broken into a total of Θ(m2) = Θ(n2) faces. J

4 Paint-by-Numbers Algorithm

There are two similar incremental approaches to construct the stable matching Voronoi-
diagram by processing sites one at a time. One option is to add the region of a site at each
step. The other option, which we describe in this section, is to add the bounding disk of a
site at each step, partitioned according to the diagram. In both cases, the key is to process
the sites by increasing radii of their bounding disks. The major challenge lies in finding the
bounding disks, which we will encapsulate in a geometric primitive (Definition 16). We focus
on the second approach because the needed geometric primitive is simpler.

Finding the sites by increasing radii of their bounding disks might seem impossible at
first, since, when our algorithm starts, the radii of the bounding disks for almost all the
sites will, in general, be unknown. Nevertheless, as our algorithm progresses, we can know
the radius of the smallest bounding disk of the sites remaining to be processed. Thus, at
each iteration, we find a site, s, with smallest-radius bounding disk, Bs, from among the
remaining unprocessed sites. Then, reminiscent of a “paint-by-numbers” drawing, we add to
the matching all the unmatched points in Bs, using the boundary of Bs and the cells of a
standard Voronoi diagram of the remaining unprocessed sites as the guides of how to “color”
points. Figure 6 shows two snapshots of the intermediate steps of our paint-by-numbers
algorithm. Suppose, then, that we are given a set, S, of n sites in the plane, each with
appetite A.

Our algorithm is based on the following result. For a site s, let rs be the radius of its
bounding circle, Bs.

I Lemma 11. If rs ≤ rs′ , no point p inside Bs such that d(p, s′) < d(p, s) is matched to s.

Proof. Any such point p prefers s′ to s. Moreover, we have that d(p, s′) < d(p, s) ≤ rs ≤ rs′ .
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Figure 6 Partial matching done by the incremental paint-by-numbers algorithm after 10 iterations
(left) and 12 iterations (right). The sites with the 11th and 12th smallest bounding disks are the
gray site in the top-left and the light violet site in the center, respectively. In each case, the edges of
the standard Voronoi diagram and the stable-matching Voronoi diagram are overlaid in thick and
thin black lines, respectively.

Thus, s′ prefers p to the points matched to s′ along the boundary of Bs′ . Hence, if p was
matched to s, p and s′ would be a blocking pair. J

I Corollary 12. The stable cell of a site s is contained in V (s), the Voronoi cell of s in the
standard Voronoi diagram of the subset of sites whose bounding disks have radius at least rs.

Proof. The stable cell of s is contained in Bs, but any point in Bs that is not in V (s) is closer
to a site other than s whose bounding disk has radius at least rs. According to Lemma 11,
any such point cannot be matched to s. J

Our incremental paint-by-numbers algorithm proceeds as follows:
1. Initialize X = S as the set of sites remaining to be processed and X∗ = ∅ as the set of

sites that have already been processed. Moreover, for each site s, initialize its partially
constructed stable cell Cs as empty, and its remaining appetite, As = A.

2. Compute a standard Voronoi diagram, V , of the sites in X.
3. Repeat until X is empty:

a. For each site s in X, calculate rs, the current estimate for the radius of the bounding
disk for s, as follows; rs is the radius such that the area of the subset of V (s) (the
Voronoi cell of s in V ) within that radius of s, excluding the bounding disks of sites in
X∗, equals As.

b. Choose a site s whose radius rs is minimum. (By Corollary 12, rs is the radius of Bs.)
c. Compute B∗s = Bs \{Bs′ | s′ ∈ X∗}, the bounding disk of s minus the already-matched

bounding disks.
d. Match the points in B∗s : for each site s′ in X (including s), add to Cs′ the (possibly

empty) intersection B∗s ∩ V (s′), and decrease the appetite, As′ , of s′, by the area of
this intersection.

e. Move s from X to X∗, and remove s from V .

I Theorem 13. The stable-matching Voronoi diagram of a set, S, of n sites can be computed
in the real-RAM model in O(n3) time plus O(n2) calls to a geometric primitive that has
input complexity O(n).

Let us provide a proof of Theorem 13, beginning with the correctness of our paint-by-
numbers algorithm.
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I Lemma 14 (Correctness). The paint-by-numbers algorithm correctly computes the stable-
matching Voronoi diagram of a set, S, of n sites.

Proof. The algorithm matches all the points inside the bounding disks of the sites, and only
those. Therefore, it matches precisely the points in the stable-matching Voronoi diagram
(Lemma 3). Note that, when finding the site s in X with the smallest bounding disk, we can
rely on Corollary 12, which says that the stable cell of s must be contained in V (s).

It remains to be seen that the matching of the points in each bounding disk is correct.
Consider the iteration where we process the site s, and let p be a point in B∗s and in the
inside of V (s′) (such that s′ 6= s). The algorithm matches p to s′, so we need to see that p
belongs to the stable cell of s′. On the one hand, p does not belong to the stable cell of any
site in X∗ because p lies outside their bounding disks. Moreover, by virtue of being in V (s′),
p prefers s′ to any other site in X. On the other hand, d(p, s′) < d(p, s) ≤ rs ≤ rs′ , so s′
also prefers p to some of its matched points. Hence, if p and s′ were not matched to each
other, they would be a blocking pair.

Similarly, in the case where p is in the inside of V (s), the algorithm matches p to s and p
belongs in the stable cell of s. J

Finding the radii rs (Step 3a) is the most challenging step in our algorithm. In fact,
Observation 15, which we prove in the full version of the paper [6], speaks to its difficulty.

I Observation 15. For infinitely-many sets of sites in general position and with algebraic
coordinates, the radius of some of the sites’ bounding disks cannot be computed exactly in
an algebraic model of computation.

To circumvent this problem, we encapsulate the difficulty in computing each rs analytically
in a geometric primitive that can be performed in the real-RAM model or approximated
numerically in an algebraic model of computation. That is, for the sake of the algorithm
description, we assume the existence of a black-box function that allows us to compute the
following geometric primitive.

I Definition 16 (Geometric primitive). Given a convex polygon P , a point s in P , an appetite
A, and a set C of disks, return the radius r (if it exists) such that A equals the area of the
intersection of P \ C and a disk centered at s with radius r.

In the context of our algorithm, the point s is a site in X, the appetite, A, is the remaining
appetite, As, of s, the polygon P is the Voronoi cell V (s), and the set of disks C is the set
of bounding disks of the sites in X∗. Note that such a primitive could be approximated
numerically to arbitrary precision, e.g., with a binary search and a simple decision algorithm.

Another detail for our algorithm that we need to spell out is how to maintain the partially
constructed cell Cs of each site s. The structure Cs consists of a set of disjoint regions, each
of which is delimited by straight and curved edges. Note that the straight edges are part of
actual edges of the stable cell of s, as the other side is already matched to some other site.
However, the convex curved edges (edges such that the convex face belongs to Cs) found
before the iteration of s are not part of edges in the stable cell of s, as they lie along the
boundary of the bounding disks of sites other than s (see, e.g., the gray regions in Figure 6,
Left). Only at the iteration of s we find the proper convex curved edges of the stable cell of
s. The points on the concave face of one of these “fake” convex edges of Cs must also belong
to Cs. In some posterior iteration, when the region in the concave face is matched as part of
another bounding disk B∗s′ , the region of B∗s′ added to Cs will have a matching concave edge.
Thus, when we add a concave edge to Cs, we look for a corresponding convex edge in Cs,
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and if we find one, we “glue” them together, by removing the overlapping part. Similarly, we
also merge straight edges sharing an endpoint.

Let us turn, then, to the analysis of the running time of the paint-by-numbers algorithm.
For the number of calls to the geometric primitive, note that there are n iterations, and at
each iteration we call the geometric primitive O(n) times. The Voronoi diagram V has O(n)
edges and there are O(n) already-matched disks, so the input of each call has O(n) size.
That is, we make O(n2) calls to the geometric primitive, each of which has combinatorial
complexity O(n).

The remaining steps of each iteration all can be done in O(n2) time, by the following
observations:

1. The running time of Step 3b is clearly O(n).

2. The combinatorial complexity of the standard Voronoi diagram, V , is O(n) and it can
be initially computed (Step 2) in O(n log n) time (e.g., see [3, 5]) and updated after the
removal of any point site (Step 3e) in O(n) time [13].

3. By the previous observation (2), for any single bounding disk, Bs, chosen in an iteration
of our algorithm, Bs has an intersection with V that has combinatorial complexity O(n).

4. The union of the set of bounding disks for the points in X∗ has combinatorial complexity
O(n) [17, 1].

5. By the previous observation (4), for any single bounding disk, Bs, chosen in an iteration
of our algorithm, the combinatorial complexity of B∗s , that is, Bs minus all the bounding
disks for sites in X∗, is O(n). Thus, the running time of Step 3c in any iteration is O(n).

6. Combining the above observations 3 and 5, the combinatorial complexity of the pieces of
B∗s intersecting V has combinatorial complexity O(n2). Thus, the running time of Step
3d in any iteration is O(n2).

Therefore, the total running time of our paint-by-numbers algorithm is O(n3 + n2f(n)),
where f(n) is the running time of the geometric primitive defined above. This completes the
proof of Theorem 13.

5 Conclusions

We have studied stable-matching Voronoi diagrams, providing characterizations of their
combinatorial complexity and a first discrete algorithm for constructing them. The fact that
(i) both the standard and stable-matching Voronoi diagrams share the stability property,
in terms of preferences based on distances, and that (ii) both have similar geometric
constructions in terms of the lower envelopes of cones, supports the idea that stable-matching
Voronoi diagrams are a natural generalization of the standard Voronoi diagram to sized-
constrained regions. However, this comes at the cost of convexity and connectivity; indeed,
we have shown that a stable-matching Voronoi diagram may have O(n2+ε) faces and edges,
for any ε > 0. It would be interesting to see if this bound can be brought down to O(n2),
which would make it tight. Constructing a stable-matching Voronoi diagram is also more
computationally challenging than the construction of a standard Voronoi diagram. We have
given a first algorithm which runs in O(n3 + n2f(n))-time, where f(n) is the runtime of a
geometric primitive that we defined to encapsulate the computations that cannot be carried
analytically. While such primitives cannot be avoided, a step forward from our algorithm
would be one that relies only in primitives with constant-sized inputs.
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Abstract
In the problem of adaptive compressed sensing, one wants to estimate an approximately k-sparse
vector x ∈ Rn from m linear measurements A1x,A2x, . . . , Amx, where Ai can be chosen based
on the outcomes A1x, . . . , Ai−1x of previous measurements. The goal is to output a vector x̂ for
which

‖x− x̂‖p ≤ C · min
k-sparse x′

‖x− x′‖q,

with probability at least 2/3, where C > 0 is an approximation factor. Indyk, Price and Woodruff
(FOCS’11) gave an algorithm for p = q = 2 for C = 1+ε with O((k/ε)loglog(n/k)) measurements
and O(log∗(k)loglog(n)) rounds of adaptivity. We first improve their bounds, obtaining a scheme
with O(k · loglog(n/k) + (k/ε) · loglog(1/ε)) measurements and O(log∗(k)loglog(n)) rounds, as
well as a scheme with O((k/ε) · loglog(n log(n/k))) measurements and an optimal O(loglog(n))
rounds. We then provide novel adaptive compressed sensing schemes with improved bounds for
(p, p) for every 0 < p < 2. We show that the improvement from O(k log(n/k)) measurements to
O(k log log(n/k)) measurements in the adaptive setting can persist with a better ε-dependence
for other values of p and q. For example, when (p, q) = (1, 1), we obtain O( k√

ε
· log log n log3( 1

ε ))
measurements. We obtain nearly matching lower bounds, showing our algorithms are close to
optimal. Along the way, we also obtain the first nearly-optimal bounds for (p, p) schemes for
every 0 < p < 2 even in the non-adaptive setting.
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1 Introduction

Compressed sensing, also known as sparse recovery, is a central object of study in data
stream algorithms, with applications to monitoring network traffic [7], analysis of genetic
data [19, 12], and many other domains [16]. The problem can be stated as recovering an
underlying signal x ∈ Rn from measurements A1 · x, ..., Am · x with the C-approximate `p/`q
recovery guarantee being

‖x− x̂‖p ≤ C min
k-sparse x′

‖x− x′‖q, (1)

where the Ai are drawn from a distribution and m� n. The focus of this work is on adaptive
compressed sensing, in which the measurements are chosen in rounds, and the choice of
measurement in each round depends on the outcome of the measurements in previous rounds.

Adaptive compressed sensing has been studied in a number of different works [11, 4, 8, 9,
14, 1, 10, 18] in theoretical computer science, machine learning, image processing, and many
other domains [10, 18, 2]. In theoretical computer science and machine learning, adaptive
compressed sensing serves as an important tool to obtain sublinear algorithms for active
learning in both time and space [10, 5, 18, 2]. In image processing, the study of adaptive
compressed sensing has led to compressed acquisition of sequential images with various
applications in celestial navigation and attitude determination [6].

Despite a large amount of works on adaptive compressed sensing, the power of adaptivity
remains a long-standing open problem. Indyk, Price, and Woodruff [10] were the first to show
that without any assumptions on the signal x, one can obtain a number m of measurements
which is a log(n)/ log log(n) factor smaller than what can be achieved in the non-adaptive
setting. Specifically, for p = q = 2 and C = 1 + ε, they show that m = O(kε log log(n))
measurements suffice to achieve guarantee (1), whereas it is known that any non-adaptive
scheme requires k = Ω(kε log(nk )) measurements, provided ε >

√
k logn
n (Theorem 4.4 of [17],

see also [3]). Improving the sample complexity as much as possible is desired, as it might
correspond to, e.g., the amount of radiation a hospital patient is exposed to, or the amont of
time a patient must be present for diagnosis.

The `1/`1 problem was studied in [17], for which perhaps surprisingly, a better dependence
on ε was obtained than is possible for `2/`2 schemes. Still, the power of adaptivity for
the `1/`1 recovery problem over its non-adaptive counterpart has remained unclear. An
O( k√

ε
log n log3( 1

ε )) non-adaptive bound was shown in [17], while an adaptive lower bound of
Ω( k√

ε
/ log k√

ε
) was shown in [18]. Recently several works [20, 15] have looked at other values

of p and q, even those for which 0 < p, q < 1, which do not correspond to normed spaces.
The power of adaptivity for such error measures is also unknown.

1.1 Our Results
Our work studies the problem of adaptive compressed sensing by providing affirmative
answers to the above-mentioned open questions. We improve over the best known results for
p = q = 2, and then provide novel adaptive compressed sensing guarantees for 0 < p = q < 2
for every p and q. See Table 1 for a comparison of results.

For `1/`1, we design an adaptive algorithm which requires only O( k√
ε
loglog(n) log

5
2 ( 1
ε ))

measurements for the `1/`1 problem. More generally, we study the `p/`p problem for
0 < p < 2. One of our main theorems is the following.

I Theorem 1 (`p/`p Recovery Upper Bound). Let x ∈ Rn and 0 < p < 2. There exists a ran-
domized algorithm that performs O( k

εp/2 loglog(n) poly(log( 1
ε ))) adaptive linear measurements
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Table 1 The sample complexity of adaptive compressed sensing. Results without any citation
given correspond to our new results.

C, Guaran-
tees

Upper Bounds Rounds Lower Bounds

1 + ε, `1/`1 O( k√
ε
loglog(n) log 5

2 ( 1
ε
)) O(loglog(n)) Ω( k√

ε log(k/
√
ε)) ) [18]

1 + ε, `p/`p O( k

εp/2 loglog(n) poly(log( 1
ε
))) O(loglog(n)) Ω( k

εp/2
1

log2(k/ε) )√
1
k

, `∞/`2 O(kloglog(n) + k log(k)) O(loglog(n)) -

1 + ε, `2/`2

O( k
ε
loglog(nε

k
)) [10] O(log∗(k)loglog(nε

k
)) [10]

Ω( k
ε

+ loglog(n)) [18]O(kloglog(n
k

) + k
ε
loglog( 1

ε
)) O(log∗(k)loglog(n

k
))

O( k
ε
loglog(n log(nε)

k
)) O(loglog(n log(nε

k
))

on x in O(loglog(n)) rounds, and with probability 2/3, returns a vector x̂ ∈ Rn such that
‖x− x̂‖p ≤ (1 + ε)‖x−k‖p.

Theorem 1 improves the previous sample complexity upper bound for the case of C = 1+ε
and p = q = 1 from O( k√

ε
log(n) log3( 1

ε )) to O( k√
ε
loglog(n) log

5
2 ( 1

ε )). Compared with the
non-adaptive (1 + ε)-approximate `1/`1 upper bound of O( k√

ε
log(n) log3( 1

ε )), we show that
adaptivity exponentially improves the sample complexity w.r.t. the dependence on n over
non-adaptive algorithms while retaining the improved dependence on ε of non-adaptive
algorithms. Furthermore, Theorem 1 extends the working range of adaptive compressed
sensing from p = 1 to general values of p ∈ (0, 2).

We also state a complementary lower bound to formalize the hardness of the above
problem.

I Theorem 2 (`p/`p Recovery Lower Bound). Fix 0 < p < 2, any (1 + ε)-approximate `p/`p
recovery scheme with sufficiently small constant failure probability must make Ω( k

εp/2 / log2(kε ))
measurements.

Theorem 2 shows that our upper bound in Theorem 1 is tight up to the log(k/ε) factor.
We also study the case when p 6= q. In particular, we focus on the case when p =∞, q = 2

and C =
√

1
k , as in the following theorem.

I Theorem 3 (`∞/`2 Recovery Upper Bound). Let x ∈ Rn. There exists a randomized
algorithm that performs O(k log(k) + kloglog(n)) linear measurements on x in O(loglog(n))
rounds, and with probability 1− 1/poly(k) returns a vector x̂ such that ‖x− x̂‖2∞ ≤ 1

k‖x−k‖
2
2,

where x−k ∈ Rn is the vector with the largest n − k coordinates (in the sense of absolute
value) being zeroed out.

We also provide an improved result for (1 + ε)-approximate `2/`2 problems.

I Theorem 4 (`2/`2 Sparse Recovery Upper Bounds). Let x ∈ Rn. There exists a randomized
algorithm that

uses O(kε loglog( 1
ε ) + kloglog(nk )) linear measurements on x in O(loglog(nk ) · log∗(k))

rounds;
uses O(kε loglog(n log(nε)

k )) linear measurements on x in O(loglog(εn log(nk ))) rounds;
and with constant probability returns a vector x̂ such that ‖x− x̂‖2 ≤ (1 + ε)‖x−k‖2.

Previously the best known tradeoff was O(kε loglog(nεk )) samples and O(log∗(k)loglog(nεk ))
rounds for (1 + ε)-approximation for the `2/`2 problem [10]. Our result improves both the
sample complexity (the first result) and the number of rounds (the second result). We
summarize our results in Table 1.
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1.2 Our Techniques
`∞/`2 Sparse Recovery. Our `∞/`2 sparse recovery scheme hashes every i ∈ [n] to
poly(k) buckets, and then proceeds by finding all the buckets that have `2 mass at least
Ω( 1√

k
‖x−Ω(k)‖2). We then find a set of buckets that contain all heavy coordinates, which are

isolated from each other due to hashing. Then, we run a 1-sparse recovery in each bucket in
parallel in order to find all the heavy coordinate. However, since we have O(k) buckets, we
cannot afford to take a union bound over all one-sparse recovery routines called. Instead, we
show that most buckets succeed and hence we can substract from x the elements returned,
and then run a standard CountSketch algorithm to recover everything else. This algorithm
obtains an optimal O(loglog(n)) number of rounds and O(k log(k) + kloglog(n)) number of
measurements, while succeeding with probability at least 1− 1/poly(k).

We proceed by showing an algorithm for `2/`2 sparse recovery with O(kε loglog(n))
measurements and O(loglog(n)) rounds. This will be important for our more general `p/`p
scheme, saving a log∗(k) factor from the number of rounds, achieving optimality with respect
to this quantity. For this scheme, we utilize the `∞/`2 scheme we just developed, observing
that for small k < O(log(n)), the measurement complexity is O(kloglog(n)). The algorithm
hashes to k/(ε log(n)) buckets, and in each bucket runs `∞/`2 with sparsity k/ε. The `∞/`2
algorithm in each bucket succeeds with probability 1 − 1/polylog(n)); this fact allows us
to argue that all but a 1/polylog(n) fraction of the buckets will succeed, and hence we can
recover all but a k/polylog(n)) fraction of the heavy coordinates. The next step is to subtract
these coordinates from our initial vector, and then run a standard `2/`2 algorithm with
decreased sparsity.

`p/`p Sparse Recovery. Our `p/`p scheme, 0 < p < 2, is based on carefully invoking several
`2/`2 schemes with different parameters. We focus our discussion on p = 1, then mention
extensions to general p. A main difficulty of adapting the `1/`1 scheme of [17] is that it
relies upon an `∞/`2 scheme, and all known schemes, including ours, have at least a k log k
dependence on the number of measurements, which is too large for our overall goal.

A key insight in [17] for `1/`1 is that since the output does not need to be exactly
k-sparse, one can compensate for mistakes on approximating the top k entries of x by
accurately outputting enough smaller entries. For example, if k = 1, consider two possible
signals x = (1, ε, . . . , ε) and x′ = (1 + ε, ε, . . . , ε), where ε occurs 1/ε times in both x and
x′. One can show, using known lower bound techniques, that distinguishing x from x′

requires Ω(1/ε) measurements. Moreover, x1 = (1, 0, . . . , 0) and x′1 = (1 + ε, 0, . . . , 0), and
any 1-sparse approximation to x or x′ must therefore distinguish x from x′, and so requires
Ω(1/ε) measurements. An important insight though, is that if one does not require the
output signal y to be 1-sparse, then one can output (1, ε, 0, . . . , 0) in both cases, without
actually distinguishing which case one is in!

As another example, suppose that x = (1, ε, . . . , ε) and x′ = (1 + εc, ε, . . . , ε) for some
0 < c < 1. In this case, one can show that one needs Ω(1/εc) measurements to distinguish x
and x′, and as before, to output an exactly 1-sparse signal providing a (1 + ε)-approximation
requires Θ̃(1/εc) measurements. In this case if one outputs a signal y with y1 = 1, one cannot
simply find a single other coordinate ε to “make up” for the poor approximation on the first
coordinate. However, if one were to output 1/ε1−c coordinates each of value ε, then the
εc “mass" lost by poorly approximating the first coordinate would be compensated for by
outputting ε · 1/ε1−c = εc mass on these remaining coordinates. It is not clear how to find
such remaining coordinates though, since they are much smaller; however, if one randomly
subsamples an εc fraction of coordinates, then roughly 1/ε1−c of the coordinates of value ε



V. Nakos, X. Shi, D. P. Woodruff, and H. Zhang 90:5

survive and these could all be found with a number of measurements proportional to 1/ε1−c.
Balancing the two measurement complexities of 1/εc and 1/ε1−c at c = 1/2 gives roughly
the optimal 1/ε1/2 dependence on ε in the number of measurements.

To extend this to the adaptive case, a recurring theme of the above examples is that the
top k, while they need to be found, they do not need to be approximated very accurately.
Indeed, they do need to be found, if, e.g., the top k entries of x were equal to an arbitrarily
large value and the remaining entries were much smaller. We accomplish this by running an
`2/`2 scheme with parameters k′ = Θ(k) and ε′ = Θ(

√
ε), as well as an `2/`2 scheme with

parameters k′ = Θ(k/
√
ε) and ε′ = Θ(1) (up to logarithmic factors in 1/ε). Another theme is

that the mass in the smaller coordinates we find to compensate for our poor approximation
in the larger coordinates also does not need to be approximated very well, and we find this
mass by subsampling many times and running an `2/`2 scheme with parameters k′ = Θ(1)
and ε′ = Θ(1). This technique is surprisingly general, and does not require the underlying
error measure we are approximating to be a norm. It just uses scale-invariance and how its
rate of growth compares to that of the `2-norm.

`2/`2 Sparse Recovery. Our last algorithm, which concerns `2/`2 sparse recovery, achieves
O(kloglog(n) + k

ε loglog(1/ε)) measurements, showing that ε does not need to multiply
loglog(n). The key insight lies in first solving the 1-sparse recovery task with O(loglog(n) +
1
ε loglog(1/ε)) measurements, and then extending this to the general case. To achieve this, we
hash to polylog(1/ε) buckets, then solve `2/`2 with constant sparsity on a new vector, where
coordinate j equals the `2 norm of the jth bucket; this steps requires only O( 1

ε loglog(1/ε))
measurements. Now, we can run standard 1-sparse recovery in each of these buckets
returned. Extending this idea to the general case follows by plugging this sub-routine in the
iterative algorithm of [10], while ensuring that sub-sampling does not increase the number of
measurements. For that we also need to sub-sample at a slower rate, slower roughly by a
factor of ε.

Notation: For a vector x ∈ Rn, we define Hk(x) to be the set of its largest k coordinates
in absolute value. For a set S, denote by xS the vector with every coordinate i /∈ S being
zeroed out. We also define x−k = x[n]\Hk(x) and Hk,ε(x) = {i ∈ [n] : |xi| ≥ ε

k‖x−k‖
2
2}, where

[n] represents the set {1, 2, ..., n}. For a set S, let |S| be the cardinality of S.
Due to space constraints, we defer the proof of Theorem 2 to the full version1.

2 Adaptive `p/`p Recovery

This section is devoted to proving Theorem 1. Our algorithm for `p/`p recovery is in
Algorithm 1.

Let f = εp/2, r = 2/(p log(1/f)) and q = max{p− 1
2 , 0} = (p− 1

2 )+. We will invoke the
following `2/`2 oracle frequently throughout the paper.

I Oracle 1 (AdaptiveSparseRecovery`p/`q(x, k, ε)). The oracle is fed with (x, k, ε) as
input parameters, and outputs a set of coordinates i ∈ [n] of size O(k) which corresponds to the
support of vector x̂, where x̂ can be any vector for which ‖x−x̂‖p ≤ (1+ε) minO(k)-sparse x′ ‖x−
x′‖q.

1 see https://arxiv.org/pdf/1804.09673.pdf
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Algorithm 1 Adaptive `p/`p Recovery.
1. A← AdaptiveSparseRecovery`2/`2(x, 2k/f, 1/10).
2. B ← AdaptiveSparseRecovery`2/`2(x, 4k, f/r2).
3. S ← A ∪B.
4. For j = 1 : r
5. Uniformly sample the entries of x with probability 2−jf/k for k/(2f(r + 1)q) times.
6. Run the adaptive AdaptiveSparseRecovery`2/`2(x, 2, 1/(4(r + 1))

2
p ) algorithm

on each of the k/(2f(r + 1)q) subsamples to obtain sets Aj,1, Aj,2, . . . , Aj,k/(2f(r+1)q).
7. Let Sj ← ∪k/(2f(r+1)q)

t=1 Aj,t \ ∪j−1
t=0St.

8. End For
9. Request the entries of x with coordinates S0, ..., Sr.
Output: x̂ = xS0∪···∪Sr .

Existing algorithms can be applied to construct Oracle 1 for the `2/`2 case, such as [10].
Without loss of generality, we assume that the coordinates of x are ranked in decreasing
value, i.e., x1 ≥ x2 ≥ · · · ≥ xn.

I Lemma 5. Suppose we subsample x with probability p and let y be the subsampled vector
formed from x. Then with failure probability e−Ω(k), ‖y−2k‖2 ≤

√
2p
∥∥x−k/p∥∥2 .

Proof. Let T be the set of coordinates in the subsample. Then E
[∣∣∣T ∩ [ 3k

2p

]∣∣∣] = 3k
2 . So

by the Chernoff bound, Pr
[∣∣∣T ∩ [ 3k

2p

]∣∣∣ > 2k
]
≤ e−Ω(k). Thus

∣∣∣T ∩ [ 3k
2p

]∣∣∣ ≤ 2k holds with

high probability. Let Yi = x2
i if i ∈ T Yi = 0 if i ∈ [n] \ T . Then E

[∑
i> 3k

2p
Yi

]
=

p
∥∥∥x− 3k

2p

∥∥∥2

2
≤ p

∥∥x−k/p∥∥2
2 . Notice that there are at least k

2p elements in x−k/p with absolute

value larger than
∣∣∣x 3k

2p

∣∣∣. Thus for i > 3k
2p , Yi ≤

∣∣∣x 3k
2p

∣∣∣2 ≤ 2p
k

∥∥x−k/p∥∥2
2 . Again by a Chernoff

bound, Pr
[∑

i> 3k
2p
Yi ≥ 4p

3
∥∥x−k/p∥∥2

2

]
≤ e−Ω(k). Conditioned on the latter event not happen-

ing, ‖y−2k‖22 ≤
∑
i> 3k

2p
Yi ≤ 4p

3
∥∥x−k/p∥∥2

2 ≤ 2p
∥∥x−k/p∥∥2

2 . By a union bound, with failure
probability e−Ω(k), we have ‖y−2k‖2 ≤

√
2p
∥∥x−k/p∥∥2 . J

I Lemma 6. Let x̂ be the output of the `2/`2 scheme on x with parameters (k, ε/2). Then
with small constant failure probability,

∥∥x[k]
∥∥p
p
− ‖x̂‖pp ≤ k1− p2 ε

p
2 ‖x−k‖p2 .

Proof. Notice that with small constant failure probability, the `2/`2 guarantee holds and we
have∥∥x[k]

∥∥2
2 − ‖x̂‖

2
2 = ‖x− x̂‖22 − ‖x−k‖

2
2 ≤ (1 + ε) ‖x−k‖22 − ‖x−k‖

2
2 = ε ‖x−k‖22 .

Let S ⊂ [n] be such that xS = x̂, and define y = x[k]\S , z = xS\[k]. Then if ‖y‖pp ≤
k1− p2 ε

p
2 ‖x−k‖p2 we are done. Otherwise, let 1 ≤ k′ ≤ k denote the size of [k] \ S, and define

c = ‖y‖2 /
√
k′.

∥∥x[k]
∥∥p
p
− ‖x̂‖pp = ‖y‖pp − ‖z‖

p
p ≤ k

′1− p2 ‖y‖p2 − ‖z‖
p
p =
‖y‖22
c2−p

− ‖z‖pp

≤
‖y‖22 − ‖z‖

2
2

c2−p
=
∥∥x[k]

∥∥2
2 − ‖x̂‖

2
2

c2−p
≤
ε ‖x−k‖22
c2−p

.
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Since c ≥ ‖y‖p
k
′ 1
p
≥ ‖y‖p

k
1
p
≥
√

ε
k ‖x−k‖2 , we have

∥∥x[k]
∥∥p
p
−‖x̂‖pp ≤ k

2−p
2 ε1−

2−p
2 ‖x−k‖2−(2−p)

2 =

k1− p2 ε
p
2 ‖x−k‖p2 . J

I Theorem 7. Fix 0 < p < 2. For x ∈ Rn, there exists a (1+ε)-approximation algorithm that
performs O( k

εp/2 loglog(n) log
2
p+1−(p− 1

2 )+
( 1
ε )) adaptive linear measurements in O(loglog(n))

rounds, and with probability at least 2/3, we can find a vector x̂ ∈ Rn such that

‖x− x̂‖p ≤ (1 + ε) ‖x−k‖p . (2)

Proof. The algorithm is stated in Algorithm 1. We first consider the difference
∥∥x[k]

∥∥p
p
−

‖xS0‖
p
p.

Let i∗(0) be the smallest integer such that for any l > i∗(0), |xl| ≤ ‖x−2k/f‖2/
√
k.

Case 1. i∗(0) > 4k
Then for all k < j ≤ 4k, we have |xj | > ‖x−2k/f‖2/

√
k. Hence xS0 must contain at least 1/2

of these indices; if not, the total squared loss is at least 1/2·3k‖x−2k/f‖22/k ≥ (3/2)‖x−2k/f‖22,
a contradiction to ε′ = 1/10. It follows that ‖xS0∩{k+1,...,4k}‖pp ≥ 3

2k
[
‖x−2k/f‖2√

k

]p
=

3
2k

1− p2 ‖x−2k/f‖p2. On the other hand,
∥∥x[k]

∥∥p
p
− ‖xS0‖

p
p is at most 1.1k1− p2 ‖x−2k/f‖p2, since

by the `2/`2 guarantee

‖x[k]‖pp − ‖xS0∩[k]‖pp ≤ k1− p2 ‖x[k] − xS0∩[k]‖p2 ≤ k1− p2 ‖x− xS0‖
p
2 ≤

11
10k

1− p2 ‖x−2k/f‖p2.

It follows that

‖x[k]‖pp − ‖xS0‖pp = ‖x[k]‖pp − ‖xS0∩[k]‖pp − ‖xS0∩{k+1,...,4k}‖pp

≤ 11
10k

1− p2 ‖x−2k/f‖p2 −
3
2k

1− p2 ‖x−2k/f‖p2 ≤ 0.

Case 2. i∗(0) ≤ 4k, and
∑2k/f
j=i∗(0)+1 x

2
j ≥ 4‖x−2k/f‖22.

We claim that xS0 must contain at least a 5/8 fraction of coordinates in {i∗(0) + 1, ..., 2k/f};
if not, then the cost for missing at least a 3/8 fraction of the `2-norm of x{i∗(0)+1,...,2k/f} will
be at least (3/2)‖x−2k/f‖22, contradicting the `2/`2 guarantee. Since all coordinates xj ’s for
j > i∗(0) have value at most ‖x−2k/f‖2/

√
k, it follows that the p-norm of coordinates corres-

ponding to {i∗(0)+1, ..., 2k/f}∩S0 is at least
∥∥x{i∗(0)+1,...,2k/f}∩S0

∥∥p
p
≥ 5

2k
2−p

2
‖x−2k/f‖2

2
‖x−2k/f‖2−p

2
=

5
2k

1− p2 ‖x−2k/f‖p2. Then

‖x[k]‖pp − ‖xS0‖pp ≤
11
10k

1− p2 ‖x−2k/f‖p2 + k

(‖x−2k/f‖2√
k

)p
− ‖x{i∗(0)+1,...,2k/f}∩S0‖

p
p

≤ 21
10k

1− p2 ‖x−2k/f‖p2 −
5
2k

1− p2 ‖x−2k/f‖p2 ≤ 0.

Case 3. i∗(0) ≤ 4k, and
∑2k/f
j=i∗(0)+1 x

2
j ≤ 4‖x−2k/f‖22.

With a little abuse of notation, let xS0 denote the output of the `2/`2 with parameters
(4k, f/r2). Notice that there are at most 8k non-zero elements in xS0 , and ‖x−4k‖22 ≤
‖x−i∗(0)‖22 =

∑2k/f
j=i∗(0)+1 x

2
j + ‖x−2k/f‖22 ≤ 5‖x−2k/f‖22. By Lemma 6, we have

∥∥x[k]
∥∥p
p
−

‖xS0‖
p
p ≤

∥∥x[4k]
∥∥p
p
− ‖xS0‖

p
p ≤ (4k)1− p2 f

p
2

rp ‖x−4k‖p2 ≤ O
( 1
rp

)
k1− p2 f

p
2 ‖x−2k/f‖p2. According

to the above three cases, we conclude that ‖x[k]‖pp − ‖xS0‖pp ≤ O
( 1
rp

)
k1− p2 f

p
2 ‖x−2k/f‖p2.

Thus with failure probability at most 1/6,

‖x− x̂‖pp−‖x−k‖pp = ‖x[k]‖pp−
r∑
j=0
‖xSj‖pp ≤ O

(
1
rp

)
k1− p2 f

p
2 ‖x−2k/f‖p2−

r∑
j=1

∥∥xSj∥∥pp . (3)
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In order to convert the first term on the right hand side of (3) to a term related to the `p
norm (which is a semi-norm if 0 < p < 1), we need the following inequalities: for every u
and s, by splitting into chunks of size s, we have

s1− p2 ‖u−2s‖p2 ≤ ‖u−s‖
p
p , and

∥∥∥u[s]∩[2s]

∥∥∥
2
≤
√
s |us| .

Define c = (r + 1)min{p,1}. This gives us that, for 0 < p < 2 1
(r+1)p k

1− p2 f
p
2
∥∥x−2k/f

∥∥p
2 ≤

k1− p2 f
p
2

c

∥∥∥∥x−2k/f1+ 2
p

∥∥∥∥p
2

+ k1− p2 f
p
2

c

∑r
j=1

∥∥∥x[2jk/f ]∩[2j+1k/f ]

∥∥∥p
2
≤ f

(1− p2 )(1+ 2
p

)+ p
2

c

∥∥∥∥x−k/f1+ 2
p

∥∥∥∥p
p

+

1
c

∑r
j=1 k2pj/2

∣∣x2jk/f
∣∣p . Therefore,

‖x̂− x‖pp − ‖x−k‖pp ≤ O
(1
c

)
f

2
p

∥∥∥∥x−k/f1+ 2
p

∥∥∥∥p
p

+
r∑
j=1

O
(1
c

)
k2pj/2|x2jk/f |

p −
r∑
j=1

‖xSj‖
p
p

≤ O
(1
c

)
f

2
p

∥∥x−k/f∥∥pp +
r∑
j=1

O
(1
c

)
k2pj/2|x2jk/f |

p −
r∑
j=1

‖xSj‖
p
p. (4)

Let y = xT denote an independent subsample of x with probability f/(2jk), and ŷ be
the output of the `2/`2 algorithm with parameter s(2, 1/(4(r + 1))

2
p ). Notice that |Sj | ≤

2k/(r + 1)f by the adaptive `2/`2 guarantee. Define Q = [2jk/f ] \ (S0 ∪ · · · ∪ Sj−1). There
are at least 2jk/(2f) elements in Q, and every element in Q has absolute value at least∣∣x2jk/f

∣∣. In each subsample, notice that E[|T ∩Q|] = 1
2 . Thus with sufficiently small constant

failure probability there exists at least 1 element in y with absolute value at least |x2jk/f |.
On the other hand, by Lemma 6 and Lemma 5,∥∥y[1]

∥∥p
p
− ‖ŷ‖pp ≤

∥∥y[2]
∥∥p
p
− ‖ŷ‖pp ≤

21− p2

4(r + 1) ‖y−2‖p2 ≤
1

2(r + 1)

(
f

2jk

) p
2 ∥∥x−2jk/f

∥∥p
2
, (5)

with sufficiently small constant failure probability given by the union bound. For the
k/(2f(r + 1)q) independent copies of subsamples, by a Chernoff bound, a 1/4 fraction of
them will have the largest absolute value in Q and (5) will also hold, with the overall failure
probability being e−Ω(k/(frq)). Therefore, since k/f > 2pj/2k,

∥∥xSj∥∥pp ≥ 2pj/2k
8(r + 1)q

[∣∣x2jk/f
∣∣p − 1

2(r + 1)

(
f

2jk

) p
2 ∥∥x−2jk/f

∥∥p
2

]

≥ 2pj/2k
8(r + 1)q

∣∣x2jk/f
∣∣p − k1− p2 f

p
2

16(r + 1)q+1

∥∥x−2k/f
∥∥p

2 ,

and by the fact that 0 < q < p < 2,

‖x− x̂‖pp − ‖x−k‖pp ≤ O( 1
rp

)k1− p2 f
p
2 ‖x−2k/f‖p2 −

r∑
j=1

∥∥xSj∥∥pp
≤
[
O
(

1
rp

)
+ r

16(r + 1)q+1

]
k1− p2 f

p
2 ‖x−2k/f‖p2 −

r∑
j=1

2pj/2k
8(r + 1)q

∣∣x2jk/f
∣∣p

≤ O
(

1
c

)
f

2
p

∥∥x−k/f∥∥pp +
[
O
(

1
c

)
+ 1

16(r + 1)q −
1

8(r + 1)q

] r∑
j=1

k2pj/2
∣∣x2jk/f

∣∣p
≤ f

2
p

∥∥x−k/f∥∥pp ≤ ε ‖x−k‖pp .
The total number of measurements will be at most

O
(
k

f
loglog(n)+4kr2

f
loglog(n)+ kr

2frq r
2
p loglog(n)

)
= O

(
k

ε
p
2

loglog(n) log
2
p

+1−(p− 1
2 )+
(1
ε

))
,
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while the total failure probability given by the union bound is 1/6 + e−Ω(k/(frq)) < 1/3,
which completes the proof. J

3 `∞/`2 Adaptive Sparse Recovery

In this section, we will prove Theorem 3. Our algorithm first approximates ‖x−k‖2. The
goal is to compute a value V which is not much smaller than 1

k‖x−k‖
2
2, and also at least

Ω( 1
k )‖x−Ω(k)‖22. This value will be used to filter out coordinates that are not large enough,

while ensuring that heavy coordinates are included. We need the following lemma, which for
example can be found in Section 4 of [13].

I Lemma 8. Using log(1/δ) non-adaptive measurements we can find with probability 1− δ a
value V such that 1

C1k
‖x−C2k‖22 ≤ V ≤ 1

k‖x−k‖
2
2, where C1, C2 are absolute constants larger

than 1.

We use the aforementioned lemma with Θ(log k) measuremenents to obtain such a value
V with probability 1−1/poly(k). Now let c be an absolute constant and let g : [n]→ [kc] be a
random hash function. Then, with probability at least 1− 1

poly(k) we have that for every i, j ∈
Hk(x), g(i) 6= g(j). By running PartitionCountSketch (x, 2C1k, {g−1(1), g−1(2), . . . ,
g−1(kc)}, we get back an estimate wj for every j ∈ [kc]; here C1 is an absolute constant.
Let γ′ be an absolute constant to be chosen later. We set S = {j ∈ [kc] : w2

j ≥ γ′V } and
T =

⋃
j∈S g

−1(j). We prove the following lemma.

I Lemma 9. Let C ′ be an absolute constant. With probability at least 1 − 1/poly(k) the
following holds.
1. |S| = O(k).
2. Every j ∈ [kc] such that there exists i ∈ Hk(x) ∩ g−1(j), will be present in S.
3. For every j ∈ S, there exists exactly one coordinate i ∈ g−1(j) with x2

i ≥ 1
C′k‖x−C2k‖22.

4. For every j ∈ S, ‖xg−1(j)\Hk(x)‖22 ≤ 1
k2 ‖x−k‖22.

Proof. Let C0 be an absolute constant larger than 1. Note that with probability 1−C2
0 ·k6−c,

all i ∈ HC0k3(x) (and, hence, also in HC0k3,1/k3(x)) are isolated under g. Fix j ∈ [kc] and,
for i ∈ [n], define the random variable Yi = 1g(xi)=jx

2
i . Now observe that

E

 ∑
i∈g−1(j)\HC0k3,1/k3 (x)

Yi

 = 1
kc
‖x−C0k3‖22.

Applying Bernstein’s inequality to the variables Yi with

K = 1
C0k3 ‖x−C0k3‖22, and σ2 <

1
kc+3 ‖x−C0k3‖42,

we have that

Pr

 ∑
i∈g−1(j)\HC0k3,1/k3 (x)

x2
i ≥ 1/k2‖x−C0k2‖22

 ≤ e−k,
where c is an absolute constant. This allows us to conclude that the above statement holds
for all different kc possible values j, by a union-bound. We now prove the bullets one by
one. We remind the reader that PartitionCountSketch aproximates the value of every
‖xg−1(j)‖22 with a multiplicate error in [1− γ, 1 + γ] and additive error 1

C0k
‖x−k‖22.
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1. Since there are at most 1
γ′(1+γ)C2k+C2k indices j with (1 + γ)‖xg−1(j)‖22 ≥

γ′

k ‖x−k‖
2
2 ≥

γ′V , the algorithm can output at most O(k) indices.
2. The estimate for such a j will be at least (1 − γ) 1

k‖x−k‖
2
2 − 1

2C1k
‖x−C2k‖22 ≥ γ′V , for

some suitable choice of γ′. This implies that j will be included in S.
3. Because of the guarantee for V and the guarantee of PartitionCountSketch, we have

that all j that are in S satisfy (1 + γ)‖xg−1(j)‖22 + 1
k‖x−2C1k‖22 ≥

γ′

k ‖x−C2k‖22, and since

∑
i∈g−1(j)\HC0k3 (x)

x2
i ≤

1
k2 ‖x−k‖

2
2,

this implies that there exists i ∈ HC0k3(x) ∩ g−1(j). But since all i ∈ HC0k3(x) are
perfectly hashed under g, this implies that this i should satisfy x2

i ≥ 1
C′k‖x−C2k‖22, from

which the claim follows.
4. Because elements in HC0k3(x) are perfectly hashed, we have that

‖xg−1(j)\Hk(x)‖22 = ‖xg−1(j)\HC0k3 (x)‖22 ≤
1
k2 ‖x−k‖

2
2

for C0 large enough. J

Given S, we proceed in the following way. For every j ∈ S, we run the algorithm
guaranteed by Lemma 15 from the full version 2 to obtain an index ij , using O(kloglogn)
measurements. Then we observe directly xij using another O(k) measurements, and form
vector z = x− x{ij}j∈S . We need the following lemma.

I Lemma 10. With probability 1− 1/poly(k), |Hk(x) \ {ij}j∈S | ≤ k
log2 n

.

Proof. Let us consider the calls to the 1-sparse recovery routine in j for which there
exists i ∈ Hk(x) ∩ g−1(j). Since the 1-sparse recovery routine succeeds with probability
1− 1/poly(log n), then the probability that we have more than k

log2 n
calls that fail, is

(
k
k

log2 n

)(
1

poly(log n)

)k/ log2 n

≤ 1
poly(k) .

This gives the proof of the lemma. J

For the last step of our algorithm, we run PartitionCountSketch(zT , k/ log(n), [n])
to estimate the entries of z. We then find the coordinates with the largest 2k estimates, and
observe them directly. Since

log n
k
‖(zT )−k/ logn‖22 ≤

log n
k
· 1
k2 ‖x−k‖

2
2 = log n

k3 ‖x−k‖
2
2,

every coordinate will be estimated up to additive error logn
k3 ‖x−k‖22, which shows that every

coordinate in T ∩Hk,1/k(x) will be included in the top 2k coordinates. Putting everything
together, we obtain the desired result.

2 see https://arxiv.org/pdf/1804.09673.pdf
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4 `2/`2 Adaptive Sparse Recovery in Optimal Rounds

In this section, we give an algorithm for `2/`2 compressed sensing using O(loglogn) rounds,
instead of O(log∗ k · loglogn) rounds. Specifically, we prove the first bullet of Theorem 4. We
call this algorithm AdaptiveSparseRecovery`∞/`2 .

We proceed with the design and the analysis of the algorithm. We note that for k/ε =
O(log5 n)3, `∞/`2 gives already the desired result. So, we focus on the case of k/ε = Ω(log5 n).
We pick a hash function h : [n] → [B], where B = ck/(ε log n) for some constant c large
enough. The following follows by an application of Bernstein’s Inequality and the Chernoff
Bound, similarly to `∞/`2.

I Lemma 11. With probability 1− 1/poly(n), the following holds:

∀j ∈ [B] : |Hk/ε(x) ∩ h−1(j)| ≤ log n, and

∣∣∣∣∣∣
∑

i∈h−1(j)\Hk/ε(x)

x2
i

∣∣∣∣∣∣ ≤ ε

k
‖x−k‖22.

We now run the `∞/`2 algorithm for the previous section on vectors xh−1(1), xh−1(2), . . . ,

xh−1(B) with sparsity parameter O(log n), to obtain vectors x̂1, x̂2, . . . , x̂B. The number
of rounds is O(loglog(n)), since we can run the algorithm in every bucket in parallel. By
the definition of the `∞/`2 algorithm, one can see that |supp(x̂j)| ≤ O(log n). We set
S = ∪j∈B |supp(xj)|, and observe that |S| = ck/(ε log n) · O(log n) = O(k/ε). The number of
measurements equals ck/(ε log n)·O(log n·loglog(n log(n/k))) = O((k/ε)·loglog(n log(n/k))).

I Lemma 12. With probability 1− 1/poly(n), we have that |S \Hk/ε(x)| ≤ k
ε log2 n

.

Proof. Since every call to `∞/`2 fails with probability 1/poly(log n), the probability that
we have more than a 1

logn fraction of the calls that fail is at most(
B

B/ log2 n

)(
1

log n

)B/ logn
≤ (e log2 n)logn(log n)−B/ logn ≤ 1

poly(n) .

This implies that S will contain all but at most B/ log2 n · log n = k/(ε log2 n) coordinates
i ∈ Hk(x). J

We now observe xS directly and form the vector z = x− xS , for which ‖z−k/(ε log2 n)‖2 ≤
‖x−k/ε‖2. We now run a standard `2/`2 algorithm that fails with probability 1/poly(n) to
obtain a vector ẑ that approximates z (for example PartitionCountSketch(z, k/(ε log2 n), [n])
suffices). We then output ẑ+xS , for which ‖ẑ+xS−x‖2 = ‖ẑ−z‖ ≤ (1+ ε)‖z−k/(ε logn)‖2 ≤
(1 + ε)‖x−k‖2. The number of measurements of this step is O( 1

ε
k

log2 n
· log n) = o(kε ). The

total number of rounds is clearly O(loglog(n log(nεk ))).

5 `2/`2 with Improved Dependence on ε

In this section, we prove the second part of Theorem 4. We first need an improved algorithm
for the 1-sparse recovery problem.

I Lemma 13. Let x ∈ Rn. There exists an algorithm ImprovedOneSparseRecovery,
that uses O(loglogn + 1

ε loglog( 1
ε )) measurements in O(loglog(n)) rounds, and finds with

sufficiently small constant probability an O(1)-sparse vector x̂ such that ‖x̂ − x‖2 ≤ (1 +
ε)‖x−1‖2.

3 the constant 5 is arbitrary
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Proof. We pick a hash function h : [n] → [B], where B = d1/εhe for a sufficiently large
constant h. Observe that all elements of H√B(x) are perfectly hashed under h with constant
probability, and, ∀j ∈ [B], E

[∥∥∥xh−1(j)\H√B (x)
∥∥∥

2

]
≤ 1/B‖x−√B‖2. As in the previous

sections, invoking Bernstein’s inequality we can get that with probability 1 − 1/poly(B),
∀j ∈ [B],

∥∥∥xh−1(j)\H√B(x)‖2

∥∥∥2

2
≤ c logB

B ‖x−√B‖
2
2, where c is some absolute constant, and the

exponent in the failure probability is a function of c.
We now define the vector z ∈ RB , the j-th coordinate of which equals zj =

∑
i∈h−1(j) σi,jxi.

We shall invoke Khintchine inequality to obtain ∀j,

Pr


∣∣∣∣∣∣

∑
i∈h−1(j)\H√B(x)

σi,jxi

∣∣∣∣∣∣
2

>
c′

ε

∥∥∥xh−1(j)\H√B(x)

∥∥∥2

2

 ≤ e−Ω(1/ε2),

for some absolute constant c′. This allows us to take a union-bound over all B = d1/εhe
entries of z to conclude that there exists an absolute constant ζ such that ∀j ∈ [B],∣∣∣∑i∈h−1(j)\H√B(x) σi,jxi

∣∣∣2 ≤ c′

ε ‖xh−1(j)\H√B(x)‖22 < ζε‖x−1‖22, by setting h large enough.
Now, for every coordinate j ∈ [B] for which h−1(j) ∩H1,ε(x) = i∗ or some i∗ ∈ [n], we have

that |zj | ≥
∣∣∣∣|xi∗ | −√ c logB

B · c′ε ‖x−√B‖2
∣∣∣∣ ≥ (1− ζ)

√
ε‖x−1‖2, whereas for every j ∈ [B] such

that h−1(j)∩H1,εζ(x) = ∅ it holds that |zj | ≤ 2ζ
√
ε‖x−1‖2. We note that H1,ε(x) ⊂ H√B(x),

and hence all elements of H1,ε(x) are also perfectly hashed under h. Moreover, observe that
E‖z−1‖22 ≤ ‖x−1‖22, and hence by Markov’s inequality, we have that ‖z−1‖22 ≤ 10‖x−1‖22
holds with probability 9/10. We run the `2/`2 algorithm of Theorem 4 for vector z with
the sparsity being set to 1, and obtain vector ẑ. We then set S = supp(ẑ). We now
define w = (|z1|, |z2|, . . .), for which ‖w−1‖2 = ‖z−1‖2. Clearly, ‖z − zS‖22 ≤ ‖z − ẑ‖22 ≤
(1 + ε)‖z−1‖22 = (1 + ε)‖w−1‖22. So ‖w − wS‖22 = ‖z − zS‖22 ≤ (1 + ε)‖w−1‖22. We now prove
that

∥∥x− x∪j∈Sh−1(j)
∥∥

2 ≤ (1 +O(ε))‖x−1‖2. Let i∗ be the largest coordinate in magnitude
of x, and j∗ = h(i∗). If j∗ ∈ S, then it follows easily that ‖x − x∪j∈Sh−1(j)‖2 ≤ ‖x−1‖2.
Otherwise, since

∑
j 6=j∗ w

2
j = ‖w−1‖22, and

∑
j /∈S w

2
j ≤ (1+ε)‖w−1‖22, it must be the case that∣∣w2

j∗ − ‖wS‖22
∣∣ ≤ ε‖w−1‖22 ≤ 10ε‖x−1‖22. The above inequality, translates to

∑
i∈h−1(j∗) x

2
i ≤

|S|ζε‖x−1‖22+ζε‖x−1‖22+10ε‖x−1‖22+
∑
j∈S

∑
i∈h−1(j) x

2
j = O(ε)‖x−1‖22+

∑
j∈S

∑
i∈h−1(j) x

2
j .

This gives
∥∥x− x∪j∈Sh−1(j)

∥∥
2 =

∑
i∈h−1(j∗) x

2
i +

∑
j /∈S∪{j∗}

∑
i∈h−1(j) x

2
i ≤ O(ε)‖x−1‖22 +

O(1)ζε‖x−1‖22 +
∑
j∈S

∑
i∈h−1(j) x

2
j +

∑
j /∈S∪{j∗}

∑
i∈h−1(j) x

2
i+ ≤ (1 +O(ε))‖x−1‖22.

Given S, we run the 1-sparse recovery routine on vectors xj for j ∈ S, with a total of
O(loglogn) measurements and O(loglogn) rounds. We then output {xij}j∈S . Let ij be the
index returned for j ∈ S by the 1-sparse recovery routine. Since we have a constant number of
calls to the 1-sparse recovery routine (because S is of constant size), all our 1-sparse recovery
routines will succeed. We now have that ‖x− x∪j∈Sij‖2 ≤ ‖xS̄‖2 +

∑
j∈S ‖xh−1(j) − xij‖2 ≤

‖xS̄‖2 +
∑
j∈S(1 + ε)‖xh−1(j)\H1(x)‖1 ≤ (1 +O(ε))‖x−1‖2. Rescaling ε, we get the desired

result. J

The algorithm for general k is similar to [10], apart from the fact that we subsample at a
slower rate, and also use our new 1-sparse recovery algorithm as a building block. In the
algorithm below, Rr is the universe we are restricting our attention on at the rth round.
Moreover, J is the set of coordinates that we have detected so far. We are now ready to
prove Theorem 4.

Proof. The number of measurements is bounded in the exact same way as in Theorem 3.7
from [10].
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Algorithm 2 Adaptive `2/`2 Sparse Recovery.
1. R0 ← [n].
2. x0 ← ~0.
3. δ0 ← δ/2, ε0 ← ε/e, f0 ← 1/32, k0 ← k.
4. J ← ∅.
5. For r = 0 to O(log∗ k) do
6. For t = 0 to Θ(kr log(1/(δrfr))) do
7. St ← Subsample(x− x(r), Rr, 1/(C0kr)).
8. J ← J ∪ ImprovedOneSparseRecovery((x − x(r))St).
9. End For
10. Rr+1 ← [n] \ J .
11. δr+1 ← δr/8.
12. εr+1 ← εr/2.
13. fr+1 ← 1/21/(4i+rfr).
14. kr+1 ← frkr.
15. Rr+1 ← [n] \ J .
16. End For
17. x̂← x(r+1).
18. Return x̂.

We fix a round r and i ∈ Hkr,εr (x(r)). Then the call to Subsample(Rr, 1/(C0kr)) yields

Pr
[
|Hkr,εr (x− x(r)) ∩ St| = {i}

]
≥ 1
C0kr

, E
[
‖xSt\Hkr,εi (x(r))‖22

]
= 1
C0kr

‖x−kr‖22.

Setting C0 to be large enough and combining Markov’s inequality with the guarantee of Lemma
13, we get that the probability that the call to ImprovedOneSparseRecovery(xSt) returns
i is Θ(1/kr). Because we repeat kr log(1/(frδr)), the probability that i or a set Si of size O(1)
such that ‖x{i} − xSi‖2 ≤ εi‖x−kr‖22, is not added in J is at most (1− 1/kr)kr log(1/(frδr)) =
frδr.

Given the above claim, the number of measurements is O((kloglogn+k/εloglog(1/ε) log(1/δ))
and the analysis of the iterative loop proceeds almost identically to Theorem 3.7 of [10]. J
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Abstract
The No Low-Energy Trivial States (NLTS) conjecture of Freedman and Hastings (Quantum
Information and Computation 2014), which asserts the existence of local Hamiltonians whose low-
energy states cannot be generated by constant-depth quantum circuits, identifies a fundamental
obstacle to resolving the quantum PCP conjecture. Progress towards the NLTS conjecture was
made by Eldar and Harrow (Foundations of Computer Science 2017), who proved a closely related
theorem called No Low-Error Trivial States (NLETS). In this paper, we give a much simpler proof
of the NLETS theorem and use the same technique to establish superpolynomial circuit size lower
bounds for noisy ground states of local Hamiltonians (assuming QCMA 6= QMA), resolving an
open question of Eldar and Harrow. We discuss the new light our results cast on the relationship
between NLTS and NLETS.

Finally, our techniques imply the existence of approximate quantum low-weight check (qLWC)
codes with linear rate, linear distance, and constant weight checks. These codes are similar to
quantum LDPC codes except (1) each particle may participate in a large number of checks, and
(2) errors only need to be corrected up to fidelity 1 − 1/poly(n). This stands in contrast to the
best-known stabilizer LDPC codes due to Freedman, Meyer, and Luo which achieve a distance
of O(

√
n log n).

The principal technique used in our results is to leverage the Feynman-Kitaev clock construc-
tion to approximately embed a subspace of states defined by a circuit as the ground space of a
local Hamiltonian.
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1 Introduction

The quantum PCP conjecture [4, 2] is a central open question in quantum complexity theory.
To understand the statement, it is helpful to review the dictionary translating between
classical constraint satisfaction problems (CSPs) and their quantum analogue, the local
Hamiltonian problem. A classical CSP on n variables corresponds to a local Hamiltonian
H = H1 + · · ·+Hm acting on n qubits1. A solution to the CSP corresponds to an n qubit
quantum state, and the number of violated constraints corresponds to the energy (eigenvalue)
of that quantum state. The NP-hardness of SAT corresponds to the QMA-hardness of
deciding whether the H has minimum eigenvalue at most a or at least b for given a, b such
that b − a = 1/poly(n). The quantum analogue of the PCP theorem, called the qPCP
conjecture, asserts that the problem remains QMA-hard even when b− a ≥ cm = c‖H‖.

Just as the classical PCP theorem connects coding theory to constraint satisfaction
problems, it is natural to expect any resolution of the quantum PCP conjecture to rely on —
and to reveal — deep connections between the theory of quantum error-correcting codes and
ground states (i.e. states of minimum energy) of local Hamiltonians. Examples of quantum
error-correcting codes realized as the ground spaces of local Hamiltonians already play a
central role in our understanding of the physical phenomenon known as topological order [30].
Moreover, it has been suggested that the qPCP conjecture is closely related to one of the
biggest open problems in quantum coding theory: whether quantum low density parity check
(qLDPC) codes with linear rate and linear distance exist [23, 13, 33].

The difficulty of the qPCP conjecture motivated Freedman and Hastings to formulate a
simpler goal called the No Low-Energy Trivial States (NLTS) Conjecture [22]. One way to put
one’s finger on the additional difficulty of qPCP (beyond the “standard” difficulty of proving
a classical PCP theorem) is that solutions of QMA-hard problems are expected to have high
description complexity. For example, if NP 6= QMA, then ground states of local Hamiltonians
do not have classically checkable polynomial-size descriptions. The NLTS conjecture isolates
this aspect of high description complexity by asserting the existence of a family of local
Hamiltonians {H(n)}∞n=1 where H(n) acts on n particles, such that low-energy states (of
energy less than c‖H‖) cannot be generated by quantum circuits of constant depth. A much
stronger version of the NLTS conjecture is a necessary consequence of the qPCP conjecture:
assuming QCMA 6= QMA,2 low-energy states cannot be described even by polynomial-size
quantum circuits. However, one of the advantages of the NLTS conjecture is that it does not
involve complexity classes such as QMA, but rather focuses on the entanglement complexity
that is intrinsic to low-energy states of local Hamiltonians.

1 For normalization, we assume that the terms of a local Hamiltonian have spectral norm at most 1.
2 For precise definitions of the complexity classes QCMA and QMA, we refer the reader to [20, 29]. Roughly

speaking, QMA is the class of problems for which the solution is a quantum state that can be efficiently
checked by a quantum computer. QCMA is the class of problems where the solution is a classical string
that can be efficiently checked by a quantum computer.
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Like the qPCP conjecture, the NLTS conjecture remains unresolved. In [19], Eldar and
Harrow proposed a variant of the NLTS called No Low-Error Trivial States (NLETS), which
is itself a necessary consequence3 of NLTS. The difference was that rather than considering
low-energy states of H, they considered a notion of “local corruption error”, what they call
ε-error states: these are states that differ from the ground state in at most εn qubits. More
precisely, σ is ε-error for a local Hamiltonian H if there exists a ground state ρ of H and a
set S of at most εn qudits such that TrS(ρ) = TrS(σ). Under this definition they were able
to establish a family of Hamiltonians for which any ε-error state requires circuit depth of
Ω(log n). This was welcomed as very encouraging progress towards establishing NLTS, since
NLETS could be regarded as a close proxy for NLTS, with a technical change in definition of
distance under which to examine the robustness of the ground space.

In this paper, we start by giving a simple argument for the Ω(log n) circuit depth lower
bound of Eldar and Harrow; our lower bound holds even under a more general error model,
which allows any probabilistic mixture of ε-error states (we call these states noisy ground
states). Moreover, we can use the same techniques to answer their open question of whether
one can obtain circuit size lower bounds on low-error states that go beyond logarithmic
depth: specifically, we show that there exists a family of local Hamiltonians whose noisy
ground states require superpolynomial-size circuits, assuming QCMA 6= QMA.

One way to view these results is that they provide further progress towards the NLTS
conjecture and beyond. However, it is instructive to take a step back to consider more
closely the basic difference between NLETS and NLTS. This lies in the different notion of
approximation: in NLETS, approximation corresponds to local corruptions in εn sites, where
n is the total number of particles, whereas in NLTS approximation corresponds to energy at
most ε‖H‖ (intuitively, at most ε fraction of the terms of the Hamiltonian are violated). An
alternative perspective on our results is that they suggest these two notions of approximation
are quite different. This view is reinforced by the fact that our Ω(log n)-circuit depth lower
bounds on noisy ground states holds for a family of 1D Hamiltonians, whereas we know
that NLTS and qPCP Hamiltonians cannot live on any constant-dimensional lattice [2].
This suggests that in the context of the qPCP and NLTS conjectures, the correct notion of
distance is given by the energy or number of violated terms of the Hamiltonian.

On the other hand, the local corruption distance as defined by Eldar and Harrow for
their NLETS result is the natural one that arises in quantum error correction: the distance
of a code is defined by the maximum number of qubits of a codeword that can be erased
while maintaining recoverability. We give a construction of a family of codes (inspired by the
construction used in our noisy ground state lower bound) that we call quantum low weight
check (qLWC) codes. The family of codes we consider are approximate error-correcting codes
in the sense of [16, 11]. They are closely related to qLDPC codes, with the difference that
they are not stabilizer codes and therefore the low weight checks are not Pauli operators.
Specifically, we give a family of approximate qLWCs with linear distance and linear rate.
Constructing qLDPC codes with similar parameters is a central open question in coding
theory, with the best-known stabilizer LDPC codes due to Freedman, Meyer, and Luo which
achieve a distance of O(

√
n log n) [23].

What is common to the above results is the technique. We start with the observation
that the complicated part of the Eldar and Harrow proof is constructing a local Hamiltonian
whose ground states share some of the properties of the cat state | n〉 = (|0〉⊗n + |1〉⊗n)/

√
2.

3 The local Hamiltonian family must be of bounded-degree, meaning no particle participates in more
than a constant number of Hamiltonian terms.
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To do so, they constructed a local Hamiltonian corresponding to a quantum error-correcting
code (based on the Tillich-Zemor hypergraph product construction) and showed that its
ground states have non-expansion properties similar to those of the cat state [19]. Our
starting point is the observation that the Tillich-Zemor construction is unnecessary and
that one can make the cat state approximately a ground state of a local Hamiltonian in the
following sense: we construct a Feynman-Kitaev clock Hamiltonian corresponding to the
circuit that generates | n〉 from |0〉⊗n.4 The ground state of this Hamiltonian is the history
state of this computation, and we directly argue that the circuit depth necessary to generate
this history state is at least Ω(log n). This same argument even allows us to lower bound the
circuit depth of approximate noisy ground states (i.e. states that are close in trace distance
to a noisy ground state).

The Feynman-Kitaev clock Hamiltonian plays a central role in our construction of qLWCs,
with history states playing the role of codewords. The fact that such a construction yields an
error-correcting code flies in the face of classical intuition. After all, it is the brittleness of
the Cook-Levin tableau [15, 32] (the classical analogue of the history state) that motivates
the elaborate classical PCP constructions [7, 6, 18]. The difference is that time is in
superposition in a quantum history state. We do not yet understand the implications of this
observation. For example, is it possible that it might lead to new ways of constructing qLDPC
codes with super-efficient decoding procedures? There are precedents for such connections
between computational phenomena and codes, most notably with the PCP theorem and the
construction of locally testable and locally checkable codes.

Furthermore, while quantum error-correcting codes have typically provided a wealth of
examples of interesting local Hamiltonians, our construction of qLWCs also suggest that a
fruitful connection exists in the opposite direction: by considering techniques to construct
local Hamiltonians (such as the Feynman-Kitaev clock construction), we can construct an
interesting example of a quantum error-correcting code. We note that this reverse connection
is starting to take hold in other areas of quantum information theory and physics: see [12, 28].

2 Summary of Results

Before we present our results, we motivate our definition of noisy ground states.

2.1 Noisy ground states
The NLETS Theorem and NLTS conjecture describe different ways in which the ground
space entanglement is robust. The ground states of NLETS Hamiltonians are robust against
local corruptions in εn sites, where n is the total number of particles. NLTS Hamiltonians
are robust against low-energy excitations in the sense that all states with energy at most
ε‖H‖ retain nontrivial circuit complexity.

In this paper, we study another way that ground space entanglement can be robust. We
focus on the concept of noisy ground state, which is a generalization of low-error states: an
ε-noisy ground state σ of a local Hamiltonian H is a probabilistic mixture of ε-error states
{σi}.

This notion of noisy ground state is naturally motivated by the following situation:
consider a ground state ρ of H. On each particle independently apply the following process

4 A similar construction of a clock Hamiltonian was also considered by Crosson and Bowen in the context
of idealized adiabatic algorithms [17]. The construction is inspired by techniques of [14, 10].
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M: with probability ε, apply a noisy channel N , and with probability 1− ε apply the identity
channel I. The resulting state is

M(ρ) = ((1− ε)I + εN )⊗n (ρ)

=
∑
S⊆[n]

(1− ε)n−|S|ε|S|N S(ρ)

≈
∑

S:|S|≤2εn

(1− ε)n−|S|ε|S|N S(ρ)

(1)

where N S denotes the tensor product of the map N acting on the particles indexed by S. The
last approximate equality follows from the fact that with overwhelmingly large probability,
N S acts on at most 2εn particles. Notice that the expression on the right hand side is (up
to normalization) a 2ε-noisy ground state, because when |S| ≤ 2εn, the state N S(ρ) is a
2ε-error state.

This justifies the name “noisy ground state”, as the operationM is is a reasonable model
of noise that occurs in physical processes (and is frequently considered in work on quantum
fault-tolerance). Furthermore, we believe that our model arises naturally in the context of
noisy adiabatic quantum computation.

As mentioned before, noisy ground states are a generalization of low-error states but are
a special case of low-energy states: since low-error states are themselves low-energy states, a
convex combination of them is also low-energy.

We prove several results about the robustness of entanglement in noisy ground states.

2.2 Logarithmic circuit depth lower bound
First, we generalize Eldar and Harrow’s logarithmic circuit depth lower bound [19] to
encompass noisy ground states. Furthermore, we present a family of Hamiltonians that is
one-dimensional ; in other words, the particles of the Hamiltonian are arranged on a line and
the Hamiltonian terms act on neighboring particles.

We call this the Logarithmic Noisy Ground States (LNGS) Theorem5.

I Theorem 1 (Logarithmic lower bound). There exists a family of 3-local Hamiltonians {H(n)}
on a line, acting on particles of dimension 3, such that for all n ∈ N, for all 0 ≤ ε < 1/48,
0 ≤ δ < 1

8 − 6ε, the δ-approximate circuit depth of any ε-noisy ground state σ for H(n) is at
least 1

2 log(n/2).

Here, the δ-approximate circuit depth of ρ means the circuit depth needed to produce a
state that is δ-close to ρ in trace distance.

Our proof of Theorem 1 is simple and self-contained. As a consequence of our simpler local
Hamiltonian construction, we obtain improved parameters over those in [19]. Furthermore, as
we will discuss below in Section 2.4, the fact that our LNGS Hamiltonian is one-dimensional
gives a strong separation between NLETS/LNGS and NLTS Hamiltonians.

2.2.1 Superpolynomial circuit size lower bound
A question that was left open by [19] is whether one can obtain circuit lower bounds on
low-error states that are better than logarithmic – say polynomial or even exponential. We
show that there exists a family of local Hamiltonians whose noisy ground states require

5 We pronounce this “Longs.”
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superpolynomial6 size circuits, assuming QCMA 6= QMA. Since low-error states are noisy
ground states, this provides an answer to Eldar and Harrow’s open question.

We call this the Superpolynomial Noisy Ground States (SNGS) Theorem7.

I Theorem 2 (Superpolynomial Noisy Ground States (SNGS)). If QCMA 6= QMA, then there
exists q, ε > 0 and a family of 7-local Hamiltonians {H(n)} acting on dimension-q qudits such
that for all 0 ≤ δ < 1/5, the δ-approximate circuit complexity of any family {σn} of ε-noisy
ground states for {H(n)} grows faster than any polynomial in n.

We call such a family {H(n)} SNGS Hamiltonians. The following is a proof sketch. Let
L = (Lyes, Lno) be the QMA-complete language consisting of descriptions of polynomial-size
verifier circuits acting on a witness state and ancilla qubits. We convert each circuit C ∈ L,
into a circuit C ′ where C ′ applies in order: (a) a unitary V to encode the state in an
error-correcting code8, (b) a collection of identity gates, (c) the unitary V † to decode the
state, and (d) the gate circuit C. The construction maintains that the circuits C ′ and C are
equivalent. We then generate the Feynman-Kitaev clock Hamiltonian for C ′. Let HC be this
Hamiltonian. The family of SNGS Hamiltonians is precisely {HC : C ∈ Lyes}.

In order to prove that all noisy ground states of this Hamiltonian must have superpoly-
nomial circuit size, we show that if there was a noisy ground state with a polynomial-size
generating circuit, then the description of the generating circuit would suffice as a classical
witness for the original QMA-complete problem. In the yes case, the construction of C ′ from
C enforces that tracing out the time register of the noisy ground state will yield a state
close to a convex combination of {Enc(|ξi, 0〉)} where Enc(·) is the encoding function for
the error-correcting code and {|ξi〉}, a collection of accepting witness. Therefore, given the
description of the generating circuit for the noisy ground state, we can generate the noisy
ground state and decode the original witness state. It suffices then to check the witness by
running the original circuit C. The no case follows easily from the definition of Lno. This
proves that L ∈ QCMA, proving QCMA = QMA, contradicting the original assumption.

2.2.2 Semi-explicit SNGS Hamiltonians via oracle separations
It is an open question in quantum complexity theory of whether QCMA is equal to QMA.
Aaronson and Kuperberg gave the first complexity-theoretic evidence that they are different
by constructing a quantum oracle O such that QCMAO ( QMAO [1]. Fefferman and Kimmel
later showed that one can obtain the same oracle separation with in-place oracles O, which
are permutation matrices in the standard basis [20]. The separations of [1, 20] hold as long
as the locality of the oracles O is ω(log n) (i.e. superlogarithmic in the problem size).

We show that any oracle separation between QCMA and QMA can be leveraged to obtain
a semi-explicit family of SNGS Hamiltonians:

I Theorem 3. There exists q, ε > 0, a function k(n) = O(log1+α n) for arbitrarily small
α > 0 and a family of k-local Hamiltonians {H(n)} acting on dimension-q qudits such that
the following holds: The circuit complexity of any family {σn} of ε-noisy ground states for
{H(n)} grows faster than any polynomial in n. Furthermore, there is exactly one term in
H(n) that is k(n)-local; all other terms are 7-local.

6 Here, “superpolynomial” refers to functions f(n) that grow faster than any polynomial in n.
7 We pronounce this “Songs”.
8 Such asymptotically good codes are known to exist (e.g, [8, 24]).
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Unlike Theorem 2, the superpolynomial lower bound on the circuit complexity of noisy
ground states does not require any complexity-theoretic assumption! The caveat is that
this family is only known to exist via a counting argument; there is exactly one term of the
Hamiltonian that has ω(log n)-locality and does not have an explicit description. However,
however, all of other the terms of the local Hamiltonians are 7-local and have explicit
descriptions.

The essential idea is to apply the proof of Theorem 2 to the QMAO verifier that decides a
language L which is not in QCMAO. In both [1, 20], this verifier only makes a single call to
the oracle O. Thus there is one term in the Feynman-Kitaev clock Hamiltonian corresponding
to the propagation of that oracle call. Since we do not have an explicit description of a
separating oracle O, this Hamiltonian term is non-explicit.

2.3 Asymptotically good approximate low-weight check codes
The techniques from the previous sections also give rise to what we call approximate quantum
low-weight check (qLWC) codes. These are closely related to quantum low-density parity
check (qLDPC) codes, which are stabilizer codes where each parity check acts on a bounded
number of particles, and each particle participates in a bounded number of parity checks. It
is a long-standing open question of whether asymptotically good qLDPC codes exist (i.e.
constant locality, constant rate, and constant relative distance). The qLDPC conjecture
posits that such codes exist.

We show that if one relaxes the conditions of (a) each particle participating in a small
number of constraints, and (b) that we can exactly recover from errors, we can obtain locally
defined quantum error-correcting codes with such good parameters. First, we define our
notion of approximate qLWC codes:

I Definition 4 (Approximate qLWC code). A local Hamiltonian H = H1 + · · ·+Hm acting
on n dimension-q qudits is a [[n, k, d]]q approximate quantum LWC code with error δ and
locality w iff each of the terms Hi act on at most w qudits and there exists encoding and
decoding maps Enc,Dec such that
1. 〈Ψ|H |Ψ〉 = 0 if and only if |Ψ〉〈Ψ| = Enc(|ξ〉〈ξ|) for some |ξ〉 ∈ (Cq)⊗k.
2. For all |φ〉 ∈ (Cq)⊗k ⊗R where R is some purifying register, for all completely positive

trace preserving maps E acting on at most (d− 1)/2 qudits,

‖Dec ◦ E ◦ Enc(|φ〉〈φ|)− |φ〉〈φ|‖1 ≤ δ. (2)

Here, the maps Enc, E , and Dec do not act on register R.
The first condition of the above definition enforces that the ground space of the Hamiltonian
H of an approximate qLWC code is a qk-dimensional codespace; it is the exactly the image of
the encoding map Enc. The second condition corresponds to the approximate error-correcting
condition, where we only require that the decoded state is close to the original state (i.e., we
no longer insist that Dec ◦ E ◦ Enc is exactly the identity channel I). Although there are
few results on approximate quantum error-correcting codes, we do know that relaxing the
exact decoding condition yields codes with properties that cannot be achieved using exact
codes [31, 16, 11].

Our proof of Theorem 2 yields a construction of an approximate quantum LWC code
with distance Ω(n).We believe this may be of independent interest.
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I Theorem 5 (Good approximate qLWC codes exist). For all error functions δ(n) there exist
a family of [[n, k, d]]q approximate quantum LWC codes with the following parameters:

Qudit dimension q = O(1),
Error δ = δ(n),

Locality w = 3 + 2r,
Blocklength n = O(rk),

Distance d = Ω(n/r)

where

r = O

(
log
(
1 + 4/δ2)
log n

)
+ 2. (3)

Furthermore, the encoding and decoding maps for these codes are explicit and efficiently
computable.

Observe that when δ(n) = 1/poly(n), the parameter r = O(1).
By comparison, the best-known qLDPC codes (of the stabilizer variety) with constant

locality have distance bounded by O(
√
n log n) [23]. Hastings constructs a qLDPC stabilizer

code with constant locality that has distance n1−ε for any ε > 0, assuming a conjecture in
high-dimensional geometry [26, 25]. Bacon, et al. were able to construct sparse subsystem
codes (a generalization of stabilizer codes) with constant locality and distance n1−o(1) [9]. We
note that, interestingly, the codes of [9] are constructed from fault-tolerant quantum circuits
that implement a stabilizer code — this is similar to the way we construct our approximate
qLWC codes!

2.4 Implications for NLTS, quantum PCP and quantum LDPC
Our investigation into noisy ground states and approximate low-weight check codes is
motivated by a number of important open questions in quantum information theory: NLTS,
quantum PCP, and quantum LDPC. We believe that our results help clarify the status of
these open problems, and the relationships between them.

A separation between LNGS/SNGS and NLTS Hamiltonians.

First, our logarithmic circuit-depth lower bound for noisy ground states (Theorem 1) gives a
strong separation between the notions of entanglement robustness in NLETS and NLTS: we
showed that a one-dimensional local Hamiltonian is NLETS. However, it is easy to see that
one-dimensional Hamiltonians (or any Hamiltonian on a constant-dimensional lattice) cannot
be NLTS. To see this, consider taking a n-particle ground state |Ψ〉 of a 1D Hamiltonian H;
divide up the n particles into contiguous chunks of length L. Let σ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn/L
where ρi is the reduced density matrix of |Ψ〉 on the i’th chunk. This state σ violates O(n/L)
terms of the Hamiltonian (since H is one-dimensional). Therefore, it is a ε-energy state of
H for L = Θ(1/ε). On the other hand, σ is a tensor product state that can be generated
by 2O(1/ε)-depth circuits, which is constant for constant ε. This indicates that the form
of entanglement robustness as expressed in NLETS and in our LNGS/SNGS Hamiltonian
constructions is much weaker than the entanglement robustness required by the NLTS
conjecture and quantum PCP, where one has to look for Hamiltonians on high-dimensional
geometries.
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Quantum LDPC codes and the Quantum PCP conjecture.

Resolving the qPCP conjecture would likely involve a transformation from H to H ′ that
(at the very least) has the property that exact ground states of H (or closeby states in
trace distance) can be recovered from low-energy states of H ′. It has been suggested that
such a transformation would involve some kind of qLDPC code [22, 3, 26, 19]. In fact, it is
believed that a special kind of qLDPC code, called a quantum locally testable code (qLTC),
is necessary [3]. However, the existence of qLTCs (or even qLDPC codes) with constant
relative distance is a major open problem.

We believe our results on approximate quantum LWC codes present two take-home
messages for the qPCP and qLDPC conjectures. First, it is important that a qPCP (or
a qLTC) Hamiltonian be local, but it is not necessary that the Hamiltonian be bounded
degree (meaning that each particle only participates in a few terms). The bounded degree
condition is useful in the original context for qLDPCs, where an important motivation is to
find fast decoding algorithms. In the context of qPCP/qLTC, however, decoding efficiency is
not an immediate concern; thus resolving the qPCP conjecture need not resolve the qLDPC
conjecture.

Second, we believe this gives evidence that considering codes other than stabilizer codes —
such as approximate codes or subsystem codes — may be useful in the quest for both qPCP
and qLDPC. Most work on qLDPC codes has focused on constructing CSS and stabilizer
codes, but it may be fruitful to branch out beyond the CSS/stabilizer setting for the purposes
of understanding the possibilities (or limits) of qPCP/qLDPC. For example, our qLWC codes
are unconventional in a few ways: they are defined by non-commuting Hamiltonians, they
only admit approximate recovery, and each particle participates in a large number of checks.

2.5 Open questions

We list a few open problems.
1. Are there SNGS Hamiltonians or (approximate) qLWC codes that are geometrically local

(with respect to, say, the Euclidean metric)? Our construction of a one-dimensional NLGS
Hamiltonian uses a simplification of a technique of Aharanov et. al. [5] of converting
a quantum circuit into a two-dimensional local Hamiltonian. This technique works
because of the specific structure of the circuit generating the | 〉 state. In general, the
transformation involves increasing the number of qudits by more than a constant factor.
If this factor is Θ(nα), then the ground states are resilient to errors of size at most n1−α.

2. Is there a family of local Hamiltonians such that any superposition (not just convex com-
bination) of low-error states have large circuit complexity? This notion is a generalization
of a noisy state; such states have small quantum Hamming distance to the ground space.
This is an interesting notion in the context of quantum locally testable codes (qLTCs)
because low-energy states are equivalent to states with low quantum Hamming distance
to the codespace (see [19] for definitions of quantum Hamming distance and qLTCs).

3. Are there applications of our qLWC constructions?
4. There has been a number of recent results about approximate quantum error-correcting

codes in a variety of areas including many-body physics [12], the AdS/CFT correspond-
ence [28], and quantum resource theories [27]. Could approximate error-correcting codes
play a role in trying to resolve the qPCP and qLDPC conjectures?

5. Eldar and Harrow showed that quantum locally testable codes of the CSS type are
NLTS [19]. Can this argument be extended to general qLTCs?

ICALP 2018
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6. Is it possible for qLDPC codes (not necessarily stabilizer or exact error-correcting codes)
to be defined as the codespace of a geometrically local Hamiltonian? There are a few
no-go results that give limitations on codes living on lattices [13, 21], but they apply to
special classes of codes such as stabilizer codes or locally-correctible codes. Our qLWC
codes, by contrast, are neither.

7. Could the combinatorial NLTS conjecture be easier to prove than the NLTS conjecture?
This conjecture posits that there exist a family of local Hamiltonians where states that
have non-zero energy penalty on only a small constant fraction of Hamiltonian terms
must have non-trivial circuit complexity.
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Abstract
We consider the problem of maintaining a maximal independent set (MIS) in a dynamic graph
subject to edge insertions and deletions. Recently, Assadi, Onak, Schieber and Solomon (STOC
2018) showed that an MIS can be maintained in sublinear (in the dynamically changing number
of edges) amortized update time. In this paper we significantly improve the update time for
uniformly sparse graphs. Specifically, for graphs with arboricity α, the amortized update time
of our algorithm is O(α2 · log2 n), where n is the number of vertices. For low arboricity graphs,
which include, for example, minor-free graphs as well as some classes of “real world” graphs, our
update time is polylogarithmic. Our update time improves the result of Assadi et al. for all
graphs with arboricity bounded by m3/8−ε, for any constant ε > 0. This covers much of the
range of possible values for arboricity, as the arboricity of a general graph cannot exceed m1/2.
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1 Introduction

The importance of the maximal independent set (MIS) problem is hard to overstate. In
general, MIS algorithms constitute a useful subroutine for locally breaking symmetry between
several choices. The MIS problem has intimate connections to a plethora of fundamental
combinatorial optimization problems such as maximum matching, minimum vertex cover, and
graph coloring. As a prime example, MIS is often used in the context of graph coloring, as all
vertices in an independent set can be assigned the same color. As another important example,
one can compute a large matching (approximating the maximum matching to within a factor
arbitrarily close to 1) by applying maximal independent sets of longer and longer augmenting
paths as observed by Hopcroft and Karp [11]. The seminal papers of Luby [18] and Linial [17]
discuss additional applications of MIS. A non-exhaustive list of further direct and indirect
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applications of MIS includes resource allocation [25], leader election [7], the construction of
network backbones [16, 12], and sublinear-time approximation algorithms [22].

In the 1980s, questions concerning the computational complexity of the MIS problem
spurred a line of research that led to the celebrated parallel algorithms of Luby [18], and
Alon, Babai, and Itai [1]. These algorithms find an MIS in O(log n) rounds without global
coordination. More recently, Fischer and Noever [8] gave an even simpler greedy algorithm
that considers vertices in random order and takes O(log n) rounds with high probability (see
also an earlier result of Blelloch, Fineman, and Shun [4]).

In this work we continue the study of the MIS problem by considering the dynamic
setting, where the underlying graph is not fixed, but rather evolves over time via edge
updates. Formally, a dynamic graph is a graph sequence G = (G0, G1, . . . , GM ) on n fixed
vertices, where the initial graph is G0 = (V, ∅) and each graph Gi = (V,Ei) is obtained from
the previous graph Gi−1 in the sequence by either adding or deleting a single edge. The
basic goal in this context is to maintain an MIS in time significantly faster than it takes to
recompute it from scratch following every edge update.

In STOC’18, Assadi, Onak, Schieber, and Solomon [2] gave the first sub-linear (amortized)
update time fully dynamic algorithm for maintaining a MIS. Their amortized update time in
min{m3/4,∆}, where m is the (dynamically changing) number of edges, and ∆ is a fixed
bound on the maximum degree of the graph. For graphs of high maximum degree, the update
time of the algorithm of [2] decreases as the graph becomes sparser.

1.1 Our contribution

We focus on graphs that are “uniformly sparse” or “sparse everywhere”, as opposed to the
previous work by Assadi et al. [2] that considers unrestricted sparse graphs. We aim to
improve the update time of [2] as a function of the “uniform sparsity” of the graph. This
fundamental property of graphs has been studied in various contexts and names over the
years, one of which is via the notion of arboricity [19, 20, 24]:

I Definition 1.1. The arboricity α of a graph G = (V,E) is defined as α = maxU⊂V d |E(U)|
|U |−1 e,

where E(U) = {(u, v) ∈ E | u, v ∈ U}.

Thus a graph has bounded arboricity if every induced subgraph has bounded density. The
family of low arboricity graphs contains, among others, bounded-degree graphs, all minor-
closed graph classes (e.g., planar graphs, graphs with bounded treewidth), and randomly
generated preferential attachment graphs. Moreover, it is believed that many real-world
graphs such as the world wide web graph and social networks also have low arboricity [9].

A dynamic graph of arboricity α is a dynamic graph such that all graphs Gi have arboricity
bounded by α. We prove the following result.

I Theorem 1.2. For any dynamic n-vertex graph of arboricity α, an MIS can be maintained
deterministically in O(α2 log2 n) amortized update time.

Theorem 1.2 improves the result of Assadi et al. for all graphs with arboricity bounded
by m3/8−ε, for any constant ε > 0. This covers much of the range of possible values for
arboricity, as the arboricity of a general graph cannot exceed

√
m. Furthermore, we obtain

polylogarithmic update time for graphs of polylogarithmic arboricity; in particular, for the
family of constant arboricity graphs the update time is O(log2 n).
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1.2 Our and previous techniques

1.2.1 The dynamic edge orientation problem

Our algorithm utilizes two properties of arboricity α graphs: a) every subgraph contains a
vertex of degree at most 2α, and b) there exists an orientation of the edges so that every
vertex has out-degree at most α. The first property follows from Definition 1.1 and the
second property is due to an alternate definition [20].

Brodal and Fagerberg [5] initiated the study of the dynamic edge orientation problem and
gave an algorithm that maintains an O(α) out-degree orientation in amortized O(α+ log n)
time; our algorithm uses the algorithm of [5] as a black box. (Refer to [14, 10, 13, 3] for
additional results on the dynamic edge orientation problem.)

1.2.2 A comparison to Assadi et al.

As noted already by Assadi et al. [2], a central obstacle in maintaining an MIS in a dynamic
graph is the maintenance of a detailed 2-hop neighborhood of a vertex. We need this
information to update the MIS. Consider the “hard” case that an edge is added to the graph
and as a result, one of its endpoints v is removed from the MIS. In this case, to maintain the
maximality of the MIS we need to identify and add to the MIS all neighbors of v that are
not adjacent to a vertex in the MIS. This means that for each of v’s neighbors, we need to
know whether it has a neighbor the MIS (other than v). Alas, dynamically maintaining the
2-neighborhood of each vertex explicitly is prohibitive.

To overcome this hurdle, we build upon the approach of Assadi et al. [2] and maintain an
incomplete 2-hop neighborhood. Consequently, we may err by adding vertices to the MIS
even though they are adjacent to MIS vertices. To fix this, we need to remove vertices from
the MIS. The important property that we maintain, following [2], is that the number of
added vertices is significantly higher than the number of removed vertices. Like Assadi et al.,
we use a potential function defined as the number of vertices not in the MIS. To amortize the
update time, if an update takes a long time, then the size of the MIS increases substantially
as a result. On the other hand, the size of the MIS can only decrease by one in each update.
Our algorithm deviates significantly from Assadi et al. in several respects, described next.

I: An underlying bounded out-degree orientation. We apply the algorithm of [5] for
efficiently maintaining a bounded out-degree orientation. Given such an orientation, we
can maintain 2-hop neighborhoods with respect to outgoing edges explicitly, which helps
significantly in the maintenance of the MIS. More specifically, the usage of a bounded
out-degree orientation enables us to reduce the problem to a single nontrivial case.

II: An intricate “chain reaction”. To handle the nontrivial case efficiently, we develop an
intricate “chain reaction” process, initiated by adding vertices to the MIS that violate the
independence property, which then forces the removal of other vertices from the MIS, which
in turn forces the addition of other vertices, and so forth. Such a process may take a long
time. However, a novel partition of a subset of the in-neighborhood of each vertex in the MIS
into a logarithmic number of “buckets” (see below) together with a careful analysis allow for
limiting this chain reaction to a logarithmic number of phases; upper bounding the number
of phases is crucial for achieving a low update time. We note that such a careful analysis was
not required in [2], where the chain reaction was handled by a simple recursive treatment.
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III: A precise bucketing scheme. In order to achieve a sufficient increase in the size of the
MIS, we need to carefully choose which vertices to add to the MIS so as to guarantee that
at every step of the aforementioned chain reaction, even steps far in the future, we will be
able to add enough vertices to the MIS. We achieve this by maintaining a precise bucketing
of a carefully maintained subset of the in-neighborhood of each vertex, where vertices in
larger-indexed buckets are capable of setting off longer and more fruitful chain reactions. At
the beginning of the chain reaction, we add vertices in the larger-indexed buckets to the MIS,
and gradually allow for vertices in smaller-indexed buckets to be added.

IV: A tentative set of MIS vertices. In contrast to the algorithm of Assadi et al., here
we cannot iteratively choose which vertices to add to the MIS. Instead, we need to build
a tentative set of vertices to add to the MIS, and only later prune this set to choose which
vertices to add. If we do not carefully select vertices added to the MIS, we may not increase
the size of the MIS sufficiently in order to amortize the cost of this process. To make sure
that the size of the tentative set remains sufficiently large after the pruning, we make critical
use of the first property of low arboricity graphs mentioned in Section 1.2.1. More details
can be found at the beginning of Section 4.1.

1.2.3 A comparison to other previous work
Censor-Hillel, Haramaty, and Karnin [6] consider the problem of maintaining MIS in the
dynamic distributed setting. They show that there is a randomized algorithm that requires
only a constant number of rounds in expectation to update the maintained MIS, as long
as the sequence of graph updates does not depend on the algorithm’s randomness. This
assumption is often referred to as oblivious adversary. As noted by Censor-Hillel et al., it is
unclear whether their algorithm can be implemented with low total work in the centralized
setting. This shortcoming is addressed by Assadi et al. [2] and by the current paper.

Kowalik and Kurowski [15] employ a dynamic bounded out-degree orientation to answer
shortest path queries in (unweighted) planar graphs. Specifically, given a planar graph and
a constant k, Kowalik and Kurowski maintain a data structure that can check in constant
time whether two vertices are at distance at most k and if so produce a path of such length.
This data structure is fully dynamic with polylogarithmic amortized update time. Like our
data structure, their data structure maintains information on the 2-hop neighborhoods of
the vertices, however, the nature of the 2-hop neighborhood information necessary for the
two problems is different. For answering shortest path queries, one needs to maintain the
complete 2-hop neighborhood. Whereas, to maintain an MIS, we only need to maintain
partial information about the 2-hop neighborhood, however, the information that we store
must be more detailed in the sense that for each 2-hop neighbor that we store, we need to
know which 1-hop neighbors it is adjacent to. This is necessary because when we remove a
vertex v from the MIS, we need to know which of v’s neighbors have no neighbors in the
MIS in order to know which vertices we need to add to the MIS.

1.3 Dynamic MIS vs. dynamic maximal matching
In the maximal matching problem, the goal is to compute a matching that cannot be extended
by adding another edge. The problem is equivalent to finding an MIS in the line graph of
the input graph. However, despite this very close relationship between the MIS and maximal
matching problems, (efficiently) maintaining an MIS appears to be inherently harder than
maintaining a maximal matching. As a first potential evidence, one may notice that there
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is a significant gap in the performance of the naive algorithms for these dynamic problems.
For the maximal matching problem, the naive algorithm works in O(∆) time. For the MIS
problem, the naive algorithm has to inspect not only neighbors of a vertex v that is being
removed from MIS, but also their neighbors (i.e. its 2-hop neighborhood) in order to find
out which neighbors need to be added to the MIS; as a result the update time is O(m).
Furthermore, the worst-case number of MIS changes (by any algorithm) may be as high as
Ω(∆) [6, 2], whereas the worst-case number of changes to the maximal matching maintained
by the naive algorithm is O(1). Also, the available body of work on the dynamic MIS problem
is significantly sparser than for the dynamic maximal matching problem.

It is therefore plausible that it may be hard to obtain, for MIS, a bound better than
the best bounds known for the dynamic maximal matching problem. In particular, the
state-of-the-art dynamic deterministic algorithm for maintaining a maximal matching has an
update time of O(

√
m) [21], even in the amortized sense. Hence, in order to obtain update

time bounds sub-polynomial in m, one may have to exploit the structure of the graph, and
bounded arboricity graphs are a natural candidate. A maximal matching can be maintained
in graphs of arboricity bounded by α with amortized update time O(α+

√
α lg n) [21, 10]; as

long as the arboricity is polylogarithmic in n, the amortized update time for maintaining a
maximal matching is polylogarithmic. In this work we show that essentially the same picture
applies to the seemingly harder problem of dynamic MIS.

2 Algorithm overview

Using a bounded out-degree orientation of the edges, a very simple algorithm suffices to
handle edge updates that fall into certain cases. The nontrivial case occurs when we remove
a vertex v from the MIS and need to determine which vertices in v’s in-neighborhood have
no neighbors in the MIS, and thus need to be added to the MIS. The in-neighborhood of v
could be very large and it would be costly to spend even constant time per in-neighbor of v.
Furthermore, it would be costly to maintain a data structure that stores for each vertex in
the MIS which of its in-neighbors have no other neighbors in the MIS. Suppose we stored
such a data structure for a vertex v. Then the removal of a vertex u from the MIS could
cause the entirety of the common neighborhood of u and v to change their status in v’s data
structure. If this common neighborhood is large, then this operation is costly.

To address this issue, our algorithm does not even attempt to determine the exact set of
neighbors of v that need to be added to the MIS. Instead, we maintain partial information
about which vertices will need to be added to the MIS. Then, when we are unsure about
whether we need to add a specific vertex to the MIS, we simply add it to the MIS and remove
its conflicting neighbors from the MIS, which triggers a chain reaction of changes to the
MIS. Despite the fact that this chain reaction may take a long time to resolve, we obtain an
amortized time bound by using a potential function: the number of vertices not in the MIS.
That is, we ensure that if we spend a lot of time processing an edge update, then the size of
the MIS increases substantially as a result.

The core of our algorithm is to carefully choose which vertices to add to the MIS at
each step of the chain reaction to ensure that the size of the MIS increases sufficiently. To
accomplish this, we store an intricate data structure for each vertex which includes a partition
of a subset of its in-neighborhood into numbered buckets. The key idea is to ensure that
whenever we remove a vertex from the MIS, it has at least one full bucket of vertices, which
we add to the MIS.
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When we remove a vertex from the MIS whose top bucket is full of vertices, we begin the
chain reaction by adding these vertices to the MIS (and removing the conflicting vertices
from the MIS). In each subsequent step of the chain reaction, we process more vertices, and
for each processed vertex, we add to the MIS the set of vertices in its topmost full bucket.
To guarantee that every vertex that we process has at least one full bucket, we utilize an
invariant (the “Main Invariant”) which says that for all i, when we process a vertex whose
bucket i is full, then in the next iteration of the chain reaction we will only process vertices
whose bucket i−1 is full. This implies that if the number of iterations in the chain reaction is
at most the number of buckets, then we only process vertices with at least one full bucket. To
bound the number of iterations of the chain reaction, we prove that the number of processed
vertices doubles at every iteration. This way, there cannot be more than a logarithmic number
of iterations. Thus, by choosing the number of buckets to be logarithmic, we only process
vertices with at least one full bucket, which results in the desired increase in the size of the
MIS.

3 Algorithm setup

Let M be the MIS that we maintain. Our algorithm uses a dynamic edge orientation
algorithm as a black box.

For each vertex v, let N(v) denote the neighborhood of v, let N+(v) denote the out-
neighborhood of v, and let N−(v) denote the in-neighborhood of v.

3.1 The trivial cases
For certain cases of edge updates, there is a simple algorithm to update the M. Here, we
introduce this simple algorithm and then describe the case that this algorithm does not cover.

I Definition 3.1. We say that a vertex v is resolved if either v is inM or a vertex in N−(v)
is inM. Otherwise we say that v is unresolved.

The data structure is simply that each vertex v stores a partition of its in-neighborhood
into resolved vertices and unresolved vertices. To maintain this data structure, whenever a
vertex v enters or exitsM, v notifies its 2-hop out-neighborhood.

Delete(u,v):
It cannot be the case that both u and v are inM sinceM is an independent set.
If neither u nor v is inM then both must already have neighbors inM and we do
nothing.
If u ∈M and v 6∈ M, then we may need to add v toM. If v is resolved, we do not
add v toM. Otherwise, we scan N+(v) and if no vertex in N+(v) is inM, we add
v toM.

Insert(u,v):
If it is not the case that both u and v are inM, then we do nothing andM remains
maximal.
If both u and v are inM we remove v fromM. Now, some of v’s neighbors may need
to be added toM, specifically, those with no neighbors inM. For each unresolved
vertex w ∈ N+(v), we scan N+(w) and if N+(w) ∩M = ∅, then we add w toM.
For each resolved vertex w ∈ N−(v), we know not to add w toM. On the other
hand, for each unresolved vertex w ∈ N−(v), we do not know whether to add w to
M and it could be costly to scan N+(w) for all such w. This simple algorithm does
not handle the case where v has many unresolved in-neighbors.
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In summary, the nontrivial case occurs when we delete a vertex v from M and v has
many unresolved in-neighbors.

3.2 Data structure

As in the trivial cases, each vertex v maintains a partition of N−(v) into resolved vertices
and unresolved vertices. In addition, we further refine the set of unresolved vertices. One
important subset of the unresolved vertices in N−(v) is the active set of v, denoted Av. As
motivated in the algorithm overview, Av is partitioned into b buckets Av(1), . . . , Av(b) each
of size at most s. We will set b and s so that b = Θ(log n) and s = Θ(α).

The purpose of maintaining Av is to handle the event that v is removed fromM. When
v is removed from M, we use the partition of Av into buckets to carefully choose which
neighbors of v to add toM to begin a chain reaction of changes toM. For the rest of the
vertices in Av, we scan through them and update the data structure to reflect the fact that
v 6∈ M. This scan of Av is why it is important that each active set is small (size O(α log n)).

One important property of active sets is that each vertex is in the active set of at most
one vertex. For each vertex v, let a(v) denote the vertex whose active set contains v. Let
B(v) denote the bucket of Aa(v) that contains v.

For each vertex v the data structure maintains the following partition of N−(v):
Zv is the set of resolved vertices in N−(v).
Av (the active set) is a subset of the unresolved vertices in N−(v) partitioned into
b = Θ(log n) buckets Av(1), ..., Av(b) each of size at most s = Θ(α). Av is empty if
v 6∈ M.
Pv (the passive set) is the set of unresolved vertices in N−(v) in the active set of some
vertex other than v. Pv is partitioned into b buckets Pv(1), ..., Pv(b) such that each vertex
u ∈ Pv is in the set Pv(i) if and only if B(u) = i.
Rv (the residual set) is the set of unresolved vertices in N−(v) not in the active set of
any vertex.

We note that while Zv depends only onM and the orientation of the edges, the other
three sets depend on internal choices made by the algorithm. In particular, for each vertex v,
the algorithm picks at most one vertex a(v) for which v ∈ Aa(v) and this choice uniquely
determines for every vertex u ∈ N+(v), which set (Au, Pu, or Ru) v belongs to.

We now outline the purpose of the passive set and the residual set. Suppose a vertex v is
removed fromM. We do not need to worry about the vertices in Pv because we know that
all of these vertices are in the active set of a vertex in M and thus none of them need to
be added toM. On the other hand, we do not know whether the vertices in Rv need to be
added toM. We cannot afford to scan through them all and we cannot risk not adding them
since this might cause M to not be maximal. Thus, we add them all to M and set off a
chain reaction of changes toM. That is, even though our analysis requires that we carefully
choose which vertices of Av to add toM during the chain reaction, it suffices to simply add
every vertex in Rv toM (except for those with edges to other vertices we are adding toM).

3.3 Invariants

We maintain several invariants of the data structure. The invariant most central to the overall
argument is the Main Invariant (Invariant 6), whose purpose is outlined in the algorithm
overview. The first four invariants follow from the definitions.
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I Invariant 1. (Resolved Invariant). For all resolved vertices v, for all u ∈ N+(v), v is in
Zu.

I Invariant 2. (Orientation Invariant). For all v, Zv ∪Av ∪ Pv ∪Rv = N−(v).

I Invariant 3. (Empty Active Set Invariant). For all v 6∈ M, Av is empty.

I Invariant 4. (Consistency Invariant).
If v is resolved, then for all vertices u ∈ N+(v), v 6∈ Au.
If v is unresolved then v is in Au for at most one vertex u ∈ N+(v).
If v is in the active set of some vertex u, then for all w ∈ N+(v) \ {u}, v is in Pw(i)
where i is such that B(v) = i.
If v is in the residual set for some vertex u, then for all w ∈ N+(v), v is in Rw.

The next invariant says that the active set of a vertex is filled from lowest bucket to
highest bucket and only then is the residual set filled.

I Definition 3.2. We say that a bucket Av(i) is full if |Av(i)| = s. We say Av is full if all b
of its buckets are full.

I Invariant 5. (Full Invariant). For all vertices v and all i < b, if Av(i) is not full then
Av(i+ 1) is empty. Also, if Av is not full then Rv is empty.

The next invariant, the Main Invariant, says that if we were to move v from Aa(v) to the
active set of a different vertex u by placing v in the lowest non-full bucket of Au, then B(v)
would not decrease.

I Invariant 6. (Main Invariant). For all v, if B(v) = i > 1 then for all u ∈ N+(v) ∩M,
Au(i− 1) is full.

4 Algorithm

The algorithm works in four phases.

1. UpdateM.
2. Update the data structure.
3. Run a black-box edge orientation algorithm.
4. Update the data structure.

The data structure is completely static during phases 1 and 3.

4.1 UpdatingM
When an edge (u, v) is deleted, we run the procedure Delete(u,v) specified in the trivial
cases section. When an edge (u, v) is inserted and it is not the case that both u and v are in
M, then we do nothing andM remains maximal. In the case that both u and v are inM,
we need to remove either u or v fromM which may trigger many changes toM.

The procedure of updatingM happens in two stages. In the first stage, we iteratively
build two sets of vertices, S+ and S−. Intuitively, S+ is a subset of vertices that we intend to
add toM and S− is the set of vertices that we intend to delete fromM. The aforementioned
chain reaction of changes toM is captured in the construction of S+ and S−. In the second
stage we make changes toM according to S+ and S−. In particular, the set of vertices that
we add toM contains a large subset of S+ as well as some vertices not in S+ and the set of
vertices that we remove fromM is a subset of S−. In accordance with our goal of increasing
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the size ofM substantially, we ensure that S+ is much larger than S−. The most interesting
part of updatingM is captured in the first stage. We defer the description of the second
stage to the full version [23].

Why is it important to build S+ before choosing which vertices to add toM? The answer
is that it is important that we add a large subset of S+ toM since our goal is to increase
the size ofM substantially. We find this large subset of S+ by finding a large MIS in the
graph induced by S+, which exists (and can be found in linear time) because the graph has
bounded arboricity (see the full version for details [23]). Suppose that instead of iteratively
building S+, we tried to iteratively add vertices directly to M in a greedy fashion. This
could result in only very few vertices successfully being added to M. For example, if we
begin by adding the center of a star graph toM and subsequently try to add the leaves of
the star, we will not succeed in adding any of the leaves toM. On the other hand, if we first
add the vertices of the star to S+ then we can find a large MIS in the star (the leaves) to
add it toM.

For the rest of this section we consider an edge insertion (u, v).

4.1.1 Stage 1: Constructing S+ and S−

A key property of the construction is that S+ is considerably larger than S−:

I Lemma 4.1. If |S−| > 1 then |S+| ≥ 4α|S−|.

After constructing S+ and S− we will add at least |S
+|

2α vertices to M and remove at
most |S−| vertices fromM. Thus, Lemma 4.1 implies thatM increases by Ω( |S

+|
α ).

To construct S+ and S−, we define a recursive procedure Process(w) which adds at
least one full bucket of Aw to S+. A key idea in the analysis is to guarantee that for every
call to Process(w), Aw indeed has at least one full bucket.

Algorithm description

We say that a vertex w ∈ S− has been processed if Process(w) has been called and otherwise
we say that w is unprocessed. We maintain a partition of S− into the processed set and the
unprocessed set and we maintain a partition of the set of unprocessed vertices w into two
sets based on whether Aw is full or not. We also maintain a queue Q of vertices to process,
which is initially empty. Recall that (u, v) is the inserted edge and both u and v are inM.
The algorithm is as follows.

First, we add v to S−. Then, if Av is not full, we terminate the construction of S+ and
S−. Otherwise, we call Process(v).
Process(w):
1. If Aw is full, then add all vertices in Aw(b) ∪Rw to S+. If Aw is not full, then let i

be the largest full bucket of Aw and add all vertices in Aw(i) and Aw(i+ 1) to S+.
We will claim that such an i exists (Lemma 4.2).

2. For all vertices x added to S+ in this call to Process, we add N+(x) ∩M to S−.
3. If S− contains an unprocessed vertex x with full Ax, we call Process(x).

When a call to Process terminates, including the recursive calls, we check whether
Lemma 4.1 is satisfied (that is, whether |S+| ≥ 4α|S−|), and if so, we terminate.
Otherwise, if Q is not empty, we let w be the next vertex in Q and call Process(w). If
Q is empty we enqueue a new batch of vertices to Q. This batch consists of the set of
all unprocessed vertices in S−. We will claim that such vertices exist (Lemma 4.2).

ICALP 2018
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I Remark. The reason we terminate without calling Process(v) if Av is not full (i.e. Rv is
empty) is because Rv is the only set for which we cannot afford to determine whether or not
each vertex has another neighbor inM (besides v): We know that each vertex w ∈ Zv ∪ Pv
has another neighbor inM, and the set Av is small enough to scan. For the same reason,
step 3 of Process is necessary because it ensures that for every vertex w in S−, all vertices
in Rw are in S+. If this weren’t the case and we removed a vertex w in S− from M, we
might be left in the “hard case” of needing to deal with Rw.

Lemma 4.1 follows from the algorithm specification: either the algorithm terminates
immediately with S− = {v} or the algorithm terminates according to the termination
condition, which is that Lemma 4.1 is satisfied.

Several steps in the algorithm (Step 2 of Process(w) and the last sentence of the
algorithm specification) rely on Lemma 4.2:

I Lemma 4.2.
1. If we call Process(w), then Aw has at least one full bucket.
2. Every batch of vertices that we enqueue to Q is nonempty.

Proof of Lemma 4.2

Let epoch 1 denote the period of time until the first batch of vertices has been enqueued to
Q. For all i > 1, let epoch i denote the period of time from the end of epoch i− 1 to when
the ith batch of vertices has been enqueued to Q.

To prove Lemma 4.2, we prove a collection of lemmas that together show that (i)
Lemma 4.2 holds for all calls to Process before epoch b ends (recall that b is the number of
buckets) and (ii) the algorithm terminates before the end of epoch b.

For all i, let pi and ui be the number of processed and unprocessed vertices in S−

respectively, when epoch i ends. Let S+
i and S−i be the sets S+ and S− respectively when

epoch i ends. Recall that s is the size of a full bucket. Let s = 8α and let b = log2 n+ 1.

I Lemma 4.3. For all 1 ≤ j ≤ b, every time we call Process(w) during epoch j, Aw(b−j+1)
is full.

Proof. We proceed by induction on j.
Base case. If j = 1 then the algorithm only calls Process(w) on vertices w with full Aw
and thus full Aw(b).
Inductive hypothesis. Suppose that during epoch j, all of the processed vertices have full
Aw(b− j + 1).
Inductive step. We will show that during epoch j + 1, all of the processed vertices have full
Aw(b− j). We first note that during Process(w), the algorithm only adds the vertices in
the topmost full bucket of Aw to S+. Thus, the inductive hypothesis implies that at the end
of epoch j for all vertices x ∈ S+, B(x) ≥ b− j + 1.

Then, by the Main Invariant, at the end of epoch j, for all x ∈ S+ and all y ∈ N+(x)∩M,
Ay(b−j) is full. By construction, the only vertices in S− other than v are those in N+(x)∩M
for some x ∈ S+. Thus, at the end of epoch j, for all vertices y ∈ S−, Ay(b − j) is full.
During epoch j + 1, the set of vertices that we process consists only of vertices w that are
either in S− at the end of epoch j or have full Aw. We have shown that all of these vertices
w have full Aw(b− j). J

I Lemma 4.4. For all 1 ≤ j ≤ b, |S+
j | ≥ pjs.
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Proof. By Lemma 4.3, for all calls to Process(w) until the end of epoch j, Aw has at least
one full bucket. During each call to Process(w), the algorithm adds at least one full bucket
(of size s) of Aw to S+. By the Consistency Invariant, (i) every vertex is in the active set of
at most one vertex and (ii) if a vertex w appears in the active set of some vertex, then w is
not in the residual set of any vertex. The only vertices added to S+ are those in some active
set or some residual set, so every vertex in some active set that is added to S+, is added at
most once. Thus, for each processed vertex, there are at least s distinct vertices in S+. J

I Lemma 4.5. For all 1 ≤ j ≤ b, pj < uj . That is, there are more unprocessed vertices than
processed vertices.

Proof. At the end of epoch j, Lemma 4.1 is not satisfied because if it were then the algorithm
would have terminated. That is, |S+

j | < 4α|S−j |. Combining this with Lemma 4.4 and the
fact that pj + uj = |S−j |, we have pjs < 4α(pj + uj). Choosing s = 8α completes the
proof. J

I Lemma 4.6. For all 1 ≤ j ≤ b, pj > 2pj−1. That is, the number of processed vertices
more than doubles during each epoch.

Proof. At the end of epoch j− 1, we add all unprocessed vertices to Q. As a result of calling
Process on each vertex in Q, the number of processed vertices increases by uj−1 by the
end of epoch j. That is, pj ≥ pj−1 + uj−1. By Lemma 4.5, pj−1 < uj−1, so pj > 2pj−1. J

We apply these lemmas to complete the proof of Lemma 4.2:
1. In epoch 1 we process at least one vertex, so p1 ≥ 1. By Lemma 4.6, pj > 2pj−1. Thus,

pj ≥ 2j−1. If j = b = log2 n+ 1, then pj > n, a contradiction. Thus, the algorithm never
reaches the end of epoch b. Then, by Lemma 4.3, every time we call Process(w), Aw
has at least one full bucket.

2. Suppose by way of contradiction that we enqueue no vertices to Q at the end of some
epoch 1 ≤ j ≤ b. Then, uj = 0. By Lemma 4.5, pj < uj , so pj < 0, a contradiction.

5 Analysis

In this section we present the most interesting part of the analysis and defer the rest of the
analysis to the full version [23]. When a vertex v is added toM, Av is empty and needs to
be populated in order to satisfy the Main Invariant. This process is the bottleneck of the
runtime and we analyze it here.

We begin by analyzing the runtime of two basic processes that happen while updating
the data structure: adding a vertex to some active set (Lemma 5.1) and removing a vertex
from some active set (Lemma 5.2).

Recall that our algorithm uses a dynamic edge orientation algorithm as a black box.
Let T be the amortized update time of this algorithm and let D be the out-degree of the
orientation. Ultimately, we will apply the algorithm of Brodal and Fagerberg [5] to get
D = O(α) and T = O(α+ log n).

I Lemma 5.1. Suppose vertex v is not in any active set. Adding v to some active set and
updating the data structure accordingly takes time O(D).

Proof. When we add a vertex v to some Au(i), for all w ∈ N+(v) this could causes a
violation to the Consistency Invariant. To remedy this, it suffices to remove v from whichever
set it was previously in with respect to w (which is not Aw) and add it to Pw(i). J
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I Lemma 5.2. Removing a vertex v from some active set Au and updating the data structure
accordingly takes time O(D log n).

Proof. When we remove a vertex v from some Au(i), this leaves bucket Au(i) not full so
the Full Invariant might be violated. To remedy this, we move a vertex, the replacement
vertex, from a higher bucket or the residual set to Au(i). That is, the replacement vertex w is
chosen to be any arbitrary vertex from Ru ∪Au(i+ 1) ∪ · · · ∪Au(b) ∪ Pu(i+ 1) ∪ · · · ∪ Pu(b).
We can choose a vertex from this set in constant time by maintaining a list of all non-empty
Px(i) and Ax(i) for each vertex x. If w is chosen from Pu, we remove w from Aa(w) before
adding w to Au(i).

The removal of w from its previous bucket in its previous active set may leave this bucket
not full, so again the Full Invariant might be violated and again we remedy this as described
above, which sets off a chain reaction. The chain reaction terminates when either there does
not exist a viable replacement vertex or until the replacement vertex comes from the residual
set. Since the number of the bucket that we choose the replacement vertex from increases at
every step of this process, the length of this chain reaction is at most b.3

For each vertex v that we add to an active set, we have already removed v from its
previous active set, so Lemma 5.1 applies. Overall, we move at most b vertices to a new
bucket and by Lemma 5.1, for each of these b vertices we spend time O(D). Thus, the
runtime is O(bD) = O(D log n). J

I Lemma 5.3. The time to update the data structure in response to a violation of the Main
Invariant triggered the addition of a single vertex to M is O(Dα log2 n).

Proof. To satisfy the Main Invariant, we need to populate Av. We fill Av in order from
bucket 1 to bucket b. First, we add the vertices in Rv until either Av is full or Rv becomes
empty. If Rv becomes empty, then we start adding the vertices of Pv(i) in order from i = b

to i = 1; however, we only add vertex u to Av if this causes B(u) to decrease. Once we
reach a vertex u in Pv where moving u to the lowest numbered non-full bucket of Av does
not cause B(u) to decrease, then we stop populating Av. Each time we add a vertex u to
Av from Pv, we first remove u from Aa(u) and apply Lemma 5.2. Also, each time we add a
vertex to Av, we apply Lemma 5.1. We note that this method of populating Av is consistent
with the Main Invariant.

We add at most sb = O(α log n) vertices to Av and for each one we could apply Lemmas 5.2
and 5.1 in succession. Thus, the total time is O(αD log2 n). J
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Abstract
Osborne’s iteration is a method for balancing n × n matrices which is widely used in linear
algebra packages, as balancing preserves eigenvalues and stabilizes their numeral computation.
The iteration can be implemented in any norm over Rn, but it is normally used in the L2 norm.
The choice of norm not only affects the desired balance condition, but also defines the iterated
balancing step itself.

In this paper we focus on Osborne’s iteration in any Lp norm, where p < ∞. We design
a specific implementation of Osborne’s iteration in any Lp norm that converges to a strictly ε-
balanced matrix in Õ(ε−2n9K) iterations, whereK measures, roughly, the number of bits required
to represent the entries of the input matrix.

This is the first result that proves a variant of Osborne’s iteration in the L2 norm (or any Lp
norm, p <∞) strictly balances matrices in polynomial time. This is a substantial improvement
over our recent result (in SODA 2017) that showed weak balancing in Lp norms. Previously,
Schulman and Sinclair (STOC 2015) showed strict balancing of another variant of Osborne’s
iteration in the L∞ norm. Their result does not imply any bounds on strict balancing in other
norms.
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1 Introduction

1.1 Problem Statement and Motivation

This paper analyzes the convergence properties of Osborne’s celebrated iteration [10] for
balancing matrices. Given a norm ‖ · ‖ in Rn, an n × n matrix A is balanced if and only
if for all i, the i-th row of A and the i-th column of A have the same norm. The problem
of balancing a matrix A is to compute a diagonal matrix D such that DAD−1 is balanced.
The main motivation behind this problem is that balancing a matrix does not affect its
eigenvalues, and balancing matrices in the L2 norm increases the numerical stability of
eigenvalue computations [10, 9]. Balancing also has a positive impact on the computational
time needed for computing eigenvalues ([9, section 1.4.3]). In practice, it is sufficient to get
a good approximation to the balancing problem. For α ≥ 1, a matrix B = DAD−1 is an
α-approximation to the problem of balancing A if and only if for all i, the ratio between the
maximum and minimum of the norms of the i-th row and column is bounded by α. It is
desirable to achieve α = 1 + ε for some small ε > 0. A matrix B that satisfies this relaxed
balancing condition is also said to be strictly ε-balanced.

Osborne’s iteration attempts to compute the diagonal matrix D by repeatedly choosing
an index i and balancing the i-th row and column (this multiplies the i-th diagonal entry of D
appropriately). Osborne proposed this iteration in the L2 norm, and suggested round-robin
choice of index to balance. However, other papers consider the iteration in other norms and
propose alternative choices of index to balance [12, 15, 11]. Notice that a change of norm not
only changes the target balance condition, but also changes the iteration itself, as in each step
a row-column pair is balanced in the given norm. An implementation of Osborne’s iteration
is used in most numerical algebra packages, including MATLAB, LAPACK, and EISPACK,
and is empirically efficient (see [9, 16] for further background). The main theoretical question
about Osborne’s iteration is its rate of convergence. How many rounds of the iteration are
provably sufficient to get a strictly ε-balanced matrix?

1.2 Our Results

We consider Osborne’s iteration in Lp norms for finite p. We design a new simple choice
of the iteration (i.e., a rule to choose the next index to balance), and we prove that this
variant provides a polynomial time approximation scheme to the balancing problem. More
specifically, we show that in the L1 norm, our implementation converges to a strictly ε-
balanced matrix in O

(
ε−2n9 log(wn/ε) logw/ log n

)
iterations, where logw is a lower bound

on the number of bits required to represent the entries of A (exact definitions await Section 2).
The time complexity of these iterations is O

(
ε−2n10 log(wn/ε) logw

)
arithmetic operations

over O(n log(w/ε))-bit numbers. This result implies similar bounds for any Lp norm where p
is fixed, and in particular the important case of p = 2. This is because applying Osborne’s
iteration in the Lp norm to A = (aij)n×n is equivalent to applying the iteration in the L1
norm to (apij)n×n. Of course, the bit representation complexity of the matrix, and thus the
bound on the number of iterations, grows by a factor of p.

Our results give the first theoretical analysis that indicates that Osborne’s iteration in
the L2 norm, or any Lp norm for finite p, is indeed efficient in the worst case. This partially
resolves the question that has been open since 1960 because we actually analyze a variant
of Osborne’s iteration which is different from the original iteration in the way it picks the
next index to balance. Previously, Schulman and Sinclair [15] analyzed yet another variant
of Osborne’s iteration and answered this question only for the L∞ norm. Concerning the
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convergence rate for the Lp norms discussed here, we recently published a result [11] that
considers a much weaker notion of approximation. The previous result only shows the rate
of convergence to a matrix that is approximately balanced in an average sense. The matrix
might still have row-column pairs that are highly unbalanced. The implementations in the
common numerical linear algebra packages use as a stopping condition the strict notion of
balancing, and not this weaker notion. We discuss previous work in greater detail below.

1.3 Previous Work

Osborne [10] studied the L2 norm version of matrix balancing, proved the uniqueness of the L2
solution, designed the iterative algorithm discussed above, and proved that it converges in the
limit to a balanced matrix (without bounding the convergence rate). Parlett and Reinsch [12]
generalized Osborne’s iteration to other norms. Their implementation is the one widely used in
practice (see Chen [3, Section 3.1], also the book [13, Chapter 11] and the code in [1]). Grad [6]
proved convergence in the limit for the L1 version (again without bounding the running time),
and Hartfiel [7] showed that the L1 solution is unique. Eaves et al. [5] gave a characterization
of balanceable matrices. Kalantari et al. [8] gave an algorithm for ε-balancing a matrix in
the L1 norm. The algorithm reduces the problem to unconstrained convex optimization
and uses the ellipsoid algorithm to approximate the optimal solution. This generates a
weakly ε-balanced matrix, which satisfies the following definition. Given ε > 0, a matrix
A = (aij)n×n is weakly ε-balanced if and only if

√∑n
i=1(‖a.,i‖ − ‖ai,.‖)2 ≤ ε ·

∑
i,j |ai,j |.

Compare this with the stronger condition of being strictly ε-balanced, which we use in this
paper, and numerical linear algebra packages use as a stopping condition. This condition
requires that for every i ∈ {1, 2, . . . , n}, max{‖a.,i‖, ‖ai,.‖} ≤ (1 + ε) ·min{‖a.,i‖, ‖ai,.‖}. In
L∞, Schneider and Schneider [14] gave a polynomial time algorithm that exactly balances a
matrix. The algorithm does not use Osborne’s iteration. Its running time was improved by
Young et al. [17]. Both algorithms rely on iterating over computing a minimum mean cycle in
a weighted strongly connected digraph, then contracting the cycle. Schulman and Sinclair [15]
were the first to provide a quantitative bound on the running time of Osborne’s iteration.
They proposed a carefully designed implementation of Osborne’s iteration in the L∞ norm
that strictly ε-balances an n× n matrix A in O(n3 log(%n/ε)) iterations, where % measures
the initial L∞ imbalance of A. Their proof is an intricate case analysis. Following that work,
in [11] we showed that several implementations of Osborne’s iteration in Lp norms, including
the original implementation, converge to a weakly ε-balanced matrix in polynomial time
(which, in fact, can be either nearly linear in number of non-zero entries of matrix A or nearly
linear in 1/ε). Very recently, Cohen et al. [4] gave an interior point algorithm that weakly
ε-balances matrices in the L1 norm in time Õ(m3/2 log(1/ε)), where m is the number of
non-zero entries of A. Their results also apply to matrix scaling, a problem similar to matrix
balancing, for which Allen-Zhu et al. [2] independently gave similar results. Notice that in the
results of [4], due to the logarithmic dependence on ε one can choose ε that is exponentially
small in the input representation, and thus get an algorithm for strict balancing with better
worst case running time than our claimed analysis of Osborne’s iteration. We note, however,
that the purpose of our analysis is not to present a new algorithm for matrix balancing, but
rather to provide some worst case guarantee for the time it takes some implementation of
Osborne’s iteration to achieve strict balancing. Osborne’s iteration and strict balancing are
the heuristic and stopping condition used in practice to balance matrices. We also note that
by the lower bound proved in our previous paper [11], Osborne’s iteration does not guarantee
convergence in time polynomial in log(1/ε) (the lower bound is Ω(1/

√
ε)).
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1.4 Our Contribution
The result of [11] is derived by observing that any implementation of Osborne’s iteration
can be interpreted as an application of coordinate descent to optimize the convex function
from [8]. This is the starting point of this paper, but to make the approach guarantee strict
balancing, we need to revise substantially previous implementations using novel algorithmic
ideas. Nevertheless, the implementation itself remains a rather simple rule for choosing the
next index to balance.

The main difficulty with respect to previous work is the following. The convergence rate
of coordinate descent can be bounded effectively as long as there is a choice of coordinate (i.e.,
index) for which the drop in the objective function in a single step is non-negligible compared
with the current objective value. But if this is not the case, then one can argue only about
the balance of each index relative to the sum of norms of all rows and columns. Indices that
have relatively heavy weight (row norm + column norm) will indeed be balanced at this point.
However, light-weight indices may be highly unbalanced. The naive remedy to this problem
is to work down by scales. After balancing the matrix globally, heavy-weight indices are
balanced, approximately, so they can be left alone, deactivated. Now there are light-weight
indices that have become heavy-weight with respect to the remaining active nodes, so we can
continue balancing the active indices until the relatively heavy-weight among them become
approximately balanced, and so forth. The problem with the naive solution is that balancing
the active indices shifts the weights of both active and inactive indices, and they move out
of their initial scale. This movement need not complicate the balancing rule—we can keep
balancing far-from-balanced nodes in the current scale. However, if the scale sets of indices
keep changing, it is harder to argue that the process converges. Shifting between scales is
precisely what our algorithm and proof deal with. Light-weight indices that have become
heavy-weight are easy to handle. They can keep being active. Heavy-weight indices that have
become light-weight cannot continue to be inactive, because they are no longer guaranteed
to be approximately balanced. Thus, in order to analyze convergence effectively, we need to
bound the number (and global effect on weight) of these reactivation events.

2 Preliminaries

The input is a real square matrix A = (aij)n×n. We denote the i-th row of such a matrix by
ai,. and the i-th column by a.,i. We also use the notation [n] = {1, 2, . . . , n}. The matrix A
is balanced in the Lp norm iff ‖a.,i‖p = ‖ai,.‖p for every index i ∈ [n]. Since the condition for
being balanced depends neither on the signs of the entries of A nor on the diagonal values,
we will assume without loss of generality that A is non-negative with zeroes on the diagonal.

An invertible diagonal matrix D = diag(d1, · · · , dn) balances A in the Lp norm iff DAD−1

is balanced in the Lp norm. A matrix A is balanceable iff there exists an invertible diagonal
matrix D that balances A. Balancing a matrix A = (aij)n×n in the Lp norm is equivalent to
balancing the matrix (apij)n×n in the L1 norm. Therefore, for the rest of the paper we focus
on balancing matrices in the L1 norm.

We use amin to denote the minimum non-zero entry of A. We also define w = 1
amin
·
∑
ij aij .

I Definition 1. Given ε > 0 and an n× n matrix A, we say that the index i of A (where
i ∈ [n]) is ε-balanced iff

max {‖a.,i‖1, ‖ai,.‖1}
min {‖a.,i‖1, ‖ai,.‖1}

≤ 1 + ε.

We say that A is strictly ε-balanced iff every index i of A is ε-balanced.
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Any implementation of Osborne’s iteration can be thought of as computing vectors
x(t) ∈ Rn for t = 1, 2, . . . , where iteration t is applied to the matrix (a(t)

ij ) = DAD−1 for
D = diag(ex

(t)
1 , ex

(t)
2 , . . . , ex

(t)
n ). Thus, for all i, j, a(t)

ij = aij · ex
(t)
i
−x(t)

j . Initially, x(1) =
(0, 0, . . . , 0). A balancing step of the iteration chooses an index i, then sets x(t+1)

i =
x

(t)
i + 1

2 ·
(

ln ‖a(t)
.,i ‖1 − ln ‖a(t)

i,. ‖1

)
, and for all j 6= i, keeps x(t+1)

j = x
(t)
j . For x ∈ Rn,

we denote the sum of entries of the matrix DAD−1 for D = diag(ex1 , ex2 , . . . , exn) by
f(x) = fA(x) =

∑
ij aij · exi−xj . For any n× n non-negative matrix B = (bij), we denote by

GB the weighted directed graph with node set {1, 2, . . . , n}, arc set {(i, j) : bij > 0}, where
an arc (i, j) has weight bij . We will assume henceforth that the undirected version of GA is
connected, otherwise we can handle each connected component separately. We quote a few
useful lemmas. The references contain the proofs.

I Lemma 2 (Theorem 1 in Kalantari et al. [8]). The input matrix A is balanceable if and only
if GA is strongly connected. Moreover, DAD−1 is balanced in the L1 norm if and only if
D = diag(ex∗1 , ex∗2 , . . . , ex∗n), where x∗ = (x∗1, x∗2, . . . , x∗n) minimizes f(x) over x ∈ Rn.

Notice that f is a convex function and the gradient ∇f(x) of f at x is given by

∂f(x)
∂xi

=
n∑
j=1

aij · exi−xj −
n∑
j=1

aji · exj−xi ,

the difference between the total weight of arcs leaving node i and the total weights of arcs
going into node i in the graph of DAD−1 for D = diag(ex1 , ex2 , . . . , exn). If DAD−1 is
balanced then the arc weights aij · exi−xj form a valid circulation in the graph GA, since the
gradient has to be 0. Some properties of f are given in the following lemma.

I Lemma 3 (Lemmas 2.1 and 2.2 in Ostrovsky et al. [11]). If x′ is derived from x by balancing
index i of a matrix B = (bij)n×n, then f(x)− f(x′) = (

√
‖b.,i‖1 −

√
‖bi,.‖1)2. Also, for all

x ∈ Rn, f(x)− f(x∗) ≤ n
2 · ‖∇f(x)‖1.

We also need the following absolute bounds on the arc weights.

I Lemma 4 (Lemma 3.2 in Ostrovsky et al. [11]). Suppose that a matrix B is derived from a
matrix A through a sequence of balancing operations. Then, for every arc (i, j) of GB,(

amin∑
ij aij

)n
·
∑
ij

aij ≤ bij ≤
∑
ij

aij .

(Notice that the arcs of GB are identical to the arcs of GA.)

Finally, we prove the following global condition on indices being ε-balanced.

I Lemma 5. Consider a matrix B = DAD−1 = (bij)n×n, where D = diag(ex1 , ex2 , . . . , exn),
that was derived from A by a sequence of zero or more balancing operations. Let ε ∈ (0, 1/2],
and put ε′ = ε2

64n4 . Suppose that ‖∇fA(~0)‖1 ≤ ε′ · fA(~0). Then, for every i ∈ [n] we have the
following implication. If ‖b.,i‖1 + ‖bi,.‖1 ≥ 1

8n3 · fA(x), then index i is ε-balanced in B.

Proof. We will show the contrapositive claim that if a node is not ε-balanced then it must
have low weight (both with respect to B). Let i be an index that is not ε-balanced in B.
Without loss of generality we may assume that the in-weight is larger than the out-weight,
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so ‖b.,i‖1/‖bi,.‖1 > 1 + ε. Consider what would happen if we balance index i in B, yielding a
vector x′ that differs from x only in the i-th coordinate.

fA(x)− fA(x′) =
(√
‖b.,i‖1 −

√
‖bi,.‖1

)2

> ‖b.,i‖1 ·

(
1−

√
1

1 + ε

)2

>
ε2

16 · (‖b.,i‖1 + ‖bi,.‖1) , (1)

where the equation follows from Lemma 3 and the last inequality uses the fact that ε ≤ 1
2 .

On the other hand, we have

fA(x)− fA(x′) ≤ fA(~0)− f(x∗)

≤ n

2 · ‖∇fA(~0)‖1

≤ n

2 · ε
′ · fA(~0)

= ε2

128n3 · fA(~0). (2)

where the first inequality follows from the the fact that every balancing step decreases fA,
the second inequality follows from Lemma 3, the third inequality follows from the assumption
on fA(~0), and the last equation follows from the choice of ε′. Combining the bounds on
fA(x)− fA(x′) in Equations (1) and (2) gives

‖b.,i‖1 + ‖bi,.‖1 <
1

8n3 · fA(~0),

and this completes the proof. J

3 Strict Balancing

In this section we present a variant of Osborne’s iteration and prove that it converges
in polynomial time to a strictly ε-balanced matrix. The algorithm, a procedure named
StrictBalance, is defined in pseudocode labeled Algorithm 1 on page 7. Lemma 5 above
motivates the main idea of contracting heavy nodes in step 14 of StrictBalance.

Our main theorem is

I Theorem 6. StrictBalance(A, ε) returns a strictly ε-balanced matrix B = DAD−1 after
at most O

(
ε−2n9 log(wn/ε) logw/ log n

)
balancing steps, using O

(
ε−2n10 log(wn/ε) logw

)
arithmetic operations over O(n log(w/ε))-bit numbers.

The proof of Theorem 6 uses a few arguments, given in the following lemmas. A phase of
StrictBalance is one iteration of the outer while loop. Notice that in the beginning of this
loop the variable s indexes the phase number (i.e., s− 1 phases were completed thus far).
Also in the beginning of the inner while loop the variable t indexes the total iteration number
from all phases (i.e., t− 1 balancing operations from all phases were completed thus far).

We identify outer loop iteration s with an interval [ts, ts+1) = {ts, ts + 1, . . . , ts+1 − 1} of
the inner loop iterations executed during phase s. We denote by Bs,t the value of Bs in the
beginning of the inner while loop iteration number t (dubbed time t). If t ∈ [tj , tj+1), then
Bs,t is defined only for s ≤ j. We also use G(Bs,t) to denote the graph that is obtained by
contracting the nodes of set Bs,t in graph GA. Also f (Bs,t) is the function corresponding to
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Algorithm 1 StrictBalance(A, ε)
Input: Matrix A ∈ Rn×n, ε
Output: A strictly ε-balanced matrix

1: B1 = ∅, τ1 = 0, s = 1, ε′ = ε2/64n4, x(1) = (0, . . . , 0), t = 1

2: while Bs 6= [n] and there is i ∈ [n] that is not ε-balanced do

3: Define f (Bs) : Rn → R, f (Bs)(x) =
∑

i,j:i/∈Bs or j /∈Bs

aije
xi−xj

4: while ‖∇f
(Bs)(x(t))‖1

f (Bs)(x(t))
> ε′ do

5: Pick i = arg maxi/∈Bs

{(√
‖a(t)
.,i ‖1 −

√
‖a(t)
i,. ‖1

)2
}

6: Balance ith node: x(t+1) = x(t) + αtei, where αt = ln
√
‖a(t)
.,i ‖1/‖a(t)

i,. ‖1

7: t← t+ 1

8: if s > 1 and ‖a(t)
.,i ‖1 + ‖a(t)

i,. ‖1 < τs for some i ∈ Bs \ Bs−1 then

9: Bs = Bs \ {i /∈ Bs−1 : ‖a(t)
.,i ‖1 + ‖a(t)

i,. ‖1 < τs}

10: Redefine f (Bs) : Rn → R, f (Bs)(x) =
∑

i,j:i/∈Bs or j /∈Bs

aije
xi−xj

11: end if
12: end while

13: τs+1 = 1
4n3 f

(Bs)(x(t))

14: Bs+1 = Bs ∪
{
i : ‖a(t)

.,i ‖1 + ‖a(t)
i,. ‖1 ≥ τs+1

}
15: s← s+ 1

16: end while
17: return the resulting matrix

graph G(Bs,t) and f (Bs,t)(x(t)) denotes the sum of weights of arcs of graph G(Bs,t) at time
t. If set Bs is unchanged during an interval and there is no confusion, we may use G(Bs)

instead of G(Bs,t). Particularly we use f (Bs)(x(t)) instead of f (Bs,t)(x(t)). We refer to the
quantity ‖a(t)

.,i ‖1 + ‖a(t)
i,. ‖1 as the weight of node i at time t.

I Lemma 7. For every phase s ≥ 1, for every t ≥ ts+1, Bs,t = Bs,ts+1 .

Proof. The claim follows easily from the fact that any iteration t ≥ ts+1 belongs to a phase
s′ > s, so Bs,ts+1 ∩ (Bs′,t \ Bs′−1,t) = ∅, and by line 8 and 9 of StrictBalance none of the
nodes in Bs,ts+1 will be removed. J

I Lemma 8. For all s > 1, for all t ∈ [ts, ts+1), f (Bs,t)(x(t)) ≤ (n− |Bs,t|) · τs.

Proof. Let ts = ts,1 < ts,2 < ts,3 < · · · < ts,`s
denote the time steps before which Bs changes

during phase s. For simplicity, we abuse notation and use Bs,j instead of Bs,ts,j
. Clearly

Bs,1 ⊇ Bs,2 . . . ⊇ Bs,`s , because we only remove nodes from Bs once it is set. Fix s > 1. We
prove this lemma by induction on r ∈ {1, 2, . . . , `s}. For the basis, let r = 1. Clearly, by
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the way the algorithm sets Bs before time ts,1, all nodes with weight ≥ τs are in Bs, and
therefore every node i 6∈ Bs has weight at most τs, so the lemma follows. Now, assume that
the lemma is true for every t ≤ ts,r, we show that the lemma holds for every t ≤ ts,r+1. If
t ∈ [ts,r, ts,r+1), then Bs,t = Bs,ts,r , and we have:

f (Bs)(x(t)) ≤ f (Bs)(x(ts,r)) ≤
(
n−

∣∣Bs,ts,r

∣∣) · τs = (n− |Bs,t|) · τs.

The first inequality holds because balancing operations from time ts,r to time t only reduce
the value of f (Bs), and the second inequality holds by the induction hypothesis.

Just before iteration t = ts,r+1, the set Bs changes, and one or more nodes are removed
from it. However, every removed node has weight at most τs, and its removal does not change
the weights of the other nodes in [n] \ Bs. Therefore, if k nodes are removed from Bs,

f (Bs)(x(ts,r+1)) ≤
(
n−

∣∣Bs,ts,r

∣∣) · τs + k · τs =
(
n−

∣∣Bs,ts,r+1

∣∣) · τs.
This completes the proof. J

I Corollary 9. For all s > 1, f (Bs)(x(ts+1)) ≤ 1
4n2 · f (Bs−1)(x(ts)). If s > 2, then τs ≤ τs−1

4n2 .

Proof. Notice that

f (Bs)(x(ts+1)) ≤ n · τs = 1
4n2 · f

(Bs−1)(x(ts)),

where the inequality follows from Lemma 8, and the equation follows from line 13 of
StrictBalance. This proves the first assertion. As for the second assertion, notice that if
s > 2 then s− 1 > 1, so using line 13 of StrictBalance and Lemma 8 again,

τs = 1
4n3 · f

(Bs−1)(x(ts)) ≤ 1
4n3 · nτs−1 = 1

4n2 · τs−1,

as stipulated. J

I Lemma 10. For every phase s > 1, for every t ≥ ts, all the nodes in Bs,t have weight
≥ τs/2 and are ε-balanced at time t.

Proof. Fix s > 1 and let i ∈ Bs,t. Without loss of generality i 6∈ Bs−1,t, otherwise we can
replace s with s− 1. (Recall that B1 = ∅ at all times.) Also note that it must be the case
that i ∈ Bs,ts , because Bs does not accumulate additional nodes after being created. If
t ∈ [ts, ts+1], then lines 13-14 and 8-9 of StrictBalance guarantee that if i ∈ Bs,t \ Bs−1,t,
then its weight at time t is at least τs.

Otherwise, consider t > ts+1 and let s′ > s be the phase containing t. Consider a phase
j > s. By Lemma 8 the total weight of f (Bj) during phase j is at most nτj , and f (Bj) never
drops below 0. So, the total weight that a node i ∈ Bj can lose (which is at most the total
weight that f (Bj) can lose) is at most nτj . By Corollary 9, for every j > s, τj+1 ≤ τj

4n2 . Now,
suppose that t is an iteration in phase s′ > s. Then, the weight of i at time t is at least

τs −
s′∑

j=s+1
nτj ≥ τs ·

1− n ·
s′−s∑
k=1

(2n)−2k

 ≥ τs
2 .

Thus we have established that at any time t ≥ ts, if i ∈ Bs,t then its weight is at least
τs

2 = 1
8n3 f

(Bs−1)(x(ts)). By line 4 of StrictBalance, ‖∇f (Bs−1,ts )(x(ts))‖1 ≤ ε′ ·f (Bs−1,ts )(x(ts)).
By Lemma 7, Bs−1 does not change in the interval [ts, t]. Therefore, we conclude from
Lemma 5 that i is ε-balanced at time t. J
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I Lemma 11. Suppose that t < t′ satisfies [t, t′) ⊆ [ts, ts+1), and furthermore, during the
iterations in the interval [t, t′) the set Bs does not change (it could change after balancing
step t′ − 1). Then, the length of the interval

t′ − t = O
(
ε−2n7 log(wn/ε)

)
.

Proof. Rename the nodes so that Bs,t = Bs,t′−1 = {p, p+ 1, . . . , n}. The assumption that Bs
does not change during the interval [t, t′) means that the weights of all the nodes p, p+1, . . . , n
remain at least τs for the duration of this interval. During the interval [t, t′), the graph G(Bs)

(which remains fixed) is obtained by contracting the nodes p, p+ 1, . . . , n in GA. So G(Bs)

has p nodes 1, 2, . . . , p− 1, p, where the last node p is the contracted node. In each iteration
in the interval [t, t′), one of the nodes 1, 2, . . . , p− 1 is balanced. Consider some time step
t′′ ∈ [t, t′), and let Ii and Oi, respectively, denote the current sums of weights of the arcs
of G(Bs) into and out of node i, respectively. Let j ∈ [p − 1] be the node that maximizes
(Ij−Oj)2

Ij+Oj
. We have

f (Bs)(x(t′′))− f (Bs)(x(t′′+1)) = max
i∈[p−1]

(√
Ii −

√
Oi

)2
≥
(√

Ij −
√
Oj

)2

≥ (Ij −Oj)2

2(Ij +Oj)
≥
∑p−1
i=1 (Ii −Oi)2

2
∑p−1
i=1 (Ii +Oi)

≥

(∑p−1
i=1 |Ii −Oi|

)2

2n
∑p
i=1(Ii +Oi)

≥
(
∑p
i=1 |Ii −Oi|)

2

8n
∑p
i=1(Ii +Oi)

= 1
16n ·

‖∇f (Bs)(x(t′′))‖2
1

f (Bs)(x(t′′))
. (3)

The first equation follows from the choice of i in line 5 StrictBalance, and Lemma 3. The
third inequality follows from an averaging argument and the choice of j. The fourth
inequality uses Cauchy-Schwarz. The last inequality holds because

∑p
i=1(Ii −Oi) = 0, so

|Ip−Op| =
∣∣∣∑p−1

i=1 (Ii −Oi)
∣∣∣ ≤∑p−1

i=1 |Ii−Oi|, and therefore
∑p
i=1 |Ii−Oi| ≤ 2

∑p−1
i=1 |Ii−Oi|.

Since the interval [t, t′) is contained in phase s, the stopping condition for the phase does
not hold, so

‖∇f (Bs)(x(t′′))‖1

f (Bs)(x(t′′))
> ε′ = ε2

64n4 .

Therefore,

f (Bs)(x(t′′))− f (Bs)(x(t′′+1))) ≥ 1
16n ·

‖∇f (Bs)(x(t′′)‖2
1

f (Bs)(x(t′′))

>
ε′

16n · ‖∇f
(Bs)(x(t′′))‖1

≥ ε′

8n2 · (f
(Bs)(x(t′′))− f (Bs)(x∗)),

where the last inequality follows from Lemma 3. Rearranging the terms gives

f (Bs)(x(t′′+1))− f (Bs)(x∗) ≤
(

1− ε′

8n2

)
· (f (Bs)(x(t′′))− f (Bs)(x∗)).

Iterating for T step yields

f (Bs)(x(t+T))− f (Bs)(x∗) ≤
(

1− ε′

8n2

)T
· (f (Bs)(x(t))− f (Bs)(x∗)).
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Now, by Lemma 4, we have that f (Bs)(x(t))− f (Bs)(x∗) ≤ f (Bs)(x(t)) ≤
∑n
i,j=1 aij , and for

all t′′, f (Bs)(x(t′′)) ≥ 1
wn

∑n
i,j=1 aij . Therefore, if t′ − t ≥

8n2

ε′ · ln
(
16nwn/(ε′)2)+ 1, then

f (Bs)(x(t′−1))− f (Bs)(x∗) ≤
(

ε′

4
√
n

)2
· 1
wn
·

n∑
i,j=1

aij ≤
(

ε′

4
√
n

)2
· f (Bs)(x(t′−1)).

Therefore,

1
16n ·

‖∇f (Bs)(x(t′−1)‖2
1

(f (Bs)(x(t′−1)))2 ≤ f (Bs)(x(t′−1))− f (Bs)(x(t′))
f (B)(x(t′−1))

≤ f (Bs)(x(t′−1))− f (Bs)(x∗)
f (B)(x(t′−1))

≤
(

ε′

4
√
n

)2
,

where the first inequality follows from (3), and the second inequality holds because
f (Bs)(x∗) ≤ f (Bs)(x(t′−1)). We get that ‖∇f

(B)(x(t′−1))‖1
f(B)(x(t′−1)) ≤ ε′, in contradiction to our

assumption that the phase does not end before the start of iteration t′. J

I Corollary 12. In any phase, the number of balancing steps is at most O
(
ε−2n8 log(wn/ε)

)
.

Proof. In the beginning of phase s the set Bs contains at most n− 1 nodes. Partition the
phase into intervals [t, t′) where Bs does not change during an interval, but does change
between intervals. By Lemma 11, each interval consists of at most O

(
ε−2n7 log(wn/ε)

)
balancing steps. Since nodes that are removed from Bs between intervals are never returned
to Bs, the number of such intervals is at most n− 1. Hence, the total number of balancing
steps in the phase is at most O

(
ε−2n8 log(wn/ε)

)
. J

I Lemma 13. The total number of phases of the algorithm is O(n logw/ log n).

Proof. Let s > 2 be a phase of the algorithm and t ∈ [ts, ts+1). By Lemma 4, f (Bs,t)(x(t)) ≥
1
wn ·

∑
ij aij . On the other hand, by Lemma 8 and Corollary 9, τs ≤ 1

(4n2)s−2 · τ2 ≤ 1
(4n2)s−2 ·∑

ij aij , and f (Bs,t)(x(t)) ≤ nτs. Combining these gives 1
wn ·

∑
ij aij ≤ nτs ≤

n
(4n2)s−2 ·

∑
ij aij

which implies that s ≤ log(nwn)
log(4n2) + 2. J

Proof of Theorem 6. By Lemma 13, for some s = O(n logw/ log n), StrictBalance ter-
minates, so Bs,ts = [n]. By Corollary 12, the number of balancing steps in a phase is
at most O

(
ε−2n8 log(wn/ε)

)
. Therefore, the total number of balancing steps is at most

O
(
ε−2n9 log(wn/ε) logw/ log n

)
. These steps require at most O

(
ε−2n10 log(wn/ε) logw

)
arithmetic operations. When the algorithm terminates at time ts, all the nodes are in Bs,ts ,
and by Lemma 10 they are all ε-balanced, so the matrix is strictly ε-balanced.

Thus, assuming exact arithmetics with infinite precision we have shown that the algorithm
converges to a strictly ε-balanced matrix in the claimed number of arithmetic operations. To
show that the algorithm still works if all numbers are represented with only O(n log(w/ε))
bits, we apply an analysis similar to the one in section 3 of [11]. J
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Abstract
We consider the problems Zero Extension and Metric Labelling under the paradigm of
parameterized complexity. These are natural, well-studied problems with important applications,
but have previously not received much attention from this area.

Depending on the chosen cost function µ, we find that different algorithmic approaches can be
applied to design FPT-algorithms: for arbitrary µ we parameterize by the number of edges that
cross the cut (not the cost) and show how to solve Zero Extension in time O(|D|O(k2)n4 log n)
using randomized contractions. We improve this running time with respect to both parameter and
input size to O(|D|O(k)m) in the case where µ is a metric. We further show that the problem ad-
mits a polynomial sparsifier, that is, a kernel of size O(k|D|+1) that is independent of the metric µ.

With the stronger condition that µ is described by the distances of leaves in a tree, we
parameterize by a gap parameter (q − p) between the cost of a true solution q and a ‘discrete
relaxation’ p and achieve a running time of O(|D|q−p|T |m + |T |φ(n,m)) where T is the size of
the tree over which µ is defined and φ(n,m) is the running time of a max-flow computation. We
achieve a similar result for the more general Metric Labelling, while also allowing µ to be
the distance metric between an arbitrary subset of nodes in a tree using tools from the theory of
VCSPs. We expect the methods used in the latter result to have further applications.
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1 Introduction

The task of extending a partial labelling of data points to a full data set while minimizing an
error function is a natural step for many scientific and engineering tasks. For the particular
case of data imposed with a binary relationship, we find the problems Zero Extension and
Metric Labelling to be well-suited for optimization in image processing [1], social network
classification [24], or sentiment analysis [25]. The problems are as follow. For Zero Exten-
sion, we are given a graph G and a partial labelling τ : S → D, for terminals S ⊆ V (G), and
a cost function µ : D ×D → R+. Our task is to compute a labelling λ : V (G) → D which
agrees with τ on S, subject to the following cost: for each edge uv ∈ G we pay µ(λ(u), λ(v)).
In Metric Labelling, we are given G,µ as above, and a labelling cost σ : V (G)×D → R+.
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Again we are asked to compute a labelling λ and in addition to the above edge-costs we now
also pay σ(v, λ(v)). This model allows us to emulate terminals by making the cost σ(v, λ(v))
prohibitive for all but the required label λ(v). Both problems are generalizations of Mul-
tiway Cut (we simply let µ be identically one for all distinct pairs), which has garnered
considerable attention from the FPT community and formed a crystallization nucleus for the
very fruitful research of cut-based problems (see e.g. [20, 17, 3, 11, 22]).
We apply most of these tools in the following, but we wish to highlight the use of tools and re-
laxations from Valued CSPs (VCSPs) for designing FPT algorithms under gap parameters. VC-
SPs are a general framework for expressing optimisation problems, via the specification of a set
Γ of cost functions (aka constraint language). Many important problems correspond to VCSP
for a specific language, including every choice of a specific metric for the problems above. Thap-
per and Živný [30] characterized the languages Γ for which the resulting VCSP is tractable.

The use of a tractable VCSP as a discrete relaxation of an NP-hard optimisation problem
has led to powerful FPT algorithms [11] (see also related improvements [12, 32]). In this
paper, we advance this research in two ways. First, previous approaches have required
the relaxation to have a persistence property, which allows an optimum to be found by
sequentially fixing variables. Here, we relax this condition to a weaker domain consistency
property. Second, we use a folklore result from VCSP research to restrict the behaviour of
an instance’s optimal solutions in order to facilitate the proof that the domain consistency
property holds for the relevant VCSPs. See Section 5 for details.

Related work. Zero Extension and Metric Labelling have been researched primarily
from the perspective of efficient and approximation algorithms (see [19] for an overview and
hardness results). Kleinberg and Tardos [29] introduced Metric Labelling and provided a
O(log |S| log log |S|) approximation. A result by Fakcharoenphol et al. regarding embedding
general metrics into tree metrics [7] improves the ratio of this algorithm to O(log |S|) and
a lower bound of O((log |S|)1/2−ε) was proved by Chuzhoy and Naor [4]. Karzanov [14]
introduced Zero Extension with the specific case of µ being a graph metric, that is, equal
to the distance metric of some graph H. His central question—for which graphs H the
problem is tractable—was recently fully answered by Hirai [9]. Picard and Ratliff earlier
showed that an equivalent problem is tractable on trees [26]. Fakcharoenphol et al. showed
that the problem can be approximated to within a factor of O(log |S|/ log log |S|) [6]. Karloff
et al. used the approach by Chuzhoy and Naor to show that no factor of O((log |S|)1/4−ε) for
any ε > 0 is possible unless NP ⊆ QP [13]. More recently, Hirai and Pap [8, 10] studied the
problem from a more structural angle and we make use of their duality result.

Our results. We study both problems from the perspective of parameterized complexity.
As the choice of metric has a strong effect on the problem complexity, we give a range of
results, from the more generally applicable to the algorithmically stronger, both in terms
of running time and parameterization. When µ is a general cost function or a metric, we
will parametrize not by the cost of a solution but by the number of crossing edges, i.e.,
bichromatic edges under a labelling λ. This lets us consider µ with zero-cost pairs. For
general cost functions, we employ the technique of randomized contractions [3] and prove:

I Theorem 1 (?1). Zero Extension can be solved in time O(|D|O(k2)n4 log n) where k is
a given upper bound on the number of crossing edges in the solution.

1 Results marked by ? are found in the full version of the paper [27]
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When µ is a metric, we are able to give a linear-time FPT algorithm, while also improving
the dependency on the parameter, using important separators [20]:

I Theorem 2. Zero Extension with metric cost functions can be solved in time O(|D|O(k) ·
m) where k is a given upper bound on the number of crossing edges in the solution.

For the general metric setting, we also have our most surprising result, demonstrating that
Zero Extension admits a sparsifier ; that is, we prove that it admits a polynomial kernel
independent of the metric µ. This result crucially builds on the technique of representative
sets [17, 21, 18]. The exact formulation of the result is somewhat technical and we defer
it to Section 4.2, but roughly, we obtain a kernel of size O(k|S|+1), independent of µ,
where k is again the number of crossing edges. This result is a direct, seemingly far-reaching
generalization of the polynomial kernel for s-Multiway Cut [17].

Next, we consider the case when µ : D ×D → Z+ is induced by the distance in a tree T
with D ⊂ V (T ). Here, relaxing the problem to allow all labels V (T ) as vertex values defines
a tractable discrete relaxation, in the sense discussed above. In particular, we can compute a
relaxed solution cost p in polynomial time which lower-bounds the optimal integral solution q.
Using techniques from VCSP, we design a gap-parameter algorithm:

I Theorem 3. Let I = (G, τ, µ, q) be an instance of Zero Extension where µ is an induced
tree metric on a set of labels D in a tree T , and let Î = (G, τ, µ̂, q) be the relaxed instance.
Let p = cost(Î). Then we can solve I in time O(|D|q−p|T ||D|nm).

For the further restriction when µ corresponds to the distances of the leaves D of a tree T ,
we obtain an algorithm with a slightly better polynomial dependence. Moreover, it uses only
elementary operations like computing cuts and flows:

I Theorem 4. Let I = (G, τ, µ, q) be an instance of Zero Extension where µ is a leaf
metric on a set of labels D in a tree T , and let Î = (G, τ, µ̂, q) be the relaxed instance. Let
p = cost(Î). Then we can solve I in time O(|D|q−p|T |m+ |T |φ(n,m)), where φ is the time
needed to run a max-flow algorithm.

Finally, we apply the VCSP toolkit to Metric Labelling and obtain a similar gap algorithm
(see Section 5 for undefined terms).

I Theorem 5. Let I = (G, σ, µ, q) be an instance of Metric Labelling where µ is an
induced tree metric for a tree T and a set of nodes D ⊆ V (T ), and where every unary cost
σ(v, ·) admits an interpolation on T . Let Î = (G, σ̂, µ̂, q) be the relaxed instance, and let
p = cost(Î). Then the instance I can be solved in time O∗(|D|q−p). In particular, this
applies for any σ if D is the set of leaves of T .

2 Preliminaries

For a graph G = (V,E) we will use nG = |V | and mG = |E| to denote the number of vertices
and edges, respectively. For two disjoint vertex sets A,B ⊆ V we write E(A,B) to denote the
edges that have one endpoint in A and the other in B. We write dG for the distance-metric
induced by G, that is, dG(u, v) is the length of a shortest path between vertices u, v ∈ V (G).
We denote by NG(v) and NG[v] the open and closed neighbourhood of a vertex. For a vertex
set S ⊆ V (G) we write δG(S) to denote the set of edges with exactly one endpoint in S. We
omit the subscript G, if clear from the context, in all these notations.

Let T be a tree and xy ∈ T an edge, then we use the notation Tx to denote the component
of T − xy that contains x. We call a sequence of nodes x1x2 . . . xp in T a monotone sequence
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if x1 6P x2 6P . . . 6P xp where P is a path in T and 6P is the linear order induced
by P . Note that xi = xi+1 is explicitly allowed. For two nodes x, y ∈ T we will denote the
unique x-y-path in T by T [x, y]. For a vertex set S, an S-path packing is a collection of
edge-disjoint paths P that connect pairs of vertices in S. We will also consider half-integral
path packings where every edge is allowed to be used by at most two paths.

Let D be a set of labels. For a graph G we call a function τ : S → D for S ⊆ V (G) a
partial labelling and a function λ : V (G) → D a labelling. The labelling λ is an extension
of τ if λ and τ agree on S, that is, for every vertex u ∈ S we have that λ(u) = τ(u). Given
a graph G and a labelling λ we call an edge uv ∈ E(G) crossing if λ(u) 6= λ(v). A τ -path
packing is a collection P of edge-disjoint paths such that every path P ∈ P connects two
vertices that receive distinct labels under τ (and both are labelled).

A cost function over D is a symmetric positive function µ : D × D → R+. We call it
simple if µ(x, x) = 0. A cost function is a metric if it is simple and further obeys the triangle
inequality; it is a tree metric if it corresponds to the distance metric of a tree. We derive an
induced tree metric from a tree metric by restricting its domain to a subset D of the nodes
of the underlying tree. A leaf metric is an induced tree metric where D is the set of leaves
of the tree. Given a cost function µ, we define the cost of a labelling λ of a graph G as
costµ(λ,G) =

∑
uv∈G µ(λ(u), λ(v)).

3 Cost functions: Randomized Contractions

We apply the framework by Chitnis et al. [3] to show that the general case of Zero Extension
is in FPT when parameterized by the number of crossing edges. Note that crossing edges could
incur an arbitrary cost, including zero. The stronger parameterization of only counting the
number of crossing edges at non-zero cost makes for an intractable problem: With zero-cost
edges, we can express the problem H-Retraction for reflexive graphs H, which asks us to
find a retraction of a graph G into a fixed graph H. This problem is already NP-complete
for H being the reflexive 4-cycle [31] and thus Zero Extension is paraNP-complete for
k = 0 when parameterized by the number of non-zero crossing edges or the total cost.

A (σ, κ)-good separation is a partition (L,R) of V (G) such that |L|, |R| > σ, |E(L,R)| 6 κ,
and both G[L] and G[R] are connected. There exists an algorithm that finds a (σ, κ)-good
separation in time O((σ+κ)O(min(σ,κ))n3 log n) (Lemma 2.2 in [3]) or concludes that the graph
is (σ, κ)-connected, that is, no such separation exists. The following lemma is a slight refor-
mulation of Lemma 1.1 in [3] which in turn is based on splitters as defined by Naor et al. [23]:

I Lemma 6 (Edge splitter). Given a set E of size m and integers 0 6 a, b 6 m one can in
time O((a + b)O(min{a,b})m logm) construct a set family F over E of size at most O((a +
b)O(min{a,b}) logm) with the following property: for any disjoint sets A,B ⊆ E with |A| 6 a

and |B| 6 b there exists a set H ∈ F with A ⊆ H and B ∩H = ∅.

We first prove that Zero Extension can be solved on such highly connected instances and
then apply the ‘recursive understanding’ framework to handle graphs with good separations.

I Lemma 7. Let G be (σ, k)-connected for some σ > k. Then we can find an optimal solution
in time O((|D|+ 2σk + k)O(k)(n+m) log n).

Proof sketch. Let λ ∈ opt(I) and let Eλ be the crossing edges with endpoints V (Eλ).
Let C0, C1, . . . , C` be the connected components of G− Eλ with C0 being the largest one.
Since G is (σ, k)-connected, we know that ` 6 k and that all components C1, . . . , C` have
size at most σ (cf. Lemma 3.6 in [3]). We will assume that |C0| > σ, otherwise |V (G)| 6 σk

vertices and we find Eλ by brute-force.
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We proceed by colouring E(G). Such a colouring is successful if 1) Eλ is red, 2) each Ci,
i > 1, contains a blue spanning tree, and 3) each vertex u ∈ C0 ∩ V (Eλ) is contained in a
blue tree of size > σ+ 1. It is easy to verify that we need to correctly colour a set B ⊆ E(G),
|B| 6 (σ − 1)`+ σk 6 2σk edges blue while colouring a set R ⊆ E(G), |R| 6 k, edges red.
We construct an edge-splitter F with a = 2σk and b = k according to Lemma 6 of size
O((2σk + k)O(k) logm). By construction, at least one colouring in F will be successful.

Fix a successful colouring. Let GB be the graph on the blue edges. Call a component
of GB small if it contains 6 σ vertices and big otherwise. Our task is to recover C0, C1, . . . , C`.
Every Ci, i > 1 is small in GB and all components reachable from Ci via red edges must
either be a solution component Cj , j > 1, or a big component in GB. Thus, we can
‘discover’ the sets C1, . . . , C` by marking small components that contain a terminal and
then successively mark small components with red edges into already marked components.
Afterwards we identify the crossing edges Eλ and λ. The total running time to identify Eλ
is (2σk + k)O(k)(n+m) log n. Given Eλ, the final step is to find an optimal assignment. We
simply try all possible assignments for non-terminal components in time O(|D|`k) = O(|D|kk)
and the claimed running time follows. J

With the well-connected cases handled, the theorem follows by a straightforward application
of recursive understandings [3].

I Theorem 1 (?2). Zero Extension can be solved in time O(|D|O(k2)n4 log n) where k is
a given upper bound on the number of crossing edges in the solution.

4 General metrics: Pushing separators

We now consider the more restricted, but reasonable case that µ is a metric, observing the
triangle inequality. We find that this allows a ‘greedy’ operation of pushing in a solution
λ, which allows both the design of a faster algorithm (Section 4.1) and the computation of
a metric sparsifier (Section 4.2). Throughout the section, let I = (G = (V,E), τ, µ, q) be
an instance of Zero Extension for an arbitrary metric µ, let S be the set of terminals
of G, and let D be the set of labels. We assume that the following reductions have been
performed on G: For every label ` used by τ there is a terminal t`, and every vertex v such
that τ(v) = ` has been identified with this terminal t`.

We first prove a useful lemma. Let λ : V → D be an extension of τ , and let U = λ−1(`)
for some ` ∈ D. By pushing from ` in λ we refer to the operation of relabelling vertices
to grow the set U “as large as possible”, without increasing the number of crossing edges.
Formally, this refers to the following operation: Let C be the furthest min-cut between vertex
sets U and S − t`, respectively S if there is no terminal t` (cf. [20, Lemma 3]); let U ′ be the
vertices reachable from U in G− C; and let λ′ be the labelling where λ′(v) = ` for v ∈ U ′
and λ′(v) = λ(v) otherwise. Clearly, λ′ is an extension of τ . We show that as long as µ is a
metric (observing the triangle inequality), pushing does not increase the cost of the solution.

I Lemma 8 (Pushing Lemma). For any τ -extension λ and every label ` ∈ D, pushing from `

in λ yields a τ -extension λ′ with costµ(λ′, G) 6 costµ(λ,G).

Proof sketch. Since C is a min-cut there is a set of paths that begin in δ(U), saturate C,
and end in terminals S− t`. By the triangle inequality, the cost incurred by λ on these paths
is at least as large as that incurred by λ′, and no other edge increases its cost in λ′. J

2 Results marked by ? are found in the full version of the paper [27]
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An immediate consequence of the above lemma is the following reduction rule.

I Corollary 9 (?). We can reduce to the case where for every terminal t` ∈ S, δ(t`) is the
unique (t`, S − t`)-min cut in G.

4.1 An FPT algorithm
We now show that Zero Extension is FPT for a metric µ parameterized by k + |D|,
where k is a bound on the number of crossing edges of an optimum λ. The algorithm
uses Lemma 8 to guess a solution λ using the classical technique of important separators,
pioneered by Marx [20] as an important technique for FPT algorithms solving cut problems.
Our algorithm roughly follows the algorithm for Multiway Cut of Chen, Liu and Lu [2],
with two complications. First, unlike in Multiway Cut, there may be crossing edges in λ
that are not reachable by a terminal, which makes the branching more expensive; second,
even after all crossing edges have been found, it still remains to find an optimal labelling λ.

Since these complications can be present or absent for different metrics µ, we describe
the algorithm in stages, where the first stage identifies all crossing edges reachable from a
terminal, the second stage identifies the remaining crossing edges, and the third stage finds
an assignment λ. For specific metrics µ, it may then be possible to speed this up by skipping
some steps. In summary, we show the following.

I Theorem 2. Zero Extension with metric cost functions can be solved in time O(|D|O(k) ·
m) where k is a given upper bound on the number of crossing edges in the solution.

We begin by providing the running time for the first stage. This is analysed in terms of a
lower bound p on the crossing number of any labelling λ. This may be defined as follows:
First apply Corollary 9, then compute p =

∑
t∈S |δ(t)|/2. It is known that p is a lower bound

on the multiway cut number of (G,S) [28], hence also on the number of crossing edges of λ,
making k − p a valid gap parameter. (Note that p does not measure the cost of a crossing
edge or path; such results are shown in Section 5.)

I Lemma 10 (?). Let p be the lower bound as above. In O(4k−pkm) time and 4k−p guesses,
we can reduce to the case where every edge of δ(t) is a crossing edge in the optimal solution
for every t ∈ S.

A similar result (without a lower bound) finds the remaining crossing edges of a solution.

I Lemma 11 (?). Given an input from stage 1, with p edges already marked as crossing,
in O(42k−pm) time and 42k−p guesses we can reduce to the case where every edge of G is
crossing in the optimal solution.

After stage 2, the remaining graph contains at most k edges, hence at most O(k) vertices,
and it only remains to find the min-cost labelling of the non-terminal vertices. In the absence
of any stronger structural properties of the metric µ, this last phase can be completed in
|D|O(k)O(m) time. Theorem 2 follows.

4.2 A kernel for any metric
We next show that Zero Extension has a kernel of O(ks+1) vertices for any metric µ,
where k is a bound on the number of crossing edges of a solution and s is the number of labels
of µ. Moreover, the kernel can be computed without access to µ. This gives us a kind of
metric sparsifier for (G,S), up to parameters k and s, as follows. The result is an adaptation
of the kernel for s-Multiway Cut of Kratsch and Wahlström [17]. For an instance I, let
cost(I, k) be the minimum cost of a labelling with at most k crossing edges (otherwise ∞).
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I Theorem 12 (?). Let s > 3 be a constant. For every graph G = (V,E) with a set S of
terminals, |S| 6 s, and integer k, there is a randomized polynomial-time computable set
Z ⊆ E with |Z| = O(ks+1) such that for any instance I = (G, τ, µ, q) of Zero Extension
with S being the set of terminals in I and µ having at most s labels, if cost(I, k) <∞ then
there is a τ -extension λ with crossing number at most k and cost cost(I, k) such that every
crossing edge of λ is contained in Z.

By contracting any edges not in
⋃
t∈S δ(t) ∪ Z we then get the kernelized instance (G′, S).

5 Tree metrics: Gap algorithms and VCSP relaxations

In this section we present more powerful algorithms parameterized by the gap parameter for
problems where the metric embeds into a tree metric. We begin by a purely combinatorial
algorithm for Zero Extension on leaf metrics, then we move on to the more general
Zero Extension and Metric Labelling problems for general induced tree metrics. The
algorithms for the latter problems rely on the domain consistency property of the relaxation,
which allows us to solve the problem by simply branching on the value of a single variable at
a time. This property is shown by way of a detour into an analysis of properties of VCSP
instances whose cost functions are weakly tree submodular, which is a tractable problem class
containing tree metrics. The algorithms for these problems are then straight-forward.

At this point, we need to address a subtlety regarding the input cost function µ. So far,
the cost function only had to obey basic properties that are easily verifiable or could be seen
as a ‘promise’. However, some of our arguments below will explictly need the tree T that
induces the metric. Luckily this issue has been solved already: given a induced tree metric µ
over D in matrix form, one can in time O(|D|2) compute a tree that induces µ [5]. If µ is
a leaf metric, the output will obviously have D as the leaves of T . In conclusion, we will
tacitly assume that we have access to the tree T in the following.

5.1 Leaf metrics: A duality approach
The µ-Edge Disjoint Packing problem asks to find an edge-disjoint packing P of paths
whose endpoints both lie in a terminal set S ⊆ V (G) that maximizes pack(µ,G, S) :=∑

P∈P µ(sP , tP ) (where sP , tP denote start- and endpoint of P ). Hirai and Pap [10] show
that if µ is a tree metric then pack(µ,G, S) = minλ maxF⊆E

∑
uv∈E\F µ(λ(u), λ(v)), where λ

is a zero-extension of the terminal-set S and the sets F ⊆ E are edges whose deletion leaves
every non-terminal vertex with an even degree. It follows that the maximum value of a
half-integral τ -path packing is just the minimum cost of a τ -extension λ, since a half-integral
path-packing is just a path-packing in the graph where every edge of G has been duplicated.

Let in the following I = (G, τ, µ, q) be an instance of Zero Leaf Extension, where µ is
a leaf metric over a tree T with leaves D. Let µ̂ = dT be the underlying tree metric. We define
the relaxed instance Î = (G, τ, µ̂, q). Let opt(I), opt(Î) denote the set of optimal solutions
for the integral and the relaxed instance, respectively. Using this notation, we can summarize
the duality: Given a relaxed instance Î, there exists a half-integral τ -path-packing P of cost
precisely cost(Î). In the following we will assume, by the usual identification argument,
that τ is a bijection and a τ -path packing is equivalent to an S-path packing.

I Lemma 13 (?). Let P be an half-integral τ -path packing with 1
2

∑
P∈P µ(τ(sP ), τ(tP )) =

cost(Î). Let λ ∈ opt(Î) be a relaxed optimum and let P ∈ P with endpoints s, t. Then
costµ̂(λ, P ) = µ(τ(s), τ(t)).
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A direct consequence is that if we trace an s-t-path P ∈ P , then the labels assigned by any
relaxed optimum λ to P induce a monotone sequence from s to t in T . That is, not only will
we only encounter those labels that lie on T [s, t], we also will encounter them ‘in order’.

Consider an edge xy ∈ E(T ). Then, as a consequence of Lemma 13 the set of edges
Cxy(λ) = {uv ∈ E(G) | λ(u) ∈ Tx, λ(v) ∈ Ty} between the vertex sets with labels in Tx
and Ty, respectively, must be saturated by paths of the packing P . For cuts right above leafs
of T , this implies the following.

I Lemma 14 (?). Let S be the vertices labelled by τ in G and assume that τ is a bijection.
Let C be any minimum (x, S − x)-cut for some terminal x ∈ S. Then every optimal,
half-integral S-path-packing in G will saturate C.

I Theorem 4. Let I = (G, τ, µ, q) be an instance of Zero Extension where µ is a leaf
metric on a set of labels D in a tree T , and let Î = (G, τ, µ̂, q) be the relaxed instance. Let
p = cost(Î). Then we can solve I in time O(|D|q−p|T |m+ |T |φ(n,m)), where φ is the time
needed to run a max-flow algorithm.

Proof sketch. We first construct for every edge ij ∈ T a flow network Hij from G as fol-
lows: let Di be those leaves that lie in the same component as i in T − ij and Dj all others.
ThenHij is obtained from G by identifying all terminals τ−1(Di) into a source s and all termin-
als τ−1(Dj) into a sink t. For each Hij we compute a maximum flow fij in time φ(n,m). We
can show that for every λ ∈ opt(Î) it holds that

∑
xy∈T |fij | =

∑
xy∈T |Cxy(λ)| = costµ(Î).

Note that we can also, in linear time, find the furthest cuts Cmax(x) for terminals x ∈ S
using the residual network of (Hij , fij) with i = τ(x) and j the parent of i in T .

Next, we test whether G contains a vertex u that is not part of a furthest min-cut Cmax(x)
for any x ∈ S; such a vertex cannot take an integral value in any relaxed optimum. We then
branch on the |D| possible integral values for u: for x ∈ S with τ(x) ∈ D being the chosen
integral value, we update the networks (Hij , fij) by adding an edge xu of infinite capacity, then
augment the flow. The number of augmentations is 6 k − p, as each augmentation witnesses
the increase of p and thus the decrease of the parameter. We charge each augmentation to a
level of the search tree and thus spend only O(m) time per flow fij , for a total of O(|T |m).

Otherwise, we find that every vertex of the current graph G is contained in at least one fur-
thest min-cut. It can be shown (see full version) that the intersection of three or more such cuts
is empty. Consequently, the graph decomposes into sets whose label is either fixed or is one of
two possible values. A simple cut argument shows that we can fix one of the two labels greedily
for the latter, and we construct an integral solution that matches the relaxed optimum. J

5.2 VCSP toolkit
Given a set of cost functions Γ over a domain D, an instance I of VCSP(Γ) is defined by a set
of variables V and a sum of valued constraints fi(v̄i), where for each i, fi ∈ Γ and v̄i is a tuple
of variables over V . We write fi(v̄) ∈ I to signify that fi(v̄) is a valued constraint in I. It is
known that the tractability of a VCSP is characterized by certain algebraic properties of the
set of cost functions. In full generality, such conditions are known as fractional polymorphisms
for the finite-valued case and more general weighted polymorphisms in the general-valued
case. Dichotomies are known in these terms both for the finite-valued [30] and general case
of VCSP [16], i.e., characterizations of each VCSP as being either in P or NP-hard. We will
only need a less general term.

A binary multimorphism 〈◦, •〉 of a language Γ over a domain D is a pair of binary
operators that satisfy f(x̄) + f(ȳ) > f(x̄ ◦ ȳ) + f(x̄ • ȳ), for all f ∈ Γ, x̄, ȳ ∈ Dar(f), where
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ar(f) is the arity of f and where we extend the binary operators to vectors by applying
them coordinate-wise. An operator ◦ is idempotent if x ◦ x = x for every x ∈ D, and
commutative if x◦y = y ◦x. A (finite, finite-valued) language Γ with a binary multimorphism
where both operators are idempotent and commutative is solvable in polynomial time via
an LP-relaxation [30]. The most basic example is the Boolean domain D = {0, 1}, in which
case the multimorphism 〈∧,∨〉 corresponds to the well-known class of submodular functions,
which is a tractable class that generalizes cut functions in graphs.

The following is folklore, but will be important to our investigations. Again, the cor-
responding statements apply for arbitrary fractional polymorphisms, but we only give the
version we need in the present paper.

I Definition 15 (Preserved under equality). Let f be a function that admits a multi-
morphism 〈◦, •〉. We say that two tuples x̄, ȳ ∈ Dar(f) are preserved under equality if
f(x̄) + f(ȳ) = f(x̄ ◦ ȳ) + f(x̄ • ȳ). For a relation R ⊆ Dar(r), we say that f is preserved under
equality in R if every pair of tuples x̄, ȳ ∈ R is preserved under equality and x̄ ◦ ȳ, x̄ • ȳ ∈ R.

I Lemma 16 (?). Let Γ be a language of cost functions that admit a multimorphism 〈◦, •〉 and
let λ1, λ2 ∈ opt(I) for some instance I of VSCP(Γ). Then for every valued constraint f(v̄) ∈
I it holds that f(λ1(v̄)) + f(λ2(v̄)) = f((λ1 ◦ λ2)(v̄)) + f((λ1 • λ2)(v̄)), where f(λ(v̄)) =
f(λ(v1), . . . , λ(vr)) for v̄ = v1, . . . , vr is the value of f(v̄) under λ. In other words, every
valued constraint f(v̄) ∈ I is preserved under equality in opt(I).

To illustrate, let us return again to the case of graph cut functions and submodularity
over the Boolean domain. Let G = (V,E) be an undirected graph, and define the cut
function fG : 2V → Z as fG(S) = |δ(S)|. Then fG is the sum over binary valued constraints
f(u, v) = [u 6= v] over all edges uv ∈ E, in Iverson bracket notation. Since a single valued
constraint f(u, v) is submodular, the same holds for the cut function as a whole. Then
Lemma 16 specialises into the statement that for two sets A,B ⊂ V such that δ(A), δ(B) are
minimum s-t-cuts in G for some s, t ∈ V , there is no edge between A \B and B \A. This
kind of observation is a common tool in, e.g., graph theory and approximation algorithms.

The above lemma will be very useful when reasoning about the structure of opt(I) subject
to more complex multimorphisms, as we will define next.

5.3 Submodularity on trees
Let �T denote the ancestor relationship in a rooted tree T . For a path P [x, y] ⊆ T , let z1, z2
be the middle vertices of P [x, y] (allowing z1 = z2 in case P [x, y] has odd length) such
that z1 �T z2. Define the commutative operators x,y as returning exactly those two
mid vertices, e.g. xx y = yxx = z1 and xy y = yyx = z2. Languages admitting the
multimorphism 〈x,y〉 are called strongly tree-submodular.

Define the commutative operator ↑ to return the common ancestor of two nodes x, y in a
rooted tree T . Define x↗ y to be the vertex z on P [x, y] which satisfies dT (x, z) = dT (y, x ↑ y).
In other words, to find z = x↗ y, we measure the distance from y to the common ancestor
of x and y and walk the same distance from x along P [x, y]. Languages that admit 〈↑,↗〉 as a
multimorphism are called weakly tree-submodular. In particular, all strongly tree-submodular
languages are weakly tree-submodular [15]. Tree-metric are, not very surprisingly, strongly
tree-submodular:

I Lemma 17 (?). Every tree-metric is strongly (and thus also weakly) tree-submodular for
every rooted version of the tree.
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We will need the following characterization of which value-pairs are preserved under equality
by strong tree submodularity for tree distance functions. The proof follows from a long case
analysis which we omit here.

I Lemma 18 (?). Two tuples (a, b), (x, y) ∈ V (T ) × V (T ) are preserved under equality
by dT with multimorphism 〈x,y〉 iff all four nodes lie on a single path P in T and
either a, b 6P x, y or a, x 6P b, y.

I Corollary 19 (?). Let dT be preserved under equality in R for some R ⊆ VT × VT , with at
least one pair (a, b) ∈ R with a 6= b. Then there is a path P in T which can be oriented as a
directed path such that for every pair (a, b) ∈ R the nodes a and b lie on P with a �P b.

5.4 The domain consistency property
Consider a problem VCSP(Γ) over a domain DI and a discrete relaxation VCSP(Γ′) of
VCSP(Γ) over a domain D ⊇ DI . We say that the relaxation has the domain consistency
property if the following holds: for any instance I of VCSP(Γ′), if for every variable v there is
an optimal solution to I where v takes a value in DI , then there is an optimal solution where
all variables take values in DI , i.e. an optimal solution to the original problem at the same
cost. We show that the discrete relaxations of Zero Extension and Metric Labelling
on induced tree metrics have the domain consistency property, allowing for FPT algorithms
under the gap parameter via simple branching algorithms.

The result builds on a careful investigation of the binary constraints that opt(I) can
induce on a pair of vertices u, v ∈ V , starting from Corollary 19. For the rest of the section,
let us fix a relaxed instance I = (G = (V,E), τ, µ, q) of Zero Extension where µ is a tree
metric defined by a tree T , and the original (non-relaxed) metric is the restriction of µ to a
set of nodes DI . Note that I can be expressed as a VCSP instance using assignments and the
cost function µ. Let opt be the set of optimal labellings. For a vertex v ∈ V , let D(v) denote
the set {λ(v) | λ ∈ opt}, and let DI(v) = DI ∩D(v). Furthermore, for a pair of vertices
u, v ∈ V , let R(u, v) = {(λ(u), λ(v)) | λ ∈ opt} be the projection of opt onto (u, v), and
RI(u, v) = R(u, v) ∩ (DI ×DI) the integral part of this projection. We begin by observing
that the “path property” of Corollary 19 applies to all vertices and edges in opt.

I Lemma 20 (?). For every vertex v that lies in a connected component of G containing at
least one terminal, D(v) is a path in T . Furthermore, for every edge uv ∈ E, R(u, v) embeds
into the transitive closure of a directed path in T .

Next, we show the main result of this section: if u and v is a pair of variables, then whether
or not there is an edge uv in E, the constraint R(u, v) induced on u and v by opt is only
non-trivial on values in D(u) ∩D(v).

I Lemma 21 (?). Let u and v be a pair of variables and a ∈ D(u), b ∈ D(v) a pair of values.
If (a, b) /∈ R(u, v), then a, b ∈ D(u) ∩D(v) and a 6= b.

This gives us the following algorithmic consequence.

I Lemma 22. There is a labelling λ ∈ opt such that for every variable v with DI(v)
non-empty, we have λ(v) ∈ DI .

Proof sketch. Order V (T ) such that the values DI come first, and assign to every variable
v the value of D(v) that is earliest in this ordering. By Lemma 21, this gives an assignment
that is consistent with R(u, v) for every pair of variables u, v ∈ V , and since opt has a
majority polymorphism, this implies that the resulting assignment is in opt. J
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Let us for reusability spell out the explicit assumptions and requirements made until now.

I Theorem 23 (?). Let I = (G = (V,E), τ, µ, q) be an instance of Zero Extension
with no isolated vertices and where every connected component of G contains at least two
terminals, and where µ is an induced tree metric for some tree T and integral nodes DI ⊆ T .
Additionally, assume a collection of cost functions F = (fi(v̄i))mi=1 has been given, where
for every fi the scope is contained in V and where fi is weakly tree submodular for every
rooted version of T . Let I ′ be the VCSP instance created from the sum of the cost functions
of I and F . Then I ′ has the domain consistency property, i.e., there is an integral relaxed
optimum if and only if every vertex v is integral in at least one relaxed optimum of I ′.

5.5 Gap algorithms for general induced tree metrics
By Theorem 23, we get FPT algorithms parameterized by the gap parameter q − p.

I Theorem 3. Let I = (G, τ, µ, q) be an instance of Zero Extension where µ is an induced
tree metric on a set of labels D in a tree T , and let Î = (G, τ, µ̂, q) be the relaxed instance.
Let p = cost(Î). Then we can solve I in time O(|D|q−p|T ||D|nm).

Proof. This algorithm is similar to the algorithm for a leaf metric, except that we are not
as easily able to test whether every variable has an integral value in opt. By the results of
Section 5.1, the value of opt is witnessed by the collection of min-cuts for edges in T ; we
will use this as a value oracle for I. We initially compute a max-flow across every edge of T ,
then for every assignment made we can compute the new value of opt using O(|T |) calls
to augmenting path algorithms. This allows us to test for optimality of an assignment in
O(|T |m) time. The branching step then in general iterates over at most n variables, testing
at most |D| assigned values for each, and testing for optimality each time. Hence the local
work in a single node of the branching tree is O(|T ||D|nm). This either produces a variable
for branching on or (by Theorem 23) produces an integral assignment, and in each branching
step the value of p increases but q does not. The time for the initial max-flow computation
is eaten by the factor |T |nm. The result follows. J

For Metric Labelling, we first need to restrict the unary cost functions. Intuitively, the
property is analogous to linear interpolation or convexity, applied along paths of the tree.
The precise definition is as follows.

I Lemma 24 (?). Let f : V (T ) → R be a unary function on a tree T . Then f is weakly
tree submodular on T for every choice of root r ∈ VT if and only if it observes the following
interpolation property: for any nodes u, v ∈ V (T ), at distance dT (u, v) = d, and every
i ∈ [d− 1], let wi be the node on T [u, v] satisfying dT (u,wi) = i. Then for any such choice
of u, v and i, it holds that f(wi) 6 ((d− i)/d)f(u) + (i/d)f(v).

Let f0 : U → Z+ be a non-negative function defined on a subset U of the nodes of a tree T .
We say that f0 admits an interpolation on T if there is an extension f : V (T )→ Z+ with the
interpolation property such that f(v) = f0(v) for every v ∈ U . Note that this only restricts
the values f0(u) for nodes u ∈ U that lie on a tree path between two other nodes u1, u2 ∈ U .
In particular, if U is the set of leaves of T , then every function f0 admits an interpolation
by simply padding with zero values (although stronger interpolations are in general both
possible and desirable).

We get the following.
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I Theorem 5. Let I = (G, σ, µ, q) be an instance of Metric Labelling where µ is an
induced tree metric for a tree T and a set of nodes D ⊆ V (T ), and where every unary cost
σ(v, ·) admits an interpolation on T . Let Î = (G, σ̂, µ̂, q) be the relaxed instance, and let
p = cost(Î). Then the instance I can be solved in time O∗(|D|q−p). In particular, this
applies for any σ if D is the set of leaves of T .

Proof. Assume that G is connected, or else repeat the below for every connected component
of G. Select two arbitrary vertices u, v ∈ V and exhaustively guess their labels; in the case
that you guess them to have the same label, identify the vertices in I (adding up their costs in
σ) and select a new pair to guess on. Note that this takes at most O(|D|2n) time, terminating
whenever you have guessed more than one label in a branch or when you have guessed that
all vertices are to be identical. This guessing phase can only increase the value of p. We
may now treat u and v as terminals, and the instance I as the sum of a Zero Extension
instance on those two terminals and a collection of additional unary cost functions σ(v′, ·),
as in Theorem 23. Note that the resulting VCSP is tractable, i.e., the value of an optimal
solution can be computed in polynomial time. The running time from this point on consists
of iterating through all variables verifying whether each one has an integral value in some
optimal assignment, and branching exhaustively on its value if not. J

In particular, as noted, for a leaf metric µ the algorithm applies without any assumptions on
σ (and without T being explicitly provided).

6 Conclusion

We have given a range of algorithmic results for the Zero Extension and Metric La-
belling problems from a perspective of parameterized complexity. Most generally, we
showed that Zero Extension is FPT parameterized by the number of crossing edges of
an optimal solution, i.e. the number of edges whose endpoints receive distinct labels, for a
very general class of cost functions µ that need not even be metrics. This is a relatively
straight-forward application of the technique of recursive understanding [3].

For the case that µ is a metric we gave two stronger results for the same parameter.
First, we showed a linear-time FPT algorithm, with a better parameter dependency, using
an important separators-based algorithm. Second, and highly surprisingly, we show that
every graph G with a terminal set S admits a polynomial-time computable, polynomial-sized
metric sparsifier G′, with O(ks+1) edges, such that (G′, S) mimics the behaviour of (G,S)
over any metric on at most s labels (up to solutions with crossing number k). This is a
direct and seemingly far-reaching generalization of the polynomial kernel for s-Multiway
Cut [17], which corresponds to the special case of the uniform metric.

Finally, we further developed the toolkit of discrete relaxations to design FPT algorithms
under a gap parameter for Zero Extension and Metric Labelling where the metric is
an induced tree metric. This in particular involves a more general FPT algorithm approach,
supported by an applicability condition of domain consistency, relaxing the previously used
persistence condition.

Let us highlight some questions. First, is there a lower bound on the size of a metric
sparsifier for s labels for Zero Extension? This is particularly relevant since the existence
of a polynomial kernel for s-Multiway Cut whose degree does not scale with s is an
important open problem, and since the metric sparsifier is a more general result.

Second, can the FPT algorithms for induced tree metrics parameterized by the relaxation
gap be generalised to restrictions of other tractable metrics, such as graph metrics for median
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graphs or the most general tractable class of orientable modular graphs [9]? Complementing
this, what are the strongest possible gap parameters that allow FPT algorithms for metrics
that are either arbitrary, or do not explicitly provide their relaxation?
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Abstract
We show that the mutual information, in the sense of Kolmogorov complexity, of any pair of
strings x and y is equal, up to logarithmic precision, to the length of the longest shared secret
key that two parties, one having x and the complexity profile of the pair and the other one
having y and the complexity profile of the pair, can establish via a probabilistic protocol with
interaction on a public channel. For ` > 2, the longest shared secret that can be established
from a tuple of strings (x1, ..., x`) by ` parties, each one having one component of the tuple and
the complexity profile of the tuple, is equal, up to logarithmic precision, to the complexity of
the tuple minus the minimum communication necessary for distributing the tuple to all parties.
We establish the communication complexity of secret key agreement protocols that produce a
secret key of maximal length, for protocols with public randomness. We also show that if the
communication complexity drops below the established threshold then only very short secret keys
can be obtained.
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1 Introduction

Mutual information is a concept of central importance in both information theory (IT) and
algorithmic information theory (AIT), also known as Kolmogorov complexity. We show
an interpretation of mutual information in AIT, which links it to a basic concept from
cryptography. Even though a similar interpretation was known in the IT framework, an
operational characterization of mutual information in AIT has been elusive till now.

To present our result, let us consider two strings x and y. It is common to draw a
Venn-like diagram such as the one in Figure 1 to visualize the information relations between
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them. As explained in the figure legend there are six important regions. The regions (1) to

C(x) C(y)

C(x | y) C(y | x)

C(x, y)

I(x : y)

Figure 1 Two strings x and y, and their information. There are six regions that we distinguish:
(1) The left solid circle represents the information in x, as given by its Kolmogorov complexity,
denoted C(x); (2) The right dotted circle represents the information in y, denoted C(y); (3) The
entire grey region (the two circles taken together) represents the information in x and y, denoted
C(x, y); (4) The light-grey region in the first circle represents the information in x conditioned by
y, denoted C(x | y); (5) The light-grey region in the second circle represents the information of
y conditioned by x, denoted C(y | x); and (6) the dark-grey region in the middle represents the
mutual information of x and y, denoted I(x : y).

(5) have a clear operational meaning. For instance, C(x) is the length of a shortest program
that prints x, C(x | y) is the length of a shortest program that prints x when y is given to it,
and so on. On the other hand, the mutual information I(x : y) from region (6) is defined by
a formula: I(x : y) = C(x) + C(y)− C(x, y). Intuitively, it is the information shared by x
and y. But is there an operational interpretation of the mutual information? As mentioned
above, we give a positive answer: The mutual information of x and y is essentially equal
to the length of a longest shared secret key that two parties, one having x and the other
one having y, and both parties also possessing the complexity profile of the two strings, can
establish via a probabilistic protocol.

The following simple example illustrates the above concepts. Suppose that Alice and
Bob want to agree on a common secret key. If they could meet face-to-face, they could just
generate such a key by, say, flipping a coin. Unfortunately, they cannot meet in person and
what makes the situation really troublesome is that they can only communicate through a
public channel. There is however a gleam of hope because Alice knows a random line x in
the affine plane over the finite field with 2n elements, and Bob knows a random point y on
this line. The line x is specified by the slope a and the intercept b and the point y by its two
coordinates c and d. Therefore each of x and y has 2n bits of information, but, because of
the geometrical correlation, together they have 3n bits of information. Thus, in principle,
Alice and Bob share n bits. Can they use them to obtain a common secret key? The answer
is yes: Alice sends a to Bob, Bob, knowing that his point is on the line, finds x, and now
they can use b as the secret key, because the adversary has only seen a, and a and b are
independent.

It may appear that the geometrical relation between x and y is crucial for the above
solution. In fact it is just a red herring and Alice and Bob can agree on a common secret
key in a very general setting. To describe it, we consider the scenario in which Alice has
a random string x and Bob has a random string y. If x = y, then Alice and Bob can use
their common string as a secret key in an encryption scheme (such as the one-time pad)
and achieve perfect information-theoretical security. What happens if x and y are not equal,
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but only correlated? Somewhat surprisingly, for many interpretations of “correlated,” they
can still agree on a shared secret key via interaction on a public channel (for instances of
this assertion, see [15, 3, 17, 1]). In this paper, we look at this phenomenon using the very
general framework of algorithmic information theory to measure the correlation of strings.

1.1 Our contributions
Characterization of mutual information. In a secret key agreement protocol, Alice and
Bob, on input x and respectively y, exchange messages and compute a common string that
is random conditioned by the transcript of the protocol. Such a string is said to be a shared
secret key. Unless specified otherwise, we use protocols having the following features:
(1) We assume that Alice and Bob also know how their x and y are correlated. In our

setting this means that Alice and Bob know the complexity profile of x and y, which, by
definition, is the tuple (C(x), C(y), C(x, y)).

(2) The protocols are effective and randomized, meaning that Alice and Bob use probabilistic
algorithms to compute their messages.

I Theorem 1 (Main Result, informal statement).
1. There is a secret key agreement protocol that, for every n-bit strings x and y, allows Alice

and Bob to compute with high probability a shared secret key of length equal to the mutual
information of x and y (up to an O(log n) additive term).

2. No protocol can produce a longer shared secret key (up to an O(log n) additive term).

Secret key agreement for three or more parties. Mutual information is only defined for
two strings, but secret key agreement can be explored for the case of more strings. Let us
consider again an example. Suppose that each of Alice, Bob, and Charles have a point in
the affine plane over the finite field with 2n elements, and that the three points, which we
call A,B,C, are collinear. Thus each party has 2n bits of information, but together they
have 5n bits of information, because given two points, the third one can be described with n
bits. The parties want to establish a common secret key, but they can only communicate
by broadcasting messages over a public channel. They can proceed as follows. Alice will
broadcast a string pA, Bob a string pB , and Charles a string pC , such that each party using
his/her point and the received information will reconstruct the three collinear points A,B,C.
A protocol that achieves this is called an omniscience protocol because it spreads to everyone
the information possessed at the beginning individually by each party. In the next step,
each party will compress the 5n bits, comprising the three points, to a string that is random
given pA, pB , pC . The compressed string is the common secret key. We will see that up to
logarithmic precision it has length 5n− (|pA|+ |pB |+ |pC |). Assuming we know how to do
the omniscience protocol and the compression step, this protocol produces a common secret
key of length 5n− CO(A,B,C), where CO(A,B,C) is the minimum communication for the
omniscience task for the points A,B,C. In our example, it is clear that each one of pA, pB , pC
must be at least n bits long, and that any two of these strings must contain together at least
3n bits. Using some recent results from the reference [28], it can be shown that any numbers
satisfying these constraints can be used for the omniscience task. It follows that the smallest
communication for omniscience is achieved when |pA| = |pB | = |pC | = 1.5n, and thus the key
has 5n− 4.5n = 0.5n bits (Warning: we have ignored in the entire discussion some O(log n)
terms). We show that this holds in general. If ` parties have, respectively, one component
of a tuple (x1, . . . , x`) of n-bit strings, then up to O(log n) precision, they can produce a
common secret key of length C(x1, . . . , x`) − CO(x1, . . . , x`), where CO(x1, . . . , x`) is the
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minimum communication for the omniscience task. The protocol that produces such a key
is probabilistic, and, as was the case for two strings, assumes that each party i has at the
beginning of the protocol besides its input string xi also the complexity profile of the entire
tuple (x1, . . . , x`). We also show a matching (up to O(log n)) upper bound: no probabilistic
protocol can produce a longer secret key.

I Remark. The value CO(A,B,C) is understood as the communication complexity of
the omniscience problem. However, it can be computed as a function of the Kolmogorov
complexities of the involved strings, see Definition 4 below. This fact (the communication
complexity of the optimal omniscience protocol depends only on the complexity profile of
the inputs) is not trivial and requires a proof.

Communication complexity for secret key agreement. In the protocol in Theorem 1, Alice
and Bob exchange min(C(x | y), C(y | x)) +O(log n) bits and obtain with high probability a
shared secret key of length I(x : y)− O(log n). In this protocol we can assume that Alice
and Bob use either private random bits, or public random bits. We show that for the model
with public random bits, the communication complexity of the protocol is optimal, in the
sense that in any protocol with public random bits there are input strings x and y, on which
Alice and Bob have to exchange at least min(C(x | y), C(y | x)) bits. In fact our lower bound
is stronger: we show that, for any constants δ1, δ2 > 0, if Alice and Bob use a protocol with
communication complexity (1 − δ1) min(C(x | y), C(y | x)) for every input pair x, y, then
there are inputs for which the shared secret key that they obtain has length at most δ2I(x : y).
That is, if the communication complexity sinks below the threshold min(C(x | y), C(y | x)),
then the size of the common secret key drops to virtually zero. To determine the optimal
communication complexity for the model with private random bits remains an open problem.

1.2 Related previous work.
IT vs. AIT. Before reviewing existing related results in the IT and the AIT frameworks, it
is useful to understand the distinction between the two theories. In computer science the
attribute random is mainly used in two (fairly different) contexts: random processes and
random objects. In short, IT, which we also call Shannon’s framework, focuses on the former,
whereas AIT, which we also call Kolmogorov’s framework, focuses on the latter. On the
one hand, we may think of an uncertain physical process with unpredictable outcomes, and
employ the framework of the classic probability theory (distributions, random variables, etc.).
The notion of a random variable formalizes the idea of a process like coin tossing. In this
context we can measure the uncertainty of a random variable as a whole (by its Shannon’s
entropy, its min-entropy, etc.), but we can not ask whether one specific outcome is random
or not. On the other hand, people use tables of random numbers, which are available as
specific sequences of digits, written on a disc or printed on a paper. The usefulness of such
a table depends on its individual properties: frequencies of digits, presence or absence of
hidden regularities, compressibility, etc. The usual way to measure the uncertainty of an
individual string of digits is Kolmogorov complexity. In both contexts the formal measures of
randomness may or may not involve computational complexity (see, e.g., different versions of
pseudoentropy for distributions and the resource bounded variants of Kolmogorov complexity
for individual strings). These two formalizations of randomness are connected but not
interchangeable.

Both notions of randomness appear in cryptography. For example, in the one-time pad
scheme, two parties share a “random” key that remains “secret” for the attacker. It is
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common to use Shannon’s framework, and therefore the notions of randomness and secrecy
are defined in terms of random processes. In the ideal situation both parties should have
access to a common source of randomness, e.g., to the results of tossing an unbiased coin
(hidden from the adversary). By tossing this coin n times we get a random variable with
maximal possible entropy, and thus, in Shannon’s framework, the quality of randomness is
perfect. But if by chance we obtain a sequence of n zeros, then this specific one-time pad looks
pretty useless in any practical application. However, Shannon’s information theory provides
no vocabulary to complain about this apparently non-random individual key. Antunes et al.
[2] suggested to use Kolmogorov complexity to measure the “secrecy” of individual instances
of a one-time pad or a secret sharing schemes. We have in mind a similar motivation, and in
this work a “secret key” is an individual string that is random in the sense of Kolmogorov
complexity.

Related work. We start with a brief account of works on secret key agreement in the
IT setting. The secret key agreement is a relatively well-studied problem in information
theory, motivated, as the name suggests, by applications in information-theoretically secure
cryptography. Wyner [27] and Csiszár and Körner [7] have analyzed the possibility of obtaining
a shared secret key in the case when one party sends to the other party a single message
on a channel from which the eavesdropper can obtain partial information. Maurer [16, 17]
considered the case of protocols with several rounds of communication and showed that
interaction can be more powerful than one-way transmission. Ahlswede and Csiszár [1] and
Maurer [17] have established the tight relation between interactive secret key agreement and
mutual information for memoryless sources. In the memoryless model, the input data is given
by two random variables (X1, X2) obtained by n independent draws from a joint distribution,
where Alice observes X1 and Bob observes X2. Informally stated, the references [17, 1]
show that the longest shared secret key that Alice and Bob can establish via an interactive
protocol with an arbitrary number of rounds is equal to the mutual information of X1
and X2. Csiszár and Narayan [8] go beyond the scenario with two parties, and consider
the case of an `-memoryless source (X1, . . . , X`) and ` parties, each one observing one
component of the tuple. They show that the longest shared secret key the ` parties can
establish via an interactive protocol with an arbitrary number of rounds is equal to the
entropy H(X1, . . . , X`) of the `-memoryless source from which one subtracts the minimum
communication for omniscience. Their result holds also for stationary ergodic sources, which
generalize memoryless sources. As one can see, our results are very similar. They have been
inspired by the papers [1, 17, 8] and represent the AIT analogue of the results presented
above. Our results imply their IT analogues, and can be viewed as more general because
they do not require the memoryless or ergodicity properties of sources (in fact they do not
require any generative model at all). Regarding the communication complexity of secret
key agreement protocols, we only note here that Tiyagi [26] has shown that for memoryless
sources it is equal to the difference between interactive common information in Wyner’s
sense and mutual information. In the full version of this paper we explain how Tyagi’s result
compares to our results on communication complexity in the AIT framework.

Let us now say a few words about related results from the AIT world. To the best of our
knowledge, in AIT there has been no previous works on secret key agreement. However, the
general idea of “materialization” of mutual information was studied extensively. Motivated
by the intuition that mutual information represents the amount of shared information in two
strings, researchers have explored the extent to which mutual information can be materialized
more or less effectively. The relevant concept is that of common information. Informally, a
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string z is a common information string extracted from strings x and y, if z can be “computed”
from x, and also from y, where “computed” is taken in a more liberal sense that allows
the utilization of a few help bits. In the most common setting of parameters, we require
that C(z | x) = O(log n) and C(z | y) = O(log n), where n is the length of x and y and the
constant hidden in the O(·) notation depends only on the universal machine. Informally, the
common information of x and y is the length of a longest common information string that
can be extracted from x and y. It can be shown that up to logarithmic precision common
information is upper bounded by mutual information. In an influential paper, Gács and
Körner [9] have constructed strings x and y for which the common information is much smaller
than the mutual information. Moreover, the property of a pair (x, y) of having common
information equal to mutual information does not depend solely on the complexity profile
of x and y: There exist pairs (x1, y1) and (x2, y2) having the same complexity profile, and
for (x1, y1) the common information and mutual information are equal, whereas for (x2, y2)
they are not. Muchnik [19] and Romashchenko [22] have strengthened the Gács-Körner
theorem in significant ways, by allowing a larger amount of help bits, parameterizing the
mutual information of the constructed pair (x, y), and other ways. Chernov et al. [6] presents
alternative constructions of strings for which the common information is smaller than mutual
information for several regimes of parameters. A nice, self-contained and accessible exposition
of this research line can be found in the book of Shen, Vereshchagin and Uspensky [23,
Chapter 11].

Thus, previous works have shown negative results regarding the “materialization” of
mutual information in AIT. As far as we know, ours is the first positive result. In summary,
we now know that computation without communication, even enhanced with help bits, fails
to extract the mutual information of two strings, while interactive computation succeeds.

1.3 The basics of algorithmic information theory
Given a Turing machine M , a string p is said to be a program (or a description) of a string x,
if M on input p prints x. We denote the length of a binary string x by |x|. The Kolmogorov
complexity of x relative to the Turing machine M is

CM (x) = min{|p| | p is a program for x relative to M}.

If U is universal Turing machine, then for every other Turing machine M there exists a string
m such that U(m, p) = M(p) for all p, and therefore for every string x, CU (x) ≤ CM (x)+ |m|.
Thus, if we ignore the additive constant |m|, the Kolmogorov complexity of x relative to U
is minimal. We fix a universal Turing machine U , drop the subscript U in CU (·), and denote
the complexity of x by C(x). Similarly to the complexity of x, we define the complexity of x
conditioned by y as C(x | y) = min{|p| | U on input p and y prints x}. We list below a few
basic facts about Kolmogorov complexity and introduce some notation:

For every string x, C(x) ≤ |x|+O(1), because a string x is trivially described by itself.
(Formally, there is a Turing machine M that, for every x, on input x prints x.)
Using some standard computable pairing function 〈·, ·〉 that maps pairs of strings into
single strings, we define the complexity of a pair of strings by C(x, y) = C(〈x, y〉). Then
we can extend this notation to tuples of larger arity.
We use the convenient shorthand notation a ≤+ b to mean that a ≤ b+O(log n), where n
is a parameter that is clear from the context and the constant hidden in the O(·) notation
only depends on the universal machine U . Similarly, a ≥+ b means a ≥ b−O(log n), and
a =+ b means (a ≤+ b and a ≥+ b).
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The chain rule (a.k.a. the Kolmogorov–Levin theorem) claims that for all sufficiently
long strings x and y,

∣∣C(x, y)− (C(x) + C(y | x))
∣∣ ≤ 3(logC(x) + logC(y)).

The mutual information of two strings x and y is denoted I(x : y), and is defined as
I(x : y) = C(x) + C(y)− C(x, y).
The complexity profile of a tuple of strings (x1, . . . , x`) is given by the tuple consisting
of the complexities of all non-empty subsets of the strings in the tuple, i.e., it is the
tuple (C(xV ) | V ⊆ [`], V 6= ∅). Here xV denotes the subtuple obtained by taking the
components with indices in V (for example if V = {1, 2, 7} then xV = (x1, x2, x7)).

1.4 Shared secret keys and protocols for secret key agreement

Let k be a positive integer. A k-rounds two-party protocol for secret key agreement uses two
computable functions A and B and runs as follows. The first party has as input a string xA
and uses private randomness rA, the second party has as input a string xB and uses private
randomness rB. We assume that the length of rA (rB) is determined by xA (respectively,
xB). The protocol consists of the following calculations:

x1 = A(xA, rA), y1 = B(xB , rB , x1)
x2 = A(xA, rA, y1), y2 = B(xB , rB , x1, x2)
...

xk = A(xA, rA, y1, . . . , yk−1), yk = B(xB , rB , x1, . . . , xk).

The algorithms A and B can handle inputs of different lengths. We also allow them to be
partial (i.e., it is possible that the protocol does not converge for some pairs of inputs). Let
us fix parameters ε and δ(n). (We assume ε is a positive constant and δ(n) is a constant or
a slow growing function, e.g., O(log n)). A protocol succeeds with error probability ε and
randomness deficiency δ(n) on a pair (xA, xB) of n-bit strings if with probability (1− ε) over
rA, rB ,

A(xA, rA, t) = B(xB , rB , t)
def.= z, (1)

and

C(z | t) ≥ |z| − δ(n), (2)

where t = (x1, y1, . . . , xk, yk) is the transcript of the protocol.
The string z satisfying equation (1) and inequality (2) is called a shared secret key output

by the protocol on input (xA, xB). Note that the shared secret key z is a random variable
since it depends not only on the inputs xA and xB , but also on the randomness rA and rB .

In words, Alice and Bob start with input strings xA and respectively xB, use private
randomness rA, and respectively rB and execute a protocol in which at round i, first Alice
sends to Bob the string xi, and next Bob sends to Alice the string yi, and at the end Alice and
Bob separately compute with high probability a common string z (equation (1)) such that
z is random even conditioned by the transcript of the protocol (inequality (2)). Thus, z is
secret to an adversary that has observed the protocol and consequently knows the transcript.

The number of rounds in a protocol (parameter k) may depend on the length of the
inputs.
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2 Main results

We present here our main results. We first show that there exists a secret key agreement
protocol which produces a shared secret key of length equal (up to logarithmic precision) to
the mutual information of the inputs, provided the two parties know the complexity profile.
Next we show that no protocol can produce a longer shared secret key. The formal statements
are as follows.

I Theorem 2 (Lower bound). There exists a secret key agreement protocol with the following
property: For every n-bit strings x and y, for every constant ε > 0, if Alice’s input xA
consists of x, the complexity profile of (x, y) and ε, and Bob’s input xB consists of y, the
complexity profile of (x, y) and ε, then, with probability 1− ε, the shared secret key is a string
z such that, C(z | t) ≥ |z| − O(log(1/ε)) and |z| ≥ I(x : y) − O(log(n/ε)), where t is the
transcript of the protocol. Moreover, the communication consists of a single message sent by
Alice to Bob of length C(x | y) +O(log(n/ε)), Alice uses O(log(n/ε)) random bits, and Bob
does not use any random bits.

I Theorem 3 (Upper bound). Let us consider a protocol for secret key agreement, let xA
and xB be input strings of length n on which the protocol succeeds with error probability ε
and randomness deficiency δ(n), and let z be the random string that is the shared secret key
output by the protocol, i.e., a string satisfying relations (1) and (2). Then with probability
at least 1−O(ε), if n is sufficiently large, |z| ≤ I(xA : xB) + δ(n) +O(log(n/ε)), where the
constants in the O(·) notation depend on the universal machine, but not on xA and xB.

Theorem 3 establishes the upper bound claimed in the Introduction. Indeed, for any
pair of n-bit strings (x, y), suppose that Alice’s input xA consists of x and the complexity
profile of (x, y) and Bob’s input xB consists of y and the complexity profile of (x, y). Note
that I(xA : xB) =+ I(x : y), because the length of the complexity profile is bounded by
O(log n). Hence, Theorem 3 implies that secret key agreement protocols in which the two
parties, besides x and respectively y, are additionally given the complexity profile of their
inputs can not produce a secret key that is longer than I(x : y) + O(log n) (provided the
randomness deficiency of the key satisfies δ(n) = O(log n)).
I Remark. In our secret key agreement protocols, the inputs xA and xB have two components:
xA = (x, hA) and xB = (y, hB), where the strings x and y are the main components, while
hA and hB are short helping strings (for example, containing information about how x and y
are correlated). The protocols designed in this paper succeed for all input pairs xA and xB in
which hA = hB = (the complexity profile of x and y). In case one or both of hA and hB are
not equal to the complexity profile, the protocols still halt on every input, but the outputs
may be meaningless. However, the proof of Theorem 2 can be adapted to the situation where
Alice and Bob are not given the exact value of the complexity profile of (x, y) but only an
approximation of this profile. If Alice and Bob are given upper and lower bounds for each
component of the complexity profile of (x, y) with precision ≤ σ, for some integer σ, then
with probability 1−O(ε) Alice and Bob agree on a common secret z that is incompressible
(i.e., C(z | t) ≥ |z| −O(log(1/ε)) where t is the transcript of the protocol), and the length of
z is greater than I(x : y)− σ −O(log(n/ε)).

3 Secret key agreement for three or more parties

In this section we analyze secret key agreement for 3 parties, which we call Alice, Bob, and
Charles. Alice has a string xA, Bob has a string xB, and Charles has a string xC . They



A. Romashchenko and M. Zimand 95:9

also have private random bits rA, respectively rB and rC . They run a k-round protocol. In
each of the k rounds, each party broadcasts a message to the other two parties, where the
message is a string computed from the party’s input string and private random bits, and
the messages from the previous rounds. After the completion of the k rounds, each party
computes a string. The requirement is that with probability at least 1− ε, they compute the
same string, and that this string is random conditioned by the transcript of the protocol.

Formally, a k-round 3-party protocol for secret key agreement uses three computable
functions A,B,C, and runs as follows. The first party has as input an n-bit string xA and
uses private randomness rA, the second party has as input an n-bit string xB and uses
private randomness rB , and the third party has as input an n-bit string xC and uses private
randomness rC . The protocol consists of the following calculations:

t1 = A(xA, rA), t2 = B(xB , rB), t3 = C(xC , rC),
t4 = A(xA, rA, t[1 : 3]), t5 = B(xB , rB , t[1 : 3]), t6 = C(xC , rC , t[1 : 3]),
t7 = A(xA, rA, t[1 : 6]), t8 = B(xB , rB , t[1 : 6]), t9 = C(xC , rC , t[1 : 6]),
...

 k rounds

Each row corresponds to one round and shows the messages that are broadcast in that round,
and we use the notation t[i : j] to denote the tuple of messages (ti, . . . , tj). We also denote
t = t[1 : 3k], the entire transcript of the protocol. The protocol succeeds with probability
error ε and randomness deficiency δ(n) on the 3-tuple input (xA, xB , xC) if with probability
(1− ε) over rA, rB , rC ,

A(xA, rA, t) = B(xB , rB , t) = C(xC , rC , t)
def.= z, (3)

and C(z | t) ≥ |z| − δ(n).

I Definition 4.
(1) For each triple of strings (x1, x2, x3), we denote by S(x1, x2, x3) the set of all triples of

integers (n1, n2, n3) that satisfy the following inequalities:

n1 ≥ C(x1 | x2, x3), n2 ≥ C(x2 | x1, x3), n3 ≥ C(x3 | x1, x2),
n1 + n2 ≥ C(x1, x2 | x3), n1 + n3 ≥ C(x1, x3 | x2), n2 + n3 ≥ C(x2, x3 | x1).

The constraints defining S(x1, x2, x3) will be referred as the Slepian-Wolf constraints.
(2) We define CO(x1, x2, x3) to be the minimal value of n1 + n2 + n3 subject to n1, n2, n3

satisfying the Slepian-Wolf constraints. (CO stands for communication for omniscience.)

We show that there exists a protocol that on every input tuple (xA, xB , xC) produces with
high probability a secret key of length C(xA, xB , xC)−CO(xA, xB , xC)−O(log n) (provided
the parties have the complexity profile of the input tuple), and that no protocol can produce
a secret key of length larger than C(xA, xB , xC)− CO(xA, xB , xC) +O(log n).

I Theorem 5 (Upper bound). Let us consider a 3-party protocol for secret key agreement
with error probability ε, where the number of random bits is bounded polynomially in the input
length. Let (xA, xB , xC) be a 3-tuple of n-bit strings on which the protocol succeeds. Let z be
the random variable which represents the secret key computed from the input (xA, xB , xC)
and let t be the transcript of the protocol that produces z. Then, for sufficiently large n, with
probability 1−O(ε) we have C(z | t) ≤ C(xA, xB , xC)− CO(xA, xB , xC) +O(log(n/ε)).

I Theorem 6 (Lower bound). There exists a 3-party protocol for secret key agreement with
the following characteristics. For every n, for every tuple (x1, x2, x3) of n-bit strings, for
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every ε > 0, if Alice’s input xA consists of x1, the complexity profile of the tuple and ε,
Bob’s input xB consists x2, the complexity profile of the tuple and ε, and Charles’s input
xC consists of x3, the complexity profile of the tuple and ε, then at the end the three parties
compute with probability 1−O(ε) a common string z such that

C(z | t) ≥ |z| −O(log(1/ε)) and |z| ≥ C(x1, x2, x3)− CO(x1, x2, x3)−O(log(n/ε)),

where t is the transcript of the protocol.

I Remark. Theorem 5 and Theorem 6 remain valid for any constant number ` ≥ 3 of parties,
with a suitable generalization of the omniscience CO(x1, . . . , x`), see the full version of the
paper.

4 Communication complexity of secret key agreement

It is of interest to find the communication complexity for the task of finding a shared secret
key having the optimal length of I(x : y). We solve this problem in the model of randomized
protocols with public random bits, visible to Alice, Bob, and the adversary. This model is
obtained by modifying slightly the definition from Section 1.4 (in which the random bits are
private): we require that rA = rB = r and we change equation (2) to C(z | t, r) ≥ |z| − δ(n).

The protocol presented in the proof of Theorem 2 solves the task with communication
min(C(x | y), C(y | x)) + O(log n). This protocol can be easily modified to work in the
model with public randomness. We argue that within the model with public randomness
the communication complexity of this protocol is optimal, up to the O(log n) term. In what
follows we assume as usual that Alice is given a string x and Bob is given a string y, and
both parties know the complexity profile of (x, y).

I Theorem 7. Let ε, δ1, δ2 be arbitrary positive real constants. There is no secret key
agreement protocol with public random bits such that for all inputs x and y,
1. the communication complexity of the protocol (the total number of all bits sent by Alice

and Bob) is less than (1− δ1) min{C(x | y), C(y | x)},
2. Alice and Bob agree with probability > ε on a common key z such that C(z | t, r) > δ2I(x :

y), where r is the public randomness and t = t(x, y, r) is the transcript of the protocol.

5 Our techniques.

It is common for statements in IT (in the Shannon’s entropy framework) to have an analogue
version in AIT (in the Kolmogorov complexity framework). However, there is no canonical
way to translate a result from one setting to the other, and proofs of homologous results in
these two frameworks can be drastically different. A textbook example of this phenomenon
is the chain rule: it is valid for Shannon’s entropy and for Kolmogorov complexity, and the
formal expressions of this rule in both frameworks look very similar. However, in Shannon’s
case this fact is an easy corollary of the definition, while in Kolmogorov’s version it requires
a nontrivial argument (which is known as the Kolmogorov–Levin theorem). There are
more advanced examples of parallel properties (from IT and AIT respectively), where the
discrepancy between their proofs is even more striking.

This phenomenon manifests itself in this work as well. Our main results are motivated
by similar ones in IT, and there is a close resemblance of statements. As discussed above,
this is not surprising. In what follows we explain the relation between our proofs and the
proofs of similar statements in Shannon’s framework.
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The positive results (the existence of communication protocols) use constructions that at
the high level are akin to those from their IT counterparts [17, 1, 8]. We employ a similar
intuitive idea – manipulations with “fingerprints” of inputs of appropriate lengths2. However,
the technical machinery is different. In the AIT framework, for communication-efficient
protocols, we need quite explicit constructions, while homologous results in IT are usually
proven by choosing random encodings. Our constructions are based on a combination of
extractors and universal hashing. Our general protocols are not time-efficient and this is
to be expected given the high generality of the type of data correlation in the AIT setting.
However, for some particular types of correlation (e.g., for a pair of inputs with a bounded
Hamming distance), our protocols can be modified to run in polynomial-time. In this case
we use the reconciliation technique from [25, 10, 11].

In the negative results (upper bounds for the size of the common secret key, Theorems 2
and 5) the ideas from IT do not help. The reason is that in the AIT framework, the mutual
information of various strings is not exactly zero, but only close to zero within some slack
terms. The slack terms are small, but during the rounds of a protocol, the errors can
accumulate and grow beyond control (for more detail see the discussion of the limits of
the “weak” upper bound int he full version of the paper). To overcome this obstacle we
come up with a new type of inequalities for Kolmogorov complexity. These inequalities are
substantially different from the classic information inequalities used in the analogous results
in IT. This technique is based on ideas similar to the conditional information inequalities in
[13, 14]. We believe that this technique can be helpful in other cases, including applications
in IT (see the discussion in the full version of the paper).

In the proof of a lower bound for communication complexity (Theorem 7), we use methods
specific for AIT, with no apparent parallel in IT. We adapt the technique of bounds for the
size of common information that goes back to An. Muchnik and use deep results regarding
stochastic strings [24, 20, 21], which have not been previously employed in information theory
and communication complexity.

6 Final comments

On time-efficient secret key agreement protocols. The secret key agreement protocol in the
proof of Theorem 2 is computable but highly non-efficient. The only slow stage is when Bob
reconstructs x given his input string y and the fingerprint of x obtained from Alice. At this
stage Bob has to simulate all programs of size C(x | y) until he obtains a string matching
the fingerprint. All other stages of the protocol can be implemented in polynomial time (to
this end we need to use an effective version of an extractor in the definition of fingerprints;
this increases the overhead in communication complexity from O(log n) to poly(log n), but
this is still negligible compared to the size of the fingerprint, which is the dominating term
in the communication complexity of the protocol; for details see [28]).

We cannot make Bob’s computation effective in general, but we can do it for some specific
pairs of inputs (x, y). Actually we can make the entire communication protocol fast, if there
is a way to communicate x from Alice to Bob so that (i) communication complexity of this
stage (and therefore the information revealed to the adversary) remains about C(x | y), and
(ii) all computations are performed by Alice and Bob in time poly(n).

2 On the high level this protocol consists of three stages: (i) Alice sends to Bob a suitable “fingerprint” of
her input p1(x); (ii) Bob uses y and p1(x) to recover x; (iii) then both Alice and Bob independently
compute another fingerprint p2(x), which is used as a common secret key. The construction of the
fingerprints guarantees that the adversary (who eavesdrops p1) obtains virtually no information about p2.
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Example 1. (Discussed in Introduction, p. 2.) Let Alice get a random line x in the affine
plane over the finite field with 2n elements, and Bob get a random point y on this line. For
most inputs of this type we have C(x | y) = n±O(log n), and there exists a simple way to
transfer x from Alice to Bob with communication complexity n (Alice just sends to Bob the
slope of her affine line, and Bob draws a line with this slope incident to his point). Thus,
we see once again that for this simple example there exists an effective (polynomial-time)
communication protocol to agree on common secret key of size ≈ n bits.

Example 2. Let Alice and Bob get n-bits strings x and y respectively, and the Hamming
distance between these strings is at most δn for some constant δ < 1/2. For most inputs of
this type we have C(x | y) = h(δ)n±O(log n) and I(x : y) = (1− h(δ))n±O(log n), where
h(δ) = δ log 1

δ + (1− δ) log 1
1−δ . Can we transfer x from Alice to Bob with communication

complexity h(δ)n+ o(n) ? It turns out that such a protocol exists; moreover, there exists
a communication protocol with asymptotically optimal communication complexity and
polynomial time computations, see [25, 10, 11]. Plugging this protocol in our proof of
Theorem 3 we conclude that on most pairs of inputs (x, y) of this type Alice and Bob can
agree on a common secret key of size (1− h(δ))n− o(n), with poly-time computations for
both parties.

On using our approach for “one-shot” sources. Most known results for secret key agreement
in Shannon’s framework are proven under the assumption that the input data available to
Alice and Bob is generated by i.i.d. or at least stationary ergodic sources. These results can
be derived from Theorem 2 and Theorem 3, using the well-known relation between Shannon
entropy and Kolmogorov complexity for the above type of sources [18, 12]. But actually
Theorem 2 and Theorem 3 apply in more general settings. We can prove similar bounds for
random inputs obtained in one shot, without the property of ergodicity.

This is useful because in many natural instances of the secret key agreement problem the
input data are far from being ergodic, and therefore the classic technique does not apply. For
instance, Example 1 and Example 2 discussed above illustrate this situation if we reformulate
them in the probabilistic setting (i.e., we introduce the uniform distribution on the set of
all valid pairs of inputs). For the probabilistic versions of these examples the matching
upper and lower bounds on the size of the common secret key can be easily deduced from
Theorem 2 and Theorem 3.

On the error probability. The standard results on secret key agreement deal with the
paradigm that the protocol works properly for most randomly chosen inputs (which is typical
for the information theory), while in our approach we prove a somewhat stronger statement:
for each valid pair of input data the protocol works properly with high probability (which is
typical for the theory of communication complexity).

7 Open problems and acknowledgements

I Open Question 1. In Theorem 7 we establish a lower bound on how many bits Alice
and Bob must communicate to agree on a common secret key. Our proof is valid only for
communication protocols with public randomness. Is the same bound true for protocols with
private sources of random bits?

I Open Question 2. Our communication protocols are randomized. On the other hand
they use unusually few random bits, only O(log n). It is natural to ask whether we can get
rid of external randomness. We conjecture that for (O(log n), O(log n))-stochastic tuples
of inputs the protocol can be made purely deterministic (though it would require very high
computational complexity), but this cannot be done in the general case. The proof of this
fact likely requires a better understanding of the nature of non-stochastic objects (such as
Chaitin’s Omega number, [4], see also [24] and [23]).



A. Romashchenko and M. Zimand 95:13

References
1 Rudolf Ahlswede and Imre Csiszár. Common randomness in information theory and cryp-

tography - I: secret sharing. IEEE Trans. Information Theory, 39(4):1121–1132, 1993.
doi:10.1109/18.243431.

2 Luis Antunes, Sophie Laplante, Alexandre Pinto, and Liliana Salvador. Cryptographic
security of individual instances. ICITS, pages 195–210, 2010.

3 Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by
public discussion. SIAM Journal on Computing, 17(2):210–229, 1988.

4 Gregory J Chaitin. A theory of program size formally identical to information theory.
Journal of the ACM (JACM), 22(3):329–340, 1975.

5 Chung Chan, Ali Al-Bashabsheh, Javad B Ebrahimi, Tarik Kaced, and Tie Liu. Multi-
variate mutual information inspired by secret-key agreement. Proceedings of the IEEE,
3(10):1883–1913, 2015.

6 Alexey V. Chernov, Andrei A. Muchnik, Andrei E. Romashchenko, Alexander Shen, and
Nikolai K. Vereshchagin. Upper semi-lattice of binary strings with the relation "x is
simple conditional to y". Theor. Comput. Sci., 271(1-2):69–95, 2002. doi:10.1016/
S0304-3975(01)00032-9.

7 Imre Csiszár and János Körner. Broadcast channels with confidential messages. IEEE
Trans. Information Theory, 24(3):339–348, 1978. doi:10.1109/TIT.1978.1055892.

8 Imre Csiszár and Prakash Narayan. Secrecy capacities for multiple terminals. IEEE Trans.
Information Theory, 50(12):3047–3061, 2004. doi:10.1109/TIT.2004.838380.

9 Peter Gács and János Körner. Common information is far less than mutual information.
Probl. Control Inf. Theory, 2(2):149–162, 1973.

10 Venkatesan Guruswami and Adam Smith. Codes for computationally simple channels:
Explicit constructions with optimal rate. Foundations of Computer Science (FOCS), 2010
51st Annual IEEE Symposium on, pages 723–732, 2010. doi:10.1109/FOCS.2010.74.

11 Venkatesan Guruswami and Adam Smith. Optimal rate code constructions for computa-
tionally simple channels. Journal of the ACM (JACM), 63(4):35, 2016.

12 Yasuichi Horibe. A note on Kolmogorov complexity and entropy. Applied mathematics
letters, 16(7):1129–1130, 2003.

13 Tarik Kaced and Andrei Romashchenko. Conditional information inequalities for entropic
and almost entropic points. IEEE Transactions on Information Theory, 59(11):7149–7167,
2013.

14 Tarik Kaced, Andrei Romashchenko, and Nikolay Vereshchagin. Conditional information
inequalities and combinatorial applications. arXiv preprint arXiv:1501.04867, 2015.

15 Sik Kow Leung-Yan-Cheong. Multi-user and wiretap channels including feedback, July
1976. Tech. Rep. No. 6603-2, Stanford Univ.

16 Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher.
Journal of Cryptology, 5(1):53–66, 1992.

17 Ueli M. Maurer. Secret key agreement by public discussion from common information.
IEEE Trans. Information Theory, 39(3):733–742, 1993. doi:10.1109/18.256484.

18 Li Ming and Paul M.B. Vitányi. Kolmogorov complexity and its applications. Elsevier,
2014.

19 Andrei A. Muchnik. On common information. Theor. Comput. Sci., 207:319–328, 1998.
20 Andrei A. Muchnik and Andrei E. Romashchenko. Stability of properties of Kolmogorov

complexity under relativization. Problems of information transmission, 46(1):38–61, 2010.
21 Ilya Razenshteyn. Common information revisited. arXiv preprint arXiv:1104.3207, 2011.
22 Andrei Romashchenko. Pairs of words with nonmaterializable mutual information. Prob-

lems of Information Transmission, 36(1):3–20, 2000.

ICALP 2018

http://dx.doi.org/10.1109/18.243431
http://dx.doi.org/10.1016/S0304-3975(01)00032-9
http://dx.doi.org/10.1016/S0304-3975(01)00032-9
http://dx.doi.org/10.1109/TIT.1978.1055892
http://dx.doi.org/10.1109/TIT.2004.838380
http://dx.doi.org/10.1109/FOCS.2010.74
http://dx.doi.org/10.1109/18.256484


95:14 An Operational Characterization of Mutual Information in AIT

23 Alexander Shen, Vladimir Uspensky, and Nikolay Vereshchagin. Kolmogorov complexity
and algorithmic randomness. American Mathematical Society, 2017.

24 Alexander Kh. Shen. The concept of (α, β)-stochasticity in the Kolmogorov sense, and its
properties. Soviet Math. Dokl., 28(1):295–299, 1983.

25 Adam D. Smith. Scrambling adversarial errors using few random bits, optimal information
reconciliation, and better private codes. Symposium on Discrete Algorithms: Proceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 7(09):395–404, 2007.

26 Himanshu Tyagi. Common information and secret key capacity. IEEE Transactions on
Information Theory, 59(9):5627–5640, 2013.

27 Aaron D. Wyner. The wire-tap channel. Bell Syst. Tech J., 54(8):1355–1387, 1975.
28 Marius Zimand. Kolmogorov complexity version of Slepian-Wolf coding. In STOC 2017,

pages 22–32. ACM, June 2017.



Privacy Preserving Clustering with Constraints
Clemens Rösner
Department of Theoretical Computer Science, University of Bonn, Germany
roesner@cs.uni-bonn.de

Melanie Schmidt
Department of Theoretical Computer Science, University of Bonn, Germany
melanieschmidt@uni-bonn.de

Abstract
The k-center problem is a classical combinatorial optimization problem which asks to find k

centers such that the maximum distance of any input point in a set P to its assigned center is
minimized. The problem allows for elegant 2-approximations. However, the situation becomes
significantly more difficult when constraints are added to the problem. We raise the question
whether general methods can be derived to turn an approximation algorithm for a clustering
problem with some constraints into an approximation algorithm that respects one constraint
more. Our constraint of choice is privacy: Here, we are asked to only open a center when at least
` clients will be assigned to it. We show how to combine privacy with several other constraints.
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1 Introduction

Clustering is a fundamental unsupervised learning task: Given a set of objects, partition them
into clusters, such that objects in the same cluster are well matched, while different clusters
have something that clearly differentiates them. The three classical clustering objectives
studied in combinatorial optimization are k-center, k-median and facility location. Given
a point set P , k-center and k-median ask for a set of k centers and an assignment of the
points in P to the selected centers that minimize an objective. For k-center, the objective is
the maximum distance of any point to its assigned center. For k-median, it is the sum of
the distances of all points to their assigned center (this is called connection cost). Facility
location does not restrict the number of centers. Instead, every center (here called facility)
has an opening cost. The goal is to find a set of centers such that the connection cost plus
the opening cost of all chosen facilities is minimized. In the unconstrained versions each point
will be assigned to its closest center. With the addition of constraints a different assignment
is often necessary in order to satisfy the constraints.

A lot of research has been devoted to developing approximation algorithms for these
three. The earliest success story is that of k-center: Gonzalez [21] as well as Hochbaum and
Shmoys [23] gave a 2-approximation algorithm for the problem, while Hsu and Nemhauser [24]
showed that finding a better approximation is NP-hard.

Since then, much effort has been made to approximate the other two objectives. Typically,
facility location will be first, and transferring new techniques to k-median poses additional
challenges. Significant techniques developed during the cause of many decades are LP rounding

EA
T

C
S

© Clemens Rösner and Melanie Schmidt;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 96; pp. 96:1–96:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:roesner@cs.uni-bonn.de
mailto:melanieschmidt@uni-bonn.de
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.96
https://arxiv.org/abs/1802.02497
https://arxiv.org/abs/1802.02497
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


96:2 Privacy Preserving Clustering with Constraints

techniques [11, 34], greedy and primal dual methods [25, 26], local search algorithms [6, 29],
and, more recently, the use of pseudo-approximation [32]. The currently best approximation
ratio for facility location is 1.488 [31], while the best lower bound is 1.463 [22]. For k-median,
the currently best approximation algorithm achieves a ratio of 2.675+ε [9], while the best
lower bound is 1 + 2

e ≈ 1.736 [25].
While the basic approximability of the objectives is well studied, a lot less is known once

constraints are added to the picture. Constraints come naturally with many applications of
clustering, and since machine learning and unsupervised learning methods become more and
more popular, there is an increasing interest in this research topic. It is one of the troubles
with approximation algorithms that they are often less easy to adapt to a different scenario
than some easy heuristic for the problem, which was easier to understand and implement
in the first place. Indeed, it turns out that adding constraints to clustering often requires
fundamentally different techniques for the design of approximation algorithms and is a very
new challenge altogether.

A good example for this is the capacity constraint: Each center c is now equipped with
a capacity u(c), and can only serve u(c) points. This natural constraint is notoriously
difficult to cope with; indeed, the standard LP formulations for the problems have an
unbounded integrality gap. Capacitated k-center was first approximated with uniform upper
bounds [8, 28]. Local search provides a way out for facility location, leading to 3- and
5-approximations for uniform [1] and non-uniform capacities [7], and preprocessing together
with involved rounding proved sufficient for k-center to obtain a 9-approximation [15, 5].
However, the choice of techniques that turned out to work for capacitated clustering problems
is still very limited, and indeed no constant factor approximation is known to date for
k-median.

And all the while, new constraints for clustering problems are proposed and studied.
In private clustering [3], we demand a lower bound on the number of points assigned to a
center. As stated in [2, 3] this ensures a certain anonymity and is motivated through the
need to obtain data privacy. The more general form where each cluster has an individual
lower bound is called clustering with lower bounds [4]. Fair clustering [14] assumes that
points have a protected feature (like gender), modeled by a color, and that we want clusters
to be fair in the sense that the ratios between points of different colors is the same for every
cluster. Clustering with outliers [12] assumes that our data contains measurement errors
and searches for a solution where a prespecified number of points may be excluded from
the cost computation. Other constraints include fault tolerance [27], matroid or knapsack
constraints [13], must-link and cannot-link constraints [35], diversity [30] and chromatic
clustering constraints [18, 19].

The abundance of constraints and the difficulty to adjust methods for all of them
individually asks for ways to add a constraint to an approximation algorithm in an oblivious
way. Instead of adjusting and reproving known algorithms, we would much rather like to
take an algorithm as a black box and ensure that the solution satisfies one more constraint in
addition. This is a challenging request. We start the investigation of such add-on algorithms
by studying the privacy constraint. Indeed, we develop a method to add the privacy constraint
to approximation algorithms for constraint k-center problems. That means that we use an
approximation algorithm as a subroutine and ensure that the final solution will additionally
respect a given lower bound. The method has to be adjusted depending on the constraint,
but it is oblivious to the underlying approximation algorithm used for that constraint.

This works for the basic k-center problem (giving an algorithm for the private k-center
problem), but we also show how to use the method when the underlying approximation
algorithm is for k-center with outliers, fair k-center and capacitated k-center. We also
demonstrate that our method suffices to approximate strongly private k-center, where we
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assume a protected feature like in fair clustering, but instead of fairness, now demand that a
minimum number of points of each color is assigned to each open center to ensure anonymity
for each class individually.

Our Technique. The general structure of the algorithm is based on standard threshold-
ing [23], i.e., the algorithm tests all possible thresholds and chooses the smallest for which
it finds a feasible solution. For each threshold, it starts with the underlying algorithm
and computes a non private solution. Then it builds a suitable network to shift points to
satisfy the lower bounds. The approximation ratio of the method depends on the underlying
algorithm and on the structure of this network.

The shifting does not necessarily work right away. If it does not produce a feasible solution,
then using the max flow min cut theorem, we obtain a set of points for which we can show
that the clustering uses too many clusters (and can thus not satisfy the lower bounds). The
algorithm then recomputes the solution in this part. Depending on the objective function, we
have to overcome different hurdles to ensure that the recomputation works in the sense that
it a) makes sufficient progress towards finding a feasible solution and b) does not increase
the approximation factor. The process is then iterated until we find a feasible solution.

Results. We obtain the following results for multiple combinations of privacy with other
constraints. Note that our definition of k-center (see §2) distinguishes between the set of
points P and the set of possible center locations L. This general case is also called the
k-supplier problem, while classical k-center often assumes that P = L. Our reductions can
handle the general case (with a slight increase in approximation ratio); whether the resulting
algorithm is then for k-center or k-supplier thus depends on the evoked underlying algorithm.

We obtain a 4-approximation for private k-center with outliers (5 for the supplier version).
This matches the best known bounds [3] ([4] for the supplier version (this also holds for
non-uniform lower bounds)).
We compute an 11-approximation for private capacitated k-center (i.e., centers have a
lower bound and an upper bound), and a 8-approximation for private uniform capacitated
k-center (where the upper bounds are uniform, as well). The best known bounds for these
two problems are 9 and 6 [17]. For the supplier version we obtain a 13-approximation
which matches the best known bound [17] (for uniform upper bounds a 9-approximation-
algorithm is known [17]).
We achieve constant factor approximations for private capacitated/uncapacitated and fair
k-center/k-supplier clustering. The approximation factor depends on the balance of the
input point set and the type of upper bounds, it ranges between 10 in the uncapacitated
case where for each color c the number of points with color c is an integer multiple of
the number of points with the rarest color and 325 in the general supplier version with
non-uniform upper bounds. To the best of our knowledge, all these combinations have
not been studied before.
Along the way, we propose constant factor algorithms for general cases of fair clustering.
While [14] introduces a pretty general model of fairness, it only derives approximation
algorithms for inputs with two colors and a balance of 1/t for an integer t. We achieve
ratios of 14 and 15 for the general fair k-center and supplier problem, respectively.
Finally, we propose the strongly private k-center problem. As in the fair clustering
problem, the input here has a protected feature like gender, modeled by colors. Now
instead of a fair clustering, we aim for anonymity for each color, meaning that we have a
lower bound for each color. Each open center needs to be assigned this minimum number
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Table 1 An overview on the approximation results that we combine with privacy.

Vanilla
Capacities

Outlier
Fair Subset Partition

uniform non-uniform r
b

∈ N general

k-center 2 [23] 6 [28] 9 [5] 2 [10]
2 [14] 12 (full version Thm.22 [33])

k-supplier 3 [23] 11 [5] 3 [12]

of points for each color. To the best of our knowledge, this problem has not been studied
before; we obtain a 4-approximation as well as a 5-approximation for the supplier version.

Since our method does not require knowledge of the underlying approximation algorithm,
the approximation guarantees improve if better approximation algorithms for the underlying
problems are found. There is also hope that our method could be used for new, not yet
studied constraints, with not too much adjustment.

Related Work. The unconstrained k-center problem can be 2-approximated [21, 23], and it
is NP-hard to approximate it better [24]. The k-supplier problem can be 3-approximated [23],
and this is also tight.

Capacitated k-center was first approximated with uniform upper bounds [8, 28]. Two
decades after the first algorithms for the uniform case, [15] provided the first constant factor
approximation for non-uniform capacities. The algorithm was improved and applied to the
k-supplier problem in [5]. In contrast to capacities, lower bounds are less studied. The
private k-center problem is introduced and 2-approximated in [3], and non-uniform lower
bounds are studied in [4]. The k-center/k-supplier problem with outliers is 3-approximated
in [12] alongside approximations to other robust variants of the k-center problem. The
approximation factor for the k-center problem with outliers was improved to 2 in [10].

The fair k-center problem was introduced in [14]. The paper describes how to approximate
the problem by using an approximation for a subproblem that we call fair subset partition
problem. Algorithms for this subproblem are derived for two special cases where the number
of colors is two, and the points are either perfectly balanced or the number of points of one
color is an integer multiple of the number of points of the other color.

These are the constraints for which we make use of known results. We state the best
known bounds and their references in Table 1. Approximation algorithms are also e.g. known
for fault tolerant k-center [27] and k-center with matroid or knapsack constraints [13].

Relatively little is known about the combination of constraints. Cygan and Kociumaka [16]
give a 25-approximation for the capacitated k-center problem with outliers. Aggarwal et.
al [3] give a 4-approximation for the private k-center problem with outliers. Ahmadian and
Swamy [4] consider the combination of k-supplier with outliers with (non-uniform) lower
bounds and derive a 5-approximation. The paper also studies the k-supplier problem with
outliers (without lower bounds), and the min-sum-of-radii problem with lower bounds and
outliers. Their algorithms are based on the Lagrangian multiplier preserving primal dual
method due to Jain and Vazirani [26].

Ding et. al [17] study the combination of capacities and lower bounds as well as capacities,
lower bounds and outliers by generalizing the LP algorithms from [5] and [16] to handle lower
bounds. They give results for several variations, including a 6-approximation for private
capacitated k-center and a 9-approximation for private capacitated k-supplier.

Friggstad, Rezapour, Salavatipour [20] consider the combination of uniform capacities
and non-uniform lower bounds for facility location and obtain bicriteria approximations.
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Outline. In §2, we introduce necessary notation. §3 then presents our method, applied to
the private k-center problem with outliers. We choose the outlier version since it is non-trivial
but still intuitive and does thus give a good impression on the application of our method.
In §4, we then briefly explain how to adjust the method to approximate private and fair
k-center, private and capacitated k-center, k-center with all three constraints as well as the
strongly private k-center problem. §5 provides a conclusion.

2 Preliminaries

Let (X, d) be a finite metric space, i.e., X is a finite set and d : X ×X → R≥0 is a metric.
We use d(x, T ) = miny∈T d(x, y) for the smallest distance between x ∈ X and a set T ⊆ X.
For two sets S, T ⊆ X, we use d(S, T ) = minx∈S,y∈T d(x, y) for the smallest distance between
any pair x ∈ S, y ∈ T .

Let P ⊆ X be a subset of X called points and let L ⊆ X be a subset of X called locations.
An instance of a private assignment constrained k-center problem consists of P , L, an integer
k ∈ N, a lower bound ` ∈ N and possibly more parameters. Given the input, the problem is
to compute a set of centers C ⊆ L with |C| ≤ k and an assignment φ : P → C of the points
to the selected centers that satisfies ` ≤ |φ−1(c)| for every selected center c ∈ C, and some
specific assignment restriction. The solution C, φ shall be chosen such that

max
x∈P

d(x, φ(x))

is minimized. Different assignment restrictions lead to different constrained private k-center
problems. The capacity assignment restriction comes with an upper bound function u : L→ N
for which we require ` ≤ u(x) for all x ∈ L, and then demands |φ−1(c)| ≤ u(c). When we
have u(x) = u for all x ∈ L and some u ∈ N, then we say that the capacities are uniform,
otherwise, we say they are non-uniform. The fairness assignment restriction provides a
mapping χ : P → Col of points to colors and then requires that each cluster has the same
ratio between the numbers of points with different colors (see §4.2 in the full version [33] for
specifics). The strongly private k-center problem can also be cast as a k-center problem with
an assignment restriction. Again, the input now additionally contains a mapping χ of points
to colors. Now the assignment is restricted to ensure that it satisfies the lower bound for the
points of each color. We even consider the slight generalization where each color has its own
lower bound, and call this problem the strongly private k-center problem.

An instance of the private k-center problem with outliers consists of P , L, an integer
k ∈ N, a lower bound `, and a parameter o for the maximum number of outliers. The problem
is to compute a set of centers C ⊆ L with |C| ≤ k and an assignment φ : P → C ∪ {out},
with |φ−1(out)| ≤ o, which assigns each point to a center in C or to be an outlier. The choice
of C, φ shall minimize

max
x∈P\φ−1(out)

d(x, φ(x)).

3 Private k-center with Outliers

I Theorem 1. Assume that there exists an approximation algorithm A for the k-center
problem with outliers with approximation factor α.

Then for instances P , L, k, `, o of the private k-center problem with outliers, we can
compute an (α+ 2)-approximation in polynomial time.
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Proof. Below, we describe an algorithm that uses a threshold graph with threshold τ . We
show that for any given τ ∈ R, the algorithm has polynomial runtime and, if τ is equal to
opt, the value of the optimal solution, computes an (α+ 2)-approximation. Since we know
that the value of every solution is equal to the distance between a point and a location, we
test all O(|P ||L|) possible distances for τ and return the best feasible clustering returned by
any of them. The main proof is the proof of Lemma 2 below, which concludes this proof. J

Let us start with a general idea on how the algorithm works for a fixed τ . If τ < opt, then
the algorithm will detect this, so assume that τ ≥ opt for now. We first use the approximation
algorithm to obtain a clustering which does not necessarily satisfy the privacy constraint.
Then we try to reassign points to establish the lower bounds. A point p may be reassigned
to any cluster which contains at least one point which is within distance 2τ of p. (Note that
any point in p’s optimum cluster is at distance ≤ 2τ). If it is possible to reassign points like
that and obtain a feasible clustering, we can compute such a reassignment with a maximum
flow algorithm. Otherwise we find a set of points P (V ′) for which we can show that the
optimal clustering uses less clusters to cover all of them. We add all outliers to P (V ′) to
account for the fact that P (V ′) may already contain outliers of the optimum solution. We
then use the approximation algorithm on P (V ′) to compute a new clustering with outliers.
The output will contain fewer clusters or the same number of clusters and fewer outliers. We
repeat the process until we find a feasible solution.

I Lemma 2. Assume that there exists an approximation algorithm A for the k-center problem
with outliers with approximation factor α. Let P , L, k, `, o be an instance of the private
k-center problem with outliers, let τ > 0 and let opt denote the maximum radius in the
optimal feasible clustering for P , L, k, `, o. We can in polynomial time compute a feasible
clustering with a maximum radius of at most (α+ 2)τ or determine τ < opt.

Proof. We first use A to compute a solution without the lower bound. Let C = (C, φ) be
an α-approximate solution for the k-center problem with outliers on P , L, k, o. Note that
C may contain clusters with less than ` points. Let k′ = |C| (note that k′ < k is possible),
C = {c1, . . . , ck′}, and let C1, . . . , Ck′ be the clusters that C induces, i.e., Cj := φ−1(cj).
Finally, let r = maxx∈P d(x, φ(x)) be the largest distance of any point to its center. Observe
that an optimal solution to the k-center problem with outliers can only have a lower objective
value than the optimal solution to our problem because we only dropped a condition.
Therefore, τ ≥ opt implies that r ≤ α · opt ≤ α · τ . If we have r > α · τ , we return τ < opt.

We use C and τ to create a threshold graph which we use to either reassign points between
the clusters to obtain a feasible solution or to find a set of points P ′ for which we can show
that every feasible clustering with maximum radius τ uses less clusters than our current
solution to cover it. In the latter case we compute another α-approximate solution which
uses fewer clusters on P ′ and repeat the process. Note that for τ < opt such a clustering
does not necessarily exist, but for τ ≥ opt the optimal clustering provides a solution for P ′
with fewer clusters. If we do not find such a clustering with maximum radius at most α · τ ,
we return τ < opt.

We show that every iteration of the process reduces the number of clusters or the number
of outliers, therefore the process stops after at most k · o iterations. It may happen that
our final solution contains much less clusters than the optimal solution (but it will be an
approximate solution for the optimal solution with k centers).

We will use a network flow computation to move points from clusters with more than `
points to clusters with less than ` points. Moving a point to another cluster can increase the
radius of the cluster. We only want to move points between clusters such that the radius
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does not increase by too much. More precisely, we only allow a point p to be moved to
another cluster Ci if the distance d(p, Ci) between the point and the clusters is at most 2τ .
This is ensured by the structure of the network described in the next paragraph. Unless
stated otherwise, when we refer to distances between a point and a cluster in the following,
we mean the distance between the point and the cluster in its original state before any points
have been reassigned.

Given C and τ , we create the threshold graph Gτ = (Vτ , Eτ ) as follows. Vτ consists of a
source s, a sink t, a node vi for each cluster Ci, a node vout for the set of outliers and a node
wp for each point p ∈ P . For all i ∈ [k′], we connect s to vi if the cluster Ci contains more
than ` points and set the capacity of (s, vi) to |Ci| − `. If the cluster Ci contains fewer than
` points, we connect vi with t and set the capacity of (vi, t) to ` − |Ci|. Furthermore, we
connect vi with wp for all p ∈ Ci and set the capacity of (vi, wp) to 1. We also connect s
to vout with capacity o and vout with wp for all p ∈ φ−1(out) with capacity 1. Whenever a
point p and a cluster Ci with p /∈ Ci satisfy d(p, Ci) ≤ 2τ (i.e., there is a point q ∈ Ci that
satisfies d(p, q) ≤ 2τ), we connect wp with vi with capacity 1.

Formally the graph Gτ = (Vτ , Eτ ) is defined by

Vτ ={vout} ∪ {vi | 1 ≤ i ≤ k′} ∪ {wp | p ∈ P} ∪ {s, t} and (1)
Eτ ={(vi, wp) | p ∈ Ci} ∪ {(wp, vi) | p /∈ Ci ∧ d(p, Ci) ≤ 2τ} (2)
∪{(vout, wp) | φ(p) = out} (3)
∪{(s, vout)} ∪ {(s, vi) | |Ci| − ` > 0} ∪ {(vi, t) | |Ci| − ` < 0}. (4)

We define the capacity function cap : Eτ → R by

cap(e) =


`− |Ci|, if e = (vi, t)
|Ci| − `, if e = (s, vi)
o, if e = (s, vout)
1 otherwise.

(5)

We use G = (V,E) to refer to Gτ as τ is clear from context. We now compute an integral
maximum s-t-flow f on G. According to f we can reassign points different clusters.

I Lemma 3. Let f be an integral maximal s-t-flow on G. It is possible to reassign p to Ci
for all edges (wp, vi) with f((wp, vi)) = 1.

The resulting solution has a maximum radius of at most r + 2τ . If f saturates all edges
of the form (vi, t), then the solution is feasible.

Proof. Let p ∈ Ci. The choice of capacity 1 on (vi, wp) and flow conservation ensure∑
(wp,vj)∈E f((wp, vj)) ≤ 1 for p. Therefore no point would have to be reassigned to more

than one cluster. Note that for every point p ∈ Ci that would be reassigned we must
have f((vi, wp)) = 1 and for every edge (vi, wp) with f((vi, wp)) = 1 the point p would be
reassigned.

For any 1 ≤ j ≤ k′, let p ∈ Ci be any point which we want to reassign to Cj . Then we
must have (wp, vj) ∈ E and therefore there must be a point q ∈ Cj with d(p, q) ≤ 2τ . Thus
we have

d(p, cj) ≤ d(p, q) + d(q, cj) ≤ 2τ + r = r + 2τ.

Now assume that f saturates all edges of the form (vi, t) and let 1 ≤ i ≤ k′. If E contains
the edge (vi, t), then it can not contain the edge (s, vi) and therefore all incoming edges of vi
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are of the form (wp, vi). Flow conservation then implies that the number of points reassigned
to Ci minus the points reassigned away from Ci is equal to f((vi, t)), which increases the
number of points in Ci to `.

If E contains the edge (s, vi), then it can not contain the edge (vi, t) and therefore all
outgoing edges of vi are of the form (vi, wp). Flow conservation then implies that the number
of points reassigned away from Ci minus the points reassigned to Ci is equal to f((s, vi)),
which reduces the number of points in Ci to at least `.

If E contains neither (s, vi) nor (vi, t), then the number of points in Ci is equal to ` and
does not change (the points may change, but their number does not).

In all three cases Ci contains at least ` points after the reassignment. J

If f saturates all edges of the form (vi, t) in G, then we reassign points according to
Lemma 3 and return the new clustering.

Otherwise we look at the residual network Gf of f on G. Let V ′ be the set of nodes in
Gf which can not be reached from s. V ′ contains all nodes representing clusters which would
not satisfy the privacy constraint after the reassignment. We say cluster Ci belongs to V ′
if vi ∈ V ′, and a point p ∈ Ci is adjacent to V ′ if wp ∈ V ′ and vi /∈ V ′. Let C(V ′) denote
the set of clusters belonging to V ′. Let k′′ = |C(V ′)|. We say a point p belongs to V ′ if the
cluster Ci with p ∈ Ci belongs to V ′. Let P (V ′) and PA(V ′) denote the set of points that
belong to V ′ and the set of points adjacent to V ′.

I Lemma 4. Any clustering on P with maximum radius at most τ that contains at least `
points in every cluster uses fewer than k′′ clusters to cover all points in P (V ′).

Proof. We first observe that V ′ must have the following properties:
vi ∈ V ′ and (wp, vi) ∈ E implies wp ∈ V ′.
wp ∈ V ′, (wp, vi) ∈ E and f((wp, vi)) > 0 implies vi ∈ V ′.
wp ∈ V ′ for some p ∈ Ci and vi /∈ V ′ implies f((vi, wp)) = 1.

The first property follows from the fact that f can only saturate (wp, vi) if f also saturates
(vj , wp) for p ∈ Cj . So, either (wp, vi) is not saturated, which means that vi can be reached
from any vertex that reaches wp, or (wp, vi) is saturated, which means that the only incoming
edge of wp in Gf is (vi, wp). In both cases, if vi ∈ V ′, then wp ∈ V ′. The second property
follows since f((wp, vi)) > 0 implies (vi, wp) ∈ E(Gf ). The third property is true since we
defined cap((vi, wp)) = 1.

This implies that a reassignment due to Lemma 3 would reassign all points adjacent to
V ′ to clusters in C(V ′) and moreover all reassignments from points in P (V ′)∪PA(V ′) would
be to clusters in C(V ′). Let ni denote the number of points that would be assigned to Ci
after the reassignment. Then |P (V ′)|+ |PA(V ′)| =

∑
Ci∈C(V ′) ni.

Now we argue that this sum is smaller than k′′ · ` by observing that each ni ≤ ` and at
least one ni is strictly smaller than `.

Let Ci be a cluster with more than ` points after the reassignment. Then (s, vi) is
not saturated by f and vi can be reached from s in Gf . Therefore after the reassignment
no cluster Ci ∈ C(V ′) would contain more than ` points; in other words, ni > ` implies
Ci /∈ C(V ′).

Let Ci be a cluster which would still contain fewer than ` points after the reassignment.
This implies that f does not saturate the edge (vi, t). Therefore t can be reached from vi
and since f is a maximum s-t flow, vi can not be reached from s. We must have vi ∈ V ′.
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Because we assumed that the reassignment does not satisfy all lower bounds, at least one
such cluster has to exist. This implies

|P (V ′)|+ |PA(V ′)| =
∑

Ci∈C(V ′)

ni < k′′ · `.

Which means that the clusters in C(V ′) and PA(V ′) do not contain enough points to satisfy
the lower bound in k′′ clusters.

By definition of G and V ′, for two points p, q with p ∈ P (V ′) and d(p, q) ≤ 2τ we must
have q ∈ P (V ′) ∪ PA(V ′). Let C′ be a clustering that abides the lower bounds and has a
maximal radius of at most τ . Then every cluster C ′ in C′ that contains at least one point
from P (V ′) can only contain points from P (V ′) ∪ PA(V ′). Therefore C′ must contain fewer
than k′′ clusters which contain at least one point from P (V ′). J

If we have τ ≥ opt, then Lemma 4 implies that the optimal solution covers all points in
P (V ′) with fewer than k′′ clusters. An α-approximative solution on the point set P (V ′) with
at most k′′ − 1 clusters which contains at most o outliers is then α-approximative for P (V ′).

Unfortunately, we do not know how many outliers an optimal clustering has in P (V ′). We
therefore involve the outliers φ−1(out) in our new computation as well. Let o′ = |φ−1(out)|
denote the current number of outliers. We obtain the following Lemma through a counting
argument.

I Lemma 5. We call a cluster special if it contains at least one point from P (V ′) or only
contains points from φ−1(out). Let C′ be a clustering on P with a maximum radius of at most
τ on all special clusters that respects the lower bounds, has at most o outliers and consists of
at most k clusters out of which at most k′′ are special. If C′ has exactly k′′ special clusters,
then C′ has at most o′ − 1 outliers in P (V ′) ∪ φ−1(out).

Proof. Assume the clustering contains exactly special k′′ clusters. Each of these clusters has
to contain at least ` points from P (V ′) ∪ PA(V ′) ∪ φ−1(out). We know

|P (V ′) ∪ PA(V ′) ∪ φ−1(out)| ≤ |P (V ′) ∪ PA(V ′)|+ o′ < k′′`+ o′.

So there remain at most o′ − 1 unclustered points in P (V ′) ∪ φ−1(out). J

Now we need to show that such a clustering exists if τ ≥ opt is the case.

I Lemma 6. If τ ≥ opt, then there exists a clustering C′ on P with a maximum radius
at most τ on all special clusters that respects the lower bounds, has at most o outliers and
consists of at most k clusters out of which at most k′′ are special.

Proof. We look at an optimal clustering Copt. The only way Copt can violate a condition
is if it contains k′′′ > k′′ special clusters. Lemma 4 implies that Copt contains at least
k′′′ − k′′ clusters that contain only points in φ−1(out). If all clusters in Copt are special we
know P = PA(V ′) ∪ P (V ′) ∪ φ−1(out). We arbitrarily select k′′′ − k′′ clusters from Copt
that contain only points in φ−1(out), declaring all points in them as outliers and closing the
corresponding centers. This leaves us with k′′ clusters which contain at least k′′ ·` points. Since
P = PA(V ′)∪P (V ′)∪φ−1(out) this leaves at most o′−1 outliers. Otherwise, if Copt contains at
least one cluster C which is not special, we add all outliers from P \(PA(V ′)∪P (V ′)∪φ−1(out)
to C. Again we arbitrarily select k′′′ − k′′ clusters from Copt that contain only points in
φ−1(out), declaring all points in them as outliers and closing the corresponding centers. By
creation there are no unclustered points in P \ (PA(V ′) ∪ P (V ′) ∪ φ−1(out) and exactly k′′
special clusters with radius at most τ . Therefore this clustering contains at most o′ − 1
outliers and has at most k clusters. J
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We now use A again to compute new solutions without the lower bound: Let C′1 = (C ′1, φ′1)
be an α-approximate solution for the k-center problem with outliers on P (V ′) ∪ φ−1(out), L,
k′′ − 1, o and let C′2 = (C ′2, φ′2) be an α-approximate solution for the k-center problem with
outliers on P (V ′) ∪ φ−1(out), L, k′′, o′ − 1. Let r′i = maxx∈P (V ′)∪φ−1(out) d(x, φ′i(x)).

Note that in case τ < opt, it can happen that no such clustering exists or that we obtain
r′i > α · τ for both i = 1 and i = 2. We then return τ < opt. Otherwise for at least one
i ∈ {1, 2} C′i must exist together with r′i ≤ α · τ .

If C′2 exists and we have r′2 ≤ α · τ we replace C(V ′) by C ′2 in C and adjust φ accordingly
to obtain C1 = (C1, φ1) with C1 = (C \ C(V ′)) ∪ C ′2 and

φ1(p) =
{
φ′2(p) if p ∈ P (V ′) ∪ φ−1(out)
φ(p) otherwise.

(6)

Otherwise, if C′1 exists, we have r′1 ≤ α · τ and either C′2 does not exist or we have r′2 > α · τ ,
we analogous replace C(V ′) by C ′1 to obtain C1.

I Lemma 7. If we did not return τ < opt, then C1 is a solution for the k-center problem
with outliers on P , L, k, o and we have r1 = maxx∈P d(x, φ1(x)) ≤ α · τ .

Proof. C is a solution for the k-center problem with outlier on P , L, k, o with r < α · τ and
since we did not return τ < opt, we must have r′i ≤ ατ for the chosen i ∈ {1, 2}. J

We iterate the previous process with the new clustering C1 until we either determine
τ < opt or the reassignment of points according to Lemma 3 yields a feasible solution. Since
each iteration reduces the number of clusters or keeps the same number of clusters and
reduces the number of outliers, the process terminates after at most k · o iterations. J

I Corollary 8. We can compute a 4-approximation for instances of the private k-center
problem with outliers and a 5-approximation for instances of the private k-supplier problem
in polynomial time.

Proof. Follows from Theorem 1 together with the 2-approximation for k-center with outliers
in [10] and the 3-approximation for k-supplier with outliers in [12]. J

4 Combining Privacy with other Constraints

In this section, we take the general idea from §3 and instead of outliers use it to combine
privacy with other restrictions on the clusters. Given a specific restriction R and an
approximation algorithm A for the k-center problem with restriction R with approximation
factor α we ask: Can we similar to §3 extend A to compute an O(α)-approximation for the
private k-center problem with restriction R?

In §3, we made use of two properties of a clustering with outliers. In Lemma 3 we used
that reassigning points to another cluster never increases the number of outliers and in
Lemma 4 we used that outliers have the somewhat local property that computing a new
clustering on the points V ′ from a subset of the clusters together with the set of outliers can
not create more outliers on the remaining points.

We use this section to briefly explain how the proofs with other restriction properties
differ from §3 and state our results for the general cases (for the complete proofs as well as
the approximation factors for all different cases, see §4+§5 in the full version [33]).

As new restrictions we study capacities, fairness and multiple lower bounds for different
types of points. For the private capacitated k-center problem, the proof is easier than for
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private k-center with outliers. The threshold graph Gτ = (Vτ , Eτ ) does not need to contain
nodes for the outliers anymore. It is defined by

Vτ ={vi | 1 ≤ i ≤ k′} ∪ {wp | p ∈ P} ∪ {s, t} and (7)
Eτ ={(vi, wp) | p ∈ Ci} ∪ {(wp, vi) | p /∈ Ci ∧ d(p, Ci) ≤ 2τ} (8)
∪{(s, vi) | |Ci| − ` > 0} ∪ {(vi, t) | |Ci| − ` < 0}, (9)

together with the capacity function cap : Eτ → R

cap(e) =


`− |Ci|, if e = (vi, t)
|Ci| − `, if e = (s, vi)
1 otherwise.

(10)

The capacities on the clusters do not influence the threshold graph; they are handled by
the underlying approximation algorithm. Since we never increase the number of points of a
cluster to more than `, our method will not introduce any capacity violation. We obtain the
following results.

I Theorem 9. Assume that there exists an approximation algorithm A for the capacitated k-
center problem with approximation factor α. Then we can compute an (α+ 2)-approximation
for the private capacitated k-center problem in polynomial time.

In order to combine privacy with fairness, we first develop an approximation algorithm
for general cases of the fair k-center problem. [14] show how to solve fair k-center based on
approximating a subproblem that we call fair subset partitioning problem (it’s called fairlet
decomposition in [14]), and which consists of partitioning the input into fair subsets such
that the maximum diameter of any subset is minimal. They give an exact algorithm for
two colors with perfect balance and a 2-approximation for two colors with balance 1/t for
an integer t. We propose an algorithm for multiple colors and general balance values. It
separates the points into the different colors, computes a capacitated clustering on the points
for one of the colors and uses a matching algorithm on threshold graphs in order to add the
points of the other colors.

I Theorem 10. A 12-approximation for the fair subset partition problem can be computed
in polynomial time. If bc = 1 for at least one color c ∈ Col, then a 2-approximation for the
fair subset partition problem can be computed in polynomial time (even if |Col| > 2).

With that we obtain the first approximation algorithm for the general fair k-center problem.
For the private and fair k-center problem we then use a partitioning into fair subsets and let
these be the nodes of the threshold graph instead of single points. When establishing the
lower bounds, we move fair subsets as a whole. Let F = {F1, . . .} denote the fair subsets.
Then we define Gτ = (Vτ , Eτ ) by

Vτ ={vout} ∪ {vi | 1 ≤ i ≤ k′} ∪ {fi | Fi ∈ F} ∪ {s, t} and (11)
Eτ ={(vi, fj) | Fj ⊆ Ci} ∪ {(fj , vi) | Fj ∩ Ci = ∅ ∧ d(Ci, Fj) ≤ 2τ} (12)
∪{(s, vi) | |Ci| − ` > 0} ∪ {(vi, t) | |Ci| − ` < 0} (13)

with the capacity function cap : Eτ → R

cap(e) =



⌈
`−|Ci|
b

⌉
, if e = (vi, t)⌊

|Ci|−`
b

⌋
, if e = (s, vi)

1 otherwise.

(14)
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We obtain the following results.

I Theorem 11. Assume that there exists an approximation algorithm A for the fair subset
partition problem with approximation factor α. Then we can compute a (3α+ 4)/(3α+ 5)-
approximation for the private fair k-center/supplier problem in polynomial time.

We also adjust our method to approximate the private fair and capacitated k-center
problem, and combine it with our results on approximating the fair subset partitioning
problem. The approximation ratio now becomes α(2β + 1), where α is the approximation
ratio for the capacitated k-center problem, and β is the approximation ratio for the fair
subset partitioning problem (see Lemma 29 in the full version [33]).

For the strongly private k-center problem (see §5 in the full version [33]) we create a
separate threshold graph for each color and separately try to satisfy the lower bound for each
color. For a color i ∈ Col we let P i denote the points in P with color i and let Cij denote
the points in Cj with color i. We create the threshold graph Gτ,i = (Vτ,i, Eτ,i) by

Vτ,i ={vj | 1 ≤ j ≤ k′} ∪ {wp | p ∈ P i} ∪ {s, t} and (15)
Eτ,i ={(vj , wp) | p ∈ Cij} ∪ {(wp, vj) | p ∈ P i \ Cj ∧ d(p, Cj) ≤ 2τ} (16)

∪{(s, vj) | |Cj ∩ χ−1(i)| − `i > 0} ∪ {(vj , t) | |Cj ∩ χ−1(i)| − `i < 0}. (17)

We define the capacity functions capi : Eτ,i → R by

cap(e) =


`i − |Cj ∩ χ−1(i)|, if e = (vj , t)
|Cj ∩ χ−1(i)| − `i, if e = (s, vj)
1 otherwise.

(18)

We obtain the following result.

I Theorem 12. Assume that there exists an approximation algorithm A for the k-center
problem with approximation factor α. Then we can compute an (α+ 2)-approximation for
the strongly private k-center problem in polynomial time.

The following corollary summarizes the remaining results in the full version [33] for the
different constrained private k-center problems, and fair k-center clustering.

I Corollary 13. There are polynomial approximation algorithms that compute
an 11/13-approximation for the private capacitated k-center/supplier problem
(Cor. 14 + 15),
a 14/15-approximation for the fair k-center/supplier problem (Cor. 23),
a 40/41-approximation for the private and fair k-center/supplier problem (Cor. 25),
a 225/325-approximation for the private fair capacitated k-center/supplier problem (C. 30),
improved approximations for the last three problems in special cases, and
a 4/5-approximation for the strong private k-center/supplier problem (Cor. 36).

5 Conclusion and open questions

We studied k-center with capacities, fairness and outliers and have coupled these constraints
with privacy, and we proposed strongly private k-center. In addition to improving the
approximation guarantee of the presented coupling process, open questions include extending
it to arbitrary lower bounds, and to different objective functions. In Appendix A of the full
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version [33], we present a bicriteria result for facility location that violates the lower bounds.
For k-median, a similar procedure is not known at all so far. Finally, the question how to
obliviously add other constraints than privacy is completely open, too.
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Abstract
Consider a planar graph G = (V,E) with polynomially bounded edge weight function w : E →
[0, poly(n)]. The main results of this paper are NC algorithms for finding minimum weight
perfect matching in G. In order to solve this problems we develop a new relatively simple but
versatile framework that is combinatorial in spirit. It handles the combinatorial structure of
matchings directly and needs to only know weights of appropriately defined matchings from
algebraic subroutines.

Moreover, using novel planarity preserving reductions, we show how to find: maximum weight
matching in G when G is bipartite; maximum multiple-source multiple-sink flow in G where
c : E → [1, poly(n)] is a polynomially bounded edge capacity function; minimum weight f -factor
in G where f : V → [1, poly(n)]; min-cost flow in G where c : E → [1, poly(n)] is a polynomially
bounded edge capacity function and b : V → [1, poly(n)] is a polynomially bounded vertex
demand function. There have been no known NC algorithms for these problems previously.
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1 Introduction

In this paper we study deterministic parallel algorithms for the maximum planar matching
problem. In particular, we concentrate our attention on the NC class where we are given
polynomially many processors which need to solve the problem in polylogarithmic time. The
fundamental algorithmic challenge is to compute a maximum cardinality matching, or a
maximum weight matching, or a minimum weight perfect matching.

So far in the case of NC algorithms for planar graphs there seemed to be no tools to attack
the most general case and we were only able to find perfect matchings in planar bipartite
graphs [30, 29]. This might be bit surprising as in non-planar graph, perfect matchings
are essentially as powerful as maximum cardinality matchings, see e.g., [34] for a reduction.
Such reductions either make two copies of the graph, where each vertex is connected with
its copy, or add a set of vertices that are connected to every vertex in the graph. However,
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there exists no similar planarity preserving reduction, and so the usefulness of algorithms for
planar perfect matchings is limited. Hence, in order to find a maximum cardinality matching
we needed to retool to less efficient polynomial time algorithms [14, 18, 19] that are limited
to bipartite case only. Or, alternatively, we could find a 2-approximate solution [21]. The
lack of such planarity preserving reduction is one of the reasons why computing maximum
cardinality matchings in almost linear time was recognized as one of the core problems in
planar graph algorithms [4]. This despite the fact that almost linear time algorithms for the
perfect matching problem existed before [31, 11].

Formally speaking, our results are as follows. Consider a planar graph G = (V,E) with
polynomially bounded edge weight (cost) function w : E → [0, poly(n)]. A matching in G
is an independent set of edges, whereas a perfect matching is a matching that is incident
to every vertex in G. We start by giving a relatively simple NC algorithm for finding a
perfect matching in G. Then we extend this algorithm to finding minimum weight perfect
matching, i.e., a perfect matching M of G with minimum total weight w(M). Our algorithm
is combinatorial in spirit as it does not manipulate a fractional matching, but only requires to
know weights of appropriately defined minimum weight perfect matchings. These weights can
be computed using Kasteleyn’s Pfaffian orientation of planar graphs and standard algebraic
techniques. The algorithm is based on the fundamental notion of balanced duals that was
developed in [7] as well as in [16]. This idea allows to define and construct a dual solution
in a unique way. In particular, a very simple NC algorithm for constructing a family of
blossoms of this dual follows by a direct application of the algorithm given in [7].

The next problem we consider is the minimum weight f -factor problem, where for a given
f : V → [1, poly(n)] we need to find a set of edges F of minimum total cost w(F ) such that
degF (v) = f(v) for all v ∈ V . Typically, this problem is reduced to the perfect matching
problem via vertex splitting [15, 3]. These reductions, however, do not preserve planarity.
Our contribution, is to show a new planarity preserving reduction, that allows to solve the
f -factor problem in NC. Due do space limitations of this paper, this reduction and the next
ones are given in the full version of this paper available on arXiv [36].

The following implication of this result was rather surprising (at least for the author). We
show that the maximum weight bipartite planar matching problem can be efficiently reduced
to the minimum weight non-bipartite planar perfect matching problem. Thus implying the
first known NC algorithm for finding maximum weight matching in bipartite planar graphs.
Moreover, our reduction preserves the size of the graph, thus any further development for
weighted perfect matching in planar graphs will imply similar results for maximum weight
bipartite matchings. There seem to be no easy way to extend this result to non-bipartite
case, and we note that finding NC algorithms for this problem remains open. Still, we
report partial progress on this problem by showing the first o(n) time PRAM algorithm for
maximum cardinality matching – again available in the full version of this paper.

Finally, we consider directed flow networks where capacity of edges is given by a poly-
nomially bounded capacity function c : E → [1, poly(n)] and vertex demand is given by
a polynomially bounded demand function b : V → [1, poly(n)]. Our aim is to compute a
min-cost flow that obeys edge capacities and satisfies all vertex demands. We give the first
known NC algorithm for this problem resolving the long standing open problem from [31].
This result is further extended to finding maximum multiple-source multiple-sink flow in
planar graphs.
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Related Work

The key result that allowed development of NC algorithms for the perfect matching problems
in planar graph is Kasteleyn’s idea [25]. He showed that the problem of counting perfect
matchings in planar graphs is reducible to determinant computation. Thus [6] implied an NC
algorithm checking whether a planar graph contains a perfect matching. In [41] this result
was extended to K3,3-free graphs. Counting, however, does not allow to construct a perfect
matching. The first algorithm for constructing perfect matchings was given in [31] but only
in the bipartite case. Another solution that is based on different principles was developed
in [29]. A partial solution for the non-bipartite case was given in [27] where an algorithm for
computing half integral solution was shown. Finally, an algorithm for non-bipartite planar
graphs has been proposed in [2]. The result of [2] extends to finding minimum weight perfect
matchings as well. Here, we give an independent proof of this result.1 In comparison to [2],
our paper gives a simpler algorithm for constructing a perfect matchings in NC than the
one in [2]. Moreover, we show several nontrivial extension of this results, i.e., to maximum
weight bipartite matching, to minimum weight f -factor, or min-cost flow. We note that
previously we knew how to solve only (non-weighted) maximum cardinality matching in
bipartite graphs in NC [22]. However, this result contains a gap in the argument, as is
based on [9] which embeds planar graph into a grid graph what does not preserve the size of
maximum matchings. This problem can be solved by using [26] or [8, 40]. Moreover, in [1] it
was shown how to construct perfect and weighed perfect matchings in NC when the number
of perfect matchings is polynomially bounded.

When allowing randomization (i.e., when considering RNC complexity) the problem
can be solved even in general non-planar graphs [24, 17, 33, 35]. All of these Monte Carlo
algorithms can be turned into Las Vegas ones using [23]. Finally, we note that we are unaware
of any previous parallel deterministic algorithms for weighted non-bipartite problems like
minimum weight perfect matching or f -factor problems. Bipartite versions of these problem
have some solutions that require at least polynomial Ω(n2/3) time [14, 18, 19]. Finally,
we note that very recently it was shown that the general problem is solvable in quasi-NC,
i.e., in polylogarithmic time using quasi-polynomially many processors [12, 38]. Moreover,
the bipartite problem can be solved in pseudo-NC, i.e., in polylogarithmic time, using
polynomially many processors and polylogarithmically many random bits [20].

2 Preliminaries

G = (V,E) denotes an n-vertex, embedded, undirected graph. This embedding partitions
the plane into maximal open connected sets and we refer to the closures of these sets as
the faces of G. The dual G∗ of G is a multigraph having a vertex for each face of G. For
each edge e in G, there is an edge e∗ in G∗ between the vertices corresponding to the two
faces of G adjacent to e. We identify faces of G with vertices of G∗ and since there is a
one-to-one correspondence between edges of G and edges of G∗, we identify an edge of G
with the corresponding edge in G∗.

1 Our framework was developed independently from [2] and was posted on arXiv on the same day [36].
Nevertheless, the author’s initial write-up was very "crude" and contained some gaps. In particular,
Algorithm 1 was described in a confusing way without stating which parts should happen in parallel.
Moreover, we aimed to give, an alternative to [7], construction of matching duals that was incorrect.
This, however, is a known result, so in this paper we just cite [7] instead. Finally, the presentation of
this paper was greatly improved with respect to [36], while keeping the original framework. Moreover,
consequences for more general problems have been added.
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The number of faces is denoted by f . For a subset of vertices U ⊆ V , δ(U) denotes all
edges uv ∈ E having |{u, v} ∩ U | = 1. We write δ(u) for δ({u}), x(F ) for

∑
e∈F xe and

degF (u) = |F ∩ δ(u)|.
The linear programming formulation of the minimum weight perfect matching problem

and its dual is as follows [10]. An odd set has odd size; Ω is the collection of odd subsets of
V of size ≥ 3.

LP of minimum weight perfect matching LP of the dual prolem
min

∑
e∈E

w(e)xe

x(δ(v)) = 1, ∀v ∈ V
x(δ(U)) ≥ 1, ∀U ∈ Ω

xe ≥ 0, ∀e ∈ E

max
∑
v∈V

πv +
∑
U∈Ω

πU

πu + πv +
∑

U∈Ω, uv∈δ(U)

πU ≤ w(uv), ∀uv ∈ E (∗)

πU ≥ 0, ∀U ∈ Ω

The variables xe in the primal indicate when an edge is included in the solution. The
dual problem has variables πv for each vertex v and πU for each odd set U .

Moreover, a graph G is factor critical if for all v ∈ V after removing v the graph has a
perfect matching. A laminar family is a collection B of subsets of V such that for every pair
X,Y ∈ B either X ∩ Y = ∅, or X ⊆ Y , or Y ⊆ X. We use the existence of the following
dual.

I Lemma 1 (implicitly in [10]). If the dual LP is feasible, then there exists an optimal dual
solution π : V ∪ Ω→ R that:
1. the set system {U ∈ Ω : πU > 0} forms a laminar family,
2. for each U ∈ Ω with πU > 0, the graph denoted by GU obtained by contracting each set
{S ∈ Ω : S ⊂ U, πS > 0} to a point is factor critical.

An optimum dual solution π satisfying the above conditions is a critical dual solution. A set
U ∈ Ω such that πU > 0 is a blossom w.r.t. π. An important idea that is used in almost
all algorithms for weighted matching is that after computing the dual we can work with a
non-weighted problem. This non-weighted problem is defined in the following way: leave
only tight edges in the graph, i.e., there is equality in (*); find a perfect matching respecting
all blossoms B, i.e., such that for all B ∈ B we have |M ∩ δ(B)| = 1. By duality slackness
any matching obtained this way is a minimum weight perfect matching.

Laminar family of sets is equipped with a natural parent-child relation and can be seen
as a forest. We assume this tree is rooted at V and call the resulting tree the laminar tree.
We note that given a laminar family it is straightforward to deduce the parent-child relation,
i.e., parent of a set B is the minimal set containing B, whereas children of B are maximal
sets contained in B. Hence, whenever working with a laminar family we assume that the
laminar tree is available as well as it can be easily computed in NC. A useful property of
this view is that tree T has a vertex separator, i.e., there exists a vertex v such that the size
of every connected component of T − x is at most |T |2 .

Basic NC Algorithms

Our algorithm builds upon the following NC algorithms for computing:
components and a spanning forest of an undirected graph [37, 5],
paths in a directed graph – this can be done by repetitive matrix squaring,
a maximal independent set in a graph [28],
a vertex separator of a tree – by computing the numbers of vertices in each subtree using
any of the standard techniques [32, 39].
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Consider a graph G with an edge weight function w : E → [0, poly(n)]. For a vertex v we
denote by Gv the graph G− v. If G has an even number of vertices then Mv denotes some
minimum weight almost perfect matching in Gv, i.e., a minimum weight matching that misses
exactly one vertex. If G has an odd number of vertices then Mv denotes some minimum
weight perfect matching in Gv. Mv is not defined in a unique way, but its weight w(Mv)
is. In our algorithms we will only use these weights that can be computed using standard
techniques (see full version for the proof).

I Corollary 2. For a graph G = (V,E) with edge weights w : E → [0, poly(n)] we can in NC:
for a given vertex v ∈ V , compute the weight w(Mv),
for a given edge e ∈ E, check whether e is allowed, i.e., belongs to some minimum weight
perfect matching.

Observe that the set of allowed edge is a subset of tight edges. Hence, when we remove all
not allowed edges only tight edges are left in the graph.

Let us now state the following implication of the results in [7]. Basically, assuming that
all w(Mv) are given, Algorithm 5 from [7] gives an NC procedure for computing the blossoms
of the critical dual solution.

I Lemma 3 (based on Lemma 6.19 [7]). Let G = (V,E) be undirected connected graph where
edge weights are given by w : E → Z and where every edge is allowed. Given all values
w(Mv) for v ∈ V , the blossoms of the critical dual solution can be computed in NC.

Algorithm 5 from [7] actually constructs a critical dual with an additional property which
is called balanced. In a balanced dual the root of the laminar tree is required to be the central
vertex of this tree as well. This makes balanced duals unique. Thus when one constructs
them in parallel, all processors construct the same solution, and it can be implemented in
NC.

3 The High Level Idea: Walks and Blossoms

This section aims to introduce two core ideas of our algorithm that allow us to reduce the
size of the graph for the recursion, as well as a high level idea that reveals around them. We
will first give an algorithm for finding a perfect matching in a graph. However, we will view
the problem as weighted and seek a minimum weight perfect matching. The weighed view is
useful as we will find even length walks in the graph and introduce weights on them. These
weights will either cause some edges to become not allowed, or induce a blossom as shown
by the following lemma. Hence, till Section 7, where we show how to handle weighted case,
w : E → [0, poly(n)] denotes weights defined by the algorithm as the graph considered is
unweighted.

To make it more precise we say that a closed walk C in graph G is semi-simple if it
contains an edge that appears on C only once. By eC we denote arbitrary such edge on C.

I Lemma 4. Consider G = (V,E) with edge weight function w : E → [0, poly(n)]. Let C be
an even semi-simple closed walk in G. Let w(eC) = 1 and let w(e) = 0 for all e ∈ C − eC .
Then, either some edge of C is not allowed or some edge of C is in δ(B) for some blossom B.

Proof. Assume by a contradiction that all edges of C are allowed and there is no blossom
intersecting C. Hence, by complementary slackness conditions we have that πx + πz = w(xz)
for all edges xz ∈ C. In particular, for the edge uCvC = eC we need to have πuC

+ πvC
= 1,

whereas for all other edges uv ∈ C−eC we have πu +πv = 0. Now consider edge zy ∈ C which
is next to xz. By subtracting equalities for edge xz and zy we obtain πx−πy = w(xz)−w(zy).
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Figure 1 Figure a) shows a non-simple even length closed walk composed out of two faces F1, F2

and a path P . We have πa + πb = 0, πb + πc = 0 and πc + πd = 0, what gives πa − πc = 0 and
πa + πd = 0. In Figure b) even length closed cycle does not contain an edge inside a blossom. In
such a case πz + πx + πB = 0 and πz + πy + πB = 0, so πx − πy = 0.

If yz and xz are not equal to eC we have πx − πy = 0. In general, we have πx − πy = 0 for
any two vertices at even distance along path C − eC . And πx + πy = 0 for any two vertices
at odd distance along path C − eC . Note that the distance from uC to vC along C − eC

is odd, so we obtain πuC
+ πvC

= 0, what leads to contradiction. See Figure 1 a) for an
illustration. J

Blossoms are natural objects to recurse on, as by duality slackness there must be exactly
one edge of any perfect matching M that belongs to δ(B) for any blossom B. Thus, in the
recursion, we can find an almost perfect matching outside of B, an almost perfect matching
inside of B and then combine them by matching one edge in δ(B) – see Section 6. However,
having an edge in δ(B) does not directly guarantee that the size of the graph reduces in
the recursion, as the same blossom can intersect many closed walks. We need the following
stronger observation for this.

I Lemma 5. Consider G = (V,E) with edge weight function w : E → [0, poly(n)]. Let C
be an even semi-simple closed walk in G and assume that all edges on C are allowed. Let
w(eC) = 1 and let w(e) = 0 for all e ∈ C − eC . Then there exist edges e1, e2 ∈ C, such that
e1 ∈ E(G \B) and e2 ∈ E(B) for some blossom B.

Proof. For contradiction assume that no edge of C is in E(B) – the other case is symmetric.
Hence, there can only be vertices z in E(B) such that their both incident edges xz and zy on
C are in δ(B). In such a case we have πx +πz +πB = w(xz) and πz +πy +πB = w(zy). Thus
πx−πy = w(xz)−w(zy), i.e., the contribution of πB when subtracting these equalities cancels.
See Figure 1 b) for illustration. Thus B does not contribute anything to the telescoping sum
along C − eC and we reach similar contradiction as in the previous lemma. J

Hence, when recursing on the inside of the blossom or on the outside of the blossom we
reduce the graph size as well. However, to obtain an NC algorithm we need to reduce the
size of the graph by a constant factor, so we need to have Ω(n) edge disjoint even closed
walks. The following lemma, that was implicitly proven in [27], becomes handy now.

I Lemma 6. In a 2-connected planar graph G with f faces we can find Ω(f) edge disjoint
even semi-simple closed walks in NC.

Intuitively, the proof of this lemma puts faces into pairs that are incident. Now, either a pair
contains an even face and thus this face is semi-simple, or both faces are odd. In the later
case we can build an even semi-simple closed walk by walking around both faces.

The above lemma shows that in order to have many even semi-simple closed walks we
just need to guarantee that the graph has many faces. Let us say that a planar graph G is
simplified, if there are no degree 1 vertices and no two vertices of degree 2 are incident. The
next lemma shows that such graphs have many faces.
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I Lemma 7. Let G = (V,E) be a simplified planar graph with a perfect matching, then G
has at least n

4 + 2 faces.

Proof. By Euler’s formula n −m + f = 2, where m is the number of edges, and f is the
number of faces. Let V2 be the set of degree 2 vertices in G. Consequently, the vertices in
V \ V2 have degree at least 3. As G has a perfect matching and no two degree 2 vertices are
incident, all vertices in V2 need to be matched to vertices in V \ V2, i.e., |V2| ≤ |V \ V2|. By
using this inequality we have.

2m =
∑
v∈V

deg(v) =
∑
v∈V2

deg(v)+
∑

v∈V \V2

deg(v) ≥ 2|V2|+3|V \V2| ≥
5
2 |V2|+

5
2 |V \V2| =

5n
2 .

By plugging this inequality into Euler’s formula we obtain f = 2 +m− n ≥ 2 + 5n
4 − n =

2 + n
4 . J

A simplified graph has many faces and thus many edge disjoint even length closed walks.
We can assign weights to each of these closed walks separately. This way either many edges
become not allowed, or there exists a family of blossoms containing many edges inside. The
main technical part of the algorithm is to handle this family of blossoms. The algorithm has
the following steps.
1. Simplify the graph as shown in Section 4. First, we take care of degree 1 vertices, by

removing not allowed edges and matching edges incident to degree 1 vertices. Next, we
contract paths composed of degree 2 vertices. Finally, we find perfect matchings in each
connected component separately. Due to removal of not allowed edges each connected
component is 2-connected as well.

2. Using Lemma 6 we find many edge disjoint even length closed walks. We assign weights
to even closed walks using Lemma 4 and we remove not allowed edges. Next, we find
blossoms of the critical dual using Lemma 3. These steps are described in Section 5.

3. Finally, we recurse on a critical dual as explained in Section 6, where we show how to
construct a perfect matching that respects all blossoms in the dual. This construction is
recursive and calls back step 1 for subgraphs of G that do not have any blossoms.

The recursion depth in this procedure is O(log n) as either Ω(n) edges become not allowed,
or there are many edges separated by blossoms. In the second case for each blossom Be

there is an edge e1 inside and an edge e2 outside of it – see Figure 2 a). We observe that
blossom divide the graph into regions and each lowest level recursive call goes to one of these
regions, i.e., we recourse on inside and outside of some blossom as long as there are some
blossoms intersecting the current subgraph. As visualized on Figure 2 b) there are many
edges that are not incident to each region, as one of the edges from each pair (e1, e2) needs
be outside of this region. Hence, the size of each of these regions decreases by a constant
factor with respect to the original graph. This will be proven more formally in Section 5
where we analyze the running time of the algorithm.

4 Simplifying the Graph

The first ingredient of our algorithm is the following entry procedure – Algorithm 1 that
simplifies the graph and assures that we are working with 2-connected graphs.

The following lemma proves the correctness of this algorithm.

I Lemma 8. Algorithm 1 executes Algorithm 2 on a simplified 2-connected graph.

ICALP 2018
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Figure 2 For each blossom Be there needs to be a pair of edges: e1 inside and edge e2 outside of
Be – Figure a). Figure b): when we recurse from Algorithm 4 to Algorithm 1 the blossom tree is
empty, and we are recursing on one of the regions into which blossoms divide the plane – marked
with gray. Observe that at least one edge from each pair is not incident to this region.

Algorithm 1 Simplifies graph G and seeks perfect matchings in its 2-connected components.
1: Remove all not-allowed edges from G.
2: Add edges incident to degree 1 vertices to M and remove them from G.
3: for all maximal paths p composed out of degree 2 vertices do . In parallel
4: if p has odd length then
5: remove p and connect vertices incident to p with an edge ep.
6: else
7: remove p and add a single vertex vp connected to vertices incident to p.
8: for all connected components C ∈ C of G do . In parallel
9: find perfect matching MC using Algorithm 2.

10: Extend matching M on paths of degree 2 vertices.
11: return M ∪

⋃
C∈CMC .

Proof. We first observe that after removing not allowed edges, an edge e incident to a vertex
of with degree 1 needs to belong to all perfect matchings. Hence, it’s both endpoints need to
be of degree 1. After matching such edges all vertices have degree 2 or higher. Now note that
the manipulation of the path p does not change degrees of other vertices. In the algorithm
such path is either replaced by an edge, or single vertex. Hence, afterwards degree 2 vertices
cannot be incident. Thus G is simplified and its all connected components are simplified.

Now, for contradiction assume that a connected component C is not 2-connected, i.e.,
there exists an articulation point v. Consider the connected components obtained from C

after removal of v. Only one of them can be matched in the perfect matching to v. Thus only
this one has odd number of vertices. The remaining components must have even number of
vertices and no perfect matching can match them to v. Hence, their edges incident to v are
not allowed. However, all not allowed edges were removed by the algorithm, so we reach a
contradiction. J

Finally, we note that the above algorithm can be implemented in NC. First of all, in
order to compute maximal paths composed out of degree 2 vertices, we just need to compute
connected components of the subgraph induced by degree 2 vertices. In the final step of the
algorithm we need to expand all paths that were replaced during the execution of Algorithm 1.
Observe that the matching M in the simplified graph can be extended to the matching in
the original graph in a straight-forward way. If p was odd, then depending on whether ep

is matched we either match even or odd edges of p. If p was even, then vp has degree 2
and it can be matched in one of two possible ways. In these two cases the matching can be
extended to the whole path.
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Algorithm 2 Finds a perfect matching M in a connected graph G.
1: Find a set F of Ω(n) edge disjoint even semi-simple closed walks using Lemma 6.
2: Set w(e) = 0 for all e ∈ E.
3: for all C ∈ F do . In parallel
4: Set w(eC) = 1.
5: Remove all not-allowed edges from G.
6: Compute blossoms of a critical dual B with respect to w using Lemma 3.
7: Compute a matching M that respects B using Algorithm 4.
8: Return M .

5 The Main Routine

Algorithm 2 implements our main procedure. First, we find Ω(n) even semi-simple closed
walks and introduce weights on them. Next, in order to reduce the size of the graph we
remove not allowed edges. We then find blossoms of the critical dual solution with respect to
these weights and call Algorithm 4 to find a perfect matching that respects all blossoms.

6 Finding a Perfect Matching that Respects a Family of Blossoms

Let G = (V,E) be a graph and let M be a matching in G. An alternating path p is a path in
G such that edges on p alternate between matched and unmatched. Assume that G is factor
critical (e.g., inside of a blossom) and that Ms is an almost perfect matching that misses
vertex s. We start by showing how using Ms we construct an almost perfect matching Mv

for any v. To this end, we need to find a simple alternating path starting in s and ending in
v. Denote by wM a weight function assigning 0 to edges in Ms and 1 to edges not in Ms.

I Lemma 9. Let Mv be the minimum weight almost perfect matching in Gv with respect to
wM , then 2wM (Mv) is the length of the shortest alternating path with respect to Ms from s

to v.

Proof. Observe that the symmetric difference Ms ⊕Mv contains an alternating path with
respect to Ms that needs to start at s and end at v. The weight of this path is equal to the
number of edges from Ms on it. As this path is alternating, the number of edges of Mv is
the same. Thus minimizing wM (Mv) we minimize the length of an alternating path with
respect to Ms from s to v. J

Now, we want to construct a graph GL that will represent all shortest alternating paths
from s with respect to M . GL will be a layered graph, where layer l contains vertices at
distance l from s — the distance is measured along alternating paths. For each v ∈ V ,
let GL contain two copies vo and ve of v. We define l(ve) = 2wM (Mv) for all v ∈ V , and
l(vo) = l(ue) − 1 for all uv ∈ M . We add edges of G to GL only if they connect two
consecutive layers given by l – see Figure 3. Every shortest alternating path from s is
contained in GL by Lemma 9. Alteratively, if a path in GL represents a simple path in G
then it is a shortest alternating path in G. However, there are paths in GL that do not
correspond to simple paths in G, i.e., they contain both vo and ve for some v ∈ V – see
Figure 3 b). Nevertheless, as every vertex in G is reachable via alternating path, we can
modify GL in such a way that only paths corresponding to simple paths in G remain. This
is done using Algorithm 3.

The correctness of this algorithm is established by the next lemma.

ICALP 2018



97:10 NC Algorithms for Weighted Planar Perfect Matching and Related Problems

a) b)

s

a

h

b
c

d

e

f
i

j

g
k

l

se

ao

ho

lo

be

ge

ke

fo

jo

co de

ee

ie

eo

io je

fe

go he
ko le

so

do ce
bo ae

Figure 3 Figure a) shows a factor-critical graph, matched edges are marked with solid lines and s
is the free vertex. Figure b) presents layered graph GL from Algorithm 3. There are two non-simple
paths represented by this graph that go from ge to go. These paths are destroyed by the algorithm
as go is reachable via a simple path p marked with grey.

Algorithm 3 Finds an alternating path with respect to Ms in G from a vertex s to vertex t.
1: For all v ∈ V compute wM (Mv).
2: Let GL be a graph where v has two copies vo and ve.
3: For all v ∈ V set l(ve) = 2wM (Mv).
4: For all vu ∈M set l(vo) = l(ue)− 1.
5: Add edges of G to GL only if they connect vertices in consecutive layers l.
6: for all v ∈ V do . In parallel
7: for all uz on some vx-vy path in GL, where x, y, z ∈ {e, o}, x 6= y do . In parallel
8: if there exists se-uz path p avoiding vx in GL then
9: remove all edges entering uz but the edge on p.

10: Return any path from se to te in GL.

I Lemma 10. Let G be a factor critical graph and let Ms be an almost perfect matching
missing vertex s. An almost perfect matching Mt missing vertex t can be found in NC using
Algorithm 3.

Proof. We first observe that the removal of edges entering uz from GL does not affect
reachability from s, as the path p from se to uz is left in the graph. Now, by contradiction,
assume that at the end of the algorithm there is a path q in GL that contains both ve and vo

for some v ∈ V . Without loss of generality assume ve precedes vo. As GL contains all simple
alternating paths, there exists an se-vo path p avoiding ve. Hence, the edge of q entering the
first shared vertex with p was removed by the algorithm – see Figure 3 b).2 J

Algorithm 4 constructs a perfect matching M that respects a family of blossoms. Here,
we explicitly consider B as a tree TB, i.e., the vertices of TB are sets in B whereas edges in
TB represent child parent relationship. See Figure 4 for an example and an illustration of the
recursion. It calls Algorithm 1 that handles the case without blossoms. The next theorem
argues about the correctness of this algorithm.

I Lemma 11. Algorithm 4 finds a perfect matching M respecting B. The recursion depth of
the internal calls of the algorithm to itself is O(log n).

2 The graph constructed in this algorithm can be seen as an extended version of generalized shortest
path tree [13]. Alternatively, such tree could be constructed using Algorithm 5 from [7]. This, however,
would result in a slightly more complicated solution.
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Figure 4 Figure a) shows a laminar family of sets. Figure b) gives the same family using laminar
tree. Vertex separator – node E is marked with grey. Figure c) shows the graphs on which we
recurse in Algorithm 4 using the marked separator E.

Algorithm 4 Computes a perfect matching M of G respecting family of blossoms B.
1: if B = ∅ then
2: Return the matching M computed by Algorithm 1 on G.
3: Let B be a vertex separator of TB.
4: Begin . In parallel with the next loop
5: Let GB be the graph with all children of B contracted.
6: Let TB be TB with children of B removed.
7: Recurse on GB , TB to obtain matching MB .
8: End
9: for all children C of B in TB do . In parallel

10: Let GC be G with all vertices not in C contracted to a vertex denoted by vC .
11: Let TC be subtree of TB rooted at C.
12: Recurse on GC , TC to obtain matching MC .
13: for all children C of B in TB do . In parallel
14: Remove from GC vertex vC and let uC be the resulting free vertex in GC .
15: Let eB be the edge of MB incident to GC .
16: Let vB be the endpoint of eB in GC after expanding GC .
17: Apply to MC an alternating path from uC to vB found using Algorithm 3
18: Return MB ∪

⋃
C child of B MC .

Proof. We need to argue that MB can be extended to a perfect matching in the whole graph.
Consider a child blossom C of B. By Lemma 3 we know that C is factor-critical, so there
exists an almost perfect matching M ′C in C that together with MB forms a perfect matching.
This matching differs from MC by a single alternating path. Hence, for each child blossom
the algorithm is able to combine MB with MC by finding a single alternating path.

As we do not recompute the family of blossoms while recursing, we need to argue that the
blossoms remain intact. Observe that after contraction of a given blossom all nonintersecting
blossoms remain blossoms and the graph remains planar, so we can continue recursing on
subtrees of TB.

Finally, the recursion depth of the algorithm to itself is Ω(log n), because we recurse on a
vertex separator of a tree TB, so the size of the subtrees decreases by a constant factor. J

Lemma 11 leads to the correctness of Algorithm 2 and Algorithm 1 as well.

I Theorem 12. Algorithm 1 finds a perfect matching in G.

ICALP 2018
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Algorithm 5 Finds a minimum weight perfect matching in G = (V,E) with respect to the
edge weight function w : E → [0, poly(n)].
Remove all not allowed edges from G.
Compute blossoms of a critical dual B with respect to w using Lemma 3.
Find a perfect matching M respecting B using Algorithm 4.
Return M .

We now can turn our attention to arguing about the running time of our algorithm. In
this section we are going to quantify the progress related to perturbing weights on each
semi-simple closed walks. The entry point to our procedures is Algorithm 1. This algorithm
calls Algorithm 2, which constructs a family of blossoms. Now, Algorithm 4 is used to recurse
on this family till subgraphs with no blossoms are obtained. At this moment Algorithm 1 is
called back. We will argue that each time Algorithm 1 is called in this recursion, the size of
the graph decreases by a constant factor.

I Lemma 13. The number of edges in G decreases by a constant factor in each recursive
call to Algorithm 1.

Proof. By Lemma 6 and Lemma 7, after graph simplification we have Ω(n) even semi-simple
closed walks in the graph G. Now, by Lemma 4, for each semi-simple closed walks, either
one edge becomes not-allowed, or there exists a blossom B ∈ B that intersects this closed
walk. Hence, either Ω(n) edges become not-allowed, or we have Ω(n) closed walks intersected
by some blossom. Lemma 5 implies that for each such intersection there exists an edge e1
inside B and an edge e2 outside B – see Figure 2 a). Consider a plane embedding of G and
of dual graph G∗. Mark boundaries of each blossom δ(B) in G∗ on the plane, thus dividing
the plane into maximal open connected sets. We call these sets regions R.

The outside of each region R ∈ R contains at least one edge from e1 and e2, i.e., there are
Ω(n) edges not incident to a region – see Figure 2 b). We note that when we call Algorithm 1
from Algorithm 4, we recurse onto some region R ∈ R with parts of G not in R contracted
to vertices. This graph contains only edges incident to a region R, so it does not contain
Ω(n) edges. By Euler’s formula the total numer of edges is ≤ 3n− 6, so when recursing on
each region it decreases by a constant factor. J

By Lemmas 11 and 13 the recursion depth in Algorithm 2 is O(log2 n), thus:

I Corollary 14. A perfect matching in a planar graph can be computed in NC.

7 Minimum Weight Perfect Matching

So far we have assumed that the graph is unweighed and we have coped with the problem
of constructing any perfect matching. However, our approach is versatile enough to handle
weighted case in a rather straightforward way using Algorithm 5.

Hence, we obtain the following.

I Lemma 15. A minimum weight perfect matching in a planar graph G = (V,E) with edge
weight function w : E → [0, poly(n)] can be computed in NC.

Proof. Observe that all allowed edges in G need to be tight. By complementary slackness
conditions, a perfect matching that is composed out of allowed edges and that respects all
blossoms is a minimum weight perfect matching. J

We note that maximum weight perfect matching can be computed by using redefined weight
function w′(e) = −w(e) + maxg∈E w(g).



P. Sankowski 97:13

8 Planarity Preserving Reductions

Let G = (V,E) be a multi-graph, i.e., we allow parallel edges as well as self-loops. For a
function f : V → [1, poly(n)], an f -factor is a set of edges F ⊆ E such that degF (v) = f(v)
for every v ∈ V . Without loss of generality we assume that any edge uv has multiplicity at
most min{f(u), f(v)}. A minimum f-factor is an f -factor F with minimum weight w(F ).
The f -factor problem can be reduced via planarity preserving reduction to minimum weight
perfect matching problem.

I Lemma 16. Let G = (V,E) be a planar multigraph with edge weight function w : E →
[0, poly(n)]. For a function f : V → [1, poly(n)], minimum f -factor can be computed in NC.

Now consider, a graph G = (V,E) be a bipartite planar graph with edge weight function
w : E → [0, poly(n)], and a problem of computing a maximum matching in graph G, i.e.,
a matching of maximum total weight. This problem in turn can be reduced to f -factor
problem.

I Lemma 17. A maximum matching in a planar bipartite graph G = (V,E) with edge weight
function w : E → [0, poly(n)] can be computed in NC.

In the min-cost planar flow problem, we are given a directed planar network N = (V,E).
The edges have integral capacities given by c : E → [1, poly(n)] and integral costs a : E →
[0, poly(n)]. Moreover, each vertex has integral demand b : V → [−poly(n), poly(n)]. Again
there exists planarity preserving reduction to f -factor problem.

I Theorem 18. Let N = (V,E) be a planar flow network with integral capacities c :
E → [1, poly(n)], integral costs a : E → [0, poly(n)] and integral demands b : V →
[−poly(n), poly(n)]. The minimum cost flow in N can be computed in NC.

We can modify the above reduction to handle the case when source and sink demands are
not fixed but need to be maximized. We are given a directed planar network N = (V,E)
with integral edge capacities given by c : E → [1, poly(n)]. Moreover, each vertex has integral
demand b : V → [−poly(n), poly(n)]. Vertices v ∈ V such that b(v) ≥ 0 are called sources
and we require for them 0 ≤ f(v) ≤ b(v). Vertices v ∈ V such that b(v) ≤ 0 are called sinks
and we require b(v) ≤ f(v) ≤ 0. For remaining vertices v, i.e., when b(V ) = 0 we need
to have f(v) = 0. The maximum multiple-source multiple-sink flow in N is the flow that
maximizes value f(S), where S is the set of all sources.

I Theorem 19. Let N = (V,E) be a planar flow network with integral capacities c :
E → [1, poly(n)], integral costs a : E → [0, poly(n)] and integral demands b : V →
[−poly(n), poly(n)]. The minimum cost flow in N can be computed in NC.
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Abstract
Tutte paths are one of the most successful tools for attacking problems on long cycles in planar
graphs. Unfortunately, results based on them are non-constructive, as their proofs inherently
use an induction on overlapping subgraphs and these overlaps prevent any attempt to bound the
running time by a polynomial.

For special cases however, computational results of Tutte paths are known: For 4-connected
planar graphs, Tutte paths are in fact Hamiltonian paths and Chiba and Nishizeki [5] showed how
to compute such paths in linear time. For 3-connected planar graphs, Tutte paths have a signific-
antly more complicated structure, and it has only recently been shown that they can be computed
in polynomial time [24]. However, Tutte paths are defined for general 2-connected planar graphs
and this is what most applications need. In this unrestricted setting, no computational results
for Tutte paths are known.

We give the first efficient algorithm that computes a Tutte path (in this unrestricted setting).
One of the strongest existence results about such Tutte paths is due to Sanders [23], which allows
one to prescribe the end vertices and an intermediate edge of the desired path. Encompassing and
strengthening all previous computational results on Tutte paths, we show how to compute such
a special Tutte path efficiently. Our method refines both, the existence results of Thomassen [29]
and Sanders [23], and avoids that the subgraphs arising in the inductive proof intersect in more
than one edge by using a novel iterative decomposition along 2-separators. Finally, we show that
our algorithm runs in time O(n2).
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1 Introduction

The question whether a graph G = (V,E) is Hamiltonian, i.e. contains a cycle of length
n := |V |, is among the most fundamental graph problems. For planar graphs and graphs
embeddable on higher surfaces, Tutte paths have proven to be one of the most successful tools
for attacking Hamiltonicity problems and problems on long cycles. For this reason, there is a
wealth of existential results in which Tutte paths serve as main ingredient; in chronological
order, these are [31, 29, 26, 4, 22, 23, 27, 33, 16, 28, 11, 13, 18, 21, 20, 17, 24, 7, 2].

As a historical starting point to these results, Whitney [32] proved that every 4-connected
maximal planar graph is Hamiltonian. Tutte extended this to arbitrary 4-connected planar
graphs by showing that every 2-connected planar graph G contains a Tutte path [30, 31]
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(for a definition of Tutte paths, see Section 2). Thomassen [29] in turn proved the following
generalization, which also implies that every 4-connected planar graph is Hamiltonian-
connected, i.e. contains a path of length n− 1 between any two vertices. For a plane graph
G, let CG be its outer face.

I Theorem 1 (Thomassen [29]). Let G be a 2-connected plane graph, x ∈ V (CG), α ∈ E(CG)
and y ∈ V (G)− x. Then G contains a Tutte path from x to y through α.

Sanders [23] then generalized Thomassen’s result further by allowing to choose the start
vertex x of the Tutte path arbitrarily.

I Theorem 2 (Sanders [23]). Let G be a 2-connected plane graph, x ∈ V (G), α ∈ E(CG)
and y ∈ V (G)− x. Then G contains a Tutte path from x to y through α.

On top of the above series of fundamental results, Tutte paths have been used in
two research branches: While the first deals with the existence of Tutte paths on graphs
embeddable on higher surfaces [26, 3, 27, 33, 28, 17], the second [15, 9, 3, 10, 16, 11, 19]
investigates generalizations or specializations of Hamiltonicity such as k-walks, long cycles
and Hamiltonian connectedness.

Unfortunately, in all the results mentioned so far, very little is known about the complexity
of finding a Tutte path. This is crucial, as the task of finding Tutte paths is almost always the
only reason that hinders the computational tractability of the problem. The main obstruction
so far is that Tutte paths are found by decomposing the input graph into overlapping
subgraphs, on which induction is applied. Although this is enough to prove existence results,
these overlapping subgraphs do not allow to bound the running time polynomially (as argued
in [12, 24]). The only known computational results on Tutte paths [12, 1, 5, 21, 24] deal
therefore with very restricted settings, such as the case that Tutte paths are just Hamiltonian
paths: While it is known how to compute Tutte paths for planar 4-connected graphs [5]
efficiently (in which case Tutte paths are just Hamiltonian paths), for planar 3-connected
graphs a first polynomial-time algorithm was only recently shown [24].

However, no efficient algorithm is published so far that computes Tutte paths in general
2-connected planar graphs (i.e. the ones of Theorem 1 or 2). In fact, the claimed algorithmic
results in [26, 27] require polynomial running times for computing such Tutte paths, without
giving proofs that such algorithms exist. Given the subtlety of the arguments inherent to
Tutte paths, we feel that giving such a proof is necessary. Indeed, history shows that even for
the much easier setting that Tutte paths are Hamiltonian paths, an existence result for Tutte
paths has been incorrectly claimed to imply a polynomial-time algorithm [29, 4] (again, due
to overlapping subgraphs). For finding Tutte paths in certain restrictions of 2-connected and
3-connected planar graphs, the related results in [22, 17] claim polynomial running times as
well.

Our Results

Our motivation is two-fold. First, we want to make Tutte paths accessible to algorithms. We
will show that Tutte paths can be computed in time O(n2). This has impact on almost all
the applications using Tutte paths listed above.

For several of them, e.g. [26, 22, 27, 17], we immediately obtain polynomial-time algorithms
where no efficient algorithms were published before. In addition, Tutte paths were also used
in [7, 8] to show that every essentially 4-connected polyhedral graph contains a cycle of
length proportional to n. As the existence proofs in this paper are constructive, our result
directly implies a efficient (in fact, an O(n2)-time) algorithm for the computation of these
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cycles. Furthermore, [2] showed that every 3-connected planar graph having at most three
3-separators is Hamiltonian. If a 3-connected planar graph contains at most one 3-separator,
our algorithm shows that a Hamiltonian cycle can be computed in O(n2) time, by using a
suitable choice of the intermediate edge α.

Second, we aim for computing the strongest possible known variant of Tutte paths,
encompassing the many incremental improvements on Tutte paths made over the years. We
will therefore develop an algorithm for Sander’s existence result [23], which was proven to be
best possible in many aspects. Sanders result has also an immediate extension to connected
planar graphs [20], which can be computed simply and efficiently from our result by using
block-cut trees.

We will first give a decomposition that refines the original ones used for Theorems 1 and 2,
and allows to decompose G into graphs that pairwise intersect in at most one edge. We
then show that this small overlap does not prevent us from achieving a polynomial running
time. All graphs will be simple. We proceed by showing how this decomposition can be
computed efficiently in order to find the Tutte paths of Theorem 2. Our main result is hence
the following, giving the first polynomial-time algorithm for computing Tutte paths.

I Theorem 3. Let G be a 2-connected plane graph, x ∈ V (G), α ∈ E(CG) and y ∈ V (G)−x.
Then a Tutte path of G from x to y through α can be computed in time O(n2).

Section 3 presents the decomposition with small overlap that proves the existence of
Tutte paths. On the way to our main result, we give full algorithmic counterparts of the
approaches of Thomassen and Sanders; for example, we describe small overlap variants of
Theorem 1 and of the Three Edge Lemma [26, 22], which was used in the purely existential
result of Sanders [23] as a black box.

Our Techniques

We broadly follow the idea of [5] and construct a Tutte path that is based on certain
2-separators of the graphs constructed during our decomposition. This depends on many
structural properties of the given graph. In [5], the necessary properties follow from the
restriction to the class of internally 4-connected planar graphs, the restriction on the endpoints
of the desired Tutte path, and the fact that the Tutte paths computed recursively are actually
Hamiltonian. In contrast, here we give new insights into the much wilder structure of Tutte
paths of 2-connected planar graphs, allow x, y /∈ CG, and hence extend this technique. We
show that based on the prescribed vertices and edge, there are always unique non-interlacing
2-separators that are contained in every possible Tutte path of the given graph. We then use
this set of 2-separators to iteratively construct a preliminary Tutte path and use this iterative
procedure to avoid overlaps of more than one edge in the decomposition of the input graph.

2 Preliminaries

We assume familiarity with standard graph theoretic notations as in [6]. Let deg(v) be the
degree of a vertex v. We denote the subtraction of a graph H from a graph G by G−H,
and the subtraction of a vertex or edge x from G by G− x.

A k-separator of a graph G = (V,E) is a subset S ⊆ V of size k such that G − S is
disconnected. A graph G is k-connected if |V | > k and G contains no (k − 1)-separator. For
a path P and two vertices x, y ∈ P , let xPy be the smallest subpath of P that contains
x and y. For a path P from x to y, let inner(P ) := V (P ) − {x, y} be the set of its inner
vertices. Paths that intersect pairwise at most at their endvertices are called independent.

ICALP 2018



98:4 Computing Tutte Paths

A connected graph without a 1-separator is called a block. A block of a graph G is an
inclusion-wise maximal subgraph that is a block. Every block of a graph is thus either
2-connected or has at most two vertices. It is well-known that the blocks of a graph partition
its edge-set. A graph G is called a chain of blocks if it consists of blocks B1, B2, . . . , Bk such
that V (Bi) ∩ V (Bi+1), 1 ≤ i < k, are pairwise distinct 1-separators of G and G contains no
other 1-separator. In other words, a chain of blocks is a graph, whose block-cut tree [14] is a
path.

A plane graph is a planar embedding of a graph. Let C be a cycle of a plane graph G.
For two vertices x, y of C, let xCy be the clockwise path from x to y in C. For a vertex x
and an edge e of C, let xCe be the clockwise path in C from x to the endvertex of e such
that e /∈ xCe (define eCx analogously). Let the subgraph of G inside C consist of E(C) and
all edges that intersect the open set inside C into which C divides the plane. For a plane
graph G, let CG be its outer face.

A central concept for Tutte paths is the notion of H-bridges (see [31] for some of their
properties): For a subgraph H of a 2-connected plane graph G, an H-bridge of G is either
an edge that has both endvertices in H but is not itself in H or a component K of G−H
together with all edges (and the endvertices of these edges) that join vertices of K with
vertices of H. An H-bridge is called trivial if it is just one edge. A vertex of an H-bridge L
is an attachment of L if it is in H , and an internal vertex of L otherwise. An outer H-bridge
of G is an H-bridge that contains an edge of CG.

A Tutte path (Tutte cycle) of a plane graph G is a path (a cycle) P of G such that
every outer P -bridge of G has at most two attachments and every P -bridge at most three
attachments. In most of the cases we consider, G will be 2-connected, so that every P -bridge
has at least two attachments. For vertices x, y and an edge α ∈ CG, let an x-α-y-path be
a Tutte path from x to y that contains α. An x-y-path is an x-α-y-path for an arbitrarily
chosen edge α ∈ CG.

3 Decomposition with Small Overlap

After excluding several easy cases of the decomposition, we prove Thomassen’s Theorem 1
constructively and then show how to use this for a proof of the Three Edge Lemma. The
Three Edge Lemma, in turn, allows us to give a constructive proof of Sander’s Theorem 2 in
which only small overlaps occur in the induction. Due to space constraints, we have to omit
this proof, it however derived from [23] in a similar way as Theorem 1 from [29].

We will use induction on the number of vertices. In all proofs about Tutte paths of
this section, the induction base is a triangle, in which the desired Tutte path can be found
trivially; thus, we will assume in these proofs by the induction hypothesis that graphs with
fewer vertices contain Tutte paths. All graphs in the induction will be simple.

The following sections cover different cases of the induction steps of the three statements
to prove, starting with some easy cases for which a decomposition into edge disjoint subgraphs
was already given [29]. For the remainder of the article, let G be a simple plane 2-connected
graph with outer face CG and let x ∈ V (G), α ∈ E(CG) and y ∈ V (G)− x. If α = xy, the
desired path is simply xy; thus, assume α 6= xy. Since G is 2-connected, CG is a cycle.

3.1 The Easy Cases
We say that G is decomposable into GL and GR if it contains subgraphs GL and GR such
that GL ∪ GR = G, V (GL) ∩ V (GR) = {c, d}, x ∈ V (GL), α ∈ E(GR), V (GL) 6= {x, c, d}
and V (GR) 6= {c, d} (or the analogous setting with y taking the role of x) (see Figure 1). In
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Figure 1 a) shows a graph G that is decomposable into GL and GR. The figures b) to d) show
the graphs G′L, G′R and G∗R (in this order) that are constructed to process G in [29] .

particular, GL 6= {c, d}, even if x ∈ {c, d}. Hence {c, d} is a 2-separator of G. There might
exist multiple pairs (GL, GR) into which G is decomposable; we will always choose a pair
that minimizes |V (GR)|. Note that GR intersects CG (for example, in α), but GL does not
have to intersect CG. In [29], it was shown that every decomposable graph G contains a
Tutte path, without using recursion on overlapping subgraphs.

I Lemma 4 ([29]). If G is decomposable into GL and GR, then G contains an x-α-y-path.

Even if G is not decomposable into GL and GR, G may contain other 2-separators
{c, d} that allow for a similar reduction as in Lemma 4 (for example, when modifying its
prerequisites to satisfy {x, α, y} ⊆ GR − {c, d}).

I Lemma 5 ([29]). Let {c, d} be a 2-separator of G and let J be a {c, d}-bridge of G having
an internal vertex in CG such that x, y and α are not in J . Then G contains an x-α-y-path.

3.2 Proof of Theorem 1
We now prove that G contains a Tutte path from x ∈ V (CG) to y ∈ V (G) − x through
α ∈ E(CG). For simplicity, if y is not in V (CG) but has degree two and both of its neighbors
are in V (CG), then we change the embedding of G (and therefore CG) such that y belongs
to the outer face. If Lemma 4 or 5 can be applied, we obtain such a Tutte path directly, so
assume their prerequisites are not met. Let lα be the endvertex of α that appears first when
we traverse CG in clockwise order starting from x, and let rα be the other endvertex of α. If
y ∈ xCGlα, we interchange x and y (this does not change lα); hence, we have y /∈ xCGlα. If
y = rα, we mirror the embedding such that y becomes lα and proceed as in the previous
case; hence, y /∈ xCGrα.

We define two paths P and Q in G, whose union will, step by step, be modified into a
Tutte path of G. Let Q := xCGlα and let H := G− V (Q); in particular, y /∈ Q and, if x is
an endvertex of α, Q = {x}. Since G is not decomposable, we have deg(rα) ≥ 3, as otherwise
the neighborhood of rα would be the 2-separator of such a decomposition. Since deg(rα) ≥ 3,
rα is incident to an edge e /∈ CG that shares a face with α. Let B1 be the block of H that
contains e. It is straight-forward to prove the following about B1 (see Thomassen [29]),
which shows that every vertex of CG is either in Q or in B1.

I Lemma 6 ([29]). B1 contains CG − V (Q) and is the only block of H containing rα.

Consider a component A of H that does not contain B1. Then the neighborhood of A in
G is in Q and must contain a 2-separator of G due to planarity. Hence, either y ∈ A and
we can apply Lemma 4 or y /∈ A and we can apply Lemma 5. Since both contradicts our
assumptions, H is connected and contains B1 and y. Let K be the minimal plane chain of
blocks B1, . . . , Bl of H that contains B1 and y (hence, y ∈ Bl). Let vi be the intersection of
Bi and Bi+1 for 1 ≤ i ≤ l − 1; in addition, we set v0 := rα and vl := y.

ICALP 2018
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Consider any (K ∪CG)-bridge J . Since Lemma 5 cannot be applied, J has an attachment
vJ ∈ K. Further, J cannot have two attachments in K, as this would contradict the
maximality of the blocks in K. Let C(J) be the shortest path in CG that contains all vertices
in J ∩CG and does not contain rα as inner vertex (here, rα serves as a reference vertex of CG
that ensures that the paths C(J) are chosen consistently on CG). Let lJ be the endvertex
of C(J) whose counterclockwise incident edge in CG is not in C(J) and let rJ be the other
endvertex of C(J).

3.2.1 Decomposing along Maximal 2-Separators
At this point we will deviate from the original proof of Theorem 1 in [29], which continues
with an induction on every block of K that leads to overlapping subgraphs in a later step of
the proof. Instead, we will show that a v0-vl-path P of K can be found iteratively such that
the graphs in the induction have only small overlap.

For every block Bi 6= B1 of K, we choose an arbitrary edge αi = lαi
rαi

in CBi
. In B1 we

choose α1 such that α1 is incident to the endvertex of CB1 ∩ CG that is not rα. As done for
G, we may assume for every Bi that lαi is the endvertex of αi that is contained in vi−1CBiαi
and that vi /∈ vi−1CBi

rαi
and (by mirroring the planar embedding and interchanging vi and

vi−1 if necessary). However, unlike G, every Bi may satisfy the prerequisites of Lemmas 4
and 5. By the induction hypothesis of Theorem 1, Bi contains a vi−1-αi-vi-path Pi. In [29],
the outer Pi-bridges of Bi are not only being processed during this induction step, but also
in a later induction step when modifying Q. We avoid such overlapping subgraphs by using
a new iterative structural decomposition of Bi along certain 2-separators on CBi

. This
decomposition allows us to construct Pi iteratively such that the outer Pi-bridges of Bi are
not part of the induction applied on Bi. Eventually, P :=

⋃
1≤i≤l Pi will be the desired

v0-vl-path of K.
The outline is as follows. After explaining the basic split operation that is used by our

decomposition, we give new insights into the structure of the Tutte paths Pi of the blocks
Bi. These are used in Section 3.2.2 to define the iterative decomposition of every block Bi
into a modified block η(Bi), which will in turn allow to compute every Pi step-by-step. This
gives the first part P of the desired Tutte path x-α-y of G. Subsequently, we will show how
the remaining path Q can be modified to obtain the second part.

For a 2-separator {c, d} ⊆ CB of a block B, let B+
cd be the {c, d}-bridge of B that contains

cCBd and let B−cd be the union of all other {c, d}-bridges of B (note that B+
cd contains the

edge cd if and only if B+
cd is trivial). For a 2-separator {c, d} ⊆ CB, let splitting off B+

cd

(from B) be the operation that deletes all internal vertices of B+
cd from B and adds the edge

cd if cd does not already exist in B. Our decomposition proceeds by iteratively splitting
off bridges B+

cd from the blocks Bi of K for suitable 2-separators {c, d} ⊆ CBi
(we omit

the subscript i in such bridges B+
cd, as it is determined by c and d). The following lemma

restricts these 2-separators to be contained in specific parts of the outer face.

I Lemma 7. Let P ′ be a Tutte path of a block B such that P ′ contains an edge α′ and two
vertices a, b ∈ CB. Then every outer P ′-bridge J of B has both attachments in aCBb or
both in bCBa. If additionally J is non-trivial and P ′ 6= α′, the attachments of J form a
2-separator of B.

Proof. Let e be an edge in J ∩CB and assume without loss of generalization that e ∈ aCBb.
Let c and d be the last and first vertices of the paths aCBe and eCBb, respectively, that are
contained in P ′ (these exist, as a and b are in P ′). Then J has attachments c and d and no
further attachment, as P ′ is a Tutte path. This gives the first claim. For the second claim,
let z be an internal vertex of J . Since P ′ 6= α′, P ′ contains a third vertex c /∈ {a, b}. As c is
not contained in J , {c, d} separates z and c and is thus a 2-separator of B. J
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Figure 2 a) The boundary points and -parts of a block Bi 6= Bl. b) An instance in which the
block Bl contains a 2-separator {w1, wp} that splits off vl.

For every block Bi 6= Bl of K, let the boundary points of Bi be the vertices vi−1, lαi , rαi , vi
and let the boundary parts of Bi be the inclusion-wise maximal paths of CBi

that do not
contain any boundary point as inner vertex (see Figure 2a; note that boundary parts may be
single vertices). Hence, every boundary point will be contained in any possible vi−1-αi-vi-path
Pi, and there are exactly four boundary parts, one of which is αi. Now, if Pi 6= αi, applying
Lemma 7 for all boundary points a, b ∈ {vi−1, lαi , rαi , vi} and α′ := αi implies that the two
attachments of every outer non-trivial Pi-bridge of Bi form a 2-separator that is contained in
one boundary part of Bi. For this reason, our decomposition will split off only 2-separators
that are contained in boundary parts.

In principle, we will do the same for the block Bl. If vl ∈ CBl
, we define the boundary

points of Bl just as before for i < l. However, Bl is special in the sense that vl may not be
in CBl

. Then we have to ensure that we do not loose vl when splitting off a 2-separator, as
vl is supposed to be contained in Pl (see Figure 2b). To this end, consider for vl /∈ CBl

the 2-
separator {w1, wp} ⊆ CBl

of Bl such that B+
w1,wp

contains vl, the path w1CBl
wp is contained

in one of the paths in {vl−1CBl
αl, αl, αlCBl

vl−1} and w1CBl
wp is of minimal length if such

a 2-separator exists. The restriction to these three parts of the boundary is again motivated
by Lemma 7: If Pl 6= αl and there is an outer non-trivial Pl-bridge of Bl, its two attachments
are in Pl and thus we only have to split off 2-separators that are in one of these three paths
to avoid these Pl-bridges in the induction. If the 2-separator {w1, wp} exists, let w1, . . . , wp
be the p ≥ 2 attachments of the w1CBl

wp-bridge of Bl that contains vl, in the order of
appearance in w1CBi

wp; otherwise, let for notational convenience w1 := · · · := wp := lαi
.

In the case vl /∈ CBl
, let the boundary points of Bl be vl−1, lαl

, rαl
, w1, . . . , wp and let the

boundary parts of Bl be the inclusion-wise maximal paths of CBl
that do not contain any

boundary point as inner vertex.

I Lemma 8. If the 2-separator {w1, wp} exists, it is unique and every vl−1-αl-vl-path Pl of
Bl contains the vertices w1, . . . , wp.

Proof. Let J ⊂ B+
w1,wp

be the w1CBl
wp-bridge of Bl that contains vl and has attachments

w1, . . . , wp. For the first claim, assume to the contrary that there is a 2-separator {w′1, w′p′} 6=
{w1, wp} of Bl having the same properties as {w1, wp}. By the connectivity of J and the
property that restricts {w′1, w′p′} to the three parts of the boundary of Bl, {w′1, w′p′} may
only split off a subgraph containing vl if w1CBl

wp ⊂ w′1CBl
w′p′ . This however contradicts

the minimality of the length of w′1CBl
w′p′ .

For the second claim, let Pl be any vl−1-αl-vl-path of Bl. Assume to the contrary that
wj 6∈ Pl for some j ∈ {1, . . . , p}. Then wj is an internal vertex of an outer Pl-bridge J ′ of Bl.
By Lemma 7, both attachments of J ′ are in CBl

. However, since J contains a path from
wj /∈ Pl to vl ∈ Pl in which only wj is in CBl

, at least one attachment of J ′ is not in CBl
,

which gives a contradiction. J
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Lemma 8 ensures that the boundary points of any Bi are contained in every Tutte path
Pi of Bi. Every block Bi 6= Bl has exactly four boundary parts and Bl has at least three
boundary parts (three if vl /∈ CBl

and {w1, wp} does not exist), some of which may have
length zero. For every 1 ≤ i ≤ l, the boundary parts of Bi partition CBi , and one of them
consists of αi. This implies in particular that Bi has at least two boundary parts of length
at least one unless Bi = αi. We need some notation to break symmetries on boundary parts.
For a boundary part Z of a block B, let {c, d}∗ ⊆ Z denote two elements c and d (vertices
or edges) such that cCBd is contained in Z (this notation orders c and d consistently to the
clockwise orientation of CB); if cCBd is contained in some boundary part of B that is not
specified, we just write {c, d}∗ ⊆ CB .

We now define which 2-separators are split off in our decomposition. Let a 2-separator
{c, d}∗ ⊆ CB of B be maximal in a boundary part Z of B if {c, d} ⊆ Z and Z does not
contain a 2-separator {c′, d′} of B such that cCBd ⊂ c′CBd′. Let a 2-separator {c, d}∗ ⊆ CB
of B be maximal if {c, d}∗ is maximal with respect to at least one boundary part of B.
Hence, every maximal 2-separator is contained in a boundary part, and 2-separators that
are contained in a boundary part are maximal if they are not properly “enclosed” by other
2-separators on the same boundary part.

Let two maximal 2-separators {c, d}∗ and {c′, d′}∗ of B interlace if {c, d} ∩ {c′, d′} = ∅
and their vertices appear in the order c, c′, d, d′ or c′, c, d′, d on CB (in particular, both 2-
separators are contained in the same boundary part of B). In general, maximal 2-separators
of a block Bi of K may interlace; for example, consider the two maximal 2-separators when
Bi is a cycle on four vertices in which vi−1 and vi are adjacent. However, the following
lemma shows that such interlacing is only possible for very specific configurations.

I Lemma 9. Let {c, d}∗ and {c′, d′}∗ be interlacing 2-separators of Bi in a boundary part
Z such that c′ ∈ cCBi

d and at least one of them is maximal. Then d′CBi
c = vi−1vi = αi.

Proof. Since {c, d} is a 2-separator, Bi − {c, d} has at least two components. We argue
that there are exactly two. Otherwise, Bi − {c, d} has a component that contains the inner
vertices of a path P ′ from c to d in Bi − (CBi

− {c, d}). Then Bi − {c′, d′} has a component
containing (P ′ ∪ CBi

)− {c′, d′} and no second component, as this would contain the inner
vertices of a path from c′ to d′ in Bi − ((P ′ ∪ CBi)− {c′, d′}), which does not exist due to
planarity. Since this contradicts that {c′, d′} is a 2-separator, we conclude that Bi − {c, d},
and by symmetry Bi − {c′, d′}, have exactly two components.

By the same argument, inner(cCBid) and inner(dCBic) are contained in different compon-
ents of Bi−{c, d} and the same holds for inner(c′CBi

d′) and inner(d′CBi
c′) in Bi−{c′, d′}.

Hence, the component of Bi − {c, d′} that contains inner(cCBid
′) 6= ∅ does not intersect

inner(d′CBi
c). If inner(d′CBi

c) 6= ∅, this implies that {c, d′} ⊆ Z is a 2-separator of Bi,
which contradicts the maximality of {c, d} or of {c′, d′}. Hence, inner(d′CBic) = ∅, which
implies that d′CBi

c is an edge. As Z is not an edge, d′CBi
c = αi. Since c and d′ are the only

boundary points of Bi, either {c, d′} = {vi−1, vi} or Bi = Bl, vl /∈ CBl
, {c, d′} = {vi−1, w2},

vi−1 = w1 and w2 = wp. However, the latter case is impossible, as then {c, d′} would be a
2-separator that separates inner(cCBi

d′) 6= ∅ and vl, which contradicts the maximality of
{c, d} or of {c′, d′}. This gives the claim. J

If two maximal 2-separators interlace, Lemma 9 thus ensures that these two are the only
maximal 2-separators that may contain vi−1 and vi, respectively. This gives the following
direct corollary.

I Corollary 10. Every block of K has at most two maximal 2-separators that interlace.
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Note that any boundary part may nevertheless contain arbitrarily many (pairwise non-
interlacing) maximal 2-separators. The next lemma strengthens Lemma 7.

I Lemma 11. Let Pi be a vi−1-αi-vi-path of Bi. Let J be a non-trivial outer Pi-bridge of
Bi and let e be an edge in J ∩CBi

. Then the attachments of J are contained in the boundary
part of Bi that contains e.

Proof. Let c and d be the attachments of J such that e ∈ cCBi
d and let Z be the boundary

part of Bi that contains e. If Pi = αi, vi−1 = lαi
and vi = rαi

are the only boundary points
of Bi. Then c and d are the endvertices of Z = viCBi

vi−1 3 e, which gives the claim.
Otherwise, let Pi 6= αi. By applying Lemma 7 with a = lαi and b = rαi , {c, d} is a

2-separator of Bi that is contained in CBi
. By definition of w1, . . . , wp, there are at least three

independent paths between every two of these vertices in Bi; thus, {c, d} does not separate
two vertices of {w1, . . . , wp}. Since all other possible boundary points (vi−1, lαi , rαi , vi) are
contained in Pi, applying Lemma 7 on these implies that {c, d} does not separate two vertices
of these remaining boundary points. Hence, if {c, d} 6⊆ Z, we have Bi = Bl and vl /∈ CBl

such
that {c, d} separates {w1, . . . , wp} from the remaining boundary points. Since the Pi-bridge
J does not contain αl ∈ Pi, cCBl

d ⊆ J contains {w1, . . . , wp}, but inner(cCBl
d) does not

contain any other boundary point. As vl ∈ Pi, at least one of {w1, wp} must be in Pi, say
wp by symmetry. Then d = wp, as wp ∈ Pi cannot be an internal vertex of J . Now, in
both cases p = 2 (which implies c 6= w1, as {c, d} 6⊆ Z = w1CBl

w2) and p ≥ 3, J contains
the edge of Pi that is incident to vl. As this contradicts that J is a Pi-bridge, we conclude
{c, d} ⊆ Z. J

Now we relate non-trivial outer Pi-bridges of Bi to maximal 2-separators of Bi. In the
next section, we will use this lemma as a fundamental tool for a decomposition into subgraphs
having only small overlaps, which will eventually construct P .

I Lemma 12. Let Pi be a vi−1-αi-vi-path of Bi such that Pi 6= αi. Then the maximal
2-separators of Bi are contained in Pi and do not interlace pairwise. If J is a non-trivial
outer Pi-bridge of Bi, there is a maximal 2-separator {c, d}∗ of Bi such that J ⊆ B+

cd.

3.2.2 Construction of P
We do not know Pi in advance. However, Lemma 12 ensures under the condition Pi 6= αi
that we can split off every non-trivial outer bridge J of Pi by a maximal 2-separator, no
matter how Pi looks like. This allows us to construct Pi iteratively by decomposing Bi
along its maximal 2-separators. Since maximal 2-separators only depend on the graph Bi (in
contrast to the paths Pi, which depend for example on the K ∪ CG-bridges), we can access
them without knowing Pi itself. We now give the details of such a decomposition.

I Definition 13. For every 1 ≤ i ≤ l, let η(Bi) be αi if αi = vi−1vi and otherwise the
graph obtained from Bi as follows: For every maximal 2-separator {c, d}∗ of Bi, split off B+

cd.
Moreover, let η(K) := η(B1) ∪ · · · ∪ η(Bl).

If αi 6= vi−1vi, αi cannot be a vi−1-αi-vi-path of Bi; hence, the maximal 2-separators of
K that were split in this definition do not interlace due to Lemma 12. This implies that the
order of the performed splits is irrelevant. In any case, we have V (Cη(Bi)) ⊆ V (CBi

) and the
only 2-separators of η(Bi) must be contained in some boundary part of Bi, as there would
have been another split otherwise. See Figure 3 for an illustration of η(Bl). The following
lemma highlights two important properties of every η(Bi).
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a) b)

vl-1Bl
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d η(Bl)
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w2

wp

c

d 

d

vl-1Pl
η

Figure 3 a) A block Bl with boundary points vl−1, lαl , rαl , w1, . . . , w3 that has two maximal
2-separators on the same boundary part. b) The graph η(Bl).

I Lemma 14. Every η(Bi) is a block. Let P ηi be a vi−1-αi-vi-path of some η(Bi) such that
P ηi 6= αi. Then every outer P ηi -bridge of η(Bi) is trivial.

The next lemma shows how we can construct a Tutte path P of K iteratively using
maximal 2-separators. We will provide the details of an efficient implementation in Section 4.

I Lemma 15 (Construction of P ). For every 1 ≤ i ≤ l, a vi−1-αi-vi-path Pi of Bi can be
constructed such that no non-trivial outer Pi-bridge of Bi is part of an inductive call of
Theorem 1.

Proof. The proof proceeds by induction on the number of vertices in Bi. If Bi is just an
edge or a triangle, the claim follows directly. For the induction step, we therefore assume
that Bi contains at least four vertices. If αi = vi−1vi, we set Pi := αi, so assume αi 6= vi−1vi.
In particular, η(Bi) 6= αi and αi is no vi−1-αi-vi-path of η(Bi). As |V (η(Bi))| < n, we may
apply an inductive call of Theorem 1 to η(Bi), which returns a vi−1-αi-vi-path P ηi 6= αi of
η(Bi). This does not violate the claim, since η(Bi) does not contain any non-trivial outer
P ηi -bridge by Lemma 14.

Now we extend P ηi iteratively to the desired vi−1-αi-vi-path Pi of Bi by restoring the
subgraphs that were split off along maximal 2-separators one by one. For every edge
cd ∈ Cη(Bi) such that {c, d}∗ is a maximal 2-separator of Bi (in arbitrary order), we
distinguish the following two cases: If cd /∈ P ηi , we do not modify P ηi , as in Bi the subgraph
B+
cd will be a valid outer bridge. If otherwise cd ∈ P ηi , we consider the subgraph B+

cd of Bi.
Clearly, B := B+

cd ∪ {cd} is a block. Define that the boundary points of B are c, d and the
two endpoints of some arbitrary edge αB 6= cd in CB . This introduces the boundary parts of
B in the standard way, and hence defines η(B). Note that B may contain several maximal
2-separators in cCBd that in Bi were suppressed by {c, d}∗, as {c, d}∗ is not a 2-separator
of B. In consistency with Lemma 12, which ensures that no two maximal 2-separators of
Bi interlace, we have to ensure that no two maximal 2-separators of B interlace in our case
αi 6= vi−1vi, as otherwise η(B) would be ill-defined. This is however implied by Lemma 9, as
αB 6= cd. Since |V (η(B))| < |V (Bi)|, a c-αB-d-path PB of B can be constructed such that
no non-trivial outer PB-bridge of B is part of an inductive call of Theorem 1. Since αB 6= cd,
PB does not contain cd. We now replace the edge cd in P ηi by PB. This gives the desired
path Pi after having restored all subgraphs B+

cd. J

Applying Lemma 15 on all blocks of K and taking the union of the resulting paths gives
P . In the next step, we will modify Q such that P ∪ {α} ∪ Q becomes the desired Tutte
path of G. By Lemma 15, no non-trivial outer P -bridge of K was part of any inductive
call of Theorem 1 so far, which allows us to use these bridges inductively for the following
modification of Q (the existence proof in [29] used these arbitrarily large bridges in inductive
calls for both constructing P and modifying Q).
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3.2.3 Modification of Q
We show how to modify Q such that P ∪{α}∪Q is an x-α-y-path of G. To this end, consider
a (P ∪ {α} ∪Q)-bridge J of G. Since Lemma 5 cannot be applied, J does not have all of
its attachments in Q. On the other hand, if J has all of its attachments in P ⊆ K, J ⊆ K
follows from the maximality of blocks and therefore J satisfies all conditions for a Tutte path
of G. Hence, it suffices to consider (P ∪ {α} ∪Q)-bridges that have attachments in both P
and Q. The following lemma showcases some of their properties.

I Lemma 16. Let J be a (P ∪ {α} ∪ Q)-bridge of G that has an attachment in P . Then
J ∩K is either exactly one vertex in P or exactly one non-trivial outer P -bridge L of K. In
particular, J has at most two attachments in P .

Let J be a (P ∪ {α} ∪ Q)-bridge of G that has attachments in both P and Q and
recall that C(J) = lJCGrJ . Because Lemma 5 is not applicable to G, there is no other
(P ∪{α}∪Q)-bridge than J that intersects (J ∪C(J))−P −{lJ , rJ}; in other words, J ∪C(J)
is everything that is enclosed by the attachments of J in G. In order to obtain the Tutte
path of Theorem 1, we will thus replace the subpath C(J) with a path QJ ⊆ (J ∪C(J))−P
from lJ to rJ such that any (QJ ∪ P )-bridge of G that intersects (J ∪ C(J))− P − {lJ , rJ}
has at most three attachments and at most two if it contains an edge of CG. Since lJ and
rJ are contained in Q, no other (P ∪ {α} ∪Q)-bridge of G than J is affected by this “local”
replacement, which proves its sufficiency for obtaining the desired Tutte path.

We next show how to obtain QJ . If C(J) is a single vertex, we do not need to modify Q
at all (hence, QJ := C(J)), as then J ∪ C(J) does not contain an edge of CG and has at
most three attachments in total (one in Q and at most two in P by Lemma 16). If C(J) is
not a single vertex, we have the following lemma.

I Lemma 17 ([29, 4]). Let J be a (P ∪ {α} ∪Q)-bridge of G that has an attachment in P
and at least two in Q. Then (J ∪C(J))− P contains a path QJ from lJ to rJ such that any
(QJ ∪P )-bridge of G that intersects (J ∪C(J))−P −{lJ , rJ} has at most three attachments
and at most two if it contains an edge of CG.

By Lemma 16, any (P ∪ {α} ∪Q)-bridge J of G intersects K in at most one non-trivial
P -bridge of K having attachments c and d. By Lemma 15, this non-trivial P -bridge was never
part of an inductive call of Theorem 1 before (in fact, at most its edge cd was). Replacing
C(J) with QJ for every such J , as described in Lemma 17 and before, therefore concludes
the constructive proof of Theorem 1.

4 A Quadratic Time Algorithm

In this section, we give an algorithm based on the decomposition shown in Section 3 (see
Algorithm 1). It is well known that there are algorithms that compute the blocks of a graph
and the block-cut tree of G in linear time, see [25] for a very simple one. Using this on G−Q,
we can compute the blocks B1, . . . , Bl of K in time O(n).

We now check if Lemma 4 or 5 is applicable at least once to G; if so, we stop and apply
the construction of either Lemma 4 or 5. Checking applicability involves the computation of
special 2-separators {c, d} of G that are in CG (e.g., we did assume minimality of |V (GR)| in
Lemma 4). In order to find such a {c, d} in time O(n), we first compute the weak dual G∗ of
G, which is obtained from the dual of G by deleting its outer face vertex, and note that such
pairs {c, d} are exactly contained in the faces that correspond to 1-separators of G∗. Once
more, these faces can be found by the block-cut tree of G∗ in time O(n) using the above
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Algorithm 1 TPATH(G, x, α, y) . method, running time without induction
1: if G is a triangle or α = xy then return the trivial x-α-y path of G . O(1)
2: if Lemma 4 or 5 is applicable at least once to G then. weak dual block-cut tree, O(n)
3: apply TPATH on GL and GR as described and return the resulting path . O(1)
4: if there is a 2-separator {c, d} ∈ CG of G then
5: do simple case 2
6: Compute the minimal plane chain K of blocks of G . block-cut tree of G−Q, O(n)
7: Compute η(K) . dyn. progr. on weak dual block-cut tree, O(n)
8: Compute P by the induction of Lemma 15 . dyn. prog. precomputes all possible B+

cd,
O(n)

9: Modify Q by the induction of Lemma 17 . traversing outer faces of bridges, O(n)
10: return P ∪ {α} ∪Q

algorithm. Since the block-cut tree is a tree, we can perform dynamic programming on all
these 1-separators bottom-up the tree in linear total time, in order to find one desired {c, d}
that satisfies the respective constraints (e.g. minimizing |V (GR)|, or separating x and α).

Now we compute η(K). Since the boundary points of every Bi are known from K, all
maximal 2-separators can be computed in time O(n) by dynamic programming as described
above. We compute in fact the nested tree structure of all 2-separators on boundary parts
due to Lemma 12, on which we then apply the induction described in Lemma 15. Hence, no
non-trivial outer P -bridge of K is touched in the induction, which allows to modify Q along
the induction of Lemma 17.

In our decomposition, every inductive call is invoked on a graph having less vertices than
the current graph. The key insight is now to show a good bound on the total number of
inductive calls to Theorem 2. In order to obtain good upper bounds, we will restrict the
choice of αi for every block Bi of K such that αi is an edge of CBi − vi−1vi. This prevents
several situations in which the recursion stops because of the case α = xy, which would
unease the following arguments. The next lemma shows that only O(n) inductive calls are
performed. Its argument is, similarly to one in [5], based on a subtle summation of the Tutte
path differences that occur in the recursion tree.

I Lemma 18. The number of inductive calls for TPATH(G, x, α, y) is at most 2n− 3.

Hence, Algorithm 1 has overall running time O(n2), which proves our main Theorem 3.

I Corollary 19. Let G be a 2-connected plane graph and let α, β, γ be edges of CG. Then a
Tutte cycle of G that contains α, β and γ can be computed in time O(n2).
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Abstract
In monotone submodular function maximization, approximation guarantees based on the curva-
ture of the objective function have been extensively studied in the literature. However, the notion
of curvature is often pessimistic, and we rarely obtain improved approximation guarantees, even
for very simple objective functions.

In this paper, we provide a novel approximation guarantee by extracting an M\-concave
function h : 2E → R+, a notion in discrete convex analysis, from the objective function f : 2E →
R+. We introduce a novel notion called the M\-concave curvature of a given set function f ,
which measures how much f deviates from an M\-concave function, and show that we can obtain
a (1 − γ/e − ε)-approximation to the problem of maximizing f under a cardinality constraint
in polynomial time, where γ is the value of the M\-concave curvature and ε > 0 is an arbitrary
constant. Then, we show that we can obtain nontrivial approximation guarantees for various
problems by applying the proposed algorithm.
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monotone submodular function f : 2E → R+ and k ∈ Z+, we want to compute a set S ⊆ E
with |S| ≤ k that maximizes f(S). This simple problem includes various optimization
problems in theory and practice, such as facility location, combinatorial auctions [7, 14], viral
marketing in social networks [11], and sensor placement [13, 12].

Although monotone submodular function maximization is an NP-hard problem, the
greedy algorithm achieves a (1− 1/e)-approximation, and this approximation ratio is known
to be tight [20]. In practice, however, the greedy algorithm exhibits an approximation ratio
much better than 1 − 1/e, sometimes close to one [13]. This gap between the theoretical
guarantee and the practical performance in “real-world” instances has been a major mystery
in submodular function maximization. The first attempt to explain this gap goes back to
Conforti and Cornuéjols [6]. They introduced a parameter called the (total) curvature of a
monotone submodular function, with which we can derive a tighter approximation ratio.

I Definition 1 (Curvature). The curvature c of a monotone submodular function f : 2E → R+
is

c := 1−min
i∈E

f(i | E − i)
f(i) .

Here, f(i) and f(i | E − i) are shorthand for f({i}) and f(E)− f(E − i), respectively. We
note that f(i | E − i) ≤ f(i) holds from the submodularity of f ; hence, c ∈ [0, 1] holds.
Roughly speaking, the curvature of a function measures how close it is to a modular function,
where a set function g : 2E → R is called modular if g(X) + g(Y ) = g(X ∩ Y ) + g(X ∪ Y )
for every X,Y ⊆ E. Indeed, we can easily observe that c = 0 if and only if f is modular.

It is shown in [6] that the greedy method achieves a (1− e−c)/c-approximation, which
is at least 1− 1/e and tends to 1 as c→ 0. This approximation has recently improved to
1− c/e− ε for any ε > 0 using a more sophisticated algorithm by Sviridenko, Vondrák, and
Ward [24]. Since the curvature is easy to analyze, it has been shown that we can obtain
refined approximation guarantees for various settings by exploiting the curvature [10, 1].

However, we might ask does the curvature explain the gap completely? The answer seems
to be negative. The concept of curvature is still unsatisfactory because monotone submodular
functions in practical applications are often far from modular functions, and the curvature
does not explain why we can obtain high approximation ratios. For instance, let us consider
a very simple function f(X) =

√
|X|. Since this function has a curvature of 1−O(1/

√
n)

for n = |E|, the approximation guarantee is (roughly) 1− 1/e, while the greedy algorithm
obviously finds an optimal solution!

1.1 Our contributions
To narrow the gap discussed above, in this work we consider a larger and richer class of
functions that are easy to maximize. For such a class of functions, we exploit M\-concave
functions, introduced in the discrete convex analysis literature [18]. A set function f : 2E → R
is called M\-concave3 if, for any X,Y ⊆ E and i ∈ X \Y , either (i) f(X)+f(Y ) ≤ f(X− i)+
f(Y + i) or (ii) there exists j ∈ Y \X such that f(X) + f(Y ) ≤ f(X − i+ j) + f(Y + i− j).
Intuitively speaking, we can increase the sum f(X) + f(Y ) by making X and Y closer, which
resembles concave functions. We note that an M\-concave function is submodular, and an
M\-concave function can be maximized in polynomial time with the greedy algorithm (see,

3 For a set function, M\-concave functions are essentially equivalent to valuated matroids.
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e.g., [16]). Hence, M\-concave functions can be regarded as a class of “easy” submodular
functions.

Now, we start with the following observation. For a monotone submodular function
f : 2E → R+, we define a modular function h as h(X) :=

∑
i∈X f(i | E − i). Then, f can be

decomposed as f = g + h, where g is another monotone submodular function. One can show
that h(X) ≥ (1−c)f(X) for any X ⊆ E, where c is the curvature of f . The modular function
h can be regarded as an “easy” part of f and g as a “difficult” part, and the curvature
measures the contribution of the modular part h to the entire function f . Observing that any
modular function is M\-concave, we can think of decompositions into a monotone submodular
function and an M\-concave function, which gives the following definition:

I Definition 2 (M\-concave curvature). Suppose that a monotone submodular function
f : 2E → R+ is decomposed as g + h, where g : 2E → R+ is monotone submodular, and
h : 2E → R+ is M\-concave. Then, the M\-concave curvature γ(g, h) of f is the minimum
value of γ such that h(X) ≥ (1− γ)f(X) for every X ⊆ E, or equivalently

γ(g, h) = 1− min
X⊆E

h(X)
f(X) = max

X⊆E

g(X)
f(X) ,

where we conventionally assume that 0
0 :=∞.

We abbreviate γ(g, h) by γ if g and h are clear from the context. We note that the M\-concave
curvature is defined for a decomposition f = g+h, whereas the standard curvature is defined
for the function f itself. By the argument above, we can always find a decomposition
f = g + h such that the M\-concave curvature is no greater than the standard curvature.

Our main contribution is the following generalization of the results of [24, 16] in terms of
the M\-concave curvature.

I Theorem 3. Let f : 2E → R+ be a monotone submodular function that can be decomposed
as f = g + h, where g is monotone submodular, and h is M\-concave. Assume that we have
value oracles of g and h. Then, for an integer k ∈ Z+ and a constant ε > 0, we can find a
random subset X of size k such that E[f(X)] ≥ (1− γ(g, h)/e− ε)f(O) in polynomial time,
where O is an optimal solution.

Applications. M\-concave functions include many nontrivial functions such as (weighted)
matroid rank functions and laminar concave functions, which are far from modular functions.
Our result immediately implies that if the significant part of f = g + h is due to the
M\-concave part h, we can obtain a better approximation ratio, although it might not be
straightforward to find such a decomposition of f into g and h even if f is a compactly
represented function. In Section 4, we provide a general algorithm for finding a decomposition
from the value oracle of f . This algorithm always finds a decomposition that is at least as
good as the decomposition via the standard curvature. In Section 5, we provide problem-
specific decompositions for several problems such as facility location, which yield improved
approximation guarantees.

1.2 Proof technique
Our main result (Theorem 3) is proved by modifying the continuous greedy algorithm. The
continuous greedy algorithm is a powerful and flexible framework for submodular function
maximization, which has been applied to a matroid constraint, a knapsack constraint, and
even combinations of various constraints [2, 4, 5]. At a high level, the continuous greedy

ICALP 2018



99:4 New Approximation Guarantee for Submodular Maximization via Discrete Convexity

algorithm generates a sequence x(t) in the convex hull of feasible solutions for t ∈ [0, 1]
by the following differential equation: dx

dt = v(t) and x(0) = 0, where v is a prescribed
velocity vector. Then, we round the final point x(1) into a feasible solution X via a rounding
algorithm. The previous result of [24] relies on the property that for a modular function
h = w(X), if w>v(t) ≥ α holds for t ∈ [0, 1], then w>x(1) ≥ α. This property enables us to
find a fractional solution x(1) that simultaneously optimizes h and g; that is, x(1) achieves
the optimal value for the modular part h and a (1− 1/e)-approximation for the remaining
monotone submodular part g.

Continuous greedy algorithm with a multilinear extension and concave closure. To run
the continuous greedy algorithm, we require continuous extensions of set functions. For
submodular functions, the multilinear extension is typically used. In addition, a modular
function is trivially extendable. However, for M\-concave functions, it is nontrivial to choose
a continuous extension because if we just use the multilinear extension, we end up with a
(1−1/e)-approximation. To remedy this, we use a different continuous extension, namely, the
concave closure. The concave closure is difficult to evaluate in general, but for M\-concave
functions, we can evaluate their concave closures in polynomial time thanks to the results
of discrete convex analysis. This property enables us to run a modified continuous greedy
algorithm with the following strong guarantee; that is, our continuous greedy algorithm
finds a fractional solution that achieves the optimal value for the M\-concave part and a
(1− 1/e)-approximation for the remaining monotone submodular part.

Rounding algorithm preserving the values of a multilinear extension and concave closure.
A difficulty also arises in the rounding phase. Typically, a rounding algorithm finds a feasible
subset that preserves the value of the multilinear extension. However, since our modified
continuous greedy algorithm also involves a concave closure, we need to design a rounding
algorithm that preserves the values of the multilinear extension and concave closure. To this
end, we extend the swap rounding [4] algorithm for M\-concave functions. The original swap
rounding algorithm is designed for rounding a fractional solution in a matroid base polytope
into a matroid base without losing the value of a multilinear extension. We prove that
almost the same strategy works for our purpose by exploiting the combinatorial structures of
M\-concave functions.

1.3 Related work
The concept of curvature was introduced by Conforti and Cornuéjols, and they proved that
the classical greedy algorithm of [20] achieves a (1− e−c)/c-approximation for a cardinality
constraint. In [25], Vondrák introduced a slightly relaxed variant of the curvature, namely,
the curvature with respect to the optimum. He obtained the same approximation guarantee
(1− e−c∗)/c∗ for a matroid constraint, where c∗ is the curvature with respect to the optimum,
and also showed that the approximation guarantee is tight for general submodular functions.
Later, this result was refined with the total curvature by Sviridenko, Vondrák, and Ward [24].
For a knapsack constraint, Yoshida [26] proved a better approximation ratio of 1− c/e. Iyer
and Bilmes [10] studied a general reduction between submodular function maximization and
a submodular cover, and they proved that if the curvature of the functions involved is small,
the two problems reduce to each other.

Discrete convex analysis originated with Murota [16]. We note that discrete convex
functions are usually defined on the integer lattice ZE , although we focus on set functions in
this paper. Discrete convex functions admit various attractive properties such as Fenchel
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duality, the separation theorem, and descent-type algorithms, which are analogous to convex
analysis in the Euclidean space. The applications of discrete convex analysis include economics,
system analysis for electrical circuits, phylogenetic analysis, etc. Shioura [22] studied
maximization of the sum of M\-concave set functions subject to a matroid constraint. He
showed that pipage rounding [2] can be explained from the viewpoint of discrete convexity.
For details, the reader is referred to a monograph [16] or recent survey [17].

The M\-natural concavity is equivalent to the gross-substitutability [17], a central concept
in economics. Roughgarden, Talgam-Cohen, and Vondrák [21] studied approximation for
maximizing set functions that are close to the gross-substitute functions and others. Recently,
Chatziafratis, Roughgarden, and Vondrák [3] provided improved approximation guarantees
via a different concept called perturbation stability. They proved that the greedy and local
search algorithms achieve a better approximation for submodular function maximization for
various set systems under a stability assumption.

1.4 Organization
In Section 2, we introduce the notation and basic concepts for submodular function maximiz-
ation and discrete convex analysis. Our main theorem and continuous greedy algorithms
are presented in Section 3. We describe a general algorithm for finding a decomposition of
a given monotone submodular function into a monotone submodular function and an M\-
concave function in Section 4. In Section 5, we provide several examples of problem-specific
decompositions and the theoretical bounds of the M\-concave curvature.

2 Preliminaries

For a set S ⊆ E, 1S denotes the characteristic vector of S; that is, 1S(i) = 1 if i ∈ S, and
1S(i) = 0 otherwise. The dimension of the ambient space should be clear from the context.
For a ∈ R, we define [a]+ := max{a, 0}. For a vector x ∈ RE and X ⊆ E, we use the
shorthand notation: x(X) :=

∑
i∈X x(i).

A pair consisting of a finite set E and a set family of I ⊆ 2E is called a matroid if (i)
∅ ∈ I; (ii) if X ∈ I, then any subset of X also belongs to I; and (iii) if X,Y ∈ I and
|X| < |Y |, then there exists i ∈ Y \X such that X + i ∈ I. A member of I is called an
independent set. A maximal independent set is called a base. The base polytope of a matroid
is the convex hull of all characteristic vectors of its bases. The rank function of a matroid is
the following set function: r(X) = max{|I| : I ⊆ X, I ∈ I}. Although it is well-known that
matroid rank functions are monotone and submodular, they are indeed included in the more
tractable class called M\-concave functions.

I Definition 4 (M\-concave function [19]). A set function f : 2E → R is M\-concave if for
X,Y ⊆ E and i ∈ X \ Y , either

f(X) + f(Y ) ≤ f(X − i) + f(Y + i), (1)

or there exists j ∈ Y \X such that

f(X) + f(Y ) ≤ f(X − i+ j) + f(Y − i+ j). (2)

It is known that M\-concave functions are submodular. Note that M\-concave functions
are not necessarily monotone. We give several examples of M\-concave functions below.
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I Example 5 (M\-concave functions from univariate concave functions). Let φ : R+ → R be a
concave function. Then, f(X) := φ(|X|) is an M\-concave function. For example, X 7→

√
|X|

and X 7→ min{|X|, α} (α > 0) are M\-concave. More generally, let L be a laminar family
on E and φL : R+ → R be a concave function for L ∈ L. Then, f(X) :=

∑
L∈L φL(|X ∩ L|)

is an M\-concave function. Here, as a special case, a separable concave function f(X) =∑
i∈E φi(|X ∩ {i}|) is M\-concave.

I Example 6 (M\-concave functions from matroids). Let M = (E, I) be a matroid and
w ∈ RE

+. The weighted matroid rank function is the following set function: f(X) =
max{w(I) : I ⊆ X, I ∈ I}. That is, f(X) is the maximum weight of independent sets in X.
In particular, the matroid rank function is M\-concave.

If we restrict the domain of an M\-concave function to all subsets of the same cardinality,
the condition in (1) can be omitted. Such functions are called M-concave functions.

For exploiting continuous greedy algorithms, we require continuous extensions of set
functions.

I Definition 7 (Multilinear extension). The multilinear extension F : [0, 1]E → R of a set
function f : 2E → R is defined as

F (x) =
∑

X⊆E

f(X)
∏
i∈X

x(i)
∏

i∈E\X

(1− x(i)).

I Definition 8 (Concave closure). The concave closure f̄ : [0, 1]E → R of a set function
f : 2E → R is defined as

f̄(x) := max

∑
Y⊆E

λY f(Y ) :
∑

Y

λY 1Y = x,
∑

Y

λY = 1, λY ≥ 0 (Y ⊆ E)

 . (3)

If f is an M\-concave function, then f̄(x) can be computed in polynomial time for any
x ∈ [0, 1]E [23]. Furthermore, the subgradients of f̄ can be computed in polynomial time [23].
This yields a separation oracle for the constraint of the form f̄(x) ≥ α.

3 Algorithms

In this section, we prove Theorem 3. To this end, we show the following, which simultaneously
optimizes g and h:

I Theorem 9. Let f : 2E → R+ be a monotone submodular function decomposed as f = g+h
for a monotone submodular function g : 2E → R+ and an M\-concave function h : 2E → R,
and let k be a positive integer. Then, there exists a polynomial-time algorithm that finds a
random set X ⊆ E of cardinality k such that

E[g(X)] ≥
(

1− 1
e

)
g(O)− εM, E[h(X)]≥ h(O)− εM,

for any constant ε > 0, where O is an optimal solution for max{f(X) : |X| ≤ k} and
M = maxe∈E max{g(e), h(e)}.

We note that the special case in which h is modular is proved in [24].
Before proving Theorem 9, we see that Theorem 3 is an easy consequence of Theorem 9:
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Algorithm 1 Modified Continuous Greedy Algorithm

Require: g(O), h(O) ∈ R+, value oracles of G, h̄ : [0, 1]E → R+, and a value oracle of
∇G : [0, 1]E → RE

+.
1: Set x(0) := 0 ∈ RE

2: From t = 0 to t = 1, compute x(t) ∈ [0, 1]E following the differential equation dx
dt =

v(t), where v ∈ [0, 1]E is a vector satisfying v(t)>∇G(x) ≥ g(O) − G(x), h̄(v(t)) ≥
h(O), and v(t) ∈ Pk.

3: return x(1).

Proof of Theorem 3. By Theorem 9, we can compute a random X ⊆ E of size k such that

E[f(X)] ≥
(

1− 1
e

)
g(O) + h(O)− 2εM =

(
1− 1

e

)
f(O) + 1

e
h(O)− 2εM

≥
(

1− 1
e

)
f(O) + 1− γ

e
f(O)− 2εM =

(
1− γ

e

)
f(O)− 2εM

≥
(

1− γ

e
−O(ε)

)
f(O),

where in the last inequality, we used the fact that M = maxe∈E max{g(e), h(e)} ≤ g(O) +
h(O). J

In the rest of this section, we fix f and its decomposition f = g + h, and the goal is a
proof of Theorem 9.

3.1 Continuous-time algorithm for simultaneous optimization
First, we present a continuous-time version of our algorithm. Although we cannot run this
version in polynomial time, it is helpful to grasp the overall idea.

Our algorithm is based on the continuous greedy framework [2]. Let G : [0, 1]E → R+ be
the multilinear extension of g and h̄ : [0, 1]E → R+ be the concave closure of h, and let Pk

be the convex hull of all characteristic vectors of subsets of size at most k. We assume that
we have value oracles of G, ∇G, and h̄. We also assume that we know g(O) and h(O), where
O is the optimal solution to max{f(X) : |X| ≤ k}. We discuss how we can remove these
assumptions in Section 3.2. The pseudocode of the continuous greedy algorithm is given in
Algorithm 1.

I Remark. One can find v in Algorithm 1 in polynomial time. First, the problem of finding
v is a feasible problem of a convex program. This problem is feasible because 1O ∈ RE is a
feasible solution. Moreover, we have a separation oracle for h̄(v) ≥ h(O). Hence, we can find
a feasible solution using the ellipsoid method.

The following lemma shows that Algorithm 1 provides the guarantee required in The-
orem 9:

I Lemma 10. Let x(t) be the sequence computed in Algorithm 1. Then, we have G(x(1)) ≥
(1− 1/e)g(O) and h̄(x(1)) ≥ h(O).

Proof. By adopting the standard analysis of the continuous greedy algorithm, we can see
that G(x(1)) ≥ (1 − 1/e)g(O) (see, e.g., [2]). On the other hand, since h̄ is a concave
function, h̄(x(1)) = h̄

(∫ 1
0 v(t)dt

)
≥
∫ 1

0 h̄(v(t))dt ≥ h(O), where the first inequality follows
from Jensen’s inequality. J
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3.2 Discrete-time algorithm for simultaneous optimization
Now, we describe the discrete-time version of Algorithm 1, which can be run in polynomial
time. Again, we basically follow the argument in [24] and explain the modifications to
Algorithm 1. We define M = maxe∈E max{g(e), h(e)} as the maximum marginal gain of
adding a single element. The detail and proof are deferred to the full version.

I Lemma 11. For any constant ε > 0, there exists a polynomial-time algorithm that finds a
vector x ∈ Pk such that G(x) ≥ (1− 1/e)g(O)− εM and h̄(x) ≥ h(O)− εM .

3.3 Rounding
In this section, we show the following:

I Lemma 12. Let x ∈ Pk be a vector. Then, there exists a polynomial-time randomized
rounding algorithm that outputs X ⊆ E with |X| ≤ k such that E[g(X)] ≥ G(x) and
E[h(X)] ≥ h̄(x).

Theorem 9 is obtained by combining Lemmas 11 and 12. In the following, we show a
rounding method, provided that a convex combination of h̄(x) is known. The details on how
to compute a convex combination is described in the full version.

Suppose that we have a convex combination of h̄(x); that is, we have λ1, . . . , λm > 0 and
X1, . . . , Xm ⊆ E of size k with

∑
i λi = 1,

∑
i λi1Xi = x, and

h̄(x) =
m∑

i=1
λih(Xi). (4)

Our rounding is a random process, and the condition |Xi| = k (i ∈ [m]) is always preserved
throughout the process.

If X1 = · · · = Xm, then we are done, and we output the set X := X1(= · · · = Xm), which
is of size k. Otherwise, find 1 ≤ a < b ≤ m such that Xa\Xb 6= ∅ and Xa\Xb 6= ∅. Then, we
fix i ∈ Xa \Xb and find j ∈ Xb \Xa such that h(Xa)+h(Xb) ≤ h(Xa− i+ j)+h(Xb + i− j),
whose existence is guaranteed by the M\-concavity of h. Then, we replace Xa with Xa− i+ j

with the probability λb/(λa + λb), replace Xb with Xb + i − j with the complementary
probability, and repeat this process again.

We now analyze the expected value of h at the end of the rounding process.

I Lemma 13. Let X ⊆ E be the output set. Then, we have E[h(X)] ≥ h̄(x).

Proof. Suppose that we have a chosen i ∈ Xa \Xb and j ∈ Xb \Xa in an iteration of the
process. Then, the expected change in the value of λah(Xa) + λbh(Xb) at this iteration is

λaλb

λa + λb
[h(Xa − i+ j)− h(Xa) + h(Xb + i− j)− h(Xb)] ≥ 0.

Therefore, the expected value of
∑m

i=1 λih(Xi) is at least h̄(x). The lemma holds by induction
on the number of iterations. J

Next, we analyze the expected value of g at the end of the rounding process. Let
xt =

∑
i λi1Xi

be the random vector after the tth exchange (t = 0, 1, . . . ). One can check
that (i) x0 = x, (ii) xt+1 − xt has at most one positive coordinate and at most one negative
coordinate, and (iii) E[xt+1 | xt] = xt. The following lemma establishes that such a random
process preserves the value of the multilinear extension of a monotone submodular function.
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I Lemma 14 ([4, Lemma VI.2]). Let xt be a vector-valued random process satisfying the
above conditions (i), (ii), and (iii). Then, for the multilinear extension F of any monotone
submodular function f : 2E → R, we have E[F (xt)] ≥ F (x) for t = 0, 1, . . . .

By Lemmas 13 and 14, we have the following lemma.

I Lemma 15. Let X be the output of the above rounding process. Then, we have E[g(X)] ≥
G(x) and E[h(X)] ≥ h̄(x).

Thus, we can round a fractional solution into an integral solution without losing the
objective value (in the expectation).

I Remark. Although the continuous greedy step also applies to any down-closed and solvable
polytope, the rounding step is able to handle only cardinality constraints. For example,
if we consider a matroid constraint, we need to a rounding algorithm that preserves the
value of h̄ in a matroid polytope. Since the face of h̄(x) ≥ α is another matroid polytope,
we must essentially deal with a matroid intersection constraint. Unfortunately, there is no
known rounding algorithm for matroid intersection preserving the value of the multilinear
extensions4. We can use a contention resolution scheme [5] instead, but this does not preserve
the of the value of the multilinear extension and results in an approximation ratio worse
than 1− 1/e.

4 Decomposition via M\-concave Quadratic Functions

In this section, we describe a general decomposition scheme that exploits M\-concave quadratic
functions.

For a vector d ∈ RE , we define Diag(d) ∈ RE×E as a diagonal matrix such that
Diag(d)ii = d(i) for every i ∈ E. The following characterization of M\-concave quadratic set
functions is known:

I Lemma 16 ([9], also see [17, Theorem 4.3]). Let A ∈ RE×E be a symmetric matrix, and
define h : 2E → R as h(X) = 1

2 1>XA1X = 1
2
∑

i∈X aii +
∑

i,j∈X:i6=j aij. Then, h(X) is
M\-concave if and only if

Aij ≤ 0 for any distinct i, j ∈ E, and (5)
Aij ≤ max{Aik, Ajk} for any distinct i, j, k ∈ E. (6)

Note that the condition in (6) says that Aij must form an ultrametric. The above condition
is closely related to the concept of a discrete Hessian matrix:

I Definition 17. The discrete Hessian Hessf (X) ∈ RE×E of a set function f : 2E → R at a
set X ⊆ E is defined as

Hessf (X)ij = f(X + i+ j) + f(X)− f(X + i)− f(X + j). (i, j ∈ E)

We note that Hessf (X)ij = 0 when i or j belongs to X. By definition, a set function
f : 2E → R is submodular if and only if Hessf (X)ij ≤ 0 for any X ⊆ E and distinct i, j ∈ E.
A characterization of an M\-concave function in terms of a discrete Hessian is also known:

4 For a special class of submodular functions, a rounding algorithm for a matroid intersection is proposed
in [4].
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I Lemma 18 ([17, Theorem 4.3]). A set function f : 2E → R is M\-concave if and only if
its discrete Hessian satisfies the conditions in (5) and (6) at any X ⊆ E.

For a monotone submodular function f : 2E → R+, consider a decomposition f = g + h,
where h(X) = 1

2 1>XA1X (X ⊆ E) for some matrix A ∈ RE×E . In the following, we derive
a sufficient condition of A that makes g nonnegative monotone submodular and makes h
nonnegative M\-concave so that we can apply Theorem 3.

For the monotonicity of g, we must have g(i | X) = f(i | X)− h(i | X) ≥ 0 for any i ∈ E
and X ⊆ E − i. This yields∑

k∈X

Aik + 1
2Aii ≤ f(i | X). (i ∈ E,X ⊆ E − i) (7)

We note that, if (7) was satisfied, g becomes automatically nonnegative as h(∅) = 0.
For the submodularity of g, we must have Hessg(X)ij = Hessf (X)ij − Hessh(X)ij ≤ 0

for any distinct i, j ∈ E and X ⊆ E \ {i, j}. This yields

Aij ≥ Hessf (X)ij . (i, j ∈ E, i 6= j,X ⊆ E \ {i, j}) (8)

Finally, for the nonnegativity of h, we must have

1>XA1X ≥ 0 (X ⊆ E). (9)

It is difficult to handle these conditions simultaneously. Fortunately, we can show that
we need to consider only the condition in (8) and the nonpositivity constraint.

I Lemma 19. Suppose that a matrix A ∈ RE×E satisfies the conditions in (5), (6), and (8).
Then, h(X) = 1

2 1>XA1X is nonnegative M\-concave, and g = f − h is nonnegative monotone
submodular.

Trivially, we can take A = 2 Diag(f(i | E − i) : i ∈ E), which yields h(X) =
∑

i∈X f(i |
E − i). This decomposition corresponds to that via the standard curvature. In the following,
we discuss how we can find a nontrivial matrix A satisfying the conditions in (5), (6), and (8).

4.1 Ultrametric fitting problem
Assume that we can compute Hij such that max

X⊆E−i−j
Hessf (X)ij ≤ Hij ≤ 0 for any distinct

i, j ∈ E. Once we are given such Hij , finding a matrix A satisfying the conditions in (5), (6),
and (8) boils down to the ultrametric fitting problem [8]. In this problem, given Hij ≤ 0
for distinct i, j ∈ E, we are to find Aij ∈ [Hij , 0] for distinct i, j ∈ E satisfying (6) that
minimizes maxi6=j |Aij−Hij |. Farach et al. [8] gave an O(n2)-time algorithm for this problem.
Therefore, we can find a matrix A satisfying the conditions in (5), (6), and (8) that is close
to Hij . Although this method is general, it is difficult to theoretically bound the M\-concave
curvature of the resulting decomposition.

4.2 Coverage function
Let G = (E, V ;A) be a bipartite graph. Note that here we denote by E the one of
the vertex sets (i.e., the ground set) for the sake of consistency with the other parts of
this paper. The coverage function f : 2E → R associated with G is defined as f(X) :=∑

v∈V min{1, |Γ(v) ∩X|}, where Γ(v) ⊆ E is the set of neighbors of v ∈ V . It is well-known
that f is a monotone submodular function.



T. Soma and Y. Yoshida 99:11

Now, we consider decomposing f into a monotone submodular function and monotone M\-
concave function. For each v ∈ V , we define fv : 2E → R as fv(X) = min{1, |Γ(v)∩X|}. Then,
for distinct i, j ∈ E and X ⊆ E− i− j, Hessfv

(X)ij is equal to −1 if v 6∈ Γ(X) and i, j ∈ Γ(v)
and 0 otherwise. Thus, we have Hessf (X)ij = −|Γ(i) ∩ Γ(j)− Γ(X)|. Since Hessf (X)ij is
obviously nondecreasing, we can compute the exact value of maxX⊆E\{i,j}Hessf (X)ij =
Hessf (E− i− j)ij = −cij , where cij = |Γ(i)∩Γ(j)−Γ(E− i− j)|. Note that the quantity cij

is the number of v ∈ V whose neighbors are exactly i and j. Then, we can run the algorithm
presented in Section 4.1 with Hij = −|Γ(i) ∩ Γ(j) − Γ(E − i − j)| to obtain a matrix A

satisfying the conditions in (5), (6), and (8). We note that the standard curvature can only
handle vertices in V that have only one neighbor in E, whereas our argument can handle
vertices in V that have two neighbors in E.

5 Applications

In this section, we apply Theorem 3 to obtain better approximation guarantees for the facility
location problem and the sum of weighted matroid rank functions. In these applications, we
need to use the specific structures of these problems.

5.1 Facility location
In the facility location problem, there are a set I of customers and a set E of possible locations
of facilities. Each customer i ∈ I has a revenue wij ≥ 0 for the facility j ∈ E. We assume
that customers will select the available facility of maximum revenue. The task is to select a
set X ⊆ E of cardinality k that maximizes

f(X) =
∑
i∈I

max
j∈X

wij ,

where we conventionally define f(∅) = 0. Evidently, f is a nonnegative monotone submodular
function.

We can decompose f into g and h as follows. For i ∈ I, we denote wi,min := minj∈E wij

and let w̄ij := wij − wi,min (i ∈ I, j ∈ E). Then, we can rewrite f as

f(X) =
∑
i∈I

max
j∈X

w̄ij +
(∑

i∈I

wi,min

)
[X 6= ∅],

where [X 6= ∅] is the indicator function of the nonemptiness of X. Let f̃(X) =∑
i∈I maxj∈X w̄ij be the first term. We further subtract a modular function `(X) =∑
j∈X f̃(j | E − j) from f̃ . Note that since f(j | E − j) =

∑
i∈I [wij − maxk 6=j wij ]+ =∑

i∈I [w̄ij − maxk 6=j w̄ij ]+ = f̃(j | E − j) for j ∈ E, this modular term is exactly the
same one in the curvature decomposition for the original function f . Then, we define
g(X) := f̃(X)− `(X) and h(X) := `(X) +

(∑
i∈I wi,min

)
[X 6= ∅]. One can easily check that

g is monotone submodular and h is M\-concave.
We can show that γ(g, h) is no more than the standard curvature c.

I Lemma 20. γ(g, h) ≤ c−
∑

i∈I
wi,min∑

i∈I
wi,max

, where wi,max := maxj∈E wij (i ∈ E).

Proof. For any nonempty X ⊆ E, we have
h(X)
f(X) = `(X)

f(X) +
∑

i∈I wi,min

f(X) ≥ 1− c+
∑

i∈I wi,min

f(E) = 1− c+
∑

i∈I wi,min∑
i∈I wi,max

,

where the inequality follows from the definition of the curvature and the monotonicity of f .
Therefore, γh = 1−minX⊆E

h(X)
f(X) ≤ c−

∑
i∈I

wi,min∑
i∈I

wi,max
. J
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5.2 Sums of weighted matroid rank functions
A weighted matroid rank function is an M\-concave function (see Example 6), and its sum
is a monotone submodular function. A sum of weighted matroid rank functions includes
the coverage function, the facility location function, and many others, but not all monotone
submodular functions. Here, we show that if the objective function is a sum of weighted
matroid rank functions, we can obtain an improved approximation guarantee.

Let f(X) =
∑

i∈I fi(X), where fi(X) = max{wi(J) : J ⊆ X, J ∈ Ii} for some vector
wi ∈ RE

+, and Ii is the independent set family of a matroid (i ∈ I). For i ∈ I, let
wi,min := mine∈E wi(e). Let f̃(X) =

∑
i∈I g̃i(X), where g̃i(X) is the weighted matroid

rank function with the reduced weight wi − wi,min1 for i ∈ I. Define `(X) =
∑

j∈X f̃(j |
E − j) =

∑
j∈X f(j | E − j), where the second equality follows from the fact that all

matroid bases have the same cardinality. Finally, let us define g(X) := f̃(X) − `(X) and
h(X) := `(X) + (

∑
i∈I wi,min)[X 6= ∅]. The proof of the following lemma is similar to that

of Lemma 20.

I Lemma 21. γ(g, h) ≤ c−
∑

i∈I
wi,min∑

i∈I
Wi

, where c is the standard curvature, and Wi := fi(E)

is the maximum weight of the bases in (E, Ii) for each i.

In [15], Lin and Bilmes proposed a linear mixture model of simple monotone submodular
functions. One of the most general classes in their model is a linear mixture of weighted
matroid rank functions. Suppose that a function f : 2E → R+ is obtained by inference
for this linear mixture model. Then, we can write f(X) =

∑
i∈I αifi(X), where αi > 0

is a mixture coefficient, and fi(X) is a weighted matroid rank function (i ∈ I). If some
coefficient αi∗ is dominant, one can consider the following straightforward decomposition:
g(X) =

∑
i6=i∗ αifi(X) and h(X) = αi∗fi∗(X). Then, we can expect the resulting curvature

to be small, although the actual value depends on the form of fi (i ∈ I).

6 Conclusion and Open Problems

We propose a new concept the M\-concave curvature, which measures how a given submodular
function deviates from M\-concave functions. Based on this concept, we designed a polynomial-
time algorithm given a decomposition in the form of f = g + h, which generalizes the result
of [24]. We complemented our algorithm by devising an algorithm for finding such a
decomposition, which always yields a decomposition that is as good as a decomposition based
on the standard curvature. We showed examples in which the the M\-concave curvature is
better than the standard curvature.

We believe that the M\-concave curvature is generally useful for analysing the performance
of algorithms for submodular maximization. Although in this paper we focused on the
continuous greedy algorithm, it is quite natural to analyze the performance of other algorithms,
e.g., local search. Our algorithm is able to handle only a cardinality constraint due to the
difficulty in the rounding step. A possible direction for future work is dealing with more
complicated constraints such as matroid constraints and knapsack constraints.
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Abstract
The FHEW fully homomorphic encryption scheme (Ducas and Micciancio, Eurocrypt 2015) of-
fers very fast homomorphic NAND-gate computations (on encrypted data) and a relatively fast
refreshing procedure that allows to homomorphically evaluate arbitrary NAND boolean circuits.
Unfortunately, the refreshing procedure needs to be executed after every single NAND compu-
tation, and each refreshing operates on a single encrypted bit, greatly decreasing the overall
throughput of the scheme. We give a new refreshing procedure that simultaneously refreshes n
FHEW ciphertexts, at a cost comparable to a single-bit FHEW refreshing operation. As a result,
the cost of each refreshing is amortized over n encrypted bits, improving the throughput for the
homomorphic evaluation of boolean circuits roughly by a factor n.
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1 Introduction

Since Gentry’s first construction of a Fully Homomorphic Encryption (FHE) scheme [13],
much research has been done to improve both the security and efficiency of FHE. On the
security front, a line of works [14, 8, 4, 6, 19] has led to a FHE scheme of Brakerski and
Vaikuntanathan [9] based on learning with errors for polynomial approximation factors
and therefore essentially as secure as regular (non-homomorphic) lattice-based public-key
encryption [23].

On the efficiency front, major progress has been achieved too, but we are still very far from
reaching the ideal goal of an FHE scheme as efficient as public key encryption. Brakerski,
Gentry, and Vaikuntanathan [6] give a scheme for homomorphic evaluation of circuits of depth
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L and security parameter λ requiring Õ(λ · L3) per-gate computation. Gentry, Halevi, and
Smart [18] used similar techniques to achieve homomorphic evaluation of width-Ω(λ) circuits
with only polylog(λ) per-gate computation. However, these schemes place restrictions on
circuit depth or size and additionally rely on the hardness of RingLWE for quasi-polynomial
approximation factors, a stronger assumption than that used for public-key encryption.

Gentry’s bootstrapping technique [13] is still the only known method to achieve fully
homomorphic encryption, i.e., an encryption scheme capable of evaluating homomorphically
arbitrary circuits. We recall that Gentry’s bootstrapping technique involves the homomorphic
computation of the decryption function on an encryption of the decryption key, a rather
complex operation, and this operation needs to be performed on all wires, for every few
layers of the circuit. Therefore, improving the effectiveness of bootstrapping has been the
main goal of many papers aimed at making FHE faster.

Improvements to bootstrapping have been pursued following two different approaches. The
first approach, extensively studied in [5, 18, 17, 16, 15, 24, 20, 21], involves the construction
of FHE schemes that can pack several messages into a single ciphertext, and operate on
them in parallel. While bootstrapping such a scheme may still be very expensive, it can
simultaneously refresh a large number of ciphertexts in a single bootstrapping execution. This
reduces the total number of times that the bootstrapping procedure needs to be executed,
and the amortized cost of bootstrapping over a large (and sufficiently wide) circuit.

A newer approach, explored in [1, 2, 12, 10], works towards reducing the cost of boot-
strapping a single ciphertext as much as possible, even at the price of having to perform a
bootstrapping operation for every gate of the circuit. Alperin-Sheriff and Peikert [2] intro-
duced a bootstrapping technique requiring Õ(λ) homomorphic operations. Building upon
this technique, Ducas and Micciancio [12] brought the running time of a single bootstrapping
execution down to a fraction of a second, with further improvements from Chillotti, Gama,
Georgieva, and Izabachène [10]. However, it comes with the limitation that the bootstrapping
procedure needs to be executed for essentially every gate of the circuit, without packing
several messages into a single ciphertext. So bootstrapping is much faster than, say, in HElib
[20, 21], but the amortized cost per gate is still quite high.

The goal of this work is to combine the advantages of these two approaches, and show how
to simultaneously refresh O(n) messages (where n = Õ(λ)), but at a cost comparable to that
of [1, 2, 12, 10]. Our starting point is the FHEW bootstrapping method of [12]. We remark
that FHEW has been improved in some follow-up works: [3] extended the FHEW scheme
to larger gates, and [10] further reduced the running time of bootstrapping, partly at the
cost of making a stronger security assumption on Ring-LWE with binary secrets.1 However,
while practically relevant, both improvements are asymptotically modest: the method of [3]
is limited to gates with at most O(log n) input wires, and the speed-up achieved in [10] is at
most polylogarithmic. In fact, in this paper, we will make bootstrapping even slower than
[12], by a factor O(nε). The advantage is that, while the bootstrapping cost gets slightly
higher, we will simultaneously refresh O(n) messages, reducing the amortized bootstrapping
cost per message by almost a factor of n to Õ(31/εnε) and for ε < 1/2.

In the remainder of the introduction, we provide a detailed description of the FHEW
bootstrapping problem, followed by a technical overview of the high level structure of our
solution.

1 In [10], and in this work, Ring-LWE is used with binary secrets, which may be justifiable based on the
best known cryptanalysis methods, but would still benefit from more theoretical investigations.
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1.1 The FHEW bootstrapping problem

The starting point of this work is the “FHEW” fully homomorphic encryption scheme of
[12]. In this overview, we assume some basic familiarity with LWE encryption, and use
notation LWEt/qn [m, δ] for the LWE encryption of a message m ∈ Zt, with secret key in Znq
and noise level δ. Similarly, we write RingLWEt/qd [m, δ] for Ring LWE ciphertexts over the
dth cyclotomic ring encrypting a polynomial m(X) of degree ϕ(d).2 The reader is referred to
Section 2.4 for background information on LWE, and for a formal definition of the notation. In
its most basic form, FHEW uses a function HomNAND : LWE4/q

n [δ]×LWE4/q
n [δ]→ LWE2/q

n [∆],
mapping the encryption of two bits b0, b1 ∈ {0, 1} ⊂ Z4 (encoded as integers modulo 4),
to the encryption of their logical “NAND”, b0 ∧̄ b1 = ¬(b0 ∧ b1), but with somewhat larger
noise ∆ and encoded as an integer modulo 2. (We refer the reader to the full version of
the paper for a formal definition and analysis of the HomNAND function.) Since these
operations are not immediately composable, to evaluate arbitrary circuits on encrypted
data, [12] also provides a refreshing procedure, Refresh : LWE2/q

n [∆]→ LWE4/q
n [δ], that maps

noisy ciphertexts modulo 2, back to ciphertexts modulo 4 with low noise δ. This refreshing
involves the homomorphic computation of the decryption function, and it is rather costly:
on a first approximation, it involves Õ(n) homomorphic modular multiplications on data
encrypted under a ring/symmetric-key variant of the GSW cryptosystem [19], which we
recall in Section 2.5.

Our goal is to show that one can simultaneously refresh a large number of ciphertexts
(say, O(n)) at a cost comparable to a single FHEW refreshing: approximately O(n1+ε)
homomorphic modular multiplications on GSW ciphertexts. This reduces the amortized cost
of refreshing to just O(nε) homomorphic (GSW) multiplications per ciphertext, rather than
O(n) as in the original FHEW cryptosystem.

I Theorem 1. For every 0 < ε < 1/2, there exists an algorithm Refresh which on input O(n)
LWE2/q

n [∆] ciphertexts, refreshes them to LWE4/q
n [δ] ciphertexts of larger message space and

smaller error, using Õ(31/εn1+ε) homomorphic operations, for 0 < ε < 1/2.

1.2 High level outline

Our scheme involves a number of different parameters. As in the FHEW cryptosystem, we
will use a “small” modulus q and dimension n = 2l−1 as parameters for the input ciphertexts.
(We write n = 2l−1 as we will frequently need to refer to l = log n+ 1). A larger modulus
Q is used by intermediate ciphertexts. We will give a procedure to simultaneously refresh
ϕ(d) = 2 · 3k−1 FHEW ciphertexts, where Q > q > n > d. Details follow.

We start with ϕ(d) (high noise) ciphertexts in LWE2/q
n [∆], as produced by the FHEW

HomNAND operation, working on LWE encryption in dimension n. The key idea required to
simultaneously refresh all of them is to first combine them into a single RingLWE ciphertext,
in a polynomial ring of degree ϕ(d). Specifically, as a first step, we use a variant of the key
switching technique from [8] to evaluate a function

PackLWE :
[
LWE2/q

n [mi,∆]
]
i<ϕ(d)

→ RingLWE2/q
d [m(X),∆′] (1)

2 We will be using primarily only two cyclotomic rings Rd = Z[X]/(Xd/2 + 1) ≡ Zϕ(d) for d = 2k and
ϕ(d) = d/2, and Rd = Z[X]/(X2d/3 + Xd/3 + 1) ≡ Zϕ(d) for d = 3k and ϕ(d) = 2d/3.
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which maps ϕ(d) arbitrary LWE ciphertexts (encrypting scalar messages m0, . . . ,mϕ(d)−1)
to a single ciphertext encrypting the polynomial m(X) =

∑
i<ϕ(d)mi ·Xi. The details of

this packing step are given in Section 3.
Looking ahead, the final step of the homomorphic decryption procedure will produce

LWE ciphertexts of dimension equal to half the modulus of its input ciphertext. Therefore,
to simplify the composition of HomNAND and Refresh operations, we use modulus switching
after packing to reduce the modulus of the packed ciphertext to 2n. We use a ring version of
the modulus switching technique of [8] to compute a function

R-ModSwitch : RingLWE2/q
d [m(x),∆′]→ RingLWE2/2n

d [m(x), n
q

∆′ + ω(
√
d log d) · ‖z‖]

(2)

mapping ciphertexts modulo q under key z ∈ Rd/q to ciphertexts modulo 2n, with the stated
error bound (with high probability over the randomized rounding). Details of the modulus
switching operation are provided in the full version.

We can now move on to homomorphically decrypt this Ring LWE ciphertext. Following
the general bootstrapping framework of [13], refreshing is performed by evaluating the
decryption function homomorphically, on an encryption of the secret key. The homomorphic
registers encrypting the entries of the secret key are implemented using a symmetric-key/ring
variant of the GSW cryptosystem, that we denote abstractly as REG2n/Q[·]. Note that the
message modulus 2n matches the ciphertext modulus of RingLWE2/2n

d , which is required for
entrywise encryption of the RingLWE2/2n decryption key.

Using this notation, we can describe the refreshing procedure as the combination of
two steps. The first is the primary technical contribution of this work, the homomorphic
decryption function

RingDecrypt : RingLWE2/2n
d [m(x),∆′′]→

[
REG2n/Q[m̃i, δ

′]
]
i<ϕ(d)

(3)

which takes (as an implicit parameter) the encryption REG2n/Q[encode(z)] of a suitably
encoded version of the RingLWE2/2n secret key z ∈ Zϕ(d)

2n . The RingDecrypt function is
homomorphic in z, and it is computed simply by evaluating the linear component of the
RingLWE decryption function homomorphically on REG2n/Q[encode(z)]. This entails the
multiplication of an encrypted polynomial by a known polynomial, which introduces some
technical challenges.

We recall that FHEW accumulators (and the cryptographic registers used in this paper)
encode a message v ∈ ZN using a ring variant of the GSW cryptosystem with, as a message
space, the set of polynomials in a formal variable X of degree bounded by ϕ(N). These
polynomials are used to encode scalar values, mapping each v ∈ ZN to the monomial
Xv. Encoding v in the exponent limits the operations available to a candidate refreshing
algorithm. Addition may be performed, using the multiplicatively homomorphic property
of the GSW cryptosystem to compute Xv · Xw = Xv+w, but other operations are not
so straightforward. Multiplication by (known) scalars (mapping Xv 7→ Xvc) requires
homomorphic exponentiation, and even a simple subtraction or negation (mapping Xv 7→
X−v) would require homomorphic inversion, all operations unsupported by the GSW or any
other known cryptosystem.

Standard FFT algorithms, on the other hand, require both the evaluation of addition and
subtractions (in each “butterfly” of the FFT), as well as scalar multiplication by “twiddle”
factors, i.e., powers of the root of unity used to compute the FFT. In order to support
subtraction, we represent each register in a redundant way, holding both an encryption of Xv
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and an encryption of X−v. To reduce the number of scalar multiplications required by our
refreshing procedure, we resort to a variant of Nussbaumer negacyclic convolution algorithm
[22].

In its original formulation, the Nussbaumer algorithm operates on polynomials in X

(where X2k = 1) by writing them as bivariate polynomials in X,Y , with both X and Y of
degree at most

√
n =

√
2k. Alternatively, one can look at these bivariate polynomials as

univariate polynomials in X with coefficients in Z[Y ]. By taking Y = X
√
n, the coefficients

belong to the ring R = Z[Y ]/(Y
√
n+ 1), which admits Y as a 2

√
nth root of unity and can be

used to compute the FFT of polynomials in R[X]. Multiplication by roots of unity can now
be expressed simply by additions, subtractions and rotations of values in Z[Y ]/(Y

√
n + 1).

Furthermore, because the FFT outputs elements of R, the algorithm can be recursively
applied to each of the pointwise multiplications following the FFT.

Our refreshing procedure will require some modifications to the Nussbaumer algorithm
as described above, which are detailed in Section 4.4. Most critically, if the algorithm is to
be used recursively, we must be careful in bounding its recursive depth. The noise of the
refreshing algorithm depends exponentially on the depth of the circuit computing it, and we
must restrict ourselves to constant depth to achieve polynomial noise overhead. So rather
than setting Y = X

√
ni for ni = 2i

√
n at the ith level of recursion, we fix Y = Xnε for all

steps. Therefore, for all ε, the algorithm admits at most 1/ε recursive calls. This is the main
intuition behind our bootstrapping procedure: the Nussbaumer algorithm reduces polynomial
multiplication to multiplications of many lower-degree polynomials, without introducing
multiplications by constants or excessive noise overhead. A naive multiplication algorithm
can then be used to compute the smaller polynomial products, and the transforms inverted
to give the encrypted product required for homomorphic ring decryption.

The second step of the refreshing procedure is the “rounding” of the REG ciphertexts to
low-noise LWE4/Q

n ciphertexts. Since REG[·] encrypts each coefficient of m̃(X) individually,
the values REG2n/Q[m̃i, δ

′] are already refreshed, low-noise ciphertexts of the original messages
m0, . . . ,md−1, but using a (noisy) input encoding m̃i, a different cryptosystem and a large
modulus Q. Each one of them is very similar to the intermediate output of the original FHEW
refreshing procedure, as if we had computed it on each LWE2/q

2n [mi,∆] ciphertext individualy.
So, they can be mapped to LWE4/q

2n ciphertexts as in the original FHEW scheme by calling
a “most-significant-bit” extraction function msbExtract : REG2n/Q[m̃i, δ

′]→ LWE4/Q
n [mi, δ

′]
and the standard modulus switching procedure

ModSwitch : LWE4/Q
n [δ′]→ LWE4/q

n [ q
Q
δ′ +

√
2π(1 + ‖s‖2)] (4)

for a LWE ciphertext under key s ∈ Z2n
Q , which increases the noise by a small additive term .

Parameters will be set in such a way that the resulting noise is small enough to apply the
HomNAND function and keep computing on encrypted data. This completes the high level
description of our boootstrapping method.

2 Preliminaries

2.1 Basic notation
We write column vectors over a ring R with bold font a ∈ Rn. Matrices are similarly written
in capitalized bold font as A ∈ Rn×m. The L2 norm of a vector a = (a1, . . . , an) ∈ Rn is
‖a‖ =

√∑
i |ai|2. The concatenation of elements a, b, . . . into a row vector is written as

[a, b, . . .]. We write (a, b, . . .) for concatenation as a column vector.
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100:6 Ring Packing and Amortized FHEW Bootstrapping

2.2 Distributions
A random variable X has subgaussian distribution over R of parameter α if its tails are
dominated by a Gaussian of parameter α, so that Pr{|X| ≥ t} ≤ 2e−πt2/α2 for all t ≥ 0.
A subgaussian variable X with parameter α > 0 satisfies E[e2πtX ] ≤ eπα

2t2 , for all t ∈ R.
We note that a centered random variable X, where |X| ≤ β always holds, is subgaussian,
specifically with parameter β

√
2π. For example the randomized rounding function d(x)c$

(which takes value bxc with probability dxe−x, and equals dxe otherwise) is
√

2π-subgaussian.
A random vector x of dimension n is subgaussian of parameter α if for all unit vectors
u ∈ Rn, its one-dimensional marginals 〈u,x〉 are also subgaussian of parameter α. This
extends to random matrices, where Xm×n is subgaussian of parameter α if for all unit vectors
u ∈ Rm,v ∈ Rn, utXv is subgaussian of parameter α. It follows immediately from these
definitions that the concatenation of independent subgaussian vectors, all with parameter α,
interpreted as either a vector or matrix, is also subgaussian with parameter α.

2.3 Cyclotomic Rings
For any positive integer N , let ΦN (X) =

∏
j∈Z∗

N
(X−ωjN ) be the Nth cyclotomic polynomial,

where ωN = e2πi/N ∈ C is the complex Nth principal root of unity, and ZN is the group
of invertible integers modulo N . We recall that ΦN (X) ∈ Z[X] is a monic polynomial of
degree ϕ(N) = |Z∗N | with integer coefficients. The corresponding ring RN = Z[X]/ΦN (X) of
integer polynomials modulo ΦN is called the Nth cyclotomic ring. This ring can be identified
with RN ≡ Zϕ(N) (as additive groups) representing each element a ∈ RN by a polynomial of
degree less than ϕ(N), and mapping this polynomial a(X) =

∑
j<ϕ(N) aj ·Xj to its coefficient

vector ((a)) = (a0, . . . , aϕ(N)−1) ∈ Zϕ(N). For any ring element a ∈ RN , ‖a‖ is taken to mean
the L2 norm of the corresponding vector ((a)) ∈ Zϕ(N). Ring elements a, b ∈ RN also admit
a matrix representation Ma ∈ Zϕ(N)×ϕ(N) = [((a ·X0)), ((a ·X1)), . . . , ((a ·Xϕ(N)−1))] (used in
Section 4.5,) such that Ma · ((b)) = ((a · b)). For any positive integer q, we write RN/q for the
quotient RN/(q · RN ), i.e., the ring of polynomials RN with coefficients reduced modulo q.
Notice that RN/q ≡ Zϕ(N)

q as additive groups.
For concreteness, in this paper we only use cyclotomic rings RN for two special types

of the index N : N = n = 2l, giving the polynomial ring Rn = Z[X]/(Xn/2 + 1) of degree
ϕ(n) = n/2, and N = d = 3k, giving the polynomial ring Rd = Z[X]/(X2d/3 +Xd/3 + 1) of
degree ϕ(d) = 2d/3. In particular, Rd/q ≡ Z2d/3

q (for d = 3k) and Rn/q ≡ Zn/2q (for n = 2l).

I Fact 2 (Recall from [11], Fact 6). If D is a subgaussian distribution of parameter α over
RN , and R ← Dw×k has independent coefficients drawn from D, then, with overwhelming
probability, we have s1(R) ≤ α

√
N ·O(

√
w +
√
k + ω(

√
logN)).

2.4 (Ring) LWE Symmetric Encryption
In this subsection we introduce notation and working definitions for the basic LWE encryption
scheme that our bootstrapping procedure operates on. For complete definitions, we refer the
reader to the full version.

I Definition 3 ((Ring) LWE ciphertexts). The set of all (Ring) LWE ciphertexts over (cy-
clotomic) ring RN , encrypting message m ∈ RN/t, under key s ∈ RnN , modulo q and with
error bound β is denoted RN -LWEt/qs [m,β] = {(a, b) | a ∈ RnN/q, ‖a · s−mq/t‖ ≤ β}. When
the value of the key s ∈ RnN is clear from the context or unimportant, we simply write
RN -LWEt/qn [m,β], where the subscript n refers to the dimension of the secret s ∈ RnN .
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We use some abbreviated notation in the following important special cases: When N = 1, we
omit RN = Z, and write LWEt/qs [m,β] (or LWEt/qn [m,β]) for the set of standard (Z-) LWE
ciphertexts with n-dimensional secret s ∈ Zn. When n = 1, and s = s ∈ RN is a single ring
element, we write RingLWEt/qN as an abbreviation for RN -LWEt/q1 .

The (Ring) LWE decryption procedure plays a central role in our FHE bootstrapping pro-
cess, specifically in the RingDecrypt procedure. The decryption of an RN -LWEt/qs ciphertext
(a, b) ∈ (RnN ,RN )/q is Dec(s, (a, b)) = bt(b− a · s)/qe mod t ∈ RN/t ≡ Zϕ(N)

t . It is easy to
check that for all (a, b) ∈ LWEt/qs [m, q/2t], the decryption procedure correctly recovers the
encrypted message.

2.5 Ring-GSW encryption
The cryptographic accumulators of [12] (and the extended cryptographic registers defined
in our work) make use of a ring variant of the GSW encryption scheme [19], which we now
briefly describe. Let RN/Q be the Nth cyclotomic ring, modulo some suitably large integer
Q. The Ring-GSW cryptosystem, encrypts a message m ∈ ZN under key z ∈ RN/Q as
GSWN/Q

z (m) = [a,a · z + e] +m · g⊗ I2 where g = (B0, B1, B2, . . . , Q/B) for some base B.
Similarly as for LWE, we write GSWN/Q

z [m,β] for the set of ciphertexts encrypting m under
z with error at most ‖e‖ ≤ β. Decryption follows from the observation that the last row of a
ciphertext is a Ring-LWE encryption of m under z.

The Ring-GSW cryptosystem supports homomorphic addition and multiplication, and we
will primarily use the latter. GSWN/Q

z (m0 ·m1) = C0 × C1 is computed by first expressing
C0 =

∑
iB

iC0,i as a sum of matrices with B-bounded (polynomial) entries, and then
computing the matrix product [C0,0, . . . , C0,logQ] · C1. Letting e0 (resp. e1) denote the
error vector of C0 (resp. C1), the result can be written [a,a · z + e] +m0m1 · g ⊗ I2, where
e =

∑
i C0,ie1,i +m1e0 depends asymmetrically on the error of the inputs. To minimize the

error growth resulting from a sequence of multiplications of GSW ciphertexts (with similar
initial error), then, the multiplications should be evaluated in a right-associative sequence.

3 Ciphertext Packing

We describe a variant of the LWE key-switching technique that can be used to convert a
set of ϕ(d) LWE ciphertexts {(ai, bi)}, each encrypting a message mi, to a single “packed”
Ring-LWE ciphertext encrypting the message m(X) =

∑
imiX

i−1.

I Lemma 4. There exists a quasi-linear time algorithm that on input ϕ(d) ciphertexts ci ∈
LWEt/qs (mi,∆) (for i = 0, . . . , ϕ(d)− 1, all under the same secret key s ∈ Znq ) and a packing
key consisting of Ring-LWE encryptions Kj,l ∈ RingLWEq/qz̃ [sl2j , βP ] (for l = 0, . . . , n−1, j =
0 . . . , dlog qe−1 and key z̃ ∈ Rd,q,) outputs a Ring-LWE encryption c ∈ RingLWEt/qz̃ [m(X), β]
of m(X) =

∑
imiX

i under z̃ with error at most β = O(
√
d∆ +

√
dn log qβP ).

The proof of Lemma 4 and accompanying pseudocode may be found in the full version,
but we summarize its conclusion here. Let Kj,l = (ã′j,l, b̃′j,l) be the entries of the packing
key and ci = (ai, bi) be the input ciphertexts. Defining

∑
j<log q ãj2j =

∑
i ai ·Xi−1 ∈ Rnd,q

and taking ã′′ = −
∑
j,l ãj,lã

′
j,l and b̃′′ = b̃−

∑
j,l ãj,l · b̃′j,l gives the desired packed ciphertext

(ã′′, b̃′′) encrypting m(X).
The homomorphic decryption procedure produces LWE ciphertexts of dimension n = q/2

equal to the modulus of the packed ciphertext. This is problematic because on subsequent
refreshing operations, the resulting error bound will become larger than q log q, and the
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ciphertexts will no longer be decryptable. Before proceeding, we switch to a smaller modulus
which we take to be 2n for simple composability. The details of the modulus switching
procedure and its associated error bounds are omitted here, but provided in the full version
of the paper.

4 Homomorphic Decryption

The homomorphic decryption procedure takes as input a single Ring-LWE ciphertext (a, b) ∈
RingLWEt/2nz̃ (m,β) ⊆ (Rd/2n)2 and the encryption of some function of the secret key
z̃ ∈ Rd/2n. The decryption procedure needs to compute the ring element b−a·z̃ ∈ Rd/2n, and
then “round” the result to ϕ(d) LWE ciphertexts. All this should be done homomorphically,
given the encryption of (some function of) z̃. We can represent the computation of this ring
element as an arithmetic circuit C with inputs in Z2n, but to begin designing such a circuit,
we must first consider the cryptographic registers on which we will be computing. We begin
this section with a description of the registers used in our ciphertext refreshing procedure, to
be followed by a description and analysis of the components of our homomorphic decryption
procedure.

4.1 Homomorphic Registers
We use a symmetric/ring variant of the GSW cryptosystem to implement the cryptographic
registers used by the homomorphic decryption procedure, similar to the accumulators of
FHEW. Registers supporting arithmetic modulo 2n are implemented using the GSW2n/Q

N

cryptosystem based on the Nth cyclotomic ring, for N a power of 2 with 2n|N .
We recall that in FHEW, a value v ∈ Z2n is represented by GSW2n/Q

N (Y v), where Y = Xi

is a primitive 2nth root of unity. In this scheme we take N = 2n, and therefore X is our
root of unity. To reduce redundancy given this choice of parameters, we omit the subscript
N when referring to GSW ciphertexts, writing GSW2n/Q. This choice of parameters is more
thoroughly justified in Section 4.5, but as the homomorphic decryption procedure will produce
LWE ciphertexts of dimension N/2, taking N/2 = n, where n is the original dimension of the
LWE ciphertexts, allows us to omit an additional step of key switching back to dimenion n.

These GSW registers support the following operations:
Initialization (v ← w): uXwG, with u ∈ ZQ, u ≈ Q/2t, and invertible mod Q.
Increment (v ← v + c): C 7→ C ·Xc

Addition: GSW2n/Q(uXv)× GSW2n/Q(uXw) = GSW2n/Q
z (uXv+w).

Extraction: map the accumulator to an LWE ciphertext.

To support subtraction, we represent a value v ∈ Z2n as a pair (GSW(uXv),GSW(uX−v)).
Addition is computed componentwise: (C0, C

′
0)+(C1, C

′
1) = (C0×C1, C

′
0×C ′1).We implement

negation simply by swapping the elements of a pair, and subtraction by combining the two
operations. This gives us cryptographic registers supporting all operations required by our
refreshing algorithm. To avoid explicitly writing these pairs, we define

REGq/Qz (v, β) = (GSWq/Q
N (uXv),GSWq/Q

N (uX−v)).

4.2 Slow Multiplication
The use of the REG scheme restricts our arithmetic circuits to use only the operations
described above. Given the asymmetric error growth of the underlying GSW operations,
we must also be careful in how we design our circuit, as we don’t want both inputs to any
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addition or subtraction gate to have already accumulated significant error. For the rest of
this section, however, we omit explicit references to the REG scheme wherever possible, to
simplify the presentation of the homomorphic decryption algorithm. We instead use the
notation JcK to denote a register or registers encrypting value(s) c.

Our goal, then, is to specify an efficient circuit which is parameterized by the input
ciphertext (a, b), meets our restrictions, and outputs an encryption of the desired ring element
Jb− a · z̃K that will then allow each coefficient to be homomorphically rounded to an LWE
ciphertext. We discuss the rounding procedure in Section 4.5. In the next few sections, we
specify an arithmetic circuit computing Jb−a · z̃K, where this circuit takes as input a function
of the secret key, Jf(z̃)K, and computes the linear decryption step Ca,b(Jf(z̃)K) = Jb− a · z̃K.
We will start with a comparatively straightforward, but inefficient, such construction in
which we compute a · z̃ homomorphically with a slow multiplication algorithm.

Let l = log n + 1 and f(z̃) ∈ Zl×ϕ(d)
2n be defined by f(z̃)j,k = z̃k2j . Let ai,j be

the jth bit of the binary decomposition of ai so that ai =
∑l−1
j=0 ai,j2j . We may ex-

press multiplication of z̃k by ai by computing z̃k · ai =
∑l−1
j=0 ai,j z̃k2j . Then we define

Cai(Jf(z̃)K, k) =
∑l−1
j=0 ai,jJf(z̃)j,kK to be a circuit computing this multiplication homomor-

phically using only additions, as the ai,j values are binary. We may then define a circuit Ca,
computing a slow multiplication algorithm (mod Φd) using these Cai subcircuits, addition,
and subtraction gates.

I Lemma 5. Let B be the base of the geometric progression defining g in GSW encryption,
and let db = dlogB Qe. There is an algorithm

SlowMult : a ∈ Rd/2n× (REGs(f(z̃)j,k, β))j,k → (REGs((a · z̃)i, β′))i
requiring Õ(d2) homomorphic operations, and where β′ ≤ Õ(βB

√
ndBd) with high probability.

The proof of Lemma 5 appears in the full version, and the analysis of error growth is similar
to that of [11]. To briefly justify its stated complexity, we observe that SlowMult is just naive
polynomial multiplication algorithm using only additions, and therefore taking time O(l)
per scalar multiplication. Therefore its complexity is Õ(d2). The original FHEW refreshing
procedure requires only Õ(n) homomorphic additions per ciphertext, so we already see this
algorithm offers no improvement over sequential refreshing of d ciphertexts using FHEW.
We will instead use variants of existing fast multiplication algorithms for the homomorphic
computation of a · z̃, using SlowMult as a subroutine.

4.3 Homomorphic DFT
We briefly recall and introduce notation for the discrete Fourier transform. We denote
the discrete Fourier transform of a length m sequence of elements x ∈ Rm, where ring
R has mth principal root of unity ωm, by x̄i = DFT (x)i =

∑m−1
k=0 xkω

ik
m and its inverse

xk = DFT−1(x̄)k =
∑m−1
i=0 x̄iω

−ik
m . The polynomial product a · z̃ for a, z̃ ∈ Rd/2n may then

be computed as

(a ∗ z̃ mod Xm − 1) mod Φd = DFT−1( 1
m
DFT (a) ·DFT (z̃)) mod Φd

provided an mth principal root of unity ωm exists in Rd/2n (and m > 4
3d ≥ deg(a · z̃)).

But to compute the DFT homomorphically, we need to be able to homomorphically
compute multiplication by ω−ikm . If we take ωm ∈ Z2n, each multiplication by ω−ikm requires l
homomorphic operations per coefficient (as described in Section 4.2). Furthermore, reducing
the quadratic complexity of the DFT requires FFT techniques, recursing to depth logm. At
each step of recursion, then, we perform homomorphic operations on registers produced from
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the last step, with some increase in error from the previous set of operations. We therefore
cannot take advantage of the asymmetric error growth of the GSW scheme underlying our
registers and the error growth of our algorithm will become quasi-polynomial in n, exceeding
the desired polynomial bound on error overhead. This brings us to the last component of
the algorithm, which avoids these scalar multiplications, and achieves efficient multiplication
without sacrificing polynomial error growth.

4.4 Nussbaumer Transform
In order to efficiently compute the polynomial product a · z̃ ∈ Rd/2n, we define a variation
of the Nussbaumer transform, suited for multiplication of polynomials modulo a power of
3 cyclotomic. Informally, the transform first maps an element a ∈ Rd/2n to a bivariate
polynomial in such a way that it may be represented by a coefficient vector of dimension
smaller than ϕ(d), over Rd1−ε/2n. Taking the DFT of this coefficient vector allows us to
reduce the computation of a · z̃ to the pointwise multiplication of two vectors with entries in
Rd1−ε/2n. The inverse map on the inverse DFT of the smaller polynomial products yields
a · z̃ ∈ Rd/2n. We now give a more detailed description of the algorithm.

Let d = 3k, m = dε with d ≥ 3m2, and r = ϕ(d)/m = ϕ(d1−ε). To multiply two polyno-
mials, the transform maps each polynomial to a bivariate polynomial by the isomorphism

ψ : Z2n[X]/(Φd)→ (Z2n[Y ]/(Φd/m(Y )))[X]/(Xm − Y )

a(X) =
ϕ(d)∑
i=0

aiX
i 7→

m−1∑
j=0

r−1∑
i=0

ami+jY
iXj where Y = Xm.

Because ψ(a) and ψ(z̃) have degree at most m− 1 in X, computing ψ(a) · ψ(b) modulo any
polynomial of degree greater than 2m− 2 in X prior to reducing by Xm − Y will not change
the result. We also note that Y is a principal d/mth root of unity in Z2n[Y ]/(Φd/m(Y )), and
therefore Y d/3m2 = Y 3k(1−2ε)−1 is a 3mth root which can also be shown to be principal.

This allows us to efficiently compute ψ(a) · ψ(z̃) first modulo X3m − 1 by pointwise
multiplication of the respective DFTs, followed by a reduction modulo (Xm − Y ). Since the
“points” of the DFT pointwise multiplication step are elements of Z2n[Y ]/(Φd/m(Y )), these
multiplications can be performed by recursive application of the transform or SlowMult.

Without recursion, this gives a key preprocessing function

f(z̃) = (1, 2, 4, ..., n)⊗ [ 1
3mDFT (ψ(z̃))i]i<3m ∈ (Rd/m/2n)l×3m (5)

where the DFT evaluates ψ(z̃) at root of unity ω3m = Y d/3m
2
.

Let āi = DFT (ψ(a))i be the ith of the 3m degree < r polynomials produced by the
Nussbaumer transform. Let Cāi denote a circuit computing SlowMult of known polynomial
āi (of degree < r) with an encrypted polynomial given as input (along with encryptions of all
power of 2 multiples of the polynomial’s coefficients, for 2l ≤ n, as in Section 4.2). Let CF∗

be a circuit homomorphically computing the inverse DFT for length 3m vectors of encrypted
polynomials in Rd/m/2n. Then we may specify a circuit computing Ja · z̃K

Ca(Jf(z̃)K = CF∗([Cāi(Jf(z̃)(·),iK)]i) mod Xm − Y = Ja · z̃K.

Jb− a · z̃K is then computed by negating each of the registers REG((a · z̃)i) and incrementing
each one by the corresponding bi, computing Ca,b(Jf(z̃)K) = −Ca(Jf(z̃)K) + b.

The map ψ is purely representational, so requires no computation. The forward and
inverse DFT steps require evaluating polynomials at the roots of unity ωi3m = Y id/3m

2 ,
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which is implemented by rotation of the coefficient vectors with negation, addition, and
subtraction to implement the reduction in Rd/m/2n. SlowMult was defined using only the
operations of addition and subtraction, and the final reduction modulo Xm − Y similarly
only requires additions and subtractions. This circuit then satisfies our criteria, allowing for
the homomorphic computation of a · z̃ without use of multiplication gates.

The Nussbaumer transform admits a recursive algorithm that gives tradeoffs between
runtime and error growth of the cryptographic registers, but we defer consideration of the
recursive formulation to Section 4.7.

I Lemma 6. Let KR be a refreshing key

KR = KR
i,j,k = REGN/Qz ([f(z̃)i,j,k]) = REGN/Qz

[
1

3mDFT (ψ(z̃))i,k2j , βR
]
(from Eq. 5)

where DFT (ψ(z̃))i,k indicates the kth coefficient of the ith polynomial output by the Nuss-
baumer transform (giving i < 3m, j < l, k < r). For every 0 < ε < 1

2 , there is an algorithm
RingDecrypt that on input KR and RingLWE ciphertext (a, b) ∈ RingLWE2/2n

z̃ [m,β] under z̃ ∈
Rd/2n, outputs ϕ(d) ciphertexts

[
REGN/Qz [m̃i, β

′]
]
i<ϕ(d)

with β′ < Õ
(
βB4(ndB)3.5dε+.5

)
,

and requiring Õ(d2−ε) homomorphic operations.

The proof of Lemma 6 may be found in the full version of the paper, but the stated com-
plexity is justified here informally. Lemma 5 states that SlowMult requires Õ(d2) operations
on input polynomials of degree O(d). The RingDecrypt algorithm multiplies 3m polynomials
of degree O(d/m), so these multiplications contribute Õ(d2−ε) homomorphic operations. The
complexity of the DFT step, which performs 3m summations of 3m polynomials with degree
O(d/m), will then be dominated by that of SlowMult for all permissible ε, and therefore
RingDecrypt will require Õ(d2−ε) many homomorphic operations.

Once we have performed the RingDecrypt procedure, it remains to round the resulting
vector of ciphertexts to yield ϕ(d) refreshed LWE ciphertexts.

4.5 msbExtract
Once we have computed the sequence of registers [REG2n/Q

z [bi−(a · z̃)i]]i<ϕ(d), we must homo-
morphically perform the rounding step of decryption and recover a sequence of reduced-error
LWE ciphertexts encrypting each mi. This can be accomplished as in FHEW, by applying
the msbExtract procedure of [12] to each of the ϕ(d) registers produced by RingDecrypt. As
in FHEW, this procedure produces refreshed ciphertexts with the GSW modulus Q, so must
be followed by ModSwitch to convert them to the smaller intial modulus q.

We note that our msbExtract procedure differs somewhat from that of FHEW, in that
we omit the step of key switching. In FHEW, the procedure takes as additional input a
switching key. This key enables the LWE encryptions under key ((z)) that are recovered at an
intermediate stage of the rounding algorithm to be converted to LWE encryptions under the
initial key s. Choosing our REG key z such that ((z)) = s obviates the need for key switching,
as the intermediate LWE ciphertexts will already be encrypted under the proper key. This
choice of key requires assuming the security of RingLWE with binary secrets, as assumed in
[10], but this assumption may be removed at the cost of the additional key switching step.
The proof of Lemma 7 may be found in the full version, and is similar to that of [12].

I Lemma 7. There is an algorithm msbExtract that, given a cryptographic register of the form
REG2n/Q

z (bi−(a · z̃)i, β) as input, with ((z)) = s, outputs a LWE ciphertext LWE4/Q
s (mi,

√
n ·β).

ICALP 2018
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4.6 Refreshing Algorithm
We now present the amortized bootstrapping algorithm from start to finish and give an
analysis of its runtime and error growth.

The algorithm takes as input ϕ(d) ciphertexts for d = 3k, under the same key s ∈ Znq and
with error at most ∆, to be simultaneously refreshed. It also requires key material for the
PackLWE and RingDecrypt procedures, described in their respective sections, but recalled here
for reference. The packing key KP = KP

j,l is required to pack the LWE ciphertexts into a single
RingLWE ciphertext under a new key z̃ ∈ Rd/q, and is given by KP

j,l = RingLWEq/qz̃ (sl2j , βP ).
The refreshing key KR = KR

i,j,k encrypts a function of the RingLWE secret f(z̃) under a REG
key z ∈ R2n/Q, and is required for the homomorphic decryption of the resulting RLWE
ciphertext. Its entries are given by KR

i,j,k = REG2n,Q
z

( 1
3mDFT (ψ(z̃))i,k)2j , βR

)
.

I Theorem 8. For every 0 < ε < 1
2 , there exists an algorithm Refresh that, on the input

described above, produces ϕ(d) LWE ciphertexts with error Õ
(
‖s‖+ q

Q · βR(Bn)4d3.5
B dε+.5

)
,

and requires Õ(d2−ε) homomorphic operations.

Proof. From Lemma 6, we already have that the homomorphic complexity of RingDecrypt is
Õ(d2−ε), and this dominates the complexity of RingDecrypt.

The correctness of this refreshing scheme will rely on the error bounds at two stages of
the algorithm. For msbExtract to recover the correct mi’s from the output of RingDecrypt,
the error of each m̃i = 2n

t mi + e must not exceed n
t (for t = 2, the message space of mi).

From the error bounds of Theorem 4 and Equation 2, we have that the ciphertext output
by ModSwitchR will have error bounded by O

(
2n
q (
√
d∆ +

√
dn log qβP ) + ω(

√
d log d) · ‖z̃‖

)
.

To bound this by n/2, we restrict z̃ to ‖z̃‖ = O(
√
d). Then so long as the LWE ciphertext

error ∆ satisfies ∆ < O( q√
d
), d
√

log d < O(n), and d2n < O( q2

log q ), the packed ciphertexts
will be decryptable with high probability.

We also need to guarantee that the ciphertexts output by Refresh will have error small
enough that this scheme is composable. From the bounds of Lemma 6, Lemma 7, and
Equation 4, this requires us to bound the error of the ciphertexts output by Refresh by
β′ = Õ

(
‖s‖+ q

Q · βR(nB)4d3.5
B dε+.5

)
< q√

d
. Letting s be a binary secret, (which does

not reduce hardness of the associated LWE instance, as shown in [7]), this gives us that
Q

(dB)3.5 > βRn
4√log nB4d1+ε, so taking B = Θ(1) and Q > Õ(βRn4d1+ε(log d)3.5) will

guarantee correct decryption with high probability. J

4.7 Recursive optimization
In this section we summarize a recursive formulation of the Nussbaumer transform, and how
it can improve the complexity of the RingDecrypt algorithm, at the cost of an increase in the
error. The proof of Theorem 9 may be found in the full version.

The Nussbaumer transform as described in Section 4.4 can be thought of as a reduction
from a single multiplication of two polynomials in Z2n[X]/(Φd(X)) to 3m multiplications of
pairs of polynomials in Z2n[Y ]/(Φd/m(Y )). We may recursively apply this transformation
ρ times, provided we have a 3mth root of unity in the ring Z2n[Y ]/(Φd/mρ(Y )), which will
be the case as long as d/mρ ≥ 3m. ε is fixed and so this bounds the recursive depth of the
algorithm by ρ < 1

ε − 1.

I Theorem 9. The recursive RingDecryptρ algorithm, with constant parameter ε and recursive
depth ρ < 1

ε − 2, requires Õ(3ρd2−ρε + 3ρd1+ε) homomorphic operations and yields an error
growth of Õ(B3ρ+1(ndB)3ρ√ndBd1+ρε).
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Abstract
The problem of computing the vertex expansion of a graph is an NP-hard problem. The current
best worst-case approximation guarantees for computing the vertex expansion of a graph are
a O

(√
log n

)
-approximation algorithm due to Feige et al. [16], and O

(√
OPT log d

)
bound in

graphs having vertex degrees at most d due to Louis et al. [29].
We study a natural semi-random model of graphs with sparse vertex cuts. For certain ranges

of parameters, we give an algorithm to recover the planted sparse vertex cut exactly. For a larger
range of parameters, we give a constant factor bi-criteria approximation algorithm to compute
the graph’s balanced vertex expansion. Our algorithms are based on studying a semidefinite
programming relaxation for the balanced vertex expansion of the graph.

In addition to being a family of instances that will help us to better understand the complex-
ity of the computation of vertex expansion, our model can also be used in the study of community
detection where only a few nodes from each community interact with nodes from other commu-
nities. There has been a lot of work on studying random and semi-random graphs with planted
sparse edge cuts. To the best of our knowledge, our model of semi-random graphs with planted
sparse vertex cuts has not been studied before.
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1 Introduction

Given a graph G = (V,E), the vertex expansion of a non-empty subset S ⊂ V , denoted by
φV(S), is defined as2

φV(S) def= |V | |N(S)|+ |N(V \ S)|
|S| |V \ S|

,

where N(S), the neighborhood of S, is defined as N(S) def= {j ∈ V \ S : ∃i ∈ S such that
{i, j} ∈ E}. The vertex expansion of the graph G, denoted by φV

G, is defined as φV
G

def=
minS⊂V, S 6=∅ φ

V(S). Computing the vertex expansion of a graph is NP-hard. The complexity
of computing various graph expansion parameters are central open problems in theoretical
computer science, and inspite of many decades of intensive research, they are yet to be fully
understood [8, 9, 26, 10, 16, 39].

Feige et al. [16] gave a O
(√

log n
)
-approximation algorithm for computing the vertex

expansion of a graph. Louis et al. [29] gave an algorithm that computes a set having vertex
expansion at most O

(√
φV log d

)
in graphs having vertex degrees at most d. We give a

brief description of other related works in Section 1.3. In this work, we study a natural
semi-random family of graphs, and give polynomial time exact and approximation algorithms
for computing the balanced vertex expansion (a notion that is closely related to the vertex
expansion of a graph, we define it formally in Section 1.1) w.h.p.

In many problems, there is a huge gap betwen theory and practice; the best known
algorithms provide a somewhat underwhelming performance guarantee, however simple
heuristics perform remarkably well in practice. Examples of this include the simplex algorithm
for linear programming [25], SAT [11], sparsest cut [22, 23], among others. In many cases, the
underwhelming provable approximation guarantee of an algorithm is a property (hardness
of approximation) of the problem itself; even in many such cases, simple heuristics work
remarkably well in practice. A possible explanation for this phenomenon could be that
for many problems, the instances arising in practice tend to have some inherent structure
that makes them “easier” than the worst case instances. Many attempts have been made
to understand the structural properties of these instances, and to use them in designing
algorithms specifically for such instances, which could perform much better than algorithms
for general instances. A fruitful direction of study has been that of modelling real world
instances as a family of random and semi-random instances satisfying certain properties. Our
work can be viewed as the study of the computation of vertex expansion along this direction.

Often graphs with sparse cuts are used to model communities. For example, the vertices
of a graph can be used to represent the members of the communities, and two vertices would
have an edge between them if the members corresponding to them are related in some way.
In such a graph, the sparse cuts indicate the presence of a small number of relations across
the members corresponding to the cut, which are likely to be some form of communities
within the members. The stochastic block models have been used to model such communities.
Our model can also be viewed as model for communities where only a few members from
each community have a relationship with members from another community.

2 Other definitions of vertex expansion have been studied in the literature, see Section 1.3.
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1.1 Vertex Expansion Block Models
For a graph G = (V,E), its balanced vertex expansion φV−bal is defined as

φV−bal
G

def= min
S⊂V

|S|=|V |/2

φV(S) .

Another common notion of vertex expansion that has been studied in the literature is
φV,a(S) def= (|V | |N(S)| / (|S| |V \ S|)), and as before, φV,a

G
def= minS⊂V φ

V,a(S). [29] showed
that the computation φV

G and φV,a
G is equivalent upto constant factors. In this work, we

develop a semi-random model for investigating the balanced vertex expansion of graphs.
We study instances that are constructed as follows. We start with a set of n vertices,

and we arbitrarily partition them into two sets S, S′ of n/2 vertices each. Next, we choose
a small subset T ⊂ S of size εn (resp. T ′ ⊂ S′) to form the vertex boundary of these sets.
On S \ T (resp. S′ \ T ′), we add an arbitrary graph whose spectral gap3 is at least λ (a
parameter in this model), and whose vertices have roughly the same degree. We add an
arbitrary low degree bipartite graph between T and T ′. Between each pair of vertices in
(S \ T )× T , we add edges independently at random with probability p; this is the only part
of the construction that is random. Next, we allow a monotone adversary to alter the graph
: the monotone adversary can arbitrarily add edges that do not change the sparsity of the
vertex cut (S, S′), i.e., add edges between any pair of vertices in S (resp. S′), and between
any pair in T × T ′.

In our model, we allow the sets S and S′ to be generated using different sets of parameters,
i.e., we use ε1, λ1, p1 for S and ε2, λ2, p2 for S′. We formally define the vertex expansion
block model below (see also Figure 1).

I Definition 1. An instance of VBM(n, ε1, ε2, p1, p2, c, r, λ1, λ2) is generated as follows.
1. Let V be a set of n vertices. Partition V into two sets S and S′ of n/2 vertices each.

Partition S into two sets T and S \ T of sizes ε1n and (1/2− ε1)n respectively. Similarly,
partition S′ into two sets T ′ and S′ \ T ′ of sizes ε2n and (1/2− ε2)n respectively.

2. Between each pair in (S \ T )× T (resp. (S′ \ T ′)× T ′), add an edge independently with
probability p1 (resp. p2).

3. Between pairs of vertices in S \ T (resp. S′ \ T ′), add edges to form an arbitrary roughly
regular (formally, ratio of the maximum vertex degree and the minimum vertex degree is
at most r) of spectral gap3 at least λ.

4. Between pairs in T × T ′, add edges to form an arbitrary bipartite graph of vertex degrees
in the range [1, c] (this bipartite graph need not be connected); if c < 1, then add no
edges in this step. We will use F to denote this bipartite graph.

5. (Monotone Adversary) Arbitrarily add edges between any pair of vertices in S (resp. S′).
Arbitrarily add edges between any pair in T × T ′.

Output the resulting graph G.

We note that the direct analogue for vertex expansion of Stochastic Block Models (see
related work in Section 1.3) in the regimes allowing for exact recovery is included in this
setting: there, the graphs within S and S′ are completely random, and so are the connections
between T and T ′ (before the monotone adversary acts). Our model allows for a lot more
adversarial action, while restricting the randomness to only a small portion of the graph.

3 The spectral gap of a graph is defined as the second smallest eigenvalue of its normalized Laplacian
matrix, see Section 1.6 for definition
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Figure 1 VBM(n, ε1, ε2, p1, p2, c, r, λ1, λ2). A monotone adversary may further add arbitrary
edges within S, S′ and between T, T ′.

In addition to being a family of instances that will help us to better understand the
complexity of the computation of vertex expansion, the vertex expansion block model can
also be used in the study of community detection. In the case of two communities, the
vertices in S and S′ can model the members of the communities. Each community can have
a few representatives who interact with the representatives from other communities; these
representatives can be modelled using T and T ′, and their interactions can be modelled by
the arbitrary graphs within T and T ′, and the low degree bipartite graph and the action of
the monotone adversary between T and T ′. Even though the connections within a community
may be arbitrary, usually the members within the community are well connected with each
other; this can be modelled by the choosing an appropriate values of λ1, λ2 plus the action
of the monotone adversary. We can model the connections between community members
and their representatives by a sparse random bipartite graph; our model allows the flexibility
of choosing p1 and p2, and also the action of the monotone adversary.

1.2 Our Results
Our main result is a polynomial time algorithm for exactly recovering S and S′ from a graph
sampled from VBM(n, ε1, ε2, p1, p2, c, r, λ1, λ2) for certain ranges of parameters.

I Theorem 2. There exist universal constants c1 ∈ R+, c2 ∈ (0, 1/2), c3 ∈ Z+, c4 ∈ R+, c5 ∈
(0, 1) satisfying the following: there exists a polynomial time algorithm which takes a graph
generated from VBM(n, ε1, ε2, p1, p2, c, r, λ1, λ2), where p1, p2 ∈ (c1(log n)/n, 1], ε1, ε2 ∈
[1/n, c2], c 6 c3, r 6 c4 and λ1, λ2 > c5, and outputs the sets S and S′ with probabilty at
least 1− 1/poly(n).

We give a description of the steps in proving Theorem 2 in Section 2; in the full version
of this paper, we also observe that our proof actually shows a slightly more general result.

We also show that if the instances satisfy a few weaker requirements, then we can obtain
a constant factor bi-criteria approximation algorithm for computing the balanced vertex
expansion.

We study the case when S \T is an arbitrary graph, i.e., it does not have constant spectral
gap. Note that this case is captured by setting λ1 = 0 in our model, since the monotone
adversary can create any arbitrary graph on S \ T . Our proof also allows us to let the graph
induced on S′ be an arbitrary graph. Again, this is captured by setting p2 = λ2 = 0 in
our model, since the monotone adversary can create any arbitrary graph on S′. We show
that we can use the underlying random bipartite graph between S \ T and T to obtain a
bi-criteria approximation algorithm in this case, that outputs an almost balanced cut with
vertex expansion within a constant factor of the planted one.
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I Theorem 3. There exist universal constants c1 ∈ R+, c2 ∈ (0, 1/2), c6 ∈ (0, 1/2) satisfying
the following: there exists a polynomial time algorithm which takes a graph generated from
VBM(n, ε1, ε2, p1, 0, 0, 0, 0, 0), where ε1, ε2 ∈ [1/n, c2] and p1(ε1 +ε2)n > c1 log n, and outputs
with probability at least 1 − 1/poly(n), a set A ⊂ V satisfying |A| ∈ [c6n, (1 − c6)n] and
φV(A) 6 O (ε1 + ε2).

Next, we study the case where the edges between S \ T and T are arbitrary, but λ1 is
large. As in the previous case, our proof allows the graph induced on S′ to be an arbitrary
graph. Again, as before, this case is captured by setting p1 = p2 = λ2 = 0. In this case, we
show that for certain ranges of λ1, we can obtain a constant factor bi-criteria approximation
algorithm for computing the balanced vertex expansion.

I Theorem 4. There exist universal constants c2 ∈ (0, 1/2), c5 ∈ (0, 1), c6 ∈ (0, 1/2) satisfying
the following: there exists a polynomial time algorithm which takes a graph generated from
VBM(n, ε1, ε2, 0, 0, 0, r, λ1, 0), where ε1, ε2 ∈ [1/n, c2], and λ1 > c5r

3(ε1 + ε2), and outputs a
set A ⊂ V satisfying |A| ∈ [c6n, (1− c6)n] and φV(A) 6 O (ε1 + ε2).

In fact, we prove a stronger result: it suffices for S \ T to contain a subgraph on Ω(n)
vertices having spectral gap at least c5r

3(ε1 + ε2), to obtain a constant factor bi-criteria
approximation algorithm for computing the balanced vertex expansion.

Organization of the rest of the paper

We will next describe related work in Section 1.3, and give our SDP relaxation in Section 1.4.
We give an overview of our proofs in Section 1.5, and present a slightly more detailed
description of the proof of our main result, Theorem 2, in Section 2. For the proofs of
Theorem 3 and Theorem 4, we refer the reader to the full version of the paper.

1.3 Related Work
Stochastic Block Models

Closely related to the vertex expansion of a graph is the notion of edge expansion which is
defined as follows.

I Definition 5. For a weighted graph G = (V,E,w), with non-negative edge weights
w : E → Q+, the edge expansion of a non-empty set S ⊂ V is defined as

φG(S) def=
∑

e∈E(S,V \S) w(e)
min {vol(S), vol(V \ S)} ,

where E(S, V \ S) def= {{i, j} ∈ E : i ∈ S, j /∈ S} and vol(S) def=
∑

i∈S

∑
j∼i w ({i, j}). The

edge expansion of the graph is defined as φG
def= minS⊂V, S 6=∅ φG(S).

The Stochastic Block Model (we will refer to it as the edge expansion stochastic block model to
differentiate it from our block model) is a randomized model for instances that are generated
as follows. A set of n vertices is arbitrarily partitioned into sets S, S′ of equal sizes. Between
each pair of vertices in S, an edge is added independently with probability p, and between
each pair of vertices in S × S′, an edge is added independently with probability q (typically
p > q).

Starting with work of Holland et al.[20], the works of Boppana [13], who gave a spectral
algorithm, and of Jerrum and Sorkin [21], who gave a metropolis algorithm, contributed
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significantly to the study of stochastic block models. One of the break through works in
the study of SBMs is the work of McSherry [34], who gave a simple spectral algorithm for
a certain range of parameters. There has been a lot of recent work related to a certain
conjecture regarding SBMs, which stated the regime of parameters p, q for which it was
possible to detect the presence of communities. The works [36, 37, 38, 33] have contributed
to proving various aspects of the conjecture. In a recent work, Abbe et al.[3] showed that
the natural SDP relaxation for balanced edge expansion is integral when there is a sufficient
gap between p and q, and p, q = Ω(log n/n); Mossel et al.[38] gave an algorithm for a larger
regime of parameters which was not based on semidefinite programming. More general SBMs
have been studied by Abbe and Sandon [4, 5, 6], Aggarwal et al.[7], etc.

Kim et al.[24] studied a version of SBM for hypergraphs, and gave algorithms for it
based on studying a certain “adjacency tensor”, the analog of the adjacency matrix for
hypergraphs. They also study the sum-of-squares algorithms for this model. [27] gave a
reduction from vertex expansion problems to hypergraph expansion problems. We note that
applying this reduction to the instances from our models does not give the model studied by
[24]: this reduction will only introduce hyperedges between the sets corresponding to T and
T ′, whereas the model studied by [24] adds random hyperedges between S and S′. Moreover,
many parts of the graph from our model are adversarially chosen.

Semi-random models for edge expansion problems

Monotone adversarial errors in SBMs are the arbitrary addition of edges between pairs of
vertices within S (resp. S′), and the arbitrary deletion of existing edges between S and
S′. Feige and Kilian [17] gave an algorithm for the edge expansion model with monotone
adversarial errors when the gap between p and q is sufficiently large. Guedon and Vershynin
[18] gave an algorithm based on semidefinite programming for partially recovering the
communities for certain ranges of parameters. Moitra et al.[35] gave algorithms (based on
semidefinite programming) and lower bounds for partial recovery in the stochastic block
model with a monotone adversary. Makarychev et al.[32] gave an algorithm for partial
recovery for the stochastic block model with a monotone adversarial errors and a small
number of arbitrary errors (i.e. non-monotone errors).

Makarychev et al.[30, 31] studied some semi-random models of instances for edge expansion
problems. In particular, [30] studied a model analogous to VBM(n, ε1, ε2, 0, 0, 0, r, λ1, 0)for
edge expansion problems; they showed that if the number of edges crossing (S, S′) is εm, and
if there is a set of m edges E1 such that (S,E1) is a regular graph having spectral expansion
at least Ω(ε), then there is an algorithm to recover a balanced cut of edge expansion O (ε).
The proof of Theorem 4 and that of the corresponding result in [30] both proceed by using
the expansion of the underlying subgraph to show that an Ω(n) sized subset of the SDP
vectors lie in a ball of small radius. [30] use this to recover a constant factor bi-criteria
approximation to balanced edge expansion; we adapt this approach to vertex expansion to
prove Theorem 4.

The results cited here are only a small sample of the work on the SBMs. Since our model
is very different from the edge expansion stochastic block models, we only give a brief survey
of the literature here, and we refer the reader to a survey by Abbe [1] for a comprehensive
discussion. In general, algorithms for edge expansion problems can not be used for our vertex
expansion block model since sparse edge cuts and sparse vertex cuts can be uncorrelated. In
particular, the action of the monotone adversary in VBM rules out the use of edge-expansion
based algorithms for detecting S and S′. In the full version of this paper, we describe an
explicit family graphs generated in the VBM model where these algorithms fail.
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Vertex Expansion

There has been some work in investigating vertex expansion (balanced and non-balanced) the
worst-case setting. Bobkov et al. [12] gave a Cheeger-type inequality for vertex expansion,
where a parameter λ∞ plays a role analogous to the use of the second eigenvalue λ2 in
Cheeger’s inequality for edge expansion. Feige et al.[16] gave a O

(√
log n

)
-approximation

algorithm for the problem of computing the vertex expansion of graphs. Louis et al.[29]
gave an SDP rounding based algorithm that computes a set having vertex expansion at

most O
(√

φV
G log d

)
, where d is the maximum vertex degree; they also showed a matching

hardness result based on the Small-set expansion hypothesis. Louis and Makarychev [27]
gave a bi-criteria approximation for Small-set vertex expansion, a problem related to vertex
expansion. Chan et al. [14] studied various parameters related to hypergraphs, including
parameters related to hypergraph expansion; they showed that many of their results extend
to the corresponding vertex expansion analogues on graphs

Louis and Raghavendra [28] studied a model of instances for vertex expansion similar to
ours. In their model, the adversary partitions the vertex set V into two equal sized sets S, S′,
and chooses a subset T (resp. T ′) of S (resp. S′) of size at most εn. Next, the adversary
chooses an arbitrary subset of pairs of vertices in S (resp. S′) to form edges such that graph
induced on S (resp. S′) is an edge expander. The adversary chooses an arbitrary subset of
the pairs of vertices in T × T ′ to form edges. [28] give an SDP rounding based algorithm to
compute a set having vertex expansion O (

√
ε).

1.4 SDP Relaxation
We use the SDP relaxation for φV−bal

G (SDP 6), this SDP is very similar to that of [29]. We
give the dual of this SDP in SDP 7.

I SDP 6 (Primal).

min
∑
i∈V

ηi

subject to

Uii + Ujj − 2Uij 6 ηi ∀i ∈ V, j ∈ N(i)
Uii = 1 ∀i ∈ V∑

i∈V

∑
j∈V

Uij = 0

U � 0

I SDP 7 (Dual).

max
∑
i∈V

Bii

subject to ∑
j∈N(i)

Yij = 1

Yij > 0 ∀ {i, j} ∈ E
Bij = 0 ∀i, j ∈ V, i 6= j

L(Y ) + α11T −B � 0

Here 1 denotes the all-ones vector, and L(Y ) denotes the Laplacian matrix of graph
weight by the matrix Y + Y T , i.e.

L(Y )ij =


∑

l∈N(i) (Yil + Yli) i = j

− (Yij + Yji) j ∈ N(i)
0 otherwise

.

First, let us see why SDP 6 is a relaxation for φV−bal. Let P be the set corresponding
to φV−bal

G , and let 1P ∈ {−1, 1}n be a vector such 1P (i) is equal to 1 if i ∈ P and −1
otherwise. Note that since |P | = |V | /2, we have 1

T
1P = 0. It is easy to verify that
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U := 1P1
T
P and ηi := maxj∈N(i) (1P (i)− 1P (j))2 is a feasible solution for SDP 6, and that∑

i∈V ηi = 4 (|N(P )|+ |N(V \ P )|). Therefore, φV−bal
G = 4

(∑
i∈V ηi

)
/n. and therefore,

SDP 6 is a relaxation for φV−bal. Henceforth, we will use 1P to be the ±1-indicator vector
of a set P ⊂ V , i.e., 1P (i) is equal to 1 if i ∈ P and −1 otherwise. We prove the following
theorem about SDP 6.

I Theorem 8. For the regime of parameters stated in Theorem 2, U ′ def= 1S1
T
S and for each

i, η′i
def= maxj∈N(i) (1S(i)− 1S(j))2 for the set S defined in VBM(n, ε1, ε2, p1, p2, c, r, λ1, λ2),

is the unique optimal solution to SDP 6 with probabilty at least 1− 1/poly(n).

Theorem 8 gives an algorithm to compute the matrix 1S1
T
S . By factorizing this matrix, one

can obtain the vector 1S , using which the set S can be computed. Therefore, Theorem 8
implies Theorem 2.

1.5 Proof Overview

1.5.1 Theorem 2
It is easy to verify that (U ′, η′i) is a feasible solution to SDP 6. Our goal will be to construct
a dual solution (i.e. a feasible solution to SDP 7) which satisfies two properties,
1. The cost of this solution should be same as the cost of this primal solution (U ′, η′).
2. The matrix

(
L(Y ) + α11T −B

)
should have rank n− 1.

Using strong duality, (1) will suffice to ensure that (U ′, η′) is an optimal solution of
the primal SDP . To show that this is the unique primal optimal solution, we will use the
complementary slackness conditions which state that

U ·
(
L(Y ) + α11T −B

)
= 0 . (1)

Since,
(
L(Y ) + α11T −B

)
will have rank n − 1, this will imply that all primal optimal

solutions must have rank at most 1, or in other words, there is a unique primal optimal
solution (see Lemma 11).

While the approach of using complementary slackness conditions for proving the integrality
of the SDP relaxation has been studied for similar problems before ([15, 2, 3, 19, 7]), there
is no known generic way of implementing this approach to any given problem. Usually
the challenging part in implementing this approach is in constructing an appropriate dual
solution, and that, like in most of the works cited above, forms the core of our proof.

We give an outline of how we construct our dual solutions. We begin by setting the Y
value for each edge added by the monotone adversary to 0, thus our proof can be viewed
as saying that SDP 6 “ignores” all those edges. For the sake of simplicity, let us consider
the case when the bipartite graph between T and T ′ is a c-regular graph. We set Bii := 4 if
i ∈ T ∪T ′ and 0 if i /∈ T ∪T ′. Thus, if we can choose Y such that this choice of B is a feasible
solution, then this will ensure that the cost of this dual solution, and the cost of the primal
solution (U ′, η′) are both equal to 4 (ε1 + ε2)n, thereby fullfilling our first requirement.

If U is a rank one matrix, and
(
L(Y ) + α11T −B

)
is a rank n − 1 matrix, then (1)

implies that 1S is an eigenvector of
(
L(Y ) + α11T −B

)
with eigenvalue 0. This fact will be

extremely useful in setting the Y values for the edges in the bipartite graph between T and
T ′ (Lemma 12). Now, we only have to choose the Y values for the edges fully contained in S
(resp. S′). We first prove the following lemma which will help us to choose the Y values.
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I Lemma 9 (Informal statement of Lemma 10). There exists a constant c′ such that it suffices
to choose Y satisfying

XT (L(Y ))X >
c′

n

 ∑
i∈S\T

∑
t∈T

(Xi −Xt)2 +
∑

i∈S′\T ′

∑
t∈T ′

(Xi −Xt)2

 ∀X ∈ Rn .

The proof of this lemma follows by carefully choosing the value of α, and by exploiting the
fact that 1S is an eigenvector of L(Y ) + α11T −B with eigenvalue 0. Proving the condition
in Lemma 9 can be viewed as the problem of choosing capacities for the edges to support the
multicommodity flow where each vertex i ∈ S \ T wants to send c′/n amount of flow to each
t ∈ T . This idea can work when S (resp. S′) is a sufficiently dense graph, but does not work
when S (resp. S′) is sparse (for more details, we refer the reader to the full version). Our
second idea is to use the edge expansion properties of the underlying spanning subgraph. For
a d-regular edge expander H = (V ′, E′) having the second smallest normalized Laplacian
eigenvalue λ, we get that

∑
{ij}∈E′ (Xi −Xj)2 > (λd/n)

∑
ij∈E′ (Xi −Xj)2. Since L(Y ) is

a Laplacian matrix, we get that

XTL(Y )X =
∑

i,j∈S{i,j}∈E

(Yij + Yji) (Xi −Xj)2

+
∑

i,j∈S′{i,j}∈E

(Yij + Yji) (Xi −Xj)2

+
∑

i∈T,j∈T ′{i,j}∈E

(Yij + Yji) (Xi −Xj)2
.

Now, since S and S′ contain an almost regular edge expander as a spanning subgraph, we can
adapt the expander argument to this setting and obtain some lower bound on this quantity.
This strategy can work in some special cases, but fails in general. Our proof shows that the
desired lower bound in Lemma 9 can be obtained using a careful combination of these two
ideas, in addition to exploiting the various properties of the random graph between S \ T
and T (resp. S′ \ T ′ and T ′).

1.5.2 Theorem 3 and Theorem 4
We first solve SDP 6 and obtain a matrix U such that U � 0. Therefore, U can be factorized
into U = WTW for some matrix W . Let u1, . . . , un denote the columns of this matrix W .
We give an algorithm to “round” these vectors into a set satisfying the guarantees in the
theorem. As in the previous case, we show that we can “ignore” all the edges added by the
monotone adversary, and only focus on the edges added in step 2, 3, 4 in Definition 1.

A well known fact for edge expander graphs having roughly equal vertex degrees is that
if the value of ‖ui − uj‖2 averaged over all edges {i, j} in the graph is small, then the value
of ‖ui − uj‖2 averaged over all pairs of vertices i, j in the graph is also small. In the proof of
Theorem 4, we use the expansion properties of the Ω(n) sized subset of S coupled with this
fact to show that an Ω(n) sized subset of the vectors {ui : i ∈ V } must lie in a ball of small
diameter; this step is similar to the corresponding step of [30]. We use this to construct
an embedding of the graph onto a line, and recover a cut from this embedding using an
algorithm of [29]; this step can be viewed as adapting the corresponding step of [30] to vertex
expansion.

In the case when λ1 = 0, we show that the lopsided random bipartite graph between
S \ T and T is an edge expander w.h.p. However, this graph is not close to being regular;
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the degrees of the vertices in T would be much higher than the degrees of the vertices in
S \ T . Therefore, we can not directly use the strategy employed in the previous case. But
we show that we can use the fact that the measure of S \ T under the stationary distribution
of the random bipartite graph between S \ T and T is Ω(1), and that the vertices in S \ T
have roughly equal vertex degrees, to show that ‖ui − uj‖2 averaged over all pairs of vertices
i, j ∈ S \ T is small. From here, we proceed as in the previous case.

1.6 Notation
We denote graphs by G = (V,E), where the vertex set V is identified with [n] := {1, 2, . . . n}.
For any S ⊆ V , we denote the induced subgraph on S by G[S]. Given i ∈ V and T ⊆ V ,
define NT (i) def= {j ∈ T : {i, j} ∈ E}, and N(i) = NV (i). We denote ∆T (i) := |NT (i)|, and
∆(i) = |N(i)|. For a subgraph F of G, the degree of i within F is correspondingly ∆F (i).

Given a graph G = (V,E) with a weight function w : E → R>0 on its edges, we define
the weighted degree of a vertex i ∈ V as d(i) :=

∑
j∈N(i) w{i,j}. In our theorems, following

SDP 7, we will be assigning directed weights (or capacities) Yij to edges {i, j} ∈ E, and use
L(Y ) to denote the Laplacian of G with weights Yij + Yji on the edges.

Given the normalized Laplacian L = I −D−1/2AD−1/2, the spectral gap of G denoted by
λ, is the second-smallest eigenvalue of L.

Typically, for a vector X ∈ Rn, its i-th component is denoted by Xi, or in rare cases for
clarity, by X(i). As in the introduction, we use 1S for any S ⊆ V to denote the vector in
R|V | having entries 1S(i) = 1, if i ∈ S, and −1 otherwise.

2 Exact Recovery for VBM

2.1 A sufficient condition
In order to prove Theorem 8, we start with the following lemma, which outlines a sufficient
condition for integrality of the primal optimal SDP solution. For the proof of this lemma,
and all subsequent lemmas in this section, we refer the reader to the full version of the paper.

I Lemma 10. For a VBM(n, ε1, ε2, p1, p2, c, r, λ1, λ2) instance, if we can find a Y ∈ Rn×n

that satisfies the linear constraints on it (Yij > 0 and
∑

j Yij = 1)), and in addition has:
(a) ∀X ∈ Rn,

XT (L(Y ))X >
c′

n

 ∑
i∈S\T

∑
t∈T

(Xi −Xt)2 +
∑

i∈S′\T ′

∑
t∈T ′

(Xi −Xt)2

 , (2)

(b) For every i ∈ T, j ∈ T ′, we have Yij = 1/∆F (i) and Yji = 1/∆F(j),
(c) For every i ∈ T, j ∈ S \ T and i ∈ T ′, j ∈ S \ T ′, we have Yij = 0
where c′ = 8c/(1 − max {ε1, ε2}), then SDP 6 has (U ′, η′) as defined in Theorem 8 as its
unique optimal solution.

I Remark. Along with the SDP 7 linear constraints on Y , the above conditions ensure that we
can extend Y to a feasible dual solution (Y,B, α), that satisfies the positive-semidefiniteness
constraint and is optimal.

We begin by noting a simple consequence of complementary slackness conditions.

I Lemma 11. Let M := L(Y ) + α11T − B be constructed using an optimal dual solution
(Y,B, α). The primal optimal solution is integral and unique if 1S is a unique eigenvector of
M with eigenvalue 0.
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Figure 2 Outline of Yij ’s used in the constructed dual solution.

It is thus sufficient to prove that the conditions in Lemma 10 imply that we can use
the given Y to come up with a B and α, such that (Y,B, α) is feasible, and 1S is a unique
eigenvector of M with eigenvalue 0. We first find a B (depending on Y ) that yields a dual
objective value of exactly 4(ε1 + ε2)n and ensures that 1S is an eigenvector with eigenvalue
0. We use dT (i) =

∑
j∈N(i)∩T (Yij + Yji) for the weighted degree of i into T ⊆ V .

I Lemma 12. Fix some partial candidate dual solution (Y, α). Consider the setting of the
diagonal matrix B given by:

Bii =


2 · dT ′(i), for i ∈ T
2 · dT (i), for i ∈ T ′
0, otherwise

(3)

Then 1S is an eigenvector of M with eigenvalue 0. Furthermore, if (Y, α) is feasible for this
B and satisfies condition (c) of Lemma 10, then the dual variable assignment (Y,B, α) is
optimal, with objective value 4(ε1 + ε2)n.

Thus, at this point, we know how to show that a feasible (Y, α) satisfying the conditions
in Lemma 10 can be extended to get the dual variable B that ensures that the primal is
integral. It now remains to show that given an assignment to Y that satisfies conditions in
Lemma 10, and a B constructed thereof using Lemma 12, we can find an appropriate α so
that (Y,B, α) is actually feasible.

The setting of B helps us exploit the following fact in showing that (Y,B, α) is feasible
for some α.

I Fact 13. If M ∈ Rn×n is a symmetric matrix with eigenvector v having eigenvalue 0, then
M � 0 and rank(M) = n− 1 ⇐⇒ ∃l > 0 : M + l · vvT � 0.

Thus, instead of showing that M := (L + α11T − B) � 0, we use the above fact with
v = 1S . By our setting for B, 1S is an eigenvector of M with eigenvalue 0. We show that
there is an α that gives us that M ′ := L+ α

(
11

T + 1S1
T
S

)
−B � 0 (by using condition (a)

and (b) of Lemma 10).
This ensures M satisfies Lemma 11, completing the proof of Lemma 10. We leave the

details to the full version of the paper.

2.2 Satisfying the sufficient condition
We are now left with the task of assigning appropriate weights Yij to the edges, so that
Lemma 10’s conditions are satisfied. Effectively, we only have to find weights within G[S] and
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G[S′], as Lemma 10 already fixes the rest. First, we recall that for any X ∈ Rn, XTL(Y )X =∑
{i,j}∈E(Yij + Yji)(Xi −Xj)2. We drop the argument Y henceforth as it will be clear from

context. The following observation is useful to keep in mind:

I Observation 14. Given a (Y,B, α) dual solution, that satisfies all but the constraints∑
j∈N(i) Yij = 1, having instead that ∀i ∈ V :

∑
j∈N(i) Yij 6 1, we can produce a feasible

solution (Y ′, B, α) of the same objective value.

We will henceforth find values for the dual variable Y satisfying just the weaker constraint∑
j∈N(i) Yij 6 1. We first describe the following instructive case, in order to aid intuition.

I Lemma 15. When G[S] and G[S′] are complete graphs, there is a constant β < 1 and
weights Y , such that when ε

def= max {ε1, ε2} 6 β, the sufficient condition in Lemma 10 is
satisfied, and hence the primal SDP is integral.

Proof. For every pair i, j such that i ∈ S \ T and t ∈ T , we set Yit = b := 1
εn . The Yij ’s

within S′ are set similarly. Let Yij = 0 for all other edges within G[S], and G[S′]. The
constraint

∑
j∈N(i) Yij 6 1 is satisfied as b×∆T (i) 6 1 =⇒ bεn 6 1.

In order to prove integrality, we verify that (2) holds for the chosen value of b. Expanding
out the term XTLX gives:

XTLX > b
∑

i∈S\T
t∈T

(Xi −Xt)2 + b
∑

i∈S′\T ′

t∈T ′

(Xi −Xt)2 .

From the condition in Lemma 10, we get that the primal SDP is integral as long as
bn > 8c/(1− ε), which is true as long as 1−ε

ε > 8c. This is true for ε being less than a small
enough constant. J

Let us now consider the general case. We will focus on just S henceforth, as similar
arguments will work for S′ too, and the feasible solution can be constructed independently
for either part. Observe that in contrast to the complete graph above, certain terms are
missing in the expansion of XTL|SX: these terms are of the form

(Xi −Xt)2 ∀i ∈ S \ T, t ∈ T : i /∈ N(t) .

One way to recover these terms is to make use of the following observation:

I Fact 16. For any x1, x2, . . . xl+1 ∈ R, we have
∑l

i=1(xi − xi+1)2 > 1
l (x1 − xl+1)2

Flow Routing:

Fact 16 gives us a way to generate terms of the form (Xi −Xt)2 using the edges present in
the graph G[S]. In particular, we can generate a missing term of the form (Xi −Xt)2, as a
sum along a path P = (i1 = i, i2, i3, . . . , il = t) in G of the terms (Xij

−Xij+1)2, for every
j ∈ [l− 1]. Each of these terms occurs in the expansion of XTLX. If we use an amount a of
the weight of each edge on P in doing so, the final term has a coefficient of a

l , and this can
be seen as i attempting to sending a ‘flow’ of magnitude a to t via P.

Generating all the missing terms can now be formulated as a flow-routing problem using
paths of length at most l (for some fixed l). The flows going from i to t generate the term
(Xi −Xt)2. Lemma 10 can therefore be restated as the problem of routing at least c′l/n
units of flow from every i ∈ S \ T to t ∈ T . The constraint on the (directed) flow edges out
of i is determined by the values Yij . The capacity of the edge {i, j} in the direction i→ j is
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Yij , and the outdegree constraint states that every vertex can push out at most one unit of
flow in total. Furthermore, a flow of ‘a’ units travelling along a path of distance l to reach t
finally contributes only a/l, due to Fact 16. We state this idea formally below.

I Lemma 17 (Flow routing problem). Suppose we are given G[S] and G[S′] with a feasible
assignment Y for the edges. Consider a directed version of G[S], where every edge {i, j} ∈ E
is replaced by the directed edges (i, j) and (j, i) with capacities Yij and Yji respectively. If
for some l ∈ N, and for every i ∈ S \ T and t ∈ T , we can route a flow of c′l/n from i→ t

using paths of length at most l in G[S] (and similarly for G[S′]), while obeying the (directed)
capacity constraints on the edges, then we have:

XTLX >
c′

n

 ∑
i∈S\T

∑
t∈T

(Xi −Xt)2 +
∑

i∈S′\T ′

∑
t∈T ′

(Xi −Xt)2

 ∀X ∈ Rn

However, simply routing flows satisfying the above in an arbitrary G[S] (or G[S′]) turns
out to be impossible. We carefully exploit the spectral expansion of G[S \T ] (and G[S′ \T ′]),
along with the randomness on the graph in S \ T × T while routing our flows to find our
assignment for Y . Figure 2 summarizes briefly the dual values for Y that we finally use. We
leave the details for the full version of the paper.
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1 Introduction

In standard cuckoo hashing [20], a set X = {x1, . . . , xcn} of objects (possibly with
associated data) from a universe U is to be stored in a hash table indexed by V = {0, . . . , n−
1} of size n such that each object xi resides in one of two associated memory locations
h1(xi), h2(xi), given by hash functions h1, h2 : U → V . In most theoretic works, these
functions are modelled as fully random functions, selected uniformly and independently
from V U .

The load parameter c ∈ [0, 1] indicates the desired space efficiency, i.e. the ratio between
objects and allocated table positions. Whether or not a valid placement of the objects in
the table exists is well predicted by whether c is above or below the threshold c∗ = 1

2 : If
c ≤ c∗ − ε for arbitrary ε > 0, then a placement exists with high probability (whp), i.e.
with probability approaching 1 as n tends to infinity, and if c ≥ c∗ + ε for ε > 0, then no
placement exists whp.

If a placement is found, we obtain a dictionary data structure representing X ⊆ U . To
check whether an object x ∈ U resides in the dictionary (and possibly retrieve associated
data), only the memory locations h1(x) and h2(x) need to be computed and searched for x.
Combined with results facilitating swift creation, insertion and deletion, standard cuckoo
hashing has decent performance when compared to other hashing schemes at load factors
around 1

3 [20].
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Several generalisations have been studied that allow trading rigidity of the data structure
– and therefore performance of lookup operations – for load thresholds closer to 1.

In k-ary cuckoo hashing, due to Fotakis et al. [8], a general number k ≥ 2 of hash
functions is used.
Dietzfelbinger and Weidling [6] propose partitioning the table into n

` contiguous blocks
of size ` and assign two random blocks to each object via the two hash functions, allowing
an object to reside anywhere within those blocks.
By windows of size ` we mean the related idea – called “cuckoo-lp” in [6] – where x
may reside anywhere in the intervals [h1(x), h1(x) + `) and [h2(x), h2(x) + `) (all indices
understood modulo n). Compared to the block variant, the values h1(x), h2(x) ∈ V need
not be multiples of `, so the possible intervals do not form a partition of V .

The overall performance of a cuckoo hashing scheme is a story of multidimensional trade-offs
and hardware dependencies, but based on experiments in [6, 17] roughly speaking, the
following empirical claims can be made:

k-ary cuckoo hashing for k > 2 is slower than the other two approaches. This is because
lookup operations trigger up to k evaluations of hash functions and k random memory
accesses, each likely to result in a cache fault. In the other cases, only the number of key
comparisons rises, which are comparatively cheap.
Windows of size ` offer a better tradeoff between worst-case lookup times and space
efficiency than blocks of size `.

Although our results are oblivious of hardware effects, they support the second empirical
observation from a mathematical perspective.

1.1 Previous Work on Thresholds
Precise thresholds are known for k-ary cuckoo hashing [4, 12, 10], cuckoo hashing with blocks
of size ` [7, 3], and the combination of both, i.e. k-ary cuckoo hashing with blocks of size
` with k ≥ 3, ` ≥ 2 [9]. The techniques in the cited papers are remarkably heterogeneous
and often specific to the cases at hand. Lelarge [18] managed to unify the above results
using techniques from statistical physics that, perhaps surprisingly, feel like they grasp more
directly at the core phenomena. Generalising further, Leconte, Lelarge, and Massoulié [15]
solved the case where each object must occupy j ∈ N incident table positions, r ∈ N of which
may lie in the same block (see also [13]).

Lehman and Panigrahy [17] showed that, asymptotically, the load threshold is 1− (2/e+
o`(1))` for cuckoo hashing with blocks of size ` and 1 − (1/e + o`(1))1.59` in the case of
windows, with no implication for small constant `. Beyer [2] showed in his master’s thesis
that for ` = 2 the threshold is at least 0.829 and at most 0.981. To our knowledge, this is an
exhaustive list of published work concerning windows.

In a spirit similar to cuckoo hashing with windows, Porat and Shalem [21] analyse a
scheme where memory is partitioned into pages and a bucket of size k is a choice of k memory
positions from the same page (not necessarily contiguous). The authors provide rigorous
lower bounds on the corresponding thresholds as well as empirical results.

1.2 Our Contribution
We provide precise thresholds for k-ary cuckoo hashing with windows of size ` for all k, ` ≥ 2.
In particular this solves the case of k = 2 left open in [6, 17]. Note the pronounced
improvements in space efficiency when using windows over blocks, for instance in the case of
k = ` = 2, where the threshold is at roughly 96.5% instead of roughly 89.7%.
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Formally, for any k, ` ≥ 2, we identify real analytic functions fk,`, gk,`, such that for
γk,` = infλ>0{fk,`(λ) | gk,`(λ) < 0} we have

I Main Theorem. The threshold for k-ary cuckoo hashing with windows of size ` is γk,`, in
particular for any ε > 0,
(i) if c > γk,` + ε, then no valid placement of objects exists whp and
(ii) if c < γk,` − ε, then a valid placement of objects exists whp.

While fk,` and gk,` are very unwieldy, with ever more terms as ` increases, numerical
aproximations of γk,` can be attained with mathematics software. We provide some values
in Table 1.

1.3 Methods
The obvious methods to model cuckoo hashing with windows either give probabilistic
structures with awkward dependencies or the question to answer for the structure follows
awkward rules. Our first non-trivial step is to transform a preliminary representation into a
hypergraph with n vertices, cn uniformly random hyperedges of size k, an added deterministic
cycle, and a question strictly about the orientability of this hypergraph.

In the new form, the problem is approachable by a combination of belief propagation
methods and the objective method [1], adapted to the world of hypergraph orientability by
Lelarge [18] in his insightful paper. The results were further strengthened by a Theorem in
[15], which we apply at a critical point in our argument.

As the method is fundamentally about approximate sizes of incomplete orientations,
it leaves open the possibility of o(n) unplaced objects; a gap that can be closed in an
afterthought with standard methods.

Table 1 Some thresholds ck,` as obtained by [20, 3, 7, 4, 12, 11, 9] and values of γk,` as obtained
from our main theorem.
In both tables, the line for ` = 1 corresponds to plain k-ary cuckoo hashing, reproduced here for
comparison.

Thresholds ck,` for k-ary cuckoo hashing with blocks of size `:
`\k 2 3 4 5 6 7

1 0.5 0.9179352767 0.9767701649 0.9924383913 0.9973795528 0.9990637588
2 0.8970118682 0.9882014140 0.9982414840 0.9997243601 0.9999568737 0.9999933439
3 0.9591542686 0.9972857393 0.9997951434 0.9999851453 0.9999989795 0.9999999329
4 0.9803697743 0.9992531564 0.9999720661 0.9999990737 0.9999999721 0.9999999992

Thresholds γk,` for k-ary cuckoo hashing with windows of size `:
`\k 2 3 4 5 6 7

1 0.5 0.9179352767 0.9767701649 0.9924383913 0.9973795528 0.9990637588
2 0.964994923 0.9968991072 0.9996335076 0.9999529036 0.9999937602 0.9999991631
3 0.994422754 0.9998255112 0.9999928198 0.9999996722 0.9999999843 0.9999999992
4 0.998951593 0.9999896830 0.9999998577 0.9999999977 ≈ 1 ≈ 1

1.4 Further Discussion
In the full version of this paper, we touch on three further issues that complement our results
but are somewhat detached from our main theorem.

ICALP 2018
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Numerical approximations of the thresholds. We explain how mathematics software can
be used to get approximations for the values γk,`, which have been characterised only
implicitely.

Speed of convergence. We provide experimental results with finite table sizes to demon-
strate how quickly the threshold behaviour emerges.

Constructing orientations We examine the LSA algorithm by Khosla for insertion of ele-
ments, adapted to our hashing scheme. Experiments suggest an expected constant runtime
per element as long as the load is bounded away from the threshold, i.e. c < γk,` − ε for
some ε > 0.

2 Definitions and Notation

A cuckoo hashing scheme specifies for each object x ∈ X a set Ax ⊂ V of table positions that
x may be placed in. For our purposes, we may identitfy x with Ax. In this sense, H = (V,X)
is a hypergraph, where table positions are vertices and objects are hyperedges. The task of
placing objects into admissible table positions corresponds to finding an orientation of H,
which assigns each edge x ∈ X to an incident vertex v ∈ x such that no vertex has more
than one edge assigned to it. If such an orientation exists, H is orientable.

We now restate the hashing schemes from the introduction in this hypergraph framework,
switching to letters e (and E) to refer to (sets of) edges. We depart in notation, but not
in substance, from definitions given previously, e.g. [8, 5, 17]. Illustrations are available in
Figure 1.

Concerning k-ary cuckoo hashing the hypergraph is given as:

Hn = Hk
n,cn := (Zn, E = {e1, e2, . . . , ecn}), for ei ← [Zn

k
], (1)

where Zn = {0, 1, . . . , n − 1} and for a set S and k ∈ N we write e ← [Sk] to indicate that
e = {s1, s2, . . . , sk} is obtained by picking s1, . . . , sk independently and uniformly at random
from S.

There is a subtle difference to picking e uniformly at random from
(
S
k

)
, the set of all

k-subsets of S, as the elements s1, . . . , sk need not be distinct. We therefore understand e as
a multiset. Also, we may have ei = ej for i 6= j, so E is a multiset as well.1

Assuming the table size n is a multiple of `, k-ary cuckoo hashing with blocks of
size ` is modelled by the hypergraph

Bn = Bk,`n,cn := (Zn, {e′1, e′2, . . . , e′cn}), where e′i =
⋃
j∈ei

[j`, (j + 1)`) and ei ← [Zn/`

k
], (2)

that is, each hyperedge is the union of k blocks chosen uniformly at random from the set of
all blocks, which are the n/` intervals of size ` in Zn that start at a multiple of `. Note that
for ` = 1 we recover Hn.

Similarly, k-ary cuckoo hashing with windows of size ` is modelled by

Wn = W k,`
n,cn := (Zn, {e′1, e′2, . . . , e′cn}), where e′i =

⋃
j∈ei

[j, j + `) and ei ← [Zn

k
], (3)

that is, each hyperedge is the union of k windows chosen uniformly at random from the
set of all windows, which are the n intervals of size ` in Zn, this time without alignment

1 While our choice for the probability space is adequate for cuckoo hashing and convenient in the proof,
such details are inconsequential. Choosing Hn uniformly from the set of all hypergraphs with cn distinct
edges all of which contain k distinct vertices would be equivalent for our purposes.
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Figure 1 Drawing of possible outcomes for the hypergraphs Hn, Bn and Wn (modelling k-ary
cuckoo hashing plain / with blocks / with windows) for n = 30, c = 1

6 , k = 3 and ` = 2 (` only for B
and W ). Each edge is drawn as a point and connected to all incident table cells, which are arranged
in a circle. In the case of B, thick lines indicate the borders between blocks.

restriction. Note that intervals wrap around at the ends of the set {0, . . . , n − 1} with no
awkward “border intervals”. Again, for ` = 1 we recover Hn.

3 Outline of the Proof

Step 1: A tidier problem. The elements of an edge e of Bn andWn are not independent, as
e is the union of k intervals of size `. This poorly reflects the actual tidiness of the probabilistic
object. We may obtain a model with independent elements in edges, by switching to a more
general notion of what it means to orient a hypergraph.

Formally, given a weighted hypergraph H = (V,E, η) with weight function η : V ∪E → N,
an orientation µ of H assigns to each pair (e, v) of an edge and an incident vertex a number
µ(e, v) ∈ N0 such that

∀e ∈ E :
∑
v∈e

µ(e, v) = η(e), and ∀v ∈ V :
∑
e3v

µ(e, v) ≤ η(v). (4)

We will still say that an edge e is oriented to a vertex v (possibly several times) if µ(e, v) > 0.
One may be inclined to call η(v) a capacity for v ∈ V and η(e) a demand for e ∈ E, but we
use the same letter in both cases as the distinction is dropped later anyway.

Orientability of H,B and W from earlier is also captured in the generalised notion with
implicit vertex weights of η ≡ 1.

A simplified representation of Bn is straightforward to obtain. We provide it mainly for
illustration purposes, see Figure 2(a):

B̂n := B̂k,`n,cn := (Zn/`, {e1, e2, . . . , ecn}, η), where ei ← [Zn/`

k
] (5)

and η(v) = ` for v ∈ Zn/` and η(ei) = 1 for 1 ≤ i ≤ cn.

In B̂n, each group of ` vertices of Bn representing one block is now contracted into a single
vertex of weight ` and edges contain k independent vertices representing blocks instead of k`
dependent vertices. It is clear that Bn is orientable if and only if B̂n is orientable.

In a similar spirit we identify a transformed version Ŵn for Wn, but this time the details
are more complicated as the vertices have an intrinsic linear geometry, whereas Bn featured
essentially an unordered collection of internally unordered blocks. The ordinary edges in Ŵn
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(a) →

η( ) = `
η( ) = 1

(b) →

η( ) = `
η( ) = 1
η( ) = `−1

Figure 2 (a) In k-ary cuckoo hashing with blocks of size ` (here k = ` = 3), we can contract
each block into a single vertex of weight ` to obtain a simpler but equivalent representation of the
orientation problem.
(b) In k-ary cuckoo hashing with windows of size `, a similar idea can be made to work, but
additional helper edges (drawn as ) of weight `− 1 are needed (see Proposition 1).

also have size k instead of size k`, but we need to introduce additional helper edges that
capture the linear geometry of Zn, see Figure 2(b). We define:

Ŵn := Ŵ k,`
n,cn := (Zn, Cn ∪ {e1, . . . , ecn}, η) (6)

with ordinary edges ei ← [Zn

k
], helper edges Cn = {ci := (i, i+ 1) | i ∈ Zn},

and weights η(w) = `, η(h) = `− 1, η(e) = 1 for w ∈ Zn, h ∈ Cn, e ∈ {e1, . . . , ecn}.

Note that formally the graphs Wn and Ŵn are random variables on a common probability
space. An outcome ω = (ei)1≤i≤cn from this space determines both graphs.

The following proposition justifies the definition and is proved in the full version of this
paper.

I Proposition 1. Ŵn is orientable if and only if Wn is orientable.2

An important merit of Ŵn that will be useful in Step 3 is that it is locally tree-like, meaning
each vertex has a probability of o(1) to be involved in a constant-length cycle. Here, by a
cycle in a hypergraph we mean a sequence of distinct edges e1, e2, . . . , ej such that successive
edges share a vertex and ej and e1 share a vertex.

Note the interesting special case Ŵ 2,2
n,cn, which is a cycle of length n with cn random

chords, unit edge weights and vertices of weight 2. Understanding the orientability thresholds
for this graph seems interesting in its own right, not just as a means to understand W 2,2

n,cn.

Step 2: Incidence Graph and Allocations. The next step is by no means a difficult or
creative one, we merely perform the necessary preparations needed to apply [15], introducing
their concept of an allocation in the process.

This will effectively get rid of the asymmetry between the roles of vertices and edges in
the problem of orienting Ŵn, by switching perspective in two simple ways. The first is to
consider the incidence graph Gn of Ŵn instead of Ŵn itself, i.e. the bipartite graph

Gn = Gk,`n,cn = ( Cn︸︷︷︸
AC

∪{e1, . . . , ecn}︸ ︷︷ ︸
AR

, Zn︸︷︷︸
B

, “3”︸︷︷︸
E(Gn)

). (7)

2 Formally this should read: The events {Wn is orientable} and {Ŵn is orientable} coincide.
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We use A = AC ∪AR to denote those vertices of Gn that were edges in Ŵn and B for those
vertices of Gn that were vertices in Ŵn. Vertices a ∈ A and b ∈ B are adjacent in Gn if b ∈ a
in Ŵn. The weights η on vertices and edges in Ŵn are now vertex weights with η(aC) = `−1,
η(aR) = 1, η(b) = ` for aC ∈ AC , aR ∈ AR, b ∈ B. The notion of µ being an orientation
translates to µ being a map µ : E(Gn)→ N0 such that

∑
b∈N(a) µ(a, b) = η(a) for all a ∈ A

and
∑
a∈N(b) µ(a, b) ≤ η(b) for all b ∈ B. Note that vertices from A need to be saturated

(“= η(a)” for a ∈ A) while vertices from B need not be (“≤ η(b)” for b ∈ B). This leads to
the second switch in perspective.

Dropping the saturation requirement for A, we say µ is an allocation if
∑
u∈N(v) µ(u, v) ≤

η(v) for all v ∈ A ∪B.
Clearly, any orientation is an allocation, but not vice versa; for instance, the trivial map

µ ≡ 0 is an allocation. Let |µ| denote the size of an allocation, i.e. |µ| =
∑
e∈E µ(e). By

bipartiteness, no allocation can have a size larger than the total weight of A, i.e.

for all allocations µ : |µ| ≤ η(A) =
∑
a∈A

η(a) = |AC | · (`− 1) + |AR| · 1 = (`− 1 + c)n

and it is precisely the orientations of Gn that have size η(A). We conclude:

I Proposition 2. Let M(Gn) denote the maximal size of an allocation of Gn. Then

M(Gn)
n = `− 1 + c if and only if Gn is orientable if and only if Ŵn is orientable.

Step 3: The Limit T of Gn. Reaping the benefits of step 1, we find Gn to have O(1)
cycles of length O(1) whp. To capture the local appearance of Gn even more precisely, let
the r-ball around a vertex v in a graph be the subgraph induced by the vertices of distance at
most r from v. Then the r-ball around a random vertex of Gn is distributed, as n gets large,
more and more like the r-ball around the root of a random infinite rooted tree T = T k,`c . It
is distributed as follows, with nodes of types AC , AR or B.

The root of T is of type AC , AR or B with probability 1
2+c ,

c
2+c and 1

2+c , respectively.
If the root is of type AC , it has two children of type B. If it is of type AR, it has k
children of type B. If it is of type B, it has two children of type AC and a random
number X of children of type AR, where X ∼ Po(kc). Here Po(λ) denotes the Poisson
distribution with parameter λ.
A vertex of type AC that is not the root has one child of type B. A vertex of type AR
that is not the root has k − 1 children of type B.
A vertex of type B that is not the root has a random number X of children of type
AR, where X ∼ Po(kc). If its parent is of type AC , then it has one child of type AC ,
otherwise it has two children of type AC .
Vertices of type AC , AR and B have weight `−1, 1 and `, respectively.

All random decisions should be understood to be independent. A type is also treated as a
set containing all vertices of that type. In the full version of this paper we briefly recall the
notion of local weak convergence and argue that the following holds:

I Proposition 3. (Gn)n∈N = (Gk,`n,cn)n∈N converges locally weakly to T = T k,`c .

Step 4: The Method of [15]. We are now in a position to apply a powerful Theorem
due to Leconte, Lelarge, and Massoulié [15] that characterises limn→∞

M(Gn)
n in terms of

solutions to belief propagation equations for T . Put abstractly: The limit of a function of Gn
is a function of the limit of Gn. We elaborate on details and deal with the equations in the
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full version of this paper. After condensing the results into a characterisation of γk,` ∈ (0, 1)
in terms of “well-behaved” functions we obtain:

I Proposition 4.

lim
n→∞

M(Gn,cn)
n

{
= `− 1 + c almost surely if c < γk,`

< `− 1 + c almost surely if c > γk,`

Step 5: Closing the Gap. It is important to note that we are not done, as

lim
n→∞

M(Gn,cn)
n = `− 1 + c a.s. does not imply3 M(Gn,cn) = n · (`− 1 + c) whp. (8)

We still have to exclude the possibility of a gap of size o(n) on the right hand side, imagine for
instance M(Gn,cn) = (`− 1 + c)n−

√
n to appreciate the difference. In the setting of cuckoo

hashing with double hashing (see [16]), it is actually the analogue of this pesky distinction
that seems to be in the way of proving precise thresholds for perfect orientability, so we
should treat this seriously.

Luckily the line of reasoning by Lelarge [18] can be adapted to our more general setting.
The key is to prove that if not all objects can be placed into the hash table, then the
configuration causing this problem has size Θ(n) (and those large overfull structures do not
go unnoticed on the left side of (8)).

I Lemma 1. There is a constant δ > 0 such that whp no set of 0 < t < δn vertices in Ŵn

(of weight `t) induces edges of total weight `t or more, provided c ≤ 1.

The proof of this Lemma (using first moment methods) and the final steps towards our main
theorem are found in the full version of this paper.

4 Conclusion and Outlook

We established a method to determine load thresholds γk,` for k-ary cuckoo hashing with
(unaligned) windows of size `. In particular, we resolved the cases with k = 2 left open in
[6, 17], confirming corresponding experimental results by rigorous analysis.

The following four questions may be worthwhile starting points for further research.

Is there more in this method? It is conceivable that there is an insightful simplification of
our calculations that yields a less unwieldy characterisation of γk,`. We also suspect that the
threshold for the appearance of the (`+ 1)-core of Ŵn can be identified with some additional
work (for cores see e.g. [19, 14]). This threshold is of interest because it is the point where
the simple peeling algorithm to compute an orientation of Ŵn breaks down.

Can we prove efficient insertion? Given our experiments concerning the performance of
Khosla’s LSA algorithm for inserting elements in our hashing scheme (for details refer to the
full version), it seems likely that its runtime is linear. But one could also consider approaches
that do not insert elements one by one but build a hash table of load c = γk,` − ε given
all elements at once. Something in the spirit of the selfless algorithm [3] or excess degree
reduction [4] may offer linear runtime with no performance degradation as ε gets smaller, at
least for k = 2.
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How good is it in practice? This paper does not address the competitiveness of our hashing
scheme in realistic practical settings. The fact that windows give higher thresholds than
(aligned) blocks for the same parameter ` may just mean that the “best” ` for a particular
use case is lower, not precluding the possibility that the associated performance benefit is
outweighed by other effects. [6] provide a few experiments in their appendix suggesting slight
advantages for windows in the case of unsuccessful searches and slight disadvantages for
successful searches and insert operations, in one very particular setup with k = 2. Further
research could take into account precise knowledge of cache effects on modern machines,
possibly using a mixed approach, respecting alignment only insofar as it is favoured by the
caches. Ideas from Porat and Shalem [21] could prove beneficial in this regard.

What about other geometries? We analysed linear hash tables where objects are assigned
random intervals. One could also consider a square hash table (Z√n)2 where objects are
assigned random squares of size ` × ` (with no alignment requirement). We suspect that
understanding the thresholds in such cases would require completely new techniques.
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Abstract
A fundamental problem in the theory of secure multi-party computation (MPC) is to character-
ize functions with more than 2 parties which admit MPC protocols with information-theoretic
security against passive corruption. This question has seen little progress since the work of Chor
and Ishai (2001), which demonstrated difficulties in resolving it. In this work, we make signific-
ant progress towards resolving this question in the important case of aggregating functionalities,
in which m parties P1, . . . , Pm hold inputs x1, . . . , xm and an aggregating party P0 must learn
f(x1, . . . , xm).

We give a necessary condition and a slightly stronger sufficient condition for f to admit a
secure protocol. Both the conditions are stated in terms of an algebraic structure we introduce
called Commuting Permutations Systems (CPS), which may be of independent combinatorial
interest.

When our sufficiency condition is met, we obtain a perfectly secure protocol with minimal
interaction, that fits the model of Non-Interactive MPC or NIMPC (Beimel et al., 2014), but
without the need for a trusted party to generate correlated randomness. We define Unassisted
Non-Interactive MPC (UNIMPC) to capture this variant. We also present an NIMPC protocol
for all functionalities, which is simpler and more efficient than the one given in the prior work.
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A fundamental problem in the theory of secure multi-party computation (MPC) is to
characterize functions with more than 2 parties which admit MPC protocols with information-
theoretic security against passive corruption. This question has seen little progress since the
work of Chor and Ishai [2], which demonstrated difficulties in resolving it.

We report an ongoing work, in which we make significant progress towards resolving this
question in the important case of aggregating functionalities: In an aggregating functionality,
there arem parties P1, . . . , Pm with inputs x1, . . . , xm and an aggregating party P0 must learn
f(x1, . . . , xm). Aggregating functionalities form a practically and theoretically important
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class. In particular, it has been the subject of an influential line of study that started with the
minimal model for secure computation of Feige, Kilian and Naor [4]. This model – sometimes
refered to as the Private Simultaneous Messages (PSM) model – served as a precursor of
important concepts like randomized encodings [5] that have proven useful in a variety of
cryptographic applications. Recently, a strengthening of this model, called Non-Interactive
MPC (NIMPC) was introduced by Beimel et al. [1], which is closer to standard MPC in
terms of the security requirements. In both these models the severe restriction on the
communication pattern often leads to simple and elegant protocols. Indeed, for specialized
functions (like “Remote-OT” and AND) the original protocols developed in the PSM model
[4] can also be shown to be optimal (or very nearly so) in terms of communication and
randomness complexity [3, 9]. Similarly, Beimel et al. discovered several elegant NIMPC
protocols for special classes of functions [1]. However, these protocols do not directly translate
to MPC protocols as these models include a trusted party which sends correlated random
variables to the parties in a pre-processing phase. The term aggregating functionality was
coined in [8].

Our contributions in this work fall into three broad categories: (1) minimal models
of computation, (2) algebraic-combinatorial classes of aggregating functionalities, and (3)
positive and negative results relating the above two.

Minimal Models of MPC. The previous minimalistic models of MPC – PSM [4] and
NIMPC [1] – admit secure protocols for all functions, unlike the full-fledged MPC model.
Our minimalistic models (called UNIMPC∗ and UNIMPC) admit secure protocols only for
functions which have secure protocols in the MPC model. While the previous models were
proposed in the context of studying communication complexity of information-theoretic MPC,
ours is perhaps the first significant model aimed at studying the feasibility of information-
theoretic MPC.

UNIMPC stands for Unassisted NIMPC and, as the name suggests, removes the assistance
from the trusted party in NIMPC: Instead the parties should securely compute the correlated
randomness by themselves, in an offline phase. Unlike PSM and NIMPC, which allow trusted
parties, UNIMPC retains the standard security model of MPC, allowing corruption of any
set of parties. While MPC and NIMPC are incomparable in the sense that an MPC protocol
does not yield an NIMPC protocol (because of the general communication pattern) and an
NIMPC protocol does not yield an MPC protocol (because of the use of a trusted party),
UNIMPC could be seen as a common denominator of these two secure computation models.

A UNIMPC protocol can be directly interpreted as an MPC protocol as well as an
NIMPC protocol.

UNIMPC∗ corresponds to a minimalistic version of UNIMPC, with protocols which have
a single round of (simultaneous) communication among the parties before they get their
inputs, followed by a single message from each party to the aggregator after they receive their
input. (UNIMPC allows arbitrarily many rounds of communication prior to receiving inputs.)
Understanding the gap between the classes of functionalities with UNIMPC and UNIMPC∗
protocols is closely related to understanding the power of multiparty secure sampling [7].

Commuting Permutations Systems. We identify an algebraic-combinatorial structure
called Commuting Permutations System (CPS) and a sub-class called Commuting Permuta-
tion Subgroup Systems (CPSS).

Below Sn denotes the symmetric group – the group of all permutations of n elements.
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I Definition 1. An (n,m)-Commuting Permutations System (CPS) is a collection (X1, · · · ,
Xm) where for all i ∈ [m], Xi ⊆ Sn contains the identity permutation, and for any collection
(π1, · · · .πm) with πi ∈ Xi, and ρ ∈ Sm, π1 ◦ · · · ◦ πm(1) = πρ(1) ◦ · · · ◦ πρ(m)(1).1

It is called an (n,m)-Commuting Permutation Subgroups System (CPSS) if each Xi is a
subgroup of Sn.

An (m+ 1)-party aggregating functionality f : X1 × · · · ×Xm → [n] is said to be a CPS
functionality (resp. CPSS functionality) if (X1, · · · , Xm) is an (n,m)-CPS (resp. (n,m)-CPSS)
and for all (π1, · · · , πm) ∈ X1 × · · · ×Xm, f(π1, · · · , πm) = (

∏
i∈[m] πi)(1).

Results. Our main results can be summarized as follows. Writing CPS (or CPSS) for
class of functionalities that “embed” into a CPS (respectively, CPSS) functionality, and
UNIMPC∗, UNIMPC and MPC for classes of functionalities that admit the corresponding
secure protocol, we have, for any number of parties,

CPSS ⇒ UNIMPC∗ ⇒ UNIMPC ⇒ MPC ⇒ CPS.

Note that we leave an intriguing gap between the necessary and sufficient conditions.
In particular we leave open the possibility that the set of functionalities with UNIMPC
protocols is a strict subset of the set of aggregating functionalities with MPC protocols, and
is a strict superset of aggregating functionalities with UNIMPC∗ protocols. However, these
differences disappear for small number of parties: When the number of input parties is 2, we
show that UNIMPC∗ ⇔ CPS, and when the number of input parties is 3, UNIMPC ⇔ CPS.

We also obtain a characterization of all “Latin hypercube functionalities” which have an
MPC protocol, and show that they all have UNIMPC∗ protocol. This result relies on the above
results, as well as on the existence of NIMPC protocols for every CPS functionality. For the
sake of being self-contained we present a simple NIMPC protocol for general functionalities,
which in fact turns out to be more efficient than the prior constructions [1, 6].

Our results could be seen as a step towards fully characterizing the functionalities
with information-theoretic MPC protocols in various security models. For instance, for
characterizing functionalities with UC secure protocols, aggregating functionalities remain
the only class to be understood [8], and the sub-classes of aggregating functionalities identified
in this work can serve as a starting point for understanding UC security. Similarly, the
problem of characterizing symmetric functions (when all parties get the same output) as
considered in [2] is still unsolved, but our positive results do present new possibilities there
(because a passive-secure MPC protocol for an aggregating functionality can be readily
converted into one for a symmetric functionality computing the same function).
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Abstract
We consider the Shallow-Light Steiner Network problem from a fixed-parameter perspect-
ive. Given a graph G, a distance bound L, and p pairs of vertices {(si, ti)}i∈[p], the objective
is to find a minimum-cost subgraph G′ such that si and ti have distance at most L in G′ (for
every i ∈ [p]). Our main result is on the fixed-parameter tractability of this problem for para-
meter p. We exactly characterize the demand structures that make the problem “easy”, and give
FPT algorithms for those cases. In all other cases, we show that the problem is W[1]-hard. We
also extend our results to handle general edge lengths and costs, precisely characterizing which
demands allow for good FPT approximation algorithms and which demands remain W[1]-hard
even to approximate.
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1 Introduction

We study length-bounded variants of Steiner Tree and Steiner Forest, which are related
to (but still quite different from) directed variants. The direct setting assumes that the edges
in the graph are directed. While in the length-bounded setting, we typically assume that
the input graph and demands are undirected but each demand has a distance bound, and
a solution is only feasible if every demand is connected within distance at most the given
bound (rather than just being connected). One of the most basic problems of this form is the
Shallow-Light Steiner Tree problem (SLST), where the demands {(si, ti)}i∈[p] form a
star with root r = s1 = s2 = · · · = sp and there is a global length bound L (so in any feasible
solution the distance from r to ti is at most L for all i ∈ [p]). This problem has been studied
extensively [8, 9, 6, 5], but if we generalize this problem to arbitrary demand pairs then we
get the Shallow-Light Steiner Network problem, which to the best of our knowledge
has received essentially no study.
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I Definition 1 (Shallow-Light Steiner Network). Given a graph G = (V,E), a cost
function c : E → R+, a length function l : E → R+, a distance bound L, and p pairs of
vertices {(si, ti)}i∈[p]. The objective of SLSN is to find a minimum cost subgraph G′ = (V, S),
such that for every i ∈ [p], there is a path between si and ti in G′ with length at most L.

Let H be the graph with vertex set {s1, . . . , sp, t1, . . . , tp} and edge set {(si, ti)}i∈[p]. We
call H the demand graph of the problem.

Both the directed and the length-bounded settings share a dichotomy between considering
either star demands (Directed Steiner Tree (DST)/SLST) or totally general demands
(Directed Steiner Network (DSN)/SLSN). But this gives an obvious set of questions:
what demand graphs make the problem “easy” (in FPT) and what demand graphs make
the problem “hard” (W[1]-hard)? Recently Feldmann and Marx [4] gave a complete charac-
terization for this for DSN, proving that if the demand graph is transitively equivalent to an
“almost-caterpillar” then the problem is in FPT, and otherwise the problem is W[1]-hard.

While a priori there might not seem to be much of a relationship between the directed
and the length-bounded settings, there are multiple folklore results that relate them, usually
by means of some sort of layered graph. For example, any FPT algorithm for the DST
problem can be turned into an FPT algorithm for SLST (with unit edge lengths) and vice
versa. However, such a relationship is not known for more general demand graphs.

In light of these relationships between the directed and the length-bounded settings and
the recent results of [4], it is natural to attempt to characterize the demand graphs that
make SLSN easy or hard. We solve this problem, giving a complete characterization of easy
and hard demand graphs. Informally, we show that SLSN is significantly harder than DSN:
the only “easy” demand graphs are stars (in which case the problem is just SLST) and
constant-size graphs. Even tiny modifications, like a star with a single independent edge,
become W[1]-hard (despite being in FPT for DSN).

Connection to Overlay Routing: SLST and SLSN are particularly interesting due to their
connection to overlay routing protocols that use so-called dissemination graphs for routing
rather than traditional paths. Routing on dissemination graphs allows these systems to be
significantly more robust, and a length bound corresponds to a latency bound, which is
critical for many applications. Recently, Babay et al. [1] designed and built such a system,
and demonstrated that it can achieve significantly greater reliability and timeliness than
traditional routing with only a slight increase in cost. Finding good solutions to 2

(
n
2
)
different

SLST instances and
(
n
2
)
different SLSN instances is a crucial piece of this system (as these

are the graphs on which routing happens). The search for fast algorithms for these instances
was the main motivation behind this work. We refer the interested reader to [1] for a further
discussion of this routing system and how it related to SLSN and SLST.

2 Our Results

We first define SLSN with respect to a class (set) of demand graphs.

I Definition 2. The Shallow-Light Steiner Network problem with restricted demand
graph class C (SLSNC) is the SLSN problem with the additional restriction that the demand
graph H of the problem must be isomorphic to some graph in C.

We define Cλ as the class of all demand graphs with at most λ edges, and C∗ as the class
of all star demand graphs (there is a central vertex called the root, and every other vertex
in the demand graph is adjacent to the root and only the root). Our main result is that
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these are precisely the easy classes: We first prove that SLSN is in XP for parameter p (i.e.
solvable in nf(p) time for some function f), which immediately implies that SLSNCλ

can
be solved in polynomial time if λ is a constant. Note that SLSNC∗ is precisely the SLST
problem, for which a folklore FPT algorithm exists, thus SLSNC∗ (while NP-hard) is in
FPT for parameter p. We also show that, for any other class C (i.e., any class which is not
just a subset of C∗∪Cλ for some constant λ), the problem SLSNC is W[1]-hard for parameter
p. In other words, if the class of demand graphs includes arbitrarily large non-stars, then the
problem is W[1]-hard parameterized by the number of demands. More formally, we prove
the following theorems.

I Theorem 3. The unit-length arbitrary-cost SLSN problem with parameter p is in XP,
and it can be solved in nO(p4) time.

To prove this theorem, we first prove a structural lemma which shows that the optimal
solution must be the union of several lowest cost paths with restricted length (these paths
may be between steiner nodes, but we show that there cannot be too many). Then we just
need to guess all the endpoints of these paths, as well as all the lengths of these paths. We
prove that there are only nO(p4) possibilities, and the running time is also nO(p4).

I Theorem 4. The unit-length arbitrary-cost SLSNC∗ problem is FPT for parameter p.

As mentioned, SLSNC∗ is exactly the same as SLST, so we use a folklore reduction
between SLST and DST to prove this theorem.

I Theorem 5. If C is a recursively enumerable class, and C * Cλ ∪ C∗ for any constant λ,
then SLSNC is W[1]-hard for parameter p, even in the unit-length and unit-cost case.

All of the above results are in the unit-length setting. We extend both our upper bounds
and hardness results to handle arbitrary lengths, but with some extra complications. Even
if p = 1, with arbitrary lengths and arbitrary costs the SLSN problem is equivalent to the
Restricted Shortest Path problem, which is known to be NP-hard [7]. Therefore we can
no longer hope for an FPT algorithm (with parameter p). So we change our notion of “easy”
from “solvable in FPT” to “arbitrarily approximable in FPT”: we show (1+ε)-approximation
algorithms for the easy cases, and prove that there is no

( 5
4 − ε

)
-approximation algorithm

for the hard cases in f(p) · poly(n) time for any function f .

I Theorem 6. For any constant λ > 0, there is a fully polynomial time approximation
scheme (FPTAS) for the arbitrary-length arbitrary-cost SLSNCλ

problem.

I Theorem 7. There is a (1 + ε)-approximation algorithm in O(4p · poly(nε )) time for the
arbitrary-length arbitrary-cost SLSNC∗ problem.

Our next theorem is analogous to Theorem 5, but since costs are allowed to be arbitrary
we can prove stronger hardness of approximation (under stronger assumptions).

I Theorem 8. Assume that the (randomized) Gap-Exponential Time Hypothesis [2] (Gap-
ETH) holds. Let ε > 0 be a small constant, and C be a recursively enumerable class where
C * Cλ ∪ C∗ for any constant λ. Then there is no

( 5
4 − ε

)
-approximation algorithm in

f(p) · nO(1) time for SLSNC for any function f , even with unit-lengths and polynomial-costs.

Note that this theorem uses a much stronger assumption (Gap-ETH rather than W[1]
6= FPT), which assumes that there is no (possibly randomized) algorithm running in 2o(n)

time that can distinguish whether a 3SAT formula is satisfiable or at most a (1− ε)-fraction
of its clauses can be satisfied. This enables us to utilize the hardness result for a generalized
version of the MCC problem from [3], which will allow us to modify our reduction from
Theorem 5 to get hardness of approximation.
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Abstract
We consider natural ways to extend the notion of Zero-Knowledge (ZK) Proofs beyond decision
problems. Specifically, we consider search problems, and define zero-knowledge proofs in this
context as interactive protocols in which the prover can establish the correctness of a solution to
a given instance without the verifier learning anything beyond the intended solution, even if it
deviates from the protocol.

The goal of this work is to initiate a study of Search Zero-Knowledge (search-ZK), the class
of search problems for which such systems exist. This class trivially contains search problems
where the validity of a solution can be efficiently verified (using a single message proof containing
only the solution). A slightly less obvious, but still straightforward, way to obtain zero-knowledge
proofs for search problems is to let the prover send a solution and prove in zero-knowledge that the
instance-solution pair is valid. However, there may be other ways to obtain such zero-knowledge
proofs, and they may be more advantageous.

In fact, we prove that there are search problems for which the aforementioned approach
fails, but still search zero-knowledge protocols exist. On the other hand, we show sufficient
conditions for search problems under which some form of zero-knowledge can be obtained using
the straightforward way.
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1 Introduction

The notion of Zero-Knowledge Proofs (ZK-Proofs) introduced by Goldwasser, Micali and
Rackoff [15] is one of the most insightful and influential in the theory of computing. Its
tremendous impact came not only from having numerous applications but maybe more
importantly from changing the way we think about proofs, communication and how to
formalize such intuitive claims as a party “not learning anything” from an interaction. In a
nutshell, a ZK-Proof is an interactive proof of some statement, i.e. an interaction between
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a prover P and a verifier V with the prover attempting to convince the verifier that some
instance x belongs to a language L. In addition to the usual completeness and soundness, in
the ZK scenario the prover wants to protect itself from revealing “too much information” to
the verifier. Surely the verifier needs to learn that indeed x ∈ L, but nothing else beyond
this fact should be revealed. Furthermore, even a malicious verifier that does not follow the
prescribed protocol should not be able to trick the prover into revealing more information
than intended. This intuitive statement is formalized using the simulation paradigm, the
existence of a simulator machine S that takes an input x ∈ L and a possibly cheating verifier
V ∗ and samples from the view of V ∗ in the interaction (P, V ∗) (up to negligible statistical
or computational distance). Since the view of the verifier can essentially be produced (up to
negligible distance) knowing only that x ∈ L, it clearly does not reveal anything beyond this
fact.

Our Results. In this work we consider a setting where again the prover is concerned about
revealing too much information to the verifier, but now in the context of search problems.
That is, the prover would like to assist the verifier in learning a solution y to an instance x of
some search problem, but would like to limit the verifier’s ability to learn anything beyond
the intended solution (or distribution of solutions).

While one’s first intuition of a search problem is of one where it is efficient to verify a
solution (i.e. searching for an NP witness), this is actually not the interesting setting here.
In fact, in this case the prover can just send the witness, and the verifier verifies locally, so
no additional information beyond the solution is revealed. One example one could consider
is the isomorphic vertex problem: given two graphs (G1, G2) and a vertex v1 in G1, find a
vertex v2 in G2 that is isomorphic to v1 under some isomorphism.

Our first contribution is to formalize this notion using the simulation paradigm, as
follows. We require that the prover for the interactive protocol is associated with a family
of distributions {Yx}x over solutions for each input x, intuitively corresponding to the
distribution V is allowed to learn. We require that the view of any verifier can be simulated
given only a sample y drawn from Yx. To reduce the number of free parameters in the definition
we propose to associate Yx with the distribution of solutions output by an interaction of an
honest prover with an honest verifier (note that importantly this refers to the distribution of
solutions y output by the honest verifier and not to the honest verifier’s entire view). Thus
the zero-knowledge task becomes to ensure that no verifier (including the honest verifier)
learns anything except the honest verifier’s prescribed output. In terms of soundness, we
require that V either outputs some valid solution for the search problem (if such exists), or
rejects, except perhaps with small probability, even when interacting with a malicious prover.

Intuitively one could think that in order to achieve search-ZK, the prover should first
sample a solution from Yx, send it to the verifier and then prove in decision-ZK the validity
of the solution (that is, that in a sense search-ZK is reducible to decision-ZK). Indeed almost
all examples for protocols we have are roughly of this form. We investigate whether it is
possible to provide a protocol of this form for any language in search-ZK, or whether there
are some cases where other methods can achieve search-ZK but the aforementioned outline
cannot. We define the class prefix-ZK to be the class of problems with protocols as above.
We show that prefix-ZK has a complete problem (which we are unable to show for general
search-ZK) and we show conditions under which some search-ZK systems can be transformed
into prefix-ZK (for the same underlying search problem). Finally, we show that, perhaps
counter-intuitively, search-ZK contains problems that are not in prefix-ZK, so at least in
that sense the study of search-ZK may not be a derivative of the study of decision-ZK.
Interestingly, this separation follows from showing that search-PSPACE does not contain
search-IP, which may be of independent interest.
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Lastly, we discuss the relation between search-ZK and the notion of pseudo-deterministic al-
gorithms and protocols presented by Gat and Goldwasser [6] and further explored by Goldreich,
Goldwasser, Grossman, Holden and Ron [7, 12, 16, 13, 14]. In a pseudo-deterministic protocol,
not only should the distribution Yx be a singleton yx, but also the soundness requirement
is that a malicious prover cannot make an honest verifier output a solution different from
yx (except with small probability). One of the advantages of pseudo-deterministic protocols
is that they allow for soundness amplification for search problems. We show that the iso-
morphic vertex problem indeed has a pseudo-deterministic search-ZK protocol, suggesting
that achieving strong soundness together with strong privacy is possible in some interesting
cases.

Related Notions. The first related notion is that of secure multiparty computation (MPC)
by Yao [20] and Goldreich, Micali and Wigderson [8]. For the purpose of this work, the
relevant setting is of secure two-party computation where two parties A, B with inputs xA, xB

wish to compute values yA, yB which depend on both inputs. The privacy requirement is
that each party does not learn more than its intended output. It would appear that setting
A = P , B = V , and defining FB appropriately to output what the verifier is allowed to learn,
should result in a search-ZK protocol. However, looking more closely, the complexity of an
MPC protocol scales with the complexity of the function FB , which in general scales with the
complexity of the prover’s functionality. If the prover’s functionality is not in NP, then MPC
cannot be used. MPC appears to be useful in the restricted case of computational search-ZK
for search problems that can be computed as a function of an NP witness. Our isomorphic
vertex problem falls into that category (with the NP witness being an isomorphism), however
for isomorphic vertex we have a statistical search-ZK protocol. For statistical search-ZK,
the MPC methodology does not seem to be useful, since information theoretically secure
two-party computation is not possible [3, 2].

Another related like of work is concerned with privacy of approximation algorithms,
initiated by Feigenbaum et al. [5] and Halevi et al. [17], and further studied by Beimel et
al. [1]. The setting in these works is quite different from ours. Their ideal setting is where a
solution to some search problem is posted without revealing the input (e.g. output a vertex
cover for some graph without revealing the edges of the graphs). The problem arises when
solving exactly is hard and an approximation algorithm is used instead. Their goal is to show
that the approximate solution does not reveal more information than the exact solution. Note
that in this setting there is no soundness requirement (in fact, a client cannot be convinced
that a solution is correct since it does not have the input).

Future Directions. Our work is far from being an exhaustive study of search-ZK, and we
hope to open the door for additional study. One direction of research is designing search-ZK
protocols for other problems of interest, and more importantly general approaches for search-
ZK for classes of problems. The question of whether search-ZK has complete problems in
the computational and statistical setting remains open. Another intriguing line of inquiry,
which may also be helpful for resolving the above, is whether we can translate the extensive
body of work on statistical ZK protocols [4, 18, 9, 11, 10, 19] into the search regime.
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Abstract
We study variants of locally decodable and locally correctable codes in computationally bounded,
adversarial channels, under the assumption that collision-resistant hash functions exist, and
with no public-key or private-key cryptographic setup. Specifically, we provide constructions
of relaxed locally correctable and relaxed locally decodable codes over the binary alphabet, with
constant information rate, and poly-logarithmic locality. Our constructions compare favorably
with existing schemes built under much stronger cryptographic assumptions, and with their
classical analogues in the computationally unbounded, Hamming channel. Our constructions
crucially employ collision-resistant hash functions and local expander graphs, extending ideas
from recent cryptographic constructions of memory-hard functions.
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Introduction
An error-correcting code is a tuple (Enc,Dec), where a sender encodes a message m of k
symbols from an alphabet Σ, into a codeword c of block-length n, consisting of symbols
over the same alphabet, using encoding algorithm Enc : Σk → Σn; a receiver uses decoding
algorithm Dec : Σn → Σk to recover the message m from a received word w ∈ Σn. Codes
with both large information rate, defined as k/n, and large error rate, which is the tolerable
fraction of errors in the received word, are most desirable.

In modern uses of error-correcting codes, one may only need to recover small portions
of the message, such as a single bit. Given an index i ∈ [n], and oracle access to w, a local
decoder must make only q = o(n) queries into w, and output the bit mi. The locality of the
decoder is defined to be q. Codes that admit such fast decoders are called locally decodable
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codes (LDCs) [12, 15]. A related notion is that of locally correctable codes (LCCs), where the
local decoder must output bits of the codeword c, instead of bits of the message m.

Ben-Sasson et al. [4] propose the notion of relaxed locally decodable codes (RLDCs) as
a way to remedy the dramatic tradeoffs of classical LDCs. In this notion the decoding
algorithm is allowed to output “⊥” sometimes; however, it should not output an incorrect
value too often. More formally, given i ∈ [k], and oracle access to the received word w, which
is assumed to be relative close to some codeword c = Enc(m) ∈ Σn, the local decoder: (1)
outputs mi if w = c; (2) outputs either mi or ⊥ with probability 2/3, otherwise; and, (3) the
set of indices i such that the decoder outputs mi (the correct value) with probability 2/3,
has size at least ρ · k for some constant ρ > 0. The relaxed definition allows them to achieve
RLDCs with constant query complexity and blocklength n = k1+ε.

Recently, Gur et al. [9] introduce the analogous notion of relaxed locally correctable codes
(RLCCs). The results in [9] obtain significantly better parameters for RLCCs than for classical
LCCs; namely, they construct RLCCs with constant query complexity, polynomial block
length, and constant error rate, and RLCCs with quasipolynomial query complexity, linear
blocklength (constant rate), with the caveat that the error rate is subconstant. These results
immediately extend to RLDCs, since their codes are systematic, meaning that the initial part
of the encoding consists of the message itself.

Computationally bounded, adversarial channels
All the above constructions of local codes assume a channel that may introduce a bounded
number of adversarial errors, and the channel has as much time as it needs to decide
what positions to corrupt (i.e., the standard Hamming channel). In this work we study
RLDCs and RLCCs in the computationally bounded, adversarial channel model, introduced
by Lipton [13]. In this model we require that the adversary who determines which bits of
the codeword to corrupt must run in probabilistic polynomial time. Existing constructions
of locally correctable codes in the computationally bounded channel model typically require
preliminary trusted setup [14, 10, 11, 7] (e.g., the sender and receiver have established
cryptographic keys). By contrast, our results do not require the sender and the receiver
to share a secret key for a symmetric cipher, nor do we assume the existence of a public
key infrastructure (PKI). Instead our constructions are based on the existence of collision-
resilient hash functions, a standard cryptographic assumption. Because the parameters of a
collision-resistant hash function are public, any party (sender/receiver/attacker) is able to
evaluate it.

Our Contributions
We now define our model. Our codes interact with an adversarial channel, so their strength
is measured both in their error correction and locality capabilities (as for RLCCs/RLDCs),
and in the security they provide against the channel.

I Definition 1. A computational adversarial channel A with error rate τ is an algorithm
that interacts with a local code (Gen,Enc,Dec) of rate k/n in rounds, as follows. In each
round of the execution, given a security parameter λ,
(1) Generate s← Gen(1λ); s is public, so Enc, Dec, and A have access to s
(2) The channel A on input s hands a message x to the sender.
(3) The sender computes c = Enc(s, x) and hands it back to the channel (in fact, the channel

can compute c without this interaction).
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(4) The channel A corrupts at most τn entries of c to obtain a word w ∈ Σn; w is given to
the receiver’s Dec with query access, together with a challenge index i ∈ [n]

(5) The receiver outputs b← Decw(s, i).
(6) We define A(s)’s probability of fooling Dec on this round to be pA,s = Pr[b 6∈ {⊥, ci}],

where the probability is taken only over the randomness of the Decw(s, i). We say that
A(s) is γ-successful at fooling Dec if pA,s > γ. We say that A(s) is ρ-successful at
limiting Dec if |GoodA,s| < ρ · n, where GoodA,s ⊆ [n] is the set of indices j such that
Pr[Decw(s, j) = cj ] > 2

3 . We use FoolA,s(γ, τ, λ) (resp. LimitA,s(ρ, τ, λ)) to denote the
event that the attacker was γ-successful at fooling Dec (resp. ρ-successful at limiting Dec)
on this round.

I Definition 2 ((Computational) Relaxed Locally Correctable Codes (CRLCC)). A local code
(Gen,Enc,Dec) is a (q, τ, ρ, γ, µ(·))-CRLCC against a class A of adversaries, if Decw makes
at most q queries to w and satisfies the following:
(1) For all public seeds s if w ← Enc(s, x) then Decw(s, i) outputs b = (Enc(s, x))i.
(2) For all A ∈ A we have Pr[FoolA,s(γ, τ, λ)] ≤ µ(λ), where the randomness is taken over

the selection of s← Gen(1λ) as well as A’s random coins.
(3) For all A ∈ A we have Pr[LimitA,s(ρ, τ, λ)] ≤ µ(λ), where the randomness is taken over

the selection of s← Gen(1λ) as well as A’s random coins.
When µ(λ) = 0 and A is the set of all (computationally unbounded) channels we say that the
code is a (q, τ, ρ, γ)-RLCC. When µ(·) is a negligible function and A is restricted to the set of
all probabilistic polynomial time (PPT) attackers we say that the code is a (q, τ, ρ, γ)-CRLCC
(computational relaxed locally correctable code). We say that a code that satisfies conditions
1 and 2 is a Weak CRLCC, while a code satisfying 1, 2 and 3 is a Strong CRLCC.

Results and Techniques. At a technical level our constructions use local expander graphs
and collision resistant hash functions (CRHF) as main building blocks.

Local expanders have several nice properties that have been recently exploited in the
design and analysis of secure memory hard functions [8, 1, 2, 6, 3]. Given a graph G = (V,E)
and distinguished subsets A,B ⊆ V of nodes such that A and B are disjoint and |A| = |B|,
we say that the pair (A,B) contains a δ-expander if for all X ⊆ A and Y ⊆ B with |X| > δ|A|
and |Y | > δ|B|, there is an edge connecting X and Y . A δ-local expander is a directed acyclic
graph G with n nodes V (G) = {1, . . . , n} with the property that for any radius r > 0 and
any node v ≥ 2r the sets A = {v − 2r + 1, . . . , v − r} and B = {v − r + 1, . . . , v} contain a
δ-expander. For any constant δ > 0 it is possible to construct a δ-local expander with the
property that indeg(G) ∈ O (log n) and outdeg(G) ∈ O (log n) [8, 3].

A CRHF function is a pair (GenH, H) of PPT algorithms, where for security parameter 1λ,
GenH outputs a public seed s ∈ {0, 1}∗ that is passed as the first input to H : {0, 1}∗×Σ∗ →
Σ`(λ). The length of the hash function is `(λ). (GenH, H) is said to be collision-resistant if
any PPT adversary can produce a collision with only negligible probability.

Using local expander graphs we first construct Weak CRLCCs and then Strong CRLCCs
against PPT adversaries, under the assumption that CRHFs exist. Our constructions are
systematic, so they immediately imply the existence of CRLDCs with the same parameters.

I Theorem 3. Assuming the existence of a CRHF (GenH, H) with length `(λ), there exist
constants 0 < τ, ρ, γ < 1 and a negligible function µ, such that there exists a constant rate
(polylog n, τ, ρ, γ, µ(·))-Strong CRLCC of blocklength n over the binary alphabet. In particular,
if `(λ) = polylog λ and λ ∈ Θ(n) then the code is a (polylog n, τ, ρ, γ, µ(·))-Strong CRLCC.
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The classical RLCCs of [9] achieve (log n)O(log logn) query complexity, constant information
rate, but subconstant error rate, in the Hamming channel.
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Abstract

In this announcement, we show that the classical Maximum Coverage problem (MC) admits
a PTAS via local search in essentially all cases where the corresponding instances of Set Cover
(SC) admit a PTAS via the local search approach by Mustafa and Ray [7]. As a corollary, we
answer an open question by Badanidiyuru, Kleinberg, and Lee [1] regarding half-spaces in R3

thereby settling the existence of PTASs for essentially all natural cases of geometric MC problems.
As an intermediate result, we show a color-balanced version of the classical planar subdivision
theorem by Frederickson [5]. We believe that some of our ideas may be useful for analyzing local
search in other settings involving a hard cardinality constraint.
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1 Introduction and Contribution

Let U be a set of ground elements, F ⊆ 2U be a family of subsets of U and k be a positive
integer. The Maximum Coverage (MC) problem asks for a k-subset F ′ of F such that the
number |

⋃
F ′| of ground elements covered by F ′ is maximized. In the closely related Set

Cover problem (SC), the goal is to cover all ground elements using as few sets as possible.
Both problems are among the most fundamental NP-hard optimization problems and their
approximability is in general well understood [3, 4].

We examine the approximability of geometric MC problems. Badanidiyuru et al. [1]
provided fixed-parameter approximation schemes for the large class of MC problems with
bounded VC dimension. The running times of these schemes are polynomial in |U | and |F|
but exponential in k, in the VC dimension, and in the reciprocal of the error parameter ε > 0.
Prior to their work [1], Mustafa and Ray [7] had shown that local search yields PTASs for
many geometric SC problems where a naturally defined exchange graph between a locally
optimum solution and a globally optimum solution is planar. While the range of settings
solvable by the fixed-parameter approximation approach of Badanidiyuru et al. is in principle
even broader, the approach of Mustafa and Ray gives PTASs with strictly polynomial running
time while still encompassing essentially all of the natural cases of (unweighted) SC that are
not known to be APX-hard. It is thus an interesting question if their approach gives PTASs
(with strictly polynomial running times) also for the corresponding MC problems.

A difficulty in carrying over this approach from SC to MC lies in the hard cardinality
constraint in MC. For SC, Mustafa and Ray used the planar subdivision theorem by Fre-
derickson [5] to subdivide the above-mentioned planar exchange graph into small pieces
where each one provides a candidate swap. This subdivision may, however, be arbitrarily
unbalanced with respect to the two feasible solutions forming the node set of the exchange
graph. Hence a direct application of this approach would be in conflict with the cardinality
constraint. Another difficulty comes from the different objective functions of MC and SC
and that the analysis of Mustafa and Ray exploits that all ground elements are covered.

In this announcement we summarize how to overcome these issues (see [2] for the full
version). A key step in our proof is that the pieces of an (unbalanced) subdivision obtained
Frederickson’s theorem [5] can be recombined in a careful way to obtain a color-balanced
version of that theorem (see Theorem 2). Also the subsequent analysis of the performance
guarantee requires some new ideas because of the other above-mentioned difficulties, and
because our colored subdivision cannot not achieve perfect but only rough balance.

In a b-local search for MC, we start with any feasible solution. We perform a profitable
swap of cardinality b as long as there is one. The timing is polynomial for constant b.

2 Our Results

For a graph G, a subset S of V (G) is an α-balanced separator when its removal breaks G
into two collections of connected components such that each collection contains at most an
α fraction of V (G) where α ∈ [ 1

2 , 1) and α is a constant. The size of a separator S is the
number of vertices it contains. For a non-decreasing sublinear function f , a subgraph-closed
class of graphs is said to be f -separable if there is an α ∈ [ 1

2 , 1) such that for any n > 2, any
n-vertex graph in the class has an α-balanced separator of size at most f(n).

I Definition 1. A class C of instances of MC is called f-separable if for any two disjoint
feasible solutions F and F ′ of any instance in C there exists an f -separable graph G with
node set F ∪ F ′ with the following exchange property. If there is a ground element u ∈ U
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that is covered both by F and F ′ then there exists an edge (S, S′) in G with S ∈ F and
S′ ∈ F ′ with u ∈ S ∩ S′.

Note that a class of MC instances where each instance admits planar exchange graphs is
O(
√
n)-separable.

I Theorem 2. Let G be a subgraph-closed f-separable graph class and G be a 2-colored
n-vertex graph in G with color classes Γ1,Γ2 such that |Γ2| ≥ |Γ1|. For any q and r � n

where r is suitably large, there is an integer t ∈ Θ( n
q·r ) such that V can be partitioned into

t + 1 sets X , V1, . . . , Vt where c1, c2 are constants (depending only on f) and there is an
integer q′ ∈ [q, 2q − 1] satisfying the following properties.
(i) N(Vi) ∩ Vj = ∅ for each i 6= j and X =

⋃
i N(Vi),

(ii) |Vi| ≥ q′·r
2 and |Vi| ≤ 2 · (q′ + 1) · r for each i,

(iii) |N(Vi)| ≤ c1 · q · f(r) for each i (thus, |X | ≤
∑t

i=1 |N(Vi)| ≤ c2·f(r)·n
r ),

(iv)
∣∣∣|Vi ∩ Γ1| − |Γ1|

|Γ2| · |Vi ∩ Γ2|
∣∣∣ ≤ 4 · r for each i.

I Theorem 3. For any non-decreasing strictly sublinear function f , every f -separable class
of MC instances (closed under removing elements and sets) admits a PTAS via local search.

The following theorem describes several cases of MC that can be solved by our approach.
Therein, we refer to several maximization versions of classical minimum covering problems
(such as Vertex Cover). For example, in Maximum Vertex Cover, we are given a graph
G and number k and we want to find a k vertices which cover as many edges as possible.
The others are defined analogously. For a definition of 1.5D Terrain Guarding we refer
to Krohn et al. [6].

I Theorem 4. Local search gives a PTAS for:

(V) the Maximum Vertex Cover problem on f-separable and subgraph-closed graph
classes,

(T) the Maximum 1.5D Terrain Guarding problem.

and the following classes of MC problems:
(C1) the set of ground elements is a set of points in R3, and the family of subsets is induced

by a set of halfspaces in R3.
(C2) the set of ground elements is a set of points in R2, and the family of subsets is induced

by a set of convex pseudodisks (a set of convex objects where any two objects can have at
most two intersections in their boundary).

and the following Maximum Hitting Set problems:
(H1) the set of ground elements is a set of points in R2, and the set of ranges is induced by a

set of r-admissible regions (this includes pseudodisks, same-height axis-parallel rectangles,
circular disks, translates of convex objects).

(H2) the set of ground elements is a set of points in R3, and the set of ranges is induced by
a set of halfspaces in R3.

and Maximum Dominating Set problems in each of the following graph classes:
(D1) intersection graphs of homothetic copies of convex objects (which includes arbitrary

squares, regular k-gons, translated and scaled copies of a convex object).
(D2) non-trivial minor-closed graph classes.
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Abstract
Generating good revenue is one of the most important problems in Bayesian auction design,
and many (approximately) optimal dominant-strategy incentive compatible (DSIC) Bayesian
mechanisms have been constructed for various auction settings. However, most existing studies
do not consider the complexity for the seller to carry out the mechanism. It is assumed that the
seller knows “each single bit” of the distributions and is able to optimize perfectly based on the
entire distributions. Unfortunately this is a strong assumption and may not hold in reality: for
example, when the value distributions have exponentially large supports or do not have succinct
representations.

In this work we consider, for the first time, the query complexity of Bayesian mechanisms.
We only allow the seller to have limited oracle accesses to the players’ value distributions, via
quantile queries and value queries. For a large class of auction settings, we prove logarithmic
lower-bounds for the query complexity for any DSIC Bayesian mechanism to be of any constant
approximation to the optimal revenue. For single-item auctions and multi-item auctions with
unit-demand or additive valuation functions, we prove tight upper-bounds via efficient query
schemes, without requiring the distributions to be regular or have monotone hazard rate. Thus,
in those auction settings the seller needs to access much less than the full distributions in order
to achieve approximately optimal revenue.
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1 Introduction

An important problem in Bayesian mechanism design is to design auctions that (approx-
imately) maximize the seller’s expected revenue. More precisely, in a Bayesian multi-item
auction a seller has m heterogenous items to sell to n players. Each player i has a private
value for each item j, vij ; and each vij is independently drawn from some prior distribution
Dij . When the prior distribution D , ×ijDij is of common knowledge to both the seller and
the players, optimal Bayesian incentive-compatible (BIC) mechanisms have been discovered
for various auction settings [16, 11, 4, 5], where all players reporting their true values forms
a Bayesian Nash equilibrium. When there is no common prior but the seller knows D,
many (approximately) optimal dominant-strategy incentive-compatible (DSIC) Bayesian
mechanisms have been designed [16, 17, 7, 14, 19, 6], where it is each player’s dominant
strategy to report his true values.

However, the complexity for the seller to carry out such mechanisms is largely unconsidered
in the literature. Most existing Bayesian mechanisms require that the seller has full access
to the prior distribution D and is able to carry out all required optimizations based on
D, so as to compute the allocation and the prices. Unfortunately the seller may not be
so knowledgeable or powerful in real-world scenarios. If the supports of the distributions
are exponentially large (in m and n), or if the distributions are continuous and do not
have succinct representations, it is hard for the seller to write out “each single bit” of the
distributions or precisely carry out arbitrary optimization tasks based on them. Even with
a single player and a single item, when the value distribution is irregular, computing the
optimal price in time that is much smaller than the size of the support is not an easy task.
Thus, a natural and important question to ask is how much the seller should know about the
distributions in order to obtain approximately optimal revenue.

In this work we consider, for the first time, the query complexity of Bayesian mechanisms.
In particular, the seller can only access the distributions by making oracle queries. Two
types of queries are allowed, quantile queries and value queries. That is, the seller queries the
oracle with specific quantiles (respectively, values), and the oracle returns the corresponding
values (respectively, quantiles) in the underlying distributions. These two types of queries
happen a lot in market study. Indeed, the seller may wish to know what is the price he
should set so that half of the consumers would purchase his product; or if he sets the price
to be 200 dollars, how many consumers would buy it. Another important scenario where
such queries naturally come up is in databases. Indeed, although the seller may not know
the distribution, some powerful institutes, say the Office for National Statistics, may have
such information figured out and stored in its database. As in most database applications, it
may be neither necessary nor feasible for the seller to download the whole distribution to his
local machines. Rather, he would like to access the distribution via queries to the database.
Other types of queries are of course possible, and will be considered in future works.

In this work we focus on non-adaptive queries. That is, the seller makes all oracle queries
simultaneously, before the auction starts. This is also natural in both database and market
study scenarios, and adaptive queries will be considered in future works.

2 Main Results

We would like to understand both lower- and upper-bounds for the query complexity of
approximately optimal Bayesian auctions. In this work, we mainly consider three widely
studied settings: single-item auctions and multi-item auctions with unit-demand or additive
valuation functions. Our main results are summarized in Table 1.
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Table 1 Our main results. Here h(·) < 1 is the tail function in the small-tail assumptions. For
single-item auctions, the revenue is a (1 + ε)-approximation to the optimal BIC revenue, with ε

sufficiently small. For multi-item auctions with unit-demand or additive valuation functions, the
revenue is a c-approximation for some constant c.

Query Distributions

Complexity Bounded in [1, H] Unbounded & Small Tail

A
uc

tio
ns

Single-Item Θ(nε−1 logH) O(−nε−1 log h( 2ε
3(1+ε) )

Unit-Demand ∀c > 1: Ω(mn logH
log c ) ∀c > 24: O(mn logH

log(c/24) ) ∀c > 24: O(−mn logh( 2c−48
3c

)
log(c/24) )

Additive ∀c > 1: Ω(mn logH
log c ) ∀c > 8: O(mn logH

log(c/8) ) ∀c > 8: O(−m
2n logh( c−8

10c
)

log(c/8) )

Single-Item Regular Distributions: Ω(nε−1), O(nε−1 log n
ε
)

Note that we allow arbitrary unbounded distributions that satisfy small-tail assumptions,
which means the expected revenue generated from the “tail” of the distributions is negligible
compared to the optimal revenue. Similar assumptions are widely adopted in sampling
mechanisms [18, 12], to deal with irregular distributions with unbounded supports. Since
distributions with bounded supports automatically satisfy the small-tail assumptions, the
lower-bounds listed for the former apply to the latter as well.

Also note that our lower- and upper-bounds on query complexity are tight for bounded
distributions. In the full version of the paper [9], we show that our lower-bounds allow the
seller to make both value and quantile queries, and apply to any multi-player multi-item
auctions where each player’s valuation function is succinct sub-additive. The lower-bounds
also allow randomized queries and randomized mechanisms.

For the upper-bounds, all our query schemes are deterministic and only make one type of
queries: value queries for bounded distributions and quantile queries for unbounded ones. We
show that our schemes, despite of being very efficient, only loses a small fraction of revenue
compared with the cases where the seller has full access to the distributions.

3 Discussion and Future Directions

In the full version, we will elaborate on the connections between our work and related studies.
For example, a closely related area is sampling mechanisms [10, 13, 15, 12, 3]. It assumes
that the seller does not know D but observes independent samples from D before the auction
begins. The sample complexity measures how many samples the seller needs so as to obtain a
good approximation to the optimal Bayesian revenue. Our results show that query complexity
can be exponentially smaller than sample complexity: the former is logarithmic in the “size”
of the distributions, while the latter is known to be polynomial. We will also discuss other
related studies such as [2, 1, 3, 8].

Finally, we point out some interesting further directions. As mentioned, we focus on
non-adaptive queries in this work. One can imagine more powerful mechanisms using adaptive
queries, where the seller’s later queries depend on the oracle’s responses to former ones. It is
intriguing to design approximately optimal Bayesian mechanisms with lower query complexity
using adaptive queries, or prove that even with such queries, the query complexity cannot be
much better than our lower-bounds. Another interesting direction is when the answers of
the oracle contain noise. In this case, the distributions learnt by the seller may be within
a small distance from the “true distributions” defined by oracle answers without noise. It
would be interesting to design mechanisms to handle such noise.
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Abstract
We show that a broad class of (+, �) vector products (for binary integer functions �) are equi-
valent under one-to-polylog reductions to the computation of the Hamming distance. Examples
include: the dominance product, the threshold product and `2p+1 distances for constant p. Our
results imply equivalence (up to poly log n factors) between complexity of computation of All
Pairs: Hamming Distances, `2p+1 Distances, Dominance Products and Threshold Products. As
a consequence, Yuster’s (SODA’09) algorithm improves not only Matoušek’s (IPL’91), but also
the results of Indyk, Lewenstein, Lipsky and Porat (ICALP’04) and Min, Kao and Zhu (CO-
COON’09). Furthermore, our reductions apply to the pattern matching setting, showing equi-
valence (up to poly log n factors) between pattern matching under Hamming Distance, `2p+1
Distance, Dominance Product and Threshold Product, with current best upperbounds due to
results of Abrahamson (SICOMP’87), Amir and Farach (Ann. Math. Artif. Intell.’91), Atallah
and Duket (IPL’11), Clifford, Clifford and Iliopoulous (CPM’05) and Amir, Lipsky, Porat and
Umanski (CPM’05). The resulting algorithms for `2p+1 Pattern Matching and All Pairs `2p+1,
for 2p+ 1 = 3, 5, 7, . . . are new.

Additionally, we show that the complexity of AllPairsHammingDistances (and thus of
other aforementioned AllPairs- problems) is within poly log n from the time it takes to multiply
matrices n× (n ·d) and (n ·d)×n, each with (n ·d) non-zero entries. This means that the current
upperbounds by Yuster (SODA’09) cannot be improved without improving the sparse matrix
multiplication algorithm by Yuster and Zwick (ACM TALG’05) and vice versa.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases fine-grained complexity, matrix multiplication, high dimensional geo-
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1 Introduction

Many classical algorithmic problems received new attention when formulated as algebraic
problems. In pattern matching we can define a similarity score between two strings and ask
for this score between the pattern P of length m and every m-substring of the text T of length
n ≥ m. For example, scores of Hamming distance or L1 distance between numerical strings
generalize the classical pattern matching. All those problems share an additive structure, i.e.
for an input pattern P and text T, the score vector O is such that O[i] =

∑
j P[j] �T[i+ j]
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Table 1 Summary of different score functions and the corresponding problems. 1[ϕ] is 1 iff ϕ
and 0 otherwise.

Name Score function Pattern Matching problem All Pairs problem

Hamming 1[x 6= y] O[i] = |{j : P[j] 6= T[i+ j]}| O[i][j] = |{k : Ai[k] 6= Bj [k]}|

Dominance 1[x ≤ y] O[i] = |{j : P[j] ≤ T[i+ j]}| O[i][j] = |{k : Ai[k] ≤ Bj [k]}|

δ-Threshold 1[|x− y| ≥ δ] O[i] = |{j : |P[j]−T[i+ j]| > δ}| O[i][j] = |{k : |Ai[k]−Bj [k]| > δ}|

`1 distance |x− y| O[i] =
∑

j
|P[j]−T[i+ j]| O[i][j] =

∑n

k=1 |Ai[k]−Bj [k]|

for some binary function �. Just as those pattern matching generalizations are based on
convolution, there is a family of problems based on matrix multiplication, varying in flavour
according to the vector product used. There, we are given two matrices A and B and the
output is the matrix O[i][j] =

∑
k A[i][k] �B[k][j]. This is equivalent to the computation of

all pairwise (+, �)-vector products for two vector families, the so called AllPairs- problems.
For a certain class of score functions, pattern matching generalizations admit independently
algorithms of identical complexity O(n

√
m logm) (c.f. [1–3,8]). For the same score functions,

the best algorithms for corresponding AllPairs- problems are of complexity O(n(ω+3)/2) or
similar (c.f. [6, 8, 11]).

Our contribution:

We show that for a wide class of (+, �) products, the corresponding problems are of (almost)
equivalent hardness. This class includes Hamming distance or Dominance, but also any
piecewise polynomial function of two variables (for appropriate definition of piecewise
polynomiality, c.f. Definition 2) excluding certain degenerate forms (e.g. polynomials). Thus
we should not expect the problems based on (+, �) products to be significantly harder to
compute than e.g. ones based on Hamming distance. The reduction applies both to Pattern
Matching setting and to All Pairs- setting alike. We refer to Table 1 for a summary of
considered problems and to Figure 1 for a summary of the old and new reductions. It implies
that Yuster’s [11] improvement to the exponent of AllPairsDominanceProducts applies
to all other AllPairs- problems considered here. Additionally, any tradeoffs between vectors
dimension and runtime (c.f. [5, 8]), or input sparsity and runtime (c.f. [4, 9, 10]) translates
between problems. Additionally, we link the complexity of AllPairsHammingDistances
(and thus to other AllPairs- problems) to one of a sparse rectangular matrix multiplication
(c.f. Theorem 4): an instance of APHam can be expanded to an instance of sparse matrix
multiplication of rectangular matrices, and any matrix multiplication instance with those
parameters can be contracted back to APHam. It is interesting to observe that applying the
fastest existing sparse matrix multiplication algorithm (c.f. [12]) to the resulting instance
results in the same runtime as solving APHam directly.

2 Preliminaries

For vectors A,B and matrices A,B, we denote the (+, �) vector product as vprod(�,A,B) def=∑
i A[i]�B[i], the (+, �) convolution as conv(�,A,B) = C where C[k] =

∑
i+j=k A[i]�B[j]

and the (+, �) matrix product as mprod(�,A,B) = C where C[i, j] =
∑
kA[i, k] � B[k, j].

Thus, e.g. defining Ham(x, y) def= 1[x 6= y], then vprod(Ham, ·, ·), conv(Ham, ·, ·) and
mprod(Ham, ·, ·) correspond to Hamming Distance between vectors, HamPM and APHam.
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Figure 1 Existing and new reductions between problems, together with problem classes.

I Definition 1. We say that � reduces preserving linearity to instances of �1, . . . ,�K , if
there are functions f1, . . . , fK and g1, . . . , gK and coefficients α1, . . . , αK , such that for any
x, y:1 x � y =

∑
i αi ·

(
fi(x) �i gi(y)

)
.

Given Definition 1, we have for any vectors A,B and matrices A,B: vprod(�,A,B) =
∑
i αi ·

vprod(�i, fi(A), gi(B)), conv(�,A,B) =
∑
i αi · conv(�i, fi(A), gi(B))

and mprod(�,A,B) =
∑
i αi · mprod(�i, fi(A), gi(B)), where f(A) and f(A) denotes a

coordinate-wise application of f to vector A and matrix A, respectively.

3 Main results

I Remark. We assume that all input values and coefficients are integers bounded in absolute
value by poly(n).

I Definition 2. For integers A,B,C and polynomial P (x, y) we say that the function
P (x, y) · 1[Ax+By + C > 0] is halfplane polynomial. We call a sum of halfplane polynomial
functions a piecewise polynomial. We say that a function is axis-orthogonal piecewise
polynomial, if it is piecewise polynomial and for every i, Ai = 0 or Bi = 0.

Observe that Ham(x, y) = 1[x > y] + 1[x < y], max(x, y) = x · 1[x ≥ y] + y · 1[x < y],
|x− y|2p+1 = (x− y)2p+1 ·1[x > y] + (y−x)2p+1 ·1[x < y], and Thrδ(x, y) def= 1[|x− y| ≥ δ] =
1[x ≤ y − δ] + 1[x ≥ y + δ].

I Theorem 3. Let � be a piecewise polynomial of constant degree and poly log n number of
summands.

If � is axis orthogonal, then � is “easy”: (+, �) convolution takes Õ(n) time, (+, �) matrix
multiplication takes Õ(nω) time.
Otherwise, � is Hamming distance complete: under one-to-polylog reductions, (+, �)
product is equivalent to Hamming distance, (+, �) convolution is equivalent to HamPM
and (+, �) matrix multiplication is equivalent to APHam.

1 For the sake of simplicity, we are omitting in the definition the post-processing function necessary
e.g. ( · )1/p for Lp norms.
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I Theorem 4. The time complexity of APHam on n vectors of dimension d is (under
randomized Las Vegas reductions) within poly log n from time it takes to multiply matrices
n× (n · d) and (n · d)× n, each with (n · d) non-zero entries.
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Abstract
In the Directed Feedback Vertex Set (DFVS) problem, we are given as input a directed
graph D and an integer k, and the objective is to check whether there exists a set S of at most
k vertices such that F = D− S is a directed acyclic graph (DAG). Determining whether DFVS
admits a polynomial kernel (parameterized by the solution size) is one of the most important
open problems in parameterized complexity. In this article, we give a polynomial kernel for DFVS
parameterized by the solution size plus the size of any treewidth-η modulator, for any positive
integer η. We also give a polynomial kernel for the problem, which we call Vertex Deletion
to treewidth-η DAG, where given as input a directed graph D and a positive integer k, the
objective is to decide whether there exists a set of at most k vertices, say S, such that D − S is
a DAG and the treewidth1 of D − S is at most η.
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1 Introduction and Overview of Our Results

In the Directed Feedback Vertex Set (DFVS) problem, the input consists of a directed
graph D on n vertices, and an integer k. The parameter is k, and the objective is to check
whether there exists a set of at most k vertices, say S, such that F = D − S is a directed
acyclic graph (DAG). The question whether DFVS is fixed-parameter tractable was posed
as an open problem in the first few papers on fixed-parameter tractability (FPT) [8, 9].

1 Throughout the article, by treewidth of a directed graph we mean the treewidth of its underlying
undirected graph.
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This remained an open problem for over a decade until, in a breakthrough paper, DFVS
was shown to be fixed-parameter tractable by Chen et al. [5] in 2008. Specifically, they
gave an algorithm that runs in time O(4k · k! · k4 · n4). Following the resolution of the
fixed-parameter tractability status of DFVS, one of the most natural follow-up questions in
parameterized complexity, that has been raised several times, and has become one of the most
fundamental questions, is “does DFVS admit a polynomial kernel?” A polynomial kernel is
essentially a polynomial-time preprocessing algorithm that transforms the given instance
of the problem into an equivalent one whose size is bounded polynomially in the specified
parameter. Whenever the parameter is not specified, it is implied that the parameter is the
solution size (in our case, the integer k in the input of the DFVS problem). In an attempt to
develop an understanding on what makes this problem hard, and to move closer to answering
this open question, several routes have been taken. These include:
1. enriching the parameterization to encompass not only solution size but also additional

structural parameters,
2. restricting the input instances,
3. restricting the structure of the resulting DAG (F ).

In this article, we give two results concerning DFVS that contribute to progress along
all these three routes. We begin by first stating our results formally. For a directed graph
D, a subset M ⊆ V (D) is called a treewidth η-modulator if D −M has treewidth at most η.
For a fixed positive integer η > 0, let Fη be the family of digraphs of treewidth at most η.
Formally, our first problem is the following.

DFVS/DFVS+Treewidth-η Modulator (DFVS/DFVS+Tw-η Mod) Parameter: k + `

Input: A digraph D, an integer k, M ⊆ V (D) such that |M | = ` and D −M ∈ Fη.
Question: Does there exist S ⊆ V (D) such that |S| ≤ k and D − S is a DAG?

Our first result is the following.

I Theorem 1. DFVS/DFVS+Tw-η Mod admits a polynomial kernel of size (k · `)O(η2).

Our second problem is the following.

Vertex Deletion to treewidth-η DAG Parameter: k
Input: A digraph D, an integer k.
Question: Does there exist S ⊆ V (D) such that |S| ≤ k and D − S is a DAG and
D − S ∈ Fη?

The next theorem states our second result.

I Theorem 2. For any fixed positive integer η, Vertex Deletion to treewidth-η DAG
has polynomial kernel.

Let us now see how both our results make progress along all the three routes described
above. Along the first route, Bergougnoux et al. [4] studied DFVS parameterized by the
feedback vertex set (fvs) number of the underlying undirected graph, and gave a polynomial
kernel for this problem. Our first result gives a polynomial kernel for DFVS when the
parameter is solution size (k) plus the size of any treewidth-η modulator in D (say `), for any
fixed positive integer η. Note that the parameter k+ ` is not only upper bounded by O(fvs),
where fvs is the feedback vertex set number of the underlying undirected graph of D, but
it can be arbitrarily smaller than fvs. Thus, studying such a parameter brings us closer to
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the problem of the existence of a polynomial kernel for DFVS. (Note that the question of
the existence of a polynomial kernel for DFVS parameterized by the size of a treewidth-η
modulator, for η ≥ 2, alone has a negative answer because Vertex Cover parameterized by
the size of any treewidth-2 modulator cannot have a polynomial kernel, unless NP⊆ co-NP

poly
[6].) Moreover, the ideas harnessed during the construction of our polynomial kernel utilizes
the tool of important separators in a novel fashion. To the best of our knowledge, this is the
first time that the power of important separators has been harnessed to develop a polynomial
kernel. Furthermore, to derive this result, we need to embed this tool in state-of-the-art
machinery such as the use of protrusion replacers where the replacement is a minor of the
part of the graph that is replaced.

Along the second route (that is, studying DFVS by restricting the input instance),
there have been several results for polynomial kernels for DFVS when the input graph is
a tournament or some generalization of it (like a bipartite tournament etc.) [1, 3, 7, 10].
However, the existence of a polynomial kernel for DFVS is open even when the input digraph
is a planar digraph. From our first result (Theorem 1), we can conclude that we have a
polynomial kernel for DFVS when the treewidth of the input graph is polynomial in the
solution size (kO(1)).

Along the third route, Mnich and van Leeuwen [11] studied the problem, where they
considered DFVS with an additional restriction on the output DAG rather than the input
instance. They inspected this question by considering k vertex deletion to the classes of
out-forests, out-trees and (directed) pumpkins. They obtained polynomial kernels for all
these problems. Observe that for all these classes, the treewidth of the graphs in these classes
is constant (at most 2). In a follow-up paper [2], the kernel sizes given by Mnich and van
Leeuwen [11] were reduced. Our second result generalizes this approach by demanding that
the resulting DAG has bounded treewidth (bounded by any fixed constant η).

Our Methods. We now give a very brief overview of the methods used to prove our results.
In fact, here, we only focus on our first result.

Proof Idea of Theorem 1. Our kernelization algorithm can be divided into three main
phases. Recall that the input is a directed graph D, an integer k and a treewidth-η modulator
M of size `. In the first phase, we decompose the graph into O(k`2) parts (which we call
zones), each of which have constant treewidth and a “controlled” neighbourhood in the rest
of the graph. In the next step, we mark (k`)O(η2) vertices inside each zone, which have the
property that in the case of a YES-instance, there is also a solution that does not use any of
the unmarked vertices in these zones. Getting such a set of marked vertices of polynomial
size is the core of our algorithm. Having such a set of marked vertices at our disposal, we
then design reduction rules that partition the unmarked vertices in each zone into disjoint
protrusions that are then replaced by constant size graphs, such that the modulator M
remains a treewidth-η modulator in the resulting graph too. Note that this is done (over
a standard protrusion replacement) to ensure that our parameter does not increase in the
resulting instance. If one does not care about the parameter increase in the resulting instance,
then some of the steps in this algorithm can be simplified.
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Abstract
We describe work in progress on providing a separation between erasure-resilient and tolerant
property testing. Specifically, we are able to exhibit a property which is testable (with the number
of queries independent of the length of the input) in the presence of erasures, but is not testable
tolerantly.
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1 Description

In this brief announcement, we describe our recent investigation of the effects of adversarial
corruption to inputs on the complexity of sublinear-time algorithms. Input corruption occurs
either in the form of errors (when some values get changed) or in the form of erasures (when
some values go missing). Understanding the relative difficulty of designing algorithms that
work in the presence of different forms of corruption is a problem of fundamental importance.
It is with this motivation in mind that property testing [5, 7], one of the most widely studied
models of sublinear-time algorithms, was generalized to erasure-resilient testing [3] and (error)
tolerant testing [6].

Erasure-resilient property testing falls between (standard) property testing and tolerant
testing. Specifically, an erasure-resilient tester for a property, in the special case when no
erasures occur, is a standard tester for this property. Also, a tolerant tester for a property
implies the existence of an erasure-resilient tester with comparable parameters for the same
property. Dixit, Raskhodnikova, Thakurta and Varma [3] separate standard and erasure-
resilient testing by describing a property that is easy to test in the standard model and
hard to test in the erasure-resilient model. Their separation is based on an earlier result
by Fischer and Fortnow [4] that separates standard property testing from tolerant property
testing in the same sense. Their main tool is PCPs of proximity (also known as assignment
testers) defined by Ben-Sasson, Goldreich, Harsha, Sudan and Vadhan [1] and by Dinur and
Reingold [2]. Dixit et al. [3] asked whether it is possible to obtain a separation between
erasure-resilient and tolerant testing. Here, we announce such a separation. Specifically,
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we are able to describe a property testable in the erasure-resilient model with the query
complexity independent of the input size, but for which the query complexity of tolerant
testing grows with the input size.

1.1 Erasure-Resilient and Tolerant Testing: Definitions

We now describe the erasure-resilient and tolerant models of testing. A property P is a set of
strings. A string is α-erased for α ∈ [0, 1) if at most an α fraction of its values are erasures
(denoted by ⊥). A completion of an α-erased string x ∈ {0, 1,⊥}n is a string y ∈ {0, 1}n that
agrees with x on all the positions where x is nonerased. An α-erasure-resilient ε-tester [3]
for a property P is a randomized algorithm that, given parameters α ∈ [0, 1), ε ∈ (0, 1)
and oracle access to an α-erased string x, accepts with probability at least 2/3 if x has a
completion in P and rejects with probability at least 2/3 if, in every completion of x, at
least an ε fraction of the nonerased positions has to be changed to get a string in P. The
property P is α-erasure-resiliently ε-testable if there exists an α-erasure-resilient ε-tester
for P with query complexity that depends only on the parameters α and ε (but not on the
length of the input string).

A string x ∈ {0, 1}n is ε′-far (α-close) from (to, respectively) a property P, if the
normalized Hamming distance of x from P is at least ε′ (at most α, respectively). An (α, ε′)-
tolerant tester [6] for P is a randomized algorithm that, given parameters α ∈ (0, 1), ε′ ∈ (α, 1)
and oracle access to a string x, accepts with probability at least 2

3 , if x is α-close to P and
rejects with probability at least 2

3 , if x is ε′-far from P . The property P is (α, ε′)-tolerantly
testable if there exists an (α, ε′)-tolerant tester for P with query complexity that depends
only on the parameters α and ε′ (but not on the length of the input string).

1.2 Comparison of parameters

We remark that, while comparing the above two models, it is appropriate to compare
(α, α+ ε(1− α))-tolerant testing of a property P with α-erasure-resilient ε-testing of P for
the same values of α and ε. The parameter α in both the models is an upper bound on
the fraction of corruptions (erasures, or errors) that an adversary can make to an input.
An α-erasure-resilient ε-tester rejects with probability at least 2

3 if, for for every way of
completing an input string, one needs to change at least an ε fraction of the remaining part
of the input to make it satisfy P . Similarly, an (α, α+ ε(1− α))-tolerant tester rejects with
probability at least 2

3 if, for every way of correcting α fraction of the input values, one needs
to change at least an ε fraction of the remaining (1 − α) fraction of the input to make it
satisfy P.

1.3 Our Results

Our main contribution is the following theorem which states that there exists a property
that is erasure-resiliently testable and is not tolerantly testable. This proves that tolerant
testing is, in general, a harder problem than erasure-resilient testing.

I Theorem 1 (Main Theorem). There exists a property P and constants ε, α ∈ (0, 1) such
that
P is α-erasure-resiliently ε-testable;
P is not (α, α+ ε(1− α))-tolerantly testable.
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2 Conclusions

To summarize, we solve an open question proposed by Dixit et al. [3] and prove that tolerant
testing is harder than erasure-resilient testing.
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Abstract
In the bounded-degree cut problem, we are given a multigraph G = (V,E), two disjoint vertex
subsets A,B ⊆ V , two functions uA, uB : V → {0, 1, . . . , |E|} on V , and an integer k ≥ 0. The
task is to determine whether there is a minimal (A,B)-cut (VA, VB) of size at most k such that
the degree of each vertex v ∈ VA in the induced subgraph G[VA] is at most uA(v) and the degree
of each vertex v ∈ VB in the induced subgraph G[VB ] is at most uB(v). In this paper, we show
that the bounded-degree cut problem is fixed-parameter tractable by giving a 218k|G|O(1)-time
algorithm. This is the first single exponential FPT algorithm for this problem. The core of
the algorithm lies two new lemmas based on important cuts, which give some upper bounds
on the number of candidates for vertex subsets in one part of a minimal cut satisfying some
properties. These lemmas can be used to design fixed-parameter tractable algorithms for more
related problems.
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1 Introduction

A cut of a graph is a partition of the vertices of the graph into two disjoint subsets. Graph
cuts play an important role in combinatorial optimization and graph theory. The classical
minimum cut problem is well known to be polynomially solvable [13]. Due to the rich
application realm of this problem, many variants and extensions have been investigated.
Some problems ask to partition the graph into more than two parts to disconnect some
vertices such as the k-way cut problem (the k-cut problem) [14, 15], the multiterminal cut
problem [9, 21] and the multicut problem [5, 19]. Some problems are still going to partition
the graph into two parts, but with some additional requirements beyond the disconnectivity.
One of the most extensively studied additional requirements is the constraint on the numbers
of vertices or edges in each of the two parts. For examples, the balanced cut problem [1, 12, 16]
and the minimum bisection problem [7, 10, 11] require the numbers of vertices in the two
parts of the cut as close as possible. The (balanced) judicious bipartition problem [17] has
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conditions on the numbers of edges in the two parts. Some other well studied additional
requirements include conditions on the connectivity of the two parts such as the 2-disjoint
connected subgraphs problem [8], and conditions on the degree of the two parts, such as the
series of bipartition problems with degree constraints [2, 3, 4, 20, 22].

In this paper, we study the bounded-degree cut problem, which belongs to the latter kind
of the extensions: to partition a given graph into two parts with some degree constraints on
the induced subgraphs of the two parts. We mainly consider the upper bounds of the degree.
An (S, T )-cut (V1, V2) is minimal if EG(V1) does not contain EG(V ′1) or EG(V ′2) as a subset
for any S ⊆ V ′1 $ V1 and T ⊆ V ′2 $ V2. Our problem is defined as follows.

bounded-degree cut (with parameter: k)
Instance: A multigraph G = (V,E), two disjoint nonempty vertex subsets A,B ⊆ V , two
functions uA and uB from V to {0, 1, . . . , |E|} and an integer k ≥ 0.
Question: Does there exist a minimal (A,B)-cut (VA, VB) such that
the number of edges with one endpoint in VA and one endpoint in VB is at most k,
for each vertex v ∈ VA, the degree of it in the induced graph G[VA] is at most uA(v), and
for each vertex v ∈ VB , the degree of it in the induced graph G[VB ] is at most uB(v)?

During the last decade, cut related problems were extensively studied from the viewpoint
of parameterized algorithms [12, 18, 7, 17, 15, 19, 21, 6]. In this paper, we will study
bounded-degree cut from the viewpoint of parameterized algorithms. Our main result is
the first single-exponential FPT algorithm for bounded-degree cut, which implies that
bounded-degree cut can be solved in polynomial time for k = O(log |G|).

I Theorem 1. bounded-degree cut can be solved in 218k · |G|O(1) time.

2 The main idea

The most crucial techniques in this paper are: to use important cuts introduced by Marx [18]
to obtain the following two general lemmas for bounded sets related to cuts; and then based
on these two lemmas, to construct from a given instance a set of at most 218k new “easy”
instances such that the original instance is feasible if and only if at least one of the “easy”
instances is feasible.

I Lemma 2. Let A,B,C ⊆ V be non-empty subsets in a graph G = (V,E) and k and ` be
nonnegative integers. Then one can find in 23(k+`)(n+m)O(1) time a family X of at most
23(k+`) subsets of C with a property that C ∩ V1 ∈ X for any minimal (A,B)-cut (V1, V2)
with size at most k such that |C ∩ V1| ≤ `.

I Lemma 3. Let A,B,B′ ⊆ V be non-empty subsets in a graph G = (V,E), where B′ ⊆ B,
and k be a nonnegative integer. Then one can find in 23k(n+m)O(1) time a family Y of at
most 23k subsets of NG(B′) with a property that NG(B′)∩V1 ∈ Y for any minimal (A,B)-cut
(V1, V2) with size at most k.

We will use I = (G = (V,E), A,B) to denote an instance of the problem, where uA, uB
and k are omitted since they remain unchanged throughout our argument. We use ZA and
ZB to denote the sets of A-unsatisfied vertices and B-unsatisfied vertices, respectively, i.e.,
ZA , {v ∈ V | degG(v) > uA(v)} and ZB , {v ∈ V | degG(v) > uB(v)}. We call I an easy
instance if it holds that ZA ∪ZB ⊆ A∪B, NG(ZA ∩A) ⊆ A∪B, and NG(ZB ∩B) ⊆ A∪B.
We can see that an easy instance can be solved in polynomial time.
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Figure 1 (a) An (A,B)-cut π = (VA, VB) to I and the partitions {ZA1, ZA2} of ZA and {ZB1, ZB2}
of ZB by π, where possibly ZA ∩ ZB 6= ∅, (b) The partitions {WB1,WB2} of WB = NG(ZB2) and
{WA1,WA2} of WA = NG(ZA1) by π, where possibly WA ∩WB 6= ∅.

For a given instance I with a feasible (A,B)-cut (V1, V2), we try to guess some subsets
V ′1 ⊆ V1\A and V ′2 ⊆ V2\B so that the new instance (G,A∗ = A∪V ′1 , B∗ = B∪V ′2 , uA, uB , k)
remains feasible and is an easy. We will generate at most 218k easy instances.

3 Constructing Easy Instances

For a minimal (A,B)-cut π = (V1, V2) (not necessarily feasible) in a given instance I = (G =
(V,E), A,B), we define the following notation on vertex subsets:
ZAi , ZA ∩ Vi and ZBi , ZB ∩ Vi, i = 1, 2;
WA , NG(ZA1) and WB , NG(ZB2); WAi ,WA ∩ Vi, and WBi ,WB ∩ Vi , i = 1, 2;
Aπ , A ∪ ZA1 ∪ ZB1 ∪WA1 ∪WB1 and Bπ , B ∪ ZA2 ∪ ZB2 ∪WA2 ∪WB2.
See in Fig. 1 for an illustration on these subsets. Observe that the resulting instance
(G,Aπ, Bπ) is an easy instance. The (A,B)-cut π = (V1, V2) is feasible if and only if the
corresponding instance (G,Aπ, Bπ) is feasible.

3.1 Partitioning Unsatisfied Vertices
For a minimal (A,B)-cut (V1, V2) to an instance I, let ZA1 and ZB2 be the subsets defined
in the above. We observe that if the cut is feasible, then

|ZA1|, |ZB2| ≤ k

since each vertex in ZA1 ∪ ZB2 has at least one incident edge included in EG(V1, V2) so that
the degree constraint on the vertex holds.

By applying Lemma 2 to (A,B,C = ZA, k, ` = k), we can construct in 26k(n+m)O(1)

time a family X1 of at most 26k subsets of ZA such that X1 contains the set ZA1 defined
to each feasible (A,B)-cut (V1, V2) in the instance I = (G,A,B). Symmetrically it takes
26k(n+m)O(1) time to find a family X2 of at most 26k subsets of ZB such that X2 contains
the set ZB2 defined to each feasible (A,B)-cut (V1, V2) in the instance I = (G,A,B). Then
the set X1,2 of all pairs (X1, X2) of disjoint sets Xi ∈ Xi, i = 1, 2 contains the pair (ZA1, ZB2)
defined to each feasible (A,B)-cut (V1, V2) in I. By noting that |X1,2| ≤ 26k26k = 212k, we
obtain the next.

ICALP 2018
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I Lemma 4. Given an instance I = (G,A,B), one can construct in 212k(n+m)O(1) time
at most 212k new instances I ′ = (G,A′, B′) with ZA ∪ ZB ⊆ A′ ∪B′, one of which is equal
to (G,A ∪ ZA1 ∪ ZB1, B ∪ ZA2 ∪ ZB2) for each feasible (A,B)-cut (V1, V2) to I.

3.2 Partitioning Neighbors of Unsatisfied Vertices
For a minimal (A,B)-cut (V1, V2) to an instance I, let WA2 and WB1 be the subsets defined
in the above. We observe that if the cut is feasible, then

|WB1|, |WA2| ≤ k

since each of |NG(ZB2) ∩ V1| and |NG(ZA1) ∩ V2| is at most |EG(V1, V2)| ≤ k to the feasible
(A,B)-cut (V1, V2).

By applying Lemma 3 to (A∪ZA1 ∪ZB1, B ∪ZA2 ∪ZB2, B
′ = ZB2, k), we can construct

in 23knO(1) time a family Y1 of at most 23k subsets of NG(ZB2) such that Y1 contains
the set WB1 = NG(ZB2) ∩ V1 defined to each feasible (A,B)-cut (V1, V2) in the instance
I = (G,A,B). Symmetrically it takes 23k(n + m)O(1) time to find a family Y2 of at most
23k subsets of NG(ZA1) such that Y2 contains the set WA2 = NG(ZA1) ∩ V2 defined to each
feasible (A,B)-cut (V1, V2) in I. Then the set Y1,2 of all pairs (Y1, Y2) of disjoint sets Yi ∈ Yi,
i = 1, 2 contains the pair (WB1,WA2) defined to each feasible (A,B)-cut (V1, V2) in the
instance I = (G,A,B). By noting that |Y1,2| ≤ 26k, we obtain the next.

I Lemma 5. Given an instance I = (G,A,B) and the subsets ZA1 and ZB2 defined to a
feasible (A,B)-cut (V1, V2) in I, one can construct in 26k(n+m)O(1) time at most 26k new
easy instances I ′ = (G,A′, B′), one of which is equal to (G,Aπ, Bπ) defined to the feasible
(A,B)-cut π = (V1, V2).

By Lemmas 4 and 5, we obtain the next, which can imply Theorem 1.

I Lemma 6. Given an instance I = (G,A,B), one can construct in 218k(n+m)O(1) time
at most 218k new easy instances I ′ = (G,A′, B′), one of which is equal to (G,Aπ, Bπ) for
each feasible (A,B)-cut π = (V1, V2) to I.
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Abstract
We introduce Almost Sure Productivity (ASP), a probabilistic generalization of the productivity
condition for coinductively defined structures. Intuitively, a probabilistic coinductive stream or
tree is ASP if it produces infinitely many outputs with probability 1. Formally, we define ASP
using a final coalgebra semantics of programs inspired by Kerstan and König. Then, we introduce
a core language for probabilistic streams and trees, and provide two approaches to verify ASP:
a syntactic sufficient criterion, and a decision procedure by reduction to model-checking LTL
formulas on probabilistic pushdown automata.
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1 Introduction

The study of probabilistic programs has a long history, especially in connection with se-
mantics [22] and verification [23, 17, 28]. Over the last decade the field of probabilistic
programming has attracted renewed attention with the emergence of practical probabilistic
programming languages and novel applications in machine learning, privacy-preserving data
mining, and modeling of complex systems. On the more theoretical side, many semantical
and syntactic tools have been developed for verifying probabilistic properties. For instance,
significant attention has been devoted to termination of probabilistic programs, focusing on
the complexity of the different termination classes [19], and on practical methods for proving
that a program terminates [16, 25, 2, 27]. The latter class of works generally focuses on
almost sure termination, which guarantees that a program terminates with probability 1.
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Coinductive probabilistic programming is a new computational paradigm that extends
probabilistic programming to infinite objects, such as streams and infinite trees, providing
a natural setting for programming and reasoning about probabilistic infinite processes
such as Markov chains or Markov decision processes. Rather surprisingly, the study of
coinductive probabilistic programming was initiated only recently [3], and little is known
about generalizations of coinductive concepts and methods to the probabilistic setting. In this
paper we consider productivity, which informally ensures that one can compute arbitrarily
precise approximations of infinite objects in finite time. Productivity has been studied
extensively for standard, non-probabilistic coinductive languages [18, 14, 1, 12, 7], but the
probabilistic setting introduces new subtleties and challenges.

Contributions

Our first contribution is conceptual. We introduce almost sure productivity (ASP), a
probabilistic counterpart to productivity. A probabilistic stream computation is almost
surely productive if it produces an infinite stream of outputs with probability 1. For instance,
consider the stream defined by the equation

σ = (a : σ)⊕p σ

Viewed as a program, this stream repeatedly flips a coin with bias p ∈ (0, 1), producing the
value a if the coin comes up heads and retrying if the coin comes up tails. This computation
is almost surely productive since the probability it fails to produce outputs for n consecutive
steps is (1− p)n, which tends to zero as n increases. In contrast, consider the stream

σ = ā⊕p ε

This computation flips a single biased coin and returns an infinite stream of a’s if the coin
comes up heads, and the empty stream ε if the coin comes up tails. This process is not
almost surely productive since its probability of outputting an infinite stream is only p, which
is strictly less than 1.

We define almost sure productivity for any system that can be equipped with a final
coalgebra semantics in the style of Kerstan and König [20] (Section 3). We instantiate our
semantics on a core probabilistic language for computing over streams and trees (Section 4).
Then, we consider two methods for proving almost sure productivity.
1. We begin with a syntactic method that assigns a real-valued measure to each expression

e (Section 5). Intuitively, the measure represents the expected difference between the
number of outputs produced and consumed per evaluation step of the expression. For
instance, the computation that repeatedly flips a fair coin and outputs a value if the coin
is heads has measure 1

2 – with probability 1/2 it produces an output, with probability 0
it produces no outputs. More complex terms in our language can also consume outputs
internally, leading to possibly negative values for the productivity measure.
We show that every expression whose measure is strictly positive is almost surely produc-
tive; the proof of soundness of the method uses concentration results from martingale
theory. While simple to carry out, our syntactic method is incomplete – it does not yield
any information for expressions with non-positive measure.

2. To give a more sophisticated analysis, we reduce the problem of deciding ASP to proba-
bilistic model-checking (Section 6). We translate our programs to probabilistic pushdown
automata and show that almost sure productivity is characterized by a logical formula in
LTL. This fragment is known to be decidable [6], giving a sound and complete procedure
for deciding ASP.
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We consider more advanced generalizations and extensions in Section 7, survey related work
in Section 8, and conclude in Section 9.

2 Mathematical Preliminaries

This section reviews basic notation and definitions from measure theory and category theory.
Given a set A we will denote by A⊥ the coproduct of A with a one-element set containing a
distinguished element ⊥, i.e., A⊥ = A+ {⊥}.

Coalgebra, Monads, Kleisli categories

We assume that the reader is familiar with the notions of objects, morphisms, functors and
natural transformations (see, for instance, [5]). Given an endofunctor F : C → C, a coalgebra
of F is a pair (X, f) of an object X ∈ C and a morphism f : X → F (x) in C . A monad is a
triple (T, η, µ) of an endofunctor T : C → C and two natural transformations η : 1C → T (the
unit) and µ : T 2 → T (the multiplication) such that µ◦µT = µ◦Tµ and µ◦ηT = 1T = µ◦Tη.
Given a category C and a monad (T, η, µ), the Kleisli category K`(T ) of T has as objects the
objects of C and as morphisms X → Y the morphisms X → T (Y ) in C.

Streams, Trees, Final Coalgebra

We will denote by Oω the set of infinite streams of elements of O (alternatively characterized
as functions N → O). We have functions head : Oω → O and tail : Oω → Oω that enable
observation of the elements of the stream. In fact, they provide Oω with a one-step structure
that is canonical: given any set S and any two functions h : S → O and t : S → S (i.e., a
coalgebra (S, 〈h, t〉) of the functor F (X) = O ×X) there exists a unique stream function
associating semantics to elements of S:

S
J−K //

<h,t>

��

Oω

<head,tail>
��

O × S
id×J−K // O ×Oω

Formally, this uniqueness property is known as finality: Oω is the final coalgebra of the
functor F (X) = O×X and the above diagram gives rise to a coinductive definition principle.
A similar principle can be obtained for infinite binary trees and other algebraic datatypes.
The above diagrams are in the category of sets and functions, but infinite streams and trees
have a very rich algebraic structure and they are also the carrier of final coalgebras in other
categories. For the purpose of this paper, we will be particularly interested in a category
where the maps are probabilistic – the Kleisli category of the distribution (or Giry) monad.

Probability Distributions, σ-algebras, Measurable Spaces

To model probabilistic behavior, we need some basic concepts from measure theory (see,
e.g., [30]). Given an arbitrary set X we call a set Σ of subsets of X a σ-algebra if it contains
the empty set and is closed under complement and countable union. A measurable space is a
pair (X,Σ). A probability measure or distribution µ over a measurable space is a function
µ : Σ → [0, 1] assigning probabilities µ(A) ∈ [0, 1] to the measurable sets A ∈ Σ such that
µ(X) = 1 and µ(

⋃
i∈I Ai) =

∑
i∈I µ(Ai) whenever {Ai}i∈I is a countable collection of disjoint

measurable sets. The collection D(X) of probability distributions over a measurable space
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X forms the so-called Giry monad. The monad unit η : X → D(X) maps a ∈ X to the point
mass (or Dirac measure) δa, i.e., the measure assigning 1 to any set containing a and 0 to any
set not containing a. The monad multiplication m : DD(X)→ D(X) is given by integration:

m(P )(S) =
∫
evSdP, where evS(µ) = µ(S).

Given measurable spaces (X,ΣX) and (Y,ΣY ), a Markov kernel is a function P : X ×ΣY →
[0, 1] (equivalently, X → ΣY → [0, 1]) that maps each source state x ∈ X to a distribution
over target states P (x,−) : ΣY → [0, 1].

Markov kernels form the arrows in the Kleisli category K`(D) of the D monad; we denote
such arrows by X ◦P // Y . Composition in the Kleisli category is given by integration:

X ◦P // Y ◦
Q // Z (P ◦Q)(x,A) =

∫
y∈Y

P (x, dy) ·Q(y,A)

Associativity of composition is essentially Fubini’s theorem.

3 Defining Almost Sure Productivity

We will consider programs that denote probability distributions over coinductive types, such
as infinite streams or trees. In this section, we focus on the definitions for programs producing
streams and binary trees for simplicity, but our results should extend to arbitrary polynomial
functors (see Section 7).

First, we introduce the semantics of programs. Rather than fix a concrete program-
ming language at this point, we let T denote an abstract state space (e.g., the terms of
a programming language or the space of program memories). The state evolves over an
infinite sequence of discrete time steps. At each step, we will probabilistic observe either
a concrete output (a ∈ A) or nothing (⊥), along with a resulting state. Intuitively, p ∈ T
is ASP if its probability of producing unboundedly many outputs is 1. Formally, we give
states in T a denotational semantics J−K : T → D((A⊥)ω) defined coinductively, starting
from a given one-step semantics function that maps each term to an output in A⊥ and the
resulting term. Since the step function is probabilistic, we work in the Kleisli category for the
distribution monad; this introduces some complications when computing the final coalgebras
in this category. We take the work on probabilistic streams by Kerstan and König [20] as
our starting point, and then generalize to probabilistic trees.

I Theorem 1 (Finality for streams [20]). Given a set T of programs endowed with a probabilistic
step function st : T → D(A⊥ × T), there is a unique semantics function J−K assigning to
each program a probability distribution of output streams such that the following diagram
commutes in the Kleisli category K`(D):

T ◦
J−K //

◦st
��

(A⊥)ω

◦<head,tail>
��

A⊥ × T ◦
id×J−K // A⊥ × (A⊥)ω

I Definition 2 (ASP for streams). A stream program p ∈ T is almost surely productive (ASP)
if

Pr
σ∼JpK

[σ has infinitely many concrete output elements a ∈ A] = 1.
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For this to be a sensible definition, the event “σ has infinitely many concrete output
elements a ∈ A” must be a measurable set in some σ-algebra on (A⊥)ω. Following Kerstan
and König, we take the σ-algebra generated by cones, sets of the form uAω = {v ∈
(A⊥)ω | u prefix of v, u ∈ (A⊥)∗}. Our definition evidently depends on the definition of
J−K : T → D(A⊥)ω; our coinductively defined semantics will be useful later for showing
soundness when verifying ASP, but our definition of ASP is sensible for any semantics J−K.

I Example 3. Let us consider the following program defining a stream σ recursively, in
which each recursion step is determined by a coin flip with bias p:

σ = (a : σ)⊕p tail(σ)

In the next section we will formally introduce this programming language, but intuitively
the program repeatedly flips a coin. If the coin flip results in heads the program produces an
element a. Otherwise the program tries to compute the tail of the recursive call; the first
element produced by the recursive call is dropped (consumed), while subsequent elements
produced (if any) are emitted as output.

To analyze the productivity behavior of this probabilistic program, we can reason intu-
itively. Each time the second branch is chosen, the program must choose the first branch
strictly more than once in order to produce one output (since, e.g., tail(a : σ) = σ). Accord-
ingly, the productivity behavior of this program depends on the value of p. When p is less
than 1/2, the program chooses the first branch less often than the second branch and the
program is not ASP. On the other hand, when p > 1/2 the program will tend to produce
more elements a than are consumed by the destructors, and the above program is ASP. In
the sequel, we will show two methods to formally prove this fact.

It will be convenient to represent the functor as F (X) = A⊥ ×X as A×X +X. In the
rest of this paper we will often use the latter representation and refer to the final coalgebra

as observation streams OS = (A⊥)ω with structure OS A× OS + OS<out,unf>
∼=

oo given by
out(a, σ) = a : σ and unf(σ) = ⊥ : σ.

Streams are not the only coinductively defined data; infinite binary trees are another
classical example. To generate trees, we can imagine that a program produces an output value
– labeling the root node – and two child programs, which then generate the left and right child
of a tree of outputs. Much like we saw for streams, probabilistic programs generating these
trees may sometimes step to a single new program without producing outputs. Accordingly
we will work with the functor F (X) = A ×X ×X + X, where the left summand can be
thought of as the result of an output step, while the right summand gives the result of a
non-output step.

I Theorem 4 (Finality for trees). Given a set of programs T endowed with a probabilistic
step function st : T→ D(A× T× T + T), there is a unique semantics function J−K assigning
to each program a probability distribution of output trees such that the following diagram
commutes in the Kleisli category K`(D).

T ◦
J−K //

◦st
��

Trees(A⊥)

◦<out,unf>−1

��
A× T× T + T ◦

id×J−K×J−K+J−K // A× Trees(A⊥)× Trees(A⊥) + Trees(A⊥)

Trees(A⊥) are infinite trees where the nodes are either elements of A or ⊥. An a-node has
two children whereas a ⊥-node only has one child. Formally, we can construct these trees
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with the two maps out and unf:

unf(
σ

) =

⊥

σ
out(a,

σ
,

τ ) =

a

σ τ

Defining ASP for trees is a bit more subtle than for streams. Due to measurability issues,
we can only refer to the probability of infinitely many outputs along one path at a time
in the tree. A bit more formally, let w ∈ {L,R}ω be an infinite word on alphabet {L,R}.
Given any tree t ∈ Trees(A⊥), w induces a single path tw in the tree: from the root, the path
follows the left/right child of a-nodes as indicated by w, and the single child of ⊥-nodes.

I Definition 5 (ASP for trees). A tree program p ∈ T is almost surely productive (ASP) if

∀w ∈ {L,R}ω. Pr
t∼JpK

[tw has infinitely many concrete output nodes a ∈ A] = 1.

We have omitted the σ-algebra structure on Trees(A⊥) for lack of space, but it is quite
similar to the one for streams: it is generated by the cones uTrees(A⊥) = {t ∈ Trees(A⊥) |
t is an extension of the finite tree u}.

I Example 6. Consider the probabilistic tree defined by the following equation:

τ = mk(a, τ, τ )⊕p left(τ)

The mk(a, t1, t2) constructor produces a tree with the root labeled by a and children t1 and
t2, while the left(t) destructor consumes the output at the root of t and steps to the left
child of t. While this example is more difficult to work out informally, it has similar ASP
behavior as the previous example we saw for streams: when p > 1/2 this program is ASP,
since it has strictly higher probability of constructing a node (and producing an output)
than destructing a node (and consuming an output).

4 A Calculus for Probabilistic Streams and Trees

Now that we have introduced almost sure productivity, we consider how to verify this property.
We work with two variants of a simple calculus for probabilistic coinductive programming,
for producing streams and trees respectively. We suppose that outputs are drawn from some
finite alphabet A. The language for streams considers terms of the following form:

e ∈ T ::= σ | e⊕p e | a : e (a ∈ A) | tail(e)

The distinguished variable σ represents a recursive occurrence of the stream so that streams
can be defined via equations σ = e. The operation e1 ⊕p e2 selects e1 with probability p and
e2 with probability 1− p. The constructor a : e builds a stream with head a and tail e. The
destructor tail(e) computes the tail of a stream, discarding the head.

The language for trees is similar, with terms of the following form:

e ∈ T ::= τ | e⊕p e | mk(a, e, e) (a ∈ A) | left(e) | right(e)

The variable τ represents a recursive occurrence of the tree, so that trees are defined as τ = e.
The constructor mk(a, e1, e2) builds a tree with root labeled a and children e1 and e2. The
destructors left(e) and right(e) extract the left and right children of e, respectively.
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We interpret these terms coalgebraically by first giving a step function from ste : T→
D(F (T)) for an appropriate functor, and then taking the semantics as the map to the final
coalgebra. For streams, we take the functor F (X) = A×X+X: a term steps to a distribution
over either an output in A and a resulting term, or just a resulting term (with no output).
To describe how the recursive occurrence σ steps, we parametrize the step function ste by
the top level stream term e; this term remains fixed throughout the evaluation. This choice
restricts recursion to be global in nature, i.e., our language does not support mutual or
nested recursion. Supporting more advanced recursion is also possible, but we stick with the
simpler setting here; we return to this point in Section 7.

The step relation is defined by case analysis on the syntax of terms. Probabilistic choice
terms reduce by scaling the result of stepping e and the result of stepping e′ by p and 1− p
respectively, and then combining the distributions:

ste(e1 ⊕p e2) , p · ste(e1) + (1− p) · ste(e2)

The next cases push destructors into terms:

ste(tailk(a : e)) , ste(tailk−1(e))

ste(tailk(e1 ⊕p e2)) , ste(tailk(e1)⊕p tailk(e2))

Here and below, we write tailk as a shorthand for k > 0 applications of tail.
The remaining cases return point distributions. If we have reached a constructor then we

produce a single output. Otherwise, we replace σ by the top level stream term, unfolding a
recursive occurrence.

ste(a : e′) , δ(inl(a, e′))
ste(e′) , δ(inr(e′[e/σ])) otherwise

Note that a single evaluation step of a stream may lead to multiple constructors at top level
of the term, but only one output can be recorded each step – the remaining constructors are
preserved in the term and will give rise to outputs in subsequent steps.

The semantics is similar for trees. We take the functor F (X) = (A × X × X) + X:
a term reduces to a distribution over either an output in A and two child terms, or a
resulting term and no output. The main changes to the step relation are for constructors and
destructors. The constructor mk(a, e1, e2) reduces to δ(inl(a, e1, e2)), representing an output
a this step. Destructors are handle like tail for streams, where left(mk(a, e1, e2)) reduces to
e1 and right(mk(a, e1, e2)) reduces to e2, and tailk(−) is generalized to any finite combination
of left(−) and right(−).

Concretely, let C[e] be any (possibly empty) combination of left and right applied to e.
We have the following step rules:

ste(C[left(mk(a, el, er))]) , ste(C[el])
ste(C[right(mk(a, el, er))]) , ste(C[er])

ste(C[e1 ⊕p e2]) , p · ste(C[e1]) + (1− p) · ste(C[e2])
ste(mk(a, el, er)) , δ(inl(a, el, er))

ste(C[τ ]) , δ(inr(C[e]))

5 Syntactic Conditions for ASP

With the language and semantics in hand, we now turn to proving ASP. While it is theoretically
possible to reason directly on the semantics using our definitions from Section 3, in practice it
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is much easier to reason about the language. In this section we present a syntactic sufficient
condition for ASP. Intuitively, the idea is to approximate the expected number of outputs
every step; if this measure is strictly positive, then the program is ASP.

5.1 A Syntactic Measure
We define a syntactic measure #(−) : T→ R by induction on stream terms:

#(σ) , 0
#(e1 ⊕p e2) , p ·#(e1) + (1− p) ·#(e2)

#(a : e) , #(e) + 1
#(tail(e)) , #(e)− 1

The measure # describes the expected difference between the number of outputs produced
(by constructors) and the number of outputs consumed (by destructors) in each unfolding of
the term. We can define a similar measure for tree terms:

#(τ) , 0
#(e1 ⊕p e2) , p ·#(e1) + (1− p) ·#(e2)

#(mk(a, e1, e2)) , min(#(e1),#(e2)) + 1
#(left(e)) = #(right(e)) , #(e)− 1

We can now state conditions for ASP for streams and trees.

I Theorem 7. Let e be a stream term with γ = #(e). If γ > 0, e is ASP.

I Theorem 8. Let e be a tree term with γ = #(e). If γ > 0, e is ASP.

The main idea behind the proof for streams is that by construction of the step relation,
each step either produces an output or unfolds a fixed point (if there is no output). In
unfolding steps, the expected measure of the term plus the number of outputs increases by γ.
By defining an appropriate martingale and applying the Azuma-Hoeffding inequality, the
sum of the measure and the number of outputs must increase linearly as the term steps when
γ > 0. Since the measure is bounded above – when the measure is large the stream outputs
instead of unfolding – the number of outputs must increase linearly and the stream is ASP.

The proof for trees is similar, showing that on any path through the observation tree
there are infinitely many output steps with probability 1. We present detailed proofs in the
full version of this paper.

5.2 Examples
We consider a few examples of our analysis. The alphabet A does not affect the ASP property;
without loss of generality, we can let the alphabet A be the singleton {?}.

I Example 9. Consider the stream definition σ = (? : σ)⊕p tail(σ). The # measure of the
stream term is p · 1 + (1− p) · (−1) = 2p− 1. By Theorem 7, the stream is ASP when p > 1/2.

The measure does not give useful information when # is not positive.

I Example 10. Consider the stream definition σ = (? : σ)⊕1/2 tail(σ); the # measure of the
term is 0. The number of outputs can be modeled by a simple random walk on a line, where
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the maximum position is the number of outputs produced by the stream. Since a simple
random walk has probability 1 of reaching every n ∈ N [26], the stream term is ASP.

In contrast, #(σ) is 0 but the stream definition σ = σ is clearly non-productive.

We can give similar examples for tree terms.

I Example 11. Consider the tree definitions τ = ei, where
e1 , left(τ)⊕1/4 mk(?, τ, τ)
e2 , left(τ)⊕1/4 mk(?, τ, left(τ)) .

We apply Theorem 8 to deduce ASP. We have #(e1) = (1/4) · (−1) + (3/4) · (+1) = 1/2, so
the first term is ASP. For the second term, #(e2) = (1/4) · (−1) + (3/4) · 0 = −1/4, so our
analysis does not give any information.

6 Probabilistic Model-Checking for ASP

The syntactic analysis for ASP is simple, but it is not complete – no information is given if
the measure is not positive. In this section we give a more sophisticated, complete analysis
by first modeling the operational semantics of a term by a Probabilistic Pushdown Automaton
(pPDA), then deciding ASP by reduction to model-checking.

6.1 Probabilistic Pushdown Automata and LTL
A pPDA is a tuple A = (S,Γ, T ) where S is a finite set of states and Γ is a finite stack
alphabet. The transition function T : S × (Γ ∪ {⊥}) × S × Γ∗ → [0, 1] looks at the top
symbol on the stack (which might be empty, denoted ⊥), consumes it, and pushes a (possibly
empty, denoted ε) string of symbols onto the stack, before transitioning to the next state. A
configuration of A is an element of C = S × Γ∗, and represents the state of the pPDA and
the contents of its stack (with the top on the left) at some point of its execution. Given a
configuration, the transition function T specifies a distribution over configurations in the
next step. Given an initial state s and an initial stack γ ∈ Γ∗, T induces a distribution
Paths(s, γ) over the infinite sequence of configurations starting in (s, γ).

Linear Temporal Logic (LTL) [29] is a linear-time temporal logic that describes runs of
a transition system, which in a pPDA correspond to infinite sequences of configurations.
Propositions in LTL are defined by the syntax

φ, ψ ::= Q | ¬φ | Xφ | φ U ψ | ♦φ | �φ

where φ, ψ are path formulas, which describe a particular path, and Q is a set of atomic
propositions. The validity of an LTL formula on a run π of pPDA A is defined as follows:

π |= Φ⇔ π[0] ∈ Q
π |= ¬φ⇔ π 6|= φ

π |= Xφ⇔ π1 |= φ

π |= φ U ψ ⇔ ∃i.πi |= ψ ∧ ∀j < i.πj |= φ

π |= ♦φ⇔ ∃i.πi |= φ

π |= �φ⇔ ∀i.πi |= φ

where atomic propositions q are interpreted as JqK ⊆ C. As expected, path formulas are
interpreted in traces of configurations π ∈ Cω; π[i] is the ith element in the path π, and πi is
the suffix of π from π[i].

Given a pPDA A, a starting configuration (s, γ) ∈ C and a LTL formula φ, the qualitative
model-checking problem is to decide whether runs starting from (s, γ) satisfy φ almost surely,
i.e., whether Prπ∈Paths(s,γ)[π |= φ] = 1. The following is known.
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I Theorem 12 (Brázdil, et al. [6]). The quantitative model-checking problem for pPDAs
against LTL specifications is decidable.

Almost sure productivity states that an event – namely, producing an output – occurs
infinitely often with probability 1. Such properties can be expressed in LTL.

I Lemma 13. Let (s, γ) ∈ C be an initial configuration and B ⊆ C be a set of configurations.
Then Prπ∈Paths(s,γ)[π visits B infinitely often] = 1 iff Prπ∈Paths(s,γ)[π |= �♦B] = 1.

We will encode language terms as pPDAs and cast almost sure productivity as an LTL
property stating that configurations representing output steps are reached infinitely often
with probability 1. Theorem 12 then gives a decision procedure for ASP. In general, this
algorithm1 is in PSPACE.

6.2 Modeling streams with pPDAs

The idea behind our encoding from terms to pPDAs is simple to describe. The states of the
pPDA will represent subterms of the original term, and transitions will model steps. In the
original step relation, the only way a subterm can step to a non-subterm is by accumulating
destructors. We use a single-letter stack alphabet to track the number of destructors so that
a term like tailk(e) can be modeled by the state corresponding to e and k counters on the
stack. More formally, given a stream term e we define a pPDA Ae = (Se, {tl}, Te), where Se
is the set of syntactic subterms of e and Te is the following transition function:

Te((σ, a), (e, a)) = 1
Te((e1 ⊕p e2, a), (e1, a)) = p

Te((e1 ⊕p e2, a), (e2, a)) = 1− p

Te((a′ : e′,⊥), (e′, ε)) = 1
Te((a′ : e′, tl), (e′, ε)) = 1

Te((tail(e′), a), (e′, tl · a) = 1

Above, · concatenates strings and we implicitly treat a as alphabet symbol or a singleton
string. All non-specified transitions have zero probability. We define the set of outputting
configurations as O , {s ∈ C | ∃a′, e′. s = (a′ : e′,⊥)}, that is, configurations where the
current term is a constructor and there are no pending destructors. Our main result states
that this set is visited infinitely often with probability 1 if and only if e is ASP. In fact, we
prove something stronger:

I Theorem 14. Let e be a stream term and let Ae be the corresponding pPDA. Then,

Pr
t∼JeK

[t has infinitely many output nodes] = Pr
π∼Paths(e,ε)

[π |= �♦O].

In particular, e is ASP if and only if for almost all runs π starting in (e, ε), π |= � ♦O.

By Theorem 12, ASP is decidable for stream terms. In fact, it is also possible to decide
whether a stream term is almost surely not productive, i.e., the probability of producing
infinitely many outputs is zero.

1 Technically, this algorithm requires first encoding the LTL formula into a Deterministic Rabin Automaton
(DRA). Even though this encoding can in general blow up the problem size exponentially, this is not
the case for the simple conditions we consider.
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6.3 Extending to trees
Now, we extend our approach to trees. The main difficulty can be seen in the constructors.
For streams, we can encode the term a : e by proceeding to the tail e. For trees, however,
how can we encode mk(a, e1, e2)? The pPDA cannot step to both e1 and e2. Since the failure
of ASP may occur down either path, we cannot directly translate the ASP property on trees
to LTL – ASP is a property of all paths down the tree. Instead, on constructors our pPDA
encoding will choose a path at random to simulate. As we will show, if the probability of
choosing a path that outputs infinitely often is 1, then every path will output infinitely often.
Notice that in general, properties that happen with probability 1 do not necessarily happen
for every path, but the structure of our problem allows us to make this generalization.

More formally, the stack alphabet will now be {rt, lt}, and on constructors we transition
to each child with probability 1/2:

Te((τ, a), (e, a)) = 1
Te((e1 ⊕p e2, a), (e1, a)) = p

Te((e1 ⊕p e2, a), (e2, a)) = 1− p
Te((mk(a′, el, er),⊥), (el, ε)) = 1/2
Te((mk(a′, el, er),⊥), (er, ε)) = 1/2

Te((mk(a′, el, er), lt), (el, ε)) = 1
Te((mk(a′, el, er), rt), (er, ε)) = 1
Te((left(e′), a), (e′, lt · a)) = 1
Te((right(e′), a), (e′, rt · a)) = 1

We define O , {s ∈ C | ∃a′, el, er. s = (mk(a′, el, er), ε)} to be the set of outputting configu-
rations, and we can characterize ASP with the following theorem.

I Theorem 15. Let e be a tree term and Ae be the corresponding probabilistic PDA. Then
Prπ∼Paths(e,⊥)[π |= �♦O] = 1 if and only if for every w ∈ {L,R}ω,

Pr
t∼JeK

[t has infinitely many output nodes along w] = 1.

Thus we can decide ASP by deciding a LTL formula.

7 Possible Generalizations and Extensions

Our definition of ASP and our verification approaches suggest several natural directions.

Handling Richer Languages. The most concrete direction is to consider richer languages
for coinductive probabilistic programming. Starting from our core language, one might
consider allowing more operations on coinductive terms, mutually recursive definitions, or
conditional tests of some kind. It should also be possible to develop languages for more
complex coinductive types associated with general polynomial functors (see, e.g., Kozen [24]).
Note that adding more operations, e.g. pointwise + of streams would increase the expressivity
of the language but raise additional challenges from the perspective of the semantics – we
would have to add extra structure to the base category and re-check that the finality proof.

Developing new languages for coinductive probabilistic programming – perhaps an imper-
ative language or a higher-order language – would also be interesting. From the semantics
side, our development in Section 3 should support any language equipped with a small-step
semantics producing output values, allowing ASP to be defined for many kinds of languages.
The verification side appears more challenging. Natural extensions, like a pointwise addition
operation, already seem to pose challenges for the analyses. We know of no general method
to reasoning about ASP. This stands in contrast to almost sure termination, which can be
established by where flexible criteria like decreasing probabilistic variants [17]. Considering
counterparts of these methods for ASP is an interesting avenue of research.
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Exploring Other Definitions. Our definition of ASP is natural, but other definitions are
possible. For trees (and possibly more complex coinductive structures), we could instead
require that there exists a path producing infinitely many outputs, rather than requiring
that all paths produce infinitely many outputs. This weaker notion of ASP can be defined
in our semantics, but it is currently unclear how to verify this kind of ASP.

Our notion of ASP also describes just the probability of generating infinitely many outputs,
and does not impose any requirement on the generation rate. Quantitative strengthenings of
ASP – say, requiring bounds on the expected number of steps between outputs – could give
more useful information.

Understanding Dependence on Step Relation. Our coalgebraic semantics supporting our
verification methods are based on a small-step semantics for programs. A natural question is
whether this dependence is necessary, or if one could verify ASP with a less step-dependent
semantics. Again drawing an analogy, it appears that fixing a reduction strategy is important
in order to give a well-defined notion of almost sure termination for probabilistic higher-order
languages (see, e.g., [25]). The situation for almost sure productivity is less clear.

8 Related Work

Our work is inspired by two previously independent lines of research: probabilistic termination
and productivity of coalgebraic definitions.

Probabilistic Termination. There are a broad range of techniques for proving termination
of probabilistic programs. Many of the most powerful criteria use advanced tools from
probability theory [27], especially martingale theory [8, 16, 9, 10, 11]. Other works adopt
more pragmatic approaches, generally with the goal of achieving automation. Arons, Pnueli
and Zuck [4] reduce almost sure termination of a program P to termination of a non-
deterministic program Q, using a planner that must be produced by the verifier. Esparza,
Gaiser and Kiefer [15] give a CEGAR-like approach for building patterns (which play a role
similar to planners) and prove that their approach is complete for a natural class of programs.

Productivity of Corecursive Definitions. There has been a significant amount of work on
verifying productivity of corecursive definitions without probabilistic choice. Endrullis and
collaborators [14] give a procedure for deciding productivity of an expressive class of stream
definitions. In a companion work [13], they study the strength of data oblivious criteria, i.e.,
criteria that do not depend on values. More recently, Komendantskaya and collaborators [21]
introduce observational productivity and give a semi-decision procedure for logic programs.

9 Conclusion

We introduce almost sure productivity, a counterpart to almost sure termination for prob-
abilistic coinductive programs. In addition, we propose two methods for proving ASP for
a core language for streams and infinite trees. Our results demonstrate that verification of
ASP is feasible and can even be decidable for simple languages.
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Abstract
The termination analysis of linear loops plays a key rôle in several areas of computer science, in-
cluding program verification and abstract interpretation. Such deceptively simple questions also
relate to a number of deep open problems, such as the decidability of the Skolem and Positivity
Problems for linear recurrence sequences, or equivalently reachability questions for discrete-time
linear dynamical systems. In this paper, we introduce the class of o-minimal invariants, which
is broader than any previously considered, and study the decidability of the existence and al-
gorithmic synthesis of such invariants as certificates of non-termination for linear loops equipped
with a large class of halting conditions. We establish two main decidability results, one of them
conditional on Schanuel’s conjecture in transcendental number theory.
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interpretation, static analysis, and theorem proving. To this day, automated invariant
synthesis remains a topic of active research; see, e.g., [17], and particularly Sec. 8 therein.

In program analysis, invariants are often invaluable tools enabling one to establish various
properties of interest. Our focus here is on simple linear loops, of the following form:

P : x← s; while x /∈ F do x← Ax , (1)

where x is a d-dimensional column vector of variables, s is a d-dimensional vector of integer,
rational, or real numbers, A ∈ Qd×d is a square rational matrix of dimension d, and F ⊆ Rd
represents the halting condition.

Much research has been devoted to the termination analysis of such loops (and variants
thereof); see, e.g., [3, 2, 25]. For S ⊆ Rd, we say that P terminates on S if it terminates for
all initial vectors s ∈ S. One of the earliest and most famous results in this line of work is
due to Kannan and Lipton, who showed polynomial-time decidability of termination in the
case where S and F are both singleton vectors with rational entries [15, 16]. This work was
subsequently extended to instances in which F is a low-dimensional vector space [6, 8] or a
low-dimensional polyhedron [7]. Still starting from a fixed initial vector, the case in which
the halting set F is a hyperplane is equivalent to the famous Skolem Problem for linear
recurrence sequences, whose decidability has been open for many decades [29, §3.9], although
once again positive results are known in low dimensions [20, 32]. The case in which F is a
half-space corresponds to the Positivity Problem for linear recurrence sequences, likewise
famously open in general but for which some partial results also exist [23, 22].

Cases in which the starting set S is infinite have also been extensively studied, usually
in conjunction with a halting set F consisting of a half-space. For example, decidability of
termination for S = Rd and S = Qd are known [31, 4]; see also [21]. In the vast majority of
cases, however, termination is a hard problem (and often undecidable [34]), which has led
researchers to turn to semi-algorithms and heuristics. One of the most popular and successful
approaches to establishing termination is the use of ranking functions, on which there is a
substantial body of work; see, e.g., [2], which includes a broad survey on the subject.

Observe, for a loop P such as that given in (1), that failure to terminate on a set
S corresponds to the existence of some vector s ∈ S from which P loops forever. It
is important to note, however, that the absence of a suitable ranking function does not
necessarily entail non-termination, owing to the non-completeness of the method. Yet
surprisingly, as pointed out in [14], there has been significantly less research in methods
seeking to establish non-termination than in methods aimed at proving termination. Most
existing efforts for the former have focused on the synthesis of appropriate invariants; see,
e.g., [11, 9, 28, 26, 10, 27, 13].

In order to make this notion more precise, let us associate with our loop P a discrete-time
linear dynamical system (A, s). The orbit of this dynamical system is the set O = {Ans | n ≥
0}. It is clear that P fails to terminate from s iff O is disjoint from F . A possible method to
establish the latter is therefore to exhibit a set I ⊆ Rd such that:
1. I contains the initial vector s, i.e., s ∈ I;
2. I is invariant under A, i.e., AI ⊆ I; and
3. I is disjoint from F , i.e., I ∩ F = ∅.
Indeed, the first two conditions ensure that I contains the entire orbit O, from which the
desired claim follows thanks to the third condition.

In instances of non-termination, one notes that the orbit O itself is always an invariant
meeting the above conditions. However, since in general one does not know how to algorith-
mically check Condition (3), such an invariant is of little use. One therefore usually first fixes
a suitable class of candidate sets for which the above conditions can be mechanically verified,
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Figure 1 The orbit
O of (A, s)

Figure 2 Traject-
ory rays of O.

Figure 3 Traject-
ory cone for O.

Figure 4 Invariant
for O.

and within that class, one seeks to determine if an invariant can be found. Examples of such
classes include polyhedra [11], algebraic sets [27], and semi-algebraic sets [13].

Main contributions. We focus on loops of the form given in (1) above. We introduce the
class of o-minimal invariants, which, to the best of our knowledge, is significantly broader
than any of the classes previously considered. We also consider two large classes of halting
sets, namely semi-algebraic sets, as well as sets definable in the first-order theory of the
reals with exponentiation, denoted Rexp. Given s ∈ Qd, A ∈ Qd×d, and F ⊆ Rd, our main
results are the following: if F is a semi-algebraic set, it is decidable whether there exists an
o-minimal invariant I containing s and disjoint from F , and moreover in positive instances
such an invariant can be defined explicitly in Rexp; for the more general case in which F is
Rexp-definable, the same holds assuming Schanuel’s conjecture.

We illustrate below some of the key ideas from our approach. Consider a linear dynamical
system (A, s) with A ∈ Q3×3 whose orbit O is depicted in Figure 1. In our example, O
spirals outward at some rate ρ1 in the x, y-plane, and increases along the z-axis at some rate
ρ2. Intuitively, ρ1 and ρ2 are the moduli of the eigenvalues of A.

We now consider a ‘normalised’ version of A, with both moduli set to 1. We then connect
every point on the normalised orbit with a trajectory ray to its corresponding point on O,
while respecting the rates ρ1 and ρ2 (see Figure 2). One can observe that the normalised
orbit is dense in the unit circle. We prove that any o-minimal invariant for (A, s) must in
fact eventually contain every trajectory ray for every point on the unit circle; we depict the
union of these rays, referred to as the trajectory cone, in Figure 3. Finally, we show that
any o-minimal invariant must in fact contain some truncation of the trajectory cone from
below, starting from some height. That is, there is a uniform bound from which all the rays
must belong to the invariant. Moreover, we can now synthesise an Rexp-definable o-minimal
invariant by simply adjoining a finite number of orbit points to the truncated trajectory cone,
as depicted in Figure 4.

It is worth emphasising that, whilst in general there cannot exist a smallest o-minimal
invariant, the family of truncated cones that we define plays the rôle of a ‘minimal class’, in
the sense that any o-minimal invariant must necessarily contain some truncated cone. We
make all of these notions precise in the main body of the paper.

The work that is closest to ours in the literature is [13], which considers the same kind of
loops as we do here, but restricted to the case in which the halting set F is always a rational
singleton. The authors then exhibit a procedure for deciding the existence of semi-algebraic
invariants. The present paper has a considerably broader scope, in that we deal with much
wider classes both of invariants and halting sets. From a technical standpoint, the present
paper correspondingly makes heavy use of model-theoretic and number-theoretic tools that
are entirely absent from [13]. It is interesting to note, however, that the question of the
existence of semi-algebraic (rather than o-minimal) invariants in the present setting appears
to be a challenging open problem.

ICALP 2018
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2 Preliminaries

The first-order theory of the reals, denoted R0, is the collection of true sentences in the
first-order logic of the structure 〈R, 0, 1,+, ·, <〉. Sentences in R0 are quantified Boolean
combinations of atomic propositions of the form P (x1, . . . , xn) > 0 where P is a polynomial
with integer coefficients, and x1, . . . , xn are variables. Tarski famously showed that this
theory admits quantifier elimination [30] and is therefore decidable. In addition to R0, we
also consider the first-order theory of the reals with exponentiation, denoted Rexp, which
augments R0 with the exponentiation function x 7→ ex.

A set S ⊆ Rd is definable in a theory R if there exists a formula ϕ(x1, . . . , xd) in R with
free variables x1, . . . , xd such that S =

{
(c1, . . . , cd) ∈ Rd | ϕ(c1, . . . , cd) is true

}
. A function

f : B → Rm with B ⊆ Rn is definable in R if its graph Γ(f) = {(x, f(x)) | x ∈ B} ⊆ Rn+m

is an R-definable set. For R = R0, the first-order theory of the reals, R0-definable sets (resp.
functions) are known as semi-algebraic sets (resp. functions).
I Remark. Our usage of the terms “definable” and “semi-algebraic” corresponds to “definable
without parameters” and “semi-algebraic without parameters” in model theory.

A theory R is said to be o-minimal if every R-definable subset of the reals S ⊆ R is a
finite union of points and (possibly unbounded) intervals.

I Definition 1. A set S ⊆ Rd is o-minimal if it is definable in some o-minimal theory that
extends Rexp.

Tarski’s result on quantifier elimination [30] also implies that R0 is o-minimal. The
o-minimality of Rexp, on the other hand, is due to Wilkie [33]. O-minimal theories enjoy
many useful properties, some of which we list below, referring the reader to [12] for precise
definitions and proofs. In what follows, R is a fixed o-minimal theory.
1. For an R-definable set S ⊆ Rd, its topological closure S is also R-definable.
2. For an R-definable function f : S → R, the number inf {f(x) | x ∈ S} is R-definable (as

a singleton set).
3. O-minimal theories admit cell decomposition: every R-definable set S ⊆ Rd can be

written as a finite union of connected components called cells. Moreover, each cell is
R-definable and homeomorphic to (0, 1)m for some m ∈ {0, 1, . . . , d}. The dimension of
S is defined as the maximal such m occurring in the cell decomposition of S.

4. For an R-definable function f : S → Rm, the dimension of its graph Γ(f) is the same as
the dimension of S.

As mentioned above, R0 is decidable thanks to its effective quantifier elimination procedure.
Equivalently, given a semi-algberaic set, we can effectively compute its cell decomposition.
Unfortunately, few more expressive theories are known to be decidable. The theory Rexp
is decidable provided that Schanuel’s conjecture, an assertion in transcendental number
theory, holds [18]. Our decidability result in Theorem 12 is subject to Schanuel’s conjecture;
somewhat surprisingly, however, we exhibit in Theorem 13 an unconditional decidability
result.
I Remark. While all our R-definable sets live in Rd, it is often convenient or necessary to
consider sets in Cd. To this end, by identifying C with R2, we define a set S ⊆ Cd to be
R-definable if the set {(x, y) ∈ Rd × Rd | x+ iy ∈ S} in R2d is R-definable.

A discrete-time linear dynamical system (LDS) consists of a pair (A, s), where A ∈ Qd×d
and s ∈ Qd. Its orbit O is the set {Ans | n ∈ N}. An invariant for (A, s) is a set I ⊆ Rd
that contains s and is stable under applications of A, i.e., AI ⊆ I. Given a set F ⊆ Rd, we
say that the invariant I avoids F if the two sets are disjoint.
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3 From the Orbit to Trajectory Cones and Rays

Let (A, s) be an LDS with A ∈ Qd×d and s ∈ Qd. We consider the orbit O = {Ans | n ∈ N}.
Write A in Jordan form as A = PJP−1 where P is an invertible matrix, and J is a block
diagonal matrix of the form J = diag(B1, . . . , Bk), where for every 1 ≤ i ≤ k, Bi ∈ Cdi×di is
a Jordan block corresponding to an eigenvalue ρiλi:

Bi =

ρiλi 1. . . . . .
. . . 1

ρiλi

 .

Here ρ1, . . . , ρk ∈ R≥0, the numbers λ1, . . . , λk are algebraic and have modulus 1, and∑k
i=1 di = d. To reflect the block structure of J , we often range over {1, . . . , d} via a pair

(i, j), with 1 ≤ i ≤ k and 1 ≤ j ≤ di, which denotes the index corresponding to row j in
block i; we refer to this notation as block-row indexing.
I Remark. Henceforth, we assume that for all 1 ≤ i ≤ k we have that ρi > 0 (i.e., that
the matrices A and J are invertible). Indeed, if ρi = 0, then Bi is a nilpotent block and
therefore, for the purpose of invariant synthesis, we can ignore finitely many points of the
orbit under A until Bni is the 0 block. We can then restrict our attention to the image of An,
by identifying it with Rd−di .

Observe that now, for every set F ⊆ Rd, we have that Ans ∈ F iff Jns′ ∈ P−1F where
s′ = P−1s.

For every n > d, Jn = diag(Bn1 , . . . , Bnk ) with

Bni =

(ρiλi)n n
ρiλi

(ρiλi)n · · · ( n
di−1)

(ρiλi)di−1 (ρiλi)n

. . .
...

(ρiλi)n

 .

Every coordinate of Jns′ is of the form (ρiλi)nQi,j(n) = ρni λ
n
i Qi,j(n) for some 1 ≤ i ≤ k

and 1 ≤ j ≤ di, where Qi,j is a polynomial (possibly with complex coefficients) that depends
on J and s′.

Let R = diag(ρ1, . . . , ρk) and L = diag(λ1, . . . , λk). We define T to be the subgroup
of the torus in Ck generated by the multiplicative relations of the normalised eigenvalues
λ1, . . . , λk. That is, consider the subgroup G =

{
v = (v1, . . . , vk) ∈ Zk | λv1

1 · · ·λ
vk
k = 1

}
of

Zk, and let

T =
{

(α1, . . . , αk) ∈ Ck | |αi| = 1 for all i, and for every v ∈ G, αv1
1 · · ·α

vk
k = 1

}
.

A result by Masser [19] allows to compute in polynomial time a basis for G, and
hence a representation of T. Using Kronecker’s theorem on inhomogeneous simultaneous
Diophantine approximation [5] it is shown in [24] that {Ln | n ∈ N} is a dense subset of
{diag(α1, . . . , αk) | (α1, . . . , αk) ∈ T}.

Thus, for every n ∈ N, we have

Jns′ ∈
{(
ρn1p1Q1,1(n), . . . , ρnkpkQk,dk(n)

)ᵀ | (p1, . . . , pk) ∈ T
}
.

We now define a continuous over-approximation of the expressions ρni . To this end, if
there exists some modulus ρi larger than 1 (in which case, without loss of generality, assume
that ρk > 1), then for every 1 ≤ i ≤ k let bi = logρk ρi, and observe that ρni = (ρnk )bi . We
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114:6 O-Minimal Invariants for Linear Loops

then replace the expression ρnk with a continuous variable t, so that ρni becomes tbi , and n
is replaced by logρk t. If all moduli are at most 1 and some are strictly smaller than 1 (in
which case, without loss of generality, ρk < 1), then replace the expression ρnk with 1/t. Note
that in both cases, t grows unboundedly large as n tends to infinity. In the full version of
this paper we handle the special (and simpler) case in which all eigenvalues have modulus
exactly 1. Henceforth, we assume that ρk > 1. If ρk < 1, the proofs are carried out mutatis
mutandis.

This over-approximation leads to the following definition, which is central to our approach.

I Definition 2. For every t0 ≥ 1, we define the trajectory cone3 for the orbit O as

Ct0 =
{(
tb1p1Q1,1(logρk t), . . . , t

bkpkQk,dk(logρk t)
)ᵀ | (p1, . . . , pd) ∈ T, t ≥ t0

}
.

In particular, we have that Jns′ ∈ C1.
In order to analyse invariants, we require a finer-grained notion than the entire trajectory

cone. To this end, we introduce the following.

I Definition 3. For every p = (p1, . . . , pk) ∈ T and every t0 ≥ 1, we define the (trajectory)
ray4 r(p, t0) =

{(
tb1p1Q1,1(logρk t), . . . , t

bkpkQk,dk(logρk t)
)ᵀ | t ≥ t0} .

Observe that we have Ct0 =
⋃
p∈T r(p, t0).

I Example 4. Consider the matrix A = diag(5, 2) and the initial point s = (1, 1)ᵀ. We then
have T =

{(
1, 1
)}

and Ct0 =
{(
tlog2 5, t

)ᵀ | t ≥ t0}. Observe that this is not an R0-definable
set, as the exponent log2 5 is not rational. This shows that even for diagonalizable matrices
(where Ct0 has a simple form, devoid of the polynomials Qi,j), R0 might not be enough to
recover definability of the orbit (in the sense of Theorem 5 below).

4 Constructing Invariants from Trajectory Cones

We now proceed to show that the trajectory cones defined in Section 3 can be used to
characterise o-minimal invariants. More precisely, we show that for an LDS (A, s) with
A = PJP−1, the image under P of every trajectory cone Ct0 , augmented with finitely many
points from O, is an invariant. Moreover, we show that such invariants are Rexp-definable,
and hence o-minimal. Complementing this, we show in Section 5 that every o-minimal
invariant must contain some trajectory cone.

In what follows, let A = PJP−1, s, as well as the real numbers b1, . . . , bd be defined as
in Section 3.

I Theorem 5. For every t0 ≥ 1, the set P · Ct0 ∪
{
Ans | n < logρk t0

}
is an Rexp-definable

invariant for the LDS (A, s).

The intuition behind Theorem 5 is as follows. Clearly, the orbit O itself is always
an invariant for (A, s). However, it is generally not definable in any o-minimal theory (in
particular, since it has infinitely many connected components). In order to recover definability

3 These sets are, of course, not really cones. Nevertheless, if for all i we have bi = 1 and the polynomials
Qi,j are constant, then the set Ct0 is a conical surface formed by the union of rays going from the origin
through all points of T. The initial segments of the rays, of length determined by the parameter t0, are
removed.

4 Likewise, this set is not, strictly speaking, a straight half-line.
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in Rexp while maintaining stability under A, the invariants constructed in Theorem 5 over-
approximate the orbit by the image of the trajectory cone Ct0 under the linear transformation
P . Finally, a finite set of points from O is added to this image of the trajectory cone, to fill
in the missing points in case t0 is too large.

The proof of Theorem 5 has several parts. First, recall that the trajectory cone itself,
Ct0 , is an over-approximation of the set

{
JnP−1s | n ∈ N

}
. As such, clearly Ct0 ⊆ Cd. In

comparison, the orbit can be written as O =
{
PJnP−1s | n ∈ N

}
⊆ Rd. We prove in the

full version of the paper the following lemma, from which it follows that the entire set P · Ct0
is also a subset of Rd.
I Lemma 6. For every p ∈ T and t0 ≥ 1, we have P · r(p, t0) ⊆ Rd.

Let us simply remark here that by analysing the structure of the matrices involved in
defining P · r(p, t0), and using the facts that the columns of P are generalised eigenvectors
of A, and that conjugate pairs of eigenvalues correspond to conjugate pairs of generalised
eigenvectors, it is not hard to see that the above product does indeed yield only real values.
However, a formal proof of this involves fairly tedious calculations. In the full version of the
paper, we proceed instead via an analytic argument.

In the second part of the proof of Theorem 5, we show that P · Ct0 is stable under A.
The key ingredient is the following lemma, which characterises the action of J on rays and is
proved in Section 4.1.
I Lemma 7. For every p = (p1, . . . , pk) ∈ T and t0 ≥ 1, we have J · r(p, t0) = r(Lp, ρkt0).

The next lemma then lifts Lemma 7 to the entire trajectory cone.
I Lemma 8. For every t0 ≥ 1, we have J · Ct0 ⊆ Ct0 .
Proof. Recall that Ct0 =

⋃
p∈T r(p, t0). By Lemma 7 we have that J · Ct0 =

⋃
p∈T r(Lp, ρkt0).

Since ρk > 1, it follows that ρkt0 ≥ t0. In addition, p ∈ T iff Lp ∈ T. Hence we have that
r(Lp, ρkt0) ⊆ r(Lp, t0), from which we conclude that J ·Ct0 ⊆

⋃
p∈T r(Lp, t0) =

⋃
p∈T r(p, t0) =

Ct0 . J

The proof of Theorem 5 combines all these ingredients together and is given in subsec-
tion 4.2.

4.1 Proof of Lemma 7

Let y =

 tb1p1Q1,1(logρk t)
...

tbkpkQk,dk (logρk t)

 ∈ r(p, t0). We claim that Jy =

 (ρkt)b1λ1p1Q1,1(logρk (ρkt))
...

(ρkt)bkλkpkQk,dk (logρk (ρkt))

.

Note that since Lp = (λ1p1, . . . , λkpk), the above suffices to conclude the proof.
Consider a coordinate m = (i, j) of Jy in block-row index, with j < di. The case of

j = di is similar and simpler. To simplify notation, we write λ, ρ, and d instead of λi, ρi, and
di, respectively. Then we have

(Jy)m = λρtbipiQi,j(logρk t) + tbipiQi,j+1(logρk t) .

Recall that5

Qi,j(logρk t) =
d−j∑
c=0

(logρk t
c

)
(ρλ)c s′i,j+c ,

5 Here, for w ∈ R and m ∈ N, one defines
(
w
m

)
= 1

m!
∏m−1
i=0 (w − i), which maintains consistency with the

original definition of Qi,j in Section 3.
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with (i, j + c) in block-row index. We can then write

(Jy)m = λρtbipi

d−j∑
c=0

(logρk t
c

)
(ρλ)c s′i,j+c + tbipi

d−j−1∑
c=0

(logρk t
c

)
(ρλ)c s′i,j+c+1 . (2)

We now compare this to coordinate m of our claim, namely

(ρkt)biλpiQi,j(logρk(ρkt)) = (ρkt)biλpi
d−j∑
c=0

(logρk (ρkt)
c

)
(ρλ)c s′i,j+c . (3)

We compare the right-hand sides of Equations (2) and (3) by comparing the coefficients of
s′i,q for q ∈ {j, . . . , d} (these being the only ones that appear in the expressions). For q = j

we see that in (2) the number s′i,j occurs in the first summand only, and its coefficient is
thus λρtbipi, while in (3) it is (ρkt)biλpi = ρbik t

biλpi = ρtbiλpi, since bi = logρk ρ. Thus, the
coefficients are equal.

For q > j, write q = j + c with c ≥ 1; the coefficient at s′i,j+c in (2) is then

λρtbipi

(logρk t
c

)
(ρλ)c +tbipi

(logρk t
c−1

)
(ρλ)c−1 = tbiρλpi

(ρλ)c

((
logρk t
c

)
+
(

logρk t
c− 1

))
= tbiλρpi

λc

(
logρk t+ 1

c

)
where the last equality follows from a continuous version of Pascal’s identity. Finally, by
noticing that logρk t + 1 = logρk(ρkt), it is easy to see that this is the same coefficient as
in (3).

4.2 Proof of Theorem 5
Let t0 ≥ 1. By applying Lemma 6 to every p ∈ T, we conclude that P · Ct0 ⊆ Rd. It is then
easy to see that P · Ct0 is definable in Rexp (note that the only reason the set Ct0 might fail
to be Rexp-definable is that the underlying domain should be R and not C).

Next, by Lemma 8 we have that J · Ct0 ⊆ Ct0 . Applying P from the left, we get
PJ · Ct0 ⊆ P · Ct0 . Thus, we have AP · Ct0 = PJP−1P · Ct0 = PJ · Ct0 ⊆ P · Ct0 .

Finally, observe that
{
Ans | n ≥ logρk t0

}
⊆ P · Ct0 . Since any finite subset of O can be

described in R0, we conclude that the set
{
Ans | n < logρk t0

}
∪ P · Ct0 is an Rexp-definable

invariant for (A, s).

5 O-Minimal Invariants Must Contain Trajectory Cones

In this section we consider invariants definable in o-minimal extensions of Rexp. Fix such an
extension R for the remainder of this section.

I Theorem 9. Consider an R-definable invariant I for the LDS (A, s). Then there exists
t0 ≥ 1 such that P · Ct0 ⊆ I.

To prove Theorem 9, we begin by making following claims of increasing strength:

I Claim 1. For every p ∈ T there exists t0 ≥ 1 such that P · r(p, t0) ⊆ I or P · r(p, t0)∩I = ∅.

I Claim 2. For every p ∈ T there exists t0 ≥ 1 such that P · r(p, t0) ⊆ I.

I Claim 3. There exists t0 ≥ 1 such that for every p ∈ T we have P · r(p, t0) ⊆ I.
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Proof of Claim 1. Fix p ∈ T. Observe that by Lemma 6, P · r(p, 1) is R-definable. Further
note that P · r(p, 1) is of dimension 1 (as it is homeomorphic to [1,∞)). Thus, the dimension
of P · r(p, 1) ∩ I is at most 1, so its cell decomposition contains finitely many connected
components of dimensions 0 or 1. In particular, either one component is unbounded, in
which case there exists a t0 such that P · r(p, t0) ⊆ I, or all the components are bounded, in
which case there exists a t0 such that P · r(p, t0) ∩ I = ∅. J

Before proceeding to Claim 2, we prove an auxiliary lemma, which is an adaptation of a
similar result from [13]. For a set X, we write X to refer to the topological closure of X. We
use the usual topology on Rn, Cn, and the (usual) subspace topology on their subsets.

I Lemma 10. Let S, F ⊆ T be R-definable6 sets such that S = F = T. Then F ∩ S 6= ∅.

Proof. We start by stating two properties of the dimension of a definable set in an o-minimal
theory R. First, for any R-definable set X ⊆ Rn we have dim(X) = dim(X) [12, Chapter
4, Theorem 1.8]. Secondly, if X ⊆ Y are R-definable subsets of Rn that have the same
dimension, then X has non-empty interior in Y [12, Chapter 4, Corollary 1.9]. In the
situation at hand, since dim(F ) = dim(F ), it follows that F has non-empty interior with
respect to the subspace topology on F = S. But then S is dense in S while F has non-empty
interior in S, and thus S ∩ F 6= ∅. J

Proof of Claim 2. We strengthen Claim 1. Assume by way of contradiction that there exist
p ∈ T and t0 ∈ R such that P · r(p, t0) ∩ I = ∅, and consider J−1 · r(p, t0). Let q ∈ T
be L−1p = ( p1

λ1
, . . . , pkλk ) and let t1 = t0

ρk
. Then p = Lq and t0 = ρkt1 and, by Lemma 7,

Jr(q, t1) = r(Lq, ρkt1) = r(p, t0). Since J is invertible, we conclude that J−1r(p, t0) = r(q, t1).
We now claim that P · r(q, t1) ∩ I = ∅. Recall that P · r(p, t0) ∩ I = ∅. Applying

A−1 = PJ−1P−1, we have by the above that P · r(q, t1) ∩ A−1I = ∅. Since AI ⊆ I, then
I ⊆ A−1I, so we have P · r(q, t1) ∩ I ⊆ P · r(q, t1) ∩A−1I = ∅.

Recall that, following the discussion in section 3, we have ρk > 1. This implies t1 ≤ t0
and r(q, t0) ⊆ r(q, t1), so in particular P · r(q, t0)∩ I = ∅. Thus, assuming P · r(p, t0)∩ I = ∅,
we have just proved that P · r(L−1p, t0) ∩ I = ∅; repeating this argument, we get that for
every n ∈ N, the point s = L−np satisfies P · r(s, t0) ∩ I = ∅.

Let S = {L−np | n ∈ N}. Then S is dense in T, since the group of multiplicative relations
defined by the eigenvalues of L−1 is the same as the one defined by those of L. Define
S′ = {s ∈ T | P · r(s, t0) ∩ I = ∅}. Then S′ is R-definable, and we have S ⊆ S′ ⊆ T.
Moreover, S = T, so S′ = T.

We now prove that, in fact, S′ = T. Assuming (again by way of contradiction) that there
exists q ∈ T \ S′, then by the definition of S′ we have P · r(q, t0) ∩ I 6= ∅. It follows that for
every n ∈ N, the point q′ = Lnq also satisfies P · r(q′, t0) ∩ I 6= ∅. Define F = {Lnq | n ∈ N},
then F is dense in T. But then the set F ′ = {q ∈ T | P · r(q, t0) ∩ I 6= ∅} satisfies F ⊆ F ′ ⊆ T
and F ′ = T. Now the sets S′ and F ′ are both definable in R, and the topological closure of
each of them is T. It follows from Lemma 10 that F ′∩S′ 6= ∅, which is clearly a contradiction.
Therefore, there is no q ∈ T \ S′; that is, S′ = T.

From this, however, it follows that P · Ct0 ∩ I = ∅, which is again a contradiction, since
P · Ct0 ∩ O 6= ∅ and O ⊆ I, so we are done. J

Proof of Claim 3. Consider the function f : T→ R defined by f(p) = inf{t ∈ R | P · r(p, t)
⊆ I}. By Claim 2 this function is well-defined. Since P · r(p, t) is R-definable, then so is f .

6 Recall that, in order to reason about T ⊆ Ck in R, we identify C with R2.
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Moreover, its graph Γ(f) has finitely many connected components, and the same dimension
as T. Thus, there exists an open set K ⊆ T (in the induced topology on T) such that f is
continuous on K. Furthermore, K is homeomorphic to (0, 1)m for some 0 ≤ m ≤ k, and
thus we can find sets K ′′ ⊆ K ′ ⊆ K such that K ′′ is open, and K ′ is closed.7 Since f is
continuous on K, it attains a maximum on K ′. Consider the set {Ln ·K ′′ | n ∈ N}. By the
density of {Ln | n ∈ N} in T, this is an open cover of T, and hence there is a finite subcover
{Ln1K ′′, . . . , LnmK ′′}. Since K ′′ ⊆ K ′, it follows that {Ln1K ′, . . . , LnmK ′} is a finite closed
cover of T.

We now show that, for all p ∈ T, we have f(Lp) ≤ ρk · f(p). Indeed, consider any p ∈ T
and t > 0 such that P · r(p, t) ⊆ I. Applying A = PJP−1, we get PJ · r(p, t) ⊆ AI ⊆ I. By
Lemma 7, J · r(p, t) = r(Lp, ρkt), so we can conclude that P · r(Lp, ρkt) ⊆ I. This means
that P · r(p, t) ⊆ I implies P · r(Lp, ρkt) ⊆ I; therefore, f(Lp) ≤ ρk · f(p).

Now denote s0 = maxp∈K′ f(p). Then for every 1 ≤ i ≤ m we have maxp∈LniK′ f(p) ≤
ρnik s0; so f(p) is indeed bounded on T. J

Finally, we conclude from Claim 3 that there exists t0 ≥ 1 such that P · Ct0 ⊆ I. This
completes the proof of Theorem 9.

6 Deciding the Existence of O-Minimal Invariants

We now turn to the algorithmic aspects of invariants and present our two main results,
Theorems 12 and 13.

Let R be either R0 or Rexp. We consider the following problem: given an LDS (A, s),
with A ∈ Qd×d and s ∈ Qd, and given an R-definable halting set F ⊆ Rd, we wish to decide
whether there exists an o-minimal invariant I for (A, s) that avoids F , and to compute such
an invariant if it exists. We term this question the O-Minimal Invariant Synthesis Problem
for R-Definable Halting Sets.

The following is a consequence of Theorems 5 and 9.

I Lemma 11. Let (A, s) and R be as above, and let F be R-definable. Then there exists an
o-minimal invariant I for (A, s) that avoids F iff there is some t0 ≥ 1 such that P ·Ct0∩F = ∅
and such that Ans /∈ F for every 0 ≤ n ≤ logρk t0.

Proof. By Theorem 9, if an o-minimal invariant I for (A, s) exists, then there exists t0 ≥ 1
such that P · Ct0 ⊆ I. Moreover, I ∩ F = ∅ implies O ∩ F = ∅, so that Ans 6∈ F for
every n ∈ N, and in particular for 0 ≤ n ≤ logρk t0.

Conversely, let there be t0 ≥ 1 such that P · Ct0 ∩ F = ∅ and, for every 0 ≤ n ≤ logρk t0,
it holds that Ans /∈ F . Let t′0 ∈ Q be such that t′0 ≥ t0. By Theorem 5, the set I =
P · Ct′0 ∪

{
Ans | 0 ≤ n ≤ logρk t

′
0
}
is an Rexp-definable invariant that avoids F . J

Observe that the formula ∃t0 ≥ 1 : P ·Ct0 ∩F = ∅ is a sentence in Rexp, and by Lemma 11,
deciding the existence of an invariant amounts to determining the truth value of this sentence.

Decidability for Rexp-definable halting sets assuming Schanuel’s conjecture. Applying
Theorem 5, we note that an invariant for (A, s) that avoids F—if one exists—can always be
defined in Rexp.

7 In case m = 0, the proof actually follows immediately from Claim 2, since T is finite.



S. Almagor, D. Chistikov, J. Ouaknine, and J. Worrell 114:11

I Theorem 12. The O-Minimal Invariant Synthesis Problem for Rexp-Definable Halting
Sets is decidable, assuming Schanuel’s conjecture. Moreover, in positive instances, we can
explicitly define such an invariant in Rexp.

Proof. Assume Schanuel’s conjecture. Then by [18], the theory Rexp is decidable. Thus
we can decide whether there exists t0 ≥ 1 such that P · Ct0 ∩ F = ∅. If the sentence is
false, then by Lemma 11 there is no invariant, and we are done. If the sentence is true,
however, it still remains to check whether Ans 6∈ F for every 0 ≤ n ≤ logρk t0. While we
can decide whether Ans ∈ F for a fixed n, observe that we do not have an a priori bound
on t0. Hence we proceed as follows: For every n ∈ 1, 2, . . ., check both whether Ans ∈ F
and, for t0 = ρnk , whether PCt0 ∩ F = ∅. In case Ans ∈ F , then clearly there is no invariant,
since O ∩ F 6= ∅, and we are done. On the other hand, if PCt0 ∩ F = ∅, then return the
Rexp-definable invariant as per Lemma 11.

We claim that the above procedure always halts. Indeed, we know that there exists t0
for which P · Ct0 ∩ F = ∅. Thus, either for some n < logρk t0, it holds that Ans ∈ F , in
which case there is no invariant and we halt when we reach n, or we proceed until we reach
n ≥ logρk t0, in which case we halt and return the invariant. J

I Remark. It is interesting to note that, should Schanuel’s conjecture turn out to be false, the
above procedure could still never return a ‘wrong’ invariant. The worst that could happen is
that decidability of Rexp fails in that the putative algorithm of [18] simply never halts, so no
verdict is ever returned.

Unconditional decidability for semi-algebraic halting sets.

I Theorem 13. The O-Minimal Invariant Synthesis Problem for Semi-Algebraic Halting
Sets is decidable. Moreover, in positive instances, we can explicitly define such an invariant
in Rexp.

By Lemma 11, in order to prove Theorem 13, it is enough to decide the truth value of
the Rexp-sentence ∃t0 ≥ 1 : P · Ct0 ∩ F = ∅. Indeed, as Ans ∈ Qd, one can always check
unconditionally whether for a given n the vector Ans belongs to the semi-algebraic set F .
The algorithm is then otherwise the same as that presented in the proof of Theorem 12. The
proof of Theorem 13 therefore boils down to the following lemma.

I Lemma 14. For F a semi-algebraic set, it is decidable whether there exists t0 ≥ 1 such
that P · Ct0 ∩ F = ∅.

Our key tool is the following celebrated result from transcendental number theory:

I Theorem 15 (Baker’s theorem [1]). Let α1, . . . , αm ∈ C be algebraic numbers different
from 0 and let b1, . . . , bm ∈ Z be integers. Write Λ = b1 logα1 + . . . + bm logαm. There
exists a number C effectively computable from b1, . . . , bm, α1, . . . , αm such that if Λ 6= 0 then
|Λ| > H−C , where H is the maximum height of α1, . . . , αm.

As in Section 3, we assume that ρk > 1 (with the cases of ρk < 1 and ρk = 1 being
analogous and easier, respectively). Recall that the subgroup T of the torus defined by
the multiplicative relations of the eigenvalues of A is a semi-algebraic set. Write ~τ(t) =
(tb1Q1,1(logρk t), . . . , t

bkQk,dk(logρk t)), and consider the set

U =
{

(z1, . . . , zd)ᵀ ∈ Cd | ∀(p1, . . . , pd) ∈ T, P (z1p1, . . . , zdpd)ᵀ ∈ Rd \ F
}
.

It is enough to decide whether there exists t0 ≥ 1 such that for all t ≥ t0, ~τ(t) ∈ U .
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Observe that U is a semi-algebraic set (see Remark on Page 4). In the full version of the pa-
per, we reduce our analysis to the case where U is of the form

∧m
l=1 Rl(u1, . . . , ud, v1, . . . , vd) ∼l

0. Here, for every 1 ≤ l ≤ m, ∼l ∈ {>,=} and Rl is a polynomial with integer coefficients in
variables u1, . . . , ud, v1, . . . , vd; for each i, the variables ui and vi represent Re zi and Im zi,
the real and imaginary parts of zi, respectively.

Thus, we now need to decide whether we can find t0 ≥ 1 such that for every t ≥ t0 it
holds that Rl(~τ(t)) ∼l 0 for every 1 ≤ l ≤ m. Fix 1 ≤ l ≤ m. Recall that we consider every
vector in Cd as a vector in R2d; thus, the polynomial Rl has the form∑

i

ai · u
n′i,1
1 · . . . · un

′
i,d

d · vn
′′
i,1

1 · . . . · vn
′′
i,d

d ,

with ai ∈ Z and n′i,s, n′′i,s ∈ Z≥0. Therefore, Rl(~τ(t)) is the sum of terms of the form

ai · t(n
′
i,1+n′′i,1)·b1+...+(n′i,d+n′′i,d)·bk ·(ReQ1,1(logρk t))

n′i,1 · . . . · (ReQk,dk(logρk t))
n′i,k ·

(ImQ1,1(logρk t))
n′′i,1 · . . . · (ImQk,dk(logρk t))

n′′i,k

where Qi,j(·), as above, are polynomials from the definition of trajectory cones. Note that
all Qi,j are only evaluated at real points, and hence it is easy for us to refer to ReQi,j and
ImQi,j ; these are polynomials in one real variable with real algebraic coefficients. We rewrite
Rl(~τ(t)) in the form∑

i

tni,1·b1+...+ni,k·bk · fi(logρk t)

where each fi(·) is also a polynomial with real algebraic coefficients, and b1, . . . , bk are distinct
logarithms of the moduli of the eigenvalues of A. We can compute all these polynomials fi,
eliminating from the sum all terms that have fi ≡ 0.

Observe that Rl(~τ(t)) is a function of a single variable t > 0. In order to reason about
the sign of this expression as t→∞, we need to determine its leading term. To that end, we
first need to decide for every i 6= j whether the two new exponents ni,1b1 + . . .+ ni,kbk and
nj,1b1 + . . .+ nj,kbk are equal and, if not, which is larger. (If the exponents are equal, we
aggregate the polynomials fi and fj accordingly.) By rearranging the terms, it’s enough to
decide whether n1b1 + . . .+ nkbk > 0 for some n1, . . . , nk ∈ Z. Recall that bj = logρk ρj =
log ρj/ log ρk where log denotes the natural logarithm. By Baker’s theorem, there exists an
effectively computable ε > 0 such that either n1b1 + . . .+nkbk = 0, or |n1b1 + . . .+nkbk| > ε.

We now proceed by computing an approximation ∆ of n1b1 + . . .+ nkbk with additive
error at most ε

3 . This is easily done, as we are dealing with computable quantities. We
then have that ∆ ∈ [− ε

3 ,
ε
3 ] iff n1b1 + . . . + nkbk = 0, and otherwise we have sign(∆) =

sign(n1b1 + . . .+nkbk). Thus we can sort the exponents ni,1 · b1 + . . .+ni,k · bk in descending
order and, using the same procedure, compare each of them to 0.

Now consider the term that has the largest exponent, m; suppose this term is tm·fi(logρk t).
Then the sign of Rl(~τ(t)) as t → ∞ is determined by the sign of the leading term of the
polynomial fi(·); only if the sum is empty can the sign of Rl(~τ(t)) be 0 for all sufficiently
large t.

The argument above shows that we can compute the leading terms of the expressions
Rl(~τ(t)) and decide whether the conjunction

∧m
l=1 Rl ∼l 0 holds for all t ≥ t0 starting from

some t0. This completes the proof.
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Abstract
We introduce the constrained topological sorting problem (CTS): given a regular language K and
a directed acyclic graph G with labeled vertices, determine if G has a topological sort that forms
a word in K. This natural problem applies to several settings, e.g., scheduling with costs or
verifying concurrent programs. We consider the problem CTS[K] where the target language K
is fixed, and study its complexity depending on K. We show that CTS[K] is tractable when
K falls in several language families, e.g., unions of monomials, which can be used for pattern
matching. However, we show that CTS[K] is NP-hard for K = (ab)∗ and introduce a shuffle
reduction technique to show hardness for more languages. We also study the special case of the
constrained shuffle problem (CSh), where the input graph is a disjoint union of strings, and show
that CSh[K] is additionally tractable when K is a group language or a union of district group
monomials. We conjecture that a dichotomy should hold on the complexity of CTS[K] or CSh[K]
depending on K, and substantiate this by proving a coarser dichotomy under a different problem
phrasing which ensures that tractable languages are closed under common operators.
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1 Introduction

Many scheduling or ordering problems amount to computing a topological sort of a directed
acyclic graph (DAG), i.e., a totally ordered sequence of the vertices that is compatible
with the edge relation: when we enumerate a vertex, all its predecessors must have been
enumerated first. However, in some settings, we need a topological sort satisfying additional
constraints that cannot be expressed as edges. We formalize this problem as follows: the
vertices of the DAG are labeled with some symbols from a finite alphabet A, and we want to
find a topological sort that falls into a specific regular language. We call this the constrained
topological sort problem, or CTS. For instance, if we fix the language K = ab∗c, and consider
the example DAGs of Figure 1, then G1 and G2 have a topological sort that falls in K.

CTS relates to many applications. For instance, many scheduling applications use a
dependency graph [1] of tasks, and it is often useful to express other constraints, e.g., some
tasks must be performed by specific workers and we should not assign more than p successive
tasks to the same worker. We can express this as a CTS-problem: label each task by the
worker which can perform it, and consider the target regular language K containing all words
where the same symbol is not repeated more than p times. In concurrency applications,
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a b
b

c
G1 a b

b c
G2 a c bG3

Figure 1 Example labeled DAGs on the alphabet A = {a, b, c}

we may consider a program with multiple threads, and want to verify that there is no
linearization of its instructions that exhibits some unsafe behavior, e.g., executing a read
before a write. To search for such a linearization, we can label each instruction with its type,
and consider CTS with a target language describing the behavior that we wish to detect. CTS
can also be used in uncertain data management tasks, to reason about the possible answers
of aggregate queries on uncertain ordered data [4]. It can also be equivalently phrased in the
language of partial order theory: seeing the labeled DAG as a labeled partial order <, we ask
if some linear extension achieves a word in K.

We thus believe that the CTS-problem is useful, and natural, but we are not aware
of previous work studying it, except for a special case called the shuffle problem. This
problem deals with the interleaving of strings, as studied, e.g., in concurrent programming
languages [18, 21], computational biology [17], and formal languages [10, 8, 26]. Specifically,
we are given a tuple of strings, and we must decide if they have some interleaving that falls
in the target language K. This problem was known to be NP-complete [19, 32, 16] when
the target language K is given as input (in addition to the tuple of strings), even when K
consists of just one target string. To rephrase this shuffle problem in our context, we call
constrained shuffle problem (CSh) the special case of CTS where we require input DAGs to
be a union of directed path graphs (corresponding to the strings).

Our goal in this paper is to study the complexity of CTS and CSh. We assume that
the target regular language K is fixed, and call CTS[K] and CSh[K] the corresponding
problems, whose complexity is only a function of the input DAG (labeled on the alphabet A
of K). Our central question is: for which regular languages K are the problems CTS[K] or
CSh[K] tractable? More precisely, for each of these problems, we conjecture a dichotomy
on K: the problem is either in NL or it is NP-complete. However, the tractability boundary
is challenging to chart out, and we have not been able to prove these conjectures in full
generality. In this paper, we present the results that we have obtained towards this end.

Paper structure. We formally define the CTS and CSh problems in Section 2 and state
the conjecture. We then show the following results:

In Section 3, we present our hardness results. We recall the results of [32] on the
shuffle problem, and present a general shuffle reduction technique to show hardness for
more languages. We use it in particular to show that CSh[(ab)∗], hence CTS[(ab)∗], are
NP-hard, and extend this to several other languages.
In Section 4, we present tractability results. We show that CTS[K], hence CSh[K], is
in non-deterministic logspace (NL) when K is a union of monomial languages, i.e., of
languages of the form A∗1a1 · · ·A∗n−1an−1A

∗
n, with the ai being letters and the Ai being

subalphabets. Such languages can be used for applications such as pattern matching,
e.g., with the language A∗uA∗ for a fixed pattern u ∈ A∗. We also show tractability for
other languages that are not of this form, e.g. (ab)∗+A∗aaA∗ and variants thereof, using
different techniques such as Dilworth’s theorem [9].
In Section 5, we use our hardness and tractability results to show a coarser dichotomy
result. Specifically, we give an alternative phrasing of the CTS and CSh problems using
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semiautomata and DAGs with multi-letter labels: this amounts to closing the tractable
languages under intersection, inverse morphism, complement, and quotients. In this
phrasing, when the semiautomaton is counter-free, we can show that the problems are
either in NL or NP-complete. This dichotomy is effective, i.e., the criterion on the
semiautomaton is decidable, and it turns out to be the same for CTS and CSh.
In Section 6, we focus on the constrained shuffle problem, and lift the counter-free
assumption of the previous section. We show that CSh[K] is tractable when K is a group
language or more generally a union of district group monomials. This tractability result
is the main technical contribution of the paper, with a rather involved proof. It implies,
e.g., that the following problem is in NL for any fixed finite group H: given g ∈ H and
words w1, . . . , wn of elements of H, decide whether there is an interleaving of the wi

which evaluates to g according to the group operation.

2 Problem Statement and Main Results

We give some preliminaries and define the two problems that we study. We fix a finite
alphabet A, and call A∗ the set of all finite words on A. For w ∈ A∗, we write |w| for the
length of w, and write |w|a for the number of occurrences of a ∈ A in w. We denote the empty
word by ε. A labeled DAG on the alphabet A, or A-DAG, is a triple G = (V,E, λ) where
(V,E) is a directed acyclic graph with vertex set V = {1, . . . , n} and edge set E ⊆ V × V ,
and where λ : V → A is a function giving a label in A to each vertex in V . For u 6= v in V ,
we say that u is an ancestor of v if there is a directed path from u to v in G, we say that u
is a descendant of v if v is an ancestor of u, and otherwise we call u and v incomparable. A
topological sort of G is a bijective function σ from {1, . . . , n} to V such that, for all (u, v) ∈ E,
we have σ−1(u) < σ−1(v). The word achieved by σ is λ(σ) := λ(σ(1)) · · ·λ(σ(n)) ∈ A∗.

The constrained topological sort problem CTS[K] for a fixed language K ⊆ A∗ (described,
e.g., by a regular expression) is defined as follows: given an A-DAG G, determine if there is
a topological sort σ of G such that λ(σ) ∈ K (in which case we say that σ achieves K).

We now define the constrained shuffle problem (CSh). Given two words u, v ∈ A∗,
the shuffle [32] of u and v, written u � v, is the set of words that can be obtained by
interleaving them. Formally, a word w ∈ A∗ is in u� v iff there is a partition P t Q of
{1, . . . , |w|} such that wP = u and wQ = v, where wP denotes the sub-word of w where
we keep the letters at positions in P , and likewise for wQ. The shuffle �(U) of a tuple of
words U is defined by induction as follows: we set �() := {ε}, set �(u) := {u}, and set
�(u1, . . . , un, un+1) :=

⋃
v∈�(u1,...,un) v � un+1. The constrained shuffle problem CSh[K]

for a fixed language K ⊆ A∗ is defined as follows: given a tuple of words U , determine if
K∩�(U) is nonempty. Of course, CSh[K] is a special case of CTS[K]: we can code any tuple
of words U as an A-DAG GU by coding each u ∈ U as a directed path graph v1 → · · · → v|u|
with λ(vi) = ui for all 1 ≤ i ≤ |u|. Thus, we will equivalently see inputs to CSh as tuples of
words (called strings in this context) or as A-DAGs that are unions of directed path graphs.

I Example 2.1. The problem CTS[(ab)∗] on an input {a, b}-DAGG asks ifG has a topological
sort starting with an a, ending with a b, and alternating between elements of each label.
The problem CSh[(aa+ b)∗] on a tuple U of strings on {a, b} asks if there is an interleaving
w ∈ �(U) such that all a∗-factors in w are of even length (e.g., bbaabaaaa, but not baaabb).

In this work, we study the complexity of the problems CTS[K] and CSh[K] depending
on the language K. Clearly we can always solve these problems by guessing a topological
sort (or an interleaving), and verifying that it achieves a word in K. Hence, the complexity
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is always in NPK , that is, in non-deterministic PTIME with an oracle for the word problem
of K, which we can call to test if an input word in is K:

I Proposition 2.2. For any language K, the problems CTS[K] and CSh[K] are in NPK .

In particular, the problems are in NP when the language K is regular, because the word
problem for regular languages is in PTIME. We will study regular languages in this work.
We believe that regular languages can be classified depending on the complexity of these
problems, and make the following dichotomy conjecture:

I Conjecture 2.3. For every regular language K, the problem CTS[K] is either in NL or
NP-complete. Likewise, the problem CSh[K] is either in NL or NP-complete.

Towards this conjecture, we determine in this paper the complexity of CTS and CSh for
several languages and classes. We first show in the next section that these problems are hard
for some languages such as (ab)∗, and we then show tractability results in Section 4, and a
coarser dichotomy result in Section 5 under an alternative phrasing of our problems.

3 Hardness Results

Our hardness results are based on the shuffle problem of formal language theory which asks,
given a word w ∈ A∗ and a tuple U of words of A∗, whether w ∈ �(U). This problem
is known to be NP-hard already on the alphabet {a, b} (see [32]). The shuffle problem is
different from CSh, because the target word of the shuffle problem is given as input, whereas
the target regular language of CSh is fixed. However, the hardness of the shuffle problem
directly implies the hardness of CSh, hence of CTS, for a well-chosen target language:

I Proposition 3.1. Let K0 := (a1a2 + b1b2)∗. The problem CSh[K0] is NP-hard.

Proof sketch. We can reduce a shuffle instance (w,U) to the instance I := w1 ∪ U2
for CSh[K0], where w1 is w but adding the subscript 1 to all labels, and U2 is defined analo-
gously. A topological sort of I achieving K0 must then alternate between w1 and U2, and
enumerate letters with the same label (up to the subscript), witnessing that w ∈ �(U). J

In this section, we will refine this approach to show hardness for more languages. We first
recall another initial hardness result from [32]. We then introduce a general shuffle reduction
technique to show the hardness of languages by reducing from other hard languages. Last,
we show that CTS and CSh are hard for the language (ab)∗ and for other languages.

Initial hard family. To bootstrap the hardness results of [32] on the shuffle problem (on
input words) to our CSh-problem (on fixed languages), we generalize the definition of CSh
to a regular language family K, i.e., a (generally infinite) family of regular languages, each of
which is described as a regular expression. The CSh-problem for K, written CSh[K], asks,
given a regular expression K ∈ K and a set of strings U , whether K ∩�(U) is nonempty. In
other words, we no longer fix one single target language but a family K of target languages,
and the input chooses one target language from the family K. The following is then shown
in [32] by reducing from UNARY-3-PARTITION [13]:

I Lemma 3.2. ([32], Lemma 3.2) Let K := {(aibi)∗ | i ∈ N}. Then CSh[K] is NP-hard.
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Global resulting word: abababababababab
Resulting word on G: babab

Figure 2 Example of a shuffle reduction from K := (ba)∗b to K′ := (ab)∗

Shuffle reduction. Our goal in this section is to show the hardness of CTS and CSh for
more languages, but we do not wish to prove hardness for every language from scratch.
Instead, we will introduce a general tool called the shuffle reduction that allows us to leverage
the hardness of a language K to show that another language K ′ is also hard. Specifically,
if a language K shuffle-reduces to a language K ′, this will imply that there is a PTIME
reduction from CTS[K] to CTS[K ′], and from CSh[K] to CSh[K ′].

The intuition for the shuffle reduction is as follows: to reduce from K to K ′, given an
input A-DAG G, we build an A-DAG G′ formed of G plus an additional directed path
labeled by a word w. Thus, any topological sort σ′ of G′ must be the interleaving of w and
of a topological sort σ of G. Now, if we require that σ′ achieves K ′, the presence of w can
impose specific conditions on σ. Intuitively, if w is sufficiently long and “far away” from all
words of K ′, then σ′ must “repair” w to a word of K ′ by inserting symbols from G, so the
insertions performed by σ may need to be in a specific order, i.e., σ may be forced to achieve
a word of K. This means that solving CTS[K ′] on G′ allows us to solve CTS[K] on G. This
intuition is illustrated on Figure 2: to achieve a word of K ′ := (ab)∗ on the DAG G′, a
topological sort must enumerate elements from G to insert them at the appropriate positions
in w, achieving a word of K := (ba)∗b. We call filter sequence a family of words like w that
allow us to reduce any CTS[K]-instance to CTS[K ′]. Formally:

I Definition 3.3 (Filter sequence). Let K and K ′ be languages on an alphabet A. A filter
sequence for K and K ′ is an infinite sequence (fn) of words of A∗ having the following
property: for every n ∈ N, for every word v ∈ A∗ such that |v| = n, we have v ∈ K iff
(v� fn) ∩K ′ 6= ∅.

In Figure 2, we can choose f5 := w when defining a filter sequence for (ba)∗b and (ab)∗:
indeed, if we interleave w with any DAG G of 5 vertices, then a topological sort σ of G
achieves K iff some interleaving σ′ of σ with w achieves K ′. We can now define our reduction:

I Definition 3.4 (Shuffle reduction). We say that a language K shuffle-reduces to a
language K ′ if there is a filter sequence (fn) for K and K ′ such that the function i 7→ fi is
computable in PTIME (where i is given in unary).

We say that a regular language family K shuffle-reduces to K ′ if each K does, and if we
can compute in PTIME the function (K, i) 7→ fK

i , which maps a regular expression K of K
and an integer i in unary to the i-th word in a filter sequence (fK

n ) for K and K ′.

I Theorem 3.5. For any regular language family K and language K ′, if K shuffle-reduces
to K ′ then we can reduce in PTIME from CTS[K] to CTS[K ′], and from CSh[K] to CSh[K ′].

Hardness for (ab)∗. We now use the shuffle reduction and the language family of Lemma 3.2
to show the hardness of (ab)∗. This will be instrumental for our coarser dichotomy in Section 5:

I Theorem 3.6. The problem CSh[(ab)∗] (hence CTS[(ab)∗]) is NP-hard.
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Proof sketch. We shuffle-reduce from the language family K of Lemma 3.2: for the language
KB = (aBbB)∗ of K, we define the filter sequence for words of length 2Bn by fB

2Bn :=
(bBaBab)n. This ensures that, when interleaving fB

2Bn with a word v of length 2Bn to achieve
a word of (ab)∗, we must use v to insert in fB

2Bn the letters written in bold: ((ab)B(ab)Bab)n.
This can be done iff v = (aBbB)n, i.e., iff v ∈ KB . We conclude by Theorem 3.5. J

Other hard languages. From the hardness of (ab)∗, we can use the shuffle reduction to show
hardness for many other languages. For instance, we can show hardness for any language u∗,
where u ∈ A∗ is a word with two different letters:

I Proposition 3.7. Let u ∈ A∗ such that |u|a > 0 and |u|b > 0 for a 6= b in A. Then CSh[u∗]
(hence CTS[u∗]) is NP-hard.

Proof sketch. We shuffle-reduce from (ab)∗ with the filter sequence f2n := (uu−auu−bu)n,
where u−a (resp. u−b) is u but removing one occurrence of a (resp. of b). If a word v with
|v| = 2n has an interleaving w with f2n that falls in u∗, then in w we must intuitively insert
one a from v in each u−a and one b from v in each u−b, so that v = (ab)n. To formalize this,
we first rotate u to ensure that its first and last letters are different. We then observe that,
as w is in u∗, any factor w′ of length |u| of w must be such that |w′|a = |u|a and |w′|b = |u|b.
We then consider factors of w of length |u| centered on the u−a and u−b in f2n: we argue
that in w we must have inserted at least one a in or around each u−a, and at least one b in
or around each u−b, otherwise these factors do not have enough a’s and enough b’s. J

We can also use the shuffle reduction to show hardness for other languages, e.g., (aa+bb)∗:

I Proposition 3.8. Let L := (aa+ bb)∗. The problem CSh[L] (hence CTS[L]) is NP-hard.

Proof sketch. We do again a shuffle reduction from (ab)∗, with the filter sequence f2n = (ab)n.
If a word v with |v| = 2n is such that v � f2n intersects (aa + bb)∗ nontrivially, it must
intuitively insert a’s and b’s in f2n alternatively, so it must be (ab)n. Note that a similar
proof would also show hardness for the language (ai + bj)∗ for any choice of i, j ≥ 2. J

We show a last result that does not use the shuffle reduction but an easy consideration
on the number of letter occurrences. This result will be useful in Section 5:

I Proposition 3.9. The problem CSh[(ab+ b)∗] (hence CTS[(ab+ b)∗]) is NP-hard.

Proof. We describe an easy PTIME reduction from CSh[(ab)∗] to CSh[(ab+ b)∗]. Given an
instance I, check if the number of a-labeled and b-labeled vertices is the same, and fail if it
is not. Otherwise, then I achieves a word of (ab+ b)∗ iff it achieves one of (ab)∗, because we
must enumerate one a-labeled vertex with each b-labeled vertex. J

We believe that the shuffle reduction applies to many other languages, though we do not
know how to characterize them. In particular, we believe that the following could be shown
with the shuffle reduction, generalizing all the above hardness results except Proposition 3.8:

I Conjecture 3.10. Let F be a finite language such that, for some letter a ∈ A, the
language F contains no power of a but contains a word which contains a. Then CSh[F ∗] is
NP-hard.

4 Tractability Results

Having shown hardness for several languages, we now present our tractability results. We will
also rely on some of these results to show our coarser dichotomy result in the next section.
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Closure under union. The first observation on tractable languages is that they are closed
under union, as follows (recalling the definition of CTS and CSh for language families):

I Lemma 4.1. For any finite family of languages K, there is a logspace reduction from
CTS[

⋃
K] to CTS[K], and likewise from CSh[

⋃
K] to CSh[K].

Proof. To solve a problem for the language
⋃
K on an input instance I, simply enumerate

the languages K ′ ∈ K, and solve the problem on I for each K ′. Clearly I is a positive instance
of the problem for

⋃
K iff I is a positive instance of the problem for one of the K ′. J

I Corollary 4.2. For any finite family of languages K, if CTS[K ′] is in NL for each K ′ ∈ K,
then so is CTS[

⋃
K]. The same is true of the CSh-problem.

Clearly, tractability is also preserved under the reverse operator, i.e., reversing the order of
words in a language; however tractable languages are not closed under many usual operators,
as we will show in Section 5. Still, closure under union will often be useful in the sequel.

Monomials. We will now show that CTS is tractable for an important family of languages
(and unions of such languages): the monomial languages. Having fixed the alphabet A,
a monomial is a language of the form A∗1a1A

∗
2a2 · · · anA

∗
n+1 with ai ∈ A and Ai ⊆ A for

all i. In particular, we may have Ai = ∅ so that A∗i = ε: hence, for every word u ∈ A∗, the
language A∗uA∗ is a monomial language, which intuitively tests whether a word contains the
pattern u. Several decidable algebraic and logical characterizations of these languages are
known; in particular, unions of monomials are exactly the languages that are definable in the
first-order logic fragment Σ2[<] of formulas with quantifier prefix ∃∗∀∗, and it is decidable to
check if a regular language is in this class [24, 22]. We show:

I Theorem 4.3. For any monomial language K, the problem CTS[K] is in NL.

Proof sketch. Let K be A∗1a1A
∗
2a2 · · ·A∗nanA

∗
n+1. We can first guess in NL the vertices

v1, . . . , vn to which the a1, . . . , an are mapped, so all that remains is to check, for each such
guess, whether we can match the remaining vertices to the Ai. We proceed by induction
on n. The base case of n = 0 (i.e., K = A∗1) is trivial. For the induction step, using the fact
that NL = co-NL (see [15, 28]), we check that the descendants of the last element vn are all
in A∗n+1, and then we compute the set S of vertices that must be enumerated before vn: they
are the ancestors of the vi, and the ancestors of any vertex labeled by a letter in A \An+1.
We then use the induction hypothesis to check in NL whether S has a topological sort that
achieves a word in A∗1a1 . . . A

∗
n−1an−1A

∗
n. J

Tractability based on width. While unions of monomials are a natural class, it turns out
that they do not cover all tractable languages. In particular, we can show:

I Proposition 4.4. Let A := {a, b} and K := (ab)∗ +A∗aaA∗. The problem CTS[K] (hence
CSh[K]) is in NL.

This result is not covered by Theorem 4.3, because we can show that K cannot be
expressed as a union of monomials (see the long version [5]); and the proof technique is
different.

Proof. Let G be an input A-DAG. We first check in NL if G contains two incomparable
vertices v1 6= v2 such that λ(v1) = λ(v2) = a. If yes, we conclude that G is a positive instance,
as we can clearly achieve K by enumerating v1 and v2 contiguously.
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If there are no two such vertices, we check in NL if there are two comparable a-labeled
vertices v1 6= v2 that can be enumerated contiguously, i.e., there is an edge v1 → v2 but no
vertex w that is between v1 and v2, i.e., is a descendant of v1 and an ancestor of v2. If there
are two such vertices v1 and v2, we conclude again that G is a positive instance.

Otherwise, our first test implies that G induces a total order on the a-labeled vertices,
and our second test implies that any two consecutive a-labeled vertices in this order must
have at least one b-labeled vertex between them. This ensures that no topological sort
achieves A∗aaA∗, so it suffices to test whether one can achieve (ab)∗. Clearly this is the
case iff all consecutive pairs of a-labeled vertices have exactly one b-labeled vertex between
them, and there is exactly one additional b-labeled vertex that can be enumerated after the
last a-labeled vertex. We can test this in NL, which concludes the proof. J

Intuitively, the language of Proposition 4.4 is tractable because it is easy to solve unless
the input instance has a very restricted structure, namely, all a’s are comparable. We do not
know whether this result generalizes to (ab)∗ + A∗aiA∗ for i > 2. However, following the
intuition of this proof, we can show the tractability of a similar kind of regular languages:

I Proposition 4.5. Let A := {a, b}, let K ′ be a regular language, let i ∈ N, and let
K := K ′ +A∗(ai + bi)A∗. The problem CTS[K] (hence CSh[K]) is in NL.

As in Proposition 4.4, CTS is trivial for the languages in this proposition unless the
input A-DAG G has a restricted shape. Here, the requirement is on the width of G, i.e., the
maximal cardinality of a subset of pairwise incomparable vertices (called an antichain), so
we can show Proposition 4.5 by distinguishing two cases depending on the width of G:

Proof sketch. We test in NL whether the input A-DAG G contains an antichain C of size 2i:
if it does, then at least i vertices in C must have the same label, and we can enumerate
them in succession to achieve A∗aiA∗ or A∗biA∗, so G is a positive instance. Otherwise, G
has width < 2i, and Dilworth’s theorem [9] implies that its elements can be partitioned into
chains, so that CTS can be solved in NL following a dynamic algorithm on them. J

Other tractable case. We close the section with another example of a regular language
which is tractable for the CSh-problem for what appears to be a unrelated reason.

I Proposition 4.6. Let A := {a, b} and K := (aa+ b)∗. The problem CSh[K] is in NL.

This is in contrast to (aa + bb)∗, for which we showed intractability (Proposition 3.8).
We do not know the complexity of the CTS-problem for (aa + b)∗, or the complexity for
either problem of languages of the form (ai + b)∗ for i > 2.

Proof sketch. We show that the existence of a suitable topological sort can be rephrased
to an NL-testable equivalent condition, namely, there is no string in the input instance
whose number of odd “blocks” of a-labeled elements dominates the total number of a-labeled
elements available in the other strings. If the condition fails, then we easily establish that no
suitable topological sort can be constructed: indeed, eliminating each odd block of a’s in
the dominating string requires one a from the other strings. If the condition holds, we can
simplify the input strings and show that a greedy algorithm can find a topological sort by
picking pairs of a’s in the two current heaviest strings. J
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5 A Coarser Dichotomy Theorem

In the two previous sections, we have established some intractability and tractability results
about the constrained topological sort and constrained shuffle problems for various languages.
Remember that our end goal would be to characterize the tractable and intractable languages,
and show a dichotomy (Conjecture 2.3). This is difficult, and one reason is that the class
of tractable languages is not “well-behaved”: while it is closed under the union operator
(Corollary 4.2), it is is not closed under intersection, complement, and other common
operations. This makes it difficult to study tractable languages using algebraic language
theory [23].

I Proposition 5.1. We have the following counterexamples to closure:
Quotient. There exists a word u ∈ A∗ and a regular language K such that CSh[K] is in
NL but CSh

[
u−1K

]
is NP-hard.

Intersection. There exists two regular languages K1 and K2 such that CTS[K1] and
CTS[K2] are both in PTIME but CSh[K1 ∩K2] is NP-hard
Complement. There exists a regular language K such that CTS[K] is in NL, but
CSh[A∗ \K] is NP-hard.
Inverse of morphism. There exists a regular language K and morphism ϕ such that
CTS[K] is in NL but CSh

[
ϕ−1(K)

]
is NP-hard.

The three last results of this proposition also apply to the constrained topological sort
problem, but the first one does not, and in fact CTS-tractable languages are closed under
quotients. This observation implies that there are regular languages K such that CSh[K]
is tractable but CTS[K] is NP-hard; one concrete example is K := b∗A∗ + aaA∗ + (ab)∗
(see long version [5]). We sketch the proof of Proposition 5.1:

Proof sketch. For each operation, we use (ab)∗ as our NP-hard language (by Theorem 3.6).
For quotient, we take K := bA∗ + aaA∗ + (ab)∗, and u := ab. We have u−1K = (ab)∗,

but CSh[K] is in NL because any shuffle instance with more than one string satisfies K.
For intersection, we take K1 := (ab)∗(ε + bA∗) and K2 := (ab)∗(ε + aaA∗). We have

K1∩K2 = (ab)∗, but CSh[K1] and CSh[K2] are in PTIME using an ad-hoc greedy algorithm.
For complement, we take K := bA∗ ∪ A∗a ∪ A∗aaA∗ ∪ A∗bbA∗. As K is a union of

monomials, we know by Theorem 4.3 that CTS[K] is in NL, but we have A∗ \K = (ab)∗.
For inverse of morphism, we take A := {a, b} and K := (ab)∗ +A∗(a3 + b3)A∗. We know

that CTS[K] is in PTIME by Proposition 4.5. Now, defining ϕ : A∗ → A∗ by ϕ(a) := aba

and ϕ(b) := bab, we have ϕ−1(K) = (ab)∗ because no word in the image of ϕ has three
identical consecutive symbols. J

Proposition 5.1 suggests that tractable languages would be easier to study algebraically if
we ensured that they were closed under all these operations, i.e., if they formed a variety [23].
In this section, we enforce this by moving to an alternative phrasing of the CTS and CSh
problems. This allows us to leverage algebraic techniques and show a dichotomy theorem in
this alternative phrasing, under an additional counter-free assumption. We first present the
alternative phrasing, and then present the additional assumption and our dichotomy result.

Alternative phrasing. The first change in our alternative phrasing is that the input DAG G

will now be an A∗-DAG, i.e., a DAG labeled with words of A∗ rather than letters of A. As
before, a topological sort σ of G achieves a word λ(σ) ∈ A∗ obtained by concatenating the
λ-images of the vertices of G in the order of σ: but vertex labels are now “atomic” words
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whose letters cannot be interleaved with anything else. The multi-letter CTS and CSh
problems are the variants defined with A∗-DAGs; intuitively, this ensures that tractable
languages are closed under inverse morphisms.

The second change is that we will not fix one single target language, but a semiau-
tomaton [14], i.e., an automaton where initial and final states are not specified. Formally,
a semiautomaton is a tuple (Q,A, δ) where Q is the set of states, A is the alphabet, and
δ : Q×A→ Q is the transition function; we extend δ to words as usual by setting δ(q, ε) := q

and δ(q, u1 · · ·un+1) := δ(δ(q, u1), u2 · · ·un+1). We will fix the target semiautomaton, and
the initial and final states will be given in the input instance (in addition to the DAG). This
enforces closure under quotients (by choosing the initial and final states) and complement (by
toggling the final states). Further, to impose closure under intersection, the input instance
will specify a set of pairs of initial-final states, with a logical AND over them. The question
is to determine whether the input DAG achieves a word accepted by all the corresponding
automata; and this enforces closure under intersection.

We can now summarize the formal definition of our problem variants. The multi-letter
CTS-problem for a fixed semiautomaton S = (Q,A, δ) takes as input an A∗-DAG and a set
{(i1, F1), . . . , (ik, Fk)} of initial-final state pairs, where ij ∈ Q and Fj ⊆ Q for all 1 ≤ j ≤ k.
The input is accepted if there is a topological sort σ of G such that, for all 1 ≤ j ≤ k,
the word λ(σ) is accepted by the automaton (Q,A, δ, ij , Fj), i.e., δ(ij , λ(σ)) ∈ Fj . The
multi-letter CSh-problem for a fixed semiautomaton is defined in the same way, imposing
that the input A∗-DAG is a union of directed path graphs.

Dichotomy result Our dichotomy will apply to the multi-letter CTS and CSh problem for
semiautomata. However, we will need to make an additional assumption, namely, that the
semiautomaton is counter-free. This assumption means that our dichotomy will only apply
to a well-known subset of regular languages, namely, the star-free languages, that are better
understood algebraically; it excludes in particular the tricky case of group languages that we
will study separately in Section 6. Formally, a semiautomaton is counter-free if, for every
state q and word u ∈ A∗, if δ(q, un) = q for some n > 1, then we have δ(q, u) = q. Under
the counter-free assumption, we can prove the following dichotomy, using our hardness and
tractability results in Sections 3 and 4:

I Theorem 5.2. Let S be a counter-free semiautomaton. Then the multi-letter CSh-problem
and CTS-problem for S are either both in NL, or both NP-complete. The dichotomy is
effective: given S, it is PSPACE-complete to decide which case applies.

We conclude the section by introducing some technical tools used for this result and for
Section 6, and by giving a proof sketch. The criterion of the dichotomy on S is phrased
in terms of the transition monoid of S, which we now define (see, e.g., [23] for details).
Remember that a monoid is a set that has an associative binary operation and a neutral
element. The transition monoid T (S) of a semiautomaton S = (Q,A, δ) is the set of functions
f : Q → Q that are “achieved” by S in the following sense: there is a word u ∈ A∗ such
that δ(q, u) = f(q) for all q ∈ Q. In particular, the neutral element is the identity function,
which is achieved by taking u := ε; and the binary operation on T (S) is function composition,
which is associative. Note that the transition monoid is finite and can be computed from S.

We assumed that S is counter-free, and this is equivalent [20] to saying that T (S) is in
the class A of aperiodic finite monoids (formally defined by the equation xω+1 = xω where ω
is the idempotent power [23] of the monoid). Within A, our dichotomy criterion on T (S) is
based on a certain subclass of A, called DA (see [30]): S is tractable iff T (S) is in DA, and
it is PSPACE-complete [31] to test whether this holds (using the formal definition of DA by
the equation (xy)ωx(xy)ω = (xy)ω). We can now sketch the proof of Theorem 5.2:
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Proof sketch. We first show that if T (S) is in DA then the multi-letter CTS and CSh
problems for S are in NL. For this, we rely on one characterization of DA (from [30]): if
T (S) is in DA then the regular languages recognized by S (for any set of initial-final states)
are unions of unambiguous monomials, in particular they are unions of monomials, so we
have tractability by Corollary 4.2 and Theorem 4.3.

For the converse direction, we use a second characterization of DA (from [29]): if T (S) is
not in DA then there is a choice of initial-final state pairs for which S computes a language K
whose inverse image by some morphism is either (ab)∗ or (ab + b)∗. We know that these
languages are intractable (Theorem 3.6 and Proposition 3.9) so we conclude by showing a
PTIME reduction from one of these two languages: this is possible in our alternative problem
phrasing, in particular using the multi-letter labels to invert the morphism. J

6 Lifting the Counter-Free Assumption for CSh

Our dichotomy theorem in the previous section (Theorem 5.2) was shown for an alternative
phrasing of our problems (with semiautomata and multi-letter inputs), and made the
additional assumption that the input semiautomaton is counter-free. In this section, we
study how to lift the counter-free assumption. In exchange for this, we restrict our study to
the constrained shuffle problem (CSh) rather than CTS.

To extend Theorem 5.2 for the CSh-problem, we will again classify the semiautomata S
based on their transition monoid T (S). However, instead of DA, we will use the two classes
DO and DS introduced in [27] (formally DO is defined by the equation (xy)ω(yx)ω(xy)ω =
(xy)ω and DS by the equation ((xy)ω(yx)ω(xy)ω)ω = (xy)ω for ω the idempotent power).
Both DO and DS are supersets of DA, specifically we have DA ⊆ DO ⊆ DS, and we can
test in PSPACE in S whether T (S) is in each of these classes [31]. Our main result is then:

I Theorem 6.1. Let S be a semiautomaton. If T (S) is in DO, then the multi-letter
CSh-problem for S is in NL. If T (S) is not in DS, then it is NP-complete.

This result generalizes Theorem 5.2 for the CSh-problem, because both DO and DS
collapse to DA for aperiodic monoids (see [27] and [2, Chapter 8]); formally, DO ∩A =
DS∩A = DA. However, DO covers more languages than DA: the main technical challenge
to prove Theorem 6.1 is to show that CSh is tractable for these languages. One important
example are the group languages over A: these are the regular languages recognized, for some
choice of initial-final state pairs, by a semiautomaton S over A such that T (S) is a group.
A more general example are district group monomials, which are the languages of the form
K1a1 · · ·KnanKn+1 where, for all i, we have ai ∈ A and Ki is a group language over some
alphabet Ai ⊆ A. Note that district group monomials are more expressive than the group
monomials defined in earlier work [25] (which set Ai := A for all i), and they also generalize
the monomials that we studied in Section 4 (any A∗i is trivially a group language over Ai,
even though it is not a group language over A). In fact, to prove Theorem 6.1, what we need
is to generalize Theorem 4.3 (for CSh) from monomials to district group monomials:

I Theorem 6.2. Let K be a district group monomial. Then CSh[K] is in NL.

Note that this theorem, like Theorem 4.3, applies to the original phrasing of CSh, not the
alternative phrasing with semiautomata and multi-letter DAGs. Thus, Theorem 6.2 implies
that the original CSh-problem is tractable for many languages that we had not covered
previously, e.g., (ab∗a+ b)∗c(ba∗b+ a)∗, the language testing whether there is one c preceded
by an even number of a and followed by an even number of b. The proof of Theorem 6.2 is
our main technical achievement, and we sketch it below (see the long version [5] for details):
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Proof sketch. We focus on the simpler case of a group language, for a finite group H. The
problem can be rephrased directly in terms of H: given a tuple I of strings over H and a
target element g ∈ H , determine if there is an interleaving of I that evaluates to g under the
group operation. Our approach partitions H into the rare elements Hrare, that occur in a
constant number of strings, and the frequent elements Hfreq, that occur in sufficiently many
strings. For the frequent elements, we can build a large antichain C from the strings where
they occur, with each element of Hfreq occuring many times in C. Now, as topological sorts
can choose any order on C, they can intuitively achieve all elements of the subgroup 〈Hfreq〉
generated by Hfreq, except that they cannot change “commutative information”, e.g., the
parity of the number of elements. We formalize the notion of “commutative information”
using relational morphisms, and prove an antichain lemma that captures our intuition that
all elements of 〈Hfreq〉 with the right commutative information can be achieved.

For the rare elements, we can simply follow a dynamic algorithm on the constantly many
strings where they occur. However, we must account for the possibility of inserting elements
of 〈Hfreq〉 from the other strings, and we must show that it suffices to do constantly many
insertions, so that it was sufficient to impose a constant lower bound on |C|. We formalize
this as an insertion lemma, which we prove using Ramsey’s theorem. J

We close the section by commenting on the two main limitations of Theorem 6.1. The first
limitation is that it is not a dichotomy: it does not cover the semiautomata with transition
monoid in DS \DO. We do not know if the corresponding languages are tractable or not;
we have not identified intractable cases, but we can show tractability, e.g., for (a+b+a+b+)∗,
the language of words with an even number of subfactors of the form a+b+.

I Proposition 6.3. Let K = (a+b+a+b+)∗. Then CSh[K] is in NL.

However, it would be difficult to show tractability for all of DS, because DS is still poorly
understood in algebraic language theory. For instance, characterizing the languages with a
syntactic monoid in DS has been open for over 20 years [2, Open problem 14, page 442].

The second limitation of Theorems 6.1 and 6.2 is that they only apply to CSh. New
problems arise with CTS: for instance, an {a, b}-DAG G may contain large antichains Ca

and Cb of a-labeled and b-labeled vertices, and yet contain no antichain with many a-labeled
and b-labeled vertices (e.g., if G is the series composition of Ca and Cb). The missing proof
ingredient seems to be an analogue of Dilworth’s theorem for labeled DAGs (see also [3]).

7 Conclusion and Open Problems

We have studied the complexity of two problems, constrained topological sort (CTS) and
constrained shuffle (CSh): fixing a regular language K, given a labeled DAG (for CTS) or a
tuple of strings (for CSh), we ask if the input DAG has a topological sort achieving K. We
have shown tractability and intractability for several regular languages using a variety of
techniques. These results yield a coarser dichotomy (Theorem 5.2) in an alternate problem
phrasing that imposes some closure assumptions.

Our work leaves the main dichotomy conjecture open (Conjecture 2.3). Even in the alter-
nate problem phrasing of Theorem 5.2, our dichotomy only covers counter-free semiautomata:
the restriction is lifted in Section 6 but only for CSh, and with a gap between tractability and
intractability. In the original phrasing, there are many concrete languages that we do not
understand: Does Proposition 4.4 extend to (ab)∗ +A∗aiA∗ for i > 2? Does Proposition 4.6
extend to (ai + b)∗ for i > 2, or to CTS rather than CSh? Can we show Conjecture 3.10?
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Another direction would be to connect CSh and CTS to the framework of constraint
satisfaction problems (CSP) [11], which studies the complexity of homomorphism problems
for fixed “constraints” (right-hand-side of the homomorphism). If this were possible, it could
lead to a better understanding of our tractable and hard cases. However, CTS does not seem
easy to rephrase in CSP terms: topological sorts and regular language constraints seems
hard to express in terms of homomorphisms, even in extensions such as temporal CSPs [6, 7].

One last question would be to investigate CTS and CSh for non-regular languages. The
simplest example is the Dyck language, which appears to be NP-hard for CTS (at least
in the multi-letter setting), but tractable for CSh, via a connection to scheduling; see [12],
problem SS7. More generally, CTS and CSh could be studied, e.g., for context-free languages,
where the complexity landscape may be equally enigmatic.
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Abstract
We show that for no surface except for the plane does monadic second-order logic (MSO) have a
zero-one-law – and not even a convergence law – on the class of (connected) graphs embeddable
on the surface. In addition we show that every rational in [0,1] is the limiting probability of
some MSO formula. This strongly refutes a conjecture by Heinig et al. (2014) who proved a
convergence law for planar graphs, and a zero-one law for connected planar graphs, and also
identified the so-called gaps of [0,1]: the subintervals that are not limiting probabilities of any
MSO formula. The proof relies on a combination of methods from structural graph theory,
especially large face-width embeddings of graphs on surfaces, analytic combinatorics, and finite
model theory, and several parts of the proof may be of independent interest. In particular, we
identify precisely the properties that make the zero-one law work on planar graphs but fail for
every other surface.
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1 Introduction

We consider classes of labelled graphs with the uniform distribution on graphs with a fixed
number of vertices. Let S be a closed compact surface, and let GS be the class of graphs
embeddable on S. Heinig et al. [9] studied limiting probabilities of first order (FO) and
monadic second order (MSO) properties of graphs in the classes GS . They showed that a
convergence law in FO holds for all surfaces S, and that a convergence law holds in MSO
when S is the sphere, so that GS is the class of planar graphs. They also showed that
a zero-one law in FO holds for connected graphs in GS , and a zero-one law in MSO for
connected planar graphs. They conjectured that these results extend to MSO properties on
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an arbitrary surface. We strongly refute these conjectures. For each surface S other than the
sphere we construct an MSO formula ϕ such that the probability that ϕ is satisfied in GS
does not converge when the number of vertices n tends to infinity, not even on connected
graphs. In addition, telling whether the probability of a given MSO formula ϕ converges is
an undecidable problem. We also show that every rational number in [0,1] is the limiting
probability of some MSO formula for connected graphs in GS .

We sketch next the main ingredients in the proofs of our results. We fix a surface
S different from the sphere. Embeddings of graphs on surfaces can be defined in purely
combinatorial terms. If S is orientable, an embedding of a graph on S is given by a rotation
system consisting, for each vertex v, of a cyclic orientation of the edges incident with v. If
S is non-orientable one has to consider also signed edges [10]. Given a graph G embedded
in S the face-width of the embedding is the minimum number of intersections of G with
a non-contractible curve in S. In what follows, we say that a graph property holds with
high probability (w.h.p.), or asymptotically almost surely (a.a.s.), if it holds with probability
tending to 1 as n tends to infinity. It is known [10] that if the face-width of a 3-connected
graph G is at least 2g, where g is the genus of G (orientable or not), then G has a unique
embedding in S. We also need the fact that the face-width of a random 3-connected graph
G embedded on S is Ω(log n) w.h.p. [1].

It is shown in [2] that w.h.p. a random graph G in GS has a unique non-planar 3-connected
component C. Since planarity is MSO expressible and 3-connected components are MSO
definable, so is C. Using the fact that w.h.p. the face-width of C is large, we show the
existence of an MSO definable grid structure M in G of size Ω(log log n). This is obtained
starting with a non-contractible cycle, which is MSO definable, and extending it to a grid
structure. Inspired by the capacity of MSO to emulate Turing machine computations on
grid graphs, we are then able to define an MSO formula ϕ expressing the property that
log† |M | is in {0, 1, 2, 3} modulo 8, where log† n is a variant of log∗ n (see Section 5). Given
that log log n ≤ |M | ≤ n, the value of log† |M | modulo 8 oscillates and, as a consequence,
the probability that ϕ holds does not converge as n goes to infinity.

The non-converging formula ϕ, combined with the abovementioned capacity of MSO to
emulate Turing machine computations on grid graphs, also gives the undecidability of the
decision problem for converging probabilities. For each Turing machine M , we find an MSO
formula ϕM that simulates partial runs of M along the definable growing grids. The formula
ϕM has asymptotic probability 1 if M halts, and asymptotic probability 0 otherwise, and
the probability of the conjunction ϕ ∧ ϕM is thus converging if and only if M halts.

To prove that each rational in [0, 1] is the limiting probability of some MSO formula,
we use the following facts. (a) A 3-connected graph in a surface of genus g has a spanning
tree with maximum degree at most 4g [7]. (b) For the class GS , every property in MSO2
(quantification over vertices and edges) is also expressible in MSO [5]. (c) The size Xn of the
unique non-planar component obeys a limit local law related to a stable law [8]. Consider
now a random graph G in GS with n vertices, let C be the unique non-planar component,
and let Xn = |C|. From properties (a) and (b) it follows that, for each integers a and b,
we can express in MSO the property ϕa,b that Xn is equal to a modulo b. Using property
(c) we show that the probability that ϕa,b is satisfied tends to 1/b. Now given any rational
non-negative a/b ≤ 1, the property that Xn is less than a modulo b tends to a/b.

The key fact that makes MSO properties of graphs on non-planar surfaces so different
from the plane is that w.h.p. there is a unique non-planar 3-connected component, which
also happens to be the only one of linear size. For random planar graphs there is a unique
3-connected component of linear size as well, but it is indistinguishable in MSO from the
smaller ones.
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2 Graphs and Surfaces

In this section we present the background from graph theory and surface topology we need
for our main result. We refer to [10, 6] for background on graphs and surfaces. Our notation
on surfaces and embeddings follows [10].

Graphs. All graphs in this paper are finite, undirected, and simple, i.e. no parallel edges or
self-loops. We denote the vertex and edge set of a graph G by V (G) and E(G), resp. For
d ≥ 0, a graph G is d-degenerate if every subgraph H ⊆ G contains a vertex of degree at
most d.

We need the concept of 3-connected components of a graph G. For k > 0, a graph G is
k-connected if |V (G)| > k and G−S is connected for all S ⊆ V (G) with |S| < k. A connected
component of G is an inclusion-wise maximal connected subgraph C ⊆ G. A 2-connected
component of G is an inclusion-wise maximal 2-connected subgraph C ⊆ G. For defining
3-connected components of G we need some preparation.

Let G be a 2-connected graph. A separator of order 2 in G is a set X = {u, v} of distinct
vertices such that G−X is not connected. Let C be an inclusion-wise maximal subgraph of
G such that for all 2-separations X of G there is one connected component of G−X which
contains all vertices of C −X. For any such 2-separation X of G, if X ⊆ V (C) then we add
an edge between the two vertices of X in C if it is not already there. This produces a new
graph C̃. For a 2-connected graph G, the graphs C̃ obtained in this way which are not cycles
are called the 3-connected components of G. Tutte proved that every 2-connected graph has
a decomposition into a tree whose nodes are cycles or 3-connected components.

Surfaces and Graph Embeddings. We now present some fundamental properties of surfaces
and embedded graphs. We refer to [10] for background.

A surface is a compact connected Hausdorff topological space in which every point has a
neighbourhood homeomorphic to the plane. A surface can be constructed from the sphere by
cutting a number of holes and pairs of holes into the sphere, each homeomorphic to an open
disc. Every pair of holes is then closed by adding a handle – an open cylinder – connecting
the boundary of the holes. The remaining holes are closed by adding a crosscap, that is,
by identifying each point on the boundary of the hole with the corresponding point on the
opposite side. The surface classification theorem shows that every surface is homeomorphic to
a surface constructed in this way. Any surface obtained in this way that includes a crosscap
is called non-orientable, otherwise it is called orientable. Our main result holds for orientable
and non-orientable surfaces. Due to space constraints, we only explain the orientable case.
The surface obtained from the sphere by adding k handles is denoted by Sk. The number k
is called the genus of Sk.

Let S = Sk be a surface. The way we constructed S implies that we can reduce it to
the plane by taking for each handle a closed curve that goes around the handle and cut the
surface along the curves, closing the appearing holes by disks. This way, every handle is cut
open and the resulting surface is homeomorphic to the plane. We call curves which cut a
handle in this way noncontractible. There are two types of non-contractible curves: if we cut
along a curve, we may either disconnect the surface or not. Curves which do not disconnect
the surface when we cut along them are called non-separating.

Following [10], a graph G′ is embedded on a surface S if its vertices are distinct points on
S and every edge e of G′ with endpoints u, v is a simple closed arc connecting u and v in
S such that the interior of e is disjoint from other edges and vertices of G′. A graph G is
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embeddable on S if it is isomorphic to an embedded graph G′ on S. Let Π be an embedding
of a graph G in S. The connected components of S −Π are called the faces of Π.

An embedding of a graph in a surface S can be uniquely represented by an object called
an embedding scheme or rotation system. If v is a vertex of G then the embedding of G
embeds the edges incident with v in some order in clockwise orientation around v. That is,
for any v the embedding defines a cyclic permutation of the incident edges, or a linear order
on the edges that have v as an endpoint. We call this order the clockwise order around v. A
rotation system is a set of clockwise orderings containing one order for every vertex.

Such a rotation system uniquely determines an embedding of G in S. Given a rotation
system π of a graph G, we can construct the facial cycles of the embedding as follows. Let
v be a vertex and let e = {u, v} be an incident edge. Then v and e determine a walk in G
where we start at v, follow the edge e to its other endpoint and then proceed with the next
edge in clockwise order until we return to v. In this way we obtain exactly the facial cycles
of the embedding. In particular, we can represent any face of the embedding by orienting an
edge in its boundary cycle, which fixes the start vertex v and the edge e to choose first. This
will be used in the MSO definition in the next section.

One of the main challenges in proving our main result is that we need to define MSO-
formulas that encode in a given graph an embedding of it in a fixed surface S. Whitney
proved that a planar graph G that is 3-connected has a unique embedding into the plane. In
[3], Courcelle proved that there are MSO-formulas defining the rotation system for planar
graphs.

To prove that rotation systems are also definable for graphs on other surfaces we will
reduce the problem to the planar case as follows. As mentioned above, any surface can be
reduced to the plane by cutting the surface along a finite set of closed curves each of which
cuts a handle. We can generalize this concept of cutting along a cycle to cycles in embedded
graphs.

In the sequel, let S be a surface. If we refer to a Π-embedded graph G we implicitly define
Π to be an embedding of the graph G on S. Let C = (v0e1v1e2....vk = v0) be a cycle in G.
For i > 0, let Li be the set of edges incident to vi which in the clockwise ordering around vi
appear after ei but before ei+1 the Ri be the set of edges appearing after ei+1 and ei. The
edges in any Li are called the left edges of the cycle C and the edges in any Ri are called
the right edges of C.

I Definition 2.1. Let C = (v0e1v1 . . . vk) be a surface nonseparating cycle of a Π-embedded
graph G. Let G′ be the graph obtained from G by replacing C by two isomorphic copies
Cr = (vr0er1vr1 . . . vrk) and Cl = (vr0el1vl1 . . . vlk) such that all edges e = {u, vi} on the right of
C are replaced by edges {u, vri } incident to the corresponding vertices on Cr and all edges
e = {u, vi} on the left of C are replaced by edges {u, vli} incident to the corresponding vertices
on Cl. We say that G′ is obtained from G by cutting along the cycle C. The embedding Π
defines an embedding Π′ of G′ in the surface obtained from S by cutting along C and closing
the resulting holes by discs in the obvious way. Note that the two copies C1, C2 of C are now
facial cycles. We now add two new vertices f1, f2 such that fi has an edge to every vertex of
Ci. This means that fi is drawn in the face bounded by Ci. We call the resulting graph the
augmented graph obtained by cutting along C.

This motivates the following definition.

I Definition 2.2 (Planarizing set of cycles). Let G be a Π-embedded graph. A planarizing
set of cycles is a set C1, . . . , Ck of pairwise disjoint cycles in G such that cutting along all
cycles C1, . . . , Ck results in a connected graph embedded in the sphere.
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We will see below that for certain graphs embedded on a surface such sets of cycles always
exist. For this, we need the concept of face-width.

I Definition 2.3. Let Π be an embedding of a graph G on S. The face-width fw(G,Π) of G
is the smallest number k such that S contains a noncontractible closed curve that intersects
G in k points, or ∞ if no noncontractible curve exists (i.e. S is the plane).

We prove next that the connectivity between two Π-noncontractible and Π-nonseparating
cycles is at least as high as the face-width of Π.

I Lemma 2.4. Let G be a 2-connected Π-embedded graph and let C and C ′ be two disjoint
Π-noncontractible, Π-nonseparating cycles. Let 2 ≤ k = fw(G,Π) <∞. Then there are at
least k pairwise vertex disjoint paths linking C and C ′. Furthermore, if G is 3-connected
with 3 ≤ fw(G,Π) < ∞ and C is a Π-nonseparating cycle then be the augmented graph G̃
obtained from G by cutting along C is 3-connected.

See [10, Theorem 5.11.2] for a proof of the following theorem.

I Theorem 2.5. Let G be a graph that is Π-embedded in a surface with Euler genus g and
let d be a positive integer. If fw(G,Π) ≥ 8(d + 1)(2g − 1), then G contains a planarizing
collection of induced cycles C1, . . . , Ck, for some g/2 ≤ k ≤ g, such that the distance between
Ci and Cj, i 6= j, is at least d.

The previous theorem and the lemma preceding it show that starting from a graph that is
3-connected and has an embedding of face-width at least 3, we can reduce it to a 3-connected
planar graph by cutting along a constant number of cycles. Combining this with Whitney’s
theorem of unique embeddings of 3-connected planar graphs implies the following result
which will be important later.

I Theorem 2.6. Let G be a 3-connected graph that is Π-embedded in a surface with Euler
genus g such that 3 ≤ 8(d + 1)(2g − 1) ≤ fw(G,Π) < ∞. Let G′ be the augmented graph
obtained by cutting along a set of planarizing cycles. Then the facial cycles of Π are precisely
the facial cycles of the unique plane embedding of G′. Moreover, an embedding scheme which
is equivalent to Π can be deduced from the rotation system of the plane embedding of G′.

The following definition captures the abstract properties of planarizing sets of cycles.

I Definition 2.7. Let G be a graph and let k ≥ 0. A potential system of planarizing cycles
of order k is a sequence

(
(Ci, Li, Ri)

)k
i=1 such that C1, . . . , Ck are pairwise vertex disjoint

cycles in G and Li, Ri form a partition of the set of edges e 6∈ E(Ci) incident with a vertex
on Ci, for all i.

Note that the procedure of cutting along a cycle in a graph G and the augmented graph
obtained from G in this way as defined above can be applied to any cycle C with a given
partition L,R of the edges e 6∈ E(C) incident with a vertex on C. Of course it may not
always lead to the intended effect, e.g. if the sets L and R of left and right edges are chosen
wrongly. But in any case it will produce a graph G′ and if G and Π satisfy the conditions
of Theorem 2.5, then G′ will be the augmented graph obtained by cutting along the cycles
C1, . . . , Ck.

Let G′ be the graph obtained in this way. We call G′ the graph obtained from G by
cutting along S. If G′ is planar and Π′ is a plane embedding of G′ then we can obtain an
embedding Π′′ of G on some surface as follows. Let f1, . . . , fk be the extra vertices in G′. If
we delete f1, . . . , fk from G′ and Π′ then we obtain a plane embedding Π′′ which, for each i,
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has two facial cycles corresponding to the two copies of Ci. We cut two holes, each having a
copy of Ci as boundary cycle, and then identify the corresponding points on the two copies
of Ci in the obvious way. In this way we obtain a surface S defined by an embedding Π′′′ of
G. We call S,Π′′′ the surface and embedding obtained from G′ and Π′ by gluing along S.

The results and constructions proved in this subsection imply the next theorem.

I Theorem 2.8. Let S be a surface of genus g and let G be a 3-connected graph embedded
in S by an embedding Π such that 8(d+ 1)(2g − 1) ≤ fw(G,Π) <∞.
1. Then, there exists a potential system of planarizing cycles S of order at most g such that

the graph G′ obtained from G by cutting along S is 3-connected and planar, and if Π′ is
the (uniquely determined) plane embedding of G′, then S and Π are the surface and the
embedding obtained from G′ and Π′ by gluing along S.

2. Furthermore, for every potential system of planarizing cycles S of order at most g such
that the graph G′ obtained from G by cutting along S is 3-connected and planar, if Π′ is
the (uniquely determined) plane embedding of G′, then S and Π are the surface and the
embedding obtained from G′ and Π′ by gluing along S.

This theorem is the main tool for defining embeddings in monadic second-order logic later
on. In the next section we exploit face-width for finding grids of controlled size.

Grid-like Structures in High-Face Width Embeddings. In this section we establish some
graph theoretical properties of embedded graphs that will allow us to define grids in embedded
graphs whose order is proportional to the face-width.

I Definition 2.9. Let G be a 2-connected Π-embedded graph such that fw(G,Π) ≥ 2 and let
F = F (G,Π) be the set of Π-faces. The vertex-face graph is the bipartite graph Γ = Γ(G,Π)
with vertex set V (G) ∪ F (G,Π) and an edge between u ∈ V (G) and f ∈ F (G,Π) if u is
contained in the facial cycle bounding f .

Note that any closed curve on a surface corresponds to a cycle in the vertex-face graph in
the obvious way. From now on, we will therefore consider cycles in the Γ(G,Π). The length
of such a cycle is the number of faces (or vertices) on it.

I Lemma 2.10 (Prop. 5.5.10 of [10]). Let G be a Π-embedded graph such that 2 < fw(G,Π) <
∞, and let k := b fw(G,Π)

2 c − 1. Let v be a Π-face and let B0(v) be the Π-boundary walk of v.
For i > 0 we define Bi(v) as the union of Bi−1(v) and all Π-facial walks that have a vertex
in Bi−1(v). Then there exist k + 1 disjoint Π-contractible cycles C0, . . . , Ck such that for all
i = 0, 1, ..., k, Ci ⊆ ∂Bi(v) and Bi(v) ⊆ Int(Ci).

We are now ready to prove the graph theoretical properties we will use later to show
that any 3-connected graph embedded by a face-width k embedding, for some 3 ≤ k <∞,
contains a k

4 ×
k
4 -grid which, moreover, is controlled by a noncontractible cycle.

Let Π be an embedding of a graph G on a surface S of Euler genus g such that fw(G,Π) ≥ 3.
Let Γ = Γ(G,Π). Let k := b fw(G,Π)

2 c − 1.

I Definition 2.11. Let C be a Π-nonseparating, Π-non-contractible cycle of Γ of minimal
length. Hence, the number of vertices and faces on C is exactly fw(G,Π). Let v be a face on
C. A set P = {P0, . . . , Pk} of pairwise vertex disjoint cycles is controlled by C and v, if for
all 0 ≤ i ≤ k,

Pi intersects C in exactly two vertices pi, p′i,
for all 1 ≤ i ≤ k, pi and pi−1 and also p′i and p′i−1 have a common neighbour on C, which
is a face, and p0 and p′0 are the neighbours of the face v on C, and
if i < j then Pi is contained in the component of G− Pj , called the interior of Pj , that
contains v.
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Let C and v be as before and let P = {P0, . . . , Pk} be a set of pairwise vertex disjoint
cycles controlled by C and v. Then either there is exactly one face v̄ on C not in the interior
of Pk or there is exactly one vertex v̄ on C which is neither in the interior of Pk nor on Pk
itself. We call the node v̄ in the previous claim the opposite node of v on C and denote it by
v̄.

Let C, v, v̄ and P be as before. Let a be a face on C and let Q = {Q1, . . . , Qk} be a set
of pairwise disjoint cycles controlled by C and a. Let ā be the opposite node of a on C.

Let s := dk+1
2 e and let s′ := k − s. If fw(G,Π) is odd then a is a face of facial distance s

from v on C if, and only if, the cycle Q ∈ Q which contains the vertex v̄ has v on its exterior
but v is adjacent to a vertex on Q. If fw(G,Π) is even then a is a face of facial distance s
from v on C if, and only if, v and v̄ are adjacent to vertices on the same two cycles in Q. If
a and v satisfy these conditions, then we say that v and a match.

This observation will allow us to define a, ā, v̄ from C and v. What is left is to give a
topological condition for C to be a noncontractible cycle of minimal length. But this can
easily be done using Lemma 2.4. Finally, it can be shown that C, v, v̄, a, ā uniquely determine
a grid structure in C ∪ P ∪Q of size s′. The previous claims together establish the following
theorem.

I Theorem 2.12. Let C be a noncontractible, nonseparating cycle of length fw(G,Π) and
let v be a face on C. Let P be a set of pairwise disjoint cycles controlled by C and v and
let v̄ be the node on the opposite of v on C. Let x be a face on C and let Q be a set of
pairwise disjoint cycles controlled by C and x and let x̄ be the node opposite of x on C.
Finally, suppose v and x match as defined in the previous claim. Then C, v, x, x̄, v̄ determine
an s′ × s′ grid.

3 Monadic Second-Order Logic

In this section we introduce monadic second-order logic (MSO), and develop the MSO
definability of embedding schemes and grids in large face-width embeddings.

Logic. A vocabulary is a set of relation symbols with associate arities. If L is a vocabulary, a
finite L-structure M is given by a finite domain or universe D(M) and a relation R(M) ⊆Mr

for each relation symbol R ∈ L of arity r
The class of formulas of monadic second-order logic (MSO) is the smallest class of formulas

that contains the atomic formulas and is closed under negations, conjunctions, disjunctions,
and existential and universal quantification of individual and set variables. An individual
variable ranges over the domain, and a set variable ranges over the subsets of the domain.
If X is a set variable and x is an individual variable, then X(x) is the atomic formula that
says that x is in the set X. Given a structure M , the relation defined by a formula ϕ(x̄, X̄)
with individual and set free-variables x̄ and X̄, respectively, is the set of pairs of tuples (ā, Ā)
such that M makes ϕ(ā, Ā) true. A formula without free variables is called a sentence.

Logic on Graphs, MSO1 and MSO2. There are two natural encodings of graphs G as
structures. In the standard encoding the vocabulary has a single binary relation symbol
E, the domain of the structure is V (G), and the binary relation E is interpreted by E(G).
In the incidence encoding the vocabulary has two unary relation symbols V and E, one
binary relation symbol I, the domain is V (G)∪E(G), and I is the incidence relation between
vertices and their incident edges. The unary relations V and E are interpreted by V (G) and
E(G). Whereas for FO it is irrelevant which encoding is used, the two encodings behave
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differently for MSO: on the standard encoding the set quantifiers range over sets of vertices
whereas on the incidence encoding they range also over sets of edges, e.g., over paths. MSO
on the standard encoding is often referred to as MSO1 and on the incidence encoding it is
referred to as MSO2. For graphs of bounded genus, and even more generally, for classes
of graphs that are p-degenerate for some fixed p > 0, the two logics MSO1 and MSO2 are
equivalent: see Theorem 5.22 in [5]. Since we only consider classes of graphs of bounded
genus we will assume from now on that graphs are given by their incidence encoding.

MSO-definitions and interpretations. For an integer k ≥ 1, an MSO-definition of L-
structures of order k is a collection of formulas ϕD,1(x), . . . , ϕD,k(x) and ϕR,t(x̄) for R ∈ L
and t ∈ [k]r, where r is the arity of R, and x in ϕD,i(x) is an individual variable, and x̄

in ϕR,t(x̄) is a tuple of individual variables of length r. If Ψ is such an MSO-definition
and M is a structure of the vocabulary of the formulas in Ψ, then the structure defined
by Ψ on M is the L-structure N with D(N) = {(a, i) ∈ D(M) × [k] : M |= ϕD,i(a)}
and R(N) = {((a1, i1), . . . , (ar, ir)) ∈ (D(M) × [k])r : M |= ϕR,(i1,...,ir)(a1, . . . , ar)}. An
MSO-definition of order k with parameters is defined analogously, with each formula carrying
additional parameter variables z̄ and Z̄, and an additional formula π(z̄, Z̄) to tell if a choice
of parameters b̄, B̄ is good. We say that Ψ takes the structure M as input and produces the
structure N as output, for the good choice of parameters b̄ and B̄, if the defining formulas
produce N when z̄ and Z̄ are replaced by the parameters. If there is as least one good
choice of parameters in M and the same structure N is produced under all good choices
of parameters, then we omit any reference to them and say that Ψ takes M as input and
produces N as output.

Finally, MSO-interpretations extend MSO-definitions to allow factor structures. Con-
cretely, an MSO-interpretation (without parameters, of order 1) includes an additional
equality-defining formula ϕ≡(x, y), that is required to define an equivalence relation on the
domain defined by ϕD(x) that is a congruence of the relations defined by the ϕR(x̄)’s. On a
structure M as input, the MSO-interpretation produces the structure whose domain is the set
of equivalence classes of the equivalence relation ≡ defined by ϕ≡(x, y) on the domain defined
by ϕD(x), and whose relations are the relations that are defined by the ϕR(x̄)’s factored by
≡. MSO-interpretations with parameters and of order k > 1 are defined analogously.

The composition of two MSO-interpretations is defined in the obvious way and is again
an MSO-interpretation. As an example of MSO-interpretation we state the following easily
derived consequence of Theorem 4.7 in [3].

I Theorem 3.1. There is an MSO-definition Ψ that, for every graph G given as input and
every 3-connected component C of G, there is a good choice of parameters for Ψ on which it
produces C.

Logic Representation of Embedding Schemes. Embedding schemes will be represented
as graphs expanded by two relations that represent the cyclic orderings around the vertices.
Concretely, the vocabulary has two unary relation symbols V and E for vertices and edges,
one binary relation symbol I for the incidence relation between vertices and edges and one
ternary relation symbol R for cyclic orderings. The predicate R(v, e1, e2) holds if e1 and e2
are edges that are incident to vertex v, and e1 is the immediate predecessor of e2 in the
cyclic ordering of the edges that are incident to v.

This encoding was used by Courcelle [4] to show that there is an MSO-definition that
takes a 3-connected planar graph as input and produces an embedding in the plane as output,
which is unique by Whitney’s Theorem.
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I Theorem 3.2 ([4]). There is an MSO-definition that, given a 3-connected planar graph G
as input, produces an embedding scheme as output.

It will be convenient to extend the embedding schemes to include the faces of the
embedding. Accordingly, extended embedding schemes will include a set F of faces in their
domain and store the incidence relation between edges and faces through the incidence
relation I.

We aim at an MSO-interpretation that given an embedding scheme produces its extension
with faces. A face is determined by one of its bounding edges together with an orientation.
Specifying the orientation directly by specifying one of its endpoints would take us beyond the
syntax of MSO-interpretations. Instead of that, we use a proper k-coloring of the graph with
a small number k of colors and specify the orientation of the edge by specifying the colors
of the left and right endpoints. The k-coloring is provided through k many parameter set
variables, and we choose k large enough so that any graph in the surface under consideration
has chromatic number at most k. It is well-known that the chromatic number of all graphs
embeddable in a fixed surface is bounded (see [10]). In the case of planar graphs k = 5
suffices (and even k = 4 does).

I Lemma 3.3. For every k ≥ 2, there is an MSO-interpretation that, given an embedding
scheme for a graph that is k-colorable, produces its extension by faces as an extended embedding
scheme.

Embeddings by Reduction to Planar Case. Our next goal is to prove the analogue of
Theorem 3.2 for higher genus surfaces. We proceed by reduction to the planar case via
Theorem 2.8. Let S be an orientable surface of genus g. For simplicity we start with the
orientable case.

We start with two MSO-interpretations that implement the operations of cutting a graph
along a potential system of planarizing cycles, and its reverse operation of gluing along it; cf.
Definition 2.7 and the discussion immediately following it. Systems are represented most
simply by a sequence of 3k set variables.

I Lemma 3.4. There is an MSO-interpretation Ξ that, given a graph G and potential system
of planarizing cycles S, produces the graph G′ obtained from G by cutting along S. Conversely,
there is an MSO-interpretation Ξ′ that, given a graph G, a potential system of planarizing
cycles S, and a plane embedding scheme Π′ for the output of Ξ on G and S, produces the
graph G′′ and the embedding scheme Π′′ that is obtained from G′ and Π′ by gluing along S.

With these objects at hand we are ready to prove the analogue of Theorem 3.2.

I Theorem 3.5. Let S be a surface of genus g. There is an MSO-interpretation that, given
a 3-connected graph G that has an embedding in S of finite face-width at least 8(d+ 1)(2g− 1)
(which must be unique), produces such an embedding Π.

We need to show that the conditions of Theorem 2.8 can be defined in MSO.

Defining Grids in High Face-Width Embeddings. Our final goal of this section is to develop
an MSO-interpretation γ which defines large grids in 3-connected Π-embedded graphs.

I Theorem 3.6. There is an MSO-interpretation γ that, given an extended embedding scheme
for a graph G of finite face-width k ≥ 3, produces a grid of order bk4 c.

To define γ, we need to show that the conditions of Theorem 2.12 can be defined in MSO.
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4 Size and face-width for random graphs

Fix a surface S of genus g ≥ 0. It was shown in [2] that, a.a.s., a random graph G from GS
has genus g, and in particular it is not planar if g > 0. Moreover, a.a.s., G has a unique
non-planar connected component, as well as a unique non-planar 2-connected and 3-connected
components. Moreover, these components are all giant, i.e., of size linear in the number
of vertices. Indeed the probability distributions of their sizes is well-understood. In the
following, if fn and gn are sequences of positive real numbers, we use the notation fn ∼ gn
to mean that limn→∞ fn/gn = 1.

Sizes of the components. Let Ln denote the size (i.e., number of vertices) of the largest
connected component in a random n-vertex graph G from GS , and let Mn = n − Ln.
Theorem 5.3 in [2] determines the distribution of Mn, and hence of Ln: for every fixed
integer k ≥ 0 we have Pr[Mn = k] ∼ p · gk γ

−k

k! where p, gk and γ are constants that do not
depend on n, nor on the surface S. Moreover there exists constants a > 0 and b > 0 such
that E(Mn) ∼ a and Var(Mn) ∼ b. In particular, by Chebyshev’s inequality this means that,
for any a(n) that grows to infinity however slowly, we have Mn ≤ a(n) a.a.s., and hence
Ln ≥ n − a(n) a.a.s. Theorem 5.4 and 5.5 also in [2] determine the distributions of the
sizes of the largest 2-connected and 3-connected components, but only for random connected
graphs from GS . However, by composing the results it is still possible to determine the sizes
for random arbitrary graphs from GS , as we do next.

A sequence of integer random variables X0, X1, . . . is said to admit a local limit law
of the Airy type with parameters α and c if for every real finite interval [a, b] it holds
that Pr

[
Xn = bαn+ xn2/3c

]
∼ n−2/3cg(cx) uniformly for every x ∈ [a, b], where g(x) =

2e−2x3/3(xAi(x2)−Ai′(x2)) and Ai(x) is the Airy function. Here, uniformly for every x ∈ [a, b]
means that for every positive real ε > 0 and every large enough n the ratio is ε-close to 1
simultanesouly for all x ∈ [a, b].

I Theorem 4.1. Let Xn and Yn denote the sizes of the largest 2-connected and 3-connected
components of a random n-vertex graph in GS. Then Xn and Yn admit local limit laws of the
Airy type (with different parameters). Moreover, a.a.s., the largest connected, 2-connected
and 3-connected components are unique and have maximal possible genus, and all other
connected, 2-connected and 3-connected components are planar.

Face-width of the components. For this section we assume that the genus of S is g > 0.
Our goal is to show that the face-width of the largest 3-connected component of the random
graph grows logarithmically. We will need the following facts:

Almost all 3-connected maps on S with m edges have face-width greater than δ logm for
some constant δ > 0. This is proved in [1] for rooted maps. Since almost all 3-connected
maps have no non-trivial automorphisms [12] this is also true for unrooted maps. Moreover,
the largest 3-connected component of a random graph G from GS is unique and non-planar
by Theorem 4.1 a.a.s., and has face-width greater than any fixed constant also a.a.s. [2]. As
a consequence it has a unique embedding in S, and it can be considered as an unrooted map
[13].

I Theorem 4.2. Let S be a surface of genus g > 0 and let Fn denote the face-width of the
largest 3-connected component of a random n-vertex graph in GS. Then there exists γ such
that Fn ≥ γ log n asymptotically almost surely.
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Proof. Let G denote a random n-vertex graph in GS . Let L and T denote the largest
2-connected and 3-connected components of G. We start by arguing that, conditioned on the
number of edges of L and T , the distribution of T is uniform over the 3-connected graphs
in GS with its number of edges. Indeed, L is obtained from T by (possibly) replacing each
edge of T with a 2-connected graph, so each T with m edges gives rise to the same number
L with k edges. For m ≥ k, let Bm,k denote the event that e(T ) = m and e(L) = k. By
Theorem 4.1, the sizes of T and L are at least cn a.a.s., for some constant c > 0. Since
they are at least 2-connected, also e(T ) ≥ cn and e(L) ≥ cn a.a.s.. Now we combine the
previous paragraph with the one just before the theorem: In the distribution conditioned on
Bm,k, the 3-connected component T can be considered as a random m-edge 3-connected map
embedded in S, and its facewidth is at least δ logm if m is large enough. We conclude that
the facewidth of T is indeed at least δ log(cn) a.a.s. Precisely, if A denotes the event that
T has facewidth at least δ log(cn), then Pr[ A ] ≥

∑
m≥k≥cn Pr[ A | Bm,k ] Pr[ Bm,k ]. For

fixed ε > 0, if n is large enough, then Pr[ A | Bm,k ] ≥ 1− ε for any m ≥ k ≥ cn. It follows
that, if n is large enough, then Pr[ A ] ≥ (1− ε)

∑
m≥k≥cn Pr[ Bm,k ] ≥ (1− ε)2. Since ε > 0

was arbitrary, the claim is proved by choosing any γ > 0 smaller than δ. J

5 Limiting probabilities of MSO-sentences

In this section we put everything together. Let S be a surface of genus g > 0. The results
so far show that a random n-vertex graph in GS will have facewidth Ω(log n) with high
probability, and that on such graphs an m×m grid is MSO-definable, for some m ≥ log log n.
More precisely:

I Theorem 5.1. Let S be a surface other than the sphere. There is an MSO-interpretation
that, on a given n-vertex graph G from GS, produces an m×m grid for some m ≥ log log n
for every and at least one good choice of parameters, asymptotically almost surely when G is
a random n-vertex graph in GS.

We use this to build MSO-sentences with non-converging probabilities. We use it also
for proving the undecidability of the problem of determining the asymptotic probabilities
of MSO-sentences. For building MSO-sentences whose probabilities converge to any given
rational number in the interval [0, 1] we use Theorem 4.1 from the previous section.

MSO-sentences with non-converging probabilities. For every base b ≥ 2 and every natural
number n, define towb(n) recursively by towb(0) = 1 and towb(i+ 1) = btowb(i). For every
real x ≥ 0, let log∗b(x) denote the smallest integer k such that towb(i) ≥ x, and let log†b(x)
denote the smallest integer k such that

∑k
i=0 towb(i) ≥ x. By induction on k one proves

that
∑k
i=0 towb(i) ≤ 2towb(k), and hence log∗b(x/2) ≤ log†b(x) ≤ log∗b(x) for every b ≥ 2 and

every real x ≥ 0. Both log∗b(n) and log†b(n) are monotone non-decreasing functions of n that
have all natural numbers in their range. When the base is 2 we omit b from the notation.

The source of divergence in our example is the following easily verified arithmetic fact:

I Lemma 5.2. If m1,m2, . . . is an integer sequence such that log log(n) ≤ mn ≤ n for every
large enough n, then the sequence given by log†(mn) mod 8 is not eventually always in
{0, 1, 2, 3} and not eventually always in {4, 5, 6, 7}.

For the next technical lemma it will be more convenient to move, temporarily, to the
vocabulary of directed grids. For every i ∈ {0, . . . , 7}, we want an MSO-sentence strangei
that holds in the n× n directed grid if and only if log†(n) is congruent to i mod 8. We use
the notation Gd

n×n to denote the n× n directed grid.
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2^0

2^2^0

2^2^2^0

2^2^2^2^0

Figure 5.1 The red-green-blue pattern for the proof of Lemma 5.3.

I Lemma 5.3. For every i ∈ {0, . . . , 7} there exists an MSO-sentence strangei in the
vocabulary of directed grids such that, for every natural number n ≥ 1, the sentence strangei
is true in Gd

n×n if and only if log†(n) is congruent to i mod 8.

Proof. The sentence uses three existentially quantified monadic second-order variables R,
G, and B, for red, green and blue. First it verifies that the colors satisfy the pattern of
Figure 5.1. Once this is verified, the sentence states that the number of green vertices in the
leftmost column is congruent to i+ 1 mod 8. The number of green vertices in the leftmost
column is the smallest k such that

∑k−1
i=0 tow(i) ≥ n; i.e. k = log†(n) + 1, so the statement

states that log†(n) + 1 ≡ i+ 1 mod 8, which is the same as log†(n) ≡ i mod 8. J

We need to find a way of defining directed grids in the {right, down}-vocabulary from
undirected ones. One way to do this via MSO-interpretations can be extracted from
Section 5.2.3 in [5].

I Theorem 5.4. Let S be a surface other than the sphere. There is an MSO-sentence whose
asymptotic probability on GS does not converge.

Proof. Let Θ be the composition of Ψ from Theorem 5.1 with interpretation that produces
directed grids from undirected ones. For every T ⊆ {0, . . . , 7}, let ϕT say that there is a
good choice of the parameters for Θ that make it define a directed square grid on which the
disjunction

∨
i∈T strangei holds. If ϕ{0,1,2,3} has probability 0, then ϕ{4,5,6,7} has probability

1 by Lemma 5.3. Let T ∈ {{0, 1, 2, 3}, {4, 5, 6, 7}} be such that ϕT does not have asymptotic
probability 0.

We claim that the asymptotic probability of ϕT does not converge. Otherwise, it converges
to a positive real, and a positive fraction of the n-vertex graphs in GS satisfy ϕT . Therefore,
for n there is a least one n-vertex graph in GS for which there is a good choice of parameters
that makes Ψ define a directed m×m grid with log†(m) mod 8 in T and such that at the same
time m ≥ log log n. In other words, we find a sequence mn that contradicts Lemma 5.2. J

Undecidability of the decision problem. We proceed by reduction from the halting problem
for Turing machines, which is of course undecidable. For every 1-tape Turing machine M we
want an MSO sentence haltsM of the vocabulary of directed grids, that holds in the n× n
directed grid if and only if the computation of M on the empty input halts in time at most
n using space at most n. This construction is standard.

I Lemma 5.5. For every two-sided 1-tape Turing machine M there exists an MSO-sentence
haltsM of the vocabulary of directed grids such that, for every natural number n ≥ 1, the
sentence haltsM is true in Gd

n×n if and only if the computation of M on the empty input
halts in time at most n using space at most n.
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We combine the non-converging formula of Theorem 5.4 with Lemma 5.5.

I Theorem 5.6. Let S be a surface other than the sphere. The problem of determining
whether a given MSO-sentence has a converging asymptotic probability on GS is undecidable.

Proof. Let ϕ be the MSO-sentence with non-converging asymptotic probability from The-
orem 5.4. As in the proof of Theorem 5.4, let Ψ be the MSO-interpretation in Theorem 5.1,
and let Θ be the composition of Ψ with the MSO-interpretation that produces a directed
grid from an undirected one. For every two-sided 1-tape Turing machine M , let ψM be the
sentence that says that there is a good choice of parameters for Θ that makes it define a
square grid, and the sentence haltsM holds on some principal square subgrid of this grid.
It is easy to see that ψM has asymptotic probability one if M halts, and probability zero
otherwise. This ϕ ∧ ψM converges if and only if M halts. J

All rationals in [0,1] as limiting probabilities. Our goal in this section is to construct an
MSO sentence whose asymptotic probability over GS , for any fixed surface S other than
the sphere, converges to any given rational number in the interval [0, 1]. The idea of the
construction is the following. Let us say that we want to achieve the rational p/q as limiting
probability. Suppose that we succeed to write a sentence that says that the unique non-planar
3-connected component of the random n-vertex graph has size that is congruent to some
a ∈ {0, . . . , p− 1} mod q. If we do, then by Theorem 4.1 the probability that this sentence
holds on the random n-vertex graph is the probability that an integer random variable that
admits a local limit law of the Airy type is congruent to some a ∈ {0, . . . , p− 1} mod q. It
turns out that this probability approaches p/q as n approaches infinity:

I Lemma 5.7. Let X0, X1, . . . be a sequence of integer random variables that admits a local
limit law of the Airy type with parameters α and c. Then for every integer q ≥ 1 and every
a ∈ {0, . . . , q − 1} it holds that limn→∞ Pr

[
Xn ≡ a (mod q)

]
= 1/q.

For saying that the unique non-planar 3-connected component has a size that is congruent
to a mod q we use the fact every 3-connected graph of bounded Euler characteristic χ ≤ 0
has a spanning tree of degree at most d(8− 2χ)/3e [7, 11]. Thus, the unique non-planar
3-connected component, which is embeddable in the surface S, has such a spanning tree,
which can be guessed in MSO2. Once available, the spanning tree of bounded degree can be
used to define a linear order on the vertices of the 3-connected component, and MSO over
the linear order can say that its length is congruent to a mod q. Taking the disjunction over
all a ∈ {0, . . . , p− 1}, the asymptotic probability of the resulting sentence will be p/q.

I Theorem 5.8. Let S be a surface other than the sphere. For every rational number
r ∈ [0, 1], there exists an MSO sentence whose asymptotic probability on GS converges to r.
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Abstract
We consider bisimulation-invariant monadic second-order logic over various classes of finite trans-
ition systems. We present several combinatorial characterisations of when the expressive power
of this fragment coincides with that of the modal µ-calculus. Using these characterisations we
prove for some simple classes of transition systems that this is indeed the case. In particular, we
show that, over the class of all finite transition systems with Cantor–Bendixson rank at most k,
bisimulation-invariant MSO coincides with Lµ.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases bisimulation, monadic second-order logic, composition method

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.117

1 Introduction

A characterisation of the bisimulation-invariant fragment of a given classical logic relates this
logic to a suitable modal logic. In this way, one obtains a correspondence between a family of
classical logics and a family of modal logics. Such characterisation results therefore help with
ordering the zoo of logics introduced (on both sides) over the years and with distinguishing
between natural and artificial instances of such logics.

The study of bisimulation-invariant fragments of classical logics was initiated by a result
of van Benthem [2] who proved that the bisimulation-invariant fragment of first-order logic
coincides with standard modal logic. Inspired by this work, several other characterisations
have been obtained. The table below summarises the results known so far.

bisimulation-invariant fragment modal logic reference

first-order logic modal logic [2]
monadic second-order logic modal µ-calculus [10]
monadic path logic CTL∗ [12, 13]
weak monadic second-order logic continuous µ-calculus [4]
weak chain logic PDL [4]
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117:2 Bisimulation Invariant MSO in the Finite

There are also similar characterisations for various variants of bisimulation like guarded
bisimulation [1, 7] or bisimulation for inquisitive modal logic [5].

Researchers in finite model theory started to investigate to which extent these corres-
pondences also hold when only considering finite structures, that is, whether every formula
of a given classical logic that is bisimulation-invariant over the class of all finite transition
systems is equivalent, over that class, to the corresponding modal logic. For first-order logic,
a corresponding characterisation does indeed hold. Its proof by Rosen [15] uses tools from
finite model theory and is very different to the proof by van Benthem.

The above mentioned result by Janin and Walukiewicz on bisimulation-invariant monadic
second-order logic has so far defied all attempts at a similar transfer to the realm of finite
structures. The main reason is that the original proof is based on automata-theoretic
techniques and an essential ingredient is a reduction to trees, via the unravelling operation.
As this operation produces infinite trees, we cannot use it for formulae that are only bisimu-
lation-invariant over finite transition systems.

In this paper we start a fresh attempt at a finitary version of the result of Janin and
Walukiewicz. Instead of automata-theoretic techniques we employ the composition method.
For certain classes of very simple, finite transition systems we characterise the bisimulation-
invariant fragments of monadic second-order logic over these classes. We hope that some
day our techniques can be extended to the general case of all finite structures, but currently
there are still a few technical obstacles to overcome.

We start in Section 2 by recalling the needed material on bisimulation and by listing
all known results on bisimulation-invariant monadic second-order logic. We also collect
some low-hanging fruit by proving two new results concerning (i) finite classes and (ii) the
class of all finite trees. Finally, we lay the groundwork for the more involved proofs to
follow by characterising bisimulation-invariance in terms of a combinatorial property called
the unravelling property. In Section 3, we collect some tools from logic we will need. The
emphasis in on so-called composition lemmas. Nothing in this section is new.

Finally we start in Section 4 in earnest by developing the technical machinery our proofs
are based on. Sections 5 and 6 contain our first two applications: characterisations of
bisimulation-invariant monadic second-order logic over (i) the class of lassos and (ii) certain
classes of what we call hierarchical lassos. The former is already known and simply serves as
an example of our techniques and to fix our notation for the second result, which is new.

Before presenting our last characterisation result, we develop in Section 7 some additional
technical tools that allow us to reduce one characterisation result to another. This is then
applied in Section 8 to the most complex of our results. We characterise bisimulation-
invariant monadic second-order logic over the class of all transition systems of a given
Cantor–Bendixson rank.

2 Bisimulation-invariance

We consider two logics in this paper: (i) monadic second-order logic (MSO), which is the
extension of first-order logic by set variables and set quantifiers, and (ii) the modal µ-calculus
(Lµ), which is the fixed-point extension of modal logic. A detailed introduction can be found,
e.g., in [8]. Concerning the µ-calculus and bisimulation, we also refer to the survey [17].
Transition systems are directed graphs where the edges are labelled by elements of a given
set A and vertices by elements of some set I. Formally, we consider a transition system as
a structure of the form S = 〈S, (Ea)a∈A, (Pi)i∈I , s0〉 where the Ea ⊆ S × S are (disjoint)
binary edge relations, the Pi ⊆ S are (disjoint) unary predicates, and s0 is the initial state.
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We write S, s to denote the transition system obtained from S by declaring s to be the
initial state.

A central notion in modal logic is bisimilarity since modal logics cannot distinguish
between bisimilar systems.

I Definition 2.1. Let S and T be transition systems.
(a) A bisimulation between S and T is a binary relation Z ⊆ S × T such that all pairs

〈s, t〉 ∈ Z satisfy the following conditions.
(prop) s ∈ PS

i iff t ∈ PT
i , for all i ∈ I.

(forth) For each edge 〈s, s′〉 ∈ ES
a , there is some 〈t, t′〉 ∈ ET

a such that 〈s′, t′〉 ∈ Z.
(back) For each edge 〈t, t′〉 ∈ ET

a , there is some 〈s, s′〉 ∈ ES
a such that 〈s′, t′〉 ∈ Z.

(b) Let s0 and t0 be the initial states of, respectively, S and T. We say that S and T are
bisimilar if there exists a bisimulation Z between S and T with 〈s0, t0〉 ∈ Z. We denote this
fact by S ∼ T.

(c) We denote by U(S) the unravelling of a transition system S. y

The next two observations show that the unravelling operation is closely related to
bisimilarity. In fact, having the same unravelling can be seen as a poor man’s version of
bisimilarity.

I Lemma 2.2. Let S and T be transition systems.
(a) U(S) ∼ S .

(b) S ∼ T implies U(S) ∼ U(T) .

As already mentioned modal logics cannot distinguish between bisimilar systems. They
are bisimulation-invariant in the sense of the following definition.

I Definition 2.3. Let C be a class of transition systems.
(a) An MSO-formula ϕ is bisimulation-invariant over C if

S ∼ T implies S |= ϕ ⇔ T |= ϕ , for all S,T ∈ C .

(b) We say that, over the class C, bisimulation-invariant MSO coincides with Lµ if,
for every MSO-formula ϕ that is bisimulation-invariant over the class C, there exists an
Lµ-formula ψ such that

S |= ϕ iff S |= ψ , for all S ∈ C . y

A straightforward induction over the structure of formulae shows that every Lµ-formula
is bisimulation-invariant over all transition systems. Hence, bisimulation-invariance is a
necessary condition for an MSO-formula to be equivalent to an Lµ-formula.

The following characterisations of bisimulation-invariant MSO have been obtained so far.
We start with the result of Janin and Walukiewicz.

I Theorem 2.4 (Janin, Walukiewicz [10]). Over the class of all transition systems, bisimula-
tion-invariant MSO coincides with Lµ.

The main part of the proof consists in proving the following variant, which implies the
case of all structures by a simple reduction.

I Theorem 2.5 (Janin, Walukiewicz). Over the class of all trees, bisimulation-invariant MSO
coincides with Lµ.
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There have already been two attempts at a finitary version. The first one is by Hirsch
who considered the class of all regular trees, i.e., unravellings of finite transition systems.
The proof is based on the fact that a formula is bisimulation-invariant over all trees if, and
only if, it is bisimulation-invariant over regular trees.

I Theorem 2.6 (Hirsch [9]). Over the class of all regular trees, bisimulation-invariant MSO
coincides with Lµ.

The second result is by Dawar and Janin who considered the class of finite lassos, i.e.,
finite paths leading to a cycle. We will present a proof in Section 5 below.

I Theorem 2.7 (Dawar, Janin [6]). Over the class of all lassos, bisimulation-invariant MSO
coincides with Lµ.

In this paper, we will extend this last result to larger classes. We start with two easy
observations. The first one is nearly trivial.

I Theorem 2.8. Over every finite class C of finite transition systems, bisimulation-invariant
MSO coincides with Lµ.

The second observation is much deeper, but fortunately nearly all of the work has already
been done by Janin and Walukiewicz.

I Theorem 2.9. Over the class of all finite trees, bisimulation-invariant MSO coincides
with Lµ.

As a preparation for the more involved characterisation results to follow, we simplify
our task by introducing the following property of a class C of transition systems, which will
turn out to be equivalent to having a characterisation result for bisimulation-invariant MSO
over C.

I Definition 2.10. We say that a class C of transition systems has the unravelling property if,
for every MSO-formula ϕ that is bisimulation-invariant over C, there exists an MSO-formula ϕ̂
that is bisimulation-invariant over trees such that

S |= ϕ iff U(S) |= ϕ̂ , for all S ∈ C . y

Using Theorem 2.5, we can reformulate this definition as follows. This version will be our
main tool to prove characterisation results for bisimulation-invariant MSO: it is sufficient to
prove that the given class has the unravelling property.

I Theorem 2.11. A class C of transition systems has the unravelling property if, and only
if, over C bisimulation-invariant MSO coincides with Lµ.

Let us also note the following result, which allows us to extend the unravelling property
from a given class to certain superclasses.

I Lemma 2.12. Let C0 ⊆ C be classes such that every system in C is bisimilar to one in C0.
If C0 has the unravelling property, then so does C.

3 Composition lemmas

We have mentioned above that automata-theoretic methods have so far been unsuccessful
at attacking the finite version of the Janin–Walukiewicz result. Therefore, we rely on the
composition method instead. Let us recall how this method works.
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I Definition 3.1. Let S and T be transition systems (or general structures) and m < ω a
number. The m-theory Thm(S) of S is the set of all MSO-formulae of quantifier-rank m
that are satisfied by S. (The quantifier-rank of a formula is its nesting depths of (first-order
and second-order) quantifiers.) We write

S ≡m T : iff Thm(S) = Thm(T) . y

Roughly speaking the composition method provides some machinery that allows us
to compute the m-theory of a given transition system by breaking it down into several
components and looking at the m-theories of these components separately. This approach
is based on the realisation that several operations on transition systems are compatible
with m-theories in the sense that the m-theory of the result can be computed from the
m-theories of the arguments. Statements to that effect are known as composition theorems.
For an overview we refer the reader to [3] and [11]. The following basic operations and their
composition theorems will be used below. We start with disjoint unions.

I Definition 3.2. The disjoint union of two structures A = 〈A,RA
0 , . . . , R

A
m〉 and B =

〈B,RB
0 , . . . , R

B
m〉 is the structure

A⊕B :=
〈
A ·∪B, RA

0 ·∪RB
0 , . . . , R

A
m ·∪RB

m, Left, Right
〉

obtained by forming the disjoint union of the universes and relations of A and B and adding
two unary predicates Left := A and Right := B that mark whether an element belongs to A

or to B. If A and B are transition systems, the initial state of A⊕B is that of A. y

The corresponding composition theorem looks as follows. It can be proved by a simple
induction on m.

I Lemma 3.3. A ≡m A′ and B ≡m B′ implies A⊕B ≡m A′ ⊕B′ .

Two other operations we need are interpretations and fusion operations.

I Definition 3.4. An interpretation is an operation τ on structures that is given by a list
〈δ(x), (ϕR(x̄))R∈Σ〉 of MSO-formulae. Given a structure A, it produces the structure τ(A)
whose universe consists of all elements of A satisfying the formula δ and whose relations are
those defined by the formulae ϕR. The quantifier-rank of an interpretation is the maximal
quantifier-rank of a formula in the list. An interpretation is quantifier-free if its quantifier-rank
is 0. y

I Lemma 3.5. Let τ be an interpretation of quantifier-rank k. Then

A ≡m+k A′ implies τ(A) ≡m τ(A′) .

I Definition 3.6. Let P be a predicate symbol. The fusion operation fuseP merges in a
given structure all elements of the set P into a single element, i.e., all elements of P are
replaced by a single new element and all edges incident with one of the old elements are
attached to the new one instead. y

I Lemma 3.7. A ≡m A′ implies fuseP (A) = fuseP (A′) .

Using the composition theorems for these basic operations we can prove new theorems
for derived operations. As an example let us consider pointed paths, i.e., paths where both
end-points are marked by special colours.

ICALP 2018



117:6 Bisimulation Invariant MSO in the Finite

I Definition 3.8. We denote the concatenation of two paths A and B by A + B. And we
write A• for the expansion of a path A by two new constants for the end-points. y

I Corollary 3.9. Let A,A′,B,B′ be paths. Then A• ≡m A′• and B• ≡m B′• implies
(A + B)• ≡m (A′ + B′)• .

Proof. As the end-points are given by constants, we can construct a quantifier-free inter-
pretation τ mapping A• ⊕B• to (A + B)•. J

Note that, since the concatenation operation is associative, it in particular follows that the
set of m-theories of paths forms a semigroup.

Finally let us mention one more involved operation with a composition theorem. Let
S be a transition system and C ⊆ S a subsystem. We say that C is attached at the state
s ∈ S if there is a unique edge (in either direction) between a state in S \C and a state in C
and this edge leads from s to the initial state of C.

I Proposition 3.10. Let S be a (possibly infinite) transition system and let S′ be the system
obtained from S by replacing an arbitrary number of attached subsystems by subsystems with
the same m-theories (as the corresponding replaced ones). Then S ≡m S′.

For a finite system S this statement can be proved in the same way as Corollary 3.9 by
expressing S as a disjoint union followed by a quantifier-free interpretation. For infinite
systems, we need a more powerful version of the disjoint union operation called a generalised
sum (see [16]).

As presented above these tools work with m-theories, which is not quite what we need
since we have to also account for bisimulation-invariance. To do so we modify the definitions
as follows.

I Definition 3.11. Let C be a class of transition systems and m < ω a number.
(a) We denote by 'mC the transitive closure of the union ≡m ∪ ∼ restricted to the class C.

Formally, we define S 'mC T if there exist systems C0, . . . ,Cn ∈ C such that

C0 = S , Cn = T , and Ci ≡m Ci+1 or Ci ∼ Ci+1 , for all i < n .

(b) We denote by ThmC (S) the set of all MSO-formulae of quantifier-rank m that are
bisimulation-invariant over C and that are satisfied by S, and we define

S ≡mC S′ : iff ThmC (S) = ThmC (S′) .

We also set THm
C := {ThmC (S) | S ∈ C } . y

Note that, up to logical equivalence, there are only finitely many formulae of a given
quantifier-rank. Hence, each set THm

C is finite and the relations ≡m, ≡mC and 'mC have finite
index.

I Lemma 3.12. If ϕ is a MSO-formula of quantifier-rank m that is bisimulation-invariant
over C, then S 'mC T implies S |= ϕ⇔ T |= ϕ .

Some of the above composition theorems also hold for the relation 'mC . This is immediate
if the operation in question also preserves bisimilarity. We mention only two such results.
The second one will be needed below.

I Lemma 3.13. Let C be a class that is closed under disjoint unions.

A 'mC A′ and B 'mC B′ implies A⊕B 'mC A′ ⊕B′ .
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I Proposition 3.14. Let C and D be two classes, S ∈ C a (possibly infinite) transition
system and let S′ be the system obtained from S by replacing an arbitrary number of attached
subsystems by subsystems which are 'mD -equivalent. Then S 'mC S′ provided that the class C
is closed under the operation of replacing attached subsystems in D.

4 Types

Our strategy to prove the unravelling property for a class C is as follows. For every quanti-
fier-rank m, we assign to each tree T a so-called m-type τm(T). We choose the functions τm
such that we can compute the theory ThmC (C) of a system C ∈ C from the m-type τm(U(C))
of its unravelling. Furthermore, we need to find MSO-formulae checking whether a tree has a
given m-type. The formal definition is as follows.

I Definition 4.1. Let C be a class of transition systems and T the class of all trees.
(a) A family of type functions for C is a family of functions τm : T → Θm, for m < ω,

where the co-domains Θm are finite sets and each τm satisfies the following two axioms.
(S1) τm(U(C)) = τm(U(C′)) implies ThmC (C) = ThmC (C′) , for C,C′ ∈ C .
(S2) T ∼ T′ implies τm(T) = τm(T′) , for all T,T′ ∈ T .

(b) A family (τm)m of type functions is definable if, for every θ ∈ Θm, there exists an
MSO-formula ψθ such that
(S3) T |= ψθ iff τm(T) = θ , for all trees T .

y

Let us start by showing how to prove the unravelling property using type functions. The
following characterisation theorem can be considered to be the main theoretical result of this
article.

I Theorem 4.2. Let C be a class of transition systems and T the class of all trees. The
following statements are equivalent.
(1) Over C, bisimulation-invariant MSO coincides with Lµ.
(2) C has the unravelling property.
(3) There exists a definable family (τm)m of type functions for C.
(4) There exist functions g : ω → ω and hm : THg(m)

T → THm
C , for m < ω, such that

hm
(
Thg(m)
T (U(C))

)
= ThmC (C) , for all C ∈ C

(in other words, the g(m)-theory of U(C) determines the m-theory of C).

5 Lassos

As an application of type functions, we consider a very simple example, the class of lassos.
Our proof is based on more or less the same arguments as that by Dawar and Janin [6], just
the presentation differs. A lasso is a transition system consisting of a directed path ending in
a cycle.

ICALP 2018



117:8 Bisimulation Invariant MSO in the Finite

We allow the borderline cases where the initial path has length 0 or the cycle consists of only
a single edge.

To define the type of a lasso, note that we can construct every lasso L from two finite
paths A and B by identifying three of their end-points.

A
Bs t

v
u

The paths A and B are uniquely determined by L. We will refer to A as the tail of the lasso
and to B as the loop. We introduce two kinds of types for lassos, a strong one and a weak
one.

I Definition 5.1. The strong m-type of a lasso L with tail A and loop B is the pair

stpm(L) := 〈α, β〉 , where α := Thm(A•) and β := Thm(B•) . y

The strong m-type of a lasso uniquely determines its m-theory.

I Lemma 5.2. Let L0 and L1 be lassos.

stpm(L0) = stpm(L1) implies L0 ≡m L1 .

The problem with the strong type of a lasso L is that we cannot recover it from the
unravelling of L as the decomposition of U(L) into the parts of L is uncertain. Therefore we
introduce another notion of a type where this recovery is possible. For this we recall some
facts from the theory of ω-semigroups.

Recall that we have noted in Corollary 3.9 that the m-theories of pointed paths form
a finite semigroup with respect to concatenation. Furthermore, every element a of a finite
semigroup has an idempotent power aπ, which is defined as the value an where n is the least
natural number such that an · an = an.

I Definition 5.3. (a) A factorisation of an infinite path A is a sequence (Ai)i<ω of finite
paths whose concatenation is A. Such a factorisation has m-type 〈α, β〉 if

α := Thm(A•0) and β := Thm(A•i ) , for i > 0 .

(b) Two pairs 〈α, β〉 and 〈γ, δ〉 of m-theories are conjugate if there are m-theories ξ and η
such that

γδπ = αβπξ , βπ = ξη , and δπ = ηξ .

Being conjugate is an equivalence relation. We denote the equivalence class of a pair 〈α, β〉
by [α, β].

(c) The weak m-type of a lasso L with parts A and B is

wtpm(L) := [α, β] , where α := Thm(A•) and β := Thm(B•) .

(d) The m-type of an infinite tree T is

τm(T) := [α, β] ,

where α and β is an arbitrary pair ofm-theories such that every branch of T has a factorisation
of m-type 〈α, β〉. If there is no such pair, we set τm(T) := ⊥. y
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I Lemma 5.4. Let L be the class of all lassos and let L0,L1 ∈ L.

wtpm(L0) = wtpm(L1) implies L0 'mL L1 .

To show that the functions (τm)m form a family of type functions, we need the following
standard facts about factorisations and their types (see, e.g., Section II.2 of [14]).

I Proposition 5.5. Let A be an infinite path.
(a) A has a factorisation of type 〈α, β〉, for some α and β.
(b) If A has factorisations of type 〈α, β〉 and 〈γ, δ〉, then 〈α, β〉 and 〈γ, δ〉 are conjugate.
Note that these two statements imply in particular that the type τm(T) of a tree T is
well-defined.

I Lemma 5.6. The functions (τm)m defined above form a definable family of type functions
for the class of all lassos.

By Theorem 4.2, it therefore follows that the class of lassos has the unravelling property.

I Theorem 5.7. The class of all lassos has the unravelling property.

6 Hierarchical Lassos

After the simple example in the previous section, let us give a more substantial application
of the type machinery. We consider hierarchical (or nested) lassos. These are obtained from
a lasso by repeatedly attaching sublassos to some states. More precisely, a 1-lasso is just an
ordinary lasso, while inductively a (k + 1)-lasso is obtained from a k-lasso by attaching one
or more lassos to some of the states. (Each state may have several sublassos attached.)

Alternatively, we can obtain a (k + 1)-lasso M from a 1-lasso L by attaching k-lassos. We
will call this lasso L the main lasso of M.

The types we use for k-lassos are based on the same principles as those for simple lassos,
but we have to nest them in order to take the branching of a hierarchical lasso into account.

I Definition 6.1. Let t : dom(t)→ C be a labelled tree and m < ω.
(a) For a branch β of t, we set

wtpm(β) := [σ, τ ] ,

if β has a factorisation of m-type 〈σ, τ〉. (By Proposition 5.5, this is well-defined.)
(b) For k < ω, we define

tp0
m(t) :=

{
wtpm(β)

∣∣ β a branch of t
}
,

tpk+1
m (t) := tp0

m(TPkm(t)) ,

where TPkm(t) : T → C × P(Θkm) is the tree with labelling

TPkm(t)(v) :=
〈
t(v), { tpkm(t|u) | u a successor of v }

〉
. y

ICALP 2018
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We will prove that the functions tpkm form a family of type functions. Note that it follows
immediately from the definition that they satisfy Properties (S2) and (S3). Hence, it only
remains to check (S1).

I Lemma 6.2. (a) Let M be a k-lasso and N a k′-lasso. Then

U(M) ∼ U(N) implies tpkm(M) = tpkm(N) .

(b) For every type τ , there exists an MSO-formula ϕ such that

U(M) |= ϕ iff tpkm(M) = τ .

Thus, to prove that the class of k-lassos has the unravelling property it is sufficient to
show that tpkm also satisfies Property (S1). We will do so by induction on k. The base case
of this induction rests on the following lemma.

I Lemma 6.3. Let Lk be the class of all k-lassos and let M be a k-lasso such that, for every
vertex v and all branches β and γ starting at a successor of v, we have wtpm(β) = wtpm(γ).
Then M 'mLk

N, for some 1-lasso N.

I Proposition 6.4. Let M be a k-lasso and N a k′-lasso. For m ≥ 1,

tpkm(M) = tpkm(N) implies M 'mLK
N ,

where LK is the class of all K-lassos with K := max(k, k′).

Using Theorem 4.2 we now immediately obtain the following statement.

I Theorem 6.5. For every k, the class of all k-lassos has the unravelling property.

7 Reductions

We would like to define reductions that allow us to prove that a certain class has the
unravelling property when we already know that some other class has this property. To do
so, we encode every transition system of the first class by some system in the second one.
The main example we will be working with is a function % that removes certain attached
subsystems and uses additional vertex labels to remember the m-theories of all deleted
system. Up to equivalence of m-theories, we can undo this operation by a function η that
attaches to each vertex labelled by some m-theory θ some fixed system with theory θ. Let
us give a general definition of such pairs of maps.

I Definition 7.1. Let C and D be classes of transition systems and k,m < ω. A function
% : C → D is a (k,m)-encoding map if there exists a function η : D → C such that
(E1) %(η(D)) 'kD D , for all D ∈ D .
(E2) %(C) 'kD %(C′) implies C 'mC C′ , for all C,C′ ∈ C .
In this case, we call the function η a (k,m)-decoding map for %. y

These two axioms imply dual axioms with the functions % and η exchanged.

I Lemma 7.2. Let η : D → C be a (k,m)-decoding map for % : C → D.
(E3) η(%(C)) 'mC C , for all C ∈ C .
(E4) D 'kD D′ implies η(D) 'mC η(D′) , for all D,D′ ∈ D .
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The axioms of an encoding map were chosen to guarantee the property stated in the
following lemma. It will be used below to prove that encoding maps can be used to transfer
the unravelling property from one class to another.

I Lemma 7.3. Let % : C → D a (k,m)-encoding map and η : D → C a (k,m)-decoding map
for %. For every MSO-formula ϕ of quantifier-rank m that is bisimulation-invariant over C,
there exists an MSO-formula ϕ̂ of quantifier-rank k that is bisimulation-invariant over D
such that

C |= ϕ iff %(C) |= ϕ̂ , for all C ∈ C .

It remains to show how to use encoding maps to transfer the unravelling property. Just
the existence of such a map is not sufficient. It also has to be what we call definable.

I Definition 7.4. Let C be a class of transition systems.
(a) A (k,m)-encoding map % : C → D is definable if, for every MSO-formula ϕ that is

bisimulation-invariant over trees, there exists an MSO-formula ϕ̂ that is bisimulation-invariant
over trees such that

U(%(C)) |= ϕ iff U(C) |= ϕ̂ , for all C ∈ C .

(b) We say that C is reducible to a family (Dm)m<ω of classes if there exist a map
g : ω → ω and, for each m < ω, functions %m : C → Dm and ηm : Dm → C such that %m is a
definable (g(m),m)-encoding map and ηm a corresponding (g(m),m)-decoding map. y

(The only reason why we use a family of classes to reduce to, instead of a single one is so
that we can have the labellings of systems in Dm depend on the quantifier-rank m.)

I Theorem 7.5. Suppose that C is reducible to (Dm)m<ω. If every class Dm has the
unravelling property, so does C.

8 Finite Cantor–Bendixson rank

One common property of k-lassos is that the trees we obtain by unravelling them all have
finite Cantor–Bendixson rank. In this section we will generalise our results to cover transition
systems with this more general property. The proof below consists in a two-step reduction
to the class of k-lassos.

I Definition 8.1. Let T be a finitely branching tree. The Cantor–Bendixson derivative of T
is the tree T′ obtained from T by removing all subtrees that have only finitely many infinite
branches. The Cantor-Bendixson rank of a tree T is the least ordinal α such that applying
α+ 1 Cantor–Bendixson derivatives to T results in an empty tree. The Cantor–Bendixson
rank of a transition system S is equal to the Cantor–Bendixson rank of its unravelling. y

We can go from the class of k-lassos to that of systems with bounded Cantor–Bendixson
rank in two steps.

I Definition 8.2. (a) A transition system is a generalised k-lasso if it is obtained from a
finite tree by attaching (one or several) k-lassos to every leaf.

(b) A transition system T is a tree extension of S if T is obtained from S by attaching
an arbitrary number of finite trees to some of the vertices. y

With these two notions we can characterise the property of having bounded Cantor–
Bendixson rank as follows.
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I Proposition 8.3. Let S be a finite transition system.
(a) For every k < ω, the following statements are equivalent.
(1) S has Cantor–Bendixson rank at most k.
(2) S is bisimilar to a tree extension of a generalised (k + 1)-lasso.

(b) The following statements are equivalent.
(1) S has finite Cantor–Bendixson rank.
(2) S is bisimilar to a tree extension of a generalised k-lasso, for some k < ω.
(3) Every strongly connected component of S is either a singleton or a cycle.

To prove the unravelling property for the transition systems of bounded Cantor–Bendixson
rank, we proceed in two steps. First we consider generalised k-lassos and then their tree
extensions.

I Theorem 8.4. For fixed k, the class of all generalised k-lassos has the unravelling property.

Using this intermediate step, we obtain the following proof for transition systems with
bounded Cantor–Bendixson rank.

I Theorem 8.5. The class of all finite transition systems of Cantor–Bendixson rank at
most k has the unravelling property.

I Corollary 8.6. Over the class of all finite transition systems with Cantor–Bendixson rank
at most k, bisimulation-invariant MSO coincides with Lµ.

9 Conclusion

We have shown in several simple examples how to characterise bisimulation-invariant MSO
in the finite. In particular, we have proved that it coincides with Lµ over

every finite class (Theorem 2.8),
the class of all finite trees (Theorem 2.9),
the classes of all lassos, k-lassos, and generalised k-lassos (Theorems 5.7, 6.5, and 8.4),
the class of all systems of Cantor–Bendixson rank at most k (Theorem 8.5).

Our main tool in these proofs was the unravelling property (Theorem 2.11). It will be
interesting to see how far our methods can be extended to more complicated classes. For
instance, can they be used to prove the following conjecture?

Conjecture. If a class C of transition systems has the unravelling property, then so does
the class of all subdivisions of systems in C.

A good first step seems to be the class of all finite transition systems that have Cantor–
Bendixson rank k, for some k < ω that is not fixed.

In this paper we have considered only transition systems made out of paths with very
limited branching. To extend our techniques to classes allowing for more branching seems
to require new ideas. A simple test case that looks promising is the class of systems with
a ‘lasso-decomposition’ of width k, i.e., something like a tree decomposition but where the
pieces are indexed by a lasso instead of a tree.
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Abstract
We study an expressive model of timed pushdown automata extended with modular and fractional
clock constraints. We show that the binary reachability relation is effectively expressible in hybrid
linear arithmetic with a rational and an integer sort. This subsumes analogous expressibility
results previously known for finite and pushdown timed automata with untimed stack. As key
technical tools, we use quantifier elimination for a fragment of hybrid linear arithmetic and for
cyclic order atoms, and a reduction to register pushdown automata over cyclic order atoms.
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1 Introduction

Timed automata (ta) are one of the most studied models of reactive timed systems. The fun-
damental result that paved the way to automatic verification of timed systems is decidability
(and PSPACE-completeness) of the reachability problem for ta [2]. However, in certain
applications, such as in parametric verification, deciding reachability is insufficient, and one
needs to construct the more general binary reachability relation, i.e., the entire (possibly
infinite) set of of pairs of configurations (ci, cf ) s.t. there is an execution from ci to cf . The
reachability relation for ta has been shown to be effectively expressible in hybrid linear
arithmetic with rational and integer sorts [11, 13, 15, 18]. Since hybrid logic is decidable,
this yields an alternative proof of decidability of the reachability problem.

In this paper, we compute the reachability relation for timed automata extended with a
stack. An early model of pushdown timed automata (ptda) extending ta with a (classical,
untimed) stack has been considered by Bouajjani et al. [5]. More recently, dense-timed
pushdown automata (dtpda) have been proposed by Abdulla et al. [1] as an extension of
ptda. In dtpda, stack symbols are equipped with rational ages, which initially are 0 and
increase with the elapse of time at the same rate as global clocks; when a symbol is popped,
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its age is tested for membership in an interval. While dtpda syntactically extend ptda by
considering a timed stack, timed constraints can in fact be removed while preserving the
timed language recognised by the dtpda, and thus they semantically collapse to ptda [8].
This motivates the quest for a strictly more expressive generalisation of ptda and dtpda
with a truly timed stack. It has been observed in [21] that adding fractional stack constraints
prevents the stack from being untimed, and thus strictly enriches the expressive power3.

We embrace this observation and propose the model of timed pushdown automata (tpda),
which extends timed automata with a timed stack and integer, fractional, and modulo
diagonal/non-diagonal constraints. The model features local clocks and stack clocks. As
time elapses, all clocks increase their values, and they do so at the same rate. Local clocks
can be reset and compared according to the generalised constraints above. At the time
of a push operation, new stack clocks are created whose values are initialised, possibly
non-deterministically, as to satisfy a given push constraint between stack clocks and local
clocks; similarly, a pop operation requires that stack clocks to be popped satisfy a given
pop constraint of analogous form. Stack push/pop constraints are also of the form of
diagonal/non-diagonal integer, modulo, and fractional constraints.

Contributions. We compute the binary reachability relation of tpda, i.e., the family of
binary relations { `r} ⊆ QX≥0 × QX≥0 for control locations `, r s.t. from the initial clock
valuation µ ∈ QX≥0 and control location ` we can reach the final clock valuation ν ∈ QX≥0 and
control location r, written µ `r ν. The stack is empty at the beginning and at the end of
the computation. The main contribution of the paper is the effective computation of the
tpda reachability relation in the existential fragment of linear arithmetic LZ,Q, a two-sorted
logic combining Presburger arithmetic (Z,≤, (≡m)m∈N,+, 0) and linear rational arithmetic
(Q,≤,+, 0). As a byproduct of our constructions, we actually characterise the more general
ternary reachability relation µ π

 `r ν, where µ, ν are as above and π : NΣ additionally counts
the number of occurrences of input letters over a finite alphabet Σ, i.e., the Parikh image of
the run. To our knowledge, the ternary reachability relation was not previously considered.
As an application of ternary reachability, we can model, for instance, letter counts of initial
and final, possibly non-empty, stack contents. Thus, ternary reachability is an expressive
extension of binary reachability.

The computation of the ternary reachability relation is achieved by two consecutive
translations. First, we transform a tpda into a fractional tpda, which uses only fractional
constraints. In this step we exploit quantifier elimination for a fragment of linear arithmetic
corresponding to clock constraints. Quantifier elimination is a pivotal tool in this work, and
to our knowledge its use in the study of timed models is novel. The final integer value of
clocks is reconstructed by letting the automaton input special tick symbol Xx every time clock
x reaches an integer value (provided it is not reset anymore later); it is here that ternary
reachability is more suitable than binary reachability.

Secondly, a fractional tpda is transformed into a pda with registers (rpda) over the so
called cyclic order atoms (Q ∩ [0, 1),K) [7], where K is the ternary cyclic order relation

K(a, b, c) ≡ a < b < c ∨ b < c < a ∨ c < a < b, for a, b, c ∈ Q ∩ [0, 1). (1)

In other words, K(a, b, c) holds if, distributing a, b, c on the unit circle and going clockwise
from a, then we fist visit b and afterwards c. Since fractional values are wrapped around 0
when time increases, K is invariant under time elapse. We use registers to store the fractional

3 For ta, fractional constraints can be handled by the original region construction and do not make the
model harder to analyse [2].
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parts of absolute times of last clock resets; fractional constraints on clocks are simulated
by constraints on registers using K. In order to compute the reachability relation for rpda
we use again quantifier elimination, this time over cyclic order atoms. The latter property
holds since cyclic order atoms constitute a homogeneous structure [16]. Therefore, another
contribution of this work is the solution of a nontrivial problem such as computing the
reachability relation for tpda, which is a clock model, as an application of rpda, which
is a register model. The analysis of rpda is substantially easier than a direct analysis of
(fractional) tpda.

From the complexity standpoint, the formula characterising the reachability relation of a
tpda is computable in double exponential time. However, when cast down to ta or tpda
with timeless stack (which subsume ptda and, a posteriori, dtpda), the complexity drops
to singly exponential, matching the previously known complexity for ta [18]. For ptda, no
complexity was previously given in [12], and thus the result is new. For tpda, the binary
reachability problem has not been studied before. Since the existential fragment of LZ,Q
is decidable in NP (because so is existential linear rational arithmetic [19] and existential
Presburger arithmetic [23]), we can solve the reachability problem of tpda in 2NEXP by
reduction to satisfiability for LZ,Q. Since our constructions preserve the languages of all the
models involved, untimed tpda languages are context-free.

Discussion. From a syntactic point of view, tpda significantly lifts the restrictions of
dtpda– which allow only classical non-diagonal constraints, i.e., interval tests, and thus has
neither diagonal, nor modulo, nor fractional constraints – and of the model of [21] – which
additionally allows diagonal/non-diagonal fractional tests, and thus does not have modulo
constraints. Since classical diagonal constraints reduce to classical non-diagonal constraints,
and, in the presence of fractional constraints, integer and modulo constraints can be removed
altogether (cf. Sec. 4), tpda are expressively equivalent to [21]. However, while [21] solves
the control state reachability problem, we solve the more general problem of computing the
binary reachability relation. Our reduction technique not only preserves reachability, like
[21], but additionally enables the reconstruction of the reachability relation.

Our expressivity result generalises analogous results for ta [11, 13, 15, 18] and ptda
[12]. The proof of [11] for ta has high technical difficulty and does not yield complexity
bounds. The proof of [13] for ta uses an automata representation for sets of clock valuations;
the idea of reset-point semantics employed in [13] is analogous to using registers instead
of clocks. The paper [15] elegantly expresses the reachability relation for ta with clock
difference relations (CDR) over the fractional values of clocks. It is remarkable that the
formulas expressing the reachability relations that we obtain are of the same shape as CDR.
The recent paper [18] shows that the ta binary reachability relation can be expressed in
the same fragment of hybrid linear arithmetic that we use for tpda, which we find very
intriguing. Their proof converts the integer value of clocks into counters, and then observes
that, thanks to the specific reset policy of clocks, these counter machines have a semilinear
reachability relation; the latter is proved by encoding the value of counters into the language.
In our proof, we bring the encoding of the integer value of clocks into the language to the
forefront, via the introduction of the ternary reachability relation. The proof of [12] for ptda
also separates clocks into their integer and fractional part. It is not clear how any of the
previous approaches could handle a timed stack.

Another approach for computing the reachability relation for tpda would be to reduce
it directly to a more expressive register model, such as timed register pushdown automata
(trpda) [8, 9], which considers both integer (Z,≤,+1) and rational registers (Q≥0,≤). While
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such a reduction for the reachability problem is possible since (the integer part of) large clock
values can be “forgotten”, e.g., along the lines of [8], this does not hold anymore if we want
to preserve the reachability relation. For this reason, in the present work we first remove the
integer part of clocks (by encoding it in the untimed language) and then we reduce to rpda,
which have only fractional registers and no integer register, and are thus easier to analyse
than trpda4. The method of quantifier elimination was recently applied to the analysis of
another timed model, namely timed communicating automata [6].

Finally, another expressive extension of ta, called recursive timed automata (rta), has
been proposed [20, 3]. rta use a timed stack to store the current clock valuation, which does
not evolve as time elapses and can be restored at the time of pop. This facility makes rta
expressively incomparable to all models previously mentioned.

Missing proofs can be found in the technical report [10].

Notations. Let Q, Q≥0, Z, and N denote the rationals, the non-negative rationals, the
integers, and the natural numbers; let I = Q≥0 ∩ [0, 1) be the unit rational interval. Let ≡m
denote the congruence modulo m ∈ N \ {0} in Z. For a ∈ Q, let bac ∈ Z denote the largest
integer k s.t. k ≤ a, and let {a} = a−bac denote its fractional part. Let 1C?, for a condition
C, be 1 if C holds, and 0 otherwise.

2 Linear arithmetic and quantifier elimination

Consider the two-sorted structure A = AZ]AQ, where AZ = (Z,≤, (≡m)m∈N,+, (k)k∈Z) and
AQ = (Q,≤,+, (k)k∈Q). We consider “+” as a binary function, and we have a constant k for
every integer/rational number. By linear arithmetic, denoted LZ,Q, we mean the two-sorted
first-order language in the vocabulary of A. Restriction to the integer sort yields Presburger
arithmetic LZ (integer formulas), and restriction to the rational sort yields linear rational
arithmetic LQ (rational formulas). We assume constants are encoded in binary.

Two formulas are equivalent if they are satisfied by the same valuations. It is well-known
that the theories of AZ [17] and AQ [14] admit effective elimination of quantifiers: Every
formula can effectively be transformed in an equivalent quantifier-free one. Therefore, the
theory of A also admits quantifier elimination, by the virtue of the following general fact
(when speaking of a structure admitting quantifier elimination, we have in mind its theory).

I Lemma 1. If the structures A1 and A2 admit (effective) elimination of quantifiers, then
the two-sorted structure A1 ] A2 also does so. For conjunctive formulas, the complexity is
the maximum of the two complexities.

For clock constraints, we will use the first-order language over the two sorted structure
Ac = Ac

N ] Ac
I , where the integer sort is restricted to Ac

N = (N,≤, (≡m)m∈N,+1, 0) – the
domain is now N and full addition “+” is replaced by the unary successor operation “+1”)
– and the rational sort to Ac

I = (I,≤, 0) – the domain is now the unit interval, there is no
addition, and the only constant is 0. Let Lc

N,I be such a sub-logic. (As syntactic sugar
we allow to use addition of arbitrary, even negative, integer constants in integer formulas,
e.g. x− 4 ≤ y + 2.) As before, Lc

N and Lc
I are the restrictions to the respective sorts. All the

sub-logics above admit effective elimination of quantifiers.

4 trpda are more general than rpda– cyclic order atoms can be interpreted into (Q≥0, ≤). The binary
reachability relation for trpda can be computed by refining the reductions of [9] used for deciding
the reachability problem. However, we do not know how to use the reachability relation of trpda to
compute that of tpda.
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I Lemma 2. The structures Ac
N and Ac

I admit effective elimination of quantifiers. For Ac
N

the complexity is singly exponential for conjunctive formulas, while for Ac
I is quadratic.

Notice that since Lc
N is a fragment of Presburger arithmetic LZ, we could apply the quantifier

elimination for LZ to get a quantifier-free LZ formula. Our result is stronger since we get a
quantifier-free formula of the more restrictive fragment Lc

N.

I Corollary 3. The structure Ac admits effective quantifier elimination. The complexity is
exponential for conjunctive formulas.

3 Timed pushdown automata

Clock constraints. Let X be a finite set of clocks. We consider constraints which can
separately speak about the integer bxc and fractional value {x} of a clock x ∈ X. A clock
constraint over X is a boolean combination of atomic clock constraints of one of the forms

(integer) (modular) (fractional)

(non-diagonal) bxc ≤ k bxc ≡m k {x} = 0
(diagonal) bxc − byc ≤ k bxc − byc ≡m k {x} ≤ {y}

where x, y ∈ X, m ∈ N,a and k ∈ Z. Since we allow arbitrary boolean combinations,
we consider also the constraint true, which is always satisfied, and variants with any
∼ ∈ {≤, <,≥, >} in place of ≤. A clock valuation is a mapping µ ∈ QX≥0 assigning a
non-negative rational number to every clock in X; we write bµc for the valuation in NX
s.t. bµc(x) := bµ(x)c and {µ} for the valuation in IX s.t. {µ} (x) := {µ(x)}. For a valuation
µ and a clock constraint ϕ we say that µ satisfies ϕ if ϕ is satisfied when integer clock values
bxc are evaluated according to bµc and fractional values {x} according to {µ}.
I Remark (Clock constraints as quantifier-free Lc

N,I formulas). Up to syntactic sugar, a
clock constraint over clocks {x1, . . . , xn} is the same as a quantifier-free Lc

N,I formula
ϕ(bx1c, . . . , bxnc, {x1} , . . . , {xn}) over n integer and n rationals variables.
I Remark (Classical clock constraints). Integer and fractional constraints subsume classical
ones. For clocks x, y, since x = bxc+ {x} (and similarly for y)5, x− y ≤ k for an integer k is
equivalent to (bxc − byc ≤ k ∧ {x} ≤ {y}) ∨ bxc − byc ≤ k − 1, and similarly for x ≤ k. On
the other hand, the fractional constraint {x} = 0 is not expressible as a classical constraint.
I Remark (bxc − byc versus bx− yc). In the presence of fractional constraints, the expressive
power would not change if, instead of atomic constraints bxc − byc ≡m k and bxc − byc ≤ k
speaking of the difference of the integer parts, we would choose bx−yc ≡m k and bx−yc ≤ k
speaking of the integer part of the difference, since the two are inter-expressible:

bx− yc = bxc − byc − 1{x}<{y}? and {x− y} = {x} − {y}+ 1{x}<{y}?. (2)

The model. A timed pushdown automaton (tpda) is a tuple P = 〈Σ,Γ, L,X,Z,∆〉 where
Σ is a finite input alphabet, Γ is a finite stack alphabet, L is a finite set of control locations,
X is a finite set of global clocks, and Z is a finite set of stack clocks disjoint from X. The
last item ∆ is a set of transition rules 〈`, op, r〉 with `, r ∈ L control locations, where op
determines the type of transition:

5 We often identify a clock x with its value for simplicity of notation.
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time elapse op = elapse,
input op = a ∈ Σε := Σ ∪ {ε} an input letter,
test op = ϕ a transition constraint over clocks X,
reset op = reset(Y ) with Y ⊆ X a set of clocks to be reset,
push op = push(α : ψ) with α ∈ Γ a stack symbol to be pushed on the stack under the
stack constraint ψ over clocks X ∪ Z, or
pop op = pop(α : ψ) similarly as push.

We assume that every atomic constraint in a stack constraint contains some stack variable
from Z. Throughout the paper, let x0 be a global clock that is never reset (and thus measures
the total elapsed time), and let z0 be a stack clock that is 0 when pushed. A tpda has
untimed stack if the only stack constraint is true. Without push/pop operations, we obtain
nondeterministic timed automata (ta).
I Remark (Complexity). For complexity estimations, we assume that constraints are con-
junctions of atomic constraints, that constants therein are encoded in binary, that M is the
maximal constant, and that all modular constraints use the same modulus M .
I Remark (Time elapse). The standard semantics of timed automata where time can elapse
freely in every control location is simulated by adding explicit time elapse transitions
〈`, elapse, `〉 for suitable locations `. Our explicit modelling of the elapse of time will simplify
the constructions in Sec. 4.
I Remark (Comparison with dtpda). The dtpda model [1] allows only one stack clock Z = {z}
and stack constraints of the form z ∼ k. As shown in [8], this model is equivalent to tpda
with untimed stack. Our extension is two-fold. First, our definition of stack constraint is
more liberal, since we allow more general diagonal stack constraints of the form z − x ∼ k.
Second, we also allow modular byc − bxc ≡m k and fractional constraints {x} ∼ {y}, where
clocks x, y can be either global or stack clocks. As demonstrated in Example 4 below, this
model is not reducible to untimed stack, and thus tpda are more expressive than dtpda.

Semantics. Every stack symbol is equipped with a fresh copy of clocks from Z. At the time
of push(α : ψ), the push constraint ψ specifies possibly nondeterministically the initial value
of all clocks in Z w.r.t. global clocks in X. Both global and stack clocks evolve at the same
rate when a time elapse transition is executed. At the time of pop(α : ψ), the pop constraint
ψ specifies the final value of all clocks in Z w.r.t. global clocks in X. A timed stack is a
sequence w ∈ (Γ×QZ≥0)∗ of pairs (γ, µ), where γ is a stack symbol and µ is a valuation for
stack clocks in Z. For a clock valuation µ and a set of clocks Y , let µ[Y 7→ 0] be the same as
µ except that clocks in Y are mapped to 0. For δ ∈ Q≥0, let µ+ δ be the clock valuation
which adds δ to the value of every clock, i.e., (µ+ δ)(x) := µ(x) + δ, and for a timed stack
w = (γ1, µ1) · · · (γk, µk), let w + δ be (γ1, µ1 + δ) · · · (γk, µk + δ). A configuration is a triple
〈`, µ, w〉 ∈ L×QX≥0 × (Γ×QZ≥0)∗ where ` is a control location, µ is a clock valuation over
the global clocks X, and w is a timed stack. Let 〈`, µ, u〉 , 〈r, ν, v〉 be two configurations. For
every input symbol or time increment a ∈ (Σε∪Q≥0) we have a transition 〈`, µ, u〉 a−→ 〈r, ν, v〉
whenever there exists a rule 〈`, op, r〉 ∈ ∆ s.t. one of the following holds:

op = elapse, a ∈ Q≥0, ν = µ+ a, v = u+ a.
op = a ∈ Σε, ν = µ, u = v.
op = ϕ, a = ε, µ |= ϕ, ν = µ, u = v.
op = reset(Y ), a = ε, ν = µ[Y 7→ 0], v = u.
op = push(γ : ψ), a = ε, µ = ν, v = u · 〈γ, µ1〉 if µ1 ∈ QZ≥0 satisfies (µ, µ1) |= ψ, where
(µ, µ1) ∈ QX∪Z≥0 is the unique clock valuation that agrees with µ on X and with µ1 on Z.
op = pop(γ : ψ), a = ε, µ = ν, u = v · 〈γ, µ1〉 provided that µ1 ∈ QZ≥0 satisfies (µ, µ1) |= ψ.
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A timed word is a sequence w = δ1a1 · · · δnan ∈ (Q≥0Σε)∗ of alternating time elapses and
input symbols; the one-step transition relation 〈`, µ, u〉 a−→ 〈r, ν, v〉 is extended on timed
words w as 〈`, µ, u〉 w−→ 〈r, ν, v〉 in the natural way. The timed language from location ` to r is
L(`, r) :=

{
πε(w) ∈ (Q≥0Σ)∗

∣∣∣ 〈`, µ0, ε〉
w−→ 〈r, µ0, ε〉

}
where πε(w) removes the ε’s from w

and µ0 is the valuation that assigns µ0(x) = 0 to every clock x. The corresponding untimed
language Lun(`, r) is obtained by removing the time elapses from L(`, r).

I Example 4. Let L be the timed language of even length palindromes s.t. the time distance
between every pair of matching symbols is an integer:

L = {δ1a1 · · · δ2na2n | ∀(1 ≤ i ≤ n) · ai = a2n−i+1 ∧ δi+1 + · · ·+ δ2n−i+1 ∈ N} .

L can be recognised by a tpda over input and stack alphabet Σ = Γ = {a, b}, with locations
`, r, no global clock, one stack clock Z = {z}, and the following transition rules (omitting
some intermediate states), where α ranges over {a, b}:

〈`, α; push(α : {z} = 0), `〉 〈`, ε, r〉
〈r, α; pop(α : {z} = 0), r〉 〈`, elapse, `〉, 〈r, elapse, r〉

We have L = L(`, r). Since L cannot be recognised by tpda with untimed stack (cf. [21]),
fractional stack constraints strictly increase the expressive power of the model.

The reachability relation. The Parikh image of a timed word w is the mapping piw ∈ NΣ

s.t. piw(a) is the number of a’s in w, ignoring the elapse of time and ε’s. For two control
locations `, r, clock valuations µ, ν ∈ QX≥0, and a timed word w ∈ (Q≥0Σε)∗, we write
µ

w
 `r ν if 〈`, µ, ε〉 w−→ 〈r, ν, ε〉. We overload the notation and, for π ∈ NΣ, we write µ π

 `r ν

if there exists a timed word w s.t. µ w
 `r ν and π = piw. We see { `r}`,r∈L as a family of

subsets of QX≥0 × NΣ ×QX≥0 and we call it the ternary reachability relation.
Let

{
ψ`r(bxc, {x} , f , byc, {y})

}
`,r∈L be a family of LZ,Q formulas, where bxc, byc repre-

sent the integer values of initial and final clocks, {x} , {y} their fractional values, and f letter
counts. The reachability relation { `r}`,r∈L is expressed by the family of formulas {ψ`r}`,r∈L
if the following holds: For every control locations `, r ∈ L, clock valuations µ, ν ∈ QX≥0 and
π ∈ NΣ, µ π

 `r ν holds, if, and only if, (bµc, {µ} , π, bνc, {ν}) |= ψ`r holds.

Main results. As the main result of the paper we show that the reachability relation of
tpda and ta is expressible in linear arithmetic LZ,Q.

I Theorem 5. The reachability relation of a tpda is expressed by a family of existential
LZ,Q formulas computable in double exponential time. For ta, the complexity is exponential.

This is a strengthening of analogous results for ta [11, 18] since our model, even without
stack, is more expressive than classical ta due to fractional constraints. As a side effect of
the proofs we get:

I Theorem 6. Untimed tpda languages Lun(`, r) are effectively context-free.

The following two sections are devoted to proving the two theorem above.
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4 Fractional TPDA

A tpda is fractional if it contains only fractional constraints. We show that computing the
reachability relation reduces to the same problem for fractional tpda. Our transformation is
done in three steps, each one further restricting the set of allowed constraints.
A The tpda is push-copy, that is, push operations can only copy global clocks into stack

clocks. There is one stack clock zx for each global clock x, and the only push constraint is

ψcopy(x, zx) ≡
∧
x∈X
bzxc = bxc ∧ {zx} = {x} . (3)

By pushing copies of global clocks into the stack, we can postpone checking all non-trivial
stack constraints to the time of pop. This steps uses quantifier elimination. The blowup
of the number of pop constraints and stack alphabet is exponential.

B The tpda is pop-integer-free, that is, pop transitions do not contain integer constraints.
The construction is similar to a construction from [8] and is presented in the technical
report [10]. Removing pop integer constraints is crucial towards removing all integer
clocks (modulo constraints will be removed by the next step). This step strongly relies
on the fact that stack clocks are copies of global clocks, which allows one to remove
integer pop constraints by reasoning about analogous constraints between global clocks
at the time of push and their future values at the time of pop, thus bypassing the stack
altogether. We introduce one global clock for each integer pop constraint, exponentially
many locations in the number of clocks and pop constraints, and exponentially many
stack symbols in the number of pop constraints. When combined with the previous step,
altogether exponentially many new clocks are introduced, and doubly exponentially many
locations/stack symbols. It is remarkable that pop integer constraints can be removed by
translating them into finitely many transition constraints on global clocks.

C The tpda is fractional. All integer clocks are removed. In order to recover their values
(which are needed to express the reachability relation), a special symbol Xx is produced
when an integer clock elapses one time unit. This step introduces a further exponential
blowup of control locations w.r.t. global clocks and polynomial in the maximal constant
M . The overall complexity of control locations thus stays double exponential.

By A+B+C (in this order, since the latter properties are ensured assuming the previous
ones), we get the following theorem.

I Theorem 7. A tpda P can be effectively transformed into a fractional tpda Q s.t. a
family of LZ,Q formulas {ϕ`r} expressing the reachability relation of P can effectively be
computed from a family of LZ,Q formulas {ϕ′`′r′} expressing the reachability relation of Q. The
number of control locations and the size of the stack alphabet in Q have a double exponential
blowup, and the number of clocks has an exponential blowup.

If there is no stack, then we do not need the first two steps, and we can do directly C.

I Corollary 8. The reachability relation of push-copy tpda/ta effectively reduces to the
reachability relation of fractional tpda/ta with an exponential blowup in control locations.

(A) The TPDA is push-copy
Let K≤ be the non-strict variant of the ternary cyclic order K from (1), defined as
K≤(a, b, c) ≡ K(a, b, c)∨a = b∨ b = c for a, b, c ∈ I. Let ψpush(x, z) be a push constraint, and
let ψpop(x′, z′) be the corresponding pop constraint. Since stack clock z0 is 0 when pushed
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on the stack, z′0 is the total time elapsed between push and pop; let z′0 = (z′0, . . . , z′0) (the
length of which depends on the context). Let z′x be a vector of stack variables representing
the value of global clocks at the time of pop, provided they were not reset since the matching
push. Since all clocks evolve at the same rate, for every global clock x and stack clock z, we
have

x = z′x − z′0 and z = z′ − z′0. (4)

If at the time of push, instead of pushing z, we push on the stack a copy of global clocks x,
then at the time of pop it suffices to check that the following formula holds

ψ′pop(x′, z′x) ≡ ∃z′ ≥ 0 · ψpush(z′x − z′0, z′ − z′0) ∧ ψpop(x′, z′). (5)

Note that the assumption that z0 = 0 at the time of push makes the existential quan-
tification satisfiable by exactly one value of z′0, namely the total time elapsed between
push and pop. However, ψpush(z′x − z′0, z′ − z′0) is not a constraint anymore, since vari-
ables are replaced by differences of variables. We resolve this issue by showing that
the latter is in fact equivalent to a clock constraint. Thanks to (4), for every clock x

we have bxc = bz′x − z′0c, {x} = {z′x − z′0}, and bzc = bz′ − z′0c, {z} = {z′ − z′0}. Thus, a
fractional constraint {y} ≤ {z} in ψpush is equivalent to

{
z′y − z′0

}
≤ {z′ − z′0}, which

is in turn equivalent to C = K≤({z′0} ,
{
z′y
}
, {z′}), which is definable from ≤. More-

over, byc − bzc = bz′y − z′0c − bz′ − z′0c = (z′y − z′0 −
{
z′y − z′0

}
) − (z′ − z′0 − {z′ − z′0}) =

(z′y − z′) −
{
z′y − z′0

}
+ {z′ − z′0} = (z′y − z′) −

{
z′y − z′

}
+ 1D? = bz′y − z′c + 1D?, with

D = C∧
{
z′y
}
6= {z′}. (Notice that bz′0c disappears in this process: This is not a coincidence,

since diagonal integer/modular/fractional constraints are invariant under the elapse of an
integer amount of time.) Thus by (2) we obtain a constraint ψ′push(z′x, z′) logically equivalent
to ψpush(z′x − z′0, z′ − z′0), and, by separating the fractional and integer constraints (cf. Re-
mark 3), ψ′pop(x′, z′x) ≡ ∃bz′c, {z′} · ψ′push(bz′xc, {z′x} , bz′c, {z′})∧ ψpop(bx′c, {x′} , bz′c, {z′}).
By Corollary 3, we can perform quantifier elimination and we obtain a logically equivalent
clock constraint of exponential size (in DNF) ξψpush,ψpop(bx′c, {x′} , bz′xc, {z′x}), where the
subscript indicates that this formula depends on the pair (ψpush, ψpop) of push and pop
constraints. The construction of P ′ consists in checking ξψpush,ψpop in place of ψpop, assuming
that the push constraint was ψpush. The latter is replaced by ψcopy. Control states are the
same in the two automata; we can break down the ξψpush,ψpop in DNF and record each conjunct
in the stack, yielding a new stack alphabet of exponential size.

I Lemma 9. Let { `r}`,r∈L,
{
 ′`r

}
`,r∈L be the reachability relations of P, resp., P ′. Then,

 `r= ′`r for every `, r ∈ L, and P ′ has stack alphabet exponential in the size of P.

(C) The TPDA is fractional
Assume that the tpda P is both push-copy (A) and pop-integer-free (B). We remove diagonal
integer byc − bxc ∼ k and modulo byc − bxc ≡m k constraints on global clocks x, y as in ta
[2]. In the rest of the section, transition and stack constraints of P are of the form

(trans.) bxc ≤ k, bxc ≡m k, {x} = 0, {x} ≤ {y} , (6)
(push) bzxc = bxc, {zx} = {x} , (7)
(pop) byc − bzxc ≡m k, {zx} = 0, {y} ≤ {zx} , (8)

bzyc − bzxc ≡m k, {zy} ≤ {zx} .

ICALP 2018
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Unary abstraction. We replace the integer value of clocks by their unary abstraction:
Valuations µ, ν ∈ QX≥0 are M-unary equivalent, written µ ≈M ν, if, for every clock x ∈ X,
bµ(x)c ≡M bν(x)c and bµ(x)c ≤M ⇔ bν(x)c ≤M . Let ΛM be the (finite) set of M -unary
equivalence classes of clock valuations. For λ ∈ ΛM we abuse notation and write λ(x)
to indicate µ(x) for some µ ∈ λ, where the choice of representative µ does not matter.
We write λ[Y 7→ 0] for the equivalence class of ν[Y 7→ 0] and we write λ[x 7→ x + 1]
for the equivalence class of ν[x 7→ ν(x) + 1], for some ν ∈ λ (whose choice is irrelevant).
Let ϕλ(x) ≡

∧
x∈Xbxc ≡M λ(x) ∧ (bxc < M ⇔ λ(x) < M) say that clocks belong to

λ. For ϕ containing transition constraints of the form (6), ϕ|λ is ϕ where every integer
bxc ≤ k or modulo constraint bxc ≡M k is uniquely resolved to be true or false by
replacing every occurrence of bxc with λ(x). Similarly, for ψ a pop constraint of the
form (8), ψ|λpush,λpop

is obtained by resolving modulo constraints byc − bzxc ≡M k and
bzyc− bzxc ≡M k to be true or false by replacing every occurrence of byc by its abstraction
at the time of pop λpop(y), and every occurrence of bzxc by λpush(x) + ∆(λpush, λpop), i.e.,
the initial value of clock x plus the total integer time elapsed until the pop, defined as
∆(λpush, λpop) = λpop(x0)− λpush(x0)− 1{z0}>{x0}?, i.e., we take the difference of x0 (which
is never reset) between push and pop, possibly corrected by “−1” if the last time unit only
partially elapsed; the substitution for bzyc is analogous. Fractional constraints are unchanged.

Sketch of the construction. Given a push-copy and pop-integer-free tpda P, we build
a fractional tpda Q over the extended alphabet Σ′ = Σ ∪ {Xx | x ∈ X} as follows. We
eliminate integer bxc ≤ k and modulo constraints bxc ≡M k by storing in the control
the M -unary abstraction λ. To reconstruct the reachability relation of P, we store the
set of clocks Y which will not be reset anymore in the future. Thus, control locations
L′ of Q are of the form 〈`, λ, Y 〉. In order to properly update the M -unary abstraction
λ, the automaton checks how much time elapses by looking at the fractional values of
clocks. When λ is updated to λ[x 7→ x + 1], a symbol Xx is optionally produced if x ∈ Y
was guessed not to be reset anymore in the future. A test transition 〈`, ϕ, r〉 is simulated
by 〈〈`, λ, Y 〉 , ϕ|λ , 〈r, λ, Y 〉〉. A push-copy transition 〈`, push(α : ψcopy), r〉 is simulated by
〈〈`, λ, Y 〉 , push(〈α, λ〉 :

∧
x∈X {z0} = 0 ∧ {zx} = {x}), 〈r, λ, Y 〉〉 copying only the fractional

parts and the unary class of global clocks. A pop-integer-free transition 〈`, pop(α : ψ), r〉 is
simulated by 〈〈`, λpop, Y 〉 , pop(〈α, λpush〉 : ψ|λpush,λpop

), 〈r, λpop, Y 〉〉. The reachability formula
ϕ`r for P can be expressed by guessing the initial and final abstractions λ, µ, and the set
of clocks Y which is never reset in the run. For clocks x ∈ Y , we must observe precisely
bx′c − bxc ticks Xx, and for the others, bx′c, where x is the initial and x′ the final value. Let
gYx = bx′c − bxc if x ∈ Y , and bx′c otherwise.

I Lemma 10. Let
{
ψ`′r′({x} , (f, g), {x′})

}
`′,r′∈L′ express the reachability relation of the

fractional Q where {x} , {x′} are the fractional values of clocks (we ignore integer values), f
is the Parikh image of the original input letters from Σ, and g of the new input letters Xx’s.
The reachability relation of P is expressed by ϕ`r(bxc, {x} , f , bx′c, {x′}) ≡

∨
λ,Y,µ ϕλ(bxc) ∧

ψ〈`,λ,Y 〉〈r,µ,X〉({x} , (f, gY ), {x′}).

5 From fractional TPDA to register PDA

The aim of this section is to prove the following result which, together with Theorem 7,
completes the proof of our main result Theorem 5.
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(a) •0•a •b

•c

(b) •0•a
•b

Figure 1 (a) Relation K. (b) The cyclic difference b 	 a.

I Theorem 11. The fractional reachability relation of a fractional tpda P is expressed
by existential LZ,Q formulas, computable in time exponential in the number of clocks and
polynomial in the number of control locations and stack alphabet.

Cyclic atoms. We model fractional clock values by the cyclic atoms structure (I,K) with
universe I = Q ∩ [0, 1), where K is the ternary cyclic order (1). Since K is invariant under
cyclic shift, it is convenient to think of elements of I as placed clockwise on a circle of unit
perimeter; cf. Fig. 1(a). An automorphism is a bijection α that preserves and reflects K,
i.e., K(a, b, c) iff K(α(a), α(b), α(c)); automorphisms are extended to tuples In point-wise.
Cyclic atoms are homogeneous [16] and thus In splits into exponentially many orbits Orb(In),
where u, v ∈ In are in the same orbit if some automorphism maps u to v. An orbit is an
equivalence class of indistinguishable tuples, similarly as regions for clock valuations, but
in a different logical structure: For instance (0.2, 0.3, 0.7), (0.7, 0.2, 0.3), and (0.8, 0.2, 0.3)
belong to the same orbit, while (0.2, 0.3, 0.3) belongs to a different orbit.

Register PDA. We extend classical pushdown automata with additional I-valued registers,
both in the finite control (i.e., global registers) and in the stack. Registers can be compared
by quantifier-free formulas with equality and K, called K-constraints. For simplicity, we
assume that there are the same number of global and stack registers. A register pushdown
automaton (rpda) is a tuple Q = 〈Σ,Γ, L,X,Z,∆〉 where Σ is a finite input alphabet, Γ is a
finite stack alphabet, L is a finite set of control locations, X is a finite set of global registers,
Z is a finite set of stack registers, and the last item ∆ is a set of transition rules 〈`, op, r〉
with `, r ∈ L control locations, where op is either: 1) an input letter a ∈ Σε, 2) a 2k-ary
K-constraint ψ(x, x′) relating pre- and post-values of global registers, 3) a push operation
push(α : ψ(x, z)) with α ∈ Γ a stack symbol to be pushed on the stack under the 2k-ary
K-constraint ψ relating global x and stack z registers, or 4) a pop operation pop(α : ψ(x, z)),
similarly as push. We consider rpda as symbolic representations of classical pda with infinite
sets of control states L̃ = L× IX and infinite stack alphabet Γ̃ = Γ× IZ . A configuration
is thus a tuple 〈`, µ, w〉 ∈ L × IX × Γ̃∗ where ` is a control location, µ is a valuation of
the global registers, and w is the current content of the stack. Let 〈`, µ, u〉 , 〈r, ν, v〉 be two
configurations. For every input symbol a ∈ Σε we have a transition 〈`, µ, u〉 a−→ 〈r, ν, v〉
whenever there exists a rule 〈`, op, r〉 ∈ ∆ s.t. one of the following holds: 1) op = a ∈ Σε,
µ = ν, u = v, or 2) op = ϕ, a = ε, (µ, ν) |= ϕ, u = v, or 3) op = push(γ : ψ), a = ε,
µ = ν, v = u · 〈γ, µ1〉 if µ1 ∈ IZ satisfies (µ, µ1) |= ψ, or 4) op = pop(γ : ψ), a = ε, µ = ν,
u = v · 〈γ, µ1〉 if µ1 ∈ IZ satisfies (µ, µ1) |= ψ.

Reachability relation. The reachability relations µ w
 `r ν and µ f

 `r ν are defined as for
tpda by extending one-step transitions 〈`, µ, u〉 a−→ 〈r, ν, v〉 to words w ∈ Σ∗ and their Parikh
images f = piw ∈ NΣ. Thus, µ f

 `r ν is a subset of IX × NΣ × IX , which is furthermore
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invariant under orbits. In the following let X ′ be a copy of global clocks. An initial valuation
µ belongs to IX , a final valuation ν to IX′ , and the joint valuation (µ, ν) belongs to IX×X′ .
The following two lemmas hold for rpda with homogeneous atoms; cf. [7], or Sec. 9 in [4].

I Lemma 12. If (µ, ν), (µ′, ν′) belong to the same orbit of IX×X′ , then µ f
 `r ν iff µ′ f `r ν

′.

I Lemma 13. Given a rpda Q one can construct a context-free grammar G of exponential
size with nonterminals of the form X`ro, for control locations `, r and an orbit o ∈ Orb(IX×X′),
recognising the language L(X`ro) =

{
πΣ(w) ∈ Σ∗

∣∣∣ ∃(µ, ν) ∈ o · µ w
 `r ν

}
, where πΣ(w) is

w without the ε’s. Consequently, rpda recognise context-free languages.

I Lemma 14 (Theorem 4 of [22]). The Parikh image of L(X`ro) is expressed by an existential
Presburger formula ϕZ

`ro computable in time linear in the size of the grammar.

I Corollary 15. Let ϕI
o be the characteristic K-constraint of the orbit o ∈ Orb(IX×X′). The

reachability relation  `r of an rpda Q is expressed by ϕ`r(x, f, x′) ≡∨
o∈Orb(IX×X′ ) ϕ

Z
`ro(f) ∧ ϕI

o(x, x′). The size of ϕ`r is exponential in the size of Q.

Proof of Theorem 11. Define cyclic sum and difference of a, b ∈ Q to be a⊕ b = {a+ b},
resp., a	 b := {a− b}. For a set of clocks X, let Xx0 = X ∪ {x0} be its extension with an
extra clock x0 /∈ X which is never reset, and let X̂x0 = {x̂ | x ∈ Xx0} be a corresponding set
of registers. The special register x̂0 stores the (fractional part of the) current timestamp, and
register x̂ stores the (fractional part of the) timestamp of the last reset of x. In this way we
can recover the fractional value of x as the cyclic difference {x} = x̂0 	 x̂. Let (cf. Fig. 1(b))

ϕ	(x, x̂) ≡
∧
x∈X
{x} = x̂0 	 x̂. (9)

Resetting clocks in Y ⊆ X is simulated by ϕreset(Y ) ≡ x̂′0 = x̂0∧
∧
x∈Y x̂

′ = x̂0∧
∧
x∈X\Y x̂

′ = x̂

and time elapse by ϕelapse ≡
∧
x∈X x̂

′ = x̂. The equality x̂′0 = x̂0 in ϕreset(Y ) says that time
does not elapse, and the absence of constraints on x̂0, x̂

′
0 in ϕelapse allows for an arbitrary elapse

of time. A clock constraint ϕ is converted into a K-constraint ϕ̂ by replacing {x} = 0 with
x̂ = x̂0 and {x} ≤ {y} by K≤(ŷ, x̂, x̂0), for x, y ∈ X ∪ Z. For a tpda P = 〈Σ,Γ, L,X,Z,∆〉,
we define the following rpdaQ =

〈
Σ,Γ, L, X̂x0 , Ẑ, ∆̂

〉
. The input rules are preserved. A reset

rule 〈`, reset(Y ), r〉 ∈ ∆, is simulated by 〈`, ϕreset(Y ), r〉 ∈ ∆̂, a time elapse rule 〈`, elapse, r〉 ∈
∆ is simulated by 〈`, ϕelapse, r〉 ∈ ∆̂, a push rule 〈`, push(γ : ϕ), r〉 ∈ ∆ is simulated by
〈`, push(γ : ϕ̂), r〉 ∈ ∆̂, and similarly for pop rules. By Corollary 15, let ϕ`r(x̂, f , x̂′) express
the reachability relation of Q, and define ξIo(x, x′) ≡ ∃x̂, x̂′ · ϕI

o(x̂, x̂′)∧ϕ	(x, x̂)∧ϕ	(x′, x̂′).
The reachability relation of P is recovered as

ψ`r(x, f, x′) ≡
∨
{ϕZ

`ro(f) ∧ ξIo(x, x′)|o ∈ Orb(IX×X
′
)}. (10)

Intuitively, we guess the value for registers x̂, x̂′ and we check that they correctly describe
the fractional values of global clocks as prescribed by ϕ	. We now remove the quantifiers
from ξIo to uncover the structure of fractional value comparisons. Introduce a new variable
δ = x̂0 	 x̂′0, and perform the following substitutions in ϕI

o (c.f. the definition of ϕ	 in (9)):
x̂ 7→ x̂0 	 {x}, x̂′ 7→ (x̂0 	 δ) 	 {x′}, and x̂′0 7→ x̂0 	 δ. By writing (x̂0 	 δ) 	 {x′} as
x̂0 	 (δ ⊕ {x′}), we have only atomic constraints of the forms K(x̂0 	 u, x̂0 	 v, x̂0 	 t) and
x̂0 	 u = x̂0 	 v, where terms u, v, t are of one of the forms 0, {x}, δ ⊕ {x′}, δ. These
constraints are equivalent, respectively, to K(t, v, u) and u = v. By expanding the definition
of K (cf. (1)), we obtain only constraints of the form u - v with -∈ {<,≤}. Since δ appears
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at most once on either side, it can either be eliminated if it appears on both u, v, or otherwise
exactly one of u, v is of the form δ or δ⊕{x′}, and the other of the form 0 or {x}. By moving
{x′} on the other side of the inequality in constraints containing δ ⊕ {x′}, ξIo is equivalent
to
∧
i si - ti ∧ ∃0 ≤ δ < 1 ·

∧
j uj - δ ∧

∧
k δ - vk, where the terms si, ti, uj , vk’s are of

the form 0, {x}, or {x} 	 {y′}. We can now eliminate the quantification on δ and get a
constraint of the form

∧
h sh - th. Finally, by expanding b	 a as b− a+ 1 if b < a and b− a

otherwise (since a, b ∈ I) we have ξIo(x, x′) ≡
∧
h s
′
h - t′h, where the s′h, t′h’s are of one of

the forms: 0, {x}, {x} − {y′}, or {x} − {y′}+ 1. J
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Abstract
A vector addition system (VAS) with an initial and a final marking and transition labels in-
duces a language. In part because the reachability problem in VAS remains far from being
well-understood, it is difficult to devise decision procedures for such languages. This is especially
true for checking properties that state the existence of infinitely many words of a particular shape.
Informally, we call these unboundedness properties.

We present a simple set of axioms for predicates that can express unboundedness properties.
Our main result is that such a predicate is decidable for VAS languages as soon as it is decidable
for regular languages. Among other results, this allows us to show decidability of (i) separability
by bounded regular languages, (ii) unboundedness of occurring factors from a language K with
mild conditions on K, and (iii) universality of the set of factors.
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This is reflected in what we know about decidability questions regarding the most
expressive class of languages associated to VAS: The languages of (arbitrarily) labeled VAS
with a given initial and final configuration, which we call VAS languages. In the 1970s,
this class has been characterized in terms of closure properties and Dyck languages by
Greibach [27] and Jantzen [36]. Almost all decidability results about these languages use a
combination of these closure properties and the decidability of the reachability problem for
VAS [43] (or for Reinhardt’s extension [47], such as in [1, 51]). Of course, this method is
confined to procedures that somehow reduce to the existence of one or finitely many runs of
VAS.

There are two notable exceptions to this and they both rely on an extensions of decision
procedures for reachability in VAS. The first is Hauschildt and Jantzen’s result [33] from
1994 that finiteness of VAS languages is decidable, which employs Hauschildt’s algorithm
to decide semilinearity of reachability sets [32]. The second is the much more recent result
of Habermehl, Meyer, and Wimmel from 2010 [28]. It shows computability of downward
closures for VAS languages (which significantly generalizes decidability of finiteness) and
involves a careful inspection of marked graph-transition sequences (MGTS) of Lambert’s
algorithm. (As observed in [15, 52], computability of downward closures can also be derived
from [6].) This sparsity of results is due to the fact that the algorithms for the reachability
problem are still quite unwieldy and have been digested by few researchers.

In particular, it currently seems difficult to decide whether there exist infinitely many
words of some shape in a given language—unless the problem reduces to computing downward
closures. Informally, we call problems of this type unboundedness problems. Such problems
are important for two reasons. The first concerns separability problems, which have attracted
attention in recent years [5, 11, 26, 44, 45]. Here, instead of deciding whether two languages
are disjoint, we are looking for a (typically finite-state) certificate for disjointness, namely a
set that includes one language and is disjoint from the other. For general topological reasons,
inseparability is usually witnessed by a common pattern, whose presence in a language is
an unboundedness property. The second reason is that unboundedness problems tend to be
decidable where exact queries are not. This phenomenon also occurs in the theory of regular
cost functions [12]. Moreover, as it turns out in this work, this is true for VAS languages as
well.

Contribution. We present a simple notion of an unboundedness predicate on languages and
show that such predicates are decidable for VAS languages as soon as they are decidable
for regular languages. On the one hand, this provides an easy and general way to obtain
new decidability results for VAS languages without the need to understand the details of the
KLMST decomposition. On the other hand, we apply this framework to prove:

(i) Boundedness in the sense of Ginsburg and Spanier [24] is decidable. A language L ⊆ Σ∗
is bounded if L ⊆ w∗1 · · ·w∗n for some w1, . . . , wn ∈ Σ∗. Moreover, it is decidable whether
two given VAS languages are separable by a bounded regular language.

(ii) Computability of downward closures can be recovered as well.
(iii) Suppose that K ⊆ Σ∗ is chosen so that it is decidable whether K intersects a given

regular language. Then, it is decidable for a given VAS language L whether L contains
words with arbitrarily many factors from K. Moreover, in case the number of factor
occurrences in L is bounded, we can even compute an upper bound.

(iv) Under the same assumptions as above on K ⊆ Σ∗, one can decide if every word from
K∗ appears as a factor of a given VAS language L ⊆ Σ∗. In particular, it is decidable
whether L contains every word from Σ∗ as a factor.
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It should be stressed that results (iii) and (iv) came deeply unexpected to the authors for two
reasons. First, the assumptions are already satisfied when K is induced by a system model
as powerful as well-structured transition systems (WSTS) or higher-order recursion schemes.
In these cases, it is in general undecidable whether a given VAS language contains a factor
from K at least once, because intersection emptiness easily reduces to this problem (see
the remarks after Theorem 4.8). We therefore believe that these results might lead to new
approaches to verifying systems with concurrency and (higher-order) recursion, where the
latter undecidability (or the unknown status in the case of simple recursion [40]) is usually a
barrier for decision procedures. Secondly, the problems in (iii) and (iv) are undecidable as
soon as L is just slightly beyond the realm of VAS: Already for one-counter languages L,
both (iii) and (iv) become undecidable. Thus, compared to other infinite-state systems, VAS
languages turn out to be extraordinarily amenable to unboundedness problems.

Related work. Other authors have investigated general notions of unboundedness properties
for VAS [2, 4, 16, 50], usually with the goal of obtaining EXPSPACE upper bounds. However,
those properties a priori concern the state space itself. While they can sometimes be used to
reason about languages [4, 16], this has been confined to coverability languages, which are
significantly less expressive than the reachability languages studied here. Specifically, every
problem we consider here is hard for the reachability problem (see Remark 3.2).

An early attempt was Yen’s work [50], which claimed an EXPSPACE upper bound for
a powerful logic concerning paths in VAS. Unfortunately, a serious flaw in the latter was
discovered by Atig and Habermehl [2], who presented a corrected proof for a restricted version
of Yen’s logic. Demri [16] then introduced a notion of generalized unboundedness properties,
which covers more properties from Yen’s logic and proved an EXPSPACE procedure to check
them. Examples include reversal-boundedness, place boundedness, and regularity of firing
sequences of unlabeled VAS. Finally, Blockelet and Schmitz [4] introduce an extension of
computation tree logic (CTL) that can express “coverability-like properties” of VAS. The
authors prove an EXPSPACE upper bound for model checking this logic on VAS.

2 Preliminaries

Let Σ be a finite alphabet. For w ∈ Σ∗, we denote its length by |w|. The i-th letter of
w, for i ∈ [1, |w|] is denoted w[i]. Moreover, we write Σε = Σ ∪ {ε}. A (d-dimensional)
vector addition system (VAS) V consists of finite set of transitions T ⊆ Zd, source and target
vectors s, t ∈ Nd and a labeling h : T → Σε, whose extension to a morphism T ∗ → Σ∗ is also
denoted h. Vectors v ∈ Nd are also called configurations. A transition t ∈ T can be fired in a
configuration v ∈ Nd if v + t ∈ Nd. Then, the result of firing t is the configuration v + t and
we write v h(t)−−→ v′ for v′ = v + t. For w ∈ Σ∗, we write v w−→ v′ if there exist v1, . . . , vk ∈ Nd

such that v = v0
x1−→ v1

x2−→ . . .
xk−→ vk

xk+1−−−→ vk+1 = v′, where w = x1 · · ·xk+1 for some
x1, . . . , xk+1 ∈ Σε. The language of V , denoted L(V ), is the set of all labels of runs from
source to target, i.e. L(V ) = {w ∈ Σ∗ | s w−→ t}. The languages of the form L(V ) for VAS V
are called VAS languages. A word u = a1 · · · an with ai ∈ Σ is a subword of a word v ∈ Σ∗
if v ∈ Σ∗a1Σ∗ · · ·Σ∗anΣ∗, which is denoted u � v. For a language L ⊆ Σ∗ its downward
closure is the language L↓ = {u ∈ Σ∗ | ∃v ∈ L : u � v}. It is known that L↓ is regular for
every L ⊆ Σ∗ [34, 31]. A language class is a collection of languages, together with some
way of finitely describing these languages (such as by grammars, automata, etc.). If C is
a language class so that given a description of a language L from C, we can compute an
automaton for L↓, we say that downward closures are computable for C.
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A full trio is a language class that is effectively closed under rational transductions [3],
which are relations defined by nondeterministic two-tape automata. Equivalently, a full
trio is a class that is effectively closed under morphisms, inverse morphisms, and regular
intersection [3]. Full trios are abundant among infinite-state models: If a nondeterministic
machine model involves a finite-state control, the resulting language class is a full trio.
Examples include VAS languages [36], coverability languages of WSTS [23], one-counter
languages (which are accepted by one-counter automata with zero tests) [35], and languages
of higher-order pushdown automata [42] and higher-order recursion schemes [30]. The
context-sensitive languages do not constitute a full trio, as they are not closed under erasing
morphisms.

3 Main result

Here, we introduce our notion of unboundedness predicates and present our main result.
For didactic purposes, we begin our exposition of unboundedness predicates with a

simplified (but already useful) version. An important aspect of the definition is that
technically, an unboundedness predicates is not a property of the language L ⊆ Σ∗ we want
to analyze, but of the set of its factors. In other words, we have a unary predicate p on
languages and we want to decide whether p(F (L)), where F (L) = {w ∈ Σ∗ | L∩Σ∗wΣ∗ 6= ∅}
is the set of factors of L. For the definition, it is helpful to keep in mind the simplest example
of an unboundedness predicate, the infinity predicate pinf , where pinf(K) if and only if K is
infinite. Then, pinf(F (L)) if and only if L is infinite. A unary predicate p on languages over
Σ∗ is called 1-dimensional unboundedness predicate if for every K,L ⊆ Σ∗, we have:

(i∗) if p(K) and K ⊆ L, then p(L).
(ii∗) if p(K ∪ L), then either p(L) or p(K).
(iii∗) if p(F (KL)), then either p(F (K)) or p(F (L)).

Part of our result will be that for such predicates, if we can decide whether p(F (R)) for
regular languages R, we can decide whether p(F (L)) for VAS languages L. Before we come
to that, we want to generalize a bit. There are predicates we want to decide that fail to
satisfy axiom (iii∗), such as the one stating a∗b∗ ⊆ L↓ for L ⊆ Σ∗: It is satisfied for a∗b∗,
but neither for a∗ nor for b∗. (Deciding such predicates is useful for computing downward
closures [52] and separability by piecewise testable languages [15]) To capture such predicates,
which intuitively ask for several quantities being unbounded simultaneously, we present a
more general set of axioms. Here, the idea is to formulate predicates over simultaneously
occurring factors. For a language L ⊆ Σ∗ and n ∈ N, let

Fn(L) = {(w1, . . . , wn) ∈ (Σ∗)n | Σ∗w1Σ∗ · · ·wnΣ∗ ∩ L 6= ∅}.

We will speak of n-dimensional predicates, i.e., predicates p on subsets of (Σ∗)n, and we
want to decide whether p(Fn(L)) for a given language L. The following are axioms referring
to all subsets S, T ⊆ (Σ∗)n, languages Li ⊆ Σ∗, and all k ∈ N. We call p an (n-dimensional)
unboundedness predicate if

(i) if p(S) and S ⊆ T , then p(T ).
(ii) if p(S ∪ T ), then p(S) or p(T ).
(iii) if p(Fn(L1 · · ·Lk)), then n = n1 + · · ·+ nk such that p(Fn1(L1)× · · · × Fnk

(Lk)).

Intuitively, the last axiom says that if a concatenation satisfies the predicate, then this is
already witnessed by factors in at most n participants of the concatenation. Note that for
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n = 1, the axioms coincide with the simplified axioms (i∗) to (iii∗) above. An n-dimensional
unboundedness predicate p is decidable for a language class C if, given a language L from C,
it is decidable whether p(Fn(L)). The following is our main result.

I Theorem 3.1. Given a VAS language L ⊆ Σ∗, one can compute a regular R ⊆ Σ∗ such
that L ⊆ R and for every n-dim. unboundedness predicate p, we have p(Fn(L)) iff p(Fn(R)).

Note that this implies that decidability of p for regular languages implies decidability of
p for VAS languages for any n-dim. unboundedness predicate p. In addition, when our
unboundedness predicate expresses that a certain quantity is unbounded, then in the bounded
case, Theorem 3.1 sometimes allows us to compute an upper bound (see, e.g. Theorem 4.8).

I Remark 3.2. Let us comment on the complexity of deciding whether p(Fn(L)) for a VAS
language L. Call p non-trivial if there is at least one S ⊆ (Σ∗)n that satisfies p and least
one S′ ⊆ (Σ∗)n for which p is not satisfied. Then, deciding whether p(Fn(L)) is at least as
hard as the reachability problem. Indeed, in this case axiom (i) implies that Fn(Σ∗) = (Σ∗)n

satisfies p, but Fn(∅) = ∅ does not. Given a VAS V and two vectors µ1 and µ2, it is easy to
construct a VAS V ′ so that L(V ′) = Σ∗ if V can reach µ2 from µ1 and L(V ′) = ∅ otherwise.

4 Applications

Bounded languages. Our first application concerns bounded languages. A language L ⊆ Σ∗
is bounded if there exist words w1, . . . , wn ∈ Σ∗ such that L ⊆ w∗1 · · ·w∗n. This notion was
introduced by Ginsburg and Spanier [24]. Since a bounded language as above can be
characterized by the set of vectors (x1, . . . , xn) ∈ Nn for which wx1

1 · · ·wxn
n ∈ L, bounded

languages are quite amenable to analysis. This has led to a number of applications to
concurrent recursive programs [18, 19, 20, 21, 41], but also counter systems [17] and WSTS [9].

Boundedness has been shown decidable for context-free languages by Ginsburg and
Spanier [24] (PTIME-completeness by Gawrychowski et al. [22]) and hence also for regular
languages (NL-completeness also in [22]), for equal matrix languages by Siromoney [49],
and for trace languages of complete deterministic well-structured transition systems by
Chambart et al. [9]. The latter implies that boundedness is decidable for coverability
languages of deterministic vector addition systems, in which case EXPSPACE-completeness
was shown by Chambart et al. [9] (the upper bound had been established by Blockelet and
Schmitz [4]).

We use Theorem 3.1 to show the following.

I Theorem 4.1. Given a VAS, it is decidable whether its language is bounded.

The rest of this section is devoted to the proof of Theorem 4.1. Let pnotb be the 1-
dimensional predicate that holds for a language K ⊆ Σ∗ if and only if K it is not bounded.
We plan to apply Theorem 3.1 to pnotb, but it allows us to decide only whether pnotb(F (L))
for a given VAS language L. Thus we need the following fact, which we prove in a moment.

I Fact 4.2. A language L ⊆ Σ∗ is bounded if and only if F (L) is bounded.

We also need to show that pnotb is indeed an unboundedness predicate, meaning that it
satisfies axioms (i∗) to (iii∗). By definition of boundedness, pnotb clearly fulfills axiom (i∗).
Axioms (ii∗) and (iii∗) are implied by Fact 4.2 and the following.

I Fact 4.3. If K and L are bounded then both K ∪ L and KL are bounded as well.
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Let us prove Facts 4.2 and 4.3 and begin with Fact 4.3. If K and L are bounded,
then K ⊆ w∗1 · · ·w∗n and L ⊆ w∗n+1 · · ·w∗m for some w1, . . . , wm ∈ Σ∗. Then we have
K ∪ L,KL ⊆ w∗1 · · ·w∗m, which shows Fact 4.3. In order to show Fact 4.2, observe first
that for each individual word w ∈ Σ∗, the language F (w) is bounded because it is finite.
Thus, if L ⊆ w∗1 · · ·w∗n, then F (L) is included in F (w1)w∗1F (w1) · · ·F (wn)w∗nF (wn), which
is bounded as a concatenation of bounded languages by Fact 4.3. Thus, F (L) is bounded as
well. Conversely, L inherits boundedness from its superset F (L).

To conclude Theorem 4.1, we need to show that given regular language R ⊆ Σ∗, it is
decidable whether pnotb(F (R)). By Fact 4.2, this amounts to checking whether R is bounded.
This is decidable even for context-free languages [24] (and in NL for regular ones [22]).

Separability. We can also use our results to decide whether two VAS languages are separable
by a bounded regular language. Very generally, if S is a class of sets, we say that a set K is
separable from a set L by a set from S if there is a set S in S so that K ⊆ S and L ∩ S = ∅.

The separability problem was recently investigated for VAS languages and several sub-
classes. In [15] it is shown that separability of VAS languages by piecewise testable languages
(a subclass of regular languages) is decidable. Decidability of separability of VAS languages
by regular languages is still open, but it is known for several subclasses thereof [10, 11, 13].
In [14] it is shown that any two disjoint VAS coverability languages are separable by a regular
language. Here, using Theorem 4.1 we are able to show the following.

I Theorem 4.4. Given two VAS languages K and L, it is decidable whether K is separable
from L by a bounded regular language.

Clearly, in order for that to hold, K has to be bounded, which we can decide. Moreover, by
enumerating expressions w∗1 · · ·w∗n, we can find one with K ⊆ w∗1 · · ·w∗n. Since the bounded
regular languages (BRL) are closed under intersection (recall that a subset of a bounded
language is again bounded), K and L are separable by a BRL if and only if L0 = K and
L1 = L ∩ w∗1 · · ·w∗n are separable by a BRL. Since now both input languages are included in
w∗1 · · ·w∗n, we can reformulate the problem into one over vector sets.

I Lemma 4.5. Let L0, L1 ⊆ w∗1 · · ·w∗n and Ui = {(x1, . . . , xn) ∈ Nn | wx1
1 · · ·wxn

n ∈ Li} for
i ∈ {0, 1}. Then, L0 is separable from L1 by a BRL if and only if U0 is separable from U1 by
a recognizable subset of Nn.

Recall that a subset S ⊆ Nn is recognizable if there is a morphism ϕ : Nn → F into a finite
monoid F with S = ϕ−1(ϕ(S)). Lemma 4.5 is a straightforward application of Ginsburg and
Spanier’s characterization of BRL [25].

Since in our case, L0 and L1 are VAS languages, a standard construction shows that U0
and U1 are (effectively computable) sections of VAS reachability sets. Here, sections are
defined as follows. For a subset I ⊆ [1, n], let πI : Nn → N|I| be the projection onto the
coordinates in I. Then, every set of the form π[1,n]\I(S ∩ π−1

I (x)) for some I ⊆ [1, n] and
x ∈ N|I| is called a section of S ⊆ Nn. Thus, the following result by Clemente et al. [11]
allows us to decide separability by BRL.

I Theorem 4.6 ([11]). Given two sections S0, S1 ⊆ Nn of reachability sets of VAS, it is
decidable whether S0 is separable from S1 by a recognizable subset of Nn.

Downward closures and simultaneous unboundedness. We now illustrate how to compute
downward closures using our results. First of all, computability of downward closures for
VAS languages follows directly from Theorem 3.1 because it implies R↓ = L↓: For each word
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w = a1 · · · an with a1, . . . , an ∈ Σ, consider the n-dimensional predicate pw which is satisfied
for S ⊆ (Σ∗)n iff (a1, . . . , an) ∈ S. Then pw(Fn(L)) if and only if w ∈ L↓. It is easy to check
that this is an unboundedness predicate. Hence, R↓ = L↓.

However, in order to illustrate how to apply unboundedness predicates, we present an
alternative approach. In [52], it was shown that if a language class C is closed under rational
transductions (which is the case for VAS languages), then downward closures are computable
for C if and only if, given a language L from C and letters a1, . . . , an, it is decidable whether
a∗1 · · · a∗n ⊆ L↓. Let us show how to decide the latter using unboundedness predicates.

For this, we use an n-dimensional predicate. For a subset S ⊆ (Σ∗)n, let S↓ be the set
of all tuples (u1, . . . , un) ∈ (Σ∗)n such that there is some (v1, . . . , vn) ∈ S with ui � vi for
i ∈ [1, n]. Our predicate psup is satisfied for S ⊆ (Σ∗)n if and only if a∗1 × · · · × a∗n ⊆ S.
Then clearly psup(Fn(L)) if and only if a∗1 · · · a∗n ⊆ L↓. It is easy to check that psup fulfills
axiom (i) and axiom (ii). For the latter, note that a∗1 × · · · × a∗n ⊆ (S1 ∪ S2)↓ implies that
for some j ∈ {1, 2}, there are infinitely many ` ∈ N, with (a`

1, . . . , a
`
n) ∈ Sj and hence

a∗1 × · · · × a∗n ⊆ Sj↓. For axiom (iii), we need a simple combinatorial argument:

I Lemma 4.7. If a∗1×· · ·×a∗n ⊆ Fn(L1 · · ·Lk)↓, then n = n1 + · · ·+nk with a∗1×· · ·×a∗n ⊆
(Fn1(L1)× · · · × Fnk

(Lk))↓.

It remains to show that for a regular language R, it is decidable whether a∗1 · · · a∗n ⊆ R↓.
Since it is easy to construct an automaton for R↓, this amounts to a simple inclusion check.

Non-overlapping factors. Our next example shows that under very mild assumptions on
a language K, one can decide whether the words in a VAS language L contain arbitrarily
many factors from K. For w ∈ Σ∗ and K ⊆ Σ+, let |w|K be the largest number m such
that there are w1, . . . , wm ∈ K with (w1, . . . , wm) ∈ Fm(w). Note that since ε 6∈ K, there
is always a maximal such m. Consider the function fK : Σ∗ → N, w 7→ |w|K . A function
f : Σ∗ → N is unbounded on L ⊆ Σ∗ if for every k ∈ N, we have f(w) ≥ k for some w ∈ L.

I Theorem 4.8. If C is a full trio with decidable emptiness problem, then given a VAS
language L and a language K ⊆ Σ+ from C, it is decidable whether fK is unbounded on L.
If fK is bounded on L, we can compute an upper bound.

Theorem 4.8 is quite unexpected because very slight variations lead to undecidability. If
we ask whether fK is non-zero on a given VAS language (as opposed to unbounded), then
this is in general undecidable. Indeed, suppose C is a full trio for which intersection with
VAS languages is undecidable (such as languages of lossy channel systems4 or higher-order
pushdown languages [29, 52]). Then given a language K ⊆ Σ∗ from C, a VAS language L
and some c /∈ Σ, the function fcKc is non-zero on cLc if and only if K ∩ L 6= ∅.

Furthermore, the same problem becomes undecidable in general if instead of VAS lan-
guages, we want to decide the problem for a language class as simple as one-counter languages
(OCL). Indeed, suppose C is a full trio for which intersection with OCL is undecidable (such
as the class of OCL). For a given K ⊆ Σ∗ from C, an OCL L ⊆ Σ∗, and some c /∈ Σ, the set
c(Lc)∗ is effectively an OCL and fcKc is unbounded on c(Lc)∗ if and only if K ∩ L 6= ∅.

Let us prove Theorem 4.8. Fix a language K ⊆ Σ∗ from C. Our predicate pnof is one-
dimensional and is satisfied on a set L ⊆ Σ∗ if and only if fK is unbounded on L. Then clearly,

4 It seems to be folklore that intersection between languages of lossy channel systems and languages of
one-dimensional VAS is undecidable (the additional counter can be used to ensure that no letter is
dropped). The only reference we could find is [46].
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pnof(F (L)) if and only if fK is unbounded on L. It is immediate that axioms (i∗) and (ii∗)
are satisfied. Furthermore, axiom (iii∗) follows by contraposition: If neither pnof(F (L0)) nor
pnof(F (L1)), then there are B0, B1 ∈ N such that fK is bounded by Bi on Li for i = 0, 1.
That implies that fK is bounded by B0 + B1 + 1 on L0L1. This rules out pnof(F (L0L1)),
which establishes axiom (iii∗). The following uses standard arguments.

I Lemma 4.9. Let C be a full trio with decidable emptiness problem. Given a language K
from C and a regular language R, it is decidable whether fK is unbounded on R. Moreover,
if fK is bounded on R, we can compute an upper bound.

We can deduce Theorem 4.8 from Lemma 4.9 as follows. Using Theorem 3.1, we compute
the language R. Then, fK is unbounded on R iff it is unbounded on L. Moreover, an upper
bound for fK on R is also an upper bound for fK on L because L ⊆ R.

Counting automata. To illustrate how these results can be used, we formulate an extension
of Theorem 4.8 in terms of automata that can count. Let C be a full trio. Intuitively, a C-
counting automaton can read a word produced by a VAS and can use machines corresponding
to C as oracles. Just like the intersection of two languages that describe threads in a
concurrent system signals a safety violation [7, 8, 41], a successful oracle call would signal a
particular undesirable event. In such a model, it would be undecidable whether any oracle
call can be successful if, for example, C is the class of higher-order pushdown languages.
However, we show that it is decidable whether such an automaton can make an unbounded
number of successful oracle calls and if not, compute an upper bound. Hence, we can decide
if the number of undesirable events is bounded and, if so, provide a bound.

A C-counting automaton is a tuple A = (Q,Σ,Γ, C, q0, E,Qf ), where Q is a finite set of
states, Σ is its input alphabet, Γ is its (oracle) tape alphabet, C is a finite set of counters,
q0 ∈ Q is its initial state, Qf ⊆ Q is its set of final states, and E ⊆ Q× Σ∗ × (Ω ∪ {ε})×Q
is a finite set of edges, where Ω is a set of operations of the following form. First, we have an
operation push(a) for each a ∈ Γ, which appends a to the oracle tape. Moreover, we have
check(K, c) for each K ⊆ Γ∗ from C and each c ∈ C, which first checks whether the current
tape content belongs to K and if so, increments the counter c. After the oracle query, it
empties the oracle tape, regardless of whether the oracle answers positively or negatively.

A configuration of A is a triple (q, u, µ), where q ∈ Q is the current state, u ∈ Γ∗ is
the oracle tape content, and µ ∈ NC describes the counter values. For a label x ∈ Σ ∪ {ε},
and configurations (q, u, µ), (q′, u′, µ′), we write (q, u, µ) x−→ (q′, u′, µ′) if (q′, u′, µ′) results
from (q, u, µ) as described above. In the general case w ∈ Σ∗, (q, u, µ) w−→ (q′, u′, µ′) has the
obvious meaning. We extend the set of natural numbers N by setting N = N∪{ω}, where ω is
the first infinite ordinal number and represents the infinity. A defines a function Σ∗ → N with
A(w) = sup

{
infc∈C µ(c) | µ ∈ NC , (q0, ε, 0) w−→ (q, u, µ) for some q ∈ Qf , u ∈ Γ∗

}
, where

0 is the zero vector in NC . Hence, A is unbounded on L if for every k ∈ N, there is a
w ∈ L and a run of A on w in which for each c ∈ C, at least k of the oracle queries
for c are successful. The following can be shown similarly to Theorem 4.8, but using a
multi-dimensional unboundedness predicate.

I Theorem 4.10. Let C be a full trio with decidable emptiness. Given a VAS language L
and a C-counting automaton A, it is decidable whether A is unbounded on L. Moreover, if A
is bounded on L, then one can compute an upper bound B ∈ N for A on L.

Factor inclusion. As a last example, we show how our results can be used to decide inclusion
problems. Specifically, given a VAS language L ⊆ Σ∗, it is decidable whether Σ∗ ⊆ F (L). In
fact, we show a more general result:
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I Theorem 4.11. If C is a full trio with decidable emptiness problem, then given a VAS
language L and a language K from C, it is decidable whether K∗ ⊆ F (L).

Here, Σ∗ ⊆ F (L) is the special case where K = Σ. Recall that is is undecidable whether
L = Σ∗ for VAS languages and for one-counter languages (OCL) (e.g. [15, Lemma 6.1]).

Similar to Theorem 4.8, deciding whether Σ∗ ⊆ F (L) is already undecidable for OCL
L: For a given OCL L ⊆ Σ∗, pick a letter c /∈ Σ and note that L′ = c(Lc)∗ ⊆ (Σ ∪ {c})∗
is effectively an OCL and (Σ ∪ {c})∗ ⊆ F (L′) if and only if L = Σ∗. Also, under the
assumptions of the theorem, it is undecidable whether K ⊆ F (L): If L ⊆ Σ∗ and c /∈ Σ, then
cΣ∗c ⊆ F (cLc) if and only if L = Σ∗ (every full trio contains the regular set cΣ∗c).

Let us see how Theorem 4.11 follows from Theorem 3.1. Fix a language K from C. We
use the 1-dim. predicate pfu, which is satisfied on a set L ⊆ Σ∗ if and only if K∗ ⊆ F (L).
Of course, axiom (i) holds by definition. Axiom (iii) follows by contraposition: Suppose
that K∗ ⊆ F (L1L2) and K∗ 6⊆ F (L1) with some u ∈ K∗ \ F (L1). Let v ∈ K∗ be arbitrary.
Then, since K∗ ⊆ F (L1L2), we have uv ∈ F (L1L2). This means, there are x, y ∈ Σ∗ with
xuvy ∈ L1L2. Hence, we have xuvy = w1w2 for some wi ∈ Li for i = 1, 2. Then |w1| < |xu|,
because otherwise u would belong to F (L1). Therefore, v is a factor of w2 and thus v ∈ F (L2).
Hence, K∗ ⊆ F (L2). Of course, a similar argument works if K∗ ⊆ F (L1L2) and K∗ 6⊆ F (L2).
This proves axiom (iii). Axiom (ii) can be shown the same way. Thus, by Theorem 3.1, it
suffices to decide whether K∗ ⊆ F (R) for regular R, which follows from the fact that C is a
full trio and has decidable emptiness.

5 Proof of the main result

We prove our decidability result using the KLMST decomposition. More specifically, we
show a consequence that might be interesting in its own right.

I Theorem 5.1. Given a VAS language L ⊆ Σ∗, one can compute m, k ∈ N and regular
languages Ri,j ⊆ Σ∗, for i ∈ [1,m], j ∈ [1, k] so that

L ⊆
m⋃

i=1
Ri,1 · · ·Ri,k and Ri,1 × · · · ×Ri,k ⊆ Fk(L) for every i ∈ [1,m]. (1)

We first show how to derive Theorem 3.1 from Theorem 5.1 and then proceed with the
proof of Theorem 5.1, as it is much more technically complicated.

Proof of Theorem 3.1. Suppose Theorem 5.1 holds. Then, given a VAS language L,
we compute m, k ∈ N and the regular languages Ri,j for i ∈ [1,m], j ∈ [1, k]. We choose
R =

⋃m
i=1 Ri,1 · · ·Ri,k. Then we have L ⊆ R. Let us show that p(Fn(L)) if and only if

p(Fn(R)). If p(Fn(L)), then clearly p(Fn(R)), because L ⊆ R implies Fn(L) ⊆ Fn(R) and
by axiom (i), this implies p(Fn(R)). Conversely, suppose p(Fn(R)). Then by axiom (ii),
there is an i ∈ [1,m] such that p(Fn(Ri)), where Ri = Ri,1 · · ·Ri,k. According to axiom (iii),
we can write n = n1 + · · ·+ nk such that p holds for S := Fn1(Ri,1)× · · · × Fnk

(Ri,k). Note
that by the choice of Ri,j , we have Ri,1 × · · · ×Ri,k ⊆ Fk(L) and therefore S ⊆ Fn(L). This
implies p(Fn(L)) by axiom (i).

Proof of Theorem 5.1. The remainder of this section is devoted to the proof of Theorem 5.1.
Like the method for computing downward closures by Habermehl, Meyer, and Wimmel [28],
the construction of the sets Ri,j is based on Lambert’s proof [38] of the decidability of the
reachability problem for Petri nets. In order to be compatible with Lambert’s exposition, we
phrase our proof in terms of Petri nets instead of vector addition systems.

ICALP 2018



119:10 Unboundedness Problems for Languages of Vector Addition Systems

A Petri net N = (P, T,Pre,Post) consists of a finite set P of places, a finite set T of
transitions and two mappings Pre,Post : T → NP . Configurations of Petri net are elements
of NP , called markings. For two markings M,M ′ we say that M ′ dominates M , denoted
M ≤M ′, if for every place p ∈ P , we have M [p] ≤M ′[p]. The effect of a transition t ∈ T is
Post(t)−Pre(t) ∈ ZP , denoted ∆(t). If a marking M dominates Pre(t) for a transition
t ∈ T then t is fireable in M and the result of firing t in marking M is M ′ = M + ∆(t),
we write M t−→ M ′. We extend notions of fireability and firing naturally to sequences of
transitions, we also write M w−→ M ′ for w ∈ T ∗. The effect of w ∈ T ∗ is sum of the
effects of its letters, ∆(w) =

∑|w|
i=1 ∆(w[i]). For a Petri net N = (P, T,Pre,Post) and

markings M0,M1, we define the language L(N,M0,M1) = {w ∈ T ∗ | M0
w−→ M1}. Hence,

L(N,M0,M1) is the set of transition sequences leading from M0 to M1. Moreover, let
L(N,M0) =

⋃
M∈NP L(N,M0,M), i.e. the set of all the transition sequences fireable in M0.

A labeled Petri net is a Petri net N = (P, T,Pre,Post) together with an initial marking
MI , a final marking MF , and a labeling, i.e. a homomorphism h : T ∗ → Σ∗. The language
recognized by the labeled Petri net is then defined as Lh(N,MI ,MF ) = h(L(N,MI ,MF )).

It is folklore (and easy to see) that a language is a VAS language if and only if it is
recognized by a labeled Petri net (and the translation is effective). Thus, it suffices to
show Theorem 5.1 for languages of the form L = h(L(N,MI ,MF )). Moreover, it is already
enough to prove Theorem 5.1 for languages of the form L(N,MI ,MF ). Indeed, observe that
if we have constructed Ri,j so that Eq. (1) is satisfied, then with Si,j = h(Ri,j), we have
h(L) ⊆

⋃m
i=1 Si,1 · · ·Si,k and Si,1× · · ·×Si,k ⊆ Fk(h(L)) for every i ∈ [1,m]. Thus from now

on, we assume L = L(N,MI ,MF ) for a fixed Petri net N = (P, T,Pre,Post).

The KLMST decomposition. Lambert’s decision procedure [38] is a refinement of the
previous ones by Mayr [43] and Kosaraju [37]. Leroux and Schmitz [39] recast it as an
algorithm using WQO ideals and dubbed it KLMST decomposition after its inventors [37,
38, 43, 48].

The idea is the following. We disregard for a moment that a transition sequence has
to keep all intermediate markings non-negative and only look for a sequence that may go
negative on the way. It is standard technique to express the existence of such a sequence as
a linear equation system Ax = b. As expected, solvability of this system is not sufficient for
the existence of an actual run. However, if we are in the situation that we can find (a) runs
that pump up all coordinates arbitrarily high and also (b) counterpart runs that remove
those excess tokens again, then solvability of the equation system is also sufficient: We first
increase all coordinates high enough, then we execute our positivity-ignoring sequence, and
then we pump down again. Roughly speaking, the achievement of the KLMST decomposition
is to put us in the latter situation, which we informally call perfect circumstances.

To this end, one uses a data structure, in Lambert’s version called marked graph-transition
sequence (MGTS), which restricts the possible runs of the Petri net. If the MGTS satisfies a
condition that realizes the above perfect circumstances, then it is called perfect. Unsurprisingly,
not every MGTS is perfect. However, part of the procedure is a decomposition of an imperfect
MGTS into finitely many MGTS that are less imperfect. Moreover, this decomposition
terminates in a finite set of perfect MGTS. Thus, applied to an MGTS whose restriction is
merely to start in MI and end in MF , then the decomposition yields finitely many perfect
MGTS N1, . . . ,Nn such that the runs from MI to MF are precisely those conforming to at
least one of the MGTS. Moreover, checking whether Ni admits a run amounts to solving a
linear equation system.
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Basic notions. Let us introduce some notions used in Lambert’s proof. We extend the set
of configurations Nd into Nd. We extend the notion of transition firing into Nd naturally, by
defining ω − k = ω = ω + k for every k ∈ N. For u, v ∈ Nd we write u ≤ω v if u[i] = v[i] or
v[i] = ω. Intuitively reaching a configuration with ω at some places means that it is possible
to reach configurations with values ω substituted by arbitrarily high values.

A key notion in [38] is that of MGTS, which formulate restrictions on paths in Petri nets. A
marked graph-transition sequence (MGTS) for our Petri net N = (P, T,Pre,Post) is a finite
sequence C0, t1, C1 . . . Cn−1, tn, Cn, where ti are transitions from T and Ci are precovering
graphs, which are defined next. A precovering graph is a quadruple C = (G,m,minit,mfin),
where G = (V,E, h) is a finite, strongly connected, directed graph with V ⊆ NP and labeling
h : E → T , and three vectors: a distinguished vector m ∈ V , an initial vector minit ∈ NP ,
and a final vector mfin ∈ NP . A precovering graph has to meet two conditions: First, for
every edge e = (m1,m2) ∈ E, there is an m3 ∈ NP with m1

h(e)−−→ m3 ≤ω m2. Second, we
have minit,mfin ≤ω m. Additionally we impose the restriction on MGTS that the initial
vector of C0 equals MI and the final vector of Cn equals MF .

Languages of MGTS. Each precovering graph can be treated as a finite automaton. For
m1,m2 ∈ V , we denote by L(C,m1,m2) the set of all w ∈ T ∗ read on a path from m1
to m2. Moreover, let L(C) = L(C,m,m). MGTS have associated languages as well. Let
N = C0, t1, C1 . . . Cn−1, tn, Cn be an MGTS of a Petri net N , where Ci = (Gi,mi,m

init
i ,mfin

i ).
Its language L(N ) is the set of all words of the form w = w0t1w1 · · ·wn−1tnwn ∈ T ∗ where:
wi ∈ L(Ci) for each i ∈ [0, n] and (ii) there exist markings µ0, µ

′
0, µ1, µ

′
1, . . . , µn, µ

′
n ∈ NP

such that µi ≤ω m
init
i and µ′i ≤ω m

fin
i and µ0

w0−−→ µ′0
t1−→ µ1

w1−−→ . . .
wn−1−−−→ µ′n−1

tn−→ µn
wn−−→

µ′n. Notice that by (ii) and the restriction that minit
0 = MI and mfin

n = MF , we have
L(N ) ⊆ L(N,MI ,MF ) for any MGTS N .

Hence roughly speaking, L(N ) is the set of runs that contain the transitions t1, . . . , tn
and additionally markings before and after firing these transitions are prescribed on some
places: this is exactly what the restrictions µi ≤ω m

init
i , µ′i ≤ω m

fin
i impose.

Notice that at the moment we do not expect that values ω occurring at mi,m
init
i ,mfin

i

impose any restriction on the form of accepted runs. Meaning of ω values is reflected in the
notion of perfect MGTS described later. As an immediate consequence of the definition, we
observe that for every MGTS N = C0, t1, C1 . . . Cn−1, tn, Cn we have

L(N ) ⊆ L(C0) · {t1} · L(C1) · · ·L(Cn−1) · {tn} · L(Cn). (2)

Perfect MGTS. As announced above, Lambert calls MGTS with a paricular property
perfect [38]. Since the precise definition is involved and we do not need all the details, it is
enough for us to mention a selection of properties of perfect MGTS. Intuitively, in perfect
MGTSes, the value ω on place p in mi means that inside of the component Ci, the token
count in place p can be made arbitrarily high. In [38] it is shown (Theorem 4.2 (page 94)
together with the preceding definition) that

I Theorem 5.2 ([38]). For a Petri net N one can compute finitely many perfect MGTS
N1, . . . ,Nm such that L(N,MI ,MF ) =

⋃m
i=1 L(Ni).

Moreover, by Corollary 4.1 in [38] (page 93), given a perfect MGTS N , it is decid-
able whether L(N ) 6= ∅. Therefore, our task reduces to the following. We have a per-
fect MGTS N with L(N ) 6= ∅ and want to compute regular languages R1, . . . , Rk such
that L(N ) ⊆ R1 · · ·Rk and R1 × · · · × Rk ⊆ Fk(L(N )). (Note that if the MGTS have
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different lengths, we can always fill up with {ε}). We choose R1, . . . , Rk to be the se-
quence L(C0), {t1}, L(C1), . . . , L(Cn−1), {tn}, L(Cn). Then Eq. (2) tells us that this achieves
L(N ) ⊆ R1 · · ·Rk and all that remains to be shown is

L(C0)× {t1} × L(C1)× · · · × L(Cn−1)× {tn} × L(Cn) ⊆ F2n+1(L(N )). (3)

Constructing runs. In order to show Eq. (3), we employ a simplified version of Lambert’s
iteration lemma, which involves covering sequences. Let C be a precovering graph for a Petri
net N = (P, T,Pre,Post) with a distinguished vector m ∈ NP and initial vector minit ∈ NP .
A sequence u ∈ L(C) ∩ L(N,minit) is called a covering sequence for C if for every place
p ∈ P we have either 1) minit[p] = ω, or 2) m[p] = minit[p] and ∆(u)[p] = 0, or 3) m[p] = ω

and ∆(u)[p] > 0. This corresponds intuitively to the three possible cases for the set of runs
in N crossing the component C in a place p: (i) runs that can have arbitrarily high value on
p when entering C, (ii) runs where, when entering C, p has a fixed value, and the tokens in
p cannot be pumped inside of C, or (iii) runs where, when entering C, p has a fixed value,
but it can be pumped up inside of C.

Let N = C0, t1, C1 . . . Cn−1, tn, Cn be an MGTS, where Ci = (Vi, Ei, hi) is a precovering
graph, and let the distinguished vertex be mi and initial vertex be minit

i . If N is a perfect
MGTS then according to the definition from [38] (page 92), for every i ∈ [0, n] there exists
a covering sequence ui ∈ L(Ci) ∩ L(N,minit

i ). This corresponds to the mentioned intuition
that ω values imply arbitrarily high values. As a direct consequence of Lemma 4.1 in [38]
(page 92), Lambert’s iteration lemma, we obtain:

I Lemma 5.3. Let N = C0, t1, C1 . . . Cn−1, tn, Cn be a perfect MGTS and let xi be a
covering sequences for Ci for i ∈ [0, n]. Then there exist words yi ∈ T ∗ for i ∈ [0, n] such
that x0y0 · t1 · x1y1 · · ·xn−1yn−1 · tn · xnyn ∈ L(N ).

Lemma 5.3 is obtained from Lemma 4.1 in [38] as follows. The word ui there is our xi and vi

there is an arbitrary covering sequence of Ci reversed. Then, our yi is set to uk−1
i βi(wi)k(vi)k

for some k ≥ k0. The only technical part of the proof of Theorem 5.1 is the following lemma.

I Lemma 5.4. Let C be a precovering graph for a Petri net N = (P, T,Pre,Post) with a
distinguished vector m ∈ NP and initial vector minit ∈ NP such that s ∈ L(C) ∩ L(N,minit)
is a covering sequence. Then for every v ∈ L(C) there is a covering sequence for C of the
form uv, for some u ∈ T ∗.

Proof. Intuitively, we do the following. The existence of a covering sequence means that one
can obtain arbitrarily high values on places p where m[p] = ω. Thus, in order to construct a
covering sequence containing v as a suffix, we first go very high on the ω places, so high that
adding v as a suffix later will still result in a sequence with positive effect.

Let us make this precise. Executing the sequence v might have a negative effect in a place
p ∈ P with m[p] = ω. Let k ∈ N be the largest possible negative effect a prefix of v can have
in any coordinate. Note that since s is a covering sequence, sk is a covering sequence as well.
We claim that skv is also a covering sequence. It is contained in L(C) and fireable at minit.
Moreover, by choice of k, the sequence skv has a positive effect on each p with m[p] = ω. If
m[p] < ω, then ∆(s)[p] = 0 = ∆(v)[p] and hence ∆(skv)[p] = 0. J

Using Lemma 5.3 and Lemma 5.4, it is now easy to show Eq. (3). Given words vi ∈ T ∗
with vi ∈ L(Ci) for i ∈ [0, n], we use Lemma 5.4 to choose xi ∈ T ∗ such that xivi is
a covering sequence of Ci for i ∈ [0, n]. By Lemma 5.3, we can find w1, . . . , wn so that
the word x0v0w0 · t1 · x1v1w1 · · ·xn−1vn−1wn−1 · tn · xnvnwn belongs to L(N ), and thus
(v0, t1, v1, . . . , vn−1, tn, vn) ∈ F2n+1(L(N )), which proves Eq. (3).
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Abstract
Recently it was shown that the transitive closure of a directed graph can be updated using first-
order formulas after insertions and deletions of single edges in the dynamic descriptive complexity
framework by Dong, Su, and Topor, and Patnaik and Immerman. In other words, Reachability
is in DynFO.

In this article we extend the framework to changes of multiple edges at a time, and study the
Reachability and Distance queries under these changes. We show that the former problem can be
maintained in DynFO(+,×) under changes affecting O( logn

log logn ) nodes, for graphs with n nodes.
If the update formulas may use a majority quantifier then both Reachability and Distance can be
maintained under changes that affect O(logc n) nodes, for fixed c ∈ N. Some preliminary results
towards showing that distances are in DynFO are discussed.
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1 Introduction

In today’s databases, data sets are often large and subject to frequent changes. In use cases
where only a fixed set of queries has to be evaluated on such data, it is not efficient to
re-evaluate queries after each change, and therefore dynamic approaches have been considered.
The idea is that when a database D is modified by changing a set ∆D of tuples then the
result of a query is recomputed by using its result on D, the set ∆D, and possibly other
previously computed auxiliary data.

One such dynamic approach is the dynamic descriptive complexity approach, formulated
independently by Dong, Su, and Topor [8], as well as Patnaik and Immerman [19]. In their
framework the query result and the auxiliary data are represented by relations, and updates
of the auxiliary relations are performed by evaluating first-order formulas. The class of
queries that can be maintained in this fashion constitutes the class DynFO. The motivation
to use first-order logic as the vehicle for updates is that its evaluation is highly parallelizable
and, in addition, that it corresponds to the relational algebra which is the core of SQL.
Hence, if a query result can be maintained using a first-order update program, this program
can be translated into equivalent SQL queries.

While it is desirable to understand how to update query results under complex changes ∆D,
the focus of dynamic descriptive complexity so far has been on single tuple changes. The
reason is that for many queries our techniques did not even suffice to tackle this case.

In recent years, however, we have seen several new techniques for maintaining queries. The
Reachability query – one of the main objects of study in dynamic descriptive complexity – has
been shown to be in DynFO using a linear algebraic method and a simulation technique [4].
The latter has been advanced into a very powerful tool: for showing that a query can be
maintained in DynFO, it essentially suffices to show that it can be maintained for log n many
change steps after initializing the auxiliary data by an AC1 pre-computation1 [5], where n is
the size of the database’s (active) domain. This tool has been successfully applied to show
that all queries expressible in monadic second order logic can be maintained in DynFO on
structures of bounded treewidth.

Those new techniques motivate a new attack on more complex changes ∆D. But what are
reasonable changes to look at? Updating a query after a change ∆D that replaces the whole
database by a new database is essentially equivalent to the static evaluation problem with
built-in relations: the stored auxiliary data has to be helpful for every possible new database,
and therefore plays the role of built-in relations. Thus changes should be restricted in some
way. Three approaches come to mind immediately: to only allow changes of restricted size;
to restrict changes structurally; or to define changes in a declarative way.

In this article we focus on the first approach. Before discussing our results we shortly
outline the other two approaches.

There is a wide variety of structural restrictions. For example, the change set ∆D could
only change the database locally or in such a way that the changes affect auxiliary relations
only locally, e.g., if edges are inserted into distinct connected components it should be easier
to maintain reachability. Another option is to restrict ∆D to be of a certain shape, examples
studied in the literature are cartesian-closed changes [8] and deletions of anti-chains [7].

A declarative mechanism for changing a database is to provide a set of parameterised
rules that state which tuples should be changed depending on a parameter provided by a
user. For example, a rule ρ(x, y; z) could state that all edges (x, y) shall be inserted into a

1 Readers not familiar with the circuit class AC1 may safely think of LOGSPACE pre-computations.
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graph such that x and y are connected to the parameter z. First-order logic as a declarative
mean to change databases has been studied in [20], where it was shown that undirected
reachability can be maintained under insertions defined by first-order formulas, and single
tuple deletions.

In this article we study changes of small size with a focus on the Reachability and Distance
queries. As can be seen from the discussion above, the former query has been well-studied in
diverse settings of dynamic descriptive complexity, and therefore results on its maintainability
under small changes serve as an important reference point.

There is another reason to study Reachability under non-constant size changes. Recall
that Reachability is complete for the static complexity class NL. The result that Reachability
is in DynFO does not imply NL ⊆ DynFO, as DynFO is only known to be closed under
very weak reductions, called bounded first-order reductions, under which Reachability is not
NL-complete [19]. In short, these reductions demand that whenever a bit of an instance
is changed, then only constantly many bits change in the image of the instance under the
reduction. When a query such as Reachability is maintainable under larger changes, then
this restriction may be relaxed and might yield new maintainability results for other queries
under single edge changes.

In this work we show that Reachability can be maintained under changes of non-constant
size. Since our main interest is the study of changes of non-constant size, we assume
throughout the article that all classes come with built-in arithmetic and denote, e.g., by
DynFO(+,×) the class of queries that can be maintained with first-order updates in the
presence of a built-in linear addition and multiplication relations. How our results can be
adapted to classes without built-in arithmetic is discussed towards the end of Section 3.

I Theorem 1. Reachability can be maintained in DynFO(+,×) under changes that affect
O( logn

log logn ) nodes of a graph, where n is the number of nodes of the graph.

The distance query was shown to be in DynFO+Maj by Hesse [13], where the class
DynFO+Maj allows to specify updates with first-order formulas that may include majority
quantifiers (equivalently, updates can be specified by uniform TC0 computations). We
generalize Hesse’s result to changes of size polylogarithmic in the size of the domain.

I Theorem 2. Reachability and Distance can be maintained in DynFO+Maj(+,×) under
changes that affect O(logc n) nodes of a graph, where c ∈ N is fixed and n is the number of
nodes of the graph.

One of the important open questions of dynamic descriptive complexity is whether
distances can be maintained in DynFO, even under single edge changes. We contribute to
the solution of this question by discussing how distances can be maintained in a subclass of
DynFO+Maj(+,×) that is only slightly stronger than DynFO(+,×).

Organization

After recapitulating notations in Section 2, we adapt the dynamic complexity framework to
bulk changes in Section 3. Our main results, maintainability of reachability and distances
under multiple changes, are proved in Section 4 and Section 5. We conclude with a discussion
in Section 6.
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2 Preliminaries

In this section we review basic definitions and results from finite model theory and databases.
We consider finite relational structures over relational signatures τ = {R1, . . . , R`}, where

each Ri is a relational symbol of arity Ar(Ri). A τ -structure D consists of a finite domain D
and relations RDi over D of arity Ar(Ri), for each i ∈ {1, . . . , `}. The active domain adom(D)
of a structure D contains all elements used in some tuple of D. Since the motivation to study
dynamic complexity originates from database theory, we use terminology from this area. In
particular we use the terms “relational structure” and “relational database” synonymously.

We study the queries Reachability and Distance. Reachability asks, given a directed
graph G, for all pairs s, t of nodes such that there is a path from s to t in G. Distance asks
for the length of the shortest path between any pair of reachable nodes.

We assume familiarity with first-order logic FO and refer to [16] for an introduction.
The logic FO+Maj extends FO by allowing majority quantifiers. Such quantifiers can ask
whether more than half of all elements satisfy a given formula. We write FO(+,×) and
FO+Maj(+,×) to denote that formulas have access to built-in relations ≤,+,× which are
interpreted as linear order, addition and multiplication on the domain of the underlying
structure. We note that FO(+,×) and FO+Maj(+,×) are equal to the circuit classes
(DLOGTIME-)uniform AC0 and TC0, respectively [2].

In FO(+,×), each tuple (a1, . . . , ac) encodes a number from [nc − 1]0
def= {0, . . . nc − 1}.

We will henceforth identify tuples over the domain and numbers.
It is well-known that FO(+,×) supports arithmetic on numbers with polylog bits.

Furthermore, iterated addition and multiplication for polylog many numbers with polylog
bits can be expressed in FO(+,×). More precisely:

I Lemma 3 (cf. [14, Theorem 5.1]). Suppose ϕ is a FO(+,×) formula that defines r ∈
O(logc n) polylog bit numbers a1, . . . , ar, then there are formulas ψ+ and ψ× that define the
sum and product of a1, . . . , ar, respectively.

Due to these facts, many calculations can be defined in FO(+,×). In particular, primes
can be identified, and logn

log logn numbers of log log n bits each can be encoded and decoded in
log n bit numbers.

Suppose p1, . . . , pm are primes whose product is N . Then each number A < N can be
uniquely represented as a tuple ā = (a1, . . . , am) where ai = A mod pi. The tuple ā is called
Chinese remainder representation (CRR) of A. The number A can recovered from ā via
A =

∑
i aihiCi−rN , where Ci = N

mi
, hi is the inverse of Ci modulo mi, and r =

∑m
i=1b

xihi

mi
c

[14, p. 702]. Due to Lemma 3, in FO(+,×) one can encode and decode O(log n) bit numbers
into their CRR defined by O(log n) primes with O(log log n) bits.

In this article we use basic notions and results from linear algebra which are introduced
when they are needed. Throughout the article, a matrix with O(nd) rows and columns and
entries in [nc]0 will be represented by a relation R that contains a tuple (r̄, c̄, v̄) if and only
if the value at row r̄ and column c̄ is v̄.

3 Dynamic Framework for Multiple Changes

We briefly repeat the essentials of dynamic complexity, closely following [21], and discuss
generalisations due to changes of non-constant size.

The goal of a dynamic program is to answer a given query on an input database subjected
to changes that insert or delete tuples. The program may use an auxiliary data structure
represented by an auxiliary database over the same domain. Initially, both input and auxiliary
database are empty; and the domain is fixed during each run of the program.
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Changes. In previous work, changes of single tuples have been represented as explicit
parameters for the formulas used to update the auxiliary relations. Non-constant size changes
cannot be represented in this fashion. An alternative is to represent changes implicitly by
giving update formulas access to the old input database as well as to the changed input
database [11]. Here, we opt for this approach.

For a database D over domain D and schema τ , a change ∆D consists of sets R+ and
R− of tuples for each relation symbol R ∈ τ . The result D + ∆D of an application of the
change ∆D to D is the input database where RD is changed to (RD ∪R+) \R−. The size of
∆D is the total number of tuples in relations R+ and R− and the set of affected elements is
the (active) domain of tuples in ∆D.

Dynamic Programs and Maintenance of Queries. A dynamic program consists of a set of
update rules that specify how auxiliary relations are updated after changing the input database.
An update rule for updating an `-ary auxiliary relation T after a change is a first-order
formula ϕ over schema τ ∪ τaux with ` free variables, where τaux is the schema of the auxiliary
database. After a change ∆D, the new version of T is T def= {~a | (D+ ∆D,A) |= ϕ(~a)} where
D is the old input database and A is the current auxiliary database. Note that a dynamic
program can choose to have access to the old input database by storing it in its auxiliary
relations.

For a state S = (D,A) of the dynamic program P with input database D and auxiliary
database A we denote the state of the program after applying a change sequence α and
updating the auxiliary relations accordingly by Pα(S).

The dynamic program maintains a q-ary query Q under changes that affect k elements
(under changes of size k, respectively) if it has a q-ary auxiliary relation Q that at each
point stores the result of Q applied to the current input database. More precisely, for each
non-empty sequence α of changes that affect k elements (changes of size k, respectively), the
relation Q in Pα(S∅) and Q(α(D∅)) coincide, where D∅ is an empty input structure, S∅ is
the auxiliary database with empty auxiliary relations over the domain of D∅, and α(D∅) is
the input database after applying α.

If a dynamic program maintains a query, we say that the query is in DynFO. Similarly
to DynFO one can define the class of queries DynFO(+,×) that allows for three particular
auxiliary relations that are initialised as a linear order and the corresponding addition and
multiplication relations. Other classes are defined accordingly.

For many natural queries Q, in order to show that Q can be maintained, it is enough to
show that the query can be maintained for a bounded number of steps. Intuitively, this is
possible for queries for which isolated elements do not influence the query result, if there
are many such elements. Formally, a query Q is almost domain-independent if there is a
c ∈ N such that Q(A)�(adom(A)∪B) = Q(A�(adom(A)∪B)) for all structures A and sets
B ⊆ A \ adom(A) with |B| ≥ c.

A queryQ is (C, f)-maintainable, for some complexity class C and some function f : N→ R,
if there is a dynamic program P and a C-algorithm A such that for each input database D
over a domain of size n, each linear order ≤ on the domain, and each change sequence α of
length |α| ≤ f(n), the relation Q in Pα(S) and Q(α(D)) coincide, where S = (I,A(I,≤)).

The following theorem is a slight adaption of Theorem 3 from [5] and can be proved
analogously.

I Theorem 4. Every (ACi, logi n)-maintainable, almost domain-independent query is in
DynFO(+,×).

ICALP 2018
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The Role of the Domain and Arithmetic. In order to focus on the study of changes of
non-constant size, we choose a simplified approach and include arithmetic in our setting. We
state our results for DynFO(+,×) and according classes to make it clear that we assume
the presence of a linear order, addition and multiplication relation on the whole domain at
all times.2

We shortly discuss the consequences of not assuming built-in arithmetic on our results.
For single tuple changes, the presence of built-in arithmetic essentially gives no advantage.

I Proposition 5 ([4, Theorem 4], formulation from [5, Proposition 2]). If a query Q ∈
DynFO(+,×) under single-tuple changes is almost domain-independent, then also Q ∈
DynFO.

This result relies on the fact that one can maintain a linear order and arithmetic on the
activated domain in DynFO under single-tuple changes [9], that is, on all elements that
were in the active domain at some point of time. Under larger changes this is a priori not
possible, as then one has to express in FO a linear order and arithmetic on the elements
that enter the active domain.

An alternate approach to assuming the presence of built-in arithmetic is to demand that
changes provide additional information on the changed elements, for example, that they
provide a linear order and arithmetic on the domain of the change. Using this approach, our
results can be stated in terms of DynFO and DynFO+Maj with the sole modification that
sizes of changes are given relative to the size of the activated domain instead of with respect
to the size of the whole domain. In this fashion our results also translate to the setting of
first-order incremental evaluation systems of Dong, Su, and Topor [8], where the domain can
grow and shrink.

4 Reachability under Multiple Changes

In this section we prove that Reachability can be maintained under multiple changes.

I Theorem 1. Reachability can be maintained in DynFO(+,×) under changes that affect
O( logn

log logn ) nodes of a graph, where n is the number of nodes of the graph.

The approach is to use the well-known fact that Reachability can be reduced to the
computation of the inverse of a matrix, and to invoke the Sherman-Morrison-Woodbury
identity (cf. [12]) to update the inverse. This identity essentially reduces the update of
inverses after a change affecting k nodes to the computation of an inverse of a k × k matrix.

The challenge is to define the updates in FO(+,×). The key ingredients here are to
compute inverses with respect to many primes, and throw away primes for which the inverse
does not exist. As, by Theorem 4, it suffices to maintain the inverse for logc n many steps for
some c to be fixed later (see proof of Theorem 6), some primes remain valid if one starts from
sufficiently – but polynomially – many primes. We show that the inverse of k × k matrices
over Zp can be defined in FO(+,×) for k = logn

log logn .
Theorem 1 in particular generalizes the result that Reachability can be maintained under

single edge changes [4]; our proof is an alternative to the proof presented in the latter work.

2 Different assumptions have been made in the literature. In [18], Patnaik and Immerman assume only a
linear order to be present, while full arithmetic is assumed in [19]. Etessami observed that arithmetic
can be built up dynamically, and therefore subsequent work usually assumed initially empty auxiliary
relations, see e.g. [4, 5]. In the setting of first-order incremental evaluation systems usually no arithmetic
is assumed to be present [8].
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In [4], maintenance of Reachability is reduced to the question whether a matrix A has full
rank, and it was shown that the rank can be maintained by storing and updating an invertible
matrix B and a matrix D from which the rank can be easily extracted, such that B ·A = D.

4.1 Reachability and Matrix Inverses
There is a path from s to t in a graph G of size n with adjacency matrix AG if and only
if the s-t-entry of the matrix (nI − AG)−1 is non-zero. This follows from the equation
(nI −AG)−1 = 1

n

∑∞
i=0( 1

nAG)i and the fact that AiG counts the number of paths from s to t
of length i. Notice that A def= nI − AG is invertible as matrix over Q for every adjacency
matrix AG since it is strictly diagonally dominant [15, Theorem 6.1.10].

When applying a change ∆G to G that affects k nodes, the adjacency matrix of G is
updated by adding a suitable change matrix ∆A with at most k non-zero rows and columns
to A. Thus Theorem 1 follows from the following proposition3.

I Theorem 6. When A ∈ Zn×n takes values polynomial in n and is assumed to stay invertible
over Q, then non-zeroness of entries of A−1 ∈ Qn×n can be maintained in DynFO(+,×)
under changes that affect O( logn

log logn ) rows and columns.

Each change affecting O( logn
log logn ) rows and columns can be partitioned into constantly

many changes that affect k def= logn
log logn rows and columns. We therefore concentrate on such

changes in the following.
The change matrix ∆A for a change affecting k rows and columns has at most k non-zero

rows and columns and can therefore be decomposed into a product UBV of suitable matrices
U,B, and V , where U , B, and V have dimensions n× k, k × k, and k × n, respectively.

I Lemma 7. Fix a ring R. Suppose M ∈ Rn×n with non-zero rows ri1 , . . . , rik and columns
cj1 , . . . , cjk

. Then M = UBV with U ∈ Rn×k, B ∈ Rk×k, and V ∈ Rk×n where
1. B is obtained from M by removing all-zero rows and columns.

2. U =

ū1
...
ūn

 where ūi =
{

0̄T if i /∈ {i1, . . . , ik}
ēTm if i = im

3. V =
(
v̄1, . . . , vn

)
where v̄j =

{
0̄ if j /∈ {j1, . . . , jk}
ēm if j = jm

Here, ēm denotes the m-th unit vector.

By the Sherman-Morrison-Woodbury identity (cf. [12]), the updated inverse can therefore
be written as

(A+ ∆A)−1 = (A+ UBV )−1 = A−1 −A−1U(I +BV A−1U)−1BV A−1 (?)

The inverse of a matrix in Zn×n with entries that are polynomial in n is a matrix in Qn×n
with entries a

b that may involve numbers exponential in n. In particular computations cannot
be performed in FO(+,×) directly. For this reason all computations will be done modulo
many primes, and non-zeroness of entries of A−1 is extracted from these values.

3 Due to lack of space some details are hidden here. The described reduction maps the empty graph to
the matrix whose diagonal entries are n. Values of the inverse for this matrix cannot be determined
in FO, and thus one does not immediately get the desired result for Reachability. This issue can be
circumvented by mapping to matrices with only some non-zero entries on the diagonal, and studying
the inverse of the matrices induced by non-zero diagonal entries.
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Let us first see how to update (A+ ∆A)−1 modulo a prime p under the assumption that
both A (mod p) and A+ ∆A (mod p) are invertible. Observe that (I +BV A−1U)−1 is a
k × k matrix and therefore an essential prerequisite to compute (A + ∆A)−1 (mod p) is
to be able to define the inverse of such small matrices. That this is possible follows from
the following lemma and the fact that [D−1]ij = (−1)i+j detDji

detD for invertible D ∈ Zk×kp .
Here [C]ij denotes the ij-th entry of a matrix C and Cji denotes the submatrix obtained by
removing the j-th row and the i-th column.

I Theorem 8. Fix a domain of size n and a prime p ∈ O(nc). The value of the determinant
of a matrix A ∈ Zk×kp for k = logn

log logn can be defined in FO(+,×).

The technical proof of this theorem is deferred until the next Subsection 4.2.
That (A + ∆A)−1 (mod p) can defined in FO(+,×) using Equation (?) now is a con-

sequence of a straightforward analysis of the involved matrix operations.

I Proposition 9. Fix a domain of size n and a prime p ∈ O(nc). Given the inverse of a
matrix A ∈ Zn×np and a matrix ∆A ∈ Zn×np with at most k = logn

log logn non-zero rows and
columns, one can determine whether A+ ∆A is invertible in FO(+,×) and, if so, the inverse
can be defined.

Proof. A decomposition of the matrix ∆A into UBV with U ∈ Zn×kp , B ∈ Zk×kp , and
V ∈ Zk×np can be defined in FO(+,×) using the characterization from Lemma 7. A simple
analysis of the right hand side of Equation (?) – taking the dimensions of U, V, and B

into account – yields that V A−1U and therefore (I + BV A−1U)−1B are k × k matrices.
Furthermore, U(I +BV A−1U)−1BV is an n× n matrix that has at most k non-zero rows
and columns.

The only obstacle to invertibility is that the inverse of D def= I + BV A−1U may not
exist in Zp. This is the case if and only if det(D) ≡ 0 (mod p) which can be tested using
Theorem 8. If D is invertible, then its inverse can be defined by invoking Theorem 8 twice
and using [D]ij = (−1)i+j detDji

detD .
Finally, if one knows how to compute (I + BV A−1U)−1, each entry in A−1U(I +

BV A−1U)−1BV can be defined by adding k products of two numbers, and similarly for
(A−1U(I +BV A−1U)−1BV )A−1. This can be done in FO(+,×) due to Lemma 3. J

It remains to show how to maintain non-zeroness of entries of (A + ∆A)−1 ∈ Qn×n.
Essentially a dynamic program can maintain a Chinese remainder representation of (A +
∆A)−1 and extract whether an entry is non-zero from this representation. An obstacle is that
whenever (I +BV A−1U)−1 (mod p) does not exist for a prime p during the update process,
then this prime p becomes invalid for the rest of the computation. The idea to circumvent
this is simple: with each change, only a small number of primes become invalid. However,
since the determinant can be computed in NC2 (cf. [3]), using Theorem 4 we only need to
be able to maintain a correct result for log2 n many steps. Thus starting from sufficiently
many primes will guarantee that enough primes are still valid after log2 n steps.

We make these numbers more precise in the following.

Proof (of Theorem 6). By Theorem 4 and since values of the inverse of a matrix are almost
domain-independent, it suffices to exhibit a dynamic program4 that maintains non-zeroness
of entries of A−1 for log2 n changes of size logn

log logn . The dynamic program maintains A−1

4 Actually we only describe a program that works correctly for sufficiently large n. However, small n can
be easily dealt with separately.
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(mod p) for each of the first 2n3 many primes p, which, by the Prime Number Theorem, can
be found among the first n4 numbers. Denote by P the set of the first 2n3 primes. The NC2

initialization procedure computes A−1 (mod p) for each prime in P . The update procedure
for a change ∆A is simple:
(1) For each prime p ∈ P :

(a) If (A+ ∆A)−1 (mod p) is not invertible then remove p from P .
(b) If (A+ ∆A)−1 (mod p) is invertible then update (A+ ∆A)−1 (mod p).

(2) Declare [(A+ ∆A)−1]st 6= 0 if there is a prime p ∈ P with [(A+ ∆A)−1]st 6≡ 0 (mod p).

The Steps 1a and 1b can be performed in FO(+,×) due to Proposition 9.
It remains to argue that the result from Step 2 is correct. Observe that the values of

entries of A are at most n at all times, and therefore det(A) ≤ n!nn ≤ 2n2 for large enough n.
Thus, since det(A) 6= 0 over Z by assumption, there are at most n2 primes p such that
det(A) ≡ 0 (mod p), for all A reached after a sequence of changes.

In particular, (A + ∆A)−1 (mod p) is not invertible – equivalently, (I + BV A−1U)−1

(mod p) does not exist – for at most n2 primes p. Hence, each time Step 1 is executed, at
most n2 primes are declared invalid and removed from P . All in all this step is executed at
most log2 n times, and therefore not more than n3 primes are removed from P . Thus for the
remaining n3 valid primes, the inverses (A+ ∆A)−1 (mod p) are computed correctly.

Each entry of (A+ ∆A)−1 is, again, bounded by 2n2 , so if [(A+ ∆A)−1]st 6= 0 there are
at most n2 primes p ∈ P with [(A+ ∆A)−1]st ≡ 0 (mod p). So, the result declared in Step 2
is correct. J

4.2 Defining the Determinant of Small Matrices
In this subsection we prove Theorem 8. The symbolic determinant of a k ∈ O( log

log logn ) sized
matrix is a sum of k! ∈ nO(1) monomials and therefore cannot be naïvely defined in FO(+,×).
Here we use the fact that FO(+,×) can easily convert log n bit numbers into their Chinese
remainder presentation and back, and show how the determinant can be computed modulo
log log n bit primes.

It is easy to verify whether the value of a determinant modulo a O(log log n) bit prime
is zero in FO(+,×) by guessing a linear combination witnessing that the rank is less than
full. We aim for a characterization that allows to reduce the verification of determinant
values to such zeroness tests. To this end we use the self-reducibility and multilinearity of
determinants. Assume [A]11 6= 0 and that the determinant of A11 is also non-zero. Then the
determinant can be written as [A]11 · d+ r for some d and r. By finding an a such that the
determinant is zero when [A]11 is replaced by a in A we gain r = −ad. Repeating this step
recursively for d – which is the determinant of a smaller matrix – one obtains a procedure
for determining the value of the determinant that can be parallelized.

The following lemma is a preparation for deriving the characterization. We denote by Ai
the matrix obtained from a matrix A by removing all rows and columns larger than i.

I Lemma 10. Suppose B = (b̄1, . . . , b̄k) ∈ Fk×k is a non-singular matrix over a field F.
Then there is a permutation π : [k]→ [k] such that for A def= (bπ(1), . . . , bπ(k)):

[A]ii 6= 0 and det(Ai) 6= 0 for all i ∈ [k]

The following proposition characterizes the determinant of a matrix. We will see that
this characterization allows for parallel computation of the determinant of small matrices.
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I Proposition 11. Suppose A = (aij)1≤i,j≤k ∈ Fk×k is a matrix over a field F such that
aii 6= 0 and det(Ai) 6= 0 for all i ∈ [k]. Let Abi be the matrix obtained from Ai by replacing
aii by b for some b ∈ F. Then there are unique b2, . . . , bk ∈ F and d1, . . . , dk ∈ F such that
1. d1 = a11,
2. di = (aii − bi)di−1, and
3. det(Abi ) = 0
for 2 ≤ i ≤ k. Furthermore, it holds that di = det(Ai).

Finally we show that the characterization from the previous proposition can be used to
define the determinant of small matrices in FO(+,×).

Proof (of Theorem 8). Suppose A ∈ Zk×kp is a matrix with p ∈ O(nc) and k = logn
log logn . The

idea is to define det(A) (mod p) in Chinese remainder representation for primes q1, . . . , qm.
A simple calculation shows that m ∈ O(log n) primes each of O(log log n) bits suffice. The
Chinese remainder representation can be defined from A and the value det(A) (mod p) can
be recovered from the values det(A) (mod q1), . . . , det(A) (mod qm) in FO(+,×) due to
Lemma 3. Thus let us show how to define det(A) (mod q) for a prime q of O(log log n) bits.

The idea is to first test whether the determinant is zero. If not, the fact that it is not
zero is used to define the determinant using Proposition 11.

If A (mod q) is singular then there exists a non-trivial linear combination of the columns
that yields the all zero vector. Such a linear combination is determined by specifying one
O(log log n) bit number for each of the k columns. It can thus be encoded in O(log n) bits,
and therefore existentially quantified by a first-order formula. Such a “guess” can be decoded
(i.e., the k numbers of O(log log n) length can be extracted) in FO(+,×), see Section 2.
Checking if a guessed linear combination is zero requires to sum k small numbers and is
hence in FO(+,×) due to Lemma 3.

Now, for defining the determinant det(A) (mod q) when A (mod q) is non-singular, a
formula can guess a permutation π of [k] and verify that it satisfies the conditions from
Lemma 10. Note that such a permutation can be represented as a sequence of k pairs of
numbers of log log n bits each, and hence be stored in O(log n) bits. The verification of the
conditions from Lemma 10 requires the zero-test for determinants explained above. After
fixing π, the values b2, . . . , bk as well as d1, . . . , dk from Proposition 11 can be guessed and
verified. Again, these numbers can be stored in O(log n) bits. For verifying the conditions
from Proposition 11 on the determinants of Abi , the zero-test for determinants is used. J

5 Distances under Multiple Changes

In this section we extend the techniques from the previous section to show how distances
can be maintained under changes that affect polylogarithmically many nodes with first-order
updates that may use majority quantifiers. Afterwards we discuss how the techniques extend
to other dynamic complexity classes.

I Theorem 2. Reachability and Distance can be maintained in DynFO+Maj(+,×) under
changes that affect O(logc n) nodes of a graph, where c ∈ N is fixed and n is the number of
nodes of the graph.

The idea is to use generating functions for counting the number of paths of each length,
following Hesse [13]. Fix a graph G with adjacency matrix AG ∈ Zn×n and a formal
variable x. Then D def=

∑∞
i=0(xAG)i is a matrix of formal power series from Z[[x]] such that

if [D]st =
∑∞
i=0 cix

i then ci is the number of paths from s to t of length i. In particular, the
distance between s and t is the smallest i such that ci is non-zero. Note that if such an i
exists, then i < n.
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Similarly to the corresponding matrix from the previous section, the matrix D is invertible
over Z[[x]] and can be written as (I − xAG)−1 (cf. [10, Example 3.6.1]). The maintenance
of distances thus reduces to maintaining for a matrix A ∈ Z[[x]], for each entry (s, t), the
smallest i < n such that the ith coefficient is non-zero.

I Theorem 12. Suppose A ∈ Z[[x]]n×n stays invertible over Z[[x]]. For all s, t ∈ [n] one can
maintain the smallest i < n such that the ith coefficient of the st-entry of A−1 is non-zero in
DynFO+Maj(+,×) under changes that affect O(logc n) nodes, for fixed c ∈ N.

The idea is the same as for Reachability. When updating A to A + ∆A then one can
decompose the change matrix ∆A into UBV for suitable matrices U,B, and V , and apply
the Sherman-Morrison-Woodbury identity (?), this time over the field of fractions Z((x)).

Of course computing with inherently infinite formal power series is not possible in
DynFO+Maj(+,×). However, as stated in Theorem 12, in the end we are only interested
in the first i < n coefficients of power series. We therefore show that it suffices to truncate all
occurring power series at the n-th term and use FO+Maj(+,×)’s ability to define iterated
sums and products of polynomials [14].

Formally, we have to show that no precision for the first i < n coefficients is lost
when computing with truncated power series. This motivates the following definition. A
formal power series g(x) =

∑
i cix

i ∈ Z[[x]] is an m-approximation of a formal power series
h(x) =

∑
i dix

i ∈ Z[[x]], denoted by g(x) ≈m h(x), if ci = di for all i ≤ m. This notion
naturally extends to matrices over Z[[x]]: a matrix A ∈ Z[[x]]`×k is an m-approximation of a
matrix B ∈ Z[[x]]`×k if each entry of A is an m-approximation of the corresponding entry
of B. The notion of m-approximation is preserved under all arithmetic operations that will
be relevant.

I Lemma 13. Fix an m ∈ N.
1. Suppose g(x), g′(x), h(x), h′(x) ∈ Z[[x]] with g(x) ≈m g′(x) and h(x) ≈m h′(x). Then

(i) g(x) + h(x) ≈m g′(x) + h′(x),
(ii) g(x)h(x) ≈m g′(x)h′(x), and
(iii) 1

g(x) ≈m
1

g′(x) whenever g(x) and g′(x) are normalized.
2. Suppose A,A′, B,B′ ∈ Z[[x]]n×n with A ≈m A′ and B ≈m B′. Then

(i) A+B ≈m A′ +B′,
(ii) AB ≈m A′B′,
(iii) If A is invertible over Z[[x]] then so is A′, and A−1 ≈m A′−1.

Here, a formal power series
∑
i cix

i ∈ Z[[x]] is normalized if c0 = 1.
An approximation of the inverse of a matrix A ∈ Z[[x]]n×n can be updated using the

Sherman-Morrison-Woodbury identity.

I Proposition 14. Suppose A ∈ Z[[x]]n×n is invertible over Z[[x]], and C ∈ Z[[x]]n×n is an
m-approximation of A−1. If A+ ∆A is invertible over Z[[x]] and ∆A can be written as UBV
with U ∈ Z[[x]]n×k, B ∈ Z[[x]]k×k, and V ∈ Z[[x]]k×n, then

(A+ ∆A)−1 ≈m C − CU(I +BV CU)−1BV C

Proof. This follows immediately from the Sherman-Morrison-Woodbury identity (A +
UBV )−1 = A−1 −A−1U(I +BV A−1U)−1BV A−1 and Lemma 13. J

As already discussed in Section 4, the Sherman-Morrison-Woodbury identity involves
inverting k × k matrices, which reduces to computing the determinant of such matrices. We
show that this is possible in FO+Maj for k × k matrices of polynomials for k ∈ O(logc n).
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I Lemma 15. Fix a domain of size n and c ∈ N. The determinant of a matrix A ∈ Z[x]k×k,
with entries of degree polynomial in n, can be defined in FO+Maj(+,×) for k ∈ O(logc n).

Proof. We show that the value can be computed in uniform TC0, which is as powerful as
FO+Maj(+,×) [2].

Computing the determinant of an k × k matrix is equivalent to computing the iterated
matrix product of k matrices of dimension at most (k + 1)× (k + 1) [3], and this reduction
is a uniform TC0-reduction as can be seen implicitly in [17, p. 482]. Thus the lemma
statement follows from the fact that iterated products of matrices A1, . . . , Ak ∈ Z[x]k×k with
k ∈ O(logc n) can be computed in uniform TC0, which can be proven like in [1, p. 69]. J

Proof (of Theorem 12). The dynamic program maintains an n-approximation C ∈ Z[x]n×n
of A−1 that truncates A−1 at degree n. When A is updated to A+ ∆A then:
1. ∆A is decomposed into suitable U ∈ Z[x]n×k, B ∈ Z[x]k×k, and V ∈ Z[x]k×n;
2. C is updated via C ′ def= C − CU(I +BV CU)−1BV C;
3. All entries of C ′ are truncated at degree n.

The steps can be defined in FO+Maj(+,×) due to Lemma 7, Lemma 15, and the fact that
iterated addition and multiplication of polynomials can be defined in FO+Maj(+,×), see [14].
The maintained matrix C is indeed an n-approximation of A−1 due to Proposition 14. J

From the proof of Theorem 12 it is clear that the main obstacle towards maintaining
distances for changes that affect a larger set of nodes is to compute determinants of larger
matrices. Since distances can be computed in NL, only classes below NL are interesting
from a dynamic perspective. As an example we state a result for the circuit class NC1.

I Corollary 16. Reachability and Distance can be maintained in DynNC1 under changes
that affect O(2

√
logn/ log∗ n) nodes.

Here log∗ n denotes the smallest number i such that i-fold application of log yields a
number smaller than 1.

6 Conclusion

For us it came as a surprise that Reachability can be maintained under changes of non-
constant size, without any structural restrictions. In contrast, the dynamic program for
Reachability from [4] can only deal with changing log n many outgoing edges of single nodes
(or, symmetrically, log n many incoming edges; a combination is not possible).

It would be interesting to improve our results for DynFO(+,×) to changes of size O(log n).
The obstacle is the computation of determinants of matrices of this size, which we can only
do for O( logn

log logn ) size matrices. Yet in principle our approach can deal with certain changes
that affect more nodes: the matrices U and V in the Sherman-Morrison-Woodbury identity
can be chosen differently, as long as all computations involve only adding O(log n) numbers.

One of the big remaining open questions in dynamic complexity is whether distances are
in DynFO. Our approach sheds some light. It can be adapted so as to maintain information
within DynFO(+,×) from which shortest distances can be extracted in FO+Maj(+,×).

I Theorem 17. Distances can be defined by a FO+Maj(+,×) query from auxiliary relations
that can be maintained in DynFO(+,×) under changes that affect O( logn

log logn ) nodes.
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1 Introduction

Probabilistic automata (PA) are a quantitative extension of classical Boolean automata that
were first introduced by Rabin [20]. Non-deterministic choices are replaced by probabilities:
each transition carries a rational number which gives its probability to be chosen amongst
all the other transitions going out of the same state and labelled by the same letter. Then,
instead of simply accepting or rejecting a word, such an automaton measures the probability
of it being accepted.

PA can be seen as (blind) partially observable Markov decision processes [19]. The
latter have numerous applications in the field of artificial intelligence [22, 11]. Further
applications for PA include, amongst others, verification of probabilistic systems [23, 14, 5],
reasoning about inexact hardware [18], quantum complexity theory [25], uncertainty in
runtime modelling [9], as well as text and speech processing [17]. PA are very expressive, as
witnessed by the mentioned applications, most natural verification-related decision problems
for them are consequently undecidable. However, equivalence and minimisation do admit
efficient algorithms [13].

Due to the aforementioned negative results, many sub-classes of probabilistic automata
have been studied. These include hierarchical [7] and leaktight [2] automata; and more
recently, bounded-ambiguity automata [8] (see [6] for a survey).

In this paper, we continue the study of the class of PA with bounded ambiguity. We focus
on the containment problem: given two automata A and B, determine whether for all words
w, the probability of it being accepted by A is at most the probability of it being accepted by B.
The problem is known to be undecidable even for the subclass of automata with polynomial
ambiguity, more specifically, already for automata with quadratic ambiguity [8].

Contributions. In this paper, we refine the undecidability result by extending it to the class
of linearly ambiguous automata.

I Theorem 1. The containment problem is undecidable for the class of linearly ambiguous
probabilistic automata.

The proof we provide gives in fact two stronger results. Firstly, the containment problem
for linearly ambiguous PA is already undecidable if one of the two input automata is
unambiguous. Secondly, and perhaps more importantly, the better-known emptiness problem
(given a probabilistic automaton, does there exist a word accepted with probability at least 1/2?)
is also undecidable for the class of linearly ambiguous PA. This strictly refines the previous
best known result [8].

This negative result motivates us to turn our attention to the class of finitely ambiguous
PA. For this class, we prove that the containment problem is decidable, provided that one of
the two input automata is unambiguous (and conditional on Schanuel’s conjecture).

https://arxiv.org/abs/1804.09077
https://arxiv.org/abs/1804.09077
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I Theorem 2. If Schanuel’s conjecture holds then the containment problem is decidable for
the class of finitely ambiguous probabilistic automata, provided that at least one of the input
automata is unambiguous.

The intermediate problem, i.e., when both input PA are finitely ambiguous, remains open.

Organisation of the paper. In Section 2, we give the formal definition of probabilistic
automata, the notion of ambiguity, and the problems under consideration. We also recall
classical results that will be useful in the paper. In Section 3, we explain how to translate
the containment problem into a problem about the existence of integral exponents for certain
exponential inequalities. Using this formalism, we prove that the containment problem for A
and B, as stated above, is decidable if A is finitely ambiguous and B is unambiguous. In
Section 4, we tackle the more challenging direction and prove that the containment problem
is also decidable if A is unambiguous and B is finitely ambiguous. Finally, in Section 5, we
prove that the containment problem is undecidable provided that one of the automata is
linearly ambiguous.

2 Preliminaries

In this section, we define probabilistic automata and recall some classical results.

Notation. We use boldface lower-case letters, e.g., a, b, . . . , to denote vectors and upper-
case letters, e.g., M,N, . . . , for matrices. For a vector a, we write ai for its i-th component,
and a> for its transpose.

2.1 Probabilistic automata and ambiguity
For a finite set S, we say that a function f : S → Q≥0 is a distribution over S if

∑
s∈S f(s) ≤

1. We write D(S) for the set of all distributions over S. We also say that a vector
d = (d1, d2, . . . , dn) ∈ Qn≥0 of non-negative rationals is a distribution if

∑n
i=1 di ≤ 1.

A probabilistic automaton (PA) A is a tuple (Σ, Q, δ, ι, F ), where:
Σ is the finite alphabet,
Q is the finite set of states,
δ : Q× Σ→ D(Q) is the (probabilistic) transition function,
ι ∈ D(Q) is the initial distribution, and
F ⊆ Q is the set of final states.

We write δ(q, a, p) instead of δ(q, a)(p) for the probability of moving from q to p reading a.
Consider the word w = a1 . . . an ∈ Σ∗. A run ρ of A over w = a1 . . . an is a sequence of
transitions (q0, a1, q1), (q1, a2, q2), . . . , (qn−1, an, qn) where δ(qi−1, ai, qi) > 0 for all 1 ≤ i ≤ n.
It is an accepting run if ι(q0) > 0 and qn ∈ F . The probability of the run ρ is PrA(ρ) def=
ι(q0) ·

∏n
i=1 δ(qi−1, ai, qi).

The automaton A realizes a function [[A]] mapping words over the alphabet Σ to values
in [0, 1]. Formally, for all w ∈ Σ∗, we set: [[A]](w) def=

∑
ρ∈AccA(w) PrA(ρ) where AccA(w) is

the set of all accepting runs of A over w.

Ambiguity. The notion of ambiguity depends only on the structure of the underlying
automaton (i.e., whether a probability is null or not, but not on its actual value). An
automaton A is said to be unambiguous (resp. k-ambiguous) if for all words w, there is at
most one accepting run (resp. k accepting runs) over w in A. If an automaton is k-ambiguous
for some k, then it is said to be finitely ambiguous. If there exists a polynomial P , such that
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1 a : 1
2

b : 1

a, b : 1

q⊥

a : 1
2

b : 1a : 1
2

a, b : 1a, b : 1 1

Figure 1 Two PA over the alphabet Σ = {a, b} are depicted. On the left hand side, automaton A
induces the function anbΣ∗ 7→ 1

2n and a∗ 7→ 0. On the right hand side, the automaton A induces the
function anbΣ∗ 7→ 1− 1

2n and a∗ 7→ 1. Observe that A is unambiguous and A is linearly ambiguous.

for every word w, the number of accepting runs of A on w is bounded by P (|w|) (where |w|
is the length of w), then A is said to be polynomially ambiguous, and linearly ambiguous
whenever the degree of P is at most 1.

It is well-known that if an automaton is not finitely ambiguous then it is at least linearly
ambiguous (see, for example, the criterion in [24, Section 3]). The same paper shows that if
an automaton is finitely ambiguous then it is k-ambiguous for k bounded exponentially in
the number of states of that automaton.

We give two examples of PA and discuss their ambiguity in Figure 1. As usual, they are
depicted as graphs. The initial distribution is denoted by ingoing arrows associated with
their probability (when there is no such arrow, the initial probability is 0) and the final states
are denoted by outgoing arrows.

2.2 Decision problems
In this work, we are interested in comparing the functions computed by PA. We write
[[A]] ≤ [[B]] if “A is contained in B”, that is if [[A]](w) ≤ [[B]](w) for all w ∈ Σ∗; and we
write [[A]] < 1

2 if [[A]](w) < 1
2 for all w ∈ Σ∗. We are interested in the following decision

problems for PA.
Containment problem: Given probabilistic automata A and B, does [[A]] ≤ [[B]] hold?
Emptiness problem: Given a probabilistic automaton A, does [[A]] < 1

2 hold?

We will argue that the containment and emptiness problems are both undecidable when
considered for the class of linearly ambiguous automata (Section 5). The emptiness problem
is known to be decidable for the class of finitely ambiguous automata [8]. We tackle here the
more difficult containment problem (Sections 3 and 4).

2.3 Classical results
Weighted-sum automaton. For PA A1,A2, . . . ,An over the same alphabet, and for a
discrete distribution d = (d1, d2, . . . , dn), the weighted sum (of A1,A2, . . . ,An with weights d)
is defined to be the disjoint union of the n automata with the initial distribution ι(q) def= di·ιi(q)
if q is a state of Ai, where ιi is the initial distribution of Ai. Note that if B is the
weighted sum of A1,A2, . . . ,An with weights d then it is also a probabilistic automaton and
[[B]] =

∑n
i=1 di · [[Ai]].

Complement automaton. For a PA A, we define its complement automaton A in the
following way. First, define the PA A′ by modifying A as follows:

add a new sink state q⊥;
obtain the transition function δ′ from δ by adding transitions:
δ′(q⊥, a, q⊥) = 1 for all a ∈ Σ,
δ′(q, a, q⊥) = 1−

∑
r∈Q δ(q, a, r) for all (q, a) ∈ Q× Σ;

obtain the initial distribution ι′ from ι by adding ι′(q⊥) = 1−
∑
q∈Q ι(q).
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Observe that [[A′]] = [[A]], that
∑
r∈Q δ

′(q, a, r) = 1 for all (q, a) ∈ Q × Σ, and that∑
q∈Q ι

′(q) = 1. We obtain A from A′ by swapping its final and non-final states. As
expected, it is the case that [[A]] = 1− [[A]].
I Remark (Preserving ambiguity). The ambiguity of a weighted-sum automaton is the sum of
the ambiguities of the individual automata, and the ambiguity of a complement automaton
may be larger than the ambiguity of the original one (see Figure 1).

3 Decidability of the case finitely ambiguous vs. unambiguous

Our aim is to decide whether [[A]] ≤ [[B]]. We first give a translation of the problem into a
problem about the existence of integral exponents for certain exponential inequalities.

Notation. In the rest of the paper, we write exp(x) to denote the exponential function
x 7→ ex, and log(y) for the natural logarithm function y 7→ loge(y). For a real number x and
a positive real number y, we write yx for exp(x log(y)).

3.1 Translating the containment problem into exponential inequalities
We are going to translate the negation of the containment problem: Given two finitely
ambiguous PA A and B, does there exist a word w, such that [[A]](w) > [[B]](w)? Consider
two positive integers k and n, and vectors p ∈ Qk>0 and q1, . . . , qk ∈ Qn>0. We denote by
S(p, q1, . . . , qk) : Nn → R the function associating a vector x ∈ Nn to

∑k
i=1 piq

x1
i,1 . . . q

xn
i,n,

where qi,j is the j-th component of vector qi.

I Proposition 3. Given a k-ambiguous automaton A and an `-ambiguous automaton B, one
can compute a positive integer n and a finite set ∆ of tuples (p, q1, . . . , qk′ , r, s1, . . . , s`′) of
vectors p ∈ Qk′

>0, r ∈ Q`′

>0, for some k′ ≤ k and `′ ≤ `; and qi ∈ Qn>0, sj ∈ Qn>0, for all i
and j; such that the following two conditions are equivalent:

there exists w ∈ Σ∗ such that [[A]](w) > [[B]](w),
there exist (p, q1, . . . , qk′ , r, s1, . . . , s`′) ∈ ∆ and x ∈ Nn such that

S(p, q1, . . . , qk′)(x) > S(r, s1, . . . , s`′)(x).

It thus follows that to prove Theorem 2, it suffices to show decidability of the second item of
Proposition 3 for a given element of ∆ in the cases where either k or ` are equal to 1. To
prove Proposition 3, the idea is to decompose every run into a short path and simple cycles
using the well-known simple-cycle decomposition (see, e.g., [21]). We do this simultaneously
for all runs in A and B. The vectors p and r then correspond to probabilities of simple paths
in every run; qi (resp. sj), to all simple cycles in the i-th run in A (resp. j-th run in B).
Finally, x specifies how many times each simple cycle occurs in the decomposition.

I Example 4. Consider the following instance of the problem, where k = n = 2, ` = 1, and
p is a fixed rational number 0 ≤ p ≤ 1: Do there exist x, y ∈ N such that p ·

( 1
12
)x · ( 1

2
)y +

(1− p) ·
( 1

3
)x · ( 1

18
)y
<
( 1

6
)x · ( 1

6
)y. This can be rewritten as

p ·
(

1
2

)x
· 3y + (1− p) · 2x ·

(
1
3

)y
< 1

or equivalently, using the exponential function, as follows

exp(log(p)− x log(2) + y log(3)) + exp(log(1− p) + x log(2)− y log(3)) < 1.
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−3 −2 −1

−3

−2

−1

ex + ey = 1

V

b

u

v

x

y

Figure 2 The set V is bounded by the plot ex + ey = 1 and the point b is on that plot.

Consider the set V = {(x, y) ∈ R2 | ex+ey < 1} and denote by b the point (log(p), log(1−p)).
Let u = (− log(2), log(2)) and v = (log(3),− log(3)) be two vectors. See Figure 2 for a
geometric representation. The question is now: do there exist x, y ∈ N such that b+xu+yv ∈
V . We will show that the answer is yes if and only if p 6= 1

2 .
Let C = {(x,−x) | x ∈ R}. For p = 1

2 , the affine line C + p is tangent to the blue plot
and so, whatever the values of x and y, b+ xu + yv cannot be in V . For p 6= 1

2 , there is a
value δ such that the whole interval strictly between b and b+ (δ,−δ) is in V . Since log(2)
and log(3) are rationally independent, the set D = {xu + yv | x, y ∈ N} is a dense subset
of C, so in particular, there is a point of D + b in the interval between b and b+ (δ,−δ) and
thus there exist x, y ∈ N such that b+ xu + yv ∈ V .

3.2 Decidability
We prove here the decidability of the containment problem when A is finitely ambiguous
and B is unambiguous. The converse situation is tackled in Section 4.

I Proposition 5. Determining whether [[A]] ≤ [[B]] is decidable when A is finitely ambiguous
and B is unambiguous.

Proof. Let A be k-ambiguous. Proposition 3 shows that it is sufficient to decide, given
an integer n and positive rational numbers p, qj , ri, si,j for i ∈ {1, . . . , k}, j ∈ {1, . . . , n},
whether there exists x1, . . . , xn ∈ N such that

k∑
i=1

piq
x1
i,1 · · · q

xn
i,n > rsx1

1 · · · sxn
n . (1)

We consider two cases. First, assume that there exist i and j such that qi,j > sj . Then in
that case, for a large enough m ∈ N condition (1) will be satisfied for (x1, . . . , xj , . . . , xn) =
(0, . . . ,m, . . . , 0). Otherwise, assume that max{qi,j | 1 ≤ i ≤ k} ≤ sj for all 1 ≤ j ≤ n. In
this case, if there exists a valuation of the xi satisfying (1) then (x1, . . . , xn) = (0, . . . , 0) also
satisfies it. It is then sufficient to test condition (1) for x1 = · · · = xn = 0 to conclude. J

4 Decidability of the case unambiguous vs. finitely ambiguous

In this section we will show the more challenging part of Theorem 2, i.e., that the containment
problem is decidable for A unambiguous and B finitely ambiguous. Our proof is conditional
on the first-order theory of the reals with the exponential function being decidable. In [15], the
authors show that this is the case if a conjecture due to Schanuel and regarding transcendental
number theory is true.
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I Theorem 6. Determining whether [[A]] ≤ [[B]] is decidable when A is unambiguous and B
is finitely ambiguous, assuming Schanuel’s conjecture is true.

4.1 Integer programming problem with exponentiation
Given two positive integers n and `, we define Fn,` to be the set of all the functions f : Rn → R
such that there exist r ∈ Q`>0 and s1, . . . , s` ∈ Qn>0 such that f(x) =

∑`
i=1 ris

x1
i,1 . . . s

xn
i,n.

Observe that this is just a lifting of the S(·) function, defined in the previous section, to real-
valued parameters. Consider the following integer programming problem with exponentiation.

I Problem 7 (IP+EXP).
Input: Three positive integers n, ` and m, a function f ∈ Fn,`, a matrix M ∈ Zm×n, and a

vector c ∈ Zm.
Question: Does there exist x ∈ Zn such that f(x) < 1 and Mx < c?

In the sequel, we will show that the above problem is decidable.

I Theorem 8. The IP+EXP problem is decidable, assuming Schanuel’s conjecture is true.

Theorem 6 is a direct corollary of Theorem 8.

Proof of Theorem 6. Proposition 3 shows that, in order to prove Theorem 6, it is sufficient
to decide, given an integer n and positive rational numbers p, ri, qj , si,j for i ∈ {1, . . . , `},
j ∈ {1, . . . , n}, whether there exist x1, . . . , xn ∈ N such that pqx1

1 · · · qxn
n >

∑`
i=1 ris

x1
i,1 · · · s

xn
i,n

or equivalently, whether there exist x1, . . . , xn ∈ N such that:

∑̀
i=1

rip
−1(si,1q−1

1 )x1 · · · (si,nq−1
n )xn < 1. (2)

Define f : Rn → R such that f(x) =
∑`
i=1 rip

−1(si,1q−1
1 )x1 · · · (si,nq−1

n )xn . Then,
inequality (2) becomes f(x) < 1. We can now apply Theorem 8 with m set to be n; M , to
be −Id, where Id is the identity matrix; and c to be the null vector. J

Since the IP+EXP problem is semi-decidable (indeed, we can enumerate the vectors x in
Zn to find one satisfying the conditions), it will suffice to give a semi-decision procedure to
determine whether the inequalities f(x) < 1 ∧Mx < c have no integer solution. We give
now such a procedure.

4.2 Semi-decision procedure for the complement of IP+EXP
Consider as input for the IP+EXP problem three positive integers n, `, m, a function
f ∈ Fn,`, a matrix M ∈ Zm×n, and a vector c ∈ Zm. Denote by X the set of real solutions
of the problem, i.e., the set of vectors X = {x ∈ Rn | f(x) < 1 ∧Mx < c}.

Proc(n, `, m, f , M , c):
1. Search for a non-zero vector d ∈ Zn and a, b ∈ Z such that {d>x | x ∈ X} ⊆ [a, b]. Set

i = a.
2. If i > b, then stop and return YES. Otherwise, let Yi be the set of vectors x ∈ Zn

satisfying d1x1 + · · ·+ dnxn = i. If Yi is empty, then increment i and start again from
step 2. Otherwise:
a. Compute N ∈ Zn×(n−1) and h ∈ Zn such that Yi = {Ny + h | y ∈ Zn−1}.
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b. If n− 1 = 0 and f(h) < 1 ∧Mh < c then return NO, otherwise increment i and start
again from step 2.

c. If n − 1 > 0 then recursively call Proc(n − 1, `, m, f ′, M ′, c′), where f ′ ∈ Fn−1,`
is defined as f ′(y) = f(Ny + h); M ′ ∈ Zm×(n−1), as M ′ = MN ; and c′ ∈ Zm, as
c−Mh. If the procedure stops and returns YES then increment i and start again from
step 2. If the procedure stops and returns NO then return NO.

I Lemma 9. The above semi-decision procedure stops and outputs YES if and only if there
is no integer valuation of x that satisfies the constraints, i.e. X ∩ Zn is empty.

First, notice that the only step which might not terminate in a call to our procedure
is step 1. Indeed, once d, a, and b are fixed, there are only finitely many integers i ∈ [a, b]
that have to be considered in step 2. For each of them, one can compute in a standard
way (see, e.g., [3]) the set of integer solutions of the equation d1x1 + · · ·+ dnxn = i and the
corresponding N and h as in the procedure.

Moreover, for each integer vector d ∈ Zn and a, b ∈ Z, the inclusion {d>x | x ∈ X} ⊆ [a, b]
that needs to be checked in step 1 can be formulated as a decision problem in the first-order
logic over the structure (R,+,×, exp). Since this structure has a decidable first-order theory
subject to Schanuel’s conjecture [15], the inclusion can be decided for each fixed d, a, and b.

To prove Lemma 9 we use the two following lemmata. The first one is the most technical
contribution of the paper and is proved in Section 4.3. It ensures termination of step 1 in
the procedure when there is no integer solution.

I Lemma 10. If the set X contains no integer point then there must exist a non-zero integer
vector d ∈ Zn and a, b ∈ Z such that {d>x | x ∈ X} ⊆ [a, b].

I Lemma 11. Given a non-zero vector d ∈ Zn and an integer i, there exists x ∈ Zn
such that f(x) < 1 ∧Mx < c ∧ d>x = i if and only if there exists y ∈ Zn−1 such that
f ′(y) < 1 ∧M ′y < c′ where f ′, M ′ and c′ are as defined in the procedure.

We can now prove Lemma 9.

First direction: when the procedure returns YES. Suppose first that the semi-decision
procedure stops and outputs YES. Then there exist a non-zero vector d ∈ Zn and a, b ∈ Z
such that {d>x | x ∈ X} ⊆ [a, b] as in step 1, and for all integers i ∈ [a, b], one of the
following situations occurs:
1. Yi is empty,
2. n− 1 = 0, Yi = {h} as defined in step 2.a but h is not an integer solution of the problem,
3. n− 1 > 0 and the recursive call stops and outputs YES.
By definition of d, in order to prove that there is no integer solution of the problem, we need
to show that in all those cases, and for all i ∈ [a, b], Yi ∩X = ∅. It is clear for items 1 and 2
and we use Lemma 11 and an induction for item 3.

Second direction: when X ∩ Zn = ∅. If there is no integer solution then by Lemma 10,
there must exist a non-zero vector d ∈ Zn and a, b ∈ Z such that {d>x | x ∈ X} ⊆ [a, b] as
in step 1. Moreover, for any of those choices, if for an integer i ∈ [a, b], the set Yi of vectors
x ∈ Zn satisfying d1x1 + · · ·+ dnxn = i is non-empty, then,
1. if n = 1, then h as defined in step 2.a, is not a solution of the problem (by hypothesis)

and thus the procedure stops and returns YES,
2. if n > 1, we use Lemma 11 and, by induction, the recursive call must return YES.
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4.3 Proof of Lemma 10
Fix three positive integers n, `, m, a function f ∈ Fn,`, a matrix M ∈ Zm×n, and a vector
c ∈ Zm. Recall that we denote by X the set of vectors

X = {x ∈ Rn | f(x) < 1 ∧Mx < c}.

We want to prove that if the set X contains no integer point then there must exist a non-zero
integer vector d ∈ Zn and a, b ∈ Z such that {d>x | x ∈ X} ⊆ [a, b].

We will use the following corollary of Kronecker’s theorem on simultaneous Diophantine
approximation. It generalises the fact that any line in the plane with irrational slope passes
arbitrarily close to integer points in the plane.

I Proposition 12. [12, Corollary 2.8]. Let u,u1, . . . ,us be vectors in Rn. Suppose that for
all d ∈ Zn we have d>u = 0 whenever d>u1 = · · · = d>us = 0. Then for all ε > 0 there
exist real numbers λ1, . . . , λs ≥ 0 and a vector v ∈ Zn such that ‖u +

∑s
i=1 λiui − v‖∞ ≤ ε.

By definition, there exist vectors r ∈ Q`>0 and s1, . . . , s` ∈ Qn>0 such that f(x) =∑`
i=1 ris

x1
i,1 . . . s

xn
i,n. Let a ∈ R` and bi ∈ Rn be defined by ai = log(ri) and bi =

(log(si,1), . . . , log(si,n)). We can then rewrite f(x) as follows

f(x) = exp(b>1 x + a1) + · · ·+ exp(b>` x + a`).

Let us now consider the cone

C =
{

x ∈ Rn
∣∣∣ b>1 x ≤ 0 ∧ · · · ∧ b>` x ≤ 0 ∧Mx ≤ 0

}
. (3)

It is easy to see that X + C ⊆ X.

I Lemma 13. Suppose that X is non-empty and that no non-zero integer vector in Zn is
orthogonal to C. Then X ∩ Zn is non-empty.

Proof. Let u ∈ X. Since X is open, there exists ε > 0 such that the open ball Bε(u) is
contained in X. We therefore have that Bε(u) + C ⊆ X.

We will apply Proposition 12 to show that Bε(u) + C contains an integer point and
hence that X contains an integer point. To this end, let vectors u1, . . . ,us ∈ C be such that
span{u1, . . . ,us} = span(C). Then no non-zero vector in Zn is orthogonal to u1, . . . ,us. By
Proposition 12, there exist real numbers λ1, . . . , λs ≥ 0 and an integer vector v ∈ Zn such
that ‖u +

∑s
i=1 λiui − v‖∞ ≤ ε. Thus, v ∈ Bε(u) + C ⊆ X. J

The contrapositive of the above result states that if X contains no integer point, then
there must exist an integer vector that is orthogonal to C. For the desired result, it remains
for us to prove the boundedness claim.

I Lemma 14. Suppose that d ∈ Zn is orthogonal to the cone C. Then {d>u | u ∈ X} is
bounded.

Proof. Define the “enveloping polygon” of X to be

X̂ =
{

x ∈ Rn
∣∣∣ b>1 x + a1 ≤ 0 ∧ · · · ∧ b>` x + a` ≤ 0 ∧Mx ≤ c

}
.

Clearly it holds that X ⊆ X̂. Moreover, by the Minkowski-Weyl decomposition theorem we
can write X̂ as a sum X̂ = B + C for B a bounded polygon and C the cone defined in (3).
Since d is orthogonal to C by assumption, it follows that {d>u | u ∈ X̂} = {d>u | u ∈ B}
is bounded and hence {d>u | u ∈ X} is bounded. The result immediately follows. J
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We can now complete the proof of Lemma 10.

Proof of Lemma 10. By Lemma 13 there exists a non-zero integer vector d ∈ Zn such
that d is orthogonal to the cone C defined in (3). Then by Lemma 14 we obtain that
{d>u | u ∈ X} is contained in a bounded interval. J

5 Undecidability for linearly ambiguous automata

In this section we prove Theorem 1. That is, we argue that the containment problem is
undecidable for the class of linearly ambiguous PA. For most of this section we deal with
the following variant of the problem: does there exist a word w such that [[A]](w) ≤ [[B]](w).
Towards the end, we shortly explain how our reduction proves undecidability for any variant
of this problem (that is, with inequality <). Moreover, we derive from the proof that all
variants of the emptiness problem are undecidable for a given linearly ambiguous automaton
A, i.e. whether there exists w such that [[A]](w) ≥ 1

2 (or resp. >, ≤, <).
The proof is done by a reduction from the halting problem for two-counter machines.

The reduction resembles the one used to prove undecidability of the comparison problem
for another quantitative extension of Boolean automata: max-plus automata [4, 1]. We give
here an outline of the proof and the main ideas used in the reduction.

Two-counter machines. A two-counter machine (or a Minsky machine) is a deterministic
finite-state machine, with an initial state, a final state, and two counters, each of which
can be incremented or decremented (if its value is not 0). For each counter i ∈ {1, 2},
there are two types of transitions: T+

i ⊆ Q2 such that a transition (p, q) ∈ T+
i moves from

state p to state q and increments the i-th counter; and T−i ⊆ Q3 such that a transition
(p, q, r) ∈ T−i moves from state p to state q if the i-th counter has value 0, and moves from
state p to state r decrementing the i-th counter otherwise. The set of all transitions is
denoted T = T+

1 ∪ T
+
2 ∪ T

−
1 ∪ T

−
2 .

The machine halts if there is a (unique) computation from the initial state to the final
state. It is well-known that deciding whether a given machine halts is undecidable [16]. We
use this fact to prove undecidability of the containment problem.

I Proposition 15. Given a two-counter machine, one can construct two linearly ambiguous
probabilistic automata A and B, such that the machine halts if and only if there exists a
word w such that [[A]](w) ≤ [[B]](w).

Outline of the reduction. The general idea is to encode executions of the two-counter
machine into words over the alphabet Σ = {a, b} ∪ T . A block am (resp. bm) encodes the
fact that the value of the first (resp. second) counter is m. For example, given t ∈ T+

1
and t′ ∈ T−2 , a word anbmtan+1bmt′an+1bm

′ , encodes an execution starting with value n in
the first counter and m in the second counter. Transition t then increases the value of the
first counter to n + 1 without changing the value of the second one. The configuration is
thus encoded by the infix an+1bm. Next, transition t′ is taken, and either m′ = m = 0 or
m′ = m − 1. Moreover, if t = (p, q) and t′ = (r, s, u) then q = r (i.e., the states between
transitions have to match).

Simulating executions faithfully. Our reduction has the following property: [[A]](w) =
[[B]](w) for the unique word w encoding the halting execution (if it exists), and [[A]](w) >
[[B]](w) for all other words. This suffices to prove Proposition 15.
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x x

T : 1
2

a, b : 1

T : 1
2 a : y

b : 1

T +
1 : y

a : z T, b : 1 Σ : 1

Figure 3 Gadget automaton C(x, y, z) used to check if the first counter is incremented properly.

There are several conditions that the constructed automata A and B need to check to
ensure the correctness of the encoding: whether the states match; whether the counter values
encoded by blocks of a and b are increased and decreased properly, etc. It is easy to define
an automaton A0 that will allow us to focus only on proper words of the form

w = an1bm1t1a
n2bm2t2a

n3bm3t3 · · · ankbmktk. (4)

That is, A0 is such that [[A0]](w) = 0 if the word w correctly alternates between blocks of a,
b, and letters from T ; it correctly implements the zero tests within decrement transitions; it
observes the initial and final states and checks that the states of adjacent transitions match.
Observe that the latter are all regular conditions. If w does not satisfy all these constraints,
then [[A0]](w) = 1.

For other (non-regular) conditions we construct pairs of automata Ai and Bi, such that
[[Ai]](w) = [[Bi]](w) if a proper word w does not violate the condition and [[Ai]](w) > [[Bi]](w)
for all other proper words. In the end, the automata A and B are obtained as weighted sums
of the automata Ai and Bi.

Simulating increments. We present the construction for one of the components of A and B.
The remaining ones are obtained using similar gadgets. The automata A1 and B1 check that
a proper word encodes an execution where the first counter is always correctly incremented
after reading transitions from T+

1 . Consider the automaton C(x, y, z) in Figure 3. It is
parameterised by three probability variables x, y, z > 0. The parameter x is the probability
used by the initial distribution, and parameters y and z are used by some transitions.

Consider a word w as in (4). Notice that the only non-deterministic transitions in C(x, y, z)
are the ones going out from the the leftmost state upon reading letters from T . It follows
that C(x, y, z) is linearly ambiguous. In fact, for every position in w labelled by an element t
from T+

1 there is a unique accepting run that first reaches a final state upon reading t. By
construction, we have

[[C(x, y, z)]](w) =
∑
ti∈T+

1

x

(
1
2

)i−1
yni+1zni+1 . (5)

Let x = 1
2 , y = 1 and z = 1

4 . We define B1 as C(x, x, x) and A1 as a weighted sum of
C(x, y, z) and C(x, z, y) with weights ( 1

2 ,
1
2 ). Since C(·, ·, ·) is linearly ambiguous the obtained

automata are also linearly ambiguous. We prove that [[A1]](w) = [[B1]](w) only if ni+1 = ni+1
for all i such that ti ∈ T+

1 and [[A1]](w) > [[B1]](w) otherwise.
By (5) it suffices to show that for every i it holds that(

1
2

)ni+1+ni+1

≤ 1
2

((
1
4

)ni+1

+
(

1
4

)ni+1
)

and that the equality holds only if ni + 1 = ni+1, which is the case.
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px qx ⊥1− 2x

T : 1
2

a, b : 1

T : 1
2 a : y

b : 1

a, T +
1 : 1− y

T \ T +
1 : 1

Σ : 1

Figure 4 Complement automaton of C(x, y, z) after trimming.

Changes for version with strict inequalities. Observe that if PA A and B output different
probabilities on a word w then the probabilities must differ by at least x|w|+1 for some
value x depending on the probabilities used in A and B (see, e.g., [10]). By a weighted sum
construction, we can define a PA B′ associating a word w to the value [[B]](w) +x|w|+1. Then
there is a word w such that [[A]](w) ≤ [[B]](w) if and only if there is a word w such that
[[A]](w) < [[B′]](w).

Changes for the emptiness problem. Let us consider the containment problem [[A]] ≤ [[B]].
For all words w, we have that [[A]](w) ≤ [[B]](w) holds if and only if 1

2 [[A]](w)+ 1
2 (1−[[B]](w)) ≤

1
2 . Thus, using the weighted sum and complement operations we can get a single probabilistic
automaton that outputs 1

2 [[A]](w) + 1
2 (1 − [[B]](w)). Complementing an automaton may,

in general, increase the ambiguity (see Figure 1). However, for the automata we have
constructed, this is not the case. For example, it is easy to check that the complement
automaton C(x, y, z) depicted in Figure 4 is—just like C(x, y, z)—also linearly ambiguous.

6 Conclusion

In this work we have shown that the containment problem for probabilistic automata is
decidable if one of the automata is finitely ambiguous and the other one is unambiguous.
Interestingly, for one of the two cases, our proposed algorithm uses a satisfiability oracle for
a theory whose decidability is equivalent to a weak form of Schanuel’s conjecture. We have
complemented our decidability results with a proof of undecidability for the case when the
given automata are linearly ambiguous.

Decidability of the containment problem when both automata are allowed to be finitely
ambiguous remains open. One way to tackle it is to study generalizations of the IP+EXP
problem introduced in Section 4. This problem asks whether there exists x ∈ Nn such that
f(x) < 1 and Mx < c for a given function f defined using exponentiations, a given matrix
M , and vector c. A natural way to extend the latter would be to ask that f(x) < g(x),
where g is obtained in a similar way as f . The main obstacle, when trying to generalize our
decidability proof for that problem, is that we lack a replacement for the cone C needed in
order to obtain a result similar to Lemma 14 using the Minkowski-Weyl decomposition.
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Abstract
We investigate in this paper a notion of comparison between infinite strings. In a general way, if
M is a computation model (e.g. Turing machines) and C a class of objects (e.g. languages), the
complexity of an infinite word α can be measured with respect to the amount of objects from C
that are presentable with machines fromM using α as an oracle.

In our case, the modelM is finite automata and the objects C are either recognized languages
or presentable structures, known respectively as advice regular languages and advice automatic
structures. This leads to several different classifications of infinite words that are studied in
detail; we also derive logical and computational equivalent measures. Our main results explore
the connections between classes of advice automatic structures, MSO-transductions and two-way
transducers. They suggest a closer study of the resulting hierarchy over infinite words.
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1 Introduction

Several measures have been defined to describe the (intuitive) complexity of infinite strings;
among others we mention subword complexity, Kolmogorov complexity, and Turing degrees.
Whereas the two first methods focus on the intrinsic information contained in a string, the
other one studies the relation of computability from one word to another, defining a preorder
whose properties are now quite well understood. Equivalently, this preorder compares the
expressive power of Turing machines that use an infinite word as oracle.

This paper follows a similar idea: we consider finite automata that can access an infinite
advice string while processing their input. Such automata define classes of advice regular
languages [17], that generalize standard regularity. This notion enables us to introduce a
way to compare infinite words: α is simpler (in the sense of languages) than β if every
language recognized by an automaton with advice α can also be recognized with advice β. It
corresponds to some intuition that α contains less information than β.

Before going further, we evoke the current motivations around advice regular languages.
Standard regular languages can be used to encode finite-signature structures, known as
automatic structures. This concept, derived from Büchi’s early automata-logic connections,
has been shown especially relevant since its formalization in the 1990’s (see e.g. [8]). The
model opened the door to a vast range of decision procedures via automata constructions,
but it suffers from a lack of expressiveness, since e.g. 〈Q,+〉 is not automatic [20]. However,
〈Q,+〉 is an example of advice automatic structure: it can be encoded using advice regular

1 This work was partially done during a stay of the author in RWTH Aachen University.
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122:2 On the Complexity of Infinite Advice Strings

languages (instead of regular languages) [13]. Such structures share many properties with
the former automatic structures, furthermore the use of advices builds a rich framework to
discuss algorithmic meta-theorems [2]. We shall not follow a model-theoretic point of view
on advice automatic structures, but we use them to define another notion of comparison over
infinite words as follows: α is simpler (in the sense of structures) than β if every automatic
structure with advice α is also automatic with advice β.

Objectives and outline. This paper is structured as a quest for a relevant way to compare
infinite strings through the notion of advice. The informal criteria we use to define a “good”
complexity measure are the following: it should have a simple definition, be robust enough,
but not too coarse because we want to separate simple classes of sequences. Note that Turing
degrees do not match this intuition since they make no distinction between all computable
(thus useful in practise) sequences. Our results will establish an interesting correspondence
between the expressive power of advices (compared more or less using languages) and certain
forms of transductions, when considering the way they classify infinite strings. This is
somehow surprising, since the theory of transformations between words tends to be more
fruitful and more difficult than the study of languages, following an early remark of Dana
Scott [18]: “the functions computed by the various machines are more important - or at least
more basic - than the sets accepted by these devices”. The concept of advice helps unifying
these frameworks. Furthermore, we shall use this idea to provide slightly new perspectives
on (advice) automatic presentations and logic over infinite words.

After recalling preliminary results on formal languages, structures and logic, we present
formally in Section 3 the notion of regularity with advice, under several variants. We study
the comparisons of words provided by the classes of advice languages, as evoked above. An
easy correspondence is drawn with transductions, for instance we show that every regular
language with advice α is also regular with β if and only if α is the image of β under a
Mealy machine. Nevertheless, we conclude that comparisons via languages are far from being
robust. The last part of this section introduces the classes of advice automatic structures and
briefly describes some of their properties. We then show that some variants of advice regular
languages have no influence on the classes of presentable structures. This first involved result
is also a first step to obtain a new robust notion of comparison.

Section 4 intends to understand the comparison over infinite words defined with respect
to advice automatic structures (see above); it develops our most interesting contributions.
Similar investigations were built in [14] under the formalism of set-interpretations, a very close
notion. We particularize their results to show that every automatic structure with advice α
is also automatic with β if and only if α is the image of β under an MSO-transduction (some
logical transformation between words). We then give a more handy equivalent statement:
α is the image of β under a two-way transducer. This result is quite specific and original,
since such transducers are however not powerful enough to realize all functions of infinite
words defined by MSO-transductions [4]. In Section 5 we investigate the structural properties
of this relation of comparison (defined in particular by two-way transductions). Even if
no previous research was done on the subject, a similar study was carried out in [10] for
comparison by one-way finite transducers. In the light of their results, we rough out the
structure of a new hierarchy and explain why a more involved questioning may be fruitful.

2 Preliminaries

Greek capitals Σ, Γ and ∆ are used to denote alphabets, i.e. finite sets of letters; � is a
padding letter that never belongs to these alphabets. If w is a (possibly infinite) word, let
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|w| ∈ N ∪ {ω} be its length, and for n ≥ 0 let w[n] be its (n+ 1)-th letter (when defined).
For 0 ≤ m ≤ n, let w[m : n] = w[m]w[m + 1] · · ·w[n − 1] (when defined, possibly ε). We
write w[: n] for the prefix w[0 : n], and w[n :] for the (possibly infinite) suffix w[n]w[n+ 1] · · · .
Denote by Reg (resp. ωReg) the class of regular (resp. ω-regular) languages.

We shall deal with structures over a finite (relational) signature, denoted by fraktur
letters A, B, etc. Equality implicitly belongs to every signature. If τ is a signature and L
a logic, L[τ ]-formulas are L-formulas over the signature τ . Let α ∈ Γω, its word structure
Wα = 〈N, <, (Pa)a∈Γ〉 is defined with < the usual ordering, and n ∈ Pa if α[n] = a. For
succinctness reasons, α |= φ stands for Wα |= φ and MSO[<,Γ] for MSO[<, (Pa)a∈Γ]. Recall
that MSO-formulas can be interpreted using weak semantics (WMSO), where we allow set
quantifications to range only over finite sets.

I Definition 1 (convolution). If u and v are (possibly infinite) words, their convolution u⊗ v
is the word of length max(|u|, |v|) such that:

(u⊗ v)[n] = (u[n], v[n]) if n < min(|u|, |v|);
(u⊗ v)[n] = (u[n],�) if |v| ≤ n < |u|;
(u⊗ v)[n] = (�, v[n]) if |u| ≤ n < |v|.

I Definition 2 (presentation). Let A := 〈A,R1 . . . Rn〉 be a relational structure and C a class
of languages (possibly over infinite words). A C-presentation of A is a tuple (L,L=, L1 . . . Ln)
of languages from C such that there exists a surjective function ν : L→ A with:

L= = {w ⊗ w′ | w,w′ ∈ L and ν(w) = ν(w′)};
for Ri (arity ri), Li = {w1⊗· · ·⊗wri

| ∀1 ≤ j ≤ ri, wj ∈ L and (ν(w1), . . . , ν(wri
)) ∈ Ri}.

The function ν describes how A is encoded in L. Since we never consider the elements of A
directly, it does not belong explicitly to the presentation and can be considered as a notation.
The alphabet of L is called encoding alphabet and often denoted Σ. The presentation is said
injective if L= = {w⊗w | w ∈ L}. Fairly recently, the class of (ω)Reg-presentable structures
generated much attention, under the name of (ω-)automatic structures [8]. Such structures
can be effectively represented using a tuple of automata recognizing the previous languages.
We denote by (ω)AutStr the class of (ω-)automatic structures.

I Example 3. 〈N,+, 0, 1〉 ∈ AutStr.

I Proposition 4 (folklore, [8]). Every (ω-)automatic structure has a decidable FO-theory.

Automatic structures enjoy several other useful properties, but the presentation fails for
simple structures with decidable theory, as shown in the next theorem.

I Theorem 5 ([20]). 〈Q,+〉 is not an (ω-)automatic structure.

A model-theoretic notion closely related to presentations is concept of interpretation,
where we describe a structure in another (host) structure via a tuple of logical formulas.

I Definition 6 (interpretation). Let A be a structure over a signature τ , L be a logic and
I := (φδ(x), φ=(x, y), φ1(x1 . . . xr1) . . . φp(x1 . . . xrp

)) a tuple of L[τ ]-formulas where x, y and
the xi are k-tuples of free variables. Let

Aδ := {a = (a1 . . . ak) | A |= φδ(a)};
∼ is a binary relation on Aδ with a ∼ b if A |= φ=(a, b);
for 1 ≤ i ≤ p, Ri is a relation on Aδ defined as (a1 . . . ari

) ∈ Ri if A |= φi(a1 . . . ari
);

we say that I is a k-dimensional L-interpretation of a structure B in the structure A if:
∼ defines an congruence relation on Aδ with respect to R1 . . . Rp;
〈Aδ, R1 . . . Rp〉/ ∼ is isomorphic to B.
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The interpretation is said injective if ∼ is the equality relation of Aδ. In the literature,
interpretations are often directly assumed to be 1-dimensional injective interpretations. The
choice of the logic L provides several kinds of interpretation, detailed in Definition 7.

I Definition 7.
1. An FO-interpretation is a tuple of FO-formulas. The elements of A are encoded as tuples

of elements in the host structure B.
2. An MSO-interpretation is a tuple of MSO-formulas with free first-order variables. If we

use the weak semantics, we speak of WMSO-interpretation. Once more, the elements of
A are encoded as tuples of elements of B.

3. An S-interpretation (set) is a tuple of MSO-formulas with free set variables. If we use
weak semantic, we speak of FS-interpretation (finite set). The elements of A are encoded
as tuples of (finite) sets of elements in the host structure.

I Fact 8 (closure under composition).
1. If A is k-dimensionally FO-interpretable in B which is l-dimensionally FO-interpretable

in C, then A is directly kl-dimensionally FO-interpretable in C.
2. If A is k-dimensionally MSO-interpretable in B which is 1-dimensionally MSO-interpret-

able in C, then A is directly k-dimensionally MSO-interpretable in C

I Remark. The presence of sets and the use of several dimensions force to be careful in the
statements of Fact 8. Indeed, there is no reason why the composition of two S-interpretations
should be a S-interpretation, since we obtain sets of sets in the whole transformation. A
similar argument works for MSO-interpretations without restrictions on the dimension.
I Remark. The above composition properties allow - in specific cases - to transfer the
decidability of the logical theory from the host structure to the other one.

Interpretations are a key concept to extend standard automata-logic equivalences from
regular languages to automatic structures.

I Proposition 9 ([12]). A structure A is automatic (resp. ω-automatic) if and only if A is
FS-interpretable (resp. S-interpretable) in (N, <).

3 From advice regular languages to advice automatic structures

We introduce in this section an extension of regular languages known as regular languages
with advice. This concept enables us to study some preorders over infinite words; we discuss
their relevance and establish a first link with transductions. In the last subsection, we
describe the structures that can be presented with these classes of languages.

3.1 Terminating languages
The idea of advice regularity is to consider languages accepted by automata that read an
infinite advice string while processing its input [5]. We provide an equivalent definition which
does not directly deal with automata but only languages.

I Definition 10. L ⊆ Σ∗ is terminating regular with advice α ∈ Γω if there exists a regular
language L′ ⊆ (Σ× Γ)∗ such that L = {w | w ⊗ α[: |w|] ∈ L′}.

I Example 11.
1. If L ⊆ Σ∗ is regular, so is {w ⊗ w′ | w ∈ L,w′ ∈ Γ∗, |w| = |w′|}, and considering this

language shows that L is regular with any advice of Γω;
2. the set Pref(α) := {α[: n] |n ≥ 0} is regular with advice α.
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We denote by Reg[α] the class of regular languages with advice α. As evoked in the intro-
duction, our goal is to measure the complexity of infinite words, through the expressiveness
of their advice classes. We write α 4Reg β whenever Reg[α] ⊆ Reg[β], this relation is clearly
a preorder over infinite words. Let the 4Reg-degrees be the equivalence classes of the relation
4Reg ∩ <Reg, they describe the sets of equally complex advices. We remark that ultimately
periodic words (i.e. infinite words of the form uvω) form the least 4Reg-degree; indeed the
inclusion Reg ⊆ Reg[α] is strict if and only if α is not ultimately periodic [5, 16]. We now
provide a first equivalence with transductions.

I Definition 12. A Mealy machine is a 6-tuple (Q, q0,∆,Γ, δ, θ) where Q is the finite set of
states, q0 ∈ Q initial state, ∆ is the input alphabet, Γ is the output alphabet, δ : Q×∆→ Q

is the (partial) transition function, and θ : Q×∆→ Γ is the (partial) output function.

A run of a Mealy machine is a run of the underlying deterministic automaton. On input
β, the machine outputs α the concatenation of the outputs along the run on β.

I Proposition 13. The following conditions are equivalent:
1. Reg[α] ⊆ Reg[β];
2. α is the image of β under some Mealy machine.

Comparison via 4Reg thus corresponds to computability via Mealy machines. The
properties of this preorder were studied under this form in [7]. However, tiny changes in the
words completely modify their 4Reg-degree: those classes are far from being robust.

I Fact 14 ([7]). Whenever α is not ultimately periodic, we have a strictly increasing chain
α ≺Reg α[1 :] ≺Reg · · · ≺Reg α[n :] ≺Reg · · · . A strictly decreasing chain can be obtained
similarly with α �Reg �α �Reg · · · �Reg �nα �Reg · · · .

An interesting point is the closure properties of these classes.

I Proposition 15 ([5]). Reg[α] is closed under boolean operations.

However, when α is not ultimately periodic, Reg[α] is not closed under projection (with
respect to ⊗) [16]. This is a serious issue if one intends to encode logical theories, what
may explain why automata with advice have remained unused for many years. A possible
solution, detailed in the next paragraph, is to use ω-regularity instead of finite regularity.

3.2 Non-terminating languages and ω-regularity
Once more, we shall provide a definition in terms of languages, but it could equivalently be
stated with ω-automata that read an advice string.

I Definition 16 ([13]). L ⊆ Σω is ω-regular with advice α ∈ Γω if there is an ω-regular
language L′ ⊆ (Σ× Γ)ω such that L = {w | w ⊗ α ∈ L′}.

I Example 17.
1. Every ω-regular language is also ω-regular with any advice;
2. {α} is ω-regular with advice α.

We denote by ωReg[α] the class of ω-regular languages with advice α. The next definition
generalizes ω-regularity with advice to finite-words languages.

I Definition 18 ([13]). A language L ⊆ Σ∗ is non-terminating regular with advice α ∈ Γω if
there is an ω-regular language L′ ⊆ ((Σ ]�)× Γ)ω such that L = {w | w ⊗ α ∈ L′}.
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I Example 19. ∀n ≥ 0, Pref(α[n :]) is non-terminating regular with advice α.

Let Reg∞[α] be the class of non-terminating regular languages with advice α. It follows
from the definitions that L ∈ Reg∞[α] if and only if {w�ω | w ∈ L} ∈ ωReg[α]. These new
definitions increase the expressiveness of advice languages, since Reg[α] ⊆ Reg∞[α] and the
inclusion is strict when α is not ultimately periodic [13]. Furthermore, they solves the lack
of closure properties evoked in the end of Subsection 3.1.

I Proposition 20 ([13]). Reg∞[α] and ωReg[α] are closed under boolean operations, cyl-
indrification, and projection (with respect to ⊗).

Let us compare infinite words with respect to this ω-regular use of advice. We define the
preorders 4Reg∞ (resp. 4ωReg) based on the inclusion of the Reg∞ (resp. ωReg) classes, and
the corresponding notions of degrees. It is not hard to see that ultimately periodic words are
again the least 4Reg∞ - and 4ωReg-degree. We now make a non-trivial step towards a generic
correspondence between advices, machine transductions, and logic.

I Definition 21. An ω-regular function f is a (partial) mapping Γω → ∆ω whose graph
{w ⊗ f(w) | w ∈ dom(f)} is an ω-regular language.

I Definition 22 (MSO-relabelling). We say that α ∈ Γω is the image of β ∈ ∆ω under
an MSO-relabelling if there is a tuple MSO[<,∆]-formulas (φa(x))a∈Γ such that ∀n ≥ 0,
α[n] = a if and only if β |= φa(n).

I Proposition 23. The following conditions are equivalent:
1. Reg∞[α] ⊆ Reg∞[β];
2. ωReg[α] ⊆ ωReg[β];
3. α is the image of β under some ω-regular function;
4. α is the image of β under some MSO-relabelling.

I Remark. A word α is the image of β under some Mealy machine if and only if α is the
image of β under a relativized MSO-relabelling, defined as a relabelling where in the formulas
φa(x) every quantification is relativized under x, i.e. of the form Qy/Y ≤ x.

We obtain in particular 4ωReg=4Reg∞ and 4Reg(4Reg∞ (see Fact 14 and Example 19).
To understand its structure, we briefly give a simple necessary condition for α 4Reg∞ β.

I Proposition 24. Let pγ be the subword complexity function of γ [3]. If α ∈ Γω is the
image of β ∈ ∆ω under some ω-regular function, then pα ≤ K × pβ for some constant K.

For all n ≥ 1, there exists a (computable) string αn such that pαn : k 7→ nk. Necessarily
Reg∞[αn] is not contained in any Reg∞[β] for β ∈ {1, . . . , n− 1}ω because pβ(k) ≤ (n− 1)k.
This observation shows that the size of the alphabet is an unavoidable parameter for 4Reg∞ ,
which is not good news when looking for a robust notion of complexity. The rest of this paper
will no longer deal with the preorders defined by languages, but it move towards presentable
structures in order to describe a more relevant notion of comparison.

3.3 Advice automatic structures
We now turn to classes of structures that are presentable by advice languages. Following
Definition 2 and the notations of [2], we denote by AutStr[α] the class of Reg[α]-presentable
structures, AutStr∞[α] for Reg∞[α]-presentable, and ωAutStr[α] for ωReg[α]-presentable.
Such structures are said to be (ω-)automatic with advice α. Their study is located a level of
abstraction higher than what was done above, since the languages have no longer importance
in theirselves, but are only used to encode other objects.
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An advice automatic structure can be described “effectively” via a tuple of automata (as
for standard automatic structures), and a certain advice α. In fact, the decidability feature
of automatic structures is preserved as soon as α is decidable enough.

I Proposition 25 ([2]). If Wα has a decidable MSO-theory, every structure in ωAutStr[α],
AutStr∞[α] or AutStr[α] has a decidable FO-theory.

Large classes of infinite words with decidable MSO-theory have been described, see e.g.
[6] or [19]. We briefly show why the generalization from automatic structures to advice
automatic structures can be fruitful (compare the next result to Theorem 5).

I Fact 26 ([13]). 〈Q,+〉 ∈ AutStr[α] for some advice α with decidable MSO-theory.

We now briefly describe basic properties of presentations with advice.

I Fact 27. Inclusion of language classes give AutStr ⊆ AutStr[α] ⊆ AutStr∞[α] and
ωAutStr ⊆ ωAutStr[α]. Inclusions are equalities if α is ultimately periodic.

I Remark. There is however no immediate argument to deduce AutStr ( AutStr[α] when α
is not ultimately periodic. We shall see in Section 5 that this statement is true.

As an immediate consequence of the definitions, AutStr∞[α] ⊆ ωAutStr[α] and ωAutStr[α]
contains uncountable structures, whereas AutStr∞[α] does not. This idea can be refined.

I Theorem 28 ([2]). AutStr∞[α] is exactly the subclass of countable structures of ωAutStr[α].

The next result shows to what extent the advice contains the seeds of every presentation,
and how we generalized the case of automatic structures.

I Proposition 29 ([1]).
1. A ∈ ωAutStr[α] if and only if A is S-interpretable in Wα;
2. A ∈ AutStr∞[α] if and only if A is FS-interpretable in Wα.

I Remark ([1]). If the presentation is injective and the encoding is alphabet binary, the
resulting interpretation can be done 1-dimensional and injective.

Dealing directly with Reg[α]-presentations seems more difficult, since basic properties
lack to this class of languages. We now show AutStr∞[α] = AutStr[α], hence the expression
“advice automatic structure” is not ambiguous. To give an intuition of the proof, we note that
an ω-automaton performs an infinite run on w⊗ α (for w finite) in two steps: first, it follows
a finite run on w ⊗ α[: |w|], then it checks some ω-regularity on �ω ⊗ α[|w| :] ' α[|w| :].
Basically, the ω-regularity feature is only used on suffixes of the advice. On the other hand,
a automaton for Reg[α] is blind to the ω-future. We show that it can nevertheless look at
some “finite amount of future” and deduce corresponding ω-regularity on the suffixes. A key
idea is that since the advice is fixed, so are several properties of its suffixes.

I Theorem 30. Let L be an ω-regular language and α ∈ Γω a fixed word. There is a (finite
words) regular language L′ and N ≥ 0 such that for all n ≥ N , α[n :] ∈ L if and only if
α[n :] has a finite prefix in L′. Furthermore, if L can be described by an FO[<,Γ]-sentence,
L′ can be described by an FO[<,Γ]-sentence as well.

Proof sketch. The case of FO is treated via equivalence with LTL, known [15] as Kamp’s
Theorem. For MSO in general, we deduce the result from the work of A.L. Semenov [19]. J

Corollary 31 will formalize our intuition that terminating automata can check ω-regular
properties on suffixes. It thus enables us to explicit the relationships between Reg[α] and
Reg∞[α], and between AutStr[α] and AutStr∞[α].
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I Corollary 31. Let L ⊆ Γω be an ω-regular language and α ∈ Γω. There is a function
f : N→ N such that {0n�f(n) | α[n :] ∈ L} ∈ Reg[α].

I Corollary 32. Let α ∈ Γω. For every language L ∈ Reg∞[α], there is a function f : N→ N
such that {w�f(|w|) | w ∈ L} ∈ Reg[α].

I Corollary 33. For every advice α, AutStr[α] = AutStr∞[α].

I Remark. Thanks to these results, we also managed to build a normal form for MSO-formulas
(with free variables) when interpreted in a fixed word model, see [9].

4 Complexity of advices when describing structures

After the first results of the previous section on advice automatic structures, we are now
able to understand which preorder they describe over infinite words. Corollary 33 implies
in particular that AutStr[α] ⊆ AutStr[β] if and only if AutStr∞[α] ⊆ AutStr∞[β]. The
objective of this section is to show equivalence with ωAutStr[α] ⊆ ωAutStr[β] and give several
other characterizations. The climax lies in Theorem 39 and Theorem 45, where we relate our
notions to well-known logical transformations and finite transducers.

I Definition 34. A (k-copying) MSO-transduction (MSOT) from ∆ω to Γω is a tuple of
MSO[<,∆]-formulas with free first-order variables.

(φa1(x))a∈Γ . . . (φak(x))a∈Γ, (φ<i,j(x, y))1≤i,j≤k)

The semantics of an MSOT τ is defined as that of an MSO-interpretation in k disjoint
copies of a host word structure. More precisely, the structure Iτ (Wβ) (not necessarily a
word) has signature {<, (Pa)a∈Γ} and is defined as follows:

dom(Iτ (Wβ)) =
⋃

1≤i≤k{(n, i) | there is a ∈ A such that β |= φai (n)};
if (n, i) ∈ dom(Iτ (Wβ)), then (n, i) ∈ Pa if and only if β |= φai (n);
if (m, j) ∈ dom(Iτ (Wβ)), then (n, i) < (m, j) if and only if U |= φ<i,j(n,m).

Since we are interested in transformations between words, we only consider the case when
Iτ (Wβ) is a word structure (what is syntactically definable by adding an MSO[<,∆]-sentence
for the domain). Each MSO-transduction τ then realizes a (partial) function τ : ∆ω → Γω
whose domain is {β ∈ ∆ω | Iτ (Wβ) is (isomorphic to) a word structure}, the image τ(β) of
β being the unique α such that Iτ (Wβ) 'Wα.

The reader is asked to keep in mind that MSOT define a certain class of functions on
infinite strings, even if our main concern is only the existence of a transduction between two
fixed words. We write α 4MSOT β if there is a MSO-transduction τ such that τ(β) = α.
I Remark. MSO-relabelings (see Definition 22), relativized MSO-relabelings, and 1- dimen-
sional MSO-interpretations can all seen as syntactical fragments of 1-copying MSOT.
I Remark. Even if MSO-interpretations in general are not closed under composition, it is
the case of MSOT [4]. Thus 4MSOT is transitive, and is even a preorder over infinite words.

I Example 35.
1. If α 4Reg∞ β then α 4MSOT β (thus 4MSOT is a more generic notion of comparison than

the preorders of Section 3, we shall see that the increase of power is strict);
2. modifying a finite part of α does not change its MSOT-degree;
3. if w is a finite word, we denote by w̃ its mirror image; if α := w1#w2# · · · ∈ (Γ∗#)ω, let

α̃ := w̃1#w̃2# · · · ; then α̃ 4MSOT α.
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4.1 From automatic structures to MSO-transductions
When searching a complete structure of an advice, a naive idea is that Wα ∈ AutStr∞[β]
if and only if AutStr∞[α] ⊆ AutStr∞[β]. However, this statement will turn out to be false.
We need a stronger object that is presented in Definition 36.
I Definition 36 ([14]). Let A = 〈A,R1 . . . Rn〉 be a structure, we define its weak powerset
structure Pf (A) as the structure 〈Pf (A), R′1 . . . R′n,⊆〉 where:
Pf (A) is the weak powerset (set of finite subsets) of A;
⊆ is the inclusion relation on Pf (A);
R′i(A1, . . . , Ari

) holds in Pf (A) if and only if A1, . . . Ari
are singletons {a1}, . . . , {ari

}
and Ri(a1, . . . ari

) holds in A.
I Remark. A is FS-interpretable in B if and only if A is FO-interpretable in Pf (B).
I Fact 37. AutStr∞[α] is the class of structures FO-interpretable in Pf (Wα) (see Proposition
29). We have AutStr∞[α] ⊆ AutStr∞[β] if and only if Pf (Wα) ∈ AutStr∞[β].

This result provides a characterization which is abstract and, in some respects, trivial.
Nevertheless, we get the intuition that powerset structures are a key notion to understand
advice automaticity. In the sequel, a (∆-labelled) tree structure has the form 〈A,<, (Pa)a∈∆〉
where the domain A is a prefix-closed subset of {0, 1}∗, w < w′ holds whenever w is a prefix
of w′ and the Pa label the nodes of A with a ∈ ∆. Word structures are particular trees.
I Theorem 38 ([14], Corollary 4.4). Let A a structure and T a tree structure. If Pf (A)
is 1-dimensionally injectively FS-interpretable in T, then A is 1-dimensionally injectively
WMSO-interpretable in T.

In the case of advice automatic structures, Theorem 38 is at the same time too generic
and too restrictive. On the one hand, we only use interpretations in word structures Wα.
On the other hand, we need arbitrarily dimensional FS-interpretations, and they are not
supposed to be injective. We will manage to meet this conditions, up to a slight modification
of the advice, and the WMSO-interpretation will be transformed into a more generic MSOT.
I Theorem 39. The following conditions are equivalent:
1. ωAutStr[α] ⊆ ωAutStr[β];
2. AutStr∞[α] ⊆ AutStr∞[β];
3. α 4MSOT β.
Proof sktech. We use Proposition 29 several times. The way from 1. to 2. is a consequence of
Theorem 28. If 2. holds, we show that Pf (Wα) has an injective binary Reg∞[β′]-presentation
for some infinite word β′ so that β′ 4MSOT β. As remarked above, Pf (Wα) is thus 1-
dimensionally injectively FS-interpretable in the tree Wβ′ , hence Theorem 38 provides a
1-dimensionally WMSO-interpretation of Wα in Wβ′ , what implies α 4MSOT β

′. Composing
MSOT concludes that α 4MSOT β. If 3. is true and A is S-interpretable in Wα, then A is
S-interpretable in Wβ by some composition argument. J

As a consequence, all the preorders defined by advice-presentable structures converge
towards the same comparison via MSO-transductions. This point gives a deep theoretical
meaning to their study. Another virtue of Theorem 39 is the ability to translate immediately
the results of Example 35 in terms of advice automatic structures.
I Example 40.
1. If α 4Reg∞ β then AutStr[α] ⊆ AutStr[β];
2. modifying a finite part of α does not modify AutStr[α];
3. if α ∈ (Γ∗#)ω, then AutStr[α] = AutStr[α̃].
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4.2 An equivalent computational model: two-way transducers
We will complete our parallel with transductions via an equivalent simple machine model.
Furthermore, it will be very useful to describe the structural properties of the preorder.

I Definition 41. A two-way finite transducer (2WFT) is a 6-tuple (Q, q0,∆ ] {`},Γ, δ, θ)
where Q is the finite set of states, q0 ∈ Q is initial, ∆ is the input alphabet, Γ is the
output alphabet, δ : Q × (∆ ] {`}) → Q × {/, .} is the (partial) transition function, and
θ : Q× (∆ ] {`})→ Γ∗ is the (partial) output function.

A 2WFT has a two-way read-only input tape and a one-way output mechanism. The
component {/, .} determines the left or right move of the head on the input tape. When the
2WFT is given β ∈ ∆ω as an input word, this tape contains ` β (adding a symbol ` helps
the transducer to notice the beginning of its input when going left). The definition of the
(partial) function ∆ω → Γω realized the 2WFT follows like for Mealy machines.
I Remark. The transducer is said to be one-way (1WFT, or just finite transducer) if all its
transitions are of the form (q, .). Mealy machines are a particular case of 1WFT.

I Example 42. There is a three-state 2WFT outputting α̃ on every α ∈ (Γ#)ω. Its behavior
is the following: scan a maximal #-free block, read it in a reversed way while outputting,
then output # and move to the next block.

When considering definable functions between finite strings, a well-known equivalence
holds between MSOT and 2WFT (Theorem 43). The definitions of MSOT and 2WFT have
to be slightly sharpened to get the exact correspondence, see details in [11].

I Theorem 43 ([11]). (Partial) functions over finite words ∆∗ → Γ∗ definable by MSOT are
the (partial) functions realized by 2WFT.

Fairly recently, this result was extended to functions between infinite strings, but some
complications quickly appear: deciding the validity of MSO-sentences is not always possible
without reading the (variable) input entirely. Thus 2WFT alone are not powerful enough and
they need extra features like ω-regular lookahead, i.e. ability to check instantly ω-regular
properties of the suffixes of the input starting in the position of the reading head.

I Theorem 44 ([4]). (Partial) functions over infinite words ∆ω → Γω definable by MSOT
are the (partial) functions realized by 2WFT with ω-regular lookahead whose runs always visit
the whole input string.

When looking closely at Theorem 43 and Theorem 44 in the light of our previous results,
a question arises naturally: it is possible to get rid of the lookaheads when fixing the input
infinite word? Indeed, we have always considered transformations from a fixed word and we
noticed in Subsection 3.3 that this restriction simplified certain notions. Theorem 45 gives a
positive answer. This involved result is not a direct consequence of Theorem 44, since we are
not aware of a simple manner to remove the ω-lookaheads when fixing the input.

I Theorem 45. α 4MSOT β if and only if α 42WFT β.

Proof sketch. If α 42WFT β, the result follows from Theorem 44. Indeed the transformation
can be computed by some 2WFT (with a trivial ω-lookahead) whose run visits the whole
input. Assume now that α 4MSOT β. It follows from [4] that α can be computed from β by
an ω-streaming string transducer (SST). We provide a rather long argument to show that
an SST can be transformed into a 2WFT with a lookbehind feature, when the input word is
fixed. Lastly, the lookbehind can be removed by some standard techniques (a lookbehind
only deals with a finite part of the input, which is not the case of an ω-lookahead). J
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5 The two-way transductions hierarchy

We initiate in this section a study of the previous two-way transductions between infinite
words. It can equivalently be seen as the preorder defined by MSOT, or classes AutStr[α],
AutStr∞[α] and ωAutStr[α]; but the 2WFT formulation is - as predicted above - the easiest
way to deduce interesting statements. We shall use the term 2WFT hierarchy to describe the
ordered set of 2WFT-degrees (i.e. equivalence classes of 42WFT ∩ <2WFT).

A more or less similar work has been done in [10], with the relation 41WFT defined by
computability via 1WFT. This definition clearly describes a preorder. Even if no previous
research exists on the 2WFT hierarchy, we shall see that several results on the 1WFT can be
adapted in our context, after a variable amount of work. Note that 41WFT⊆42WFT.

I Proposition 46.
1. There are uncountably many distinct 2WFT-degrees;
2. a set of 2WFT-degree has an upper bound if and only if it is countable;
3. the 2WFT hierarchy has no greatest degree;
4. every 2WFT-degree contains a binary string.

I Remark. Considering binary strings is thus sufficient to describe all the degrees. Comparing
this result with Proposition 24 shows that the preorder 4Reg∞ defined by MSO-relabelings
is strictly weaker than 42WFT=4MSOT.

As a consequence of Proposition 46, the 2WFT hierarchy is not trivial. We now show
that it is fine-grained enough to distinguish ultimately periodic words.

I Proposition 47. Ultimately periodic words are the least 2WFT-degree.

This result shows, through the equivalences of Section 4, that non-trivial advices strictly
increase the class of presentable structures (what had no reason to be obvious).

I Corollary 48. Pf (Wα) is automatic if and only if α is ultimately periodic.

I Remark. There are non-ultimately periodic sequences α such that Wα is automatic [6].
However, no sufficient and necessary condition is known to describe such sequences.

We now turn to a more involved statement. A sequence β is said to be prime if it is a
minimal but non-trivial word. Formally, β non-ultimately periodic is prime in the 2WFT
hierarchy if for all α 42WFT β, either β 42WFT α or α is ultimately periodic. The existence
of prime sequences shows in particular that the 2WFT hierarchy is not dense.

I Theorem 49. The sequence π :=
∏∞
n=0 0n1 is prime in the 2WFT hierarchy.

Proof sketch. Our work is to show that if α 42WFT π, then α 41WFT π. Now, since π is
prime in the 1WFT-hierarchy [10], either π 41WFT α or α is in the least 1WFT-degree, which
is also the set of ultimately periodic words. J

Classifying all infinite strings may neither be relevant nor useful in practice. We now look
at two particular classes of infinite words closed under 2WFT transformations.

I Proposition 50 (subhierarchies).
1. If α 42WFT β and if β is computable, then α is computable;
2. if α 42WFT β and if Wβ has a decidable MSO-theory, so has Wα.

I Fact 51. The string π has a decidable MSO-theory (see e.g. [6]).
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no degree
between
π and 0

Least degree:
ultimately periodic0

Strings with decidable MSO-theory

Computable strings

π A prime
degree

τGreatest degree of
computable strings

Figure 1 An partial look on the 2WFT hierarchy

Table 1 Equivalent definitions for preorders over ω-words

Reg AutStr
Advice Reg∞ AutStr∞

ωReg ωAutStr
Logic rel. MSO-relabelings MSO-relabelings MSOT
Machine Mealy machines ω-regular functions 2WFT

I Proposition 52 (adapted from [10] for 1WFT). There exists a greatest degree τ of computable
strings in the 2WFT hierarchy.

I Fact 53. The MSO theory of τ is not decidable.

Figure 1 summarizes the previous results. Note that the 2WFT-degree of ultimately
periodic sequences, the 2WFT-degree of π and the 2WFT-degree of τ have to be distinct.
Several challenging issues naturally arise about the structure of the 2WFT hierarchy and its
subhierarchies. Among others, an interesting question is to describe the degrees of well-known
sequences with decidable MSO-theory, for instance morphic words [6].

6 Conclusion and outlook

Preorders of advices, logic and transducers. Our first concern in this paper was the study
of various preorders over infinite words, related to the notion of advice strings. The results
draw a generic correspondance between definability with advice, logical transductions and
machine transductions. Table 1 summarizes this philosophy in an elegant way, note that
the notion of (relativized) MSO-relabelings is less standard than MSOT. The gap between
MSO-relabelings and MSOT shows that having basic knowledge on the languages is far from
being sufficient to understand the richness of presentable structures.

A meaningful hierarchy of infinite words. Two-way transductions appear here to be more
basic than relations defined by one-way machines, since they are clearly motivated by logical
issues. Furthermore, it fits our informal conditions to be a “good” complexity measure over
infinite words. A more involved study of the 2WFT hierarchy may help classifying certain
hierarchies of structures, or even understand standard automatic presentations. We recall
that such transductions over infinite words are (rather) unexplored.
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Abstract
A natural approach to define binary word relations over a finite alphabet A is through two-tape
finite state automata that recognize regular languages over {1, 2}×A, where (i, a) is interpreted
as reading letter a from tape i. Accordingly, a word w ∈ L denotes the pair (u1, u2) ∈ A∗ × A∗

in which ui is the projection of w onto i-labelled letters. While this formalism defines the well-
studied class of Rational relations (a.k.a. non-deterministic finite state transducers), enforcing
restrictions on the reading regime from the tapes, which we call synchronization, yields various
sub-classes of relations. Such synchronization restrictions are imposed through regular properties
on the projection of the language onto {1, 2}. In this way, for each regular language C ⊆ {1, 2}∗,
one obtains a class Rel(C) of relations. Regular, Recognizable, and length-preserving rational
relations are all examples of classes that can be defined in this way.

We study the problem of containment for synchronized classes of relations: given C,D ⊆
{1, 2}∗, is Rel(C) ⊆ Rel(D)? We show a characterization in terms of C and D which gives a
decidability procedure to test for class inclusion. This also yields a procedure to re-synchronize
languages from {1, 2} × A preserving the denoted relation whenever the inclusion holds.
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1 Introduction

We study are relations of finite words, that is, binary relations R ⊆ A∗ × A∗ for a finite
alphabet A. The study of these relations dates back to the works of Büchi, Elgot, Mezei, and
Nivat in the 1960s [4, 8, 13], with much subsequent work done later (e.g., [2, 6]). Most of
the investigations focused on extending the standard notion of regularity from languages to
relations. This effort has followed the long-standing tradition of using equational, operational,
and descriptive formalisms – that is, finite monoids, automata, and regular expressions – for
describing relations, and gave rise to three different classes of relations: the Recognizable, the
Automatic (a.k.a. Regular [2] or Synchronous [6]), and the Rational relations.

The above classes of relations can be seen as three particular examples of a much larger
(in fact infinite) range of possibilities, where relations are described by special languages over
extended alphabets, called synchronizing languages [10]. Intuitively, the idea is to describe
a binary relation by means of a two-tape automaton with two heads, one for each tape,
which can move independently one of the other. In the basic framework of synchronized
relations, one lets each head of the automaton to either move right or stay in the same
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position. In addition, one can constrain the possible sequences of head motions by a suitable
regular language C ⊆ {1, 2}∗. In this way, each regular language C ⊆ {1, 2}∗ induces
a class of binary relations, denoted Rel(C), which is contained in the class of Rational
relations (due to Nivat’s Theorem [13]). For example, the class of Recognizable, Automatic,
and Rational relations are captured, respectively, by the languages CRec = {1}∗ · {2}∗,
CAut = {12}∗ · {1}∗ ∪ {12}∗ · {2}∗, and CRat = {1, 2}∗. However, it should be noted that
other well-known subclasses of rational relations, such as deterministic or functional relations,
are not captured by notion of synchronization. In general, the correspondence between a
language C ⊆ {1, 2}∗ and the induced class Rel(C) of synchronized relations is not one-
to-one: it may happen that different languages C,D induce the same class of synchronized
relations. There are thus fundamental questions that arise naturally in this framework: When
do two classes of synchronized relations coincide, and when is one contained in the other?
Our contribution is a precise algorithmic answer to this type of questions.

More concretely, given a binary alphabet 2 = {1, 2} and another finite alphabet A, a word
w ∈ (2×A)∗ is said to synchronize the pair (w1, w2) ∈ A∗×A∗ if, for both i = 1, 2, wi is the
projection of w on A restricted to the positions marked with i. For short, we denote this by
JwK = (w1, w2) – e.g., J(1, a)(1, b)(2, b)(1, a)(2, c)K = (aba, bc). According to this definition,
every word over 2 × A synchronizes a pair of words over A, and every pair of words over
A is synchronized by (perhaps many) words over of 2× A. This notion is readily lifted to
languages: a language L ⊆ (2×A)∗ synchronizes the relation JLK = {JwK | w ∈ L} ⊆ A∗×A∗.
For example, J((1, a)(2, a) ∪ (1, b)(2, b))∗K denotes the equality relation over A = {a, b}.

In this setup, one can define classes of relations by restricting the set of admitted
synchronizations. The natural way of doing so is to fix a language C ⊆ 2

∗, called control
language, and let L vary over all regular languages over the alphabet 2×A whose projections
onto 2 are in C. Thus, for every regular C ⊆ 2

∗, there is an associated class Rel(C) of
C-controlled relations, namely, relations synchronized by regular languages L ⊆ (2 × A)∗
whose projection onto 2 are in C. Clearly, C ⊆ D ⊆ 2

∗, implies Rel(C) ⊆ Rel(D), but
the converse does not hold: while Rel(CRec) = Recognizable ⊆ Automatic = Rel(CAut),
we have CRec 6⊆ CAut. Moreover, as we have mentioned earlier, different control languages
may induce the same class of synchronized relations. For example, once again, the class
of Recognizable relations is induced by the control language CRec = {1}∗{2}∗, but also
by C ′Rec = {1}∗{2}∗{1}∗, and the class of Automatic relations is induced by CAut =
{12}∗ · {1}∗ ∪ {12}∗ · {2}∗, or equally by C ′Aut = {21}∗ · {1}∗ · {2}∗. This ‘mismatch’ between
control languages and induced classes of relations gives rise to the following algorithmic
problem.

Class Containment Problem
Input: Two regular languages C, D ⊆ 2

∗

Question: Is Rel(C) ⊆ Rel(D) ?

Note that the above problem is different from the (C,D)-membership problem on synchronized
relations, which consists in deciding whether R ∈ Rel(D) for a given R ∈ Rel(C), and which
can be decidable or undecidable depending on C,D [5]. The Class Containment Problem can
be seen as the problem of whether every C-controlled regular language L has a D-controlled
regular language L′ so that JLK = JL′K. It was proved in [10] that this problem is decidable for
some particular instances of D, namely, for D = Recognizable,Automatic, Length-preserving
or Rational. More specifically, given a regular language C over the binary alphabet 2, it
is decidable whether Rel(C) is contained or not in Recognizable (respectively, Automatic,
Length-preserving and Rational). Our main contribution is a procedure for deciding the Class
Containment Problem in full generality, i.e. for arbitrary C and D.
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I Main Theorem. The Class Containment Problem is decidable.

In addition, our results show that, for positive instances (C,D), one can effectively transform
any regular C-controlled language L into a regularD-controlled language L′ so that JLK = JL′K.
By ‘effectively transform’ we mean that one can receive as input an automaton (or a regular
expression) for L and produce an automaton (or a regular expression) for L′. In particular,
we show a normal form of control languages, implying that every synchronized class can be
expressed through a control language of star-height at most 1.

Related work. The formalization of a framework in which one can describe classes of word
relations by means of synchronization languages is quite recent [10]. As already mentioned,
the class containment problem was only addressed for the classes of Recognizable, Automatic
and Rational relations, for which several characterizations have been proposed [10]. The
formalism of synchronizations has been extended beyond rational relations by means of
semi-linear constraints [9] in the context of path querying languages for graph databases.

The paper [3] studies relations with origin information, as induced by non-deterministic
(one-way) finite state transducers. Origin information can be seen as a way to describe
a synchronization between input and output words – somehow in the same spirit of our
synchronization languages – and was exploited to recover decidability of the equivalence
problem for transducers. The paper [11] pursues further this principle by studying “distortions”
of the origin information, called resynchronizations. Despite the similar terminology and the
connection between origins and synchronizing languages, the problems studied in [3, 11] are
of rather different nature than our Class Containment Problem.

Organization. After the preliminaries on subclasses of regular languages, we define in
Section 3 the framework of synchronized relations. Section 4 provides a roadmap with the
three key ingredients of our characterization. Sections 5, 6 and 7 contain the technical details
for these main ingredients. In Section 8 we discuss the computability of the characterization.

2 Preliminaries

We denote by N,Q the sets of non-negative integers and rationals. We use standard interval
notation as in, for example, (a, b]Q = {c ∈ Q | a < c ≤ b}. A,B denote arbitrary finite
alphabets, and 2 the special binary alphabet {1, 2}.

Words and shuffles. For a word w ∈ A∗, |w| is its length, and |w|a is the number of
occurrences of symbol a in w. We denote by w[i, j] the factor of w between positions
i and j (included), for 1 ≤ i ≤ j ≤ |w|, and we write w[i] for w[i, i]. We will also
make use of the shuffle operation, which maps a finite set of words w1, . . . , wn to the
language shuffle{w1, . . . , wn} of all words w for which there is a partition I1, . . . , In of
[1, |w|] so that each wi is the projection of w onto Ii. For example, shuffle{ab, cd} =
{abcd, cdab, acbd, acdb, . . . }.

Parikh image. The Parikh image of a word w over A is the tuple π(w) associating each
symbol a ∈ A to its number of occurrences |w|a in w. We will mostly use Parikh images
for words over 2∗, which are thus pairs π(w) = (|w|1, |w|2). We naturally extend this to
languages by letting π(L) def= {π(w) | w ∈ L} (⊆ N2). For x̄, x̄1, . . . , x̄n ∈ N2, we denote by
〈x̄, P 〉 the 2-dimensional linear set {x̄+α1x̄1 + · · ·+αnx̄n | α1, . . . , αn ∈ N}, and call x̄ ∈ N2

its basis and x̄1, . . . , x̄n its periods. A semi-linear set is a finite union of linear sets.
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Regular languages. We use standard notation for regular expressions without complement,
namely, for expressions build up from the empty set, the empty word ε and the symbols
a ∈ A, using the operations ·, ∪, and ( )∗. For economy of space and clarity we also use
the abbreviated notation ( )k, ( )k∗ – which is a shorthand for (( )k)∗ – , ( )≥k, ( )<k, and
we identify regular expressions with the defined languages. For example, we may write
abbc ∈ a · b≥2 · (c∪ d)∗, b(ab)∗ = (ba)∗b and {a, b}∗ · c = (a∪ b)∗ · c. Given u = a1 · · · an ∈ A∗
and v = b1 · · · bn ∈ B∗, we write u⊗ v for the word (a1, b1) · · · (an, bn) ∈ (A× B)∗. Similarly,
given U ⊆ A∗, V ⊆ B∗, we write U ⊗V ⊆ (A×B)∗ for the set {u⊗ v | u ∈ U, v ∈ V, |u| = |v|}.

The star-height of a regular expression is the maximum number of nestings of Kleene
stars ( )∗. By abuse of terminology, when referring to the star-height of a language, we mean
the star-height of some regular expression that represents it (in particular, we do not need to
work with the minimum star-height over all expressions). Besides regular expressions, we also
work with automata, and use classical techniques on them (notably, pumping arguments).
Given an accepting run γ of an automaton A, we often identify cycles in it, that is, factors
that start and end in the same state, and that can thus be pumped. Such cycles are
called simple if they do not contain proper factors that are also cycles. Moreover, to avoid
mentioning explicitly an automaton for a language L and a run of it, we call cycle of L
(resp. simple cycle of L) the word spelled out by any cycle (resp. simple cycle) of any
accepting run of the minimal deterministic automaton recognizing L, and denote the set of
all cycles (resp. simple cycles) of L by cycles(L) (resp. simple-cycles(L)). We remark that,
however, that the use of the minimal automaton as a presentation of a regular language L
is only to avoid ambiguity when referring to the cycles of L – in fact, our results do not
depend on determinism or minimality, and can thus be applied to arbitrary non-deterministic
automata, without any difference in the characterizations we present.

A regular language C is concat-star (a.k.a. unit-form [1]), if it is of the form

C = C∗1u1C
∗
2u2 · · ·C∗nun, (?)

for n ∈ N, words u1, . . . , un, and regular languages C1, . . . , Cn. Without loss of generality,
we can always assume that the empty word does not belong to any of the languages Ci. The
following trivial decomposition lemma will be used throughout.

I Lemma 1. Every regular language is a finite union of concat-star languages.

The C∗i ’s from (?) are called components of the concat-star language C. Note that (an
expression of) a concat-star language as in (?) has star-height 1 if and only if every Ci is
finite. A component C∗i is homogeneous if C∗i ⊆ 1∗ or C∗i ⊆ 2∗. A component which is
not homogeneous is called heterogeneous (e.g. C∗i = {1, 2}∗). It will also be convenient to
distinguish a few types of concat-star languages. We say that C is

heterogeneous if it contains at least one heterogeneous component, otherwise it is
homogeneous;

smooth if every homogeneous component is a language of the form 1k∗ or 2k∗, for some
k > 0, and there are no consecutive homogeneous components;

simple if it has star-height 1 and it is either homogeneous or smooth heterogeneous.
Hereafter, by “simple language” we mean simple concat-star language. The picture below
summarizes the different types of control languages, together with some separating examples.
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s.-h. = 1

s.-h. > 1

simple

homogeneous
smooth

heterogeneous
non-smooth
heterogeneous

non
concat-star

1∗(11)∗2∗

(1∗1)∗2∗

1∗(12)∗2∗

1∗(1∗2)∗2∗

1∗2∗(12)∗

1∗2∗(1∗2)∗

(12)∗1∗ ∪ (12)∗2∗

(1∗2)∗ ∪ (12)∗

In Section 5 we will see that the Class Containment Problem is reduced to the case of finite
unions of simple languages. The latter languages thus form the basis of our characterization.

3 Synchronized relations

A synchronization of a pair (w1, w2) of words over A is a word over 2 × A so that
the projection on A of positions labeled i is exactly wi, for i = 1, 2 – in other words,
shuffle{1|w1|⊗w1, 2|w2|⊗w2} is the set of all synchronizations of (w1, w2). For example, the
words (1, a)(1, b)(2, a) and (1, a)(2, a)(1, b) are two possible synchronizations of the same pair
(ab, a). Every word w ∈ (2× A)∗ is a synchronization of a unique pair (w1, w2), where wi is
the sequence of A-letters corresponding to the symbol i in the first position of 2× A. We
denote such pair (w1, w2) by JwK and extend the notation to languages L ⊆ (2 × A)∗ by
JLK def= {JwK | w ∈ L}.

Given a regular language C ⊆ 2
∗, we define the class of CCC-controlled relations as

Rel(C) def=
{
JLK | L ⊆ C ⊗A∗ is regular,A is some finite alphabet

}
.

A slightly different definition is possible, which restricts the class of C-controlled relations to
be over a fixed alphabet A, that is, one can define RelA(C) = {JLK | L ⊆ C ⊗A∗ regular}. As
far as we are concerned with comparing classes of relations controlled by different languages,
the two definitions are somehow interchangeable, in the sense that containment between
classes is not sensible to whether we fix or not the alphabet. For example, we will see that,
for any alphabet A with at least two symbols, RelA(C) ⊆ RelA(D) iff Rel(C) ⊆ Rel(D).

For economy of space, we use C ⊆Rel D and C =Rel D as shorthands for Rel(C) ⊆
Rel(D) and Rel(C) = Rel(D), respectively. The following properties are easy to verify.

I Lemma 2. For every regular C,D,C ′, D′ ⊆ 2
∗,

P1. if C ⊆ D, then C ⊆Rel D;
P2. if C ⊆Rel D and C ′ ⊆Rel D

′, then C · C ′ ⊆Rel D ·D′ and C ∪ C ′ ⊆Rel D ∪D′;
P3. if C ⊆Rel D, then C∗ ⊆Rel D

∗;
P4. if C ⊆ 1∗ and D ⊆ 2∗, then C ·D =Rel D · C;
P5. if C is finite, then C ·D =Rel D · C;
P6. if C ⊆Rel D then π(C) ⊆ π(D); moreover, if C is finite, the converse also holds;
P7. if C is homogeneous concat-star, then C =Rel

⋃
i∈I 1`i∗1ki2ˆ̀

i∗2k̂i for a finite I;
P8. if C is homogeneous concat-star, C ⊆Rel D if and only if π(C) ⊆ π(D).

Proof idea. P1 is immediate from definitions; henceforth we use it without referencing it.
P2 and P3 follow readily from the following decomposition properties.
(a) For every R ∈ Rel(C · C ′), there are R1, . . . , Rn ∈ Rel(C), R′1, . . . , R′n ∈ Rel(C ′) so

that R =
⋃
iRi ·R′i.

(b) For every R ∈ Rel(C ∪ C ′), there are R1 ∈ Rel(C), R2 ∈ Rel(C ′) so that R = R1∪R2.
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(c) For every R ∈ Rel(C∗), there are R1, . . . , Rn ∈ Rel(C) and I ⊆ {1, . . . , n}∗ regular so
that R =

⋃
w∈I Rw[1] · · ·Rw[|w|].

P4 can be verified by first decomposing any relation R ∈ Rel(C ·D) into
⋃
iRi ·R′i as in (a),

and then observing that in this case J
⋃
iRi ·R′iK = J

⋃
iR
′
i ·RiK. For P5, it is easy to see that

1 ·D =Rel D · 1 and 2 ·D =Rel D · 2 for any D, and thus by P2 this extends to commuting
with arbitrary finite languages. For P6, observe that if C ⊆Rel D then JC ⊗ a∗K ∈ Rel(D)
for a ∈ A, which means that π(C) ⊆ π(D). P7 is a consequence of P4 and the so-called
Chrobak normal form for regular languages over unary alphabets [7]. Finally, the proof of P8
is a variant of the proof that the operation of shuffle preserves regularity of languages. J

4 Characterization of the Class Containment Problem

We give an overview of the main ingredients of our decision procedure for class containment.

Decomposition. A first ingredient is a decomposition result for regular control languages
into =Rel-equivalent finite unions of simple languages. Here we only state the result with a
short proof sketch; the complete proof will be given in Section 5.

I Proposition 3. Every regular language C ⊆ 2
∗ is effectively =Rel-equivalent to a finite

union of simple languages.

Proof idea. One first applies Lemma 1, so as to decompose the regular language C into a
finite union of concat-star languages. Then, the concat-star languages are further decomposed
into unions of concat-star languages of star-height 1. For example, (112(12)∗ ∪ 122)∗ =Rel
(122)∗ ∪ (112 ∪ 122)∗112 ∪ (112 ∪ 122)∗11122 ∪ (112 ∪ 122)∗1111222. This latter step is
more difficult and exploits the increased flexibility of the relation =Rel compared to equality.
It also exploits in a crucial way properties of linear sets, and more specifically those that
result from taking the Parikh images of concat-star languages. Finally, to get the desired
decomposition, one needs to decompose further the concat-star languages of star-height 1
into finite unions of simple languages as in, for example, (12)∗1∗2∗ =Rel (12)∗1∗ ∪ (12)∗2∗.
This last decomposition makes use of some basic properties from Lemma 2. J

Parikh ratios. The Parikh ratio of a pair x̄ = (n1, n2) ∈ N2 \{(0, 0)} is ρ(x̄) = n1
n1+n2

. We
naturally extend this to non-empty words w ∈ 2∗ by letting ρ(w) = ρ(π(w)) (this describes
the proportion of 1’s in w). We further extend the notation to languages: ρ(C) = {ρ(w) |
w ∈ C \ {ε}}. Note that ρ(C) ⊆ [0, 1]Q. It is sometimes useful to think of ρ(C) as the cone
Qπ(C) = {q · π(w) | q ∈ Q, w ∈ C} inside the rational plane Q×Q.

I Example 4. The Parikh images of the languages C = (2(2112)∗)∗ and D = (2 ∪ 2112)∗
are depicted below. Note that ρ(C) =

[
0, 1

2
)
Q, while ρ(D) =

[
0, 1

2
]
Q.

⇡(C) ⇡(D)

1

2

1

2

1

2

Q⇡(C)

1

2

Q⇡(D)

The following lemma summarizes the main properties of Parikh ratios that we will need.

I Lemma 5. The Parikh ratio of a concat-star language C verifies the following properties:
1. If C = C∗1u1 · · ·C∗nun, then ρ(cycles(C)) ⊆ [mini inf ρ(C∗i ),maxi sup ρ(C∗i )]Q;
2. Moreover, if C = D∗ for a finite D, then ρ(C) = ρ(cycles(C)) = [min ρ(D),max ρ(D)]Q.
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Synchronizing morphisms. Another fundamental ingredient is the notion of synchronizing
morphism, which intuitively relates the components of a concat-star language C to the
components of a concat-star language D by comparing the Parikh ratios.

Let C = C∗1u1 · · ·C∗nun be a heterogeneous concat-star language and D = D∗1v1 · · ·D∗mvm
any concat-star language. We say that a function f : [1, n] → [1,m] is a synchronizing
morphism (abbreviated s.m.) from C to D if

it is monotonic: f(i) ≤ f(j) whenever i ≤ j; and
it preserves Parikh-ratio: for every i ∈ [1, n], ρ(C∗i ) ⊆ ρ(D∗f(i)).

We write C s.m.−−−→ D to denote the existence of such synchronizing morphism. By convention,
if C is homogeneous, then we say that there is always a synchronizing morphism from C to
D. In particular, u s.m.−−−→ v for every u, v ∈ 2∗. The sole purpose of this trivial definition on
homogeneous concat-star languages is to make the characterization statements simpler.

I Example 6. The following function f is a synchronizing morphism:

2⇤ 1⇤ (122 [ 12)⇤ (122)⇤ (112)⇤ 1⇤ 2⇤ (22)⇤

(22)⇤ 1⇤ (122 [ 112)⇤ (11 [ 111)⇤ (12)⇤ 2⇤
f

a

b
c d

Q⇧((112)⇤)

Q⇧((122)⇤)

Q⇧((122 [ 12)⇤)

Q⇧((122 [ 112)⇤)

a:
b:
c:
d:

Observe that synchronizing morphisms are closed under composition and hence s.m.−−−→
defines a pre-order on concat-star languages.

Class Containment Problem for simple languages. The existence of synchronizing morph-
ism is the key property that characterizes ⊆Rel on simple languages. A complete proof of
the following proposition will be the theme of Section 6.

I Proposition 7. For all simple C,D ⊆ 2
∗, C ⊆Rel D iff π(C) ⊆ π(D) and C s.m.−−−→ D.

Note that the case of C homogeneous follows from P8. Intuitively, for any C smooth
heterogeneous concat-star language of star-height 1, the characterization says that, C ⊆Rel D

iff π(C) ⊆ π(D) and for every component of C, there is a component of D that contains
its Parikh ratio. Further, the matching between components is monotonic. For example,
we have (12)∗(112)∗ ⊆Rel (12 ∪ 11122)∗(121)∗1∗2∗, because the Parikh ratios of (12)∗ and
(112)∗ are included in those of (12 ∪ 11122)∗ and (121)∗, respectively. On the other hand, we
have (112)∗(12)∗ 6⊆Rel (12 ∪ 11122)∗(121)∗1∗2∗ because in this case there is no motononic
matching between components.

Generalization to unions of simple languages. Section 7 concerns the generalization of the
characterization to finite unions of simple languages, which cover arbitrary regular languages
up to =Rel-equivalence. The previous characterization for simple languages thus constitutes
the base case of our characterization. The lemma below allows a first generalization when C
is a union of simple languages and D is a simple language.

I Lemma 8. C1 ∪ C2 ⊆Rel D iff C1 ⊆Rel D and C2 ⊆Rel D.

The analogous of Lemma 8 for unions on the right hand-side does not hold in general, as
shown by the following example.

I Example 9. Let C = (12)∗, D1 = (112 ∪ 1122)∗, and D2 = (122 ∪ 1122)∗12. We have
C ⊆Rel D1 ∪D2, although C 6⊆Rel D1 and C 6⊆Rel D2.
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Neither it holds that Parikh image containment together with the existence of s.m. to
one of the disjuncts suffices. For instance, for C ′ = (12)∗, D′1 = (1212)∗, D′2 = 1∗2∗, we have
C ′ 6⊆Rel D

′
1 ∪D′2 although π(C ′) ⊆ π(D′1 ∪D′2) and C ′ s.m.−−−→ D′1.

The characterization we provide is inductive on the number of languages that are unioned
on the right hand-side. Concretely, for a union of two languages, we will show that C ⊆Rel
D1 ∪D2 iff C s.m.−−−→ Di for some i and C \ [Di]π ⊆Rel D3−i, where [Di]π is the closure of Di

under permutations, that is, [Di]π def= {w ∈ 2∗ | π(w) ∈ π(Di)}. The idea that underlies
the proof of the necessity of our characterization is that C can be split into a disjoint union
of C ∩ [Di]π and C \ [Di]π, in such a way that C ∩ [Di]π ⊆Rel Di and C \ [Di]π ⊆Rel D3−i.

For finite unions of simple languages, we have the following characterization. A complete
proof of this theorem will be the theme of Section 7.

I Theorem 10. For finite unions C =
⋃
i Ci and D =

⋃
j Dj of simple languages, the

following are equivalent:
C ⊆Rel D,
For all i π(Ci) ⊆ π(D) and there is j with Ci

s.m.−−−→ Dj . In addition, if Ci is heterogeneous,
then Ci \ [Dj ]π is regular and Ci \ [Dj ]π ⊆Rel

⋃
j′ 6=j Dj′ .

Coming back to Example 9, note that ρ(C) = { 1
2}, ρ(D1) = [ 1

2 ,
2
3 ]Q and ρ((122∪1122)∗) =

[ 1
3 ,

1
2 ]Q. Therefore, one can explain C ⊆Rel D1 ∪D2 by the fact of having C s.m.−−−→ D1 and

C \ [D1]π = (1212)∗12 ⊆Rel D2, where the latter containment holds by the fact that
(1212)∗12 s.m.−−−→ D2 and π((1212)∗12) ⊆ π(D2).

Note that there’s a caveat in the statement of Theorem 10: Ci \ [Dj ]π needs to be regular.
And in fact this is not the case in general: if Ci = 1∗2∗ and Dj = (12)∗, we get a non-regular
language Ci \ [Dj ]π = {1n2m | n 6= m}. However, provided Ci

s.m.−−−→ Dj for Ci heterogeneous,
we show that Ci \ [Dj ]π is effectively regular (in the sense that an automaton recognizing it
can be computed from automata recognizing Ci and Dj). This is a non-trivial fact, and will
be proved in Section 5 (Proposition 12).

The second key ingredient is that if Ci ⊆Rel D1 ∪ · · · ∪Dn, then there must be some j so
that Ci

s.m.−−−→ Dj . This will be proved in Section 6 (Lemma 15).

5 Decomposition into simple languages

As already mentioned, we start by reducing the Class Containment Problem for arbitrary
regular languages to the case of finite unions of simple languages (Proposition 3 below). We
do this in two steps. First, we decompose regular languages into finite unions of concat-
star languages of star-height 1 (Lemma 13 below). Then, we further decompose the latter
languages into finite unions of simple languages (Lemma 14 below).

Unions of star-height 1 languages. Lemma 13 relies on two key results, which are also of
independent interest. The first result is a normal form representation of the Parikh image
π(C) of a concat-star language C. Formally, we say that a linear set 〈x̄, P 〉 is in normal
form if the elements of P are linearly independent. We extend this notion to semi-linear
sets by saying that 〈x̄1, P1〉 ∪ · · · ∪ 〈x̄n, Pn〉 is in normal form if the vectors in

⋃
i Pi are

linearly independent. In particular, in dimension 2, this means that there are at most two
vectors in P . Note that if the representation of a semi-linear set is in normal form then all
its linear sets are in normal form, but the converse does not hold – for example, consider
〈0̄, {(2, 0)}〉 ∪ 〈0̄, {(3, 0)}〉. The following lemma shows that Parikh images of concat-star
languages enjoy normal forms.
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I Lemma 11. For every concat-star language C = C∗1u1 · · ·C∗nun, there exists a normal
form representation of its Parikh image π(C). Moreover, if C is infinite, the union of the
period sets is {x̄−, x̄+}, where ρ(x̄−) = minj(inf ρ(C∗j )) and ρ(x̄+) = maxj(sup ρ(C∗j )).

Proof idea. Using some basic properties of Parikh images, we reduce to the case where C is
a concatenation of expressions of the form u∗ (for u a non-empty word) or (u∗1 · · ·u∗nu)∗ (for
u1, . . . , un, u non-empty words). For any C in this form, the Parikh image of words in C can
be expressed in terms of some words w−, w+ such that π(w−) = x̄− and π(w+) = x̄+. Then,
any word of C can be represented as a constrained iteration of these two words. J

It is worth pointing out the difference with the normal form from [12]. While the normal
form of [12] holds for arbitrary regular languages, our normal form holds only for concat-star
languages over binary alphabets (e.g., it fails for (12)∗ ∪ 1∗ ∪ 2∗). Conversely, the normal
form from [12] does not guarantee the linear independence of the vectors in the union of the
periods, as we do here instead. Proposition 12 below relies on such an additional property.
(Also, [1] gives a procedure to compute Parikh images, though no normal form is implied.)

The second result shows that, under certain conditions, one can intersect a regular
language C by a language of the form [D]π = π−1(π(D)), with D concat-star, and obtain a
language that is again regular. This result not only enables the decomposition into star-height
1 languages, but will be used also later to formalize a recursive characterization of ⊆Rel for
unions of simple languages (cf. Section 7).

I Proposition 12. Given C regular and D concat-star so that ρ(cycles(C)) ⊆ ρ(cycles(D)),
the languages C ∩ [D]π and C \ [D]π are effectively regular. If in addition D is of the form
D∗1u, then C ∩ [D]π ⊆Rel D.

Proof idea. We exploit the fact that words in 2
∗ are in bijection with paths inside N2 that

originate in 0̄ = (0, 0) and, furthermore, that words with the same Parikh image correspond
to paths with the same endpoints. The claim boils down to considering some word w ∈ 2∗
and proving that, under suitable hypotheses, the path induced by w can be approximated by
a path inside π(D) that stays sufficiently close to the former path. The use of Lemma 11 will
be crucial here, since it gives a normal form

⋃
i〈x̄i, Pi〉 for the latter set π(D). Intuitively,

it implies that the words from [D]π are represented by paths that never get too far from
the linear set 〈0̄,

⋃
i Pi〉. For example, by pairing this property with the assumption that

ρ(cycles(C)) ⊆ ρ(cycles(D)), one can show that the path induced by a word w ∈ C stays
close to 〈0̄,

⋃
i Pi〉, and hence also to π(D). Stronger variants of this property are shown,

that take into account the exact displacement of points along the path induced by w from
the points in π(D). These latter properties are used by suitable automata that recognize the
languages C ∩ [D]π and C \ [D]π. J

As we explained in the proof sketch, the above proposition relies on the normal form
for the semi-linear set π(D), which in turns relies on the fact that D is concat-star. The
proposition does not hold if we replace D with an arbitrary regular language. For instance,
consider C = 1(11)∗2(22)∗ and D = (12)∗ ∪ (11)∗(22)∗, and observe that ρ(cycles(C)) =
[0, 1]Q = ρ(cycles(D)), but C ∩ [D]π = {1(11)n2(22)n | n ∈ N} is clearly not regular.

Although Proposition 12 is stated in full generality, that is, for every regular language C
so that ρ(cycles(C)) ⊆ ρ(cycles(D)), in the proof of the decomposition result below we will
use it only for a smooth heterogeneous concat-star language C so that C s.m.−−−→ D (this is
sufficient but not necessary for verifying the hypothesis ρ(cycles(C)) ⊆ ρ(cycles(D))).
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I Lemma 13. Every regular C ⊆ 2
∗ is =Rel-equivalent to a finite union

⋃
iDi of concat-star

languages of star-height 1.

Towards the proof of this lemma, note that, by Lemma 1, C is a finite union of concat-star
languages C∗1u1 · · ·C∗nun. The lemma then follows from applying Claim 1 below to each
component of the concat-star languages, and then using P2.

I Claim 1. Every regular D∗ is =Rel-equivalent to a finite union
⋃
iD
∗
i ui, with finite Di’s.

Proof idea of Claim 1. Since π(D∗) is a finite union of linear sets, from the latter we can
extract languages of the form D∗i ui. Then we can decompose D∗ as the union of D∗∩ [D∗i ui]π.
From there, the result follows easily from Proposition 12 and P2. J

Unions of simple languages. We finally show how to decompose into simple languages.

I Lemma 14. Every concat-star C ⊆ 2
∗ of star-height 1 is =Rel-equivalent to a finite union⋃

i Ci of simple languages.

Proof idea. By using the basic properties given in Lemma 2, we can reduce the problem to
the case where C is of the form 1k∗2k̂∗w∗ for some heterogeneous word w and some natural
numbers k, k̂. This case is easy to prove by using again those basic properties. J

As a corollary of Lemmas 13 and 14, we have our desired result.

I Proposition 3. Every regular language C ⊆ 2
∗ is effectively =Rel-equivalent to a finite

union of simple languages.

6 Simple languages

We prove the characterization result for simple languages, which we recall here.

I Proposition 7. For all simple C,D ⊆ 2
∗, C ⊆Rel D iff π(C) ⊆ π(D) and C s.m.−−−→ D.

For the left-to-right direction, by P6, C ⊆Rel D implies π(C) ⊆ π(D). The proof that
C ⊆Rel D implies C s.m.−−−→ D is given in a more general setup where D is a finite union of
simple languages. This statement will be used in the characterization of the next section.

I Lemma 15. For C a simple language and D =
⋃
iDi finite union of simple languages, if

C ⊆Rel D, then C s.m.−−−→ Di for some i. In particular, for C,D simple languages, if C ⊆Rel D,
then C s.m.−−−→ D. Further, the statement holds even if we consider RelA-containment for any
A with at least two letters.

Proof idea. The idea is to construct a relation R ∈ Rel(C) so that from R ∈ Rel(D),
using suitable pumping arguments, one can extract a synchronizing morphism from C

to some Di. The relation R must depend on both languages C,D, but the underlying
alphabet can be fixed and taken binary, say A = {a, b}. For example, if C is of the form
C∗1 and contains two words u− and u+ with minimum and maximum Parikh ratios, and
if the automaton for D has a single strongly connected component, then one can define
the relation R =

q
(u− ⊗ a|u−|)∗ · (u+ ⊗ b|u+|)∗

y
. In this case, R ∈ Rel(D) would imply

ρ(u−), ρ(u+) ∈ ρ(D), and hence C s.m.−−−→ D. This construction can be modified for more
general languages C,D, by using words with different Parikh ratios from each component
of C and by increasing the number of alternations between these ratios on the basis of the
number of components of D. While the construction is more involved in the general case,
and in particular needs to include iterations of words which are not necessarily of minimum
or maximum Parikh ratios for a component, the intuition remains the same. J
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I Observation 16. The previous Lemma 15 does not hold for arbitrary concat-star languages
C. For example, consider (12)∗1∗2∗ =Rel (12)∗1∗ ∪ (12)∗2∗, where there is no s.m. from
(12)∗1∗2∗ to (12)∗1∗, nor from (12)∗1∗2∗ to (12)∗2∗.

Conversely, to show that the conditions π(C) ⊆ π(D) and C s.m.−−−→ D are sufficient to
have C ⊆Rel D, where C,D are simple, it is useful to introduce a normal form for languages
of the form C∗, with C finite.

I Lemma 17. For every p, q > 0, finite C ⊆ 2
∗, and u−, u+ ∈ C so that ρ(u−) = min ρ(C)

and ρ(u+) = max ρ(C), there exists a finite C ′ ⊆ C∗ so that C∗ =Rel (up− ∪ u
q
+)∗ · C ′.

In particular, the lemma implies that C∗ =Rel (u− ∪ u+)∗ · C ′ for some finite C ′ ⊆ C∗

and u−, u+ words of C of minimum and maximum ratio. In other words, it just suffices
to iterate two words from C and then append tails of bounded length to obtain the class
Rel(C∗). With this in mind, we can easily prove our characterization for simple languages.

Proof idea of Proposition 7. The left-to-right direction follows from P6 and Lemma 15. For
the opposite direction, the case where C is homogeneous is straightforward by P8. For C
heterogeneous, we use P5 to we assume wlog that C = C∗1 · · ·C∗nu and D = D∗1 · · ·D∗mv. Since
every Ci is finite (recall that simple languages have star-height 1), we can consider words
wi,−, wi,+ of minimum and maximum Parikh ratio. Using the normal form of Lemma 17 plus
the existence of s.m., we obtain C∗i ⊆Rel D

∗
f(i)C

′
i for a finite C ′i ⊆ C∗i . Thus, C∗1 · · ·C∗nu ⊆Rel

D∗j1
C ′1 · · ·D∗jn

C ′nu =Rel D
∗
j1
· · ·D∗jn

C ′1 · · ·C ′nu ⊆Rel D
∗
1 · · ·D∗mv. J

7 Regular languages

We now prove the characterization theorem for unions of simple languages. Thanks to this
theorem and to Proposition 3, we will obtain an effective characterization for arbitrary
regular languages, and thus solve the Class Containment Problem in its full generality.

I Theorem 10. For finite unions C =
⋃
i Ci and D =

⋃
j Dj of simple languages, we have

C ⊆Rel D if and only if for all i π(Ci) ⊆ π(D), there is j with Ci
s.m.−−−→ Dj and if Ci is

heterogeneous, then Ci \ [Dj ]π is regular and Ci \ [Dj ]π ⊆Rel
⋃
j′ 6=j Dj′ .

Note in particular that the conditions in the characterization of Theorem 10 require that
Ci \ [Dj ]π is regular. Despite that, this property is always verified when Ci

s.m.−−−→ Dj and Ci
is heterogeneous by Proposition 12 from Section 5. Indeed, Ci

s.m.−−−→ Dj for Ci heterogeneous
implies that all components of Ci are mapped to components of Dj . In view of Lemma 5 and
the fact that Ci and Dj have star-height 1, this implies that ρ(cycles(Ci)) ⊆ ρ(cycles(Dj)),
and hence, by Proposition 12, Ci \ [Dj ]π is regular. We are now ready to prove the theorem.

Proof of Theorem 10. For the left-to-right implication, by Lemma 8, we have that Ci ⊆Rel
D for every i. Containment of Parikh images follows then from P6. For any fixed i, if Ci
is homogeneous we have Ci

s.m.−−−→ Dj for every j, and if it is smooth heterogeneous, then
Lemma 15 yields the existence of some j so that Ci

s.m.−−−→ Dj . By Proposition 12, Ci \ [Dj ]π
is regular, and we now prove that Ci \ [Dj ]π ⊆Rel

⋃
j′ 6=j Dj′ . Take R ∈ Rel(Ci \ [Dj ]π)

and a regular L ⊆ (Ci \ [Dj ]π)⊗A∗ so that JLK = R. Since Ci \ [Dj ]π ⊆ Ci, we have
R ∈ Rel(Ci) ⊆ Rel(D), by P1 and hypothesis. Let L′ ⊆ D⊗A∗ be a regular language so
that JL′K = JLK = R. Since the projection onto 2 of L and L′ have necessarily the same
Parikh image, it follows that L′ ∩ (Dj ⊗A∗) = ∅, and thus that L′ ⊆ (

⋃
j′ 6=j Dj′)⊗A∗ or, in

other words, that R ∈ Rel(
⋃
j′ 6=j Dj′).
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For the right-to-left implication, for Ci homogeneous, π(Ci) ⊆ π(D) implies Ci ⊆Rel D

by P8. For Ci heterogeneous, we have Ci = (Ci \ [Dj ]π) ∪ (Ci ∩ [Dj ]π). By hypothesis
plus property P1, Ci \ [Dj ]π ⊆Rel D. Then, by Lemma 8, it only remains to check that
Ci ∩ [Dj ]π ⊆Rel D. Now, by Proposition 12 and Proposition 3, Ci ∩ [Dj ]π is =Rel-equivalent
to a finite union of simple languages (C ′k)k∈K . Note that C ′k ⊆Rel Ci for all k ∈ K. Then,
by the left-to-right direction of Proposition 7, we have C ′k

s.m.−−−→ Ci for all k. By composition
of synchronizing morphisms, we obtain C ′k

s.m.−−−→ Dj for all k ∈ K. Since we also have that
π(C ′k) ⊆ π(Dj), by the right-to-left direction of Proposition 7, we have that C ′k ⊆Rel Dj for
all k ∈ K. Then, from Lemma 8 it follows that Ci ⊆Rel Dj ⊆ D. Since this happens for
every Ci, again by Lemma 8 the statement follows. J

8 Decidability and complexity

We have given a characterization of the pairs C,D of regular languages that satisfy C ⊆Rel D.
We argue that this characterization is effective.

As explained in Section 7, there are three main steps that one need to take for deciding
whether C ⊆Rel D, for two given regular languages C,D: First, one needs to decompose C
and D as finite unions

⋃
i Ci and

⋃
j Dj of simple languages. This preprocessing relies on two

constructions: the computation of the normal form for semi-linear sets and the construction
of an automaton for C ∩ [D]π, proving that is regular. A close inspection of these proofs in
Section 5 shows that both procedures are effective, and thus so is the decomposition.

Then, based on the characterization of Theorem 10, one has to identify suitable synchron-
izing morphisms from each Ci to some Dj . This step boils down to checking whether two
components C∗i,i′ and D∗j,j′ of concat-star languages satisfy ρ(C∗i,i′) ⊆ ρ(D∗j,j′). Thanks to
the insight of Lemma 5, the containment of Parikh ratios and thus the existence of such
synchronizing morphism is decidable.

Finally, the third step uses Theorem 10, reducing the problem
⋃
i Ci ⊆Rel

⋃
j Dj to

sub-problems of the form Ci \ [Dji
]π ⊆Rel

⋃
j′ 6=ji

Dj′ , which has a smaller union in the right
hand-side and thus can be solved recursively (but in principle non-elementary).

The above arguments show that the Class Containment Problem is decidable. Once we
know that C ⊆Rel D for two given regular languages C,D, it is reasonable to ask whether it
is possible to resynchronize any relation from C to D, namely, whether there is an algorithm
that transforms any automaton A recognizing L ⊆ C ⊗A∗ into an automaton A′ recognizing
L′ ⊆ D ⊗ A∗ so that JL′K = JLK. A close inspection to our decision procedure for C ⊆Rel D

gives a positive answer to the question. Indeed, all our proofs are constructive.
We can summarize the above arguments with the following corollary.

I Corollary 18. There is a non-elementary algorithm that, given two regular languages
C,D ⊆ 2

∗, decides whether C ⊆Rel D.
There is also a non-elementary algorithm that, given an automaton for L ⊆ C⊗A∗, constructs
an automaton for some L′ ⊆ D ⊗ A∗ so that JL′K = JLK, provided C ⊆Rel D.

9 Discussion

The overall picture we obtain from our results is that Rel(C) ⊆ Rel(D) depends on
comparing the ratio growth of the two coordinates on the cycles of the transition graph
of the automata AC , AD recognizing C,D. Concretely, our reduction into synchronizing
morphisms for simple languages can be thought of restricting our attention to cycles c1, . . . , cn
of AC so that: ci+1 is reachable from ci, and ci or ci+1 is heterogeneous (recall that in a
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simple concat-star language, there are no consecutive homogeneous components). Intuitively,
Rel(C) ⊆ Rel(D) whenever π(C) ⊆ π(D) and for every sequence of cycles c1, . . . , cn as
before, there exists a corresponding sequence of cycles c′1, . . . , c′n in AD with the same
properties so that ci and c′i have the same Parikh ratio for every i.

We also recall (cf. proof of Lemma 15) that our characterization holds for the containment
problem Rel(C) ⊆ Rel(D), but also for any variant with a fixed alphabet of cardinality at
least 2. For the variant with a unary alphabet A, it is easy to see that RelA(C) ⊆ RelA(D)
is equivalent to π(C) ⊆ π(D). As concerns relations of higher arity defined by control
languages C ⊆ k

∗ = [1, k]∗, it is not clear if a similar characterization may hold. For example,
the normal form of Lemma 11 does not generalize to control alphabets of more than two
letters. Finally, we leave for future work the issue of determining the precise complexity of
the Class Containment Problem.
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Abstract
In this paper, we study the problem of deciding the winner of reachability switching games.
We study zero-, one-, and two-player variants of these games. We show that the zero-player
case is NL-hard, the one-player case is NP-complete, and that the two-player case is PSPACE-hard
and in EXPTIME. For the zero-player case, we also show P-hardness for a succinctly-represented
model that maintains the upper bound of NP ∩ coNP. For the one- and two-player cases, our
results hold in both the natural, explicit model and succinctly-represented model. We also study
the structure of winning strategies in these games, and in particular we show that exponential
memory is required in both the one- and two-player settings.
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1 Introduction

A switching system (also known as a Propp machine) attempts to replicate the properties of
a random system in a deterministic way [14]. It does so by replacing the nodes of a Markov
chain with switching nodes. Each switching node maintains a queue over its outgoing edges.
When the system arrives at the node, it is sent along the first edge in this queue, and that
edge is then sent to the back of the queue. In this way, the switching node ensures that, after
a large number of visits, each outgoing edge is used a roughly equal number of times.

The Propp machine literature has focussed on many-token switching systems and has
addressed questions such as how well these systems emulate Markov chains. Recently, Dohrau
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et. al. [7] initiated the study of single-token switching systems and found that the reachability
problem raised interesting complexity-theoretic questions. Inspired by that work, we study
the question how hard is it to model check single-token switching systems? A switching node
is a simple example of a fair scheduler, and thus it is natural to consider model checking
of switching systems. We already have a good knowledge about the complexity of model
checking Markovian systems, but how does this change when we instead use switching nodes?

Our contribution. In this paper, we initiate the study of model checking in switching
systems. We focus on reachability problems, one of the simplest model checking tasks. This
corresponds to determining the winner of a two-player reachability switching game. We study
zero-, one-, and two-player variants of these games, which correspond to switching versions of
Markov chains, Markov decision processes [20], and simple stochastic games [2], respectively.

The main message of the paper is that deciding reachability in one- and two-player
switching games is harder than deciding reachability in Markovian systems. Specifically, we
show that deciding the winner of a one-player game is NP-complete, and that the problem of
deciding the winner of a two-player game is PSPACE-hard and in EXPTIME.

We also study the complexity of zero-player games, where we show hardness results
that complement the upper bounds shown in previous work [7]. For the standard model
of switching systems, which we call explicit games, we are able to show a lower bound of
NL-hardness, which is still quite far from the known upper bound of UP∩ coUP. We also show
that if one extends the model by allowing the switching order to be represented in a concise
way, then a stronger lower bound of P-hardness can be shown, while still maintaining an
NP ∩ coNP upper bound. We call these concisely represented games succinct games, and we
also observe that all of our other results, both upper and lower bounds, still apply to succinct
games. Our results are summarised in the following table.

Markovian Switching (explicit) Switching (succinct)

0-player PL-complete2 NL-hard; in CLS, in UP ∩ coUP P-hard; in NP ∩ coNP

1-player P-complete NP-complete NP-complete

2-player NP ∩ coNP PSPACE-hard; in EXPTIME PSPACE-hard; in EXPTIME

For the explicit zero-player case the first bound was an NP ∩ coNP upper bound given by
Dohrau et al. [7], and a PLS upper bound was then given by Karthik [15]. The CLS and
UP ∩ coUP upper bounds, which subsume the two earlier bounds, were given by Gärtner et
al. [10], who also produced a O(1.4143n) algorithm for solving explicit zero-player games.
All the other upper and lower bounds in the table are proved in this paper.

Finally, we address the memory requirements of winning strategies in reachability switching
games. It is easy to see that winning strategies exist that use exponential memory. These
strategies simply remember the current switch configuration of the switching nodes, and
their existence can be proved by blowing up a switching game into an exponentially sized
reachability game, and then following the positional winning strategies from that reachability
game. This raises the question of whether there are winning strategies that use less than

2 PL, or probabilistic L, is the class of languages recognizable by a polynomial time logarithmic space
randomized machine with probability > 1/2.
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exponential memory. We answer this negatively, by showing that the reachability player may
need Ω(2n/2) memory states to win a one-player reachability switching game, and that both
players may need to use Ω(2n) memory states to win a two-player game.

Related work. Switching games are part of a research thread at the intersection of computer
science and physics. This thread has studied zero-player switching systems, also known as
deterministic random walks, rotor-router walks, the Eulerian walkers model [19] and Propp
machines [3–6,13,14]. Propp machines have been studied in the context of derandomizing
algorithms and pseudorandom simulation, and in particular have received a lot of attention
in the context of load balancing [1, 9]. However, most work on Propp machines has focused
on how well multi-token switching systems simulate Markov chains. The idea of studying
single-token reachability should be credited to Dohrau at al. [7].

Katz et al. [16], Groote and Ploeger [12], and others [12, 18, 21], considered switching
graphs; these are graphs in which certain vertices (switches) have exactly one of their two
outgoing edges activated. However, the activation of the alternate edge does not occur when
a vertex is traversed by a run; this is the key difference to switching games in this paper.

Markov decision processes [20] and simple stochastic games [2] are important objects
of study in probabilistic model checking, which is an central topic in the field of formal
verification. Probabilistic model checking is now a mature topic, with tools like PRISM [17]
providing an accessible interface to the research that has taken place.

2 Preliminaries

A reachability switching game (RSG) is defined by a tuple (V,E, VR, VS, VSwi,Ord, s, t), where
(V,E) is a finite directed graph, and VR, VS, VSwi partition V into reachability vertices, safety
vertices, and switching vertices, respectively. The reachability vertices VR are controlled by
the reachability player, the safety vertices VS are controlled by the safety player, and the
switching vertices VSwi are not controlled by either player, but instead follow a predefined
“switching order”. The function Ord defines this switching order : for each switching vertex
v ∈ VSwi, we have that Ord(v) = 〈u1, u2, . . . , uk〉 where we have that (v, ui) ∈ E for all ui in
the sequence. Note that a particular vertex u may appear more than once in the sequence.
The vertices s, t ∈ V specify source and target vertices for the game.

A state of the game is defined by a tuple (v, C), where v is a vertex in V , and
C : VSwi → N is a function that assigns a number to each switching vertex, which rep-
resents how far that vertex has progressed through its switching order. Hence, it is required
that C(u) ≤ |Ord(v)| − 1, since the counts specify an index to the sequence Ord(v).

When the game is at a state (v, C) with v ∈ VR or v ∈ VS, then the respective player
chooses an outgoing edge at v, and the count function does not change. For states (v, C) with
v ∈ VSwi, the successor state is determined by the count function. More specifically, we define
Upd(v, C) : VSwi → N so that for each u ∈ VSwi we have Upd(v, C)(u) = C(u) if v 6= u, and
Upd(v, C)(u) = (C(u) + 1) mod |Ord(u)| otherwise. This function increases the count at v
by 1, and wraps around to 0 if the number is larger than the length of the switching order
at v. Then, the successor state of (v, C), denoted as Succ(v, C) is (u,Upd(v, C)), where u is
the element at position C(v) in Ord(v).

A play of the game is a (potentially infinite) sequence of states (v1, C1), (v2, C2), . . . with
the following properties:
1. v1 = s and C1(v) = 0 for all v ∈ VSwi;
2. If vi ∈ VR or vi ∈ VS then (vi, vi+1) ∈ E and Ci = Ci+1;

ICALP 2018
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3. If vi ∈ VSwi then (vi+1, Ci+1) = Succ(vi, Ci);
4. If the play is finite, then the final state (vn, Cn) must either satisfy vn = t, or vn must

have no outgoing edges.
A play is winning for the reachability player if it is finite and the final state is the target
vertex. A (deterministic, history dependent) strategy for the reachability player is a function
that maps each play prefix (v1, C1), (v2, C2), . . . , (vk, C1), with vk ∈ VR, to an outgoing edge
of vk. A play (v1, C1), (v2, C2), . . . is consistent with a strategy if, whenever vi ∈ VR, we
have that (vi, vi+1) is the edge chosen by the strategy. Strategies for the safety player are
defined analogously. A strategy is winning if all plays consistent with it are winning.

The representation of the switching order. Recall that Ord(v) = 〈u1, u2, . . . , uk〉 gives a
sequence of outgoing edges for every switching vertex. We consider two possible ways of
representing Ord(v) in this paper. In explicit RSGs, Ord(v) is represented by simply writing
down the sequence 〈u1, u2, . . . , uk〉.

We also consider games in which Ord(v) is written down in a more concise way, which
we call succinct RSGs. In these games, for each switching vertex v, we have a sequence of
pairs 〈(u1, t1), (u2, t2), . . . , (uk, tk)〉, where each ui is a vertex with (v, ui) ∈ E, and each ti
is a natural number. The idea is that Ord(v) should contain t1 copies of u1, followed by t2
copies of u2, and so on. So, if Rep(u, t) gives the sequence containing t copies of u, and if ·
represents sequence concatenation, then Ord(v) = Rep(u1, t1) ·Rep(u2, t2) · . . . ·Rep(uk, tk).
Any explicit game can be written down in the succinct encoding by setting all ti = 1. Note,
however, that in a succinct game Ord(v) may have exponentially many elements, even if the
input size is polynomial, since each ti is represented in binary.

3 One-player reachability switching games

In this section we consider one-player RSGs, i.e., where VS = ∅.

3.1 Containment in NP
We show that deciding whether the reachability player wins a one-player RSG is in NP. Our
proof holds for both explicit and succinct games. The proof uses controlled switching flows.
These extend the idea of switching flows, which were used by Dohrau et al. [7] to show
containment of the zero-player reachability problem in NP ∩ coNP.

Controlled switching flow. A flow is a function F : E → N that assigns a natural number
to each edge in the game. For each vertex v, we define Bal(F, v) =

∑
(v,u)∈E F (v, u) −∑

(w,v)∈E F (w, v), which is the difference between the outgoing and incoming flow at v. For
each switching node v ∈ VSwi, let Succ(v) denote the set of vertices that appear in Ord(v),
and for each index i ≤ |Ord(v)| and each vertex u ∈ Succ(v), let Out(v, i, u) be the number
of times that u appears in the first i entries of Ord(v). In other words, Out(v, i, u) gives the
amount of flow that should be sent to u if we send exactly i units of flow into v.

A flow F is a controlled switching flow if it satisfies the following constraints:
The source vertex s satisfies Bal(F, s) = 1, and the target vertex t satisfies Bal(F, t) = −1.
Every vertex v other than s or t satisfies Bal(F, v) = 0.
Let v ∈ VSwi be a switching node, k = |Ord(v)|, and let I =

∑
(u,v)∈E F (u, v) be

the total amount of flow incoming to v. Define p to be the largest integer such that
p · k ≤ I (which may be 0), and q = I mod k. For every vertex w ∈ Succ(v) we have that
F (v, w) = p ·Out(v, k, w) + Out(v, q, w).
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The first two constraints ensure that F is a flow from s to t, while the final constraint ensures
that the flow respects the switching order at each switching node. Note that there are no
constraints on how the flow is split at the nodes in VR. For each flow F , we define the size
of F to be

∑
e∈E F (e). A flow of size k can be written down using at most |E| · log k bits.

Marginal strategies. A marginal strategy for the reachability player is defined by a function
M : E → N, which assigns a target number to each outgoing edge of the vertices in VR. The
strategy ensures that each edge e is used no more than M(e) times. That is, when the play
arrives at a vertex v ∈ VR, the strategy checks how many times each outgoing edge of v has
been used so far, and selects an arbitrary outgoing edge e that has been used strictly less
than M(e) times. If there is no such edge, then the strategy is undefined.

Observe that a controlled switching flow defines a marginal strategy for the reachability
player. We prove that this strategy always reaches the target.

I Lemma 1. If a one-player RSG has a controlled switching flow F , then any corresponding
marginal strategy is winning for the reachability player.

In the other direction, if the reachability player has a winning strategy, then there exists
a controlled switching flow, and we can give an upper bound on its size.

I Lemma 2. If the reachability player has a winning strategy for a one-player RSG , then
that game has a controlled switching flow F , and the size of F is at most n · ln, where n is
the number of nodes in the game and l = maxv∈VSwi |Ord(v)|.

I Corollary 3. If the reachability player has a winning strategy for a one-player RSG, then
he also has a marginal winning strategy.

Finally, we can show that solving a one-player RSG is in NP.

I Theorem 4. Deciding the winner of an explicit or succinct one-player RSG is in NP.

3.2 NP-hardness
In this section we show that deciding the winner of a one-player RSG is NP-hard. Our
construction will produce an explicit RSG, so we obtain NP-hardness for both explicit and
succinct games. We reduce from 3SAT. Throughout this section, we will refer to a 3SAT
instance with variables x1, x2, . . . , xn, and clauses C1, C2, . . . , Cm. It is well-known [22, Thm.
2.1] that 3SAT remains NP-hard even if all variables appear in at most three clauses. We
make this assumption during our reduction.

Overview. The idea behind the construction is that the player will be asked to assign values
to each variable. Each variable xi has a corresponding vertex that will be visited 3 times
during the game. Each time this vertex is visited, the player will be asked to assign a value
to xi in a particular clause Cj . If the player chooses an assignment that does not satisfy Cj ,
then the game records this by incrementing a counter. If the counter corresponding to any
clause Cj is incremented to three (or two if the clause only has two variables), then the
reachability player immediately loses, since the chosen assignment fails to satisfy Cj .

The problem with the idea presented so far is that there is no mechanism to ensure
that the reachability player chooses a consistent assignment to the same variable. Since
each variable xi is visited three times, there is nothing to stop the reachability player from
choosing contradictory assignments to xi on each visit. To address this, the game also counts
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Controllerstart fail

x1 x2 x3 x4 target

C1 C2 C3start start start start

start fail start fail start fail

Figure 1 Overview of our construction for one player for the example formula C1 ∧ C2 ∧ C3 =
(x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4). Note that the negations of variables in the formula
are not relevant for this high-level view; they will feature in the clause gadgets as explained below.
The edges for the variable phase are solid, and the edges for the verification phase are dashed.

a3n+1bstart fail

x1 x2 x3 x4 x5

a

b

1 2 3 4 5

Figure 2 The control gadget.

xi

a3bxi+1

Ci start start

a

b

1
2 3

a3b xi+1

Cj Ck start

a

b

1
2 3

true false

Figure 3 A variable gadget.

how many times each assignment is chosen for xi. At the end of the game, if the reachability
player has not already lost by failing to satisfy the formula, the game is configured so that the
target is only reachable if the reachability player chose a consistent assignment. A high-level
overview of the construction for an example formula is given in Fig. 1.

The control gadget. The sequencing in the construction is determined by the control
gadget, which is shown in Fig. 2. In our diagramming notation, square vertices belong
to the reachability player. Circle vertices are switching nodes, and the switching order of
each switching vertex is labelled on its outgoing edges. Our diagrams also include counting
gadgets, which are represented as non-square rectangles that have labelled output edges. The
counting gadget is labelled by a sequence over these outputs, with the idea being that if the
play repeatedly reaches the gadget, then the corresponding output sequence will be produced.
In Fig. 2 the gadget is labelled by a3n+1b, which means the first 3n+ 1 times the gadget is
used the token will be moved along the a edge, and the 3n+ 2nd time the gadget is used the
token will be moved along the b edge. This gadget can be easily implemented by a switching
node that has 3n+ 2 outgoing edges, the first 3n+ 1 of which go to a, while the 3n+ 2nd
edge goes to b. We use gadgets in place of this because it simplifies our diagrams.

The control gadget has two phases. In the variable phase, each variable gadget, represented
by the vertices x1 through xn is used exactly 3 times, and thus overall the gadget will be
used 3n times. This is accomplished by a switching node that ensures that each variable is
used 3 times. After each variable gadget has been visited 3 times, the control gadget then
sends the token to the x1 variable gadget for the verification phase of the game. In this
phase, the reachability player must prove that he gave consistent assignments to all variables.
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a2bstart fail
a b

Figure 4 A gadget for a clause with three variables.

If the control gadget is visited 3n+ 2 times, then the token will be moved to the fail vertex.
This vertex has no outgoing edges, and thus is losing for the reachability player.

The variable gadgets. Each variable xi is represented by a variable gadget, which is shown
in Fig. 3. This gadget will be visited 3 times in total during the variable phase, and each
time the reachability player must choose either the true or false edges at the vertex xi. In
either case, the token will then pass through a counting gadget, and then move to a switching
vertex which either moves the token to a clause gadget, or back to the start vertex.

It can be seen that the gadget is divided into two almost identical branches. One
corresponds to a true assignment to xi, and the other to a false assignment to xi. The clause
gadgets are divided between the two branches of the gadget. In particular, a clause appears
on a branch if and only if the variable appears in that clause and the choice made by the
reachability player fails to satisfy the clause. So, the clauses in which xi appears positively
appear on the false branch of the gadget, while the clauses in which xi appears negatively
appear on the true branch.

The switching vertices each have exactly three outgoing edges. These edges use an
arbitrary order over the clauses assigned to the branch. If there are fewer than 3 clauses on
a particular branch, the remaining edges of the switching node go back to the start vertex.
Note that this means that a variable can be involved with fewer than three clauses.

The counting gadgets will be used during the verification phase of the game, in which
the variable player must prove that he has chosen consistent assignments to each of the
variables. Once each variable gadget has been used 3 times, the token will be moved to x1
by the control gadget. If the reachability player has used the same branch three times, then
he can choose that branch, and move to x2, which again has the same property. So, if the
reachability player gives a consistent assignment to all variables, he can eventually move
to xn, and then on to xn+1, which is the target vertex of the game. Since, as we will show,
there is no other way of reaching xn+1, this ensures that the reachability player must give
consistent assignments to the variables in order to win the game.

The clause gadgets. Each clause Cj is represented by a clause gadget, an example of
which is shown in Fig. 4. The gadget counts how many variables have failed to satisfy the
corresponding clause. If the number of times the gadget is visited is equal to the number of
variables involved with the clause, then the game moves to the fail vertex, and the reachability
player immediately loses. In all other cases, the token moves back to the start vertex.

Correctness. The following lemma shows that the reachability player wins the one-player
RSG if and only if the 3SAT instance is satisfiable.

I Lemma 5. The reachability player wins the one-player RSG if and only if the 3SAT
instance is satisfiable.

Note that our game can be written down as an explicit game, so our lower bound applies
to both explicit and succinct games. Hence, we have the following theorem.

I Theorem 6. Deciding the winner of an explicit or succinct one-player RSG is NP-hard.
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Figure 5 One-player memory lower bound construction.

3.3 Memory requirements of winning strategies in one-player games
Consider the game shown in Fig. 5, which takes as input a parameter p that we will fix later.
The only control state for the player is x. By construction, x will be visited p+ p2 times.
Each time, the player must choose either the top or bottom edge. If the player uses the top
edge strictly more than p2 times, or the bottom edge strictly more than p times, then he
will immediately lose the game. If the player does not lose the game in this way, then after
p2 + p rounds the target will be reached, and the player will win the game.

The player has an obvious winning strategy: use the top edge p2 times and the bottom
edge p times. Intuitively, there are two ways that the player could implement the strategy.
(1) Use the bottom edge p times, and then use the top edge p2 times. This approach uses p
memory states to count the number of times the bottom edge has been used. (2) Use the
bottom edge once, use the top edge p times, and then repeat. This approach uses p memory
states to count the number of times the top state has been used after each use of the bottom
edge. We can prove that one cannot do significantly better.

I Lemma 7. The reachability player must use at least p− 1 memory states to win the game
shown in Fig. 5.

Setting p = 2n/2 gives us our lower bound. Even though p is exponential, it is possible to
create an explicit switching gadget that produces the sequence a2n

b with n switching nodes.

I Lemma 8. For all x ∈ N there is an explicit switching gadget of size log2(x) with output axb.

I Theorem 9. The number of memory states needed in an explicit one-player RSG is Ω(2 n
2 ).

4 Two-player reachability switching games

4.1 Containment in EXPTIME
We first observe that solving a two-player RSG lies in EXPTIME. This can be proved easily,
either by blowing the game up into an exponentially sized reachability game, or equivalently,
by simulating the game on an alternating polynomial-space Turing machine.

I Theorem 10. Deciding the winner of an RSG is in EXPTIME.

4.2 PSPACE-hardness
We show that deciding the winner of an explicit two-player RSG is PSPACE-hard, by reducing
true quantified boolean formula (TQBF), the canonical PSPACE-complete problem, to our
problem. Throughout this section we will refer to a TQBF instance ∃x1∀x2 . . . ∃xn−1∀xn ·
φ(x1, x2, . . . , xn), where φ denotes a boolean formula given in negation normal form, which
requires that negations are only applied to variables, and not sub-formulas. The problem is
to decide whether this formula is true.
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Formula φ

x1 x2· · · xnstart

target fail target fail target fail

Figure 6 High-level overview of our construction for two players. The dashed lines between
variables are part of the first, quantifier phase; the dotted line from variable xn to the Formula is
the transition between phases, and the solid edges are part of the second, formula phase.

di

xi ¬xi

fi

from xi−1

target target

to xi+1fail

1 1

2 2

12

Figure 7 The initialization gadget for an
existentially quantified variable xi.

∧1

from fn

∨1 ∧2

x1 ¬x2 ¬x3 x4

Figure 8 The formula phase game for the
formula (x1 ∨ ¬x2) ∧ ¬x3 ∧ x4.

Overview. We will implement the TQBF formula as a game between the reachability player
and the safety player. This game will have two phases. In the quantifier phase, the two
players assign values to their variables in the order specified by the quantifiers. In the formula
phase, the two players determine whether φ is satisfied by these assignments by playing
the standard model-checking game for propositional logic. The target state of the game is
reached if and only if the model checking game determines that the formula is satisfied. This
high-level view of our construction is depicted in Fig. 6.

The quantifier phase. Each variable in the TQBF formula will be represented by an
initialization gadget. The initialization gadget for an existentially quantified variable is shown
in Fig. 7. The gadget for a universally quantified variable is almost identical, but the state di

is instead controlled by the safety player.
During the quantifier phase, the game will start at d1, and then pass through the gadgets

for each of the variables in sequence. In each gadget, the controller of di must move to
either xi or ¬xi. In either case, the corresponding switching node moves the token to fi,
which then subsequently moves the token on to the gadget for xi+1.

The important property to note here is that once the player has made a choice, any
subsequent visit to xi or ¬xi will end the game. Suppose that the controller of di chooses
to move to xi. If the token ever arrives at xi a second time, then the switching node will
move to the target vertex and the reachability player will immediately win the game. If the
token ever arrives at ¬xi the token will move to fi and then on to the fail vertex, and the
Safety player will immediately win the game. The same property holds symmetrically if the
controller of di chooses ¬xi instead. In this way, the controller of di selects an assignment
to xi. Hence, the reachability player assigns values to the existentially quantified variables,
and the safety player assigns values to the universally quantified variables.

ICALP 2018
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Figure 9 An RSG in which the reachability player needs to use memory.

The formula phase. Once the quantifier phase has ended, the game moves into the formula
phase. In this phase the two players play a game to determine whether φ is satisfied by
the assignments to the variables. This is the standard model checking game for first order
logic. The players play a game on the parse tree of the formula, starting from the root. The
reachability player controls the ∨ nodes, while the safety player controls the ∧ nodes (recall
that the game is in negation normal form, so there are no internal ¬ nodes.) Each leaf is
either a variable or its negation, which in our game are represented by the xi and ¬xi nodes
in the initialization gadgets. An example of this game is shown in Fig. 8. In our diagramming
notation, nodes controlled by the safety player are represented by triangles.

Intuitively, if φ is satisfied by the assignment to x1, . . . , xn, then no matter what the
safety player does, the reachability player is able to reach a leaf node corresponding to a true
assignment, and as mentioned earlier, he will then immediately win the game. Conversely,
if φ is not satisfied, then no matter what the reachability player does, the safety player can
reach a leaf corresponding to a false assignment, and then immediately win the game.

I Lemma 11. The reachability player wins if and only if the QBF formula is true.

Since we have shown the lower bound for explicit games, we also get the same lower
bound for succinct games as well. We have shown the following theorem.

I Theorem 12. Deciding the winner of an explicit or succinct RSG is PSPACE-hard.

Note that all runs of the game have polynomial length, a property that is not shared by
all RSGs. This gives us the following corollary.

I Corollary 13. Deciding the winner of a polynomial-length RSG is PSPACE-complete.

4.3 Memory requirements for two player games
We can show even stronger memory lower bounds in two-player games compared to one-player
games. Fig. 9 shows a simple gadget that forces the reachability player to use memory. The
game starts by allowing the safety player to move the token from x to either a or b. Whatever
the choice, the token then moves to c and then on to y. At this point, if the reachability
player moves the token to the node chosen by the safety player, then the token will arrive at
the target node and the reachability player will win. If the reachability player moves to the
other node, the token will move to c for a second time, and then on to the fail vertex, which
is losing for the reachability player. Thus, every winning strategy of the reachability player
must remember the choice made by the safety player.

We can create a similar gadget that forces the safety player to use memory by swapping
the players. In the modified gadget, the safety player has to choose the vertex not chosen by
the reachability player. Thus, in an RSG, winning strategies for both players need to use
memory. By using n copies of the memory gadget, we can show the following lower bound.
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Figure 10 An AND-gate of depth 2.
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Figure 11 An OR-gate of depth 2.

I Lemma 14. In an explicit or succinct RSG, winning strategies for both players may need
to use 2n memory states, where n is the number of switching nodes.

5 Zero-player reachability switching games

5.1 Explicit zero-player games
We show that deciding the winner of an explicit zero-player game is NL-hard. To do this,
we reduce from the problem of deciding s-t connectivity in a directed graph. The idea is to
make every node in the graph a switching node. We then begin a walk from s. If, after |V |
steps we have not arrived at t, we go back to s and start again. So, if there is a path from s

to t, then the switching nodes must eventually send the token along that path.
Formally, given a graph (V,E), we produce a zero-player RSG played on V × V ∪ {fin},

where the second component of each state is a counter that counts up to |V |. Every vertex
is a switching node, the start vertex is (s, 1), and the target vertex is fin. Each vertex (v, k)
with v 6= t and k < |V | has outgoing edges to (u, k + 1) for each outgoing edge (v, u) ∈ E.
Each vertex (v, |V |) with v 6= t has a single outgoing edge to (s, 1). Every vertex (t, k) with
1 ≤ k ≤ |V | has a single outgoing edge to fin. This game can be constructed in logarithmic
space by looping over each element in V × V and producing the correct outgoing edges.

I Theorem 15. Deciding the winner of an explicit zero-player RSG is NL-hard under logspace
reductions.

5.2 Succinct games
Deciding reachability for succinct zero-player games still lies in NP ∩ coNP. This can be
shown using essentially the same arguments that were used to show NP ∩ coNP containment
for explicit games [7]. The fact that the problem lies in NP follows from Theorem 4, since
every succinct zero-player game is also a succinct one-player game, and so a switching flow
can be used to witness reachability. To put the problem in coNP, one can follow the original
proof given by Dohrau et al. [7, Theorem 3] for explicit games. This proof condenses all
losing and infinite plays into a single failure state, and then uses a switching flow to witness
reachability for that failure state. Their transformation uses only the graph structure of the
game, and not the switching order, and so it can equally well be applied to succinct games.

In contrast to explicit games, we can show a stronger lower bound of P-hardness for
succinct games. We will reduce from the problem of evaluating a boolean circuit (the circuit
value problem), which is one of the canonical P-complete problems. We will assume that the
circuit has fan-in and fan-out 2, that all gates are either AND-gates or OR-gates, and that
the circuit is synchronous, meaning that the outputs of the circuit have depth 1, and all
gates at depth i get their inputs from gates of depth exactly i+ 1. This is Problem A.1.6
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“Fanin 2, Fanout 2 Synchronous Alternating Monotone CVP” of Greenlaw et al. [11]. We
will reduce from the following decision problem: for a given input bit-string B ∈ {0, 1}n, and
a given output gate g, is g evaluated to true when the circuit is evaluated on B?

Boolean gates. We will simulate the gates of the circuit using switching nodes. A gate at
depth i > 1 is connected to exactly two gates of depth i+ 1 from which it gets its inputs,
and exactly two gates at depth i− 1 to which it sends its output. If a gate evaluates to true,
then it will send a signal to the output-gates, by sending the token to that gate’s gadget.
More precisely, for a gate of depth i > 1, the following signals are sent. If the gate evaluates
to true, then the gate will send the token exactly 2i−1 times to each output gate. If the gate
evaluates to false, then the gate will send the token exactly 0 times to each output gate. So
the number of signals sent by a gate grows exponentially with the depth of that gate.

Fig. 10 shows our construction for an AND-gate of depth 2. It consists of a single
switching node (with a succinct order). I1 and I2 are two input edges that come from the
two inputs to this gate, and O1 and O2 are two output edges that go to the outputs of
this gate. The control state is a special state that drives the construction, which will be
described later. The switching order was generated by the following rules. For a gate at
depth i, the switching order of an AND-gate is defined so that the first 2i positions in the
switching order go to control, the next 2i−1 positions in the switching order go to O1, and
the final 2i−1 positions in the switching order go to O2. Observe that this switching order
captures the behavior of an AND-gate. If the gadget receives 2i signals from both inputs,
then it sends 2i−1 signals to both outputs. On the other hand, if at least one of the two
inputs sends no signals, then the gadget sends no signals to the outputs.

The same idea is used to implement OR-gates. Fig. 11 shows the construction for an
OR-gate of depth 2. For an OR-gate of depth i we have that the first 2i−1 positions in the
switching order go to O1, the next 2i−1 positions in the switching order go to O2, and the
final 2i positions in the switching order go to control. These conditions simulate an OR-gate.
If either of the inputs produces 2i input signals, then 2i−1 signals are sent to both outputs.
If both inputs produce no signals, then no signals are sent to either output.

The control state and the depth 1 gates. Suppose that the inputs to the circuit are at
depth d. The control state is a single switching node that has the following switching order.
Each input edge to a gate at depth d refers to some bit contained in the bit-string B. The
control state sends 2d inputs using that edge if that bit is true, and 0 inputs using that edge
if that bit is false. Once those signals have been sent, the control state moves the token to
an absorbing failure state. The token begins at the control state.

Each gate at depth 1 is represented by a single state, and has the same structure and
switch configuration as the gates at depth i > 1. The only difference is the destination of the
edges O1 and O2. The gate g (which we must evaluate) sends all outputs to an absorbing
target state. All other gates send all outputs back to the control state.

I Lemma 16. The token reaches the target state if and only if the gate g evaluates to true
when the circuit is evaluated on the bit-string B.

Since these gadgets use exponential switching orders, this construction would have
exponential size if written down in the explicit format. Note, however, that all of the
switching orders can be written down in the succinct format in polynomially many bits.
Moreover, the construction has exactly one switching state for each gate in the circuit, and
three extra states for the control, target, and failure nodes. Every state in the construction
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can be created using only the inputs and outputs of the relevant gate in the circuit, which
means that the reduction can be carried out in logarithmic space. Thus, we have the following.

I Theorem 17. Deciding the winner of a succinct zero-player RSG is P-hard under logspace
reductions.
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Abstract
We consider Pareto analysis of reachable states of multi-priced timed automata (MPTA): timed
automata equipped with multiple observers that keep track of costs (to be minimised) and rewards
(to be maximised) along a computation. Each observer has a constant non-negative derivative
which may depend on the location of the MPTA.

We study the Pareto Domination Problem, which asks whether it is possible to reach a target
location via a run in which the accumulated costs and rewards Pareto dominate a given objective
vector. We show that this problem is undecidable in general, but decidable for MPTA with at
most three observers. For MPTA whose observers are all costs or all rewards, we show that the
Pareto Domination Problem is PSPACE-complete. We also consider an ε-approximate Pareto
Domination Problem that is decidable without restricting the number and types of observers.

We develop connections between MPTA and Diophantine equations. Undecidability of the
Pareto Domination Problem is shown by reduction from Hilbert’s 10th Problem, while decidability
for three observers is shown by a translation to a fragment of arithmetic involving quadratic forms.
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1 Introduction

Multi Priced Timed Automata (MPTA) [5, 7, 8, 11, 17, 18, 19] extend priced timed automata [2,
3, 4, 6, 16] with multiple observers that capture the accumulation of costs and rewards along
a computation. This extension allows to model multi-objective optimization problems beyond
the scope of timed automata [1]. MPTA lie at the frontier between timed automata (for
which reachability is decidable [1]) and linear hybrid automata (for which reachability is
undecidable [14]). The observers exhibit richer dynamics than the clocks of timed automata

EA
T

C
S

© Martin Fränzle, Mahsa Shirmohammadi, Mani Swaminathan, and James Worrell;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 125; pp. 125:1–125:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin.fraenzle@informatik.uni-oldenburg.de
mailto:mahsa.shirmohammadi@lis-lab.fr
mailto:mani.swaminathan@informatik.uni-oldenburg.de
mailto:james.worrell@cs.ox.ac.uk
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.125
https://arxiv.org/abs/1803.01914
https://arxiv.org/abs/1803.01914
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


125:2 Costs and Rewards in MPTA

by not being confined to unit slope in locations, but may neither be queried nor reset while
taking edges. This observability restriction has been exploited in [17] (under a cost-divergence
assumption) for carrying out a Pareto analysis of reachable values of the observers.

In this paper we distinguish between observers that represent costs (to be minimised)
and those that represent rewards (to be maximised). Formally, we partition the set Y of
observers into cost and reward variables and say that γ ∈ RY≥0 Pareto dominates γ′ ∈ RY≥0
if γ(y) ≤ γ′(y) for each cost variable y and γ(y) ≥ γ′(y) for each reward variable y. Then
the Pareto curve corresponding to an MPTA consists of all undominated vectors γ that are
reachable in an accepting location. While cost and reward variables are syntactically identical
in the underlying automaton model, distinguishing between them changes the notion of
Pareto domination and the associated decision problems.

We introduce in Section 3 a decision version of the problem of computing Pareto curves for
MPTA, called the Pareto Domination Problem. Here, given a target vector γ ∈ RY≥0, one asks
to reach an accepting location with a valuation γ′ ∈ RY≥0 that Pareto dominates γ. This has
not been addressed in prior work on Pareto analysis of MPTA [17], which considers only costs
or only rewards. Other works on MPTA either do not address Pareto analysis [5, 8, 11, 18, 19],
or have only discrete costs updated on edges [22], or are confined to a single clock [7].

Our first main result is that the Pareto Domination Problem is undecidable in general. The
undecidability proof in Section 4 is by reduction from Hilbert’s 10th problem. Owing to the
existence of so-called “universal Diophantine equations” (of degree 4 with 58 variables [15]),
our proof shows undecidabililty of the Pareto Domination Problem for some fixed but large
number of observers. Undecidability of the Pareto Domination Problem entails that one
cannot compute an exact Pareto curve for an arbitrary MPTA.

We consider three different approaches to recover decidability of the Pareto Domination
Problem, which all have a common foundation, namely a monotone VASS described in
Sections 2 and 5, which simulates integer runs of a given MPTA. By analysing the semi-linear
reachability set of this VASS we can reduce the Pareto Domination Problem to satisfiability
of a class of bilinear mixed integer-real constraints. We then consider restrictions on MPTA
and variants of the Pareto Domination Problem that allow us to solve this class of constraints.

We first show in Section 6 that restricting to MPTA with only costs or only rewards yields
PSPACE-completeness of the Pareto Domination Problem. Here we are able to eliminate
integer variables from our bilinear constraints, resulting in a formula of linear real arithmetic.
This strengthens [17, Theorem 1 and Corollary 1], whose decision procedures (that exploit
well-quasi-orders for termination) do not yield complexity bounds.

Next we confine the MPTA in Section 7 to at most three observers, but allow a mix of
costs and rewards. Decidability is now achieved by eliminating real variables from the bilinear
constraint system, thus reducing the Pareto Domination Problem to deciding the existence
of positive integer zeros of a quadratic form, which is known to be decidable from [12].

We consider in Section 8 another method to restore decidability for general MPTA
with arbitrarily many costs and rewards, by studying an approximate version of the Pareto
Domination Problem, called the Gap Domination Problem. Similar to the setting of [9],
the Gap Domination Problem represents the decision version of the problem of computing
ε-Pareto curves. This problem, whose input includes a tolerance ε > 0 and a vector γ ∈ RY≥0,
places no requirement on the answer if γ is dominated and all solutions dominating γ do so
with slack at most ε. We solve the Gap Domination Problem by relaxation and rounding
applied to our bilinear system of constraints.

In this paper we consider only MPTA with non-negative rates. Our approach can be
generalised to obtain decidability results also in the case of negative rates by extending our
foundation in Sections 2 and 5 from monotone VASS to Z-VASS [13].
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2 Background

Quadratic Diophantine Equations. For later use we recall a decidable class of non-linear
Diophantine problems. Consider the quadratic equation

n∑
i,j=1

aijXiXj +
n∑
j=1

bjXj + c = 0 (1)

whose coefficients aij , bj , and c are rational numbers. Consider also the family of constraints

f1(X1, . . . , Xn) ∼ c1 ∧ . . . ∧ fk(X1, . . . , Xn) ∼ ck , (2)

where f1, . . . , fk are linear forms with rational coefficients, c1, . . . , ck ∈ Q, and ∼ ∈ {<,≤}.

I Theorem 1 ([12]). There is an algorithm that decides whether a given quadratic equation (1)
and a family of linear inequalities (2) have a solution in Zn.

Let us emphasize that in Theorem 1 at most one quadratic constraint is permitted. It
is clear (e.g., by introducing a slack variable) that the theorem remains true if the equality
symbol in (1) is replaced by any comparison operator in {<,≤, >,≥}.

Monotone VASS. A monotone vector addition system with states (monotone VASS) is a
tuple Z = 〈n,Q, q0, Qf ,Σ,∆〉, where n ∈ N is the dimension, Q is a set of states, q0 ∈ Q is
the initial state, Qf ⊆ Q is a set of final states, Σ is the set of labels, and ∆ ⊆ Q×Nn×Σ×Q
is the set of transitions.

Given such a monotone VASS Z as above, the family of sets ReachZ,q ⊆ Nn, for q ∈ Q,
is the minimal family (w.r.t. to set inclusion) of integer vectors such that 0 ∈ ReachZ,q0 and
for all q ∈ Q, if u ∈ ReachZ,q and (q,v, `, p) ∈ ∆ for some ` ∈ L, then u + v ∈ ReachZ,p.
Finally we define the reachability set of Z to be ReachZ :=

⋃
q∈Qf

ReachZ,q.
For every vector v ∈ Nn and every finite set P = {u1, . . . ,um} of vectors in Nn, we define

the N-linear set S(v, P ) := {v +
∑m
i=1 aiui : a1, . . . , am ∈ N}. We call v the base vector

and u1, . . . ,um ∈ P the period vectors of the set.
The following proposition follows from [20, Proposition 4.3] (see [10, Appendix B.1]).

I Proposition 2. Let Z = 〈n,Q, q0, Qf ,Σ,∆〉 be a monotone VASS. Then the set ReachZ can
be written as a finite union of N-linear sets S(v1, P1), . . . , S(vk, Pk), where for i = 1, . . . , k
the components of vi and of each vector in Pi are bounded by poly(n, |Q|,M)n in absolute
value, where M is maximum absolute value of the entries of vectors in Nn occurring in ∆.

3 Multi-Priced Timed Automata and Pareto Domination

Let R≥0 denote the set of non-negative real numbers. Given a set X = {x1, . . . , xn} of
clocks, the set Φ(X ) of clock constraints is generated by the grammar ϕ ::= true | x ≤
k | x ≥ k | ϕ ∧ ϕ , where k ∈ N is a natural number and x ∈ X . A clock valuation is a
mapping ν : X → R≥0 that assigns to each clock a non-negative real number. We denote
by 0 the valuation such that 0(x) = 0 for all clocks x ∈ X . We write ν |= ϕ to denote
that ν satisfies the constraint ϕ. Given t ∈ R≥0, we let ν + t be the clock valuation such
that (ν + t)(x) = ν(x) + t for all clocks x ∈ X . Given λ ⊆ X , let ν[λ ← 0] be the clock
valuation such that ν[λ← 0](x) = 0 if x ∈ λ, and ν[λ← 0](x) = ν(x) otherwise.

A multi-priced timed automaton (MPTA) is a tuple A = 〈L, `0, Lf ,X ,Y, E,R〉, where L
is a finite set of locations, `0 ∈ L is an initial location, Lf ⊆ L is a set of accepting locations,
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{c1 = 0, c2 = 0} ċi = 0 ċi = 1 {c1 ≤ 1, 1 ≤ c2}
r ← 0

x = 1
x← 0

r = 1
r ← 0

r = 1

Figure 1 Predicates in curly brackets denote observer values enforced by initialisation, ci = 0
with i ∈ {1, 2}, and by the Pareto constraint upon exit {c1 ≤ 1, 1 ≤ c2}. Denoting the initial value of
clock x by x∗, the value of both c1 and c2 after n full traversals of the central cycle is nx∗. Meeting
the final Pareto constraint from initial values thus requires that x∗ be 1

n
for some positive integer n.

X is a finite set of clock variables, Y is a finite set of observers, E ⊆ L× Φ(X )× 2X × L is
the set of edges, R : L→ NY is a rate function. Intuitively R(`) is a vector that gives the
rates of each observer in location `.

A state of A is a triple (`, ν, t) where ` is a location, ν a clock valuation, and t ∈ R≥0 is a
time stamp. A run of A is an alternating sequence of states and edges ρ = (`0, ν0, t0) e1−→
(`1, ν1, t1) e2−→ . . .

em−→ (`m, νm, tm) , where t0 = 0, ν0 = 0, ti−1 ≤ ti for all i ∈ {1, . . . ,m}, and
ei = 〈`i−1, ϕ, λ, `i〉 ∈ E is such that νi−1 +(ti− ti−1) |= ϕ and νi = (νi−1 +(ti− ti−1))[λ← 0]
for i = 1, . . . ,m. The run is accepting if `m ∈ Lf and said to have granularity 1

g for a fixed
g ∈ N if all ti ∈ Q are positive integer multiples of 1

g . The cost of such a run is a vector
cost(ρ) ∈ RY , defined by cost(ρ) =

∑m−1
j=0 (ti+1 − ti)R(`i) .

Henceforth we will assume that the set Y of observers of a given MPTA is partitioned
into a set Yc of cost variables and a set Yr of reward variables. With respect to this partition
we define a domination ordering 4 on the set of valuations RY , where γ 4 γ′ if γ(y) ≤ γ′(y)
for all y ∈ Yr and γ′(y) ≤ γ(y) for all y ∈ Yc. Intuitively γ 4 γ′ (read γ′ dominates γ) if γ′
is at least as good as γ in all respects.

Given ε > 0 we define an ε-domination ordering 4ε, where γ 4ε γ′ (read γ′ ε-dominates γ)
if γ(y) + ε ≤ γ′(y) for all y ∈ Yr and γ′(y) + ε ≤ γ(y) for all y ∈ Yc. We can think of γ 4ε γ′

as denoting that γ′ is better than γ by an additive factor of ε in all dimensions. In particular
we clearly have that γ 4ε γ′ implies γ 4 γ′.

The Pareto Domination Problem is as follows. Given an MPTA A with a set Y of
observers and a partition of Y into sets Yc and Yr of cost and reward variables, with a
target γ ∈ RY , decide whether there is an accepting run ρ of A such that γ 4 cost(ρ).

The Gap Domination Problem is a variant of the above problem in which the input
additionally includes an accuracy parameter ε > 0. If there is some run ρ such that γ 4ε
cost(ρ) then the output should be “dominated” and if there is no run ρ such that γ 4 cost(ρ)
then the output should be “not dominated”. In case neither of these alternatives hold (i.e., γ
is dominated but not ε-dominated) then there is no requirement on the output.

In the (Pareto) Domination Problem the objective is to reach an accepting location while
satisfying a family of upper-bound constraints on cost variables and lower-bound constraints
on reward variables. We say that an instance of the problem is pure if all observers are
cost variables or all are reward variables (and hence all constraints are upper bounds or all
are lower bounds); otherwise we call the instance mixed. Our problem formulation involves
only simple constraints on observers, i.e., those of the form y ≤ c or y ≥ c for y ∈ Y.
However such constraints can be used to encode more general linear constraints of the
form a1y1 + · · ·+ akyk ∼ c, where y1, . . . , yk ∈ Y, a1, . . . , ak, c ∈ N and ∼ ∈ {≤,≥,=}. To
do this one introduces a fresh observer to denote each linear term a1y1 + · · · + akyk (two
fresh observers are needed for an equality constraint).
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Integer test 1
x∗

i

?
∈ N:

{c = 0} ċ = 0 ċ = 1 {c = 1}
r = 1
r ← 0

xi = 1

xi ← 0

r = 1
r ← 0

wrap

Inv

wrap

Decrement c← c+ 1− x∗i :

ċ = 1 ċ = 0
r = 1
r ← 0

xi = 1

xi ← 0

wrap

Inv

wrap

Quotient c← c+ x∗i
x∗

j
:

{e = 0} ė = 0 ė = 1

ċ = 0ċ = 1{e = 1}

r = 1
r ← 0

xj = 1

xj ← 0

wrap

r ← 0r = 1

wrap

xi = 1

xi ← 0

wrap

r ← 0r = 1

wrap

Inv

Figure 2 The wrap self-loop denotes a family of m wrapping edges, as in [14, Fig. 14], where
the j-th edge has guard xj = 1 and resets xj . In the quotient gadget, e is a fresh observer, as is c
in the integer test. The integer test and quotient gadgets are annotated with predicates in curly
brackets indicating the initial values of observers on entering and their target values on exiting the
gadget. Enforcing these target values through a corresponding Pareto constraint guarantees the
desired behaviour of the gadget.

Note that we consider timed automata without difference constraints on clocks, i.e.,
without clock guards of the form xi − xj ∼ k, for k ∈ N. As discussed in [10, Appendix A]
all our decidability and complexity results hold also in case of such constraints.

4 Undecidability of the Pareto Domination Problem

In this section we prove undecidability of the Pareto Domination Problem. To give some
insight we first give in Figure 1 an MPTA, in which the Pareto constraint c1 ≤ 1, c2 ≥ 1
is used to enforce that when control enters the MPTA the value of clock x is 1

n for some
positive integer n.

We prove undecidability of the Pareto Domination Problem by reduction from the
satisfiability problem for a fragment of arithmetic given by a language L that is defined as
follows. There is an infinite family of variables X1, X2, X3, . . . and formulas are given by the
grammar ϕ ::= X = Y +Z | X = Y Z | ϕ∧ϕ, where X,Y, Z range over the set of variables.
The satisfiability problem for L asks, given a formula ϕ, whether there is an assignment of
positive integers to the variables that satisfies ϕ. In [10, Appendix B.2] we show that the
satisfiability problem for L is undecidable by reduction from Hilbert’s Tenth Problem.

I Theorem 3. The Pareto Domination Problem is undecidable.

Proof. Consider the following problem of reaching a single valuation in RY≥0: given an
MPTA A = 〈L, `0, Lf ,X ,Y, E,R〉, and target valuation γ ∈ RY≥0, decide whether there is an
accepting run ρ of A such that cost(ρ) = γ.

One can reduce the problem of reaching a given valuation to the Pareto Domination
Problem as follows. Transform the MPTA A to an MPTA A′ that has the same locations and
edges as A but with two copies of each observer y ∈ Y , with each copy having the same rate
as y in each location. Formally A′ has set of observers Y ′ = {y1, y2 : y ∈ Y}, where y1 is a
cost variable and y2 is a reward variable. Then, defining γ′ ∈ RY

′

≥0 by γ′(y1) = γ′(y2) = γ(y),
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we have that A′ has an accepting run ρ′ such that cost(ρ′) dominates γ′ just in case A has
an accepting run ρ such that cost(ρ) = γ.

Now we give a reduction from the satisfiability problem for L to the problem of reaching
a single valuation. Consider an L-formula ϕ over variables X1, . . . , Xm. We define an
MPTA A over the set of clocks X = {x1, · · · , xm, r}. Clock xi corresponds to the variable Xi,
for i = 1, . . . ,m, while r is a reference clock. The reference clock is reset whenever it
reaches 1 and is not otherwise reset—thus it keeps track of global time modulo one. After
an initialisation phase the remaining clocks x1, . . . , xm are likewise reset in a cyclic fashion,
whenever they reach 1 and not otherwise. We denote by x∗i the value of clock xi whenever r
is 1. During the initialisation phase the values x∗i are established non-deterministically such
that 0 < x∗i ≤ 1. The idea is that 1

x∗
i
represents the value of variable Xi in ϕ; in particular, x∗i

is the reciprocal of a positive integer. For each atomic sub-formula in ϕ the automaton A
contains a gadget that checks that the guessed valuation satisfies the sub-formula.

To present the reduction we first define three primitive gadgets. The first “integer test”
gadget checks that the initial value x∗i of clock xi is a reciprocal of a positive integer, by
adding wrapping edges on all clocks xj other than xi to the MPTA from Figure 1. The
construction of each gadget is such that the precondition r = 0 holds when control enters
the gadget and the postcondition r = 1 ∧

∧m
j=1 xj ≤ 1 holds on exiting the gadget. This last

postcondition is abbreviated to Inv in the figures. For an observer c and 1 ≤ i, j ≤ m, we
define these three gadgets as in Figure 2.

In the following we show how to compose the three primitive operations in an MPTA to
enforce the atomic constraints in the language L. The initialisation automaton below is such
that for i = 1, . . . ,m the value x∗i of clock xi is such that 1

x∗
i
∈ N. Herein the Guess self-loop

denotes a family of m edges, where the j-th edge non-deterministically resets clock xj . Note
that the incoming edge of the integer test gadget enforces r = 1 such that the initial guesses
for the clocks xi satisfy x∗i ∈ [0, 1]. Of these, only reciprocals 1

x∗
i
∈ N pass the subsequent

series of integer tests.

Initialisation X1, . . . , Xn ∈ N :

{
∧m
i=1 ci = 0} 1

x∗1

?
∈ N · · · 1

x∗m

?
∈ N {

∧m
i=1 ci = 1}

Guess

Sum Xi = Xj +Xk: According to the encoding of integer value Xn as clock value xn = 1
Xn

,
we have to enforce 1

x∗
i

= 1
x∗

j
+ 1
x∗

k
, which is achieved by the following sequential combination

of two quotient gadgets.

{ci = cj = ck = 0} ci ← ci + x∗i
x∗

j
ci ← ci + x∗i

x∗
k

{ci = cj = ck = 1}

Product Xi = XjXk: The following gadget enforces 1
x∗

i
= 1

x∗
j
· 1
x∗

k
:

{ci = cj = ck = 0} ci ← ci + x∗i
x∗

j
ci ← ci + x∗i

x∗
k

ci ← ci + 1− x∗j ci ← ci + 1− x∗k {ci = 2 ∧ cj = ck = 1}

The satisfiability problem for a given L formula ϕ can now directly be reduced to the
problem of reaching a single valuation γ ∈ RY≥0 by translating each of the conjuncts of ϕ
into the corresponding above MPTA gadget. The valuation γ encodes the target costs of the
respective gadgets. J
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Let us remark that the proof of Theorem 3 shows that undecidability of the Pareto
Domination Problem already holds in case all observers have rates in {0, 1}. Separately we
observe that undecidability also holds in the special case that exactly one observer is a cost
variable and the others are reward variables, and likewise when exactly one observer is a
reward variable and the others are cost variables, when allowing rates beyond {0, 1}. The
idea is to reduce the problem of reaching a particular valuation γ ∈ RY≥0 in an MPTA A
to that of dominating a valuation γ′ ∈ RY

′

≥0 in a derived MPTA A′ with set of observers
Y ′ = Y ∪{ysum}, where ysum is a fresh variable. In A′ we designate all y ∈ Y as cost variables
and ysum as a reward variable, or vice versa. Valuation γ′ is specified by γ′(y) = γ(y) for all
y ∈ Y and γ′(ysum) =

∑
y∈Y γ(y). Automaton A′ has the same locations, edges, and rate

function as those of A except that R′(ysum) =
∑
y∈Y R(y).

5 The Simplex Automaton

This section introduces the basic construction from which we derive our positive decidability
results and complexity upper bounds.

Let A = 〈L, `0, Lf ,X ,Y, E,R〉 be an MPTA. For a sequence of edges e1, . . . , em ∈ E,
define Runs(e1, . . . , em) ⊆ Rm≥0 to be the collection of sequences of timestamps (t1, . . . , tm) ∈
Rm≥0 such that A has a run ρ = (`0, ν0, t0) e1−→ (`1, ν1, t1) e2−→ . . .

em−→ (`m, νm, tm). Recalling
that by convention t0 = 0 and ν0 = 0, once the edges e1, . . . , em have been fixed then the run ρ
is determined solely by the timestamps t1, . . . , tm. When the sequence of edges e1, . . . , em is
understood, we call such a sequence of timestamps a run.

I Proposition 4. Runs(e1, . . . , em) ⊆ Rm≥0 is defined by a conjunction of difference con-
straints.

The proof of Proposition 4 is in [10, Appendix B.3].

I Proposition 5. Runs(e1, . . . , em) is equal to the convex hull of the set of its integer points.

Proof. Fix a positive integer M . From Proposition 4 it immediately follows that the
set Runs(e1, . . . , em) ∩ [0,M ]m can be written as a conjunction of closed difference con-
straints At ≤ b, where A is an integer matrix, t the vector of time-stamps t1 . . . tm, and b

an integer vector. Given this, it follows that Runs(e1, . . . , em) ∩ [0,M ]m, being a closed and
bounded polygon, is the convex hull of its vertices. Moreover each vertex is an integer point
since the matrix A here, being by Proposition 4 the incidence matrix of a balanced signed
graph with half edges, is totally unimodular [21, Proposition 8A.5]. J

Proposition 6 shows that for Pareto reachability on an MPTA A with |Y| = d observers,
it suffices to look at d+ 1-simplices of integer runs.

I Proposition 6. For any run ρ of A there exists a set of at most d+ 1 integer-time runs S,
all over the same sequence of edges as ρ, such that cost(ρ) lies in the convex hull of cost(S).

Proof. Let ρ be a run ofA over an edge-sequence e1, . . . , em with time stamps t0, . . . , tm, given
by ρ = (`0, ν0, t0) e1−→ (`1, ν1, t1) e2−→ . . .

em−→ (`m, νm, tm). By Proposition 5, (t1, . . . , tm) lies
in the convex hull of the set I of integer points in Runs(e1, . . . , em).

Since the map cost : Runs(e1, . . . , em) → Rd is linear we have that cost(ρ) lies in the
convex hull of cost(I). Moreover by Carathéodory’s Theorem there exists a subset S ⊆ I of
cardinality at most d+ 1 such that cost(ρ) lies in the convex hull of cost(S). J

ICALP 2018



125:8 Costs and Rewards in MPTA

We now exploit Proposition 6 by introducing the so-called simplex automaton S(A), which
is a monotone VASS obtained from a given MPTA A. The automaton S(A) generates (d+1)-
tuples of integer-time runs of A, such that each run in the tuple executes the same sequence
of edges in A and the runs differ only in the times at which the edges are taken. The basic
component underlying the definition of the simplex automaton is the integer-time automaton
Z(A). This automaton is a monotone VASS that generates the integer-time runs of A, using
its counters to keep track of the running cost for each observer.

The definition of Z(A) is as follows. Let A = 〈L, `0, Lf ,X ,Y, E,R〉 be an MPTA. Let also
MX ∈ N be a positive constant greater than the maximum clock constant in A. We define
a monotone VASS Z(A) = 〈d,Q, q0, Qf , E,∆〉, in which the dimension d = |Y|, the set of
states is Q = L× {0, 1, . . . ,MX }X , the initial state is q0 = (`0,0), the set of accepting states
is Qf = Lf ×{0, 1, . . . ,MX }X , the set of labels is E (i.e., the set of edges of the MPTA), and
the transition relation ∆ ⊆ Q×Nd×E×Q includes a transition ((`, ν), t ·R(`), e, (`′, ν′)) for
every t ∈ {0, 1, . . . ,MX } and edge e = (`, ϕ, λ, `′) in A s.t. ν⊕ t |= ϕ and ν′ = (ν⊕ t)[λ← 0].
Here (ν ⊕ t)(x) = min(ν(x) + t,MX ) for all x ∈ X . We then have:

I Proposition 7. Given a valuation γ ∈ RY≥0, there exists an integer-time accepting run ρ
of A with cost(ρ) = γ if and only if γ ∈ ReachZ(A).

The simplex automaton S(A) is built by taking d+1 copies of Z(A) = 〈d,Q, q0, Qf , E,∆〉
that synchronize on transition labels. Formally, S(A) = 〈d(d+ 1), Qd+1, q0, Q

d(d+1)
f , E,∆〉,

where q0 = (q0, . . . , q0) and ∆ ⊆ Qd+1 × Zd(d+1) × E × Qd+1 comprises those tuples
((q1, . . . , qd+1), (v1, . . . , vd+1), e, (q′1, . . . , q′d+1)) s.t. (qi,vi, e, q′i) ∈ ∆ for all i ∈ {1, . . . , d+ 1}.

From Propositions 6 and 7 we have:

I Proposition 8. Given γ ∈ RY≥0, there exists an accepting run ρ of A with cost(ρ) = γ if
and only if there exists (γ1, . . . , γd+1) ∈ ReachS(A) with γ in the convex hull of {γ1, . . . , γd+1}.

We now introduce the following “master system” of bilinear inequalities that expresses
whether γ 4 cost(ρ) for some accepting run ρ of A.

γ 4 λ1γ1 + · · ·+ λd+1γd+1 1 = λ1 + · · ·+ λd+1
(γ1, . . . , γd+1) ∈ ReachS(A) 0 ≤ λ1, . . . , λd+1

(3)

The system has real variables λ1, . . . , λd+1 ∈ RY≥0 and integer variables γ1, . . . , γd+1 ∈ NY .
The key property of the master system is stated in the following Proposition 9, which follows
immediately from Proposition 8.

I Proposition 9. Given a valuation γ ∈ RY≥0 there is an accepting run ρ of A such that γ 4
cost(ρ) if and only if the system of inequalities (3) has a solution.

Given Proposition 9, the results of Section 4 imply that satisfiability of the master
system (3) is not decidable in general. In the rest of the paper we pursue different approaches
to showing decidability of restrictions and variants of the Pareto Domination Problem by
solving appropriately restricted versions of (3).

6 Pareto Domination Problem with Pure Constraints

In this section we show that the Pareto Domination Problem is decidable in polynomial
space for the class of MPTA in which the observers are all costs. We prove this complexity
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upper bound by exhibiting for such an MPTA A and target γ ∈ RY≥0 a positive integer M ,
whose bit-length is polynomial in the size of A and γ, such that there exists a run ρ of A
reaching the target location with γ 4 cost(ρ) iff there exists such a run of granularity 1

M1
for some M1 ≤M . To show this we rewrite the bilinear system of inequalities (3) into an
equisatisfiable disjunction of linear systems of inequalities. We thus obtain a bound on the
bit-length of any satisfying assignment of (3) from which we obtain the above granularity
bound. A similar bound in case of all reward variables is obtained in [10, Appendix C].

Consider an MPTA A = 〈L, `0, Lf ,X ,Y, E,R〉. Recall that the reachability set ReachS(A)
can be written as a union of linear sets S(vi, Pi), i ∈ I. More precisely, let MY be the
maximum rate occurring in the rate function R of the given MPTA A. We then have the
following, see [10, Appendix B.4] for the proof.

I Proposition 10. The set ReachS(A) can be written as a finite union of linear sets⋃
i∈I S(vi, Pi) such that for each i ∈ I the base vectors vi and period vectors in Pi have

entries of magnitude bounded by poly(d, |L|,MY ,MX )d(d+1)|X |.

Suppose that the set of observers Y with |Y| = d is comprised exclusively of cost variables.
We will apply Proposition 10 to analyse the Pareto Domination Problem. The key observation
is that in this case we can equivalently rewrite the bilinear system (3) as a disjunction of
linear systems of inequalities.

As a first step we can rewrite the constraint (γ1, . . . , γd+1) ∈ ReachS(A) in (3) as a
disjunction of constraints (γ1, . . . , γd+1) ∈ S(vi, Pi), for i ∈ I. But since the period vectors
in Pi are non-negative we can further observe that in order to satisfy the upper bound
constraints on cost variables, the optimal choice of (γ1, . . . , γd+1) ∈ S(vi, Pi) is the base
vector vi. Thus we can treat γ1, . . . , γd+1 as a constant in (3).

Thus we rewrite (3) as a finite disjunction of systems of linear inequalities—one such
system for each i ∈ I. For a given i ∈ I let vi = (γ(i)

1 , . . . , γ
(i)
d+1) be the base vector of the

linear set S(vi, Pi). The corresponding system of inequalities specialising (3) is

γ 4 λ1γ
(i)
1 + . . .+ λd+1γ

(i)
d+1, 1 = λ1 + · · ·+ λd+1, 0 ≤ λ1, . . . , λd+1 (4)

Recall that if a set of linear inequalities Ax ≥ a, Bx > b is feasible then it is satisfied by
some x ∈ Qn of bit-length poly(n, b), where b is the total bit-length of the entries of A, B, a,
and b. Applying this bound and Proposition 10 we see that a solution of (4) can be written
in the form λ1 = p1

g , . . . , λd+1 = pd+1
g for integers p1, . . . , pd+1, g of bit-length at most

poly(d, |X |, |L|, log(MY), log(MX )). This entails that the cost vector λ1γ
(i)
1 + . . .+ λd+1γ

(i)
d+1

arises from a run of A with granularity 1
g , thus indirectly addressing the open problem stated

in [17, Section 8] on the granularity of optimal runs in MPTA.
Together with Proposition 10, this yields PSPACE-membership for the Pareto Domination

Problem. As reachability in timed automata is already PSPACE-hard [1] we have:

I Theorem 11. The Pareto Domination Problem with pure constraints is PSPACE-complete.

7 Pareto Domination Problem with Three Mixed Observers

In this section we consider the Pareto Domination Problem for MPTA with three observers.
In the case of three cost variables or three reward variables the results of Section 6 apply.
Below we show decidability for two cost variables and one reward variable. The similar case
of two reward variables and one cost variable is handled in [10, Appendix E].

Consider an instance of the Pareto Domination Problem given by an MPTA A with |Y| = 3
observers, and a target vector γ ∈ RY≥0. Our starting point is again Proposition 9. To apply
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x
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z

Figure 3 The target T is the green rectangular region and the blue region is S. The pink region
is π(T ) and the light blue region π(S). The grey region F is described in equation (5).

this proposition the idea is to eliminate the quantifiers over the real variables (the λi) in the
system of equations (3) and thereby obtain a formula that lies in a decidable fragment of
arithmetic (namely disjunctions of constraints of the form considered in Theorem 1).

To explain this quantifier-elimination step in more detail, let us identify RY≥0 with R3
≥0.

Denote by T ⊆ R3
≥0 the set of valuations that dominate a given fixed valuation γ ∈ R3

≥0. We
can write T = {(x, y, z) ∈ R3

≥0 : x ≤ a∧ y ≤ b∧ z ≥ c} , where a, b, c are non-negative integer
constants (see the left-hand side of Figure 3). We seek a quantifier-free formula of arithmetic
that expresses that T meets a 4-simplex S ⊆ R3

≥0 given by the convex hull of {γ1, . . . , γ4},
where (γ1, . . . , γ4) ∈ ReachS(A). However, since T is unbounded, it is clear that T meets
a given 4-simplex S just in case it meets a face of S (which is a 3-simplex). Thus it will
suffice to write a quantifier-free formula of arithmetic ϕT expressing that a 3-simplex in R3

≥0
meets T . Such a formula has nine free variables—one for each of the coordinates of the three
vertices of S. We describe ϕT in the remainder of this section.

It is geometrically clear that S intersects T iff either S lies inside T , the boundary of S
meets T , or the boundary of T meets S. More specifically we have the following proposition,
whose proof is given in [10, Appendix B.5].

I Proposition 12. Let S ⊆ R3
≥0 be a 3-simplex. Then T ∩ S is nonempty if and only if at

least one of the following holds: (a) Some vertex of S lies in T ; (b) Some bounding edge of S
intersects either the face of T supported by the plane x = a or the face of T supported by the
plane y = b; (c) The bounding edge of T supported by the line x = a ∩ y = b intersects S.

The following definition and proposition are key to expressing intersections of the form
identified in Case (c) of Proposition 12 in terms of quadratic constraints. The idea is to
identify a bounded region F ⊆ R3

≥0 such that in Case (c) one of the vertices of S lies in F .
The proof of Proposition 13 can be found in [10, Appendix B.6].

Define a region F ⊆ R3
≥0 (depicted as the grey-shaded region on the right of Figure 3) by:

F = {(x, y, z) ∈ R3
≥0 | z < c ∧ (x+ ay ≤ a(b+ 1) ∨ y + bx ≤ b(a+ 1))}. (5)

Then we have:

I Proposition 13. Let S ⊆ R3
≥0 be a 3-simplex such that S ∩ T is non-empty but none of

the bounding edges of S meets T . Then some vertex of S lies in F .

Denote by π : R3 → R2 the projection of R3 onto the xy-plane, where π(x, y, z) = (x, y)
for all x, y, z ∈ R. Write π(T ) and π(S) for the respective images of T and S under π.

We write separate formulas ϕ(1)
T , ϕ

(2)
T , ϕ

(3)
T , respectively expressing the three necessary

and sufficient conditions for T ∩ S to be nonempty, as identified in Proposition 12. These are
formulas of arithmetic whose free variables denote the coordinates of the three vertices of S.
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Figure 4 Two cases for expressing that c ∈ π(S). The grey region is π(F ).

Some vertex of S lies in T . Denote the vertices of S by p, q, r. Formula ϕ(1)
T expresses

that p ∈ T or q ∈ T or r ∈ T . This is clearly a formula of linear arithmetic.

Some bounding edge of S meets a face of T . It is straightforward to obtain ϕ(2)
T given

a formula ψ expressing that an arbitrary line segment xy in R3
≥0 meets a given fixed face of

T . We outline such a formula in the rest of this sub-section. For concreteness we consider
the face of T supported by the plane x = a, which maps under π to the line segment
L = {(a, y) : 0 ≤ y ≤ b}. Formula ψ has six free variables, respectively denoting the
coordinates of x = (x1, x2, x3) and y = (y1, y2, y3).

Formula ψ is a conjunction of two parts. The first part expresses that π(x)π(y) meets L.
Since the complement of π(F ) is a convex region in R2

≥0 that excludes π(T ) we have that
either π(x) ∈ π(F ) or π(y) ∈ π(F ). Moreover since π(F ) contains finitely many integer
points, we can write separate sub-formulas expressing that π(x)π(y) meets L for each fixed
value of π(x) ∈ π(F ) and each fixed value of π(y) ∈ π(F ). Each of these sub-formulas can
then be written in linear arithmetic [10, Appendix D].

Suppose now that π(x)π(y) meets L. Then the line xy meets the face of T supported by
the plane x = a iff the line in xz-plane connecting (x1, x3) and (y1, y3) passes above (a, c).
This requirement is expressed by the quadratic constraint (8) in [10, Appendix D].

A bounding edge of T meets S. We proceed to describe the formula ϕ(3)
T expressing that

the bounding edge E of T , supported by the line x = a∩ y = b, meets S. Note that image of
E under the projection π is the single point c = (a, b). Thus E meets S just in case c ∈ π(S)
and the point (a, b, c) lies below the plane affinely spanned by S. We describe two formulas
that respectively express these requirements.

Denote the vertices of S by p, q, and r. We first give a formula of linear arithmetic
expressing that c ∈ π(S). Notice that if c ∈ π(S) then at least one vertex of π(S) must
lie in π(F ). We now consider two cases. The first case is that exactly one vertex of π(S)
(say π(p)) lies in π(F ). The second case is that at least two vertices of of π(S) (say π(p)
and π(q)) lie in π(F ). The two cases are respectively denoted in Figure 4, that we refer to
in the following.

In the first case we can express that c ∈ π(S) by requiring that the line segment π(p)π(q)
crosses the edge f2c and π(p)π(r) crosses the edge f1c. By writing a separate constraint for
each fixed value of π(p) ∈ π(F ) the above requirements can be expressed in linear arithmetic.

In the second case we can express that c ∈ π(S) by requiring that c lies on the left of
each of the directed line segments π(p)π(q), π(q)π(r), and π(r)π(p). By writing such a
constraint for each fixed value of π(p) and π(q) in π(F ) we obtain, again, a formula of linear
arithmetic [10, Appendix D].

It remains to give a formula expressing that (a, b, c) lies below the plane affinely spanned
by p, q, and r under the assumption that c ∈ π(S). Note here that the above-described
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formula expressing that π(c) ∈ π(S) specifies inter alia that π(p), π(q), and π(r) are oriented
counter-clockwise. Thus (a, b, c) lies below the plane affinely spanned by p, q, and r iff∣∣∣∣∣∣

q1 − p1 r1 − p1 a− p1
q2 − p2 r2 − p2 b− p2
q3 − p3 r3 − p3 c− p3

∣∣∣∣∣∣ < 0

The above expression is cubic, but by Proposition 13 we may assume that p lies in the set F ,
which has finitely many integer points. Thus by a case analysis we may regard p as being
fixed and so write the desired formula as a disjunction of atoms, each with a single quadratic
term, whose satisfiability is known to be decidable from Theorem 1. This leads us to:

I Theorem 14. The Pareto Domination Problem is decidable for at most three observers.

Theorem 14 was proven by reduction to satisfiability of a system of arithmetic constraints
with a single quadratic term. For the case of four observers this technique does not appear
to yield arithmetic constraints in a known decidable class. Note that satisfiability of systems
of constraints featuring two distinct quadratic terms is not known to be decidable in general.

In [10, Appendix F] we consider (a generalisation of) the Pareto Domination Problem for
MPTA with at most two observers. In contrast to the case of three observers, we are able to
show decidability for two observers by reduction to satisfiability in linear arithmetic.

8 Gap Domination Problem

In this section we give a decision procedure for the Gap Domination Problem. Given an
MPTA A, valuation γ ∈ RY≥0, and a rational tolerance ε > 0, our procedure is such that

if there is an accepting run ρ of A such that γ 4ε cost(ρ) then we output “dominated”;
if there is no accepting run ρ of A such that γ 4 cost(ρ) then we output “not dominated”.

To do this, our approach is to find approximate solutions of the bilinear system (3) by
relaxation and rounding.

Recall from Proposition 9 that (3) is satisfiable iff A has an accepting run ρ such
that γ 4 cost(ρ). Now we use the semi-linear decomposition of ReachS(A) to eliminate the
constraints on integer variables from (3). In more detail, fix a decomposition of ReachS(A)
as a union of linear sets and let S := S(v, P ) be one such linear set, where P = {u1, . . . ,uk}.
Then we replace the constraint (γ1, . . . , γd+1) ∈ ReachS(A) in (3) with

(γ1, . . . , γd+1) = v + n1u1 + · · ·+ nkuk ,

where n1, . . . , nk are variables ranging over N. We thus obtain for each choice of S a bilinear
system of inequalities ϕS of the form (6), where I and J are finite sets and for each i ∈ I
and j ∈ J , it holds that fi, gj are linear forms (i.e., polynomials of degree one with no
constant terms) with non-negative integer coefficients and ci and dj are rational constants.

fi(n1λ1, n1λ2, . . . , nkλd+1) ≤ ci (i ∈ I) λ1, . . . , λd+1 ≥ 0
gj(n1λ1, n1λ2, . . . , nkλd+1) ≥ dj (j ∈ J) λ1 + · · ·+ λd+1 = 1

n1, . . . , nk ∈ N
(6)

Fix a particular system ϕS , as depicted in (6). Let µ be the maximum coefficient of
the fi, i ∈ I. Given T ⊆ {1, . . . , d+1}, we define the following constraint ψT on λ1, . . . , λd+1:

ψT :=
∧
i∈T

λi ≤ ε
(d+1)kµ ∧

∧
i6∈T

λi ≥ ε
(d+1)kµ .
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Intuitively, ψT expresses that λi is “small” for i ∈ T and “large” for i 6∈ T . Given any satisfying
assignment of ϕS it is clear that λ1, . . . , λd+1 must satisfy ϕT for some T ⊆ {1, . . . , d+ 1}.

Now fix a set T ⊆ {1, . . . , d + 1} and consider the satisfiability of ϕS ∧ ψT . If i 6∈ T
then for any term λinj that appears in an upper-bound constraint with right-hand side c
in ϕS , we must have nj ≤ d c(d+1)µ

ε e in order for the constraint to be satisfied. Thus by
enumerating all values of nj we can eliminate this variable. By doing this we may assume
that in ϕS ∧ ψT , for any term λinj that appears on the left-hand side of an upper-bound
constraint we have i ∈ T and hence that λi must be “small” in any satisfying assignment.

The next step is relaxation—try to solve ϕS ∧ ψT (after the above described elimination
step), letting the variables n1, . . . , nk range over the non-negative reals. Recall here that
the existential theory of real closed fields is decidable in polynomial space. If there is
no real solution of ϕS ∧ ψT for any S and T then there is certainly no solution over the
naturals. and we can output “not dominated”. On the other hand, if there is a run ρ

with γ 4ε cost(ρ) then for some S and T , the system ϕS ∧ ψT will have a real solution
in which moreover the inequalities fi(n1λ1, . . . , nkλd+1) ≤ ci for i ∈ I all hold with slack
at least ε. Given such a solution, replace nj with dnje for j = 1, . . . , k. Consider the left-
hand side fi(n1λ1, . . . , nkλd+1) of an upper bound constraint in ϕS . Since the variables λi
mentioned in such a linear form are small, the effect of rounding is to increase this term by
at most ε. Hence the rounded valuation still satisfies ϕS thanks to the slack in the original
solution. This then leads to Theorem 15 below:

I Theorem 15. The Gap Domination Problem is decidable.
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1 Introduction

The interplay of methods from logic and graph theory has led to many important results in
theoretical computer science, notably in algorithmics and complexity theory. The combination
of logic and algorithmic graph theory is particularly fruitful in the area of algorithmic meta-
theorems. Algorithmic meta-theorems are results of the form: every computational problem
definable in a logic L can be solved efficiently on any class of structures satisfying a property P.
In other words, these theorems show that the model-checking problem for the logic L on any
class C satisfying P can be solved efficiently, where efficiency usually means fixed-parameter
tractability.

The archetypal example of an algorithmic meta-theorem is Courcelle’s theorem [1, 2],
which states that model-checking a formula ϕ of monadic second-order logic can be solved
in time f(ϕ) · n on any graph with n vertices which comes from a fixed class of graphs
of bounded treewidth, for some computable function f . Seese [27] proved an analogue of
Courcelle’s result for the model-checking problem of first-order logic on any class of graphs
of bounded degree. Following this result, the complexity of first-order model-checking on
specific classes of graphs has been studied extensively in the literature. See e.g. [17, 7, 19,
21, 4, 9, 10, 27, 8, 22, 28, 16, 5, 6, 13, 20]. One of the main goals of this line of research is to
find a structural property P which precisely defines those graph classes C for which model
checking of first-order logic is tractable.

So far, research on algorithmic meta-theorems has focused predominantly on sparse
classes of graphs, such as classes of bounded treewidth, excluding a minor or which have
bounded expansion or are nowhere dense. The concepts of bounded expansion and nowhere
denseness were introduced by Nešetřil and Ossona de Mendez with the goal of capturing
the intuitive notion of sparseness. See [25] for an extensive cover of these notions. The
large number of equivalent ways in which they can be defined using either notions from
combinatorics, theoretical computer science or logic, indicate that these two concepts capture
some very natural limits of “well-behavedness” and algorithmic tractability. For instance,
Grohe et al. [19] proved that if C is a class of graphs closed under taking subgraphs then
model checking first-order logic on C is tractable if, and only if, C is nowhere dense (the
lower bound was proved in [7]). As far as algorithmic meta-theorems for fixed-parameter
tractability of first-order model-checking are concerned, this result completely solves the case
for graph classes which are closed under taking subgraphs, which is a reasonable requirement
for sparse but not for dense graph classes.

Consequently, research in this area has shifted towards studying the dense case, which is
much less understood. While there are several examples of algorithmic meta-theorems on
dense classes, such as for monadic second-order logic on classes of bounded cliquewidth [3]
or for first-order logic on interval graphs, partial orders, classes of bounded shrubdepth and
other classes, see e.g. [13, 11, 14, 12], a general theory of meta-theorems for dense classes is
still missing. Moreover, unlike the sparse case, there is no canonical hierarchy of dense graph
classes similar to the sparse case which could guide research on algorithmic meta-theorems
in the dense world.

Hence, the main research challenge for dense model-checking is not only to prove tract-
ability results and to develop the necessary logical and algorithmic tools. It is at least as
important to define and analyze promising candidates for “structurally simple” classes of
graph classes which are not necessarily sparse. This is the main motivation for the research in
this paper. Since bounded expansion and nowhere denseness form the limits for tractability
of certain problems in the sparse case, any extension of the theory should provide notions
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which collapse to bounded expansion or nowhere denseness, under the additional assumption
that the classes are closed under taking subgraphs. Therefore, a natural way of seeking such
notions is to base them on the existing notions of bounded expansion or nowhere denseness.

In this paper, we take bounded expansion classes as a starting point and study two different
ways of generalizing them towards dense graph classes preserving their good properties. In
particular, we define and analyze classes of graphs obtained from bounded expansion classes
by means of first-order interpretations and classes of graphs obtained by generalizing another,
more combinatorial characterization of bounded expansion in terms of low treedepth colorings
into the dense world. Our main structural result shows that these two very different ways of
generalizing bounded expansion into the dense setting lead to the same classes of graphs.
This is explained in greater detail below.

Interpretations and transductions. One possible way of constructing “well-behaved” and
“structurally simple” classes of graphs is to use logical interpretations, or the related concept of
transductions studied in formal language and automata theory. For our purpose, transductions
are more convenient and we will use them in this paper. Intuitively, a transduction is a
logically defined operation I which takes a structure as input and nondeterministically
produces as output a target structure. In this paper we use first-order transductions, which
involve first-order formulas (see Section 2 for details). Two examples of such transductions
are graph complementation, and the squaring operation which, given a graph G, adds an
edge between every pair of vertices at distance 2 from each other.

We postulate that if we start with a “structurally simple” class C of graphs, e.g. a class
of bounded expansion or a nowhere dense class, and then study the graph classes D which
can be obtained from C by first-order transductions, then the resulting classes should still
have a simple structure and thus be well-behaved algorithmically as well as in terms of logic.
In other words, the resulting classes are interesting graph classes with good algorithmic and
logical properties, and which are certainly not sparse in general. For instance, a useful feature
of transductions is that they provide a canonical way of reducing model-checking problems
from the generated classes D to the original class C, provided that given a graph H ∈ D,
we can effectively compute some graph G ∈ C that is mapped to H by the transduction. In
general, this is a hard problem, requiring a combinatorial understanding of the structure of
the resulting classes D.

The above principle has so far been successfully applied in the setting of graph classes
of bounded treewidth and monadic second-order transductions: it was shown by Courcelle,
Makowsky and Rotics [3] that transductions of classes of bounded treewidth can be com-
binatorially characterized as classes of bounded cliquewidth. This, combined with Oum’s
result [26] gives a fixed-parameter algorithm for model-checking monadic second-order logic
on classes of bounded cliquewidth. More recently, the same principle, but for first-order logic,
has been applied to graphs of bounded degree [12], leading to a combinatorial characterization
of first-order transductions of such classes, and to a model-checking algorithm.

Applying our postulate to bounded expansion classes yields the central notion of this
paper: a class of graphs has structurally bounded expansion if it is the image of a class of
bounded expansion under some fixed first-order transduction. This paper is a step towards a
combinatorial, algorithmic, and logical understanding of such graph classes.

Low Shrubdepth Covers. The method of transductions is one way of constructing complex
graphs out of simple graphs. A more combinatorial approach is the method of decompositions
(or colorings) [25], which we reformulate below in terms of covers. This method can be used
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bounded treedepth

bounded treedepth covers
=(2) bounded expansion

transduction of bounded treedepth
=(1) bounded shrubdepth

low shrubdepth covers =(?)
structurally bounded expansion

cover cover

transduction

transduction

Figure 1 The nodes in the diagram depict properties of graph classes, and the arrows depict
operations on properties of graph classes. Equality (1) is by [14]. Equality (2) is by [24]. Equality (?)
is the main result of this paper, Theorem 5.1.

to provide a characterization of bounded expansion classes in terms of very simple graph
classes, namely classes of bounded treedepth. A class of graphs has bounded treedepth if
there is a bound on the length of simple paths in the graphs in the class (see Section 2 for a
different but equivalent definition). A class C has low treedepth covers if for every number
p ∈ N there is a number N and a class of bounded treedepth T such that for every G ∈ C,
the vertex set V (G) can be covered by N sets U1, . . . , UN so that every set X ⊆ V (G) of at
most p vertices is contained in some Ui, and for each i = 1, . . . , N , the subgraph of G induced
by Ui belongs to T . A consequence of a result by Nešetřil and Ossona de Mendez [24] on a
related notion of low treedepth colorings is that a graph class has bounded expansion if, and
only if, it has low treedepth covers.

The decomposition method allows to lift algorithmic, logical, and structural properties
from classes of bounded treedepth to classes of bounded expansion. For instance, this was
used to show tractability of first-order model-checking on bounded expansion classes [7, 18].

An analogue of treedepth in the dense world is the concept of shrubdepth, introduced
in [14]. Shrubdepth shares many of the good algorithmic and logical properties of treedepth.
This notion is defined combinatorially, in the spirit of the definition of cliquewidth, but can
be also characterized by logical means, as first-order transductions of classes of bounded
treedepth. Applying the method of decompositions to the notion of shrubdepth leads to
the following definition. A class C of graphs has low shrubdepth covers if for every number
p ∈ N there is a number N and a class B of bounded shrubdepth such that for every G ∈ C,
there is a p-cover of G consisting of N sets U1, . . . , UN ⊆ V (G), so that every set X ⊆ V (G)
of at most p vertices is contained in some Ui and for each i = 1, . . . , N , the subgraph of G
induced by Ui belongs to B. Shrubdepth properly generalizes treedepth and consequently
classes admitting low shrubdepth covers properly extend bounded expansion classes.

It was observed earlier [23] that for every fixed r ∈ N and every class C of bounded
expansion, the class of rth power graphs Gr of graphs from C (the rth power of a graph is a
simple first-order transduction) admits low shrubdepth colorings.

Our contributions. Our main result, Theorem 5.1, states that the two notions introduced
above are the same: a class of graphs C has structurally bounded expansion if, and only if, it
has bounded shrubdepth covers. That is, transductions of classes of bounded expansion are
the same as classes with low shrubdepth covers (cf. Figure 1). This gives a combinatorial
characterization of structurally bounded expansion classes, which is an important step
towards their algorithmic treatment.

One of the key ingredients of our proof is a quantifier-elimination result (Lemma 5.5)
for transductions on classes of structurally bounded expansion. This result strengthens
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in several ways similar results for bounded expansion classes due to Dvořák, Kráľ, and
Thomas [7] and Grohe and Kreutzer [18]. Our assumption is more general, as they assume
that C has bounded expansion, and here C is only required to have low shrubdepth covers.
Also, our conclusion is stronger, as their results provide quantifier-free formulas involving
some unary functions and unary predicates which are computable algorithmically, whereas
our result shows that these functions can be defined using very restricted transductions.
Quantifier-elimination results of this type proved to be useful for the model-checking problem
on bounded expansion classes [7, 18], and this is also the case here.

As explained earlier, the transduction method allows to reduce the model-checking
problem to the problem of finding inverse images under transductions, which is a hard
problem in general and depends very much on the specific transduction. On the other hand,
as we show, the cover method allows to reduce the model-checking problem for classes with
low shrubdepth covers to the problem of computing a bounded shrubdepth cover of a given
graph. In fact, as a consequence of our proof, in Theorem 6.1 we show that it is enough
to compute a 2-cover of a given graph G from a structurally bounded expansion class, in
order to obtain an algorithm for the model-checking problem for such classes. We strongly
conjecture that such an algorithm exists and that therefore first-order model-checking is
fixed-parameter tractable on any class of graphs of structurally bounded expansion. We leave
this problem for future work.

2 Transductions

In this section, apart from recalling some background notions from logic and graph theory,
we introduce the notion of transductions which we use in this paper.

Structures. We use standard logical notation and terminology with the following exceptions.
A signature Σ is a finite set of relation and function symbols. We allow relations of any finite
arity but only unary functions. We use boldface letters A for logical structures and denote
their domains by V (A). A structure A over Σ is defined as usual with the exception that
each function symbol f ∈ Σ is interpreted as a partial function fA : V (A) ⇀ V (A). If A
is a structure and X ⊆ V (A) then we define the substructure of A induced by X in the
usual way except that a unary function f(x) in A becomes undefined on all x ∈ X for which
f(x) 6∈ X. The semantics of first-order logic is defined as usual, with the proviso that an
atomic formula evaluates to false if any of the terms involved in it is undefined.

Graphs and colored graphs. We consider finite, simple and undirected graphs. These can
be viewed as finite structures over the signature consisting of a binary relation symbol E,
interpreted as the edge relation, in the usual way. For a finite label set Λ, by a Λ-colored
graph we mean a graph enriched by a unary predicate Uλ for every λ ∈ Λ. We will follow the
convention that if C is a class of colored graphs, then we implicitly assume that all graphs
in C are over the same fixed finite signature. A rooted forest is an acyclic graph F together
with a unary predicate R ⊆ V (F ) selecting one root in each connected component of F .

Transductions. We now define the notion of transduction used in the sequel. A transduction
is a special type of first-order interpretation with set parameters, which we see here (from a
computational point of view) as a nondeterministic operation that maps input structures
to output structures. Transductions are defined as compositions of atomic operations listed
below.
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126:6 First-Order Interpretations of Bounded Expansion Classes

An extension operation is parameterized by a first-order formula ϕ(x1, . . . , xk) and a
relation symbol R. Given an input structure A, it outputs the structure A extended by the
relation R interpreted as the set of k-tuples of elements satisfying ϕ in A. A restriction
operation is parameterized by a unary formula ψ(x). Applied to a structure A it outputs the
substructure of A induced by all elements satisfying ψ. A reduct operation is parameterized
by a relation symbol R, and results in removing the relation R from the input structure.
Copying is an operation which, given a structure A outputs a disjoint union of two copies
of A extended with a new unary function which maps both copies of a vertex v back to v. A
function extension operation is parameterized by a binary formula ϕ(x, y) and a function
symbol f , and extends a given input structure by a partial function f defined as follows:
f(x) = y if y is the unique vertex such that ϕ(x, y) holds. Note that if there is no such y or
more than one such y, then f(x) is undefined. Finally, suppose σ is function that maps each
structure A to a nonempty family σ(A) of subsets of its universe. A unary lift operation,
parametrized by σ, takes as input a structure A and outputs the structure A enriched by a
unary predicate X interpreted by a nondeterministically chosen set U ∈ σ(A).

We remark that a function extension operations can be simulated by extension operations,
defining the graphs of the functions in the obvious way. They are, however, useful as a means
of extending the expressive power of transductions in which only quantifier-free formulas are
allowed, as defined below.

I Definition 2.1. Transductions are defined inductively: every atomic transduction is a
transduction, and the composition of two transductions I and J is the transduction I; J that,
given a structure A, first applies J to A and then I to the output J(A). A transduction
is deterministic if it does not use unary lifts. In this case, for every input structure there
is exactly one output structure. A transduction is almost quantifier-free if all formulas
that parameterize atomic operations comprising it are quantifier-free (observe that such
transductions still can access elements that are not among its free variables via functions,
hence, to avoid confusion we do not speak of quantifier-free transductions), and is deterministic
almost quantifier-free if it additionally does not use unary lifts.

If C is a class of structures, we write I(C) for the class which contains all possible
outputs I(A) for A ∈ C. We say that two transductions I and J are equivalent on a class C of
structures if every possible output of I(A) is also a possible output of J(A), and vice versa,
for every A ∈ C.

I Example 2.2. Let C be the class of rooted forests of depth at most d, for some fixed
d ∈ N. We describe an almost quantifier-free transduction which defines the parent function
in C. First, using unary lifts introduce d+ 1 unary predicates D0, ..., Dd, where Di marks
the vertices of the input tree which are at distance i from a root. Next, using a function
extension, define a function f which maps a vertex v in the input tree to its parent, or is
undefined in case of a root. This can be done by a quantifier-free formula, which selects
those pairs x, y such that x and y are adjacent and Di(x) implies Di−1(y).

It will sometimes be convenient to work with the encoding of bounded-depth trees and
forests as node sets endowed with the parent function, rather than graphs with prescribed
roots. As seen in Example 2.2, these two encodings can be translated to each other by means
of almost quantifier-free transductions, which render them essentially equivalent.
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3 Treedepth, shrubdepth and bounded expansion

Treedepth. The depth of a node x in a rooted forest F is the number of edges on the
root-to-x path in F . The depth of F is the maximal depth of any of its nodes. The treedepth
of a graph G is the minimal depth of a rooted forest F with the same vertex set as G, such
that for every edge vw of G, v is an ancestor of w, or w is an ancestor of v in F . A class C
of graphs has bounded treedepth if there is a bound d ∈ N such that every graph in C has
treedepth at most d. Equivalently, there is some number k such that no graph in C has a
simple path of length k [25].

Shrubdepth. The following notion of shrubdepth has been proposed in [14] as a dense
analogue of treedepth. Originally, shrubdepth was defined using the notion of tree-models.
We present an equivalent definition based on the notion of connection models, introduced
in [14] under the name of m-partite cographs of bounded depth.

I Definition 3.1. A connection model with labels from Λ is a rooted labeled tree T in which
every leaf x is assigned a label λ(x) ∈ Λ, and every non-leaf node v is labeled by a (symmetric)
binary relation C(v) ⊆ Λ× Λ. Such a model defines a graph G on the leaves of T , in which
two distinct leaves x and y are connected by an edge if and only if (λ(x), λ(y)) ∈ C(v),
where v is the common ancestor of x and y of largest depth. We say that T is a connection
model of the resulting graph G.

I Example 3.2. Fix n ∈ N, and let Gn be the bi-complement of a matching of order n, i.e.,
the bipartite graph with nodes a1, . . . , an and b1, . . . , bn, such that ai is adjacent to bj if,
and only if, i 6= j. A connection model for Gn is shown below:

a1 b1

∅

a2 b2

∅

a3 b3

∅

an bn

∅

{( )}, ) , ( ,

I Definition 3.3. A class C of graphs has bounded shrubdepth if there is an h ∈ N and a
finite set Λ such that every G ∈ C has a connection model of depth at most h using labels
from Λ. A class of colored graphs has bounded shrubdepth if the class of underlying graphs
has bounded shrubdepth.

Note that contrary to other graph parameters, it is meaningless to speak about the shrubdepth
of a single graph. Rather, shrubdepth measures directly the complexity of a class.

Shrubdepth can be equivalently defined in terms of another graph parameter, as follows.

I Definition 3.4. Given a graph G and a set of vertices W ⊆ V (G), the graph obtained
by flipping the adjacency within W is the graph G′ with vertices V (G) and edge set which
is the symmetric difference of the edge set of G and the edge set of the clique on W . The
subset-complementation depth, or SC-depth, of a graph is defined inductively as follows: (1) a
graph with one vertex has SC-depth 0, and (2) for d > 1 a graph G has SC-depth at most d
if there is a set W ⊆ V (G) of vertices such that in the graph obtained from G by flipping
the adjacency within W all connected components have SC-depth at most d− 1.

The notion of SC-depth leads to a natural notion of decompositions. An SC-decomposition
of a graph G of SC-depth at most d is a rooted tree T of depth d with leaf set V (G), equipped
with unary predicates W0, . . . ,Wd on the leaves. Each child s of the root in T corresponds
to a connected component Cs of the graph G′ obtained from G by flipping the adjacency
within W0, such that the subtree of T rooted at s, together with the unary predicates
W1, . . . ,Wd restricted to V (Cs), form an SC-decomposition of Cs.
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126:8 First-Order Interpretations of Bounded Expansion Classes

We will make use of the following properties, where the first one follows from the definition
of shrubdepth, and the remaining ones follow from [14].

I Proposition 3.5. Let C be a class of graphs. Then:
1. If C has bounded shrubdepth, then the class of all induced subgraphs of graphs from C also

has bounded shrubdepth.
2. C has bounded shrubdepth if and only if for some d ∈ N all graphs in C have SC-depth at

most d.
3. If C has bounded treedepth, then C has bounded shrubdepth.
4. If C has bounded shrubdepth and I is a transduction that outputs colored graphs, then I(C)

has bounded shrubdepth.

Bounded expansion. A graph H is a depth-r minor of a graph G if H can be obtained
from a subgraph of G by contracting mutually disjoint connected subgraphs of radius at
most r. A class C of graphs has bounded expansion if there is a function f : N → N such
that |E(H)|

|V (H)| 6 f(r) for every r ∈ N and every depth-r minor H of a graph from C. Examples
include the class of planar graphs, or any class of graphs with bounded maximum degree.

The connection between treedepth and graph classes of bounded expansion can be
established via treedepth-p colorings. For an integer p, a function c : V (G) → C is a
treedepth-p coloring if, for every i 6 p and set X ⊆ V (G) with |c(X)| = i, the induced
graph G[X] has treedepth at most i. A graph class C has low treedepth colorings if for every
p ∈ N there is a number Np such that for every G ∈ C there exists a treedepth-p coloring
c : V (G)→ C with |C| 6 Np.

I Theorem 3.6 ([24]). A class C of graphs has bounded expansion if, and only if, it has low
treedepth colorings.

4 Structurally bounded expansion and low shrubdepth covers

In this section we introduce two notions which generalize the concept of bounded expansion.
First, we introduce classes of structurally bounded expansion. This notion arises from closing
bounded expansion graph classes under transductions.

I Definition 4.1. A class C of graphs has structurally bounded expansion if there exists a
class of graphs D of bounded expansion and a transduction I such that C ⊆ I(D).

The second notion, low shrubdepth covers, arises from the low treedepth coloring char-
acterization of bounded expansion (see Theorem 3.6) by replacing treedepth by its dense
counterpart, shrubdepth. For convenience, we formally define this in terms of covers.

I Definition 4.2. A cover of a graph G is a family UG of subsets of V (G) such that⋃
UG = V (G). A cover UG is a p-cover, where p ∈ N, if every set of at most p vertices

is contained in some U ∈ UG. If C is a class of graphs, then a (p-)cover of C is a family
U = (UG)G∈C, where UG is a (p-)cover of G. The cover U is finite if sup{|UG| : G ∈ C} is
finite. Let C[U ] denote the class of graphs {G[U ] : G ∈ C, U ∈ UG}. We say that the cover U
has bounded treedepth (respectively, bounded shrubdepth) if the class C[U ] has bounded
treedepth (respectively, shrubdepth).

I Example 4.3. Let T be the class of trees and p ∈ N be a number. We construct a finite
p-cover U of T which has bounded treedepth. Given a rooted tree T , let UT = {U0, . . . , Up},
where Ui is the set of vertices of T whose depth is not congruent to i modulo p+ 1. Note
that T [Ui] is a forest of height p, and that UT is a p-cover of T . Hence U = (UT )T∈T is a
finite p-cover of T of bounded treedepth.
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In analogy to low treedepth colorings, we can now characterize graph classes of bounded
expansion using covers. We say that a class C of graphs has low treedepth covers if for every
p ∈ N there is a finite p-cover U of C with bounded treedepth. The following lemma follows
easily from Theorem 3.6.

I Lemma 4.4. A class of graphs has bounded expansion if, and only if, it has low treedepth
covers.

We now define the second notion generalizing the concept of bounded expansion. The
idea is to use low shrubdepth covers instead of low treedepth covers.

I Definition 4.5. A class C of structures has low shrubdepth covers if, and only if, for every
p ∈ N there is a finite p-cover U of C with bounded shrubdepth.

It is easily seen that Lemma 4.4 together with Proposition 3.5 (3) imply that every class
of bounded expansion has low shrubdepth covers.

5 Main Result

The main result of our paper is the followiong.

I Theorem 5.1. A class of graphs has structurally bounded expansion if, and only if, it has
low shrubdepth covers.

We prove the left-to-right direction of Theorem 5.1 in Section 5.1 and the right-to-left
direction in Section 5.2. But before we need some lemmas on classes of bounded shrubdepth.

The first lemma is an analogue of a known fact that every class of bounded cliquewidth
which excludes a fixed bi-clique as a subgraph has bounded treewidth. The lemma is proved
by an easy induction on the depth of the connection models.

I Lemma 5.2. A class C of graphs has bounded treedepth if, and only if, C has bounded
shrubdepth and all G ∈ C exclude some fixed bi-clique as a subgraph.

The second lemma, Lemma 5.3 below, is substantially more involved, and is the com-
binatorial cornerstone of our approach. Essentially, it says that if C is a class of bounded
shrubdepth, then a bounded-depth SC-decomposition of a graph G ∈ C can be computed
using an almost quantifier-free transduction B. In other words, an SC-decomposition of a
graph G ∈ C can be encoded in G using a finite number of unary predicates and reconstructed
using function extension operations involving deterministic almost quantifier-free formulas.

I Lemma 5.3. Let B be a class of graphs of bounded shrubdepth. Then there is a class T of
colored trees of bounded height and a pair of transductions T and B such that T is almost
quantifier-free, B is deterministic almost quantifier-free, T(B) ⊆ T , B(T ) ⊆ B, and

B(T(G)) = {G} for all G ∈ B and T(B(t)) 3 t for all t ∈ T .

Moreover, for any G ∈ B, every t ∈ T(G) is an SC-decomposition of G.

The key ingredient in the proof of Lemma 5.3 is that we can provide an almost quantifier-
free transduction that defines connected components in graphs of bounded shrubdepth, as
formulated in the following lemma.

I Lemma 5.4. Let C be a class of graphs of bounded shrubdepth. There is an almost
quantifier-free transduction F such that for a given G ∈ C, every output of F on G is equal to
G enriched by a function g : V (G)→ V (G) such that g(v) = g(w) if, and only if, v and w
are in the same connected component of G.
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In the proof of Lemma 5.4 we use the fact that bounded shrubdepth implies bounded
diameter [14], and the connection between bounded shrubdepth and (bi-)cographs [15].

5.1 Structurally bounded expansion implies low shrubdepth covers
The left-to-right implication of Theorem 5.1 – that every graph class with structurally
bounded expansion has low shrub-depth covers – follows from the two lemmas below, whose
proofs are outlined later in this section.

I Lemma 5.5. Let C be a class of colored graphs which has low shrubdepth covers. Then
every transduction I is equivalent on C to an almost quantifier-free transduction J.

I Lemma 5.6. If a class of graphs C has low shrubdepth covers and J is an almost quantifier-
free transduction which outputs graphs, then J(C) also has low shrubdepth covers.

We first show how to conclude the left-to-right implication of Theorem 5.1 from Lemma 5.5
and Lemma 5.6. Let C be a class of bounded expansion and I be a transduction which outputs
graphs. By Lemma 4.4, C has low treedepth covers and hence, by Lemma 3.5, also has low
shrubdepth covers. Applying Lemma 5.5, we obtain an almost quantifier-free transduction
J such that I(C) = J(C). By Lemma 5.6, we deduce that J(C) = I(C) has low shrubdepth
covers, proving the left-to-right implication of Theorem 5.1.

In the remainder of this section we sketch the proofs of Lemma 5.5 and Lemma 5.6.

Proof outline for Lemma 5.5. Our proof of Lemma 5.5 is a quantifier elimination procedure
similar to that of Dvořák et al. [7] and Grohe and Kreutzer [18]. First, we prove the statement
for classes of colored trees of bounded depth, just as in [7, 18]. Lemma 5.3 allows us to
immediately lift the statement to classes of bounded shrubdepth. Finally, this is lifted to
classes with low shrubdepth covers. J

Proof outline for Lemma 5.6. To prove the lemma, we first observe that every almost
quantifier-free transduction is equivalent to a transduction which consists of a sequence
of unary lifts followed by a deterministic almost quantifier-free transduction. Since, by
Proposition 3.5, adding colors (the result of applying unary lifts) to a graph class of bounded
shrubdepth will again result in a graph class of bounded shrubdepth, it suffices to prove the
lemma for a deterministic almost quantifier-free transduction and a class of colored graphs C.

Consider a p-cover U of C of bounded shrubdepth. As a very special case, suppose that I
is a single quantifier-free extension operation that does not use any functions in the formula
governing it. Then I(G[W ]) = I(G)[W ] for G ∈ C and any W ⊆ V (G). As a consequence,
UG is a p-cover of I(G) and hence I(C[U ]) = I(C)[U ] is a p-cover of I(C). Moreover, by
Proposition 3.5, I(C)[U ] has bounded shrubdepth, so U is a finite cover of C of bounded
shrubdepth. As p is arbitrary, this proves that I(C) has bounded shrubdepth covers.

For a general deterministic almost quantifier-free transduction I, the equality I(G[W ]) =
I(G)[W ] may fail, due to the fact that I may involve functions which reach outside of W .
However, the value of any term involved in I depends only on a bounded number of vertices
of G. This leads to the following lemma.

I Lemma 5.7. For every deterministic almost quantifier-free transduction I there is a
number c such that the following holds. For every graph G and vertex v of I(G) there is a set
Sv ⊆ V (G) of size at most c such that for any sets U,W with W ⊆ V (I(G)) and U ⊆ V (G),
if U ⊇

⋃
v∈W Sv, then

I(G)[W ] = I(G[U ])[W ].
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We now proceed to the general case. Choose any p ∈ N. Let c be as in Lemma 5.7. Let U
be a finite (p · c)-cover of U of bounded shrubdepth. For a graph G ∈ C and a set U ∈ UG,
define WU ⊆ I(G) as the set of all vertices v ∈ I(G) such that Sv ⊆ U , where Sv is as in
Lemma 5.7. From the lemma and the fact that classes of bounded shrubdepth are closed under
transductions and induced subgraphs it follows easily that letting WI(G) = {WU : U ∈ UG}
yields a p-cover of I(G), which collectively, for all G ∈ C, form a p-cover of I(C) which has
bounded shrubdepth. Since p is arbitrary, this proves the lemma. J

5.2 Low shrubdepth covers imply structurally bounded expansion
For the right-to-left implication of Theorem 5.1, we prove the following statement.

I Lemma 5.8. Let C be a class of graphs with low shrubdepth covers. There is a pair of
transductions S and I, where S is almost quantifier-free and I is deterministic almost quantifier-
free, such that S(C) is a class of colored graphs of bounded expansion and I(S(G)) = {G} for
each G ∈ C.

Clearly, the lemma implies that C has structurally bounded expansion, since it can be
obtained as a result of a transduction I to a class S(C) of bounded expansion. Thus, the
right-to-left implication of Theorem 5.1 is a consequence of the lemma.

Proof outline. Let U be a finite 2-cover of C, and let N = sup{|UG| : G ∈ C}. We define
a transduction S as follows. For a given G ∈ C, let {U1, . . . , UN} = UG. Given G, the
transduction S introduces unary predicates U1, . . . , UN , and then, using the transduction T
from Lemma 5.3, computes the union

⋃N
i=1 T(G[Ui]), which is a union of N trees glued along

the leaves. It is easy to see that the resulting graph excludes the bi-clique KN+1,N+1 as a
subgraph. By Lemma 5.6, the class S(C) has low shrubdepth covers. Any p-cover of S(C)
of bounded shrubdepth has bounded treedepth by Lemma 5.2. Therefore, S(C) has low
treedepth covers, so has bounded expansion.

The transduction I is easily constructed from the transduction B from Lemma 5.3, allowing
to reconstruct the graph G from the colored union of the trees produced by S. J

6 Algorithmic aspects

In this section we give a partial result about efficient computability of transductions on
classes with structurally bounded expansion. When we refer to the size of a structure in the
algorithmic context, we refer to its total size, i.e., the sum of its universe size and the total
sum of sizes of tuples in its relations.

Call a class C of graphs of structurally bounded expansion efficiently decomposable if
there is a finite 2-cover U of C and an algorithm that, given a graph G ∈ C, in linear time
computes the cover UG and for each U ∈ UG, an SC-decomposition SU of depth at most d of
the graph G[U ], for some constant d depending only on C. Our result is as follows.

I Theorem 6.1. Suppose J is a deterministic transduction and C is a class of graphs that has
structurally bounded expansion and is efficiently decomposable. Then given a graph G ∈ C,
one may compute J(G) in time linear in the size of the input plus the size of the output.

We remark that instead of efficient decomposability we could assume that the 2-cover UG
of a graph G and corresponding SC-decompositions for all U ∈ UG is given together with G
as input. If only the cover is given but not the SC-decompositions, we would obtain cubic
running time because bounded shrubdepth implies bounded cliquewidth and we can compute
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an approximate clique decomposition in cubic time [26]. Then, SC-decompositions of small
height are definable in monadic second-order logic, and hence they can be computed in linear
time using the result of Courcelle, Makowski and Rotics [3].

Observe that the theorem implies that we can efficiently evaluate a first-order sentence
and enumerate all tuples satisfying a formula ϕ(x1, . . . , xk) on the given input graph, since
this amounts to applying the theorem to a transduction consisting of a single extension
operation. This strengthens the analogous result of Kazana and Segoufin [21] for classes of
bounded expansion.

Proof outline. We will make use of transductions S and I constructed in the proof of
Lemma 5.8. Recall that S(C) is a class of colored graphs of bounded expansion, I is
deterministic, and I(S(G)) = {G} for each G ∈ C. Observe that J is equivalent to S; I; J on C.
Defining K as I; J, we get that J(G) = K(S(G)) for G ∈ C. Moreover, since I is deterministic,
it follows that K is deterministic.

Let G ∈ C be an input graph. By efficient decomposability of C, in linear time we can
compute a cover UG of G together with an SC-decomposition SU of depth at most d of G[U ],
for U ∈ UG. Each SU is a colored tree, and by the construction described in the proof of
Lemma 5.8, the trees SU for U ∈ UG, glued along the leaves form a structure belonging
to S(G). As J(G) = K(S(G)), it suffices to apply the enumeration result of Kazana and
Segoufin for classes of bounded expansion [21] to the colored graph S(G) and to all formulas
occurring in the transduction K. J

7 Conclusion

In this paper we have provided a natural combinatorial characterization of graph classes that
are first-order transductions of bounded expansion classes of graphs. Our characterization
parallels the known characterization of bounded expansion classes by the existence of low
treedepth decompositions, by replacing the notion of treedepth by shrubdepth. We believe
that we have thereby taken a big step towards solving the model-checking problem for
first-order logic on classes of structurally bounded expansion.

On the structural side we remark that transductions of bounded expansion graph classes
are just the same as transductions of classes of structures of bounded expansion (i.e., classes
whose Gaifman graphs or whose incidence encodings have bounded expansion). On the
other hand, it remains an open question to characterize classes of relational structures,
rather than just graphs, which are transductions of bounded expansion classes. We are
lacking the analogue of Lemma 5.3; the problem is that within the proof we crucially use the
characterization of shrubdepth via SC-depth, which works well for graphs but is unclear for
structures of higher arity.

Finally, observe that classes of bounded expansion can be characterized among classes
with structurally bounded expansion as those which are bi-clique free. It follows, that
every monotone (i.e., subgraph closed) class of structurally bounded expansion has bounded
expansion. Exactly the same statement holds characterizing bounded treedepth among
bounded shrubdepth, and the second item holds for treewidth vs cliquewidth. In particular,
for monotone graph classes all pairs of notions collapse.

We do not know how to extend our results to nowhere dense classes of graphs, mainly
due to the fact that we do not know whether there exists a robust quantifier-elimination
procedure for these graph classes. Obtaining such a procedure remains an open problem of
prime importance in this field of research.
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Abstract
A sliding window algorithm receives a stream of symbols and has to output at each time instant
a certain value which only depends on the last n symbols. If the algorithm is randomized, then at
each time instant it produces an incorrect output with probability at most ε, which is a constant
error bound. This work proposes a more relaxed definition of correctness which is parameterized
by the error bound ε and the failure ratio φ: a randomized sliding window algorithm is required
to err with probability at most ε at a portion of 1 − φ of all time instants of an input stream.
This work continues the investigation of sliding window algorithms for regular languages. In
previous works a trichotomy theorem was shown for deterministic algorithms: the optimal space
complexity is either constant, logarithmic or linear in the window size. The main results of
this paper concerns three natural settings (randomized algorithms with failure ratio zero and
randomized/deterministic algorithms with bounded failure ratio) and provide natural language
theoretic characterizations of the space complexity classes.
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1 Introduction

Sliding window algorithms process an input sequence a1a2 · · · am from left to right and have
at time t only direct access to the current symbol at. Moreover, at each time instant t the
algorithm is required to compute a value that depends on the last n symbols. The value
n is called the window size and the last n symbols form the active window at time t. In
many streaming applications, data items are outdated after a certain time and the sliding
window model is a simple way to model this. A general goal in the area of sliding window
algorithms is to avoid the explicit storage of the window content (which requires Ω(n) bits),
and, instead, to work in considerably smaller space, e.g. polylogarithmic space with respect
to the window size n. A detailed introduction into the sliding window model can be found in
[1, Chapter 8].
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Regular languages over sliding windows. In our recent papers [7, 8] we initiated the study
of sliding window algorithms for regular languages. In general, a sliding window algorithm for
a language L ⊆ Σ∗ decides at every time instant whether the active window belongs to L. In
[8] we proved that for every regular language L the optimal space bound for a sliding window
algorithm for L is either constant, logarithmic or linear in the window size. This trichotomy
result resembles the well-known fact that every regular (even context-free) language has
either polynomial or exponential growth. In [7] we also gave several characterizations for
these space classes: A regular language has a sliding window algorithm with space O(log n)
if and only if it belongs to 〈LI,Len〉, which denotes the Boolean closure of the class LI
of regular left ideals and the class Len of regular length languages. Moreover, a regular
language has a sliding window algorithm that uses space O(1) if and only if it belongs to
〈ST,Len〉, where ST is the class of suffix-testable languages. The formal definitions of these
and other language classes can be found in Section 2. The goal of this work is to extend the
results from [7, 8] to randomized algorithms.

Main results. Consider a Monte-Carlo sliding window algorithm which can produce incorrect
outputs. Abstracting away from the actual computation, we will view such a randomized
sliding window algorithm (SWA for short) as a family R = (Rn)n≥0 of probabilistic automata,
where Rn is the algorithm for window size n. We denote by f(R, n) the number of bits
stored by Rn, which is the logarithm of the number of states. There are different ways to
define correctness of R for a certain language L. The maybe most natural choice is to require
that after reading an arbitrary input word a1a2 · · · am, the algorithm Rn correctly decides
whether am−n+1 · · · am ∈ L with probability at least 2/3. This ensures that for every input
stream and every time instant, one can be sure to get a correct answer with probability at
least 2/3. By a standard probability amplification argument, 2/3 can be replaced by any
probability strictly between 1/2 and 1. With this definition (formal details can be found in
Section 3) our first main result is the following, where SF denotes the class of all regular
suffix-free languages (point (1) and (5) are from [8]).

I Theorem 1.1. Let L ⊆ Σ∗ be a regular language.
1. If L ∈ 〈ST,Len〉, then L has a deterministic SWA R with f(R, n) = O(1).
2. If L /∈ 〈ST,Len〉, then f(R, n) /∈ o(log log n) for every randomized SWA R for L.
3. If L ∈ 〈ST,SF,Len〉, then L has a randomized SWA R with f(R, n) = O(log log n).
4. If L /∈ 〈ST,SF,Len〉, then f(R, n) /∈ o(log n) for every randomized SWA R for L.
5. If L ∈ 〈LI,Len〉, then L has a deterministic SWA R with f(R, n) = O(log n).
6. If L /∈ 〈LI,Len〉, then f(R, n) /∈ o(n) for every randomized SWA R for L.

One may argue that an algorithm which occasionally produces a wrong answer with
probability > 1/3 is acceptable as well. This motivates the following definition: We say that
a randomized algorithm for a certain language L and a window size n has failure ratio φ if
for every input stream, the portion of all time instants where the algorithm gives a wrong
answer with probability > 1/3 is bounded by φ. The second main result concerns algorithms
with a bounded failure ratio. If we ask for an arbitrarily small non-zero failure ratio we get
the following space dichotomy, where PF denotes the class of regular prefix-free languages:

I Theorem 1.2. Let L ⊆ Σ∗ be a regular language.
1. If L ∈ 〈LI,PF,Len〉 and 0 < φ ≤ 1, then L has a randomized SWA with f(R, n) = O(1)

and failure ratio φ.
2. If L /∈ 〈LI,PF,Len〉, then there exists a failure ratio 0 < φ ≤ 1 such that f(R, n) /∈ o(n)

for every randomized SWA R for L with failure ratio φ.
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〈LI,Len〉

〈ST,Len〉

Reg

〈LI,Len〉
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Figure 1 All language classes are defined in Section 2.

The notion of failure ratio makes sense for deterministic sliding window algorithms as
well. Our third main result is a space trichotomy for deterministic sliding window algorithms
having a bounded failure ratio. Let LB denote the class of left ideals generated by bifix-free
(i.e., prefix- and suffix-free) regular languages. We then show:

I Theorem 1.3. Let L ⊆ Σ∗ be a regular language.
1. If L ∈ 〈LB,PF,SF,Len〉 and 0 < φ ≤ 1, then L has a deterministic SWA with

f(R, n) = O(1) and failure ratio φ.
2. If L /∈ 〈LB,PF,SF,Len〉, then there exists a failure ratio 0 < φ ≤ 1 such that f(R, n) /∈

o(log n) for every deterministic SWA R for L with failure ratio φ.
3. If L ∈ 〈LI,PF,Len〉 and 0 < φ ≤ 1, then L has a deterministic SWA with f(R, n) =
O(log n) and failure ratio φ.

4. If L /∈ 〈LI,PF,Len〉, then there exists a failure ratio 0 < φ ≤ 1 such that f(R, n) /∈ o(n)
for every deterministic SWA R for L with failure ratio φ.

Note that Theorem 1.3(4) is an immediate corollary of Theorem 1.2(2), and that The-
orem 1.3(3) follows from Theorem 1.3(1) and Theorem 1.1(5). Figure 1 summarizes the
resulting space classes for each setting; the left column shows the three classes for the
deterministic setting [7, 8]. Figure 2 shows an inclusion diagram for the language classes in
Figure 1. One can show that the example languages in Figure 2 witness the strictness of the
inclusions.

Technical contributions. Our randomized algorithms are based on a simulation of a counter
by a Bernoulli random variable. Albeit simple, this Bernoulli algorithm can be utilized for
sliding window algorithms with a bounded failure ratio. We present automata-theoretic
descriptions of several Boolean closed language classes, to derive certain witness words for
proving the lower bounds. Concerning lower bounds for sliding window algorithms with a
bounded failure ratio, we consider a promise variant of the communication problem IDXn,
which has randomized one-way communication complexity Ω(n). Also we prove that a DFA
which can count up to n, allowing a bounded failure ratio, needs Ω(n) states.

Related work. Let us emphasize related results which prove bounds on randomized sliding
window algorithms. In the seminal paper of Datar et al. [6], where the sliding window
model was introduced, the authors prove that the number of 1’s in a 0/1-sliding window of
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Reg

〈LI,PF,Len〉

〈LI,Len〉 〈LB,PF,SF,Len〉

〈ST,SF,Len〉

〈ST,Len〉

aΣ∗

a{a, b}∗c ∪ {a, b}∗

Σ∗aΣ∗

ab∗

Σ∗a

a∗b

Figure 2 Examples for all occurring language classes where Σ = {a, b, c}.

size n can be maintained in space O( 1
ε · log2 n) if one allows a multiplicative error of 1± ε.

Furthermore, they proved a matching lower bound for both deterministic and randomized
algorithms. Ben-Basat et al. [3] present a sliding window algorithm for the related problem
of approximating counts with an additive error, and present a deterministic and randomized
lower space bound. We remark that both papers [3, 6] use a stronger notion of correctness:
A randomized sliding window algorithm must have the property that for every input w, the
probability that the algorithm produces some incorrect output while reading w is bounded
by 1/3. The authors utilize Yao’s minimax principle to lift the deterministic lower bound
to a randomized lower bound [13, Chapter 2]. Arasu et al. [2] study the problem of
maintaining approximate frequency counts and quantiles over sliding windows. They present
a deterministic algorithm and a randomized algorithm with improved space complexity using
a simple sampling technique. Chan et al. [5] present a randomized sliding window algorithm
for a certain measure of monotonicity. Furthermore, they present randomized lower bounds
using communication complexity. The randomized algorithm analyzed in both papers comply
with our standard definition of correctness with failure ratio 0. Further references can be
found in [1, 4].

Finally let us mention the study of the communication complexity of regular languages
by Tesson and Thérien [17], where a trichotomy (resp., quatrochotomy) for the deterministic
(resp., randomized) communication complexity was shown. These results resemble our results,
but the language classes that appear in [17] are different from the classes in our results.

2 Preliminaries

For integers i, j ∈ N let [i, j] = {k ∈ N : i ≤ k ≤ j}. The set of all words over a finite alphabet
Σ is denoted by Σ∗. The empty word is denoted by ε whereas error probabilities are denoted
by the lunate epsilon ε. The sets of words over Σ of length exactly, at most and at least n are
denoted by Σn, Σ≤n and Σ≥n, respectively. Consider a word w = a1a2 · · · am. The reversal
of w is defined as wR = am · · · a2a1, and for a language L we set LR = {wR : w ∈ L}. For a
non-empty interval [i, j] ⊆ [1,m] we define w[i, j] = aiai+1 · · · aj . If i > j we set w[i, j] = ε.
A prefix of w is a word of the form w[1, i] for some 0 ≤ i ≤ m; a suffix of w is a word of the
form w[i,m] for some 1 ≤ i ≤ m+ 1. A language L ⊆ Σ∗ is prefix-free (resp., suffix-free) if
there are no two words x, y ∈ L with x 6= y and x is a prefix (resp., suffix) of y. A language
is bifix-free if it is both prefix- and suffix-free.
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Automata and regular languages. For general background in automata theory see [10]. A
deterministic finite automaton (DFA) A = (Q,Σ, q0, δ, F ) consists of a finite set of states Q,
a finite alphabet Σ, an initial state q0 ∈ Q, a transition function δ : Q× Σ→ Q and a set of
final states F ⊆ Q. We inductively extend δ to a function δ : Q×Σ∗ → Q as usual. If P ⊆ Q
is a set of states, then L(A,P ) = {w ∈ Σ∗ : δ(q0, w) ∈ P}. The language accepted by A is
L(A) = L(A,F ). A language is regular if it is accepted by a DFA. Classes of languages are
denoted by boldfaced letters. In this paper we will deal with the following language classes:

Reg: the class of all regular languages.
Len: the class of regular length languages, i.e., regular languages L such that for all n ∈ N
we have Σn ⊆ L or Σn ∩ L = ∅.
LI (resp., RI): the class of regular left (resp., right) ideals, i.e., languages of the form
Σ∗L (resp., LΣ∗) where L is regular.
ST (resp., PT): the class of suffix testable (resp., prefix testable) languages, i.e., finite
Boolean combinations of languages Σ∗w (resp., wΣ∗) where w ∈ Σ∗.
SF (resp., PF): the class of regular suffix-free (resp., prefix-free) languages
LB (resp., RB): the class of left ideals (resp., right ideals) generated by regular bifix-free
languages, i.e., languages of the form Σ∗L (resp., LΣ∗) where L ∈ PF ∩ SF.1

It is easy to see that every finite language is prefix and suffix testable. Moreover, prefix
testable and suffix testable languages are regular. If A1, . . . ,An are language classes, then
〈A1, . . . ,An〉 denotes the smallest boolean-closed class which contains

⋃n
i=1 Ai.

Probabilistic automata. In the following we introduce probabilistic automata [14, 15] as a
model for randomized streaming algorithms. A probabilistic automaton R = (Q,Σ, ι, ρ, F )
consists of a (possibly infinite) set of states Q, an alphabet Σ, an initial state distribution
ι : Q→ {r ∈ R : 0 ≤ r ≤ 1}, a transition probability function ρ : Q× Σ×Q→ {r ∈ R : 0 ≤
r ≤ 1} and set of final states F ⊆ Q such that

∑
q∈Q ι(q) = 1 and

∑
q∈Q ρ(p, a, q) = 1

for all p ∈ Q, a ∈ Σ. If ι and ρ map into {0, 1}, then R is a deterministic automaton.
A run on a word a1 · · · am ∈ Σ∗ in R is a sequence π = (q0, a1, q1, a2, . . . , am, qm) where
q0, . . . , qm ∈ Q and ρ(qi−1, ai, qi) > 0 for all 1 ≤ i ≤ m. Given such a run π in R we
define ρι(π) = ι(q0) ·

∏n
i=1 ρ(qi−1, ai, qi). For each w ∈ Σ∗ the function ρι is a probability

distribution on the set Runs(w) of all runs of R on w.

3 Randomized streaming and sliding window algorithms

A randomized streaming algorithm (R, enc) consists of a probabilistic automaton R =
(Q,Σ, ι, ρ, F ) as above and an injective function enc: Q→ {0, 1}∗. Usually, we will only refer
to the underlying automaton R. If R is deterministic, we speak of a deterministic streaming
algorithm. The maximum number of bits stored during a run π = (q0, a1, . . . , am, qm) is
denoted by space(R, π), i.e., space(R, π) = max{|enc(qi)| : 0 ≤ i ≤ m}. The worst case
space complexity of R on w is space(R,w) = max{space(R, π) : π ∈ Runs(w), ρι(π) > 0}.
A run π = (q0, a1, . . . , am, qm) is correct with respect to a language K ⊆ Σ∗ if qm ∈ F ⇔
a1 · · · am ∈ K holds. The error probability of R on w for K is

ε(R,w,K) =
∑
{ρι(π) : π ∈ Runs(w) is not correct with respect to K}.

1 or equivalently, the class of all left ideals generated by regular prefix-free languages. Since our proofs
related to LB yield decompositions of the form Σ∗L with L bifix-free, we decided to define LB as above.
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Given an error bound 0 ≤ ε ≤ 1, the failure ratio of R on w is defined as

φ(R,w,K, ε) = 1
m+ 1 |{t ∈ [0,m] : ε(R, a1a2 · · · at,K) > ε}|.

For a window length n ≥ 0 and a stream x ∈ Σ∗ we define lastn(x) to be the suffix of �nx
of length n where � ∈ Σ is a fixed alphabet symbol. The word lastn(ε) = �n is the initial
window content. Given a language L ⊆ Σ∗ and a window size n ≥ 0 we define the language

Ln = {x ∈ Σ∗ : lastn(x) ∈ L}. (1)

A randomized sliding window algorithm (randomized SWA for short) is a sequence R =
(Rn)n≥0 of randomized streaming algorithms Rn over the same alphabet Σ. If every Rn is
deterministic, we speak of a deterministic SWA. The space complexity of the randomized SWA
R = (Rn)n≥0 is the function f(R, n) = sup{space(Rn, w) : w ∈ Σ∗} ∈ N ∪ {∞}. Clearly, if
Rn is finite, then one can always find a state encoding such that f(R, n) = blog2 |Rn|c.

I Definition 3.1. Let 0 ≤ ε ≤ 1 and 0 ≤ φ ≤ 1. A randomized SWA R = (Rn)n≥0 is
(ε, φ)-correct for a language L ⊆ Σ∗ if φ(Rn, w, Ln, ε) ≤ φ for all n ≥ 0 and w ∈ Σ≥n. The
number ε is the error probability and φ is the failure ratio of R (with respect to ε).

Definition 3.1 also makes sense in the special case that R is deterministic and ε = 0. A
(0, φ)-correct deterministic SWA R = (Rn)n≥0 for L has the property that Rn produces at
most φ · (m+ 1) many incorrect answers when running on any input word of length m ≥ n.

We will set the error probability to ε = 1/3, which is justified by the following lemma
(that follows from a standard Chernoff bound).

I Lemma 3.2. Let L ⊆ Σ∗, 0 < ε′ < ε < 1
2 and 0 ≤ φ ≤ 1. Given a randomized SWA R

which is (ε, φ)-correct for L, one can construct a randomized SWA R′ which is (ε′, φ)-correct
for L such that f(R′, n) ≤ ln( 1

ε′ ) · 1
poly(ε) · f(R, n).

I Definition 3.3. Let L ⊆ Σ∗ be a language and 0 ≤ φ ≤ 1.
A randomized SWA for L with failure ratio φ is a randomized SWA which is (1/3, φ)-
correct for L. If moreover φ = 0, then we speak of a randomized SWA for L.
A deterministic SWA for L with failure ratio φ is a deterministic SWA which is (0, φ)-
correct for L. If moreover φ = 0, then we speak of a deterministic SWA for L.

We only consider randomized SWAs R = (Rn)n≥0 where every Rn has a finite state set
Qn. This is justified by the fact that for every language L and every n the language Ln
from (1) is regular and hence can be accepted by a DFA. The space-optimal deterministic
SWA for a language L therefore consists of the minimal DFA for Ln for every n ≥ 0. For a
fixed error probability ε < 1/2 a space-optimal randomized SWA for L consists of a minimal
probabilistic finite automaton for Ln which accepts a word w with probability at least 1− ε
if w ∈ Ln and accepts w with probability at most ε if w /∈ Ln. By a result of Rabin [15]
such a probabilistic finite automaton can be transformed into an equivalent DFA with an
exponential blow-up. Hence, we get:

I Lemma 3.4. Let R be a randomized SWA for the language L. Then, there exists a
deterministic SWA D for L such that f(D, n) ∈ O(2f(R,n)).

4 Upper bounds

In this section we prove the upper bounds in Theorem 1.1, 1.2 and 1.3. We use the simple
fact that space complexity classes in the sliding window model are Boolean-closed:
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I Lemma 4.1. Let L be a Boolean combination of languages L1, . . . , Lk. For each i ∈ [1, k]
let Ri be a randomized SWA for Li with failure ratio φi. Then L has a SWA R with failure
ratio

∑k
i=1 φi and f(R, n) = O(

∑k
i=1 f(Ri, n)).

4.1 The Bernoulli algorithm
In this section, we introduce a randomized SWA that will be used for the proof of the upper
bounds (3) from Theorem 1.1 and (1) from Theorem 1.2. The idea is based on the algorithm
from [7], which stores path summaries in the reversal DFA. Consider a regular language
L ⊆ Σ∗ and let A = (Q,Σ, q0, δ, F ) be a DFA for LR. Observe that if L is a left-ideal then
any run in A switches from Q \ F to F at most once; if L is suffix-free then any run in A
visits F at most once. For a stream w ∈ Σ∗ define the function `w : Q→ N ∪ {∞} by

`w(q) = inf{k ∈ N : δ(q, lastk(w)R) ∈ F}, (2)

where we set inf(∅) =∞. By the observations above we know:
If L is a left ideal, then lastn(w) ∈ L if and only if `w(q0) ≤ n.
If L is suffix-free, then lastn(w) ∈ L if and only if `w(q0) = n.

One can define a deterministic SWA which stores the function `w on input stream w. If a
symbol a ∈ Σ is read, we can determine `wa from `w: If q ∈ F , then `wa(q) = 0. Otherwise
`wa(q) = 1 + `w(δ(q, a)) where 1 +∞ =∞.

Using a Bernoulli random variable, we define a randomized approximation of the above
deterministic SWA to reduce the space complexity to O(1). Let β : N → R be a function
such that for some n0, 0 ≤ β(n) ≤ 1 for all n ≥ n0, which controls the Bernoulli random
variable and will later be instantiated by concrete functions. We define the following constant-
space randomized SWA B = (Bn)n≥0 (which depends on the language L, the DFA A and
the function β), which we call the Bernoulli algorithm. If n < n0 let Bn be the trivial
deterministic streaming algorithm for Ln. For n ≥ n0 the algorithm Bn stores a Boolean
flag for each state in form of a function b : Q→ {0, 1}. All flags b(q) for q ∈ F are fixed to 1
forever. For all other states q ∈ Q \ F we define the initial value of the flag b(q) as follows,
where ` = `ε(q) ∈ N ∪ {∞}:

b(q) :=
{

0 with probability 1− (1− β(n))`

1 with probability (1− β(n))` .
(3)

Here we set x∞ = 0 for 0 ≤ x < 1. For all states q ∈ Q \ F we do the following upon arrival
of a symbol a ∈ Σ:

b(q) :=
{

0 with probability β(n)
b(δ(q, a)) with probability 1− β(n)

(4)

The algorithm accepts if and only if b(q0) = 1. An induction on |w| shows:

I Lemma 4.2. For all n ≥ n0 and w ∈ Σ∗ we have Pr[Bn accepts w] = (1− β(n))`w(q0).

4.2 Randomized SWAs with failure ratio zero
In this section we present a O(log log n) space algorithm for suffix-free regular languages L.
Since languages in ST and Len have constant space deterministic SWAs (Theorem 1.1(1))
and the space complexity classes are closed under Boolean combinations by Lemma 4.1, this
implies Theorem 1.1(3).
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Let L ∈ SF and A = (Q,Σ, q0, δ, F ) be a DFA for LR ∈ PF. Since the case L = ∅
is trivial, we can assume that A contains at least one final state which is reachable from
q0. Furthermore, since LR is prefix-free, any run in A from q0 contains at most one final
state. Therefore, we can assume that F contains exactly one final state qF , and all outgoing
transitions from qF lead to a sink state.

Recall the function `w : Q → N ∪ {∞} defined in (2). Notice that lastn(w) ∈ L if and
only if `w(q0) = n for all w ∈ Σ∗. Our randomized SWA R = (Rn)n≥0 consists of two parts:
Firstly, we take the Bernoulli algorithm B = (Bn)n≥0 from Section 4.1 for the function
β(n) = 1/(2n) and n0 = 1. From Lemma 4.2 we know that Bn accepts a word w ∈ Σ∗ with
probability (1− 1/(2n))`w(q0). Secondly, we simultaneously run a modulo-counting algorithm
Mn. Let pi be the i-th prime number and let s(m) be the product of all prime numbers ≤ m.
It is known that ln(s(m)) > m · (1− 1/ lnm) for m ≥ 41 [16, 3.16] and pi < i · (ln i+ ln ln i)
for i ≥ 6 [16, 3.13]. Let k be the first natural number such that

∏k
i=1 pi ≥ n. By the above

bounds we get k ∈ O(log n) and p3k ∈ O(log n · log log n). The algorithm Mn initially picks
a random prime p ∈ {p1, . . . , p3k}, which is stored throughout the run using O(log log n)
bits. Then, after reading w ∈ Σ∗, Mn stores for every q ∈ Q a bit telling whether `w(q) <∞
and, if the latter holds, the values `w(q) mod p using O(|Q| · log log n) bits. The algorithm
accepts if and only if `w(q0) ≡ n mod p.

The combined algorithm Rn accepts if and only if both Bn and Tn accept. Let us bound
the error probability on an input stream w ∈ Σ∗ with ` = `w(q0).

Case 1. ` = n, i.e., lastn(w) ∈ L. Then Mn accepts w with probability 1. Moreover, Bn
accepts w with probability (1− 1/(2n))n ≥ 0.6 for n ≥ 12 (note that (1− 1/(2n))n converges
to 1/

√
e ≈ 0.60653 from below). Hence, Rn accepts with probability at least 0.6.

Case 2. ` ≥ 2n and hence lastn(w) /∈ L. Then Bn rejects with probability 1−(1−1/(2n))` ≥
1− (1− (1/2n))2n ≥ 1− 1/e ≥ 0.6. Here, we use the well-known inequality (1− 1/y)y ≤ e−1

for all y ≥ 1. Hence, Rn also rejects with probability at least 0.6.

Case 3. ` < 2n and ` 6= n, and thus lastn(w) /∈ L. Since `− n ∈ [−n, n] and any product
of at least k + 1 pairwise distinct primes exceeds n, the number ` − n 6= 0 has at most k
prime factors. Therefore, Mn (and thus Rn) rejects with probability at least 2/3.

4.3 SWAs with arbitrarily small non-zero failure ratio
In this section we sketch the proofs of Theorem 1.2(1) and Theorem 1.3(1). We focus on the
main base case L ∈ LI from Theorem 1.2(1).

Let L ⊆ Σ∗ be a regular left ideal. Let A = (Q,Σ, q0, δ, F ) be the minimal DFA for LR.
Since the case L = ∅ is trivial, we can assume that L 6= ∅. It is easy to see that F contains
a single state qF from which all outgoing transitions lead back to qF . Recall the function
`w : Q→ N∪ {∞} defined in (2). Since L is a left ideal, we have: lastn(w) ∈ L if and only if
`w(q0) ≤ n: The following lemma says that the portion of prefixes of an input stream, where
`w(q0) is close to n, is small:

I Lemma 4.3. Let 0 < ξ < 1. Let n ≥ 0 be a window size and w ∈ Σ≥n be an input stream.
Then the number of prefixes v of w such that dξne ≤ `v(q0) ≤ n is at most

(1− ξ + 1
n ) · |Q|

ξ
· (|w|+ 1 + ξn). (5)
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Proof. Let us say that a prefix v of w is a hit, if dξne ≤ `v(q0) ≤ n. Consider an interval
I = [i, i′] with 0 ≤ i ≤ i′ ≤ |w| and i′ − i ≤ dξne. With each position j ∈ I we associate the
prefix w[1, j]. We claim that V := {w[1, j] : j ∈ I} contains at most |Q| · (n− dξne+ 1) hits.
Let us assume the contrary. Since dξne ≤ `v(q0) ≤ n for every hit v, and the interval [dξne, n]
contains n−dξne+1 many different values, there is a subset U ⊆ V and some ` ∈ [dξne, n] such
that (i) |U | > |Q| and (ii) `v(q0) = ` for all v ∈ U . Let U = {w[1, j1], w[1, j2], . . . , w[1, jk]},
where k > |Q|. Consider the words u1 = last`(w[1, j1]), u2 = last`(w[1, j2]), . . . , uk =
last`(w[1, jk]). Since jk − j1 ≤ dξne and ` ≥ dξne, we have ` − jk + j1 ≥ 0. Hence,
we can consider the words v1 = last`−jk+j1(w[1, j1]), v2 = last`−jk+j2(w[1, j2]), . . . , vk =
last`(w[1, jk]). Clearly, vj is a suffix of uj . Moreover, the words vj all start in the same
position of �nw, i.e., every vj is a prefix of vj′ for j ≤ j′. Consider now the state qj = ξ(q0, v

R
j )

for 1 ≤ j ≤ k. Since k > |Q| there exist j < j′ such that qj = qj′ . But this would imply that
`vj (q0) < `vj′ (q0), which contradicts `vj (q0) = ` = `vj′ (q0). This shows the above claim.

Now we can finish the proof of the lemma: We divide the interval [0, |w|] into intervals of
size dξne+1 and one last interval of possibly shorter length. This yields d(|w|+1)/(dξne+1)e
many intervals. In each of these intervals we find at most |Q| · (n− dξne+ 1) many hits by
the above claim. Hence, the total number of hits is bounded by⌈

|w|+ 1
dξne+ 1

⌉
· |Q| · (n− dξne+ 1) ≤

(
|w|+ 1
ξn

+ 1
)
· |Q| · (n− ξn+ 1)

= (|w|+ 1 + ξn) · |Q| ·
1− ξ + 1

n

ξ
.

This concludes the proof of the lemma. J

We now consider the Bernoulli algorithm Bε = (Bεn)n≥0 for βε : N → R with βε(n) =
ln(1/ε)/n. Note that 0 < βε(n) ≤ 1 for n ≥ ln(1/ε). With Lemma 4.2 one can show:

I Lemma 4.4. For every 0 < ξ < 1 there exists 0 < ε < 1/2 and n0 ≥ 1 such that for all
n ≥ n0 the following holds: If w ∈ Σ∗ and `w(q0) 6∈ [dξne, n], then ε(Bεn, w, Ln) ≤ ε.

I Theorem 4.5. Let L be a regular left ideal and 0 < φ < 1. Then L has a randomized SWA
R with f(R, n) = O(1) and failure ratio φ.

Proof. Let us fix a failure ratio 0 < φ < 1 and let 0 < ξ < 1, which will be defined later
(depending on φ). Let ε and n0 be the numbers from Lemma 4.4. Let Bε = (Bεn)n≥0 be
the randomized SWA described above. Let n ≥ n0 be a window size and w ∈ Σ≥n be an
input stream. Consider the set P (w) of all prefixes v of w such that `v(q0) ∈ [dξne, n]. By
Lemma 4.4 the algorithm Bεn errs on each prefix v /∈ P (w) with probability at most ε, i.e.,

φ(Bεn, w, Ln, ε) ≤ |P (w)|
|w|+ 1

Lemma 4.3
≤

(1− ξ + 1
n ) · |Q|

ξ
·
(

1 + ξn

|w|+ 1

)
≤

(
1− ξ + 1

n

)
· |Q| ·

(
1 + 1

ξ

)
. (6)

Note that if ξ converges to 1, then the probability (6) tends towards 2|Q|/n. Hence we can
choose numbers n1 ≥ n0 and 0 < ξ < 1 such that for all n ≥ n1 the probability (6) is smaller
than our fixed failure ratio φ.

Finally for window sizes n < n1 we can use the optimal deterministic sliding-window
algorithms for L and window size n. The space complexity of the resulting algorithm is a
constant that depends only on φ. J
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The base case L ∈ Len in Theorem 1.2(1) is trivial (there is a constant-space deterministic
SWA). Finally, for the case L ∈ PF, one can show that the constant-space deterministic
SWA that always rejects has a failure ratio of O(1/n) for window length n. This fact also
covers the base case L ∈ PF from Theorem 1.3(1), and a similar argument covers the case
L ∈ SF. For the remaining base case L ∈ LB in Theorem 1.3(1), one can basically use a
DFA for L itself as a sliding window algorithm. One can prove that this algorithm gives only
O(1) incorrect answers in n consecutive windows.

5 Lower bounds

To prove the claimed lower bounds, we apply the same proof strategy in all cases (with one
exception). We first show that if a regular language does not belong to the language class
under consideration then there exist certain witness words. These words can then be used to
apply known lower bounds from randomized one-way communication complexity [11, 12] by
deriving a randomized communication protocol from a randomized SWA. This is a standard
technique for showing lower bounds for streaming algorithms.

The setting in (one-way) communication complexity is as follows: Alice holds an element
x ∈ X and Bob holds an element y ∈ Y and they aim to compute f(x, y) according to a
randomized one-way protocol P . Alice computes from her input x ∈ X and from a random
string a message and sends it to Bob. Using this message, his input y ∈ Y and a random
string, Bob computes an output bit. The cost of the protocol P is the maximal number of
bits sent from Alice to Bob. We say that P computes f if the protocol computes f(x, y) with
probability at least 2/3 for all inputs (x, y). The minimal cost of a protocol which computes
f is denoted by C(f).

Due to space constraints we only prove Theorem 1.1(4) in detail and discuss the proofs
of the remaining lower bounds only briefly in Section 5.2.

5.1 Proof of point 4 from Theorem 1.1
Let A = (Q,Σ, q0, δ, F ) be a DFA. A state q is trivial if δ(q, x) 6= q for all x ∈ Σ+, otherwise
it is non-trivial. A pair (p, q) ∈ Q×Q of states is called synchronized if there exist words
x, y, z ∈ Σ∗ with |x| = |y| = |z| ≥ 1 such that δ(p, x) = p, δ(p, y) = q and δ(q, z) = q. A pair
(p, q) is called reachable from a state r if p is reachable from r. A state pair (p, q) is called
F -consistent if either {p, q} ∩ F = ∅ or {p, q} ⊆ F . We remark that synchronized state pairs
have no connection to the notion of synchronizing words. A simple pumping argument shows:

I Lemma 5.1. A state pair (p, q) is synchronized if and only if p and q are non-trivial and
there exists y ∈ Σ+ such that |Q|! divides |y| and δ(p, y) = q.

Let Q = T ∪N be the partition of the state set into the set T of trivial states and the set
N of non-trivial states. A function β : N→ {0, 1} is k-periodic if β(i) = β(i+ k) for all i ∈ N.

I Lemma 5.2. Assume that every synchronized pair in A which is reachable from q0 is
F -consistent. Then for every word v ∈ Σ∗ of length at least |Q|! · (|T |+ 1) there exists a |Q|!-
periodic function βv : N→ {0, 1} such that the following holds: If w ∈ vΣ∗ and δ(q0, w) ∈ N ,
then we have w ∈ L iff β(|w|) = 1.

Proof. Let v = a1a2 · · · ak with k ≥ |Q|! · (|T |+ 1), and consider the run q0
a1−→ · · · ak−→ qk

of A on v. Clearly, each trivial state can occur at most once in the run. First notice that
for each 0 ≤ i ≤ |Q|! − 1 at least one of the states in Qi = {qi+j|Q|! : 0 ≤ j ≤ |T |} is
non-trivial because otherwise the set would contain |T |+ 1 pairwise distinct trivial states.
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Furthermore, we claim that the non-trivial states in Qi are either all final or all non-final:
Take two non-trivial states qi+j1|Q|! and qi+j2|Q|! with j1 < j2. Since we have a run of length
(j2 − j1)|Q|! from qi+j1|Q|! to qi+j2|Q|!, the states form a synchronized pair by Lemma 5.1.
Hence, by assumption the two states are F -consistent. Now define βv : N→ {0, 1} by

βv(m) =
{

1 if the states in Qm mod |Q|! ∩N are final,
0 if the states in Qm mod |Q|! ∩N are non-final,

which is well-defined by the remarks above. Clearly βv is |Q|!-periodic.
Let w = a1 · · · am ∈ vΣ∗ be a word of length m ≥ k. The run of A on w prolongs the

run on v, say q0
a1−→ · · · ak−→ qk

ak+1−−−→ · · · am−−→ qm. Assume that qm ∈ N . As argued above,
there is a position 0 ≤ i ≤ k such that i ≡ m (mod |Q|!) and qi ∈ N . Hence (qi, qm) is a
synchronized pair by Lemma 5.1 which is F -consistent by assumption. Therefore w ∈ L iff
qm ∈ F iff qi ∈ F iff βv(|w|) = 1. J

I Lemma 5.3. Assume that every synchronized pair in A which is reachable from q0 is
F -consistent. Then L(A) belongs to 〈PT,PF,Len〉.

Proof. Let FN = N ∩ F and FT = T ∩ F . We decompose L into

L = L(A,FN ) ∪
⋃
q∈FT

L(A, {q}).

First observe that L(A, {q}) ∈ PF for all q ∈ FT because a trivial state q can occur at most
once in a run of A. It remains to show that L(A,FN ) belongs to 〈PT,PF,Len〉. Using the
threshold k = |Q|! · (|T | + 1), we distinguish between words of length at most k − 1 and
words of length at least k, and group the latter set by their prefix of length k, i.e.,

L(A,FN ) = (L(A,FN ) ∩ Σ≤k−1) ∪
⋃
v∈Σk

(L(A,FN ) ∩ vΣ∗).

The first part L(A,FN ) ∩ Σ≤k−1 is finite and thus prefix testable. To finish the proof, we
will show that L(A,FN ) ∩ vΣ∗ ∈ 〈PT,PF,Len〉 for each v ∈ Σk. Let v ∈ Σk and let
βv : N→ {0, 1} be the |Q|!-periodic function from Lemma 5.2. We know

L(A,FN ) ∩ vΣ∗ = (vΣ∗ ∩ {w ∈ Σ∗ : β(|w|) = 1}) \ L(A, T ).

Note that {w ∈ Σ∗ : β(|w|) = 1} ∈ Len, vΣ∗ ∈ PT and L(A, T ) ∈ 〈PF〉. J

By applying Lemma 5.3 to the language LR, we obtain:

I Lemma 5.4. If L ∈ Reg \ 〈ST,SF,Len〉, then there exist u, x, y, z ∈ Σ∗ with |x| = |y| =
|z| ≥ 1 such that one of the following cases holds:

x∗u ⊆ L and z∗yx∗u ∩ L = ∅
x∗u ∩ L = ∅ and z∗yx∗u ⊆ L.

We can now conclude the proof of Theorem 1.1(4). Let L ∈ Reg \ 〈ST,SF,Len〉. We
reduce from the communication problem GTm : [1,m]2 → {0, 1} where GTm(i, j) = 1 iff
i > j. It is known that C(GTm) ∈ Θ(logm) [11, Theorem 3.8].

Consider the words u, x, y, z ∈ Σ∗ described in Lemma 5.4. Let R = (Rn)n≥0 be a
randomized SWA for L. Let m ≥ 0. We describe a randomized one-way protocol Pm
for GTm: Let i ∈ [1,m] be the input of Alice and j ∈ [1,m] be the input of Bob. Let
n = |x| · m + |u| ∈ Θ(m). Alice starts by running the probabilistic automaton Rn on
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zmyxm−i using her random bits in order to simulate the random choices of Rn. Afterwards,
she sends the encoding of the reached state to Bob. Bob then continues the run of Rn
from the transmitted state with the word xju. Hence, Rn is simulated on the word w :=
zmyxm−ixju = zmyxm−i+ju. We have

lastn(w) =
{
zi−1−jyxm−i+ju, if i > j,

xmu, if i ≤ j.

By Lemma 5.4, lastn(w) belongs to L in exactly one of the two cases i > j and i ≤ j. Hence
Bob can distinguish these two cases with probability at least 2/3. It follows that the protocol
computes GTm and its cost is bounded by f(R, n). We have f(R, |x| ·m+ |u|) = f(R, n) ≥
cost(Pm) ∈ Ω(logm) and therefore f(R, n) /∈ o(log n).

5.2 Remaining lower bounds
The remaining lower bounds in Theorem 1.1–1.3 are shown by reductions from communication
problems as well, with one exception:

For Theorem 1.1(2) we reduce from the communication problem EQm, where Alice holds
a number i ∈ [1,m], Bob holds a number j ∈ [1,m] and Bob has to verify whether i = j.
It is known that C(EQm) ∈ Θ(log logm) [12].
For Theorem 1.1(6) we reduce from the communication problem IDXm, where Alice holds
a bitstring a1 · · · am, Bob holds an index i ∈ [1,m] and Bob has to output the bit ai. By
[11, Theorem 3.7] we know that C(IDXm) ∈ Θ(m).
For Theorem 1.2(2) we reduce from a promise variant of IDXm. Let D ⊆ {0, 1}m× [1,m]
such that for each x ∈ {0, 1}m there exist at least 7/8 ·m pairs (x, i) ∈ D. We prove
that IDXm still has communication complexity Ω(m) if the inputs for Alice and Bob are
restricted to D. This extends [11, Theorem 3.7] and allows us to incorporate the notion
of failure ratio into a communication protocol.
Theorem 1.3(2) is not shown via a reduction to a communication problem. Instead, we
utilize a combinatorial result on the ability of DFAs to count up to a threshold n, modulo
a failure ratio φ.

6 Further results

The technical report [9] contains several further results that we briefly want to discuss.
In this paper, we only considered randomized SWAs with a two sided error (analogously

to the complexity class BPP). Randomized SWAs with a one-sided error (analogously to the
class RP) can be motivated by applications, where all “yes” outputs have to be correct, but
a small probability for a false negative answer is acceptable. We prove that for every regular
language the optimal space bound with respect to randomized SWAs with one-sided error
coincides (up to constant factors) with the optimal space bound in the deterministic setting
[7, 8] (which was discussed in the introduction).

In the introduction (related work) we remarked that some authors use a stronger cor-
rectness notion for randomized SWAs, where for every input w, the probability that the
algorithm produces some incorrect output while reading w is bounded by 1/3. We show that
for every approximation problem (where approximation problems are defined by specifying
for every input string a set of possible output values) every randomized SWA that fulfills
this stronger notion of correctness can be completely derandomized without a space increase.
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Abstract
We consider the structure of aperiodic points in Z2-subshifts, and in particular the positions at
which they fail to be periodic. We prove that if a Z2-subshift contains points whose smallest
period is arbitrarily large, then it contains an aperiodic point. This lets us characterise the
computational difficulty of deciding if an Z2-subshift of finite type contains an aperiodic point.
Another consequence is that Z2-subshifts with no aperiodic point have a very strong dynamical
structure and are almost topologically conjugate to some Z-subshift. Finally, we use this result
to characterize sets of possible slopes of periodicity for Z3-subshifts of finite type.
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A subshift on Zd is a set of colorings of Zd by a finite set of colors avoiding some family
of forbidden patterns. When this family is finite, the subshift is called a subshift of finite
type (SFT). In dimension 2, SFTs are equivalent to sets of tilings by Wang tiles: Wang tiles
are unit squares with colored borders that cannot be rotated and may be placed next to each
other only if the borders match.

Wang tiles were introduced by Wang in order to study the decidability of some fragments
of logic [18, 19]. He thus introduced the Domino Problem: given a set of Wang tiles, do
they tile the plane? (in other words, is the corresponding subshift nonempty?) Wang first
conjectured that whenever a tileset tiles the plane, it can do so in a periodic manner, which
would have implied the decidability of the Domino Problem.
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In dimension 1 the problem is decidable. A Z-SFT corresponds to the set of biinfinite
walks on some automaton and it tiles the line if and only if the automaton contains a cycle.
Such a cycle provides a periodic point of the SFT, so non-empty Z-SFTs always contain a
periodic point. The situation is dramatically different in higher dimension. Berger [3] proved
that there exists tilesets in dimension 2 that tile the plane only aperiodically, and that the
Domino Problem was therefore undecidable.

Thus, from the start, periodicity and aperiodicity have been at the heart of the study of
Wang tiles and SFTs, and the main tool in understanding their structural properties and the
answer to various decision problems. To give a few examples:

The presence of a dense set of periodic points is related to the decidability of the problem
of deciding whether a given pattern appears in some point of an SFT [12].
The finite subshifts on Zd are exactly the subshifts containing only periodic configurations
with d non-colinear vectors of periodicity [1, Theorem 3.8]. These configurations can
be seen as finite configurations. This result has recently been extended to subshifts on
groups [15].
Countable SFTs always contain a finite configuration and if they are not finite, then they
contain a configuration with exactly one vector of periodicity [1, Theorem 3.11].
A subshift always contains a quasiperiodic configuration [4, 6], a configuration in which
every finite pattern appears in any window of sufficiently large size depending only on
the size of the pattern.

In this article we study the structure of aperiodic points in Z2-SFTs, and in particular
the repartition of the coordinates where it avoids to be periodic. Our main result is:

I Theorem 1. There exists a computable function f that satisfies the following. Assume
X is a Z2-subshift such that for any finite set of periods P, X contains a configuration that
avoids all periods of P. Then X contains an aperiodic point that avoids every period p at
distance at most f(‖p‖) from 0.

This means that aperiodicity can be “organised” in concentric balls around a common
center, in such a way that a proof of aperiodicity for any vector may be found near this
center. As a consequence, when a subshift does not contain any aperiodic point, it must have
a finite number of directions of periodicity:

I Corollary 2. For any subshift X with no aperiodic point, there is a finite set of periods P
such that any configuration of X is periodic for some period p ∈ P.

This will lead to a further characterization of subshifts containing no aperiodic points in
Section 3.2.

These results have a variety of consequences. Gurevich and Koryakov [8] proved that
for d ≥ 2 it is undecidable to know whether an SFT contains a periodic, resp. aperiodic
configuration. While it is easy to see that checking whether an SFT contains a periodic
configuration is a recursively enumerable problem (Σ0

1 in the arithmetical hierarchy), it
remained an open problem whether deciding if an SFT contains an aperiodic configuration
was even in the arithmetical hierarchy. One of the consequences of Theorem 1 is that it is
Π0

1.
Periodicity is also a central topic of symbolic dynamics since sets of periods and directions

of periodicity constitute conjugacy invariants. For example, we prove that a Z2-subshift with
no aperiodic point has a very strong dynamical structure and is essentially equivalent (almost
topologically conjugate) to some Z-subshift, and this is true for SFTs as well. In particular,
various classical decision problems are decidable for this class, its topological entropy is 0 and
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its entropy dimension is at most 1. Sets of periods have also been studied and characterized
through computability and complexity theory [9]. [16] recently proved that any Σ0

2 set of
(Q ∪ {∞})2 can be realized as a set of slopes of a Z3-SFT. Another consequence of Theorem 1
is that this becomes a characterization.

The article is organized as follows: Section 1 recalls some definitions and notations,
Section 2 is devoted to the proof of Theorem 1, Section 3 is devoted to its consequences and
Section 4 shows a counter example for Zd subshifts when d ≥ 3.

1 Definitions

Throughout the paper, we consider the distance on Zd defined by the uniform norm d(i, j) =
||i− j||∞.

1.1 Subshifts
We provide here standard definitions about subshifts, which may be found in greater detail
in [13].

The d-dimensional full shift is the set ΣZd where Σ is a finite alphabet whose elements
are called letters or symbols. Each element of ΣZd is called a configuration or point. A
configuration may be seen as a coloring of Zd with the letters of Σ. For v ∈ Zd, the shift
function σv : ΣZd → ΣZd is defined by σv(x)z = xz+v. The full shift equipped with the
distance d(x, y) = 2−min{‖v‖ | v∈Zd,xv 6=yv} forms a compact metric space on which the shift
functions act as homeomorphisms. A closed shift invariant subset X of ΣZd is called a subshift
or shift.

A pattern of shape Γ, where Γ is a finite subset of Zd, is an element of ΣΓ or alternatively
a function p : Γ→ Σ. A configuration x avoids a pattern γ of shape Γ if ∀z ∈ Zd, σv(x)|Γ 6= γ

and contains γ if it does not avoid it.
For a family of forbidden patterns F , denote XF the set of configurations that avoid F .

Then XF is a subshift, and every subshift can be defined in this way. When a subshift can be
defined this way by a finite family, it is called a subshift of finite type. When a subshift can
be defined by a recursively enumerable family of forbidden patterns, it is called an effectively
closed subshift.

If X is a subshift, we denote by L (X) its language, i.e. the set of patterns that appear
somewhere in one of its points.

I Definition 3 (Periodicity). A configuration x is periodic of period v if there exists v ∈
Zd \ {(0, 0)} such that ∀z ∈ Zd, xz = xz+v. More precisely, a configuration is k-periodic if it
has exactly k linearly independent periods. If a configuration has no period, then it is said
to be aperiodic. A subshift is aperiodic if all its points are aperiodic.

Denote by B(z, n) the ball of radius n centered in z ∈ Zd.
Let x ∈ ΣZd and p ∈ Z2. If there exists z ∈ Z2 such that xz 6= xz+p, we say that x avoids

period p. The pair (z, z + p) is called an avoidance of period p in configuration x. We say
that a configuration avoids a set of periods P if it avoids every period in P.

Let P be a set of periods. We denote P′ the set obtained from P by replacing each period
p by the least commun multiple of all periods of P that are colinear to p. More formally :
P′ = {lcm(q | q ∈ P and q and p are colinear) | p ∈ P}. Observe that P′ is a set of pairwise
non-colinear periods.

Except in the last section, the subshifts we will be considering will implicitely be Z2-
subshifts.

ICALP 2018



128:4 Aperiodic points in Z2-subshifts

1.2 Arithmetical hierarchy
We give some basic definitions used in computability theory and in particular about the
arithmetical hierarchy. More details may be found in [17].

Usually the arithmetical hierarchy is seen as a classification of sets according to their logical
characterization. For our purpose we use an equivalent definition in terms of computability
classes and Turing machines with oracles:

∆0
0 = Σ0

0 = Π0
0 is the class of recursive (or computable) problems.

Σ0
n is the class of recursively enumerable (RE) problems with an oracle Π0

n−1.
Π0
n the complementary of Σ0

n, or the class of co-recursively enumerable (coRE) problems
with an oracle Σ0

n−1.
∆0
n = Σ0

n ∩Π0
n is the class of recursive (R) problems with an oracle Π0

n−1.

In particular, Σ0
1 is the class of recursively enumerable problems and Π0

1 is the class of
co-recursively enumerable problems.

2 Main result

This whole section is dedicated to the proof of the Theorem 1 and Corollary 2. Given a
subshift that contains an aperiodic point, we prove that it contains some aperiodic point
where all period avoidances are organised in concentric balls around a common center, in
such a way that each period p is in a ball whose radius only depends on ‖p‖. This result is
used in a compactness argument to prove that, if a subshift contains configurations whose
smallest period is arbitrarily large, then it contains an aperiodic point.

Actually, our algorithm can only gather avoidances in a small ball if all the periods are
non-colinear. Fortunately we can easily build a set P′.

I Lemma 4. Let P be a set of periods. Any configuration avoiding P′ also avoids P.

Proof. Each period p in P has an integer multiple p′ ∈ P′. Each avoidance of p′ induces an
avoidance of p. J

I Lemma 5. Let P be a set of pairwise non-colinear periods. Let x be a configuration
avoiding P. Then x avoids every period of P in some ball of radius

∑
p∈P ‖p‖.

Proof. We prove the result by induction on the number of periods in P. When P is a
singleton the case is trivial. Now suppose P is not a singleton. Denote p0, p1, . . . , pn the
periods in P. By induction hypothesis, we can find a ball Bn−1 of radius

∑
i<n ‖pi‖ centered

in bn−1 containing avoidances for every period in P except pn. Similarly, we find a ball B′n−1
of radius

∑
i>0 ‖pi‖, centered in b′n−1 that contains avoidances of every period in P except

p0. We now show that either an avoidance of p0 exists near a copy of B′n−1 or an avoidance
of pn exists near a copy of Bn−1.

Consider the ball B(bn−1 + pn,
∑
i<n ‖pi‖), the translated image of Bn−1 by the vector

pn. Either xz = xz+pn for all z ∈ Bn−1, i.e. the two balls are filled the same way, or we
found an avoidance (z, z + pn) with z ∈ Bn−1. In the latter case, the result is proved.

As depicted in Figure 1, this process can be iterated for both B′n−1 and Bn−1 until
either we find the necessary avoidance or the centers of the balls are close to each other:
Since p0 and pn are not colinear, and assuming ‖pn‖ ≥ ‖p0‖, there exists i, j ∈ Z such
that

∥∥bn−1 + ipn − b′n−1 + jp0
∥∥ ≤ ∥∥pn2 ∥∥+

∥∥p0
2
∥∥ < ‖pn‖. We thus found a ball centered in

b′n−1 + jp0 and of radius
∑
i ‖pi‖ containing the two balls we translated, and therefore an

avoidance of each period in P. Denote Bn this new ball and bn its center. J
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pn

p0

bn−1

b′n−1

b′n−1 + jp0

bn−1 + ipn

Figure 1 The process of translating Bn−1 and B′n−1 close to each other: each translation may
uncover the desired avoidance and if not, the two balls next to each other necessarily do so.

In the previous proof, the distance between bn−1 and bn only depends on p0, pn and the
distance between bn−1 and b′n−1.

Therefore there is a computable function f(p0, pn, r) such that, if bn−1 and b′n−1 belong
to a common ball B(z, r), then ‖bn − z‖ ≤ f(p0, pn, r).

I Lemma 6. Let P = {p0, . . . , pn} be a set of non-colinear periods. Define f ′(P, r) recursively
as:

if n = 0, f ′(P, r) = r;
if n > 1, f ′(P, r) = f

(
p0, pn,max

[
f ′(P\{p0}, r), f ′(P\{pn}, r)

])
Take x ∈ X, and assume that x avoids every period p ∈ P in some ball B(z, r). Then x

avoids every period p ∈ P in some ball B(z′,
∑
P ‖p‖), with ‖z′ − z‖ ≤ f ′(P, r).

Proof. We prove the lemma by induction. If n = 0, the result is obvious.
Now assume n > 1. By applying the induction hypothesis twice on p0, . . . , pn−1 and

p1, . . . , pn, we find two balls Bn−1 = B(bn−1,
∑
i<n ‖pi‖) and B′n−1 = B(b′n−1,

∑
i>0 ‖pi‖)

such that ‖bn − z‖ ≤ f ′(P\{pn}, r) and ‖b′n − z‖ ≤ f ′(P\{p0}, r). Applying Lemma 5 on
these balls, we obtain the desired ball with ‖bn − z‖ ≤ f ′(P, r). J

The next lemma states that in a configuration avoiding periods p1, . . . , pn, we can
organise the avoidances in concentric balls around a common center, so that the distance of
the avoidance of any given period from the center does not depend on n but only on the
period itself.

ICALP 2018



128:6 Aperiodic points in Z2-subshifts

I Lemma 7. Let Pn = {p0, . . . , pn} be a set of periods. Denote Pi = {p0, . . . , pi} for i ≤ n.
Define recursively a function g such that

g({p}) = ‖p‖ and g(Pn) = g(Pn−1) + f ′

Pn−1
′,
∑
Pn′

‖p‖

+
∑
Pn′

‖p‖

Take x a point that avoids Pn′ in a ball B(z,
∑
Pn′
‖p‖). There exist z′ ∈ Z2 such that:

‖z′ − z‖ ≤ g(Pn)
x avoids Pi in the ball B(z′, g(Pi)) for any i ≤ n.

Proof. We proceed by induction on n.
If n = 0, then since B(z, ‖p0‖) contains an avoidance of P0 = {p0}, taking z′ to be this

avoidance satisfies the requisite.
Assume n > 0. Since B(z,

∑
Pn′
‖p‖) contains avoidances of every period in Pn

′, it
contains avoidances of every period in Pn−1

′. Indeed, if some period q is in Pn−1
′ but not

in Pn′, then by construction a multiple of q, say Mq, is in Pn′. Now if (zq, zq +Mq) is an
avoidance of Mq, at least one of (zq +mq, zq + (m+ 1)q) for m < M is an avoidance of q
and is contained in the same ball.

Applying Lemma 6 on Pn−1
′, we find a ball B(z0,

∑
Pn−1′

‖p‖) that contains avoidances
for all periods in Pn−1

′ and such that ‖z0 − z‖ ≤ f ′(Pn−1
′,
∑
Pn′
‖p‖).

Now apply the induction hypothesis on this ball, obtaining z′ such that ‖z′ − z0‖ ≤
g(Pn−1) and for any i ≤ n− 1, the ball B(z′, g(Pi)) contains avoidances of every period in
Pi. This inductive process is depicted in Figure 2.

By the triangular inequality, ‖z′ − z‖ ≤ g(Pn−1) + f ′(Pn′,
∑
Pn−1′

‖p‖). Since g(Pn) ≥
‖z − z′‖ +

∑
Pn′
‖p‖, B(z′, g(Pn)) contains entirely the ball B(z,

∑
Pn′
‖p‖). Therefore

B(z′, g(Pn)) avoids Pn and ‖z′ − z‖ ≤ g(Pn), proving the lemma. J

I Theorem 1. Let X be a Z2-subshift. Assume that for every finite set of periods P, X
contains a configuration that avoids all periods of P.

Then X contains an aperiodic configuration that has an avoidance of every period p at
distance at most g′(‖p‖) = g(B(0, ‖p‖)′) from 0, where g is the function defined in Lemma 7.

I Remark. g′ is not polynomial because B(0, n)′ contains exponentially large vectors. Since
our bounds are likely very far from sharp, we leave the exact computation to the reader.

Proof. Take B(0, n) the set of periods of norm n or less and x1, . . . , xn, . . . a sequence of
configurations such that xn avoids B(0, n)′.

By applying Lemma 5 on B(0, n)′, we obtain for each xn a ball of radius
∑
B(0,n)′ ‖p‖ that

avoids B(0, n)′. Applying Lemma 7 on B(0, n), we get that xn avoids all periods in B(0, i)′
in some ball B(zn, g(B(0, i))′)) for all i ≤ n. Since X is compact, any limit point of the
sequence (σzn(xn))n∈N is in X, and it avoids all periods in B(0, i) in the ball B(0, g(B(0, i)′))
for all i ∈ N. It is in particular aperiodic. J

I Corollary 2. For any subshift X with no aperiodic point, there is a finite set of periods P
such that any configuration of X is periodic for some period p ∈ P.

Proof. This is a simple reciprocal to Theorem 1. J
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g(P5)
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Figure 2 The red ball contains avoidance for Pn
′. Each dashed line represents an avoidance. We

then consider the set of blue lines, Pn−1
′. We gather these avoidances in a close smaller ball with

Lemma 6. We repeat this process until there are only two avoidances in the ball. The red avoidances
are disposed in the way we wanted, around the center of the smallest blue ball.

3 Consequences

3.1 Existence of an aperiodic configuration is Π0
1

I Corollary 8. The following problem is Π0
1-computable:

Input A finite set of forbidden patterns F .
Output Does the Z2-SFT XF contain an aperiodic configuration?

Proof. Let (pi)i∈N be an enumeration of all possible periods and Pn = {p0, . . . , pn}. The-
orem 1 gives us a bound on the size of the patterns in which to look for avoidances of each
period. For each n ∈ N in order, the algorithm enumerates all patterns on a ball of radius
g(Pn) that do not contain a forbidden pattern, and check if one of them contains avoidances
for every period of Pk (k ≤ n) in the ball of radius g(Pk) in its center. If such a pattern does
not exist for some n, it means that either the SFT is empty or that all its points are periodic
for some period p with ‖p‖ ≤ n.

Assume the algorithm runs infinitely. For every k, there exists some n ≥ k such that if a
pattern on the ball of radius g(Pn) does not contain a forbidden pattern, then the subpattern
on the ball of radius g(Pk) is in the language of X. Therefore, for each Pk we find a pattern
in Ł(X) that avoids all periods of Pk, and we conclude by Theorem 1. J

3.2 Structure of subshifts without aperiodic points
In this subsection, we consider notions from dynamical system theory. A dynamical system
is given by a pair (C,Φ) where C is a compact set and Φ : C → C is a continuous function.

I Definition 9 (Topological conjugacy). Let (C1,Φ1) and (C2,Φ2) be dynamical systems.

ICALP 2018
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(C1,Φ1) and (C2,Φ2) are topologically conjugate if there exists a continuous bijection
π : C1 → C2 such that π ◦ Φ1 = Φ2 ◦ π.

(C1,Φ1) and (C2,Φ2) are almost topologically conjugate if there exists (C3,Φ3) and
continuous surjections πi : C3 → Ci that are bijective almost everywhere3 such that πi ◦Φ3 =
Φi ◦ πi for i = 1, 2.

See [13] or [11] for more information on topological conjugacy and almost conjugacy in
the context of symbolic dynamics. We need slightly more general definitions since we consider
subshifts of different dimensions.

Notice that we can have (C2,Φ2) = (C3,Φ3) (and π2 = id) in the last definition; this is
the case in the next proof.

I Theorem 10. Let X be a two-dimensional subshift with no aperiodic point. There exists a
vector v and a one-dimensional subshift Y such that (X,σv) is almost topologically conjugate
to (Y, σ).

If X is of finite type, then Y can be chosen of finite type as well.

Proof. Let X be a two-dimensional subshift of finite type with no aperiodic point. By
Corollary 2, there is a finite set of periods P such that any configuration of X is periodic of
some period p ∈ P. We assume that P does not contain two colinear periods, by taking their
least common integer multiple if necessary.

For the clarity of the argument, we assume in the following that P does not contain any
period colinear to (0, 1). Since P is finite, the proof can be adapted for a different vector.

Take p = (p0, p1) ∈ P, assuming p0 > 0, and denote Xp = {x ∈ X : x admits p
as a period.}. Xp is a closed set and it is a classical argument (see for instance [9, §2.1.2] or
[2, Lemma 5.2]) that (Xp, σ(0,1)) is topologically conjugate to a one-dimensional SFT, which
we repeat here for completeness. Define:

πp =
{

ΣZ2 → (Σp0−1)Z
x 7→ ((xi,j)0≤i<p0)j∈Z

Denote Yp = πp(Xp). It is not hard to see that πp is a one-to-one continuous function
between Xp and Yp and that Yp is a subshift of finite type if Xp is, since it can be defined by
a finite recoding of the forbidden patterns of Xp. Furthermore, πp ◦ σ(0,1) = σ ◦ πp, so it is a
topological conjugacy between (Xp, σ(0,1)) and (Yp, σ).

For any p1 6= p2 ∈ P, Xp1∩Xp2 is a set of 2-periodic configurations that admit non-colinear
periods p1 and p2; there are a finite number of such configurations, so |Xp1 ∩Xp2 | < +∞. In
other words, X =

⋃
p∈P Xp and the union is disjoint except for a finite set of configurations.

Denote Y = tp∈PYp (disjoint union). Y is a subshift on the alphabet tp∈PΣp, where Σp
is the alphabet of Yp. Furthermore, Y is of finite type if every Yp is of finite type.

Define ϕ : Y → X by ϕ|Yp = π−1
p . We can check that ϕ is surjective and almost

everywhere bijective, and that ϕ ◦ σ1 = σ(0,1) ◦ ϕ. We have proved that (Y, σ1) is almost
topologically conjugate to (X,σ(0,1)). J

3.3 Various properties of subshifts with no aperiodic points
Theorem 10 implies that the property of having no aperiodic point gives a very strong
structure to a subshift. This is particularly the case for subshifts of finite type, where many

3 Except for a finite set of points.
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problems that are indecidable in dimension 2 are completely solved in dimension 1, and these
solutions carry through almost topological conjugacy.

In this section, we make use of notations that were defined in the proof of Theorem 10:
Xp, Yp, πp and ϕ.

3.3.1 Decision problems
Decision problems have been a staple of the theory of multidimensional subshifts of finite
type: the seminal paper of Wang proved that the emptiness problem (given a list of forbidden
patterns F , is XF = ∅?) is decidable for two-dimensional non-aperiodic subshifts of finite
type, but Berger later proved that the problem was undecidable without this assumption [3].
We consider other classical decision problems: the extension problem, which is undecidable for
multidimensional subshifts of finite type (as a consequence of the above), and the injectivity
and surjectivity problems, which are undecidable even on the two-dimensional full shift [10].

A Zd-cellular automaton is a continuous function F : ΣZd → ΣZd that commutes with
every shift function. It can be defined equivalently by a local rule f : ΣΓ → Σ for a finite
shape Γ by F (x)v = f(σv(x)Γ) for all v ∈ Zd.

I Corollary 11. The following problems are decidable for two-dimensional subshifts of finite
type with no aperiodic point:
Extension problem given a list of forbidden patterns F and a pattern w, do we have w ∈
L (XF )?

Injectivity / surjectivity problem given a list of forbidden patterns F and a cellular auto-
maton Φ : ΣZ2 → ΣZ2 , is Φ|XF injective? surjective on XF?

Links between periodic points and the above problems have already been considered in
[12, 7].

Proof sketches.
Extension problem. Assume w has shape [−n, n]2. By Theorem 10 we have X = ϕ(Y )

where ϕ is continuous on a compact space, hence uniformly continuous. In other words,
for every n, there exists r such that the value of ϕ(y)[−n,n]2 only depends on y[−r,r]. Since
the extension problem is decidable on one-dimensional subshifts of finite type, enumerate
all words v ∈ L(Y ) and check whether w = ϕ(v) for some v.

Injectivity problem. By Corollary 2, there is a finite set of periods P such that XF =⋃
p∈P Xp.

A cellular automaton is injective if and only if it is reversible. Since the image of a
configuration of period p by a cellular automaton also has period p, we have Φ|XF (Xp) ⊂
Xp and (in the injective case) Φ|−1

XF
(Xp) ⊂ Xp. It follows that Φ|XF is injective if, and

only if, Φ|Xp is injective for every period p ∈ P.
Let πp : Xp → Yp be the continuous bijection defined in the proof of Theorem 10.
πp ◦ Φ|Xp ◦ π−1

p is a CA on Yp and it shares injectivity with Φ|XF . Injectivity of CA is
decidable for one-dimensional subshifts of finite type [7].

Surjectivity problem. Surjectivity is more delicate as a point in Xp ∩Xq can be the image
of a point from Xp or Xq. However, Φ|XF is surjective if and only if:
1. ∀p ∈ P, ∀x ∈ Xp\

⋃
p′ 6=pXp′ , x ∈ Φ|XF (Xp);

2. ∀p 6= p′ ∈ P, ∀x ∈ Xp ∩Xp′ , ∃p′′ ∈ P, x ∈ Φ|XF (Xp′′),
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Denote X∩ the finite set of configurations in case 2 (notice that we do not necessarily
have p′′ = p or p′′ = p′ if x admits other periods as well).
As in the previous case, we translate these properties on Yp and Φp = πp ◦ Φ|Xp ◦ π−1

p to
work on Z-SFT. Following [7], we can describe Φp(Yp) by a finite automaton.
For case 1, add to the finite automaton describing Φp(Yp) an independent cycle for each
element of X∩ and determine whether the resulting automaton describe the same SFT
as the automaton describing Yp. This algorithm is explained in [13], Section 3.4.
For case 2, since x ∈ X∩ is 2-periodic, πp(x) is periodic, and it is easy to check by hand
whether some Φp(Yp) accepts x. Do this for all x ∈ X∩. J

I Remark. If we did not know that X admits a finite set of periods, the first proof would
still show that the extension problem is in Σ0

1 (RE). Since it is easy to show that it is in Π0
1

(co-RE), our main result is technically unnecessary here.

3.3.2 Topological entropy
Topological entropy is a widely-used parameter in information theory (channel capacity) and
dynamical systems theory (conjugacy invariant). Entropy dimension is a more refined notion
for systems of entropy zero, introduced in [5] and mainly used for multidimensional subshifts
[14].

I Corollary 12. Any two-dimensional subshift X with no aperiodic point has zero topological
entropy. Its entropy dimension is at most one.

Proof sketch. By Corollary 2, there is a finite set of periods P such that L (X) =
⋃
p∈P L (Xp).

Consider a pattern w of shape [0, n − 1]2 in L (Xp), assuming for clarity that p = (p0, p1)
with p0 ≥ 0 and p1 ≥ 0. Since w cannot contain an avoidance for p, it is entirely determined
by its p0 bottommost rows and p1 leftmost columns. Therefore there are at most (p0 + p1)n
such patterns. A similar argument applies when p0 < 0 or p1 < 0.

It follows that there are at most
∑
p(|p0|+ |p1|)n patterns of shape [0, n− 1]2 in L (X),

proving the statement. J

3.3.3 Density of periodic points
Density of periodic points is a typical question in dynamical systems, for example when
studying chaos in the sense of Devaney. See [7] for more details, including a proof that
two-dimensional subshifts of finite type do not have dense 2-periodic points in general, even
under an additional irreducibility hypothesis.

X is irreducible (or transitive) if for any two patterns γ1, γ2 ∈ L (X) of shapes Γ1 and
Γ2 respectively, there exists x ∈ X and two coordinates v1, v2 such that σv1(x)Γ1 = γ1 and
σv2(x)Γ2 = γ2.

I Corollary 13. Any irreducible two-dimensional subshift of finite type X with no aperiodic
point has dense 2-periodic points.

Proof sketch. By Corollary 2, consider P a finite and minimal set of periods such that any
configuration of X is periodic for some period p ∈ P. If P is not a singleton, take p1 6= p2 ∈ P.
There exists two finite patterns γ1 and γ2 that contain an avoidance of p1 and p2, respectively
(otherwise, P would not be minimal). By irreducibility, there exists x ∈ X where γ1 and γ2
both appear, and therefore x avoids every p ∈ P, a contradiction. Therefore P is a singleton
{p} and X = Xp is conjugated to Yp. One-dimensional irreducible subshifts of finite type,
such as Yp, have dense periodic points ([7], Proposition 9.1). The image by π−1

p of a periodic
point in Yp is a 2-periodic point in X, from which the statement follows. J
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3.4 The full caracterization of slopes of Z3-SFTs
Intuitively, slopes of a subshift are the directions that some configuration admits as a unique
direction of periodicity. More formally:

I Definition 14. Let X be a Zd-subshift. θ ∈ (Q ∪∞)d−1 is a slope of periodicity of X if
there exists a configuration x ∈ X and a vector v ∈ Zd such that:

vZ = {v′ | σv′(x) = x}
and θi = v1/vi+1, for all i ∈ {0, . . . , d− 1}.

The set of slopes of periodicity of a subshift is a conjugacy invariant. A consequence of
Corollary 8 is that the sets of slopes of periodicity of Z3-SFTs is a Σ0

2-computable set, and
together with [16] this implies the following caracterization:

I Theorem 15. Σ0
2-computable subsets of S ⊆ (Q ∪ {∞})2 are exactly the sets realizable as

sets of slopes of Z3-subshifts of finite type.

Proof. We know from [16] that one can realize any such Σ0
2 set S as a set of slopes of a

Z3-subshift. Let us now show the remaining direction.
Given a slope θ and a set of forbidden patterns F as an input, we want to check whether

there exists a configuration in XF whose vectors of periodicity all have direction θ.
Using the notations of the proof of Theorem 10, for any p ∈ Z2, the setXp of configurations

of period p (for some k > 0) can be seen as a Z2-SFT Y computable from F and p.
There is a smallest vector pθ such that all vectors of direction θ are integer multiples of

it. Remark that θ is a slope of periodicity of XF is and only if Xkpθ contains an aperiodic
configuration for some k > 0. By Corollary 8, checking whether Xkpθ contains an aperiodic
configuration for a given k is Π0

1-computable. Therefore checking whether there is a k > 0
for which this holds is Σ0

2-computable. J

4 Counterexample for dimensions d > 2

We build a counterexample to Theorem 1 in higher dimension. Take Σ = {0, 1} and define
X as follows:

All symbols 1 must form lines of direction vector (1, 0, 0) (horizontal) or (0, 0, 1) (vertical);
There is at most one vertical line;
All horizontal lines are repeated periodically with period (0, 0, n), where n is the distance
of the vertical line to any horizontal line.

In particular, if there is no vertical line, then there is at most one horizontal line. To
sum up, a subshift configuration can be :
1. all zeroes,
2. one horizontal line,
3. one vertical line, or
4. the situation depicted in Figure 3.

The configuration described in Figure 3 admits (0, 0, n) as period, and no shorter period.
In particular, for every finite set of periods P, X contains a configuration that avoids P (by
taking n large enough). However, Σ admits no aperiodic point4. This example can easily be

4 Notice that there cannot be a configuration with a single horizontal line and a single vertical line, which
would be aperiodic.
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Figure 3 A typical configuration of X: a line of ones along z at distance n of an (xy) plane of
lines along x. The only other types of configurations of X are the configurations containing either a
single vertical line, a single horizontal line, or no line at all.

generalised to any d > 3 by considering a Zd-subshift X ′ that contains a copy of X in at
most one coordinate, and 0 everywhere else: that is,

x ∈ X ′ ⇔ ∀j ∈ Zd−3, (xi,j)i∈Z3 ∈ X and (∀j1 6= j2, (xi,j1)i∈Z3 = 0 or (xi,j2)i∈Z3 = 0).

This proves that Theorem 1 does not hold in any dimension d > 2.

5 Open problems

We have made clear that our main result does not hold for subshifts of dimension d ≥ 3. We
do not know, however, whether Theorem 10 or Corollary 12 holds in higher dimension, since
the counterexample introduced in Section 4 does not contradict these results.

This counterexample is a subshift containing points with arbitrarily large periods but
no aperiodic point. We do not know whether such a counterexample with infinitely many
directions of periodicity exist. Moreover, the structure of d-dimensional subshifts of finite
type for d ≥ 3 remains open; the existence of this counterexample suggests that a making
use of the finite type hypothesis is necessary in higher dimension.
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Abstract
Computability and semicomputability of compact subsets of the Euclidean spaces are important
notions, that have been investigated for many classes of sets including fractals (Julia sets, Man-
delbrot set) and objects with geometrical or topological constraints (embedding of a sphere). In
this paper we investigate one of the simplest classes, namely the filled triangles in the plane. We
study the properties of the parameters of semicomputable triangles, such as the coordinates of
their vertices. This problem is surprisingly rich. We introduce and develop a notion of semi-
computability of points of the plane which is a generalization in dimension 2 of the left-c.e. and
right-c.e. numbers. We relate this notion to Solovay reducibility. We show that semicomputable
triangles admit no finite parametrization, for some notion of parametrization.
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1 Introduction

The notions of computable and computably enumerable sets of discrete objects such as N
have been extended to sets of continuous objects such as real numbers. Arguably the most
successful notions are defined for closed subsets of Rn, especially R2 where they have a
graphical interpretation. A computable subset of R2 corresponds to the intuitive notion
of a set that can be drawn on a screen with arbitrary resolution by a single program.
The computability of famous sets have been investigated in many articles. Whether the
Mandelbrot set is computable is an open problem [6], related to a conjecture in complex
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dynamics. It has been shown that filled Julia sets are computable, while their boundaries are
not always computable [2]. The computability of the Lorenz attractor has been addressed in
[5] and is still an open problem.

While the computability of such sets is usually a difficult question, the mathematical
definitions of these sets immediately enable one to semicompute them, in the same way as
one can only semicompute the halting problem: if a pixel does not intersect the set then this
can be recognized in finite time, but if it does not then one may never know. For instance,
the set of fixed-points of a computable function is semicomputable: if x 6= f(x) then it can
be eventually discovered by computing f(x) with sufficient precision, but if x = f(x) then
we will never know.

Several studies have shown that topological or geometrical constraints on a semicomputable
set make it computable [9, 8, 3].

In this paper, we study one of the simplest family of geometrical objects, namely filled
triangles in R2. Part of the study extends to other classes of compact convex subsets of R2.
While a filled triangle is computable if and only if the parameters defining it (coordinates,
lengths, angles, etc.) are computable, the case of semicomputable triangles is less clear and
leads us to several investigations.

We give a first characterization of semicomputable triangles. We introduce the notion of a
semicomputable point, which is essentially a point that can be computably approximated from
a limited set of directions. We show that determining whether a triangle is semicomputable
reduces to identifying the semicomputability ranges of its vertices. We then study the
properties of the semicomputability range and develop tools to help determining it, notably
the quantitative version of Solovay reducibility which was independently introduced and
studied in [1, 10].

We study the (non-)computability of several parameters associated to triangles by invest-
igating the properties of generic semicomputable triangles, which are in a sense the most
typical ones and are far from being computable.

We end this paper with a slightly different viewpoint, by showing that the problem is
inherently complex in that the semicomputability of a triangle cannot be reduced to the
semicomputability of its parameters, for any finite parametrization. This result is proved for
a particular notion of parametrization, but other notions are possible and should be studied
in the future.

Several proofs are not included due to space limitations. A full version of the article
including all the proofs is available at https://hal.inria.fr/hal-01770562.

1.1 Background
A real number x is computable if there is a computable sequence of rationals qi such
that |x− qi| < 2−i. A real number x is left-c.e. if there is a computable increasing sequence
of rationals converging to x, and right-c.e. if there is a computable decreasing sequence
converging to x. A real number is difference-c.e. or d-c.e. if it is a difference of two
left-c.e. numbers.

A rational box B ⊆ Rn is a product of n open intervals with rational endpoints.
Let (Bi)i∈N be a canonical enumeration of the rational boxes. A set U ⊆ Rd is an ef-
fective open set if it is a the union of a computable sequence of rational boxes. A
semicomputable set is the complement of an effective open set. An effectively compact
set is a compact set K ⊆ Rd such that the set {〈i1, . . . , ik〉 : K ⊆ Bi1 ∪ . . . ∪ Bik} is c.e.
(〈.〉 : N∗ → N is a computable bijection). Equivalently, K is effectively compact if and only
if K is bounded and semicomputable.

https://hal.inria.fr/hal-01770562
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A function f : A ⊆ Rd → Re is computable if the sets f−1(Ri) are uniformly effective
open sets on A, i.e. if there exist uniformly effective open sets Ui ⊆ Rd such that f−1(Ri) =
Ui ∩ A. A function f : A ⊆ Rd → R is left-c.e. if the sets f−1(qi,+∞) are uniformly
effective open sets on A. Every bounded left-c.e. function f : A ⊆ Rd → R has a left-
c.e. extension f̂ : Rd → R.

Let f : Rd × Re → R be left-c.e.
If K ⊆ Re is a non-empty effectively compact set then the function fmin : Rd → R defined
by fmin(x) = miny∈K f(x, y) is left-c.e.
If U ⊆ Re is an effective open set then fsup : Rd → R defined by fsup(x) = supy∈U f(x, y)
is left-c.e.

2 Semicomputability of convex sets

In dimension 1, a compact convex set is simply a closed interval. Such a set [a, b] is
semicomputable exactly when a is left-c.e. and b is right-c.e., i.e. when the extremal points
of the set have computable approximations oriented inwards the set. It can be generalized to
certain compact convex sets of the plane. While in R there are only two possible directions,
in R2 there are infinitely many ones, represented by angles.

Let A = (x, y) be a point of the plane. For θ ∈ R, the θ-coordinate of A is Aθ = x cos θ +
y sin θ = (OA, uθ), i.e., the inner product of the vector OA = (x, y) with uθ = (cos θ, sin θ)
( O = (0, 0) is the origin). Observe that the computability properties of Aθ do not depend
on the choice of the origin, as long as it is computable.

I Definition 2.1. If θ is computable then we say that A is θ-c.e. if Aθ is left-c.e. For a
closed interval I = [a, b], we say that A is I-c.e. if the function mapping θ ∈ I to Aθ is
left-c.e.

For a non-empty compact convex set S and θ ∈ R, define Sθ = minX∈S Xθ, and for an
extremal point V of S let JSV = {θ ∈ R : Sθ = Vθ}. JSV is a closed interval modulo 2π.

I Proposition 2.2. A non-empty compact convex set S is semicomputable iff the function
mapping θ to Sθ is left-c.e. iff for θ ∈ Q, Sθ is uniformly left-c.e.

Proof. Assume that S is semicomputable, or equivalently effectively compact. The func-
tion (A, θ) 7→ Aθ is computable so the function θ 7→ minA∈S Aθ is left-c.e.

Conversely, assume that the function θ 7→ Sθ is left-c.e. For each θ let Hθ be the closed
half-plane defined by Hθ = {P ∈ R2 : Pθ ≥ Sθ}. Hθ is semicomputable relative to and
uniformly in θ, so S =

⋂
θ∈[0,2π] Hθ is semicomputable as [0, 2π] is effectively compact.

The function θ 7→ Sθ is L-Lipschitz for some L, so if for all q ∈ Q, the number Sq is
uniformly left-c.e. then the function is left-c.e. as Sθ = sup{Sq − L|q − θ| : q ∈ Q}. J

For a triangle, and more generally a convex polygon, the number of extremal points is
finite and Proposition 2.2 can be improved as follows.

I Theorem 2.3. A filled triangle T = ABC is semicomputable iff each vertex V ∈ {A,B,C}
is JTV -c.e.

A
B

C

JTAJTB
JTC
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In order to prove the theorem, we need the following Lemma.

I Lemma 2.4. Let f : [a, b]→ R be left-c.e. and such that there exists ε > 0 such that f is
non-increasing on [a, a+ε) and non-decreasing on (b−ε, b]. There exists a left-c.e. extension f̂ :
R → R of f that is non-increasing on (a − ε, a + ε) and non-decreasing on (b − ε, b + ε)
and f̂ = +∞ outside (a− ε, b+ ε).

Proof. Let f0 be a left-c.e. extension of f . Let q, q′, r, r′ ∈ Q satisfy q < a < q′ < r′ <

b < r, q′ − q < ε and r − r′ < ε. Define f̂(x) = f(x) if x ∈ [q′, r′], f̂(x) = sup[x,q′] f0

if x ∈ [q, q′], f̂(x) = sup[r′,x] f0 if x ∈ [r′, r], f̂(x) = +∞ if x < q or x > r. J

Proof of Theorem 2.3. If T is semicomputable then the function θ 7→ Tθ is left-c.e. It
coincides with the function θ 7→ Vθ on JTV , so V is JTV -c.e.

Conversely assume that each vertex V ∈ {A,B,C} is JTV -c.e. We show that the function
mapping θ to Tθ is left-c.e. We know that it is left-c.e. on each JTV , and

⋃
V ∈{A,B,C} J

T
V = R,

but we must show how to merge the three algorithms. Let us assume that the origin of
the Euclidean plane lies inside the triangle. If it is not the case, then one can translate the
triangle by a rational vector, which preserves all the computability properties of T and its
vertices.

If the origin is inside the triangle then for each vertex V ∈ {A,B,C}, if JTV = [a, b]
then there exists ε > 0 such that the function Vθ is non-increasing on (a − ε, a + ε) and
non-decreasing on (b− ε, b+ ε), so by Lemma 2.4 there is a left-c.e. function V̂θ that coincides
with Vθ on JTV , is non-increasing on (a−ε, a+ε), non-decreasing on (b−ε, b+ε) and V̂θ = +∞
for θ outside (a− ε, b+ ε). As a result, Tθ = min{Aθ, Bθ, Cθ} = min{Âθ, B̂θ, Ĉθ}. J

Aθ

Bθ

Cθ

Tθ

So the semicomputability of the triangle can be decomposed in terms of the properties of
the vertices treated separately, which leads us to investigate the properties of a single point.

3 Semicomputable point

The following is a generalization of left-c.e. and right-c.e. reals to points of the plane.

I Definition 3.1. A point A is semicomputable if there exist θ, θ′ ∈ Q such that θ 6= θ′

mod π and Aθ and Aθ′ are left-c.e.

Note that for a point, being semicomputable does not mean that the set {A} is semicomput-
able. The latter is equivalent to saying that A is computable.

The vertices of a (non-degenerate) semicomputable triangle are necessarily semicomput-
able. We need tools to understand the directions in which the point is left-c.e.

I Proposition 3.2. Let θ1, θ2 be computable such that θ1 < θ2 < θ1 + π. A point A
is [θ1, θ2]-c.e. iff Aθ1 and Aθ2 are left-c.e.

Proof. For θ ∈ [θ1, θ2], Aθ = sin(θ2−θ)
sin(θ2−θ1)Aθ1 + sin(θ−θ1)

sin(θ2−θ1)Aθ2 = α(θ)Aθ1 + β(θ)Aθ2 where α(θ)
and β(θ) are nonnegative computable functions. J
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I Proposition 3.3. Let I = [α, β] with α < β. A is I-c.e. iff Aθ is left-c.e. uniformly
in θ ∈ (α, β) ∩Q.

Proof. The forward direction is straightforward. Let us prove the other direction. Assume
that Aθ is left-c.e. uniformly in θ ∈ (α, β)∩Q. The function θ 7→ Aθ is L-Lipschitz for some L,
so it is computable on the closure of (α, β) ∩ Q, which is [α, β]. Indeed, given θ ∈ [α, β],
take a sequence of rationals θi ∈ (α, β) such that |θ − θi| < 2−i, then Aθ = supiAθi

− L2−i.
The sequence θi can be computed as follows: fix some rational q ∈ (α, β) and some k such
that β−q > 2−k and q−α > 2−k, start from some rational sequence θ′i such that |θ−θ′i| < 2−i
and define, for i ≥ k, θi = θ′i+1 + 2−i−1 if θ′i+1 ≤ q, θi = θ′i+1−2−i−1 if θ′i+1 > q, and θi = θk
for i < k. J

I Definition 3.4. Let A be a semicomputable point. Its semicomputability range IA is
defined as the union of the sets [α, β] mod 2π, for all α < β such that A is [α, β]-c.e.

The range IA is a connected subset of R/2πZ, i.e. is the set of equivalence classes of all
the reals in an interval of R. By abuse of notation we will often act as if IA was a subset
of R. For instance if θ ∈ R then when we write θ ∈ IA we mean that the equivalence class
of θ belongs to IA. By IA = [α, β] we mean that Ia = [α, β] mod 2π. By inf IA we mean
the equivalence class of inf I where I ⊆ R is any interval such that IA = I mod 2π.

The length of IA is at most π, unless A is computable.

I Proposition 3.5. A is computable ⇐⇒ IA = [0, 2π] ⇐⇒ |IA| > π.

Proof. We prove that if |IA| > π then A is computable, the other implications are obvious.
Take θ, θ′ ∈ Q such that θ, θ + π, θ′, θ′ + π are pairwise distinct modulo 2π and all belong
to IA. One has Aθ = −Aθ+π and Aθ′ = −Aθ′+π so all these numbers are computable, and
the coordinates of A are linear combinations with computable coefficients of these numbers,
so they are computable. J

For a computable angle θ, Aθ is left-c.e. ⇐⇒ θ ∈ IA. The uniformity in θ depends on
whether the interval IA is closed or open at each endpoint.

If IA is closed at an endpoint, Aθ is uniformly left-c.e. for θ around that endpoint,
If IA is open at an endpoint, Aθ is non-uniformly left-c.e. for θ around that endpoint,
In particular, IA is closed iff A is IA-c.e. iff for θ ∈ IA ∩Q, Aθ is left-c.e. uniformly in θ.

Using the last property and Definition 3.4, Theorem 2.3 can be reformulated as follows:

I Corollary 3.6. A filled triangle T = ABC is semicomputable iff each vertex V ∈ {A,B,C}
is semicomputable and JTV ⊆ IV .

In particular, if the filled triangle ABC is semicomputable then |IA|+ |IB |+ |IC | ≥ 2π
and IA ∪ IB ∪ IC = [0, 2π]. This condition is not sufficient, as the intervals IV must have the
right orientations.

3.1 Semicomputable points and converging sequences
The intervals I for which a point A is I-c.e. are related to the regions containing computable
sequences of points converging to A. However this is not an exact correspondence.

A two-dimensional cone with endpoint at A and delimited by the semi-lines starting
at A with angles α, β, α ≤ β < α+ π, is denoted by C(A,α, β) and can be formally defined
as {P ∈ R2 : (PA)α−π/2 ≥ 0 and (PA)β+π/2 ≥ 0}, where (PA)θ = Aθ − Pθ. Observe that
this definition depends on the equivalence classes of α and β modulo 2π, so strictly speaking
we do not need α ≤ β < α+ π but α ≤ β + 2kπ < α+ π for some k ∈ Z.
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A

Figure 1 The semicomputability range (in white) and the Solovay cone (in gray) of the point
A = (x, y). (i) x, y are left-c.e., (ii) only x is left-c.e., (iii) x, y are not left-c.e.

I Definition 3.7. If A is semicomputable then we define its Solovay cone as CA =
C(A, β + π/2, α− π/2) where α = inf IA and β = sup IA.

The name will be explained in Section 4.

I Proposition 3.8. CA is the intersection of all the cones containing computable sequences
converging to A.

However there is not necessarily a computable sequence converging to A contained in CA
(an example will be given in Theorem 5.4).

I Proposition 3.9. Let I = [α, β] with α < β ≤ α+ π and A be I-c.e.
If α left-c.e. and β right-c.e. then there exists a computable sequence Ai converging to A
in the cone C(A, β + π/2, α− π/2).
If α is ∅′-right-c.e. and β is ∅′-left-c.e. then there exists a computable sequence Ai
converging to A and converging to the cone C(A, β + π/2, α − π/2), i.e., eventually
contained in C(A, β + π/2− ε, α− π/2 + ε) for every ε > 0.

We now identify the numbers α, β which can be endpoints of IA for semicomputable A,
when IA is closed at these endpoints.

I Theorem 3.10. For a real number α, the following are equivalent:
α is ∅′-left-c.e.,
α = min IA for some semicomputable point A.

Symmetrically, β is ∅′-right-c.e. iff β = max IA for some semicomputable point A.

4 Solovay derivatives

We have seen that the semicomputability of a triangle can be reduced to the semicomputability
of its vertices and more precisely to their semicomputability ranges. Therefore we need
tools to determine the range of a semicomputable point. This can be done using Solovay
reducibility and its quantitative versions.

The coordinates of a semicomputable A = (x, y) are d-c.e. and might not be either
left-c.e. nor right-c.e. However, there is always a rotation with a rational angle mapping A to
a semicomputable point A′ = (x′, y′) whose range IA′ contains 0 i.e. such that x′ is left-c.e.
If |IA| > π/2 then one can even take IA′ containing 0 and π/2, i.e. one can take both x′

and y′ left-c.e. Hence in the study of semicomputable points one can restrict for simplicity
to points (x, y) where x is left-c.e.

We first recall Solovay’s notion of reduction between left-c.e. real numbers. We then
define its quantitative version and study it. It has been independently introduced and studied
in [1, 10], but the overlap is small.
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4.1 Solovay derivatives
More on Solovay reducibility can be found in [11, 4]. It was originally defined for left-c.e. reals
and has been extended to arbitrary reals in [15, 12].

Let bi ↗ b denote that the sequence bi is increasingly converging to b.

I Definition 4.1. Let b be left-c.e. We say that a is Solovay reducible to b if there exists
a constant q and computable sequences ai → a, bi ↗ b such that |a− ai| ≤ q(b− bi) for all i.

It is denoted by a ≤S b. Equivalently, a ≤S b if there exists q ∈ Q such that qb − a is
left-c.e. and −qb − a is right-c.e., which implies that a is d-c.e. We are interested in the
optimal constants q and r such that qb− a is left-c.e. and rb− a is right-c.e.

Let b be left-c.e. If q is rational and qb−a is left-c.e. then for every rational q′ > q, q′b−a
is left-c.e. as well. In other words, the set {q ∈ Q : qb − a is left-c.e.} is closed upwards.
Similarly, the set {q ∈ Q : qb− a is right-c.e.} is closed downwards. The following quantities
have also been defined in [1].

I Definition 4.2. Let b be left-c.e. We define the upper and lower Solovay derivatives
of a w.r.t. b as, respectively,

S(a, b) = inf{q ∈ Q : qb− a is left-c.e.},
S(a, b) = sup{q ∈ Q : qb− a is right-c.e.}.

The use of the word derivative will be justified in the sequel. By definition, a ≤S
b ⇐⇒ S(a, b) < +∞ and S(b, a) > −∞. When S(a, b) = S(a, b), we denote this value
by S(a, b). For instance it was proved in [1] and generalized in [10] that when b is Solovay
complete S(a, b) = S(a, b).

4.2 Basic properties
Here we investigate the possible values of S(a, b) and S(a, b) and their relationship. When a
and b are both computable, S(a, b) = +∞ and S(a, b) = −∞.

I Proposition 4.3. Let b be left-c.e. The following conditions are equivalent:
1. S(a, b) < S(a, b),
2. S(a, b) = −∞ and S(a, b) = +∞,
3. a, b are computable.

Proof. 3 ⇒ 2 ⇒ 1 is direct. We prove 1 ⇒ 3. If S(a, b) < S(a, b) then for rationals q < r

in between, qb − a is left-c.e. and rb − a is right-c.e. which implies, by performing linear
combinations, that a and b are computable. J

We consider this case as degenerate. In the other cases, i.e. when a, b are not both
computable, one has S(a, b) ≤ S(a, b). The possible values of (S(a, b), S(a, b)) are:

b computable b left-c.e. not computable
a computable (+∞,−∞) S(a, b) = S(a, b) = 0

a left-c.e. not computable (+∞, +∞) 0 ≤ S(a, b) ≤ S(a, b)
a right-c.e. not computable (−∞,−∞) S(a, b) ≤ S(a, b) ≤ 0
a d-c.e. not left/right-c.e. (−∞, +∞) S(a, b) ≤ 0 ≤ S(a, b)

The name “Solovay derivative” is partly justified by the next property which relates
the quantities S(a, b) and S(a, b) to the difference quotient when approximating a and b

computably. We will see later a strong connexion with the usual notion of derivative.
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I Proposition 4.4. Let a, b be d-c.e. and left-c.e. respectively, not both computable. If ai → a

and bi ↗ b are computable sequences then

lim inf a− ai
b− bi

≤ S(a, b) ≤ S(a, b) ≤ lim sup a− ai
b− bi

.

Proof. If lim sup a−ai

b−bi
< q then a − ai < q(b − bi) for sufficiently large i, so S(a, b) ≤ q.

Similarly, if lim inf a−ai

b−bi
> q then a− ai > q(b− bi) for sufficiently large i, so S(a, b) ≥ q. J

In particular, if there are computable sequences ai → a and bi ↗ b such that a−ai

b−bi
has a

limit s, then S(a, b) = S(a, b) = s.

I Question 1. Are there always computable sequences ai → a and bi ↗ b such that

lim inf a− ai
b− bi

= S(a, b) ≤ S(a, b) = lim sup a− ai
b− bi

?

4.3 Calculation of the Solovay derivatives
We give formulas to derive the values of S(a, b) and S(a, b) in several situations.

I Proposition 4.5 (Properties).
1. (Reflexivity) S(b, b) = S(b, b) = 1 if b is left-c.e. not computable.
2. When both a and b are left-c.e., one has S(a, b) = 1/S(b, a).
3. (Transitivity) For all d-c.e. real a and left-c.e. reals b, c such that a ≤S b ≤S c,

If S(a, b) ≥ 0 then S(a, c) ≤ S(a, b)S(b, c), otherwise S(a, c) ≤ S(a, b)S(b, c).
If S(a, b) ≥ 0 then S(a, c) ≥ S(a, b)S(b, c), otherwise S(a, c) ≥ S(a, b)S(b, c).

4. In some cases we can also derive equalities. For all d-c.e. real a and left-c.e. reals b, c
such that a ≤S b ≤S c and S(a, b) = S(a, b) =: S(a, b),

If S(a, b) ≥ 0 then S(a, c) = S(a, b)S(b, c) and S(a, c) = S(a, b)S(b, c).
If S(a, b) ≤ 0 then S(a, c) = S(a, b)S(b, c) and S(a, c) = S(a, b)S(b, c).

4.3.1 Differentiation
The name Solovay derivative is justified by the following result, also obtained in [10] when b
is Solovay complete.

I Proposition 4.6. Let b be a non-computable left-c.e. real. If f is computable and differen-
tiable at b then

S(f(b), b) = S(f(b), b) = f ′(b).

Proof. It is a direct application of Proposition 4.4. Let bi ↗ b be a computable sequence.
The sequence f(bi) is computable and lim(f(b)− f(bi))/(b− bi) = f ′(b). J

It also implies that if f, g are computable, differentiable and f ′(b) and g′(b) are positive then

S(f(a), g(b)) = f ′(a)
g′(b) S(a, b).

This is proved by applying two times Proposition 4.5, item 4.

I Example 4.7. For instance, if b is not computable then S(2b, b) = 2 and S(b2, b) = 2b
and S(log(a), log(b)) = bS(a, b)/a and S(log(a), log(b)) = aS(a, b)/a.

In particular, for a, b > 0, S(a, b) = a
b inf{q ∈ Q : b

q

a is left-c.e.}.
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Proposition 4.6 can be extended to bivariate differentiable functions.

I Theorem 4.8. Let f : R2 → R be totally differentiable and computable. Let y be left-c.e. and
assume that x, y are not both computable.

If ∂f∂x (x, y) > 0, then
{
S(f(x, y), y) = S(x, y)∂f∂x (x, y) + ∂f

∂y (x, y),
S(f(x, y), y) = S(x, y)∂f∂x (x, y) + ∂f

∂y (x, y).

If ∂f∂x (x, y) < 0, then
{
S(f(x, y), y) = S(x, y)∂f∂x (x, y) + ∂f

∂y (x, y),
S(f(x, y), y) = S(x, y)∂f∂x (x, y) + ∂f

∂y (x, y).
If ∂f∂x (x, y) = 0 and x ≤S y then S(f(x, y), y) = S(f(x, y), y) = ∂f

∂y (x, y).

In particular, if ∂f∂x (x, y) 6= 0 then f(x, y) ≤S y implies x ≤S y.
I Remark. In the remaining case where ∂f

∂x (x, y) = 0 and x �S y, the values of S(f(x, y), y)
and S(f(x, y), y) cannot be expressed in terms of S(x, y), S(x, y) and ∂f

∂y (x, y) only.

I Example 4.9.
One has S(a+ b, a) = 1 + S(b, a), S(a+ b, a) = 1 + S(b, a).
One has S(ab, a) = b+ aS(ab, a) and S(ab, a) = b+ aS(ab, a).

4.4 Back to semicomputable points
We now relate the semicomputability range of a point A = (x, y) to the quantities S(y, x)
and S(y, x), when x is left-c.e.

I Proposition 4.10. Let A = (x, y) be semicomputable but not computable with x left-c.e. and
let α = inf IA and β = sup IA. One has −π ≤ α ≤ 0 ≤ β ≤ π and

α = arctan(S(y, x))− π/2 S(y, x) = tan(α+ π/2)
β = arctan(S(y, x)) + π/2 S(y, x) = tan(β − π/2).

The functions tan and arctan are understood as functions between [−π/2, π/2] and [−∞,+∞].
Therefore the slopes of the Solovay cone CA are S(y, x) and S(y, x), which explains the

name of the cone.
We now give examples of semicomputable points and calculate their ranges. Let A = (x, y)

with x left-c.e.

If x, y are Solovay incomparable left-c.e. reals then S(y, x) = 0 and S(y, x) = +∞. The
point A = (x, y) is semicomputable with IA = [0, π/2].
Let x = Ω be some Solovay complete left-c.e. real.

If y is left-c.e. incomplete then S(y,Ω) = 0 and IA = (−π/2, π/2],
If y is right-c.e. incomplete then S(y,Ω) = 0 and IA = [−π/2, π/2),
If y is d-c.e., neither left-c.e. nor right-c.e. then S(y,Ω) = 0 and IA = (−π/2, π/2),
If y = Ω then S(y,Ω) = 1 and IA = [−π/4, π/4].

Let y = f(x) where f : R → R is such that f ′ is computable and monotonic. One
has S(y, x) = f ′(x) and IA = [arctan(f ′(x))− π/2, arctan(f ′(x)) + π/2].

It is proved in [10] that every ∅′-computable (or ∆0
2) number can be obtained as S(b,Ω)

for some d-c.e. b and Solovay complete Ω. The proof of Theorem 3.10 shows that every ∅′-
left-c.e. can be obtained this way, and symmetrically every ∅′-right-c.e. hence every ∅′-d-c.e.
It gives a partial answer to Question 2.7 in [10].

I Question 2. Can every ∆0
3 real be obtained as S(b,Ω) for some left-c.e./d-c.e. real b?
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5 Generic triangles

All the classical parameters (like the angles or the coordinates of the centroid) of a semicom-
putable triangle are d-c.e. numbers, because the function mapping a triangle to a parameter
is computable and Lipschitz. Some of them, like the sides lengths, the area or the perimeter,
are always right-c.e.

In this section we show that these upper bounds on the effectiveness of the parameters
are optimal. To do this we prove the existence of semicomputable triangles with prescribed
properties. However instead of building them explicitly we use the existence of semicomputable
triangles that are generic in some sense, and then investigate the properties of such triangles.
We first give the minimal material needed, taken from [7].

I Definition 5.1. Let X be an effective Polish space and A ⊆ X. A point x ∈ A is generic
inside A if for every effective open set U ⊆ X, either x ∈ U or there exists a neighborhood B
of x such that B ∩ U ∩A = ∅.

I Example 5.2.
Taking A = X, being generic inside X amounts to being 1-generic,
Every x is obviously generic inside {x},
In the space of real numbers with the Euclidean topology, a real number x ∈ (0, 1) is
right-generic if x is generic inside [x, 1],
The space of filled triangles is a subspace of the space of non-empty compact subsets of R2

with the Hausdorff metric and is an effective Polish space. A triangle T is inner-generic
if it is generic inside S(T ) := {T ′ ∈ T , T ′ ⊆ T}. In other words, for every effective open
set U ⊆ T , if T contains arbitrarily close (in the Hausdorff metric) triangles T ′ ∈ U ,
then T ∈ U .

The latter two examples are particular instances of the following general situation.
If τ ′ is a weaker topology on X then we define S(x) as the closure of x in the topology τ ′,

which is the intersection of the τ ′-open sets containing x. Equivalently, S(x) = {y ∈ X :
x ≤τ ′ y} where ≤τ ′ is the specialization pre-order defined by x ≤ y iff every τ ′-neighborhood
of x contains y.

I Theorem 5.3 (Theorem 4.1.1 in [7]). Let (X, τ) be an effective Polish space and τ ′ an
effectively weaker topology, such that emptiness of finite intersections of basic open sets in τ, τ ′
is decidable. There exists a point x that is computable in (X, τ ′) and generic inside S(x).

For instance, R with the Euclidean topology is effective Polish, the topology τ ′ generated by
the semi-lines (q,+∞) is effectively weaker, and its specialization pre-order is the natural
ordering ≤ on R. Theorem 5.3 implies the existence of right-generic left-c.e. reals.

In the effective Polish space T of filled triangles, we take the topology τ ′ generated
by the following open sets: given a finite union U of open metric balls in R2, the set of
triangles contained in U is a basic open set of the topology τ ′. The specialization ordering is
the reversed inclusion. Theorem 5.3 implies the existence of inner-generic semicomputable
triangles.

Now we have the tools to prove the main result of this section.

I Theorem 5.4. Let T = ABC be an inner-generic semicomputable triangle.
Each vertex A,B,C is generic inside T ,
For each vertex V ∈ {A,B,C}, IV = JTV ,
For each vertex V , there is no computable sequence converging to V in the cone CV ,
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The slopes of the sides of T are 1-generic d-c.e. reals,
The angles of T are 1-generic d-c.e. reals,
A is not computable relative to the pair (B,C) (idem for B and C),
The area of T is a left-generic right-c.e. real,
The centroid of T is a 1-generic point with d-c.e. coordinates.

This list could of course be extended ad nauseam.

6 Parametrizations

In the one-dimensional case, there is a simple parametrization of the semicomputable compact
convex subsets of R: they are exactly the closed intervals [a, b] where a is left-c.e. and b is
right-c.e. Apart from the fact that a ≤ b, the two parameters a and b are independent. In
this section we investigate the possibility of having a similar parametrization for classes of
semicomputable compact convex subsets of R2, for instance the filled triangles. We show
that for some definition of parametrization, no finite parametrization is possible.

A numbered set is a pair S = (S, ν) where S is a countable set and νS : dom(ν) ⊆ N→ S

is surjective. If S = (S, ν) is a numbered set then each T ⊆ S has a canonical numbering,
given by the restriction of ν to ν−1(T ). A morphism from S = (S, ν) to S ′ = (S′, ν′) is
a function φ : S → S′ such that there exists a computable function ϕ : dom(ν)→ dom(ν′)
such that ν′ ◦ ϕ = φ ◦ ν.

IDefinition 6.1. Let S = (S, νS) and P = (P, νP ) be numbered sets. A P-parametrization
of S is an isomorphism between S and a subset of P.

We are interested in the case where S is the class of semicomputable triangles and P = Rdlce
is the class of vectors of d left-c.e. numbers, both with their canonical numberings. Proposition
2.2 implies the existence of a RN

lce-parametrization of the semicomputable filled triangles,
i.e. that each such triangle T can be represented by a sequence of uniformly left-c.e. real
numbers Tθi

, where (θi)i∈N is a canonical enumeration of the rational numbers. We prove
that no finite parametrization exists.

I Theorem 6.2. For each d ∈ N, there is no Rdlce-parametrization of the semicomputable
filled triangles.

Proof. We first observe that an isomorphism between T and a subset of Rdlce would be order-
preserving in both directions, where T is endowed with the reverse inclusion ⊇ and Rdlce with
the component-wise natural ordering ≤. This is a consequence of the generalization of the
Myhill-Shepherdson theorem to effective continuous directed complete partial orders (dcpo’s)
[14]. It would imply that (T ,⊇) embeds in (Rd,≤), which we show is not possible. For this
we use the order-theoretic notion of dimension and show that (T ,⊇) is infinite-dimensional,
while (Rd,≤) is d-dimensional.

All the details about the dimension of partially ordered sets can be found in [13], we only
give the key notions. A partially ordered set (poset) (P,≤) has dimension k if there exist k
linear extensions of ≤ whose intersection is ≤, and k is minimal with this property. The
standard n-dimensional ordering is Sn = {a1, . . . , an, A1, . . . , An} with ai < Aj if i 6= j. If a
poset (P,≤P ) embeds into a poset (Q,≤Q) then the dimension of (P,≤P ) is no more than
the dimension of (Q,≤Q). The poset (Rd,≤) has dimension d and we show that (T ,⊇) is
not finite-dimensional by embedding the standard ordering Sd into (T ,⊇), for each d ∈ N.

For each i, ai ∈ Sd is mapped to a large triangle ti and Ai ∈ Sd is mapped to a small
triangle Ti such that ti ⊇ Tj ⇐⇒ i 6= j. This is achieved by starting from a regular polygon
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t1

T1

Figure 2 Embedding the standard 5-dimensional ordering in the poset of triangles. Note that T1

is not contained in t1.

with d vertices v1, . . . , vd, taking for each i a large triangle ti containing all the vertices
except vi, and a small triangle Ti containing vi. We simply show a picture for d = 5, but it
can be generalized to any d ∈ N. J

One could relax the notion of parametrization in different ways:
If one requires a morphism from a subset of Rdlce onto T then there is a R2

lce-parametrization,
essentially because all the elements of the anti-diagonal of Rdlce are pairwise incomparable.
If one requires a one-to-one morphism from T to Rdlce then there is a Rlce-parametrization
because T embeds in RN

lce and there is a one-to-one morphism from RN
lce to Rlce.

In both cases, the parametrizations are not satisfactory because they are not geometrically
meaningful. Other variations on the definition of parametrizations should be investigated.

The argument in the proof of Theorem 6.2 is actually very general and can be extended
to many classes of sets.

I Theorem 6.3. Let F be a class of compact semicomputable subsets of R2 that contains
a set with non-empty interior and is closed under translations, scaling and rotations with
rational parameters. There is no Rd-parametrization of F for any d ∈ N.

Proof. We embed the standard d-dimensional ordering in (F ,⊇).
Let S ∈ F be a set with non-empty interior. There exists a closed ball B(c, r) contained

in S and intersecting the boundary ∂S of S in exactly one point. Indeed, take c0 in the
interior of S and r0 = d(c0, ∂S). B(c0, r0) is contained in S and intersects ∂S in at least one
point p. Let c = (c0 + p)/2 and r = r0/2. One easily checks that B(c, r) intersects ∂S in
exactly one point.

Given d ∈ N, let (Si)1≤i≤d be d distinct copies of S, rotated around c. The disk B(c, r)
is contained in each Si and intersects its boundary in exactly one point pi. Therefore,
for i 6= j, pi belongs to the interior of Sj . For each i, let si be a small scaled copy of S
containing pi in its interior. As pi ∈ ∂Si, si is not contained in Si. One can take si sufficiently
small so that it is contained in each Sj , j 6= i. The family of sets Si and si is an embedding
of the standard d-dimensional ordering in F . J
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Abstract
We prove results on the decidability and complexity of computing the total variation distance
(equivalently, the L1-distance) of hidden Markov models (equivalently, labelled Markov chains).
This distance measures the difference between the distributions on words that two hidden Markov
models induce. The main results are: (1) it is undecidable whether the distance is greater than
a given threshold; (2) approximation is #P-hard and in PSPACE.
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1 Introduction

A (discrete-time, finite-state, finite-word) labelled Markov chain (LMC) (often called hidden
Markov model) has a finite set Q of states and for each state a probability distribution over
its outgoing transitions. Each outgoing transition is labelled with a letter from an alphabet Σ
and leads to a target state, or is labelled with an end-of-word symbol $. Here are two LMCs:

q1

1
2a

1
4b

1
4$

q2 q3

1
3a

1
3b

1
3a

1
2a

1
2$

The LMC starts in a given initial state (or in a random state according to a given initial
distribution), picks a random transition according to the state’s distribution over the outgoing
transitions, outputs the transition label, moves to the target state, and repeats until the end-
of-word label $ is emitted. This induces a probability distribution over finite words (excluding
the end-of-word label $). In the example above, if q1 and q2 are the initial states then the
LMCs induce distributions π1, π2 with π1(aa) = 1

2 ·
1
2 ·

1
4 and π2(aa) = 1

3 ·
1
3 ·

1
2 + 1

3 ·
1
2 ·

1
2 .

LMCs are widely employed in fields such as speech recognition (see [23] for a tutorial),
gesture recognition [4], signal processing [8], and climate modeling [1]. LMCs are heavily
used in computational biology [12], more specifically in DNA modeling [6] and biological

EA
T

C
S

© Stefan Kiefer;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 130; pp. 130:1–130:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.130
https://arxiv.org/abs/1804.06170
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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sequence analysis [11], including protein structure prediction [17] and gene finding [2]. In
computer-aided verification, LMCs are the most fundamental model for probabilistic systems;
model-checking tools such as Prism [18] or Storm [9] are based on analyzing LMCs efficiently.

A fundamental yet non-trivial question about LMCs is whether two LMCs generate the
same distribution on words. This problem itself has applications in verification [16] and can
be solved in polynomial time using algorithms that are based on linear algebra [24, 22, 7].
If two such distributions are not equal, one may ask how different they are. There exist
various distances between discrete distributions, see, e.g., [7, Section 3]. One of them is
the total variation distance (in the following just called distance), which can be defined by
d(π1, π2) = maxW⊆Σ∗ |π1(W )− π2(W )| in the case of LMCs. That is, d(π1, π2) is the largest
possible difference between probabilities that π1 and π2 assign to the same set of words.
This distance is, up to a factor 2, equal to the L1-norm of the difference between π1 and π2,
i.e., 2d(π1, π2) =

∑
w∈Σ∗ |π1(w) − π2(w)|. Clearly, π1 and π2 are equal if and only if their

distance is 0.
It is immediate from the definition of the distance that if L is a family of LMCs whose

pairwise distances are bounded by b ≥ 0 then for any event W ⊆ Σ∗ and any two LMCs
M1,M2 ∈ L we have |π1(W )− π2(W )| ≤ b. From a verification point of view, this means
that one needs to model check only one LMC in the family to obtain an approximation
within b for the probabilities that the LMCs satisfy a given propertyW . Therefore, computing
or approximating the distance can make model checking more efficient. It is shown in [3]
that the bisimilarity pseudometric defined in [10] is an upper bound on the total variation
distance and can be computed in polynomial time. The bisimilarity pseudometric has more
direct bearings on branching-time system properties, which, in addition to emitted labels,
take LMC states into account (not considered in this paper).

The problem of computing the distance was first studied in [20]: they show that computing
the distance is NP-hard. In [7] it was shown that even approximating the distance within an
ε > 0 given in binary is NP-hard. In this paper we improve these results. We show that it is
undecidable whether the distance is greater than a given threshold. Further we show that
approximating the distance is #P-hard and in PSPACE. The #P-hardness construction is
relatively simple, perhaps simpler than the construction underlying the NP-hardness result
in [7]. In contrast, our PSPACE algorithm requires a combination of special techniques:
rounding-error analysis in floating-point arithmetic and Ladner’s result [19] on counting in
polynomial space.

2 Preliminaries

Let Q be a finite set. We view elements of RQ as vectors, more specifically as row vectors.
We write 1 for the all-1 vector, i.e., the element of {1}Q. For a vector µ ∈ RQ, we denote
by µ> its transpose, a column vector. A vector µ ∈ [0, 1]Q is a distribution over Q if µ1> = 1.
For q ∈ Q we write δq for the (Dirac) distribution over Q with δq(q) = 1 and δq(r) = 0 for
r ∈ Q \ {q}. We view elements of RQ×Q as matrices. A matrix M ∈ [0, 1]Q×Q is called
stochastic if each row sums up to one, i.e., M1> = 1>.

I Definition 1. A labelled (discrete-time, finite-state, finite-word) Markov chain (LMC)
is a quadruple M = (Q,Σ,M, η) where Q is a finite set of states, Σ is a finite alphabet
of labels, the mapping M : Σ → [0, 1]Q×Q specifies the transitions, and η ∈ [0, 1]Q, with
η> +

∑
a∈ΣM(a)1> = 1>, specifies the end-of-word probability of each state.

Intuitively, if the LMC is in state q, then with probability M(a)(q, q′) it emits a and moves
to state q′, and with probability η(q) it stops emitting labels. For the complexity results
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in this paper, we assume that all numbers in η and in the matrices M(a) for a ∈ Σ are
rationals given as fractions of integers represented in binary. We extend M to the mapping
M : Σ∗ → [0, 1]Q×Q with M(a1 · · · ak) = M(a1) · · ·M(ak) for a1, . . . , ak ∈ Σ. Intuitively, if
the LMC is in state q then with probability M(w)(q, q′) it emits the word w ∈ Σ∗ and moves
(in |w| steps) to state q′. We require that each state of an LMC have a positive-probability
path to some state q with η(q) > 0.

Fix an LMCM = (Q,Σ,M, η) for the rest of this section. To an (initial) distribution π
over Q we associate the discrete probability space (Σ∗, 2Σ∗ ,Prπ) with Prπ(w) := Prπ({w}) :=
πM(w)η>. To avoid clutter and when confusion is unlikely, we may identify the distribu-
tion π ∈ [0, 1]Q with its induced probability measure Prπ; i.e., for a word or set of words W
we may write π(W ) instead of Prπ(W ).

Given two initial distributions π1, π2, the (total variation) distance between π1 and π2 is
defined as follows:1

d(π1, π2) := sup
W⊆Σ∗

|π1(W )− π2(W )| .

As π1(W )−π2(W ) = π2(Σ∗\W )−π1(Σ∗\W ), we have d(π1, π2) = supW⊆Σ∗(π1(W )−π2(W )).
The following proposition follows from basic principles, see, e.g., [21, Lemma 11.1]. In
particular, it says that the supremum is attained and the total variation distance is closely
related to the L1-distance:

I Proposition 2. LetM be an LMC. For any two initial distributions π1, π2 we have:

d(π1, π2) = max
W⊆Σ∗

(π1(W )− π2(W )) = 1
2
∑
w∈Σ∗

|π1(w)− π2(w)|

The maximum is attained by W = {w ∈ Σ∗ : π1(w) ≥ π2(w)}.

In view of this proposition, all complexity results on the (total variation) distance hold
equally for the L1-distance.

An LMCM is called acyclic if its transition graph is acyclic. Equivalently,M is acyclic
if for all q ∈ Q we have that Prδq

has finite support, i.e., {w ∈ Σ∗ : Prδq
(w) > 0} is finite.

3 The Threshold-Distance Problem

In [20, Section 6] (see also [7, Theorem 7]), a reduction is given from the clique decision problem
to show that computing the distance in LMCs is NP-hard. In that reduction the distance is
rational and its bit size polynomial in the input. It was shown in [5, Proposition 12] that the
distance d can be irrational. Define the non-strict (resp. strict) threshold-distance problem
as follows: Given an LMC, two initial distributions π1, π2, and a threshold τ ∈ [0, 1] ∩ Q,
decide whether d(π1, π2) ≥ τ (resp. d(π1, π2) > τ). In [5, Proposition 14] it was shown that
the non-strict threshold-distance problem is NP-hard with respect to Turing reductions.

In the following two subsections we consider the threshold-distance problem for general
and acyclic LMCs, respectively.

1 One could analogously define the total variation distance between two LMCs M1 = (Q1,Σ,M1, η1) and
M2 = (Q2,Σ,M2, η2) with initial distributions π1 and π2 over Q1 and Q2, respectively. Our definition
is without loss of generality, as one can take the LMC M = (Q,Σ,M, η) where Q is the disjoint union
of Q1 and Q2, and M,η are defined using M1,M2, η1, η2 in the straightforward manner.
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3.1 General LMCs

We show:

I Theorem 3. The strict threshold-distance problem is undecidable.

Proof. We reduce from the emptiness problem for probabilistic automata. A probabilistic
automaton is a tuple A = (Q,Σ,M, α, F ) where Q is a finite set of states, Σ is a finite
alphabet of labels, the mapping M : Σ→ [0, 1]Q×Q, where M(a) is a stochastic matrix for
each a ∈ Σ, specifies the transitions, α ∈ [0, 1]Q is an initial distribution, and F ⊆ Q is a
set of accepting states. Extend M to M : Σ∗ → [0, 1]Q×Q as in the case of LMCs. In the
case of a probabilistic automaton, M(w) is a stochastic matrix for each w ∈ Σ∗. For each
w ∈ Σ∗ define PrA(w) := αM(w)η> where η ∈ {0, 1}Q denotes the characteristic vector of F .
The probability PrA(w) can be interpreted as the probability that A accepts w, i.e., the
probability that after inputting w the automaton A is in an accepting state. The emptiness
problem asks, given a probabilistic automaton A, whether there is a word w ∈ Σ∗ such that
PrA(w) > 1

2 . This problem is known to be undecidable [22, p. 190, Theorem 6.17].
In the following we assume Σ = {a1, . . . , ak}. Given a probabilistic automaton A as

above, construct an LMCM = (Q∪{q1, q$},Σ∪{b, f+, f−},M, δq$) such that q1, q$ are fresh
states, and b, f+, f− are fresh labels. The transitions originating in the fresh states q1, q$ are
as follows:

q1 q$

1
2ka1
...

1
2kak

1
4b

1
4f+

1$

Here and in the subsequent pictures we use a convention that there be a state q$ with
η(q$) = 1 and that η(q) = 0 hold for all other states.

Define π1 := δq1 . Then for all w ∈ Σ∗ we have:

π1(wb) = π1(wf+) =
(

1
2k

)|w|
· 1

4 (1)

The transitions originating in the states in Q are defined so that all q ∈ Q emit each a ∈ Σ
with probability 1

2k (like q1). For all q ∈ F there is a transition to q$ labelled with 1
2 and f+;

for all q ∈ Q \ F there is a transition to q$ labelled with 1
2 and f−:

q$

1
2ka1
...

1
2kak

1
2f+

1$
q$

1
2ka1
...

1
2kak

1
2f−

1$
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Formally, for q, r ∈ Q and a ∈ Σ set M(a)(q, r) := 1
2kM(a)(q, r). For q ∈ F set

M(f+)(q, q$) := 1
2 , and for q ∈ Q \ F set M(f−)(q, q$) := 1

2 . Define π2 := α (in the
natural way, i.e., with π2(q1) = π2(q$) = 0). Then for all w ∈ Σ∗ we have:

π2(wf+) =
(

1
2k

)|w|
· PrA(w) · 1

2 and

π2(wf−) =
(

1
2k

)|w|
· (1− PrA(w)) · 1

2

(2)

Consider L := Σ∗{b, f+}. We have π1(L) = 1. One can compute π2(L) in polynomial time by
computing the probability of reaching a transition labelled by f+ (the label b is not reachable).
We claim that there is w ∈ Σ∗ with PrA(w) > 1

2 if and only if d(π1, π2) > π1(L)− π2(L). It
remains to prove this claim.

Suppose there is no w ∈ Σ∗ with PrA(w) > 1
2 . Then, by (1) and (2), for all w ∈ Σ∗ we

have π1(wf+) ≥ π2(wf+). Hence:

{w ∈ (Σ ∪ {b, f+, f−})∗ : π1(w) > 0, π1(w) ≥ π2(w)} = L

By Proposition 2 it follows d(π1, π2) = π1(L)− π2(L).
Conversely, suppose there is w ∈ Σ∗ with PrA(w) > 1

2 . Consider L
′ := L \ {wf+}. We

have:

d(π1, π2) ≥ π1(L′)− π2(L′) Proposition 2
= π1(L)− π1(wf+)− π2(L) + π2(wf+) definition of L′

= π1(L)− π2(L) +
(

1
2k

)|w|
·
(

1
2 PrA(w)− 1

4

)
by (1) and (2)

> π1(L)− π2(L) PrA(w) > 1
2 J

Cortes, Mohri, and Rastogi [7] conjectured “that the problem of computing the [. . . ] distance
[. . . ] is in fact undecidable”, see the discussion after the proof of [7, Theorem 7]. Theorem 3
proves one interpretation of that conjecture. But the distance can be approximated with
arbitrary precision, cf. Section 4, so the distance is “computable” in this sense.

In [5, Theorem 15] it was shown that there is a polynomial-time many-one reduction
from the square-root-sum problem to the non-strict threshold-distance problem for LMCs.
Decidability of the non-strict threshold-distance problem remains open.

3.2 Acyclic LMCs
It was shown in [20, Section 6] and [5, Proposition 14] that the non-strict threshold-distance
problem is NP-hard with respect to Turing reductions, even for acyclic LMCs. We improve
this result to PP-hardness:

I Proposition 4. The non-strict and strict threshold-distance problems are PP-hard, even
for acyclic LMCs and even with respect to many-one reductions.

The proof uses the connection between PP and #P. Consider the problem #NFA, which
is defined as follows: given a nondeterministic finite automaton (NFA) A over alphabet Σ,
and a number n ∈ N in unary, compute |L(A) ∩ Σn|, i.e., the number of accepted words of
length n. The problem #NFA is #P-complete [14]. The following lemma forms the core of
the proof of Proposition 4:

ICALP 2018
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I Lemma 5. Given an NFA A = (Q,Σ, δ, q(1), F ) and a number n ∈ N in unary, one can
compute in polynomial time an acyclic LMCM and initial distributions π1, π2 and a rational
number y such that

d(π1, π2) = y + |Σ
n \ L(A)|
|Σ|n|Q|n .

Proof. In the following we assume Q = {q(1), . . . , q(s)} and Σ = {a1, . . . , ak}. Construct the
acyclic LMCM = (Q′,Σ ∪ {b, f+, f−},M) such that

Q′ = {p0, p1, . . . , pn, q$} ∪ {q
(j)
i : 0 ≤ i ≤ n, 1 ≤ j ≤ s} ∪ {ri : 0 ≤ i ≤ n}

and b, f+, f− are fresh labels. The transitions and end-of-word probabilities originating in
the states p0, . . . , pn, q$ are as follows:

p0 p1 . . . pn q$

1
sn b

(1− 1
sn )f−

1$

1
ka1
...

1
kak

1
ka1
...

1
kak

1
ka1
...

1
kak

Define π1 := δp0 . Then for all w ∈ Σn we have:

π1(wb) = 1
kn
· 1
sn

(3)

π1(wf−) = 1
kn
·
(

1− 1
sn

)
(4)

The transitions originating in the states q(j)
i , ri are as follows. For each a ∈ Σ and each

i ∈ {0, . . . , n− 1} set:

M(a)
(
q

(j)
i , q

(j′)
i+1
)

:= 1
k
· 1
s

∀ j ∈ {1, . . . , s} ∀ q(j′) ∈ δ(q(j), a)

M(a)
(
q

(j)
i , ri+1

)
:= 1

k
·
(

1− |δ(q
(j), a)|
s

)
∀ j ∈ {1, . . . , s}

M(a)
(
ri, ri+1

)
:= 1

k

Observe that if i ∈ {0, . . . , n− 1} then ri and all q(j)
i emit each a ∈ Σ with probability 1/k.

For each q(j) ∈ F set M(f+)(q(j)
n , q$) := 1. For each q(j) 6∈ F set M(f−)(q(j)

n , q$) := 1.
Finally, set M(f−)(rn, q$) := 1.

I Example 6. We illustrate this construction with the following NFA A over Σ = {a1, a2}:

q(1)

q(2)

a1, a2

a2

a2
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For n = 3 we obtain the following transitions:

q
(1)
0

q
(2)
0

r0

q
(1)
1

q
(2)
1

r1

q
(1)
2

q
(2)
2

r2

q
(1)
3

q
(2)
3

r3

q$
1$

1
4a1,

1
4a2

1
4a2

1
4a1

1
4a2

1
4 a2 , 1

2 a1

1
2a1,

1
2a2

1
4a1,

1
4a2

1
4a2

1
4a1

1
4a2

1
4 a2 , 1

2 a1

1
2a1,

1
2a2

1
4a1,

1
4a2

1
4a2

1
4a1

1
4a2

1
4 a2 , 1

2 a1

1
2a1,

1
2a2

1f−

1f−

1f+

Define π2 := δ
q

(1)
0
. For all w ∈ Σ∗ write #acc(w) for the number of accepting w-labelled

runs of the automaton A, i.e., the number of w-labelled paths from q(1) to a state in F . For
all w ∈ Σn we have:

π2(wf+) = 1
kn
· #acc(w)

sn
(5)

π2(wf−) = 1
kn
·
(

1− #acc(w)
sn

)
(6)

Define B := Σn{b, f−}. By (3), (4) we have π1(B) = 1. One can compute π2(B) in
polynomial time by computing the probability of reaching a transition labelled by f− (the
label b is not reachable). Set y := π1(B)− π2(B).

It follows from Proposition 2 that d(π1, π2) = π1(L)− π2(L) holds for

L := {w ∈ (Σ ∪ {b, f+, f−})∗ : 0 < π1(w) ≥ π2(w)} .

Observe that L(A) = {w ∈ Σn : #acc(w) ≥ 1}. Hence it follows with (3), (4), (6):

L = Σn{b} ∪ (Σn ∩ L(A)){f−}

Defining L(A) := Σn \ L(A) we can write:

L = B \
(
L(A){f−}

)
Thus we have:

d(π1, π2) = π1

(
B \

(
L(A){f−}

))
− π2

(
B \

(
L(A){f−}

))
as argued above

= y + π2
(
L(A){f−}

)
− π1

(
L(A){f−}

)
definition of y

Observe that L(A) = {w ∈ Σn : #acc(w) = 0}. Hence we can continue:

= y +
∣∣L(A)

∣∣
kn

−
∣∣L(A)

∣∣
kn

·
(

1− 1
sn

)
by (6), (4)

= y +
∣∣L(A)

∣∣
knsn

= y + |Σ
n \ L(A)|
|Σ|n|Q|n definitions J

ICALP 2018



130:8 On Computing the Total Variation Distance of Hidden Markov Models

The PP lower bound from Proposition 4 is tight for acyclic LMCs:

I Theorem 7. The non-strict and strict threshold-distance problems are PP-complete for
acyclic LMCs.

I Remark 8. The works [20, 7] also consider the Lk-distances for integers k:

dk(π1, π2) :=
∑
w∈Σ∗

|π1(w)− π2(w)|k

For any fixed even k one can compute dk in polynomial time, see, e.g., [7, Theorem 6]. In
contrast, it is NP-hard to compute or even approximate dk for any odd k [7, Theorems 7
and 10]. Our PP- and #P-hardness results (Proposition 4 and Theorem 9) hold for d1 (due
to Proposition 2) but the reductions do not apply in an obvious way to dk for any k ≥ 2.
However, the argument in the proof of Theorem 7 for the PP upper bound does generalize
to all dk, see [15].

4 Approximation

As the strict threshold-distance problem is undecidable (Theorem 3), one may ask whether
the distance can be approximated. It is not hard to see that the answer is yes. In fact, it was
shown in [5, Corollary 8] that the distance can be approximated within an arbitrary additive
error even for infinite-word LMCs, but no complexity bounds were given. In this section we
provide bounds on the complexity of approximating the distance for (finite-word) LMCs.

4.1 Hardness
Lemma 5 implies hardness of approximating the distance:

I Theorem 9. Given an LMC and initial distributions π1, π2 and an error bound ε > 0 in
binary, it is #P-hard to compute a number x with |d(π1, π2)− x| ≤ ε, even for acyclic LMCs.

Proof. Recall that the problem #NFA is #P-complete [14]. Let A be the given NFA and
n ∈ N. LetM, π1, π2, y be as in Lemma 5. Approximate d(π1, π2) within 1/(3|Σ|n|Q|n) and
call the approximation d̃. It follows from Lemma 5 that |L(A) ∩ Σn| is the unique integer u
with∣∣∣∣y + |Σ|

n − u
|Σ|n|Q|n − d̃

∣∣∣∣ ≤ 1
3|Σ|n|Q|n .

Such u can be computed in polynomial time. J

Theorem 9 improves the NP-hardness result of [5, Proposition 9]. In fact, PP and #P are
substantially harder than NP: By Toda’s theorem [25], the polynomial-time hierarchy (PH)
is contained in PPP = P#P. Therefore, any problem in PH can be decided in determin-
istic polynomial time with the help of an oracle for the threshold-distance problem or for
approximating the distance.

4.2 Acyclic LMCs
Towards approximation algorithms, define W2 := {w ∈ Σ∗ : π1(w) ≥ π2(w)} and W1 :=
{w ∈ Σ∗ : π1(w) < π2(w)}. By Proposition 2 we have:

d(π1, π2) = π1(W2)− π2(W2) = 1− π1(W1)− π2(W2) (7)
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Therefore, to approximate d(π1, π2) it suffices to approximate πi(Wi). A simple sampling
scheme leads to the following theorem:

I Theorem 10. There is a randomized algorithm, R, that, given an acyclic LMC M and
initial distributions π1, π2 and an error bound ε > 0 and an error probability δ ∈ (0, 1), does
the following:

R computes, with probability at least 1− δ, a number x with |d(π1, π2)− x| ≤ ε;
R runs in time polynomial in log δ

ε and in the encoding size of M and π1, π2.
Note that 1

ε is not polynomial in the bit size of ε, so combining Theorems 9 and 10 does not
imply breakthroughs in computational complexity.

Proof. Let i ∈ {1, 2}. The length of a longest word w with πi(w) > 0 is polynomial in the
encoding of the (acyclic) LMCM. Thus, one can sample, in time polynomial in the encoding
of M, π1, π2, a word w according to Prπi ; i.e., any w is sampled with probability πi(w).
Similarly, one can check in polynomial time whether w ∈ Wi. If m samples are taken,
the proportion, say p̂i, of samples w such that w ∈ Wi is an estimation of πi(Wi). By
Hoeffding’s inequality, we have |p̂i − πi(Wi)| ≥ ε/2 with probability at most 2e−mε2/2.
Choose m ≥ − 2

ε2 ln δ
4 . It follows that |p̂i − πi(Wi)| > ε/2 with probability at most δ/2.

Therefore, by (7), the algorithm that returns 1− p̂1 − p̂2 has the required properties. J

4.3 General LMCs
Finally we aim at an algorithm that approximates the distance within ε, for ε given in binary.
By Theorem 9 such an algorithm cannot run in polynomial time unless P = PP. For LMCs
that are not necessarily acyclic, words of polynomial length may have only small probability,
so sampling approaches need to sample words of exponential length. Thus, a naive extension
of the algorithm from Theorem 10 leads to a randomized exponential-time algorithm. We
will develop a non-randomized PSPACE algorithm, resulting in the following theorem:

I Theorem 11. Given an LMC, and initial distributions π1, π2, and an error bound ε > 0
in binary, one can compute in PSPACE a number x with |d(π1, π2)− x| ≤ ε.

The approximation algorithm combines special techniques. The starting point is again the
expression for the distance in (7). The following lemma allows the algorithm to neglect words
that are longer than exponential:

I Lemma 12. Given an LMC, and initial distributions π1, π2, and a rational number λ > 0
in binary, one can compute in polynomial time a number n ∈ N in binary such that

πi(Σ>n) ≤ λ for both i ∈ {1, 2} .

For n as in Lemma 12 and both i ∈ {1, 2}, define W ′i := Wi ∩ Σ≤n. By Lemma 12 it would
suffice to approximate πi(W ′i ) for both i, as we have by (7):

π1(W ′1) + π2(W ′2) ≤ 1− d(π1, π2) ≤ π1(W ′1) + π2(W ′2) + 2λ (8)

However, it not obvious if πi(W ′i ) can be approximated efficiently, as for exponentially long
words w it is hard to check if w ∈W ′i holds. Indeed, πi(w) may be very small and may have
exponential bit size. The main trick of our algorithm will be to approximate πi(w) using
floating-point arithmetic with small relative error, say π̃i(w) ∈ [πi(w)(1− θ), πi(w)(1 + θ)]
for small θ > 0. This allows us to approximate π1(W ′1) + π2(W ′2) (crucially, not the two
summands individually). Indeed, define approximations for W ′1 and W ′2 by

W̃1 := {w ∈ Σ≤n : π̃1(w) < π̃2(w)} and W̃2 := {w ∈ Σ≤n : π̃1(w) ≥ π̃2(w)} .
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Then we have:

π2(w) ≤ π1(w) < π2(w) + θπ1(w) + θπ2(w) for w ∈ W̃1 ∩W ′2
π1(w) < π2(w) ≤ π1(w) + θπ1(w) + θπ2(w) for w ∈ W̃2 ∩W ′1

It follows:

π2(W̃1 ∩W ′2) ≤ π1(W̃1 ∩W ′2) ≤ π2(W̃1 ∩W ′2) + 2θ

π1(W̃2 ∩W ′1) ≤ π2(W̃2 ∩W ′1) ≤ π1(W̃2 ∩W ′1) + 2θ
(9)

Hence we have:

π1(W ′1) + π2(W ′2) = π1(W̃1 ∩W ′1) + π2(W̃1 ∩W ′2) + π2(W̃2 ∩W ′2) + π1(W̃2 ∩W ′1)
(9)
≤ π1(W̃1) + π2(W̃2)
(9)
≤ π1(W ′1) + π2(W ′2) + 4θ

By combining this with (8) we obtain:

π1(W̃1) + π2(W̃2)− 4θ ≤ 1− d(π1, π2) ≤ π1(W̃1) + π2(W̃2) + 2λ (10)

It remains to tie two loose ends:
1. develop a PSPACE method to approximate πi(w) within relative error θ for any θ > 0 in

binary, where w is an at most exponentially long word (given on a special input tape);
2. based on this method, approximate πi(W̃i) in PSPACE.
For item 1 we use floating-point arithmetic, for item 2 we use Ladner’s result [19] on counting
in polynomial space.

For k ∈ N, define Fk := {m · 2z : z ∈ Z, 0 ≤ m ≤ 2k − 1}, the set of k-bit floating-point
numbers. For our purposes, nonnegative floating-point numbers suffice, and there is no need
to bound the exponent z, as all occurring exponents will have polynomial bit size. We define
rounding as usual: for x ≥ 0 write 〈x〉k for the number in Fk that is nearest to x (break
ties in an arbitrary but deterministic way). Then there is δ with 〈x〉k = x · (1 + δ) and
|δ| < 2−k, see [13, Theorem 2.2]. A standard analysis of rounding errors in finite-precision
arithmetic [13, Chapter 3] yields the following lemma:

I Lemma 13. Let π be an initial distribution and 0 < θ < 1. Let k ∈ N be such that
2k ≥ 2(n+ 1)|Q|/θ. Let w = a1a2 · · · am ∈ Σ∗ with m ≤ n. Compute π̃(w) as

((· · · ((π ·M(a1)) ·M(a2)) · · · ) ·M(am)) · η> ,

where rounding 〈·〉k is applied after each individual (scalar) multiplication and addition. Then
π̃(w) ∈ [π(w)(1− θ), π(w)(1 + θ)].

Proof. For all i ∈ N write γi := i · 2−k/(1 − i · 2−k). By [13, Equation (3.11)] there are
matrices ∆1, . . . ,∆m and a vector η̃ such that

π̃(w) = π · (M(a1) + ∆1) · (M(a2) + ∆2) · · · (M(am) + ∆m) · (η + η̃)>

and |∆i| ≤ γ|Q|M(ai) and |η̃| ≤ γ|Q|η, where by |∆i| and |η̃| we mean the matrix and vector
obtained by taking the absolute value componentwise. (In words, the result π̃(w) of the
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floating-point computation is the result of applying an exact computation with slightly
perturbed data—a “backward error” result.) It follows:

|π̃(w)− π(w)| ≤
(
− 1 +

m+1∏
j=1

(
1 + γ|Q|

))
π(w) by [13, Lemma 3.8]

≤ γ(m+1)·|Q|π(w) by [13, Lemma 3.3]
≤ 2(n+ 1)|Q| · 2−kπ(w) as (n+ 1)|Q| · 2−k ≤ 1/2
≤ θπ(w) J

The development so far suggests the following approximation approach: Let ε > 0 be the
error bound from the input. Let n ∈ N be the number from Lemma 12, where λ is such that
2λ = ε/2. Let k ∈ N be the smallest number such that 2k ≥ 2(n+ 1)|Q|/θ, where θ is such
that 4θ = ε/2. Observe that k (the bit size of 2k) is polynomial in the input. Define, for
each word w and both i, the approximation π̃i(w) as in Lemma 13. This defines also W̃1, W̃2.
By (10) we have:

π1(W̃1) + π2(W̃2)− ε

2 ≤ 1− d(π1, π2) ≤ π1(W̃1) + π2(W̃2) + ε

2

Thus we can complete the proof of Theorem 11 by proving the following lemma:

I Lemma 14. For both i, one can approximate πi(W̃i) within ε/4 in PSPACE.

Proof. We discuss only the approximation of π1(W̃1); the case of π2(W̃2) is similar.
Construct a “probabilistic PSPACE Turing machine” T that samples a random word w

according to Prπ1 . For that, T uses probabilistic branching according to the transition
probabilities in M . While producing w in this way, but without storing w as a whole,
T computes also the values π̃1(w), π̃2(w) according to Lemma 13. If and when w gets longer
than n then T rejects. If π̃1(w) < π̃2(w) then T accepts; otherwise T rejects. The probability
that T accepts equals π1(W̃1). This probability can be computed in PSPACE by Ladner’s
result [19] on counting in polynomial space. To be precise, note that this probability is a
fraction p/q of two natural numbers p, q of at most exponential bit size. By Ladner’s result
one can compute arbitrary bits of p, q in PSPACE. Hence an approximation within ε/4 can
also be computed in PSPACE. Technical details about how we apply Ladner’s result are
provided in [15]. J

5 Open Problems

In this paper we have considered the total variation distance between the distributions
on finite words that are generated by two LMCs. In a more general version of LMCs,
the end-of-word probabilities are zero, so that the LMC generates infinite words. The
production of finite words w ∈ Σ∗ can be simulated by producing w$$$ · · · where $ is an
end-of-word symbol. It follows that the undecidability and hardness results of this paper
apply equally to infinite-word LMCs. In fact, all these results strengthen those from [5],
where the total variation distance between infinite-word LMCs is studied. The PSPACE
approximation algorithm in this paper (Theorem 11) applies only to finite words, and the
author does not know if it can be generalized to infinite-word LMCs. Whether the non-strict
threshold-distance problem is decidable is open, both for finite- and for infinite-word LMCs.

Another direction concerns LMCs that are not hidden, i.e., where each emitted label
identifies the next state; or, slightly more general, deterministic LMCs, i.e., where each state
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and each emitted label identify the next state. The reduction that shows square-root-sum
hardness in [5, Theorem 15] also applies to the threshold-distance problem for deterministic
finite-word LMCs, but the author does not know a hardness result for approximating the
distance between deterministic LMCs.
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We prove that if a group generated by a bireversible Mealy automaton contains an element of
infinite order, then it must have exponential growth. As a direct consequence, no infinite virtually
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The study on how (semi)groups grow has been highlighted since Milnor’s question on the
existence of groups of intermediate growth (faster than any polynomial and slower than any
exponential) in 1968 [13], and since the very first example of such a group was given by
Grigorchuk [5]. Uncountably many examples have followed this first one, see for instance [6].
Bartholdi and Erschler have even obtained results on precise computations of growth, in
particular they proved that if a function satisfies some frame property, then there exists a
finitely generated group with growth equivalent to it [1]. Besides, until Nekrashevych’s very
recent work [14], all the known examples of intermediate growth groups were automaton
groups or based on automaton groups.

There exists no sufficient or necessary criterion to test whether a Mealy automaton
generates a group of intermediate growth and it is not even known if this property is
decidable. However, there is no known example in the literature of a bireversible Mealy
automaton generating an intermediate growth group and it is legitimate to wonder whether it
is possible. This is the scope of the present article, which can be seen as an extension of earlier
results on the two-state case [8, 9]. We prove that if a group generated by a bireversible Mealy
automaton has an element of infinite order, then it must have exponential growth. It has been
conjectured, and proved in some cases [4], that an infinite group generated by a bireversible
Mealy automaton always has an element of infinite order, which suggests that, indeed, a
group generated by a bireversible Mealy automaton either is finite, or has exponential growth.
Note that a similar result has been proved for a very different family of Mealy automata,
namely reset automata [15]: since a Mealy automaton which is simultaneously reset and
bireversible has a unique state, these families are somehow orthogonal; moreover the proof
we present here is completely different from the proof in [15], in particular it is not based on
the potential existence of a free subsemigroup of rank 2.
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Finally, let us mention the work by Brough and Cain to obtain some necessary criteria
to decide whether a semigroup is an automaton semigroup [2]. Our work can be seen as
partially answering a similar question: can a given group be generated by a bireversible
Mealy automaton? A consequence of our result is that no infinite virtually nilpotent group
(and in particular no abelian group) can be.

This article is organized as follows. In Section 1, we define automaton groups and the
growth of a group, and give some properties of the connected components of the powers
of a Mealy automaton. In Section 2, we study the behavior of certain equivalence classes
of words on the state set of a Mealy automaton. Finally, the main result and some of its
consequences appear in Section 3.

1 Basic notions

Throughout the paper, the cardinality of a finite set E is denoted by |E|. A finite word
of length n on E is a finite sequence of n elements of E and is denoted classically as the
concatenation of its elements. The set of finite words over E is denoted by E∗, the set of
non-empty finite words by E+, and the set of words of length n by En. In general the
elements of E are written in plain letters, e.g. q, while the words on E are written in bold
letters, e.g. u. The length of u is denoted by |u|, its letters are numbered from 0 to |u| − 1
and, if i is an integer, its (i mod |u|)-th letter is denoted by u i¡; for example its first
letter is u 0¡, while its last letter is u −1¡. If L is a set of words on E, L i¡ denotes the set
{u i¡ | u ∈ L}.

1.1 Semigroups and groups generated by Mealy automata
We first recall the formal definition of an automaton. A (finite, deterministic, and complete)
automaton is a triple

(
Q,Σ, δ = (δi : Q→ Q)i∈Σ

)
, where the state set Q and the alphabet Σ

are non-empty finite sets, and the δi are functions.
A Mealy automaton is a quadruple A = (Q,Σ, δ, ρ), such that (Q,Σ, δ) and (Σ, Q, ρ) are

both automata. In other terms, a Mealy automaton is a complete, deterministic, letter-to-
letter transducer with the same input and output alphabet. Its size is the cardinality of its
state set and is denoted by #A.

The graphical representation of a Mealy automaton is standard, see Figure 1. But, for
practical reasons, we use sometimes other graphical representations for the transitions. For
example the transition from x to z with input letter 0 and output letter 1 in the automaton
of Figure 1 can be represented

either by x
0|1−−→ z , or by

0
x z

1
.

Let A = (Q,Σ, δ, ρ) be a Mealy automaton. Each state q ∈ Q defines a mapping from Σ∗
into itself, recursively by:

∀i ∈ Σ, ∀s ∈ Σ∗, ρq(is) = ρq(i)ρδi(q)(s) .

The image of the empty word is itself. For each q ∈ Q, the mapping ρq is length-
preserving and prefix-preserving. We say that ρq : Σ∗ → Σ∗ is the action induced by q.
For u = q1 · · · qn ∈ Qn with n > 0, set ρu : Σ∗ → Σ∗, ρu = ρqn

◦ · · · ◦ ρq1 .
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z

y

x

1|0

0|1

0|0, 1|1
1|0
0|1

Figure 1 The Aleshin automaton.

The semigroup of mappings from Σ∗ to Σ∗ generated by {ρq, q ∈ Q} is called the semigroup
generated by A and is denoted by 〈A〉+.

We extend to δ the former notation on ρ, in a natural way. Hence δi : Q∗ → Q∗, i ∈ Σ,
are the functions extended to Q∗, and for s = i1 · · · in ∈ Σn with n > 0, we set δs : Q∗ →
Q∗, δs = δin ◦ · · · ◦ δi1 .

A Mealy automaton A = (Q,Σ, δ, ρ) is invertible if the functions ρq are permutations of
the alphabet Σ. In this case, the actions induced by the states are permutations on words of
the same length and thus we may consider the group of mappings from Σ∗ to Σ∗ generated
by {ρq, q ∈ Q}: it is called the group generated by A and is denoted by 〈A〉.

When A is invertible, define its inverse A−1 as the Mealy automaton with state set Q−1,
a disjoint copy of Q, and alphabet Σ, where the transition p−1 j|i−→ q−1 belongs to A−1 if
and only if the transition p i|j−→ q belongs to A. Clearly the action induced by the state p−1

of A−1 is the reciprocal of the action induced by the corresponding state p in A.
A Mealy automaton (Q,Σ, δ, ρ) is reversible if the functions δi induced on Q by the

input letters of the transitions are permutations. The connected components of a reversible
automaton are strongly connected. In a reversible automaton of state set Q and alphabet Σ,
for any word s ∈ Σ∗ and any state q, there exists exactly one path in the automaton with
label s and final state q, hence we can consider the backtrack action induced by q: it associates
to s the output label t ∈ Σ|s| of this single path.

A Mealy automaton is coreversible if the functions induced on Q by the letters as output
letters of the transitions are permutations.

A Mealy automaton is bireversible if it is both reversible and coreversible. It is quite
simple to see that the actions and the backtrack actions induced by the states of a bireversible
automaton are both permutations.

Two Mealy automata are said to be isomorphic if they are identical up to the labels of
their states.

1.2 Growth of a semigroup or a group
Let H be a semigroup generated by a finite set S. The length of an element g of the semigroup,
denoted by |g|, is the length of its shortest decomposition as a product of generators:

|g| = min{n | ∃s1, . . . , sn ∈ S, g = s1 · · · sn} .

The growth function γSH of the semigroup H with respect to the generating set S
enumerates the elements of H with respect to their length:

γSH(n) = |{g ∈ H ; |g| ≤ n}| .

The growth functions of a group are defined similarly by taking symmetrical generating sets.
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The growth functions corresponding to two generating sets are equivalent [12], so we may
define the growth of a group or a semigroup as the equivalence class of its growth functions.
Hence, for example, a finite (semi)group has bounded growth, while an infinite abelian
(semi)group has polynomial growth, and a non-abelian free (semi)group has exponential
growth.

It is quite easy to obtain groups of polynomial or exponential growth. Answering a
question of Milnor [13], Grigorchuk gave an example of an automaton group of intermediate
growth [5]: faster than any polynomial, slower than any exponential, opening thus a new
classification criterion for groups, that has been deeply studied since this seminal article
(see [7] and references therein). Besides, let us mention that until Nekrashevych’s very recent
work [14], all the known examples of intermediate growth groups were automaton groups or
based on automaton groups.

Note an important point for our purpose: let G be a finitely generated group and let
(In)n>0 a sequence of subsets of G, compatible with the length function, i.e. the sets In are
pairwise distinct and the elements of In have all length less than or equal to n. The growth
function of (In)n>0 is given by (

∑
k≤n |Ik|)n>0; if it grows exponentially, then so does G. In

the same spirit, a group which admits a subgroup of exponential growth grows exponentially.

1.3 The powers of a Mealy automaton and their connected
components

The powers of a Mealy automaton have been shown to play an important role in the finiteness
and the order problems for an automaton (semi)group, as highlighted in [9, 11, 4]. The n-th
power of the automaton A = (Q,Σ, δ, ρ) is the Mealy automaton

An =
(
Qn,Σ, (δi : Qn → Qn)i∈Σ, (ρu : Σ→ Σ)u∈Qn

)
.

Note that the powers of a reversible (resp. bireversible) Mealy automaton are reversible
(resp. bireversible). It is straightforward to see that the action induced by a word u of states
of A is in fact the action induced by u seen as a state of A|u|. The backtrack action induced
by u can be defined in the same spirit.

The (semi)group generated by a connected component of some power of A is a
sub(semi)group of the (semi)group generated by A.

Let u and v be elements of Q+ and C be a connected component of some power of A: v
can follow u in C if uv is the prefix of some state of C. We denote by {u? # C} the set of
states that can follow u in C:

{u? # C} = {q ∈ Q | uq is the prefix of some state of C} .

We define similarly the fact that v can precede u in C if vu is the suffix of some state of
C, and we introduce the set

{?u # C} = {q ∈ Q | qu is the suffix of some state of C} .

The aim of this section is to give some intuition on the links between the connected
components of consecutive powers of A. Since a word can be extended with a prefix or a
suffix, most of the results exposed here are expressed in both cases, but only the first result
is proved in both cases, to show how bireversibility allows to consider similarly the actions
and the backtrack actions.
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I Lemma 1. Let A be a bireversible Mealy automaton with state set Q and C a connected
component of one of its powers. If u ∈ Q+ is a proper prefix of some state of C, then the
cardinality of the set {u? # C} depends only on the length of u.

Proof. Suppose that u′ is such that uu′ is a state of C, and let v be a prefix of some state vv′
of C with the same length as u. Since C is a connected component in a reversible Mealy
automaton, it is strongly connected, so there exists a word s ∈ Σ∗ such that δs(uu′) = vv′.
Now, consider the action induced by s on up, for p ∈ {u? # C}:

s
u v

s′

p p′

Since the automaton A is reversible, the action induced by s′ is a permutation of Q, and we
have

|{u? # C}| ≤ |{v? # C}| .

The reciprocal inequality is obtained symmetrically. J

I Lemma 2. Let A be a bireversible Mealy automaton with state set Q and C a connected
component of one of its powers. If u ∈ Q+ is a proper suffix of some state of C, then the
cardinality of the set {?u # C} depends only on the length of u.

Proof. Suppose that u′ is such that u′u is a state of C, and let v be a suffix of some state v′v
of C with the same length as u. Since C is a connected component in a reversible Mealy
automaton, it is strongly connected, so there exist words s, t ∈ Σ∗ such that δs(u′u) = v′v
and ρu′u(s) = t:

s
u′ v′

s′

u v
t

Now, consider the backtrack action induced by t on pu, for p ∈ {?u # C}:

p p′

s′

u v
t

Since the automaton A is bireversible, the backtrack action induced by s′ is a permutation
of Q, and we have

|{?u # C}| ≤ |{?v # C}| .

The reciprocal inequality is obtained symmetrically. J
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Consider a state q of A. For any integer n > 0, we denote by cc(qn) the connected
component of qn in An. The sequence of such components has some properties which we
give here. These properties can be seen as properties of the branch represented by qω in the
Schreier trie of A (also known as the orbit tree of the dual of A) which has been introduced
in [11, 4] (to keep this article self-contained, we give here only the properties of this branch,
but for a more global intuition on the constructions, the reader can consult these references).

The first point is given by Lemma 1: for any n > 0, the component cc(qn+1) can be seen
as several full copies of the component cc(qn); indeed, if u and v are states of cc(qn), then
in cc(qn+1) there are as many states with prefix u as states with prefix v, i.e.

∀u ∈ cc(qn), ∀v ∈ cc(qn), |{u? # cc(qn+1)}| = |{v? # cc(qn+1)}| .

Hence the ratio between the size of cc(qn+1) and the size of cc(qn) is necessarily an integer:
it is the cardinality of the set {u? # cc(qn+1)} for any state u of cc(qn), and in particular
for u = qn.

We define by(
# cc(qn+1)
# cc(qn)

)
n>0

=
(
|{qn? # cc(qn+1)}|

)
n>0

the sequence of ratios associated to the state q.

I Lemma 3. Let A be a bireversible Mealy automaton with state set Q, q ∈ Q a state of A,
and u and v be two elements of Q+. If uv is a state of cc(q|uv|), then v is a state of cc(q|v|)
and

{uv? # cc(q|uv|+1)} ⊆ {v? # cc(q|v|+1)} .

Proof. Take A = (Q,Σ, δ, ρ) and let p ∈ {uv? # cc(q|uv|+1)}.
Since A is reversible, there exists a word s ∈ Σ∗ such that δs(uvp) = q|uv|+1:

s
u q|u|

s′

v q|v|

s′′

p q

Hence δs′(v) = q|v| and so v ∈ cc(q|v|), and δs′(vp) = q|v|+1, which means that p ∈ {v? #
cc(q|v|+1)}. J

I Lemma 4. Let A be a bireversible Mealy automaton with state set Q, q ∈ Q a state of A,
and u and v be two elements of Q+. If uv is a state of cc(q|uv|), then u is a state of cc(q|u|)
and

{?uv # cc(q|uv|+1)} ⊆ {?u # cc(q|u|+1)} .

As {qn+1? # cc(qn+2)} ⊆ {qn? # cc(qn+1)} by Lemma 3, it is straightforward to see
that the sequence of ratios associated to q decreases:

∀n > 0, # cc(qn+2)
# cc(qn+1) ≤

# cc(qn+1)
# cc(qn) ,
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and hence is ultimately constant. We say that q has a constant ratio if this sequence is in
fact constant, and then the unique value of the sequence of ratios associated to q is called
the ratio of q.

It has been proven in [11, Prop. 6] that q induces an action of infinite order if and only
if the sizes of the components (cc(qn))n>0 are unbounded, i.e. the limit of the sequence of
ratios associated to q is greater than 1.

We study now some properties of followers and predecessors in the components cc(qn),
when q has a constant ratio.

The next lemma is an improvement of Lemma 3.

I Lemma 5. Let A be a bireversible Mealy automaton, and q be a state of A of constant
ratio. Let u and v be two elements of Q+ such that uv is a state of cc(q|uv|). We have:

{uv? # cc(q|uv|+1)} = {v? # cc(q|v|+1)} .

Proof. The left part is a subset of the right one by Lemma 3 and both sets have the same
cardinality, which is the ratio of q, by hypothesis. J

In particular, by taking the word v of length 1 in the previous lemma, we can see that
the set of followers of a word w in cc(qn) only depends on its last letter w −1¡.

We obtain the symmetrical result by considering the mirror Mealy automaton obtained
by inverting the direction of the transitions.

I Lemma 6. Let A be a bireversible Mealy automaton of state set Q, q be a state of A of
constant ratio, and n > 1 be an integer. If u ∈ Q+ is a suffix of some state of cc(qn), then
the set {?u # cc(qn)} only depends on u 0¡, the first letter of u.

The next lemma links up the sets of followers and of predecessors in cc(qn) when q has a
constant ratio.

I Lemma 7. Let A be a bireversible Mealy automaton of state set Q, q be a state of A of
constant ratio, and n > 1 be an integer. The sets of followers and of predecessors in cc(qn)
have the same cardinality which is the ratio of q.

Proof. By Lemmas 5 and 6, we only have to prove that

|{q? # cc(qn)}| = |{?q # cc(qn)}| .

Even simpler: notice that if u is a prefix of some state of cc(qn), then it is also a prefix of
some state in cc(qn+k) for any k > 0, and it has the same set of followers in both. Of course,
an equivalent property holds for the sets of predecessors.

So it is sufficient to prove that

|{q? # cc(q2)}| = |{?q # cc(q2)}| ,

which is true because

| cc(q2)| = | cc(q)| × |{q? # cc(q2)}| = |{?q # cc(q2)}| × | cc(q)| . J
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2 Several equivalences on words

2.1 Minimization and Nerode classes

Let A = (Q,Σ, δ, ρ) be a Mealy automaton.
The Nerode equivalence ≡ on Q is the limit of the sequence of increasingly finer equival-

ences (≡k) recursively defined by:

∀p, q ∈ Q, p ≡0 q ⇐⇒ ρp|Σ = ρq|Σ ,

∀k > 0, p ≡k+1 q ⇐⇒
(
p ≡k q ∧ ∀i ∈ Σ, δi(p) ≡k δi(q)

)
.

Since the set Q is finite, this sequence is ultimately constant. For every element q in Q,
we denote by [q] the class of q w.r.t. the Nerode equivalence, called the Nerode class of q.
Extending to the n-th power of A, we denote by [u] the Nerode class in Qn of u ∈ Qn.

Two states of a Mealy automaton belong to the same Nerode class if and only if they
represent the same element in the generated (semi)group, i.e. if and only if they induce the
same action on Σ∗. Two words on Q of the same length n are equivalent if they belong to the
same Nerode class in Qn. By extension, any two words on Q are equivalent if they induce
the same action.

The minimization of A is the Mealy automaton m(A) = (Q/≡,Σ, δ̃, ρ̃), where for every
(q, i) in Q× Σ, δ̃i([q]) = [δi(q)] and ρ̃[q] = ρq. This definition is consistent with the standard
minimization of “deterministic finite automata” where instead of considering the mappings
(ρq : Σ → Σ)q, the computation is initiated by the separation between terminal and non-
terminal states.

A Mealy automaton is minimal if it has the same size as its minimization.
Two states of two different connected reversible minimal Mealy automata with the same

alphabet induce the same action if and only if the automata are isomorphic and both states
are in correspondence by this isomorphism (which can be formally defined by considering the
union of the involved Mealy automata). As a direct consequence, if two connected reversible
minimal Mealy automata have different sizes, then any two states of each of them cannot be
equivalent.

As we have seen in Section 1.3, a state q of an invertible-reversible Mealy automaton
induces an action of infinite order if and only if the sizes of the (cc(qn))n>0 are unbounded.
The proof of [11, Prop. 6] can be easily adapted to see that q induces an action of infinite
order if and only if the sizes of the (m(cc(qn)))n>0 are unbounded, but you can see it by
a direct argument: if the sizes are bounded, there is an infinite set I ⊆ N such that all
the element (m(cc(qn)))n∈I are isomorphic, and in this sequence there exist at least two
different integer i 6= j such that qi and qj are represented by the same state in the minimal
automata, and so they induce the same action; if the sizes are unbounded, the sequence
(#m(cc(qn)))n>0 has infinitely many values, and there are infinitely many powers of the
action induced by q that are pairwise different.

Note that the Nerode classes of a connected reversible Mealy automaton have the same
cardinality. The size of the minimization of an automaton in this case is the ratio between
the size of the former automaton and the cardinality of the Nerode classes.

I Lemma 8. Let A be a connected bireversible Mealy automaton, N a Nerode class of a
connected component of one of its powers, and p and q two elements of N  −1¡. There are as
many elements of N with last letter p as with last letter q.
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Proof. The proof of this lemma is quite similar to the proof of Lemma 5 considering not
words of length 1 as predecessors, but words of length n− 1, where n is the length of the
states in N . J

2.2 Restricted Nerode classes
When the considered automaton is not connected, it can be interesting to consider the
restriction of the Nerode class of an element to its connected component: we denote it by JqK
and call it the restricted Nerode class of q. The restricted Nerode class of a state coincide
with its Nerode class in the case of a connected Mealy automaton.

I Lemma 9. The restricted Nerode classes of two elements in the same connected component
of a reversible Mealy automaton have the same cardinality.

Let A = (Q,Σ, δ, ρ) be a bireversible automaton and q a state of A. As it will be discussed
in Section 3, the result of this article is somehow a generalization of a much simpler but
similar result proved in [10]: in the case where all the powers of A are connected, the group
generated by A has exponential growth. The strategy used in [10] is based on the fact that
JqnKq ⊆ Jqn+1K when all the powers of A are connected. However in the more general case
we study here, this fact is false: a priori there is no inclusion link between JqnK and Jqn+1K,
because if u is a state of JqnK, then nothing ensures that uq belongs to cc(qn+1); hence we
have to find a different strategy. For this purpose, we introduce the q-restricted Nerode class
of qn, i.e. the set of states of JqnK which admit q as a suffix: J qn K• = JqnK ∩Q∗q.

The aim of this section is to study the sequence (J qn K•)n>0, in particular in the case
where q has a constant ratio.

I Lemma 10. The sequence of q-restricted Nerode classes satisfies the following inclusion
property:

∀n > 0, J qn K• q ⊆ J qn+1 K• .

Proof. Let u be an element of J qn K•: u is a state of cc(qn), and {u? # cc(qn+1)} depends
only on u −1¡ = q by Lemma 5. In particular q can follow u since q ∈ {q? # cc(qn+1)}.
Since u and qn induce the same action, so do uq and qn+1. J

The next results give more information on the growth of the q-restricted Nerode classes
of qn with respect to n.

I Proposition 11. Let A be a bireversible Mealy automaton, and q be a state of A of constant
ratio k. The ratio between the sizes of J qn+1 K• and J qn K• is an integer and:

∀n > 0, | J q
n+1 K• |
| J qn K• |

= |J qn+1 K• −2¡| .

In particular this ratio cannot be greater than k.

Proof. Let p ∈ J qn+1 K• −2¡. By this choice, p can precede the final q in Jqn+1K. Now, take
u ∈ Qn−1p: we have uq ∈ J qn+1 K• if and only if u ∈ JqnK (the direct sense is obtained by
Lemma 5 and the reciprocal sense by Lemma 10). Hence by Lemma 8, |JqnK∩Q∗p| = | J qn K• |
(which means somehow that we can pinpoint the Nerode class by p instead of q, without
changing the cardinality).

Consequently, the sets J qn+1 K•∩Q∗pq and J qn+1 K•∩Q∗qq have the same cardinality.
Since p ∈ J qn+1 K• −2¡ can precede q in cc(qn+1), we obtain the bound k = {?q # cc(q2)}

by Lemmas 6 and 7. J
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I Proposition 12. Let A be a bireversible Mealy automaton, and q be a state of A of constant
ratio k. The sequence(

| J qn+1 K• |
| J qn K• |

)
n>0

is ultimately increasing to a limit less than or equal to k.

Proof. Consider the sequence (J qn K•)n>0 and particularly the sequence (J qn K• 0¡)n>0: by
Lemma 10, this last sequence is increasing (for inclusion). Denote by Q1 its limit: Q1 =
J qn K• 0¡ for n large enough, say n ≥ N ; in particular this set contains q.

Now, suppose n > N and take p ∈ J qn+1 K• −2¡: clearly (J qn+1 K•∩Q∗pq) 0¡ is a subset of
Q1 = J qn+1 K• 0¡ = J qn K• 0¡; since it has the same cardinality as the set (J qn+1 K•∩Q∗qq) 0¡ =
J qn K• 0¡ by Lemma 8, it is in fact equal to Q1. But q belongs to Q1, so it means that the
set J qn+1 K•∩qQ∗pq is not empty, take u one of its elements. By Lemma 6, q can precede u
in cc(qn+2) and qu ∈ J qn+2 K•. Hence any penultimate letter in J qn+1 K• is also a penultimate
letter in J qn+2 K•:

J qn+1 K• −2¡ ⊆ J qn+2 K• −2¡ .

The result is now a direct consequence of Proposition 11 J

3 Main result

Because all the elements of a semigroup generated by an invertible-reversible Mealy automaton,
all whose powers are connected, have infinite order [11, Prop. 6], the main result of this
article, Theorem 14, is somehow a generalization of this previous result obtained in [10]:

I Theorem 13. A semigroup generated by an invertible-reversible Mealy automaton, all of
whose powers are connected, has exponential growth.

To prove this generalization, we need to reinforce the hypothesis on the structure of the
automaton which is supposed here to be bireversible and not only invertible-reversible, but
we do not use anymore the really strong hypothesis on the connected powers. Since it is
(easily) decidable if a Mealy automaton is bireversible, while the condition on the powers
is not known to be decidable, except in very restricted cases, the result here is much more
interesting and powerful, but it is also trickier to establish. The question of the existence of
elements of infinite order in a semigroup generated by a bireversible automaton has been
under study for several years now and has been solved in quite a few cases [9, 11, 4].

Here is the generalized version of the former theorem we prove in this section:

I Theorem 14. A group generated by a bireversible Mealy automaton which contains an
element of infinite order has exponential growth.

Note that the result still holds for the generated semigroup and the proof is easily
adaptable.

Proof. Let A = (Q,Σ, δ, ρ) be a bireversible Mealy automaton and u ∈ (Q tQ−1)∗ which
induces an action of infinite order. The Mealy automaton (A ∪ A−1)|u| is bireversible, u
is one of its states, and this automaton generates a subgroup of 〈A〉. So without loss of
generality, we can suppose that u is in fact a state of A. To be consistent with the rest of
the article, let us call it q.
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For any integer i > 0, denote ri = # cc(qi+1)
# cc(qi) . The sequence of ratios associated to q is

of the form (r1, r2, . . . , rj , rj+1 = rj , . . .), where ri ≥ ri+1 for any i ≥ 1 and ri = rj for any
i ≥ j. Now, consider the component cc(qj) as a Mealy automaton and q = qj as its state:
the state q induces an action of infinite order and the sequence of ratios associated to q is
of the form (rjj , r

j
j , . . .): q has constant ratio. Moreover, cc(q) generates a subgroup of the

group 〈A〉, so if we prove that 〈cc(q)〉 has exponential growth, so has 〈A〉. So, without loss
of generality we can suppose that q has a constant ratio, say k.

Note that the following inequalities hold:

∀n > 0, | cc(qn)|
|Q| × | J qn K• |

≤ | cc(qn)|
|JqnK|

≤ | cc(qn)|
| J qn K• |

. (1)

Indeed, the second inequality is a consequence of the fact that J qn K• ⊆ JqnK, and the first
inequality follows from Lemma 8 and the fact that JqnK = ∪p∈Q(JqnK ∩Q∗p).

The central part in (1) is in fact the size of the minimization of cc(qn), and the cardinality
of cc(qn) is equal to |Q| × kn−1 since q has constant ratio k, so (1) can be re-written as:

∀n > 0, kn−1

| J qn K• |
≤ #m(cc(qn)) ≤ |Q| × k

n−1

| J qn K• |
. (2)

Let us prove that for n large enough, | J qn+1 K• | < k × | J qn K• |. From Proposition 11 we
know that the corresponding non strict inequality is satisfied. Now, from Propositions 11
and 12 we know that for N large enough, if the equality holds at rank N , it also holds at
every rank greater than N : for any n ≥ N , | J qn+1 K• | = k × | J qn K• |. This means that for
n large enough: | J qn K• | = bkn−1, where b does not depend on n. Hence by the right part
of Equation (2), the minimizations of the connected powers of q have bounded size, which
implies that q has finite order as seen in Section 2.1, in contradiction with the hypotheses.
So the equality does not hold for any N .

Denote by ` the limit of the sequence(
| J qn+1 K• |
| J qn K• |

)
n>0

(it exists from Proposition 12): ` < k from the above paragraph, so for n large enough, there
exists a constant c such that | J qn K• | = `n

kc .
So Equation (2) becomes:

∀n > N, c

(
k

`

)n
≤ #m(cc(qn)) ≤ c|Q|

(
k

`

)n
. (3)

Since ` < k, there exists α such that
(
k
l

)α
> |Q|. Let us denote u = qα and K =

(
k
`

)α,
we have that for n large enough:

c ·Kn ≤ #m(cc(un)) ≤ c · |Q| ·Kn < c ·Kn+1 ≤ #m(cc(un+1)) ≤ c · |Q| ·Kn+1 . (4)

Consequently, the minimizations of the components cc(un) are pairwise not isomorphic,
for n large enough, because they do not have the same size. So their states induce different
elements of the group 〈A〉. Hence the sets

In = {ρv | v is a state of m(cc(un))}

are pairwise disjoint. By Equation (4), the growth of the sequence (In)n>0 is exponential,
and so is the growth of A. J
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By combining Theorem 14 with the fact that connected bireversible Mealy automata of
prime size cannot generate infinite Burnside groups [4], we have:

I Corollary 15. Any infinite group generated by a bireversible connected Mealy automaton
of prime size has exponential growth.

Another consequence of Theorem 14 concerns virtually nilpotent groups. This class is
important in the classification of groups and contains in particular all the abelian groups. It
is known that any infinite virtually nilpotent group contains an element of infinite order [3,
Proposition 10.48] and has polynomial growth [16]. This leads to

I Corollary 16. No infinite virtually nilpotent group can be generated by a bireversible Mealy
automaton.
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predictability, security etc. [9, 10, 16, 17, 20, 21, 28, 33, 35, 36, 37]. Many nontrivial
algorithms for decision problems on matrix semigroups have been developed for matrices
under different constraints on the dimension, the size of a generating set or for specific
subclasses of matrices: e.g., commutative matrices [2], row-monomial matrices [30] or 2× 2
matrix semigroups generated by non-singular integer matrices [41], upper-triangular integer
matrices [25], matrices from the special linear group [4, 15], etc.

Despite visible interest in this research domain, we still see a significant lack of algorithms
and complexity results for answering decision problems in matrix semigroups. Many compu-
tational problems for matrix (semi)groups are computationally hard starting from dimension
two and very often become undecidable from dimensions three or four even in the case of
integer matrices. The central decision problem in matrix semigroups is the membership
problem, which was originally considered by A. Markov in 1947 [32]. Let S = 〈G〉 be a matrix
semigroup finitely generated by a generating set of square matrices G. The membership
problem is to decide whether or not a given matrix M belongs to the matrix semigroup S.
By restricting M to be the identity matrix we call the problem the identity problem.

I Problem 1 (Identity problem). Let S = 〈G〉, where G is a finite set of n-dimensional
matrices over K = Z,Q,R,C, . . .. Is the identity matrix in the semigroup, i.e., does I ∈ S
hold?

The identity problem is computationally equivalent to another fundamental problem –
the subgroup problem (i.e., to decide whether a semigroup contains a subgroup) as any subset
of matrices, which can form a product leading to the identity also generate a group [15]1.

The decidability status of the identity problem was unknown for a long time for matrix
semigroups of any dimension, see Problem 10.3 in “Unsolved Problems in Mathematical
Systems and Control Theory” [10], but it was shown in [6] to be undecidable for 48 matrices
from Z4×4 by proving that the identity correspondence problem (a variant of the Post
correspondence problem over a group alphabet) is undecidable, and embedding pairs of
words over free group alphabet into SL(4,Z) as two blocks on the main diagonal and by a
morphism f as follows f(a) = ( 1 2

0 1 ), f(a−1) =
( 1 −2

0 1
)
, f(b) = ( 1 0

2 1 ) and f(b−1) =
( 1 0
−2 1

)
. In

the seminal paper of Paterson in 1970, see [39], an injective morphism from pairs of words in

alphabet Σ = {a, b} into 3× 3 integral matrices, g(u, v) =
(
n|u| 0 0

0 n|v| 0
σ(u) σ(v) 1

)
(where σ represents

each word as an n-adic number), was used to prove undecidability of the mortality problem
(i.e., the membership problem of the zero matrix) and which later led to many undecidability
results of matrix problems in dimension three, e.g., [12, 24]. Finding new injective morphisms
is hard, but having them gives an opportunity to prove new undecidability results.

In 1999, Cassaigne, Harju and Karhumäki significantly boosted the research on finding
algorithmic solutions for 2 × 2 matrix semigroups by showing that there is no injective
semigroup morphism from pairs of words over any finite alphabet (with at least two elements)
into complex 2× 2 matrices [12]. This result led to substantial interest in finding algorithmic
solutions for such problems as the identity problem, mortality, membership, vector reachability,
freeness etc. for 2× 2 matrices.

For example, in 2007 Gurevich and Schupp [23] showed that the membership problem is
decidable in polynomial time for the finitely generated subgroups of the modular group and
later in 2017 Bell, Hirvensalo and Potapov proved that the identity problem for a semigroup

1 The product of matrices which is equal to the identity is still the identity element after a cyclic shift, so
every element from this product has the inverse.
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generated by matrices from SL(2,Z) is NP-complete by developing a new effective technique to
operate with compressed word representations of matrices and closing the gap on complexity
improving the original EXPSPACE solution proposed in 2005 [15]. The first algorithm for the
membership problem which covers the cases beyond SL(2,Z) and GL(2,Z) has been proposed
in [41] and provides the solution for a semigroup generated by non-singular 2 × 2 integer
matrices. Later, these techniques have been applied to build another algorithm to solve the
membership problem in GL(2,Z) extended by singular matrices [42]. The current limit of
decidability is standing for 2 × 2 matrices which are defined over hypercomplex numbers
(quaternions) for which most of the problems have been shown to be undecidable in [5] and
correspond to reachability problems for 3-sphere rotation.

In our paper, we show that there is no embedding from pairs of words into 3 × 3
integer matrices with determinant one (i.e., into SL(3,Z)), which is a strong evidence that
computational problems in SL(3,Z) are decidable as all known undecidability techniques
for low-dimensional matrices are based on encoding of Turing machine computations via
the Post correspondence problem (PCP) which cannot be applied in SL(3,Z) following our
result. In case of the PCP encoding the matrix products extended by the right multiplication
correspond to the Turing machine simulation and the only known proof alternatives are
recursively enumerable sets and Hilbert’s tenth problem that provide undecidability for
matrix equations, but of very high dimensions [3, 13, 26].

So in analogy to 1999 result from [12] on non-existence of embedding into 2× 2 matrix
semigroups over complex numbers, we expand a horizon of decidability area for matrix
semigroups and show that there is no embedding from a set of pairs of words over a semigroup
alphabet to any matrix semigroup in SL(3,Z). It follows almost immediately that there is no
embedding from a set of pairs of group words into Z3×3.2 The matrix semigroup in SL(3,Z)
has attracted a lot of attention recently as it can be represented by a set of generators and
relations [18, 19] similar to SL(2,Z) where it was possible to convert numerical problems into
symbolic problems and solve them with novel computational techniques; see [4, 15, 41, 42].
Comparing to the relatively simple representation of SL(2,Z) = 〈S, T | S4 = I2, (ST )6 = I2〉,
where S =

( 0 −1
1 0

)
and T = ( 1 1

0 1 ) the case of SL(3,Z) = 〈X,Y, Z | X3 = Y 3 = Z2 = (XZ)3 =
(Y Z)3 = (X−1ZXY )2 = (Y −1ZY X)2 = (XY )6 = I3〉 looks more challenging containing
both non-commutative and partially commutative elements.

As the decidability status of the identity problem in dimension three is still a long standing
open problem, we look for an important subgroup of SL(3,Z), the Heisenberg group H(3,Z),
for which the identity problem could be decidable following our result on non-existence of
embedding. The Heisenberg group is an important subgroup of SL(3,Z) which is useful in
the description of one-dimensional quantum mechanical systems [11, 22, 29]. We show that
the identity problem for a matrix semigroup generated by matrices from H(3,Z) and even
H(3,Q) is decidable in polynomial time. Furthermore, we extend the decidability result for
H(n,Q) in any dimension n. Moreover we tighten the gap between (un)decidability results
for the identity problem substantially reducing the bound on the size of the generator set
from 48 (see [6]) to 8 in SL(4,Z) by developing a novel reduction technique.

2 The idea that such result may hold was motivated by analogy from combinatorial topology, where the
identity problem is decidable for the braid group B3 which is the universal central extension of the
modular group PSL(2,Z) [40], an embedding for a set of pairs of words into the braid group B5 exists,
see [7], and non-existence of embeddings were proved for B4 in [1]. So SL(3,Z) was somewhere in the
goldilocks zone between B3 and B5.
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2 Preliminaries

We say that a semigroup S is generated by a subset G of S if each element of S can be
expressed as a composition of elements of G. In this case, we call G the generating set of S.
Given an alphabet Σ = {a1, . . . , am}, a finite word u is an element of semigroup Σ∗. The
empty word is denoted by ε. Let Γ = {a1, . . . , a`, a

−1
1 , . . . , a−1

` } be a generating set of a free
group FG(Γ). The elements of FG(Γ) are all reduced words over Γ, i.e., words not containing
aia
−1
i or a−1

i ai as a subword. In this context, we call Γ a finite group alphabet, i.e., an
alphabet with an involution. The multiplication of two elements (reduced words) u, v ∈ FG(Γ)
corresponds to the unique reduced word of the concatenation uv. This multiplication is called
concatenation throughout the paper. Later in the encoding of words over a group alphabet
we denote a−1 by a and the alphabet of inverse letters is denoted as Σ−1 = {a−1 | a ∈ Σ}.

In the next lemma, we present an encoding from an arbitrary group alphabet to a binary
group alphabet used in Section 5. The result is crucial as it allows us to present the results
of the above section over the smallest domain.

I Lemma 2 (Birget, Margolis [8]). Let Γ = {z1, . . . , z`, z1, . . . , z`} be a group alphabet and
Γ2 = {c, d, c, d} be a binary group alphabet. Define the mapping α : Γ → FG(Γ2) by
α(zi) = cidci, and α(zi) = cidci, where 1 ≤ i ≤ `. Then α is a monomorphism, that is, an
injective morphism. Note that α can be extended to domain FG(Γ) in the usual way.

The special linear group is SL(n,K) = {M ∈ Kn×n | det(M) = 1}, where K =
Z,Q,R,C, . . .. The identity matrix is denoted by In and the zero matrix is denoted by
0n. The Heisenberg group H(3,K) is formed by the 3× 3 matrices of the form M =

( 1 a c
0 1 b
0 0 1

)
,

where a, b, c ∈ K. It is easy to see that the Heisenberg group is a non-commutative subgroup
of SL(3,K). We can consider the Heisenberg group as a set of all triples with the following
group law: (a1, b1, c1)⊗ (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2 + a1b2). By ψ(M) we denote
the triple (a, b, c) ∈ K3 which corresponds to the upper-triangular coordinates of M . Let M
be a matrix in H(3,K) such that ψ(M) = (a, b, c). We define the superdiagonal vector of M
to be ~v(M) = (a, b). Given two vectors u = (u1, u2) and v = (v1, v2), the cross product of u
and v is defined as u× v = u1v2 − u2v1. Two vectors are parallel if the cross product is zero.

The Heisenberg group can be also defined in higher dimensions. The Heisenberg group
of dimension n over K is denoted by H(n,K) and is the group of square matrices in Kn×n

of the form
(

1 aT c
0 In−2 b
0 0 1

)
, where a,b ∈ Kn−2, c ∈ K. Similar to the Heisenberg group in

dimension three, we can also consider the Heisenberg group in dimension n for any integer
n ≥ 3 as a set of all triples with the following group law: (a1,b1, c1) ⊗ (a2,b2, c2) =
(a1 + a2,b1 + b2, c1 + c2 + a1 ·b2), where a1,a2,b1,b2 ∈ Kn−2 and a1 ·b2 is the dot product
of vectors a1 and b2.

We extend the function ψ to n-dimensional Heisenberg group: For a matrix M , ψ(M)
is the triple (a,b, c) ∈ (Kn−2)2 ×K which corresponds to the upper-triangular coordinates
of M . The product M1M2 has c1 + c2 + a1 · b2 in the upper-right corner whereas M2M1
has c1 + c2 + a2 · b1. The other coordinates are identical as we add numbers in the same
coordinate. Clearly, the two products are equivalent if and only if a1 · b2 = a2 · b1 holds.

I Lemma 3. Let M1 and M2 be two matrices from the Heisenberg group H(n,K) and
ψ(Mi) = (ai,bi, ci) for i = 1, 2. Then M1M2 = M2M1 holds if and only if a1 ·b2 = a2 ·b1.3

3 Note that, in dimension three, the condition can be stated as superdiagonal vectors of M1 and M2 being
parallel.
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3 On embedding from pairs of words into SL(3,K)

In this section, we show that there is no embedding from a set of pairs of words over
a semigroup alphabet to the special linear group SL(3,Z), which can be seen as a strong
evidence about decidability of computational problems for this class. If the injective morphism
would exist, then we could encode Turing machine computations via the PCP which would
provide undecidability proofs for various membership problems in SL(3,Z).

Let Σ = {0, 1}. The monoid Σ∗ × Σ∗ has a generating set S = {(0, ε), (1, ε), (ε, 0), (ε, 1)},
where ε is the empty word. We simplify the notation by setting a = (0, ε), b = (1, ε), c = (ε, 0)
and d = (ε, 1). It is easy to see that we have the following relations:

ac = ca, bc = cb, ad = da, bd = db. (1)

In other words, a and b commute with c and d. Furthermore, these are the only relations.
That is, a and b do not commute with each other, and neither do c and d. The monoid Σ∗×Σ∗
is a partially commutative monoid or a trace monoid. A necessary and sufficient conditions
for existence of an embedding of trace monoids into N2×2 was given in [14] but, to the authors’
best knowledge, there are no similar results even for N3×3. Let ϕ : Σ∗ × Σ∗ → SL(3,K) be
an injective morphism and denote A = ϕ(a), B = ϕ(b), C = ϕ(c) and D = ϕ(d). Our goal is
to show that ϕ does not exist for K = Z. Additionally, we provide an embedding for K = Q.
Unfortunately, the technique developed in [12], where the contradiction was derived from
simple relations, resulting from matrix multiplication, cannot be used for a case of SL(3,Z)
as it creates a large number of equations which do not directly limit the existence of ϕ. We
found new techniques to show non-existence of ϕ by analysis of eigenvalues and the Jordan
normal forms.

In the next theorem, we show that if we embed the generators of Σ∗ × Σ∗ into SL(3,Z),
then, for each Jordan normal form, the matrices should satisfy additional equations.

I Theorem 4. There is no injective morphism ϕ : Σ∗ × Σ∗ → SL(3,Z) for any |Σ| ≥ 2.

Proof (Sketch). Due to the obvious symmetries, it is enough to show that the claim holds
for A. We conjugate the generators to transform A into Jordan normal form. Note that
Jordan normal form J of an integer matrix A does not have to be integer or even real, but
the contradictions we derive apply also to the original matrices. Also note that matrices J
and A have integer trace and determinants are one. There are six possible Jordan normal
forms for 3 × 3 matrices:

(
λ 0 0
0 µ 0
0 0 ν

)
,
(
λ 0 0
0 µ 0
0 0 µ

)
,
(
λ 0 0
0 µ 1
0 0 µ

)
,
(
λ 0 0
0 λ 0
0 0 λ

)
,
(
λ 1 0
0 λ 0
0 0 λ

)
, or

(
λ 1 0
0 λ 1
0 0 λ

)
. The

first and the fourth normal forms can be ruled out as the matrices commute with diagonal
matrices, and then we prove that C and D commute with each other. In the second form,
it follows from the fact that A has an integer trace and the determinant is one, that the
eigenvalues are λ = 2 and µ = 1

2 . Then, we can rule this form out as also the trace of A2

should be an integer which does not hold for these eigenvalues. The third form is ruled
out as from the relations AC = CA and AD = DA, we can solve C and D, and see that
necessary also CD = DC holds. The final form is similar to the third Jordan normal form
and is ruled out in a similar manner. The fifth form requires additional considerations. We

solve most of the elements of C =
(
a b c
d e f
g h `

)
and D =

(
a′ b′ c′

d′ e′ f ′

g′ h′ `′

)
from equations AC = CA

and AD = DA. To solve the remaining elements, we need to do further case analysis and we
prove that matrices C and D do not commute if and only if ch′ 6= c′h. We further solve B
from BC = CB and BD = DB, and show that necessarily CD = DC, which is not a valid
relation. This is a brief sketch of high-level steps of showing that the injective morphism
does not exist; see the complete proof in [27]. J
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Note that some of the Jordan normal forms of the previous theorem can be ruled out
even without assuming that the original matrices were in SL(3,Z). Using these additional
constraints on matrices, we are able to find an embedding into SL(3,Q).

I Theorem 5. Let Σ = {0, 1}. The morphism ϕ : Σ∗ × Σ∗ → SL(3,Q), defined by

ϕ((0, ε)) =
( 4 0 0

0 1
2 0

0 0 1
2

)
, ϕ((1, ε)) =

(
9 1

3 0
0 1

3 0
0 0 1

3

)
, ϕ((ε, 0)) =

( 1
2 0 0
0 1

2 0
0 0 4

)
and ϕ((ε, 1)) =

(
1
3 0 0
0 1

3 0
0 1

3 9

)
is an embedding.

We can further extend the non-existence result to words over group alphabets. The only
known results for undecidability of the identity problem rely on embedding of pairs of group
words into matrices (Theorem 13 and [6]) suggesting that the problem might be decidable in
dimension three over integers.

I Corollary 6. There is no injective morphism ϕ : FG(Γ)× FG(Γ)→ Z3×3 for any binary
group alphabet Γ.

Proof. We proceed by contradiction. Assume that there exists such an injective morphism ϕ

from the set of pairs of words over a group alphabet to the set of matrices in Z3×3. Suppose
that A = ϕ((a, ε)), where a ∈ Γ. Then the inverse matrix A−1 corresponding to (a, ε) must
be in Z3×3. This implies that the determinant of A is ±1 because otherwise the determinant
of A−1 becomes a non-integer. Consider then a morphism ψ such that ψ(x) = ϕ(x)ϕ(x) for
each x ∈ FG(Γ)× FG(Γ). It is clear that also ψ is injective and that the determinant of the
image is 1. By Theorem 4, such injective morphism ψ does not exist even from semigroup
alphabets and hence neither does ϕ. J

4 Decidability of the identity problem in the Heisenberg group

In this section, we prove that the identity problem is decidable for the Heisenberg group
which is an important subgroup of the special linear group. First, we provide more intuitive
solution for dimension three, i.e., H(3,Q), which still requires a number of techniques to
estimate possible values of elements under permutations in matrix products. In the end of
the section, we generalize the result for H(n,Q) using analogies in the solution for H(3,Q).

We prove that the identity problem for the Heisenberg group over rationals is decidable
by analysing the behaviour of multiplications especially in the upper-right coordinate of
matrices. From Lemma 3, it follows that the matrix multiplication is commutative in the
Heisenberg group if and only if matrices have pairwise parallel superdiagonal vectors. So we
analyse two cases of products for matrices with pairwise parallel and none pairwise parallel
superdiagonal vectors and then provide algorithms that solve the problem in polynomial
time. The most difficult part is showing that only limited number of conditions must be
checked to guarantee the existence of a product that results in the identity.

I Lemma 7. Let G = {M1, . . . ,Mr} ⊆ H(3,Q) be a set of matrices from the Heisenberg group
such that superdiagonal vectors of matrices are pairwise parallel. If there exists a sequence of
matrices M = Mi1 · · ·Mik , where ij ∈ [1, r] for all 1 ≤ j ≤ k, such that ψ(M) = (0, 0, c) for
some c ∈ Q, then, c =

∑k
j=1(cij −

q
2a

2
ij

) for some q ∈ Q dependent only on G.

Proof. Consider the sequence Mi1 · · ·Mik and let Mi =
( 1 ai ci

0 1 bi
0 0 1

)
for each i ∈ [1, r]. Since

the superdiagonal vectors are parallel, i.e., aibj = biaj for any i, j ∈ [1, r], we have q = bi

ai
∈ Q
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and thus aiq = bi for all i ∈ [1, r]. Let us consider the product of the matrices. Then the
value c is equal to

c =
k∑

j=1

cij +
k−1∑
`=1

(
`∑

j=1

aij

)
ai`+1 q =

k∑
j=1

cij + q

2

(
k∑

`=1

k∑
j=1

ai` aij −
k∑

j=1

a2
ij

)
=

k∑
j=1

(cij − q

2a2
ij

).

Note that if aij = 0 for some ij ∈ [1, r], then due to superdiagonal vectors being parallel,
aij = 0 for all ij and the value c is equal to

∑k
j=1 cij . J

Note that the previous lemma also holds for H(3,R). From the previous lemma we further
see that the value c is preserved if the matrices are reordered due to their commutativity.

It is worth mentioning that the identity problem in the Heisenberg group is decidable if
any two matrices have pairwise parallel superdiagonal vectors since now the problem reduces
to solving a system of two linear homogeneous Diophantine equations. Hence, it remains
to consider the case when there exist two matrices with non-parallel superdiagonal vectors
in the sequence generating the identity matrix. In the following, we prove that the identity
matrix is always constructible if we can construct any matrix with the zero superdiagonal
vector by using matrices with non-parallel superdiagonal vectors.

I Lemma 8. Let S = 〈M1, . . . ,Mr〉 ⊆ H(3,Q) be a finitely generated matrix semigroup.
Then the identity matrix exists in S if there exists a sequence of matrices Mi1 · · ·Mik , where
ij ∈ [1, r] for all 1 ≤ j ≤ k, satisfying the following properties:
(i) ψ(Mi1 · · ·Mik ) = (0, 0, c) for some c ∈ Q, and
(ii) ~v(Mij1

) and ~v(Mij2
) are not parallel for some j1, j2 ∈ [1, k].

To prove Lemma 8, we show that from a matrix M = Mi1 · · ·Mik , such that ψ(M) =
(0, 0, c), satisfying the conditions of the lemma, we can construct a matrix M ′ such that
ψ(M ′) = (0, 0, c′) and cc′ < 0. Given that Mi is the ith generator and ψ(Mi) = (ai, bi, ci),
we have

∑k
j=1 aij = 0 and

∑k
j=1 bij = 0. Without loss of generality, c > 0, and the following

also holds:

c =
k−1∑
`=1

∑̀
j=1

aij bi`+1 +
k∑
j=1

cij > 0. (2)

If the matrix semigroup S ⊆ H(3,Q) has two different matrices N1 and N2 such that
ψ(N1) = (0, 0, c1) and ψ(N2) = (0, 0, c2) and c1c2 < 0, then the identity matrix exists in S.
Indeed, let ψ(N1) = (0, 0, p1

q1
) and ψ(N2) = (0, 0, p2

q2
), where p1, q1, q2 ∈ Z are positive and

p2 ∈ Z is negative. Then it is easy to see that the matrix N−q1p2
1 Nq2p1

2 exists in S and that
ψ(N−q1p2

1 Nq2p1
2 ) = (0, 0, 0).

To construct the matrix M ′, we first classify the matrices into four types as follows. A
matrix with a superdiagonal vector (a, b) is classified as

1) the (+,+)-type if a, b > 0, 2) the (+,−)-type if a ≥ 0 and b ≤ 0,
3) the (−,−)-type if a, b < 0, and 4) the (−,+)-type if a < 0 and b > 0.

Let G = {M1, . . . ,Mr} be the generating set of the matrix semigroup S. Then G =
G(+,+) tG(+,−) tG(−,−) tG(−,+) such that G(ξ1,ξ2) is the set of matrices of the (ξ1, ξ2)-type,
where ξ1, ξ2 ∈ {+,−}.

Recall that we assume M = Mi1 · · ·Mik and ψ(M) = (0, 0, c) for some c > 0. The
main idea of the proof is to generate a matrix M ′ such that ψ(M ′) = (0, 0, c′) for some
c′ < 0 by duplicating the matrices in the sequence M = Mi1 · · ·Mik multiple times and
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b1 b2 b3 b4 |b5| |b6| |b7| |b8| |b9| b10 b11 b12 b13

a6

a5

a4

a3

a2

a1

|a7|

|a8|

|a9|
|a10|
|a11|
|a12|
|a13|

: positive
: negative

: positive
: negative

b(+,+)m |b(+,−)|m |b(−,−)|m b(−,+)m

|a(−,+)|m

|a(−,−)|m

a(+,+)m

a(+,−)m

Figure 1 The histogram on the left describes how the upper-right corner of M1 · · · M13 is
computed by multiplications. The blue dotted (red lined) area implies the value which will be
added to (subtracted from) the upper-right corner of the final matrix after multiplications of
matrices in the sequence. The histogram on the right describes how the upper-right corner of
Mm

(+,+)M
m
(+,−)M

m
(−,−)M

m
(−,+) is computed by multiplications. Here m = 8.

reshuffling. Note that any permutation of the sequence generating the matrix M such
that ψ(M) = (0, 0, c) still generates matrices M ′ such that ψ(M ′) = (0, 0, c′) since the
multiplication of matrices exchanges the first two coordinates in a commutative way. Also
note that there exists a permutation such that c 6= c′ as we assumed that at least two matrices
in the sequence do not commute. Moreover, we can still obtain matrices M ′′ such that
ψ(M ′′) = (0, 0, c′′) for some c′′ ∈ Q if we shuffle two different permutations of the sequence
Mi1 · · ·Mik by the same reason.

Let us illustrate the idea with the following example. See Figure 1 for pictorial descriptions
of the idea. Let {Mi | 1 ≤ i ≤ 4} ⊆ G(+,+), {Mi | 5 ≤ i ≤ 7} ⊆ G(+,−), {Mi | 8 ≤ i ≤
9} ⊆ G(−,−), and {Mi | 10 ≤ i ≤ 13} ⊆ G(−,+). Then assume that M1 · · ·M13 =

(
1 0 x
0 1 0
0 0 1

)
,

where x is computed by (2). As we mentioned above, x changes if we change the order
of multiplicands. In this example, we first multiply (+,+)-type matrices and accumulate
the values in the superdiagonal coordinates since these matrices have positive values in
the coordinates. Indeed, the blue dotted area implies the value we add to the upper-right
corner by multiplying such matrices. Then we multiply (+,−)-type matrices and still increase
the ‘a’-value. The ‘b’-values in (+,−)-type matrices are negative thus, the red lined area is
subtracted from the upper-right corner. We still subtract by multiplying (−,−)-type matrices
since the accumulated ‘a’-value is still positive and ‘b’-values are negative. We finish the
multiplication by adding exactly the last blue dotted area to the upper-right corner. It is
easy to see that the total subtracted value is larger than the total added value.

However, we cannot guarantee that x is negative since
∑13
i=1 ci could be larger than the

contribution from the superdiagonal coordinates. This is why we need to copy the sequence
of matrices generating the matrix corresponding to the triple (0, 0, c) for some c ∈ Q. In
Figure 1, we describe an example where we duplicate the sequence eight times and shuffle
and permute it in order to minimize the value in the upper-right corner. Now the lengths of
both axes are m (m = 8 in this example) times larger than before and it follows that the
area also grows quadratically in m. Since the summation m ·

∑13
i=1 ci grows linearly in m,

we have x < 0 for large enough m. In [27], we formally prove this by bounding contributions
of each matrix type and showing that the coefficient of the highest power of m is negative.

It should be noted that there are some subcases where some matrix types are not present
in the product. In each case we need to show that the same idea can be used to construct a
matrix M ′ such that ψ(M ′) = (0, 0, c′), where c′ < 0. The full analysis of all cases can be
found in [27].
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I Theorem 9. The identity problem for a semigroup generated by matrices from H(3,Q) is
in polynomial time.

Proof. Let S be the matrix semigroup in H(3,Q) generated by the set G = {M1, . . . ,Mr}.
There are two possible cases of having the identity matrix in the matrix semigroup in H(3,Q).
Either the identity matrix is generated by a product of matrices where all superdiagonal
vectors are parallel or there are at least two matrices with non-parallel superdiagonal vectors.

Consider the first case. Lemma 7 provides a formula to compute the value in the top
corner regardless of the order of the multiplications. That is, we need to solve a system of
linear homogeneous Diophantine equations with solutions over non-negative integers. We
partition the set G into several disjoint subsets G1, . . . , Gs, where s is at most r, and each
subset contains matrices with parallel superdiagonal vectors. Since superdiagonal vectors
being parallel is a transitive and symmetric property, each matrix needs to be compared
to a representative of each subset. If there are no matrices with parallel superdiagonal
vectors, then there are r subsets Gi containing exactly one matrix and O(r2) tests were done.
Let us consider Gi = {Mk1 , . . . ,Mksi

}, i.e., one of the subsets containing si matrices and
ψ(Mkj ) = (akj , bkj , ckj ). By Lemma 7, the value ckj −

qi

2 a
2
kj
, for a fixed qi ∈ Q, is added to

the top corner when matrix Mkj
is multiplied.

We solve the system of two linear homogeneous Diophantine equations Ay = 0, where

A =
(

ak1 ak2 · · · aksi

ck1 −
qi

2 a
2
k1

ck2 −
qi

2 a
2
k2
· · · cksi

− qi

2 a
2
ksi

)
and yT ∈ Nsi . The first row is the constraint that guarantees that the first component
of the superdiagonal is zero in the matrix product constructed from a solution. Since the
superdiagonal vectors are parallel, it also implies that the whole vector is zero. The second
row guarantees that the upper corner is zero.

It is obvious that the identity matrix is in the semigroup if we have a solution in the
system of two linear homogeneous Diophantine equations for any subset Gi. That is, we
need to solve at most r systems of two linear homogeneous Diophantine equations.

Next, we consider the second case, where by Lemma 8, it is enough to check whether
there exists a sequence of matrices generating a matrix with zero superdiagonal vector
and containing two matrices with non-parallel superdiagonal vectors. Let us say that
Mi1 ,Mi2 ∈ G, where 1 ≤ i1, i2 ≤ r are the two matrices. Recall that G = {M1, . . . ,Mr} is a
generating set of the matrix semigroup and let ψ(Mi) = (ai, bi, ci) for all 1 ≤ i ≤ r. We can
see that there exists such a product containing the two matrices by solving a system of two
linear homogeneous Diophantine equations of the form By = 0, where B =

( a1 a2 ··· ar

b1 b2 ··· br

)
,

with an additional constraint that the numbers in the solution y that correspond to Mi1

and Mi2 are non-zero since we must use these two matrices in the product. We repeat this
process at most r(r− 1) times until we find a solution. Therefore, the problem reduces again
to solving at most O(r2) systems of two linear homogeneous Diophantine equations.

Finally, we conclude the proof by mentioning that the identity problem for matrix semig-
roups in the Heisenberg group over rationals H(3,Q) can be decided in polynomial time as
the problem of existence of a positive integer solution to a system of linear homogeneous Dio-
phantine equations is in polynomial time. Note that if the system is non-homogeneous, then
solvability of a system of linear Diophantine equations with solutions over positive integers
is an NP-complete problem; see for example [38]. Indeed, a system of linear homogeneous
Diophantine equations with solutions over non-negative integers can be converted to a linear
programming problem with a solution over rationals which is known to be solvable in poly-
nomial time; see e.g., [43]. It is easy to add additional constraints to the linear programming
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that ensure that solutions are positive and non-zero. As the system is homogeneous, any
solution can be converted to an integer solution by multiplying by the denominators. J

Next, we generalize the above algorithm for the identity problem in the Heisenberg
group H(3,Q) to the domain of the Heisenberg groups for any dimension over the rational
numbers. Similarly to the case of dimension three, we establish the following result for the
case of matrices where multiplication is commutative.

I Lemma 10. Let G = {M1, . . . ,Mr} ⊆ H(n,Q) be a set of matrices from the Heisenberg
group such that ψ(Mi) = (ai,bi, ci) and ψ(Mj) = (aj ,bj , cj) and ai · bj = aj · bi for any
1 ≤ i 6= j ≤ r. If there exists a sequence of matrices M = Mi1 · · ·Mik , where ij ∈ [1, r] for
all 1 ≤ j ≤ k, such that ψ(M) = (0,0, c) for some c ∈ Q, then c =

∑k
j=1(cij − 1

2 aij · bij ).

Lemma 8 does not generalize to H(n,Q) in the same way as we cannot classify matrices
according to types to control the value in upper-right corner, so we use a different technique
to prove that the value in the upper corner will be diverging to both positive and negative
infinity quadratically as we repeat the same sequence generating any matrix M such that
ψ(M) = (0,0, c).

I Lemma 11. Let S = 〈M1, . . . ,Mr〉 ⊆ H(n,Q) be a finitely generated matrix semigroup.
Then the identity matrix exists in S if there exists a sequence of matrices Mi1 · · ·Mik , where
ij ∈ [1, r] for all 1 ≤ j ≤ k, satisfying the following properties:
(i) ψ(Mi1 · · ·Mik ) = (0,0, c) for some c ∈ Q, and
(ii) aij1

· bij2
6= aij2

· bij1
for some j1, j2 ∈ [1, k], where ψ(Mi) = (ai,bi, ci) for 1 ≤ i ≤ r.

Proof. From the first property claimed in the lemma, we know that any permutation of
the sequence of matrix multiplications of Mi1 · · ·Mik results in matrices M ′ such that
ψ(M ′) = (0,0, y) for some y ∈ Q since the multiplication of matrices in the H(n,Q) performs
additions of vectors which is commutative in the top row and the rightmost column excluding
the upper-right corner. From the commutative behaviour in the horizontal and vertical
vectors of matrices in the Heisenberg group, we also know that if we duplicate the matrices
in the sequence Mi1 · · ·Mik and multiply the matrices in any order, then the resulting matrix
has a non-zero coordinate in the upper triangular coordinates only in the upper right corner.

Now let j1, j2 ∈ [1, k] be two indices such that aij1
·bij2

6= aij2
·bij1

as claimed in the lemma.
Then consider the following matrix Md that can be obtained by duplicating the sequence
Mi1 · · ·Mik of matrices into ` copies and shuffling the order as follows: Md = M `

ij1
M `
ij2
M `
x,

where Mx is a matrix that is obtained by multiplying the matrices in Mi1 · · ·Mik except
the two matrices Mj1 and Mj2 . Then it is clear that ψ(Md) = (0,0, d) for some d. Let
ψ(Mx) = (ax,bx, cx). Then it is easy to see that aij1

+aij2
+ax = 0 and bij1

+bij2
+bx = 0.

Consider then a product, where order ofMj1 andMj2 is swapped. That is,Me = M `
ij2
M `
ij1
M `
x

and let us denote ψ(Me) = (0,0, e) for some e ∈ Q. By solving values d and e, we notice
that the coefficient of `2 in d is aij1

· bij2
− aij2

· bij1
and in e is aij2

· bij1
− aij1

· bij2
. As

we assumed that aij1
· bij2

6= aij2
· bij1

, the coefficients are of different sign. Hence, for
sufficiently large `, the values d and e have opposite signs. Then, as in the proof Lemma 8,
the identity matrix always exists in the semigroup as we can multiply these two matrices
correct number of times to have zero in the upper right coordinate as well. J

Next, we prove that the identity problem is decidable for n-dimensional Heisenberg
matrices. In contrast to Theorem 9, we do not claim that the problem is decidable in
polynomial time since one of the steps of the proof is to partition matrices according to dot
products which cannot be extended to higher dimensions than three. For higher dimensions,
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partitioning matrices according to dot products takes an exponential time in the number of
matrices in the generating set. Note that if the size of the generating set is fixed, i.e., only
the matrices are part of the input, then the problem remains in P.

I Theorem 12. The identity problem for a semigroup generated by matrices from H(n,Q)
is decidable.

Proof. Similarly to the proof of Theorem 9, there are two ways the identity matrix can be
generated. Either all the matrices commute or there are at least two matrices that do not
commute. Let S be the matrix semigroup in H(n,Q) generated by the set G = {M1, . . . ,Mr}.
Consider matrices N1, N2 and N3, such that ψ(N1) = (a1,b1, c1), ψ(N2) = (a2,b2, c2) and
ψ(N3) = (a3,b3, c3). If a1 · b2 = a2 · b1 and a2 · b3 = a3 · b2, it does not imply that
a1 ·b3 = a3 ·b1. Therefore, the number of subsets of G, where each subset contains matrices
that commute with other matrices in the same subset, is exponential in r as two subsets
are not necessarily disjoint. Now we examine whether it is possible to generate the identity
matrix by multiplying matrices in each subset by Lemma 10. If it is not possible, we need
to consider the case of having two matrices that do not commute with each other in the
product with zero values in the upper-triangular coordinates except the corner. Let us say
that Mi1 ,Mi2 ∈ G, where 1 ≤ i1, i2 ≤ r are the two matrices. Recall that G = {M1, . . . ,Mr}
is a generating set of the matrix semigroup and let ψ(Mi) = (ai,bi, ci) for all 1 ≤ i ≤ r.

Then we can see that there exists such a product by solving a system of 2(n− 2) linear
homogeneous Diophantine equations of the form By = 0, where B =

(
aT

1 ···a
T
r

bT
1 ···b

T
r

)
, with an

additional constraint that the values in the solution y that correspond to Mi1 and Mi2 are
non-zero since we must use these two matrices in the product. We repeat this process at most
r(r−1) times until we find a solution. Hence, we can view the identity problem in H(n,Q) as
the problem of solving systems of 2(n− 2) linear homogeneous Diophantine equations with
some constraints on the solution. As we can solve systems of linear homogeneous Diophantine
equations, we conclude that the identity problem in H(n,Q) is also decidable. J

5 The identity problem in matrix semigroups in dimension four

Now we tighten the decidability gap proving undecidability for 4 × 4 matrices, when the
generating set has eight matrices (reducing from 48), with a new technique exploiting the
anti-diagonal entries.

I Theorem 13. Given a semigroup S generated by eight 4× 4 integer matrices with determ-
inant one, determining whether the identity matrix belongs to S is undecidable.

Proof. We prove the claim by reducing from the PCP. We shall use an encoding to embed
an instance of the PCP into a set of 4× 4 integer matrices. An instance of the PCP consists
of two morphisms g, h : Σ∗ → B∗, where Σ and B are alphabets. A nonempty word u ∈ Σ∗
is a solution of an instance (g, h) if it satisfies g(u) = h(u).

Let α be the mapping of Lemma 2. We also define a monomorphism f : FG(Γ2)→ Z2×2 as
f(a) = ( 1 2

0 1 ), f(a) =
( 1 −2

0 1
)
, f(b) = ( 1 0

2 1 ) and f(b) =
( 1 0
−2 1

)
. Recall that the matrices ( 1 2

0 1 )
and ( 1 0

2 1 ) generate a free subgroup of SL(2,Z) [31]. The composition of two monomorphisms α
and f gives us the embedding from an arbitrary group alphabet into SL(2,Z). We use the
composition of two monomorphisms α and f to encode a set of pairs of words over an
arbitrary group alphabet into a set of 4× 4 integer matrices in SL(4,Z) and denote it by β.

Let (g, h) be an instance of the PCP, where g, h : {a1, . . . , an}∗ → Σ∗2, where Σ2 =
{a, b}. Without loss of generality, we can assume that the solution starts with the letter
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a1. Moreover, we assume that this is the only occurence of a1. We define the alphabet
Γ = Σ2 ∪ Σ−1

2 ∪ ΣB ∪ Σ−1
B , where ΣB = {q0, q1, p0, p1} is the alphabet for the border letters

that enforce the form of a solution.
Let us define the following sets of words W1 ∪W2 ⊆ FG(Γ)× FG(Γ), where

W1 = {(q0aq0, p0ap0), (q0bq0, p0bp0) | a, b ∈ Σ2, q0, p0 ∈ ΣB} and

W2 =
{

(q0g(a1)q1, p0h(a1)p1), (q1g(ai)q1, p1h(ai)p1) | 1 < i ≤ n, q0, q1, p0, p1 ∈ ΣB
}
.

Intuitively, the words from set W1 are used to construct words over Σ2 and the words from
set W2 to cancel them according to the instance of the PCP.

Let us prove that (q0q1, p0p1) ∈ FG(W1 ∪W2) if and only if the PCP has a solution. It is
easy to see that any pair of non-empty words in FG(W1) is of the form (q0wq0, p0wp0) for
w ∈ Σ+

2 . Then there exists a pair of words in FG(W2) of the form (q0wq1, p0wp1) for some
word w ∈ Σ+

2 if and only if the PCP has a solution. Thus, (q0q1, p0p1) can be constructed
by concatenating pairs of words in W1 and W2 if and only if the PCP has a solution.

For each pair of words (u, v) ∈ FG(W1∪W2), we define a matrix Au,v to be
(
β(u) 02
02 β(v)

)
∈

SL(4,Z), where 02 is the zero matrix in Z2×2. Moreover, we define the following matrix

Bq1q0,p1p0 =
(

02 β(q1q0)
β(p1p0) 02

)
∈ SL(4,Z).

Let S be a matrix semigroup generated by the set {Au,v, Bq1q0,p1p0 | (u, v) ∈W1 ∪W2}.
We already know that the pair (q0q1, p0p1) of words can be generated by concatenating
words in W1 and W2 if and only if the PCP has a solution. The matrix semigroup S has the
corresponding matrix Aq0q1,p0p1 and thus,

(
β(q0q1) 02

02 β(p0p1)

)(
02 β(q1q0)

β(p1p0) 02

)
=
(

02 β(ε)
β(ε) 02

)
∈

S. Now, the identity matrix I4 exists in the semigroup S by repeating this product twice.
Now we prove that the identity matrix does not exist in S if the PCP has no solution. It

is easy to see that we cannot obtain the identity matrix only by multiplying ‘A’ matrices
since there is no possibility of cancelling every border letter. We need to multiply the
matrix Bq1q0,p1p0 with a product of ‘A’ matrices at some point to reach the identity matrix.
Note that the matrix Bq1q0,p1p0 cannot be the first matrix of the product, followed by the ‘A’
matrices, because the upper right block of Bq1q0,p1p0 , which corresponds to the first word of
the pair, should be multiplied with the lower right block of ‘A’ matrix, which corresponds to
the second word of the pair.

Suppose that the ‘A’ matrix is of form
(
β(q0uq1) 02

02 β(p0vp1)

)
. Since the PCP instance has

no solution, either u or v is not the empty word. We multiply Bq1q0,p1p0 to the matrix and
then obtain the following matrix

(
β(q0uq1) 02

02 β(p0vp1)

)(
02 β(q1q0)

β(p1p0) 02

)
=
(

02 β(q0uq0)
β(p0vp0) 02

)
.

We can see that either the upper right part or the lower left part cannot be β(ε), which
actually corresponds to the identity matrix in Z2×2. Now the only possibility of reaching the
identity matrix is to multiply matrices which have SL(2,Z) matrices in the anti-diagonal
coordinates like Bq1q0,p1p0 . However, we cannot cancel the parts because the upper right
block (the lower left block) of the left matrix is multiplied with the lower left block (the
upper right block) of the right matrix as follows

( 02 A
B 02

)( 02 C
D 02

)
=
(
AD 02
02 BC

)
, where A,B,C

and D are matrices in Z2×2. As the first word of the pair is encoded in the upper right block
of the matrix and the second word is encoded in the lower left block, it is not difficult to see
that we cannot cancel the remaining blocks.

Currently, the undecidability bound for the PCP is five [34] and thus the semigroup S
is generated by eight matrices. Recall that in the beginning of the proof, we assumed that
letter a1 of the PCP is used exacly once and is the first letter of a solution. This property is
in fact present in [34]. J
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Theorem 13 implies smaller undecidability bounds for the special diagonal membership
problem from 14 [24] to eight and for the identity problem in H(Q)2×2 from 48 to eight [6].

References
1 Andrei M. Akimenkov. Subgroups of the braid group B4. Mathematical notes of the

Academy of Sciences of the USSR, 50(6):1211–1218, 1991. doi:10.1007/BF01158260.
2 László Babai, Robert Beals, Jin-yi Cai, Gábor Ivanyos, and Eugene M. Luks. Multiplicative

equations over commuting matrices. In Proceedings of SODA 1996, pages 498–507. SIAM,
1996. URL: http://dl.acm.org/citation.cfm?id=313852.314109.

3 Paul Bell, Vesa Halava, Tero Harju, Juhani Karhumäki, and Igor Potapov. Matrix equa-
tions and Hilbert’s Tenth Problem. International Journal of Algebra and Computation,
18(08):1231–1241, dec 2008. doi:10.1142/s0218196708004925.

4 Paul C. Bell, Mika Hirvensalo, and Igor Potapov. The identity problem for matrix semig-
roups in SL(2,Z) is NP-complete. In Proceedings of SODA 2017, pages 187–206. SIAM,
2017. doi:10.1137/1.9781611974782.13.

5 Paul C. Bell and Igor Potapov. Reachability problems in quaternion matrix and rotation
semigroups. Information and Computation, 206(11):1353–1361, 2008. doi:10.1016/j.ic.
2008.06.004.

6 Paul C. Bell and Igor Potapov. On the undecidability of the identity correspondence prob-
lem and its applications for word and matrix semigroups. International Journal of Found-
ations of Computer Science, 21(6):963–978, 2010. doi:10.1142/S0129054110007660.

7 Vladimir N. Bezverkhnii and Irina V. Dobrynina. Undecidability of the conjugacy problem
for subgroups in the colored braid group R5. Matematicheskie Zametki, 65(1):15–22, 1999.
doi:10.1007/BF02675004.

8 Jean-Camille Birget and Stuart W. Margolis. Two-letter group codes that preserve aperi-
odicity of inverse finite automata. Semigroup Forum, 76:159–168, 2008. doi:10.1007/
s00233-007-9024-6.

9 Kenneth R. Blaney and Andrey Nikolaev. A PTIME solution to the restricted conjugacy
problem in generalized Heisenberg groups. Groups Complexity Cryptology, 8(1):69–74, 2016.
doi:10.1515/gcc-2016-0003.

10 Vincent D. Blondel and Alexandre Megretski, editors. Unsolved problems in mathematical
systems and control theory. Princeton University Press, 2004.

11 Jean-Luc Brylinski. Loop spaces, characteristic classes, and geometric quantization.
Birkhäuser, 1993.

12 Julien Cassaigne, Tero Harju, and Juhani Karhumäki. On the undecidability of freeness of
matrix semigroups. International Journal of Algebra and Computation, 9(03n04):295–305,
1999. doi:10.1142/S0218196799000199.

13 Émilie Charlier and Juha Honkala. The freeness problem over matrix semigroups and
bounded languages. Information and Computation, 237:243–256, 2014. doi:10.1016/j.
ic.2014.03.001.

14 Christian Choffrut. A remark on the representation of trace monoids. Semigroup Forum,
40(1):143–152, 1990. doi:10.1007/bf02573262.

15 Christian Choffrut and Juhani Karhumäki. Some decision problems on integer matrices.
RAIRO - Theoretical Informatics and Applications, 39(1):125–131, 2005. doi:10.1051/
ita:2005007.

16 Ventsislav Chonev, Joël Ouaknine, and James Worrell. The orbit problem in higher dimen-
sions. In Proceedings of STOC 2013, pages 941–950. ACM, 2013. doi:10.1145/2488608.
2488728.

17 Ventsislav Chonev, Joël Ouaknine, and James Worrell. On the complexity of the orbit
problem. Journal of the ACM, 63(3):23:1–23:18, 2016. doi:10.1145/2857050.

ICALP 2018

http://dx.doi.org/10.1007/BF01158260
http://dl.acm.org/citation.cfm?id=313852.314109
http://dx.doi.org/10.1142/s0218196708004925
http://dx.doi.org/10.1137/1.9781611974782.13
http://dx.doi.org/10.1016/j.ic.2008.06.004
http://dx.doi.org/10.1016/j.ic.2008.06.004
http://dx.doi.org/10.1142/S0129054110007660
http://dx.doi.org/10.1007/BF02675004
http://dx.doi.org/10.1007/s00233-007-9024-6
http://dx.doi.org/10.1007/s00233-007-9024-6
http://dx.doi.org/10.1515/gcc-2016-0003
http://dx.doi.org/10.1142/S0218196799000199
http://dx.doi.org/10.1016/j.ic.2014.03.001
http://dx.doi.org/10.1016/j.ic.2014.03.001
http://dx.doi.org/10.1007/bf02573262
http://dx.doi.org/10.1051/ita:2005007
http://dx.doi.org/10.1051/ita:2005007
http://dx.doi.org/10.1145/2488608.2488728
http://dx.doi.org/10.1145/2488608.2488728
http://dx.doi.org/10.1145/2857050


132:14 On the Identity Problem for the Special Linear Group and the Heisenberg Group

18 Marston Conder, Edmund Robertson, and Peter Williams. Presentations for 3-dimensional
special linear groups over integer rings. Proceedings of the American Mathematical Society,
115(1):19–26, 1992. doi:10.2307/2159559.

19 Marston D. E. Conder. Some unexpected consequences of symmetry computations. In
SIGMAP 2014, volume 159 of PROMS, pages 71–79. Springer, 2016. doi:10.1007/
978-3-319-30451-9_3.

20 Jintai Ding, Alexei Miasnikov, and Alexander Ushakov. A linear attack on a key exchange
protocol using extensions of matrix semigroups. IACR Cryptology ePrint Archive, 2015:18,
2015.

21 Esther Galby, Joël Ouaknine, and James Worrell. On matrix powering in low dimensions.
In Proceedings of STACS 2015, volume 30 of LIPIcs, pages 329–340, 2015. doi:10.4230/
LIPIcs.STACS.2015.329.

22 Razvan Gelca and Alejandro Uribe. From classical theta functions to topological quantum
field theory. In The influence of Solomon Lefschetz in geometry and topology, volume
621 of Contemprorary Mathematics, pages 35–68. American Mathematical Society, 2014.
doi:10.1090/conm/621.

23 Yuri Gurevich and Paul Schupp. Membership problem for the modular group. SIAM
Journal of Computing, 37(2):425–459, 2007. doi:10.1137/050643295.

24 Vesa Halava, Tero Harju, and Mika Hirvensalo. Undecidability bounds for integer
matrices using Claus instances. International Journal of Foundations of Computer Sci-
ence, 18(5):931–948, 2007. doi:10.1142/S0129054107005066.

25 Juha Honkala. A Kraft-McMillan inequality for free semigroups of upper-triangular
matrices. Information and Computation, 239:216–221, 2014. doi:10.1016/j.ic.2014.
09.002.

26 Juha Honkala. Products of matrices and recursively enumerable sets. Journal of Computer
and System Sciences, 81(2):468–472, 2015. doi:10.1016/j.jcss.2014.10.004.

27 Sang-Ki Ko, Reino Niskanen, and Igor Potapov. On the identity problem for the special
linear group and the Heisenberg group. CoRR, abs/1706.04166, 2017. URL: https://
arxiv.org/abs/1706.04166, arXiv:1706.04166.

28 Daniel König, Markus Lohrey, and Georg Zetzsche. Knapsack and subset sum problems in
nilpotent, polycyclic, and co-context-free groups. Algebra and Computer Science, 677:138–
153, 2016. doi:10.1090/conm/677/13625.

29 Bertram Kostant. Quantization and unitary representations. In Lectures in Modern Ana-
lysis and Applications III, pages 87–208. Springer, 1970. doi:10.1007/BFb0079068.

30 Alexei Lisitsa and Igor Potapov. Membership and reachability problems for row-monomial
transformations. In Proceedings of MFCS 2004, volume 3153 of LNCS, pages 623–634.
Springer, 2004. doi:10.1007/978-3-540-28629-5\_48.

31 Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory. Springer, 1977. doi:
10.1007/978-3-642-61896-3.

32 Andrei A. Markov. On certain insoluble problems concerning matrices. Doklady Akademii
Nauk SSSR, 57(6):539–542, 1947.

33 Alexei Mishchenko and Alexander Treier. Knapsack problem for nilpotent groups. Groups
Complexity Cryptology, 9(1):87–98, 2017. doi:10.1515/gcc-2017-0006.

34 Turlough Neary. Undecidability in binary tag systems and the Post correspondence problem
for five pairs of words. In Proceedings of STACS 2015, volume 30 of LIPIcs, pages 649–661.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.STACS.
2015.649.

35 Joël Ouaknine, João Sousa Pinto, and James Worrell. On termination of integer lin-
ear loops. In Proceedings of SODA 2015, pages 957–969. SIAM, 2015. doi:10.1137/1.
9781611973730.65.

http://dx.doi.org/10.2307/2159559
http://dx.doi.org/10.1007/978-3-319-30451-9_3
http://dx.doi.org/10.1007/978-3-319-30451-9_3
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.329
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.329
http://dx.doi.org/10.1090/conm/621
http://dx.doi.org/10.1137/050643295
http://dx.doi.org/10.1142/S0129054107005066
http://dx.doi.org/10.1016/j.ic.2014.09.002
http://dx.doi.org/10.1016/j.ic.2014.09.002
http://dx.doi.org/10.1016/j.jcss.2014.10.004
https://arxiv.org/abs/1706.04166
https://arxiv.org/abs/1706.04166
http://arxiv.org/abs/1706.04166
http://dx.doi.org/10.1090/conm/677/13625
http://dx.doi.org/10.1007/BFb0079068
http://dx.doi.org/10.1007/978-3-540-28629-5_48
http://dx.doi.org/10.1007/978-3-642-61896-3
http://dx.doi.org/10.1007/978-3-642-61896-3
http://dx.doi.org/10.1515/gcc-2017-0006
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.649
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.649
http://dx.doi.org/10.1137/1.9781611973730.65
http://dx.doi.org/10.1137/1.9781611973730.65


S.-K. Ko, R. Niskanen, and I.Potapov 132:15

36 Joël Ouaknine and James Worrell. On the positivity problem for simple linear recurrence
sequences. In Proceedings of ICALP 2014, volume 8573 of LNCS, pages 318–329. Springer,
2014. doi:10.1007/978-3-662-43951-7_27.

37 Joël Ouaknine and James Worrell. Ultimate positivity is decidable for simple linear re-
currence sequences. In Proceedings of ICALP 2014, volume 8573 of LNCS, pages 330–341.
Springer, 2014. doi:10.1007/978-3-662-43951-7_28.

38 Christos H. Papadimitriou. On the complexity of integer programming. Journal of the
ACM, 28(4):765–768, 1981. doi:10.1145/322276.322287.

39 Michael S. Paterson. Unsolvability in 3 × 3 matrices. Studies in Applied Mathematics,
49(1):105, 1970. doi:10.1002/sapm1970491105.

40 Igor Potapov. Composition problems for braids. In Proceedings of FSTTCS 2013, volume 24
of LIPIcs, pages 175–187. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013. doi:
10.4230/LIPIcs.FSTTCS.2013.175.

41 Igor Potapov and Pavel Semukhin. Decidability of the membership problem for 2×2 integer
matrices. In Proceedings of SODA 2017, pages 170–186. SIAM, 2017. doi:10.1137/1.
9781611974782.12.

42 Igor Potapov and Pavel Semukhin. Membership problem in GL(2,Z) extended by singu-
lar matrices. In Proceedings of MFCS 2017, LIPIcs, pages 44:1–44:13. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.MFCS.2017.44.

43 Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.

ICALP 2018

http://dx.doi.org/10.1007/978-3-662-43951-7_27
http://dx.doi.org/10.1007/978-3-662-43951-7_28
http://dx.doi.org/10.1145/322276.322287
http://dx.doi.org/10.1002/sapm1970491105
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.175
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.175
http://dx.doi.org/10.1137/1.9781611974782.12
http://dx.doi.org/10.1137/1.9781611974782.12
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.44




Gaifman Normal Forms for Counting Extensions
of First-Order Logic
Dietrich Kuske
Technische Universität Ilmenau, Germany
dietrich.kuske@tu-ilmenau.de

Nicole Schweikardt1

Humboldt-Universität zu Berlin, Germany
schweikn@informatik.hu-berlin.de

Abstract
We consider the extension of first-order logic FO by unary counting quantifiers and generalise the
notion of Gaifman normal form from FO to this setting. For formulas that use only ultimately
periodic counting quantifiers, we provide an algorithm that computes equivalent formulas in
Gaifman normal form. We also show that this is not possible for formulas using at least one
quantifier that is not ultimately periodic.

Now let d be a degree bound. We show that for any formula ϕ with arbitrary counting
quantifiers, there is a formula γ in Gaifman normal form that is equivalent to ϕ on all finite
structures of degree 6 d. If the quantifiers of ϕ are decidable (decidable in elementary time,
ultimately periodic), γ can be constructed effectively (in elementary time, in worst-case optimal
3-fold exponential time).

For the setting with unrestricted degree we show that by using our Gaifman normal form for
formulas with only ultimately periodic counting quantifiers, a known fixed-parameter tractability
result for FO on classes of structures of bounded local tree-width can be lifted to the extension
of FO with ultimately periodic counting quantifiers (a logic equally expressive as FO+MOD, i.e.,
first-oder logic with modulo-counting quantifiers).
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1 Introduction

As database specialists know very well, when evaluating a query (i.e., a formula) in a database
(i.e., a relational structure), it is often advantageous to first transform the formula into
an equivalent one and then evaluate this new formula in the given structure. Using this
approach, one also gets algorithmic meta-theorems stating that the evaluation of formulas
from a certain logic in structures from a certain class is fixed-parameter tractable. For
example, this is known for formulas from monadic second-order logic MSO and its extension
CMSO with modulo-counting predicates and the class of labeled trees [5, 27] or classes of
bounded tree-width [3, 1]. For first-order logic FO, it is known for classes of structures of
bounded degree [25], for the class of planar graphs and, more generally, for classes of bounded
local tree-width [9], for classes of locally bounded expansion [6], and for classes that are
effectively nowhere dense [12].
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Gaifman’s normal form theorem [10] provides an approach to this formula transformation,
and it has been applied for obtaining several of the results on FO mentioned above. It is the
aim of this paper to demonstrate that this approach does not only work for first-order logic,
but also for its extension FO+MOD by modulo-counting quantifiers (these quantifiers allow
to make statements of the form “the number of witnesses x for a formula ϕ is congruent
r modulo m”, for fixed integers r and m). The logic FO+MOD has been well-studied, see
e.g., [26, 18, 24, 23, 14, 17]. Its expressivity lies strictly between that of FO and CMSO. It
is known that all FO+MOD-queries are Gaifman-local [18]. But an extension of Gaifman’s
normal form theorem [10] from FO to FO+MOD has not been achieved in the literature.

Recall that a first-order formula is in Gaifman normal form if it is a Boolean combination
of (1) first-order properties of the neighbourhood of the free variables and (2) statements
that express the existence of mutually far-apart elements whose neighbourhoods share a
first-order property. Gaifman’s normal form theorem states that every first-order formula is
effectively equivalent to such a formula in Gaifman normal form.

We propose a notion of Gaifman normal form for FO+MOD and, more generally, for the
extension of first-order logic by unary counting quantifiers FO(Q): it is a Boolean combination
of (1) FO(Q)-properties of the neighbourhood of the free variables, (2) statements that express
the existence of mutually far-apart elements whose neighbourhoods share an FO(Q)-property,
and (3) statements that depend on the total number of elements whose neighbourhoods
share an FO(Q)-property. We show that if a formula uses only ultimately periodic counting
quantifiers (and therefore is equivalent to a formula of FO+MOD), then Gaifman’s theorem
holds mutatis mutandis: any such formula can be transformed effectively into an equivalent
formula in Gaifman normal form using the same counting quantifiers. The proof of this
result extends the original proof for first-order logic from [10]; a crucial ingredient is an
effective Feferman-Vaught decomposition [8] for FO(Q) that we prove first. Adapting [4], we
show that the size of the resulting formula cannot be bounded by an elementary function.
Furthermore, we prove that formulas with non-ultimately periodic counting quantifiers (e.g.,
the set of primes) do not have equivalent formulas in Gaifman normal form.

The situation changes when we restrict attention to classes of finite structures of bounded
degree. Call two formulas “finitely d-equivalent” if they are equivalent on all finite structures
of degree 6 d. We show that (1) for a formula with ultimately periodic counting quantifiers,
one can compute in (worst-case optimal) 3-fold exponential time a finitely d-equivalent
formula in Gaifman normal form; (2) from a formula with computable counting quantifiers,
we can effectively compute a finitely d-equivalent formula in Gaifman normal form; and
(3) if we allow arbitary counting quantifiers, then we get at least the existence of finitely
d-equivalent Gaifman normal forms. In other words, by restricting the class of structures,
the complexity drops from non-elementary to 3-fold exponential (for ultimately periodic
counting quantifiers), from non-existent to computable (for computable quantifiers), and from
non-existent to existent (for arbitrary quantifiers). The proofs of these results do not follow
Gaifman’s original proof, but generalise a proof for first-order logic from [16] that, in turn,
builds on [2]. In the present setting of FO(Q), we first transform the original FO(Q)-formula
in elementary time into a formula in “(weak) Hanf normal form” [17, 19], and afterwards we
transform this formula into Gaifman normal form by a construction similar to the one in [16].

We also provide an algorithmic application that demonstrates the usefulness of our normal
form: By applying our Gaifman normal form algorithm, we lift the result of [9] from FO to
FO+MOD, showing that the model-checking problem for FO+MOD-sentences on classes of
finite relational structures of bounded local tree-width is fixed-parameter tractable.
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The rest of the paper is structured as follows. Section 2 provides the basic definitions
and introduces our notion of Gaifman normal form. Section 3 provides effective Feferman-
Vaught decompositions for the extension of first-order logic by ultimately periodic counting
quantifiers. The sections 4 and 5 present our results in the setting without and with a degree
bound, respectively. Section 6 provides an algorithmic application.

2 Preliminaries

We write P(S) to denote the power set of a set S. For an n-tuple x = (x1, . . . , xn) we write
|x| to denote the tuple’s length n. We write N for the set of non-negative integers, and we let
N>1 = N \ {0}. For m,n ∈ N with m 6 n, we write [m,n] for the set {i ∈ N : m 6 i 6 n}.
For a real number r > 0, we write log(r) to denote the logarithm of r with respect to
base 2. We use the standard O-notation, and by poly(n) we mean nO(1). We say that a
function f from N to the set R>0 of non-negative reals is at most k-fold exponential, for
some k ∈ N, if there exists a number c > 0 such that for all sufficiently large n ∈ N we
have f(n) 6 expk(nc), where expk(m) is a tower of 2s of height k with an m on top, i.e.,
exp0(m) = m and expk+1(m) = 2expk(m) for all k,m > 0. A function f is elementary if
it is at most k-fold exponential for some k > 0. The function tower : N → N, defined via
tower(h) := exph(1) for all h ∈ N, is not elementary.

Structures and formulas. A signature σ is a finite set of relation symbols and constant
symbols. Associated with every relation symbol R is a positive integer ar(R) called the arity
of R. We call a signature relational if it only contains relation symbols. A σ-structure A
consists of a non-empty set A called the universe of A, a relation RA ⊆ Aar(R) for each
relation symbol R ∈ σ, and an element cA ∈ A for each constant symbol c ∈ σ. Note that
according to this definition, all signatures considered in this paper are finite while structures
can be infinite. We write A ∼= B to indicate that two σ-structures A and B are isomorphic.

We use the standard notation concerning first-order logic and extensions thereof, cf. [7, 20].
By FO[σ] we denote the class of all first-order formulas of signature σ, and by FO we denote
the union of all FO[σ] for arbitrary signatures σ. By free(ϕ) we denote the set of all free
variables of the formula ϕ. A sentence is a formula ϕ with free(ϕ) = ∅. We write ϕ(x), for
x = (x1, . . . , xn) with n > 0, to indicate that free(ϕ) ⊆ {x1, . . . , xn}. If A is a σ-structure
and a = (a1, . . . , an) ∈ An, by A |= ϕ(a) or (A, a) |= ϕ we indicate that the formula ϕ(x)
is satisfied in A when interpreting the free occurrences of the variables x1, . . . , xn with the
elements a1, . . . , an.

Unary counting quantifiers. In addition to the existential quantifier ∃ we consider unary
counting quantifiers (for short: counting quantifiers), which are defined as subsets of N. We
will use the terms “set (of natural numbers)” and “counting quantifier” interchangeably. For
a set Q ⊆ P(N) of counting quantifiers we write FO(Q)[σ] to denote the extension of FO[σ]
with the quantifiers from Q. Precisely, we add the following formation rule for formulas:

If ϕ(x, y) ∈ FO(Q)[σ], Q ∈ Q, and k ∈ N, then also (Q+k)y ϕ belongs to FO(Q)[σ].

For (Q+0)y ϕ we write the more succinct Qy ϕ. The formula (Q+k)y ϕ(x, y) expresses
that the number of witnesses y for ϕ(x, y) belongs to the set (Q+k) := {q + k : q ∈ Q}.
Equivalently, this means that the formula (Q+k)y ϕ(x, y) is satisfied by a σ-structure A and
an interpretation a of the variables x iff |{b ∈ A : A |= ϕ(a, b)}| − k ∈ Q. Here, for an
infinite set B we use the convention that |B| =∞ 6∈ N, where ∞ is larger than any integer,
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and ∞− k = ∞ for all integers k. Every formula can be transformed into an equivalent
exponentially larger displacement-free formula, meaning that counting quantifiers appear
only in the form (Q + 0).

I Example 2.1. For m > 2, the quantifier Dm = m · N contains the multiples of m. Let
D = {Dm : m ∈ N,m > 2} denote the collection of all these divisibility quantifiers. Then the
logic FO(D) is equally expressive as the logic FO+MOD (cf. [26, 24]).

The quantifier rank qr(ϕ) of an FO(Q)-formula ϕ is defined as the maximal nesting depth
of all quantifiers. For a number ` ∈ N>1 and a formula ϕ(x, y), we write ∃>`y ϕ to denote a
formula expressing that there are at least ` witnesses y which satisfy ϕ.

Gaifman graph. The Gaifman graph GA of a σ-structure A is the undirected, loop-free
graph with vertex set A and an edge between two distinct vertices a, b ∈ A iff there exist
a relation symbol R ∈ σ and a tuple (a1, . . . , aar(R)) ∈ RA such that a, b ∈ {a1, . . . , aar(R)}.
The degree of a σ-structure A is the degree of its Gaifman graph GA. If this degree is at
most d, then we call A d-bounded. Two formulas ϕ(x) and ψ(x) of signature σ are called
finitely d-equivalent if A |= ∀x (ϕ↔ ψ) holds for every finite d-bounded σ-structure A.

The distance distA(a, b) between two elements a, b ∈ A is the minimal length (i.e., the
number of edges) of a path from a to b inGA, and if no such path exists, we set distA(a, b) =∞.
For a tuple a ∈ Am and an element b ∈ A, we let distA(a, b) = min{distA(ai, b) : 1 6 i 6 m}.

For any signature σ and any k, r ∈ N, there exists a formula dist<r(x, y) ∈ FO[σ]
with x = (x1, . . . , xk) such that for any σ-structure A, any a ∈ Ak, and any b ∈ A we
have (A, a, b) |= dist<r(x, y) iff distA(a, b) < r. We write dist(x, y) < r for the formula
dist<r(x, y), and dist(x, y) > r for the formula ¬ dist<r+1(x, y).

Gaifman normal forms. Let Q be a set of counting quantifiers and σ a signature. A formula
λ(x) ∈ FO(Q)[σ] is local if all quantifications in λ are restricted to the neighborhood of the
variables x. The precise inductive definition proceeds as follows:

Atomic formulas are r-local for any r ∈ N.
If λ(x, y) is r-local, z is a non-empty sub-tuple of x, and r′ ∈ N, then the formula
∃y
(
dist(z, y) 6 r′ ∧ λ(x, y)

)
is (r′ + r)-local, and for all Q ∈ Q and k ∈ N, the formula

(Q+k)y
(
dist(z, y) 6 r′ ∧ λ(x, y)

)
is (r′ + r)-local as well.

If λ1(x) and λ2(x) are r-local, then (λ1 ∧ λ2) and ¬λ1 are r-local as well.
An r-local formula is also (r + 1)-local. A formula is local if it is r-local for some r ∈ N.

For a σ-structure A, a tuple a = (a1, . . . , an) ∈ An and a number r ∈ N, the r-ball NAr (a)
of a is the set of all b ∈ A with distA(a, b) 6 r. If σ is a relational signature, then the
r-neighbourhood NAr (a) of a is the substructure of A induced on the set NAr (a).

Let λ(x) be an r-local formula and let a ∈ A|x|. When determining whether A |= λ(a),
quantification is restricted to elements of distance at most r from a, i.e., to elements in
NAr (a). Hence we get A |= λ(a) ⇐⇒ NAr (a) |= λ(a) .

Let L ⊆ FO(Q). A counting sentence over L is a sentence of the form (Q+k)xλ(x),
where λ ∈ L is local, Q ∈ Q, and k ∈ N. A basic local sentence over L is a sentence of the
form ∃x1 · · · ∃xm

(∧
16i<j6m dist(xi, xj) > 2r ∧

∧
16i6m λ(xi)

)
, where m ∈ N>1, r ∈ N,

and λ ∈ L is r-local. Such a basic local sentence expresses that there are m witnesses for λ
of mutual distance at least 2r + 1.

I Definition 2.2. A formula ϕ(x) ∈ FO(Q)[σ] is in Gaifman normal form if it is a Boolean
combination of local formulas λ(x), of counting sentences (Q+k)y λ(y), and of basic local
sentences over FO(Q)[σ].
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If Q = ∅, then a formula in Gaifman normal form consists of local formulas and basic local
sentences over FO. In other words, our definition of Gaifman normal form for formulas from
FO(∅) coincides with the traditional one for formulas from FO [10, 11]. The following is
known about the existence and computability of formulas in Gaifman normal form:

I Theorem 2.3. Let Q = ∅, i.e., FO(Q) = FO.
(1) From a formula ϕ(x) ∈ FO, one can compute an equivalent formula γ(x) ∈ FO in

Gaifman normal form [10].
(2) The size of the equivalent formula in Gaifman normal form cannot be bounded by an

elementary function in the size of the formula ϕ(x) [4].
(3) From a formula ϕ(x) ∈ FO and a degree bound d, one can compute in 3-fold exponential

time a finitely d-equivalent formula γ(x) in Gaifman normal form [16].

It is the aim of this paper to study to what extent this theorem holds for the extension
of first-order logic with unary counting quantifiers. A special role is played by ultimately
periodic quantifiers that we introduce now.

Ultimately periodic sets. Let p ∈ N>1 and n0 ∈ N. A set Q ⊆ N is ultimately p-periodic
with offset n0 if n ∈ Q ⇐⇒ n+p ∈ Q holds for all n > n0. A set Q is ultimately p-periodic
if there exists an n0 such that Q is ultimately p-periodic with offset n0, and Q is ultimately
periodic (cf. e.g. [22]) if it is ultimately p-periodic for some p ∈ N>1. The period of Q is the
minimal p for which Q is ultimately p-periodic.

We write U to denote the set of all ultimately periodic sets Q ⊆ N.
The characteristic sequence χQ of a set Q ⊆ N is the ω-word w = w0w1w2 · · · ∈ {0, 1}ω

with Q = {n ∈ N : wn = 1}. Note that Q is ultimately periodic iff there are finite words
α, π ∈ {0, 1}∗ with χQ = απω. We represent an ultimately periodic set Q by the shortest
word rep(Q) := α#π satisfying χQ = απω. The size ||Q|| of Q is defined as the length
of the word rep(Q). The size of an FO(U)-formula ϕ of signature σ is its length when
viewed as a word over the alphabet σ ∪ Var ∪ {, } ∪ {=, ∃,¬,∨, (, ), 0, 1,+,#}, where Var
is a countable set of variables, each quantifier Q ∈ U is represented by the word rep(Q),
and each number k is given in binary (in subformulas of the form (Q+k)y ϕ). The set D of
all divisibility quantifiers (see Example 2.1) is a subset of U. With every set of ultimately
periodic quantifiers Q ⊆ U, we associate the set DQ ⊆ D of divisibility quantifiers which
consists of precisely those Dp = p · N for which p > 2 is the period of some Q ∈ Q.

I Lemma 2.4 ([16, 17]). Let Q ⊆ P(N) be a set of counting quantifiers.
(a) Let Q ∈ Q be ultimately p-periodic with offset n0, and let k ∈ N. Every formula from

FO(Q∪DQ) of the shape (Q+k)y ϕ is equivalent to a Boolean combination of formulas of
the form (Dp+`)y ϕ and ∃>my ϕ with ` < p and m < n0+k+p. This Boolean combination
can be computed from rep(Q), k, ϕ in polynomial time.

(b) Let Q ∈ Q be ultimately periodic with period p > 2.
Every formula from FO(Q∪DQ) of the shape (Dp+k)y ϕ, for a k > 0, is equivalent to a
Boolean combination of formulas of the shape (Q+`)y ϕ and ∃>`y ϕ with ` < ||Q||+ p+ k.
This Boolean combination can be computed from rep(Q), k, ϕ in polynomial time.

(c) Let L ⊆ FO(Q) be a set of formulas that contains all atomic formulas and is closed
under Boolean combinations and existential quantification.
Every sentence ∃>`y λ(y), where λ ∈ L is a local formula, is equivalent to a Boolean
combination of basic local sentences over L.
This Boolean combination can be computed from λ and ` in time O(||λ||)·2O(` log `).
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As an immediate consequence, we obtain:

I Corollary 2.5. Let Q ⊆ U and let DQ be the associated set of divisibility quantifiers.
(1) For every FO(Q)-formula ϕ, we can compute an equivalent FO(DQ)-formula and vice

versa.
(2) For every FO(DQ)-formula ψ in Gaifman normal form, we can compute an equivalent

FO(Q)-formula in Gaifman normal form.

Feferman-Vaught decompositions. A crucial tool in the construction of Gaifman normal
forms for first-order logic (i.e., in the proof of Theorem 2.3(1)) is a result by Feferman and
Vaught [8]. In its simplest form (which is all that is needed in this context) it expresses that
the first-order theory of the disjoint sum of two structures is determined by the first-order
theories of the two structures. Our proof of the generalisation of Theorem 2.3(1) to logics of
the form FO(Q) will proceed similarly to Gaifman’s proof for FO, and this requires us to
first provide a generalisation of the result by Feferman and Vaught.

Let σ be a relational signature and let A and B be disjoint σ-structures (i.e., their
universes A and B are disjoint). The disjoint sum A ⊕ B of A and B is the structure(
A ∪ B, A, B, (RA ∪ RB)R∈σ

)
over the signature σ2 with two additional unary relation

symbols (that we denote A and B). Since this is only defined for disjoint structures, the
relations A and B form a partition of the universe of the σ2-structure A⊕ B. Furthermore,
no edge of the Gaifman graph of A⊕ B connects nodes from A with nodes from B.

I Definition 2.6. Let Q be a set of counting quantifiers and ϕ(x, y) ∈ FO(Q)[σ2] a formula
with x = (x1, . . . , xk) and y = (y1, . . . , y`). Furthermore, let ∆ be a finite set of pairs of
formulas (α(x), β(y)) from FO(Q)[σ]. The set ∆ is a decomposition of ϕ w.r.t. (x; y) if

A⊕ B |= ϕ(a, b) ⇐⇒ there exists (α, β) ∈ ∆ with A |= α(a) and B |= β(b)

holds for all disjoint σ-structures A and B and all tuples a ∈ Ak and b ∈ B`.

The following is known about the existence and computability of decompositions:

I Theorem 2.7. Let Q = ∅, i.e., FO(Q) = FO.
(1) From a formula ϕ(x, y) ∈ FO[σ2], one can compute a decomposition w.r.t. (x; y) [8].
(2) The size of the decomposition cannot be bounded by an elementary function in the size

of the formula ϕ(x, y) [4].

A more general definition of the notion “decomposition” replaces the condition “there
exists (α, β) ∈ ∆ with . . . ” by a Boolean combination of statements of the form “A |= α(a)”
and “B |= β(b)”; and with this definition, a “decomposition” can be computed in 3-fold
exponential time from any ϕ ∈ FO(D)[σ2] and for any fixed d > 0; but this decomposition is
only equivalent to ϕ provided A and B are finite and of degree at most d [15, Theorem 5.2.1]
(see [13] for the first-order case). Another result in this direction is due to Courcelle who
considers the extension CMSO of monadic second-order logic by predicates expressing the
size of a set modulo some fixed number. In this context, Courcelle also proves a result
analogous to Theorem 2.7(1) [3, Lemma 4.5]. More results in this vein can be found in [21].

3 Feferman-Vaught decompositions for FO(Q)

If Q is a set of counting quantifiers and S ∈ Q is not ultimately periodic, then there is no
decomposition for the sentence Sxx=x [15, Theorem 8.5.2]. Here, we prove that if Q contains
only ultimately periodic counting quantifiers, decompositions exist and can be computed:
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I Theorem 3.1. Let Q ⊆ U and let σ be a relational signature. From a formula ϕ(x, y) ∈
FO(Q)[σ2], one can construct a decomposition for ϕ w.r.t. (x; y).

Proof. By Corollary 2.5(1), the logics FO(Q) and FO(DQ) for Q ⊆ U are effectively equally
expressive. Therefore, it suffices to prove the theorem for sets of divisibility quantifiers, i.e.,
for the case where Q ⊆ D. The proof proceeds by induction on the construction of the formula
ϕ(x, y). The cases of atomic formulas, Boolean combinations, and existential quantification
are as in the first-order case, see e.g. [11, Lemma 2.3]. Here, we sketch the remaining
case where ϕ(x, y) is of the form Dmz ψ(x, y, z) for some m > 2. Let x = (x1, . . . , xk) and
y = (y1, . . . , y`). For n ∈ {0, 1, . . . ,m−1}, consider the formulas

χn(x, y) := (Dm+n)z
(
A(z) ∧ ψ(x, y, z)

)
and ξn(x, y) := (Dm+n)z

(
B(z) ∧ ψ(x, y, z)

)
.

Let ϕ′(x, y) be the disjunction of all formulas χn1(x, y) ∧ ξn2(x, y) where n1, n2 ∈
{0, . . . ,m−1} and n1 + n2 ≡ 0 (mod m). Clearly, A ⊕ B |= (ϕ ↔ ϕ′)(a, b) holds for
all disjoint structures A and B and all a ∈ Ak and b ∈ B`. Therefore, every decomposition
of ϕ′ is also a decomposition of ϕ. Furthermore, note that a decomposition for ϕ′ can be
computed from decompositions for the formulas χn(x, y) and ξn(x, y) for n ∈ {0, . . . ,m−1}.
All that remains to be done is to construct decompositions w.r.t. (x; y) for each of the
formulas χn(x, y) and ξn(x, y). By symmetry, we only consider the formula ξn.

By the induction hypothesis, there is a decomposition {(αi(x), βi(y, z)) : i ∈ I} of ψ(x, y, z)
w.r.t. (x; yz). We can, w.l.o.g., assume that the formulas αi(x) are mutually exclusive, i.e.,
αi(x)∧αj(x) is unsatisfiable for i 6= j. Then, the set

{ (
αi(x) , (Dm+n)z βi(y, z)

)
: i ∈ I

}
is a decomposition of ξn(x, y) w.r.t. (x; y). J

In the inductive proof of Theorem 3.1, the size of the decomposition (i.e., the number
of pairs) increases exponentially with every negation and every quantification. It follows
that the size of the formulas in the resulting decomposition can be bounded by a tower of 2s
whose height is proportional to the size of the formula. We can adopt and simplify the proof
of [4, Theorem 3] to also obtain a non-elementary lower bound:

I Proposition 3.2. Let σ = {E} with ar(E) = 2. There is a sequence (ϕh)h>0 of FO[σ]-
sentences of size O(h) such that for every elementary function f : N → N, there is h ∈ N
such that every decomposition ∆h in FO(U) of ϕh contains some sentence of length > f(h).

We finish this section with a corollary to Theorem 3.1 that will be used in the construction
of Gaifman normal forms in the next section.

I Corollary 3.3. Let Q ⊆ U be a set of ultimately periodic quantifiers and let r ∈ N. From
an r-local formula λ(x, y) ∈ FO(Q), one can compute a finite set ∆′ of pairs of r-local
FO(Q)-formulas (α′(x), β′(y)) such that the following two formulas are equivalent:

dist(x, y) > 2r+1 ∧ λ(x, y) and dist(x, y) > 2r+1 ∧
∨

(α′,β′)∈∆′

(
α′(x) ∧ β′(y)

)
.

4 Equivalent Gaifman normal forms

The main result of this section is:

I Theorem 4.1. Let Q be a set of unary counting quantifiers.
(1) If Q ⊆ U contains only ultimately periodic quantifiers then, from a formula ϕ ∈ FO(Q),

one can compute an equivalent formula γ ∈ FO(Q) in Gaifman normal form.
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(2) If Q contains a quantifier S that is not ultimately periodic, then there is a sentence
η ∈ FO(Q) such that no FO(Q)-sentence in Gaifman normal form is equivalent to η.

The two statements of the theorem are proved in the next two subsections.

4.1 Ultimately periodic quantifiers
Proof of Theorem 4.1(1). In the light of Corollary 2.5, it suffices to consider sets Q ⊆ D
of divisibility quantifiers.

The construction of γ proceeds by structural induction following the construction of ϕ.
The cases of atomic formulas ϕ as well as of Boolean combinations are trivial. If ϕ is of the
form ∃y ψ, we can argue as in the first-order case ([10], see also [11, Sect. 4.1]), but since ψ is
from FO(Q), we use Corollary 3.3 instead of Feferman-Vaught decompositions for FO (cf. [11,
Lemma 2.3]). So it remains to consider the case where ϕ(x) is of the form Dmy ψ(x, y) for
some Dm ∈ Q. By the induction hypothesis we can assume that ψ is in Gaifman normal form.
Hence there are a finite set I, sentences χi in Gaifman normal form, and local formals λi(x, y)
for all i ∈ I, such that ϕ is equivalent to the formula ϕ′ := Dm y

(∨
i∈I
(
χi ∧ λi(x, y)

))
.

W.l.o.g. we can assume that the sentences χi are mutually exclusive, i.e., χi ∧ χj is
unsatisfiable for i 6= j.
Set r′ := 2r + 1. Then, ϕ(x) is equivalent to a Boolean combination of the formulas

γn(x) := (Dm+n) y
(

dist(x, y) 6 r′ ∧
∨
i∈I

(χi ∧ λi(x, y) )
)

and

δn(x) := (Dm+n) y
(

dist(x, y) > r′ ∧
∨
i∈I

(χi ∧ λi(x, y) )
)

with n ∈ {0, . . . ,m−1}, and it suffices to transform each of these formulas into Gaifman
normal form. Since the sentences χi are mutually exclusive, γn(x) is equivalent to∨

i∈I

(
χi ∧ (Dm+n) y ( dist(x, y) 6 r′ ∧ λi(x, y) )

)
,

which is in Gaifman normal form. Similarly, δn(x) is equivalent to∨
i∈I

(
χi ∧ (Dm+n) y ( dist(x, y) > r′ ∧ λi(x, y) )

)
.

Let i ∈ I. By Corollary 3.3, we can construct a finite set J and r-local formulas αj(x) and
βj(y) for j ∈ J , such that the formulas

dist(x, y) > r′ ∧ λi(x, y) and dist(x, y) > r′ ∧
∨
j∈J

(
αj(x) ∧ βj(y)

)
are equivalent. Again, we can assume that the formulas αj(x) are mutually exclusive. Then,
δn(x) is equivalent to the formula∨

(i,j)∈I×J

(
χi ∧ αj(x) ∧ (Dm+n) y ( dist(x, y) > r′ ∧ βj(y) )

)
.

Finally, the formula (Dm+n) y
(

dist(x, y) > r′ ∧ βj(y)
)
is equivalent to a Boolean combin-

ation of formulas of the form (Dm+n1) y
(

dist(x, y) 6 r′ ∧ βj(y)
)
and (Dm+n2) y βj(y)

with n1, n2 ∈ {0, . . . ,m−1}. Note that the first formula is (r′ + r)-local, and the second
formula is a counting sentence, i.e., both these formulas are in Gaifman normal form. J
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In the inductive proof of Theorem 4.1(1), the size of the Gaifman normal form increases at
least exponentially with every (existential or counting) quantifier, since we build the disjunct-
ive normal form to get the formula ϕ′ defined at the beginning of the proof. Consequently,
we only obtain a non-elementary upper bound on the size of the formula in Gaifman normal
form. We can complement this with a non-elementary lower bound (the sequence of formulas
is the same as in Proposition 3.2):

I Proposition 4.2. Let σ = {E} with ar(E) = 2. There is a sequence of FO[σ]-sentences
(ϕh)h>0 of size O(h) such that for every elementary function f : N→ N, there is h ∈ N such
that no FO(U)-sentence in Gaifman normal form of length < f(h) is equivalent to ϕh.

4.2 Non-ultimately periodic quantifiers
Theorem 4.1(2) is an immediate consequence of the following slightly stronger result.

I Proposition 4.3. Let Q be a set of counting quantifiers, let S ∈ Q, let σ∼ = {∼} be the
signature with ar(∼) = 2, and let η be the FO(Q)-sentence

∃x1 ∃x2

(
¬ (x1 ∼ x2) ∧ Sz (x1 ∼ z ∨ x2 ∼ z)

∧ ∀y
(

Sz (x1 ∼ z ∨ y ∼ z ) ∨ Sz (x2 ∼ z ∨ y ∼ z )
) ) .

If S is not ultimately periodic, then no sentence from FO(Q)[σ∼] in Gaifman normal form is
equivalent to η (not even on the class of finite equivalence structures).

A finite equivalence structure is a σ∼-structure A = (A,∼A) where A is finite and ∼A
is an equivalence relation on A. In such structures, the formula η expresses that there are
two distinct equivalence classes [a1] and [a2] with |[a1] ∪ [a2]| ∈ S such that |[a1] ∪ [b]| ∈ S
or |[a2] ∪ [b]| ∈ S for any equivalence class [b]. We will prove that this property cannot be
expressed by any sentence in Gaifman normal form.

Let λ(x) be a local FO(Q)[σ∼]-formula, let A be a finite equivalence structure, and
let a ∈ A. Since λ is local, the question whether or not A |= λ(a) is determined solely
by the size of the equivalence class [a]. In case that λ(x) is a first-order formula, it is
equivalent to a Boolean combination of statements of the form |[a]| > k for k ∈ {0, . . . , r},
where r is the formula’s quantifier rank. If the formula λ(x) also uses counting quantifiers
from Q, then we can also express that |[a]| − ` ∈ Q, for Q ∈ Q; but this is only possible for
` ∈ {0, . . . , r′}, where r′ is a number that only depends on the formula λ, but not on the
considered equivalence structure A. These observations lead to the following limitation of
the expressiveness of local formulas:

I Lemma 4.4. For every local FO(Q)[σ∼]-formula λ(x) there exists an r ∈ N such that the
following is true for all finite equivalence structures A and B, all a ∈ A, and all b ∈ B.
If the equivalences

|[a]| > ` ⇐⇒ |[b]| > ` and |[a]| − ` ∈ Q ⇐⇒ |[b]| − ` ∈ Q

are satisfied for all ` ∈ {0, . . . , r} and all counting quantifiers Q ∈ Q that appear in λ, then
A |= λ(a) ⇐⇒ B |= λ(b).

Proof of Proposition 4.3. Suppose S is not ultimately periodic and suppose, for contra-
diction, that γ is an FO(Q)[σ∼]-sentence in Gaifman normal form that is equivalent to η.
Let Qγ consist of all counting quantifiers that appear in γ. We apply Lemma 4.4 to all
local formulas λ(x) that occur in basic-local sentences or in counting sentences which are
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subformulas of γ, and we let r̂ be the maximum of all the numbers r provided by Lemma 4.4
for each such λ(x).

Since Qγ ∪ {S} is finite and S is not ultimately periodic, one can prove the existence
of natural numbers m,n > r̂ and k > 1 such that m + k /∈ S, n + k ∈ S, and for all
Q ∈ Qγ ∪ {S} and all ` ∈ {0, . . . , r̂} we have m− ` ∈ Q ⇐⇒ n− ` ∈ Q.

We use the numbers m,n, k, r̂ to define two finite equivalence structures B and C:
B has r̂ many equivalence classes of size k and m many equivalence classes of size n.
C has r̂ many equivalence classes of size k and n many equivalence classes of size m.

By Lemma 4.4, no local formula appearing in γ can distinguish equivalence classes of size m
from equivalence classes of size n. It follows that B |= γ ⇐⇒ C |= γ.

To prove that B |= η, one chooses for x1 and x2 elements from equivalence classes of
size k and n, respectively. When trying to satisfy η in C, one has to choose for x1 and x2
elements from equivalence classes of the same size since m + k /∈ S. But there is some y
whose equivalence class has different size, and hence |[xi]|+ |[y]| cannot belong to S. Thus, η
distinguishes B from C, but γ does not. J

5 Finitely d-equivalent Gaifman normal forms

5.1 Ultimately periodic quantifiers
In Section 4.1 we obtained an algorithm that transforms a given FO(U)-formula over a
relational signature into an equivalent FO(U)-formula in Gaifman normal form. Just as in
Gaifman’s original locality theorem, the algorithm’s runtime is non-elementary in the size
of the input formula; and from Proposition 4.2 we know that a non-elementary blow-up in
formula size (and hence also runtime) cannot be avoided.

In [16] it was shown that for plain first-order logic FO, the non-elementary blow-up can
be improved into a (worst-case optimal) 3-fold exponential running time if we drop the
requirement that the Gaifman normal form formula has to be equivalent to the original
formula on all structures and are content with a finitely d-equivalent formula in Gaifman
normal form. We can generalise this result to FO(U) as follows.

I Theorem 5.1. Upon input of a number d ∈ N and an FO(U)-formula ϕ over some
relational signature σ, a finitely d-equivalent formula ψ in Gaifman normal form can be
computed in time 2d2O(||ϕ||)

for d > 3, and in time 22poly(||ϕ||) for d < 3.
Furthermore, ψ uses at most the quantifiers from ϕ and the quantifier ∃.

We proceed in the same way as the proof of [16], but instead of building upon the Hanf
normal form algorithm for FO of [2] we build upon the Hanf normal form algorithm for
FO(U) of [17]. For the precise statement of the result of [17], we need the following notation.

Let σ be a relational signature. For every r ∈ N and n ∈ N>1, a type with n centres
and radius at most r is structure of the form τ = (NAr (a), a) where A is a σ-structure and
a ∈ An. Such a type is called d-bounded if the structure NAr (a) is d-bounded.

The following is straightforward. The universe of a d-bounded type τ with n centres
and radius 6 r has size at most n·dr+1 (provided that d > 2). Given τ and r, one can
construct an FO[σ]-formula2 sphτ (x) with n free variables x = (x1, . . . , xn) such that for
every σ-structure A and every tuple a ∈ An we have A |= sphτ (a) ⇐⇒ (NAr (a), a) ∼= τ . We

2 The formula sphτ (x) also depends on r, although this is not reflected by the notation here.
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can assume w.l.o.g. that the formula sphτ (x) is r-local and has size at most (n·dr+1)O(||σ||),
where ||σ|| is defined as the sum of the arities of the relation symbols in σ.

Formulas of the form sphτ (x) are called (d-bounded) sphere-formulas of signature σ. Let
Q be a set of counting quantifiers. An FO(Q)-Hanf-sentence of signature σ is a sentence
of the form (Q+k)y sphρ(y) or of the form ∃>ky sphρ(y), where k ∈ N, Q ∈ Q, and ρ is a
type of signature σ and with a single centre. An FO(Q)-formula in Hanf normal form and
of signature σ is a Boolean combination of sphere-formulas and FO(Q)-Hanf-sentences of
signature σ. The proof of Theorem 5.1 follows by combining Lemma 2.4(c) and:

I Theorem 5.2 ([17]). Upon input of a number d ∈ N and an FO(U)-formula ϕ over some
relational signature σ, a finitely d-equivalent FO(U)-formula ψ in Hanf normal form and of
signature σ can be computed in time 2d2O(||ϕ||)

for d > 3, and in time 22poly(||ϕ||) for d < 3.

5.2 General quantifiers
In Section 4.2 we showed that if a set Q contains a quantifier that is not ultimately periodic,
then there is an FO(Q)-sentence that is not equivalent to any FO(Q)-sentence in Gaifman
normal form (not even on the class of finite structures). Somewhat surprisingly, it turns out
that if we drop the requirement that the Gaifman normal form formula has to be equivalent
to the original formula on all structures and are content with a finitely d-equivalent formula,
Gaifman normal forms do exist for arbitrary sets Q of counting quantifiers. Precisely, we
obtain the following result, in which the size ||ϕ|| of an FO(Q)-formula ϕ of signature σ is
defined analogously as the size of FO(U)-formulas, but now each quantifier Q ∈ Q is viewed
as an abstract symbol of length 1.

I Theorem 5.3. Let Q be an arbitrary set of counting quantifiers and let d ∈ N. For
every FO(Q)-formula ϕ over some relational signature σ, there exists a finitely d-equivalent
FO(Q)-formula ψ in Gaifman normal form. Moreover, if the sets Q ∈ Q are uniformly
decidable (in elementary time), then ψ can be computed from ϕ and d (in elementary time).

The proof proceeds in a similar way as the proof of Theorem 5.1, but instead of building
upon Theorem 5.2, it uses a result of [19] that can be viewed as a generalisation of Theorem 5.2
to FO(Q) for arbitrary sets Q of unary counting quantifiers. For the precise statement of
this result, we need the following notation. An FO(Q)-weak-Hanf-sentence of signature σ is
a sentence of the form (Q+k)y

∨
θ∈T θ(y) or of the form ∃>ky

∨
θ∈T θ(y), where T is a finite

set of sphere-formulas of signature σ, each of them with a single centre and all of the same
radius r. An FO(Q)-formula in weak Hanf normal form and of signature σ is a Boolean
combination of sphere-formulas and FO(Q)-weak-Hanf-sentences of signature σ. The proof
of Theorem 5.3 follows by combining Lemma 2.4(c) and:

I Theorem 5.4 ([19]). Let Q be an arbitrary set of counting quantifiers and let d ∈ N. For
every FO(Q)-formula ϕ over some relational signature σ, there exists a finitely d-equivalent
FO(Q)-formula ψ in weak Hanf normal form and of signature σ. Moreover, if the sets Q ∈ Q
are uniformly decidable (in elementary time), then ψ can be computed from ϕ and d (in
elementary time).

One may wonder if, analogously to the statement of Theorem 5.1, the last statement
of Theorem 5.3 can be improved to a 3-fold exponential running time. To refute this, one
observes that from a formula in Gaifman normal form, one can construct an equivalent
formula in weak Hanf normal form with the same number of counting sentences. Then a
lower bound result of [19] for weak Hanf normal forms implies the following:
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I Proposition 5.5. There exists a Q ⊆ N such that for Q := {Q}, there is a sequence
(ϕn)n>1 of FO(Q)-sentences of the same relational signature and of size O(n) such that, for
all n > 1, every FO(Q)-sentence in Gaifman normal form that is finitely 3-equivalent to ϕn
contains at least exp4(n) distinct subformulas of the form (Q+k)y λ(y).

From our proof it follows that {nn : n ∈ N}, {n! : n ∈ N}, and {b2ncc : n ∈ N} for all
reals c > 1, are examples of sets Q for which the statement of Proposition 5.5 holds.

6 An algorithmic meta-theorem for FO(U)

The model-checking problem for a logic L and a class C of finite relational structures receives
as input a sentence ϕ ∈ L and a structure A ∈ C, and the task is to decide if A |= ϕ. This
problem is said to be fixed-parameter tractable if it can be solved in time f(||ϕ||)·poly(||A||)
where f is a computable function, ||ϕ|| is the size of the formula, and ||A|| is the size of
the structure (defined as ||A|| := |A| +

∑
R∈σ ar(R)·|RA|). Recall from Section 1 the list

of examples of logics L and classes C for which the model-checking problem is known to
be fixed-parameter tractable. The aim of this section is to demonstrate that by using our
Gaifman normal form result for FO(U) (Theorem 4.1(1)), the model-checking algorithm for
classes of bounded local tree-width of [9] can be generalised from FO to FO(U).

To provide a precise formulation of the result, we need some further notation. We assume
that the reader is familiar with the basic concept of a tree-decomposition and the tree-width
tw(A) of a structure A (precise definitions can be found in [9] and will not be necessary
for understanding the remainder of this section). The local tree-width of A is the function
ltwA : N → N defined by ltwA(r) := max{tw(NAr (a)) : a ∈ A} for all r ∈ N. A class C
of structures has (effectively) bounded local tree-width if there is a (computable) function
g : N→ N such that ltwA(r) 6 g(r) for all A ∈ C and all r ∈ N. As shown in [9], examples
for classes of bounded local tree-width are classes of trees, classes of structures of tree-width
at most w (for each fixed w ∈ N), classes of degree at most d (for each fixed d ∈ N), the class
of planar graphs, and classes of graphs of genus at most g (for each fixed g ∈ N).

The overall approach of [9] has been described in [12] as follows: “Using Gaifman’s
theorem, the problem to decide whether a general first-order formula ϕ is true in a graph
can be reduced to testing whether a formula is true in r-neighbourhoods in the graph, where
the radius r only depends on ϕ, and solving a variant of the (distance d) independent set
problem. Hence, if C is a class of graphs where r-neighbourhoods have a simple structure,
such as the class of planar graphs or classes of bounded local tree-width, this method gives an
easy way for deciding properties definable in first-order logic.”

Here, the “(distance d) independent set problem” corresponds to the essence of evaluating
a basic local sentence. Our Gaifman normal form for FO(U)-sentences consists of basic
local sentences (which can be evaluated in the same way as described in [9]) and counting
sentences of the form (Q+k)xλ(x), and evaluating these boils down to (1) computing the set
of all nodes x whose r-neighbourhood satisfies λ(x) and (2) checking if the size of this set
belongs to (Q+k). The task (1) has been solved in [9] for r-local FO-formulas and can easily
be gerneralised to r-local FO(U)-formulas, and the task (2) is straightforward. In summary,
by combining the approach of [9] with our Theorem 4.1(1) we obtain:

I Corollary 6.1. Let C be a class of finite relational structures of bounded local tree-width
and let ϕ be an FO(U)-sentence. Then, for every k > 1, there is an algorithm deciding in
time O(||A||1+(1/k)) whether a given structure A ∈ C satisfies ϕ.
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To keep the runtime analysis of Corollary 6.1 simple, we formulated the corollary in
a way which uses the O-notation to hide factors that depend on the sentence ϕ or the
number k. A closer inspection of the proof shows that, for any class of effectively bounded
local tree-width, the algorithm’s runtime can be bounded by f(||ϕ||, k) · ||A||1+(1/k), for some
computable function f . Thus, in particular, we obtain that for every class C of effectively
bounded local tree-width, the model-checking problem for FO(U)-sentences on C is fixed-
parameter tractable. To close this paper, let us mention that we believe that by a similar,
but substantially more involved construction also the result of [12] for model-checking on
nowhere dense classes can be lifted from FO to FO(U) – we plan to do this as future work.
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Abstract
The reachability problem for vector addition systems is one of the most difficult and central
problems in theoretical computer science. The problem is known to be decidable, but despite
intense investigation during the last four decades, the exact complexity is still open. For some
sub-classes, the complexity of the reachability problem is known. Structurally bounded vector
addition systems, the class of vector addition systems with finite reachability sets from any
initial configuration, is one of those classes. In fact, the reachability problem was shown to be
polynomial-space complete for that class by Praveen and Lodaya in 2008. Surprisingly, extending
this property to vector addition systems with states is open. In fact, there exist vector addition
systems with states that are structurally bounded but with Ackermannian large sets of reachable
configurations. It follows that the reachability problem for that class is between exponential space
and Ackermannian. In this paper we introduce the class of polynomial vector addition systems
with states, defined as the class of vector addition systems with states with size of reachable
configurations bounded polynomially in the size of the initial ones. We prove that the reachability
problem for polynomial vector addition systems is exponential-space complete. Additionally, we
show that we can decide in polynomial time if a vector addition system with states is polynomial.
This characterization introduces the notion of iteration scheme with potential applications to the
reachability problem for general vector addition systems.
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1 Introduction

Vector addition systems or equivalently Petri nets are one of the most popular formal methods
for the representation and the analysis of parallel processes [4]. The reachability problem
is central since many computational problems (even outside the parallel processes) reduce
to the reachability problem. In 1981, Mayr [13] provided the first decidability proof of the
reachability problem. Later, that proof was first simplified by Kosaraju [7], and then ten years
later by Lambert [9]. This last proof still remains difficult and the complexity upper bound
of the corresponding algorithm is just known to be non-primitive recursive [11]. Nowadays,
up to some details, there are only two different known reachability algorithms for general
vector addition systems; one based on the Kosaraju-Lambert-Mayr (KLM) decomposition;
and a recent one based on Presburger inductive invariants [10]. Despite intense investigation
during the last four decades, it is still an open problem whether an elementary complexity
upper bound for the reachability problem exists.
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When the reachability set of a vector addition system is finite, the KLM decomposition
degenerates and it just corresponds to the regular language of all possible executions of the
vector addition system from an initial configuration to a final one. Even in that case, the
complexity of the KLM algorithm is Ackermannian and no better complexity upper bound
are known.

In 2008, Praveen and Lodaya proved that the reachability problem for structurally
bounded vector addition systems, the class of vector addition systems with finite reachability
sets from any initial configuration is polynomial-space complete [17]. Surprisingly, extending
this property to vector addition systems with states is open. In fact, there exist vector
addition systems with states that are structurally bounded but with Ackermannian large sets
of reachable configurations. It follows that the reachability problem for that class is between
exponential space and Ackermannian.

Intuitively, for structurally bounded vector addition systems with states, the KLM
algorithm fails to avoid enumerating all the possible reachable configurations since it tries to
detect cycles of edges that can be iterated to obtain arbitrarily large components (such a
cycle cannot exists due to the structurally bounded condition). Characterizing indexes that
can be very large but not necessarily arbitrarily large should provide new insights on how to
overcome the Ackermannian complexity of the KLM algorithm.

Our contributions
In this paper we introduce the class of polynomial vector addition systems with states defined
as the vector addition systems with states such that reachable configurations have sizes
polynomially bounded with respect to sizes of initial configurations. We prove that a vector
addition system with states is not polynomial if, and only if, it contains a so-called iteration
scheme that can increase some components. We prove that we can decide in polynomial
time if a vector addition system with states is polynomial, and we show that the reachability
problem for polynomial vector addition systems with states is exponential-space complete. Up
to our knowledge, our notion of iteration scheme is new and provide a potential application
to patch the KLM algorithm.

Outline
In Section 2 we introduce vector addition systems with states (VASS for short), and the
subclass of polynomial VASS. Iteration schemes are defined in Section 3. Intuitively iteration
schemes are sequences of cycles that can be iterated many times (at least an exponential
number of times). Indexes that can be increased by an iteration scheme are called iterable
indexes, and edges that occur in iteration schemes are called iterable edges. We show that
reachable configurations cannot be polynomially bounded with respect to the size of the
initial configurations on any iterable index. It follows that VASS with iterable indexes cannot
be polynomial. In Section 4, we recall some general properties about the Kirchoff’s functions
and the Euler’s lemma. Those definitions are used in Section 5 to prove the correctness of a
polynomial-time algorithm inspired by the Kosaraju-Sullivan algorithm for computing the
set of iterable indexes and the set of iterable edges. In Section 6 we show that reachable
configurations are polynomially bounded on the non-iterable indexes with respect to the size
of the initial configurations. Finally in Section 7 we show that we can decide in polynomial
time if a VASS is polynomial and we prove that the reachability problem for polynomial
VASS is exponential-space complete.
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2 Polynomial Vector Addition Systems With States

In this section we first introduce the vector addition systems, and the structurally bounded
ones. Then, we recall how the reachability problem for that subclass can be solved in
polynomial space[17]. Next, we introduce the vector addition systems with states (VASS)
and we show that the previous approach for VAS no longer apply to VASS. Finally, we
introduce the class of polynomial VASS, the main class of VASS studied in this paper.

Concerning notations used in this paper, we denote by Z,N,Q the set of integers, natural
numbers, and rational numbers. The absolute value of a rational λ ∈ Q is denoted by |λ|.
Let d ∈ N be a natural number. Vectors in Qd are denoted in bold face, and we denote by
v[1], . . . ,v[d] the components of v, i.e. v = (v[1], . . . ,v[d]). Every operations are performed
component-wise on the vectors; for instance the sum x + y of two vectors in Qd is the vector
z in Qd satisfying z[i] = x[i] + y[i] for every i ∈ {1, . . . , d}. We write x ≤ y if x[i] ≤ y[i]
for every 1 ≤ i ≤ d, and we write x < y if x ≤ y and x 6= y. We denote by ui the ith
unit vector of Qd defined by ui[j] = 0 if j 6= i and ui[i] = 1. Notice that x =

∑d
i=1 x[i]ui

with our notations. The norm of a vector v ∈ Qd is the rational number ||v|| = maxi |v[i]|.
The norm of a finite set V ⊆ Qd is defined as ||V|| = maxv∈V ||v||. We introduce the sets
|v|+ = {i | v[i] > 0} and |v|− = {i | v[i] < 0}. The dot product of two vectors x,y ∈ Qd is
the rational number

∑
i x[i] · y[i] denoted as x · y.

2.1 Vector Addition Systems
A vector addition system (VAS for short) is a non-empty finite set A ⊆ Zd of actions. A
vector in Nd is called a configuration of the VAS A. The semantics is defined thanks to the
binary relation → over the configurations by x→ y if y = x + a for some action a ∈ A. The
reflexive and transitive closure of → is denoted as ∗−→ and it is called the reachability relation.
If x ∗−→ y, we say that y is reachable from x.

The reachability problem consists in deciding for a triple (x,A,y) where x,y are two
configurations of a VAS A, if x ∗−→ y. The problem is decidable [14] but its complexity
remains elusive; the problem is known to be exponential-space hard [12], and the best known
upper bound is non-primitive recursive [11].

A VAS A is said to be bounded from an initial configuration x if the set of configurations
reachable from x is finite. The boundedness problem is known to be exponential-space
complete [18]. Since the size of reachable configurations are at most Ackermannian in
that case [15, 5], it follows that the reachability problem can be decided in Ackermannian
complexity (space and time are equivalent for that class of complexity). This is the best
known upper bound, far from the exponential-space lower bound [12].

When enforcing the VAS to be bounded for any initial configuration, we obtain the
so-called structurally bounded VAS. More formally, a VAS is said to be structurally bounded
if it is bounded from any initial configuration. In polynomial time, one can decide if a VAS
is structurally bounded. In fact, a VAS A is not structurally bounded if, and only if, the
following linear system is satisfiable over the non negative rational numbers: (λa)a∈A:∑

a∈A

λaa > 0

The previous observation combined with the Farkas Lemma [19] shows that a VAS is
structurally bounded if, and only if, there exists a vector v in Nd, called a place invariant
such that v[i] > 0 for every i, and such that v · a ≤ 0 for every action a in A.

ICALP 2018
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I Example 1. The VAS A = {2ui+1 − ui | 1 ≤ i < d} admits the place invariant v ∈ Nd
defined by v[i] = 2d−i for every i.

Notice that if x ∗−→ y then v · y ≤ v · x for any place invariant v. We deduce that
||y|| ≤ (

∑d
i=1 v[i])||x||. The norm of reachable configurations is therefore bounded linearly

in the norm of the initial one. As observed by Praveen and Lodaya [17], the norm of the
vector v can be bounded thanks to a small solution theorem of Borosh and Treybig [1] in
such a way the reachability problem for structurally bounded VAS is decidable in polynomial
space. Based on the reduction of QBF to the reachability problem of structurally bounded
VAS, Praveen and Lodaya deduced the following result.

I Theorem 2 (Theorem 3.10 and Theorem 3.11 of [17]). The reachability problem for
structurally bounded VAS is polynomial-space complete.

2.2 Vector Addition Systems With States
The previous approach no longer apply for structurally bounded vector addition systems
with states. Formally, a vector addition systems with states (VASS for short) is a graph
G = (Q,A, E) where Q is a non empty finite set of states, A is a VAS, and E ⊆ Q×A×Q
is a finite set of edges. A configuration is a pair (q,x) in Q×Nd denoted as q(x) in the sequel.
The semantics of an edge e is defined thanks to the binary relation e−→ over the configurations
by p(x) e−→ q(y) if e = (p,y− x, q). We associate to a word π = e1 . . . ek of edges the binary
relation π−→ over the configurations defined as the following composition:

e1−→ · · · ek−→

Notice that ε−→ is the identity binary relation. The reachability relation of a VASS G is
the binary relation ∗−→ defined as the union

⋃
π∈E∗

π−→. A configuration q(y) is said to be
reachable from a configuration p(x) if p(x) ∗−→ q(y).

The following lemma states the so-called VASS monotony property. We refer to that
lemma when we mention a monotony property in the sequel.

I Lemma 3. We have p(x + c) π−→ q(y + c) for every p(x) π−→ q(y) and for every c ∈ Nd.

Proof. By induction on the length of π. J

We associate to a VASS G = (Q,A, E) the functions src, tgt : E → Q and ∆ : E → A
satisfying e = (src(e),∆(e), tgt(e)) for every e ∈ E. The states src(e) and tgt(e) are
respectively called the source and target states. The vector ∆(e) is called the displacement of
e. We extend the displacement function to words π = e1 . . . ek of edges by ∆(π) = ∆(e1) +
· · ·+ ∆(ek). Given a sequence π1, . . . , πk of words of edges, the vector ∆(π1) + · · ·+ ∆(πk)
is also called the displacement of the sequence. A word π = e1 . . . ek of edges is called a path
of G from a state p to a state q, if there exists a sequence q0, . . . , qk of states with q0 = p

and qk = q such that (src(ej), tgt(ej)) = (qj−1, qj) for every 1 ≤ j ≤ k. A path is said to be
simple if qi = qj implies i = j. A cycle on a state q is a path from q to q. A cycle is said to
be elementary if qi = qj and i < j implies i = 0 and j = k.

Let T ⊆ E be a subset of edges. An edge e of T is said to be recurrent for T if there
exists a path from tgt(e) to src(e) in T , otherwise, it is said to be transient for T . We denote
by rec(T ) the set of edges of T that are recurrent for T . The set T is said to be reccurent
if every edge in T is recurrent, i.e. rec(T ) = T . We observe rec(T ) is recurrent for any set
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T . We associate to a subset T the equivalence relation ∼T over rec(T ) defined by e ∼T e′ if
there exists a path from tgt(e) to src(e′) and a path from tgt(e′) to src(e). The equivalence
classes of ∼T are called the strongly connected components of T , and they are denoted as
SCC(T ). The set T is said to be strongly connected if SCC(T ) = {T}. We also denote by
SCC(G) the set SCC(E), and we say that G is strongly connected if E is strongly connected.

I Example 4. We adapt the VASS introduced in [6] by introducing the following VASS:

p q(−1, 2, 0) (2,−1, 0)

(0, 0, 0)

(0, 0,−1)

Notice that p(1, 0, n) ∗−→ p(4n, 0, 0) for every natural number n since for every n,m ∈ N with
n ≥ 1, we have:

p(m, 0, n) (p,(−1,2,0),p)m(p,(0,0,0),q)(q,(2,−1,0),q)2m(q,(0,0,−1),p)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ p(4m, 0, n− 1)

A VASS G is said to be bounded from an initial configuration p(x) if the reachability set
from that configuration is finite. Let us recall that the boundedness problem is decidable
in exponential space since the boundedness problem for VASS is logspace reducible to
the boundedness for VAS using for instance the encoding of control states as additional
counters [6]. A VASS is said to be structurally bounded if it is bounded from any initial
configuration. Let us recall that a VASS G is not structurally bounded if, and only if, there
exists a cycle σ such that ∆(σ) > 0. Moreover, this property is decidable in polynomial time
using the Kosaraju-Sullivan algorithm [8].

Example 4 shows that reachable configurations of structurally bounded VASS can be
exponentially larger than the initial configuration. Unfortunately, it can even be larger by
observing that the Ackermannian VASS introduced in [15] are structurally bounded. It
follows that the best complexity upper bound for the reachability problem for structurally
bounded VASS is Ackermannian. Concerning the lower bound, by observing that Lipton’s
construction [12, 3] also produces structurally bounded VASS, it follows that the reachability
problem is exponential-space hard.

2.3 Polynomial VASS
In this paper we consider a subclass of the structurally bounded VASS, called the polynomial
VASS.

I Definition 5. A VASS is said to be polynomial if there exists a polynomial function f

such that ||y|| ≤ f(||x||) for every p(x) ∗−→ q(y).

I Example 6. We introduce the following VASS:

p q(−1, 1, 0) (1,−1, 2)

(0, 0, 0)

(−1, 0, 0)
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We have p(n, 0, 0) ∗−→ p(0, 0, n2 + n)) for every n ∈ N since for every n,m ∈ N with m ≥ 1,
we have:

p(m, 0, n) (p,(−1,1,0),p)m(p,(0,0,0),q)(q,(1,−1,2),q)m(q,(−1,0,0),p)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ p(m− 1, 0, n+ 2m)

We will prove in Example 13 that the VASS is polynomial.

I Remark. The VASS given in Example 4 is not polynomial.
We notice that since the Lipton’s construction [12, 3] produces polynomial VASS, it

follows that the reachability problem is exponential-space hard for polynomial VASS. In this
paper we show that (1) we can decide in polynomial time if a VASS is polynomial, (2) the
reachability problem is exponential-space complete for polynomial VASS.

3 Iteration Schemes

An iteration scheme of a VASS G is a finite sequence σ1, . . . , σk of cycles such that:

k∧
j=1

[
|∆(σj)|− ⊆ |∆(σ1) + · · ·+ ∆(σk)|+

]
Observe that the displacement of an iteration scheme is necessarily a vector in Nd. An index
i ∈ {1, . . . , d} such that there exists an iteration scheme with a displacement strictly positive
on i is called an iterable index. An edge t that occurs in an iteration scheme is called an
iterable edge. By concatenating iteration schemes, notice that there exists an iteration scheme
with a displacement strictly positive on every iterable index, and such that every iterable
edge occurs in the scheme.

I Example 7. Let us come back to the VASS introduced in Example 4. Notice that the
cycles (p, (−1, 2, 0), p) and (q, (2,−1, 0), q) forms an iteration scheme with a displacement
equal to (1, 1, 0). It follows that the two first indexes are iterable.

I Example 8. We introduce the following VASS:

p q(−1, 1) (1,−1)

(0, 0)

(0, 0)

Notice that the cycles (p, (−1, 1), p) and (q, (1,−1), q) do not form an iteration scheme.

I Example 9. We cannot restrict iteration schemes to sequences of elementary cycles. In
fact, let us introduce the following VASS:

q(−1, 1, 1) (1,−1, 1)

Notice that the cycle (q, (−1, 1, 1), q)(q, (1,−1, 1), q) is an iteration scheme proving that the
third index is iterable. However notice that any non-empty sequence of elementary cycles is
not an iteration scheme.

The following lemma shows that if a strongly connected VASS admits an iteration scheme
with a non-zero displacement, then the VASS is not polynomial.
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I Lemma 10. For every strongly-connected VASS, there exists a rational number λ > 1 such
that for every n ∈ N there exists an execution pn(xn) πn−−→ qn(yn) such that:
||xn|| ≥ n.
yn[i] ≥ λ||xn|| for every iterable index i.
Every iterable edge occurs in πn at least λ||xn|| times.

Proof. The proof is given in a technical report. Intuitively, iteration schemes can be iterated
an exponential number of times. J

In section 6, we prove that conversely, indexes that are not iterable can be bounded with
a polynomial, as well as non iterable edges occur at most a bounded polynomial number of
times.

4 Kirchoff’s Functions and Euler’s Lemma

We recall some classical results about Kirchoff’s functions and Euler’s lemma. We assume
that G = (Q,A, E) is a VASS.

A multiset of edges is a function φ : E → N. The set {e ∈ E | φ(e) 6= 0} is called the
domain of φ and it is denoted by dom(φ). Given a subset T ⊆ E and a multiset of edges φ,
we denote by φ ∩ T the multiset of edges defined as follows:

φ ∩ T (t) =
{
φ(t) if t ∈ T
0 otherwise

The Parikh image of a word π of edges is the multiset of edges φ such that φ(e) is the number
of occurrences in π of e for every edge e ∈ E.

The displacement function ∆ is extended over the multiset of edges φ by ∆(φ) =∑
e∈E φ(e)∆(e). The vector ∆(φ) are called the displacement of φ. Notice that if φ is the

Parikh image of a word π of edges then ∆(φ) = ∆(π).

A Kirchoff function φ is a multiset of edges such that for every q ∈ Q:∑
e∈E|tgt(e)=q

φ(e) =
∑

e∈E|src(e)=q

φ(e)

Let us recall that a finite sum of Parikh images of cycles is a Kirchoff function and every
Kirchoff function is a finite sum of Parikh images of elementary cycles. It follows that
the domain of a Kirchoff function is recurrent. The Euler’s Lemma claims that a Kirchoff
function is the Parikh image of a cycle if, and only if, its domain is strongly connected.

5 Computing the Set of Iterable Indexes and Edges

In this section, we show that the set of iterable indexes and the set of iterable edges of a
VASS G = (Q,A, E) are computable in polynomial time. Given a pair (I, T ) where I is a
subset of {1, . . . , d} and T is a subset of edges, a sequence σ1, . . . , σk of cycles of T is called
an (I, T )-constrained iteration scheme if

k∧
j=1
|∆(σj)|− ⊆ |∆(σ1) + · · ·+ ∆(σk)|+ ⊆ I

ICALP 2018



134:8 Polynomial Vector Addition Systems With States

We denote by Γ(I, T ) the pair (I ′, T ′) where I ′ is the set of indexes i ∈ I such that there
exists an (I, T )-constrained iteration scheme with a displacement strictly positive on i, and
where T ′ is the set of edges that occurs in an (I, T )-constrained iteration scheme. Observe
that Γ({1, . . . , d}, E) is the pair (I ′, T ′) where I ′ is the set of iterable indexes and T ′ is the
set of iterable edges.

We are going to compute Γ(I, T ) inductively by reducing the pair (I, T ) into a pair
(I ′, T ′) such that Γ(I, T ) = Γ(I ′, T ′) and such that Γ(I, T ) = (I, T ) if it is not possible to
reduce (I, T ) anymore. Such an approach is similar to the one used by the Kosaraju-Sullivan
algorithm [8, 2] for computing from a VASS the set of edges occurring in cycles with zero
displacements. The pair (I ′, T ′) is obtained by computing Ω(I, T ) defined as follows.

I Definition 11. Let (I, T ) be a pair such that I ⊆ {1, . . . , d} and T ⊆ E, and let us
consider the following linear system over the variables (µi)i∈I and (λt)t∈T ranging over the
non-negative rational numbers:∧

q∈Q

∑
t∈T |tgt(t)=q

λt =
∑

t∈T |src(t)=q

λt

∧
S∈SCC(T )

∧
i6∈I

∑
t∈S

λt∆(t)[i] = 0

∧
i∈I

∑
t∈T

λt∆(t)[i] = µi

Then Ω(I, T ) is defined as the pair (I ′, T ′) where:
I ′ is the set of indexes i ∈ I satisfying the previous linear system and µi > 0, and
T ′ is the set of edges t ∈ T satisfying the previous linear system and λt > 0.

I Example 12. Let us come back to Example 4. We observe that Ωn({1, 2, 3}, E) is equal
to ({1, 2}, E) if n = 1, and it is equal to ({1, 2}, {(p, (−1, 2, 0), p), (q, (2,−1, 0), q)}) if n ≥ 2.

I Example 13. Let us come back to Example 6. We observe that Ωn({1, 2, 3}, E) is equal
to ({3}, E) if n = 1, ({3}, {(p, (−1, 1, 0), p), (q, (1,−1, 2), q)}) if n = 2, and (∅, ∅) if n ≥ 3.

I Example 14. Let us come back to Example 8. We observe that Ωn({1, 2}, E) is equal to
(∅, E) for every n ≥ 1.

Notice that Ω(I, T ) is computable in polynomial time and Ω(I, T ) reduces the pair (I, T ).
The following lemma shows that this reduction let unchanged the value of Γ(I, T ).

I Lemma 15. We have Γ(I, T ) = Γ(Ω(I, T )).

Proof. Let (I ′, T ′) = Ω(I, T ). Since (I ′, T ′) ⊆ (I, T ) we get Γ(I ′, T ′) ⊆ Γ(I, T ). For
the converse inclusion, we just have to prove that any (I, T )-constrained iteration scheme
σ1, . . . , σk is an (I ′, T ′)-constrained iteration scheme. Let φj be the Parikh image of σj , and
let φ =

∑k
j=1 φj . Notice that (µi)i∈I and (λt)t∈T defined as µi = ∆(φ)[i] and λt = φ(t) is a

solution of the linear system introduced in Definition 11. It follows that µi > 0 implies i ∈ I ′
and λt > 0 implies t ∈ T ′. Hence σ1, . . . , σk is an (I ′, T ′)-constrained iteration scheme. J

Finally, the following lemma shows that Γ(I, T ) is equal to (I, T ) if (I, T ) cannot be
reduced anymore.

I Lemma 16. We have Γ(I, T ) = (I, T ) if, and only if, Ω(I, T ) = (I, T ).
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Proof. Assume that Γ(I, T ) = (I, T ). Lemma 15 shows that Ω(I, T ) = (I, T ). Conversely,
assume that Ω(I, T ) = (I, T ). By adding many solutions of the linear system introduced
in Definition 11, we obtain a solution (µi)i∈I and (λt)t∈T such that µi > 0 for every i ∈ I
and λt > 0 for every t ∈ T . By multiplying that solution by a large natural number, we can
assume that the solution is over the natural numbers. Now, just notice that the multiset of
edges φ defined by φ(t) = λt if t ∈ T and φ(t) = 0 otherwise is a Kirchoff function satisfying
dom(φ) = T , |∆(φ)|+ = I, and such that ∆(φ ∩ S)[i] = 0 for every S ∈ SCC(T ) and for
every i 6∈ I, and such that ∆(φ)[i] ≥ 0 for every i ∈ I. Euler’s Lemma shows that for
every S ∈ SCC(T ), there exists a cycle σS with a Parikh image equal to φ ∩ S. Notice that
|∆(σS)|− = |∆(φ ∩ S)|− ⊆ I. Moreover |

∑
S ∆(σS)|+ = I. It follows that (σS)S∈SCC(T ) is

an (I, T )-constrained iteration scheme. This scheme shows that (I, T ) ⊆ Γ(I, T ). Therefore
Γ(I, T ) = (I, T ). J

Now, let us introduce Ω∞(I, T ) =
⋂
n∈N Ωn(I, T ). Since (Ωn(I, T ))n∈N is a non-increasing

sequence, there exists n ≤ |I|.|T | such that Ωn+1(I, T ) = Ωn(I, T ) and for such an n, we
have Ω∞(I, T ) = Ωn(I, T ). We deduce that Ω∞(I, T ) is computable in polynomial time.
Moreover, from Lemma 15 and Lemma 16, we deduce that Γ(I, T ) = Ω∞(I, T ). We have
proved the following theorem.

I Theorem 17. Iterable indexes and iterable edges are computable in polynomial time.

6 Non-iterable case

In this section we prove the following theorem.

I Theorem 18. Let G = (Q,A, E) be a strongly connected VASS. For every p(x) π−→ q(y),
the values y[i] where i is a non iterable index, and the number of occurrences of non iterable
edges in π are bounded by:

[(1 + ||x||)2d2(3||A|| |Q|)15d4
]4

d|E|

We are now ready for proving the following lemma.

I Lemma 19. Let G = (Q,A, E) be a VASS such that ||A|| ≥ 1, I ⊆ {1, . . . , d}, and T be a
recurrent set of edges. We consider a path π such that p(x) π−→ q(y). Let m ≥ 1 satisfying:

The number of occurrences in π of edges not in T is bounded by m, and
x[i] + ∆(π′)[i] ≤ m for every every prefix π′ of π and for every i 6∈ I.

Then m′, I ′, T ′ defined as follows:

m′ = m4(1 + ||x||)2d2(3µ)15d4

(I ′, T ′) = Ω(I, T )

Where µ = ||A|| |Q| satisfies:
The number of occurrences in π of edges not in T ′ is bounded by m′, and
x[i] + ∆(π′)[i] ≤ m′ for every every prefix π′ of π and for every i 6∈ I ′.

Proof. Notice that it is sufficient to prove that the number of occurrences in π of edges not
in T ′ is bounded by m′, and y[i] ≤ m′ for every i 6∈ I ′. In fact, the more general bound
x[i] + ∆(π′)[i] ≤ m′ for every prefix π′ of π and for every i 6∈ I ′ can be obtained as a corollary.

Let k be the number of occurrences in π of edges not in T . It follows that π can be
decomposed into: π = π0t1π1 . . . tkπk where π0, . . . , πk are paths in T and t1, . . . , tk are not
in T . We introduce the sequences (pj(xj))1≤j≤k and (qj(yj))0≤j≤k of configurations such
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that pj(xj)
πj−→ qj(yj) for every 0 ≤ j ≤ k, qj−1(yj−1) tj−→ pj(xj) for every 1 ≤ j ≤ k, and

such that p0(x0) = p(x) and qk(yk) = q(y). Notice that xj [i],yj [i] ≤ m for every i 6∈ I and
for every 0 ≤ j ≤ k since xj and yj can be obtained trivially as vectors of the form x + ∆(π′)
for some prefixes π′ of π.

Let us observe that since πj is a path in T and since T is recurrent, it follows that there
exists Sj ∈ SCC(T ) such that πj is a path in Sj . We decompose the Parikh image αj of πj
into αj = φj +

∑
`∈Lj

ψj,` where φj is the Parikh image of a simple path in Sj , and ψj,` is a
Parikh image of an elementary cycle in Sj for every ` in a finite set Lj .

We introduce the set Z of displacements of elementary cycles. Notice that ||Z|| ≤ µ. We
associate to each S ∈ SCC(T ) and each z ∈ Z the cardinal nS,Z of the set

⋃
j|Sj=S{(j, `) |

` ∈ Lj ∧∆(ψj,`) = z}. Observe that for every S, we have:∑
z∈Z

nS,zz =
∑

j|Sj=S

∑
`∈Lj

∆(ψj,`)

=
∑

j|Sj=S

∆(αj)−∆(φj)

=
∑

j|Sj=S

(yj − xj −∆(φj))

It follows that for every i 6∈ I, we have:

|
∑
z∈Z

nS,zz[i]| ≤ (k + 1)(m+ |Q|||A||) ≤ 2m(2mµ) ≤ 4m2µ(1 + ||x||)

Moreover, we have:

∑
S∈SCC(T )

∑
z∈Z

nS,zz =
k∑
j=0

(yj − xj −∆(φj))

=
k∑
j=0

(yj − xj) +
k∑
j=1

∆(tj)−
k∑
j=0

∆(φj)−
k∑
j=1

∆(tj)

= y− x−
k∑
j=0

∆(φj)−
k∑
j=1

∆(tj)

If follows that for every i, we have:∑
S∈SCC(T )

∑
z∈Z

nS,zz[i] ≥ −(||x||+ (k + 1)(|Q| − 1)||A||+ k||A||)

≥ −3mµ(1 + ||x||) ≥ −4m2µ(1 + ||x||)

Let us introduce δ = |SCC(T )|(4m2µ(1 + ||x||)d)2(3µ)9d4 . Notice that
δ ≤ m4(1 + ||x||)2d2(3µ)12d4 . Lemma 20 shows that there exists a sequence of natural
numbers (mS,z)S,z such that:∑

z∈Z mS,zz[i] = 0 for every S, and every i 6∈ I.∑
S

∑
z∈Z mS,zz ≥ 0

nS,z > δ implies mS,z > 0,∑
S

∑
z∈Z nS,zz[i] > δ implies

∑
S

∑
z∈Z mS,zz[i] > 0.

It follows that:
if nS,z > δ then every simple cycle of S with a displacement equal to z is a simple cycle
of T ′, and
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if y[i] > ||x||+ δ +m+ (k + 1)(|Q| − 1)||A||+ k||A|| then i ∈ I ′.

It follows that y[i] ≤ ||x||+ δ+ 3mµ ≤ 3δ ≤ m′ for every i 6∈ I ′. Moreover, it follows that
for every S, the number of occurrences of cycles ψj,` with j such that Sj = S, and ` ∈ Lj such
that dom(ψj,`) 6⊆ T ′ is bounded by |Z|δ ≤ m4(1+||x||)2d2(3µ)13d4 . It follows that the number
of occurrences of edges not in T ′ in π is bounded by k+|SCC(T )|.|Q|.m4(1+||x||)2d2(3µ)13d4 ≤
m4(1 + ||x||)2d2(3µ)15d4 = m′. J

The proof of the previous lemma was based on the following one, a kind of “small solution”
theorem [16].

I Lemma 20. Let (ns,z)s,z be a sequence of natural numbers indexes by s in a non-empty
finite set S, and by z in a finite subset Z ⊆ {−µ, . . . , µ}d for some µ ≥ 1. Let I ⊆ {1, . . . , d}
and m ≥ 1 such that:
|
∑

z∈Z ns,zz[i]| ≤ m for every s ∈ S and for every i 6∈ I, and
The vector v defined as

∑
s∈S

∑
z∈Z ns,zz satisfies v[i] ≥ −m for every i ∈ {1, . . . , d}.

There exists a sequence (ms,z)z∈Z,s∈S of natural numbers such that:∑
z∈Z ms,zz[i] = 0 for every s ∈ S and for every i 6∈ I, and

The vector w defined as
∑
s∈S

∑
z∈Z ms,zz satisfies w ≥ 0

and such that δ = |S|(md)2(3µ)9d4 satisfies:
If ns,z > δ then ms,z > 0, and
If v[i] > δ then w[i] > 0.

Proof. The proof is based on an application of a “small solution” theorem of Pottier [16] on
each s ∈ S, and then, on the resulting solutions we apply again the “small solution” theorem
for extracting solutions satisfying w ≥ 0. J

Let us consider p(x) π−→ q(y) and let (In, Tn) = Ωn({1, . . . , d}, E). We introduce for every
n the minimal number mn ≥ 1 such that the number of occurrences of edges in π that are
not in Tn is bounded by mn, and x[i] + ∆(π′)[i] ≤ mn for every i 6∈ In and for every prefix
π′ of π. Notice that m0 = 1, and Lemma 19 shows that for every n ≥ 0:

mn+1 ≤ m4
n(1 + ||x||)2d2(3µ)15d4

Let us introduce the sequence (sn)n≥0 defined by s0 = 1, and the induction for every n ∈ N:

sn+1 = s4
n.(1 + ||x||)2d2(3µ)15d4

Observe that mn ≤ sn for every n. Moreover, we have:

sn = [(1 + ||x||)2.d2(3µ)15d4
]4

n−1

Since Γ({1, . . . , d}, E) = Ω∞({1, . . . , d}, E) = Ωd|E|({1, . . . , d}, E), we have proved The-
orem 18.

7 Applications

Theorem 18 shows that a strongly connected VASS without iterable indexe is polynomial.
Combined with Lemma 10, we deduce the following characterization.

I Theorem 21. A strongly connected VASS is polynomial if, and only if, its set of iterable
indexes is empty.
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As a direct consequence of Theorems 21 and 17 and the following Lemma 22, we get the
following Theorem 23. Note that the restriction of a VASS G = (Q,A, E) to a subset T ⊆ E
of edges is defined as the VASS G|T = (Q,A, T ).

I Lemma 22. A VASS is polynomial if, and only if, its restriction to every SCC is polynomial.

Proof. The proof is given in a technical report. J

I Theorem 23. We can decide in polynomial-time if a VASS is polynomial.

Moreover, since Theorem 18 shows that reachable configurations are bounded exponentially
in space, we derive the following result.

I Theorem 24. The reachability problem for polynomial VASS is exponential-space complete.

Proof. Theorem 18 shows that reachable configurations are bounded exponentially in space.
It follows that the reachability problem is decidable in exponential space. We have already
observed the lower bound in Section 2.2. J

8 Conclusion

In this paper we introduced the class of polynomial VASS and showed that the membership
problem of a VASS in that class is decidable in polynomial time. Moreover, we proved
that the reachability problem for polynomial VASS is exponential-space complete. Our
characterization of polynomial VASS is based on the notion of iteration schemes. Intuitively,
whereas a cycle of a VASS with a non-negative displacement can be iterated an arbitrarily
number of times to obtain arbitrarily large values on indexes that are strictly increased by
the cycle, iteration schemes can be iterated an exponential number of times and provide
a way to increase by an exponential number every index that is increased by the iteration
scheme. As a future work, we are interested in using iteration schemes rather than iterable
cycles in the KLM algorithm to hopefully obtain better complexity upper bound for the
reachability problem for general vector addition systems.
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Abstract
Given a Counting Monadic Second Order (CMSO) sentence ψ, the CMSO[ψ] problem is defined
as follows. The input to CMSO[ψ] is a graph G, and the objective is to determine whether G |= ψ.
Our main theorem states that for every CMSO sentence ψ, if CMSO[ψ] is solvable in polynomial
time on “globally highly connected graphs”, then CMSO[ψ] is solvable in polynomial time (on
general graphs). We demonstrate the utility of our theorem in the design of parameterized
algorithms. Specifically we show that technical problem-specific ingredients of a powerful method
for designing parameterized algorithms, recursive understanding, can be replaced by a black-box
invocation of our main theorem. We also show that our theorem can be easily deployed to show
fixed parameterized tractability of a wide range of problems, where the input is a graph G and the
task is to find a connected induced subgraph of G such that “few” vertices in this subgraph have
neighbors outside the subgraph, and additionally the subgraph has a CMSO-definable property.
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1 Introduction

Algorithmic meta-theorems are general algorithmic results applicable to a whole range of
problems. Many prominent algorithmic meta-theorems are about model checking; such
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there is an algorithm that takes as input a formula φ ∈ L and a structure S ∈ C and
efficiently determines whether S |= φ. Results in this direction include the seminal theorem
of Courcelle [8, 7, 9] for model checking Monadic Second Order Logic (MSO) on graphs
of bounded treewidth (see also [1, 2, 4, 10, 14]), as well as a large body of work on model
checking first-order (FO) logic [5, 12, 16, 18, 19, 21, 20, 23, 28].

Another kind of algorithmic meta-theorems reduce the task of designing one type of
algorithm for a problem, to one of designing a different kind of algorithm for the same
problem. The hope is, of course, that the second type of algorithms are significantly easier
to design than the first. A prototype example of such results is Bidimensionality [13], which
reduces the design of sub-exponential time parameterized algorithms for a problem on planar
(or H-minor free) graphs, to the design of single exponential time algorithms for the same
problem when parameterized by the treewidth of the input graph.

In this paper we prove a result of the second type for model checking Counting Monadic
Second Order Logic (CMSO), an extension of MSO with atomic sentences for determining
the cardinality of vertex and edge sets modulo any (fixed) integer. For every CMSO sentence
ψ define the CMSO[ψ] problem as follows. The input is a graph G on n vertices, and the
task is to determine whether G |= ψ.

Our main result states that for every CMSO sentence ψ, if there is a O(nd) time algorithm
(d > 4) for CMSO[ψ] for the special case when the input graph is required to be “highly
connected everywhere”, then there is a O(nd) time algorithm for CMSO[ψ] without any
restrictions. In other words, our main theorem reduces CMSO model checking to model
checking the same formula on graphs which are “highly connected everywhere”.

In order to complete the description of our main result we need to define what we mean
by “highly connected everywhere”. For two integers s and c, we say that a graph G is
(s, c)-unbreakable if there does not exist a partition of the vertex set into three sets X, C,
and Y such that

C is a separator: there are no edges from X to Y ,
C is small: |C| ≤ c, and
X and Y are large: |X|, |Y | ≥ s.

For example, the set of (1, c)-unbreakable graphs contains precisely the (c+ 1)-connected
graphs, i.e. the connected graphs for which removing any set of at most c vertices leaves the
graph connected. We can now state our main result:

I Theorem 1. Let ψ be a CMSO sentence. For all c ∈ N, there exists s ∈ N such that if
there exists an algorithm that solves CMSO[ψ] on (s, c)-unbreakable graphs in time O(nd)
for some d > 4, then there exists an algorithm that solves CMSO[ψ] on general graphs in
time O(nd).

For Theorem 1 to be useful, there must exist problems that can be formulated in CMSO,
for which it is easier to design algorithms for the special case when the input graphs are
unbreakable, than it is to design algorithms that work on general graphs. Such problems
can be found in abundance in parameterized complexity. Indeed, the recursive understanding
technique, which has been used to solve several problems [6, 22, 24, 25, 27, 26] in parameterized
complexity, is based precisely on the observation that for many graph problems it is much
easier to design algorithms if the input graph can be assumed to be unbreakable.

Designing algorithms using the recursive understanding technique typically involves a
technical and involved argument akin to doing dynamic programming on graphs of bounded
treewidth (see Chitnis et al. [6] for an exposition). These arguments reduce the original
problem on general graphs to a generalized version of the problem on (s, c)-unbreakable
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graphs, for appropriate values of s and c. Then an algorithm is designed for this generalized
problem on (s, c)-unbreakable graphs, yielding an algorithm for the original problem.

For all applications of the recursive understanding technique known to the authors [6,
22, 24, 25, 27, 26], the problem in question (in which recursive understanding has been
applied) can be formulated as a CMSO model checking problem, and therefore, the rather
cumbersome application of recursive understanding can be completely replaced by a black
box invocation of Theorem 1. Using Theorem 1 in place of recursive understanding has the
additional advantage that it reduces problems on general graphs to the same problem on
unbreakable graphs, facilitating also the last step of designing an algorithm on unbreakable
graphs.

As an example of the power of Theorem 1 we use it to give a fixed parameter tractable
(FPT) algorithm for the Vertex Multiway Cut Uncut problem. Details can be found in
the full version of the paper on arXiv.org. Here, we are given a graph G together with a set
of terminals T ⊆ V (G), an equivalence relation R on the set T , and an integer k, and the
objective is to test whether there exists a set S ⊆ V (G) \ T of at most k vertices such that
for any u, v ∈ T , the vertices u and v belong to the same connected component of G \ S if
and only if (u, v) ∈ R. Since finding the desired set S satisfying the above property can be
formulated in CMSO, we are able to completely sidestep the necessity to define a technically
involved annotated version of our problem, and furthermore, we need only focus on the base
case where the graph is unbreakable. To solve the base case, a simple procedure that is based
on the enumeration of connected sets with small neighborhood is sufficient. For classification
purposes, our approach is significantly simpler than the problem-specific algorithm in [6].
Finally, we show how Theorem 1 can be effortlessly deployed to show fixed parameterized
tractability of a wide range of problems, where the input is a graph G and the task is to find
a connected induced subgraph of G of bounded treewidth such that “few” vertices outside
this subgraph have neighbors inside the subgraph, and additionally the subgraph has a
CMSO-definable property.

Our techniques. The proof of Theorem 1 is based heavily on the idea of graph replacement,
which dates back to the work of Fellows and Langston [17]. We combine this idea with
Courcelle’s theorem [8, 7, 9], which states that every CMSO-definable property σ has finite
state on a bounded-size separation/boundary. In other words, for any CMSO-definable
property σ and fixed t ∈ N, there is an equivalence relation defined on the set of all t-
boundaried graphs (graphs with a set of at most t distinguished vertices) with a finite
number, say ζ (where ζ depends only on σ and t) of equivalence classes such that if we
replace any t-boundaried subgraph H of the given graph G with another t-boundaried graph,
say H ′, from the same equivalence class to obtain a graph G′, then G has the property σ if
and only if G′ has the property σ. In case of (s, c)-unbreakable graphs, t = 2c. Let R1, . . . , Rζ
denote a set containing one “ minimal” 2c-boundaried graph from each equivalence class
(for the fixed CMSO-definable property σ). Let r denote the size of the largest among these
minimal representatives.

The main technical content of our paper is in the description of an algorithm for a
generalization of our question. To be precise, we will describe how one can, given a 2c-
boundaried graph G, locate the precise equivalence class in which G is contained and how
one could compute the corresponding smallest representative from the set {R1, . . . , Rζ}. We
refer to this task as “understanding” G.

In order to achieve our objective, we first give an algorithm A that allows one to
understand 2c-boundaried (s− r, c)-unbreakable graphs (for a choice of s which is sufficiently

ICALP 2018



135:4 Reducing CMSO Model Checking to Highly Connected Graphs

large compared to r and c). This algorithm is built upon the following observation. The
equivalence class of any 2c-boundaried graph G is determined exactly by the subset of
{G⊕R1, G⊕R2, . . . , G⊕Rζ} on which σ evaluates to true. Here, the graph G⊕Ri is the
graph obtained by taking the disjoint union of the graphs G and Ri and then identifying
the vertices of the boundaries of these graphs with the same label. Since s is chosen to be
sufficiently large compared to c and r, it follows that for every i ∈ {1, . . . , ζ}, the graph G⊕Ri
is (s, c)-unbreakable and we can use the assumed algorithm for CMSO[ψ] on (s, c)-unbreakable
graphs to design an algorithm that understands 2c-boundaried (s− r, c)-unbreakable graphs.
This constitutes the ‘base case’ of our main algorithm.

In order to understand a general ((s − r, c)-breakable) 2c-boundaried graph, we use
known algorithms from [6] to compute a partition of the vertex set of G into X,C, and
Y such that C is a separator, |C| ≤ c and |X|, |Y | ≥ s−r

2c . Let G1 = G[X ∪ C] and let
G = G[Y ∪ C]. Without loss of generality, we may assume that at most half the vertices in
the boundary of G lie in X ∪C. Consequently, the graph G1 is a 2c-boundaried graphs where
the boundary vertices are the vertices in C along with the boundary vertices of G contained
in X ∪ C. We then recursively understand the strictly smaller 2c-boundaried graph G1 to
find its representative R̂ ∈ {R1, . . . , Rζ}. Since the evaluation of σ on G is the same as the
evaluation of σ on G2 ⊕ R̂ (where the gluing happens along C), we only need to understand
the 2c-boundaried graph G2 ⊕ R̂ (where the boundary is carefully defined from that of G
and R̂) and we do this by recursively executing the “understand” algorithm on this graph.

At this point we also need to remark on two drawbacks of Theorem 1. The first is that
Theorem 1 is non-constructive. Given an algorithm for CMSO[ψ] on (s, c)-unbreakable
graphs, Theorem 1 allows us to infer the existence of an algorithm for CMSO[ψ] on general
graphs, but it does not provide us with the actual algorithm. This is due to the subroutine S
requiring a representative 2c-boundaried subgraph for each equivalence class, to be part of its
‘source code’. Thus, the parameterized algorithms obtained using Theorem 1 are non-uniform
(see Section 4), as opposed to the algorithms obtained by recursive understanding.

The second drawback is that Theorem 1 incurs a gargantuan constant factor overhead in
the running time, where this factor depends on the formula ψ and the cut size c. We leave
removing these two drawbacks as intriguing open problems.

2 Preliminaries

In order to present a rigorous proof of our lemmas in a way that is consistent with existing
notation used in related work, we follow the notation from the paper [3].

Graphs and treewidth. Throughout this paper, we use the term “graph” to refer to a
multigraph rather than only a simple graph. Given a graph G, we let V (G) and E(G) denote
the vertex and edge sets of G, respectively. When G is clear from the context, we denote
n = |V (G)| and m = |E(G)|. Given two subsets of V (G), A and B, we let E(A,B) denote
the set of edges of G with one endpoint in A and the other endpoint in B. Given U ⊆ V (G),
we let G[U ] denote the subgraph of G induced by U , and we let N(U) and N [U ] denote the
open and closed neighborhoods of U , respectively. Moreover, we denote G\U = G[V (G) \U ].
Given v ∈ V (G), we denote N(v) = N({v}) and N [v] = N [{v}]. Given E ⊆ E(G), we
denote G \ E = (V (G), E(G) \ E). Moreover, we let V [E] denote the set of every vertex in
V (G) that is incident to at least one edge in E, and we define G[E] = (V [E], E). A graph G
is a cluster graph if there exists a partition (V1, V2, . . . , Vr) of V (G) for some r ∈ N0 of V (G)
such that for all i ∈ [r], G[Vi] is a clique, and for all j ∈ [r] \ {i}, E(Vi, Vj) = ∅.
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I Definition 2. A tree decomposition of a graph G is a pair (T, β) of a tree T and β : V (T )→
2V (G), such that (a)

⋃
t∈V (T ) β(t) = V (G), and (b) for any edge e ∈ E(G), there exists a

node t ∈ V (T ) such that both endpoints of e belong to β(t), and (c) for any vertex v ∈ V (G),
the subgraph of T induced by the set Tv = {t ∈ V (T ) : v ∈ β(t)} is a tree.

The width of (T, β) is maxv∈V (T ){|β(v)|} − 1. The treewidth of G is the minimum width
of a tree decomposition of G.

Unbreakability. To formally introduce the notion of unbreakability, we rely on the definition
of a separation:

I Definition 3 (Separation). A pair (X,Y ) where X ∪ Y = V (G) is a separation if E(X \
Y, Y \X) = ∅. The order of (X,Y ) is |X ∩ Y |.

Roughly speaking, a graph is breakable if it is possible to “break” it into two large parts
by removing only a small number of vertices. Formally,

I Definition 4 ((s, c)-Unbreakable graph). Let G be a graph. If there exists a separation
(X,Y ) of order at most c such that |X \ Y | > s and |Y \X| > s, called an (s, c)-witnessing
separation, then G is (s, c)-breakable. Otherwise, G is (s, c)-unbreakable.

The following lemma implies that it is possible to determine (approximately) whether a
graph is unbreakable or not, and lemmata similar to it can be found in [6].

I Lemma 5. There exists an algorithm, Break-ALG, that given s, c ∈ N and a graph G,
in time 2O(c log(s+c)) · n3 log n either returns an ( s2c , c)-witnessing separation or correctly
concludes that G is (s, c)-unbreakable.

Boundaried Graphs. Roughly speaking, a boundaried graph is a graph where some vertices
are labeled. Formally,

I Definition 6 (Boundaried graph). A boundaried graph is a graph G with a set δ(G) ⊆ V (G)
of distinguished vertices called boundary vertices, and an injective labeling λG : δ(G)→ N.
The set δ(G) is the boundary of G, and the label set of G is Λ(G) = {λG(v) | v ∈ δ(G)}.

We remark that we also extend the definition of (s, c)-(un)breakability from graphs,
to boundaried graphs in the natural way. That is, we ignore the boundary vertices when
considering the existence of an (s, c)-witnessing separation. For ease of presentation, we
sometimes abuse notation and treat equally-labeled vertices of different boundaried graphs,
as well as the vertex that is the result of the identification of two such vertices, as the same
vertex. Given a finite set I ⊆ N, FI denotes the class of all boundaried graphs whose label
set is I, and F⊆I =

⋃
I′⊆I FI′ . A boundaried graph in F⊆[t] is called a t-boundaried graph.

Finally, F denotes the class of all boundaried graphs. The main operation employed to unite
two boundaried graphs is the one that glues their boundary vertices together. Formally,

I Definition 7 (Gluing by ⊕). Let G1 and G2 be two boundaried graphs. Then, G1 ⊕G2 is
the (not-boundaried) graph obtained from the disjoint union of G1 and G2 by identifying
equally-labeled vertices in δ(G1) and δ(G2).4

4 Each edge in G1 (or G2) whose endpoints are boundaried vertices in G1 (or G2) is preserved as a unique
edge in G1 ⊕ G2.
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Structures. We first define the extension of graphs to structures in the context of our paper.

I Definition 8 (Structure). A structure α is a tuple whose first element is a graph, denoted
by Gα, and each of the remaining elements is a subset of V (Gα), a subset of E(Gα), a vertex
in V (Gα) or an edge in E(Gα). The number of elements in the tuple is the arity of the
structure.

Given a structure α of arity p and an integer i ∈ [p], we let α[i] denote the i’th element
of α. Note that α[1] = Gα. By appending a subset S of V (Gα) (or E(Gα)) to a structure
α of arity p, we produce a new structure, denoted by α′ = α � S, of arity p + 1 with the
first p elements of α′ being the elements of α and α′[p+ 1] = S. For example, consider the
structure α = (Gα, S, e) of arity 3, where S ⊆ V (Gα) and e ∈ E(Gα). Let S′ be some subset
of V (Gα). Then, appending S′ to α results in the structure α′ = α � S′ = (Gα, S, e, S′).

Next, we define the notions of a type of a structure and a property of structures.

I Definition 9 (Type). Let α be a structure of arity p. The type of α is a tuple of
arity p, denoted by type(α), where the first element, type(α)[1], is graph, and for every
i ∈ {2, 3, . . . , p}, type(α)[i] is vertex if α[i] ∈ V (Gα), edge if α[i] ∈ E(Gα), vertex set if
α[i] ⊆ V (Gα), and edge set otherwise.5

I Definition 10 (Property). A property is a function σ from the set of all structures to
{true, false}.

Finally, we extend the notion of unbreakability to structures.

I Definition 11 ((s, c)-Unbreakable structure). Let α be a structure. If Gα is an (s, c)-
unbreakable graph, then we say that α is an (s, c)-unbreakable structure, and otherwise we
say that α is an (s, c)-breakable structure.

Counting Monadic Second Order Logic. The syntax of Monadic Second Order Logic
(MSO) of graphs includes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges,
sets of vertices and sets of edges, the quantifiers ∀ and ∃, which can be applied to these
variables, and five binary relations: (a) u ∈ U , where u is a vertex variable and U is a
vertex set variable; (b) d ∈ D, where d is an edge variable and D is an edge set variable;
(c) inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is
that the edge d is incident to u; (d) adj(u, v), where u and v are vertex variables, and the
interpretation is that u and v are adjacent; (e) equality of variables representing vertices,
edges, vertex sets and edge sets.

Counting Monadic Second Order Logic (CMSO) extends MSO by including atomic
sentences testing whether the cardinality of a set is equal to q modulo r, where q and r are
integers such that 0 ≤ q < r and r ≥ 2. That is, CMSO is MSO with the following atomic
sentence: cardq,r(S) = true if and only if |S| ≡ q (mod r), where S is a set. We refer
to [2, 8, 9] for a detailed introduction to CMSO.

Evaluation. To evaluate a CMSO-formula ψ on a structure α, we instantiate the free
variables of ψ by the elements of α. In order to determine which of the free variables of ψ
are instantiated by which of the elements of α, we introduce the following conventions. First,
each free variable x of a CMSO-formula ψ is associated with a rank, rx ∈ N \ {1}. Thus, a

5 Note that we distinguish between a set containing a single vertex (or edge) and a single vertex (or edge).
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CMSO-formula ψ can be viewed as a string accompanied by a tuple of integers, where the
tuple consists of one integer rx for each free variable x of ψ.

Given a structure α and a CMSO-formula ψ, we say that type(α) matches ψ if (i) the
arity of α is at least max rx, where the maximum is taken over each free variable x of ψ, and
(ii) for each free variable x of ψ, type(α)[rx] is compatible with the type of x. For example,
if x is a vertex set variable, then type(α)[rx] = vertex set. Finally, we say that α matches ψ
if type(α) matches ψ. Given a free variable x of a CMSO sentence ψ and a structure α that
matches ψ, the element corresponding to x in α is α[rx].

I Definition 12. [Property σψ] Given a CMSO-formula ψ, the property σψ is defined as
follows. Given a structure α, if α does not match ψ, then σψ(α) equals false, and otherwise
σψ(α) equals the result of the evaluation of ψ where each free variable x of ψ is instantiated
by α[rx].

Note that some elements of α may not correspond to any variable of ψ. However, ψ may
still be evaluated on the structure α—in this case, the evaluation of ψ does not depend on
all the elements of the structure. If the arity of α is 1, then we use σψ(Gα) to denote σψ(α).

I Definition 13. [CMSO-definable property] A property σ is CMSO-definable if there exists
a CMSO-formula ψ such that σ = σψ. In this case, we say that ψ defines σ.

Structures. The notion of a boundaried structure is an extension of the notion of a boundaried
graph and is defined as follows.

I Definition 14 (Boundaried structure). A boundaried structure is a tuple whose first element
is a boundaried graph G, denoted by Gα, and each of the remaining elements is a subset of
V (G), a subset of E(G), a vertex in V (G), an edge in E(G), or the symbol ?. The number
of elements in the tuple is the arity of the boundaried structure.

Given a boundaried structure α of arity p and an integer i ∈ [p], we let α[i] denote the
i’th element of α. We remark that we extend the definition of (s, c)-(un)breakability of
structures, to boundaried structures.

I Definition 15 (Type). Let α be a boundaried structure of arity p. The type of α is a tuple
of arity p, denoted by type(α), where the first element, type(α)[1], is boundaried graph, and
for every i ∈ {2, 3, . . . , p}, type(α)[i] is vertex if α[i] ∈ V (Gα), edge if α[i] ∈ E(Gα), vertex
set if α[i] ⊆ V (Gα), edge set if α[i] ⊆ E(Gα) and ? otherwise.

Now, given a boundaried structure and a CMSO-formula ψ, we say that type(α) matches
ψ if (i) the arity of α is at least max rx, where the maximum is taken over each free variable
x of ψ, and (ii) for each free variable x of ψ, type(α)[rx] is compatible with the type of x.
Moreover, we say that α matches ψ if type(α) matches ψ.

Given p ∈ N, Ap denotes the class of all boundaried structures of arity p, and given a
finite set I ⊆ N, ApI (Ap⊆I) denotes the class of all boundaried structures of arity p whose
boundaried graph belongs to FI (resp. F⊆I). A boundaried structure in Ap⊆[t] is called a
t-boundaried structure. Finally, we let A denote the class of all boundaried structures.

I Definition 16 (Compatiblity). Two boundaried structures α and β are compatible (nota-
tionally, α∼cβ) if the following conditions are satisfied.

α and β have the same arity p.
For every i ∈ [p]:

type(α)[i] = type(β)[i] 6= ?, or
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type(α)[i] ∈ {vertex,edge} and type(β)[i] = ?, or
type(β)[i] ∈ {vertex,edge} and type(α)[i] = ?.

For every i ∈ [p] such that both α[i] and β[i] are vertices: α[i] ∈ δ(Gα), β[i] ∈ δ(Gβ) and
λGα(α[i]) = λGβ (β[i]).
For every i ∈ [p] such that both α[i] and β[i] are edges: α[i] ∈ E(Gα[δ(Gα)]), β[i] ∈
E(Gβ [δ(Gβ)]) and {λGα(xα[i]), λGα(yα[i])} = {λGβ (xβ[i]), λGβ (yβ[i])}, where
α[i] = (xα[i], yα[i]) and β[i] = (xβ[i], yβ[i]). That is, xj and yj are the endpoints of the
edge j ∈ {α[i], β[i]}.

I Definition 17 (Gluing by ⊕). Given two compatible boundaried structures α and β of
arity p, the operation α⊕ β is defined as follows.

α⊕ β is a structure γ of arity p.
Gγ = Gα ⊕Gβ .
For every i ∈ [p]:

if α[i] and β[i] are sets, γ[i] = α[i] ∪ β[i];
if α[i] and β[i] are vertices/edges, γ[i] = α[i] = β[i];
if α[i] = ?, γ[i] = β[i];
if β[i] = ?, γ[i] = α[i].

State. This subsection states a variant of the classical Courcelle’s Theorem [8, 7, 9] (see
also [10]), which is a central component in the proof of our main result. To this end, we first
define the compatibility equivalence relation ≡c on boundaried structures as follows. We say
that α ≡c β if Λ(Gα) = Λ(Gβ) and for every boundaried structure γ, α ∼c γ ⇐⇒ β ∼c γ.
Now, we define the canonical equivalence relation ≡σ on boundaried structures.

I Definition 18 (Canonical equivalence). Given a property σ of structures, the canonical
equivalence relation ≡σ on boundaried structures is defined as follows. For two boundaried
structures α and β, we say that α ≡σ β if (i) α ≡c β, and (ii) for all boundaried structures
γ compatible with α (and thus also with β), we have σ(α⊕ γ) = true⇔ σ(β ⊕ γ) = true.

It is easy to verify that ≡σ is indeed an equivalence relation. Given a property σ of
structures, p ∈ N and I ⊆ N, we let E≡σ [Ap⊆I ] denote the set of equivalence classes of ≡σ
when restricted to Ap⊆I .

I Definition 19 (Finite state). A property σ of structures is finite state if, for every p ∈ N
and I ⊆ N, E≡σ [Ap⊆I ] is finite.

Given a CMSO sentence ψ, the canonical equivalence relation associated with ψ is ≡σψ ,
and for the sake of simplicity, we denote this relation by ≡ψ. We are now ready to state the
variant of Courcelle’s Theorem which was proven in [3] (see also [8, 7, 9]) and which we use
in this paper.

I Lemma 20 ([3]). Every CMSO-definable property on structures has finite state.

Parameterized Complexity. An instance of a parameterized problem is a pair of the form
(x, k), where k is a non-negative integer called the parameter. Thus, a parameterized problem
Π is a subset of Σ∗ × N0, for some finite alphabet Σ.

Two central notions in parameterized complexity are those of uniform fixed-parameter
tractability and non-uniform fixed-parameter tractability. In this paper, we are interested in
the second notion, which is defined as follows.
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I Definition 21 (Non-uniform fixed-parameter tractability (FPT)). Let Π be a parameterized
problem. We say that Π is non-uniformly fixed-parameter tractable (FPT) if there exists a
fixed d such that for every fixed k ∈ N0, there exists an algorithm Ak that for every x ∈ Σ∗,
determines whether (x, k) ∈ Π in time O(|x|d).

Note that in Definition 21, d is independent of k. We refer the reader to the books [15, 11]
for a detailed introduction to parameterized complexity.

3 CMSO Model Checking

Given a CMSO formula ψ, the CMSO[ψ] problem is defined as follows. The input of
CMSO[ψ] is a structure α that matches ψ, and the objective is to output σψ(α). In this
section, we prove the following result, which then implies Theorem 1.

I Theorem 22. Let ψ be a CMSO formula. For all c ∈ N, there exists s ∈ N such that if
there exists an algorithm that solves CMSO[ψ] on (s, c)-unbreakable structures in time O(nd)
for some d > 4, then there exists an algorithm that solves CMSO[ψ] on general structures in
time O(nd).

In the context of parameterized complexity, min-CMSO[ψ] (min-Edge-CMSO[ψ]) is
defined as follows. The input of min-CMSO[ψ] is a structure α, where for all S ⊆ V (Gα)
(resp. S ⊆ E(Gα)), α � S matches ψ, and a parameter k. The objective is to determine
whether there exists S ⊆ V (Gα) (resp. S ⊆ E(Gα)) of size at most k such that σψ(α � S) is
true. Similarly, we define max-CMSO[ψ] (resp. max-Edge-CMSO[ψ]), where the size of
S should be at least k, and eq-CMSO[ψ] (resp. eq-Edge-CMSO[ψ]), where the size of S
should be exactly k. Then, as a consequence of Theorem 22, we derive the following result.

I Theorem 23. Let x∈ {min,max,eq,min-Edge,max-Edge,eq-Edge}, and let ψ̂ be a
CMSO sentence. For all ĉ : N0 → N0, there exists ŝ : N0 → N0 such that if x-CMSO[ψ̂] para-
meterized by k is FPT on (ŝ(k), ĉ(k))-unbreakable structures, then x-CMSO[ψ̂] parameterized
by k is FPT on general structures.

From now on, to prove Theorem 22, we assume a fixed CMSO formula ψ and a fixed
c ∈ N. Moreover, we fix p as the number of free variables of ψ, and I = [2c]. We also let
s ∈ N be fixed, where its exact value (that depends only on ψ and c) is determined later.
Finally, we assume that there exists an algorithm, Solve-Unbr-ALG, that solves CMSO[ψ] on
(s, c)-unbreakable structures in time O(nd) for some d > 4.

3.1 Understanding an instance of the CMSO[ψ] Problem
To solve CMSO[ψ], we consider a generalization of CMSO[ψ], called Understand[ψ].
The definition of this generalization is based on an examination of E≡ψ [Ap⊆I ]. Given a
boundaried structure α ∈ Ap⊆I , we let Eα denote the equivalence class in E≡ψ [Ap⊆I ] that
contains α. For every equivalence class Eq ∈ E≡ψ [Ap⊆I ], let αEq denote some boundaried
structure in Eq such that there is no boundaried structure α ∈ Eq where the length of the
string encoding α is smaller than the length of the string encoding αEq . Accordingly, denote
R≡ψ [Ap⊆I ] = {αEq : Eq ∈ E≡ψ [Ap⊆I ]}. These will be the representatives of the equivalence
classes induced by ≡ψ. By Lemma 20, there is a fixed r ∈ N (that depends only on ψ and c)
such that both |R≡ψ [Ap⊆I ]| and the length of encoding of any boundaried structure in R≡ψ
are upper bounded by r as well as c ≤ r. Note that the encoding explicitly lists all vertices
and edges. By initially choosing s appropriately, we ensure that s ≥ 2r2c + r.
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The Understand[ψ] problem is defined as follows. The input is a boundaried structure
α ∈ Ap⊆I that matches ψ, and the objective is to output a boundaried structure β ∈ R≡ψ [Ap⊆I ]
such that Eα = Eβ . We proceed by showing that to prove Theorem 22, it is sufficient to
prove that there exists an algorithm that solves Understand[ψ] on general boundaried
structures in time O(nd).

I Lemma 24. If there exists an algorithm that solves Understand[ψ] on general boundaried
structures in time O(nd), then there exists an algorithm that solves CMSO[ψ] on general
structures in time O(nd).

In light of Lemma 24, the rest of this section focuses on the proof of the following result.

I Lemma 25. There exists an algorithm that solves Understand[ψ] on general boundaried
structures in time O(nd).

3.2 Understand[ψ] on Unbreakable Structures
Recall that s ≥ 2r2c + r. In this subsection, we show that Algorithm Solve-Unbr-ALG can be
used as a subroutine in order to efficiently solve Understand[ψ] on (s− r, c)-unbreakable
boundaried structures. For this, we follow the method of test sets (see for example, [Section
12.5, [15]]). The high level idea here is as follows. We first enumerate the relevant subset
of the finite set of minimal representatives. In other words, we simply list those minimal
representatives which can be glued in a meaningful way to the structure under consideration,
call it α. We now observe that gluing each of these representatives to α results in an
(s, c)-unbreakable structure, which is what we need to call Solve-Unbr-ALG. In this way we
solve the instance obtained by gluing α to each minimal representative.

Now, for every (not necessarily distinct) pair of minimal representatives, we glue them
together and do the same. This way, we can identify the specific minimal representative
whose behaviour when glued with every minimal representative, precisely resembles that
of the structure α when we do the same with α. Consequently, we obtain a solution for
Understand[ψ]. We now formalize this intuition in the following lemma.

I Lemma 26. There exists an algorithm Understand-Unbr-ALG, that solves Understand[ψ],
where it is guaranteed that inputs are (s− r, c)-unbreakable boundaried structures, in time
O(nd).6

Proof. We design the algorithm Understand-Unbr-ALG as follows. Let α be an input, which is
an (s− r, c)-unbreakable boundaried structure. Moreover, let C = {γ ∈ R≡ψ [Ap⊆I ] : γ ≡c α},
and let T denote the set of boundaried structures in R≡ψ [Ap⊆I ] that are compatible with α.
In the first phase, the algorithm performs the following computation. Notice that for every
β ∈ T , since |V (Gβ)| ≤ r, it holds that α⊕ β is an (s, c)-unbreakable structure. Thus, for
every β ∈ T , Understand-Unbr-ALG can call Solve-Unbr-ALG with α⊕ β as input, and it lets
ans(α, β) denote the result.

In the second phase, the algorithm performs the following computation. Notice that for
every γ ∈ C and β ∈ T , since |V (Gβ)|, |V (Gγ)| ≤ r, it holds that γ⊕β is a (2r, c)-unbreakable
structure. Thus, since s ≥ 2r2c + r, for all β ∈ C and γ ∈ T , Understand-Unbr-ALG can call
Solve-Unbr-ALG with γ ⊕ β as input, and it lets ans(γ, β) denote the result.

6 Here, Understand-Unbr-ALG is not required to verify whether the input is an (s − r, c)-unbreakable
boundaried structure.
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Finally, in the third phase, for every β ∈ C, the algorithm performs the following
computation. It checks whether for every γ ∈ T it holds that ans(α, γ) = ans(β, γ), and
if the answer is positive, then it outputs β. Since α ∈ Ap⊆I , there exists β′ ∈ C such that
Eα = Eβ′ , and therefore, at the latest, when β = β′, the algorithm terminates. Thus, the
algorithm is well defined, and it is clear that it runs in time O(nd).

To conclude that the algorithm is correct, it remains to show that for all β ∈ C \ {β′},
there exists γ ∈ T such that ans(α, γ) 6= ans(β, γ), as this would imply that the algorithm
necessarily outputs β′. For this purpose, suppose by way of contradiction that there exists
β ∈ C \ {β′} such that for all γ ∈ T it holds that ans(α, γ) = ans(β, γ). We now argue
that Eβ = Eβ′ which leads to a contradiction since each boundaried structure in R≡ψ [Ap⊆I ]
belongs to a different equivalence class.

For all γ ∈ T , since it holds that ans(α, γ) = ans(β, γ), it also holds that ans(β′, γ) =
ans(β, γ). This implies that σψ(β′ ⊕ γ) = σψ(β ⊕ γ). Consider some boundaried structure
γ (not necessarily in T ) that is compatible with β′ (and thus also with β). We claim that
σψ(β′ ⊕ γ) = σψ(β ⊕ γ). Indeed, let γ′ be the (unique) boundaried structure in R≡ψ [Ap⊆I ]
such that Eγ′ = Eγ . Then, σψ(β′ ⊕ γ′) = σψ(β′ ⊕ γ) and σψ(β ⊕ γ′) = σψ(β ⊕ γ). Note that
since γ′ is compatible with β′, it is also compatible with α, and hence γ′ ∈ T . Therefore,
σψ(β′ ⊕ γ′) = σψ(β ⊕ γ′). Overall, we obtain that indeed σψ(β′ ⊕ γ) = σψ(β ⊕ γ).

Note that β ≡c β′, and thus, since we have shown that for every boundaried structure γ
compatible with β′ it holds that σψ(β′ ⊕ γ) = σψ(β ⊕ γ), we derive that Eβ = Eβ′ . However,
each boundaried structure in R≡ψ [Ap⊆I ] belongs to a different equivalence class, and thus we
have reached the desired contradiction. J

3.3 Understand[ψ] on General Structures
The Algorithm Understand-ALG. We start by describing an algorithm called
Understand-ALG, which is based on recursion. Given an input to Understand[ψ] on
general boundaried structures, which is a boundaried structure α, the algorithm works as
follows. First, it calls Break-ALG (given by Lemma 5) with Gα as input to either obtain an
(s− r2c , c)-witnessing separation (X,Y ) or correctly conclude that Gα is (s−r, c)-unbreakable.
In the second case or if n < 2(s − r), it calls Understand-Unbr-ALG (given by Lemma
26), and returns its output. Next, suppose that Understand-ALG obtained an (s− r2c , c)-
witnessing separation (X,Y ) and that n ≥ 2(s− r). Without loss of generality, assume that
|X ∩ δ(Gα)| ≤ |Y ∩ δ(Gα)|. Denote ∆ = {v ∈ X ∩ Y : v /∈ δ(Gα)}.

Now, we define a boundaried structure, β ∈ Ap⊆I , which can serve as an instance of
Understand[ψ]. First, we let the graph Gβ beGα[X], and we define δ(Gβ) = (X∩δ(Gα))∪∆.
Now, for all v ∈ X ∩ δ(Gα), we define λGβ (v) = λGα(v). Since |X ∩ δ(Gα)| ≤ |Y ∩ δ(Gα)|,
α ∈ Ap⊆I and |X ∩Y | ≤ c, we have that |(X ∩ δ(Gα))∪∆| ≤ 2c. Thus, to each v ∈ ∆, we can
let λGβ (v) assign some unique integer from I\λGα(X∩δ(Gα)). Hence, Gβ ∈ F⊆I . Now, for all
i ∈ {2, . . . , p}, we set β[i] as follows. If type(α)[i] ∈ {vertex,edge}: If α[i] ∈ V (Gβ) ∪E(Gβ),
then β[i] = α[i], and otherwise β[i] = ?. Else: β[i] = α[i] ∩ (V (Gβ) ∪ E(Gβ)).

Understand-ALG proceeds by calling itself recursively with β as input, and it lets β′ be
the output of this call. Now, we define another boundaried structure, γ ∈ Ap⊆I , which
can serve as an instance of Understand[ψ]. First, we define the boundaried graph Gγ as
follows. Let H be the disjoint union of Gβ′ and G[Y ], where both Gβ′ and G[Y ] are treated
as not-boundaried graphs. For all v ∈ X ∩ Y , identify (in H) the vertex v of G[Y ] with
the vertex u of Gβ′ that satisfies λGβ′ (u) = λGβ (v), and for the sake of simplicity, let v
and u also denote the identity of the resulting (unified) vertex. The graph Gγ is the result
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of this process. Moreover, let ∆′ denote the set of vertices in Gβ′ whose labels belong to
Gβ(∆). Next, set δ(Gγ) = (Y ∩ δ(Gα))∪ (δ(Gβ′) \∆′). Now, for all v ∈ Y ∩ δ(Gα), we define
λGγ (v) = λGα(v), and for all v ∈ δ(Gβ′) \∆′, we define λGγ (v) = λGβ′ (v) (note that if a
vertex belongs to both Y ∩ δ(Gα) and δ(Gβ′) \∆′, we still assign it the same label). Hence,
Gγ ∈ F⊆I . For the sake of simplicity, if two vertices have the same label (one in Gα and
the other in Gγ), we let the identity of one of them also refer to the other and vice versa.
For all i ∈ {2, . . . , p}, we set γ[i] to have the same type as α[i], and define it as follows. If
type(α)[i] ∈ {vertex,edge}: If α[i] ∈ V (Gγ)∪E(Gγ), then γ[i] = α[i], and otherwise γ[i] = ?.
Else: γ[i] = α[i] ∩ (V (Gγ) ∪ E(Gγ)). Finally, Understand-ALG calls itself recursively with γ
as input, and it returns γ′, the output of this call.

Correctness and running time. Finally, we prove the following two results. Along with
Lemma 27, these complete the proof of Lemma 25.

I Lemma 27. If Understand-ALG terminates, then it correctly solves Understand[ψ] on
general boundaried structures.

I Lemma 28. Understand-ALG runs in time O(nd).

4 Applications

In this section, we first show how Theorem 23 can be easily deployed to show the fixed
parameter tractability of a wide range of problems of the following kind. The input is a graph
G and the task is to find a connected induced subgraph of G of bounded treewidth such that
“few” vertices outside this subgraph have neighbors inside the subgraph, and additionally the
subgraph has a CMSO-definable property. Then, we show that technical problem-specific
ingredients of a powerful method for designing parameterized algorithms called recursive
understanding, can be replaced by a black-box invocation of Theorem 23.

4.1 “Pendant” Subgraphs with CMSO-Definable Properties
Formally, given a CMSO sentence ψ and a non-negative integer t, the t-Pendant[ψ] problem
is defined as follows. The input of t-Pendant[ψ] is a graph G and a parameter k, and the
objective is to determine whether there exists U ⊆ V (G) such that G[U ] is a connected graph
of treewidth at most t, |N(U)| ≤ k and σψ(G[U ]) is true.

It is straightforward to define a CMSO formula ϕ with free variable S such that the
t-Pendant[ψ] problem is equivalent to min-CMSO[ϕ] as follows.

I Observation 4.1. Let G be a graph, and let k be a parameter. Then, (G, k) is a Yes-
instance of t-Pendant[ψ] if and only if ((G), k) is a Yes-instance of min-CMSO[ϕ].

Next, we solve t-Pendant[ψ] on unbreakable graphs with the appropriate parameters.
Define c : N0 → N0 as follows. For all k ∈ N0, let ĉ(k) = k + t. Let s : N0 → N0 be the
function ŝ in Theorem 23 with ψ̂ = ϕ and ĉ = c. We first prove the following lemma.

I Lemma 29. Let (G, k) be a Yes-instance of t-Pendant[ψ] parameterized by k on (s(k), k+
t)-unbreakable graphs. Then, there exists U ⊆ V (G) such that G[U ] is a connected graph of
treewidth at most t, |N(U)| ≤ k, σψ(G[U ]) is true and |U | < 3(s(k) + t).

Proof. Since (G, k) is a Yes-instance, there exists U ⊆ V (G) such that G[U ] is a connected
graph of treewidth at most t, |N(U)| ≤ k and σψ(G[U ]) is true. Moreover, since the
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treewidth of G[U ] is at most t, it is easy to see that there exists a separation (X,Y ) of order
at most t of G[U ] such that |X|, |Y | ≥ |U |/3 (see, e.g., [11]). Then, set X ′ = X ∪N(U) and
Y ′ = (V (G)\X)∪(X∩Y ). Note that (X ′, Y ′) is a separation of order |X∩Y |+|N(U)| ≤ k+t.
Moreover, X \ Y ⊆ X ′ \ Y ′ and Y \ X ⊆ Y ′ \ X ′. Thus, (X ′, Y ′) is a (|U |/3 − t, k + t)-
witnessing separation. Since G is (s(k), k+t)-unbreakable graph, we have that |U |/3−t < s(k).
Therefore, |U | < 3(s(k) + t), which concludes the correctness of the lemma. J

I Lemma 30. t-Pendant[ψ] parameterized by k is FPT on (s(k), k + t)-unbreakable graphs.

Finally, by Theorem 23, Observation 4.1 and Lemma 30, we derive the following result.

I Theorem 31. t-Pendant[ψ] parameterized by k is FPT on general graphs.
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Abstract
We solve two long-standing open problems on word equations. Firstly, we prove that a one-
variable word equation with constants has either at most three or an infinite number of solutions.
The existence of such a bound had been conjectured, and the bound three is optimal. Secondly,
we consider independent systems of three-variable word equations without constants. If such a
system has a nonperiodic solution, then this system of equations is at most of size 17. Although
probably not optimal, this is the first finite bound found. However, the conjecture of that bound
being actually two still remains open.
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1 Introduction

If n words satisfy a nontrivial relation, they can be written as products of n− 1 words. This
folklore result is known as the defect theorem, and it can be seen as analogous to the simple
fact of linear algebra that the dimension of the solution space of a homogeneous n-variable
linear equation is n− 1. If an independent equation is added to a system of linear equations,
the dimension of the solution space decreases, which gives an upper bound n for the size
of independent systems of linear equations, but no such results are known for word equations.
In fact, the maximal size of independent systems of constant-free word equations has been
one of the biggest open questions in combinatorics on words for many decades. In 1983, Culik
and Karhumäki [4] pointed out that a conjecture of Ehrenfeucht about test sets of formal
languages can be equivalently formulated as claiming that every infinite system of word
equations is equivalent to a finite subsystem. Ehrenfeucht’s conjecture was proved by Albert
and Lawrence [1] and independently by Guba [9], and it follows that independent systems
cannot be infinite, but no finite upper bounds depending only on the number of variables
have been found. Independent systems of size Θ(n4) on n variables were constructed by
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Karhumäki and Plandowski [13], and the hidden constant in Θ(n4) was improved in [14].
This is the best known lower bound.

The case of three variables is particularly interesting. In this case, it is easy to find
systems of size two that are independent and have a nonperiodic solution, or systems of size
three that are independent but have no nonperiodic solution, and Culik and Karhumäki
conjectured that there are no larger such systems, but no finite upper bounds have been found
even in this case. In fact, despite Ehrenfeucht’s conjecture, even the existence of a bound is
not guaranteed, because in principle it might be possible that there are unboundedly large
finite independent systems. This case of three variables is very striking because it is the
simplest nontrivial case, but the gap between the almost trivial lower bound and the infinite
upper bound has remained huge despite the considerable attention the problem has received.
Some results about systems of specific forms are known [10, 5, 6], and some upper bounds
that depend on the sizes of the equations have been proved [17, 11, 16]. The best current
bound is logarithmic with respect to the size of the smallest equation in the system [16].

In the above, we have considered constant-free word equations. If we add constants, the
equations become more complicated. For constant-free equations, the three-variable case is
the first nontrivial one, but for equations with constants, already the one-variable case is
interesting. One-variable equations have been studied in many articles [8, 7, 15], and the main
open question about them is the maximal number of solutions such an equation can have if
we exclude equations with infinitely many solutions (if the solution set is infinite, it is known
to be of a very specific form). Even finding an example with exactly two solutions is not
entirely trivial, but a simple example was given by Laine and Plandowski [15]. An example
with exactly three solutions was recently found [16]. No fixed upper bound, or even the
existence of an upper bound, has been proved. The best known result is a bound that
depends logarithmically on the number of occurrences of the variable in the equation [15]. It
can be noted that the solutions of a one-variable equation can be found in linear time in the
RAM model, as proved by Jeż [12].

In this article, we solve the open problem about sizes of solution sets of one-variable
equations by proving that a one-variable equation has either infinitely many solutions or at
most three, which is an optimal result. As a consequence, we prove the first upper bound
for the sizes of independent systems of constant-free three-variable equations, thus settling
the old open question about the existence of such a bound. More specifically, we prove that
if an independent system of constant-free three-variable equations is independent and has
a nonperiodic solution, then the system is of size at most 17 (if the system is not required to
have a nonperiodic solution, then the size can be at most one larger). This bound is probably
not optimal and the conjecture of Culik and Karhumäki remains open, as does the more
general question about n-variable equations.

Two previous articles provide crucial tools for our proofs. The first article is [18], where
new methods were introduced to solve a certain open problem on word equations. We use and
further develop these methods to analyze one-variable equations. The second article is [16],
where a surprising connection between the two topics we have discussed above was found:
It was proved that a bound for the maximal size of a finite solution set of a one-variable
equation implies a (larger) bound for the maximal size of independent systems of constant-free
three-variable equations.

Some of the proofs have been omitted from this conference version to save space.
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2 Preliminaries

We begin this section by considering constant-free word equations. Let Ξ be an alphabet
of variables and Γ an alphabet of constants. A constant-free word equation is a pair
(U, V ) ∈ Ξ∗ × Ξ∗, and the solutions of this equation are the morphisms h : Ξ∗ → Γ∗ such
that h(U) = h(V ). A solution h is periodic if there exists p ∈ Γ∗ such that h(X) ∈ p∗ for
all X ∈ Ξ. Otherwise, h is nonperiodic. It is well-known that h is periodic if and only if
h(PQ) = h(QP ) for all words P,Q ∈ Ξ∗.

I Example 1. Let Ξ = {X,Y, Z} and consider the equation (XY Z,ZY X). For all p, q ∈ Γ∗
and i, j, k ≥ 0, the morphism h defined by h(X) = (pq)ip, h(Y ) = (qp)jq, h(Z) = (pq)kp is
a solution of this equation because

h(XY Z) = (pq)ip · (qp)jq · (pq)kp = (pq)i+j+k+1p = (pq)kp · (qp)jq · (pq)ip = h(ZY X).

Every nonperiodic solution of the equation is of this form.

A set of equations is a system of equations. A morphism is a solution of a system if it is
a solution of every equation in the system. Two equations or systems are equivalent if they
have exactly the same solutions. A system of equations is independent if it is not equivalent
to any of its proper subsets.

I Example 2. Let Ξ = {X,Y, Z} and Γ = {a, b}. The system of equations S = {(XYZ ,ZYX),
(XY Y Z,ZY Y X)} is independent and has a nonperiodic solution h defined by h(X) = a,
h(Y ) = b, h(Z) = a. To see independence, note that S is not equivalent to (XY Z,ZY X),
because the morphism h defined by h(X) = a, h(Y ) = b, h(Z) = aba is a solution of
(XY Z,ZY X) but not of S, and S is not equivalent to (XY Y Z,ZY Y X), because the
morphism h defined by h(X) = a, h(Y ) = b, h(Z) = abba is a solution of (XY Y Z,ZY Y X)
but not of S.

The following question is a big open problem on word equations: If a system of constant-
free three-variable equations is independent and has a nonperiodic solution, then how large
can the system be? The largest known examples are of size two, see Example 2, and it has
been conjectured that these examples are optimal. Even the following weaker conjecture is
open.

I Conjecture 3. There exists a number c such that every independent system of constant-free
three-variable equations with a nonperiodic solution is of size c or less.

Currently, the best known result is the following.

I Theorem 4 ([16]). Every independent system of constant-free three-variable equations is
of size O(log n), where n is the length of the shortest equation.

Next, we will consider word equations with constants. As before, let Ξ be an alphabet
of variables and Γ an alphabet of constants. A word equation with constants is a pair
(U, V ) ∈ (Ξ ∪ Γ)∗ × (Ξ ∪ Γ)∗, and the solutions of this equation are the constant-preserving
morphisms h : (Ξ ∪ Γ)∗ → Γ∗ such that h(U) = h(V ). If U = V , then the equation is trivial.

In this article, we are interested in the one-variable case Ξ = {X}. We use the notation
[u] for the constant-preserving morphism h : ({X} ∪ Γ)∗ → Γ∗ defined by h(X) = u. If S is
a set of words, we use the notation [S] = {[u] | u ∈ S}. If [u] is a solution of a one-variable
equation E, then u is called a solution word of E. The set of all solutions of E is denoted by
Sol(E).
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I Example 5. Let Γ = {a, b}. The equation (Xab, abX) has infinitely many solutions [(ab)i],
where i ≥ 0. The equation (XaXbab, abaXbX) has exactly two solutions [ε] and [ab]. The
equation (XXbaaba, aabaXbX) has exactly two solutions [a] and [aaba]. The equation

(XaXbXaabbabaXbabaabbab, abaabbabaXbabaabbXaXbX)

has exactly three solutions [ε], [ab], [abaabbab].

The following is a well-known open problem: If a one-variable equation has only finitely
many solutions, then what is the maximal number of solutions it can have? Example 5 shows
that the answer is at least three, but no upper bound is known. Currently, the best known
result is the following.

I Theorem 6 ([15, Theorems 23, 26, 29]). If the solution set of a one-variable equation is
finite, then it has size at most 8 log n+O(1), where n is the number of occurrences of the
variable.

If the solution set is infinite and the equation is not trivial, then there are words p, q such
that pq is primitive and the solution set is [(pq)∗p].

We will need the following lemma.

I Lemma 7 ([7, Lemma 1]). Let E be a one-variable equation and let pq be primitive. The
set

Sol(E) ∩ [(pq)+p]

is either [(pq)+p] or has at most one element.

A connection between constant-free three-variable equations and one-variable equations
with constants was recently found [16]. Here we give the relevant special case of one of the
results.

I Theorem 8 ([16]). If every one-variable word equation has either infinitely many solutions
or at most three, then Conjecture 3 is true for c = 17.

In this article, we will prove that every one-variable word equation has either infinitely
many solutions or at most three, and thus Conjecture 3 is true for c = 17.

3 Sums of words

In this section, we will give some definitions and ideas that will be used in our proofs. Most
of these were introduced in [18].

We can assume that the alphabet Γ is a subset of R. Then we can define Σ(w) to be
the sum of the letters of a word w ∈ Γ∗, that is, if w = a1 · · · an and a1, . . . , an ∈ Γ, then
Σ(w) = a1 + · · · + an. Words w such that Σ(w) = 0 are called zero-sum words. If w is
zero-sum, then the morphism [w] can also be called zero-sum. The largest and smallest
letters in a word w can be denoted by max(w) and min(w), respectively.

The prefix sum word of w = a1 · · · an is the word psw(w) = b1 · · · bn, where bi = Σ(a1 · · · ai)
for all i. Of course, psw(w) is usually not a word over Γ, but over some other alphabet. The
mapping psw is injective and length-preserving. We also use the notation pswr(w) = c1 · · · cn,

where r ∈ R and ci = bi + r for all i.
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•

•
(|w|,Σ(w)) H(w)

A1

A2

A3

A(w) = A1 −A2 +A3

Figure 1 Representation of the word w = aaabbaa, where a = 1 and b = −2. We have |w| = 7,
Σ(w) = 1, H(w) = 3, and A(w) = 7.

I Example 9. Let w = bbcaac, where a = 1, b = 2, and c = −3. We have |w| = 6,
max(w) = 2, and min(w) = −3. Because Σ(w) = 2 + 2 − 3 + 1 + 1 − 3 = 0, w is a zero-
sum word. The prefix sum word of w is psw(w) = 241230, and max(psw(w)) = 4 and
min(psw(w)) = 0.

For a word w, we define its height H(w) and area A(w):

H(w) = max(psw(w)) = max{Σ(u) | ε 6= u v w},

A(w) = Σ(psw(w)) =
∑
uvw

Σ(u),

where u v w means that u is a prefix of w. For the empty word, H(ε) = −∞ and A(ε) = 0.
These definitions have the following graphical interpretation: A word w = a1 · · · an can

be represented by a polygonal chain by starting at the origin, moving a1 steps up, one step
to the right, a2 steps up, one step to the right, and so on. The end point of this curve is then
(|w|,Σ(w)). The biggest y-coordinate (after the initial line segment starting at the origin) is
H(w). The number A(w) is the area under the curve, defined in the same way as a definite
integral, that is, parts below the x-axis count as negative areas. See Figure 1 for an example.

I Lemma 10. For words w1, . . . , wn, we have

Σ(w1 · · ·wn) = Σ(w1) + · · ·+ Σ(wn),

psw(w1 · · ·wn) =
n∏

i=1
pswΣ(w1···wi−1)(wi),

H(w1 · · ·wn) = max{Σ(w1 · · ·wi−1) +H(wi) | 1 ≤ i ≤ n},

A(w1 · · ·wn) =
n∑

i=1
(A(wi) + Σ(w1 · · ·wi−1)|wi|).

Proof. Follows easily from the definitions. J

When studying words from a combinatorial point of view, the choice of the alphabet
is arbitrary (except for the size of the alphabet), so we can assign numerical values to the
letters in any way we like, as long as no two letters get the same value. The next two lemmas
show that, given any word w, the alphabet can be normalized so that w becomes a zero-sum
word, and every zero-sum word can be written as a product of minimal zero-sum words in a
unique way.
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I Lemma 11 ([18, Lemma 3]). Let w ∈ Γ∗. There exists an alphabet ∆ and an isomorphism
h : Γ∗ → ∆∗ such that h(w) is zero-sum.

I Lemma 12 ([18, Lemma 4]). The set of zero-sum words over Γ is a free monoid.

4 Equations in normal form

If a one-variable equation has more occurrences of the variable on the left-hand side than on
the right-hand side, or vice versa, then it is easy to see by a length argument that it can have
at most one solution. Therefore every one-variable equation with more than one solution can
be written in the form

(u0Xu1 · · ·Xun, v0Xv1 · · ·Xvn), (1)

where X is the variable, n ≥ 1, and u0, . . . , un, v0, . . . , vn are constant words. Clearly, it
must be |u0 · · ·un| = |v0 · · · vn|. If the equation is nontrivial, x1, x2 are solution words, and
|x1| ≤ |x2|, then it is quite easy to see that x1 is a prefix and a suffix of x2.

We say that the equation (1) is in normal form if the following conditions are satisfied:
(N1) It has the empty solution and at least one other zero-sum solution,
(N2) |u0 · · ·ui| < |v0 · · · vi| for all i ∈ {0, . . . , n− 1},
(N3) |u0 · · ·ui| ≤ |v0 · · · vi−1| for all i ∈ {0, . . . , n}.
It follows from these conditions that u0 = vn = ε. By the next two lemmas, it is usually
sufficient to consider equations in normal form.

I Lemma 13. Let E be a one-variable equation, Sol(E) = {[x0], . . . , [xm]}, and |x0| ≤ |xi| for
all i. There exists a one-variable equation E′ such that Sol(E′) = {[ε], [x−1

0 x1], . . . , [x−1
0 xm]}.

Proof. If m = 0, the claim is clear. Otherwise, we can assume that E is of the form (1). Let
E′ be the equation we get from E by replacing X by x0X:

E′ : (u0x0Xu1 · · ·x0Xun, v0x0Xv1 · · ·x0Xvn).

Because E is nontrivial, x0 is a prefix of every xi. Clearly, the word x−1
0 xi is a solution word

of E′. On the other hand, if x is a solution word of E′, then x0x is a solution word of E.
This proves the claim. J

Next we will give an example of how to transform an equation that satisfies Condition N1
into an equation in normal form.

I Example 14. Consider the equation

(XabXababXaabaXbX, abXXXababaXaXbab).

By a length argument, it is equivalent to the system of equations

(Xab, abX), (X,X), (ababX,Xabab), (a, a), (abaXbX,XaXbab).

We can drop the trivial equations (X,X) and (a, a), and then switch the left-hand and
right-hand sides of the equations (ababX,Xabab) and (abaXbX,XaXbab) to get the system

(Xab, abX), (Xabab, ababX), (XaXbab, abaXbX).

Then we can combine these equations into the equation

(XabXababXaXbab, abXababXabaXbX),

which satisfies Conditions N2 and N3. (Actually, this equation is equivalent to the equation
(XaXbab, abaXbX).)
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I Lemma 15. Let E be a nontrivial one-variable equation with the empty solution and at
least one other solution. There exists an equation in normal form that is equivalent to E up
to a renaming of the letters and not longer than E.

Proof. Omitted. J

5 Sums and heights of solutions

In this section, we prove lemmas about the sums and heights of solution words of one-variable
equations in normal form.

I Lemma 16. All solutions of an equation in normal form are zero-sum.

Proof. Let the equation be (1). Let u′i = u0 · · ·ui−1 and v′i = v0 · · · vi−1 for all i. After
applying a solution [x] on the left-hand side and taking the area we get

A(u0xu1 · · ·xun)

=
n∑

i=0
(A(ui) + Σ(u0xu1 · · ·ui−1x)|ui|) +

n∑
i=1

(A(x) + Σ(u0xu1 · · ·xui−1)|x|)

=
n∑

i=0
(A(ui) + Σ(u′i)|ui|+ iΣ(x)|ui|) +

n∑
i=1

(A(x) + Σ(u′i)|x|+ (i− 1)Σ(x)|x|)

=A(u0 · · ·un) + Σ(x)
n∑

i=0
i|ui|+ nA(x) + |x|

n∑
i=1

Σ(u′i) + (n− 1)n
2 · Σ(x)|x|.

We get a similar formula for A(v0xv1 · · ·xvn). Because u0xu1 · · ·xun = v0xv1 · · ·xvn, we get

0 = A(u0xu1 · · ·xun)−A(v0xv1 · · ·xvn)

= A(u0 · · ·un)−A(v0 · · · vn) + Σ(x)
n∑

i=0
i(|ui| − |vi|) + |x|

n∑
i=1

(Σ(u′i)− Σ(v′i))

= Σ(x)
n∑

i=0
i(|ui| − |vi|) + |x|

n∑
i=1

(Σ(u′i)− Σ(v′i)). (2)

By the definition of normal form, the equation has a nonempty zero-sum solution [x1].
Replacing x by x1 in (2) gives

0 = |x1|
n∑

i=1
(Σ(u′i)− Σ(v′i)).

Because |x1| > 0,
∑n

i=1(Σ(u′i)− Σ(v′i)) = 0. Then (2) takes the form

0 = Σ(x)
n∑

i=0
i(|ui| − |vi|),

so either Σ(x) = 0 or
∑n

i=0 i(|ui| − |vi|) = 0. The latter is not possible, because
n∑

i=0
i(|ui| − |vi|) =

n∑
i=1

(|ui · · ·un| − |vi · · · vn|)

=
n∑

i=1
(|u0 · · ·un| − |u′i| − (|v0 · · · vn| − |v′i|)) =

n∑
i=1

(−|u′i|+ |v′i|) > 0,

by Condition N2 in the definition of normal form. Thus every solution [x] is zero-sum. J
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I Lemma 17. Consider the nontrivial equation (1). Let si = Σ(u0 · · ·ui−1) and ti =
Σ(v0 · · · vi−1) for all i. If the equation has at least two zero-sum solutions, then (s1, . . . , sn)
is a permutation of (t1, . . . , tn).

Proof. Omitted. J

I Lemma 18. Let (1) be an equation in normal form. Let

h = H(u0 · · ·un)−max{Σ(u0 · · ·ui) | i ∈ {0, . . . , n− 1}}. (3)

If the equation has at least three nonempty solutions, then every nonempty solution is of
height h. If the equation has two nonempty solutions, then the shorter one is of height h and
the longer one of height at least h.

Proof. The idea of the proof is to look at the first occurrences of the highest points on the
curves of the left-hand side and the right-hand side of the equation; these must match. If the
length of the solution changes, these first occurrences often move with respect to each other
so that they no longer match; this puts a limit on the number of solutions under certain
conditions. A first occurrence can be either inside a constant part or inside a variable. We
will see that if the first occurrences are inside constant parts on both sides, then the solution
is empty, if they are inside variables on both sides, then the solution is of height at least h
and there can be at most one solution of height more than h, and if the first occurrence is
inside a constant part on one side and inside a variable on the other side, then the solution
is of height h, and if there is a solution of height more than h, then there can be at most one
solution of height h.

For any word w, let φ(w) be its shortest prefix such that H(φ(w)) = H(w). For any
solution [x], we have

φ(u0xu1 · · ·xun) = φ(v0xv1 · · ·xvn). (4)

Let si = Σ(u0 · · ·ui−1) and ti = Σ(v0 · · · vi−1) for all i. Let i and j be such that φ(u0 · · ·un) =
u0 · · ·ui−1φ(ui) and φ(v0 · · · vn) = v0 · · · vj−1φ(vj). Because [ε] is a solution, φ(u0 · · ·un) =
φ(v0 · · · vn) and thus

|u0 · · ·ui−1|+ |φ(ui)| = |v0 · · · vj−1|+ |φ(vj)|. (5)

By (5) and Condition N3 in the definition of normal form, i > j.
Because [ε] is a solution, H(u0 · · ·un) = H(v0 · · · vn), and by Lemma 17,

max{Σ(u0 · · ·ui) | i ∈ {0, . . . , n− 1}} = max{Σ(v0 · · · vi) | i ∈ {0, . . . , n− 1}},

so

h = H(v0 · · · vn)−max{Σ(v0 · · · vi) | i ∈ {0, . . . , n− 1}}.

Let k and l be the smallest indices such that sk = max{s1, . . . , sn} and tl = max{t1, . . . , tn}.
Then

φ(u0xu1 · · ·xun) =
{
u0xu1 · · ·ui−1xφ(ui) if H(x) < h or if H(x) = h and i < k,

u0xu1 · · ·xuk−1φ(x) if H(x) > h or if H(x) = h and i ≥ k,

φ(v0xv1 · · ·xvn) =
{
v0xv1 · · · vj−1xφ(vj) if H(x) < h or if H(x) = h and j < l,

v0xv1 · · ·xvl−1φ(x) if H(x) > h or if H(x) = h and j ≥ l,

This means that, for a given x, (4) can take one of four possible forms:
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(i) If H(x) < h or if H(x) = h, i < k and j < l, then

u0xu1 · · ·ui−1xφ(ui) = v0xv1 · · · vj−1xφ(vj)

and thus

|u0 · · ·ui−1|+ |φ(ui)|+ (i− j)|x| = |v0 · · · vj−1|+ |φ(vj)|.

Because i > j, it follows that this equality can hold for at most one |x|, so there is only
one possible x in this case, namely, the empty word.

(ii) If H(x) = h, i < k and j ≥ l, then

u0xu1 · · ·ui−1xφ(ui) = v0xv1 · · ·xvl−1φ(x),

but

|u0xu1 · · ·ui−1xφ(ui)| = |u0 · · ·ui−1|+ |φ(ui)|+ i|x| = |v0 · · · vj−1|+ |φ(vj)|+ i|x|
>|v0 · · · vl−1|+ l|x| ≥ |v0xv1 · · ·xvl−1φ(x)|

by (5) and i > j ≥ l, a contradiction.
(iii) If H(x) > h or if H(x) = h, i ≥ k and j ≥ l, then

u0xu1 · · ·xuk−1φ(x) = v0xv1 · · ·xvl−1φ(x)

and thus

|u0 · · ·uk−1|+ (k − l)|x| = |v0 · · · vl−1|.

By Condition N2 in the definition of normal form, k > l. It follows that this equality
can hold for at most one |x|, so there is only one possible x in this case.

(iv) If H(x) = h, i ≥ k and j < l, then

u0xu1 · · ·xuk−1φ(x) = v0xv1 · · · vj−1xφ(vj)

and thus

|u0 · · ·uk−1|+ |φ(x)|+ (k − 1− j)|x| = |v0 · · · vj−1|+ |φ(vj)|. (6)

If x and x′ are solution words, then one of them is a prefix of the other, so if they have
the same height, then φ(x) = φ(x′). Therefore, (6) can hold for more than one solution
word x of height h only if k − 1− j = 0. In general, this can happen (for example, if
the equation has infinitely many solutions). However, if there exists a solution word
of height more than h, then it follows from Case (iii) that k > l. Then j < l < k, so
k − 1 > j and there is at most one solution word x of height h. J

I Example 19. Consider the equation

(XaXbXaabbabaXbabaabbab, abaabbabaXbabaabbXaXbX)

that was mentioned in Example 5. Let a = 1 and b = −1. The equation has exactly three
solutions [ε], [ab], [abaabbab]. All of them are zero-sum, and their heights are −∞, 1, 2,
respectively. If we use the notation of the proof of Lemma 18, then i = 3, j = 0, k = 2, l = 1,
and h = 1. We have φ(ui) = φ(aabbaba) = aa, φ(vj) = φ(abaabbaba) = abaa, φ(ab) = a, and
φ(abaabbab) = abaa. Then

φ(xaxbxaabbabaxbabaabbab) =
{
xaxbxaa if x = ε,

xaφ(x) if x = abaabbab or if x = ab,

φ(abaabbabaxbabaabbxaxbx) =
{
abaa if x = ε or if x = ab,

abaabbabaφ(x) if x = abaabbab.
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6 Some Lemmas

In this section, we state many lemmas about one-variable equations that will be used in the
proof of the main result. The proofs are omitted.

A subset Z of Γ∗ is called a code if the elements of Z do not satisfy any nontrivial
relations. In other words, Z is a code if and only if for all x1, . . . , xm, y1, . . . , yn ∈ Z,
x1 · · ·xm = y1 · · · yn implies m = n and xi = yi for all i ∈ {1, . . . ,m}. If Z is a code, then
Z∗ is a free monoid, and if ∆ is an alphabet of the same size as Z, then the free monoids Z∗
and ∆∗ are isomorphic. More information about codes can be found in the book of Berstel,
Perrin and Reutenauer [2].

The next lemma can be used to compress an equation into a shorter one. We will use
it with two codes Z: The set of all minimal zero-sum words (those zero-sum words which
cannot be written as a product of two shorter zero-sum words), and the set of words of a
specific length.

I Lemma 20. Let E be the equation (1) and let Z be a code. If ui, vi ∈ Z∗ for all i, then
there exists an alphabet ∆ and an isomorphism h : Z∗ → ∆∗, and the equation

(h(u0)Xh(u1) · · ·Xh(un), h(v0)Xh(v1) · · ·Xh(vn)) (7)

has the solution set {[h(x)] | [x] ∈ Sol(E), x ∈ Z∗}.

Note that the equation E in Lemma 20 can have solution words that are not in Z∗, so
(7) can have less solutions than E.

The next lemma can be used to cut off part of an equation so that all solutions are
preserved, except possibly the empty solution (and maybe some additional solutions are
added).

I Lemma 21. Consider the equation (1). Let k ∈ {0, . . . , n} and let

d = |v0 · · · vk−1| − |u0 · · ·uk| ≥ 0.

If all nonempty solutions of the equation are of length at least d, and if y is the common
prefix of length d of all nonempty solution words, then each one of the nonempty solutions is
a solution of the equation

(u0Xu1 · · ·Xuky, v0Xv1 · · · vk−1X). (8)

Using Lemma 21 requires the existence of a suitable index k. The next two lemmas can
sometimes be used to find such an index. The proof of Lemma 22 is somewhat similar to the
proof of Lemma 18, but simpler.

I Lemma 22. Let (1) be an equation in normal form. If it has at least three nonempty
solutions, and if there exists k ∈ {1, . . . , n− 1} such that

Σ(u0) = · · · = Σ(uk−1) = 0 6= Σ(uk),

then every nonempty solution is of length more than |v0 · · · vk−1| − |u0 · · ·uk|.

I Lemma 23. Let the equation (1) have the solution set [p∗] for some primitive word p. Let
u0 = vn = ε. Let j ∈ {0, . . . , n} be the largest index such that the lengths of u0, . . . , uj−1 and
v0, . . . , vj−1 are divisible by |p|. Then j > 0 and |v0 · · · vj−1| − |u0 · · ·uj | ≤ |p|.
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Lemma 21 does not guarantee that the new, shorter equation would have the empty
solution. Sometimes the next lemma can be used to get around this problem.

I Lemma 24. If the equation (1) has a nonempty solution, un = uam for some u ∈ Γ∗,
a ∈ Γ and m ≥ 0, and u0 · · ·un−1u is a prefix of v0 · · · vn, then the equation has the empty
solution.

7 Main results

Now we are ready to prove our main results.

I Theorem 25. If a one-variable equation has only finitely many solutions, it has at most
three solutions.

Proof. Assume that there is a counterexample. Then there is one with an empty solution by
Lemma 13. Of all equations with the empty solution, at least three nonempty solutions, and
only finitely many solutions, let E1 be a shortest one. We are going to prove a contradiction
by showing that there exists a shorter equation with these properties. By Lemma 15, we can
assume that E1 is the equation (1) and it is in normal form. By Lemma 16, each one of its
solutions is zero-sum.

The idea of the proof is to cut off part of the equation to get a shorter equation E2
that has at least three nonempty solutions but only finitely many. Unfortunately, E2 does
not necessarily have the empty solution. We map E2 with a length-preserving mapping to
get an equation E3 that has at least three nonempty solution and also the empty solution.
Unfortunately, E3 might have infinitely many solutions. We analyze E3 to find another way
to cut off part of E1 to get an equation E4, which is then modified to an equation E5. For
E5, we can finally prove that it has the empty solution and at least three but only finitely
many nonempty solutions.

If Σ(ui) = 0 for all i < n, then Σ(vi) = 0 for all i < n by Lemma 17, and then also
Σ(un) = 0, because Σ(u0 · · ·un) = Σ(v0 · · · vn) and vn = ε. Thus all ui, vi are zero-sum, and
we can use Lemma 20 with Z the set of all minimal zero-sum words to get a shorter equation
with the same number of solutions, one of them empty.

For the rest of the proof, we assume that there exists a minimal k < n such that Σ(uk) 6= 0.
By symmetry, we can assume that Σ(uk) > 0. By Lemmas 22 and 21, we get a shorter
equation

E2 : (u0Xu1 · · ·Xuky, v0Xv1 · · · vk−1X)

that has at least all the same nonempty solutions as E1. It might have some other solutions
as well, but it cannot have infinitely many solutions, because the intersection of an infinite
solution set of a nontrivial one-variable equation and a finite solution set of a one-variable
equation is of size at most two by Theorem 6 and Lemma 7. If it has also the empty solution,
then we are done, but we do not know yet whether this is the case. We can use Lemma 17 for
E2 to see that (Σ(u0), . . . ,Σ(u0 · · ·uk−1)) and (Σ(v0), . . . ,Σ(v0 · · · vk−1)) are permutations
of each other. We know that u0, . . . , uk−1 are zero-sum, so also v0, . . . , vk−1 are zero-sum.

Let [x1] be the shortest nonempty solution of E1. Let {a, b} be an alphabet and let g
be the morphism that maps the letter min(psw(x1)) to b and every other letter to a. Let
f = g ◦ psw. Then f is length-preserving, and if w is zero-sum, then f(ww′) = f(w)f(w′). If
[x] is a nonempty solution of E1, then [f(x)] is a solution of the equation

E3 : (f(u0)Xf(u1) · · ·Xf(uky), f(v0)Xf(v1) · · · f(vk−1)X).
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We have f(uky) = f(uk)g(pswΣ(uk)(y)). Because Σ(uk) > 0 and y is a prefix of x1,
min(pswΣ(uk)(y)) > min(psw(x1)). Thus g(pswΣ(uk)(y)) ∈ a∗. Because u0 · · ·uk is a prefix of
v0 · · · vk−1, also f(u0 · · ·uk) = f(u0) · · · f(uk) is a prefix of f(v0 · · · vk−1) = f(v0) · · · f(vk−1).
We can use Lemma 24 with g(pswΣ(uk)(y)) as am, so E3 has the empty solution. If it has
only finitely many solutions, then we are done. For the rest of the proof, we assume that
it has infinitely many solutions. Then its solution set is [p∗] for some primitive word p.
Consequently, the length of every solution word of E1 is divisible by |p|. Because the solution
word f(x1) of E3 contains the letter b, also p must contain b. This means that p cannot be a
suffix of g(pswΣ(uk)(y)) ∈ a∗, so |p| > |y|.

We can use Lemma 23 for E3 to find an index j such that the lengths of u0, . . . , uj−1 and
v0, . . . , vj−1 are divisible by |p| and, if j < k, |v0 · · · vj−1| − |u0 · · ·uj | ≤ |p| (remember that
f is length-preserving). By letting z = y if j = k, or by using Lemma 21 with j as k for E1
otherwise, we get an equation

E4 : (u0Xu1 · · ·Xujz, v0Xv1 · · · vj−1X)

that has at least all the same nonempty solutions as E1. In both cases, |z| ≤ |p|. Like in
the case of E2, we see that E4 cannot have infinitely many solutions. The lengths of all the
constant words in E4 are divisible by |p|, and so are the lengths of at least three nonempty
solutions (the solutions of E1). We can use Lemma 20 with Z = Γ|p| for E4. If h is the
morphism of Lemma 20, then we get the equation

E5 : (h(u0)Xh(u1) · · ·Xh(ujz), h(v0)Xh(v1) · · ·h(vj−1)X).

It has at least three nonempty solutions, but only finitely many. Because |z| ≤ |p|, h(ujz) =
h(u)c, where u is a prefix of uj and c is a letter. Because u0 · · ·uj is a prefix of v0 · · · vj−1,
also h(u0 · · ·uj−1u) = h(u0) · · ·h(uj−1)h(u) is a prefix of h(v0 · · · vk−1) = h(v0) · · ·h(vk−1).
We can use Lemma 24 with c as a and m = 1, so E5 has the empty solution. This contradicts
the minimality of E1. J

I Theorem 26. If a system of constant-free three-variable equations is independent and has
a nonperiodic solution, then it has at most 17 equations.

Proof. Follows from Theorem 25 and Theorem 8. J

8 Conclusion

We have proved that the maximal size of a finite solution set of a one-variable word equation
is three, and that the maximal size of an independent system of constant-free three-variable
equations with a nonperiodic solution is somewhere between two and 17.

Improving the bound 17 is an obvious open problem. A possible approach would be to
improve the results in [16].

Another open problem is proving similar bounds for more than three variables. The result
in [16] is based on a characterization of three-generator subsemigroups of a free semigroup
by Budkina and Markov [3], or alternatively a similar result by Spehner [19, 20]. This means
that it is very specific to the three-variable case, and analyzing the general case would require
an entirely different approach.

Finally, characterizing possible solution sets of one-variable equations would be interesting.
The possible infinite solution sets are given by Theorem 6, and every singleton set is possible,
but for sets of size two or three the question is open.
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Abstract
We investigate a standard operator on classes of languages: unambiguous polynomial closure.
We show that if C is a class of regular languages having some mild properties, the membership
problem for its unambiguous polynomial closure UPol(C) reduces to the same problem for C. We
give a new, self-contained and elementary proof of this result. We also show that unambiguous
polynomial closure coincides with alternating left and right deterministic closure. Finally, if addi-
tionally C is finite, we show that the separation and covering problems are decidable for UPol(C).
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1 Introduction

Most of the interesting classes of regular languages are built using a restricted set of operators.
From a class C, one may consider its Boolean closure Bool(C), its polynomial closure Pol(C),
and deterministic variants thereof, which yield usually a more elaborate class than C. It is
therefore desirable to investigate the operators themselves rather than individual classes.

The polynomial closure Pol(C) of a class C is its closure under union and marked concate-
nation (a marked concatenation of K and L is a language of the form KaL for a letter a).
Together with the Boolean closure, it is used to define concatenation hierarchies: starting
from a given class (level 0 in the hierarchy), level n+ 1

2 is the polynomial closure of level n,
and level n+1 is the Boolean closure of level n+ 1

2 . The importance of these hierarchies stems
from the fact that they are the combinatorial counterpart of quantifier alternation hierarchies
in logic, which count the number of ∀/∃ alternations needed to define a language [29, 23].

The main question when investigating a class of languages is the membership problem:
can we decide whether an input language belongs to the class? Despite decades of research
on concatenation hierarchies, one knows little about it. The state of the art is that when
level 0 is finite and has some mild properties, membership is decidable for levels 1

2 , 1,
3
2 ,

and 5
2 [21, 19, 16, 17, 23]. These results encompass those that were obtained previously [3,

2, 26, 14, 15] and even go beyond by investigating the separation problem, a generalization
of membership. This problem for a class C takes two arbitrary regular languages as input
(unlike membership, which takes a single one). It asks whether there exists a third language
from C, containing the first and disjoint from the second. Membership is the special case
of separation when the input consists of a language and its complement. Although more
difficult than membership, separation is also more rewarding. This is witnessed by a transfer
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theorem [19, 23]: membership for Pol(C) reduces to separation for C. The above results on
membership come from this theorem and the fact that separation is decidable for Pol(C),
BPol(C) def= Bool(Pol(C)) and Pol(BPol(C)) when C is finite with some mild properties.
See [12, 23] for detailed surveys on concatenation hierarchies.

Unambiguous closure. Deterministic variants of the polynomial closure are also important.
The most classical example is the unambiguous closure, where marked concatenations are
required to be unambiguous. A marked concatenation KaL is unambiguous if every word w
of KaL has a unique factorization w = w′aw′′ with w′ ∈ K and w′′ ∈ L. The unambiguous
closure UPol(C) of C is the closure of C under disjoint union and unambiguous concatenation.
Note that it is not clear on the definition whether UPol(C) is a Boolean algebra, even when C is.

A prominent example of a class built using unambiguous concatenation is that of unambigu-
ous languages [25]. It is the unambiguous polynomial closure of the Boolean algebra generated
by languages of the form A∗aA∗, where A is the working alphabet. Its robustness makes it one
of the most investigated classes: it enjoys a number of equivalent definitions [27, 5, 7, 6, 28].

State of the art. The class UPol(C) was described in algebraic terms in [13], following
earlier work on deterministic products by Pin [9]. Note however that [9] starts from an
alternate definition that assumes closure under Boolean operations already. Both papers
use elaborate mathematical tools (categories, bilateral kernel, relational morphisms) as well
as black boxes (results by Schützenberger [25] in [9] and a result of Rhodes [24] in [13]).
Unambiguous polynomial closure also appears in concatenation hierarchies as intermediate
levels: Pin and Weil [14, 15] have proved that UPol(C) = Pol(C)∩ co-Pol(C), where co-Pol(C)
is the class consisting of all complements of languages in Pol(C). Finally, a reduction from
UPol(C)-membership to C-membership was obtained in [1]. This proof is indirect: it is based
on the nontrivial equality UPol(C) = Pol(C)∩co-Pol(C), which itself depends on the algebraic
characterizations of UPol(C) and Pol(C) obtained in [13, 14, 15, 4].

Contributions. Unambiguous polynomial closure was not yet investigated with respect to
separation, aside from the particular case of unambiguous languages [18]. This is the starting
point of this paper: we look for a generic separation result applying to UPol(C), similar to
the ones obtained for Pol(C) and BPol(C) in [21]. This paper presents such a result: our
main theorem states that when C is finite and satisfies some mild hypotheses, separation for
UPol(C) is decidable. However, as it is usual with separation, we also obtain several extra
results as a byproduct of our work, improving our understanding of the UPol operator:

We had to rethink the way membership is classically handled for UPol(C) in order to lift
the techniques to separation. This yields a completely new, self-contained and elementary
proof that under some natural hypothesis on C, membership for UPol(C) reduces to
membership for C. This proof also precisely pinpoints why this result holds for UPol(C)
but not Pol(C). More precisely, we show that the languages from C needed to construct
an UPol(C) expression for a language L are all recognized by any recognizer of L.
We obtain a new proof that UPol(C) is a quotienting Boolean algebra when C is one.
We obtain a new proof that UPol(C) = Pol(C)∩co-Pol(C) using our results on Pol(C) [23].
We obtain a previously unknown characterization of UPol(C) in terms of alternating
left and right deterministic concatenations, which are restricted forms of unambiguous
concatenation. A marked concatenation KaL is left (resp. right) deterministic when
KaA∗ ∩K = ∅ (resp. A∗aL ∩ L = ∅). We prove that UPol(C) coincides with ADet(C),
the closure of C under disjoint union and left and right deterministic concatenation.
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Organization of the paper. Section 2 sets up the notation and the terminology. Section 3
presents a solution of the membership problem for UPol(C) when C has mild closure properties.
This result also yields the above byproducts. Finally, in Section 4, we present an algorithm
for solving separation for UPol(C) when C is additionally finite.

2 Preliminaries

Words and languages. For the whole paper, we fix an arbitrary finite alphabet A. We
denote by A∗ the set of all finite words over A, and by ε ∈ A∗ the empty word. Given two
words u, v ∈ A∗, we write uv for their concatenation. A language (over A) is a subset of A∗.
Abusing terminology, we denote by u the singleton language {u}. It is standard to extend
concatenation to languages: given K,L ⊆ A∗, we write KL = {uv | u ∈ K and v ∈ L}.
Moreover, we also consider marked concatenation, which is less standard. Given K,L ⊆ A∗,
a marked concatenation of K with L is a language of the form KaL, for some a ∈ A.

A class of languages C is a set of languages. We say that C is a lattice when ∅ ∈ C, A∗ ∈ C
and C is closed under finite union and finite intersection: for any K,L ∈ C, we have K∪L ∈ C
and K ∩ L ∈ C. Moreover, a Boolean algebra is a lattice C which is additionally closed under
complement: for any L ∈ C, we have A∗ \L ∈ C. Finally, a class C is quotienting if it is closed
under quotients. That is, for any L ∈ C and any word u ∈ A∗, the following properties hold:

u−1L
def= {w ∈ A∗ | uw ∈ L} and Lu−1 def= {w ∈ A∗ | wu ∈ L} both belong to C.

All classes that we consider are quotienting Boolean algebras of regular languages.

Regular languages. These are the languages that can be equivalently defined by nondeter-
ministic finite automata, finite monoids or monadic second-order logic. In the paper, we
work with the definition by monoids, which we recall now.

A monoid is a setM endowed with an associative multiplication (s, t) 7→ s ·t (also denoted
by st) having a neutral element 1M , i.e., such that 1M · s = s · 1M = s for every s ∈M . An
idempotent of a monoid M is an element e ∈M such that ee = e. It is folklore that for any
finite monoid M , there exists a natural number ω(M) (denoted by ω when M is understood)
such that for any s ∈M , the element sω is an idempotent.

Our proofs make use of the Green relations [8], which are defined on monoids (we use
them as induction parameters). We briefly recall them. Given a monoid M and s, t ∈M ,

s 6J t when there exist x, y ∈M such that s = xty,

s 6L t when there exists x ∈M such that s = xt,

s 6R t when there exists y ∈M such that s = ty.

Clearly, 6J, 6L and 6R are preorders (i.e., they are reflexive and transitive). We write <J,
<L and <R for their strict variants (for example, s <J t when s 6J t but t 66J s). Finally,
we write J, L and R for the corresponding equivalence relations (for example, s J t when
s 6J t and t 6J s). There are many technical results about Green relations. We shall only
need the following simple lemma which applies to finite monoids (see [11]).

I Lemma 1. Consider a finite monoid M and s, t ∈ M such that s J t. Then, s 6R t

implies s R t. Symmetrically, s 6L t implies s L t.

Observe that A∗ is a monoid whose multiplication is concatenation (the neutral element
is ε). Thus, we may consider monoid morphisms α : A∗ → M where M is an arbitrary
monoid. Given such a morphism and some language L ⊆ A∗, we say that L is recognized
by α when there exists a set F ⊆M such that L = α−1(F ).
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Given any language L, there exists a canonical morphism which recognizes it. Let us
briefly recall its definition. One may associate to L an equivalence ≡L over A∗: the syntactic
congruence of L. Given u, v ∈ A∗, u ≡L v if and only if xuy ∈ L ⇔ xvy ∈ L for any
x, y ∈ A∗. It is known and simple to verify that “≡L” is a congruence on A∗. Thus, the set
of equivalence classes ML = A∗/≡L is a monoid and the map αL : A∗ → ML sending any
word to its equivalence class is a morphism recognizing L, called the syntactic morphism of L.
Finally, it is known that L is regular if and only if ML is finite (i.e., ≡L has finite index):
this is Myhill-Nerode theorem. In that case, one may compute the syntactic morphism
αL : A∗ →ML from any representation of L (such as a finite automaton).

Decision problems. The two problems that we consider in the paper are both parametrized
by an arbitrary class of languages C: they serve as mathematical tools for analyzing C. The
C-membership problem is the simplest one. It takes as input a single regular language L and
asks whether L ∈ C. The second one, C-separation, is more general: it takes two regular
languages L1, L2 as input and asks whether L1 is C-separable from L2, that is, whether there
exists K ∈ C such that L1 ⊆ K and L2 ∩K = ∅. The language K is called a separator of
L1 and L2. Note that C-membership is easily reduced to C-separation: given any regular
language L, we have L ∈ C if and only if L is C-separable from A∗ \L (which is also regular).

3 Unambiguous polynomial closure

In this section, we define the unambiguous polynomial closure operation, which is the main
focus of the paper. Furthermore, we investigate the associated membership problem.

3.1 Definition
Given two languages H,L ⊆ A∗, we say that their concatenation HL is unambiguous when
any word w ∈ HL admits a unique decomposition witnessing this membership: for any
u, u′ ∈ H and v, v′ ∈ L, if w = uv = u′v′, then u = u′ and v = v′. More generally, we
say that a product of n languages L1 · · ·Ln is unambiguous when any word w ∈ L1 · · ·Ln
admits a unique decomposition witnessing this membership. Note that unambiguous marked
concatenations are well-defined: HaL is a product of three languages, namely H , {a} and L.

I Remark. Clearly, not all products are unambiguous. For example, A∗aA∗ is ambiguous:
aa ∈ A∗aA∗ admits two decompositions witnessing this membership (εaa and aaε).

I Remark. Being unambiguous is a semantic property: whether HL is unambiguous may
not be apparent on the definitions of H and L. Moreover, this depends on the product HL
and not only on the resulting language K = HL. It may happen that two products represent
the same language but one is unambiguous while the other is not. For example, A∗aA∗ is
ambiguous while (A \ {a})∗aA∗ (which represents the same language) is unambiguous.

In the paper, we shall only need two special kinds of unambiguous products, which we
now present. Let K,L ⊆ A∗ and a ∈ A. We say that the marked concatenation KaL,

is left deterministic when K ∩KaA∗ = ∅,
is right deterministic when L ∩A∗aL = ∅.

I Fact 2. Any left or right deterministic marked concatenation is unambiguous.

We use these definitions to introduce three standard operations on classes of languages.
Consider an arbitrary class C.
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The polynomial closure of C, denoted by Pol(C), is the smallest class containing C and
closed under marked concatenation and union: for any H,L ∈ Pol(C) and a ∈ A, we
have HaL ∈ Pol(C) and H ∪ L ∈ Pol(C). Furthermore, we denote by co-Pol(C) the class
containing all complements of languages in Pol(C): L ∈ co-Pol(C) when A∗ \ L ∈ Pol(C).
The unambiguous polynomial closure of C, denoted by UPol(C), is the smallest class
containing C and closed under unambiguous marked concatenation and disjoint union.
That is, for any H,L ∈ UPol(C) and a ∈ A, if HaL is unambiguous, then HaL ∈ UPol(C)
and if H ∩L = ∅, then H ]L ∈ UPol(C). Here, we denote union by “]” to underline the
fact that H and L are disjoint (we use this convention in the whole paper).
The alternating deterministic closure of C, denoted by ADet(C), is the smallest class
containing C and closed under deterministic marked concatenation and disjoint union.
That is, for any H,L ∈ ADet(C) and a ∈ A, if HaL is either left or right deterministic,
then HaL ∈ ADet(C) and if H ∩ L = ∅, then H ] L ∈ ADet(C).

It is immediate by definition and Fact 2 that we have C ⊆ ADet(C) ⊆ UPol(C) ⊆ Pol(C). In
general the inclusion UPol(C) ⊆ Pol(C) is strict. On the other hand, we shall prove that
when C is a quotienting Boolean algebra, ADet(C) = UPol(C).

It is not immediate that Pol(C), UPol(C) and ADet(C) have robust closure properties
beyond those explicitly stated in the definitions. However, it turns out that when C satisfies
robust properties itself, this is the case for these three classes as well. It was shown by
Arfi [3] that when C is a quotienting Boolean algebra of regular languages, then Pol(C) is a
quotienting lattice. Pin [10] extended the result for the case when C is a quotienting lattice.
Here, we are mostly interested in UPol(C). We prove the following theorem which combines
and extends several results by Pin, Straubing, Thérien and Weil [13, 15].

I Theorem 3. Let C be a quotienting Boolean algebra of regular languages. Then, UPol(C) is
a quotienting Boolean algebra as well. Moreover, UPol(C) = ADet(C) = Pol(C) ∩ co-Pol(C).

That UPol(C) is a quotienting Boolean algebra of regular languages is due to Pin,
Straubing and Thérien [13]. The correspondence between UPol(C) and Pol(C) ∩ co-Pol(C)
is due to Pin and Weil [15]. The correspondence between UPol(C) and ADet(C) is a new
result, to the best of our knowledge. Let us point out that the original proofs of these results
require a stronger hypothesis on C, which needs additionally to be closed under inverse
morphic image. Moreover, these proofs require to introduce and manipulate a lot of algebraic
machinery. This is because they are based on a generic algebraic characterization of UPol(C).

While we use a similar approach (i.e., we prove a generic algebraic characterization of
UPol(C)), our argument is much more elementary. The only algebraic notion that we need is
the syntactic morphism of a regular language.

3.2 Algebraic characterization
We now present a generic algebraic characterization of UPol(C). It holds provided that C
is a quotienting Boolean algebra of regular languages. It implies Theorem 3, but also that
UPol(C)-membership reduces to C-membership.

The characterization is parameterized by two relations that we define now. Let C be
some class of languages. Consider a finite monoid M and a surjective morphism α : A∗ →M

(such as the syntactic morphism of some language). Given a pair (s, t) ∈M ×M ,
(s, t) is a C-pair (for α) when no language of C can separate α−1(s) from α−1(t).
(s, t) is a weak C-pair (for α) when no language of C recognized by α can separate
α−1(s) from α−1(t).
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Note that any C-pair is also a weak C-pair (the converse is not true in general). By definition,
we are able to compute all C-pairs as soon as we have an algorithm for C-separation. On the
other hand, computing all weak C-pairs boils down to deciding C-membership, as it suffices
to check which languages recognized by α (the potential separators) belong to C.
I Remark. An equivalent definition of the weak C-pairs is to introduce them as the transitive
closure of the C-pairs. We prove this in the full version. In fact, when C is a quotienting
Boolean algebra, the weak C-pair relation is a congruence whose equivalence classes correspond
exactly to the languages recognized by α and belonging to C.

We may now state the following characterization of UPol(C).

I Theorem 4. Let C be a quotienting Boolean algebra of regular languages. Consider a regular
language L and let α : A∗ →M be its syntactic morphism. The following are equivalent:
1. L ∈ UPol(C).
2. L ∈ ADet(C).
3. L ∈ Pol(C) ∩ co-Pol(C).
4. For all C-pairs (s, t) ∈M2, we have sω+1 = sωtsω.
5. For all weak C-pairs (s, t) ∈M2, we have sω+1 = sωtsω.

Theorem 3 is a simple corollary of Theorem 4 (it is standard that any class satisfying
a property such as Item (4) in the theorem is a quotienting Boolean algebra). Another
consequence is that if C is a quotienting Boolean algebra of regular languages, UPol(C)-
membership reduces to the same problem for C. Indeed, given as input a regular language L,
one may compute its syntactic morphism α. By Theorem 4, deciding whether L ∈ UPol(C)
amounts to checking whether α satisfies Item (5). This is possible provided that we have all
weak C-pairs for α in hand. In turn, an algorithm for C-membership immediately yields an
algorithm for computing them all. Altogether, we obtain the following corollary.

I Corollary 5. Let C be a quotienting Boolean algebra of regular languages and assume that
C-membership is decidable. Then UPol(C)-membership is decidable as well.

We now focus on proving Theorem 4. A first point is that we do not show the equivalence
(3)⇔ (4): it is a simple corollary of the generic characterization of Pol(C) which is not our
main focus in the paper (a full proof is available in [23]). Here, we concentrate on proving the
implications (1)⇒ (4)⇒ (5)⇒ (2)⇒ (1). The implication (2)⇒ (1) (ADet(C) ⊆ UPol(C))
is immediate. Even though the presentation is different, the equivalence (4)⇔ (5) is a result
of [1] (which investigates Pol(C) ∩ co-Pol(C)) and is based on algebraic manipulations. We
prove this equivalence as well as the implication (1) ⇒ (4) in the full version, to focus on
(5)⇒ (2), which is the most interesting implication: when a language satisfies (5), we show
that it belongs to ADet(C).

We fix a quotienting Boolean algebra of regular languages C for the proof. Consider an
arbitrary surjective morphism α : A∗ →M satisfying Item (5) in Theorem 4. We show that
any language recognized by α belongs to ADet(C). We start with a preliminary lemma.

I Lemma 6. There exists a finite monoid N and a surjective morphism β : M → N which
satisfies the following properties:

For any s, t ∈M , (s, t) is a weak C-pair if and only if β(s) = β(t).
Any language recognized by the composition γ = β ◦ α : A∗ → N belongs to C.

Lemma 6 is obtained by proving that the weak C-pair relation is a congruence on M and
that for any equivalence class F ⊆M , we have α−1(F ) ∈ C. It then suffices to define N as
the quotient of M by this congruence. The proof is presented in the full version of the paper.
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Let us come back to the main proof. Let β : M → N and the composition γ = β ◦ α be
defined as in Lemma 6. Given any r1, r2, s ∈M and any x ∈ N , we define:

Lxs [r1, r2] = {w ∈ γ−1(x) | r1α(w)r2 = s}.

The purpose of introducing Lxs [r1, r2] is that it provides induction parameters s, r1, r2 and it
coincides with α−1(s) when x = β(s), r1 = r2 = 1M . Our goal is to show that it is in ADet(C).

I Proposition 7. Let r1, r2, s ∈M and x ∈ N . Then, Lxs [r1, r2] ∈ ADet(C).

Before proving this proposition, let us use it to finish the main proof. By definition, a
language recognized by α is a disjoint union of sets α−1(s) for s ∈M . Therefore, it suffices to
prove that α−1(s) ∈ ADet(C) for any s ∈M . Let x = β(s). Clearly, Lβ(s)

s [1M , 1M ] = α−1(s).
Thus, Proposition 7 yields that α−1(s) ∈ ADet(C), finishing the proof.

It remains to prove Proposition 7. We let r1, r2, s ∈M and x ∈ N . Our objective is to
show that Lxs [r1, r2] ∈ ADet(C). Observe that we may assume without loss of generality
that β(s) = β(r1)xβ(r2). Otherwise, Lxs [r1, r2] = ∅ ∈ ADet(C) by definition and the result is
immediate. The proof is an induction on the three following parameters listed by order of
importance (the three of them depend on Green’s relations in both M and N):
1. The rank of β(s) which is the number of elements y ∈ N such that β(s) 6J y.
2. The right index of r1 which is the number of elements t ∈M such that t 6R r1.
3. The left index of r2 which is the number of elements t ∈M such that t 6L r2.
We consider three cases depending on the following properties of s, r1, r2 and x.

We say that x is smooth when x J β(s).
We say that r1 is right stable when there exists t ∈M such that β(t) R x and r1t R r1.
We say that r2 is left stable when there exists t ∈M such that β(t) L x and tr2 L r2.

In the base case, we assume that all three properties hold. Otherwise, we consider two
inductive cases. First, we assume that x is not smooth. Then, we assume that either r1 is
not right stable or r2 is not left stable.

Base case. Assume that x is smooth and that r1, r2 are respectively right and left stable.
We use this hypothesis to prove the following lemma.

I Lemma 8. For any u, v ∈ γ−1(x), we have r1α(u)r2 = r1α(v)r2.

Observe that Lemma 8 concludes the proof. Indeed, by definition of Lxs [r1, r2], it implies
that either Lxs [r1, r2] = γ−1(x) (when r1α(w)r2 = s for all w ∈ γ−1(x)) or Lxs [r1, r2] = ∅
(when r1α(w)r2 6= s for all w ∈ γ−1(x)). Since both of these languages belong to C ⊆ ADet(C)
by Lemma 6, Proposition 7 follows. It remains to prove Lemma 8 to conclude the base case.
The argument relies on the following fact (this is where we use our hypothesis on r1 and r2).

I Fact 9. When Item (5) in Theorem 4 holds, the two following properties hold as well:
For all t ∈M such that β(t) R x, we have r1t R r1.
For all t ∈M such that β(t) L x, we have tr2 L r2.

Let us first use the fact to prove Lemma 8 and finish the base case. Consider u, v ∈ γ−1(x),
i.e., β(α(u)) = β(α(v)) = x. We show that r1α(u)r2 = r1α(v)r2.

By hypothesis, we have β(s) = β(r1)xβ(r2). Moreover, β(s) J x since x is smooth by
hypothesis. Thus, xβ(r2) J x and β(r1)x J x. Hence, since xβ(r2) 6R x and β(r1)x 6L x,
Lemma 1 implies xβ(r2) R x and β(r1)x L x. Since β(α(u)) = x, this yields β(α(u)r2) R x and
β(r1α(u)) L x. Applying Fact 9 with t = α(u)r2, one gets r1α(u)r2 R r1 and r1α(u)r2 L r2.
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We get p, q ∈M such that r1 = r1α(u)r2p and r2 = qr1α(u)r2. Let t = qr1α(u)r2p = r2p =
qr1. We combine our two equalities for r1 and r2 to obtain,

r1 = r1α(u)t = r1(α(u)t)ω and r2 = tα(u)r2 = (tα(u))ω+1r2. (1)

Since β(α(u)) = β(α(v)), we know that β(α(u)t) = β(α(v)t). Therefore, (α(u)t, α(v)t) is
a weak C-pair by Lemma 6, and Item (5) yields (α(u)t)ω+1 = (α(u)t)ωα(v)t(α(u)t)ω. We
may now multiply by r1 on the left and by α(u)r2 on the right to get,

r1(α(u)t)ωα(u)(tα(u))ω+1r2 = r1(α(u)t)ωα(v)(tα(u))ω+1r2.

Since we already know from (1) that r1 = r1(α(u)t)ω and r2 = (tα(u))ω+1r2, we get as
desired that r1α(u)r2 = r1α(v)r2, finishing the proof of Lemma 8. It remains to prove Fact 9.

Proof of Fact 9. By symmetry, we focus on the first property and leave the second to the
reader. Let t ∈ M such that β(t) R x. We show that r1t R r1. By hypothesis, r1 is right
stable which yields t′ ∈M such that β(t′) R x R β(t) and r1t

′ R r1. Since β(t′) R β(t), we
have y ∈ N such that β(t′) = β(t)y. Let p ∈M such that β(p) = y: we have β(t′) = β(tp).
Since r1t

′ R r1, we have q ∈M such that r1 = r1t
′q which yields r1 = r1(t′q)ω = r1(t′q)ω+1.

We have β(t′q) = β(tpq) which means that (t′q, tpq) is a weak C-pair by Lemma 6. Therefore,
Equation (5) yields that (t′q)ω+1 = (t′q)ωtpq(t′q)ω. Finally, we obtain,

r1 = r1(t′q)ω+1 = r1(t′q)ωtpq(t′q)ω = r1tpq(t′q)ω.

This implies that r1 6R r1t. Since it is immediate that r1t 6R r1, we get r1t R r1. J

First inductive case. We now assume that x is not smooth: x and β(s) are not J-equivalent.
We use induction on our first parameter (the rank of β(s)). Recall that we assumed
β(s) = β(r1)xβ(r2), which yields β(s) 6J x. Thus, we have β(s) <J x by hypothesis.

By definition, Lxs [r1, r2] is the disjoint union of all languages α−1(t) where t ∈M satisfies
β(t) = x and r1tr2 = s. Therefore, it suffices to show that for any t ∈M such that β(t) = x,
we have α−1(t) ∈ ADet(C). This is immediate by induction. Indeed, since β(t) = x, we have
α−1(t) = Lxt [1M , 1M ]. Moreover, since β(s) <J x, we have β(s) <J β(t). It follows that the
rank of β(t) is strictly smaller than the one of β(s). Hence, we may apply induction on our
first and most important parameter to get Lxt [1M , 1M ] ∈ ADet(C).

Second inductive case. We assume that either r1 is not right stable or r2 is not left stable.
By symmetry, we treat the case when r1 is not right stable and leave the other to the reader.

I Remark. We only apply induction on our two first parameters. Moreover, we show that
Lxs [r1, r2] is built from languages in ADet(C) (obtained from induction) using only disjoint
union and left deterministic marked concatenations. Induction on our third parameter and
right deterministic marked concatenations are used in the case when r2 is not left stable.

Observe that we have x <J 1N (x is not maximal for 6J). Indeed, otherwise, we would
have x R 1N by Lemma 1 and r1 would be left stable: 1M ∈M would satisfy β(1M ) = 1N R x

and r11M = r1 R r1. Therefore, there are elements y ∈ N such that x <J y.
We use this observation to define T as the set of all triples (y, a, z) ∈ N × A×N such

that x = yγ(a)z, x <J y and x J yγ(a). Using the definition of T and the fact that x <J 1N ,
one may decompose Lxs [r1, r2] as follows (this lemma is proved in the full version).
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I Lemma 10. The language Lxs [r1, r2] is equal to the following disjoint union,

Lxs [r1, r2] =
⊎

(y,a,z)∈T

 ⊎
t∈β−1(y)

α−1(t) · a · Lzs [r1tα(a), r2]

 .

We now use Lemma 10 to show as desired that Lxs [r1, r2] ∈ ADet(C). Since ADet(C) is
closed under disjoint union by definition, it suffices to show that for any (y, a, z) ∈ T and
any t ∈ β−1(y), we have,

α−1(t) · a · Lzs [r1tα(a), r2] ∈ ADet(C).

We prove that this is a left deterministic marked concatenation of two languages in ADet(C)
which concludes the proof.

We start with α−1(t) ∈ ADet(C). Since y = β(t), we have α−1(t) = Lyt [1M , 1M ].
Moreover, since β(s) = β(r1)xβ(r2), we have β(s) 6J x. Finally, by definition of T we have
x <J y = β(t). Altogether, we get β(s) <J β(t): the rank of β(t) is strictly smaller than the
one of β(s) and induction on our first parameter yields α−1(t) = Lyt [1M , 1M ] ∈ ADet(C).

We turn to Lzs[r1tα(a), r2] ∈ ADet(C). By definition of T , we have x J yγ(a) and
x = yγ(a)z which yields that x R yγ(a) by Lemma 1. Moreover, since y = β(t), it follows
that x R β(tα(a)). Therefore, since we know that r1 is not right stable (this is our hypothesis),
it follows that r1 and r1tα(a) are not R-equivalent. Since it is clear that r1tα(a) 6R r1, it
follows that r1tα(a) <R r1: the right index of r1tα(a) is strictly smaller than the one of r1.
By induction on our second parameter, we then get that Lzs [r1tα(a), r2] ∈ ADet(C).

It remains to show that α−1(t) · a · Lzs[r1tα(a), r2] is a left deterministic marked con-
catenation, i.e., that α−1(t) ∩ α−1(t)aA∗ = ∅. Since β(t) = y, we have α−1(t) ⊆ γ−1(y)
and it suffices to show that γ−1(y) ∩ γ−1(y)aA∗ = ∅. Let w ∈ γ−1(y) and w′ ∈ γ−1(y)aA∗,
we show that w 6= w′. Since (x, a, z) ∈ T , we have x <J y and x J yγ(a). It follows that
yγ(a) <J y. Finally, we have γ(w) = y and γ(w′) = yγ(a)y′ for some y′ ∈ N . This implies
that γ(w′) 6J yγ(a) <J y = γ(w). Therefore γ(w) 6= γ(w′) which implies that w 6= w′.

4 Separation

We now turn to separation for UPol(C) and show that the problem is decidable for any finite
quotienting Boolean algebra C. For the sake of avoiding clutter, we fix C for the section.
I Remark. This result may seem weak: our solution for UPol(C)-separation requires C to
be finite while UPol(C)-membership reduces to C-membership. This intuition is wrong: the
result on separation is the strongest. The proof of Theorem 4 shows that when L ∈ UPol(C),
the basic languages in C needed to build L are all recognized by the syntactic morphism of L.
Hence, L ∈ UPol(C) if and only if L ∈ UPol(D) where D ⊆ C is a finite class obtained from
the syntactic morphism of L. We lose this when moving to separation: the languages in C
needed to build a potential separator in UPol(C) may not be encoded in our two inputs.

Our algorithm is based on a general framework designed to handle separation problems
and to present solutions in an elegant way. It was introduced in [20, 22]. We first summarize
what we need in this framework to present our solution for UPol(C)-separation.
I Remark. The framework of [20, 22] is actually designed to handle a more general decision
problem: covering, which generalizes separation to arbitrarily many input languages. Thus,
our solution actually yields an algorithm for UPol(C)-covering as well. While we do not
detail this point due to lack of space, this follows from the definitions of [20, 22].
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4.1 Methodology
We briefly recall the framework of [20, 22]. We refer the reader to [22] for details. The
approach is based on “rating maps”, a notion designed to measure how well a language
separates others.

The definition of rating maps relies on semirings. A semiring is a set R equipped with two
binary operations + and ·, called addition and multiplication, satisfying the following axioms:

(R,+) is a commutative monoid whose neutral element is denoted by 0R.
(R, ·) is a monoid whose neutral element is denoted by 1R.
The multiplication distributes over addition: r · (s+ t) = rs+ rt and (s+ t) · r = sr + tr.
The element 0R is a zero for multiplication: for any r ∈ R, 0R · r = r · 0R = 0R.

Moreover, we say that a semiring R is idempotent when any element r ∈ R is idempotent for
addition: r + r = r. Any idempotent semiring R can be equipped with a canonical order
“≤”: given s, r ∈ R, we have s ≤ r when s+ r = r. It can be verified that this is indeed an
order which is compatible with addition and multiplication (R being idempotent is required).

I Example 11. The set 2A∗ of all languages over A is an idempotent semiring: the addition
is union and the multiplication is language concatenation. In this case, the canonical order
is inclusion (H ⊆ L if and only if H ∪ L = L). Another important example is the powerset
2M of any monoid M . Again the addition is union (therefore, the order is inclusion). The
multiplication is obtained from the one ofM : given S, T ∈ 2M , S ·T = {st | s ∈ S and t ∈ T}.

Rating maps. A rating map1 is a semiring morphism, ρ : 2A∗ → R where R is a finite
idempotent semiring. It can be verified that any rating map is compatible with the canonical
order (K ⊆ L⇒ ρ(K) ≤ ρ(L)). For the sake of improved readability, when applying a rating
map ρ to a singleton language {w}, we shall simply write ρ(w) for ρ({w}). The connection
with separation only requires to consider special rating maps called “nice”. A rating map
ρ : 2A∗ → R is nice if for any language K ⊆ A∗, we have ρ(K) =

∑
w∈K ρ(w) (note that this

sum boils down to a finite one, as R is a finite idempotent commutative monoid for addition).

I Remark. Any nice rating map ρ : 2A∗ → R is finitely representable: it is determined by the
images ρ(a) of letters a ∈ A. We may speak of algorithms whose inputs are nice rating maps.

SolvingUPol(C)-separation requires to consider a special class of rating maps: the C-
compatible ones (our algorithm is restricted to them). The definition is based on a canonical
equivalence ∼C on A∗ associated to C. Given u, v ∈ A∗, we write u ∼C v if and only if
u ∈ L ⇔ v ∈ L for all L ∈ C. Clearly, ∼C is an equivalence relation. For any word w ∈ A∗,
we write [w]C ⊆ A∗ for the ∼C-class of w. Moreover, since C is a finite quotienting Boolean
algebra, we have the following classical properties.

I Lemma 12. The equivalence ∼C is a congruence of finite index for word concatenation.
Moreover, for any language L ⊆ A∗, we have L ∈ C if and only if L is a union of ∼C-classes.

Lemma 12 implies that the set A∗/∼C of ∼C-classes is a finite monoid and the map
w 7→ [w]C is a morphism. For the sake of avoiding confusion with language concatenation,
we shall write “•” for the monoid multiplication of A∗/∼C . In general, if C,D ⊆ A∗ are
∼C-classes, then C •D 6= CD (indeed, CD is not even a ∼C-class in general).

1 What we call rating map here is called multiplicative rating map in [22] (the “true” rating maps are
weaker and do not require a multiplication). We abuse terminology for the sake of improved readability.
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We may now define C-compatibility. We say that a rating map ρ : 2A∗ → R is C-compatible
when there exists a map r 7→ JrKC from R to 2A∗/∼C such that (1) for every K ⊆ A∗, we have
Jρ(K)KC = {[w]C | w ∈ K} and (2) for all r, r′ ∈ R, such that r ≤ r′, we have JrKC ⊆ Jr′KC .
I Remark. Intuitively, Condition (1) in the definition of C-compatibility states that the image
ρ(K) of any language K records the ∼C-classes of words of K. The purpose of Condition (2)
is to constrain the definition of the map J KC on elements that have no preimage under ρ.

Optimal covers. We use rating maps to define objects called “optimal universal D-covers”,
which encode separation-related information. We fix an arbitrary Boolean algebra D for
which one wants a D-separation algorithm (we are interested in the case D = UPol(C)).

A cover of some language L is a finite set of languages K such that L ⊆
⋃
K∈K K. When

L = A∗, we speak of universal cover. Moreover, we say that K is a D-cover when all K ∈ K
belong to D. A fixed rating map ρ : 2A∗ → R is used to define a “quality measure” for
D-covers which yields a notion of “best” universal D-cover. Given a finite set of languages K
(such as a universal D-cover), the ρ-imprint I[ρ](K) of K is the following subset of R:

I[ρ](K) = {r ∈ R | r ≤ ρ(K) for some K ∈ K}.

We now define the optimal universal D-covers as those with the smallest possible ρ-imprint
(with respect to inclusion). A universal D-cover K is optimal for ρ when I[ρ](K) ⊆ I[ρ](K′)
for any universal D-cover K′. In general, there can be infinitely many optimal universal
D-covers for a given rating map ρ. The crucial point is that there always exists a least one.
This is simple and proved in [22]. The key idea is that there are finitely many possible
ρ-imprints (since R is finite) and given two universal D-covers, one may always build a third
one which has a smaller ρ-imprint than the first two, by simple use of language intersections.

Finally, a key observation is that by definition, all optimal universal D-covers for ρ share
the same ρ-imprint. This unique ρ-imprint is a canonical object for D and ρ called the
D-optimal universal ρ-imprint and we denote it by ID[ρ]. That is, ID[ρ] = I[ρ](K) for any
optimal universal D-cover K for ρ.

The connection with separation. We may now explain how these notions are used to
handle separation. This is summarized by the following lemma.

I Lemma 13. Let D be a Boolean algebra. If there exists an algorithm that takes as input a
nice C-compatible rating map ρ : 2A∗ → R and outputs ID[ρ], then D-separation is decidable.

Let us sketch how to go from computing D-optimal ρ-imprints to D-separation (see [20, 22]
for a full proof of Lemma 13). Consider two regular languages L1 and L2: we wish to know
whether L1 is D-separable from L2. Since C is finite, one can build a monoid morphism
α : A∗ → M , with M finite, recognizing both L1 and L2 as well as all languages in C.
Furthermore, one may lift α as a map ρ : 2A∗ → 2M by defining ρ(K) = {α(w) | w ∈ K} for
any language K ⊆ A∗. It is simple to verify that this map ρ is a nice C-compatible rating
map. Moreover, the two following properties (which we prove in the full version) hold:

L1 is D-separable from L2 iff for any s1 ∈ α(L1) and s2 ∈ α(L2), we have {s1, s2} 6∈ ID[ρ].
When the first item holds, one may build a separator in D from any optimal universal
D-cover K for ρ: this separator is the union of all languages intersecting L1 in K.

By the first item, having an algorithm that computes ID[ρ] ⊆ 2M suffices to decide whether L1
is D-separable from L2. Moreover, by the second item, having an algorithm that computes
an optimal universal D-cover K for ρ is enough to build a separator (when it exists).
I Remark. Here, we only use the sets of size two in ID[ρ] ⊆ 2M . However, ID[ρ] contains more
information corresponding to the more general D-covering problem considered in [20, 22].
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4.2 Computing UPol(C)-optimal universal imprints
We use the framework defined above to present an algorithm for UPol(C)-separation. We
give a characterization UPol(C)-optimal imprints. It yields a procedure for computing them.

Consider a rating map ρ : 2A∗ → R. For any subset S ⊆ R, we say that S is UPol(C)-
saturated (for ρ) if it contains the set Itriv[ρ] = {r ∈ R | r ≤ ρ(w) for some w ∈ A∗} and is
closed under the following operations:
1. Downset: for any s ∈ S, if r ∈ R satisfies r ≤ s, then we have r ∈ S.
2. Multiplication: For any s, t ∈ S, we have st ∈ S.
3. UPol(C)-closure: Given two ∼C-classes C,D and s, t ∈ S such that JsKC = {C •D} and

JtKC = {D • C}, we have sω · ρ(C) · tω ∈ S.

We are ready to state the main theorem of this section: when ρ is C-compatible, UPol(C)-
saturation characterizes the UPol(C)-optimal universal ρ-imprint.

I Theorem 14. Let ρ : 2A∗ → R be a C-compatible rating map. Then, IUPol(C)[ρ] is the
smallest UPol(C)-saturated subset of R (with respect to inclusion).

Clearly, given a nice C-compatible rating map ρ : 2A∗ → R as input, one may compute
the smallest UPol(C)-saturated subset of R with a least fixpoint algorithm. One starts from
Itriv[ρ] (which is clearly computable) and saturates this set with the three above operations.
Thus, we get a procedure for computing IUPol(C)[ρ] from any input nice C-compatible rating
map. By Lemma 13, this yields the desired corollary: UPol(C)-separation is decidable.

I Corollary 15. For any finite quotienting Boolean algebra C, UPol(C)-separation is decidable.

The proof of Theorem 14 is a difficult generalization of the argument we used to show the
algebraic characterization of UPol(C) (i.e., Theorem 4). We postpone it to the full version.
An interesting byproduct of this proof is an algorithm which computes optimal universal
UPol(C)-covers (and therefore UPol(C)-separators when they exist, as we explained above).

5 Conclusion

We presented a new, self-contained proof that for any quotienting Boolean algebra regular
languages C, membership for UPol(C) reduces to membership for C. An interesting byproduct
of this proof is that UPol(C) corresponds exactly to the class ADet(C), which is obtained
by restricting the unambiguous marked concatenations to left or right deterministic ones.
Moreover, we showed that when C is a finite quotienting Boolean algebra, UPol(C)-separation
is decidable. This completes similar results of [21] for Pol(C) and Bool(Pol(C)) and of [16, 17]
for Pol(Bool(Pol(C))). These results raise several natural questions.

Historically, UPol(C) was investigated together with two weaker operations: left and
right deterministic closures. The left (resp. right) deterministic closure of C, is the smallest
class containing C closed under disjoint union and left (resp. right) deterministic marked
concatenation. Our results can be adapted to these two weaker operations. In both cases,
membership reduces to C-membership when C is a quotienting Boolean algebra of regular
languages and separation is decidable when C is a finite quotienting Boolean algebra. In fact,
these operations are simpler to handle than UPol(C). We leave this for further work.

Another question is whether our results can be pushed to classes built by combining
unambiguous polynomial closure with other operations. A natural example is as follows. It
is known [17] that Pol(Bool(Pol(C)))-separation is decidable when C is a finite quotienting
Boolean algebra. Is this true as well for UPol(Bool(Pol(C)))? This seems difficult: the proof
of [17] crucially exploits the fact that Pol(Bool(Pol(C))) is closed under concatenation (which
is not the case for UPol(Bool(Pol(C)))) to handle the first polynomial closure.
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Abstract
Unambiguous non-deterministic finite automata (UFA) are non-deterministic automata (over
finite words) such that there is at most one accepting run over each input. Such automata
are known to be potentially exponentially more succinct than deterministic automata, and non-
deterministic automata can be exponentially more succinct than them.

In this paper we establish a superpolynomial lower bound for the state complexity of the
translation of an UFA to a non-deterministic automaton for the complement language. This
disproves the formerly conjectured polynomial upper bound for this translation. This lower
bound only involves a one letter alphabet, and makes use of the random graph methods.

The same proof also shows that the translation of sweeping automata to non-deterministic
automata is superpolynomial.
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1 Introduction

In many areas of computer science, the relationship between deterministic and non-determi-
nistic devices is a subject of significant interest. An intermediate notion between deterministic
and non-deterministic computation devices is the notion of unambiguous device. Such a
device can make non-deterministic choices, but it is guaranteed that for every input there is
at most one accepting execution trace.

For finite automata it is known that non-deterministic automata can be exponentially
more succinct than deterministic automata [10]. It is also known that unambiguous automata
can be exponentially more succinct than deterministic automata and in other situations
they can be exponentially less succinct than non-deterministic automata [8]. The paper
establishing exponential separation also defines several automata classes of limited ambiguity
and provides exponential separation between some of them.

Other notions of unambiguity have been considered. Some of them (for example, structural
unambiguity [9]: for all input words u and all states p, there is at most one run of the
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automaton over u starting in an initial state and ending in p) describe a wider class of
automata than unambiguity. Some are more restrictive than simple unambiguity (for
example, strong unambiguity [14]: there is a set of result states, for every input there is
exactly one way to reach a result state, and the result states can be accepting or rejecting).
We do not consider these notions in the present paper.

We study the problem of representing a complement of a language specified by a finite
automaton. It is easy to see that replacing the set of accepting states with its complement
allows to recognize the complement of a language specified by a deterministic finite automaton
without increasing the number of states. Complementing a language specified by a non-deter-
ministic finite automaton may require an exponential number of states [1].

It has been conjectured (see for instance [3]) that every unambiguous non-deterministic
one-way finite automaton (UFA) recognizing some language L can be converted into an
UFA recognizing the complement of the original language L with polynomial increase in the
number of states. The best known lower bound was quadratic [13], while the upper bounds
were exponential [6]. The quadratic lower bound holds even for the single-letter alphabet.
One of the arguments in favour of the conjecture was the fact that universality and even
containment of the languages recognized by unambiguous finite automata can be decided in
polynomial time [15].

The case of the single-letter alphabet has a better upper bound for the state complexity
of recognizing the complement of the language of a non-deterministic finite automaton. A
one-way non-deterministic finite automaton (NFA) with n states can be converted to a
one-way deterministic finite automaton (DFA) with eΘ(

√
n log n) states accepting the same

language [11]. As a DFA can be converted into a DFA for the complement of the language
without any increase in the number of states, this conversion provides an upper bound on
the state complexity of recognizing the complement of the language recognized by an NFA.
This upper bound is tight [12].

Recognizing the complement of the language of a two-way non-deterministic automaton
(2NFA) with n states over the single-letter alphabet can be done using an 2NFA with at
most O(n8) states [4]. The same paper also shows that recognising the complement of the
language of a 2DFA with n states can be done by a 4n-states 2DFA for arbitrary alphabet.
For the single-letter alphabet the complement of the language of a 2DFA can be recognized
by a 2DFA with 2n+ 3 states [7].

In the present paper we show a superpolynomial lower bound for the state complexity
of recognizing the complement of a language of an unambiguous finite automaton by a
non-deterministic finite automaton.

I Theorem 1. There exists a sequence of unary UFA (Ad)d∈N such that every NFA recognising
the complement of the language of Ad has size at least |Ad|d.

The size of Ad is 222dΘ(1)

.

I Corollary 2. Worst case, complementing an UFA of size z by an NFA may require more
than z(log log log z)Θ(1) states.

In other words, complementing an UFA requires more than polynomial increase in size
regardless of the size of the alphabet, and the bound holds even if we allow the complement
to be represented by NFA.

We also note that the same languages (and their complements) can be recognized by
sweeping deterministic finite automata with a small increase in the state complexity compared
to the case of UFA.
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The proof revolves around a connection between UFA and tournaments (orientations of
complete graphs), and an observation about existence of tournaments with special properties
described in Section 4.

The rest of the paper is structured as follows. In the next section we give the standard
definitions. Then we present in Section 3 our construction of the unambiguous automata Ad.
It involves the use of tournaments with special properties, and the choice of many relatively
close primes. We prove the existence of the suitable tournaments in Section 4, and explain
how to chose the prime numbers in Section 5. The Section 6 finishes the proof of Theorem 1.
We briefly study the case of sweeping automata in Section 7. In the final section we summarize
the results and outline some possible future directions.

2 Definitions

In this section we will remind the definitions of deterministic, unambiguous and non-
deterministic finite automata, and their normal forms.

I Definition 3. An non-deterministic finite automaton (NFA) is defined by an alphabet Σ,
a set of states Q, a subset of initial states I ⊆ Q, a subset of accepting states F ⊆ Q and the
transition relation T ⊆ Q× Σ×Q. The size of an NFA A is the number of its states, and is
denoted by |A|. A run of an NFA over a word u = a1 . . . an is a sequence of states q0, . . . , qn

such that (qi−1, ai, qi) belongs to T for all i = 1 . . . n and q0 ∈ I. The run is accepting if its
last state is accepting, i.e. qn ∈ F . A language L over alphabet Σ is an subset L ⊆ Σ∗. The
language recognized by an automaton A is the set L(A) of all words w such that there exists
an accepting run of A on w. An automaton over the single-letter alphabet is called unary.

A deterministic finite automaton (DFA) is an NFA such that I is a singleton and for all
states q and all letters a there is at most one transition of the form (q, a, q′) ∈ T .

An unambiguous non-deterministic finite automaton (UFA) is an NFA such that for every
word there is at most one accepting run.

A unary non-deterministic finite automaton is in the Chrobak normal form [2] if it consists
of a path of states followed by a single nondeterministic choice to a set of disjoint cycles.

An automaton is in simple Chrobak normal form if it consists of a disjoint union of cycles,
each of them containing exactly one initial state.

The following theorem shows that every UFA can be transformed into one in Chrobak
normal form without increase in size, and as a consequence we sought the construction that
would have this shape.

I Theorem 4 ([5]). For all regular unary languages, there exists an unambiguous automaton
recognizing the language which is minimal in size and is furthermore in Chrobak normal
form.

3 The construction

We present in this section the construction of the automaton Ad involved in the proof of
Theorem 1. We also establish the unambiguity of Ad in Lemma 5 and compute its size in
Lemma 6.

Parameters

The construction of Ad involves several parts, and the parameters have to be adjusted
carefully for the lower bound. In this section, we use many parameters, to be specified in the
final proof, in Section 6.

ICALP 2018
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These parameters are the following:
n ∈ N is the number of cycles of the automaton Ad in simple Chrobak normal form.
R is a tournament of size n: a tournament is an orientation of the edges of the complete
undirected graph, see Section 4 for more details. The tournament R will eventually be
required to have a special property, established in Lemma 7.
b ∈ N is used as a basis for numbering, and we set N = bn.
P = {pi | i = 0 . . . N − 1} is a set of N distinct primes. These will eventually be chosen
sufficiently close one from each other thanks to Lemma 10.

The construction

We now construct the automaton Ad as follows.
It consists of n disjoint cycles C1, . . . , Cn, the cycle Ci having as length mi which is
the product of the primes pj ’s such that the ith digit of j in base b is 0 (the digits are
numbered from 1 to n). We write that pj belongs to mi if pj |mi.
The 0th state of the cycle Ci is initial.
The rth state of a cycle Ci is accepting if it satisfies three conditions:
1. r is non null,
2. r modulo p belongs to {0, i} for all p belonging to mi,
3. if iRj for some j, then there exists a prime p belonging to both mi and mj such that

r mod p = i.
And in this case, we call r an accepting remainder for mi.

Let us look more precisely at the structure of this automaton.
We first note that the empty word is not accepted by this automaton, thanks to Item 1

of the definition. One can also note that each cycle is the product of bn−1 distinct prime
numbers. Furthermore, if one computes the gcd of ` different mi’s, the result is the product
of bn−` prime numbers. Hence there are many primes dividing a cycle, there are many primes
dividing simultaneously two cycles, and so on.

Of course, the subtlety in this construction lies in the choice of the accepting remainders
for each mi. This has to respect several constraints. The remainders are chosen to be
sufficiently complicated for allowing the lower bound proof, and there should be not too
many of them in order to guarantee the unambiguity for Ad. In particular if Condition 3
was omitted, it would be easy find accepting remainders for two distinct mi’s that would
yield ambiguity2. The Condition 3 is used to resolve these conflictual situations, and when
an input would be accepted by two cycles, the tournament is used to “declare the winner”.

Concretely, we prove:

I Lemma 5. The automaton Ad is unambiguous.

Proof. Assume that the automaton Ad would be ambiguous. This would mean that there
exists a word, of length `, such that it is accepted by two distinct cycles. Let us say by
Ci and Cj . This means that r = ` mod mi is an accepting remainder for mi, and r′ = `

2 Indeed, let p being a prime of mi and p′ a prime of mj , consider, by the Chinese remainder theorem an
integer ` that is equal to i modulo p, equal to j modulo p′, and null modulo all other primes. In the
absence of Assumption 3, the word of length ` would be accepted by both Ci and Cj .
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mod mj is an accepting remainder for mj . Let us assume without loss of generality that iRj.
This implies by Item 3 that there is a prime number p that belongs to both mi and mj such
that r mod p = i. Hence ` mod p = i since p belongs to mi. Hence r′ mod p = i since p
also belongs to mj . However, we know that r′ is an accepting remainder for mj , therefore
Item 2 requires that r′ mod p ∈ {0, j}. A contradiction. J

We conclude this section by computing the size of this automaton.

I Lemma 6. The automaton Ad has between n(minP )nb−1 and n(maxP )nb−1 = n(maxP ) N
b

states.

Proof. Indeed, the automaton is a union of n cycles and the length of each cycle is a product
of bn−1 = N

b primes from P . J

The rest of the proof is now devoted to showing that there are no small non-deterministic
automata for the complement of the language accepted by Ad.

4 Tournaments

A tournament graph (or simply a tournament) of size n is an orientation of the complete
graph. In our case, we see it as a relation over {1, . . . , n} such that for all distinct i, j = 1 . . . n,
either iRj and not jRi, or jRi and not iRj. By convention, iRi is assumed to never hold.

As we have seen in the previous section, a tournament is used as a parameter in the
construction of the automaton Ad. For our lower bound proof to go through, we use the fact
that this tournament has a special technical property, that is shown possible according to
the following lemma.

I Lemma 7. For all positive integers k, there exists a tournament R such that the following
property holds: for all E ⊆ R, if for all vertices x there exists a vertex y such that xEy, then
E contains at least k distinct edges that do not share an extremity.

It is possible to chose a tournament with this property of size n = 12k222k.

The rest of this section is devoted to the proof of Lemma 7. Note that this proof involves a
probabilistic argument.

The core notion used in the proof, and therefore the notion at the core of the entire proof
of Theorem 1, is the notion of inbound-covering sets.

I Definition 8. A set S is an inbound-covering set for a tournament R if for all vertices x
outside S, we have xRy for some y ∈ S.

I Lemma 9. For every positive integer h there exist a large enough integer n and a tournament
of size n such that the smallest inbound-covering set has size larger than h.

It is enough to take n = 3h22h.

Proof. Consider a uniformly random tournament of size n, i.e., the vertices are fixed as
1, . . . , n, and for all i < j, one tosses a fair coin in order to chose whether iRj or jRi. Consider
an arbitrary set S ⊂ V (G) of size h. The probability (over the choice of a tournament) that a
given vertex v ∈ V (G) \S has at least one edge from v to S is 1− 2−h. For a given set S and
v1, v2, . . . ∈ V (G) \S, the existence of an outgoing edge from vi towards S is independent for
the different vertices (indeed for all i 6= j, the set of edges from vi to S and the set of edges
from vj to S are disjoint and thus their orientations are chosen independently). Therefore
the probability for a given set S to be inbound-covering is equal to (1 − 2−h)(n−h). Note
that since log(1− 2−h) < (−2−h), this quantity is bounded from above by e−2−h(n−h) (?).

ICALP 2018
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Let us provide now an upper bound on the probability α that a tournament has an
inbound covering set of size h. Since there are (less than) nh sets of size n and using (?), we
immediately get that

α 6 nh exp
(
−n− h2h

)
= exp

(
h log n− n− h

2h

)
.

We shall prove now that for h > 8 and n = 3h22h, this quantity α is smaller than one,
which concludes the proof. According to the above inequality, it is sufficient for proving
α < 1 to establish that h log n < n−h

2h , which is equivalent to h2h log n < n− h. We establish
this inequality as follows:

h2h log n = h2h(h log 2 + 2 log h+ log 3)
< h2h × (2h)
= 2h22h

< 3h22h − h
= n− h J

I Remark. Note that, as it is customary with probabilistic constructions, our choice of n is in
fact enough to ensure that most tournaments have no inbound-covering sets of sizes up to h.

Now we can prove Lemma 7.

Proof. By Lemma 9 we can pick a tournament with orientation R that has no inbound-
covering sets of size up to h = 2k. We can choose such a tournament of size n = 3h22h =
12k222k.

Assume we have already constructed 2` distinct vertices x1, y1, . . . , x`, y` forming edges
(x1, y1), . . . , (x`, y`). Since S = {x1, y1, . . . , x`, y`} has cardinality 2` < 2h, it is not an
inbound-covering set. Hence, one can find a vertex x`+1 such that there is an edge from all
vertices of S to it. We know that E must contain some edge (x`+1, y`+1) from x`+1, and
this edge cannot lead to S, so the edge (x`+1, y`+1) doesn’t share an extremity with any
previously chosen edge. Applying this argument by induction on ` for ` = 0 to k, we have
proved Lemma 7. J

5 Choice of primes

I Lemma 10. For all large enough N it is possible to select N primes no larger than
4N2 logN within a factor of 1 + 1

N of each other.

Proof. We will take the interval of length 3N logN between 3N2 logN and 4N2 logN that
contains the most primes. By the Prime number theorem there are

3N2 logN
2 logN + log logN + log 3 + o(N2) = 3

2N
2 + o(N2)

primes no larger than 3N2 logN and

4N2 logN
2 logN + log logN + log 4 + o(N2) = 2N2 + o(N2)

primes no larger than 4N2 logN . Therefore, there are 1
2N

2 + o(1) primes between 3N2 logN
and 4N2 logN . If we divide this interval into subintervals of length 3N logN , the average
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subinterval will contain
1
2N

2 3N logN
N2 logN (1 + o(1)) = 3

2N + o(N)

primes, which is enough. J

6 The lower bound

In this section we present the main combinatorial argument of the proof, and complete the
proof of Theorem 1.

I Lemma 11. A non-deterministic automaton that accepts the complement of the language
of Ad has to have at least (minP )N(1−exp(− k

b2 )) states.

Let us fix ourselves a non-deterministic automaton Cd that accepts the complement of
the language of Ad.

The principle of the proof of Lemma 11 is the following: as we have already noticed, the
word of length

∏
p∈P p, since it is congruent to 0 modulo all the mi’s, is not accepted by Ad

(this follows from Condition 1 in the definition of accepting remainders). Thus it has to be
accepted by Cd. Since this word is very long (the length is much larger than the bound we
want to prove), the run of Cd that accepts it has to visit twice some state and perform a
cycle in the mean time. We shall look at what are the words obtained by pumping this cycle,
that are all accepted by Cd, and obtain from this analysis that this cycle in Cd has to be
rather long.

The core combinatorial result justifying this intuition is the following.

I Lemma 12. Let Ad be constructed from a tournament of size n = 12k222k satisfying the
conclusion of Lemma 7.

Let x and y be integers such that
(a) (

∏
p∈P p) = x+ y, and;

(b) (xs+ y) mod mi is not an accepting remainder modulo mi for all i and all s > 0,
then x has to be divisible by at least N(1− (1− 1

b

2)k) distinct primes from P .

Proof. Consider the set E ⊆ R defined as

E = {(i, j) ∈ R | gcd(mi,mj)|x} .

The proof then goes in two steps. We shall show in step 1 that the assumption for E in
Lemma 7 are fulfilled. Then we will apply Lemma 7 and conclude in step 2.

Step 1: We assume that E does not fulfill the assumptions of Lemma 7, and head toward a
contradiction. This means that we assume that there exists an i = 1 . . . n such that whenever
iRj then gcd(mi,mj) does not divide x.

According to the Chinese remainder theorem and existence of inverse in Z/pZ there
exists s > 0 such that (xs+ y) mod p = i for all primes p ∈ P that do not divide x. Note
that for a prime p that divides x, since furthermore p divides x+ y (assumption (a) of the
lemma), we obtain p|y, and thus (xs+ y) mod p = 0. Overall, for r = xs+ y, we have that
for all primes p ∈ P :

r mod p =
{

0 if p divides x, and
i otherwise.

Let us show that this r is an accepting remainder:
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1 Let j be such that iRj. By assumption, gcd(mi,mj) - x. Hence, there exists p ∈ P that
divides mi but not x. For this p we know that r mod p = i, therefore r mod mi 6= 0.

2 We have seen above that r mod p ∈ {0, i}.
3 Let j be such that iRj. According to the assumption, gcd(mi,mj) does not divide x.

Hence there exists a prime p that divides both mi and mj but not x. For this prime, we
have seen that r mod p = i.

However, we knew by assumption (b) of the lemma that a number of the form xs+ y such
as r cannot be an accepting remainder. This is contradiction, and thus terminates the proof
of the step 1.

Step 2: Let us now apply Lemma 7. According to the lemma, there are k distinct E-edges
(i1, j1), . . . , (ik, jk) that do not share an extremity. Let us count the number of primes that
divide both mit

and mjt
for some t = 1 . . . k (and thus divide x). By construction of the

mi’s, it contains all the primes pv such that both the itth and the jtth digits (in the base-b
notation) of v are null for some t = 1 . . . k.

We will first count the primes in P not dividing x. These are the primes pv with v having
a nonzero digit in at least one of the two positions it and jt for every t. There are k pairs
of positions and there are b2 − 1 combinations of digits that are not (0, 0). There are also
n − 2k positions with no such constraints. The total number of possible combinations is
(b2 − 1)kbn−2k = (b2(1− 1

b2 ))kbn−2k = bn(1− 1
b2 )k = N(1− 1

b2 )k.
The primes in P dividing x are all the other primes, and there are N −N(1 − 1

b2 )k =
N(1− (1− 1

b2 )k) of them. J

Let us prove Lemma 11.

Proof. Let us fix a tournament of size n according to Lemma 7.
Let use fix a set of primes according to Lemma 10.
An NFA recognizing the complement of the language has to have a cycle, because the

complement is infinite. Consider the word of length
∏

p∈P p. This length is obviously greater
than |Ad|d. If the NFA has an accepting run over the word with no cycles, it has to be very
large. Otherwise, let C be a cycle of length x occurring in this run, and y be the remaining
part of the run length, i.e.

∏
p∈P p = x+ y (a). The product of all the primes

∏
p∈P p has

remainder zero modulo every modulus mi in the construction. By iterating s > 0 times the
cycle C, we obtain that the word of length xs+ y has to be accepted by Cd. Thus it is not
accepted by Ad, and hence (xs + y) mod mi is not an accepting remainder for all s > 0
and i = 1 . . . n (b).

Hence the assumptions (a) and (b) of Lemma 12 are fulfilled. It follows that the cycle C
has a length x divisible by N(1− (1− 1

b

2)k) distinct primes from P .
This ensures that the cycle C has a length at least (minP )N(1−(1− 1

b
2)k). Since furthermore

(1− 1
b2 )k < exp(− 1

b2 )k = exp− k
b2 , this is at least (minP )N(1−exp(− k

b2 )).
The size of the NFA cannot be less than that. J

We can finally conclude the proof of the main theorem of this paper, Theorem 1.

Proof of Theorem 1. Let us fix d. Let b = 2d, k = b2, n = 12k222k, N = bn.
By Lemma 6 the size of the automaton Ad is at most n(maxP ) N

b states. This automaton
is unambiguous by Lemma 5.

By Lemma 11 each NFA recognizing the complement of the language of Ad must have
at least (minP )N(1−exp(− k

b2 )) states. As k
b2 = 1, the size of the NFA cannot be less than

(minP )0.6N .
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We now only need to verify that (O(n)(maxP ) N
b )d < (minP )0.6N . But indeed, for large

enough d we have minP > N � n� d and

(O(n)(maxP ) N
b )d < ((O(n)(1 + 2 1

N
)(minP )) N

2d )d

< O(n) N
2 exp( d

N
)(minP ) N

2 < (minP )0.6N

In case of d not large enough, we can replace the automaton with the automaton for the
smallest large enough d.

Let us estimate the size of Ad. We know that b is linear in d, k is quadratic in d, n
is 2Θ(d2), N is bn = b2

Θ(d2) = 2(log b)2Θ(d2) = 22Θ(d2) . The primes in P are all Θ(N2 logN).
Then the size of the automaton Ad is Θ(n(minP ) N

b ) = (minP )Θ( N
b ) = (N2 logN)Θ( N

b ) =

22Θ(d2)22Θ(d2) = 222Θ(d2) = 222dΘ(1)

J

7 Sweeping automata

We will now make some additional remarks about the application of the main construction
to two-way and sweeping automata.

First we remind the definitions of two-way and sweeping automata.

I Definition 13. A two-way non-deterministic finite automaton (2NFA) is defined by an
alphabet Σ, a set of states Qt {>,⊥}, a subset of initial states I, and the transition relation
T ⊆ Q× (Σ t {`,a})× (Q t {>,⊥})× {+1,−1}. We call ` and a endpoint markers.

A run of an 2NFA on an input word u1 . . . uk is a list of pairs of positions and states,
(x0 = 1, q0 ∈ I), (x1, q1), . . . , (xn, qn) such that all transitions are allowed and the run ends
with one of the special states >,⊥. The exact conditions are as follows:
1. x0 is 1;
2. q0 is in I;
3. all xi are between 0 and k + 1;
4. (qi−1, wxi−1 , qi, xi − xi−1) ∈ T for all i = 1 . . . n, in which we assume that u0 =` and

uk+1 =a;
5. the last state qn is either > or ⊥;
6. xi 6= xi−1 for all i = 1 . . . n.
A run is accepting if the last state is >.

A two-way non-deterministic finite automaton (2DFA) is a 2NFA such that for every
state q and every letter a there is at most one transition of the form (q, s, q′, j) ∈ T .

A sweeping two-way deterministic finite automaton (swNFA) is a 2NFA with exactly one
initial state such that for each state q all the transitions of the form (q, s, q′, j) where s is in
Σ have the same j.

A swDFA is an swNFA that is also a 2DFA.

I Lemma 14. The languages L(Ad) and L(Ad) constructed in the proof of Theorem 1 can
also be recognized. by a swDFA of size |Ad|.

Proof. A swDFA can go through the word n times calculating the remainder modulo the
next modulus each time. This construction requires the same number of states as the UFA
constructed in the proof of Theorem 1. Such a swDFA can be constructed to recognize either
the language or its complement. J

I Theorem 15. Converting a unary sweeping two-way deterministic automaton to a non-
deterministic finite automaton for the same language may require a superpolynomial size.
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Proof. Consider the automata constructed in Lemma 14. J

8 Conclusion and further directions

We have constructed a counterexample to the conjecture that the complement of a language
recognized by an UFA can be recognized by an UFA with polynomial increase in the number
of states. Moreover, in our example the language and its complement are easy to recognize
by a swDFA with approximately the same number of states, but the complement requires
superpolynomial number of states in the recognizing NFA even without the requirement of
unambiguity. The example only uses the single-letter alphabet.

The construction provides a relatively weak kind of superpolynomial growth. It would be
interesting to improve the lower bound. It seems likely that the number of primes used in
the construction could be reduced, making the growth faster.

The question about exponential separation in the case of a general alphabet remains
open. We hope that our counterexample to the conjectured polynomial upper bound for
complementing UFA will inspire new results in this area.
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Abstract
We present an algorithm for the following problem: given a context-free grammar for the word
problem of a virtually free group G, compute a finite graph of groups G with finite vertex groups
and fundamental group G. Our algorithm is non-deterministic and runs in doubly exponential
time. It follows that the isomorphism problem of context-free groups can be solved in doubly
exponential space. Moreover, if, instead of a grammar, a finite extension of a free group is given
as input, the construction of the graph of groups is in NP and, consequently, the isomorphism
problem in PSPACE.
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1 Introduction

The study of algorithmic problems in group theory was initiated by Dehn [6] when he
introduced the word and the isomorphism problem. The word problem asks whether a given
word over a (finite) set of generators represents the identity of the group. It also can be
viewed as a formal language, namely ϕ−1(1) ⊆ Σ∗ for some surjective monoid homomorphism
ϕ : Σ∗ → G. The isomorphism problem receives two finite presentations as input, the
question is whether the groups they define are isomorphic. Although both these problems
are undecidable in general [18, 3], there are many classes of groups where at least the word
problem can be decided efficiently.

One of these classes are the finitely generated virtually free groups (groups with a free
subgroup of finite index). It is easy to see that the word problem of a finitely generated
virtually free group can be solved in linear time. Indeed, it forms a deterministic context-free
language. A seminal paper by Muller and Schupp [16] shows the converse: every group
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with a context-free word problem is virtually free. Since then, also a wide range of other
characterizations of virtually free groups have emerged – for a survey we refer to [1, 9].

The isomorphism problem of virtually free groups is also decidable as Krstić showed in
[15] (indeed, later Dahmani and Guirardel showed that even the isomorphism problem for
the larger class of hyperbolic groups is decidable [5]). Here the input consists of two arbitrary
finite presentations with the promise that both define virtually free groups. Unfortunately,
the approach in [15] does not give any bound on the complexity. For the special case where
the input is given as finite extensions of free groups or as context-free grammars for the word
problems, Sénizergues [21, 22] showed that the isomorphism problem is primitive recursive.
Krstić’s and Sénizergues’ approaches both compute so-called graphs of groups, which encode
groups acting on trees, and then check these graph of groups for “isomorphism”. By the work
of Karrass, Pietrowski and Solitar [14], a finitely generated group is virtually free if and only
if it is the fundamental group of a finite graph of groups with finite vertex groups.

Contribution. We improve the complexity for the isomorphism problem by showing:
(A) Given a context-free grammar for the word problem of a context-free group G, a graph

of groups for G with finite vertex groups can be computed in NTIME(22O(n2)) (Theorem
33).

(B) Given a virtually free presentation for G, a graph of groups for G with finite vertex
groups can be computed in NP (Theorem 34).

(C) The isomorphism problem for context-free groups given as grammars is in
DSPACE(22O(n2)) (Theorem 37).

(D) The isomorphism problem for virtually free groups given as virtually free presentations
is in PSPACE (Theorem 38).

Here, a virtually free presentation for G consists of a free group F plus a set of representatives
S for the quotient F\G together with relations describing pairwise multiplications of elements
from F and S. Typical examples of virtually free presentations are finite extensions of free
groups (i. e., where the free sugroup F is normal in G). For non-deterministic function
problems we use the convention, that every accepting computation must yield a correct
result; but the results of different accepting computations might differ1.

The results C and D can be seen be to follow from A and B rather easily. Indeed, we
conclude from Forester’s work on deformation spaces [10] that two graphs of groups with
finite vertex groups and isomorphic fundamental groups can be transformed one into each
other by a sequence of slide moves (Proposition 35).

Our approach for proving A and B is as follows: in both cases the algorithm simply
guesses a graph of groups together with a map and afterwards it verifies deterministically
whether the map is indeed an isomorphism. The latter can be done using standard results
from formal language theory. The difficult part is to show the existence of a “small” graph
of groups and isomorphism (within the bounds of A and B).

For this, we introduce the structure tree theory by Dicks and Dunwoody [7] following a
slightly different approach by Diekert and Weiß [8] based on the optimal cuts of the Cayley
graph (Section 2.3). The optimal cuts can be seen as the edge set of some tree on which
the group G acts. By Bass-Serre theory, this yields the graph of groups we are aiming

1 Thus, B means that the graph of groups can be computed in NPMV in the sense of [20]. More precisely,
it can be rephrased as follows: the multi-valued function mapping a virtually free presentation for G
into a pair (G, ϕ), where G is a graph of groups and ϕ : π1(G) → G is an isomorphism of polynomial
size, is everywhere defined and belongs to the class FNP as defined in [19].
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for. Vertices in the graph of groups are defined in terms of equivalence classes of optimal
cuts. The key in the proof is to bound the size of the equivalence classes. Using Muller and
Schupp’s [16] notion of k-triangulability, Sénizergues [22] proved bounds on the size of finite
subgroups and on the number of edges in a reduced graph of groups for a context-free group,
from which we derive our bounds.

Outline. After fixing our notation, we recall basic facts from Bass-Serre theory and the
results from [22] and give a short review on structure trees based on [8]. Section 3, develops
bounds on the size of the vertices (= equivalence classes of cuts) of the structure tree. After
that, we introduce virtually free presentations formally and we derive stronger bounds for
this case in Section 4. Section 5 completes the proofs of A and B. Finally, in Section 6 we
derive C and D and we conclude with some open questions. Due to space constraints most
of the proofs are omitted; they can be found in the full version on arXiv [23].

2 Preliminaries

Complexity. We use the following convention for non-deterministic function problems: each
accepting computation path must yield a correct answer – though different accepting paths
can compute different correct answers. We use this convention to define the classes NP
(non-deterministic polynomial time) and NTIME(f(n)) (non-deterministic time bounded by
f(n)). Otherwise, we use standard complexity classes P (deterministic polynomial time),
PSPACE (polynomial space) and DSPACE(f(n)) (deterministic space bounded by f(n)) for
both decision and function problems.

Words. An alphabet is a (finite) set Σ; an element a ∈ Σ is called a letter. The set Σn forms
the set of words of length n. The length of w ∈ Σn is denoted by |w|. The set of all words is
denoted by Σ∗. It is the free monoid over Σ – its neutral element is the empty word 1.

Context-free grammars. We use standard notation for context-free grammars: a context-
free grammar is a tuple G = (V,Σ, P, S) with variables V , terminals Σ, a finite set of
productions rules P ⊆ V × (V ∪ Σ)∗, and a start symbol S. We denote its size by ‖G‖ =
|V |+ |Σ|+

∑
A→α∈P |α|. It is in Chomsky normal form if all productions are of the form

S → 1, A→ a or A→ BC with A,B,C ∈ V , a ∈ Σ. For further definitions, we refer to [12].

Groups. Let Σ be an alphabet and R ⊆ Σ∗ × Σ∗. The monoid (or group) G presented
by (Σ, R) is defined as G = Σ∗/R = Σ∗/=G where =G is the smallest monoid congruence
over Σ∗ containing R. There is a canonical projection π : Σ∗ → G. The word problem of
the group G is the formal language WP(G) = {w ∈ Σ∗ | w =G 1} = π−1(1). A symmetric
alphabet is an alphabet Σ endowed with an involution a 7→ a without fixed points (i. e., a = a

and a 6= a for all a ∈ Σ). If Σ is a symmetric alphabet for G (i. e., G = Σ∗/=G), we always
assume that aa =G aa =G 1 for all a ∈ Σ (without writing these relations explicitly).

Let Σ be a symmetric alphabet and w ∈ Σ∗. We say that w is freely reduced if w has no
factor aa for any letter a ∈ Σ. Given an arbitrary set X, the free group over X is denoted by
F (X). It is defined as the group presented by (X ∪X, {xx | x ∈ X ∪X}).

Graphs. A graph Γ = (V,E, s, t, · ) is given by the following data: a set of vertices V = V (Γ),
a set of edges E = E(Γ) together with two incidence maps s : E → V and t : E → V and an
involution E → E, e 7→ e without fixed points such that s(e) = t(e). The degree of a vertex
u is the number of incident edges. An undirected edge is a set {e, e}. For the cardinality of
sets of edges we usually count the number of undirected edges.
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A (finite) path from v0 to vn is a pair of sequences ((v0, . . . , vn), (e1, . . . , en)) such that
s(ei) = vi−1 and t(ei) = vi for all 1 ≤ i ≤ n. Similarly, a bi-infinite path is a pair of sequences
((vi)i∈Z, (ei)i∈Z) such that s(ei) = vi−1 and t(ei) = vi for all i ∈ Z. A path is simple if the
vertices are pairwise distinct. It is closed if v0 = vn. Depending on the situation we also
denote paths simply by the sequence of edges or the sequence of vertices. The distance
d(u, v) between vertices u and v is defined as the length (i. e., the number of edges) of a
shortest path connecting u and v. For A,B ⊆ V (Γ) with A,B 6= ∅, the distance is defined as
d(A,B) = min { d(u, v) | u ∈ A, v ∈ B }.

For S ⊆ V (Γ) we define Γ−S to be the induced subgraph of Γ with vertices V (Γ)rS. For
C ⊆ V (Γ), we write C for the complement of C, i. e., C = V (Γ) r C. We call C connected,
if the induced subgraph is connected. A group G acts on a graph Γ, if it acts on both V (Γ)
and E(Γ) and the actions preserve the incidences.

Cayley graphs. Let G be a group with a symmetric alphabet Σ. The Cayley graph Γ =
ΓΣ(G) of G (with respect to Σ) is defined by V (Γ) = G and E(Γ) = G × Σ, with the
incidence functions s(g, a) = g, t(g, a) = ga, and involution (g, a) = (ga, a). For r ∈ N let
B(r) = {u ∈ V (Γ) | d(u, 1) ≤ r } denote the ball with radius r around the identity.

Cuts. For a subset C ⊆ V (Γ) we define the edge and vertex boundaries of C as follows:

~δC =
{
e ∈ E(Γ)

∣∣ s(e) ∈ C, t(e) ∈ C } = directed edge boundary,

∂C =
{
s(e)

∣∣ e ∈ ~δC } = inner vertex boundary,

βC =
{
s(e)

∣∣ e ∈ ~δC or e ∈ ~δC
}

= ∂C ∪ ∂C = vertex boundary.

I Definition 1. A cut is a subset C ⊆ V (Γ) such that C and C are both non-empty and
connected and ~δC is finite. The weight of a cut is |~δC|. If |~δC| ≤ K, we call C a K-cut.

2.1 Bass-Serre theory
We give a brief summary of the basic definitions and results of Bass-Serre theory [24].

I Definition 2 (Graph of Groups). Let Y = (V (Y ), E(Y ), s, t, · ) be a connected graph. A
graph of groups G over Y is given by the following data:
(i) For each vertex P ∈ V (Y ) there is a vertex group GP .
(ii) For each edge y ∈ E(Y ) there is an edge group Gy such that Gy = Gy.
(iii) For each edge y ∈ E(Y ) there is an injective homomorphism from Gy to Gs(y), which

is denoted by a 7→ ay. The image of Gy in Gs(y) is denoted by Gyy.
Since we have Gy = Gy, there is also a homomorphism Gy → Gt(y) defined by a 7→ ay. The
image of Gy in Gt(y) is denoted by Gyy. A graph of groups is called reduced if Gyy 6= Gs(y)
whenever s(y) 6= t(y) for y ∈ E(Y ). Throughout we assume that all graphs of groups are
connected and finite (i. e., Y is a connected, finite graph).

Fundamental group of a graph of groups. We begin with the group F (G). It is defined
as the free product of the free group F (E(Y )) and the groups GP for P ∈ V (Y ) modulo
the set of defining relations

{
yayy = ay

∣∣ a ∈ Gy, y ∈ E(Y )
}
. As an alphabet we fix the

disjoint union ∆ =
⊎
P∈V (Y )(GP r {1}) ∪ E(Y ) throughout. Now, we have

F (G) = F (∆)/
{
gh = [gh], yayy = ay

∣∣ P ∈ V (Y ), g, h ∈ GP ; y ∈ E(Y ), a ∈ Gy
}
,

where [gh] denotes the element obtained by multiplying g and h in GP .
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For P ∈ V (Y ) we define a subgroup π1(G, P ) of F (G) by the elements g0y1 · · · gn−1yngn ∈
F (G), such that y1 · · · yn is a closed path from P to P and gi ∈ Gs(yi+1) for 0 ≤ i < n and
gn ∈ GP . The group π1(G, P ) is called the fundamental group of G with respect to the base
point P . Since we assumed Y to be connected, there exists a spanning tree T = (V (Y ), E(T ))
of Y . The fundamental group of G with respect to T is defined as

π1(G, T ) = F (G)/ { y = 1 | y ∈ T } .

I Proposition 3 ([24]). The canonical homomorphism ψ from the subgroup π1(G, P ) of F (G)
to the quotient group π1(G, T ) is an isomorphism. In particular, the two definitions of the
fundamental group are independent of the choice of the base point or the spanning tree.

A word w ∈ ∆∗ is called reduced if it does not contain a factor gh with g, h ∈ GP for
some P or a factor yayy with y ∈ E(Y ), a ∈ Gy.

I Lemma 4 ([24, Thm. I.11]). A reduced word in π1(G, P ) represents the trivial element if
and only if it is the empty word.

The quotient of a G-tree. Graphs of groups arise in a natural way in situations where a
group G acts (from the left) on some connected tree Z = (V,E) without edge inversion, i. e.,
e 6= ge for all e ∈ E, g ∈ G. We let Y = G\Z be the quotient graph with vertex set V (Y ) =
{Gv | v ∈ V } and edge set E(Y ) = {Ge | e ∈ E } and incidences and involution induced
by Z. By choosing representatives we find embeddings ι : V (Y ) ↪→ V and ι : E(Y ) ↪→ E

and we can assume that ι(V (Y )) induces a connected subgraph of Z and that ι(y) = ι(y)
for all y ∈ E(Y ). For P ∈ V (Y ), y ∈ E(Y ), we define vertex and edge groups as the
stabilizers of the respective representatives: GP = Stab(ιP ) = { g ∈ G | gιP = ιP } and
Gy = Stab(ιy) = { g ∈ G | gιy = ιy }. Note that as abstract groups the vertex and edge
groups are independent of the choice of representatives since stabilizers in the same orbit are
conjugate. Moreover, for each y ∈ E(Y ) there are gy, hy ∈ G such that s(ιy) = gyιP and
t(ιy) = hyιQ for P = s(y) and Q = t(y). Note that gy and hy are not unique; still the left
cosets gyGP resp. hyGQ are uniquely determined. Clearly, we can choose them such that
gy = hy and hy = gy. This yields two embeddings:

Gy → GP , a 7→ ay = gyagy, and Gy → GQ, a 7→ ay = hyahy. (1)

Hence, we have obtained a well-defined graph of groups G over Y . Notice that the Gyy and
Gyy depend on the choice of gy and hy (and change via conjugation when changing them).

We define a homomorphism ϕ : ∆∗ → G by ϕ(g) = g for g ∈ GP , P ∈ V (Y ). For
y ∈ E(Y ), we set ϕ(y) = gyhy. That means ϕ(y) maps some edge in the preimage of y and
terminating in ιt(y) to an edge in the preimage of y with source in ιs(y). By our assumption,
we have ϕ(y) = hygy = ϕ(y). Since ϕ(yayy) = ϕ(y)ϕ(ay)ϕ(y) = hygya

ygyhy = ay = ϕ(ay),
we obtain a well-defined homomorphism ϕ : F (G)→ G.

I Theorem 5 ([24]). The restriction ϕ : π1(G, P )→ G is an isomorphism.

2.2 Context-free groups and graphs
I Definition 6. A group is called context-free, if its word problem is a context free language.

Notice that the word problem of a context-free group is decidable in polynomial time – even
if the grammar is part of the input – by applying the CYK algorithm (see e. g. [12]).
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I Definition 7 (k-triangulable). Let Γ be a graph. Let k ∈ N and let γ = v0, v1, . . . , vn = v0
be a sequence of vertices Γ such that d(vi−1, vi) ≤ k for all i ∈ { 1, . . . , n } (e. g. γ can be a
closed path). Let P a convex polygon in the plane whose vertices are labeled by the vertices
of γ (i.e. we consider γ as a simple closed curve in the plane). A k-triangulation of γ is a
triangulation of P which does not introduce any additional vertices (thus only consists of
“diagonal” edges) and such that vertices joined by a diagonal edge are at distance at most k.
If n < 3, we consider γ as triangulated. If every closed path γ has a k-triangulation, then Γ
is called k-triangulable and we call k the triangulation constant of Γ.

I Lemma 8 ([16, Thm. I]). Let (V,Σ, P, S) be a context-free grammar in Chomsky normal
form for the word problem of a group G where Σ is a symmetric alphabet. Then the Cayley
graph Γ can be k-triangulated for k = 2|P |.

Note that in [16] only the existence of some k is shown; however, an easy induction shows
the bound of Lemma 8. Moreover, a slightly worse bound applies if Σ is not symmetric [23].

I Lemma 9 ([17, p.65]). Let Γ be k-triangulable and let r ∈ N. If C is a connected component
of Γ−B(r), then diam(∂C) ≤ 3k.

I Lemma 10. Let Γ be connected and k-triangulable and let C ⊆ V (Γ) be a cut. Then
diam(βC) ≤ 3k

2 |~δC|.

This lemma is asserted (without proof) in [21, Lemma 6] with a slightly worse bound on
diam(βC). For a proof see [23]. The following upper-bounds will be crucial.

I Proposition 11 ([22, Prop. 1.2]). Let Γ be the Cayley graph of a group G on a symmetric
alphabet Σ and let Γ be k-triangulable. Then |H| ≤ |Σ|12k+10 for every finite subgroup H ≤ G.

I Theorem 12 ([22, Thm. 1.4]). Let Γ be the Cayley graph of a group G on a symmetric
alphabet Σ and let Γ be k-triangulable. Then every reduced graph of groups G admitting G as
fundamental group has at most |Σ|12k+11 undirected edges.

2.3 Optimal cuts and structure trees
We briefly present the construction of optimal cuts and the associated structure tree from
[8, 9]. While in [8], the proof was for arbitrary accessible, co-compact, locally finite graphs,
here we assume that Γ is the Cayley graph of a context-free group. We are interested
in bi-infinite simple paths which can be split into two infinite pieces by some cut. For a
bi-infinite simple path α denote:

C(α) =
{
C ⊆ V (Γ)

∣∣ C is a cut and |α ∩ C| =∞ =
∣∣α ∩ C∣∣ } ,

Cmin(α) = {C ∈ C(α) | |δC| is minimal in C(α) } ,

where we identify α with its set of vertices. If C ∈ C(α), we say that C splits α. We define
the set of minimal cuts Cmin as the union of the Cmin(α) over all bi-infinite simple paths α.
Since every bi-infinite simple path α with C(α) 6= ∅ can be split by a cut which is a connected
component of Γ−B(m) for some m ∈ N, the next lemma follows from Lemma 9 and 10.

I Lemma 13. Let Γ be k-triangulable and let d denote the degree of Γ. Then for every
C ∈ Cmin we have |~δC| ≤ d3k+2 and diam(βC) ≤ 3k

2 d
3k+2.

Two cuts C and D are called nested, if one of the four inclusions C ⊆ D, C ⊆ D, C ⊆ D

or C ⊆ D holds. By Lemma 13, with K = d3k+3 for every bi-infinite simple path α with
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C(α) 6= ∅ there exists some cut C ∈ C(α) with |~δC| ≤ K. We fix this number K. For a cut
C let m(C) denote the number of K-cuts that are not nested with C. It follows from [25]
that m(C) is always finite, see also [8, Lem. 3.4].

I Definition 14. The set of optimal cuts is defined as

Copt(α) = {C ∈ Cmin(α) | m(C) ≤ m(D) for all D ∈ Cmin(α) } ,

Copt =
⋃
{ Copt(α) | α is a bi-infinite simple path } .

I Definition 15. A set C ⊆ C(Γ) of cuts is called a tree set, if C is pairwise nested, closed
under complementation and for all C,D ∈ C the set {E ∈ C | C ⊆ E ⊆ D } is finite.

I Proposition 16 ([8]). Copt is a tree set.

I Definition 17. Let C be a tree set. We can now define the following relation:

C ∼ D :⇐⇒ C = D or (C $ D and E ∈ C, C $ E ⊆ D =⇒ E = D).

Indeed, ∼ is an equivalence relation – see e. g. [7]. The intuition behind this definition is:
We consider C as the edge set of a graph, and define two edges to be incident to the same
vertex, if no other edge lies “between” them.

I Definition 18. Let C be a tree set and let T (C) denote the graph defined by

V (T (C)) = { [C] | C ∈ C } , E(T (C)) = C.

The incidence maps are defined by s(C) = [C] and t(C) = [C]. The involution C is defined
by the complementation C = V (Γ) r C; hence, we do not need to change notation.

The directed edges are in canonical bijection with the pairs ([C], [C]). Indeed, let C ∼ D

and C ∼ D. It follows C = D because otherwise C $ D $ C. Thus, T (C) is an undirected
graph without self-loops and multi-edges. Indeed, T (C) is a tree [7].

I Theorem 19 ([8, Thm. 5.9]). Let Γ be a connected, k-triangulable, locally finite graph. Let
a group G act on Γ such that G\Γ is finite and each node stabilizer Gv is finite. Then G acts
on the tree T (Copt) such that all vertex and edge stabilizers are finite and G\T (Copt) is finite.

Complete cut sets. By Proposition 16 and Theorem 19, Copt is a tree set on which G acts
with finitely many orbits such that the vertex stabilizers G[C] = { g ∈ G | gC ∼ C } of the
structure tree are finite. We shall call a set of cuts with these properties a complete cut set.

3 Bounds on the structure tree

In order to prove our main result, we have to show that there exists a “small” graph of groups
together with a “small” isomorphism. We start with the structure tree and bound the size of
the equivalence classes and the diameter of the boundaries of the cuts in one equivalence
class. As before Γ is the Cayley graph of a context-free group G.
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Avoiding edge inversion. Let C be a tree set (e. g. C = Copt). We aim to construct a graph
of groups as described in Section 2.1 from the structure tree T (C). However, if the action of
G on T (C) is with edge inversion, the construction cannot be applied directly. Instead, we
switch to a subdivision T̃ (C) of T (C) by putting a new vertex in the middle of every edge
which is inverted (in particular, V (T (C)) ⊆ V (T̃ (C))). Formally, T̃ (C) is defined as follows:
for every edge C of T (C) with gC = C for some g ∈ G we remove C and C and instead
add a new vertex v{C,C} together with edges C1, C1, C2, C2 with gC1 = C2, gC2 = C1
and s(C1) = [C], t(C1) = v{C,C}, s(C2) = v{C,C}, and t(C2) = [C]. We extend this in a
G-equivariant way to the whole tree. From now on we work with the tree T̃ (C).

Reduced cut sets. Given a tree set C with a finite quotient graph G\T̃ (C), we obtain a
graph of groups as in in Section 2.1. We aim to apply Theorem 12, to bound the number of
edges in this graph of groups. However, the graph of groups might not be reduced. In terms
of the set of cuts C this means that G[C] = GC for some C ∈ C and either [C] and [C] are not
in the same G-orbit or there is some g ∈ G with gC = C. (Note that the latter case implies
that the action on T (C) is with edge inversion. Thus, the new vertex v{C,C} is introduced
and the condition of being reduced is violated for the vertex G · [C] of the corresponding
graph of groups.) Nevertheless, in this case we can switch to a subset C′ ⊆ C such that the
corresponding graph of groups is reduced: if there is some cut C ∈ C with G[C] = GC and
either [C] 6∈ G ·

{
[C]
}
or C ∈ G · {C}, then we can replace C by C rG ·

{
C,C

}
(in terms of

the structure tree this means we collapse the respective edges). If no such C ∈ C remains, we
have obtained a reduced set of cuts C′. Since the number of G-orbits of cuts is finite, this
procedure terminates. The following lemmas are straightforward to verify.

I Lemma 20. Let C be a complete cut set and let C′ be the reduced cut set obtained by the
above procedure. Then C′ is also complete (i. e., all vertex stabilizers are still finite).

I Lemma 21. Let C be a reduced cut set and let T̃ (C) be the associated subdivision of the
structure tree without edge inversion. Then the graph of groups built on G\T̃ (C) is reduced.

Let Ξ be an upper bound on the order of finite subgroups of G and let Θ be a bound
on the number of undirected edges in a reduced graph of groups for G. Notice that by
Proposition 11, we have Ξ ≤ d12k+10 and by Theorem 12 we have Θ ≤ d12k+11 where k is
the triangulation constant and d the degree of Γ. The following lemma is straightforward to
prove using the fact that every orbit of cuts in C yields an edge in the graph of groups.

I Lemma 22. Let C be a reduced complete set of cuts and let C ∼ D ∈ C. Then we have
|{ g ∈ G | gD ∼ C }| ≤ Ξ and |[C]| ≤ 2 ·Θ · Ξ.

I Lemma 23. Let C be a tree set of cuts and let G act on C. Let C ∈ C and C ∈ P ⊆ [C].
Then P 6= [C] if and only if there is some E ∈ [C] r P with d(∂E,

⋃
D∈P ∂D) ≤ 1.

Proof. The if-part is clear. Thus, let P 6= [C]. Then there is some E ∈ [C] r P . Since
E $ D for all D ∈ P , we have ∅ 6= E ⊆

⋂
D∈P D. Now, if ∂E ⊆

⋃
D∈P ∂D, we are

done. Otherwise, there is some vertex u ∈ E ⊆
⋂
D∈P D with d(u,

⋃
D∈P ∂D) ≥ 1. Since

∂
(⋂

D∈P D
)
⊆
⋃
D∈P ∂D, we also find a vertex v ∈

⋂
D∈P D with d(v,

⋃
D∈P ∂D) = 1 by

following a path from u to ∂
(⋂

D∈P D
)
inside

⋂
D∈P D. Notice that, in particular, we have

v 6∈ βD ∪D for all D ∈ P. (2)

Now since Γ is vertex-transitive, we can find some cut Ẽ ∈ C such that v ∈ βẼ. After
possibly exchanging Ẽ with its complement, we can assume that Ẽ $ C or Ẽ ⊆ C. The
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latter would imply v ∈ βẼ ⊆ βC ∪ C contradicting (2). Moreover, for any other D ∈ P , we
have Ẽ ⊆ D because all other possibilities for Ẽ and D being nested lead to a contradiction:

if D $ Ẽ, then D $ Ẽ $ C contradicting D ∼ C,
if D $ Ẽ, then D ⊆ Ẽ ⊆ C and D ⊆ C contradicting C 6= ∅,
if Ẽ ⊆ D, then v ∈ βẼ ⊆ βD ∪D contradicting (2).

Thus, Ẽ ⊆
⋂
D∈P D. Let E ∈ C be minimal with respect to inclusion such that Ẽ ⊆ E $ C.

Then E ∼ C, but E 6∈ P because v ∈ βẼ ⊆ βE ∪ E.
It remains to verify that d(∂E,

⋃
D∈P ∂D) ≤ 1. Let w ∈ ∂D for some D ∈ P a vertex

with d(w, v) = 1. Then, we have w ∈ βD ∪D ⊆ βE ∪ E. Consider the two cases: v ∈ E
and v ∈ ∂E. If v ∈ E, then w ∈ βE ∩ ∂D and hence d(∂E,

⋃
D∈P ∂D) ≤ 1. If v ∈ ∂E, then

d(∂E,
⋃
D∈P ∂D) ≤ d(v, w) = 1. J

Now, an easy inductive argument shows the next lemma.

I Lemma 24. Let C be a complete set of cuts and R ∈ N such that diamβC ≤ R for all
C ∈ C. Let C ∈ C, then diam

( ⋃
C∼D

βC
)
≤ (R+ 1) · |[C]| .

I Lemma 25. Let Γ be the Cayley graph of G. Moreover, assume that
R bounds the diameter of the boundary of minimal cuts,
Θ bounds the number of undirected edges of a reduced graph of groups for G,
Ξ is an upper bound on the size of finite subgroups of G.

Then there exists a graph of groups G over Y and an isomorphism ϕ : π1(G, T )→ G with
(i) |V (Y )| ≤ Θ + 1,
(ii) |GP | ≤ Ξ for all P ∈ V (Y ),
(iii) |ϕ(a)| ≤ 4(R+ 1) · (Θ + 1)2 · Ξ for every a ∈

⋃
P∈V (Y )GP ∪ E(Y ).

Points i and ii of Lemma 25 are immediate. The proof iii starts with the set of optimal
cuts. As described at the beginning of this section, one can switch to a reduced, complete
subset C yielding a reduced graph of groups over G\T̃ (C) by Lemmas 20 and 21. Following
the construction of the graph of groups in Section 2.1, we can choose representatives for
V (Y ) ⊆ V (T̃ (C)) for G\V (T̃ (C)) such that ∂C ⊆ B(Λ) for any C ∈ P and P ∈ V (Y ) with
Λ = 2(R+ 1) · (Θ + 1) ·Θ · Ξ + Θ. This bound follows from Lemmas 24 and 22. Thus, we
have a graph of groups and it remains to bound the size of the isomorphism ϕ. Consider the
action of G on its Cayley graph Γ: every g ∈ GP for P ∈ V (Y ) maps a vertex from B(Λ) to
another vertex in B(Λ) (namely all vertices in

⋃
D∈P ∂D). Likewise the image of an edge D

maps ∂D ⊆ B(Λ + 1) into B(Λ). Since the action is free, iii follows. For details, see [23].

4 Stronger bounds for virtually free presentations

Let us start with a virtually free group G given as a free subgroup F (X) of finite index and
a system of representatives S of F\G. That means every group element can be written in a
unique way as xs with x ∈ F (X) and s ∈ S. Moreover, this normal form can be computed in
linear time from an arbitrary word by successively applying “commutation rules” of letters
from S and X ∪X ∪ S to the word. This gives a virtually free presentation. For this special
case, we can derive stronger bounds on the triangulation constant k and other parameters.

Formally, a virtually free presentation V for G is given by the following data:
finite sets X,X, S, where X ∪X is a symmetric alphabet and (X ∪X) ∩ S = ∅,
for all y ∈ X ∪X, r, t ∈ S, there are words xr,y, xr,t ∈ (X ∪X)∗, sr,y, sr,t ∈ S ∪ {1} with

ry =G xr,ysr,y rt =G xr,tsr,t (3)
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fulfilling two properties:
(i) for all r ∈ S there is some r′ ∈ S such that sr′,r = 1 (i. e., G is a group),
(ii) the equations (3), oriented from left to right, together with the free reductions xx = 1

for x ∈ X ∪X form a confluent rewriting system (for a definition, see e. g. [2, 13]).
We write S1 for S ∪ {1}. Clearly the associated rewriting system is terminating (noetherian),
F (X) is a subgroup of G, G = F (X) · S1, and F (X) ∩ S = ∅ (hence S1 is a system of
right-representatives for F (X)). Note that properties i and ii can be checked in polynomial
time. Using this confluent rewriting system, every g ∈ G can be uniquely written in its
normal form g = xs where x ∈ (X ∪X)∗ is a freely reduced word and s ∈ S1. Given any
word in (X ∪X ∪ S)∗, the normal form can be computed in linear time from left to right by
applying the identities (3) and reducing freely. This is the computation of a deterministic
pushdown automaton for the word problem of G:

I Lemma 26. Let G be the group defined by a virtually free presentation V. Then a
deterministic pushdown automaton for WP(G) can be computed in polynomial time.

Notice that a finite extension of a free group is a special case of a virtually free presentation
where F (X) is a normal subgroup of G (i. e., sr,y = r for all r ∈ S, y ∈ X ∪X). We assume
that V is written down in a naive way as input for algorithms: there is a table which for
all a ∈ X ∪X ∪ S and r ∈ S contains a word xr,a and some sr,a ∈ S. The size (number of
letters) of this table is |S| · (2 |X|+ |S|) ·max

{
|xr,a|+ 1

∣∣ a ∈ X ∪X ∪ S, r ∈ S }. Up to
logarithmic factors, this is the number of bits required to write down V this way.

We can always add a disjoint copy of formal inverses S of S representing S−1 in G.
Note that for s ∈ S this yields the rule rs = xr,s, sr,s for some sr,s ∈ S where xr,s = x−1

sr,s,s
.

In particular, |xr,s| ≤ max
{
|xr,a|

∣∣ a ∈ X ∪X ∪ S, r ∈ S }. We define the size of V as
‖V‖ =

∣∣S1
∣∣ · (2 |X|+ 2 |S|) ·max

{
|xr,a|+ 1

∣∣ a ∈ X ∪X ∪ S, r ∈ S }.
Whenever we talk about a group G given as a virtually free presentation, we denote

Σ = X ∪X ∪ S ∪ S. The Cayley graph Γ = ΓΣ(G) is defined with respect to this alphabet.
In particular, its degree is bounded by ‖V‖. The following lemma is easy to prove by
considering the sequence of normal forms x0s0, . . . , xnsn of a closed path: then x0, . . . , xn is
2 ‖V‖-triangulable in the Cayley graph of F (X).

I Lemma 27. Let G be the group defined by a virtually free presentation V and let Γ be its
Cayley graph. Then Γ is k-triangulable for k = 2 ‖V‖+ 2.

I Lemma 28. Let G be the group defined by a virtually free presentation V. Then for every
finite subgroup H ≤ G, we have |H| ≤

∣∣S1
∣∣. Hence, in particular, |H| ≤ ‖V‖.

I Lemma 29. Let G be the group defined by a virtually free presentation V. Then the number
of edges of a reduced graph of groups for G with finite vertex groups is at most ‖V‖.

The proof of Lemma 29 is almost a verbatim repetition of the proof of [22, Thm. 1.4].

I Lemma 30. Let G be the group defined by a virtually free presentation V and let Γ be its
Cayley graph. Then every minimal cut in Γ is a K-cut for K = ‖V‖2.

The proof of Lemma 30 is based on the fact that all cuts of the form Cx =
{ ys | s ∈ S, x is a prefix of y } for x ∈ (X ∪ X)∗ satisfy |~δCx| ≤ ‖V‖2 and that all
bi-infinite simple paths which are split by some cut also are split by some cut of the form Cx.
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5 Main results: computing graphs of groups

I Lemma 31. The uniform rational subset membership problem for virtually free groups
given as virtually free presentation or as context-free grammar for the word problem can be
decided in polynomial time. More precisely, the input is given as

either a virtually free presentation V or a context-free grammar G = (V,Σ, P, S) for the
word problem of a group G,
a rational subset of G given as non-deterministic finite automaton or regular expression
over Σ (in the case of a virtually free presentation Σ is defined as in Section 4),
a word w ∈ Σ∗.

The question is whether w is contained in the rational subset of G.

The proof of Lemma 31 is straightforward (for details see [23]): let p : Σ∗ → G denote the
canonical projection. Then p(w) ∈ p(L) ⇐⇒ 1 ∈ p(w−1L) ⇐⇒ WP(G) ∩ w−1L 6= ∅. The
latter can be tested in polynomial time by standard facts from formal language theory.

I Proposition 32. The following problem is in P: Given a virtually free group G either as
virtually free presentation V or as context-free grammar G for its word problem and a graph of
groups G over the graph Y (with vertex groups as multiplication tables, i. e., for all g, h ∈ GP
the product gh is written down explicitly) together with a homomorphism ϕ : ∆∗ → Σ∗ (where
∆ =

⋃
P∈V (Y )GP ∪E(Y ) and Σ is the alphabet for G defined by V (resp. G)), decide whether

ϕ induces an isomorphism π1(G, T )→ G.

Proof. We verify that ϕ induces a homomorphism ϕ̃ : π1(G, T )→ G and that ϕ̃ is injective
and surjective.

Testing that ϕ really induces a homomorphism reduces to the word problem for the group
G, which can be solved in polynomial time: for every relation a1 · · · am = 1 of π1(G, T ) test
whether ϕ(a1) · · ·ϕ(am) = 1 in G. Testing that ϕ̃ is surjective reduces to polynomially many
membership-problems for rational subsets of G: for all a ∈ Σ test whether a is contained in
the rational subset { ϕ̃(g) | g ∈ ∆ }∗. By Lemma 31 this can be done in polynomial time.

It remains to test whether ϕ̃ is injective. Let π : ∆∗ → F (G) and ψ : F (G) → π1(G, T )
denote the canonical projections (note that ψ induces an isomorphism π1(G, P ) ∼−→ π1(G, T )).
Let R ⊆ ∆∗ denote the set of reduced words. With slight abuse of notation we use π1(G, P )
also to denote the set of words g0y1 · · · gn−1yngn ∈ ∆∗ where y1 · · · yn is a closed path based
at P and gi ∈ Gs(yi+1) for 0 ≤ i < n and gn ∈ GP . Testing that ϕ̃ is injective amounts to
test whether the language L =

(
π−1(ψ−1(ϕ̃−1(1))) ∩ π1(G, P ) ∩ R

)
r {1} ⊆ ∆∗ is empty

because 1 is the only reduced word in π1(G, P ) representing the identity, by Lemma 4.
Notice that π−1(ψ−1(ϕ̃−1(1))) = ϕ−1(WP(G)). Since WP(G) is context-free (for virtually

free presentations, see Lemma 26) and since context-free languages are closed under inverse
homomorphism, ϕ−1(WP(G)) is a context-free language – and a pushdown automaton for it
can be computed in polynomial time from the pushdown automaton for WP(G) (see e. g.
[12]). Thus, L is a context-free language and we obtain a pushdown automaton for L, which
can be tested for emptiness in polynomial time (see e. g. [12]). J

I Theorem 33. The following problem is in NTIME(22O(N)):
Input: a context-free grammar G = (V,Σ, P, S) in Chomsky normal form with ‖G‖ ≤ N

which generates the word problem of a group G,
Compute a graph of groups with finite vertex groups and fundamental group G.

Note that if G is not in Chomsky normal form, it can be transformed into Chomsky normal
form in quadratic time. In this case the graph of groups can be computed in NTIME(22O(N2)).
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Table 1 Summary of appearing constants. The third column shows a bound in terms of the size
of a context-free grammar G for the word problem (due to Lemma 8, Lemma 13, Proposition 11, and
Theorem 12), the fourth column shows a bound in terms of the size of a virtually free presentation
V (due to Lemma 27, Lemma 30, Lemma 10, Lemma 28, and Lemma 29).

N size of the input ‖G‖ ‖V‖
d degree of Γ N N

k triangulation constant 2N+2 2N + 2
K maximal weight of a minimal cut d3k+3 N2

R = 3kK
2 maximal diameter of the boundary of a minimal cut 3k

2 d
3k+3 3(N + 1)N2

Ξ maximum cardinality of a finite subgroup d12k+10 N

Θ maximum number of edges in a reduced graph of groups d12k+11 N

I Theorem 34. The following problem is in NP:
Input: a group G as a virtually free presentation,
Compute a graph of groups with finite vertex groups and fundamental group G.

The proofs of Theorem 34 and Theorem 33 are now straightforward: guess a graph of groups
and a map ϕ : ∆→ Σ∗ and use Proposition 32 to check that it induces an isomorphism. By
Lemma 25 and Table 1, such a guess can be made within the time bounds of the theorems.

6 Slide moves and the isomorphism problem

Given two groups G1 and G2 one can calculate the respective graph of groups and then
check with Krstić’s algorithm by ([15]) whether their fundamental groups are isomorphic.
A closer analysis shows that this algorithm runs in polynomial space. As the description
is quite involved, we follow a different approach based on Forester’s theory of deformation
spaces [10, 4].

Let G be a graph of groups over Y . A slide move is the following operation on G: let GP
be a vertex group and Gx, Gy edge groups with s(x) = s(y) = P . If Gxx (the image of Gx in
GP ) can be conjugated by an element of GP into Gyy i. e., there is some g ∈ GP such that
g−1Gxxg ≤ Gyy, then x can be slid along y to Q = t(y), i. e., s(x) is changed to Q. The new
inclusion of Gx → GQ is then given by ιy ◦ ι−1

y ◦ cg ◦ ιx where ιx is the inclusion Gx → GP
(likewise for ιy, ιy) and cg is the conjugation with g (i. e., h 7→ g−1hg). A slide move induces
an isomorphism ϕ of the fundamental groups of the two graph of groups by ϕ(h) = h for
h ∈ GR, R ∈ V (Y ), and ϕ(z) = z for z ∈ E(Y ) r {x, x } and ϕ(x) = gyx. The following
result is an immediate consequence of [10, Thm. 1.1] and [11, Thm. 7.2] (resp. [4, Cor. 3.5]).
Since we are not aware of an explicit reference, we give the details in [23].

I Proposition 35. Let G1 and G2 be reduced finite graphs of groups with finite vertex groups.
Then π1(G1, P1) ∼= π1(G2, P2) if and only if G1 can be transformed into G2 by a sequence of
slide moves.

Clearly, any sequence of slide moves can be performed in linear space. By guessing a
sequence of slide moves transforming G1 into G2, we obtain the following corollary.

I Corollary 36. Given two graph of groups G1 and G2 where all vertex groups are given as full
multiplication tables, it can be checked in NSPACE(O(n)) whether π1(G1, P1) ∼= π1(G2, P2).

In combination with Theorem 33 (and Savitch’s theorem) and Theorem 34 this gives an
algorithm to solve the isomorphism problem for virtually free groups:
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I Theorem 37. The isomorphism problem for context-free groups is in DSPACE(22O(N)).
More precisely, the input is given as two context-free grammars of size at most N which are
guaranteed to generate word problems of groups.

I Theorem 38. The isomorphism problem for virtually free groups given as a virtually free
presentation is in PSPACE.

7 Conclusion and open questions

We have shown that the isomorphism problem for virtually free groups is in PSPACE (resp.
DSPACE(22O(N))) depending on the type of input – thus, improving the previous bound
(primitive recursive) significantly. The following questions remain open:

What is the complexity of the isomorphism problem for virtually free groups given as an
arbitrary presentation?
Is the doubly exponential bound n12·2n+10 on the size of finite subgroups tight or is there
a bound 2p(n) for some polynomial p? This is closely related to another question:
What is the minimal size of a context-free grammar of the word problem of a finite group?
Can it be log log(n) where n is the size of the group?
Is there a polynomial bound on the number of slide moves necessary to transform two
graphs of groups with isomorphic fundamental groups into each? This would lead to an
NP algorithm for the isomorphism problem with virtually free presentations as input. We
conjecture, however, that this is not true.
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Abstract
This work is a study of the expressive power of unambiguity in the case of automata over infinite
trees. An automaton is called unambiguous if it has at most one accepting run on every input,
the language of such an automaton is called an unambiguous language. It is known that not
every regular language of infinite trees is unambiguous. Except that, very little is known about
which regular tree languages are unambiguous.

This paper answers the question whether unambiguous languages are of bounded complexity
among all regular tree languages. The notion of complexity is the canonical one, called the
(parity or Rabin-Mostowski) index hierarchy. The answer is negative, as exhibited by a family
of examples of unambiguous languages the cannot be recognised by any alternating parity tree
automata of bounded range of priorities.

Hardness of the examples is based on the theory of signatures, previously studied by Walu-
kiewicz. The technical core of the article is a definition of the canonical signatures together with
a parity game that compares signatures of a given pair of parity games (of the same index).
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1 Introduction

Non-determinism provides a machine with a very powerful ability to guess its choices.
Depending on the actual model, it might enhance the expressive power of the considered
machines or, while preserving the class of recognised languages, make the machines more
succinct or effective. All these benefits come at the cost of algorithmic difficulties when
handling non-deterministic devices. This complexity motivates a search of ways of restricting
the power of non-determinism. One of the most natural among these restrictions is a semantic
notion called unambiguity: a non-deterministic machine is called unambiguous if it has at
most one accepting run on every input.

Unambiguity turns out to be very intriguing in the context of automata theory [7]. In the
classical case of finite words it does not enhance the expressive power of the automata, still it

EA
T

C
S

© Michał Skrzypczak;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 140; pp. 140:1–140:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mskrzypczak@mimuw.edu.pl
https://orcid.org/0000-0002-9647-4993
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.140
https://arxiv.org/abs/1803.06163
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


140:2 Unambiguous Languages Exhaust the Index Hierarchy

simplifies some decision problems [16]. The situation is more complex in the case of infinite
trees: the language of infinite trees labelled {a, b} containing a letter a cannot be recognised
by any unambiguous parity automaton [15, 6]. This example makes the impression that very
few regular languages of infinite trees are in fact unambiguous (i.e. can be recognised by an
unambiguous automaton). However, there is only a couple of distinct examples of ambiguous
regular tree languages [3]. Our understanding of how many (or which) regular tree languages
are unambiguous is far from being complete, in particular it is not known how to decide if
a given regular tree language is unambiguous.

Another way of understanding the power of unambiguous tree languages is aimed at
estimating their descriptive complexity. The complexity can be measured either in terms of
the topological complexity or of the parity index, i.e. the range of priorities needed for an
alternating parity tree automaton to recognise a given language. Initially, it was considered
plausible that all unambiguous tree languages are co-analytic (Π1

1); that is topologically not
more complex than deterministic ones. Hummel in [11] gave an example of an unambiguous
language that is Σ1

1-complete, in particular not Π1
1. Further improvements [8, 12] showed

that unambiguous languages reach high into the second level of the index hierarchy. However,
the question whether this is an upper bound on their index complexity was left open. In this
paper we prove that it is not the case, as expressed by the following theorem.

I Theorem 1. For every i < k there exists an unambiguous tree language L that cannot be
recognised by any alternating parity tree automaton (ATA) that uses priorities {i, . . . , k}. In
other words, L does not belong to the level (i, k) of the index hierarchy.

The canonical examples of languages lying high in the index hierarchy [4, 1] are the
languages Wi,k dating back to [9, 21] (see e.g. the formulae Wn in [1]). Unfortunately, the
languages Wi,k are not unambiguous—one can interpret the choice problem [6] in such
a way that witnessing unambiguously that t ∈W1,2 would indicate an MSO-definable choice
function [10, 5]. Therefore, to prove Theorem 1 we will use the following corollary of [2].

I Corollary 2 ([1, 2]). Let L be a set of trees. If there is a continuous function f s.t. Wi,k =
f−1(L) then L cannot be recognised by an ATA of index (i+1, k+1).

Our aim is to enrich in a continuous way a given tree t with some additional information
denoted f(t), such that an unambiguous automaton reading f(t) can verify if t ∈ Wi,k.
Although this method is based on the topological concept of a continuous mapping f , the
construction provided in this paper is purely combinatorial; the core is a definition of a parity
game CP that compares the difficulty of a given pair of parity games.

2 Basic notions

We use u · w to represent the concatenation of the two sequences. The symbol � stands for
the prefix order. By ω = {0, 1, . . .} we denote the set of natural numbers.

A (ranked) alphabet is a non-empty finite set A of letters where each letter a ∈ A comes
with its own finite arity. A tree over an alphabet A is a partial function t : ω∗ ⇀ A where the
domain dom(t) is non-empty, prefix-closed, and if u ∈ dom(t) is a node with a kary letter
a = t(u) then u · l ∈ dom(t) if and only if l < k, i.e. u (the father) has children u · 0, u · 1,
. . . , u · (k−1). The set of all trees over A is denoted TrA. The element ε ∈ dom(t) is called
the root of t. A branch of a tree t is a sequence α ∈ ωω such that for all n ∈ ω the finite
prefix α�n is a node of t. It is easy to encode ranked alphabets using alphabets of fixed arity
(or even binary), however for the technical simplicity we will work with ranked ones here.
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q

a

q0 q1 q2 · · · qk−1

Figure 1 A representation of a transition (q, a, q0, . . . , qk−1), for a kary letter a.

If u ∈ dom(t) is a node of a tree t then by t�u we denote the tree w 7→ t(u · w) with the
domain {w | u · w ∈ dom(t)}. A tree of the form t�u for u ∈ dom(t) is called a subtree of t
in u. If a ∈ A is a kary letter and t0, . . . , tk−1 are trees then by a

(
t0, . . . , tk−1

)
we denote

the unique tree t with t(ε) = a and t�(i) = ti for i = 0, . . . , k−1.
If X ⊆ dom(t) is a set of nodes of a tree t and u ∈ dom(t) then by X�u we denote the

set {w | u · w ∈ X}, which is a subset of dom(t�u).

Automata. A non-deterministic parity tree automaton is a tuple A = 〈A,Q,∆, I,Ω〉, where
A is a ranked alphabet; Q is a finite set of states; ∆ is a finite set of transitions—tuples of
the form (q, a, q0, . . . , qk−1) where a ∈ A is a kary letter and q, q0, . . . , qk−1 are states; I ⊆ Q
is a set of initial states; and Ω: Q→ ω is a priority mapping.

A run of an automaton A over a tree t over the alphabet A is a function ρ : dom(t)→ Q

such that ρ(ε) ∈ I and for every u ∈ dom(t) with a kary letter a = t(u), the tuple(
ρ(u), a, ρ(u · 0), . . . , ρ(u · (k−1))

)
is a transition in ∆. A run ρ is accepting if for every

branch α of t the lowest priority of the states appearing infinitely many times along α

(i.e. lim infn→∞Ω
(
ρ(α�n)

)
) is even. An automaton A accepts a tree t if there exists an

accepting run of A over t. The language of an automaton A (denoted L(A)) is the set of
trees accepted by A. A set of trees over an alphabet A is called regular if it is recognised
by a non-deterministic parity tree automaton. For a detailed introduction to the theory of
automata over infinite trees, see [18].

An automaton A is unambiguous if for every tree t there exists at most one accepting
run of A over t. An automaton A is deterministic if I = {qI} is a singleton and for every
q ∈ Q and kary letter a ∈ A it has at most one transition of the form (q, a, q0, . . . , qk−1) in ∆.
A language is unambiguous (resp. deterministic) if it can be recognised by an unambiguous
(resp. deterministic) automaton. Clearly each deterministic automaton is unambiguous but
the converse is not true. Due to [6] we know that there are regular tree languages that are
ambiguous (i.e. not unambiguous).

Games. A game with players 1 and 2 is a tuple G = 〈V,E, vI,W 〉 where: V = V1 t V2 is
a set of positions split into the 1-positions V1 and 2-positions V2; E ⊆ V × V is a set of
edges; vI ∈ V is an initial position; and W ⊆ V ω is a winning condition. We will denote
by P the players, i.e. P ∈ {1, 2}, P̄ is the opponent of P . For v ∈ V by v · E we denote
the set of successors {v′ | (v, v′) ∈ E}. We assume that for each v ∈ V the set v · E is
non-empty. A non-empty finite or infinite sequence Π ∈ V ≤ω is a play if Π(0) = vI and for
each 0 < i < |Π| there is an edge

(
Π(i−1),Π(i)

)
. Notice that if 〈V,E〉 is a tree then there is

an equivalence between finite plays and positions v ∈ V . An infinite play Π is winning for 1

if Π ∈W ; otherwise Π is winning for 2.
A non-empty and prefix-closed set of plays Σ with no �-maximal element (i.e. no leaf) is

called a behaviour. We call a behaviour P -full if for every play (v0, . . . , vn) ∈ Σ with vn ∈ VP

and all v′ ∈ v ·E we have (v0, . . . , vn, v
′) ∈ Σ. We call a behaviour P -deterministic if for every

play (v0, . . . , vn) ∈ Σ with vn ∈ VP there is a unique v′ ∈ v ·E such that (v0, . . . , vn, v
′) ∈ Σ.
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A quasi-strategy of a player P is a behaviour that is P̄ -full. A strategy of P is a quasi-stra-
tegy of P that is P -deterministic. A quasi-strategy is positional if the fact whether a play
(v0, . . . , vn, vn+1) belongs to Σ depends only on vn.

A partial strategy of P is a P -deterministic behaviour—it defines the unique choices of P
but may not respond to some choices of P̄ . We say that a play (v0, . . . , vn, vn+1) /∈ Σ is not
reachable by a partial strategy Σ if (v0, . . . , vn) ∈ Σ and vn ∈ VP̄ . If Σ is a (partial) strategy
of P and (v0, . . . , vn, v

′) ∈ Σ with vn ∈ VP then we say that Σ moves to v′ in (v0, . . . , vn).
A strategy Σ of P is winning if every infinite play of Σ (i.e. Π such that ∀n ∈ ω. Π�n ∈ Σ)

is winning for P . A game is (positionally) determined if one of the players has a (positional)
winning strategy. We say that a position v of a game G is winning for P (resp. losing for P )
if P (resp. P̄ ) has a winning strategy in the game G with vI := v.

Topology. In this work we use only basic notions of descriptive set theory and topology,
see [13, 19] for a broader introduction. The space TrA with the product topology is homeo-
morphic to the Cantor space. One can take as the basis of this topology the sets of the form
{t ∈ TrA | t(u1)=a1, t(u2)=a2, . . . , t(un)=an} for finite sequences (u1, a1, u2, a2, . . . , un, an).
The open sets in TrA are obtained as unions of basic open sets. A function f : X → Y is
continuous if the pre-image of each basic open set in Y is open in X.

3 The languages

Let us fix a pair of numbers i < k. Our aim is to encode a general parity game with players
1 and 2 and priorities {i, . . . , k} as a tree over a fixed ranked alphabet A(i,k). That alphabet
consists of: unary symbols [i], [i+1], . . . , [k] indicating priorities of positions; and binary
symbols 〈1〉 and 〈2〉 which leave the choice of the subtree to the respective player.

The game induced by a tree t ∈ TrA(i,k) is denoted G(t). The set of positions of G(t)
is dom(t) and the edge relation contains pairs father—child. The initial position is ε and
a position v ∈ dom(t) is a 1-position iff t(v) = 〈1〉. An infinite play of that game is won by
1 if and only if the minimal priority j that occurs infinitely often during the play is even1.
Since the graph of G(t) is a tree, we identify finite plays in G(t) with positions v ∈ dom(t).
Therefore, (quasi / partial) strategies in G(t) can be seen as specific subsets Σ ⊆ dom(t) and
infinite plays of these strategies as branches of t.

For a player P ∈ {1, 2} the language WP,(i,k) contains a tree t if P has a winning strategy
in G(t). It is easy to see that W1,(i,k) is homeomorphic (i.e. topologically equivalent) to Wi,k

from [21] (the case of P = 2 is dual, we put Wi+1,k+1 then).
As it turns out, the languages WP,(i,k) are not expressive enough to allow enrichment of

a tree t into f(t), see Proposition 22. To enlarge their expressive power we will extend the
alphabet with a unary symbol ∼ that will correspond to a swap of the players in G(t). The
enhanced alphabet will be denoted A∼(i,k). We will say that a tree t over the alphabet A∼(i,k)
is well-formed if there is no branch with infinitely many symbols ∼.

Consider a node u ∈ dom(t) in a well-formed tree t over A∼(i,k). We will say that u is
switched if there is an odd number of nodes w ≺ u such that t(w) = ∼. Otherwise u is kept.
These notions represent the fact that each symbol ∼ swaps the players in G(t).

1 We restrict our attention to the trees in which every second symbol on each branch is a unary symbol
representing a priority (i.e. [j] for j ∈ {i, . . . , k}); every tree can implicitly be transformed into that
format by padding with the maximal priority k (such a padding does not influence the winner of G(t)).
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If a tree t is well-formed then the game G(t) is well-defined in a similar way as above,
a kept position v ∈ dom(t) is a 1-position iff t(v) = 〈1〉; a switched position v ∈ dom(t) is
a 1-position iff t(v) = 〈2〉. The language W∼P,(i,k) contains a well-formed tree t over A∼(i,k)
if P has a winning strategy in G(t). The games G(t) have a parity winning condition and
therefore are determined [9, 14], so we obtain:

I Fact 3. If t ∈ TrA∼(i,k)
is well-formed then t ∈W∼P,(i,k) iff t /∈W∼

P̄ ,(i,k) iff ∼(t) ∈W∼
P̄ ,(i,k).

The additional information added by f will be kept under third children of new ternary
variants of the symbols 〈1〉 and 〈2〉, denoted 〈1+〉 and 〈2+〉. Let the alphabet A+∼

(i,k) be A∼(i,k)
where instead of the symbols 〈1〉 and 〈2〉 we have 〈1+〉 and 〈2+〉 respectively.

Consider a tree r over the extended alphabet A+∼
(i,k). By shave(r) we denote the tree over

the non-extended alphabet A∼(i,k), where instead of each subtree of the form 〈1+〉(tL, tR, t2) one
puts the subtree 〈1〉(tL, tR); the same for 〈2+〉 and 〈2〉. Notice that dom(shave(r)) ⊆ dom(r)
and the labels of shave(r) correspond to the labels of r in the respective nodes (up to the
additional + in r). We will say that a tree r over the alphabet A+∼

(i,k) is well-formed if for
every its subtree r′ = r�u the tree shave(r′) is well-formed in the standard sense. In other
words, r is well-formed if there is no branch of r that contains infinitely many symbols ∼ but
only finitely many directions 2 (the direction 2 corresponds to moving outside shave(r′)).

We are now in position to define the witnesses proving Theorem 1. For that we will define
an unambiguous automaton U recognising certain language of trees over the alphabet A+∼

(i,k).
In this section we will prove that U is unambiguous. In the rest of the article we show that
U (with a restricted set of initial states) recognises a language high in the index hierarchy.

I Definition 4. The set of states of U is {0, . . . , k+2} × {1, 2} × {D, L, R}. Let Ω(j, P, d) = j.
The transitions of U are depicted in Figure 2. The set of initial states of U contains all the
states of the form (0, ?, ?) (recall that as in Figure 2, ? represents all the possible choices).

Intuitively, the first coordinate of a state q of U is its priority; the second coordinate is the
winner for G(shave(r′)) for the current subtree r′; while the third coordinate indicates the
actual strategy if there is ambiguity and D otherwise. The transition over ∼ represents that
∼ swaps the players; the next two transitions correspond to positions that are not controlled
by a (claimed) winner P over a given subtree; and the last two transitions correspond to
a position that is controlled by P . In the lower two transitions the choice of a direction L or
R depends on the declared winner P in the third child of the current node.

Consider a run ρ of U over a tree r, let u ∈ dom(r), and assume that ρ(u) is of the form
(?, P, ?). In that case one can extract from the third coordinates of ρ a strategy Σ of P in
G(shave(r�u)) that will be called the ρ-strategy in u. This strategy is defined inductively,
preserving the invariant that for each w ∈ Σ the node w is kept in shave(r�u) if and only
if ρ(u · w) is of the form (?, P, ?). We start with Σ containing the initial position ε. Now
consider a position w in Σ. If w is controlled by P (i.e. r(u ·w) = 〈P+〉 for w kept and 〈P̄+〉
for w switched) then the strategy Σ moves to the position w · 0 (resp. w · 1) if the state
ρ(u · w) = (?, ?, d) satisfies d = L (resp. d = R). In the positions w ∈ Σ not controlled by P
the strategy Σ has no choice and contains all the children of w in shave(r�u). It is easy to
check that the transitions of U guarantee that the invariant is preserved.

I Lemma 5. Let ρ be a run of U over r. Then ρ is accepting if and only if r is well-formed
and for every u ∈ dom(r) the ρ-strategy in u is winning in G

(
shave(r�u)

)
.

Proof. First observe that U uses states of priority 0 and 1 to deterministically verify that r
is well-formed. Consider a well-formed tree r and a run ρ. On the branches following the
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(?, P, D)

∼

(1, P̄ , ?)

(?, P, D)

[j]

(j+P+1, P, ?)

(?, P, D)

〈P̄+〉

(k+2, P, ?) (k+2, P, ?) (0, ?, ?)

(?, P, L)

〈P+〉

(k+2, P, ?) (2, ?, ?) (0, 1, ?)

(?, P, R)

〈P+〉

(2, ?, ?) (k+2, P, ?) (0, 2, ?)

Figure 2 The transitions of the automaton U , where P ∈ {1, 2} stands for a player; j ∈ {i, . . . , k}
is a priority; and ? represents all the possible choices on a given coordinate.

ρ-strategies, the priorities of ρ correspond to the priorities visited in G
(
shave(r�u)

)
(up to

a shift by 1 or 2 depending on the current second coordinate of ρ). Thus, ρ satisfies the
parity condition on all the branches of r if and only if all the ρ-strategies are winning. J

The following fact follows directly from the above lemma.

I Fact 6. Assume that ρ is an accepting run of U over a tree r, u ∈ dom(r), and ρ(u) is of
the form (?, P, ?). Then P wins G

(
shave(r�u)

)
. In particular, if ρ and ρ′ are two accepting

runs of U over the same tree r then the second coordinates of ρ and ρ′ are equal.

I Lemma 7. If ρ and ρ′ are two runs of U (possibly not accepting) over a tree r and the
second coordinates of ρ and ρ′ are equal then ρ = ρ′.

Proof. The third coordinate of a run in u ∈ dom(r) depends on r(u), the second coordinate
of the run in u, and (if one of the lower two transitions from Figure 2 is used) the second
coordinate of the run in u · 2. Thus, the third coordinates of ρ and ρ′ must agree.

The first coordinates of ρ and ρ′ in the root are 0. Consider a node u and its child
u′ ∈ dom(r). The first coordinate of a run in u′ depends on r(u) and the last two coordinates
of the run in u. Therefore, also the first coordinates of ρ and ρ′ must agree. J

I Definition 8. Take P ∈ {1, 2} and let LP,(i,k) be the language recognised by the auto-
maton U with the set of initial states restricted to the states of the form (0, P, ?).

Fact 6 together with Lemma 7 imply that the languages LP,(i,k) are unambiguous. Thus,
to complete the proof of Theorem 1, one needs to prove that the languages LP,(i,k) climb up
the index hierarchy. This will be done using Corollary 2 in the next section.

4 Construction of f

Fix a pair i < k. In this section we will prove the following proposition.

I Proposition 9. There exists a continuous function f : TrA∼(i,k)
→ TrA+∼

(i,k)
such that:

If t is well-formed then f(t) is also well-formed.
For a well-formed t and a player P we have: t ∈W∼P,(i,k) if and only if f(t) ∈ LP,(i,k).
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Before proving that proposition, notice that a tree over the alphabet A(i,k) can be seen
as a well-formed tree over A∼(i,k) and W∼1,(i,k) ∩ TrA(i,k) = W1,(i,k) which is topologically
equivalent to Wi,k. Therefore, the above proposition implies that f�TrA(i,k) satisfies the
assumptions of Corollary 2. As i < k are arbitrary, Theorem 1 follows.

To properly define f we first need to introduce a notion that allows to compare how
much a player P prefers one tree over another. This is achieved by assigning to each tree its
P -signature and proving that moving to a subtree with an optimal signature guarantees that
the player wins whenever possible. The theory of signatures comes from [17] and results of
Walukiewicz, e.g. [20, 21]. The notion of signatures used here is more demanding than the
classical ones, as we require equalities instead of inequalities in the invariants from Lemma 10.

We say that a number j ∈ ω is P -losing if i ≤ j ≤ k and j is odd (resp. even) if
P = 1 (resp. P = 2). A number j ∈ {i, . . . , k} that is not P -losing is called P -winning.
A P -signature is either ∞ or a tuple of countable ordinals (θi′ , θi′+2, . . . , θk′), indexed by
P -losing numbers—i′ is the minimal and k′ is the maximal P -losing number. P -signatures
that are not ∞ are well-ordered by the lexicographic order ≤lex in which the ordinals with
smaller indices are more important. Let ∞ be the maximal element of ≤lex.

A 1-signature σ1(t) = (42) with i = 0 and k = 2 means that the best what player 1 can
hope for is to visit at most 42 times a [1]-node (possibly interleaved with nodes of priority 2)
before the first [0]-node is visited (if ever). After visiting a [0]-node, the 1-signature of
the subtree may grow, starting again a counter of nodes of priority 1 to be visited. The
1-signature (ω) means that 2 can choose a finite number of [1]-nodes that will be visited;
however the choice needs to be done before the first such node is seen.

The following two lemmas express the crucial properties of the signatures.

I Lemma 10. There exists a unique point-wise minimal pair of assignments t 7→ σP (t) for
P ∈ {1, 2} that assign to each well-formed tree t over A∼(i,k) a P -signature σP (t) such that:
1. σP (t) =∞ if and only if P loses G(t);
2. σP

(
∼(t)

)
= (0, . . . , 0) if P wins G

(
∼(t)

)
(i.e. P̄ wins G(t));

3. σP

(
[j](t)

)
= (θi′ , . . . , θj−1, 0, 0 . . . , 0) if σP (t) = (θi′ , . . . , θk′) and j is P -winning;

4. σP

(
[j](t)

)
= (θi′ , . . . , θj−2, θj+1, 0, . . . , 0) if σP (t) = (θi′ , . . . , θk′) and j is P -losing;

5. σP

(
〈P 〉(tL, tR)

)
= min

{
σP (tL), σP (tR)

}
;

6. σP

(
〈P̄ 〉(tL, tR)

)
= max

{
σP (tL), σP (tR)

}
.

Let us fix the functions σP for P ∈ {1, 2} as above. Consider a well-formed tree t over the
alphabet A∼(i,k). We say that a strategy Σ of a player P in G(t) is optimal (or σ-optimal) if:

In a position u ∈ dom(t) that is kept in t and t�u = 〈P 〉
(
tL, tR

)
the strategy Σ moves to

a subtree of a minimal value of σP ; i.e. Σ can move to u · 0 if σP (tL) ≤lex σP (tR) and to
u · 1 if σP (tL) ≥lex σP (tR). If the values σP (tL) and σP (tR) are equal then Σ can move in
any of the two directions.
In a position u that is switched in t and t�u = 〈P̄ 〉

(
tL, tR

)
the strategy Σ uses the same

rule as above but uses the function σP̄ to compare the P̄ -signatures of the subtrees.
Notice that according to the above definition there might be more than one optimal strategy.

I Lemma 11. If t ∈W∼P,(i,k) and Σ is an optimal strategy of P in G(t) then Σ is winning.

The following lemma claims the combinatorial core of this article: it shows that one can
compare the P -signatures using a continuous reduction to the languages W∼P,(i,k).

I Lemma 12. There exists a continuous function cP :
(
TrA∼(i,k)

)2 → TrA∼(i,k)
such that if tL

and tR are well-formed then so is cP (tL, tR) and additionally

cP (tL, tR) ∈W∼1,(i,k) if and only if σP (tL) ≤lex σP (tR).

ICALP 2018



140:8 Unambiguous Languages Exhaust the Index Hierarchy

The rest of this section demonstrates Proposition 9. Lemma 12 is proved in the next section.
Consider a function f : TrA∼(i,k)

→ TrA+∼
(i,k)

defined recursively as:

f
(
〈P 〉(tL, tR)

)
= 〈P+〉

(
f(tL), f(tR), f

(
cP (tL, tR)

))
for P ∈ {1, 2},

f
(
∼(t)

)
= ∼

(
f(t)

)
,

f
(
[j](t)

)
= [j]

(
f(t)

)
for j ∈ {i, . . . , k}.

Clearly by the definition of f we know that shave
(
f(t)

)
= t. Additionally, f(t) is defined

recursively using cP which is continuous, therefore f is also continuous. As cP maps
well-formed trees to well-formed trees, so does f .

First assume that f(t) ∈ LP,(i,k) as witnessed by an accepting run ρ of U over f(t) with
ρ(ε) = (?, P, ?). Fact 6 says that P wins G

(
shave(f(t))

)
= G(t), so t ∈W∼P,(i,k).

For the converse assume that P0 wins G(t) for a well-formed tree t over A∼(i,k).

I Lemma 13. If t is well-formed then there exists a unique run ρ of U over f(t) such that
for every u ∈ dom

(
f(t)

)
we have

ρ(u) = (?, P, ?) if and only if P wins G
(
shave(f(t)�u)

)
. (1)

Moreover, all the ρ-strategies are winning for the respective players.

Proof. The construction of ρ is inductive from the root preserving (1). The only ambiguity
when choosing transitions of U is when we reach a node w ∈ dom

(
f(t)

)
such that ρ(w) is of

the form (?, P, ?) and f(t)�w = 〈P+〉
(
f(tL), f(tR), f(cP (tL, tR))

)
. We choose either the left or

the right of the two lower transitions of U depending on the winner in G
(
shave(f(t)�w · 2)

)
in such a way to satisfy (1) for u = w · 2. By the symmetry assume that we used the left
transition. This leaves undeclared the second coordinate of ρ(w · 1) (resp. ρ(w · 0) in the case
of the right transition). Again we declare this coordinate accordingly to (1). We need to check
that (1) is also satisfied for u = w · 0 (resp. u = w · 1) i.e. that P wins G

(
shave(f(t)�w · 0)

)
.

To see that, we notice that the following conditions are equivalent (F):
ρ(w) = (?, ?, L) [ by the form of the transitions of U ]
ρ(w · 2) = (?, 1, ?) [ by the definition of ρ ]
1 wins in G

(
shave(f(t)�(w · 2))

)
[ by the form of f(t)�(w · 2) ]

1 wins in G
(
shave(f(cP (tL, tR))

)
[ by the equality shave

(
f(t′)

)
= t′ ]

1 wins in G
(
cP (tL, tR)

)
[ by Lemma 12 ]

σP (tL) ≤lex σP (tR).

Thus, if we choose the lower left transition of U , we know that σP (tL) ≤lex σP (tR). By the
inductive invariant we know that ∞ >lex σP

(
shave(f(t)�w)

)
= σP

(
〈P 〉(tL, tR)

)
. Therefore,

Item 5 of Lemma 10 implies that σP (tL) <lex ∞ so in fact P wins G(tL) = G
(
shave(f(tL))

)
=

G
(
shave(f(t)�w · 0)

)
. Thus, the invariant (1) is also preserved for u = w · 0. This concludes

the inductive definition of ρ. Lemma 7 implies uniqueness.
Take u ∈ dom

(
f(t)

)
with ρ(u) = (?, P, ?). Let Σ be the ρ-strategy in u and r′ = f(t)�u.

Consider a node w ∈ dom
(
shave(r′)

)
such that shave(r′)(w) = 〈P ′〉 with P ′ = P if w is kept

and P ′ = P̄ if w is switched. In both cases f(t)(u ·w) = 〈P ′+〉. By the above equivalence (F)
and the definition of a ρ-strategy, Σ makes a σ-optimal move in w. Therefore, Σ is optimal.
Invariant (1) says that P wins G

(
shave(r′)

)
, so Lemma 11 implies that Σ is winning. J

Fix the run ρ given by the above lemma. Since G(t) = G
(
shave(f(t))

)
, ρ(ε) = (?, P0, ?).

Since all the ρ-strategies are winning, ρ is accepting by Lemma 5 and f(t) ∈ LP,(i,k). This
concludes the proof of Theorem 1 assuming that Lemma 12 holds.
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5 Comparing signatures

We will now prove Lemma 12 by defining, given two trees p and s over A∼(i,k), a game CP (p, s).
To indicate the difference between the games CP and G, we denote the players of CP as ∃∃∃ = 1

and ∀∀∀ = 2. The purpose of the game CP will be to ensure that ∃∃∃ wins CP (p, s) if and only if
σP (p) ≤lex σP (s). The winning condition of the game CP will be a parity condition, however,
the game will allow certain lookahead (see steps (EL) and (AL) in the definition of CP ). Then,
the function cP will just unravel the game CP (p, s) into a tree over the alphabet A∼(i,k).

If i′ and k′ are the minimal and maximal P -losing numbers; j is a P -losing number;
and σ = (θi′ , θi′+2, . . . , θk′) is a P -signature then σ�j is the tuple (θi′ , θi′+2, . . . , θj). For
completeness let ∞�j def= ∞. Clearly σ�k′ = σ. Notice that σ�j is also a P -signature (with
k = j) and moreover if σ ≤lex σ

′ then σ�j ≤lex σ
′�j.

A position of the game CP is a triple
(
p, s, `

)
where p, s ∈ TrA∼(i,k)

and ` is a P -losing
number. As CP (p, s) we denote the game CP with the initial position set to

(
p, s, k′

)
. The

game is designed in such a way to guarantee the following claim.

I Claim 14. A position
(
p, s, `

)
is winning for ∃∃∃ in CP if and only if

σP (p)�` ≤lex σP (s)�`. (2)

A single round of the game CP consists of a sequence of choices done by the players. It is
easy to encode such a sequence using additional intermediate positions of the game. For the
sake of readability, we do not specify these positions explicitly. Instead, a round moves the
game from a position

(
p, s, `

)
into a new position according to the following sequential steps:

(EL) ∃∃∃ can claim that P loses G(s). If she does so, the game ends and ∃∃∃ wins iff s /∈W∼P,(i,k).
(AL) ∀∀∀ can claim that P loses G(p). If he does so, the game ends and ∀∀∀ wins iff p /∈W∼P,(i,k).
(EI) ∃∃∃ can modify ` into another P -losing number `′ < `. In that case the round ends and

the next position is
(
p′, s, `′

)
where p′ = [`′](p).

(AI) ∀∀∀ can modify ` into another P -losing number `′ < `. In that case the round ends and
the next position is

(
p, s, `′

)
.

(
� � �

) If p = [`](p′) and s = [`](s′) then the round ends and the next position is (p′, s′, `).
(↓↓↓p) If p is not of the form [`](p′′) then a step called Step∃(p) is done, resulting in an imme-

diate win of ∃∃∃ or a new tree p′. The round ends and the next position is (p′, s, `).
(↓↓↓s) Otherwise p is of the form [`](p′) and a step called Step∀(s) is done, resulting in

an immediate win of ∀∀∀ or a new tree s′. The round ends and the next position is (p, s′, `).
The result p′ of Step∃(p) depends on the form of p as follows:

If p = 〈P 〉(pL, pR) then ∃∃∃ chooses to set p′ = pL or p′ = pR.
If p = 〈P̄ 〉(pL, pR) then ∀∀∀ chooses to set p′ = pL or p′ = pR.
If p = [j](p′) and j > ` then p′ is defined and that round of CP has priority j+1−P .
Otherwise ∃∃∃ immediately wins.

Dually, the result s′ of Step∀(s) depends on the form of s as follows:
If s = 〈P 〉(sL, sR) then ∀∀∀ chooses to set s′ = sL or s′ = sR.
If s = 〈P̄ 〉(sL, sR) then ∃∃∃ chooses to set s′ = sL or s′ = sR.
If s = [j](s′) with j > ` then s′ is defined and that round of CP has priority j−2+P .
Otherwise ∀∀∀ immediately wins.

The rounds of CP which priority is not declared above have priority k. An infinite play Π
of CP is won by ∃∃∃ if the least priority seen infinitely often during Π is even.
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I Lemma 15. The game CP (p, s) can be unravelled as a tree cP (p, s) over the alphabet A∼(i,k)
in such a way that for well-formed trees p, s, the tree cP (p, s) is well-formed and ∃∃∃ wins
CP (p, s) if and only if 1 wins G

(
cP (p, s)

)
. Moreover, the function cP is continuous.

Proof. Notice that in both cases when a round of CP has an explicitly declared priority, that
priority is j or j−1 with i ≤ ` < j ≤ k. Therefore, the priorities of CP are within {i, . . . , k}.

The condition s /∈W∼1,(i,k) from (EL) boils down to checking if 1 wins G
(
∼(s)

)
. Similarly,

s /∈W∼2,(i,k) if and only if 1 wins G
(
s
)
. The same for the condition p ∈W∼P,(i,k) from (AL).

Continuity and well-formedness follow directly from the definition. J

Notice that the rules of the game CP do not allow to move from a position with a tree
(either p or s) of the form ∼(t) to a position with the respective tree being t. Therefore, we
never need to swap the considered player P into P̄ .

Claim 14 together with Lemma 15 prove Lemma 12. Thus, the rest of this section is
devoted to a proof of Claim 14. Since the winning condition of CP is a parity condition, that
game is positionally determined. Thus, to prove Claim 14 it is enough to show that none of
the following two cases is possible for a position (p, s, `) of CP :

(2) is true and ∀∀∀ has a positional winning strategy Σ∀∀∀ from (p, s, `),
(2) is false and ∃∃∃ has a positional winning strategy Σ∃∃∃ from (p, s, `).

In both cases we will confront the assumed strategy with a specially designed positional
quasi-strategy of the opponent (ΣF

∃∃∃ and ΣF

∀∀∀ respectively). The quasi-strategy ΣF

∃∃∃ will be
defined only in positions that satisfy (2) and the quasi-strategy ΣF

∀∀∀ in the remaining positions.
The quasi-strategy ΣF

∃∃∃ (resp. ΣF

∀∀∀ ) of a player ∃∃∃ (resp. ∀∀∀) in a round starting in a posi-
tion

(
p, s, `

)
performs the following choices in sub-rounds (EL) to (AI):

In (EL) ΣF

∃∃∃ claims that P loses G(s) if and only if he really does.
In (AL) ΣF

∀∀∀ claims that P loses G(p) if and only if he really does.
In (EI) ΣF

∃∃∃ modifies ` into `′ if `′ < ` is the minimal P -losing number such that
σP (p)�`′ <lex σP (s)�`′. If there is no such number, ΣF

∃∃∃ does not declare `′.
In (AI) ΣF

∀∀∀ modifies ` into `′ if `′ < ` is the minimal P -losing number such that
σP (p)�`′ >lex σP (s)�`′. If there is no such number, ΣF

∀∀∀ does not declare `′.

Moreover, in Step∃(p) when p = 〈P 〉(pL, pR) the quasi-strategy ΣF

∃∃∃ chooses to set p′ = pL

if and only if σP (pL) ≤lex σP (pR). Dually, in Step∀(s) when s = 〈P 〉(sL, sR) the quasi-stra-
tegy ΣF

∀∀∀ chooses to set s′ = sL if and only if σP (sL) ≤lex σP (sR).
Now it remains to define the choices of the quasi-strategies in the steps Step∀(s) and

Step∃(p) when the given tree is of the form 〈P̄ 〉(tL, tR). This is the place where the choices
of ΣF

∃∃∃ and ΣF

∀∀∀ are not unique and that is why these are quasi-strategies.

I Definition 16. The quasi-strategies ΣF

∃∃∃ and ΣF

∀∀∀ need to satisfy the following preservation
guarantees. First, in Step∀(s) when s = 〈P̄ 〉(sL, sR) then ΣF

∃∃∃ can set s′ as any of the two sL,
sR that satisfies σP (s′)�` ≥lex σP (p)�`. Second, in Step∃(p) when p = 〈P̄ 〉(pL, pR) then ΣF

∀∀∀
can set p′ as any of the two pL, pR that satisfies σP (p′)�` >lex σP (s)�`.

I Fact 17. In both cases the preservation guarantee leaves at least one possible choice.

I Lemma 18. Consider a position
(
p, s, `

)
. If it satisfies (2) and ∃∃∃ follows her quasi-stra-

tegy ΣF

∃∃∃ then either she immediately wins or the next position also satisfies (2).
Dually, if the position violates (2) and ∀∀∀ follows his quasi-strategy ΣF

∀∀∀ then either he
immediately wins or the next position also violates (2).

Notice that each play of CP can modify the value of ` only bounded number of times.
Moreover, because of the conditions in steps (

� � �

), (↓↓↓p), and (↓↓↓s) we obtain the following fact.
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I Fact 19. If Π is an infinite play of CP then exactly one of the following three cases holds:
Π makes infinitely many (

� � �

) steps,
from some point on Π makes only (↓↓↓p) steps,
from some point on Π makes only (↓↓↓s) steps.

Observe that each step of CP of the form Step∃(p) or Step∀(s) (if it doesn’t mean
an immediate win) simulates in fact a round of the game G(p) and G(s) respectively. Moreover,
the quasi-strategies of the players ∃∃∃ and ∀∀∀ simulate optimal strategies of P in these rounds
respectively. Thus, P must win these plays, as expressed by the following lemma.

I Lemma 20. Consider an infinite play consistent with the quasi-strategy of one of the
players (ΣF

∃∃∃ or ΣF

∀∀∀ ). Then the play only finitely many times makes the (

� � �

) step.
Moreover, if the play follows ΣF

∃∃∃ and from some point on makes only (↓↓↓p) steps then it is
winning for ∃∃∃. Similarly, if the play follows ΣF

∀∀∀ and from some point on makes only (↓↓↓s)
steps then it is winning for ∀∀∀.

Proof. First take an infinite play Π of the quasi-strategy ΣF

∃∃∃ of ∃∃∃ starting from a position
(p0, s0, `0). The subtrees of the tree p0 seen during Π follow a (possibly finite) play α of an
optimal strategy of P in G(p0). Since Π is infinite, ∃∃∃ does not declare that P loses G(s0).
Therefore, σP (s0) <lex ∞ and by (2) we know that also σP (p0) <lex ∞ which implies that
p0 ∈W∼P,(i,k). By Lemma 11 the play α in G(p0) follows a winning strategy of P .

We will show that the step (
� � �

) occurs only finitely many times in Π. Assume contrarily
and let ` be the minimal number ` that occurs in the play Π. Using the above assumptions,
we know that ` is the minimal priority that is seen in the tree p0 infinitely many times on α.
Therefore, the simulated play α in G(p0) is infinite and losing for P , which is a contradiction.

Therefore, by Fact 19 the play Π either makes from some point on only (↓↓↓p) steps, or
from some point on only (↓↓↓s) steps. In the first case it follows the play α of G(p0) that is
winning for P . By the choice of priorities in the step Step∃(p) we know that ∃∃∃ wins Π.

The case of the quasi-strategy ΣF

∀∀∀ of ∀∀∀ is entirely dual: we use the assumption that (2) is
violated to know that σP (s) <lex ∞ so s0 ∈W∼P,(i,k). Moreover, the choice of priorities in
the step Step∀(s) implies that if Π makes Step∀(s) infinitely many times then ∀∀∀ wins Π. J

Now we move to the proof of the first case we need to exclude, i.e. that a position
(
p, s, `

)
of CP satisfies (2) but ∀∀∀ has a positional winning strategy Σ∀∀∀ from that position. We will
prove that such a case is not possible. The second case is dual and the proof is analogous.

By Lemma 18, the positional quasi-strategy ΣF

∃∃∃ always stays within positions satisfying
the invariant (2). Moreover, the quasi-strategy never reaches a position that is immediately
losing for ∃∃∃. Similarly, Σ∀∀∀ never reaches a position that is immediately losing for ∀∀∀. Thus,
all the plays consistent with both ΣF

∃∃∃ and Σ∀∀∀ must be infinite.
Notice that the values of ` are non-increasing during the plays of CP and therefore, there

exists a position that belongs to both ΣF

∃∃∃ and Σ∀∀∀ such that the value ` stays constant during
all the plays from that position. Without loss of generality take this as the starting position.

We can now proceed inductively in the tree obtained by unravelling the intersection of
ΣF

∃∃∃ and Σ∀∀∀: whenever the currently considered subtree contains anywhere a (

� � �

) step, we
change the initial position to the result of that step. By Lemma 20 no play consistent with
ΣF

∃∃∃ takes the (

� � �

) step infinitely many times. Therefore, our inductive procedure has to stop
at some point with no (

� � �

) steps in the current subtree. Without loss of generality we can
assume that the initial position (p0, s0, `0) is the last position from the procedure. We know
that the plays consistent with both ΣF

∃∃∃ and Σ∀∀∀ never take the (

� � �

) step nor modify ` = `0.

ICALP 2018



140:12 Unambiguous Languages Exhaust the Index Hierarchy

r1(t) = [1] [0] t1 r2(t) = 〈1〉
[1] [1] [0] t1

[0] t

Figure 3 The pair of trees being the result of the reduction r(t) from Proposition 22.

The structure of CP guarantees that since the step (

� � �

) is not allowed, each play consistent
with both ΣF

∃∃∃ and Σ∀∀∀ takes only (↓↓↓p) steps or takes only (↓↓↓s) steps. Lemma 20 implies that
in the former case the play would be winning for ∃∃∃, contradicting the assumption that Σ∀∀∀ is
winning. Thus, all the considered plays take only (↓↓↓s) steps. In particular p = p0 is constant.

The intersection of Σ∀∀∀ and ΣF

∃∃∃ induces a partial strategy ΣP of P in G(s0)—ΣP is partial
because it does not contain positions that cannot be reached by following ΣF

∃∃∃ because of the
preservation guarantees, see Definition 16. The subtrees s′ of s0 in such unreachable positions
satisfy σP (s′)�`0 <lex σP (p0)�`0 by the definition of ΣF

∃∃∃ . In the positions on which ΣP is
defined it never visits a priority j with j ≤ `0 nor a node labelled ∼ because such a move is
immediately losing for ∀∀∀ in Step∀(s). Because of the choice of the priorities in Step∀(s) and
since Σ∀∀∀ is winning, ΣP is winning for P on infinite plays.

Notice that since we take only (↓↓↓s) steps, p0 must be of the form [`0](p′0). Therefore,
σP (p0)�`0 = (θi′ , . . . , θ`0 + 1) for (θi′ , . . . , θ`0) def= σP (p′0)�`0. It means that whenever
the partial strategy ΣP cannot reach a position with a subtree s′, we know that in fact
σP (s′)�`0 ≤lex (θi′ , . . . , θ`0). The following lemma says that the existence of such a partial
strategy ΣP witnesses the inequality σP (s0)�`0 ≤lex (θi′ , . . . , θ`0). By the definition of the
ordinals θj we know that (θi′ , . . . , θ`0) <lex σP (p0)�`0, what contradicts (2) for (p0, s0, `0).

I Lemma 21. Let P ∈ {1, 2}, t ∈W∼P,(i,k), i′ be the minimal P -losing number, and ` be some
P -losing number. Assume that (θi′ , θi′+2, . . . , θ`) is a tuple of ordinals and ΣP is a partial
strategy of the player P in G(t) such that:

ΣP never reaches a node u with t(u) = [j] with j ≤ ` nor a node u with t(u) = ∼,
infinite plays of ΣP are winning for P ,
if a position u ∈ dom(t) is not reachable by Σ then σP

(
t�u

)
�` ≤lex (θi′ , . . . , θ`).

Under all these assumptions σP (t)�` ≤lex (θi′ , . . . , θ`).

This finishes the proof of Claim 14. We conclude this section with a simple argument
showing that a similar reduction c does not exist when we disallow the swapping symbol ∼,
as expressed by the following proposition.

I Proposition 22. There is no continuous function c′ :
(
TrA(0,k)

)2 → TrA(0,k) such that

c′(tL, tR) ∈W1,(0,k) if and only if σ1(tL) ≤lex σ1(tR).

Proof. Assume that such a function c′ exists. Fix a tree t1 ∈W1,(0,k) and consider a function
r : TrA(0,k) →

(
TrA(0,k)

)2 defined as r(t) =
(
r1(t), r2(t)

)
for the pair of trees from Figure 3.

Clearly r is continuous. Let t ∈ TrA(0,k) and r(t) = (tL, tR). Notice that σ1(tL) = (1, 0, . . .).
The value σ1(tR) is either (0, 0, . . .) if t ∈W1,(0,k) or (2, 0, . . .) otherwise. Therefore, c′

(
r(t)

)
∈

W1,(0,k) iff σ1(tL) ≤lex σ1(tR) iff t /∈W1,(0,k) iff t ∈W2,(0,k). Thus, c′ ◦ r : TrA(0,k) → TrA(0,k)

is a continuous reduction of W2,(0,k) to W1,(0,k). This is a contradiction with [2, Lemma 1]
(the assumption of contractivity is redundant there by Lemma 2 from the same paper). J
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6 Conclusions

The main result of this work is the construction of the languages LP,(i,k) that solve the
question of index bounds for unambiguous languages. Although the construction is not
direct and relies heavily on an involved theory of signatures, these complications seem to be
unavoidable when one wants to recognise languages like Wi,k in an unambiguous way.

The definition of signatures given in the paper seems to be the canonical one, as witnessed
by the point-wise minimality from Lemma 10. The previous ways of using signatures were
mainly focused on their monotonicity and well-foundedness, thus it was enough to assume
inequalities in the invariants of Lemma 10. Here, we are interested in comparing their actual
values, therefore we insist on preserving these values via equalities.
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1 Introduction

From the perspective of programming, a family of Boolean random processes is implemented
by a module that supports the following interface:

module type ProcessFactory = sig type process
val new : H → process
val get : process → bool end

where H is some type of hyperparameters. Thus one can initialize a new process, and then
get a sequence of Booleans from that process. The type of processes is kept abstract so that
any internal state or representation is hidden.

One can analyze a module extensionally in terms of the properties of its interactions with
a client program. In this paper, we perform this analysis for the Beta-Bernoulli process,
an important building block in Bayesian models. We completely axiomatize its equational
properties, using the formal framework of algebraic effects [18].

The following modules are our leading examples. (Here flip (r) tosses a coin with bias r.)

module Polya = (struct
type process = (int ∗ int ) ref
let new(i, j ) = ref ( i , j )
let get p = let ( i , j ) = !p in
if flip ( i/( i+j)) then p := (i+1,j); true
else p := ( i , j+1); false end : ProcessFactory)

module BetaBern = (struct
type process = real
let new(i, j ) = sample_beta(i,j)
let get(r) = flip (r)

end : ProcessFactory)

The left-hand module, Polya, is an implementation of Pólya’s urn. An urn in this sense is
a hidden state which contains i-many balls marked true and j-many balls marked false . To
sample, we draw a ball from the urn at random; before we tell what we drew, we put back
the ball we drew as well as an identical copy of it. The contents of the urn changes over time.

0

0.5

1

1.5

2

0 0.25 0.5 0.75 1

beta(3,2)

beta(2,2)

The right-hand module, BetaBern, is based on the beta distri-
bution. This is the probability measure on the unit interval [0, 1]
that measures the bias of a random source (such as a potentially
unfair coin) from which true has been observed (i− 1) times and
false has been observed (j − 1) times, as illustrated on the right.
For instance beta(2, 2) describes the situation where we only know
that neither true nor false are impossible; while in beta(3, 2) we
are still ignorant but we believe that true is more likely.

It turns out that these two modules have the same observable behaviour. This essentially
follows from de Finetti’s theorem (e.g. [24]), but rephrased in programming terms. The
equivalence makes essential use of type abstraction: if we could look into the urn, or ask
precise questions about the real number, the modules would be distinguishable.

The module Polya has a straightforward operational semantics (although we don’t form-
alize that here). By contrast, BetaBern has a straightforward denotational semantics [14].
In Section 2, we provide an axiomatization of equality, which is sound by both accounts.
We show completeness of our axiomatization with respect to the denotational semantics of
BetaBern (§3, Thm. 9). We use this to show that the axiomatization is in fact syntactically
complete (§4, Cor. 13), which means it is complete with respect to any semantics.

For the remainder of this section, we give a general introduction to our axioms.
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Commutativity and discardability. Commutativity and discardability are important pro-
gram equations [5] that are closely related, we argue, to exchangeability in statistics.

Commutativity is the requirement that when x is not free in u and y is not free in t,(
let x = t in let y = u in v

)
=

(
let y = u in let x = t in v

)
.

Discardability is the requirement that when x is not free in u,
(
let x = t in u

)
=
(
u
)
.

Together, these properties say that data flow, rather than the control flow, is what
matters. For example, in a standard programming language, the purely functional total
expressions are commutative and discardable. By contrast, expressions that write to memory
are typically not commutative or discardable (a simple example is t=u=a++, v=(x,y)). A
simple example of a commutative and discardable operation is a coin toss: we can reorder
the outcomes of tossing a single coin, and we can drop some of the results (unconditionally)
without changing the overall statistics.

We contend that commutativity and discardability of program expressions is very close
to the basic notion of exchangeability of infinite sequences, which is central to Bayesian
statistics. Informally, an infinite random process, such as an infinite random sequence, is
said to be exchangeable if one can reorder and discard draws without changing the overall
statistics. (For more details on exchangeable random processes in probabilistic programming
languages, see [1, 28], and the references therein.) A client program for the BetaBern module
is clearly exchangeable in this sense: this is roughly Fubini’s theorem. For the Polya module,
an elementary calculation is needed: it is not trivial because memory is involved.

Conjugacy. Besides exchangeability, the following conjugacy equation is crucial:(
let p=M.new(i,j) in (M.get(p), p)

)
=
(
if flip ( i/( i+j)) then (true , M.new(i+1,j)) else ( false , M.new(i,j+1))

)
.

This is essentially the operational semantics of the Polya module, and from the perspective
of BetaBern it is the well-known conjugate-prior relationship between the Beta and Bernoulli
distributions.

Finite probability. In addition to exchangeability and conjugacy, we include the standard
equations of finite, discrete, rational probability theory. To introduce these, suppose that we
have a module

Bernoulli : sig val get : int ∗ int → bool end

which is built so that Bernoulli .get(i,j) samples with single replacement from an urn with
i-many balls marked true and j-many balls marked false . (In contrast to Pólya’s urn, the
urn in this simple scheme does not change over time.) So Bernoulli .get(i,j) = flip ( i

i+j ).
This satisfies certain laws, first noticed long ago by Stone [29], and recalled in §2.1.

In summary, our main contribution is that these axioms — exchangeability, conjugacy,
and finite probability — entirely determine the equational theory of the Beta-Bernoulli
process, in the following sense:

Model completeness: Every equation that holds in the measure theoretic interpretation is
derivable from our axioms (Thm. 9);
Syntactical completeness: Every equation that is not derivable from our axioms is
inconsistent with finite discrete probability (Cor. 13).

ICALP 2018
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We argue that these results open up a new method for analyzing Bayesian models, based on
algebraic effects (see §5 and [28]1).

2 An algebraic presentation of the Beta-Bernoulli process

In this section, we present syntactic rules for well-formed client programs of the Beta-Bernoulli
module, and axioms for deriving equations on those programs.

2.1 An algebraic presentation of finite probability
Recall the module Bernoulli from the introduction which provides a method of sampling with
odds (i : j). We will axiomatize its equational properties. Algebraic effects provide a way to
axiomatize the specific features of this module while putting aside the general properties
of programming languages, such as β/η laws. In this situation the basic idea is that each
module induces a binary operation i?j on programs by

t i?j u
def= if Bernoulli .get(i,j) then t else u.

Conversely, given a family of binary operations i?j , we can recover Bernoulli .get(i,j) =
true i?j false . So to give an equational presentation of the Bernoulli module we give a
equational presentation of the binary operations i?j . A full programming language will have
other constructs and βη-laws but it is routine to combine these with an algebraic theory of
effects (e.g. [2, 8, 9, 21]).

I Definition 1. The theory of rational convexity is the first-order algebraic theory with
binary operations i?j for all i, j ∈ N such that i+ j > 0, subject to the axiom schemes

w, x, y, z `(w i?j x) i+j?k+l(y k?l z) = (w i?k y) i+k?j+l(x j?l z)
x, y `x i?j y = y j?i x x, y ` x i?0 y = x x ` x i?j x = x

Commutativity (w i?j x) k?l(y i?j z) = (w k?l y) i?j(x k?l z) of operations k?l and i?j is a deriv-
able equation, and so is scaling x ki?kj y = x i?j y for k > 0. Commutativity and discardability
(x i?j x = x) in this algebraic sense (cf. [15, 22]) precisely correspond to the program equations
in Section 1 (see also [9]). The theory first appeared in [29].

2.2 A parameterized algebraic signature for Beta-Bernoulli
In the theory of convex sets, the parameters i, j for get range over the integers. These integers
are not a first class concept in our equational presentation: we did not axiomatize integer
arithmetic. However, in the Beta-Bernoulli process, or any module M for the ProcessFactory
interface, it is helpful to understand the parameters to get as abstract, and new as generating
such parameters. To interpret this, we treat these parameters to get as first class. There are
still hyperparameters to new, which we do not treat as first class here. (In a more complex
hierarchical system with hyperpriors, we might treat them as first class.)

As before, to avoid studying an entire programming language, we look at the constructions

νi,jp.t
def= let p=M.new(i,j) in t t ?p u

def= if M.get(p) then t else u

1 This paper formalizes and proves a conjecture from [28], which is an unpublished abstract.
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There is nothing lost by doing this, because we can recover M.new(i,j) = νi,jp. p and
M.get(p) = true ?p false . In the terminology of [18], these would be called the ‘generic
effects’ of the algebraic operations νi,j and ?p. Note that ?p is a parameterized binary
operation. Formally, our syntax now has two kinds of variables: x, y as before, ranging over
continuations, and now also p, q ranging over parameters. We notate this by having contexts
with two zones, and write x : n if x expects n parameters.

I Definition 2. The term formation rules for the theory of Beta-Bernoulli are:

−
(p1 . . . pm ∈ Γ)

Γ |∆, x : m,∆′ ` x(p1 . . . pm)
Γ, p |∆ ` t

(i, j > 0)
Γ |∆ ` νi,jp.t

Γ |∆ ` t Γ |∆ ` u
(p ∈ Γ)

Γ |∆ ` t ?p u
Γ |∆ ` t Γ |∆ ` u

(i+ j > 0)
Γ |∆ ` t i?j u

where Γ is a parameter context of the form Γ = (p1, . . . , p`) and ∆ is a context of the
form ∆ = (x1 : m1, . . . , xk : mk). Where x : 0, we often write x for x(). For the sake of a
well-defined notion of dimension in 3.2.4, we disallow the formation of νi,0 and ν0,i.

We work up-to α-conversion and substitution of terms for variables must avoid unin-
tended capture of free parameters. For example, substituting x ?p y for w in ν1,1p.w yields
ν1,1q.(x ?p y), while substituting x ?p y for z(p) in ν1,1p.z(p) yields ν1,1p.(x ?p y).

2.3 Axioms for Beta-Bernoulli
The axioms for the Beta-Bernoulli theory comprise the axioms for rational convexity (Def. 1)
together with the following axiom schemes.

Commutativity. All the operations commute with each other:

p, q |w, x, y, z : 0 ` (w ?q x) ?p(y ?q z) = (w ?p y) ?q(x ?p z) (C1)
− |x : 2 ` νi,jp.(νk,lq.x(p, q)) = νk,lq.(νi,jp.x(p, q)) (C2)

q |x, y : 1 ` νi,jp.(x(p) ?q y(p)) = (νi,jp.x(p)) ?q(νi,jp.y(p)) (C3)
− |x, y : 1 ` νi,jp.(x(p) k?l y(p)) = (νi,jp.x(p)) k?l(νi,jp.y(p)) (C4)

p |w, x, y, z : 0 ` (w i?j x) ?p(y i?j z) = (w ?p y) i?j(x ?p z) (C5)

Discardability. All operations are idempotent:

− |x : 0 ` (νi,jp.x) = x p |x : 0 ` x ?p x = x (D1–2)

Conjugacy.

− |x, y : 1 `νi,jp.(x(p) ?p y(p)) = (νi+1,jp.x(p)) i?j(νi,j+1p.y(p)) (Conj)

A theory of equality for terms in context is built, as usual, by closing the axioms under
substitution, congruence, reflexivity, symmetry and transitivity. It immediately follows from
conjugacy and discardability that x i?j y is definable as νi,jp.(x ?p y) for i, j > 0.

As an example, consider t(r) = (r ?p x) ?p(y ?p r) that represents tossing a coin with bias
p twice, continuing with x or y if the results are different, or with r otherwise. One can show
that x 1?1 y is a unique fixed point of t, i.e. x 1?1 y = t(x 1?1 y); see the full paper [27] for detail.
This is exactly von Neumann’s trick [31] to simulate a fair coin toss with a biased one.

(For more details on the general axiomatic framework with parameters, see [25, 26], where
it is applied to predicate logic, π-calculus, and other effects.)
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141:6 The Beta-Bernoulli process and algebraic effects

3 A complete interpretation in measure theory

In this section we give an interpretation of terms using measures and integration operators, the
standard formalism for probability theory (e.g. [19, 24]), and we show that this interpretation
is complete (Thm. 9). Even if the reader is not interested in measure theory, they may still
find value in the syntactical results of §4 which we prove using this completeness result.

By the Riesz–Markov–Kakutani representation theorem, there are two equivalent ways to
view probabilistic programs: as probability kernels and as linear functionals. Both are useful.

Programs as probability kernels.

Forgetting about abstract types for a moment, terms in the BetaBern module are first-order
probabilistic programs. So we have a standard denotational semantics due to [14] where
terms are interpreted as probability kernels and ν as integration. Let I = [0, 1] denote the
unit interval. We write βi,j for the Beta(i, j)-distribution on I, which is given by the density
function p 7→ 1

B(i,j)p
i−1(1− p)j−1, where B(i, j) = (i−1)!(j−1)!

(i+j−1)! is a normalizing constant.
For contexts of the form Γ = (p1, . . . , p`) and ∆ = (x1 : m1, . . . , xk : mk), we let

J∆K def=
∑k
i=1 I

mi consist of a copy of Imi for every variable xi : mi. This has a σ-algebra
Σ(J∆K) generated by the Borel sets. We interpret terms Γ |∆ ` t as probability kernels
JtK : I` × Σ(J∆K)→ [0, 1] inductively, for ~p ∈ I` and U ∈ Σ(J∆K) :

Jxi(pj1 , . . . , pjm)K(~p, U) = 1 if (i, pj1 . . . pjm) ∈ U , 0 otherwise

Ju i?j vK(~p, U) = 1
i+j

(
i(JuK(~p, U)) + j(JvK(~p, U))

)
Ju ?pj vK(~p, U) = pj(JuK(~p, U)) + (1− pj)(JvK(~p, U))

Jνi,jq.tK(~p, U) =
∫ 1

0
JtK((~p, q), U)βi,j(dq)

[
=
∫ 1

0
JtK((~p, q), U) 1

B(i,j)q
i−1(1− q)j−1 dq

]
I Proposition 3. The interpretation is sound: if Γ |∆ ` t = u is derivable then JtK = JuK as
probability kernels JΓK× Σ(J∆K)→ [0, 1].

Proof notes. One must check that the axioms are sound under the interpretation. Each of the
axioms are elementary facts about probability. For instance, commutativity (C2) amounts
to Fubini’s theorem, and the conjugacy axiom (Conj) is the well-known conjugate-prior
relationship of Beta- and Bernoulli distributions. J

Interpretation as functionals

We write RIm for the vector space of continuous functions Im → R, endowed with the
supremum norm. Given a probability kernel κ : I` × Σ

(∑k
j=1 I

mj
)
→ [0, 1] and ~p ∈ I`, we

define a linear map φ~p : RIm1 × · · · ×RImk → R, by considering κ as an integration operator:

φ~p(f1 . . . fk) =
∫
fj(r1 . . . rmj ) κ(~p, d(j, r1 . . . rmj ))

Here φ~p are unital (φ(~1) = 1) and positive (~f ≥ 0 =⇒ φ(~f) ≥ 0).
When κ = JtK, this φ~p(~f) is moreover continuous in ~p, and hence a unital positive linear

map φ : RIm1×· · ·×RImk → RI` [6, Thm. 5.1]. It is informative to spell out the interpretation
of terms p1, . . . , p` |x1 : m1, . . . , xk : mk ` t as maps JtK : RIm1 × . . .× RImk → RI` since it
fits the algebraic notation: we may think of the variables x : m as ranging over functions RIm .
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I Proposition 4. The functional interpretation is inductively given by

Jxi(pj1 , . . . , pjm)K(~f)(~p) = fi(pj1 , . . . , pjm)

Ju i?j vK(~f)(~p) = 1
i+j

(
i(JuK(~f)(~p)) + j(JvK(~f)(~p))

)
Ju ?pj vK(~f)(~p) = pj(JuK(~f)(~p)) + (1− pj)(JvK(~f)(~p))

Jνi,jq.tK(~f)(~p) =
∫ 1

0
JtK(~f)(~p, q)βi,j(dq)

For example, J− |x, y : 0 ` x 1?1 yK : R × R → R is the function (x, y) 7→ 1
2 (x + y), and

J− |x : 1 ` ν1,1p.x(p)K : RI → R is the integration functional, f 7→
∫ 1

0 f(p) dp.
(We use the same brackets J−K for both the measure-theoretic and the functional inter-

pretations; the intended semantics will be clear from context.)

3.1 Technical background on Bernstein polynomials
I Definition 5 (Bernstein polynomials). For i = 0, . . . , k, we define the i-th basis Bernstein
polynomial bi,k of degree k as bi,k(p) =

(
k
i

)
pk−i(1 − p)i. For a multi-index I = (i1, . . . , i`)

with 0 ≤ ij ≤ k, we let bI,k(~p) = bi1,k(p1) · · · bi`,k(p`). A Bernstein polynomial is a linear
combination of Bernstein basis polynomials.

The family {bi,k : i = 0, . . . , k} is indeed a basis of the polynomials of maximum degree k and
also a partition of unity, i.e.

∑k
i=0 bi,k = 1. Every Bernstein basis polynomial of degree k can

be expressed as a nonnegative rational linear combination of degree k + 1 basis polynomials.
The density function of the distribution βi,j on [0, 1] for i, j > 0 is proportional to

a Bernstein basis polynomial of degree i + j − 2. We can conclude that the measures
{βi,j : i, j > 0, i + j = n} are linearly independent for every n. In higher dimensions,
the polynomials {bI,k} are linearly independent for every k. Moreover, products of beta
distributions βir,jr are linearly independent as long as ir + jr = n holds for some common n.
This will be a key idea for normalizing Beta-Bernoulli terms.

3.2 Normal forms and completeness
For the completeness proof of the measure-theoretic model, we proceed as follows: To decide
Γ |∆ ` t = u for two terms t, u, we transform them into a common normal form whose
interpretations can be given explicitly. We then use a series of linear independence results to
show that if the interpretations agree, the normal forms are already syntactically equal.
Normalization happens in three stages.

If we think of a term as a syntax tree of binary choices and ν-binders, we use the conjugacy
axiom to push all occurrences of ν towards the leaves of the tree.
We use commutativity and discardability to stratify the use of free parameters ?p.
The leaves of the tree will now consist of chains of ν-binders, variables and ratio choices
i?j . Those can be collected into a canonical form.

We will describe these normalization stages in reverse order because of their increasing
complexity.

3.2.1 Stone’s normal forms for rational convex sets
Normal forms for the theory of rational convex sets have been described by Stone [29]. We
note that if − |x1 . . . xk : 0 ` t is a term in the theory of rational convex sets (Def. 1) then
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141:8 The Beta-Bernoulli process and algebraic effects

JtK : Rk → R is a unital positive linear map that takes rationals to rationals. From the
perspective of measures, this corresponds to a categorical distribution with k categories.

I Proposition 6 (Stone). The interpretation exhibits a bijective correspondence between
terms − |x1 . . . xk : 0 ` t built from i?j, modulo equations, and unital positive linear maps
Rk → R that take rationals to rationals.

For instance, the map φ(x, y, z) = 1
10 (2x+ 3y + 5z) is unital positive linear, and arises from

the term t
def= x 2?8(y 3?5 z). This is the only term that gives rise to the φ, modulo equations.

In brief, one can recover t from φ by looking at φ(1, 0, 0) = 2
10 , then φ(0, 1, 0) = 3

10 , then

φ(0, 0, 1) = 5
10 . We will write

(
? x1 . . . xk
w1 . . . wk

)
for the term corresponding to the linear

map (x1 . . . xk) 7→ 1∑k

i=1
wk

(w1x1 + · · ·+ wkxk). These are normal forms for the theory of

rational convex sets.

3.2.2 Characterization and completeness for ν-free terms
This section concerns the normalization of terms using free parameters but no ν. Consider
a single parameter p. If we think of a term t as a syntactic tree, commutativity and
discardability can be used to move all occurrences of ?p to the root of the tree, making it
a tree diagram of some depth k. Let us label the 2k leaves with ta1···ak , ai ∈ {0, 1}. As a
programming language expression, this corresponds to successive bindings

let a1=M.get(p) in ... let ak=M.get(p) in ta1···ak

Permutations σ ∈ Sk of the k first levels in the tree act on tree diagrams by permuting the
leaves via ta1···ak 7→ taσ(1)···aσ(k) . By commutativity (C1), those permuted diagrams are still
equal to t, so we can replace t by the average over all permuted diagrams, since rational choice
is discardable. The average commutes down to the leaves (C5), so we obtain a tree diagram
with leaves ma1···ak = 1

k!
∑
σ taσ(1)···aσ(k) , where the average is to be read as a rational choice

with all weights 1. This new tree diagram is now by construction invariant under permutation
of levels in the tree, in particular ma1···ak only depends on the sum a1 + · · ·+ ak. That is to
say, the counts are a sufficient statistic.

This leads to the following normalization procedure for terms p1 . . . p` |x1 . . . xn : 0 ` t:
Write Cpjk (t0, . . . , tk) for the permutation invariant tree diagram of pj-choices and depth k
with leaves ta1···ak = ta1+···+ak . Then we can rewrite t as Cp1

k (t0, . . . , tk) where each ti is
p1-free. Recursively normalize each ti in the same way, collecting the next parameter. By
discardability, we can pick the height of all these tree diagrams to be a single constant k, such
that the resulting term is a nested structure of tree-diagrams Cpjk . We will use multi-indices
I = (i1, . . . , i`) to write the whole stratified term as Ck((tI)) where each leaf tI only contains
rational choices. The interpretation of such a term can be given explicitly by Bernstein
polynomials

JCk((tI))K(~x)(~p) =
∑
I bI,k(~p) · JtIK(~x)(~p).

For example, normalizing (v ?p x)?p(y ?p v) gives (v ?p(x 1?1 y))?p((x 1?1 y) ?p v) = C2(v, x1?1y, v).
From this we obtain the following completeness result:

I Proposition 7. There is a bijective correspondence between equivalence classes of terms
p1 . . . p` |x1 . . . xn : 0 ` t and linear unital maps φ : Rn → RI` such that for every standard
basis vector ej of Rn, φ(ej) is a Bernstein polynomial with nonnegative rational coefficients.
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Proof. We can assume all basis polynomials to have the same degree k. If φ(ej) =
∑
I wIjbI,k,

then the unitality condition φ(1, . . . , 1) = 1 means
∑
I

(∑
j wIj

)
bI,k = 1, and hence by

linear independence and partition of unity,
∑
j wIj = 1 for every I. If we thus let tI be

the rational convex combination of the xj with weights wIj , then JCk((tI))K = φ. Again by
linear independence, the weights wIJ are uniquely defined by φ. J

Geometric characterizations for the assumption of this theorem exist in [20, 3]. For example,
a univariate polynomial is a Bernstein polynomial with nonnegative coefficients if and only if
it is positive on (0, 1). More care is required in the multivariate case.

3.2.3 Normalization of Beta-Bernoulli
For arbitrary terms p1 . . . p` |x1 : m1, . . . , xs : ms ` t, we employ the following normalization
procedure. Using conjugacy and the commutativity axioms (C2–C4), we can push all uses
of ν towards the leaves of the tree, until we end up with a tree of ratios and free para-
meter choices only. Next, by conjugacy and discardability, we expand every instance of
νi,j until they satisfy i + j = n for some fixed, sufficiently large n. We then stratify the
free parameters into permutation invariant tree diagrams. That is, we find a number k
such that t can be written as Ck((tI)) where the leaves tI consist of ν and rational choices only.

In each tI , commuting all the choices up to the root, we are left with a convex combination
of chains of ν’s of the form νi1,j1p`+1. . . . νid,jdp`+d.xj(pτ(1), . . . , pτ(m)) for some τ : m→ `+d.
By discardability, we can assume that there are no unused bound parameters. We consider
two chains equal if they are α-convertible into each other. Now if c1, . . . , cm is a list of
the distinct chains that occur in any of the leaves, we can give the leaves tI the uniform

shape tI =
(
? c1 . . . cm
wI1 . . . wIm

)
for appropriate weights wIj ∈ N. We will show that this

representation is a unique normal form.

3.2.4 Proof of completeness
Consider a chain c = νi1,j1p`+1. . . . νid,jdp`+d. x(pτ(1), . . . , pτ(m)). Its measure-theoretic
interpretation JcK(p1, . . . , p`) is a pushforward of a product of d beta distributions, supported
on a hyperplane segment that is parameterized by the map hτ : Id → Im, hτ (p`+1, . . . , p`+d) =
(pτ(1), . . . , pτ(m)). Note that the position of the hyperplane may vary with the free parameters.
To capture this geometric information, we call τ the subspace type of the chain and d its
dimension. Because of α-invariance of chains, we identify subspace types that differ by a
permutation of {`+ 1, . . . , `+ d}.

p2 (3, 2)

p1 (3, 1)

p2

(2, 3)

p1

(1, 3)

(3, 3)

(1, 2) (2, 2)

(2, 1)

(1, 1)

(3, 4)

For example, each chain with two free parameters
p1, p2 and a variable x : 2 gives rise to a parameter-
ized distribution on the unit square. On the right, we
illustrate the ten possible supports that such distri-
butions can have, as subspaces of the square. In the
graphic we write (i, j) for νp3.νp4.x(pi, pj), moment-
arily omitting the subscripts of ν because they do not
affect the support. For instance, the upper horizontal
line corresponds to νp3.x(p3, p2); the bottom-right dot
corresponds to x(p2, p1); the diagonal corresponds to
νp3.x(p3, p3); and the entire square corresponds to
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νp3.νp4.x(p3, p4). All told there are four subspaces of dimension d = 0, five with d = 1, and
one with d = 2. Notice that the subspaces are all distinct as long as p1 6= p2.

I Proposition 8. If c1, . . . , cs are distinct chains with i1 + j1 = · · · = id + jd = n, then the
family of functionals {JciK(−)(~p) : RIm1 × · · · × RIms → R}i=1,...,s is linearly independent
whenever all parameters pi are distinct.

Proof. Fix ~p. Chains on different variables are clearly independent, so we can restrict
ourselves to a single variable x : m. We reason measure-theoretically. The interpretation of
a chain ci of subspace type τi is a pushforward measure hi∗(µi) where µi is a product of d
beta distributions, and hi is the affine inclusion map hi(p`+1, . . . , p`+d) = (pτi(1), . . . , pτi(m)).
Let

∑
aihi∗(µi) = 0 as a signed measure. We show by induction over the dimension of the

chains that all ai vanish. Assume that ai = 0 whenever the dimension of ci is less than d,
and consider an arbitrary subspace τj of dimension d. We can define a signed Borel measure
on Id by restriction

ρ(A) def=
∑
i

aihi∗(µi)(hj(A)) =
∑
i

aiµi(h−1
i (hj(A)))

as hj sends Borel sets to Borel sets (e.g. [10, §15A]). We claim that ρ(A) =
∑

ci has type τj
aiµi(A),

as the contributions of chains ci of different type vanish.
If ci has dimension < d, ai = 0 by the inductive hypothesis.
If ci has dimension > d, we note that h−1

i (hj(A)) only has at most dimension d. It is
therefore a nullset for µi.
If ci has dimension d but a different type, and all p1, . . . , p` are assumed distinct, then
the hyperplanes given by hi and hj are not identical. Therefore their intersection is at
most (d− 1)-dimensional and h−1

i (hj(A)) is a nullset for µi.

By assumption, ρ has to be the zero measure, but the µi are linearly independent.
Therefore ai = 0 for all ci with subspace type τj . Repeat this for every subspace type of
dimension d to conclude overall linear independence. J

I Theorem 9 (Completeness). If Γ |∆ ` t, t′ and JtK = Jt′K, then Γ |∆ ` t = t′.

Proof. From the normalization procedure, we find numbers k, n, a list of distinct chains
c1, . . . , cs with i + j = n and weights (wIj), (w′Ij) such that Γ |∆ ` t = Ck((tI)) and

Γ |∆ ` t′ = Ck((t′I)) where tI =
(
? c1 . . . cs
wI1 . . . wIs

)
and t′I =

(
? c1 . . . cs
w′I1 . . . w′Is

)
. The

interpretations of these normal forms are given explicitly by

JtK(~f)(~p) =
∑
j

wIj
wI
· bI,k(~p) · JcjK(~f)(~p) where wI =

∑
j

wIj

and analogously for t′. Then JtK = Jt′K implies that for all ~f

∑
j

(∑
I

(
wIj
wI
−
w′Ij
w′I

)
bI,k(~p)

)
JcjK(~f)(~p) = 0.

By Proposition 8, this implies
∑
I

(
wIj
wI
− w′

Ij

w′
I

)
bI,k(~p) = 0 for every j and whenever the

parameters pi are distinct. By continuity of the left hand side, the expression in fact
has to vanish for all ~p. By linear independence of the Bernstein polynomials, we obtain
wIj/wI = w′Ij/w

′
I for all I, j. Thus, all weights agree up to rescaling and we can conclude

Γ |∆ ` t = t′. J
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4 Extensionality and syntactical completeness

In this section we use the model completeness of the previous section to establish some
syntactical results about the theory of Beta-Bernoulli. Although the model is helpful in
informing the proofs, the statements of the results in this section are purely syntactical.

The ultimate result of this section is equational syntactical completeness (Cor. 13), which
says that there can be no further equations in the theory without it becoming inconsistent
with discrete probability. In other words, assuming that the axioms we have included are
appropriate, they must be sufficient, regardless of any discussion about semantic models or
intended meaning. This kind of result is sometimes called ‘Post completeness’ after Post
proved a similar result for propositional logic.

The key steps towards this result are two extensionality results. These are related to
the programming language idea of ‘contextual equivalence’. Recall that in a programming
language we often define a basic notion of equivalence on closed ground terms: these are
programs with no free variables that return (say) booleans. This notion is often defined
by some operational consideration using some notions of observation. From this we define
contextual equivalence by saying that t ≈ u if, for all closed ground contexts C, C[t] = C[u].

Contextual equivalence has a canonical appearance, but an axiomatic theory of equality,
such as the one in this paper, is more compositional and easier to work with. Our notion
of equality induces in particular a basic notion of equivalence on closed ground terms. Our
extensionality results say that, assuming one is content with this basic notion of equivalence,
the equations that we axiomatize coincide with contextual equivalence.

4.1 Extensionality
I Proposition 10 (Extensionality for closed terms). Suppose Γ, q |∆ ` t and Γ, q |∆ ` u. If
Γ |∆ ` νi,jq.t = νi,jq.u for all i, j, then also Γ |∆ ` t = u.

Proof. We show the contrapositive. By the model completeness theorem (Thm. 9), we can
reason in the model rather than syntactically. So we consider t and u such that JtK 6= JuK as
functions RIm1 × RImk → RIl+1 , and show that there are i, j such that Jνi,jq.tK 6= Jνi,jq.uK.
By assumption there are ~f and ~p, q such that JtK(~f)(~p, q) 6= JuK(~f)(~p, q) as real numbers.

Now we use the following general reasoning: For any real q ∈ I we can pick monotone
sequences i1 < · · · < in < . . . and j1 < · · · < jn < . . . of natural numbers so that in

in+jn → q

as n → ∞. Moreover, for any continuous h : I → R, the integral
∫
h dβin,jn converges

to h(q) as n → ∞: one way to see this is to notice that the variance of βin,jn vanishes
as n → ∞, so by Chebyshev’s inequality, limn βin,jn is a Dirac distribution at q. Thus,∫ (

JtK(~f)(~p, r) − JuK(~f)(~p, r)
)
βin,jn(dr) is non-zero as n → ∞. By continuity, for some n,∫

JtK(~f)(~p, r) βin,jn(dr) 6=
∫

JuK(~f)(~p, r) βin,jn(dr). So, Jνin,jnq.tK 6= Jνin,jnq.uK. J

I Proposition 11 (Extensionality for ground terms). In brief: If t[v1...vk/x1...xk ] = u[v1...vk/x1...xk ]
for all suitable ground v1 . . . vk, then t = u.

In detail: Consider t and u with − |x1 : m1 . . . xk : mk ` t, u. Suppose that whenever v1 . . . vk
are terms with (p1 . . . pm1 | y, z : 0 ` v1), . . . , (p1 . . . pmk | y, z : 0 ` vk), then we have − | y, z :
0 ` t[v1...vk/x1...xk ] = u[v1...vk/x1...xk ]. Then we also have − |x1 : m1 . . . xk : mk ` t = u.

Proof. Again, we show the contrapositive. Let ∆ = (x1 : m1 . . . xk : mk). Suppose we
have t and u such that ¬(− |∆ ` t = u). Then by the model completeness theorem
(Thm. 9), we have JtK 6= JuK as linear functions RIm1 × · · · × RImk → R. Since the
functions are linear, there is an index i ≤ k and a continuous function f : Imi → R with
JtK(0 . . . 0, f, 0 . . . 0) 6= JuK(0 . . . 0, f, 0 . . . 0). By the Stone-Weierstrass theorem, every such f
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is a limit of polynomials, and so since JtK and JuK are continuous and linear, there has to be
a Bernstein basis polynomial bI,k : Rmi → R that already distinguishes them. This function
is definable, i.e. there is a a term p1, . . . , pmi | y, z : 0 ` w with JwK(1, 0) = bI,k. Define terms
vj = w for i = j and vj = z for i 6= j. Then

Jt[v1...vk/x1...xk ]K(1, 0) = JtK(0, . . ., bI,k, . . ., 0) 6= JuK(0, . . ., bI,k, . . ., 0) = Ju[v1...vk/x1...xk ]K(1, 0).

The required ¬
(
− | y, z : 0 ` t[v1...vk/x1...xk ] = u[v1...vk/x1...xk ]

)
follows from the above dis-

equality because of the model soundness property (Props. 3 and 4). J

From the programming perspective, a term − | y, z : 0 ` t0 corresponds to a closed program of
type bool, for it has two possible continuations, y and z, depending on whether the outcome
is true or false . From this perspective, Proposition 11 says that for closed t, u, if C[t] = C[u]
for all boolean contexts C, then t = u.

4.2 Relative syntactical completeness
I Proposition 12 (Neumann, [17]). If t, u are terms in the theory of rational convexity
(Def. 1), then either t = u is derivable or it implies x i?j y = x i′?j′ y for all nonzero i, i′, j, j′.

I Corollary 13. The theory of Beta-Bernoulli is syntactically complete relative to the theory
of rational convexity, in the following sense. For all terms t and u, either t = u is derivable,
or it implies x i?j y = x i′?j′ y for all nonzero i, i′, j, j′.

This is proved by combining Propositions 10, 11 and 12. As an example for extensionality and
completeness, consider the equation ν1,1p.x(p, p) = ν1,1p.(ν1,1q.x(p, q)). It is not derivable, as
can be witnessed by the substitution x(p, q) = (y ?q z) ?p z. Normalizing yields y 1?2 z = y 1?3 z
which is incompatible with discrete probability (see the full paper [27]). In programming
syntax, the candidate equation is written

LHS = let p = M.new(1,1) in (p,p) RHS = (M.new(1,1) , M.new(1,1))

and the distinguishing context is C[−] = let (p,q)=(−) in if M.get(p) then M.get(q) else false .
That is to say, the closed ground programs C[LHS] and C[RHS] necessarily have different
observable statistics: this follows from the axioms.

4.3 Remark about stateful implementations
In the introduction we recalled the idea of using Pólya’s urn to implement a Beta-Bernoulli
process using local (hidden) state.

Our equational presentation gives a recipe for understanding the correctness of the
stateful implementation. First, one would give an operational semantics, and then a basic
notion of observational equivalence on closed ground terms in terms of the finite probabilities
associated with reaching certain ground values. From this, an operational notion of contextual
equivalence can be defined (e.g. [4, §6], [23, 32]). Then, one would show that the axioms of
our theory hold up-to contextual equivalence. Finally one can deduce from the syntactical
completeness result that the equations satisfied by this stateful implementation must be
exactly the equations satisfied by the semantic model.

In fact, in this argument, it is not necessary to check that axioms (C1) and (D2) hold in
the operationally defined contextual equivalence, because the axiomatized equality on closed
ground terms is independent of these axioms. To see this, notice that our normalization
procedure (§3.2.3) doesn’t use (C1) or (D2) when the terms are closed and ground, since
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then we can take n = k = 0. This is helpful because the remaining axioms are fairly
straightforward, e.g. (Conj) is the essence of the urn scheme and (D1) is garbage collection.

5 Conclusion

Exchangeable random processes are central to many Bayesian models. The general message
of this paper is that the analysis of exchangeable random processes, based on basic concepts
from programming language theory, depends on three crucial ingredients: commutativity,
discardability, and abstract types. We have illustrated this message by showing that just
adding the conjugacy law to these ingredients leads to a complete equational theory for the
Beta-Bernoulli process (Thm. 9). Moreover, we have shown that this equational theory has
a canonical syntactic and axiomatic status, regardless of the measure theoretic foundation
(Cor. 13). Our results in this paper open up the following avenues of research.
Study of nonparametric Bayesian models: We contend that abstract types, commutativity

and discardability are fundamental tools for studying nonparametric Bayesian mod-
els, especially hierarchical ones. For example, the Chinese Restaurant Franchise [30]
can be implemented as a module with three abstract types, f (franchise), r (restaur-
ant), t (table), and functions newFranchise:()→ f, newRestaurant:f→ r, getTable: r→ t,
sameDish:t∗t→ bool. Its various exchangeability properties correspond to commutativ-
ity/discardability in the presence of type abstraction. (For other examples, see [28].)

First steps in synthetic probability theory: As is well known, the theory of rational convex
sets corresponds to the monad D of rational discrete probability distributions. Commut-
ativity of the theory amounts to commutativity of the monad D [15, 12].
As any parameterized algebraic theory, the theory of Beta-Bernoulli (§2) can be understood
as a monad P on the functor category [FinSet,Set], with the property that to give
a natural transformation FinSet(`,−) → P (

∐k
j=1 FinSet(mk,−)) is to give a term

(p1 . . . p` |x1 : m1 . . . xk : mk ` t), and monadic bind is substitution ([25, Cor. 1], [26,
§VIIA]). This can be thought of as an intuitionistic set theory with an interesting notion
of probability. As such this is a ‘commutative effectus’ [7], a synthetic probability theory
(see also [13]). Like D, the global elements 1→ P (2) are the rationals in [0, 1] (by Prop. 7)
but unlike D, the global elements 1→ P (P (2)) include the beta distribution.

Practical ideas for nonparametric Bayesian models in probabilistic programming:
A more practical motivation for our work is to inform the design of module systems
for probabilistic programming languages. For example, Anglican, Church, Hansei and
Venture already support nonparametric Bayesian primitives [11, 33, 16]. We contend that
abstract types are a crucial concept from the perspective of exchangeability.
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Abstract
A uniformization of a binary relation is a function that is contained in the relation and has the
same domain as the relation. The synthesis problem asks for effective uniformization for classes
of relations and functions that can be implemented in a specific way.

We consider the synthesis problem for automatic relations over finite words (also called regular
or synchronized rational relations) by functions implemented by specific classes of sequential
transducers.

It is known that the problem “Given an automatic relation, does it have a uniformization
by a subsequential transducer?” is decidable in the two variants where the uniformization can
either be implemented by an arbitrary subsequential transducer or it has to be implemented by
a synchronous transducer. We introduce a new variant of this problem in which the allowed
input/output behavior of the subsequential transducer is specified by a set of synchronizations
and prove decidability for a specific class of synchronizations.
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1 Introduction

A uniformization of a binary relation is a function that selects for each element in the domain
of the relation a unique image that is in relation with this element. Of interest to us in
this paper are uniformization problems in the setting where the relations and functions on
words are defined by finite automata. Relations on words defined by finite automata extend
languages defined by finite automata. Unlike for words, different finite automaton models for
relations lead to different classes of relations.

Relations defined by asynchronous finite automata are referred to as rational relations.
An asynchronous finite automaton is a nondeterministic finite automaton with two tapes
whose reading heads can move at different speeds. An equivalent computation model are
asynchronous finite transducers (see, e.g., [1]), that is, nondeterministic finite automata
whose transitions are labeled by pairs of words.
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A well known subclass of rational relations are synchronized rational relations (see [8]),
which are defined by synchronous finite automata, that is, finite automata with two tapes
whose reading heads move at the same speed. Equivalently, we speak of definability by
synchronous finite transducers. The class of synchronized rational relations is also called
automatic or regular, here, we use the term automatic.

One uniformization problem asks for proving that each relation in a given class has a
certain kind of uniformization. For example, each rational relation can be uniformized by
an unambiguous rational function (see [13]). Here, we are interested in the decision version
of the problem: Given a relation from some class, does it have a uniformization in some
other class? For the class of uniformizations we consider sequential transducers. A sequential
transducer reads the input word in a deterministic manner and produces a unique output
word for each input word.

The sequential uniformization problem relates to the synthesis problem, which asks,
given a specification that relates possible inputs to allowed outputs, whether there is a
program implementing the specification, and if so, construct one. This setting originates from
Church’s synthesis problem [4], where logical specifications over infinite words are considered.
Büchi and Landweber [2] showed that for specifications in monadic second order logic, that
is, specifications that can be translated into synchronous finite automata, it is decidable
whether it can be realized by a synchronous sequential transducer (see, e.g., [14] for a modern
presentation of this result). Later, decidability has been extended to asynchronous sequential
transducers [10, 9].

Going from the setting of infinite words to finite words uniformization by subsequential
1 transducers is considered. The problem whether a relation given by a synchronous finite
automaton can be realized by a synchronous subsequential transducer is decidable; this
result can be obtained by adapting the proof from the infinite setting. Decidability has been
extended to subsequential transducers [3]. Furthermore, for classes of asynchronous finite
automata decidability results for synthesis of subsequential transducers have been obtained
in [7].

A semi-algorithm in this spirit was introduced by [11], the algorithm is tasked to synthesize
a subsequential transducer that selects the length lexicographical minimal output word for
each input word from a given rational relation.

The decision problems that have been studied so far either ask for uniformization by
a synchronous subsequential or by an arbitrary subsequential transducer. Our aim is to
study the decision problem: Given a rational relation, does it have a uniformization by a
subsequential transducer in which the allowed input/output behavior is specified by a given
language of synchronizations? The idea is to represent a pair of words by a single word where
each position is annotated over {1, 2} indicating whether it came from the input or output
component. The annotated string provides a synchronization of the pair. It is known that
the class of rational relations is synchronized by regular languages [12]. More recently, main
subclasses of rational relations have been characterized by their synchronizations [6].

We show decidability for a given automatic relation and a given set of synchronizations
that synchronizes an automatic relation. Thus our decidability result generalizes the previ-
ously known decidability result for synthesis of synchronous subsequential transducers from
automatic relations.

1 A subsequential transducer can make a final output depending on the last state reached in a run whereas
a sequential transducer can only produce output on its transitions.
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The paper is structured as follows. First, in Sec. 2, we fix our notations and recap
characterizations of synchronization languages established in [6]. In Sec. 3, we introduce
uniformization problems with respect to synchronization languages and compare our setting
with known results. In Sec. 4, we prove decidability of the question whether an automatic
relation has a uniformization by a subsequential transducer in which the input/output
behavior is specified by a set of synchronizations that synchronizes an automatic relation.

A full version of this paper can be found online.

2 Synchronizations of relations

Let N denote the set of all non-negative integers {0, 1, . . . }, and for every k ∈ N, let k denote
the set {1, . . . , k}. Given a finite set A, let |A| denote its cardinality and 2A its powerset.

Languages and relations of finite words. An alphabet Σ is a finite set of letters, a finite
word is a finite sequence over Σ. The set of all finite words is denoted by Σ∗ and the empty
word by ε. The length of a word w ∈ Σ∗ is denoted by |w|, the number of occurrences of a
letter a ∈ Σ in w by #a(w). Given w ∈ Σ∗, w[i] stands for the ith letter of w, and w[i, j] for
the subword w[i] . . . w[j].

A language L over Σ is a subset of Σ∗, and Pref (L) is the set {u ∈ Σ∗ | ∃v : uv ∈ L} of
its prefixes. The prefix relation is denoted by v. A relation R over Σ is a subset of Σ∗ × Σ∗.
The domain of a relation R is the set dom(R) = {u | (u, v) ∈ R}, the image of a relation
R is the set img(R) = {v | (u, v) ∈ R}. For u ∈ Σ∗, let R(u) = {v | (u, v) ∈ R} and write
R(u) = v, if R(u) is a singleton.

A regular expression r over Σ has the form ∅, ε, σ ∈ Σ, r1 · r2, r1 + r2, or r∗1 for regular
expressions r1, r2. The term r+ is short for r · r∗. The concatenation operator · is often
omitted. The language associated to r is defined as usual, denoted L(r), or conveniently, r.

I Definition 1 (synchronization, L-controlled [6]). For c ∈ {i, o}, referring to input and
output, respectively, we define two morphisms πc : (2 × Σ) → Σ ∪ {ε} by πi((i, a)) = a if
i = 1, otherwise πi((i, a)) = ε, and likewise for πo with i = 2. These morphisms are lifted to
words over (2× Σ).

A word w ∈ (2×Σ)∗ is a synchronization of a uniquely determined pair (w1, w2) of words
over Σ, where w1 = πi(w) and w2 = πo(w). We write JwK to denote (w1, w2). Naturally, a
set S ⊆ (2× Σ)∗ of synchronizations defines the relation JSK = {JwK | w ∈ S}.

A word w = (i1, a1) . . . (in, an) ∈ (2 × Σ)∗ is the convolution u ⊗ v of two words
u = i1 . . . in ∈ 2∗ and v = a1 . . . an ∈ Σ∗. Given a language L ⊆ 2∗, we say w is L-controlled
if u ∈ L. A language S ⊆ (2× Σ)∗ is L-controlled if all its words are.

A language L ⊆ 2∗ is called a synchronization language. For a regular language L ⊆ 2∗,
Rel(L) = {JSK | S is a regular L-controlled language} is the set of relations that can be
given by L-controlled synchronizations. Let C be a class of relations, we say L synchronizes
C if Rel(L) ⊆ C.

I Definition 2 (lag, shift, shiftlag [6]). Given a word w ∈ 2∗, a position i ≤ |w|, and γ ∈ N.
We say i is γ-lagged if |#1(w[1, i])−#2(w[1, i])| = γ, and likewise, we define >γ-lagged and
<γ-lagged. A shift of w is a position i ∈ {1, . . . , |w| − 1} such that w[i] 6= w[i+ 1]. Two shifts
i < j are consecutive if there is no shift l such that i < l < j. Let shift(w) be the number
of shifts in w, let lag(w) be the maximum lag of a position in w, and let shiftlag(w) be the
maximum n ∈ N such that w contains n consecutive shifts which are >n-lagged.

We lift these notions to languages by taking the supremum in N ∪ {∞}, e.g., shift(L) =
sup{shift(w) | w ∈ L}, and likewise for lag(L) and shiftlag(L).

ICALP 2018
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The following characterizations for well known subclasses of rational relations were shown
in [6]. Recall, rational relations are definable by asynchronous finite automata, automatic
relations by synchronous finite automata, and recognizable relations are definable as finite
unions of products of regular languages. We omit a formal definition of these models since it
is not relevant to this paper.

I Theorem 3 ([6]). Let L ⊆ 2∗ be a regular language. Then:
1. L synchronizes recognizable relations iff shift(L) <∞,
2. L synchronizes automatic relations iff shiftlag(L) <∞,
3. L synchronizes rational relations.

For ease of presentation, let Σio, Σi, and Σo be short for 2× Σ, {1} × Σ, and {2} × Σ,
respectively. If convenient, we use distinct symbols for input and output, instead of symbols
annotated with 1 or 2.

For the results shown in this paper, it is useful to lift some notions introduced in [6] from
words and languages over 2 to words and languages over Σio.

I Definition 4. We lift the notions of lag, shift, and shiftlag from words and languages over
2 to words and languages over Σio in the natural way.

Furthermore, given a language T ⊆ Σ∗
io
, we say a word w ∈ Σ∗

io
is T -controlled if w ∈ T .

A language S ⊆ Σ∗
io

is T -controlled if all its words are, namely, if S ⊆ T .

Automata on finite words. We fix our notations concerning finite automata on finite words.
A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, q0,∆, F ), where Q is a
finite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, ∆ ⊆ Q× Σ×Q is the
transition relation, and F ⊆ Q is the set of final states. A run ρ of A on w = a1 . . . an ∈ Σ∗
is a sequence of states p0p1 . . . pn such that (pi, ai+1, pi+1) ∈ ∆ for all i ∈ {0, . . . , n − 1}.
Shorthand, we write A : p0

w−→ pn. A run is accepting if it starts in q0 and ends in a state
from F . The language recognized by A, written L(A), is the set of words w ∈ Σ∗ that admit
an accepting run of A on w. For q ∈ Q, let Aq denote the NFA obtained from A by setting its
initial state to q. The class of languages recognized by NFAs is the class of regular languages.
An NFA is deterministic (a DFA) if for each state q ∈ Q and a ∈ Σ there is at most one
outgoing transition. In this case, it is more convenient to express ∆ as a (partial) function
δ : Q× Σ→ Q. Furthermore, let δ∗ denote the usual extension of δ from letters to words.

We introduce some notions only applicable if an NFA recognizes a set of synchronizations.
Given a regular S ⊆ Σ∗

io
, let A = (Q,Σio, q0,∆, F ) be an NFA that recognizes S. We

define Qi = {p ∈ Q | ∃a ∈ Σ, q ∈ Q : (p, (1, a), q) ∈ ∆} and Qo = {p ∈ Q | ∃a ∈
Σ, q ∈ Q : (p, (2, a), q) ∈ ∆} as the sets of states that have outgoing transitions from
which input and output can be consumed, respectively. If (Qi,Qo) is a partition of Q, we
write Q = Qi ∪· Qo. We call A sequential if A is deterministic, and Q = Qi ∪· Qo, and
each q ∈ Qo has at most one outgoing transition. For short, we refer to a sequential
DFA as sDFA. Finally, we define the input automaton AD of A as (Q,Σ, q0,∆′, F ), where
∆′ = {(p, a, q) | A : p w−→ q and πi(w) = a ∈ Σ}. A comparison to standard transducer
models is given in the next section.

3 Uniformization problems

A uniformization of a relation R ⊆ Σ∗ × Σ∗ is a complete function fR : dom(R)→ Σ∗ with
(u, fR(u)) ∈ R for all u ∈ dom(R). If such a function is given as a relation Rf , we write
Rf ⊆u R to indicate that Rf is a uniformization of R.
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Figure 1 Cf. Ex.6; S = L(A) and U = L(U), we have JUK ⊆u JSK.

I Definition 5 (Resynchronized uniformization problem). The resynchronized uniformization
problem asks, given a regular source language S ⊆ Σ∗

io
and a regular target language T ⊆ Σ∗

io
,

whether there exists a regular language U ⊆ T recognized by a sequential DFA such that
JUK ⊆u JSK.

I Example 6. Let Σi = {a, b, c} and Σo = {d, e}, let S ⊆ Σ∗
io

be given by A depicted in
Fig. 1. The recognized relation is JSK = {(aibaj , d(d+ e)k) | i, j, k ≥ 0} ∪ {(aicaj , e(d+ e)k) |
i, j, k ≥ 0}. Furthermore, let T = Σ∗

i
(ΣiΣo)+. A T -controlled uniformization U is given by

the sequential DFA U depicted in Fig. 1. The recognized relation is JUK = {(aibaj , ddj) |
i, j, k ≥ 0} ∪ {(aicaj , edj) | i, j ≥ 0}.

Comparing our definition of sequential DFAs with standard transducer models we notice
that sequential transducers directly correspond to sequential DFAs. See, e.g., [1] for an
introduction to transducers. Our model can be modified to correspond to subsequential
transducers (which can make a final output after the word has ended) by slightly modifying
the representation of the relation by adding a dedicated endmarker in the usual way.

In the remainder it is implicitly assumed that every given source and target language
is represented with endmarkers, thus our stated results correspond to uniformization by
subsequential transducers.

Our main result is the decidability of the resynchronized uniformization problem for a
given automatic relation and a given set of synchronizations controlled by a language that
synchronizes automatic relations. In Sec. 4 we see that our decidability result is obtained by
a reduction to the following simpler uniformization problem.

I Definition 7 (Subset uniformization problem). The subset uniformization problem asks,
given a regular language S ⊆ Σ∗

io
, whether there exists a regular language U ⊆ S recognized

by a sequential DFA such that JUK ⊆u JSK.

The notion of subset uniformization directly corresponds to the notion of sequential I-
uniformization introduced in [7]. It was shown that deciding the sequential I-uniformization
problem reduces to deciding which player has a winning strategy in a safety game between
In and Out. Hence, we directly obtain the following result.

I Theorem 8 ([7]). The subset uniformization problem is decidable.

Now that we have formulated our uniformization problems, we link these to known
uniformization problems. Asking whether a relation has a Σ∗

io
-controlled subsequential

uniformization is equivalent to asking whether it has a uniformization by an arbitrary
subsequential transducer. Asking whether a relation has a (ΣiΣo)∗(Σ∗i + Σ∗

o
)- resp. Σ∗

i
Σ∗
o
-

controlled subsequential uniformization is equivalent to asking whether it has a uniformization
by a synchronous subsequential transducer resp. by a transducer that reads the complete
input before producing output.
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Table 1 Overview over decidability results. The columns list the type of relation to be uniformized.
The rows list the type of synchronization used as uniformization parameter; the upper three rows list
fixed languages of synchronizations, the lower three rows list parameter classes, where ‘rational’ means
the given set of allowed synchronizations is controlled by an arbitrary synchronization language,
‘automatic’ (resp. ‘recognizable’) means the given set of allowed synchronizations is controlled by a
synchronization language that synchronizes automatic (resp. recognizable) relations.

sync.
relation rational deterministic

rational
finite-valued automatic recog-

nizable
Σ∗
io

undec. [3] dec. [7] dec. [7] dec. [3] dec.
(ΣiΣo)∗(Σ∗i + Σ∗

o
) undec. [3] ? ? dec. [2] dec.

Σ∗
i
Σ∗
o

? ? ? dec. [3] dec.
rational undec. ? ? ? dec.
automatic undec. ? ? dec. dec.
recognizable ? ? ? dec. dec.

Table 1 provides an overview over known and new decidability results of the resynchronized
uniformization problem for different types of relations and synchronization parameters. Our
main result is the decidability for a given automatic relation and a given set of allowed
synchronizations that is controlled by a synchronization language that synchronizes automatic
relations. The decidability results in the rightmost column can be shown by a simple reduction
to the subset uniformization problem which is presented in the full version of the paper. The
other entries in the lower three rows are simple consequences of the results presented in the
upper three rows resp. our main result.

Regarding the table entry where the relation is automatic and a desired uniformizer is
(ΣiΣo)∗(Σ∗i + Σ∗

o
)-controlled, there is an alternative formulation of the decision problem in

the case that the given relation is (ΣiΣo)∗(Σ∗i + Σ∗
o
)-controlled (the usual presentation for

automatic relations, e.g., by a synchronous transducer). In this case the problem can also be
stated as the question whether the relation has a subset uniformization.

We now generalize this to Parikh-injective synchronization languages. Given some L ⊆ 2∗,
let ΠL : L→ N

2 be the function that maps a word w ∈ L to its Parikh image, that is to the
vector (#1(w),#2(w)). We say L is Parikh-injective if ΠL is injective.

I Proposition 9. Let L ⊆ 2∗ be a regular Parikh-injective language, let S ⊆ Σ∗
io

be an
L-controlled regular language and let T = {w ∈ Σ∗ | w is L-controlled}. Every T -controlled
uniformization of S is a subset uniformization of S.

Given L, S and T as in Proposition 9, it directly follows that the resynchronized
uniformization problem is equivalent to the subset uniformization problem, which is decidable
by Theorem 8.

4 Automatic uniformizations of automatic relations

Here we present our main result stating that it is decidable whether a given automatic relation
has a uniformization by a subsequential transducer whose induced set of synchronizations is
controlled by a given regular language that synchronizes automatic relations.

I Theorem 10. Given a regular source language with finite shiftlag and a regular target
language with finite shiftlag. Then, the resynchronized uniformization problem is decidable.
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In [6], it is shown that (12)∗(1∗ + 2∗) is an effective canonical representative of the class
RLFSL of regular languages with finite shiftlag. Meaning that for every L ∈ RLFSL and every
R ∈ Rel(L), there is an effectively constructible (12)∗(1∗ + 2∗)-controlled regular language
S so that JSK = R.

In the remainder of this section, let S ⊆ Σ∗
io

be a regular source language with finite
shiftlag. Also, let Scan be the equivalent (12)∗(1∗+2∗)-controlled language with JScanK = JSK.
Furthermore, let T ⊆ Σ∗

io
be a regular target language with finite shiftlag.

I Assumption 11. We assume that Scan is recognized by a DFA A = (QA,Σio, q
A
0 ,∆A, FA),

T is recognized by a DFA B = (QB,Σio, q
B
0 ,∆B, FB) and shiftlag(T ) < n.

For notational convenience, given x ∈ Σ∗
i
and y ∈ Σ∗

o
, we write δ∗A(q, (x, y)) to mean

δ∗A(q, w), where w ∈ Σio is the canonical synchronization of x and y, i.e., w is the (12)∗(1∗+2∗)-
controlled synchronization of the pair (x, y).

The remainder of this section is devoted to the proof of Theorem 10. The proof is split in
two main parts; the goal of the first part is to show that if S has a T -controlled uniformization
by an sDFA, then S has a Tk-controlled uniformization by an sDFA for a regular Tk ⊆ T

that is less complex than T , cf. Lemma 23. The goal of the second part is to show that the
set Tk(S) defined by {w | w ∈ Tk and JwK ∈ JSK} is regular and computable (due to the form
of Tk), cf. Lemma 24. Then, to conclude the proof, we show that the question whether S
has a T -controlled uniformization by an sDFA can be reduced to the question whether Tk(S)
has a subset uniformization by an sDFA, which is decidable by Theorem 8.

Towards giving an exact description of Tk, consider the following auxiliary lemma
characterizing the form of regular synchronization languages with finite shiftlag. Given
ν ∈ N, we denote by L≤ν the regular set of words over 2 with ≤ν-lagged positions, i.e.,
L≤ν = {u ∈ 2∗ | lag(u) ≤ ν}; we denote by T≤ν the regular set of words over Σio with
≤ν-lagged positions, i.e., T≤ν = {w ∈ Σ∗

io
| lag(w) ≤ ν}.

I Lemma 12 ([6]). Given a regular language L ⊆ 2∗ with shiftlag(L) < m. It holds that
L ⊆ L≤ν · (1∗ + 2∗)m with ν chosen as 2 (m(|Q|+ 1) + 1), where Q is the state set of an
NFA recognizing L.

Clearly, this lemma can be lifted to regular languages over Σio. Based on Asm. 11 and
Lemma 12, we can make the following assumption.

I Assumption 13. Assume that T ⊆ T≤γ · (Σ∗i + Σ∗
o
)n with γ = 2 (n(|QB|+ 1) + 1).

Now, we can be more specific about Tk ⊆ T .

I Definition 14. For i ≥ 0, let Ti be the set T ∩
(
T≤γ · (Σ∗i + Σ≤i

o
)n
)
, that is, the set of

w ∈ T such that after a position in w is more than γ-lagged, the number of output symbols
per block is at most i.

Our aim is to show that there is a bound k such that S has either a Tk-controlled
uniformization by an sDFA or no T -controlled uniformization by an sDFA. From now on, we
call an sDFA implementing a uniformization simply a uniformizer.

The main difficulty in solving the resynchronized uniformization problem is that in
general a uniformizer can have unbounded lag, because the waiting time between shifts can
be arbitrarily long. The key insight for the proof is that if such a long waiting time for a
shift from input to output is necessary, then, in order to determine the next output block,
it is not necessary to store the complete input that is ahead. We show that it suffices to
consider an abstraction of the input that is ahead. Therefore we will introduce input profiles
based on state transformation trees we define below.
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Similarly, to deal with the situation where there is a long waiting time for a shift from
output to input, we introduce output profiles as an abstraction of output that is ahead.

The bound on the length of output blocks will be chosen based on the profiles. Before
defining profiles, we introduce some necessary definitions and notions.

Trees. A finite unordered unranked tree over an alphabet, a tree for short, is a finite
non-empty directed graph with a distinguished root node, such that for any node, there
exists exactly one path from the root to this node. Additionally, a mapping from the nodes
of the graph to the alphabet is given. More formally, a tree t over Σ is given by a tuple
(Vt, Et, vt, valt), where Vt is a non-empty set of nodes, Et ⊆ Vt × Vt is a set of edges, vt is
the root of t, also denoted root(t), and valt is a mapping Vt → Σ. Furthermore, it is satisfied
that any node is reached by a unique path from the root. Let TΣ denote the set of all trees
over Σ. We only distinguish trees up to isomorphism.

Given a tree t and a node v of t, let t|v denote the subtree of t rooted at v.
An a ∈ Σ can also be seen as a tree a ∈ TΣ defined by ({v}, ∅, v, vala), where vala(v) = a.
For two trees t1 and t2 with valt1(root(t1)) = valt2(root(t2)), i.e., with the same root label,

we define t1 ◦ t2 as the tree t given by (Vt, Et, root(t1), valt), where Vt = Vt1 ∪Vt2 \ {root(t2)},
Et = Et1 ∪ {(root(t), v) | (root(t2), v) ∈ Et2} ∪ (Et2 \ {(root(t2), v) ∈ Et2}) and valt as
valt1 ∪ valt2 over nodes in Vt (assuming Vt1 ∩ Vt2 = ∅).

Given a ∈ Σ and trees t1, . . . , tn, we define a(t1 . . . tn) to be the tree (Vt, Et, r, valt), where
Vt =

⋃n
i=1 Vti ∪ {r} with a new node r, Et =

⋃n
i=1Eti ∪ {(r, root(ti)) | 1 ≤ i ≤ n} and valt is

defined as valt(r) = a and
⋃n
i=1 valti (assuming Vti ∩ Vtj = ∅ for all i 6= j).

State transformation trees. Now that we have fixed our notations, we explain what kind
of information we want to represent using state transformation trees. Basically, for an input
segment that is ahead and causes lag, we are interested in how the input segment can be
combined with output segments of same or smaller length and how this output can be
obtained.

In the following we give an intuitive example.

I Example 15. Let Σi = {a} and Σo = {b, c}. Consider the language S1 ⊆ Σ∗
io

given by the
DFA A1 depicted in Fig. 2a, and the language T1 ⊆ Σ∗

io
given by the DFA B1 depicted in

Fig. 2a. As we can see, S1 is (12)∗(1∗ + 2∗)-controlled, thus, already in its canonical form,
and T1 is 1∗2∗1∗2∗-controlled. Both languages have finite shiftlag.

Generally, a T1-controlled uniformizer of S1 can have arbitrary large lag. We take a look
at the runs starting from q0 in A1 and starting from p0 in B1 that the computation of such
a uniformizer can induce. However, A1 can only be simulated on the part where the lag
is recovered, but arbitrarily large lag can occur, thus our goal is to find an abstraction of
the part that causes lag. E.g., assume that such a uniformizer reads aa without producing
output. Towards defining an abstraction of aa, we are interested in how aa could be combined
with outputs of same or smaller length and how these outputs could be produced by some
T1-controlled uniformizer. Such a uniformizer could read some more as and eventually must
produce output. Reading as leads from p0 to p1 in B1. There are a few possibilities how
output of length at most two can be produced such that it is valid from p1 and the simulation
from q0 can be continued. It is possible to output b (δ∗B1

(p1, b) = p2, δ∗A1
(q0, aba) =

q1), bb (δ∗B1
(p1, bb) = p2, δ∗A1

(q0, abab) = q0) or bc (δ∗B1
(p1, bc) = p2, δ∗A1

(q0, abac) = q2).
Alternatively, it is possible to output b (δ∗B1

(p1, b) = p2, δ∗A1
(q0, ab) = q0) read another a

(δ∗B1
(p2, a) = p3) and then produce b (δ∗B1

(p3, b) = p3, δ∗A1
(q0, ab) = q0) or c (δ∗B1

(p3, c) = p3,
δ∗A1

(q0, ac) = q2). We see that the outputs bb and bc can each be obtained in two different
ways. Namely, as one single output block, or as two output blocks with an input block in
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q0A1 q1 q2
a

b

c

a

p0B1 p1 p2 p3
a b

a

a

b,c b,c

(a) Σi = {a}, Σo = {b, c}. A1 recognizes S1, B1 recognizes T1. S1 is (12)∗(1∗ + 2∗)-controlled and T1 is
1∗2∗1∗2∗-controlled, thus both have finite shiftlag. S1 is already in the canonical form.

a a a a a a

b c

q0 q0 q2 q2

A1 :

a a a a a b a c

p0 p1 p2 p3 p3

B1 :

(b) Runs of A1 and B1 on synchronizations of
(aaaaaa, bc). A1 runs on the canonical synchro-
nization, i.e., on abacaaaa. To illustrate this, input
and output are drawn one above the other.

(p1, q0)

(p2, q1) (p2, q0) (p2, q2) (p2, q0)

(p3, q0)

(p3, q0) (p3, q2)

b bb bc b

a

b c

v0

v1 v2 v3 v4

v5

v6 v7

(c) STT1(aa, p1, q0). The combination of both runs
shown in Fig. 2b is reflected by the rightmost path
in the state transformation tree.

Figure 2 A source language S1 and a target language T1 are given in Fig. 2a. A pair and two
different synchronizations of said pair as well as runs are given in Fig. 2b. The state transformation
tree STT1(aa, p1, q0) is given in Fig. 2c, its edges are labeled with the respective associated words
and its vertices are named for easier reference in Ex. 15. For a formal definition of STTs see Def. 16,
for an explanation for this specific tree see Ex. 15.

between (w.r.t. B1, we do not care about the number of blocks w.r.t. A1). The maximal
number of considered output blocks (w.r.t. the target synchronization) is parameterized in
the formal definition.

We take a look at the tree in Fig. 2c, this tree contains all the state transformations
that can be induced by the described possibilities. The possibilities to produce output
in one single block is reflected by the edges (v0, v1), (v0, v2) and (v0, v3) representing the
state transformation induced by the respective output block. The possibilities to produce
output in two blocks is reflected by the edges (v0, v4) representing the state transformation
induced by the first output block, (v4, v5) representing the state transformation induced
by the intermediate input block, (v5, v6) and (v5, v7) representing the state transformation
induced by the respective second output block.

Now that we have given some intuition, we formally introduce input state transformation
trees, a graphical representation of the construction of input state transformation trees
is given in Fig. 3. As seen in the example, each edge of such a tree represents the state
transformation induced by an output resp. input block, alternatively.

I Definition 16 (Input state transformation tree). For i ≥ 0, p ∈ QB, q ∈ QA and x ∈ Σ∗
i
,

the state transformation tree STTi(x, p, q) is a tree over QB ×QA defined inductively.
For i = 0, the tree STT0(x, p, q) is built up as follows.
Let Reach0 ⊆ QB ×QA be the smallest set such that (p′, q′) ∈ Reach0 if there is some
y ∈ Σ∗

o
with |y| ≤ |x| such that δ∗A(q, (x, y)) = q′ and δ∗B(p, y) = p′.

(This set represents state transformations induced by output blocks that fully consume x.)
Then the tree STT0(x, p, q) is defined as (p, q)(r1 . . . rn) for Reach0 = {r1, . . . , rn}, mean-
ing it contains a child for every state transformation that can be induced w.r.t. A and
B starting from q and p, respectively, by the input segment x together with an output
segment that consumes x (w.r.t. A) consisting of a single output block (w.r.t. B).
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(p, q)

STTi−1(x′′, p′′, q′)

(p′, q′)

(p′′, q′)

Reach0

Reach1

Reach(x′′,p′,q′)

v0

v1

v2

Figure 3 Schema of the input state transformation tree STTi(x, p, q) for some i > 0. Cf. Def. 16.
Let x′x′′ be a factorization of x with x′, x′′ ∈ Σ+

i
, and let y ∈ Σ+

o be such that |x′| = |y| and
δ∗A(q, (x′, y)) = q′ and δ∗B(p, y) = p′, and let δ∗B(p′, w) = p′′ for some w ∈ Σ+

i
, then STTi(x, p, q)

contains a path v0v1v2 labeled (p, q)(p′, q′)(p′′, q′) such that v0 is the root, v1 is the root of ti−1
(x′′,p′,q′),

and v2 is the root of STTi−1(x′′, p′′, q′).

For i > 0, the tree STTi(x, p, q) is built up as follows.
Let Reach1 ⊆ Σ∗

i
×QB ×QA be the smallest set such that (x′′, p′, q′) ∈ Reach1 if

x = x′x′′ with x′′ ∈ Σ+
i

for an x′∈ Σ+
i

such that there is a y ∈ Σ+
o

with |y| = |x′|, and
δ∗A(q, (x′, y)) = q′ and δ∗B(p, y) = p′.
(This set represents state transformations induced by output blocks that partially consume x.)

For (x′′, p′, q′) ∈ Reach1, let Reach(x′′,p′,q′) ⊆ Σ∗
i
× QB × QA be the smallest set such

that (x′′, p′′, q′) ∈ Reach(x′′,p′,q′) if δ∗B(p′, w) = p′′ for some w ∈ Σ+
i
.

(These sets represents state transformations induced by intermediate input blocks.)
Furthermore, let the tree ti−1

(x′′,p′,q′) be defined as (p′, q′)(STTi−1r1 . . . STTi−1rn) for
Reach(x′′,p′,q′) = {r1, . . . , rn}.
Then the tree STTi(x, p, q) is defined as

STT0(x, p, q) ◦ (p, q)(ti−1
s1

. . . ti−1
sn

)

for Reach1 = {s1, . . . , sn}, meaning it contains a path for every sequence of state trans-
formations that can be induced w.r.t. A and B starting from q and p, respectively, by the
input segment x together with an output segment that consumes x (w.r.t. A) consisting
of at most i+ 1 output blocks (w.r.t. B). Additionally, for output segments that have a
common prefix of output blocks the state transformations induced by the common prefix
of blocks are represented by the same nodes in the tree.

Intuitively, edges in such a tree are associated with the words that induced the state
transformation, e.g., as shown in Fig 2c.

Given a tree as in Def. 16, the maximal degree of such a tree depends on the input word
used as parameter. Our goal is to have state transformation trees where the maximum degree
is independent of this parameter. Therefore, we introduce reduced trees. The idea is that if
for some input word different outputs induce the same state transformations then only one
representation is kept in the input state transformation tree.

I Definition 17 (Reduced tree). A tree t ∈ TΣ over some alphabet Σ is called reduced if for
each node v there exist no two children u, u′ of v such that the subtrees rooted at u and u′
are isomorphic.
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For a tree t ∈ TΣ, let red(t) ∈ TΣ denote its reduced variant. The reduced variant of
a tree can easily be obtained by a bottom-up computation where for each node duplicate
subtrees rooted at its children are removed.

Note that for each i, the set of reduced input state transformation trees with parameter i
is a finite set.

Hitherto, we have discussed how to capture state transformations induced by an input
word together with output words of same or smaller length. Additionally, we need to capture
state transformations induced by an output word together with input words of same or
smaller length. Therefore, we introduce a notion similar to input state transformation trees,
namely, output state transformation trees. A formal definition can be found in the full version.

Furthermore, we need a notion that captures state transformations that can be induced
by an input resp. output word alone, see Def. 18 below. Then, we are ready to define profiles.

I Definition 18 (State transformation function). For each w ∈ Σ∗
i
∪Σ∗

o
, we define the function

τw : QB → QB with τw(p) = q if δ∗B(p, w) = q called state transformation function w.r.t. w.

Profiles. Recall, T ⊆ T≤γ · (Σ∗i + Σ∗
o
)n, and our goal is to show that there is a bound k such

that it suffices to focus on constructing Tk-controlled uniformizers instead of T -controlled
uniformizers, meaning that we can focus on uniformizers in which the length of output blocks
is bounded by k after the lag has exceeded γ at some point.

The core of the proof is to show that if the lag between input and output becomes very
large (� γ), it is not necessary to consider the complete input that is ahead to determine
the next output block, but an abstraction (in the form of profiles) suffices. Note that if the
lag has exceeded γ at some point the number of remaining output blocks is at most dn/2e.

As a result, given an input word x ∈ Σ∗
i
, we are interested in the state transformation

that is induced by (x, πo(w)) in A (recognizing Scan) and by w in B (recognizing T ) for each
word w ∈ Σ∗

io
such that |πo(w)| ≤ |x| and shift(w) ≤ dn/2e. In words, we are interested in

the state transformations that can be induced by x together with outputs of same or smaller
length that are composed of at most dn/2e different output blocks.

For x ∈ Σ∗
i
, this kind of information is accurately represented by the set of all reduced

input state transformation trees with parameters x and dn/2e.
The same considerations with switched input and output roles apply for an output word

y ∈ Σ∗
o
.

I Definition 19 (Input profile). For x ∈ Σ∗
i
, we define its profile Px as (τx, STTdn/2ex ), where

STTdn/2ex =
⋃

(p,q)∈QB×QA

{red
(
STTdn/2e(x, p, q)

)
}.

Similarly, we define output profiles, a formal definition can be found in the full version.
A note on the number of different profiles. Profiles are based on reduced STTs with

parameter dn/2e, where n bounds shiftlag(T ). The size of the set of these STTs is non-
elementary in n, hence also the number of profiles. This implies a non-elementary complexity
of our decision procedure.

Furthermore, let Pi be the set
⋃
x∈Σ∗

i

{Px} of all input profiles and Po be the set⋃
y∈Σ∗

o

{Py} of all output profiles. For a P ∈ Pi ∪ Po, let z be a representative of P if
z is a shortest word such that P = Pz.

We show that from the profiles of two words x1 and x2 one can compute the profile of
the word x1x2. Hence, the set of profiles can be equipped with a concatenation operation,
i.e., for words x1 and x2 we let Px1Px2 = Px1x2 . We obtain the following.
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I Lemma 20. The set of input profiles is a monoid with concatenation; the set of output
profiles is a monoid with concatenation.

A word x ∈ Σ∗
i
and its profile Px are called idempotent if Px = Pxx. As a consequence of

Ramsey’s Theorem (see e.g., [5]) we obtain the following lemma.

I Lemma 21 (Consequence of Ramsey). There is a computable r ∈ N such that each word
x ∈ Σ∗

i
with |x| ≥ r contains a non-empty idempotent factor for the concatenation of profiles.

Now, we have the right tools to prove that the existence of a T -controlled uniformizer
implies that there also exists a Tk-controlled uniformizer for a computable k. For the
remainder, we fix two bounds.

I Assumption 22. Assume r1 is chosen as in Lemma 21 and r2 is chosen as the smallest
bound on the length of representatives of output profiles. Wlog, assume r1, r2 > γ.

Finally, we are ready to prove the key lemma, that is, Lemma 23, which shows that it is
sufficient to consider uniformizers in which the length of output blocks is bounded.

Recall, a uniformizer works asynchronously, which leads to large lag. First, we show that
if the output is lagged more than r1 symbols, meaning, the input that is ahead contains
an idempotent factor, it suffices to consider output blocks whose length depends on the
idempotent factor. Secondly, we show that it suffices to consider uniformizers in which the
output is ahead at most r2 symbols. The combination of both results yields Lemma 23.

Recall, by Asm. 13, T ⊆ T≤γ · (Σ∗i + Σ∗
o
)n and by Def. 14, Ti = T ∩

(
T≤γ · (Σ∗i + Σ≤i

o
)n
)

for i ≥ 0.

I Lemma 23. If S has a T -controlled uniformizer, then S has a Tk-controlled uniformizer
for a computable k ≥ 0.

The proof of the above lemma yields that k can be chosen as r1 + r2. This concludes
the first part of the proof of Theorem 10. For the second part, we prove that the problem
whether S has a Ti-controlled uniformizer for an i reduces to the question whether Ti(S) has
a subset uniformizer for a suitable Ti(S) as defined below in Lemma 24.

Reduction. The next lemma shows that from S a regular Ti(S) can be obtained such that
Ti(S) consists of all Ti-controlled synchronizations w with JwK ∈ JSK.

I Lemma 24. For i ≥ 0, the language Ti(S) = {w ∈ Σ∗
io
| w ∈ Ti and JwK ∈ JSK} is a

Ti-controlled effectively constructible regular language.

We are ready to prove the main theorem of this paper.

Proof sketch of Theorem 10. By Lemma 23 we know that if S has a T -controlled uni-
formizer, then S has a Tk-controlled uniformizer for a computable k ≥ 0. Let Tk(S) be
defined as in Lemma 24.

We can show that S has a T -controlled uniformizer iff dom(JSK) = dom(JTk(S)K) and
Tk(S) has a subset uniformizer which is decidable by Theorem 8. J

5 Conclusion

In this paper we considered uniformization by subsequential transducers in which the
allowed input/output behavior is specified by a regular set of synchronizations, the so-called
resynchronized uniformization problem. An overview over our results can be found in Table 1.
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For future work we want to study other problems of this kind, e.g., study whether the
resynchronized uniformization problem is decidable for a given rational relation as source
language and a given ‘recognizable’ target language in the sense that the target language is
controlled by a synchronization language that synchronizes recognizable relations.
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Abstract
Changing a given configuration in a graph into another one is known as a reconfiguration problem.
Such problems have recently received much interest in the context of algorithmic graph theory.
We initiate the theoretical study of the following reconfiguration problem: How to reroute k
unsplittable flows of a certain demand in a capacitated network from their current paths to their
respective new paths, in a congestion-free manner? This problem finds immediate applications,
e.g., in traffic engineering in computer networks. We show that the problem is generally NP-hard
already for k = 2 flows, which motivates us to study rerouting on a most basic class of flow graphs,
namely DAGs. Interestingly, we find that for general k, deciding whether an unsplittable multi-
commodity flow rerouting schedule exists, is NP-hard even on DAGs. Our main contribution is
a polynomial-time (fixed parameter tractable) algorithm to solve the route update problem for a
bounded number of flows on DAGs. At the heart of our algorithm lies a novel decomposition of
the flow network that allows us to express and resolve reconfiguration dependencies among flows.

2012 ACM Subject Classification Networks → Network algorithms, Theory of computation →
Network flows

Keywords and phrases Unsplittable Flows, Reconfiguration, DAGs, FPT, NP-Hardness

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.143

Funding The research of Saeed Amiri and Sebastian Wiederrecht was partly supported by the
ERC consolidator grant DISTRUCT, agreement No 648527. Stefan Schmid was supported by
the Danish VILLUM foundation project ReNet.

Acknowledgements We would like to thank Stephan Kreutzer, Arne Ludwig and Roman Ra-
binovich for discussions on this problem.

1 Introduction

Reconfiguration problems are combinatorial problems which ask for a transformation of one
configuration into another one, subject to some (reconfiguration) rules. Reconfiguration
problems are fundamental and have been studied in many contexts, including puzzles and
games (such as Rubik’s cube) [24], satisfiability [15], independent sets [16], vertex coloring [9],
or matroid bases [17], to just name a few.
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s t

initial network

v2
s t

invalid update: no transient flow (loop!)

Figure 1 Example: We are given an initial network consisting of exactly one active flow F o (solid
edges) and the inactive edges (i.e., inactive forwarding rules) of the new flow Fu to which we want
to reroute (dashed edges). Together we call the two flows an (update) pair P = (F o, Fu). Updating
the outgoing edges of a vertex means activating all previously inactive outgoing edges of Fu, and
deactivating all other edges of the old flow F o. Initially, the blue flow is a valid (transient) (s, t)-flow.
If the update of vertex v2 takes effect first, an invalid (not transient) flow is introduced (in pink):
traffic is forwarded in a loop, hence (temporarily) invalidating the path from s to t.

Reconfiguration problems also naturally arise in the context of networking applications
and routing. For example, a fundamental problem in computer networking regards the
question of how to reroute traffic from the current path p1 to a given new path p2, by
changing the forwarding rules at routers (the vertices) one-by-one, while maintaining certain
properties during the reconfiguration (e.g., short path lengths [7]). Route reconfigurations (or
updates) are frequent in computer networks: paths are changed, e.g., to account for changes
in the security policies, in response to new route advertisements, during maintenance (e.g.,
replacing a router), to support the migration of virtual machines, etc. [13].

This paper initiates the study of a basic multi-commodity flow rerouting problem: how
to reroute a set of unsplittable flows (with certain bandwidth demands) in a capacitated
network, from their current paths to their respective new paths in a congestion-free manner.
The problem finds immediate applications in traffic engineering [4], whose main objective
is to avoid network congestion. Interestingly, while congestion-aware routing and traffic
engineering problems have been studied intensively in the past [1, 10, 11, 12, 18, 19, 20, 22],
surprisingly little is known today about the problem of how to reconfigure resp. update the
routes of flows. Only recently, due to the advent of Software-Defined Networks (SDNs), the
problem has received much attention in the networking community [3, 8, 14, 21].

Figure 1 presents a simple example of the consistent rerouting problem considered in
this paper, for just a single flow: the flow needs to be rerouted from the solid path to
the dashed path, by changing the forwarding links at routers one-by-one. The example
illustrates a problem that might arise from updating the vertices in an invalid order: if
vertex v2 is updated first, a forwarding loop is introduced: the transient flow from s to
t becomes invalid. Thus, router updates need to be scheduled intelligently over time: A
feasible sequence of updates for this example is given in Figure 2. Note that the example
is kept simple intentionally: when moving from a single flow to multiple flows, additional
challenges are introduced, as the flows may compete for bandwidth and hence interfere.

Contributions. This paper initiates the algorithmic study of a fundamental unsplittable
multicommodity flow rerouting problem. We present a rigorous formal model and show that
the problem of rerouting flows in a congestion-free manner is NP-hard already for two flows
on general graphs. This motivates us to focus on a most fundamental type of flow graphs,
namely the DAG. The main results presented in this paper are the following:
1. Deciding whether a consistent network update schedule exists in general graphs is NP-hard,

already for 2 flows.
2. For constant k, we present a linear-time (fixed parameter tractable) algorithm which

finds a feasible update schedule on DAGs in time and space 2O(k log k)O(|G|), whenever
such a consistent update schedule exists.
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s t

initial network

s t

first update

s t

second update

s t

final update

v1

v2

Figure 2 Example: We revisit the network of Figure 1 and reroute from F o to Fu without
interrupting the connection between s and t along a unique (transient) path (in blue). To avoid the
problem seen in Figure 1, we first update the vertex v1 in order to establish a shorter connection
from s to t. Once this update has been performed, the update of v2 can be performed without
creating a loop. Finally, by updating s, we complete the rerouting.

3. For general k, deciding whether a feasible schedule exists is NP-hard even on loop-free
networks (i.e., DAGs).

Against the backdrop that the problem of routing disjoint paths on DAGs is known to
be W [1]-hard [23] and computing routes subject to congestion even harder [1], our finding
that the multicommodity flow rerouting problem is fixed parameter tractable on DAGs is
intriguing.

Technical Novelty. Our algorithm is based on a novel decomposition of the flow graph into
so-called blocks. This block decomposition allows us to express dependencies between flows,
and we represent dependencies between blocks by a (directed) dependency graph D. The
structure of D is sophisticated, hence to analyze it, we first construct a helper graph H. In
our first main technical lemma, we show that if there is an independent set I in H, then
the dependency graph that corresponds to the vertices of I is a DAG (Lemma 11). So we
may concentrate on a subgraph of D with a simpler structure, which we use to prove the
next main technical lemma: there is a congestion-free rerouting if and only if the maximum
independent set in H is large enough (Lemma 14). We are left with the challenge that finding
a maximum independent set is a hard problem, even in our very restricted graph classes. We
hence carefully modify H to obtain a much simpler graph of bounded pathwidth, without
losing any critical properties. Thanks to these lemmas, the proof of the main theorem will
follow.

In addition to our algorithmic contributions, we present NP-hardness proofs. These
hardness proofs are based on novel and non-trivial insights into the flow rerouting problem,
which might be helpful for similar problems in the future.

2 Model and Definitions

The problem can be described in terms of edge capacitated directed graphs. In what follows,
we will assume basic familiarity with directed graphs and we refer the reader to [5] for more
background. We denote a directed edge e with head v and tail u by e = (u, v). For an
undirected edge e between vertices u, v, we write e = {u, v}; u, v are called endpoints of e.

ICALP 2018
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A flow network is a directed capacitated graph G = (V,E, s, t, c), where s is the source,
t the terminal, V is the set of vertices with s, t ∈ V , E ⊆ V × V is a set of ordered pairs
known as edges, and c : E → N a capacity function assigning a capacity c(e) to every edge
e ∈ E.

Our problem, as described above is a multi-commodity flow problem and thus may have
multiple source-terminal pairs. To simplify the notation but without loss of generality, in
what follows, we define flow networks to have exactly one source and one terminal. In fact,
we can model any number of different sources and terminals by adding one super source
with edges of unlimited capacity to all original sources, and one super terminal with edges of
unlimited capacity leading there from all original terminals.

An (s, t)-flow F of capacity d ∈ N is a directed path from s to t in a flow network such
that d ≤ c(e) for all e ∈ E(F ). Given a family F of (s, t)-flows F1, . . . , Fk with demands
d1, . . . , dk respectively, we call F a valid flow set, or simply valid, if c(e) ≥

∑
i : e∈E(Fi) di.

Recall that we consider the problem of how to reroute a current (old) flow to a new
(update) flow, and hence we will consider such flows in “update pairs”: An update flow
pair P = (F o, Fu) consists of two (s, t)-flows F o, the old flow, and Fu, the update flow,
each of demand d. A graph G = (V,E,P, s, t, c), where (V,E, s, t, c) is a flow network,
and P = {P1, . . . , Pk} with Pi = (F oi , Fui ), a family of update flow pairs of demand di,
V =

⋃
i∈[k] V (F oi ∪ Fui ) and E =

⋃
i∈[k]E(F oi ∪ Fui ), is called update flow network if the

two families Po = {F o1 , . . . , F ok } and Pu = {Fu1 , . . . , F uk } are valid. For an illustration, recall
the initial network in Figure 2: The old flow is presented as the directed path made of solid
edges and the new one is represented by the dashed edges.

Given an update flow network G = (V,E,P, s, t, c), an update is a pair µ = (v, P ) ∈
V ×P . An update (v, P ) with P = (F o, Fu) is resolved by deactivating all outgoing edges of
F o incident to v and activating all of its outgoing edges of Fu. Note that at all times, there
is at most one outgoing and at most one incoming edge, for any flow at a given vertex. So
the deactivated edges of F o can no longer be used by the flow pair P (but now the newly
activated edges of Fu can).

For any set of updates U ⊂ V × P and any flow pair P = (F o, Fu) ∈ P, G(P,U) is the
update flow network consisting exactly of the vertices V (F o) ∪ V (Fu) and the edges of P
that are active after resolving all updates in U .

As an illustration, after the second update in Figure 2, one of the original solid edges is
still not deactivated. However, already two of the new edges have become solid (i.e., active).
So in the picture of the second update, the set U = {(v1, P ), (v2, P )} has been resolved.

We are now able to determine, for a given set of updates, which edges we can and
which edges we cannot use for our routing. In the end, we want to describe a process of
reconfiguration steps, starting from the initial state, in which no update has been resolved,
and finishing in a state where the only active edges are exactly those of the new flows, of
every update flow pair.

The flow pair P is called transient for some set of updates U ⊆ V × P, if G(P,U)
contains a unique valid (s, t)-flow TP,U . If there is a family P = {P1, . . . Pk} of update flow
pairs with demands d1, . . . , dk respectively, we call P a transient family for a set of updates
U ⊆ V ×P , if and only if every P ∈ P is transient for U . The family of transient flows after
all updates in U are resolved is denoted by TP,U = {TP1,U , . . . , TPk,U}.

We again refer to Figure 2. In each of the different states, the transient flow is depicted
as the light blue line connecting s to t and covering only solid (i.e., active) edges.

An update sequence (σi)i∈[|V×P|] is an ordering of V ×P . We denote the set of updates
that is resolved after step i by Ui =

⋃i
j=1 σi, for all i ∈ [|V × P|].
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I Definition 1 (Consistency Rule). Let σ be an update sequence. We require that for any
i ∈ [|V × P|], there is a family of transient flow pairs TP,Ui

.

To ease the notation, we will denote an update sequence (σ)i∈[|V×P|] simply by σ and
for any update (u, P ) we write σ(u, P ) for the the position i of (u, P ) within σ. An update
sequence is valid, if every set Ui, i ∈ [|V × P|], obeys the consistency rule.

We note that this consistency rule models and consolidates the fundamental properties
usually studied in the literature, such as congestion-freedom [8] and loop-freedom [21].

I Definition 2 (k-Network Flow Update Problem). Given an update flow network G
with k update flow pairs, is there a feasible update sequence σ?

3 On Hardness of 2-Flow Update in General Graphs

It is easy to see that for an update flow network with a single flow pair, feasibility is always
guaranteed. However, it turns out that for two flows, the problem becomes hard in general.

I Theorem 3. Deciding whether a feasible network update schedule exists is NP-hard already
for k = 2 flows.

The proof, briefly sketched in the following, is by reduction from 3-SAT. Let C be any
3-SAT formula with n variables and m clauses. Denote the variables by X1, . . . , Xn and the
clauses by C1, . . . , Cm. The resulting update flow network is denoted by G(C). Assume that
the variables are ordered by their indices, and their appearance in each clause respects this
order.

We create 2 update flow pairs, a blue one B = (Bo, Bu) and a red one R = (Ro, Ru),
both of demand 1. The pair B contains gadgets corresponding to the variables. The order in
which the edges of each of those gadgets are updated will correspond to assigning a value to
the variable. The pair R on the other hand contains gadgets representing the clauses: they
have edges that are “blocked” by the variable edges of B. Therefore, we will need to update
B to enable the updates of R.

4 Rerouting Flows in DAGs

We now consider the flow rerouting problem when the underlying flow graph is acyclic. In
particular, we identify an important substructure arising for flow-pairs in acyclic graphs,
which we call blocks. These blocks will play a major role in both the hardness proof and the
algorithm presented in this section.

Let G = (V,E,P, s, t, c) be an acyclic update flow network, i.e., we assume that the
graph (V,E) is a DAG. Let ≺ be a topological order on the vertices V = {v1, . . . , vn}.
Let Pi = (F oi , Fui ) be an update flow pair of demand d and let vi1, . . . , vi`o

i
be the induced

topological order on the vertices of F oi ; analogously, let ui1, . . . , vi`u
i
be the order on Fui .

Furthermore, let V (F oi ) ∩ V (Fui ) =
{
zi1, . . . , z

i
ki

}
be ordered by ≺ as well.

The subgraph of F oi ∪ Fui induced by the set
{
v ∈ V (F oi ∪ Fui ) | zij ≺ v ≺ zij+1

}
, j ∈

[ki − 1], is called the jth block of the update flow pair Fi, or simply the jth i-block. We will
denote this block by bij .

For a block b, we define S (b) to be the start of the block, i.e., the smallest vertex w.r.t. ≺;
similarly, E (b) is the end of the block: the largest vertex w.r.t. ≺.

Let G = (V,E,P, s, t, c) be an update flow network with P = {P1, . . . , Pk} and let B be
the set of its blocks. We define a binary relation < between two blocks as follows. For two
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blocks b1, b2 ∈ B, where b1 is an i-block and b2 a j-block, i, j ∈ [k], we say b1 < b2 (b1 is
smaller than b2) if one of the following holds.
i S (b1) ≺ S (b2),
ii if S (b1) = S (b2) then b1 < b2, if E (b1) ≺ E (b2),
iii if S (b1) = S (b2) and E (b1) = E (b2) then b1 < b2, if i < j.
Let b be an i-block and Pi the corresponding update flow pair. For a feasible update sequence
σ, we will denote the round σ(S (b), Pi) by σ(b). We say that an i-block b is updated, if all
edges in b ∩ Fui are active and all edges in b ∩ F oi \ Fui are inactive. We will make use of a
basic, but important observation on the structure of blocks and how they can be updated.
This structure is the key to our flow reconfiguration algorithm (presented below), as it allows
us to consider the update of blocks as a whole, rather than vertex-by-vertex.

I Lemma 4. Let b be a block of the flow pair P = (Fu, F o). Then in a feasible update
sequence σ, all vertices (resp. their outgoing edges belonging to P ) in Fu ∩ b −S (b) are
updated strictly before S (b). Moreover, all vertices in b− Fu are updated strictly after S (b)
is updated.

I Lemma 5. Let G be an update flow network and σ a valid update sequence for G. Then
there exists a feasible update sequence σ′ which updates every block in consecutive rounds.

Recall that G is acyclic and every flow pair in G forms a single block. Let σ be a feasible
update sequence of G. We suppose in σ, every block is updated in consecutive rounds
(Lemma 5). For a single flow F , we write σ(F ) for the round where the last edge of F was
updated.

4.1 Updating k-Flows in DAGs is NP-complete
We first show that if k is part of the input, the congestion-free flow reconfiguration problem
is even hard on the DAG. Hence the algorithm presented in the following is essentially tight.
To prove the theorem, we use a polynomial time reduction from the 3-SAT problem.

I Theorem 6. Finding a feasible update sequence for k-flows is NP-complete, even if the
update graph G is acyclic.

4.2 Linear Time Algorithm for Constant Number of Flows on DAGs
By Theorem 6 we cannot hope to find a polynomial time algorithm that finds a feasible
update sequence. However, if the problem is parameterized by the number k of flows, a
rerouting sequence can be computed in FPT-linear time if the update graph is acyclic. In
this subsection we describe an algorithm to solve the network update problem on DAGs in
time 2O(k log k)O(|G|), for arbitrary k. In the remainder of this section, we assume that every
block has at least 3 vertices (otherwise, postponing such block updates will not affect the
solution).

We say a block b1 touches a block b2 (denoted by b1 � b2) if there is a vertex v ∈ b1 such
that S (b2) ≺ v ≺ E (b2), or there is a vertex u ∈ b2 such that S (b1) ≺ u ≺ E (b1). If b1
does not touch b2, we write b1 6� b2. Clearly, the relation is symmetric, i.e., if b1 � b2 then
b2 � b1.

For some intuition, consider a drawing of G which orders vertices w.r.t. ≺ in a line.
Project every edge on that line as well. Then two blocks touch each other if they have a
common segment on that projection.
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Proof Sketch: Before delving into details, we provide the main ideas behind our algorithm.
We can think about the update problem on DAGs as follows. Our goal is to compute a
feasible update order for the (out-)edges of the graph. There are at most k flows to be
updated for each edge, resulting in k! possible orders and hence a brute force complexity of
O(k!|G|) for the entire problem. We can reduce this complexity by considering blocks instead
of edges.

The update of a given i-block bi might depend on the update of a j-block sharing at least
one edge of bi. These dependencies can be represented as a directed graph. If this graph
does not have any directed cycles, it is rather easy to find a feasible update sequence, by
iteratively updating sink vertices.

There are several issues here: First of all these dependencies are not straight-forward
to define. As we will see later, they may lead to representation graphs of exponential size.
In order to control the size we might have to relax our definition of dependency, but this
might lead to a not necessarily acyclic graph which will then need further refinement. This
refinement is realized by finding a suitable subgraph, which alone is a hard problem in general.
To overcome the above problems, we proceed as follows.

Let TouchSeq(b) contain all feasible update sequences for the blocks that touch b: still a
(too) large number, but let us consider them for now. For two distinct blocks b, b′, we say
that two sequences s ∈ TouchSeq(b), s′ ∈ TouchSeq(b′) are consistent, if the order of any
common pair of blocks is the same in both s, s′. If for some block b, TouchSeq(b) = ∅, there
is no feasible update sequence for G: b cannot be updated.

We now consider a graph H whose vertices correspond to elements of TouchSeq(b), for
all b ∈ B. Connect all pairs of vertices originating from the same TouchSeq(b). Connect
all pairs of vertices if they correspond to inconsistent elements of different TouchSeq(b). If
(and only if) we find an independent set of size |B| in the resulting graph, the update orders
corresponding to those vertices are mutually consistent: we can update the entire network
according to those orders. In other words, the update problem can be reduced to finding an
independent set in the graph H.

However, there are two main issues with this approach. First, H can be very large. A
single TouchSeq(b) can have exponentially many elements. Accordingly, we observe that we
can assume a slightly different perspective on our problem: we linearize the lists TouchSeq(b)
and define them sequentially, bounding their size by a function of k (the number of flows).
The second issue is that finding a maximum independent set in H is hard. The problem
is equivalent to finding a clique in the complement of H, a |B|-partite graph where every
partition has bounded cardinality. We can prove that for an n-partite graph where every
partition has bounded cardinality, finding an n-clique is NP-complete. So, in order to solve
the problem, we either should reduce the number of partitions in H (but we cannot) or
modify H to some other graph, further reducing the complexity of the problem. We do the
latter by trimming H and removing some extra edges, turning the graph into a very simple
one: a graph of bounded path width. Then, by standard dynamic programming, we find the
independent set of size |B| in the trimmed version of H: this independent set matches the
independent set I of size |B| in H (if it exists). At the end, reconstructing a correct update
order sequence from I needs some effort. As we have reduced the size of TouchSeq(b) and
while not all possible update orders of all blocks occur, we show that they suffice to cover all
possible feasible solutions. We provide a way to construct a valid update order accordingly.

With these intuitions in mind, we now present a rigorous analysis. Let πS1 = (a1, . . . , a`1)
and πS2 = (a′1, . . . , a′`2

) be permutations of sets S1 and S2. We define the core of πS1 and
πS2 as core(πS1 , πS2) := S1 ∩ S2. We say that two permutations π1 and π2 are consistent,
π1 ≈ π2, if there is a permutation π of symbols of core(π1, π2) such that π is a subsequence
of both π1 and π2.
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πblue = (v7, c, a, v2)
πgreen = (v6, b, c, v1)
πred = (v3, v4, a, b, v5)

G{πblue,πgreen,πred}

ab

c
v1

v2

v4 v3
v5

v6

v7

Figure 3 Example: The dependency graph of three pairwise consistent permutations πblue, πgreen

and πred. Each pair of those permutation has exactly one vertex in common and with this the cycle
(a, b, c) is created. With such cycles being possible, a dependency graph does not necessarily contain
sink vertices. To get rid of them, we certainly need some more refinements.

The dependency graph is a labelled graph defined recursively as follows. The depend-
ency graph of a single permutation π = (a1, . . . , a`), denoted by Gπ, is a directed path
v1, . . . , v`, and the label of the vertex vi ∈ V (Gπ) is the element a with π(a) = i. We denote
by Labels(Gπ) the set of all labels of Gπ.

Let GΠ be a dependency graph of the set of permutations Π and GΠ′ the dependency
graph of the set Π′. Then, their union (by identifying the same vertices) forms the dependency
graph GΠ∪Π′ of the set Π∪Π′. Note that such a dependency graph is not necessarily acyclic
(see Figure 3).

We call a permutation π of blocks of a subset B′ ⊆ B congestion free, if the following
holds: it is possible to update the blocks in π in the graph GB (the graph on the union of
blocks in B), in order of their appearance in π, without violating any edge capacities in GB.
Note that we do not respect all conditions of our Consistency Rule (Definition 1) here.

In the approach we are taking, one of the main advantages we have is the nice properties of
blocks when it comes to updating. The following algorithm formalizes the procedure already
described in Lemma 5. The correctness follows directly from said lemma. Let P = (F o, Fu)
be a given flow pair.

Algorithm 1. Update a Free Block b

1. Resolve (v, P ) for all v ∈ Fu ∩ b−S (b).
2. Resolve (S (b), P ).
3. Resolve (v, P ) for all v ∈ (b− Fu).
4. For any edge in E(b∩ Fu) check whether dFu together with the other loads currently

active on e exceed c(e). If so output: Fail.

I Lemma 7. Let π be a permutation of the set B1 ⊆ B. Whether π is congestion free can be
determined in time O(k · |G|).

The smaller relation defines a total order on all blocks in G. Let B = {b1, . . . , b|B|} and
suppose the order is b1 < . . . < b|B|.

We define an auxiliary graph H which will help us find a suitable dependency graph for
our network. We first provide some high-level definitions relevant to the construction of
the graph H only. Exact definitions will follow in the construction of H, and will be used
throughout the rest of this section.

Recall that B is the set of all blocks in G. We define another set of blocks B′ and
initialize it as B; the construction of H is iterative, and in each iteration, we eliminate a
block from B′. At the end of the construction of H, B′ is empty. For every block b ∈ B′,
we also define the set TouchingBlocks(b) of blocks which touch the block b, note that this
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. . . . . . . . .

PermutList(bi)
PermutList(bi+1)

PermutList(bj)

. . . . . . c . . . dd . . . cd . . . c a . . . bb . . . a

Figure 4 Example: The graph H consists of vertex sets PermutList(bi), i ∈ [|B|], where each such
partition contains all congestion free sequences of the at most k iteratively chosen touching blocks.
In the whole graph, we then create edges between the vertices of two such partitions if and only if the
corresponding sequences are inconsistent with each other, as seen in the three highlighted sequences.
Later we will distinguish between such edges connecting vertices of neighbouring partitions (w.r.t. the
topological order of their corresponding blocks), PermutList(bi) and PermutList(bi+1), and partitions
that are further away, PermutList(bi) and PermutList(bj). Edges of the latter type, depicted as red
in the figure, are called long edges and will be deleted in the trimming process of H.

set is dynamically defined: it depends on B′. Another set which is defined for every block
b is the set PermutList(b); this set actually corresponds to a set of vertices, each of which
corresponds to a valid congestion free permutation of blocks in TouchingBlocks(b). Clearly if
TouchingBlocks(b) does not contain any congestion-free permutation, then PermutList(b) is
an empty set. As we already mentioned, every vertex v ∈ PermutList(b) comes with a label
which corresponds to some congestion-free permutation of elements of TouchingBlocks(b).
We denote that permutation by Label (v).

Construction of H: We recursively construct a labelled graph H from the blocks of
G as follows.

i Set H := ∅, B′ := B, PermutList := ∅.
ii For i := 1, . . . , |B| do

1 Let b := b|B|−i+1.
2 Let TouchingBlocks(b) := {b′1, . . . , b′t} be the set of blocks in B′ touched by b.
3 Let π := {π1, . . . , π`} be the set of congestion free permutations of TouchingBlocks(b).
4 Set PermutList(b) := ∅.
5 For i ∈ [`] create a vertex vπi

with Label(vπi
) = πi and set PermutList(b) :=

PermutList(b) ∪ vπi
.

6 Set H := H ∪ PermutList(b).
7 Add edges between all pairs of vertices in H[PermutList(b)].
8 Add an edge between every pair of vertices v ∈ H[PermutList(b)] and u ∈ V (H) −

PermutList(b) if the labels of v and u are inconsistent.
9 Set B′ := B′ − b.

We have the following lemmas based on our construction.
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πbblue

πbgreen

πbred

topological order

a
b

...

...

c
a

...

a
b

c
a

Figure 5 Example: Select one of the permutations of length at most k from every PermutList(b).
These permutations obey the Touching Lemma. Taking the three permutations from the example
in Figure 3, we can see that the Touching Lemma forces a to be in the green permutation as well.
Assuming consistency, this would mean a to come before b and after c. Hence a <πgreen b and
b <πgreen a, a contradiction. So if our permutations are derived from H and are consistent, we will
show that cycles cannot occur in their dependency graph.

I Lemma 8. For Item (ii2) of the construction of H, t ≤ k holds.

I Lemma 9 (Touching Lemma). Let bj1 , bj2 , bj3 be three blocks (w.r.t. <) where j1 < j2 < j3.
Let bz be another block such that z /∈ {j1, j2, j3}. If in the process of constructing H, bz is in
the touch list of both bj1 and bj3 , then it is also in the touch list of bj2 .

For an illustration of the property described in the Touching Lemma, see Figure 5: it
refers to the dependency graph of Figure 3. This example also points out the problem with
directed cycles in the dependency graph and the property of the Touching Lemma, which is
crucial for Observation 10 and Lemma 11.

We prove a series of lemmas in regard to the dependency graph of elements of H, to
establish the base of the inductive proof for Lemma 13.

I Observation 10. Let π be a permutation of a set S. Then the dependency graph Gπ does
not contain a cycle.

I Lemma 11. Let π1, π2 be permutations of sets S1, S2 such that π1, π2 are consistent. Then
the dependency graph Gπ1∪π2 is acyclic.

In the next lemma, we need a closure of the dependency graph of permutations which we
define as follows.

I Definition 12 (Permutation Graph Closure). The permutation graph closure, or simply
closure, of a permutation π is the graph G+

π obtained from taking the transitive closure of
Gπ, i.e. its vertices and labels are the same as Gπ and there is an edge (u, v) in G+

π if there
is a path starting at u and ending at v in Gπ. Similarly the permutation graph closure of a
set of permutations Π = {π1, . . . , πn} is the graph obtained by taking the union of G+

πi
’s (for

i ∈ [n]) by identifying vertices of the same label.

In the above definition, note that if Π is a set of permutations, then GΠ ⊆ G+
Π. The

following lemma generalizes Lemma 11 and Observation 10 and uses them as the base of its
inductive proof.

I Lemma 13. Let I = {vπ1 , . . . , vπ`
} be an independent set in H. Then the dependency

graph GΠ, for Π = {π1, . . . , π`}, is acyclic.



S. Akhoondian Amiri, S. Dudycz, S. Schmid, and S. Wiederrecht 143:11

Proof. Instead of working on GΠ, we can work on its closure G+
Π as defined above. First

we observe that every edge in GΠ also appears in G+
Π, so if there is a cycle in GΠ, the same

cycle exists in G+
Π.

We prove that there is no cycle in G+
Π. By Lemma 11 and Observation 10 there is no

cycle of length at most 2 in G+
Π; otherwise there is a cycle in GΠ which consumes at most

two consistent permutations.
For the sake of contradiction, suppose G+

Π has a cycle and let C = (a1, . . . , an) ⊆ G+
Π be

a shortest cycle in G+
Π. By Lemma 11 and Observation 10 we know that n ≥ 3.

In the following, because we work on a cycle C, whenever we write any index i we consider
it w.r.t. its cyclic order on C, in fact i mod |C|+ 1. So for example, i = 0 and i = n are
identified as the same indices; similarly for i = n+ 1, i = 1, etc.

Recall the construction of the dependency graph where every vertex v ∈ C corresponds
to some block bv. In the remainder of this proof we do not distinguish between the vertex v
and the block bv.

Let πv be the label of a given vertex v ∈ I. For each edge e = (ai, ai+1) ∈ C, there is a
permutation πvi such that (ai, ai+1) is a subsequence of πvi and additionally the vertex vi is in
the set I. So there is a block bi such that πvi

is a permutation of the set TouchingBlocks(bi).
The edge e = (ai, ai+1) is said to represent bi, and we call it the representative of πvi

.
For each i we fix one block bi which is represented by the edge (ai, ai+1) (note that one edge
can represent many blocks, but here we fix one of them). We define the set of those blocks
as BI = {b1, . . . , b`} and state the following claim.

Claim 1. For every two distinct vertices ai, aj ∈ C, either there is no block b ∈ BI such that
ai, aj ∈ TouchingBlocks(b) or if ai, aj ∈ TouchingBlocks(b) then (ai, aj) or (aj , ai) is an
edge in C. Additionally

∣∣BI ∣∣ = |C|.

By the above claim we have ` = n. W.l.o.g. suppose b1 < b2 < . . . < bn. There is an i ∈ [n]
such that (ai−1, ai) represents b1, we fix this i.

Claim 2. If (ai−1, ai) represents b1 then (ai−2, ai−1) represents b2.

Similarly we can prove the endpoints of the edges, that have ai as their head, are in b2.

Claim 3. If (ai−1, ai) represents b1 then (ai, ai+1) represents b2.

By Claims 2 and 3 we have that both (ai−2, ai−1) and (ai, ai+1) represent b2 hence by
Claim 1 they are the same edge. Thus there is a cycle on the vertices ai−1, ai in G+

Π and this
gives a cycle in GΠ on at most 2 consistent permutations which is a contradiction according
to Lemma 11. J

The following lemma is the key to establish a link between independent sets in H and
feasible update sequences of the corresponding update flow network G.

I Lemma 14. There is a feasible sequence of updates for an update network G on k flow pairs,
if and only if there is an independent set of size |B| in H. Additionally if the independent
set I ⊆ V (H) of size |B| together with its vertex labels are given, then there is an algorithm
which can compute a feasible sequence of updates for G in O(k · |G|).

With Lemma 14, the update problem boils down to finding an independent set of size |B|
in H.
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Finding an independent set of size |B| in H is a hard problem already on very restricted
class families. Hence, we trim H to avoid the above problem. We will use the special
properties of the touching relation of blocks. We say that an edge e ∈ E(H) is long, if one
end of e is in PermutList(bi), and the other in PermutList(bj) where j > i+ 1. The length
of e is j − i. Delete all long edges from H to obtain the graph RH . We prove the following
lemmas.

I Lemma 15. There is an algorithm which computes RH in time O((k · k!)2 |G|).

I Lemma 16. H has an independent set I of size |B| if, and only if, I is also an independent
set of size |B| in RH .

RH is a much simpler graph compared to H, which helps us find a large independent set
of size |B| (if exists). We have the following lemma.

I Lemma 17. There is an algorithm that finds an independent set I of size exactly |B| in RH
if such an independent set exists; otherwise it outputs that there is no such an independent
set. The running time of this algorithm is O(|RH |).

Our main theorem is now a corollary of the previous lemmas and algorithms.

I Theorem 18. There is a linear time FPT algorithm for the network update problem on
an acyclic update flow network G with k flows (the parameter), which finds a feasible update
sequence, if it exists; otherwise it outputs that there is no feasible solution for the given
instance. The algorithm runs in time O(2O(k log k) |G|).

5 Conclusion

This paper initiated the study of a natural and fundamental reconfiguration problem: the
congestion-free rerouting of unsplittable flows. Interestingly, we find that while computing
disjoint paths on DAGs is W [1]-hard [23] and finding routes under congestion as well [1],
reconfiguring multicommodity flows is fixed parameter tractable on DAGs. However, we also
show that the problem is NP-hard for an arbitrary number of flows.

In future work, it will be interesting to chart a more comprehensive landscape of the
computational complexity for the network update problem. In particular, it would be
interesting to know whether the complexity can be reduced further, e.g., to 2O(k)O(|G|).
More generally, it will be interesting to study other flow graph families, especially more
sparse graphs or graphs of bounded DAG width [2, 6]. Finally, besides feasibility, it remains
to study algorithms to efficiently compute short schedules.
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Abstract
In an onion routing protocol, messages travel through several intermediaries before arriving at
their destinations; they are wrapped in layers of encryption (hence they are called “onions”). The
goal is to make it hard to establish who sent the message. It is a practical and widespread tool
for creating anonymous channels.

For the standard adversary models – passive and active – we present practical and provably
secure onion routing protocols. Akin to Tor, in our protocols each party independently chooses
the routing paths for his onions. For security parameter λ, our differentially private solution for
the active adversary takes O(log2 λ) rounds and requires every participant to transmit O(log4 λ)
onions in every round.
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1 Introduction

Anonymous channels are a prerequisite for protecting user privacy. But how do we achieve
anonymous channels in an Internet-like network that consists of point-to-point links?

If a user Alice wishes to send a message m to a user Bob, she may begin by encrypting
her message m under Bob’s public key to obtain the ciphertext cBob = Enc(pkBob,m).
But sending cBob directly to Bob would allow an eavesdropper to observe that Alice is in
communication with Bob. So instead, Alice may designate several intermediate relays, called
“mix-nodes” (typically chosen at random) and send the ciphertext through them, “wrapped”
in several layers of encryption so that the ciphertext received by a mix-node cannot be
linked to the ciphertext sent out by the mix-node. Each node decrypts each ciphertext it
receives (“peels off” a layer of encryption) and discovers the identity of the next node and the
ciphertext to send along. This approach to hiding who is talking to whom is called “onion
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routing” [10] (sometimes it is also called “anonymous remailer” [13]) because the ciphertexts
are layered, akin to onions; from now on we will refer to such ciphertexts as “onions”.

Onion routing is attractive for several reasons: (1) simplicity: users and developers
understand how it works; the only cryptographic tool it uses is encryption; (2) fault-tolerance:
it can easily tolerate and adapt to the failure of a subset of mix-nodes; (3) scalability: its
performance remains the same even as more and more users and mix-nodes are added to
the system. As a result, onion routing is what people use to obscure their online activities.
According to current statistics published by the Tor Project, Inc., Tor is used by millions of
users every day to add privacy to their communications [14,15]1.

In spite of its attractiveness and widespread use, the security of onion routing is not
well-understood.

The definitional question – what notion of security do we want to achieve? – has been
studied [3,20,21,28]. The most desirable notion, which we will refer to as “statistical privacy”,
requires that the adversary’s view in the protocol be distributed statistically independently of
who is trying to send messages to whom2. Unfortunately, a network adversary observing the
traffic flowing out of Alice and flowing into Bob can already make inferences about whether
Alice is talking to Bob. For example, if the adversary knows that Alice is sending a movie to
someone, but there isn’t enough traffic flowing into Bob’s computer to suggest that Bob is
receiving a movie, then Bob cannot be Alice’s interlocutor. (Participants’ inputs may also
affect others’ privacy in other ways [20].)

So let us consider the setting in which, in principle, statistical privacy can be achieved:
every party wants to anonymously send and receive just one short message to and from some
other party. Let us call this “the simple input-output (I/O) setting”. In the simple I/O
setting, anonymity can be achieved even against an adversary who can observe the entire
network if there is a trusted party through whom all messages are routed. Can onion routing
that does not rely on one trusted party emulate such a trusted party in the presence of a
powerful adversary?

Specifically, we may be dealing with the network adversary that observes all network
traffic; or the stronger passive adversary that, in addition to observing network traffic, also
observes the internal states of a fraction of the network nodes; or the most realistic active
adversary that observes network traffic and also controls a fraction of the nodes. Prior work
analyzing Tor [3, 20, 21] did not consider these standard adversary models. Instead, they
focused on the adversary who was entirely absent from some regions of the network, but
resourceful adversaries (such as the NSA) and adversaries running sophisticated attacks
(such as BGP hijacking [29]) may receive the full view of the network traffic, and may also
infiltrate the collection of mix-nodes.

Surprisingly, despite its real-world importance, we were the first to consider this question.
Warm-up: An oblivious permutation algorithm between a memory-constrained client

and an untrusted storage server enables the client to permute a sequence of (encrypted) data
blocks stored on the server without the server learning anything (in the statistical sense)
about the permutation.

1 Tor stands for “the onion router”, and even though the underlying mechanics are somewhat different
from what we described above (instead of using public-key encryption, participants carry out key
exchange so that the rest of the communication can be more efficient), the underlying theory is still the
same.

2 Technically, since onion routing uses encryption, the adversary’s view cannot be statistically independent
of the input, but at best computationally independent. However, as we will see, if we work in an
idealized encryption model, such as in Canetti’s FEnc-hybrid model [7], statistical privacy makes sense.
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I Theorem 1. Any oblivious permutation algorithms can be adapted into a communications
protocol for achieving statistical privacy from the network adversary.

As an example, Ohrimenko et al. [26] presented a family of efficient oblivious permutation
algorithms. This can be adapted into a secure and “tunable” OR protocol that can trade
off between low server load and latency. Letting λ denote the security parameter, for
any B ∈ [

√
N

log2 λ
], this protocol can be set to run in O( logN

logB ) rounds with communication
complexity overhead O(B logN log2 λ

logB ) and server load O(B log2 λ).
However, to be secure from the passive adversary, we need more resources. We prove for

the first time that onion routing can provide statistical privacy from the passive adversary,
while being efficient.
1. We prove that our solution, Πp, is statistically private from any passive adversary capable

of monitoring any constant κ ∈ [0, 1) of the mix-nodes, while having communication
complexity overhead O(log2 λ), server load O(log2 λ), and latency O(log2 λ), where λ
denotes the security parameter. (See Section 4.)

However, for most realistic input settings (not constrained to the simple I/O setting),
statistical privacy is too ambitious a goal. It is not attainable even with a trusted third party.
Following recent literature [3,31], for our final result, let us not restrict users’ inputs, and
settle for a weaker notion of privacy, namely, differential privacy.

Our definition of differential privacy requires that the difference between the adversary’s
view when Alice sends a message to Bob and its view when she does not send a message
at all or sends it to Carol instead, is small. This is meaningful; showing that the protocol
achieves differential privacy gives every user a guarantee that sending her message through
does not change the adversary’s observations very much.

2. Our solution, Πa, can defend against the active adversary while having communication
complexity overhead O(log6 λ), server load O(log4 λ), and latency O(log2 λ). This is the
first provably secure peer-to-peer solution that also provides a level of robustness; unless
the adversary forces the honest players to abort the protocol run, most messages that are
not dropped by the adversary are delivered to their final destinations. (See Section 5.)

To prepare onions, we use a cryptographic scheme that is strong enough that, effectively,
the only thing that the active adversary can do with onions generated by honest parties is to
drop them (see the onion cryptosystem by Camenisch and Lysyanskaya [6] for an example
of a sufficiently strong cryptosystem). Unfortunately, even with such a scheme, it is still
tricky to protect Alice’s privacy against an adversary that targets Alice specifically. Suppose
that an adversarial Bob is expecting a message of a particular form from an anonymous
interlocutor, and wants to figure out if it was Alice or not. If the adversary succeeds in
blocking all of Alice’s onions and not too many of the onions from other parties, and then
Bob never receives the expected message, then the adversary’s hunch that it was Alice will
be confirmed.

How do we prevent this attack? For this attack to work, the adversary would have to
drop a large number of onions – there is enough cover traffic in our protocol that dropping
just a few onions does not do much. But once a large enough number of onions is dropped,
the honest mix-nodes will detect that an attack is taking place, and will shut down before
any onions are delivered to their destinations. Specifically, if enough onions survive half of
the rounds, then privacy is guaranteed through having sufficient cover; otherwise, privacy is
guaranteed because no message reaches its final destination with overwhelming probability.
So the adversary does not learn anything about the destination of Alice’s onions.
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In order to make it possible for the mix-nodes to detect that an attack is taking place, our
honest users create “checkpoint” onions. These onions don’t carry any messages; instead, they
are designed to be “verified” by a particular mix-node in a particular round. These checkpoint
onions are expected by the mix-node, so if one of them does not arrive, the mix-node in
question realizes that something is wrong. If enough checkpoint onions are missing, the
mix-node determines that an attack is underway and shuts down. Two different users, Alice
and Allison, use a PRF with a shared key (this shared key need not be pre-computed, but can
instead be derived from a discrete-log based public-key infrastructure under the decisional
Diffie-Hellman assumption) in order to determine whether Alice should create a checkpoint
onion that will mirror Allison’s checkpoint onion.

Related work

Encryption schemes that are appropriate for onion routing are known [2, 6]. Several papers
attempted to define anonymity for communications protocols and to analyze Tor [20, 21, 28].
Backes et al. [3] were the first to consider a notion inspired by differential privacy [18] but,
in analyzing Tor, they assume an adversary with only a partial view of the network. There
are also some studies on anonymity protocols, other than onion routing protocols, that were
analyzed using information-theoretic measures [1, 4, 8, 16,24]. In contrast, all the protocols
presented in this paper are provably secure against powerful adversaries that can observe all
network traffic. The system, Vuvuzela [31], assumes that all messages travel through the same
set of dedicated servers and is, therefore, impractical compared to Tor. Recently proposed
systems, Stadium [30] and Atom [25] are distributed but not robust; they rely on verifiable
shuffling to detect and abort. A variant of Atom is robust at a cost in security; it only
achieves k-anonymity [25]. In contrast, our solution for the active adversary is distributed
while maintaining low latency, and robust while being provably secure.

Achieving anonymous channels using heavier cryptographic machinery has been considered
also. One of the earliest examples is Chaum’s dining cryptographer’s protocol [9]. Rackoff and
Simon [27] use secure multiparty computation for providing security from active adversaries.
Other cryptographic tools used in constructing anonymity protocols include oblivious RAM
(ORAM) and private information retrieval (PIR) [11, 12]. Corrigan-Gibbs et al.’s Riposte
solution makes use of a global bulletin board and has a latency of a couple of days [12]. The
aforementioned Stadium [25] is another solution for a public forum. Blaze et al. [5] provided
an anonymity protocol in the wireless (rather than point-to-point) setting.

2 Preliminaries

Notation

By the notation [n], we mean the set {1, . . . , n} of integers. The output a of an algorithm A

is denoted by a← A. For a set S, we write s← S to represent that s is a uniformly random
sample from the set S and |S|, to represent its cardinality. A realization d of a distribution D
is denoted d ∼ D; by d ∼ Binomial(N, p), we mean that d is a realization of a binomial
random variable with parameters N and p. By log(n), we mean the logarithm of n, base 2;
and by ln(n), we mean the natural log of n.

A function f : N→ R is negligible in λ, written f(λ) = negl(λ), if for every polynomial p(·)
and all sufficiently large λ, f(λ) < 1/p(λ). When λ is the security parameter, we say that
an event occurs with overwhelming probability if it is the complement of an event with
probability negligible in λ. Two families of distributions {D0,λ}λ∈N and {D1,λ}λ∈N are
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statistically close if the statistical distance between D0,λ and D1,λ is negligible in λ; we
abbreviate this notion by D0 ≈s D1 when the security parameter is clear by context. We use
the standard notion of a pseudorandom function [22, Ch. 3.6].

Onion routing

Following Camenisch and Lysyanskaya’s work on cryptographic onions [6], an onion routing
scheme is a triple of algorithms: (Gen,FormOnion,ProcOnion). The algorithm, Gen, generates
a public-key infrastructure for a set of parties. The algorithm, FormOnion, forms onions; and
the algorithm, ProcOnion, processes onions.

Given a set [N ] of parties, for every i ∈ [N ], let (pki, ski) ← Gen(1λ) be the key pair
generated for party i ∈ [N ], where λ denotes the security parameter.

FormOnion takes as input: a message m, an ordered list (P1, . . . , PL+1) of parties from [N ],
and the public-keys (pkP1 , . . . , pkPL+1

) associated with these parties, and a list (s1, . . . , sL) of
(possibly empty) strings that are nonces associated with layers of the onion. The party PL+1
is interpreted as the recipient of the message, and the list (P1, . . . , PL+1) is the routing path of
the message. The output of FormOnion is a sequence (O1, . . . , OL+1) of onions. Because it is
convenient to think of an onion as a layered encryption object, where processing an onion Or
produces the next onion Or+1, we sometimes refer to the process of revealing the next layer of
an onion as “decrypting the onion”, or “peeling the onion”. For every r ∈ [L], only party Pr
can peel onion Or to reveal the next layer, (Pr+1, Or+1, sr+1) ← ProcOnion(skPr

, Or, Pr),
of the onion containing the “peeled” onion Or+1, the “next destination” Pr+1, and the
nonce sr+1. Only the recipient PL+1 can peel the innermost onion OL+1 to reveal the
message, m← ProcOnion(skPL+1 , OL+1, PL+1).

Let O0 be an onion formed from running FormOnion(m0, P
0, pk0, s0), and let O1 be

another onion formed from running FormOnion(m1, P
1, pk1, s1). Importantly, a party that

can’t peel either onion can’t tell which input produced which onion. See Camenisch and
Lysyanskaya’s paper [6] for formal definitions.

In our protocols, a sender of a message m to a recipient j “forms an onion” by generating
nonces and running the FormOnion algorithm on the messagem, a routing path (P1, . . . , PL, j),
the public keys (pkP1 , . . . , pkPL

, pkj) associated with the parties on the routing path, and
the generated nonces; the “formed onion” is the first onion O1 from the list of outputted
onions. The sender sends O1 to the first party P1 on the routing path, who processes it and
sends the peeled onion O2 to the next destination P2, and so on, until the last onion OL+1 is
received by the recipient j, who processes it to obtain the message m.

3 Definitions

We model the network as a graph with N nodes, and we assume that these nodes are
synchronized. This way, any onion can be sent from any sender to any receiver, and also its
transmission occurs within a single round.

Every participant is a user client, and some user clients also serve as mix-nodes. In
all the definitions, the N users participating in an communications protocol Π are labeled
1, . . . , N ; and the number N of users is assumed to be polynomially-bounded in the security
parameter λ. Every input to a protocol is an N -dimensional vector. When a protocol runs on
input σ = (σ1, . . . , σN ), it means that the protocol is instantiated with each user i receiving
σi as input. M denotes the (bounded) message space. A message pair (m, j) is properly
formed if m ∈M and j ∈ [N ]. The input σi to each user i ∈ [N ] is a collection of properly
formed message pairs, where (m, j) ∈ σi means that user i intends on sending message m to
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user j. Let M(σ) denote the “messages in σ”. It is the multiset of all message pairs in σ,
that is M(σ1, . . . , σN ) =

⋃N
i=1 {(m, j) ∈ σi} .

For analyzing our solutions, it is helpful to first assume an idealized version of an
encryption scheme, in which the ciphertexts are information-theoretically unrelated to the
plaintexts that they encrypt and reveal nothing but the length of the plaintext. Obviously,
such encryption schemes do not exist computationally, but only in a hybrid model with an
oracle that realizes an ideal encryption functionality, such as that of Canetti [7]. When
used in forming onions, such an encryption scheme gives rise to onions that are information-
theoretically independent of their contents, destinations, and identities of the mix-nodes.
Our real-life proposal, of course, will use standard computationally secure encryption [17].
We discuss the implications of this in the full version of this paper.

Views and outputs

We consider the following standard adversary models, in increasing order of capabilities:
1. Network adversary. A network adversary can observe the bits flowing on every link

of the network. (Note that if the peer-to-peer links are encrypted in an idealized sense,
then the only information that the adversary can use is the volume flow.)

2. Passive adversary. In addition to the capabilities of a network adversary, a passive
adversary can monitor the internal states and operations of a constant fraction of the
parties. The adversary’s choices for which parties to monitor are made non-adaptively
over the course of the execution run.

3. Active adversary. In addition to the capabilities of a network adversary, an active
adversary can corrupt a constant fraction of the parties. The adversary’s choices for
which parties to corrupt are made non-adaptively over the course of the execution run.
The adversary can change the behavior of corrupted parties to deviate arbitrarily from
the protocol.

Let Π be a protocol, and let σ be a vector of inputs to Π. Given an adversary A, the
view V Π,A(σ) of A is its observables from participating in Π on input σ plus any randomness
used to make its decisions. With idealized secure peer-to-peer links, the observables for a
network adversary are the traffic volumes on all links; whereas for the passive and active
adversaries, the observables additionally include the internal states and computations of all
monitored / corrupted parties at all times.

Given an adversary A, the output OΠ,A(σ) = (OΠ,A
1 (σ), . . . , OΠ,A

N (σ)) of Π on input σ is
a vector of outputs for the N parties.

3.1 Privacy definitions
How do we define security for an anonymous channel? The adversary’s view also includes
the internal states of corrupted parties. In such case, we may wish to protect the identities
of honest senders from the recipients that are in cahoots with the adversary. However,
even an ideal anonymous channel cannot prevent the contents of messages (including the
volumes of messages) from providing a clue on who sent the messages; thus any “message
content” leakage should be outside the purview of an anonymous channel. To that end, we
say that an communications protocol is secure if it is difficult for the adversary to learn who
is communicating with whom, beyond what leaks from captured messages.

Below, we provide two flavors of this security notion; we will prove that our constructions
achieve either statistical privacy or (ε, δ)-differential privacy [19, Defn. 2.4] in the idealized
encryption setting.
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I Definition 2 (Statistical privacy). Let Σ∗ be the input set consisting of every input of the
form σ = ({(m1, π(1))}, . . . , {(mN , π(N))}), where π : [N ]→ [N ] is any permutation function
over the set [N ], and mi ∈M for every i ∈ [N ]. A communications protocol Π is statistically
private from every adversary from the class A if for all A ∈ A and for all σ0, σ1 ∈ Σ∗ that
differ only on the honest parties’ inputs and outputs, the adversary’s views V Π,A(σ0) and
V Π,A(σ1) are statistically indistinguishable, i.e., ∆(V Π,A(σ0), V Π,A(σ1)) = negl(λ), where
λ ∈ N denotes the security parameter, and ∆(·, ·) denotes statistical distance (i.e., total
variation distance). Π is perfectly secure if the statistical distance is zero instead.

I Definition 3 (Distance between inputs). The distance d(σ0, σ1) between two inputs σ0 =
(σ0,1, . . . , σ0,N ) and σ1 = (σ1,1, . . . , σ1,N ) is given by d(σ0, σ1) def=

∑N
i=1 |σ0,i∇σ1,i|, where

(·∇·) denotes the symmetric difference.

I Definition 4 (Neighboring inputs). Two inputs σ0 and σ1 are neighboring if d(σ0, σ1) ≤ 1.

I Definition 5 ((ε, δ)-DP [19, Defn. 2.4]). Let Σ be the set of all valid inputs. A communic-
ations protocol is (ε, δ)-DP from every adversary in the class A if for all A ∈ A, for every
neighboring inputs σ0, σ1 ∈ Σ that differ only on an honest party’s input and an honest
party’s output, and any set V of views, Pr[V Π,A(σ0) ∈ V ] ≤ eε · Pr[V Π,A(σ1) ∈ V ] + δ.

While differential privacy is defined with respect to neighboring inputs, it also provides (albeit
weaker) guarantees for non-neighboring inputs; it is known that the security parameters
degrade proportionally in the distance between the inputs [19].

3.2 Other performance metrics
Since message delivery cannot be guaranteed in the presence of an active adversary, we define
correctness with respect to passive adversaries.

I Definition 6 (Correctness). A communications protocol Π is correct on an input σ ∈ Σ if
for any passive adversary A, and for every recipient j ∈ [N ], the output OΠ,A

j (σ) corresponds
to the multiset of all messages for recipient j in the input vector σ. That is, OΠ,A

j (σ) =
{m |(m, j) ∈M(σ)} , where M(σ) denotes the multiset of all messages in σ.

Efficiency of OR protocols

The communication complexity blow-up of an onion routing (OR) protocol measures how
many more onion transmissions are required by the protocol, compared with transmitting
the messages in onions directly from the senders to the recipients (without passing through
intermediaries). We assume that every message m ∈M in the message spaceM “fits” into a
single onion. The communication complexity is measured in unit onions, which is appropriate
when the parties pass primarily onions to each other.

I Definition 7 (Communication complexity blow-up). The communication complexity blow-up
of an OR protocol Π is defined with respect to an input vector σ and an adversary A.
Denoted γΠ,A(σ), it is the expected ratio between the total number ΓΠ,A(σ) of onions
transmitted in protocol Π and the total number |M(σ)| of messages in the input vector.
That is, γΠ,A(σ) def= E

[
ΓΠ,A(σ)
|M(σ)|

]
.

I Definition 8 (Server load). The server load of an OR protocol Π is defined with respect to
an input vector σ and an adversary A. It is the expected number of onions processed by a
single party in a round.
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I Definition 9 (Latency). The latency of an OR protocol Π is defined with respect to an
input vector σ and an adversary A. It is the expected number of rounds in a protocol
execution.

In addition to having low (i.e., polylog in the security parameter) communication com-
plexity blow-ups, we will show that our OR protocols have low (i.e., polylog in the security
parameter) server load and low (i.e., polylog in the security parameter) latency.

4 The passive adversary

Communication patterns can trivially be hidden by sending every message to every participant
in the network, but this solution is not scalable as it requires a communication complexity
blow-up that is linear in the number of participants. Here, we prove that an OR protocol can
provide anonymity from the passive adversary while being practical with low communication
complexity and low server load.

To do this, every user must send and receive the same number of messages as any other
user; otherwise, the sender-receiver relation can leak from the differing volumes of messages
sent and received by the users. In other words, every user essentially commits to sending
a message, be it the empty message ⊥ to itself. Let Σ∗ be the set of all input vectors of
the form σ = ({(m1, π(1))}, . . . , {(mN , π(N))}), where π : [N ] → [N ] is any permutation
function over the set [N ], and m1, . . . ,mN are any messages from the message spaceM; our
solution, Πp, is presented in the setting where the input vector is constrained to Σ∗.

Let [N ] be the set of users, and S = {S1, . . . , Sn} ⊂ [N ] the set of servers. Πp uses a
secure onion routing scheme, denoted by OR = (Gen,FormOnion,ProcOnion), as a primitive
building block. For every i ∈ [N ], let (pki, ski) ← Gen(1λ) be the key pair generated for
party i, where λ denotes the security parameter.

During a setup phase, each user i ∈ [N ] creates an onion. On input σi = {(m, j)},
user i first picks a sequence T1, . . . , TL servers, where each server is chosen independently
and uniformly at random, and then forms an onion from the message m, the routing
path (T1, . . . , TL, j), the public keys (pkT1

, . . . , pkTL
, pkj) associated with the parties on the

routing path, and a list of empty nonces. At the first round of the protocol run, user i sends
the formed onion to the first hop T1 on the routing path.

After every round i ∈ [L] (but before round i+1) of the protocol run, each server processes
the onions it received at round i. At round i+ 1, the resulting peeled onions are sent to their
respective next destinations in random order. At round L+ 1, every user receives an onion
and processes it to reveal a message.

Correctness and efficiency

Clearly, Πp is correct. In Πp, N messages are transmitted in each of the L+ 1 rounds of the
protocol run. Thus, the communication complexity blow-up and the latency are both L+ 1.
The server load is N

n .

Privacy

To prove that Πp is statistically private from the passive adversary, we first prove that it is
secure from the network adversary.

I Theorem 10. Πp is statistically private from the network adversary when N
n = Ω(log2 λ),

and L = Ω(log2 λ), where λ ∈ N denotes the security parameter.
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Proof. Let N
n = α log2 λ; so that after each round, every location receives α log2 λ onions

in expectation. We recast our problem as a balls-in-bins problem, where the balls are the
onions, and the bins, the locations. At every round of the protocol, all αn log2 λ balls (i.e.,
onions) are thrown uniformly at random into n bins (i.e., each onion is routed to one of n
locations, chosen independently and uniformly at random).

Fix any target sender U , and let Xr = (Xr
1 , . . . , X

r
n) be a vector of non-negative numbers

summing to one, representing A’s best estimate for the location of U ’s ball after r rounds
(and before round r + 1); for every i ∈ [n], Xr

i is the likelihood that bin i contains U ’s ball
after r rounds. Let (Xr

fr(1), . . . , X
r
fr(n)) be the result of sorting (Xr

1 , . . . , X
r
n) in decreasing

order, where fr : [n]→ [n] is a permutation function over the set [n]. For every i ∈ [n], let
bri = fr(i) be the index of the bin with the i-th largest likelihood at round r.

W.l.o.g. we assume that n is divisible by three. We partition the bins into three groups
Gr1, Gr2, and Gr3; such that Gr1 contains all the balls in the top one-third most likely bins
br1, . . . , b

r
n
3
; Gr3 contains all the balls in the bottom one-third most likely bins br2n

3 +1, . . . , b
r
n;

and Gr2 contains all the balls in the remaining bins brn
3 +1, . . . , b

r
2n
3
.

For each j ∈ [3], let Orj ∈ Grj be a ball with the maximum likelihood of being U ’s onion
among the balls in group Grj . For any d ∈ (0, 1), let d′ = 1− 1

1+d . Let c
r
j be the bin containing

Orj . The bin crj contains at least (1− d′)α log2 λ balls (Chernoff bounds for Poisson trials).
It follows that,

Pr[Orj is U ’s onion] ≤ (1 + d)
Xr
cr

j

α log2 λ
≤ (1 + d)

Xr
(j−1)n

3 +1

α log2 λ
(1)

with overwhelming probability, where Xr
(j−1)n

3 +1
is the likelihood of the most likely bin in

group Gj .
The number of balls contained in each group Grj is arbitrarily close to the expected number

α
3 n log2 λ of balls in a group (Chernoff bounds). Thus, the most probable bin br+1

1 after the
next round receives at most (1+d)α

3 log2 λ balls from each of the three groups: Gr1, Gr2, and Gr3.
From (1), this implies that, with overwhelming probability, Xr+1

1 ≤ (1+d)2

3
∑3
j=1X

r
(j−1)n

3 +1
.

Using a symmetric argument, we can conclude that, with overwhelming probability, Xr+1
n ≥

(1−d)2

3
∑3
j=1X

r
jn
3
, where Xr

jn
3

is the likelihood of the least likely bin in group Gj .
For all r ∈ [L], define gr = Xr

1 −Xr
n as the difference in likelihoods between the most

and least likely bins at round r.

gr+1 ≤
(1 + d)2∑3

j=1X
r
(j−1)n

3 +1

3 −
(1− d)2∑3

j=1X
r
jn
3

3 ≤ 1
2 (Xr

1 −Xr
n) = gr

2 ,

where the latter inequality follows from telescopic cancelling, since Xr
n
3 +1 ≤ Xr

n
3
, and

Xr
2n
3 +1 ≤ X

r
2n
3
.

The difference gr is at least halved at every round. By round log2 λ, the difference is
negligible in λ. Thus, after traveling L random hops, each onion becomes unlinked from its
sender. Since everyone sends the same number of onions, and everyone receives the same
number of onions; it follows that the adversary’s views from any two inputs are statistically
indistinguishable.

In the proof above, the bins were partitioned into three groups at every round. By
partitioning the bins into an appropriately large constant number of groups, we can show
that Πp achieves statistical privacy after L = Ω(log2 λ) rounds. J

We are now ready to prove the main result of this section:
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I Theorem 11. Πp is statistically private from the passive adversary capable of monitoring
any constant fraction κ ∈ [0, 1) of the servers when N

n = Ω(log2 λ), and L = Ω(log2 λ), where
λ ∈ N denotes the security parameter.

Proof. We prove this by cases.
In the first case, σ1 is the same as σ0 except that the inputs of two users are swapped,

i.e., d(σ0, σ1) = 2. Using Chernoff bounds for Poisson trials, there are at least some polylog
number of rounds where the swapped onions are both routed to an honest bin (not necessarily
the same bin). From Theorem 10, after the polylog number of steps, the locations of these
two target onions are statistically indistinguishable from each other.

In the second case, d(σ0, σ1) > 2. However, the distance between σ0 and σ1 is always
polynomially bounded. By a simple hybrid argument, it follows that V Π,A(σ0) ≈s V Π,A(σ1)
from case 1. J

Remark: Protocol Πp is not secure from the active adversary. This is because, with
non-negligible probability, any honest user will choose a corrupted party as its first hop on
its onion’s routing path, in which case the adversary can drop the target user’s onion at the
first hop and observe who does not receive an onion at the last round.

5 The active adversary

We now present an OR protocol, Πa, that is secure from the active adversary. The setting for
Πa is different from that of our previous solution in a couple of important ways. Whereas Πp

is statistically private from the passive adversary, Πa is only differentially private from the
active adversary. The upside is that we are no longer constrained to operate in the simple
I/O setting; the input can be any valid input.

We let [N ] be the set of N parties participating in a protocol. Every party is both a
user and a server. As before, OR = (Gen,FormOnion,ProcOnion) is a secure onion routing
scheme; and for every i ∈ [N ], (pki, ski)← Gen(1λ) denotes the key pair generated for party i,
where λ is the security parameter. Further, we assume that every pair (i, k) ∈ [N ]2 of parties
shares a common secret key3, denoted by ski,k. F is a pseudorandom function (PRF).

We describe the protocol by the setup and routing algorithms for party i ∈ [N ]; each
honest party runs the same algorithms.

Setup

Let L = β log2 λ for some constant β > 0. During the setup phase, party i prepares a set of
onions from its input. For every message pair u = {m, j} in party i’s input, party i picks a
sequence Tu1 , . . . , T uL of parties, where each party Tu` is chosen independently and uniformly
at random, and forms an onion from the message m, the routing path (Tu1 , . . . , T uL , j), the
public keys (pkTu

1
, . . . , pkTu

L
, pkj), and a list of empty nonces.

Additionally, party i forms some dummy onions, where a dummy onion is an onion formed
using the empty message ⊥.
1: for every index (r, k) ∈ [L]× [N ]:
2: compute b← F (ski,k, session + r, 0), where session ∈ N denotes the protocol instance.
3: if b ≡ 1 – set to occur with frequency α log2 λ

N for some constant α > 0 – do:

3 In practice, the shared keys do not need to be set up in advance; they can be generated as needed from
an existing PKI, e.g., using Diffie-Hellman.
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4: choose a list T r,k = (T r,k1 , . . . , T r,kr−1, T
r,k
r+1, . . . , T

r,k
L+1) parties, where each party is

chosen independently and uniformly at random;
5: create a list sr,k = (sr,k1 , . . . , sr,k2 ) of nonces, where

sr,kr = (checkpt, F (ski,k, session + r, 1)), and all other elements of sr,k are ⊥; and
6: form a dummy onion using the message ⊥, the routing path T r,k, the public keys

associated with T r,k, and the list sr,k of nonces. end if, end for

The additional information sr,kr is embedded in only the r-th layer; no additional inform-
ation is embedded in any other layer. At the first round of the protocol run (after setup), all
formed onions are sent to their respective first hops.

Routing

If party i forms a dummy onion with nonce sr,kr embedded in the r-th layer, then it expects
to receive a symmetric dummy onion at the r-th round formed by another party k that,
when processed, reveals the same nonce sr,kr . If many checkpoint nonces are missing, then
party i knows to abort the protocol run.

After every round r ∈ [L] (but before round r + 1), party i peels the onions it received
at round r and counts the number of missing checkpoint nonces. If the count exceeds a
threshold value t, the party aborts the protocol run; otherwise, at round r + 1, the peeled
onions are sent to their next destinations in random order. After the final round, party i
outputs the set of messages revealed from processing its the onions it receives at round L+ 1.

Correctness and efficiency

Recalling that correctness is defined with respect to the passive adversary, Πa is clearly
correct. Moreover, unless an honest party aborts the protocol run, all messages that are not
dropped by the adversary are delivered to their final destinations. In Πa, the communication
complexity blow-up is O(log6 λ), since the latency is L + 1 = O(log2 λ) rounds, and the
server load is O(log4 λ).

Privacy

To prove that Πa is secure, we require that the thresholding mechanism does its job:

I Lemma 12. In Πa, if F is a random function, t = c(1 − d)(1 − κ)2α log2 λ for some
c, d ∈ (0, 1), and an honest party does not abort within the first r rounds of the protocol run,
then with overwhelming probability, at least (1 − c) of the dummy onions created between
honest parties survive at least (r − 1) rounds, even in the presence of an active adversary
non-adaptively corrupting a constant fraction κ ∈ [0, 1) of the parties.

The proof relies on a known concentration bound for the hypergeometric distribution [23]
and can be found in the full version of this paper.

I Theorem 13. If, in Πa, F is a random function, N ≥ 3
1−κ , and t = c(1−d)(1−κ)2α log2 λ

for some c, d ∈ (0, 1), then, for αβ ≥ − 36(1+ε/2)2 ln(δ/4)
(1−c)(1−κ)2ε2 , Πa is (ε, δ)-DP from the active

adversary non-adaptively corrupting a constant fraction κ ∈ [0, 1) of the parties.

Proof. The proof is by cases.
Case 1: All honest parties abort within the first half of the protocol run. With

overwhelming probability, no onion created by an honest party will be delivered to its final
destination (Chernoff bounds for Poisson trials), and so the adversary doesn’t learn anything.
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Case 2: Some honest party doesn’t abort within the first half of the protocol run. Let A
be any adversary that non-adaptively corrupts a constant κ ∈ [0, 1) of the parties. Suppose
that for every onion that survive the first half of the protocol run, a dark angel provides the
adversary A with the second half of the onion’s routing path. Further suppose that no other
onions are dropped in the second half of the protocol run. (If more onions are dropped, then
Πa is secure from the post-processing theorem for differential privacy [19, Proposition 2.1].)

For any two neighboring inputs σ0 and σ1, the only difference in the adversary’s views,
V Πa,A(σ0) and V Πa,A(σ1), is the routing of a single onion O. If there is an honest party
who does not abort within the first half of the protocol run, then from Lemma 12, some
constant fraction of the dummy onions created by the honest parties survive the first half of
the protocol run with overwhelming probability. So, from Theorem 11, the onions are no
longer linked to their senders by the end of the first half of the protocol run. Thus, the only
information that A could find useful is the volume of onions sent out by the sender Ps of the
extra onion O and the volume of onions received by the receiver Pr of O.

Let X denote the number of dummy onions created by Ps. For every (k, r) ∈ [L]× [N ], an
honest sender Ps creates a dummy onion with probability α log2 λ

N ; so X ∼ Binomial(H, p),
where H = LN , and p = α log2 λ

N .
Let Y ∼ Binomial(G, q) be another binomial random variable with parameters G =

L(1−κ)2N2

3 and q = (1−c)α log2 λ
N2 . For N ≥ 3

1−κ and sufficiently small d > 0, G ≤ (1 −
d)L

((1−κ)N−1
2

)
; thus, with overwhelming probability, Y is less than the number of dummy

onions created between honest non-Ps parties and received by Pr in the final round (Chernoff
bounds).

Let O def= N× N be the sample space for the multivariate random variable (X,Y ).
Let O1 be the event that |X−E[X]| ≤ d′E[X], and |Y −E[Y ]| ≤ d′E[Y ], where d′ = ε/2

1+ε/2 ,
E[X] = Hp is the expected value of X, and E[Y ] = Gq is the expected value of Y ; and let
Ō1 be the complement of O1.

For every (x, y) ∈ O1, we can show that

max
(

Pr[(X,Y ) = (x, y)]
Pr[(X,Y ) = (x+ 1, y + 1)] ,

Pr[(X,Y ) = (x+ 1, y + 1)]
Pr[(X,Y ) = (x, y)]

)
≤ eε. (2)

We can also show that the probability of the tail event Ō1 occurring is negligible in λ and at
most δ when αβ ≥ − 36(1+ε/2)2 ln(δ/4)

(1−c)(1−κ)2ε2 . (See the full version of this paper.)
Any event E can be decomposed into two subsets E1 and E2, such that (1) E = E1 ∪ E2,

(2) E1 ⊆ O1, and (3) E2 ⊆ Ō1. It follows that, for every event E ,

Pr[(X,Y ) ∈ E ] ≤ eε · Pr[(X + 1, Y + 1) ∈ E ] + δ, and (3)
Pr[(X + 1, Y + 1) ∈ E ] ≤ eε · Pr[(X,Y ) ∈ E ] + δ. (4)

The views V Πa,A(σ0) and V Πa,A(σ1) are the same except that O exists in one of the
views but not in the other. Thus, (3) and (4) suffice to show that for any set V of views and
for any b ∈ {0, 1}, Pr[V Πa,A

b ∈ V ] ≤ eε · Pr[V Πa,A
b̄

∈ V ] + δ, where b̄ = b+ 1 mod 2. J

Remark: Our protocols are for a single-pass setting, where the users send out messages
once. It is clear how our statistical privacy results would compose for the multi-pass case.
To prove that Πa also provides differential privacy in the multi-pass scenario – albeit for
degraded security parameters – we can use the k-fold composition theorem [19]; the noise
falls at a rate of the square-root of the number of runs.
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Abstract
We consider a set of transmitters broadcasting simultaneously on the same frequency under the
SINR model. Transmission power may vary from one transmitter to another, and a signal’s
strength decreases (path loss or path attenuation) by some constant power α of the distance
traveled. Roughly, a receiver at a given location can hear a specific transmitter only if the
transmitter’s signal is stronger than the signal of all other transmitters, combined. An SINR
query is to determine whether a receiver at a given location can hear any transmitter, and if yes,
which one.

An approximate answer to an SINR query is such that one gets a definite yes or definite no,
when the ratio between the strongest signal and all other signals combined is well above or well
below the reception threshold, while the answer in the intermediate range is allowed to be either
yes or no.

We describe several compact data structures that support approximate SINR queries in the
plane in a dynamic context, i.e., where both queries and updates (insertion or deletion of a
transmitter) can be performed efficiently.
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145:2 Resolving SINR Queries in a Dynamic Setting

Table 1 Approximate SINR queries in a static setting – previous results. ϕ is an upper bound
on the fatness parameters of the reception regions and ϕ′ ≥ ϕ2.

Preprocessing Space Query

Uniform Power [5] O(n2/ε) (O(nε−2.5 log4 n log log n) [3]) O(n/ε) O(log n)

Non-Uniform Power [10] O(ϕ′

ε2 n2) O(ϕ′

ε2 n) O(ϕ

ε
log n)

1 Introduction

The Signal to Interference plus Noise Ratio (SINR) model attempts to predict whether a
wireless transmission is received successfully, in a setting consisting of multiple simultaneous
transmitters in the presence of background noise. Let S = {s1, . . . , sn} be a set of n
transmitters (points in the plane), and let pi denote the transmission power of si, for
i = 1, . . . , n. Let q be a receiver (a point in the plane). According to the SINR model, q
receives si if and only if

sinr (q, si) =
pi
|qsi|α∑

j 6=i
pj
|qsj |α +N

≥ β ,

where α ≥ 1 and β > 1 are constants, N is a constant representing the background noise,
and |ab| is the Euclidean distance between points a and b.

Observe that, since β > 1, q may receive at most one transmitter – the one “closest” to it,
namely, the one for which the value pi

|qsi|α is maximum, or, equivalently, 1
p

1/α
i

|qsi| is minimum.
Thus, one can partition the plane into n not necessarily connected reception regions Ri, one
per transmitter in S, plus an additional region R∅ consisting of all points where none of the
transmitters is received. This partition is called the SINR diagram of S [5].

In their seminal paper, Avin et al. [5] studied properties of SINR diagrams, focusing on
the uniform power version where p1 = p2 = · · · = pn. Their main result is that in this version
the reception regions Ri are convex and fat. In the non-uniform power version, on the other
hand, the reception regions are not necessarily connected, and their connected components
are not necessarily convex or fat. In fact, they may contain holes [10].

An SINR query is: Given a receiver q, find the sole transmitter s that may be received
by q and determine whether it is indeed received by q, i.e., whether or not sinr (q, s) ≥ β.
A natural question is how quickly can one answer an SINR query, following a preprocessing
stage in which data structures of total size nearly linear in n are constructed. However,
it seems unlikely that the answer is significantly sub-linear (as the degree of the polynomials
describing region boundaries is high), so the research has focused on preprocessing to facilitate
efficient approximate SINR queries.

The approach of such research has been to construct a data structure which approximates
the underlying SINR diagram, and use it for answering approximate SINR queries, by
performing point-location queries in this structure. That is, given a query point q, first find
the sole candidate si that may be received at q (by searching in the appropriate Voronoi
diagram), and then perform a point-location query to approximately determine whether
q is in Ri or not. Two different notions of approximation have been used. In the first [5],
it is guaranteed that the uncertain answer is only given infrequently, namely, the area of
the uncertain region associated with Ri is at most ε · area(Ri), for a prespecified parameter
ε > 0. In the second [10], it is guaranteed that for every point in the uncertain region the
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SIN ratio is within an ε-neighborhood of β. See Table 1 for a summary of previous results;
see also [11] for related work. In addition, Aronov and Katz [3] obtained several results for
batched approximate SINR queries, using the latter notion of approximation; for example,
one can perform n simultaneous approximate queries in a network with n transmitters at
polylogarithmic amortized cost per query.

Given ε > 0,4 an approximate SINR query is: Given a receiver q, find the sole transmitter s
that may be received by q and return a value sĩnr (q, s), such that (1 − ε)sinr (q, s) ≤
sĩnr (q, s) ≤ (1 + ε)sinr (q, s). Thus, unless (1 − ε)β ≤ sĩnr (q, s) < (1 + ε)β, the value
sĩnr (q, s) enables us to determine definitely whether or not s is received by q.

In this paper, we devise efficient algorithms for handling approximate SINR queries in a
dynamic setting. That is, given S, α, β, and N , as above, and ε > 0, we describe algorithms
for answering approximate SINR queries after some initial preprocessing, in a setting where
transmitters may be added to or deleted from S. We analyze our algorithms by the usual
measures, namely, preprocessing time, data structure size, query time, and update time.

To the best of our knowledge, these are the first data structures to support dynamic
approximate SINR queries. In contrast with previous work on approximate SINR queries,
our algorithms do not compute an approximation of the underlying SINR diagram. We
distinguish between two main variants of the problem – the uniform power version and the
non-uniform power one. The preprocessing time in both cases is O(n polylog n), while the
update and query time is O(polylog n) for the uniform version, and O(

√
n polylog n) for

the non-uniform version. Thus, our solution for the dynamic uniform version is comparable
to the best known solutions for the static uniform version. For the non-uniform version,
however, our solution is the first solution with bounds that depend only on n and ε and not
on other parameters of the input, both in the static and dynamic settings.

In addition to the obvious motivation for devising algorithms for approximate SINR
queries in a dynamic setting, we mention another important application of our results.
Successive Interference Cancellation (SIC) is a technique that enables (in some circumstances)
a receiver q to receive a specific transmitter t, even if t cannot be received at q in SINR sense.
Informally, our results support SIC; if t’s signal is the kth strongest at q, then, through a
sequence of O(k) queries and updates, we can determine whether q can decode t’s signal from
the combined signal; see the discussion in Section 4. In contrast, Avin et al. [4] construct
a uniform-power static data structure of size O(ε−1n10) which enables one to determine
in O(log n) time whether t can be received by q using SIC. Their result is not directly
comparable to ours, however: They guarantee logarithmic query regardless of the number of
transmitters that need to be canceled before t can be heard, and their approximation model
is quite different from ours.

The missing proofs and some extensions can be found in the complete version of this
paper [2].

2 Uniform power

Let q be a receiver and let s be the closest transmitter to q. Set intrf (q) =
∑
s′∈S\{s}

1
|qs′|α ,

then sinr (q, s) =
1
|qs|α

intrf (q)
.5 When s is the transmitter closest to q, we will simply write

4 For simplicity of presentation, we will assume hereafter that n > 1/ε.
5 For clarity of presentation, we assume hereafter that there is no noise, i.e., N = 0. Our algorithms

extend to the situation where noise is present in a straightforward manner.
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r

s1

A1

A2

q

d

d′

d′
d = (1 + ε

2)
1
α

Ak

.

Figure 1 Partitioning Aq(|qs1|, r) into annuli.

sinr (q) instead of sinr (q, s). Fix ε > 0. We wish to compute a value sĩnr (q) such that
(1 − ε)sinr (q) ≤ sĩnr (q) ≤ sinr (q). We show below how to compute a value iñtrf (q) such
that intrf (q) ≤ iñtrf (q) ≤ (1 + ε)intrf (q) and then simply set sĩnr (q) =

1
|qs|α

iñtrf (q)
.

I Claim 1. Under the above assumption, (1− ε)sinr (q) < sĩnr (q) ≤ sinr (q).

We start with a slower but easier to describe solution and then refine it.

2.1 Annuli
Let ε > 0. Let q be a receiver and let s ∈ S be the closest transmitter to q. Let s1, . . . , sn−1
be the transmitters in S \ {s}, and assume without loss of generality that s1 is the second
closest transmitter to q, among all the transmitters in S. Recall that intrf (q) =

∑n−1
i=1

1
|qsi|α

and that we wish to compute a value iñtrf (q) such that intrf (q) ≤ iñtrf (q) ≤ (1 + ε)intrf (q).
We will need the following simple observation.

I Observation 2. intrf (q) is the sum of n− 1 positive terms of which 1
|qs1|α is the largest,

so we have 1
|qs1|α ≤ intrf (q) ≤ n−1

|qs1|α .

2.1.1 Query algorithm
Let q be a query point. First, we find s and s1, the closest and the second closest transmitters
to q, respectively. Next, we divide the transmitters in S \ {s} into two subsets, Sc and Sf ,
where Sc consists of all transmitters that are ‘close’ to q and Sf consists of all transmitters
that are ‘far’ from q. More precisely, set r = ( 2n

ε )1/α · |qs1|, then Sc consists of all the
transmitters in S \ {s} whose distance from q is less than r, and Sf consists of all the
remaining transmitters. We now approximate the contribution of each of these subsets to
intrf (q).

The contribution of a transmitter si in Sf to the sum intrf (q) is

1
|qsi|α

≤ 1
rα

= ε

2n|qs1|α
,

and the combined contribution of the transmitters in Sf is at most |Sf | · ε
2n|qs1|α ≤

ε
2|qs1|α .

We denote the annulus centered at q with inner radius r1 and outer radius r2 by Aq(r1, r2).
In order to approximate the overall contribution of the transmitters in Sc, we partition the
annulus Aq(|qs1|, r) into k semi-open annuli, A1, . . . , Ak, such that the ratio of the outer
to the inner radius of Aj is (1 + ε

2 ) 1
α (except for Ak whose ratio is at most (1 + ε

2 ) 1
α ); see
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Figure 1. By semi-open we mean that the inner circle of Aj is contained in Aj , but the
outer circle is not. Now, for each Aj , we approximate the contribution of each transmitter
si ∈ Sc∩Aj by 1

dα , where d is the inner radius of Aj , that is, we approximate the contribution
of si by moving it to the inner circle of Aj . We prove below (Corollary 4) that this yields a
(1 + ε

2 )-approximation of the overall contribution of the transmitters in Sc to intrf (q).

I Lemma 3. Let si ∈ Sc and let A = Aq(d, d′) be the annulus to which si belongs. Then, by
moving si to the inner circle of A, one obtains a (1 + ε

2 )-approximation of the contribution
of si to intrf (q).

Proof. Since si ∈ A, d ≤ si < d′. Moreover, by construction, d′/d ≤ (1 + ε
2 ) 1

α . So, the ratio
of our approximation to the real contribution of si is

1/dα

1/|qsi|α
= |qsi|

α

dα
< (d

′

d
)α ≤ 1 + ε

2 . J

I Corollary 4. By doing this for each transmitter in Sc, one obtains a (1 + ε
2 )-approximation

of the overall contribution of the transmitters in Sc to intrf (q).

It remains to show that iñtrf (q), which is the sum of the approximations for Sf and
for Sc, satisfies the requirements, i.e., that intrf (q) ≤ iñtrf (q) ≤ (1 + ε)intrf (q). From
the description above it is clear that iñtrf (q) ≥ intrf (q), so we only need to show that
iñtrf (q) ≤ (1 + ε)intrf (q). Indeed,

iñtrf (q) ≤ ε

2|qs1|α
+ (1 + ε

2)
∑
si∈SC

1
|qsi|α

≤ ε

2 intrf (q) + (1 + ε

2)intrf (q) = (1 + ε)intrf (q) ,

where the second inequality is based on Observation 2.

2.1.2 Implementation
We first show that k, the number of annuli into which the annulus Aq(|qs1|, r) is partitioned,
is small; for the proof, see the complete version [2].

I Lemma 5. k = O( 1
ε log n).

In the preprocessing stage we compute the following data structures for the set of
transmitters S.

Dynamic nearest neighbor: A data structure due to Kaplan et al. [12] can be used for
dynamic 2D nearest-neighbor queries. A set of points in the plane can be maintained
dynamically in a linear-size data structure, so as to support insertions, deletions, and nearest-
neighbor queries. Each insertion takes O(log3 n) amortized deterministic time, each deletion
takes O(log5 n) amortized deterministic time, and each query takes O(log2 n) worst-case
deterministic time, where n is the size of the set of points at the time the operation is
performed; see [12] and also the randomized data structure of Chan [6] with slightly worse
(expected) performance.

Dynamic disk range counting: We start with the construction of Matoušek [13]: In linear
space and O(n log n) time one can preprocess a set of n points in Rd to support semi-group
halfspace range queries in O(n1−1/d polylog n) time. A point can be deleted in O(log n)
amortized time and inserted in O(log2 n) amortized time. Lifting circles to points in R3 in
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the standard manner, we obtain a linear-space, O(n log n) time, O(n2/3 polylog n) disk range
counting query, O(log n) amortized delete, O(log2 n) amortized insert data structure. We
have not attempted to optimize this ingredient, as we replace this infrastructure with a more
efficient one in the following section.

Given a query point q, we find s and s1 (the closest and second closest transmitters) using
the data structure for dynamic nearest neighbor; s1 is found by deleting and reinserting s.
Next, we compute the distance r and partition the annulus Aq(|qs1|, r) into k annuli, as
described above. Now, we calculate iñtrf (q) as follows. We first compute the size of the
set Sf by performing a disk counting query with the circle of radius r centered at q and
subtracting the answer from n− 1; we initialize iñtrf (q) to |Sf | · ε

2n|qs1|α . Next, for each of
the k annuli, we compute the number x of points of S lying in it, as the difference in the
numbers of points in the two disks defined by its bounding circles, obtained by counting
queries. We then increment iñtrf (q) by x

dα , where d is the radius of the inner circle of the
current annulus.

An update is performed by updating the two underlying data structures.
We omit the detailed performance analysis of this version, as a better data structure is

described next.

2.2 Polygonal rings
We now present a more efficient solution similar to the previous one, except that we replace
the circular annuli by polygonal rings. Set x = (1 + ε

2 ) 1
α , and consider any three circles

C0, C1, C2 centered at q, such that r1/r0 = r2/r1 =
√
x, where ri is the radius of Ci. Set

l =
⌈

π√
2− 2√

x

⌉
, and let Bi be the regular l-gon inscribed in Ci, so that one its vertices lies

on the upward vertical ray through q, for i = 1, 2. We now show that Ci−1 is contained
in Bi, for i = 1, 2, and therefore, the polygonal ring defined by B1 and B2 is contained in
the annulus Aq(r0, r2). The elementary proofs of the following claims can be found in the
complete version [2].

I Claim 6. l = O(1/
√
ε).

I Claim 7. Ci−1 is contained in Bi, for i = 1, 2.

I Corollary 8. The polygonal ring defined by B1 and B2 is contained in an annulus centered
at q with radii ratio x = (1 + ε

2 ) 1
α .

2.2.1 Query algorithm
We highlight the differences with the query algorithm from Section 2.1.1. Recall that we
divided the transmitters into two subsets according to whether they were closer or farther
than r from the query point q. We adjust the definitions slightly by setting r′ = |qs1|xm/2,
where m is the smallest integer for which |qs1|xm/2 ≥

√
xr, and considering a transmitter

close to q whenever it lies in the interior of the regular l-gon inscribed in the circle of radius
r′ centered at q, see Figure 2. The set of such transmitters is the new Sc; the remaining
transmitters constitute Sf . The contribution of si ∈ Sf to the sum intrf (q) is, by Claim 7,

1
|qsi|α

≤ 1
rα

= ε

2n|qs1|α
.

Thus the overall contribution of the transmitters in Sf is again at most ε
2|qs|α .
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r′ =
√
xr

r

Cm

Cm+1

C1

C2

C3

q

PA1

PA2

PAm

.

Figure 2 The polygonal rings PA 1, . . . , PAm. The ring PA j lies between the circles Cj−1 and
Cj+1, for j > 1.

∆1

∆2

∆l

∆3

q

PAj

.

Figure 3 PA j is the union of l trapezoids.

We now partition Aq(|qs1|, r′) into m annuli, each with outer-to-inner radius ratio
√
x.

For each of the m + 1 circles defining these annuli, draw the regular l-gon inscribed in
it. Let PA 1, . . . ,PAm be the resulting sequence of polygonal rings, numbered from the
innermost outwards, see Figure 2; each ring is semi-open: it includes its inner, but not its
outer boundary. By Claim 7, each PA j , j > 1, is contained in the union of two consecutive
annuli, which in turn is an annulus of ratio x; Sc∩PA 1 is contained in the innermost annulus.
Also notice that m = O(k), where k is the number of annuli in the circular annulus version,
so, by Lemma 5, m = O( 1

ε log n).
For each ring PA j , we bound from above the contribution of each si ∈ Sc ∩PA j by 1/dα,

where d is the inner radius of the annulus of ratio x containing PA j . By Lemma 3 and the
subsequent corollary, we obtain a (1 + ε

2 )-approximation of the overall contribution of the
transmitters in Sc to intrf (q); iñtrf (q) is obtained by combining the two estimates, one from
Sc and one from Sf .

2.2.2 Implementation

Each polygonal ring PA j is the union of l isosceles trapezoids; moreover the ith trapezoids of
all rings are homothets of each other (refer to Figure 3) and therefore are delimited by lines
of exactly three different orientations. In the preprocessing stage we compute the following
data structures for the set of transmitters S.

Dynamic nearest neighbor: The data structure of Kaplan et al. [12] (see Section 2.1.2).
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Dynamic trapezoid range counting: We use l instances of the data structure, one for each
family of trapezoids. For the ith family we build a three-level orthogonal range counting
structure, one for each of the three edge orientations of the trapezoids in the family. The
answer to a trapezoid range counting query is the number of points of S lying in the trapezoid.

A standard three-level orthogonal range counting structure requires O(n log2 n) space,
is constructed in O(n log2 n) time, and supports O(log3 n)-time range queries [8]. It can
be modified to support insertions and deletions in O(log3 n) amortized time using the
standard partial-rebuilding technique [1, 14]. (One can use any of several different optimized
variants of these structures [7, 15]. For example, He and Munro [9] describe one with linear
space and O((log n/ log log n)2) worst-case query and amortized update time; we stay with
comparison-based algorithms and do not attempt to optimize the polylogarithmic factors.)

Now given a query point q, we find its closest and second closest transmitter using the
data structure for dynamic nearest neighbor in O(log5 n) time, compute the distance r′, and
construct the (polygonal) rings PA 1, . . . ,PAm, where m = O( 1

ε log n). For each ring PA j we
proceed as follows. For each of the l trapezoids ∆i forming PA j , we perform an orthogonal
range counting query in the ith data structure. Let nj be the sum of the l results. Unless j = 1,
we add to the value being computed the term nj

1
rα
j−1

, where rj−1 is the radius of Cj−1 (the
inner circle of the annulus containing PA j). If j = 1, we simply add the term n1

1
rα1

. Finally,
we add to the value being computed the term |Sf | · ε

2n|qs1|α = (n− 1−
∑m
j=1 nj) ·

ε
2n|qs1|α .

In summary, to implement an SINR query, we need to perform one search for the nearest
and second-nearest neighbor, followed by O( lε log n) = O( 1

ε3/2 log n) range searches.
An update is applied to all the underlying data structures. The following theorem

summarizes the main result of this section, while extensions can be found in the complete
version [2].

I Theorem 9. Given the locations of n uniform-power transmitters, one can preprocess them
in O((n/

√
ε) log2 n) time and space into a data structure that can answer approximate SINR

queries in O(log5 n+ (1/ε3/2) log4 n) time. Transmitters can be inserted in O((1/
√
ε) log3 n)

and deleted in O(log5 n+ (1/
√
ε) log3 n) amortized time.

3 Non-uniform power

Let q be a receiver. For a transmitter s ∈ S, the strength of its signal at q is nrg (s, q) = p(s)
|qs|α

and the (multiplicatively-weighted) distance between q and s is dist (q, s) = nrg (s, q)−1/α =
1

p(s)1/α · |qs|. Let s be the closest transmitter to q according to dist . Set intrf (q) =∑
s′∈S\{s} nrg (s′, q), then sinr (q, s) = nrg (s,q)

intrf (q)
, where we once again assume for clarity of

presentation that there is no background noise, i.e., N = 0. When s is the closest transmitter
to q, we will write sinr (q) instead of sinr (q, s).

Fix ε > 0. Again, we wish to approximate sinr (q) by computing iñtrf (q) such that
intrf (q) ≤ iñtrf (q) ≤ (1 + ε)intrf (q) and setting sĩnr (q) = nrg (s,q)

iñtrf (q)
. As in the uniform case,

we start with a more straightforward but less efficient solution and then improve it.

3.1 Conical shells
Let q be a receiver and let s ∈ S be the closest transmitter to q according to dist , i.e., the
one whose signal strength at q is the highest. Let s1, . . . , sn−1 be the transmitters in S \ {s},
and assume without loss of generality that s1 is the second closest transmitter to q among
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Cq(e
1/α
k )

Cq(e
1/α
k−1)

Cq(e
1/α
k−2)

q .

Figure 4 Partitioning Dq(e1/α
0 , e

1/α
k ) into sub-shells.

the transmitters in S. Recall that intrf (q) =
∑n−1
i=1 nrg (si, q) and that we wish to compute

a value iñtrf (q) such that intrf (q) ≤ iñtrf (q) ≤ (1 + ε)intrf (q). We will need the following
simple observation.

I Observation 10. intrf (q) is the sum of n − 1 positive terms of which nrg (s1, q) is the
largest, so we have nrg (s1, q) ≤ intrf (q) ≤ (n− 1)nrg (s1, q) ≤ n · nrg (s1, q).

Query algorithm. Let q be a query point. First, we find s and s1, as defined above. Next,
we set e0 = ε

2nnrg (s1, q), and divide the transmitters in S \ {s} into two subsets, Sc and Sf ,
where Sc consists of the transmitters with signal strength at q greater than e0, and Sf of the
remaining ones. We now approximate the overall contribution to intrf of the transmitters in
Sf and in Sc separately and let iñtrf be the sum of the two approximations.

The contribution of a single transmitter si ∈ Sf to the sum intrf (q) is nrg (si, q) ≤ e0 =
ε

2nnrg (s1, q), for a total of at most |Sf | · ε2nnrg (s1, q) ≤ ε
2nrg (s1, q) over all of Sf .

We identify the plane containing the transmitters and receivers with the xy-plane in
R3. Let Cq(ρ) denote (the surface of) the vertical cone with apex q whose z-coordinate at
t = (tx, ty) is ρ|qt|, where ρ > 0 is a constant. Let Dq(ρ1, ρ2), ρ2 > ρ1 > 0, be the set of all
points in 3-space lying above (i.e., in the interior of) the cone Cq(ρ1) and below or on (i.e.,
not in the interior of) the cone Cq(ρ2). Informally, Dq(ρ1, ρ2) is the region between Cq(ρ1)
and Cq(ρ2); we call it a (conical) shell.

Recall that e0 = ε
2nnrg (s1, q). Let ei = (1 + ε

2 )ei−1, for i = 1, . . . , k − 1, where k − 1 is
the largest integer for which ei < nrg (s1, q), and set ek = nrg (s1, q). We partition the range
I = (e0, ek] of signal strengths at q into k sub-ranges, I1 = (e0, e1], I2 = (e1, e2], . . . , Ik =
(ek−1, ek], and count, for each sub-range Ij , the number of transmitters whose signal strength
at q lies in Ij .

Consider a sub-range Ij = (ej−1, ej ]; we want to count the number transmitters whose
signal strength at q lies in Ij . This occurs whenever e1/α

j−1|qsi| < p
1/α
i ≤ e1/α

j |qsi|, or whenever
the point (si, p1/α

i ) in R3 lies in the shell Dq(e1/α
j−1, e

1/α
j ). Thus, we have reduced the problem

to the difference of two conical range-counting queries.
We raise each of the transmitters si ∈ S \ {s} to height p1/α

i , and preprocess the
resulting set of points for conical range counting queries. If the number of points in the shell
corresponding to Ij is xj , then we add the term ejxj to our approximation of intrf (q), that
is, we approximate the contribution of each transmitter si whose corresponding point lies in
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the shell by ej . (This corresponds to vertically projecting the point (si, p1/α
i ) onto the cone

Cq(e1/α
j ).) We prove in the complete version [2] that this yields a (1 + ε

2 )-approximation of
the overall contribution of the transmitters in Sc to intrf (q).

It remains to show that iñtrf (q), which is the sum of the approximations for Sf and
for Sc, satisfies the requirements, i.e., that intrf (q) ≤ iñtrf (q) ≤ (1 + ε)intrf (q). From the
description above it is clear that iñtrf (q) ≥ intrf (q), so we only need to establish the upper
bound. Indeed, using Observation 10, we conclude that

iñtrf (q) ≤ ε

2|qs1|α
+(1+ ε

2)
∑
si∈SC

nrg (si, q) ≤
ε

2 intrf (q)+(1+ ε

2)intrf (q) = (1+ε)intrf (q) .

Implementation. A straightforward calculation shows (analogously to Lemma 5) that k,
the number of shells into which Dq(e1/α

0 , e
1/α
k ) is partitioned, is O( 1

ε log n).
We preprocess the set of raised transmitters for cone range reporting/counting queries.

Then, given a query point q, we find s and s1 as follows. Pick a random sample T of
√
n log n

transmitters and let t1 ∈ T be the transmitter whose signal strength at q is the strongest.
With high probability, the number of transmitters in S that are closer to q than t1 in terms
of signal strength at q is O(

√
n), and we perform a range reporting query with the cone C1

corresponding to t1 in order to find them. The closest and second-closest points among the
reported points are clearly s and s1.

As for shell range counting queries, for each such query we issue two cone range counting
queries – with the outer cone and the inner cone – and return the difference of the answers.

We omit the analysis of this version, since we describe below a more efficient variant, in
which cones are replaced by pyramids.

3.2 Pyramidal shells
We now replace the conical shells by pyramidal ones to obtain an improved solution. Set
x = (1 + ε

2 ) 1
α , and consider any three cones Cq(ρ0), Cq(ρ1) and Cq(ρ2) with apex at q, such

that ρ0/ρ1 = ρ1/ρ2 =
√
x. Let Pq(ρi) be a regular l-pyramid inscribed in Cq(ρi), where

l =
⌈

π√
2− 2√

x

⌉
. That is, Pq(ρi)’s apex is at q, its edges emanating from q are contained in (the

surface of) Cq(ρi), and the cross section of Pq(ρi) and Cq(ρi), using any horizontal cutting
plane above q, is a regular l-gon and its circumcircle, respectively. The pyramidal shell
defined by Pq(ρ2) and Pq(ρ1) and denoted PS q(ρ2, ρ1) is the semi-open region consisting of
all points in the interior of Pq(ρ2) but not in the interior of Pq(ρ1). From Claim 7 and the
observation above, it follows that Cq(ρi−1) is contained in Pq(ρi), for i = 1, 2, and therefore,
PS q(ρ2, ρ1) is contained in Dq(ρ2, ρ0).

Query algorithm. We highlight the differences with the conical-shell based approach. First,
we find s and s1, the closest and the second-closest transmitters to q, respectively, as
described in detail below. Previously, the transmitters were divided into two subsets lying
close to q and lying far from it, with the threshold e0 = ε

2n · nrg (s1, q). Here, we set
e′0 = nrg (s1,q)

xm/2 , where m is the smallest integer for which nrg (s1,q)
xm/2 ≤ e0√

x
, and consider a

transmitter close to q whenever it lies in the interior of the pyramid Pq(e′
1
α
0 ), i.e., the pyramid

inscribed in Cq(e′
1
α
0 ). The contribution of a single transmitter si ∈ Sf to the sum intrf (q) is

nrg (si, q) ≤ e0 = ε
2n · nrg (s1, q), for a total of at most ε

2|qs|α , as before.

Consider the conical shell Dq(e′
1
α
0 ,nrg (s1, q)

1
α ) and partition it into m conical shells, such

that the ratio between the parameters of the inner and outer cone of a shell is
√
x. For each
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of the m+ 1 cones defining these conical shells, draw its inscribed regular l-pyramid. Let
Pq(ρ1), ..., Pq(ρm+1) be the resulting sequence of pyramids, where Pq(ρ1) is the innermost one,
and consider the corresponding sequence of m nested pyramidal shells. Notice that m = O(k),
where k is the number of cones in the conical shells version, so once again m = O( 1

ε log n).
Moreover, each of the pyramidal shells, except for PS q(ρ2, ρ1), is contained in the union of
two consecutive conical shells, which is a conical shell of ratio x. For PS q(ρ2, ρ1), we observe
that Sc ∩ PS q(ρ2, ρ1) is contained in the innermost conical shell.

We assign a transmitter si to a shell PS q(ρj+1, ρj) if si lands in the shell after being raised
to height p1/α

i . Now, for each shell PS q(ρj+1, ρj) and each si ∈ Sc assigned to it, we estimate
the contribution of si from above by 1/ραj−1, i.e., by projecting si onto the inner cone of the
conical shell Dq(ρj+1, ρj−1) containing PS q(ρj+1, ρj). We obtain a (1 + ε

2 )-approximation of
the overall contribution of the transmitters in Sc to intrf (q), where the missing details can
be found in the complete version [2]. Adding our previous estimate for those in Sf yields the
promised iñtrf (q).

Implementation. Observe that each regular l-pyramid Pq(ρj) is the union of l 3-sided
wedges, where the ith wedge is defined by two planes of fixed orientation (perpendicular to
the xy-plane) and a third plane containing the ith face of the pyramid.

In the preprocessing stage we construct l data structures over the set S, one for each
family of wedges, supporting dynamic 3-dimensional 3-sided wedge range counting queries (a
restricted form of simplex range counting in three dimensions). Each data structure handles
wedges of the same “type”; the orientations of the two vertical bounding planes are fixed,
while the orientation of the third plane varies (but remains perpendicular to the vertical
plane bisecting the first two). The data structure for the ith family is a three-level search
structure, where the first two levels allow us to represent the points of S that lie in the
2-sided wedge formed by the two vertical planes delimiting our 3-sided wedge, as a small
collection of canonical subsets. For each canonical subset of the second level of the structure,
we raise each of its points si to height p1/α

i and then project it onto a vertical plane which is
parallel to the bisector of the two vertical wedge boundaries. Finally, we construct for the
resulting set of points a data structure for two-dimensional halfplane range counting queries.
We will also need the corresponding reporting structure, see below.

Using standard tools for dynamic multilevel structures and, for example, Matoušek’s
data structure for halfplane range counting at the bottom level, we obtain a structure of
O(n polylog n) size that supports wedge counting (and reporting) queries in O(n1/2 polylog n)
time and updates in O(polylog n) amortized time.

Now, given a pyramidal shell PS q(ρj+1, ρj), we can count the number of raised points
that lie in it as follows. We first perform l queries for the pyramid Pq(ρj+1), one in each
of the l data structures, to obtain the total number of points that lie in it. We repeat the
process for the pyramid Pq(ρj) and finally subtract the latter number from the former one.

Below we describe how to find s and s1, the closest and second-closest points to q, in
randomized O(

√
n log n) time w.h.p. plus l wedge reporting queries. Once again, an update

is performed by modifying the underlying data structures. We summarize the main result of
this section.

I Theorem 11. One can preprocess n arbitrary-power transmitters, in O( n√
ε

polylog n) time
and space, into a data structure that can answer approximate SINR queries in randomized
O(
√
n√
ε

polylog n) time w.h.p. and perform updates in O( 1√
ε

polylog n) amortized time.
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Finding the closest and second-closest transmitters to q. We have assumed that given a
query point q, we can find the closest s and second-closest s1 transmitters to q, efficiently.
This section deals with this initial stage.

We begin by observing that we do not really need to find s1, provided that we can
obtain a sufficiently good approximation of nrg 1 = nrg (s1, q). Let ñrg 1 ∈ R such that
ñrg 1 ≤ nrg 1 ≤ (1 + δ)ñrg 1, where δ > 0 is a sufficiently small constant. Then, it is
easy to modify our query algorithm so that it uses ñrg 1 instead of nrg 1. For simplicity of
presentation, we refer in this paragraph to the algorithm using conical shells. Set ẽ0 = ε

2n ñrg 1.
A transmitter will be considered close to q if and only if its signal strength at q is greater
than ẽ0. If si ∈ S is far from q, then nrg (si, q) ≤ ẽ0 ≤ ε

2nnrg 1 = ε
2nnrg (s1, q), so the

overall contribution of the transmitters in Sf is bounded by ε
2nrg (s1, q), as before. Next, we

partition the range I = (ẽ0, (1 + δ)ñrg 1] into k = O( 1
ε log n) sub-ranges, such that the ratio

between the extreme values of a sub-range is at most 1 + ε/2 and proceed exactly as before.
We now describe how to find s. Our algorithm may or may not find s1. However, if it does

not find s1, it returns a transmitter t1 ∈ S such that nrg (t1, q) ≤ nrg (s1, q) ≤ (1+δ)nrg (t1, q),
where δ > 0 is a sufficiently small constant, so we can set ñrg 1 = nrg (t1, q) and apply the
above modified query algorithm.

Pick a random sample T of
√
n log n transmitters and let t1 ∈ T be the transmitter whose

signal strength at q is the strongest. This can be done in O(
√
n log n) time. With high

probability the number of transmitters in S that are closer to q than t1, in terms of signal
strength at q, is O(

√
n).

We first lift each transmitter s = (sx, sy) ∈ S to the point ŝ = (sx, sy, p(s)1/α).
Draw the cone C1 corresponding to t1, i.e., the cone whose z-coordinate above point s
is nrg (t1, q)1/α|qs| = (p(t1)1/α/|qt1|)|qs|. Let l be as above and consider the l-pyramid P1
inscribed in C1. Let C0 be the cone inscribed in P1, so that P1 lies between C0 and C1.
Notice that C0 is the cone whose z-coordinate above point s is (1 + δ)nrg (t1, q)1/α|qs| (where
we set δ = (1 + ε

2 ) 1
2α − 1).

Perform a range reporting query with P1 (i.e., find all lifted points that lie in the interior
of P1 or on P1). Since P1 is inside C1, with high probability the number of points in P1 is
O(
√
n). If the resulting set is non-empty, then in randomized O(

√
n) time w.h.p. we can

find s and also s1 (provided the number of returned points is greater than 1).
Otherwise, if P1 is empty, we claim that the answer to the SINR query must be no, i.e.,

q cannot receive any transmitter. Indeed, in the best scenario ŝ lies on C0, where s ∈ S is
the closest transmitter to q, and the rest of the O(

√
n) transmitters, lifted to 3-space, lie

on the cone C1. But this will imply that sinr(s) < 1. Indeed nrg (s, q) = (1 + δ)αnrg (t1, q)
and, for any other of the

√
n transmitters s′, nrg (s′, q) = nrg (t1, q), implying sinr(s) <

(1 + δ)α/
√
n� 1.

If only one point lies in P1, then we use t1 as an approximation of s1 as described above.

4 Successive interference cancellation (SIC)

Fix a receiver location q. SIC is a technique that enables q to receive a specific transmitter t,
even when sinr (q, t) < β. More specifically, order the transmitters s1, . . . , sn in S by
increasing signal strength at q, assume t = sk, and let sinr i(q) denote the SIN ratio for
the signal of si at q, while ignoring transmitters s1, . . . , si−1. If sinr 1(q) = sinr (q, s1) ≥ β,
q can subtract s1’s signal from the combined signal. If, in addition, sinr 2(q) ≥ β, q can
also subtract s2 from the combined signal of the transmitters s2, . . . , sn, and so on. If
sinr i(q) ≥ β, for i = 1, . . . , k, we say that SIC succeeds for sk at q, in k rounds. We can
simulate this process using our data structures for approximate SINR queries via a sequence



B. Aronov, G. Bar-On, and M. J. Katz 145:13

of k queries and k− 1 deletions, and determine (approximately) whether SIC succeeds for sk
at q. Observe that we need t only to terminate the query, while Avin et al. [4] need t to
identify the part of the data structure in which to initiate the search; in particular, we can
generate all the transmitters accessible via SIC given a location q in polylogarithmic time
per transmitter, while they need to consult each of the n parts of the data structure. We
obtain the following theorem.

I Theorem 12. Assuming t = sk, the simulation above can be performed in
O((1/ε3/2)k polylog n) time in the uniform-power version, and in O((1/

√
ε)k
√
n polylog n)

time in the non-uniform version.
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Abstract
Motivated by possible applications in fault-tolerant routing, we introduce the notion of uniform
mixed equilibria in network congestion games with adversarial link failures, where players need
to route traffic from a source to a destination node. Given an integer ρ ≥ 1, a ρ-uniform mixed
strategy is a mixed strategy in which a player plays exactly ρ edge disjoint paths with uniform
probabilities, so that a ρ-uniform mixed equilibrium is a tuple of ρ-uniform mixed strategies, one
for each player, in which no player can lower her cost by deviating to another ρ-uniform mixed
strategy. For games with weighted players and affine latency functions, we show existence of
ρ-uniform mixed equilibria and provide a tight characterization of their price of anarchy. For
games with unweighted players, instead, we extend the existential guarantee to any class of
latency functions and, restricted to games with affine latencies, we derive a tight characterization
of both the prices of anarchy and stability.
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1 Introduction

Consider n users who need to send an unsplittable amount of traffic from a source to a
destination in a network which is subject to adversarial link failures. In particular, each user
ui is coupled with an adversary ai who, upon knowledge of the mixed strategy adopted by
ui to route her traffic, chooses which links to corrupt. Thus, every pair (ui, ai) is engaged
in a two-player Stackelberg game in which ui is the leader, ai is the follower, and both are
interested in the probability that the path selected by ui as a realization of her mixed strategy
fails: ui wants to minimize it, while ai aims at its maximization1. To make things more

1 We stress that ai is only aware of the mixed strategy chosen by ui and not of its final realization.
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interesting, all users also play an atomic congestion game among themselves, in which each of
them wants to minimize the expected latency of the chosen mixed strategy. We assume that a
user’s priority is to route her traffic at any cost, so that she will be interested in selecting the
mixed strategy of minimum expected latency among those minimizing the failure probability
(of its realization). It is not difficult to see that ui minimizes this probability if and only if
she assigns uniform probabilities to the maximum number of edge disjoint paths connecting
her source-destination pair.

Motivated by the above scenario, we introduce the notion of uniform mixed equilibrium
for (network) congestion games (with adversarial link failures). Formally, given an integer
ρ ≥ 1, a ρ-uniform mixed strategy is a mixed strategy in which exactly ρ edge disjoint
paths are chosen with uniform probabilities. Thus, given an n-tuple of positive integers
ρ = (ρ1, . . . , ρn), a ρ-uniform mixed profile is a mixed profile in which each user ui adopts a
ρi-uniform mixed strategy and a ρ-uniform mixed equilibrium is a ρ-uniform mixed profile
in which no user ui can lower her cost by deviating to another ρi-uniform mixed strategy.

As a first step in the understanding of the properties of these equilibria, we assume that
ρi = ρj := ρ for every pair of users ui and uj , and we denote ρ = (ρ, . . . , ρ) simply as ρ.
Besides defining a simple, yet interesting case, this assumption has at least two practical
applications/justifications. First, it models the case of symmetric games, in which all users
share the same source-destination pair; this setting has been widely studied with respect
to the analysis of efficiency of Nash equilibria [21] and to the (hardness of) computation of
equilibria [17, 16]. From a theoretical point of view, it is worth noting that, in this case,
the value of ρ, i.e. the maximum number of edge disjoint paths connecting the common
source-destination pair, can be efficiently computed by a reduction to the max-flow problem
(see [1] for further details). To illustrate the second application, observe that the desire to
minimize the failure probability induces each user to add even extremely costly paths to
the set of her possible alternatives. It is reasonable to assume that, in some contexts, users’
priorities can be restated as follows: each user wants to select the mixed strategy of minimum
expected latency among those keeping the failure probability within a certain threshold θ.
For the ease of exposition, assume that the adversary can corrupt just one link and that
θ = 1/3. By simple calculations, it is not difficult to establish that the best strategy for each
user is to play ρ = 3 edge disjoint paths with probability 1/3 each.

We stress that, although the notions of 1-uniform mixed equilibria and that of pure
Nash equilibria [26] coincide, there are no correlations between the set of ρ-uniform mixed
equilibria and that of mixed Nash equilibria of a given game when ρ > 1. Moreover, for ρ > 1,
ρ-uniform mixed strategies can be interpreted as an hybridization between the notions of pure
and mixed strategies. In fact, although the cost incurred by a player needs to be evaluated
in expectation (as it happens when adopting mixed strategies), the fact that probabilities
are superimposed by the model limits the players’ choices to deciding which strategies to
play (as it happens when adopting pure strategies). To the best of our knowledge, this is the
first attempt towards this direction.

1.1 Our Contribution
We study the existence and efficiency of ρ-uniform mixed equilibria in (network) congestion
games by distinguish between the case in which all players need to route the same amount of
traffic (unweighted congestion games) and the general case of different traffic rates (weighted
congestion games). In particular, we focus on networks in which the link latency functions
are affine (affine congestion games).
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Table 1 The prices of anarchy and stability of ρ-uniform mixed equilibria in affine unweighted
congestion games and the price of anarchy of ρ-uniform mixed equilibria in affine weighted congestion
games, for each value of ρ ≥ 1. Bounds labeled as ∗ holds also for parallel link networks with
restricted strategies, while bounds labeled as † applies to even parallel link networks with unrestricted
strategies.

ρ
unweighted games weighted games

price of stability price of anarchy price of anarchy

1 1 + 1/
√

3 [11, 13] 5/2∗ [3, 11, 14] (3 +
√

5)/2†[3, 5, 11, 14]
2 1 + 1/

√
5 5/3∗ 2†

3 1 + 1/
√

7 (2
√

7− 1)/3∗ (7 +
√

13)/6†

4 4/3† 4/3† (9 +
√

17)/8†

≥ 5 4/3† 4/3† 4ρ2/(3ρ2 − 2ρ− 1)†

We first prove that ρ-uniform mixed equilibria do exist in affine weighted congestion games,
for each ρ ≥ 1. This is done by showing that any affine weighted congestion game in which
players adopt ρ-uniform mixed strategies admits a potential function. This generalizes to
every value of ρ the results by [21, 22, 27] which were proved for the classical setting in which
players adopt pure strategies, i.e., for ρ = 1. For the case of unweighted players, existential
guarantees are extended to any class of latency functions. This generalizes Rosenthal’s
Theorem [30] which shows existence of pure Nash equilibria, i.e., existence of ρ-uniform
mixed equilibria for the basic case of ρ = 1.

Then, for each ρ ≥ 1, by exploiting the primal-dual method [6], we derive tight bounds
on the price of anarchy of ρ-uniform mixed equilibria in affine weighted congestion games
and tight bounds on both the prices of anarchy and stability of ρ-uniform mixed equilibria
in affine unweighted congestion games (see the values reported in Table 1, where many lower
bounds hold even for parallel link networks). It is worth noticing that our results nicely
extend the ones obtained for pure Nash equilibria, i.e., the case of ρ = 1. In particular, for
unweighted congestion games with affine latency functions, [13] proved that the price of
stability is lower bounded by 1 + 1/

√
3, while [11] showed that this bound is tight; [3, 14]

proved that the price of anarchy is 5/2 and [11] showed that the same (lower) bound extends
to the special case of parallel link networks with restricted strategies (i.e., every player can
only select a link from an allowable set of alternatives). For weighted congestion games
with linear latency functions, [3, 14] proved that the price of anarchy is (3 +

√
5)/2, [11]

showed that the same (lower) bound extends to the special case of parallel link networks with
restricted strategies, and finally [5] proved that even parallel link networks with unrestricted
strategies are enough to obtain a matching lower bound. The existential guarantee, as well
as the bounds for unweighted games, are obtained by exploiting the fact that, for each
ρ ≥ 1, any unweighted congestion game in which players adopt ρ-uniform mixed strategies is
isomorphic to an unweighted congestion game in which players adopt pure strategies and
whose latency functions are slightly different.

Our results show that, as ρ increases, the prices of anarchy and stability of ρ-uniform
mixed equilibria of affine congestion games approach the value 4/3, that is, the price of
anarchy of affine non-atomic congestion games [32]. This is in accordance with the intuition
that, by arbitrarily splitting an atomic request over disjoint strategies, atomic congestion
games tend to their non-atomic counterparts. The striking evidence of our findings, however,
is that, for unweighted players, when such a splitting is restricted to be uniform (i.e., the
same amount of traffic must be routed on each selected path), this happens for ρ = 4 already.

ICALP 2018



146:4 Uniform Mixed Equilibria in Network Congestion Games with Link Failures

1.2 Related Work
Penn, Polukarov and Tennenholtz [28, 29] introduced congestion games with failures. In
their model, each player has a task that can be executed on any resource, i.e. players only
adopt singleton strategies, and each resource may fail with a certain probability, hence, for
reliability reasons, a player may choose to simultaneously use multiple resources. The cost of
a player is given by the minimum of the costs payable on all the selected resources that do
not fail. In this setting, the existence, properties and efficiency of pure Nash equilibria are
investigated.

The setting of adversarial behavior in congestion games was introduced by Karakostas
and Viglas [23] for network congestion games. Babaioff, Kleinberg and Papadimitriou [4]
studied the impact of malicious players on the quality of Nash equilibria for non-atomic
games. In particular, [4, 23] considered two classes of players, i.e., rational players and
malicious players; while rational players act aiming at minimizing their own cost, malicious
ones aim at maximizing the average delay experienced by the rational players. Roth [31]
applied this adversarial setting to the class of linear congestion games. Also Moscibroda et
al. [25] analyzed an adversarial behavior in a different game.

1.3 Paper Organization
The paper is organized as follows. In the next section we provide the notation and definitions,
together with some basic results. Section 3 is devoted to the study of affine weighted
congestion games, while Section 4 to the analysis of the unweighted case. Finally, Section
5 gives some conclusive remarks and lists some interesting open problems. Due to space
limitations, some proofs are omitted (see the full version of the paper).

2 Definitions and Notation

Given two integers 0 ≤ k1 ≤ k2, let [k2]k1 denote the set {k1, k1 + 1, . . . , k2 − 1, k2} and let
[k1] denote the set [k1]1. Moreover, let ~1n denote the vector (1, . . . , 1) ∈ Rn≥0.

A weighted congestion model is defined by a tuple CM = (N, E, (`e)e∈E , (wi)i∈N, (Σi)i∈N),
where N is a set of n ≥ 2 players, E is a set of resources, `e : R≥0 → R≥0 is the latency
function of resource e ∈ E, and, for each i ∈ N, wi ≥ 0 is the weight of player i and
Σi ⊆ 2E \ ∅ is her set of strategies. A weighted congestion model is symmetric if Σi = Σ
for each i ∈ N, i.e., if all players share the same strategy space. A weighted load balancing
model is a weighted congestion model in which for each i ∈ N and S ∈ Σi, |S| = 1, that
is, all players’ strategies are singleton sets. Observe that a weighted load balancing model
corresponds to a parallel link network. A weighted congestion model is affine if its latency
functions are of the form `e(x) := αex+βe, with αe, βe ≥ 0. An unweighted congestion model
is a weighted congestion model such that wi = 1 for each i ∈ N.

Depending on the types of strategies adopted by the players, a congestion model CM may
induce different classes of congestion games.

A strategy profile is an n-tuple of strategies s = (s1, s2, . . . , sn), that is a state in which
each player i ∈ N adopts pure strategy si ∈ Σi. When players adopt pure strategies, CM
induces a congestion game CG(CM) (usually, when CM is clear from the context, we shall drop
it from the notation). For a strategy profile s, the congestion of resource e ∈ E in s, denoted
as ke(s) :=

∑
i∈N:e∈si wi, is the total weight of the players using resource e in s, (observe that,

for unweighted games, ke(s) coincides with the number of users selecting resource e in s). The
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cost of player i in s is defined as costCG
i (s) =

∑
e∈si `e(ke(s)) (usually, when CG is clear from

the context, we shall drop it from the notation). The quality of a strategy profile in CG(CM)
is measured by using the social function SUM(s) =

∑
i∈N wicosti(s) =

∑
e∈E ke(s)`e(ke(s)),

that is, the weighted sum of the players’ costs. A pure Nash equilibrium for CG(CM) is a
strategy profile s such that, for any player i ∈ N and strategy s′i ∈ Σi, costi(s) ≤ costi(s−i, s′i).
We denote by Eq(CG(CM)) the set of pure Nash equilibria of a weighted congestion game
CG(CM). The price of anarchy (resp. price of stability) of a weighted congestion game
CG(CM) is defined as PoA(CG(CM)) = maxs∈Eq(CG(CM))

{
SUM(s)

SUM(s∗)

}
(resp. PoS(CG(CM)) =

mins∈Eq(CG(CM))

{
SUM(s)

SUM(s∗)

}
), where s∗ is a social optimum for CG(CM), that is a strategy

profile minimizing the social function.
A mixed strategy for player i is a probability distribution σi defined over Σi, so that σi(s)

is the probability that player i plays strategy s ∈ Σi. We denote by supp(σi) = {s ∈ Σi :
σi(s) > 0} the set of strategies played with positive probability in σi. A mixed profile σ is an
n-tuple of mixed strategies, i.e., σ = (σ1, σ2, . . . , σn). Informally, σ is a state in which each
player i ∈ N picks her strategy according to probability distribution σi, independently from
the choices of other players. If σi is such that a pure strategy si is picked with probability
one by player i, we write si instead of σi.

Given an integer ρ ≥ 1 and a weighted congestion model CM in which for each player i ∈ N
there exist at least ρ pairwise disjoint strategies in Σi, a ρ-uniform mixed strategy for player
i is a mixed strategy σi such that |supp(σi)| = ρ, s1 ∩ s2 = ∅ for any s1, s2 ∈ supp(σi) with
s1 6= s2, and σi(s) = 1/ρ for each s ∈ supp(σi), i.e., a mixed strategy in which player i plays
exactly ρ pairwise disjoint strategies with uniform probability. Denote by ∆ρ

i (CM) the set of
ρ-uniform mixed strategies for player i. A ρ-uniform mixed profile σ = (σ1, σ2, . . . , σn) is an
n-tuple of ρ-uniform mixed strategies, one for each player. When players adopt ρ-uniform
mixed strategies, CM induces a ρ-uniform congestion game ρ-CG(CM) (again, when CM is
clear from the context, we shall drop it from the notation). For a ρ-uniform mixed profile σ,
the expected congestion of resource e ∈ E in σ, denoted as ke(σ) := Es∼σ

(∑
i∈N:e∈si wi

)
,

is the expected total weight of the players using resource e in σ. The cost of player i in
σ is defined as costρ-CG

i (σ) = Es∼σ
(∑

e∈si `e(ke(s))
)
(again, when ρ-CG is clear from the

context, we shall drop it from the notation). The quality of a ρ-uniform mixed profile
in ρ-CG(CM) becomes SUM(σ) = Es∼σ

(∑
i∈N wicosti(s)

)
=
∑
e∈E Es∼σ (ke(s)`e(ke(s))),

that is, the expected weighted sum of the players’ costs. A ρ-uniform mixed equilibrium
for ρ-CG(CM) is a ρ-uniform mixed profile σ such that, for any player i ∈ N and ρ-uniform
mixed strategy σ′i ∈ ∆ρ

i (CM), costi(σ) ≤ costi(σ−i, σ′i). We denote by Eq(ρ-CG(CM)) the
set of ρ-uniform mixed equilibria of a weighted congestion game ρ-CG(CM). The price
of anarchy (resp. price of stability) of a ρ-uniform weighted congestion game ρ-CG(CM)
is defined as PoAρ(ρ-CG(CM)) = maxσ∈Eq(ρ-CG(CM))

{
SUM(σ)

SUM(σ∗)

}
(resp. PoSρ(ρ-CG(CM)) =

minσ∈Eq(ρ-CG(CM)

{
SUM(σ)

SUM(σ∗)

}
), where σ∗ is a ρ-uniform social optimum for ρ-CG(CM), that

is a ρ-uniform mixed profile minimizing the social function.
Given a ρ-uniform mixed strategy σi, let E(σi) =

⋃
s∈supp(σi) s denote the set of resources

contained by all strategies belonging to supp(σi)2. For a ρ-uniform mixed profile σ, the ρ-
maximum congestion of resource e in σ, denoted as kρ,e(σ) =

∑
i:e∈E(σi) wi, is the congestion

of e obtained if all players assigning non-null probability to a strategy s containing e pick s.

2 Given e ∈ E(σi), there exists a unique strategy of σi containing e, since strategies selected with non-null
probability by each player are pairwise disjoint.

ICALP 2018
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I Remark. According to the first application described in Section 1, given a symmetric
congestion model CM such that the maximum number of disjoint strategies is ρ∗ > ρ, we
can consider a congestion model CM′ such that CG(CM′) is equivalent to CG(CM), and such
that the maximum number of disjoint strategies of CG(CM′) is ρ. To this aim, it suffices
considering a congestion model CM′ in which E′ := E ∪{e′1, e′2, . . . , e′ρ}, where e′j is a dummy
resource with `′(e′j) = 0 for any j ∈ [ρ], Σi

′ := {s ∪ {e′j} : s ∈ Σi, j ∈ [ρ]} for any i ∈ N,
and all the other quantities are defined as in CM. Observe that, given ρ-disjoint strategies
s1, s2, . . . , sρ in Σ, we have that s1 ∪ {e′1}, s2 ∪ {e′2}, . . . , sρ ∪ {e′ρ} are disjoint strategies of
Σi
′. Furthermore, there are no ρ+ 1 disjoint strategies in Σi

′, since, given ρ+ 1 strategies of
Σi
′, there are necessarily at least two strategies s′1, s′2 ∈ Σi

′ such that e′j ∈ s′1 ∩ s′2 for some
j ∈ [ρ]. Thus, ρ is the maximum number of disjoint strategies in CG(CM′). Finally, since
each strategy of Σi

′ is defined as union of some strategy of Σi and some dummy resource
having null cost, games CG(CM′) and CG(CM) are completely equivalent.

We conclude the section by providing useful equations to express the players’ costs in
ρ-uniform congestion games as a function of the ρ-maximum congestions only, thus getting
rid of expected values. Towards this end, as shown in [6], we can assume without loss of
generality that the latency functions of the games we consider are restricted to be linear,
that is, of the form `(x) = αex for some αe ≥ 0.

I Lemma 1. Given an affine weighted congestion model CM and a ρ-uniform strategy profile
σ for ρ-CG(CM), we have

costi(σ) =
∑

e∈E(σi)

αe

(
kρ,e(σ)
ρ2 +

(
ρ− 1
ρ2

)
wi

)
(1)

and, given σ′i ∈ ∆ρ
i (CM), we have

costi(σ−i, σ′i) =
∑

e∈E(σ′
i
)\E(σi)

αe

(
kρ,e(σ)
ρ2 + wi

ρ

)
+

∑
e∈E(σ′

i
)∩E(σi)

αe

(
kρ,e(σ)
ρ2 +

(
ρ− 1
ρ2

)
wi

)

≤
∑

e∈E(σ′
i
)

αe

(
kρ,e(σ)
ρ2 + wi

ρ

)
. (2)

3 Weighted Games

In this section, we consider the general case of ρ-uniform congestion games induced by affine
weighted congestion models. We start by showing that ρ-uniform mixed equilibria are always
guaranteed to exist, for each ρ ≥ 1. In particular, by resorting to a potential function
argument, we prove that, for each affine weighted congestion model CM, any better-response
dynamics in ρ-CG(CM) converges to a ρ-uniform mixed equilibrium after a finite number of
steps.

I Theorem 2. For each affine weighted congestion model CM and ρ ≥ 1, ρ-CG(CM) admits
a potential function.

Proof. Given an affine weighted congestion model CM and an integer ρ ≥ 1, consider the
function Φρ defined on the set of ρ-uniform mixed profiles for ρ-CG(CM):

Φρ(σ) :=
∑
e∈E

αe

kρ,e(σ)2

2ρ2 + 2ρ− 1
2ρ2

∑
i:e∈E(σi)

w2
i

 . (3)
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We prove that Φρ is a weighted potential function for ρ-CG. Fix a ρ-uniform mixed profile
σ, a player i ∈ N, and a ρ-uniform mixed strategy σ′i ∈ ∆ρ

i (CM). Let Ie = 1 if e ∈ σ′i \ σi,
Ie = −1 if e ∈ σi \ σ′i, Ie = 0 if e ∈ σ′i ∩ σi. We have

Φρ(σ−i, σ′i)− Φρ(σ)

=
∑
e∈E

αe

 (kρ,e(σ) + Iewi)2

2ρ2 + 2ρ− 1
2ρ2

 ∑
j:e∈E(σj)

w2
j + Iew2

i


−
∑
e∈E

αe

kρ,e(σ)2

2ρ2 + 2ρ− 1
2ρ2

∑
j:e∈E(σj)

w2
j


=

∑
e∈E(σ′

i
)\E(σi)

αe

(
(kρ,e(σ) + wi)2 − kρ,e(σ)2

2ρ2 + 2ρ− 1
2ρ2 w2

i

)

−
∑

e∈E(σi)\E(σ′
i
)

αe

(
kρ,e(σ)2 − (kρ,e(σ)− wi)2

2ρ2 + 2ρ− 1
2ρ2 w2

i

)

=
∑

e∈E(σ′
i
)\E(σi)

αewi

(
kρ,e(σ)
ρ2 + 1

ρ
wi

)
−

∑
e∈E(σi)\E(σ′

i
)

αewi

(
kρ,e(σ)
ρ2 + ρ− 1

ρ2 wi

)
=wi(costi(σ−i, σ′i)− costi(σ)), (4)

where (4) comes from Lemma 1. Thus, Φρ is a weighted potential function for ρ-CG(CM). J

3.1 Price of Anarchy
In this subsection, we derive exact bounds on the price of anarchy of ρ-uniform congestion
games induced by affine weighted congestion models.

I Theorem 3. Fix an affine weighted congestion model CM. For any ρ ≥ 1, we have

PoAρ(ρ-CG(CM)) ≤
{√

4ρ+1+2ρ+1
2ρ if ρ < 5,

4ρ2

3ρ2−2ρ−1 if ρ ≥ 5.

Proof. Given an integer ρ ≥ 1, let CM be an arbitrary affine weighted congestion model. Let
σ and σ∗ be a ρ-uniform mixed equilibrium and a ρ-uniform social optimum for ρ-CG(CM),
respectively. By exploiting the primal-dual technique we get the following linear program:

max SUM(σ) =
∑
i∈N

wicosti(σ)

s.t.
∑
i∈N

wicosti(σ) ≤
∑
i∈N

wicosti(σ−i, σ∗i ) (5)

SUM(σ∗) =
∑
i∈N

wicosti(σ∗) = 1 (6)

αe ≥ 0, ∀e ∈ E

where:
(5) has been obtained by multiplying each inequality costi(σ) ≤ costi(σ−i, σ∗i ) by wi,
and then summing them up for each i ∈ N;
the linear coefficients αe’s are the variables of the linear program, and the other quantities
are fixed parameters;

ICALP 2018
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(6) normalizes the optimal social function, so that the maximum value of the objective
function (i.e. the social function of the ρ-uniform mixed equilibrium) is an upper bound
on the price of anarchy.

By using Lemma 1 in the previous linear program, we get the following relaxation
(relaxation comes from inequality (2), that may not be tight):

LP: max
∑
e∈E

αe

kρ,e(σ)2

ρ2 +
(
ρ− 1
ρ2

) ∑
i:e∈E(σi)

w2
i

 (7)

s.t.
∑
e∈E

αe

kρ,e(σ)2

ρ2 +
(
ρ− 1
ρ2

) ∑
i:e∈E(σi)

w2
i

 ≤
≤
∑
e∈E

αe

kρ,e(σ∗)kρ,e(σ)
ρ2 +

∑
i:e∈E(σ∗

i
)

w2
i

ρ

 (8)

∑
e∈E

αe

kρ,e(σ∗)2

ρ2 +
(
ρ− 1
ρ2

) ∑
i:e∈E(σ∗

i
)

w2
i

 = 1 (9)

αe ≥ 0, ∀e ∈ E

where (7) comes from (1), as
∑

i∈N wicosti(σ) =
∑

i∈N wi
∑

e∈E(σi)
αe

(
kρ,e(σ)
ρ2 +

(
ρ−1
ρ2

)
wi

)
=∑

e∈E αe

(
kρ,e(σ)2

ρ2 +
(
ρ−1
ρ2

)∑
i:e∈E(σi)

w2
i

)
, and (8) comes from (2), as

∑
i∈N wicosti(σ−i, σ∗i )

≤
∑
i∈N wi

∑
e∈E(σ∗

i
) αe

(
kρ,e(σ)
ρ2 + wi

ρ

)
=
∑
e∈E αe

(
kρ,e(σ∗)kρ,e(σ)

ρ2 +
∑
i:e∈E(σ∗

i
)
w2
i

ρ

)
. By

taking the dual of LP, where we associate the dual variable x to the primal constraint (8)
and the dual variable γ to the primal constraint (9), we get

DLP : min γ

s.t. γ

kρ,e(σ∗)2

ρ2 +
(
ρ− 1
ρ2

) ∑
i:e∈E(σ∗

i
)

w2
i

 ≥
≥ −(x− 1)

kρ,e(σ)2

ρ2 +
(
ρ− 1
ρ2

) ∑
i:e∈E(σi)

w2
i

+

+ x

kρ,e(σ∗)kρ,e(σ)
ρ2 +

∑
i:e∈E(σ∗

i
)

w2
i

ρ

 , ∀e ∈ E (10)

x ≥ 0

By choosing x > 1, we have that, if kρ,e(σ∗) = 0, (10) is always satisfied. Thus, assume
that kρ,e(σ∗) > 0. Let us now manipulate (10) as follows: we divide both sides by kρ,e(σ∗)2,
so that we can rewrite it as a function of a variable t := kρ,e(σ)/kρ,e(σ∗) and of some
new player’s weights ui = wi/kρ,e(σ∗). Furthermore, by setting

∑
i:e∈E(σi) w

2
i = 0 we have

stronger constraints. By observing that
∑
i:e∈E(σ∗

i
) wi = kρ,e(σ∗), and then

∑
i:e∈E(σ∗

i
) ui = 1,
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we obtain that the following value γ(x) is a feasible solution of DLP for any x > 1:3

γ(x) = sup
{n∈N,t≥0,ui≥0,

∑n

i=1
ui=1}

t2

ρ2 + x
(
− t2

ρ2 + t
ρ2 + 1

ρ

∑n
i=1 u

2
i

)
1
ρ2 + ρ−1

ρ2

∑n
i=1 u

2
i

.

Since
∑n
i=1 ui = 1 and ui ≥ 0 for each i ∈ [n], one can replace

∑n
i=1 u

2
i with a variable

u ∈ [0, 1], so that we can set γ(x) = supt≥0,u∈[0,1] γ(x, t, u), where

γ(x, t, u) =
t2

ρ2 + x
(
− t2

ρ2 + t
ρ2 + u

ρ

)
1
ρ2 + ρ−1

ρ2 u
.

We have that the monotonicity of γ(x, t, u) with respect to u does not depend on u, thus
γ(x, t, u) is maximized either by u = 0 or by u = 1. So, we get γ(x) = supt≥0,u∈{0,1} γ(x, t, u).
Note that t = x

2x−2 is the unique maximum point of γ(x, t, u) for u ∈ {0, 1}. Thus, we can
conclude

γ(x) = max
{
γ

(
x,

x

2x− 2 , 0
)
, γ

(
x,

x

2x− 2 , 1
)}

.

Now, if ρ < 5, set x = 1 + 1√
4ρ+1 , otherwise set x = 4ρ

3ρ+1 . If ρ < 5, we get

γ

(
1 + 1√

4ρ+ 1

)
=
√

4ρ+ 1 + 2ρ+ 1
2ρ ≥ PoAρ(ρ-CG),

otherwise, for ρ ≥ 5, we get

γ

(
4ρ

3ρ+ 1

)
= 4ρ2

3ρ2 − 2ρ− 1 ≥ PoAρ(ρ-CG),

thus showing the claim. J

We show that the derived upper bounds are tight, even when restricting to games induced
by symmetric load balancing models.

I Theorem 4. For any ρ ≥ 1 and ε > 0, there exists an affine weighted symmetric load
balancing model CM := CM(ρ, ε) such that

PoAρ(ρ-CG(CM)) ≥
{√

4ρ+1+2ρ+1
2ρ − ε if ρ < 5,

4ρ2

3ρ2−2ρ−1 − ε if ρ ≥ 5.

4 Unweighted Games

In this section, we consider the case of ρ-uniform congestion games induced by unweighted
congestion models. First, we show that uniform mixed equilibria are always guaranteed to
exist for any class of latency functions.

Given an unweighted congestion model CM and an integer ρ ≥ 1, let f be a function
mapping CM and ρ to another congestion model f(CM, ρ), according to the following
definition.

3 To simplify the notation, we have written
∑n

i=1 ui, instead of
∑

i:e∈E(σ∗
i

) ui.
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I Definition 5. Given an unweighted congestion model

CM =
(
N, E, (`e)e∈E ,~1n, (Σi)i∈N

)
,

define CM′ = f(CM, ρ) =
(
N′, E′, (`′e)e∈E ,~1n, (Σ′i)i∈N

)
as the unweighted congestion model

such that N′ = N, E′ = E, Σ′i = {E(σi) : σi is a ρ-uniform mixed strategy for player i in
ρ-CG(CM)} for each i ∈ N, and

`′e(x) := 1
ρ

x−1∑
j=0

(
x− 1
j

)(
1
ρ

)j (
ρ− 1
ρ

)x−1−j
`e(j + 1)

 (11)

for each e ∈ E′. Moreover, given a latency function `e, let `f(ρ)
e denote the latency function

defined in (11), and let `−f(ρ)
e denote the function `e such that `f(ρ)

e = `e.

For instance, if CG(CM) is a symmetric load balancing game, then CG(f(CM, ρ)) is a ρ-
uniform matroid congestion game [15], i.e. the strategies of each player are arbitrary subsets
of ρ resources.

We show that ρ-CG(CM) is equivalent to CG(f(CM, ρ)) for each ρ ≥ 1. For a ρ-uniform
mixed profile σ for ρ-CG(CM), define s′(σ) as the strategy profile for CG(f(CM, ρ)) such
that s′(σ) := (E(σ1), E(σ2), . . . , E(σn)).

I Theorem 6. Given ρ ≥ 1 and an unweighted congestion model CM, we have that, for each
ρ-uniform mixed profile σ for ρ-CG(CM) and i ∈ N, costρ-CG(CM)

i (σ) = cost
CG(f(CM,ρ))
i (s′(σ)).

As a corollary, we obtain existence of uniform mixed equilibria for each uniform congestion
games induced by unweighted congestion models, regardless of which are their latency
functions. In particular, we extend Rosenthal’s Theorem [30], by showing that, for each
ρ ≥ 1, any ρ-uniform unweighted congestion game admits an exact potential.

I Corollary 7. For each ρ ≥ 1 and unweighted congestion model CM, ρ-CG(CM) admits an
exact potential.

Proof. By Rosenthal’s Theorem [30], CG(f(CM, ρ)) admits an exact potential function Φ.
Because of Theorem 6, we have that Φ◦s′ is an exact potential function for ρ-CG(CM). Indeed,
given i ∈ N, a strategy profile σ of ρ-CG(CM), and σ′i ∈ ∆ρ

i (CM), we get costρ-CG(CM)
i (σ)−

cost
ρ-CG(CM)
i (σ−i, σ′i) = cost

CG(f(CM,ρ))
i (s′(σ)) − cost

CG(f(CM,ρ))
i (s′(σ−i, σ′i)) = Φ(s′(σ)) −

Φ(s′(σ−i, σ′i)) = (Φ ◦ s′)(σ)− (Φ ◦ s′)(σ−i, σ′i). J

4.1 Price of Anarchy
In this subsection, we derive exact bounds on the price of anarchy of ρ-uniform congestion
games induced by affine unweighted congestion models.

I Theorem 8. Fix an affine unweighted congestion model CM. For any ρ ≥ 1, we have

PoAρ(ρ-CG(CM)) ≤


5
ρ+1 if ρ ≤ 2,
2
√

7−1
3 if ρ = 3,

4
3 if ρ ≥ 4.

Proof. Given an integer ρ ≥ 1, let CM be an arbitrary affine unweighted congestion model.
Let σ and σ∗ be a ρ-uniform mixed equilibrium and a ρ-uniform social optimum for
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ρ-CG(CM), respectively. By exploiting (1) and (2), we have that, for each i ∈ N, the
inequality costi(σ) ≤ costi(σ−i, σ∗i ) becomes∑

e∈E(σi)

αe

(
kρ,e(σ) + ρ− 1

ρ2

)
−

∑
e∈E(σ∗

i
)

αe

(
kρ,e(σ) + ρ

ρ2

)
≤ 0.

By also using (1) within SUM(σ) and SUM(σ∗), we get the following linear program:

LP : max
∑
e∈E

αe

(
kρ,e(σ)(kρ,e(σ) + ρ− 1)

ρ2

)
s.t.

∑
e∈E(σi)

αe

(
kρ,e(σ) + ρ− 1

ρ2

)
−

∑
e∈E(σ∗

i
)

αe

(
kρ,e(σ) + ρ

ρ2

)
≤ 0, ∀i ∈ N

(12)∑
e∈E

αe

(
kρ,e(σ∗)(kρ,e(σ∗) + ρ− 1)

ρ2

)
= 1 (13)

αe ≥ 0, ∀e ∈ E

By taking the dual of LP, where we associate the dual variable xi to the ith primal constraint
in (12) and the dual variable γ to the primal constraint (13), we get:

DLP : min γ

s.t.
∑

i:e∈E(σi)

(
xi
kρ,e(σ) + ρ− 1

ρ2

)
−

∑
i:e∈E(σ∗

i
)

(
xi
kρ,e(σ) + ρ

ρ2

)

+ γ
kρ,e(σ∗)(kρ,e(σ∗) + ρ− 1)

ρ2

≥ kρ,e(σ)(kρ,e(σ) + ρ− 1)
ρ2 , ∀e ∈ E (14)

xi ≥ 0, ∀i ∈ N

By using xi = x for each i ∈ N, k := kρ,e(σ) and o := kρ,e(σ∗) in (14), and multiplying both
sides by ρ2, we obtain the following relaxed dual constraint:

xk(k + ρ− 1)− xo(k + ρ) + γo(o+ ρ− 1) ≥ k(k + ρ− 1). (15)

To complete the proof, we are left to provide, for each ρ ≥ 1, a suitable value x ≥ 0 satisfying
inequality (15) where γ is set to be equal to the claimed upper bound on the ρ-uniform price
of anarchy. We now proceed by case analysis.

For ρ ≤ 2, for which we have γ = 5
ρ+1 , set x = ρ+2

ρ+1 . By substituting these values in (15),
we get the inequality k2 − k (o(ρ+ 2) + ρ+ 1) + o(5o− ρ2 + 3ρ− 5) ≥ 0 which can be easily
shown to be satisfied for any pair of non-negative integers k, o when ρ = 1, 2. In fact, the
discriminant of the associated equality is negative for each integer o ≥ 2, while the cases of
o ∈ {0, 1} can be checked by inspection.

For ρ = 3, for which we have γ = 2
√

7−1
3 , set x = 2

√
7− 4. By substituting these values

in (15), we get the inequality

(6
√

7− 15)k2 − 6k
(
o(
√

7− 2)− 2
√

7 + 5
)

+ o
(
o(2
√

7− 1)− 14
√

7 + 34
)
≥ 0,

which can be easily shown to be satisfied for any pair of non-negative integers k, o. In fact,
the discriminant of the associated equality is negative for each integer o ≥ 2, while the cases
of o ∈ {0, 1} can be checked by inspection.
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For ρ ≥ 4, for which we have γ = 4
3 , set x = 4

3 . By substituting these values in (15), we
get the inequality k2 − k(4o− ρ+ 1) + 4o(o− 1) ≥ 0 whose left-hand side is increasing in ρ.
Hence, we only need to prove that it gets satisfied for the case of ρ = 4, by which we get the
inequality k2−k(4o−3)+4o(o−1) ≥ 0 which can be easily shown to be satisfied for any pair
of non-negative integers k, o. Again, the discriminant of the associated equality is negative
for each integer o ≥ 2, while the cases of o ∈ {0, 1} can be checked by inspection. J

We show matching lower bounds for each ρ ≤ 3. For ρ ≥ 4, we show in the next subsection
a matching lower bound holding even for the price of stability.

I Theorem 9. For any ρ ≤ 3 and ε > 0, there exists an affine unweighted load balancing
model CM := CM(ρ, ε) such that

PoAρ(ρ-CG(CM)) ≥
{

5
ρ+1 − ε if ρ ≤ 2,
2
√

7−1
3 − ε if ρ = 3.

4.2 Price of Stability
In this subsection, we exhibit exact bounds on the price of stability of ρ-uniform congestion
games induced by affine unweighted congestion models.

I Theorem 10. Fix an affine unweighted congestion model CM. For any ρ ≥ 1, we have

PoSρ(ρ-CG(CM)) ≤
{

1 + 1√
2ρ+1 if ρ ≤ 3,

4
3 if ρ ≥ 4.

We also have matching lower bounds. We first consider the case of ρ ≤ 3.

I Theorem 11. For each ρ ≤ 3 and ε > 0, there exists an affine unweighted congestion
model CM := CM(ρ, ε) such that PoSρ(ρ-CG(CM)) ≥ 1 + 1√

2ρ+1 − ε.

For ρ ≥ 4, the upper bounds are tight even when restricting to games induced by
symmetric load balancing models.

I Theorem 12. For each ρ ≥ 1 and ε > 0, there exists an affine unweighted symmetric load
balancing model CM := CM(ρ, ε) such that PoSρ(ρ-CG(CM)) ≥ 4

3 − ε.

5 Open Problems

In this paper, motivated by possible applications in fault-tolerant routing, we have introduced
the notion of uniform mixed equilibria, and we have applied it to the well-studied class of
(network) congestion games with affine latency functions, by providing existential results of
these equilibria and by deriving tight bounds to the prices of anarchy and stability.

The main left open problem is to consider the more general definition of ρ-uniform mixed
equilibria, where players can use uniform mixed strategies of different support size. Another
important question is the determination of lower bounds for the price of stability of ρ-unform
mixed equilibria, in the setting of weighted congestion games. However, this question is
open even for the price of stability of pure Nash equilibria (i.e., ρ = 1), for which only an
upper bound equal to 2 is known, as a direct consequence of the potential function given
in [20]. Following the approach used in [12, 10, 19, 9] for ρ = 1, it could be interesting
investigating resource taxation or other strategies to improve the performance of ρ-unform
mixed equilibria. Another interesting research direction is that of extending the results
to other latency functions, e.g., polynomial functions, or decreasing functions as the ones
inducing the Shapley cost sharing game [2, 24, 8, 7, 18].
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Abstract
Gathering a group of mobile agents is a fundamental task in the field of distributed and mobile
systems. This can be made drastically more difficult to achieve when some agents are subject
to faults, especially the Byzantine ones that are known as being the worst faults to handle. In
this paper we study, from a deterministic point of view, the task of Byzantine gathering in a
network modeled as a graph. In other words, despite the presence of Byzantine agents, all the
other (good) agents, starting from possibly different nodes and applying the same deterministic
algorithm, have to meet at the same node in finite time and stop moving. An adversary chooses
the initial nodes of the agents (the number of agents may be larger than the number of nodes)
and assigns a different positive integer (called label) to each of them. Initially, each agent knows
its label. The agents move in synchronous rounds and can communicate with each other only
when located at the same node. Within the team, f of the agents are Byzantine. A Byzantine
agent acts in an unpredictable and arbitrary way. For example, it can choose an arbitrary port
when it moves, can convey arbitrary information to other agents and can change its label in every
round, in particular by forging the label of another agent or by creating a completely new one.

Besides its label, which corresponds to a local knowledge, an agent is assigned some global
knowledge denoted by GK that is common to all agents. In literature, the Byzantine gathering
problem has been analyzed in arbitrary n-node graphs by considering the scenario when GK =
(n, f) and the scenario when GK = f . In the first (resp. second) scenario, it has been shown that
the minimum number of good agents guaranteeing deterministic gathering of all of them is f + 1
(resp. f+2). However, for both these scenarios, all the existing deterministic algorithms, whether
or not they are optimal in terms of required number of good agents, have the major disadvantage
of having a time complexity that is exponential in n and L, where L is the value of the largest
label belonging to a good agent. In this paper, we seek to design a deterministic solution for
Byzantine gathering that makes a concession on the proportion of Byzantine agents within the
team, but that offers a significantly lower complexity. We also seek to use a global knowledge
whose the length of the binary representation (that we also call size) is small. In this respect,
assuming that the agents are in a strong team i.e., a team in which the number of good agents is
at least some prescribed value that is quadratic in f , we give positive and negative results. On
the positive side, we show an algorithm that solves Byzantine gathering with all strong teams in
all graphs of size at most n, for any integers n and f , in a time polynomial in n and the length
|lmin| of the binary representation of the smallest label of a good agent. The algorithm works
using a global knowledge of size O(log log log n), which is of optimal order of magnitude in our
context to reach a time complexity that is polynomial in n and |lmin|. Indeed, on the negative
side, we show that there is no deterministic algorithm solving Byzantine gathering with all strong
teams, in all graphs of size at most n, in a time polynomial in n and |lmin| and using a global
knowledge of size o(log log log n).
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1 Introduction

1.1 Context
Gathering a group of mobile agents is a basic problem that has been widely studied in
literature dedicated to mobile and distributed systems. One of the main reasons for this
popularity stems from the fact that this task turns out to be an essential prerequisite to
achieve more complex cooperative works. In other words, getting fundamental results on the
problem of gathering implies de facto getting fundamental results on a large set of problems
whose resolution needs to use gathering as a building block.

The scale-up when considering numerous agents is inevitably tied to the occurrence of
faults among them, the most emblematic of which is the Byzantine one. Byzantine faults are
very interesting under multiple aspects, especially because the Byzantine case is the most
general one, as it subsumes all the others kind of faults. In fact, in the field of fault tolerance
they are considered as the worst faults that can occur.

In this paper, we consider the problem of gathering in a deterministic way in a network
modeled as a graph, wherein some agents are Byzantine. A Byzantine agent acts in an
unpredictable and arbitrary manner. For instance it may choose to never stop or to never
move. It may also convey arbitrary information to the other agents, impersonate the identity
of another agent, and so on. In such a context, gathering is very challenging, and so far
the power of such Byzantine agents has been offset by a huge complexity when solving this
problem. In what follows, we seek a solution allowing to withstand Byzantine agents while
keeping a “reasonable” complexity.

1.2 Model and problem
A team of mobile agents are initially placed by an adversary at arbitrary nodes of a network
modeled as a finite, connected, undirected graph G = (V,E). We assume that |V | ≤ n.
Several agents may initially share the same node and the size of the team may be larger than
n. Two assumptions are made about the labelling of the two main components of the graph
that are nodes and edges. The first assumption is that nodes are anonymous i.e., they do
not have any kind of labels or identifiers allowing them to be distinguished from one another.
The second assumption is that edges incident to a node v are locally ordered with a fixed port
numbering ranging from 0 to deg(v)− 1 where deg(v) is the degree of v. Therefore, each edge
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has exactly two port numbers, one for each of both nodes it links. The port numbering is not
supposed to be consistent: a given edge (u, v) ∈ E may be the i-th edge of u but the j-th
edge of v, where i 6= j. These two assumptions are not fortuitous. The primary motivation
of the first one is that if each node could be identified by a label, gathering would become
quite easy to solve as it would be tantamount to explore the graph (via e.g. a breadth-first
search) and then meet in the node having the smallest label. While the first assumption is
made so as to avoid making the problem trivial, the second assumption is made in order
to avoid making the problem impossible to solve. Indeed, in the absence of a way allowing
an agent to distinguish locally the edges incident to a node, gathering could be proven as
impossible to solve deterministically in view of the fact that some agents could be precluded
from traversing some edges and visit some parts of the graph.

Time is discretized into an infinite sequence of rounds. In each round, every agent, which
has been previously woken up (this notion is detailed in the next paragraph), is allowed to
stay in place at its current node or to traverse an edge according to a deterministic algorithm.
The algorithm is the same for all agents: only the input, whose nature is specified further in
the subsection, varies among agents.

Before being woken up, an agent is said to be dormant. A dormant agent may be woken
up only in two different ways: either by the adversary that wakes some of the agents at
possibly different rounds, or as soon as a non-dormant agent is at the starting node of the
dormant agent. We assume that the adversary wakes up at least one agent. Note that, when
the adversary chooses to wake up in round r a dormant agent located at a node v, all the
dormant agents that are at node v wake up in round r.

When an agent is woken up in a round r, it is told the degree of its starting node. As
mentioned above, in each round r′ ≥ r, the executed algorithm can ask the agent to stay idle
or to traverse an edge. In the latter case, this takes the following form: the algorithm asks the
agent, located at node u, to traverse the edge having port number i, where 0 ≤ i ≤ deg(u)−1.
Let us denote by (u, v) ∈ E this traversed edge. In round r′ + 1, the agent enters node v: it
then learns the degree deg(v) as well as the local port number j of (u, v) at node v (recall
that in general i 6= j). An agent cannot leave any kind of tokens or markers at the nodes it
visits or the edges it traverses.

In the beginning, the adversary also assigns a different positive integer (called label)
to each agent. Each agent knows its label but does not know a priori the labels of the
other agents (except if some or all of them are inserted in the global knowledge GK that is
introduced below). When several agents are at the same node v in the same round t, they
see, for each agent x at node v, the label of agent x and all information it wants to share
with the others in round t. This transmission of information is done in a “shouting” mode
in one round: all the transmitted information by all agents at node v in round t becomes
common knowledge for agents that are currently at node v in round t. On the other hand
when two agents are not at the same node in the same round they cannot see or talk to each
other: in particular, two agents traversing simultaneously the same edge but in opposite
directions, and thus crossing each other on the same edge, do not notice this fact. In every
round, the input of the algorithm executed by an agent a is made up of the label of agent a,
the up-to-date memory of what agent a has seen and learnt since its waking up and some
global knowledge denoted by GK. Parameter GK is a piece of information that is initially
given to all agents and common to all of them (i.e., GK is the same for all agents): its nature
is precised at the end of this subsection. Note that in the absence of a way of distinguishing
the agents, the gathering problem would have no deterministic solution in some graphs,
regardless of the nature of GK. This is especially the case in a ring in which at each node the
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edge going clockwise has port number 0 and the edge going anti-clockwise has port 1: if all
agents are woken up in the same round and start from different nodes, they will always have
the same input and will always follow the same deterministic rules leading to a situation
where the agents will always be at distinct nodes no matter what they do.

Within the team, it is assumed that f of the agents are Byzantine. A Byzantine agent
has a high capacity of nuisance: it can choose an arbitrary port when it moves, can convey
arbitrary information to other agents and can change its label in every round, in particular
by forging the label of another agent or by creating a completely new one. All the agents
that are not Byzantine are called good. We consider the task of f -Byzantine gathering which
is stated as follows. The adversary wakes up at least one good agent and all good agents
must eventually be in the same node in the same round, simultaneously declare termination
and stop, despite the fact there are f Byzantine agents. Regarding this task, it is worth
mentioning that we cannot require the Byzantine agents to cooperate as they may always
refuse to be with some agents. Thus, gathering all good agents with termination is the
strongest requirement we can make in such a context. The time complexity of an algorithm
solving f -Byzantine gathering is the number of rounds counted from the start of the earliest
good agent until the task is accomplished.

We end this subsection by explaining what we mean by global knowledge, that can be
viewed as a kind of advice given to all agents. Following the paradigm of algorithms with
advice [1, 25, 38, 9, 20, 19, 33], GK is actually a piece of information that is initially provided
to the agents at the start, by an oracle knowing the initial instance of the problem. By
instance, we precisely mean: the entire graph with its port numbering, the initial positions of
the agents with their labels, the f agents that are Byzantine, and for each agent the round,
if any, when the adversary wakes it up in case it has not been woken up before by another
agent. So, for example, GK might correspond to the size of the network, the number of
Byzantine agents, or a complete map of the network, etc. As mentionned earlier, we assume
that GK is the same for all agents. The size of GK is the length of its binary representation.

1.3 Related works
When reviewing the chronology of the works that are related to the gathering problem, it
can be seen that this problem has been first studied in the particular case in which the team
is made of exactly two agents. Under such a limitation, gathering is generally referred to as
rendezvous. From the first mention of the rendezvous problem in [36], this problem and its
generalization, gathering, have been extensively studied in a great variety of ways. Indeed,
there is a lot of alternatives for the combinations we can make when addressing the problem,
e.g., by playing on the environment in which the agents are supposed to evolve, the way of
applying the sequences of instructions (i.e., deterministic or randomized) or the ability to
leave some traces in the visited locations, etc. In this paper, we are naturally closer to the
research works that are related to deterministic gathering in networks modeled as graphs.
Hence, we will mostly dwell on this scenario in the rest of this subsection. However, for the
curious reader wishing to consider the matter in greater depth, we invite him to consult
[8, 2, 24] that address the problem in the plane via various scenarios, especially in a system
affected by the occurrence of faults or inaccuracies for the last two references. Regarding
randomized rendezvous, a good starting point is to go through [3, 4, 28].

Now, let us focus on the area that concerns the present paper most directly, namely
deterministic rendezvous and/or gathering in graphs. In most papers on rendezvous in
networks, a synchronous scenario was assumed, in which agents navigate in the network in
synchronous rounds. Under this context, a lot of effort has been dedicated to the study of
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the feasibility and to the time (i.e., number of rounds) required to achieve the task, when
feasible. For instance, in [16] the authors show a rendezvous algorithm polynomial in the size
of the graph, in the length of the shorter label and in the delay between the starting time of
the agents. In [26] and [37] solutions are given for rendezvous, which are polynomial in the
first two of these parameters and independent of the delay. While these algorithms ensure
rendezvous in polynomial time (i.e., a polynomial number of rounds), they also ensure it at
polynomial cost where the cost corresponds here to the total number of edge traversals made
by both agents until meeting. Indeed, since each agent can make at most one edge traversal
per round, a polynomial time always implies a polynomial cost. However, the reciprocal
may be not true, for instance when using an algorithm relying on a technique similar to
“coding by silence” in the time-slice algorithm for leader election [29]: “most of the time”
both agents stay idle, in order to guarantee that agents rarely move simultaneously. Thus
these parameters of cost and time are not always linked to each other. This was recently
highlighted in [32] where the authors studied the tradeoffs between cost and time for the
deterministic rendezvous problem. Some other efforts have been also dedicated to analyse
the impact on time complexity of rendezvous when in every round the agents are brought
with some pieces of information by making a query to some device or some oracle, see, e.g.,
[14, 31]. Along with the works aiming at optimizing the parameters of time and/or cost
of rendezvous, some other works have examined the amount of memory that is required to
achieve deterministic rendezvous e.g., in [21, 22] for tree networks and in [12] for general
networks.

Apart from the synchronous scenario, the academic literature also contains several studies
focusing on a scenario in which the agents move at constant speed, which are different from
each other, or even move asynchronously: in this latter case the speed of agents may then
vary and is controlled by the adversary. For more details about rendezvous under such a
context, the reader is referred to [30, 13, 23, 18, 27] for rendezvous in finite graphs and [5, 10]
for rendezvous in infinite grids.

As stated in the previous subsection, our paper is also related to the field of fault tolerance
since some agents may be prone to Byzantine faults. First introduced in [34], a Byzantine
fault is an arbitrary fault occurring in an unpredictable way during the execution of a
protocol. Due to its arbitrary nature, such a fault is considered as the worst fault that can
occur. Byzantine faults have been extensively studied for “classical” networks i.e., in which
the entities are fixed nodes of the graph (cf., e.g., the book [29] or the survey [6]). To a lesser
extend, the occurrence of Byzantine faults has been also studied in the context of mobile
entities evolving on a one-dimensional or two-dimensional space, cf. [2, 15, 11].

Gathering in arbitrary graphs in presence of many Byzantine agents was considered in
[17, 7]. Actually, our model is borrowed from both these papers, and thus they are naturally
the closest works to ours. In [17], the problem is introduced via the following question:
what is the minimum number M of good agents that guarantees f-Byzantine gathering in all
graphs of size n? In [17], the authors provided several answers to this problem by firstly
considering a relaxed variant, in which the Byzantine agents cannot lie about their labels, and
then by considering a harsher form (the same as in our present paper) in which Byzantine
agents can lie about their identities. For the relaxed variant, it has been proven that the
minimum numberM of good agents that guarantees f -Byzantine gathering is precisely 1
when GK = (n, f) and f + 2 when GK is reduced to f only. The proof that both these
values are enough, relies on polynomial algorithms using a mechanism of blacklists that are,
informally speaking, lists of labels corresponding to agents having exhibited an “inconsistent”
behavior. Of course, such blacklists cannot be used when the Byzantine agents can change
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their labels and in particular steal the identities of good agents. Still in [17], the authors
give for the harsher form of f -byzantine gathering a lower bound of f + 1 (resp. f + 2) on
M and a deterministic gathering algorithm requiring at least 2f + 1 (resp. 4f + 2) good
agents, when GK = (n, f) (resp. GK = f). Both these algorithms have a huge complexity
as they are exponential in n and L, where L is the largest label of a good agent evolving
in the graph. Some advances are made in [7], via the design of an algorithm for the case
GK = (n, f) (resp. GK = f) that works with a number of good agents that perfectly matches
the lower bound of f + 1 (resp. f + 2) shown in [17]. However, these algorithms also suffer
from a complexity that is exponential in n and L.

1.4 Our results
As mentioned just above, the existing deterministic algorithms dedicated to f -Byzantine
gathering all have the major disadvantage of having a time complexity that is exponential
in n and L, when Byzantine agents are allowed to change their labels. Actually, these
solutions are all based on a common strategy that consists in enumerating the possible initial
configurations, and successively testing them one by one. Once the testing reaches the correct
initial configuration, the gathering can be achieved. However, in order to get a significantly
more efficient algorithm, such a costly strategy must be abandoned in favor of a completely
new one.

In this paper, we seek to design a deterministic solution for Byzantine gathering that
makes a concession on the proportion of Byzantine agents within the team, but that offers a
significantly lower complexity. We also seek to use a global knowledge whose the length of
the binary representation (that we also call size) is small. In this respect, assuming that the
agents are in a strong team i.e., a team in which the number of good agents is at least the
quadratic value 5f2 + 6f + 2, we give positive and negative results. On the positive side, we
show an algorithm that solves f -Byzantine gathering with all strong teams in all graphs of
size at most n, for any integers n and f , in a time polynomial in n and |lmin|. The algorithm
works using a global knowledge of size O(log log log n), which is of optimal order of magnitude
in our context to reach a time complexity that is polynomial in n and |lmin|. Indeed, on the
negative side, we show that there is no deterministic algorithm solving f -Byzantine gathering
with all strong teams, in all graphs of size at most n, in a time polynomial in n and |lmin|
and using a global knowledge of size o(log log log n).

1.5 Roadmap
The next section is dedicated to the presentation of some definitions and routines that we
need in the rest of this paper. In Section 3, we give a description of our main algorithm
corresponding to our positive result. In Section 4, we prove our negative result. Finally we
make some concluding remarks in Section 5. Note that due to the lack of space, several
details and proofs are omitted but will appear in the journal version of the paper.

2 Preliminaries

Throughout the paper, log denotes the binary logarithm. The length of the binary represent-
ation of the smallest label of a good agent in a given team will be denoted by |lmin|.

In this paper, we will use a procedure whose aim is graph exploration, i.e., visiting all
nodes of the graph. This procedure, based on universal exploration sequences (UXS), is a
corollary of the result of Reingold [35]. Given any positive integer n, this procedure, called
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EXPLO(n), allows the executing agent to traverse all nodes of any graph of size at most n,
starting from any node of this graph, using a number of edge traversals that is polynomial in
n. We denote by Xn the execution time of procedure EXPLO with parameter n.

Besides this exploration procedure, we will use a label transformation derived from [16].
Let `B be the label of an agent B and b1 . . . bc its binary representation with c its length.
The binary representation of the corresponding transformed label `∗B is
10b1b1 . . . bcbc0110b1b1 . . . bcbc01. This transformation is made to ensure the following property
on which the algorithm of Section 3 partly relies.

I Proposition 1. Let `B and `X be two labels such that `B < `X . Let b∗1b∗2 . . . b∗4c+8 and
x∗1x

∗
2 . . . x

∗
4y+8 be the respective binary representations of `∗B and `∗X , with c and y the lengths

of the binary representations of `B and `X respectively. There exist two positive integers
i ≤ 2c+ 4 and 2c+ 4 < j ≤ 4c+ 8 such that b∗i 6= x∗i and b∗j 6= x∗j .

To establish our main result that is presented in Section 3, we needed to design two
building blocks, namely procedures GROUP and MERGE. These procedures are not trivial, but
due to space restrictions we only give here the two associated theorems.

The first building block called GROUP takes as input three integers T , n and bin such
that bin ∈ {0; 1}. Let x be an integer that is at least f + 2. Roughly speaking, sub-
routine GROUP(T , n, bin) ensures that (x − f) good agents finish the execution of the sub-
routine at the same round and in the same node in a graph of size at most n provided some
conditions given in the next theorem are satisfied.

I Theorem 1. Consider a team made of at least (x− 1)(f + 1) + 1 good agents in a graph of
size at most n, where x ≥ f + 2. Let ∆ be the first round when a good agent starts executing
GROUP(T , n, bin). If all good agents start executing GROUP(T , n, bin) by round ∆ +T − 1, and
parameter bin is 0 (resp. 1) for at least one good agent, then we have the following property.
After at most a time polynomial in n and T from ∆, at least (x− f) good agents finish the
execution of GROUP at the same round and in the same node.

The second building block called MERGE takes as input two integers n and T . Sub-
routine MERGE(T , n) allows all the good agents to finish their executions of the subroutine in
the same node and at the same round, provided some conditions given in the next theorem
are satisfied.

I Theorem 2. Consider a team of agents in a graph of size at most n. Let ∆ be the first
round when a good agent starts executing MERGE(T , n). If every good agent starts executing
MERGE(T , n) by round ∆+T −1 and among them at least 4f+2 start the execution in the same
node and at the same round, then all good agents finish their executions of procedure MERGE
in the same node and at the same round r < ∆ + 4T + 6Xn − 1.

3 The positive result

In this section we present an algorithm, called GATHER, that solves f -Byzantine gathering
with strong teams in all graphs of size at most n, assuming that GK = dlog log ne: note that
such a global knowledge can be coded using O(log log log n) bits. The algorithm works in a
time polynomial in n and |lmin|, and it makes use of the building blocks introduced in the
section Preliminaries.
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In the sequel, we denote by Gn the maximal time complexity of procedure GROUP(Xn, n, ρ)
with ρ ∈ {0; 1} in all graphs of size at most n. We also denote by Mn the maximal time
complexity of procedure MERGE(Xn + Gn, n) in all graphs of size at most n. Note that
according to Theorems 1 and 2, Gn and Mn exist and are polynomials in n.

In order to better describe the high level idea of our solution, let us first consider a
situation that would be ideal to solve Byzantine gathering with a strong team and that would
be as follows. Instead of assigning distinct labels to all agents, the adversary assigns to each
of them just one bit ρ ∈ {0; 1}, so that there are at least one good agent for which ρ = 0
and at least one good agent for which ρ = 1. Such a situation would clearly constitute an
infringement of our model, but would allow the simple protocol described in Algorithm 1 to
solve the problem in a time that is polynomial in n when GK = dlog log ne. Let us briefly
explain why.

Algorithm 1 Algorithm executed by every good agent in the ideal situation.
1: Let ρ be the bit assigned to me by the adversary
2: Execute A(ρ)
3: Declare that gathering is achieved

Algorithm 2 A(ρ) executed by a good agent.

1: N ← 2(2GK)

2: Execute EXPLO(N)
3: Execute GROUP(XN , N, ρ)
4: Execute MERGE(XN +GN , N)

Algorithm 1 consists mainly of a call to A(ρ) that is given by Algorithm 2. Since
GK = dlog log ne, we know that at line 1 of Algorithm 2, N is a polynomial upperbound on
n, and the execution of EXPLO(N) in a call to A(ρ) by the first woken-up good agent permits
to visit every node of the graph and to wake up all dormant agents. As a result, the delay
between the starting times of GROUP(XN , N, ρ) by any two good agents of the strong team is
at most XN . According to the properties of procedure GROUP (cf. Theorem 1) and the fact
that the number of good agents is at least 5f2 + 6f + 2 = ((5f + 2) − 1)(f + 1) + 1, this
guarantees in turn that the delay between the starting times of MERGE(XN +GN , N) by any
two good agents is at most XN +GN , and at least 4f + 2 good agents start this procedure
at the same time in the same node. Hence, in view of the properties of procedure MERGE (cf.
Theorem 2), all good agents declare gathering is achieved at the same time in the same node
after a polynomial number of rounds (w.r.t n) since the wake-up time of the earliest good
agent.

Unfortunately, we are not in such an ideal situation. At first glance, one might argue
that it is not really a problem because all agents are assigned distinct labels that are, after
all, distinct binary strings. Thus, by ensuring that each good agent applies on its label the
transformation given in Section 2, and then processes one by one each bit bi of its transformed
label by executing A(bi), we can guarantee (with some minor technical adjustments) that
the gathering of all good agents is done in time polynomial in n and |lmin|. Indeed, in view
of Proposition 1 the conditions of the ideal situation are recreated when the agents process
their j-th bits for some j ≤ 2|lmin|+ 4. Unfortunately it is not enough for our purpose. In
fact, in the ideal situation, there is just one bit to process: thus, de facto every good agent
knows that every good agent knows that gathering will be done at the end of this single
process. However, it is no longer the case when the agents have to deal with sequences of bit
processes: the good agents have a priori no mean to detect collectively and simultaneously
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when they are gathered. It should be noted that if the agents knew f , we could use an
existing algorithmic component (cf. [17]) allowing to solve f -Byzantine gathering if at some
point some good agents detect the presence of a group of at least 2f +1 agents in the network.
Such a group is necessarily constructed during the sequence of bit processes given above, but
again, it cannot be a priori detected as the agents do not know f or an upperbound on it.
Hence, in our goal to optimize the amount of global knowledge, we need to implement a new
strategy to allow the good agents to declare gathering achieved jointly and simultaneously.
It is the purpose of the rest of this subsection.

To get all good agents declare simultaneously the gathering achieved, we want to reach a
round in which every good agent knows that every good agent knows that gathering is done.
So, let us return to our sequence of bit processes. As mentioned above, when a good agent
has finished to read the first half of its transformed label – call such an agent experienced
– it has the guarantee that the gathering of all good agents has been done at least once.
Hence, when an experienced agent starts to process the second half of its transformed label,
it actually knows an approximation of the number of good agents with a margin of error of
f at the most. For the sake of convenience, let us consider that an experienced agent knows
the exact number µ of good agents: the general case adds a slight level of complexity that
is unnecessary to understand the intuition. So, each time an experienced agent completes
the process of a bit in the second half of its transformed label, it is in a node containing
less than µ agents or at least µ agents. In the first case, the experienced agent is sure that
the gathering is not achieved. In the second case, the experienced agent is in doubt. In our
solution, we build on this doubt. How do we do that? So far, each bit process was just made
of one call to procedure A: now at the end of each bit process, we add a waiting period of
some prescribed length, followed by an extra step that consists in applying A again, but
this time according to the following rule. If during the waiting period it has just done, an
agent X was in a node containing, for a sufficiently long period, an agent pretending to be
experienced and in doubt (this agent may be X itself), then agent X is said to be optimistic
and the second step corresponds to the execution of A(0). Otherwise, agent X is said to be
pessimistic and the second step corresponds to the execution of A(1).

If at least one good agent is optimistic within a given second step, then the gathering of
all good agents is done at the end of this step. Indeed, through similar arguments of partition
to those used for the ideal situation, we can show it is the case when at least another agent is
pessimistic. However, it is also, more curiously, the case when there is no pessimistic agents
at all. This is due in part to the fact that two good experienced agents cannot have been
in doubt in two distinct nodes during the previous waiting period (otherwise, we would get
a contradiction with the definition of µ). Thus, all good agents start A(0) from at most
f + 1 distinct nodes (as the Byzantine agents can mislead the good agents in at most f
distinct nodes during the waiting period), which implies by the pigeonhole principle that at
least 4f + 2 good agents start it from the same node. Combined with some other technical
arguments, we can show that the conditions of Theorem 2 are fulfilled when the agents
execute MERGE at the end of A(0), thereby guaranteeing again gathering of all good agents.

As a result, the addition of an extra step to each bit process gives us the following
interesting property: when a good agent is optimistic at the beginning of a second step, at
its end the gathering is done and, more importantly, the optimistic agent knows it because
its existence ensures it. Note that, it is a great progress, but unfortunately it is not yet
sufficient, particularly because the pessimistic agents do not have the same kind of guarantee.
The way of remedying this is to repeat once more the same kind of algorithmic ingredient
as above. More precisely, at the end of each second step, we add again a waiting period of
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some prescribed length, followed by a third step that consists in applying A in the following
manner. If during the waiting period it has just done, an agent X was in a node containing,
for a sufficiently long period, an agent pretending to be optimistic, then the third step
of agent X corresponds to the execution of A(0) and it becomes optimistic if it was not.
Otherwise, the third step of agent X corresponds to the execution of A(1) and the agent
stays pessimistic.

By doing so, we made a significant move forward. To understand why, we want to invite
the reader to reconsider the case when there is at least one good agent that is optimistic at
the beginning of a second step. As we have seen earlier, at the end of this second step, all
good agents are necessarily gathered and every optimistic agent knows it. In view of the
last changes made to our solution, when starting the third step, every good agent is then
optimistic. As explained above the absence of pessimistic good agent is very helpful, and
using here the same arguments, we are sure that when finishing the third step, all good agents
are gathered and every good agent knows it because all of them are optimistic. Actually, it
is even a little more subtle: the optimistic agents of the first generation (i.e., those that were
already optimistic when starting the second step) know that the gathering is done and know
that every good agent knows it. Concerning the optimistic agents of the second generation
(i.e., those that became optimistic only when starting the third step), they just know that
the gathering is done, but do not know whether the other agents know it or not. Recall that
to get all good agents declare simultaneously the gathering achieved, we want to reach a
round in which every good agent knows that every good agent knows that gathering is done.
We are very close to such a consensus. To reach it, at the end of a third step, the optimistic
agents of the first generation make themselves known to all agents. Note that if there were at
least f + 1 agents declaring to be optimistic agents of the first generation and if f was part
of GK, the consensus would be reached. Indeed, among the agents declaring to be optimistic
of the first generation, at least one is necessarily good and every agent can notice it: at this
point we can show that every good agent knows that every good agent knows that gathering
is done.

However, the agents do not know f . That being said, at the end of a third step, note
that an optimistic agent knowing that the gathering is done can compute an approximation
f̃ of the number of Byzantine agents. More precisely, if the number of agents gathered in its
node is p, the optimistic agent knows than the number of Byzantine agents cannot exceed
f̃ = max{y|(5y + 1)(y + 1) + 1 ≤ p} according to the definition of a strong team. Based on
this fact, we are saved. Indeed, our algorithm is designed in such a way that all good agents
correctly declare the gathering is achieved in the same round after having computed the same
approximation f̃ and noticed at least f̃ + 1 agents that claim being optimistic of the first
generation during a third step. We show that such an event necessarily occurs before any
agent finishes the (4|lmin|+8)-th bit process of its transformed label, which permits to obtain
the promised polynomial complexity. This is where our feat of strength is: obtaining such
a complexity with a small amount of global knowledge, while ensuring that the Byzantine
agents cannot confuse the good agents in any way. Actually, our algorithm is judiciously
orchestrated so that the only thing Byzantine agents can really do is just to accelerate the
resolution of the problem.

I Theorem 3. Assuming that GK = dlog log ne, Algorithm GATHER solves f-Byzantine
gathering with every strong team in all graph of size at most n, and has a time complexity
that is polynomial in n and |lmin|.
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4 The negative result

Algorithm GATHER introduced in the previous section uses the value dlog log ne as global
knowledge, which can be coded with a binary string of size O(log log log n). In this section,
we show that, to solve Byzantine gathering with all strong teams, in all graph of size at most
n, in a time polynomial in n and |lmin|, the order of magnitude of the size of knowledge used
by our algorithm GATHER is optimal. More precisely, we have the following theorem.

I Theorem 4. There is no algorithm solving f-Byzantine gathering with all strong teams
for all f and in all graphs of size at most n, which is polynomial in n and |lmin| and which
uses a global knowledge of size o(log log log n).

Proof. Suppose by contradiction that the theorem is false. Hence, there exists an algorithm
Alg that solves f -Byzantine gathering with all strong teams for all f in all graphs of size
at most n, which is polynomial in n and |lmin| and which uses a global knowledge of size
o(log log log n). The proof relies on the construction of a family Fn (for any n ≥ 4) of initial
instances with strong teams such that for each of them the graph size is at most n. Our
goal is to prove that there is an instance from Fn for which algorithm Alg needs a global
knowledge whose size does not belong to o(log log log n), which would be a contradiction
with the definition of Alg. Let us first present the construction of an infinite sequence of
instances I = I0, I1, I2, . . . , Ii, . . . by induction on i. Instance I0 consists of an oriented ring
of 4 nodes (i.e., a ring in which at each node the edge going clockwise has port number 0
and the edge going anti-clockwise has port 1). In this ring, there is no Byzantine agent but
there are two good agents labeled 0 and 1 that are placed in diametrically opposed nodes.
All the agents in I0 wake up at the same time.

Now let us describe the construction of instance Ii with i ≥ 1 using some features of
instance Ii−1. Let c be the smallest constant integer such that the time complexity of
algorithm Alg is at most nc from every instance made of a graph of size at most n with
a strong team in which |lmin| = 1. Let µi−1 and ni−1 be respectively the total number of
agents in Ii−1 and the number of nodes in the graph of Ii−1. Instance Ii consists of an
oriented ring of (ni−1)4c nodes. In this ring an agent labeled 0 is placed on a node denoted by
v0. In each of both nodes that are adjacent to v0, (ni−1)c · µi−1 Byzantine agents are placed
(which gives a total of 2(ni−1)c · µi−1 Byzantine agents). On the node that is diametrically
opposed to v0, enough good agents are placed in order to have a strong team. The way of
assigning labels to all agents that are not at v0 is arbitrary but respects the condition that
initially no two agents share the same label. Finally, all the agents in Ii wake up at the same
time. This closes the description of the construction of I, for which we have the following
claim.

Claim 1. For any two instances Ij and Ij′ of I, algorithm Alg requires a distinct global
knowledge.

Proof of Claim 1. Assume by contradiction that the claim does not hold for two instances
Ij and Ij′ such that j < j′. Consider any execution EXj of algorithm Alg from Ij . According
to the construction of I, we know that every agent is woken up at the first round of EXj .
We denote by r1, r2, . . . , rk the sequence of consecutive rounds from the first round of EXj

to the round when all good agents declare that gathering is done. We also denote by Gi

the group of agents (possibly empty) that are with the good agent labeled 0 at round ri of
EXj . Now, using execution EXj , let us describe a possible execution EXj′ of algorithm Alg
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from Ij′ : this execution is designed in such a way that it will fool the good agent labeled
0 and will induce it into premature termination. According to the construction of I, all
the agents of Ij′ are woken up in the first round of Ij′ and all the good ones are executing
algorithm Alg. In the first round of EXj′ the agent labeled 0 is alone (as in the first round
of EXj). Then, for each i ∈ 2, . . . , k, the good agent labeled 0 in EXj′ meets a group of
|Gi| Byzantine agents whose the multiset of labels is exactly the same as the multiset of
labels belonging to the agents of Gi in the ith round of EXj . This is always possible in
view of the fact that for each i ∈ 1, . . . , k, |Gi| ≤ µj and the Byzantine agents of Ij′ can
choose to move by ensuring that in the ith round of EXj′ it remains at least (k − i) · µj

Byzantine agents in the node adjacent to the one occupied by the agent labeled 0 in the
clockwise direction (resp. anti-clockwise direction): indeed according to the construction of
Ij′ , in each of both nodes adjacent to the starting node of the good agent labeled 0, there
are initially (nj′−1)c · µj′−1 ≥ k · µj′−1 Byzantine agents, as k ≤ (nj)c ≤ (nj′−1)c. Finally,
if algorithm Alg prescribes some message exchange between agents during their meetings,
then the Byzantine agents in execution EXj′ give exactly the same information to 0, as the
agents with respective labels in execution EXj . Hence, from the point of view of agent 0,
the first k rounds of EXj look exactly identical to the first k rounds of EXj′ . This is due to
the actions of Byzantine agents, the fact that all nodes in Ij and Ij′ look identical, and also
because k ≤ (nj)c which implies that, regardless of the algorithm Alg, the agent labeled 0
cannot meet any good agent in the first k rounds of EXj′ as the distance between agent 0
and any other good agent is initially at least (nj′−1)4c

2 ≥ (nj)4c

2 . Therefore, in the kth round
of execution EXj′ , the good agent labeled 0 declares having met all good agents and stops,
which is incorrect, since it has not met any good agent. This contradicts the definition of
algorithm Alg and closes the proof of this claim.

Now, consider the largest x such that in each of the x+ 1 first instances I0, I1, . . . , Ix of
I, the graph size is at most n: these x+ 1 instances constitute family Fn. In view of the
construction of sequence I and the definition of x, we have 4((4c)x) ≤ n < 4((4c)x+1). Hence,
x belongs to Ω(log log n). However, according to Claim 1, the global knowledge given to
distinct instances in this family must be different. Hence, there is at least one instance of Fn

for which algorithm Alg uses a global knowledge of size Ω(log x): since x ∈ Ω(log log n), we
have Ω(log x) ∈ Ω(log log log n). This contradicts the fact that Alg uses a global knowledge
of size o(log log log n) and proves the theorem. J

5 Conclusion

In this paper, we designed the first polynomial algorithm w.r.t n and |lmin| allowing to gather
all good agents in presence of Byzantine ones that can act in an unpredictable way and lie
about their labels. Our algorithm works under the assumption that the team evolving in the
network is strong i.e., the number of good agents is roughly at least quadratic in the number
f of Byzantine agents. The required global knowledge GK is of size O(log log log n), which is
of optimal order of magnitude to get a time complexity that is polynomial in n and |lmin|
even with strong teams.

A natural open question that immediately comes to mind is to ask if we can do the same
by reducing the ratio between the good agents and the Byzantine agents. For example, could
it be still possible to solve the problem in polynomial time with a global knowledge of size
O(log log log n) if the number of good agents is at most o(f2)? Note that the answer to
this question may be negative but then may become positive with a little bit more global
knowledge. Actually, we can even easily show that the answer is true if the agents are initially
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given a complete map of the graph with all port numbers, and in which each node v is
associated to the list of all labels of the good agents initially occupying node v. However, the
size of GK is then huge as it belongs to Ω(n2). In fact, in this case what is really interesting
is to find the optimal size for GK. This observation allows us to conclude with the following
open problem that is more general and appealing.

What are the trade-offs among the ratio good/Byzantine agents, the time complexity and
the amount of global knowledge to solve f -Byzantine gathering?

Bringing an exhaustive and complete answer to this question appears to be really
challenging but would turn out to be a major step in our understanding of the problem.
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Abstract
Modern, inherently dynamic systems are usually characterized by a network structure, i.e. an un-
derlying graph topology, which is subject to discrete changes over time. Given a static underlying
graph G, a temporal graph can be represented via an assignment of a set of integer time-labels
to every edge of G, indicating the discrete time steps when this edge is active. While most of
the recent theoretical research on temporal graphs has focused on the notion of a temporal path
and other “path-related” temporal notions, only few attempts have been made to investigate
“non-path” temporal graph problems. In this paper, motivated by applications in sensor and in
transportation networks, we introduce and study two natural temporal extensions of the classical
problem Vertex Cover. In our first problem, Temporal Vertex Cover, the aim is to cover
every edge at least once during the lifetime of the temporal graph, where an edge can only be
covered by one of its endpoints at a time step when it is active. In our second, more pragmatic
variation Sliding Window Temporal Vertex Cover, we are also given a natural number
∆, and our aim is to cover every edge at least once at every ∆ consecutive time steps. In both
cases we wish to minimize the total number of “vertex appearances” that are needed to cover the
whole graph. We present a thorough investigation of the computational complexity and approx-
imability of these two temporal covering problems. In particular, we provide strong hardness
results, complemented by various approximation and exact algorithms. Some of our algorithms
are polynomial-time, while others are asymptotically almost optimal under the Exponential Time
Hypothesis (ETH) and other plausible complexity assumptions.
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1 Introduction and Motivation

A great variety of both modern and traditional networks are inherently dynamic, in the sense
that their link availability varies over time. Information and communication networks, social
networks, transportation networks, and several physical systems are only a few examples of
networks that change over time [18,27]. The common characteristic in all these application
areas is that the network structure, i.e. the underlying graph topology, is subject to discrete
changes over time. In this paper we adopt a simple and natural model for time-varying
networks which is given with time-labels on the edges of a graph, while the vertex set remains
unchanged. This formalism originates in the foundational work of Kempe et al. [20].

I Definition 1 (temporal graph). A temporal graph is a pair (G,λ), where G = (V,E) is an
underlying (static) graph and λ : E → 2N is a time-labeling function which assigns to every
edge of G a set of discrete-time labels.

For every edge e ∈ E in the underlying graph G of a temporal graph (G,λ), λ(e) denotes
the set of time slots at which e is active in (G,λ). Due to its vast applicability in many areas,
this notion of temporal graphs has been studied from different perspectives under various
names such as time-varying [1, 14,29], evolving [4, 10,13], dynamic [7, 15], and graphs over
time [24]; for a recent attempt to integrate existing models, concepts, and results from the
distributed computing perspective see the survey papers [5–7] and the references therein.
Data analytics on temporal networks have also been very recently studied in the context
of summarizing networks that represent sports teams’ activity data to discover recurring
strategies and understand team tactics [22], as well as extracting patterns from interactions
between groups of entities in a social network [21].

Motivated by the fact that, due to causality, information in temporal graphs can “flow” only
along sequences of edges whose time-labels are increasing, most temporal graph parameters
and optimization problems that have been studied so far are based on the notion of temporal
paths and other “path-related” notions, such as temporal analogues of distance, diameter,
reachability, exploration, and centrality [2, 3, 12, 25, 26]. In contrast, only few attempts have
been made to define “non-path” temporal graph problems. Motivated by the contact patterns
among high-school students, Viard et al. [31, 32], and later Himmel et al. [17], introduced
and studied ∆-cliques, an extension of the concept of cliques to temporal graphs, in which
all vertices interact with each other at least once every ∆ consecutive time steps within a
given time interval.

In this paper we introduce and study two natural temporal extensions of the problem
Vertex Cover in static graphs, which take into account the dynamic nature of the network.
In the first and simpler of these extensions, namely Temporal Vertex Cover (for short,
TVC), every edge e has to be “covered” at least once during the lifetime T of the network
(by one of its endpoints), and this must happen at a time step t when e is active. The goal is
then to cover all edges with the minimum total number of such “vertex appearances”. On the
other hand, in many real-world applications where scalability is important, the lifetime T can
be arbitrarily large but the network still needs to remain sufficiently covered. In such cases,
as well as in safety-critical systems (e.g. in military applications), it may not be satisfactory
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enough that an edge is covered just once during the whole lifetime of the network. Instead,
every edge must be covered at least once within every small ∆-window of time (for an
appropriate value of ∆), regardless of how large the lifetime is; this gives rise to our second
optimization problem, namely Sliding Window Temporal Vertex Cover (for short,
SW-TVC). Formal definitions of our problems TVC and SW-TVC are given in Section 2.

Our two temporal extensions of Vertex Cover are motivated by applications in sensor
networks and in transportation networks. In particular, several works in the field of sensor
networks considered problems of placing sensors to cover a whole area or multiple critical
locations, e.g. for reasons of surveillance. Such studies usually wish to minimize the number
of sensors used or the total energy required [11, 16, 23, 28, 33]. Our temporal vertex cover
notions are an abstract way to economically meet such covering demands as time progresses.

To further motivate the questions raised in this work, consider a network whose links
represent transporting facilities which are not always available, while the availability schedule
per link is known in advance. We wish to check each transporting facility and certify “OK”
at least once per facility during every (reasonably small) window of time. It is natural to
assume that the checking is done in the presence of an inspecting agent at an endpoint of the
link (i.e. on a vertex), since such vertices usually are junctions with local offices. The agent
can inspect more than one link at the same day, provided that these links share this vertex
and that they are all alive (i.e. operating) at that day. Notice that the above is indeed an
application drawn from real-life, as regular checks in roads and trucks are paramount for the
correct operation of the transporting sector, according to both the European Commission1
and the American Public Transportation Association2.

1.1 Our contribution
In this paper we present a thorough investigation of the complexity and approximability of the
problems Temporal Vertex Cover (TVC) and Sliding Window Temporal Vertex
Cover (SW-TVC) on temporal graphs. We first prove in Section 3 that Set Cover is
equivalent to a special case of TVC on star temporal graphs (i.e. when the underlying graph
G is a star), which immediately provides several complexity and algorithmic consequences for
TVC. In particular, TVC remains NP-complete even on star temporal graphs, and it does not
admit a polynomial-time (1−ε) lnn-approximation algorithm, unless NP has nO(log log n)-time
deterministic algorithms. On the positive side, TVC on star temporal graphs with n vertices
can be (Hn−1 − 1

2 )-approximated in polynomial time, where Hn =
∑n

i=1
1
i ≈ lnn is the nth

harmonic number. Similar equivalence with Hitting Set yields that for any ε < 1, TVC
on star temporal graphs cannot be optimally solved in O(2εn) time, assuming the Strong
Exponential Time Hypothesis (SETH). We complement these results by showing that TVC
on general temporal graphs admits a polynomial-time randomized approximation algorithm
with expected ratio O(lnn).

In Section 4 and in the reminder of the paper we deal with our second problem, SW-TVC.
We prove in Section 4.1 a strong complexity lower bound on arbitrary temporal graphs. More
specifically we prove that, for any (arbitrarily growing) functions f : N→ N and g : N→ N,

1 According to the European Commission (see https://ec.europa.eu/transport/road_safety/topics/
vehicles/inspection_en), “roadworthiness checks (such as on-the-spot roadside inspections and pe-
riodic checks) not only make sure your vehicle is working properly, they are also important for
environmental reasons and for ensuring fair competition in the transport sector”.

2 According to the American Public Transportation Association (see http://www.apta.com/resources/
standards/Documents/APTA-RT-VIM-RP-019-03.pdf “developing minimum inspection, maintenance,
testing and alignment procedures maintains rail transit trucks in a safe and reliable operating condition”.
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there exists a constant ε ∈ (0, 1) such that SW-TVC cannot be solved in f(T ) · 2εn·g(∆) time,
assuming the Exponential Time Hypothesis (ETH). This ETH-based lower bound turns out
to be asymptotically almost tight, as we present an exact dynamic programming algorithm
with running time O(T∆(n+m) ·2n(∆+1)). This worst-case running time can be significantly
improved in certain special temporal graph classes. In particular, when the “snapshot” of
(G,λ) at every time step has vertex cover number bounded by k, the running time becomes
O(T∆(n + m) · nk(∆+1)). That is, when ∆ is a constant, this algorithm is polynomial in
the input size on temporal graphs with bounded vertex cover number at every time step.
Notably, when every snapshot is a star (i.e. a superclass of the star temporal graphs studied
in Section 3) the running time of the algorithm is O(T∆(n+m) · 2∆).

In Section 5 we prove strong inapproximability results for SW-TVC even when restricted
to temporal graphs with length ∆ = 2 of the sliding window. In particular, we prove that
this problem is APX-hard (and thus does not admit a Polynomial Time Approximation
Scheme (PTAS), unless P = NP), even when ∆ = 2, the maximum degree in the underlying
graph G is at most 3, and every connected component at every graph snapshot has at most 7
vertices. Finally, in Section 6 we provide a series of approximation algorithms for the general
SW-TVC problem, with respect to various incomparable temporal graph parameters. In
particular, we provide polynomial-time approximation algorithms with approximation ratios
(i) O(lnn + ln ∆), (ii) 2k, where k is the maximum number of times that each edge can
appear in a sliding ∆ time window (thus implying a ratio of 2∆ in the general case), (iii) d,
where d is the maximum vertex degree at every snapshot of (G,λ). Note that, for d = 1, the
latter result implies that SW-TVC can be optimally solved in polynomial time whenever
every snapshot of (G,λ) is a matching.

2 Preliminaries and notation

A theorem proving that a problem is NP-hard does not provide much information about how
efficiently (although not polynomially, unless P = NP) this problem can be solved. In order
to prove some useful complexity lower bounds, we mostly need to rely on some complexity
hypothesis that is stronger than“P 6= NP”. The Exponential Time Hypothesis (ETH) is one
of the established and most well-known such complexity hypotheses.

I Exponential Time Hypothesis (ETH [19]). There exists an ε < 1 such that 3SAT cannot
be solved in O(2εn) time, where n is the number of variables in the input 3-CNF formula.

Given a (static) graph G, we denote by V (G) and E(G) the sets of its vertices and edges,
respectively. An edge between two vertices u and v of G is denoted by uv, and in this case
u and v are said to be adjacent in G. The maximum label assigned by λ to an edge of G,
called the lifetime of (G,λ), is denoted by T (G,λ), or simply by T when no confusion arises.
That is, T (G,λ) = max{t ∈ λ(e) : e ∈ E}. For every i, j ∈ N, where i ≤ j, we denote
[i, j] = {i, i + 1, . . . , j}. Throughout the paper we consider temporal graphs with finite
lifetime T , and we refer to each integer t ∈ [1, T ] as a time slot of (G,λ). The instance (or
snapshot) of (G,λ) at time t is the static graph Gt = (V,Et), where Et = {e ∈ E : t ∈ λ(e)}.
For every i, j ∈ [1, T ], where i ≤ j, we denote by (G,λ)|[i,j] the restriction of (G,λ) to the
time slots i, i+ 1, . . . , j, i.e. (G,λ)|[i,j] is the sequence of the instances Gi, Gi+1, . . . , Gj . We
assume in the remainder of the paper that every edge of G appears in at least one time slot
until T , namely

⋃T
t=1Et = E.

Although some optimization problems on temporal graphs may be hard to solve in the
worst case, an optimal solution may be efficiently computable when the input temporal



E. C. Akrida, G. B. Mertzios, P. G. Spirakis, and V. Zamaraev 148:5

graph (G,λ) has special properties, i.e. if (G,λ) belongs to a special temporal graph class
(or time-varying graph class [5, 7]). To specify a temporal graph class we can restrict (a)
the underlying topology G, or (b) the time-labeling λ, i.e. the temporal pattern in which the
time-labels appear, or both.

I Definition 2. Let (G,λ) be a temporal graph and let X be a class of (static) graphs.
If G ∈ X then (G,λ) is an X temporal graph. On the other hand, if Gi ∈ X for every
i ∈ [1, T ], then (G,λ) is an always X temporal graph.

In the remainder of the paper we denote by n = |V | and m = |E| the number of vertices
and edges of the underlying graph G, respectively, unless otherwise stated. Furthermore,
unless otherwise stated, we assume that the labeling λ is arbitrary, i.e. (G,λ) is given with
an explicit list of labels for every edge. That is, the size of the input temporal graph (G,λ)
is O

(
|V |+

∑T
t=1 |Et|

)
= O(n + mT ). In other cases, where λ is more restricted, e.g. if

λ is periodic or follows another specific temporal pattern, there may exist more succinct
representations of the input temporal graph.

For every u ∈ V and every time slot t, we denote the appearance of vertex u at time t by
the pair (u, t). That is, every vertex u has T different appearances (one for each time slot)
during the lifetime of (G,λ). Similarly, for every vertex subset S ⊆ V and every time slot t we
denote the appearance of set S at time t by (S, t). With a slight abuse of notation, we write
(S, t) =

⋃
v∈S(v, t). A temporal vertex subset of (G,λ) is a set S ⊆ {(v, t) : v ∈ V, 1 ≤ t ≤ T}

of vertex appearances in (G,λ). Given a temporal vertex subset S, for every time slot
t ∈ [1, T ] we denote by St = {(v, t) : (v, t) ∈ S} the set of all vertex appearances in S at
the time slot t. Similarly, for any pair of time slots i, j ∈ [1, T ], where i ≤ j, S|[i,j] is the
restriction of the vertex appearances of S within the time slots i, i+ 1, . . . , j. Note that the
cardinality of the temporal vertex subset S is |S| =

∑
1≤t≤T |St|.

2.1 Temporal Vertex Cover

Let S be a temporal vertex subset of (G,λ). Let e = uv ∈ E be an edge of the underlying
graph G and let (w, t) be a vertex appearance in S. We say that vertex w covers the edge e if
w ∈ {u, v}, i.e. w is an endpoint of e; in that case, edge e is covered by vertex w. Furthermore
we say that the vertex appearance (w, t) temporally covers the edge e if (i) w covers e and
(ii) t ∈ λ(e), i.e. the edge e is active during the time slot t; in that case, edge e is temporally
covered by the vertex appearance (w, t). We now introduce the notion of a temporal vertex
cover and the optimization problem Temporal Vertex Cover.

I Definition 3. Let (G,λ) be a temporal graph. A temporal vertex cover of (G,λ) is a
temporal vertex subset S ⊆ {(v, t) : v ∈ V, 1 ≤ t ≤ T} of (G,λ) such that every edge e ∈ E
is temporally covered by at least one vertex appearance (w, t) in S.

Temporal Vertex Cover (TVC)

Input: A temporal graph (G,λ).
Output: A temporal vertex cover S of (G,λ) with the smallest cardinality |S|.

Note that TVC is a natural temporal extension of the problem Vertex Cover on static
graphs. In fact, Vertex Cover is the special case of TVC where T = 1. Thus TVC is
clearly NP-complete, as it also trivially belongs to NP.
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2.2 Sliding Window Temporal Vertex Cover
In the notion of a temporal vertex cover given in Section 2.1, the requirement is that every
edge is temporally covered at least once during the lifetime T of the input temporal graph
(G,λ). On the other hand, in many real-world applications where scalability is important,
the lifetime T can be arbitrarily large. In such cases it may not be satisfactory enough that
an edge is temporally covered just once during the whole lifetime of the temporal graph.
Instead, in such cases it makes sense that every edge is temporally covered by some vertex
appearance at least once during every small period ∆ of time, regardless of how large the
lifetime T is. Motivated by this, we introduce in this section a natural sliding window variant
of the TVC problem, which offers a greater scalability of the solution concept.

For every time slot t ∈ [1, T −∆ + 1], we define the time window Wt = [t, t+ ∆− 1] as
the sequence of the ∆ consecutive time slots t, t+ 1, . . . , t+ ∆− 1. Furthermore we denote
by E[Wt] =

⋃
i∈Wt

Ei the union of all edges appearing at least once in the time window Wt.
Finally we denote by S[Wt] = {(v, i) ∈ S : i ∈ Wt} the restriction of the temporal vertex
subset S to the window Wt. We are now ready to introduce the notion of a sliding ∆-window
temporal vertex cover and the optimization problem Sliding Window Temporal Vertex
Cover.

I Definition 4. Let (G,λ) be a temporal graph with lifetime T and let ∆ ≤ T . A sliding
∆-window temporal vertex cover of (G,λ) is a temporal vertex subset S ⊆ {(v, t) : v ∈ V, 1 ≤
t ≤ T} of (G,λ) such that, for every time window Wt and for every edge e ∈ E[Wt], e is
temporally covered by at least one vertex appearance (w, t) in S[Wt].

Sliding Window Temporal Vertex Cover (SW-TVC)

Input: A temporal graph (G,λ) with lifetime T , and an integer ∆ ≤ T .
Output: A sliding ∆-window temporal vertex cover S of (G,λ) with the smallest
cardinality |S|.

Whenever the parameter ∆ is a fixed constant, we will refer to the above problem as the
∆-TVC (i.e. ∆ is now a part of the problem name). Note that the problem TVC defined
in Section 2.1 is the special case of SW-TVC where ∆ = T , i.e. where there is only one
∆-window in the whole temporal graph. Another special case3 of SW-TVC is the problem
1-TVC, whose optimum solution is obtained by iteratively solving the (static) problem
Vertex Cover on each of the T static instances of (G,λ); thus 1-TVC fails to fully capture
the time dimension in temporal graphs.

3 Hardness and approximability of TVC

In this section we investigate the complexity of Temporal Vertex Cover (TVC). First
we prove in Section 3.1 that TVC on star temporal graphs is equivalent to both Set Cover
and Hitting Set, and derive several complexity and algorithmic consequences for TVC.

In Section 3.2 we use randomized rounding technique to prove that TVC on general
temporal graphs admits a polynomial-time randomized approximation algorithm with ex-
pected ratio O(lnn). This result is complemented by our results in Section 6.1 where we
prove that SW-TVC (and thus also TVC) can be deterministically approximated with ratio
H2n∆ − 1

2 ≈ lnn+ ln 2∆− 1
2 in polynomial time.

3 The problem 1-TVC has already been investigated under the name “evolving vertex cover” in the
context of maintenance algorithms in dynamic graphs [8]; similar “evolving” variations of other graph
covering problems have also been considered, e.g. the “evolving dominating set” [6].
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3.1 Hardness on star temporal graphs
In the next theorem we reduce Set Cover to TVC on star temporal graphs, and vice versa.
Our hardness results are complemented in Theorem 6 by reducing from Hitting Set.

I Theorem 5. TVC on star temporal graphs is NP-complete and it admits a polynomial-time
(Hn−1 − 1

2 )-approximation algorithm. Furthermore, for any ε > 0, TVC on star temporal
graphs does not admit any polynomial-time (1− ε) lnn-approximation algorithm, unless NP
has nO(log log n)-time deterministic algorithms.

I Theorem 6. For every ε < 1, TVC on star temporal graphs cannot be optimally solved
in O(2εn) time, unless the Strong Exponential Time Hypothesis (SETH) fails.

3.2 A randomized rounding algorithm for TVC
In this section we provide a linear programming relaxation of TVC, and then, with the help
of a randomized rounding technique, we construct a feasible solution whose expected size is
within a factor of O(lnn) of the optimal size.

I Theorem 7. There exists a polynomial-time randomized approximation algorithm for TVC
with expected approximation factor O(lnn).

4 An almost tight algorithm for SW-TVC

In this section we investigate the complexity of Sliding Window Temporal Vertex
Cover (SW-TVC). First we prove in Section 4.1 a strong lower bound on the complexity
of optimally solving this problem on arbitrary temporal graphs. More specifically we
prove that, for any (arbitrarily growing) functions f : N → N and g : N → N, there
exists a constant ε ∈ (0, 1) such that SW-TVC cannot be solved in f(T ) · 2εn·g(∆) time,
assuming the Exponential Time Hypothesis (ETH). This ETH-based lower bound turns
out to be asymptotically almost tight. In fact, we present in Section 4.2 an exact dynamic
programming algorithm for SW-TVC whose running time on an arbitrary temporal graph is
O(T∆(n+m)·2n(∆+1)), which is asymptotically almost optimal, assuming ETH. In Section 4.3
we prove that our algorithm can be refined so that, when the vertex cover number of each
snapshot Gi is bounded by a constant k, the running time becomes O(T∆(n+m) · nk(∆+1)).
That is, when ∆ is a constant, this algorithm is polynomial in the input size on temporal
graphs with bounded vertex cover number at every slot. Notably, for the class of always star
temporal graphs (i.e. a superclass of the star temporal graphs studied in Section 3.1) the
running time of the algorithm is O(T∆(n+m) · 2∆).

4.1 A complexity lower bound
In the the following theorem we prove a strong ETH-based lower bound for SW-TVC.
This lower bound is asymptotically almost tight, as we present in Section 4.2 a dynamic
programming algorithm for SW-TVC with running time O(T∆(n + m) · 2n∆), where n
and m are the numbers of vertices and edges in the underlying graph G, respectively.

I Theorem 8. For any two (arbitrarily growing) functions f, g : N → N, there exists a
constant ε ∈ (0, 1) such that SW-TVC cannot be solved in f(T ) · 2εn·g(∆) time assuming
ETH, where n is the number of vertices in the underlying graph G of the temporal graph.
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4.2 An exact dynamic programming algorithm
The main idea of our dynamic programming algorithm for SW-TVC is to scan the temporal
graph from left to right with respect to time (i.e. to scan the snapshots Gi increasingly on i),
and at every time slot to consider all possibilities for the vertex appearances at the previous ∆
time slots. Let (G,λ) be a temporal graph with n vertices and lifetime T , and let ∆ ≤ T . For
every t = 1, 2, . . . , T −∆ + 1 and every ∆-tuple of vertex subsets A1, . . . , A∆ of G, we define
f(t;A1, A2, . . . , A∆) to be the smallest cardinality of a sliding ∆-window temporal vertex cover
S of (G,λ)|[1,t+∆−1], such that St = (A1, t), St+1 = (A2, t+1), . . . , St+∆−1 = (A∆, t+∆−1).
If there exists no sliding ∆-window temporal vertex cover S of (G,λ)|[1,t+∆−1] with these
prescribed vertex appearances in the time slots t, t + 1, . . . , t + ∆ − 1, then we define
f(t;A1, A2, . . . , A∆) = ∞. Note that, once we have computed all possible values of the
function f(·), then the optimum solution of SW-TVC on (G,λ) has cardinality

OPTSW-TVC(G,λ) = min
A1,A2,...,A∆⊆V

{f(T −∆ + 1;A1, A2, . . . , A∆)} . (1)

I Lemma 9. Let (G,λ) be a temporal graph, where G = (V,E). Let 2 ≤ t ≤ T −∆ + 1 and
let A1, A2, . . . A∆ be a ∆-tuple of vertex subsets of the underlying graph G. Suppose that⋃∆

i=1(Ai, t+ i− 1) is a temporal vertex cover of (G,λ)|[t,t+∆−1]. Then

f(t;A1, A2, . . . , A∆) = |A∆|+ min
X⊆V

{f(t− 1;X,A1, . . . , A∆−1)} . (2)

Using the recursive computation of Lemma 9, we are now ready to present Algorithm 1
for computing the value of an optimal solution of SW-TVC on a given arbitrary temporal
graph (G,λ). Note that Algorithm 1 can be easily modified such that it also computes the
actual optimum solution of SW-TVC (instead of only its optimum cardinality). The proof
of correctness and running time analysis of Algorithm 1 are given in the next theorem.

Algorithm 1 SW-TVC.
Input: A temporal graph (G,λ) with lifetime T , where G = (V,E), and a natural ∆ ≤ T .
Output: The smallest cardinality of a sliding ∆-window temporal vertex cover in (G,λ).

1: for t = 1 to T −∆ + 1 do
2: for all A1, A2, . . . , A∆ ⊆ V do
3: if

⋃∆
i=1(Ai, t+ i− 1) is a temporal vertex cover of (G,λ)|[t,t+∆−1] then

4: if t = 1 then
5: f(t;A1, A2, . . . , A∆)←

∑∆
i=1 |Ai|

6: else
7: f(t;A1, A2, . . . , A∆)← |A∆|+minX⊆V {f(t− 1;X,A1, . . . , A∆−1)}
8: else
9: f(t;A1, A2, . . . , A∆)←∞

10: return minA1,...,A∆⊆V {f(T −∆ + 1;A1, . . . , A∆)}

I Theorem 10. Let (G,λ) be a temporal graph, where G = (V,E) has n vertices and m edges.
Let T be its lifetime and let ∆ be the length of the sliding window. Algorithm 1 computes
in O(T∆(n+m) · 2n(∆+1)) time the value of an optimal solution of SW-TVC on (G,λ).

4.3 Always bounded vertex cover number temporal graphs
Let k be a constant and let Ck be the class of graphs with the vertex cover number at most k.
The next theorem follows now from the analysis of Theorem 10.
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I Theorem 11. SW-TVC on always Ck temporal graphs can be solved in O(T∆(n+m) ·
nk(∆+1)) time.

In particular, in the special, yet interesting, case of always star temporal graphs, our
search at every step reduces to just one binary choice for each of the previous ∆ time slots,
of whether to include the central vertex of a star in a snapshot or not. Hence we have the
following theorem as a direct implication of Theorem 11.

I Theorem 12. SW-TVC on always star temporal graphs can be solved in O(T∆(n+m) ·2∆)
time.

5 Approximation hardness of 2-TVC

In this section we study the complexity of ∆-TVC where ∆ is constant. We start with an
intuitive observation that, for every fixed ∆, the problem (∆ + 1)-TVC is at least as hard
as ∆-TVC. Indeed, let A be an algorithm that computes a minimum-cardinality sliding
(∆ + 1)-window temporal vertex cover of (G,λ). It is easy to see that a minimum-cardinality
sliding ∆-window temporal vertex cover of (G,λ) can also be computed using A, if we
amend the input temporal graph by inserting one edgeless snapshot after every ∆ consecutive
snapshots of (G,λ).

Since the 1-TVC problem is equivalent to solving T instances of Vertex Cover (on
static graphs), the above reduction demonstrates in particular that, for any natural ∆,
∆-TVC is at least as hard as Vertex Cover. Therefore, if Vertex Cover is hard for a
class X of static graphs, then ∆-TVC is also hard for the class of always X temporal graphs.
In this section, we show that the converse is not true. Namely, we reveal a class X of graphs,
for which Vertex Cover can be solved in linear time, but 2-TVC is NP-hard on always X
temporal graphs. In fact, we show the even stronger result that 2-TVC is APX-hard (and
thus does not admit a PTAS, unless P = NP) on always X temporal graphs.

To prove the main result (in Theorem 14) we start with an auxiliary lemma, showing
that Vertex Cover is APX-hard on the class Y of graphs which can be obtained from a
cubic graph by subdividing every edge exactly 4 times.

I Lemma 13. Vertex Cover is APX-hard on Y.

Let now X be the class of graphs whose connected components are induced subgraphs of
the graph obtained from the star with three leaves by subdividing each of its edges exactly
once. Clearly, Vertex Cover is linearly solvable on graphs from X . We will show that
2-TVC is APX-hard on always X temporal graphs by using a reduction from Vertex
Cover on Y.

I Theorem 14. 2-TVC is APX-hard on always X temporal graphs.

Proof. To prove the theorem we will reduce Vertex Cover on Y to 2-TVC on always
X temporal graphs. Let H = (V,E) be a graph in Y. First we will show how to construct
an always X temporal graph (G,λ) of lifetime 2. Then we will prove that the size τ of a
minimum vertex cover of H is equal to the size σ of a minimum-cardinality sliding 2-window
temporal vertex cover of (G,λ).

Let R ⊆ V be the set of vertices of degree 3 in H. We define (G,λ) to be a temporal
graph of lifetime 2, where snapshot G1 is obtained from H by removing the edges with both
ends being at distance exactly 2 from R, and snapshot G2 = H −R. Figure 1 illustrates the
reduction for H = K4.
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K4 The 4-subdivision of K4 Snapshot G1 Snapshot G2

Figure 1 A cubic graph K4, its 4-subdivision, and the corresponding snapshots G1 and G2

Let S = (S1, 1) ∪ (S2, 2) be an arbitrary sliding 2-window temporal vertex cover of (G,λ)
for some S1, S2 ⊆ V . Since every edge of H belongs to at least one of the graphs G1 and G2,
the set S1 ∪ S2 covers all the edges of H . Hence, τ ≤ |S1 ∪ S2| ≤ |S1|+ |S2| = |S|. As S was
chosen arbitrarily we further conclude that τ ≤ σ.

To show the converse inequality, let C ⊆ V be a minimum vertex cover of H. Let S1
be those vertices in C which either have degree 3, or have a neighbor of degree 3. Let also
S2 = C \ S1. We claim that (S1, 1) ∪ (S2, 2) is a sliding 2-window temporal vertex cover
of (G,λ). First, let e ∈ E be an edge in H incident to a vertex of degree 3. Then, by the
construction, e is active only in time slot 1, i.e. e ∈ E1 \ E2, and a vertex v in C covering e
belongs to S1. Hence, e is temporally covered by (v, 1) in (G,λ). Let now e ∈ E be an edge
in H whose both end vertices have degree 2. If one of the end vertices of e is adjacent to
a vertex of degree 3 in H, then, by the construction, e is active in both time slots 1 and 2.
Therefore, since C = S1 ∪ S2, edge e will be temporally covered in (G,λ) in at least one of
the time slots. Finally, if none of the end vertices of e is adjacent to a vertex of degree 3
in H, then e is active only in time slot 2, i.e. e ∈ E2 \ E1. Moreover, by the construction a
vertex v in C covering e belongs to S2. Hence, e is temporally covered by (v, 2) in (G,λ).
This shows that (S1, 1) ∪ (S2, 2) is a sliding 2-window temporal vertex cover of (G,λ), and
therefore σ ≤ |S1|+ |S2| = |C| = τ .

Note that the size of a minimum vertex cover of H is equal to the size of a minimum-
cardinality sliding 2-window temporal vertex cover of (G,λ) and that any feasible solution to
2-TVC on (G,λ) of size r defines a vertex cover of H of size at most r. Thus, since Vertex
Cover is APX-hard on Y by Lemma 13 and the reduction is approximation-preserving, it
follows that 2-TVC is APX-hard as well. J

6 Approximation algorithms

In this section we provide several approximation algorithms for SW-TVC with respect to
different temporal graph parameters. As the various approximation factors that are achieved
are incomparable, the best option for approximating an optimal solution depends on the
specific application domain and the specific values of those parameters.

6.1 Approximations in terms of T , ∆, and the largest edge frequency
We begin by presenting a reduction from SW-TVC to Set Cover, which proves useful
for deriving approximation algorithms for the original problem. Consider an instance,
(G,λ) and ∆ ≤ T , of the SW-TVC problem. Construct an instance of Set Cover as
follows: Let the universe be U = {(e, t) : e ∈ E[Wt], t ∈ [1, T −∆ + 1]}, i.e. the set of all
pairs (e, t) of an edge e and a time slot t such that e appears (and so must be temporally
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covered) within window Wt. For every vertex appearance (v, s) we define Cv,s to be the
set of elements (e, t) in the universe U , such that (v, s) temporally covers e in the window
Wt. Formally, Cv,s = {(e, t) : v is an endpoint of e, e ∈ Es, and s ∈ Wt}. Let C be the
family of all sets Cv,s, where v ∈ V, s ∈ [1, T ]. The following lemma shows that finding
a minimum-cardinality sliding ∆-window temporal vertex cover of (G,λ) is equivalent to
finding a minimum-cardinality family of sets Cv,s that covers the universe U .

I Lemma 15. A family C = {Cv1,t1 , . . . , Cvk,tk
} is a set cover of U if and only if S =

{(v1, t1), . . . , (vk, tk)} is a sliding ∆-window temporal vertex cover of (G,λ).

O(ln n + ln ∆)-approximation. In the instance of Set Cover constructed by the above
reduction, every set Cv,s in C contains at most n∆ elements of the universe U . Indeed, the
vertex appearance (v, s) temporally covers at most n−1 edges, each in at most ∆ windows
(namely from window Ws−∆+1 up to window Ws). Thus we can apply the polynomial-
time greedy algorithm from [9] for Set Cover which achieves an approximation ratio of
Hn∆ − 1

2 =
∑n∆

i=1
1
i −

1
2 ≈ lnn+ ln ∆− 1

2 .
2k-approximation, where k is the maximum edge frequency. Given a temporal graph

(G,λ) and an edge e of G, the ∆-frequency of e is the maximum number of time
slots at which e appears within a ∆-window. Let k denote the maximum ∆-frequency
over all edges of G. Clearly, for a particular ∆-window Wt, an edge e ∈ E[Wt] can be
temporally covered in Wt by at most 2k vertex appearances. So in the above reduction
to Set Cover, every element (e, t) ∈ U belongs to at most 2k sets in C. Therefore, the
optimal solution of the constructed instance of Set Cover can be approximated within
a factor of 2k in polynomial time [30], yielding a 2k-approximation for SW-TVC.

2∆-approximation. Since the maximum ∆-frequency of an edge is always upper-bounded
by ∆, the previous algorithm gives a worst-case polynomial-time 2∆-approximation for
SW-TVC on arbitrary temporal graphs.

6.2 Approximation in terms of maximum degree of snapshots
In this section we give a polynomial-time d-approximation algorithm for the SW-TVC
problem on always degree at most d temporal graphs, that is, temporal graphs where the
maximum degree in each snapshot is at most d. In particular, the algorithm computes an
optimum solution (i.e. with approximation ratio d = 1) for always matching (i.e. always
degree at most 1) temporal graphs. As a building block, we first provide an exact O(T )-time
algorithm for optimally solving SW-TVC in the class of single-edge temporal graphs, namely
temporal graphs whose underlying graph is a single edge.

Single-edge temporal graphs

Consider a temporal graph (G0, λ) where G0 is the single-edge graph, i.e. V (G0) = {u, v}
and E(G0) = {uv}. We reduce SW-TVC on (G0, λ) to an instance of Interval Covering.

Interval Covering

Input: A family I of intervals in the line.
Output: A minimum-cardinality subfamily I ′ ⊆ I such that

⋃
I∈I =

⋃
I∈I′ .

An easy linear-time greedy algorithm for the Interval Covering picks at each iteration,
among the intervals that cover the leftmost uncovered point, the one with largest finishing
time. Algorithm 2 implements this simple rule in the context of the SW-TVC problem.
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Algorithm 2 SW-TVC on single-edge temporal graphs.
Input: A temporal graph (G0, λ) of lifetime T with V (G0) = {u, v}, and ∆ ≤ T .
Output: A minimum-cardinality sliding ∆-window temporal vertex cover S of (G0, λ).
1: S ← ∅
2: t = 1
3: while t ≤ T −∆ + 1 do
4: if ∃r ∈ [t, t+ ∆− 1] such that uv ∈ Et then
5: choose maximum such r and add (u, r) to S
6: t← r + 1
7: else
8: t← t+ 1
9: return S

I Lemma 16. Algorithm 2 solves SW-TVC on a single-edge temporal graph and can be
implemented to work in time O (T ).

Always degree at most d temporal graphs

We present now the main algorithm of this section, the idea of which is to independently
solve SW-TVC for every possible single-edge temporal subgraph of a given temporal graph
by Algorithm 2, and take the union of these solutions. We will show that this algorithm is a
d-approximation algorithm for SW-TVC on always degree at most d temporal graphs.

Let (G,λ) be a temporal graph, where G = (V,E), |V | = n, and |E| = m. For every edge
e = uv ∈ E, let (G[{u, v}], λ) denote the temporal graph where the underlying graph is the
induced subgraph G[{u, v}] of G and the labels of e are exactly the same as in (G,λ).

Algorithm 3 d-approximation of SW-TVC on always degree at most d temporal graphs
Input: An always degree at most d temporal graph (G,λ) of lifetime T , and ∆ ≤ T .
Output: A sliding ∆-window temporal vertex cover S of (G,λ).
1: for i = 1 to T do
2: Si ← ∅
3: for every edge e = uv ∈ E(G) do
4: Compute an optimal solution S ′(uv) of the problem for (G[{u, v}], λ) by Algorithm 2
5: for i = 1 to T do
6: Si ← Si ∪ S ′i(uv)
7: return S

I Lemma 17. Algorithm 3 is a O (mT )-time d-approximation algorithm for SW-TVC on
always degree at most d temporal graphs.

Note that, in the case of always matching temporal graphs, the maximum degree in each
snapshot is d = 1, so the above d-approximation actually yields an exact algorithm.

I Corollary 18. SW-TVC can be optimally solved in O(mT ) time on the class of always
matching temporal graphs.
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Abstract
We study a number of graph exploration problems in the following natural scenario: an algorithm
starts exploring an undirected graph from some seed vertex; the algorithm, for an arbitrary vertex
v that it is aware of, can ask an oracle to return the set of the neighbors of v. (In the case of social
networks, a call to this oracle corresponds to downloading the profile page of user v.) The goal of
the algorithm is to either learn something (e.g., average degree) about the graph, or to return some
random function of the graph (e.g., a uniform-at-random vertex), while accessing/downloading
as few vertices of the graph as possible.

Motivated by practical applications, we study the complexities of a variety of problems in
terms of the graph’s mixing time tmix and average degree davg – two measures that are believed
to be quite small in real-world social networks, and that have often been used in the applied
literature to bound the performance of online exploration algorithms.

Our main result is that the algorithm has to access Ω
(
tmix davg ε

−2 ln δ−1) vertices to obtain,
with probability at least 1− δ, an ε additive approximation of the average of a bounded function
on the vertices of a graph – this lower bound matches the performance of an algorithm that was
proposed in the literature.

We also give tight bounds for the problem of returning a close-to-uniform-at-random vertex
from the graph. Finally, we give lower bounds for the problems of estimating the average degree
of the graph, and the number of vertices of the graph.
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1 Introduction

Hundreds of millions of people share messages, videos and pictures on Google+ and Facebook
each day – these media have an increasingly high political, economical, and social importance
in today’s world. Data miners have consequently devoted significant amounts of attention to
the study of large social networks.

In data mining, one often seeks algorithms that can return (approximate) properties of
online social networks, so to study and analyze them, but without having to download the
millions, or billions, of vertices that they are made up of. The properties of interest range from
the order of the graph [18, 17], to its average degree (or its degree distribution) [10, 13, 16], to
the average clustering coefficient [22, 23] or triangle counting [2], to non-topological properties
such as the average score that the social network’s users assign to a movie or a song, or to
the fraction of people that like a specific article or page. All these problems have trivial
solutions when the graph (with its non-topological attributes) is stored in main memory, or
in the disk: choosing a few independent and uniform at random vertices from the graph, and
computing their contribution to the (additive) property of interest, is sufficient to estimate
the (unknown) value of the graph property – the empirical average of the contributions of
the randomly chosen vertices will be close to the right value with high probability, by the
central limit theorem.

In applications, though, it is often impossible to have random access to the (vertices
of the) graph. Consider, for instance, an online undirected social graph, such as the
Facebook friendship graph. An algorithm can download a webpage of a given (known) user
alice from this social graph (e.g., http://sn.com/user.php?id=alice), parse the HTML,
and get the URLs of the pages of her friends (e.g., http://sn.com/user.php?id=bob,
http://sn.com/user.php?id=charles, etc.) and that user’s non-topological attributes
(e.g., the set of movies she likes) – an algorithm, though, cannot download the webpage of a
vertex without knowing its URL: thus, to download a generic vertex zoe from the graph, the
algorithm first needs to download all the vertices in (at least) one path from the seed vertex
(e.g., alice) to zoe.

Clearly, given enough many resources, the algorithm could crawl the whole social network
(that is, download each of the social network’s vertices), and then reduce the problem of
computing the online graph property to the centralized one – unfortunately, it is practically
infeasible to download millions, or billions, of vertices from a social network (the APIs that
can be used to access the network usually enforce strict limits on how many vertices can be
downloaded per day). Several techniques have been proposed in the literature for studying
properties of online graphs – almost all of them assume to have access to a random oracle
that returns a random vertex of the graph according to a certain distribution (usually, either
uniform, or proportional to the degree), e.g., [5, 12, 18, 10, 16].

When running algorithms on online social networks, it is often hard or impossible to
implement a uniform-at-random random oracle, and to get samples out of it – the complexity
of this oracle is one of the main problems that we tackle in this paper.

In practice, an algorithm is given (the URL of) a seed vertex (or, some seed vertices)
of the social network; the algorithm has to download that seed vertex, get the URLs of its
neighbors, and then decide which of them to download next; after having downloaded the
second node, the algorithm (might) learn of the existence of some other URLs/vertices, and
can then decide which of the known (but unexplored) URLs to download – and so on, and so
forth, until the algorithm can return a good approximation of the property to be estimated.
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The natural cost function in this setting is the (random) number of vertices that the
algorithm has to download, or query, before making its guess – the cost function is usually
bounded in terms of properties of the graph (e.g., its order, its average degree, etc.), and in
terms of the quality of the algorithm’s guess.

Many problems of this form can be found in the literature. In this paper, we consider
two natural problems, that are at the heart of many others, and whose complexity (as far as
we know) was open before this work:

the “average score problem”: assuming that each vertex holds some score in [0, 1], compute
an approximation of the average of the scores;
the “uniform at random sample”: return a random vertex from the graph whose distribu-
tion is approximately uniform.

In a sense, the latter problem is technically more interesting than the former (a solution to
the latter provides a solution to the former). In practice, though, the average score problem
is much more significant (and ubiquitous), given its many applications [11, 1, 14, 21] (e.g.,
computing the favorability rating of a candidate, or the average star-rating of a movie).
These problems are similar in flavor to some graph property testing problems [15]. Observe
that our setting is similar, but different, than various graph property testing settings – many
of the existing graph property testing algorithms require, as a primitive, the ability to sample
a uniform at random vertex. Our work can be seen as a way of implementing that primitive
using the oracles mentioned above. (See also, [4]).

A number of algorithms have been proposed for the uniform-at-random sample problem
[7, 18] – the best known algorithms require roughly Õ (tmix · davg) vertex queries/downloads
to return a vertex whose distribution is (close to) uniform at random , where tmix is the
mixing time of the lazy random walk on the graph, and davg is its average degree [7]3. These
algorithms do not use any knowledge of the average degree of the graph davg, but need to
know a constant approximation of its mixing time tmix. To our knowledge, the best lower
bound for the uniform-at-random sample problem before this work, was Ω(tmix + davg) [7] –
one of the main results of this paper is (i) an almost tight lower bound of Ω(tmix · davg) for
this problem, for wide (in fact, polynomial) ranges of the two parameters.4 The lower bound
holds even for algorithms that know constant approximations of davg.

Our lower bound construction for the uniform-at-random sample problem also provides
(ii) a tight lower bound of Ω (davg tmix) for the average score problem – in fact, we resolve
the complexity of the average score problem by showing that our lower bound coincides with
the complexity of some previously proposed algorithms, whose analysis we improve.

The same lower bound construction further resolves (iii) the complexity of the average-
degree estimation problem, and (iv) entails a non-tight, but significant, lower bound for the
problem of guessing the graph order (that is, the number of vertices in the graph).

It is interesting to note that all the algorithms that were proposed require O(log n) space,
while our lower bounds hold for general algorithms with no space restriction. Thus, the
problems we consider can be solved optimally using only tiny amounts of space.

3 Real-world social networks are known to have a small average degree davg; their mixing time tmix has
been observed [20] to be quite small, as well.

4 Observe that the two parameters have to obey some bound for such a lower bound to hold – in general,
any problem can be solved by downloading all the n vertices of the graph: thus, if tmix · davg > ω(n),
one can solve the uniform-at-random sample problem with less than o(tmix · davg) vertex queries.
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2 Preliminaries

Consider a connected and undirected graph G = 〈VG , EG〉 with no self-loops (e.g., the
Facebook friendship graph), and a function on its vertices F : VG → [0, 1].5 We aim to
estimate the average value of this function, i.e., favg =

∑
v∈VG F(v)/n where n = |VG |.

Motivated by applications, we assume that accessing the graph is a costly operation, and
that there is little or no information about its global parameters such as the average degree,
the number of vertices or the maximum degree. However, we can access a “friendship" oracle:
that is, an oracle which, given a vertex v ∈ VG , outputs references (their ids, or their URLs)
to its neighbors Nv = {u ∈ VG |(v, u) ∈ EG}. In such a setting, it is natural to approximate
favg by taking samples from a Markov chain based on the graph structure (see, e.g., [9, 8]).
A simple random walk on the graph, though, will not serve our purposes since it samples
vertices with probability proportional to their degree, while our goal is to take a uniform
average of the values of F .

On a graph G = 〈VG , EG〉, a lazy simple random walk is a Markov chain which being
at vertex v ∈ VG , stays on v with probability 1/2 and moves to u ∈ Nv with probability
1/(2 deg(v)). Given that G is connected, the lazy random walk will converge to its unique
stationary distribution which we denote by Π1 and which is equal to Π1(v) = deg(v)/2|EG |,
∀v ∈ VG .

By tmix(G) we refer to the mixing time of the lazy random walk on G, which is the
minimum integer satisfying: for any τ ≥ tmix(G),

∣∣Xτ −Π1
∣∣
1 ≤ 1/4, where Xτ is the

distribution of the lazy walk at time τ , and |·|` is the `-norm of a vector. Note that by the
theory of Markov chains, by taking τ ≥ tmix(G) log(1/ε) we have

∣∣Xτ −Π1
∣∣
1 ≤ ε. We denote

the uniform distribution on vertices of G by Π0, i.e., Π0(v) = 1/|VG |, ∀v ∈ G. In general, we
denote a distribution on VG weighing each vertex v ∈ VG proportional to deg(v)ζ by Πζ . We
may drop all the subscripts when doing so does not cause ambiguity.

Following the framework of [7], we consider two measures of time complexity. First the
number of downloaded vertices, and second the number of steps the algorithm takes to
produce the output. Note that accessing an already downloaded vertex has a negligible cost,
and hence, the most relevant cost of the algorithm is the number of downloaded vertices.
As mentioned in the introduction, the algorithms considered in [7] and in this paper, only
require space to store constantly many vertices, while our lower bound results hold regardless
of the space complexity of the algorithms.

Our Contribution. We begin by discussing the problem of producing an approximately-
uniform sample vertex from an unknown graph (Problem 1); showing that some algorithm
presented in the literature are optimal (Theorem 1). Then, we proceed to the problem of
estimating favg for a function F : VG → [0, 1] (Problem 2). We extend the positive results of
[7]; we particularly study one algorithm, the “Maximum Degree algorithm”, which we show
to be suboptimal in the number of downloaded vertices. This algorithm requires knowledge
of some constant approximation of the graph’s mixing time, and and upper bound on its
maximum degree. We also show new lower bounds for constant approximations of the order
and the average degree of a graph. A summary of our contribution is presented in Table 1.
We remark that, in practice, only an upper bound on the mixing time is available. In the
equations of Table 1, tmix can be substituted with any upper bound on the mixing time of
the graph.

5 Note that from any bounded function we can get a function with range [0, 1], through a simple affine
transform. Therefore, our results can be trivially extended to functions with any bounded range.
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Table 1 Upper bounds and lower bounds on number of queried vertices for algorithms which
explore the graph using a neighborhood oracle and a seed vertex. As mentioned before, tmix is the
mixing time of the lazy random walk on the graph, davg is its average degree, D is an upper bound
on its maximum degree, Π1 is its stationary distribution, and ε and δ are the precision parameters.
The lower bounds for estimating the number of vertices and the average degree hold for any constant
approximation.

Upper Bound Lower Bound

Average of a O(tmix davg log(δ−1)ε−2) Ω(tmix davg log(δ−1)ε−2)
Bounded Function (Theorem 2, with an Algorithm of [7]) (Theorem 3)
Uniform Sample O(tmix davg log(ε−1)) Ω(tmix davg)

([7] ) (Theorem 1)
Number of Vertices O(tmix max{davg, |Π1|−1/2

2 } log(δ−1) log(ε−1)ε−2) Ω(tmix davg)
([18] ) (Theorem 4)

Average Degree O(D2tmix davg log(δ−1)ε−2) Ω(tmix davg)
(Application of Theorem 2) (Theorem 4)

In Section 3, we prove our lower bound results on the number of oracle calls for the
following problems: sampling a vertex, learning the order, and the average degree of the graph.
Estimations of these parameters in a graph are intertwined meaning that a knowledge about
one of them the complexity of estimating the other one changes. For instance, Goldreich and
Ron [16] show that, if a uniform sample generator is accessible at zero cost (alternatively, if
the order of graph is precisely known), then the average degree is computable in

√
|VG |/ davg

steps. Our lower bounds for the aforementioned problems hold if the algorithm has no
ε−approximation of the order, and of the average degree of the graph. On the other hand,
the lower bound we obtain for an ε−approximation of a bounded function’s average holds
even if the graph’s structure is precisely known.

Number of downloads to produce a close-to-uniform sample. We prove a lower bound of
Ω(tmix davg), thus, showing that the rejection algorithm and the maximum degree algorithm
suggested in the literature [7] can be optimal (Theorem 1). We observe that the two
algorithms require some knowledge of tmix. In most scenarios, only an upper bound on tmix
is available. Thus, it is more accurate to claim that the two algorithms are optimal when
some constant approximation of the mixing time is available.

Number of downloads to estimate the number of vertices. The problem of estimating the
order of a graph is widely studied [9, 18]. Katzir et al. [18] (2011) propose an algorithm that,
having access to an oracle that produces random vertices from the graph’s stationary distribu-
tion, requires max{ 1

|Π1|2 , davg}( 1
ε2δ ) samples to obtain an ε approximation with probability at

least 1− δ. It has been shown the number of samples in Katzir’s algorithm is necessary ([17]).
The Katzir et al. algorithm implies an upper bound of tmix max{ 1

|Π1|2 , davg}( log(ε−1)
ε2δ ) vertex

queries to obtain an ε approximation with probability at least 1− δ in our friendship-oracle
model. In Theorem 4 we present a lower bound on the number of accesses to the vertices, to
get a constant approximation of the graph’s order in our friendship-oracle model. Our lower
bound is tight for the graphs that satisfy 1

|Π1|2
< davg – that is, the graphs whose variance
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of the degree distribution is greater than n.6 This class include, say, all the graphs having a
power-law degree distribution with exponent smaller than 3/2 (e.g., social networks [19]).

We remark that this lower bound problem is still open for graphs with 1
|Π1|2

> davg,
for example regular sparse graphs. Recently, Ben-Hamou et al. studied the problem of
estimating the size of a regular graph when having access to an oracle analogous to ours,
and presented an constant approximation algorithm querying (tunif)3/4√n vertices, where
tunif is the minimum integer satisfying: τ ≥ tunif(G), maxv∈V |Xτ (v)/Π1(v)− 1| ≤ 1/4 [3].

Number of downloads to estimate the average degree. There are quite a few results on
estimating the average degree of a graph. The first one by Feige et al. [13] introduced
a sublinear algorithm of complexity

√
|VG | for a 2-approximation. Goldreich et al. [16]

extends Feige et al.’s result and presents an (1± ε) approximation algorithm with running
time O(1/ε)

√
|VG/ davg | – they also prove a lower bound on the number of samples of√

|VG|/ davg – both of [13] and [16] assume to have access to an oracle capable of producing
a uniform at random vertex. Recently, Dasgupta et al. [10] showed that by sampling
O(log(D) log log(D)) vertices of a graph from some weighted distribution7 one can obtain a
(1±ε) approximation of its average degree, where D is an upper bound on the maximum degree.
By factoring in the the cost of sampling, the complexity becomes O(tmix log(D) log log(D)).
Taking D = n and adding the cost of estimating the graph size, takes the upper bound to:
O
(

tmix

(
(log(n) log log(n)) + davg + 1

|Π1|2

))
.

In Theorem 4 of this paper we show that by downloading o(tmix davg) vertices, it is
impossible for an algorithm to have any constant approximation of the average degree davg
with probability more than some constant.

Finally, our main result is the following lower bound – unlike the above three lower
bounds, this one holds even if we know exactly the graph’s structure.

Number of downloads to find an ε, δ approximation for the average of a bounded func-
tion. In Theorem 3, we show that an algorithm requires Ω

(
tmix davg(1/ε2) log(1/δ)

)
vertex

downloads to produce an ε−additive approximation of favg, with probability at least 1− δ.
This lower bound, together with Theorem 2, allows us to conclude that the “maximum
degree algorithm” is an optimal algorithm for this problem. Note that this algorithm has to
have some upper bound D on the maximum degree of the graph. In many situations, one
can assume that this information is available – for instance D ≤ n and, in many cases, one
can assume to have a constant approximation to the order of the graph (for instance, in
Facebook, one could claim that D is no larger than the world’s population.) Observe that
the maximum degree algorithm suffers no loss in getting a large D, as opposed to a tighter
one, since D does not impact the upper bound on the number of downloaded vertices.

2.1 Statement of Problems and Results
I Problem 1. Input: A seed vertex s ∈ V in graph G = 〈VG , EG〉. Output: A random vertex
v ∈ VG whose distribution is at total variation distance at most ε from the uniform one
on VG.

6 Let prk be the fraction of vertices with degree k. We have
∣∣Π1
∣∣

2
= n

∑n

i=1 prk
k2

4|E|2 =
1

n davg
2

∑n

i=1 prkk
2. Thus, to have 1/

√
|Π1|2 ≤ davg, it is necessary and sufficient to have

∑n

i=1 k
2prk >

n.
7 Dasgupta et al. use an oracle samples each v ∈ VG proportional to deg(v) + c for some constant c. Note

that for c = 0 this distribution will be the same as the stationarity.
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Several algorithms have been proposed for Problem 1 [7, 18] – we will specifically consider
the “maximum degree sampling” algorithm, the “rejection sampling” algorithm, and the
“Metropolis Hasting” algorithm.

The efficiency of the three algorithms has been studied in terms of the number of their
running time (or the number of steps they make on the Markov chain they are based on) and,
more importantly, on the number of queries8 (or downloaded vertices) that the algorithm
performs. The rejection sampling and maximum degree algorithms produce a close-to-uniform
random vertex by querying9 Õ (tmix davg) distinct vertices from the graph, where tmix is the
mixing time of a simple random walk on G, and davg is the average degree of G. In terms of
space complexity, each of these algorithms is based on a simple random walk on G and thus
only require space to save constant number of vertices.

One of the main results of this paper is Theorem 1, which shows the optimality of the
maximum degree, and of the rejection sampling, algorithms for Problem 1 – their running
time. We observe that our lower bound holds regardless of the amount of space available to
the algorithm.

I Theorem 1. For any large enough constant c, and for any arbitrary n, d = ω(log n), and
t = o( nd2 ) there exists a distribution over graphs G = 〈V,E〉, each having mixing time Θ(t),
E(|V |) = Θ(n), davg = Ev∈V (degv) = Θ(d), such that any algorithm A that queries less than
davg tmix /c vertices of G, and that returns some random vertex of G with distribution ΠA, is
such that10 E

[∣∣ΠA −Π0
∣∣
1

]
≥ 24

100 −
202
c−1 .

The same lower bounds also hold if one aims to obtain the generic Πζ distribution 11

: if ζ > 1, and d and t satisfy d = o(t
ζ−1
ζ ), then any algorithm A that queries less than

davg tmix /c vertices of G, and that returns some random vertex of G with distribution ΠA, is
such that: E

[∣∣ΠA −Πζ
∣∣
1

]
≥ 24

100 −
202
c−1 .

The above theorem, and the other lower bound results that we mention in this section,
will be proved in Section 3.

Then, we consider the problem of finding the average of a function F defined on vertices
of a graph and ranging in [0, 1].

I Problem 2. Input: A seed vertex s ∈ V in graph G = 〈V,E〉 – each vertex v holds a value
0 ≤ F(v) ≤ 1 which we learn upon visiting it. Output: f̄ such that P

(
|f̄ − favg| ≤ ε

)
≥ 1− δ.

Note that having a uniform sampler (the maximum degree or rejection sampling algorithm
of [7]), we can have an ε approximation of favg with probability 1−δ by taking O(ε−2 log(δ−1))
independent samples which are ε close to uniformity. In total, the number of queries will
be O(tmix davg log(δ−1)ε−2 log (ε−1)). Here we propose a slight variation of the “maximum
degree” algorithm to obtain a tight upper bound. We improve the analysis of the “maximum
degree algorithm” in Theorem 2 – its performance beats the other natural three algorithms,
and the main result of this paper is that this performance is optimal (Theorem 3).

The proof of the following Theorem is omitted from this extended abstract.

8 A vertex is “queried”, when the set of its neighbors is obtained from the oracle for the first time –
equivalently, when it is downloaded.

9 To get ε close to the uniform distribution we need O
(
tmix davg log(ε−1)

)
downloads.

10Observe that the expected `1 distance between the distributions is over the random variable ΠA.
11The Πζ distribution is the distribution in which the probability of a vertex v ∈ V is proportional to
deg(v)ζ .
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Algorithm 1 The Maximum Degree Algorithm.
Input: Seed vertex s ∈ VG , t′mix a constant approximation of tmix, and an upper bound D

on dmax
Output: An ε additive approximation of favg with probability at least 1− δ
1: Consider the maximum degree Markov chain: at vertex v ∈ V go to the generic u ∈ Nv

with probability 1/D, otherwise stay at v.
2: T ← t′mixD/dmin
3: Starting from s, run the chain for T ·

(
1 + ε−2 ln δ−1) steps – let v0 = s, v1, v2, . . . be the

states that are visited by the walk
4: S ← 0, t← 0, i← 0
5: while t < davg

dmin
(t′mix/ε

2) log(1/δ) do
6: i← i+ 1
7: if vi 6= vi−1 then
8: t← t+ 1
9: S = S + F(vi)

10: return S/i

I Theorem 2. Consider a graph G = 〈V,E〉, and a function F : V → [0, 1]. Let tmix be the
mixing time of the simple lazy random walk on G. Let f̄ be the value returned by Algorithm 1.
We assume the algorithm knows a constant approximation to tmix. i.e. t′mix = Θ(tmix). Then,

P
(
|f̄ − favg| ≥ ε

)
≤ δ (1)

This algorithm queries Θ(tmix davg ε
−2 log(δ−1)) vertices from the graph, and requires

space for saving a constant number of them. The number of computational steps it performs
is Θ(Dtmixε

−2 log(δ−1)).

The main result of this paper is the following lower bound which complements the upper
bound given in the previous theorem:

I Theorem 3. For any arbitrary n, d = ω(log n), and t = o( nd2 ) there exists a distribution
over graphs G = 〈V,E〉 with mixing time Θ(t), E(|V |) = 4n, davg = Ev∈V (degv) = Θ(d),
and a function F : V → {0, 1} such that, any algorithm A as described above which aims
to return the average of F , with ε precision for arbitrary 0 < ε, δ < 1, and queries less than
Ω(tmix davg ε

−2 log(δ−1)) vertices of G fails with probability greater than δ.

Finally, we consider the problems of obtaining an approximation of the average degree,
and the number of vertices, of a graph:

I Problem 3. Input: A seed vertex s ∈ V in graph G = 〈V,E〉. Output: an integer n̄ such
that P (|n̄− |V || ≤ ε) ≥ 1− δ.

By a result of Katzir [18], we know by taking max{davg, 1/
√
|Π2|2}ε−2δ−1 samples from

the stationary distribution we are capable to obtain an ε approximation with probability
at least 1 − δ. To implement a sampling oracle using our neighborhood oracle, we
can run a Markov chain for tmix log(ε−1) steps. Thus, the runtime will be
tmix max{davg, 1/

√
|Π1|2} log(ε−1)ε−2δ−1, which for constant ε and δ is

tmix max{davg, 1/
√
|Π1|2}. Theorem 4 provides a lower bound for a constant approxim-

ation which is as mentioned before tight when the variance of the degree distribution is
greater than n.
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I Problem 4. Input: A seed vertex s ∈ V in graph G = 〈V,E〉. Output: an integer d̄ such
that P

(
|d̄− davg | ≤ ε

)
≥ 1− δ.

Normalize the function deg : VG → R by dividing its value to D. By Theorem 2, Al-
gorithm 1 provides an ε approximation with probability at least 1 − δ after downloading
O(D2 tmix davg ε

−2 log(δ−1)) many vertices – that is, O(D2 tmix davg) many vertices for con-
stant ε and δ. With Theorem 4, we provide a lower bound for a constant approximation.

I Theorem 4. For any arbitrary n, d = ω(log n), and t = o( nd2 ) there exists a distribution
of graphs G = 〈V,E〉 with mixing time Θ(t), E(|V |) = Θ(n), davg = Ev∈V (degv) = Θ(d)
such that, for arbitrary constants c′ > 1 and large enough c, any algorithm that queries
at most davg tmix /c vertices of the graph, and that outputs an estimation n̄ of n = |V |
(resp., an estimation d̄ of davg = 2|E|/n), has to satisfy max{n̄/n, n/n̄} > c′ (resp.,
max{d̄/ davg, davg /d̄} > c′), with probability at least 99

100 −
202
c−1 .

3 Proof Strategy of the Main Theorems

The proof of our Lower Bounds will be based on the following high-level strategy. Nature
will first randomly sample a graph H according to some distribution; with probability 1/2,
H will be the unknown graph traversed by the algorithm; with the remaining probability, the
algorithm will traverse a graph G which is obtained from H by means of a transformation
that we call the decoration construction. We will prove that, for the right choice of the
distribution over H, an algorithm that performs too few queries to the unknown graph will
be unable to tell with probability more than 1/2 + o(1), whether the unknown graph it is
traversing is distributed like H, or like G.

The decoration construction will guarantee that the properties (e.g., number of nodes,
average degree, or even the values assigned by the bounded function to the vertices) will
be quite far from each other in H and G. This will make it impossible for the algorithm to
get good approximation of any of those properties – we will also show it impossible for the
algorithm to return a close to uniform-at-random vertex (essentially because the decoration
construction will add a linear number of nodes to H, and the algorithm will be unable to
visit any of them with the given budget of queries.)

We present a roadmap of our proof strategy here, and omit the detailed proofs in this
extended abstract. We start by describing the decoration construction which, given any graph
H, produces a graph G with similar mixing time and average degree, but with a linear number
of “hidden” new vertices. After presenting the definition for the decoration construction,
in Definition 6 we introduce a class of graphs to which we apply this construction. These
graphs’ mixing time and average degree can be set arbitrarily. Later, in Lemma 7 we prove
that if an algorithm, equipped only with the neighborhood oracle traverses a graph of this
type and queries few vertices of it, it will not be capable of finding any of its hidden vertices.
This is our main lemma from which Theorems 1, 3, and 4 can be concluded. We now proceed
to the formal definitions:

I Definition 5 (The Decoration Construction). Let H = 〈V,E〉 be an arbitrary graph. We
construct G from H in the following way:

Take t := tmix(H), and mark any vertex v ∈ V with probability 1/t. For any marked
vertex v ∈ V , add a vertex v∗ and connect it to v via an edge. For a constant c1, attach
c1t− 1 new degree one vertices to v∗ – this makes the degree of v∗ equal to c1t. Let this new
graph be G. We denote the set of marked vertices by marked and the set G \H by starred.

ICALP 2018
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By saying a vertex v is starred (marked) we mean v ∈ starred (v ∈ marked), and to
indicate their numbers we use a preceding #. We call the starred vertices with degree c1t
the starred centers. Note that to any starred vertex we can associate a unique marked
vertex.

We now introduce the random graph to which we will apply the decoration construction,
and which will be at the heart of our lower bounds.

I Definition 6. We define the graph Hn,d,ψ as follows: given arbitrary parameters n, d, and
0 < ψ < 1, take two Erdös-Rényi graphs H1 = 〈VH1 , E〉 and H2 = 〈VH2 , E〉 with parameters
〈n, d/n〉. Choose ψn vertices uniformly at random from VH1 namely v1, v2, . . . vψn, and then
ψn vertices uniformly at random from VH2 namely u1, u2, . . . nψn. Select a uniformly random
permutation σ of ψn numbers and put an edge between the vertices vi and uσ(i) for each
1 ≤ i ≤ ψn.

The decoration construction does not change the mixing time of H drastically, in fact,
tmix(H) ≤ tmix(G) ≤ c tmix(H) for some constant c. The Hn,d,ψs are useful in our proofs,
for the reason that, by changing the parameters n, d, and ψ in certain ranges these graphs
acquire arbitrary tmix and davg, yet their behaviour remains similar to Erdös-Rényi random
graphs.

We now present the following lemma (proof ommited), which states if few queries are
performed by an algorithm, then the probability of finding the starred vertices is tiny.
Then, we conclude our main theorems; Theorem 1, 3, and 4:

I Lemma 7. Consider arbitrary n, d > ω(log n), Ω(log n) < t < o(n/d2), so that t/d = Ω(1),
take G to be the graph obtained from the decoration construction applied to Hn,d,d/t12. We
have, tmix(G) = Θ(t) and davg = Θ(d).

If, instead, t = O(log n/ log d), and d = Θ(logd n), take G to be the decorated version of
an Erdös-Rényi graph with parameters 〈n, d/n〉.

Then,
if an algorithm traverses the edges of G and queries at most td/c vertices of G; c being a
constant, then with probability at least 99/100− 202/(c− 1) there is no starred vertex
among its queried vertices.
If an algorithm traverses the edges of G and queries q ≤ n

cd vertices of G; c being a
constant, then with probability 1− o(1) the expected number of starred centers which
have been queried is less than 8c

c−1
(
q
dt

)
.

We can finally prove our three main Theorems:
* Proof of Theorem 1. Consider the two graphs G1 and G2, G1 being the graph of Lemma

7 with c1 = 1 and G2 the same graph without the starred vertices (the graph before
the decoration construction). Any algorithm which queries less than tmix davg /c vertices
of G1 or G2 will fail to distinguish between them with probability at least 1

100 + 202
c−1 . Let

Π0
Gi be the uniform distribution on vertices of Gi; i = 1, 2. In G1 with high probability we

have at least 2|VG1 | starred vertices.
Part 1. Note that |Π0

G1
,Π0
G2
|1 ≥ 1/4. Thus, if the natures selects G1, any algorithm

A which aims to outputs Π0
G1

will return a distribution ΠA satisfying |Π0
G1
,ΠA|1 ≥

1/4− 1
100 −

202
c−1 .

12 If c > d/t ≥ 1, for constant c, let ψ = d/tc.
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Part 2. For ζ > 1, let Πζ
Gi be the probability distribution on vertices of Gi; i = 1, 2

weighing each vertex v proportional to deg(v)ζ . If we take a sample from distribution
Πζ
G1

it will be starred vertex with probability (tζ−1 + 1)/2(tζ−1 + dζ + 1). Thus, for
tζ−1 ≥ dζ we have, |Πζ

G1
,Πζ
A|1 ≥ 1/4. Thus, |Π0

G1
,ΠA|1 ≥ 24/100− 202/c. �

* Proof of Theorem 4. Take the two graphs G1 and G2, G1 being the graph of Lemma 7,
and G2 the same graph without the starred vertices (the graph before the decoration
construction). We have: E(|VG2 |) = n, E(|VG1 |) = (1 + c1)n, and E(davg(G2)|) = d,
E(| davg(G1)|) = d+c1

1+c1
. �

* Proof of Theorem 3. Take c1 = 1, and let G = 〈VG , EG〉 be the graph constructed as in
Lemma 7. Consider two functions F1 : VG → [0, 1] and F2 : VG → [0, 1]. Let the function
∀v ∈ VG \ starred,F1(v) = F2(v) = 0. For any v ∈ starred we set F1(v) = 1 with
probability 1/2 + ε and F2(v) = 1 with probability 1/2− ε.
Note that |F1 − F2|1 ≥ ε, and by employing the following classical result [6], with
probability 1− o(1) we will not be able to distinguish between F1 and F2.
I Lemma 8 ([6]). Consider a

( 1
2 − ε,

1
2 + ε

)
-biased coin (that is, a coin whose most likely

outcome has probability 1
2 + ε. To determine with probability at least 1− δ what is the

most likely outcome of the coin, one needs at least Ω(1/ε2 log(1/δ)) coin flips.
By Lemma 7 with probability 1− o(1), the expected number of starred centers will be

8q
dt(1−o(1)) . Let queried be the set of queried vertices by the algorithm. If q = ω(dt)

P (# queried ∩ starred center ≥ 48q/dt) ≤ e−16q/dt ≤ o(1).

Therefore, since in order to distinguish between F1 and F2 with probability at least
1 − δ, we need at to see at least Ω

(
log(1/δ)(1/ε2)

)
starred centers, or equivalently

Ω
(
dt log(1/δ)(1/ε2)

)
queries. �

4 Conclusion

In this paper we have studied the complexity of computing a number of functions of online
graphs, such as online social networks, in terms of their average degree and their mixing time.
We have obtained a tight bound for the problem of computing the average of a bounded
function on the vertices of the graph (e.g., the average star rating of a movie), and a near-tight
bound for the problem of sampling a close-to uniform-at-random vertex (many algorithms in
the literature assume to have access to such an oracle), and lower bounds for the problems
of estimating the order, and the average degree of the graphs.

It will be interesting to pursue the study of these online graphs problems in order to bridge
the gap between theoretical algorithms, and applied ones. Besides the obvious questions
(what are the optimal bounds for estimating the order and the average degree of a graph?),
an interesting open problem is to understand which structural properties of online social
networks could be used by algorithms to improve the complexity of the various problems
that practitioners have been considering.
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Abstract
We give exponential lower bounds on the Price of Stability (PoS) of weighted congestion games
with polynomial cost functions. In particular, for any positive integer d we construct rather
simple games with cost functions of degree at most d which have a PoS of at least Ω(Φd)d+1,
where Φd ∼ d/ ln d is the unique positive root of equation xd+1 = (x + 1)d. This essentially
closes the huge gap between Θ(d) and Φd+1

d and asymptotically matches the Price of Anarchy
upper bound. We further show that the PoS remains exponential even for singleton games. More
generally, we also provide a lower bound of Ω((1 + 1/α)d/d) on the PoS of α-approximate Nash
equilibria, even for singleton games. All our lower bounds extend to network congestion games,
and hold for mixed and correlated equilibria as well.

On the positive side, we give a general upper bound on the PoS of α-approximate Nash
equilibria, which is sensitive to the range W of the player weights and the approximation para-
meter α. We do this by explicitly constructing a novel approximate potential function, based on
Faulhaber’s formula, that generalizes Rosenthal’s potential in a continuous, analytic way. From
the general theorem, we deduce two interesting corollaries. First, we derive the existence of an
approximate pure Nash equilibrium with PoS at most (d+3)/2; the equilibrium’s approximation
parameter ranges from Θ(1) to d+1 in a smooth way with respect to W . Secondly, we show that
for unweighted congestion games, the PoS of α-approximate Nash equilibria is at most (d+ 1)/α.
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Related Version A full version of this paper is available at [26], https://arxiv.org/abs/1802.
09952.

1 Introduction

In the last 20 years, a central strand of research within Algorithmic Game Theory has focused
on understanding and quantifying the inefficiency of equilibria compared to centralized,
optimal solutions. There are two standard concepts that measure this inefficiency. The
Price of Anarchy (PoA) [34] which takes the worst-case perspective, compares the worst-case
equilibrium with the system optimum. It is a very robust measure of performance. On the
other hand, the Price of Stability (PoS) [44, 5], which is also the focus of this work, takes
an optimistic perspective, and uses the best-case equilibrium for this comparison. The PoS
is an appropriate concept to analyse the ideal solution that we would like our protocols to
produce.

The initial set of problems that arose from the Price of Anarchy theory have now been
resolved. The most rich and well-studied among these models are, arguably, the atomic
and non-atomic variants of congestion games (see [38, Ch. 18] for a detailed discussion).
This class of games is very descriptive and captures a large variety of scenarios where users
compete for resources, most prominently routing games. The seminal work of Roughgarden
and Tardos [42, 43] gave the answer for the non-atomic variant, where each player controls
a negligible amount of traffic. Awerbuch et al. [6], Christodoulou and Koutsoupias [17]
resolved the Price of Anarchy for atomic congestion games with affine latencies, generalized
by Aland et al. [3] to polynomials; this led to the development of Roughgarden’s Smoothness
Framework [41] which extended the bounds to general cost functions, but also distilled and
formulated previous ideas to bound the Price of Anarchy in an elegant, unified framework.
At the computational complexity front, we know that even for simple congestion games,
finding a (pure) Nash equilibrium is a PLS-complete problem [21, 2].

Allowing the players to have different loads, gives rise to the class of weighted congestion
games [40]; this is a natural and very important generalization of congestion games, with
numerous applications in routing and scheduling. Unfortunately though, an immediate
dichotomy between weighted and unweighted congestion games occurs: the former may not
even have pure Nash equilibria [36, 25, 27, 30]; as a matter of fact, it is a strongly NP-hard
problem to even determine if that’s the case [20]. Moreover, in such games there does not, in
general, exist a potential function [37, 31], which is the main tool for proving equilibrium
existence in the unweighted case.

As a result, a sharp contrast with respect to our understanding of the two aforementioned
inefficiency notions arises. The Price of Anarchy has been studied in depth and general
techniques for providing tight bounds are known. Moreover, the asymptotic behaviour of
weighted and unweighted congestion games with respect to the Price of Anarchy is identical;
it is Θ(d/ log d)d for both classes when latencies are polynomials of degree at most d [3].

The situation for the Price of Stability though, is completely different. For unweighted
games we have a good understanding3 and the values are much lower than the Price of

3 Much work has been done on the PoS for network design games, which is though not so closely related
to our work. This problem was first studied by Anshelevich et al. [5] who showed a tight bound of
Hn, the harmonic number of the number of players n, for directed networks. Finding tight bounds on
undirected networks is still a long-standing open problem (see, e.g., [23, 9, 35]). Recently, Bilò et al.
[10] (asymptotically) resolved the question for broadcast networks. For the weighted variant of this
problem, Albers [4] showed a lower bound of Ω(logW/ log logW ), where W is the sum of the players’

https://arxiv.org/abs/1802.09952
https://arxiv.org/abs/1802.09952
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Table 1 Previous results (left table) regarding the Price of Anarchy and Stability for unweighted
and weighted congestion games, with polynomial latency functions of maximum degree d. Φd is the
unique positive solution of (x+ 1)d = xd+1 and Φd = Θ(d/ log d). Tight answers were known for
all settings, except for the Price of Stability of the weighted case were only trivial bounds existed.
In this paper (right table) we essentially close this gap by showing a lower bound of Ω(Φd)d+1

(Theorem 1), even for network games, which is exponential even for singleton games Theorem 5.

PoA PoS

unweighted bΦdcd+1 [3] Θ(d) [15]

weighted Φd+1
d [3] [Θ(d),Φd+1

d ]

PoS lower bound

general Ω(Φd)d+1

singleton Ω(2d/d)
α-approximate

equilibria Ω((1 + 1/α)d/d)

Anarchy values, and also tight; approximately 1.577 for affine functions [16, 14], and Θ(d) [15]
for polynomials. For weighted games though there is a huge gap; the current state of the
art lower bound is Θ(d) and the upper bound is Θ(d/ ln d)d. These previous results are
summarized at the left of Table 1.

The main focus of this work is precisely to deal with this lack of understanding, and to
determine the Price of Stability of weighted congestion games. What makes this problem
challenging is that the only general known technique for showing upper bounds for the
Price of Stability is the potential method, which is applicable only to potential games. In
a nutshell, the idea of this method is to use the global minimizer of Rosenthal’s potential
[39] as an equilibrium refinement. This equilibrium is also a pure Nash equilibrium and
can serve as an upper bound of the Price of Stability. Interestingly, it turns out that, for
several classes of potential games, this technique actually provides the tight answer (see
for example [5, 16, 14, 15]). However, as already mentioned above, unlike their unweighted
counterparts, weighted congestion games are not potential games;4 so, a completely fresh
approach is required.

One way to override the aforementioned limitations of non-existence of pure Nash
equilibria, but also their computational hardness, is to consider approximate equilibria.
In this direction, Hansknecht et al. [29] have shown that (d + 1)-approximate pure Nash
equilibria always exist in weighted congestion games with polynomial latencies of maximum
degree d, while, in the negative side, there exist games that do not have 1.153-approximate
pure Nash equilibria. Notice here, that these results do not take into account computational
complexity considerations; if we insist in polynomial-time algorithms for actually finding
those equilibria, then the currently best approximation parameter becomes dO(d) [12, 13, 22].

1.1 Our Results

We provide lower and upper bounds on the Price of Stability for the class of weighted
congestion games with polynomial latencies with nonnegative coefficients. We consider both
exact and approximate equilibria. Our lower bounds are summarized at the right of Table 1.

weights. See [10] and references therein for a thorough discussion of those results.
4 For the special case of weighted congestion games with linear latency functions, a potential does exist [25]

and this was used by [8] to provide a PoS upper bound of 2.
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Lower Bound for Weighted Congestion Games. In our main result in Theorem 1, we
resolve a long-standing open problem by providing almost tight bounds for the Price of
Stability of weighted congestion games with polynomial latency functions. We construct
an instance having a Price of Stability of Ω(Φd)d+1, where d is the maximum degree of the
latencies and Φd ∼ d

ln d is the unique positive solution of equation (x+ 1)d = xd+1.
This bound essentially closes the previously huge gap between Θ(d) and Φd+1

d for the
PoS of weighted congestion games. The previously best lower and upper bounds were rather
trivial: the lower bound corresponds to the PoS results of Christodoulou and Gairing [15] for
the unweighted case (and thus, it is also a valid lower bound for the general weighted case as
well) and the upper bound comes from the Price of Anarchy results of Aland et al. [3] (PoA,
by definition, upper-bounds PoS).

We stress that, although as mentioned before, weighted congestion games do not always
possess pure equilibria, our lower bound construction involves a unique equilibrium occurring
by iteratively eliminating strongly dominated strategies. As a result, this lower bound holds
not only for pure, but mixed and correlated equilibria as well.

Singleton Games. Next we switch to the class of singleton congestion games, where a pure
strategy for each player is a single resource. This class is very well-studied as, on one hand,
it abstracts scheduling environments, and on the other, it has very attractive equilibrium
properties; unlike general weighted congestion games, there exists an (ordinal) lexicographic
potential [24, 32], thus implying the existence of pure Nash equilibria. It is important to
note that, the tight lower bounds for the Price of Anarchy of general weighted congestion
games, hold also for the class of singleton games [14, 7, 11].

Nevertheless, even for this special class, we show in Theorem 5 an exponential lower
bound of Ω(2d/d). The previous best upper and lower bounds were the same as those of
the general case, namely Θ(d) and Φd+1

d , respectively. As a matter of fact, this new lower
bound comes as a corollary of a more general result that we show in Theorem 5, that extends
to approximate equilibria and gives a lower bound of Ω((1 + 1/α)d/d) on the PoS of α-
approximate equilibria, for any (multiplicative) approximation parameter α ∈ [1, d). Setting
α = 1 we recover the special case of exact equilibria and the aforementioned exponential
lower bound on the standard, exact notion of the PoS. Notice here that, as we show in [26,
Appendix D], the optimal solution (which, in general, is not an equilibrium) itself constitutes
a (d+ 1)-approximate equilibrium with a (trivially) optimal PoS of 1.

Positive Results for Approximate Equilibria. In light of the above results, in Section 4,
we turn our attention to identifying environments with more structure or flexibility with
respect to the underlying solution concept, for which we can hope for improved quality of
equilibria. Both our lower bound constructions discussed above use players’ weights that
form a geometric sequence. In particular the ratio W of the largest over the smallest weight
is equal to wn (for some w > 1), which grows very large as the number of players n→∞.
On the other hand, for games where the players have equal weights, i.e. W = 1, we know
that the PoS is at most d+ 1. It is therefore natural to ask how the performance of the good
equilibria captured by the notion of PoS varies with respect to W . In Theorem 9, we are
able to give a general upper bound for α-approximate equilibria which is sensitive to this
parameter W and to α. This general theorem has two immediate, interesting corollaries.

Firstly (Corollary 10), by allowing the ratio W to range in [1,∞), we derive the existence
of an α-approximate pure Nash equilibrium with PoS at most (d+ 3)/2; the equilibrium’s
approximation parameter α ranges from Θ(1) to d+ 1 in a smooth way with respect to W .
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This is of particular importance in settings where player weights are not very far away from
each other (that is, W is small). Secondly (Corollary 11), by setting W = 1 and allowing α
to range, we get an upper bound of d+1

α for the α-approximate PoS of unweighted congestion
games which, to the best of our knowledge, was not known before, degrading gracefully from
d+ 1 (which is the actual PoS of exact equilibria in the unweighted case [15]) down to the
optimal value of 1 if we allow (d+ 1)-approximate equilibria (which in fact can be achieved
by the optimum solution itself; see [26, Appendix D]).

Our Techniques. An advantage of our main lower bound (Theorem 1) is the simplicity of
the underlying construction, as well as its straightforward adaptation to network games (see
Section 3.1.1)). However, fine-tuning the parameters of the game (player weights and latency
functions), to ensure uniqueness of the equilibrium at the “bad” instance, was a technically
involved task. This was in part due to the fact that, in order to guarantee uniqueness (via
iteratively dominant strategies), each player interacts with a window of µ other players. This
µ depends on d in a delicate way (see [26, Fig. 1] and Lemma 2); it has to be an integer but,
at the same time, needs also to balance nicely with the algebraic properties of Φd. Moreover
we needed to provide deeper insights on the asymptotic, analytic behaviour of Φd, and to
explore some new algebraic characteristics of Φd (see, e.g., [26, Lemma 7]).

In order to derive our upper bounds, we need to define a novel approximate potential
function [18, 29]. First, in Lemma 6, we identify clear algebraic sufficient conditions for the
existence of approximate equilibria with good social-cost guarantees, and then explicitly define
(see the (8) and the proof of Theorem 9 in [26]) a function that satisfies them. This continuous
function, which is defined in the entire space of positive reals, essentially generalizes that of
Rosenthal’s in a smooth way: by setting W = α = 1, we recover exactly the first significant
terms of the well known Rosenthal potential [39] polynomial, with which one can demonstrate
the usual PoS results for the unweighted case (see, e.g. [16]). The simple, analytic way in
which this function is defined, is the very reason why we can handle both the approximation
parameter α of the equilibrium and the ratio W of the weights in a smooth manner while at
the same time providing good PoS guarantees.

It is important to stress that, by the purely analytical way in which our approximate
potential function is defined, in principle it can also incorporate more general cost functions
than polynomials; so, we believe that this technique may be of independent interest. We
point towards that direction in [26, Appendix C].

Due to space limitations, all omitted proofs and various supplementary figures can be
found in the full version of our paper [26].

2 Model and Notation

Weighted Congestion Games. A weighted congestion game consists of a finite, nonempty
set of players N and resources (or facilities) E. Each player i ∈ N has a real weight wi 0 and
a strategy set Si ⊆ 2E . Associated with each resource e ∈ E is a cost (or latency) function
ce : (0,∞) −→ [0,∞). In this paper we mainly focus on polynomial cost functions with
maximum degree d ≥ 0 and nonnegative coefficients; that is, every cost function is of the
form ce(x) =

∑d
j=0 ae,j · xj , with ae,j ≥ 0 for all j. In the following, whenever we refer to

polynomial cost functions we mean cost functions of this particular form.
A pure strategy profile is a choice of strategies s = (s1, s2, ...sn) ∈ S = S1 × · · · × Sn by

the players. We use the standard game-theoretic notation s−i = (s1, . . . , si−1, si+1, . . . sn),
S−i = S1×· · ·×Si−1×Si+1×· · ·×Sn, such that s = (si, s−i). Given a pure strategy profile
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s, we define the load xe(s) of resource e ∈ E as the total weight of players that use resource
e on s, i.e., xe(s) =

∑
i∈N :e∈si

wi. The cost player i is defined by Ci(s) =
∑
e∈si

ce(xe(s)).
A singleton weighted congestion game is a special form of congestion games where the

strategies of all players consist only of single resources; that is, for all players i ∈ N , |si| = 1
for all si ∈ Si. In a weighted network congestion games the resources E are given as the
edge set of some directed graph G = (V,E), and each player i ∈ N has a source oi ∈ V and
destination ti ∈ V node; then, the strategy set Si of each player is implicitly given as the
edge sets of all directed oi → ti paths in G.

Nash Equilibria. A pure strategy profile s is a pure Nash equilibrium if and only if for every
player i ∈ N and for all s′i ∈ Si, we have Ci(s) ≤ Ci(s′i, s−i). Similarly a strategy profile is
an α-approximate pure Nash equilibrium, for α ≥ 1, if Ci(s) ≤ α · Ci(s′i, s−i) for all players
i ∈ N and s′i ∈ Si. As discussed in the introduction, weighted congestion games do not
always admit pure Nash equilibria. However, by Nash’s theorem they have mixed Nash
equilibria. A tuple σ = (σ1, · · · , σN ) of independent probability distributions over players’
strategy sets is a mixed Nash equilibrium if

E
s∼σ

[Ci(s)] ≤ E
s−i∼σ−i

[Ci(s′i, s−i)]

holds for every i ∈ N and s′i ∈ Si. Here σ−i is a product distribution of all σj ’s with j 6= i,
and s−i denotes a strategy profile drawn from this distribution. We use NE(G) to denote
the set of all mixed Nash equilibria of a game G.

Social Cost and Price of Stability. Fix a weighted congestion game G. The social cost of
a pure strategy profile s is the weighted sum of the players’ costs

C(s) =
∑
i∈N

wi · Ci(s) =
∑
e∈E

xe(s) · ce(xe(s)).

Denote by OPT(G) = mins∈S C(s) the optimum social cost over all strategy profiles s ∈ S.
Then, the Price of Stability (PoS) of G is the social cost of the best-case Nash equilibrium
over the optimum social cost:

PoS(G) = min
σ∈NE(G)

Es∼σ[C(s)]
OPT(G) .

The Price of Stability of α-approximate Nash equilibria is defined accordingly. The PoS
for a class G of games is the worst (i.e., largest) PoS among all games in the class, that is,
PoS(G) = supG∈G PoS(G). For example, our focus in this paper is determining the Price of
Stability for the class G of weighted congestion games with polynomial cost functions.

Finally, notice that, by using a straightforward scaling argument, it is without loss with
respect to the PoS metric to analyse games with player weights in [1,∞); if not, divide all
wi’s with mini wi and scale cost functions accordingly.

3 Lower Bounds

In this section, we present our lower bound constructions. In Section 3.1 we present the
general lower bound and then in Section 3.2 the lower bound for singleton games.



G. Christodoulou, M. Gairing, Y. Giannakopoulos, and P. G. Spirakis 150:7

3.1 General Congestion Games
The next theorem presents our main negative result on the Price of Stability of weighted
congestion games with polynomial latencies of degree d, that essentially matches the Price of
Anarchy upper bound of Φd+1

d from Aland et al. [3]. Our result, shows a strong separation
of the Price of Stability of weighted and unweighted congestion games, where the Price of
Stability is at most d+ 1 [15]. This is in sharp contrast to the Price of Anarchy of these two
classes, where the respective bounds are essentially the same.

We will need to introduce some notation. Let Φd = Θ
(
d

ln d
)
be the unique positive root

of the equation (x + 1)d = xd+1 and let βd be a parameter such that βd ≥ 0.38 for any d,
limd→∞ βd = 1

2 . A plot of its values can be seen in [26, Fig. 1].

I Theorem 1. The Price of Stability of weighted congestion games with polynomial latency
functions of degree at most d ≥ 9 is at least (βdΦd)d+1.

I Lemma 2. For any positive integer d define

cd = 1
d

⌊
d

ln(Φ1+2/d
d − Φd)− ln(Φ1+2/d

d − Φd − 1)
ln Φd

⌋
and βd = 1− Φ−cd

d , (1)

Then Φd+2
d ≤

(
Φd + 1

βd

)d
; furthermore, for all d ≥ 9 we have: d · cd ≥ 3, 0.38 ≤ βd ≤ 1

2 and
limd→∞ βd = 1

2 .

Proof of Theorem 1. We now move on to the description of our congestion game instance.
Fix some integer5 d ≥ 9. Our instance consists of n + µ players and n + µ + 1 facilities,
where µ ≡ c · d for some real c ≥ 3

d (to be specifically determined later on, see (1)) such that
µ ≥ 3 is an integer. You can think of n as a very large integer, since at the end we will take
n→∞. Every player i = 1, 2, . . . , n+ µ has a weight of wi = wi, where w = 1 + 1

Φd
.

It will be useful for subsequent computations to notice that wd =
(

1 + 1
Φd

)d
= (Φd+1)d

Φd
d

=
Φd+1

d

Φd
d

= Φd and wd+1 = wd · w = Φd
(

1 + 1
Φd

)
= Φd + 1. Let also define

α = α(µ) ≡
µ∑
j=1

w−j = 1− w−µ

w − 1 = 1− (wd)−c

w − 1 =
1− Φ−cd

1 + 1
Φd
− 1

= Φd
(
1− Φ−cd

)
= βdΦd,

where βd ≡ 1− Φ−cd ∈ (0, 1). Observe that

w−µ = 1− βdΦd(w − 1) = 1− βdΦd
(

1 + 1
Φd
− 1
)

= 1− βd

and furthermore, for every i ≥ µ + 1,
∑i−1
j=i−µ wj =

∑µ
j=1 w

i−j = α · wi,
∑i
j=i−µ wj =

(α+ 1) · wi and
∑∞
`=1 w

−` = 1
w−1 = 1

1+ 1
Φd
−1 = Φd.

The facilities have latency functions

cj(t) = (α+ 1)d, if j = 1, . . . , µ,

cj(t) = w−j(d+1)td, if j = µ+ 1, . . . , µ+ n,

cn+µ+1(t) = 0,

where for simplicity we use j instead ej to refer to the j-th facility.

5 For polynomial latencies of smaller degrees d ≤ 8 we can instead apply the simpler lower-bound instance
for singleton games given in Section 3.2.
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Every player i has two available strategies, s∗i and s̃i. Eventually we will show that
the profile s∗ corresponds to the optimal solution, while s̃ corresponds to the unique Nash
equilibrium of the game. Informally, at the former the player chooses to stay at her “own”
i-th facility, while at the latter she chooses to deviate and play the µ following facilities
i+ 1, . . . , i+ µ. However, special care shall be taken for the boundary cases of the first µ
and last µ players, so for any player i we formally define Si = {s∗i , s̃i} where s∗i = {i} and

s̃i =


{µ+ 1, . . . , µ+ i}, if i = 1, . . . , µ,
{i+ 1, . . . , i+ µ}, if i = µ+ 1, . . . , n,
{i+ 1, . . . , n+ µ+ 1}, if i = n+ 1, . . . , n+ µ.

These two outcomes, s∗ and s̃, are shown in [26, Fig. 2].
Notice here that any facility j cannot get a load greater than the sum of the weights of

the previous µ players plus the weight of the j-th player. So, for and any strategy profile s:

xj(s) ≤
j∑

`=j−µ
w` = (α+ 1)wj for all j ≥ µ+ 1 (2)

Next we will show that the strategy profile s̃ = (s̃1, . . . , s̃n+µ) is the unique Nash
equilibrium of our congestion game. We do that by proving that

1. It is a strongly dominant strategy for any player i = 1, . . . , µ to play s̃i.
2. For any i = µ+ 1, . . . , n+ µ, given that every player k < i has chosen to play s̃k, then it

is a strongly dominant strategy for player i to deviate to s̃i as well.

For the first condition, fix some player i ≤ µ and a strategy profile s−i for the other
players and observe that by choosing s̃i, player i incurs a cost of at most

Ci(s̃i, s−i) =
∑
j∈s̃i

cj(xj(s̃i)) ≤
µ+i∑

`=µ+1
c`
(
(α+ 1)w`

)
=

d+i∑
`=d+1

w−`(d+1)(α+ 1)dw`d = (α+ 1)d
d+i∑

`=d+1
w−`

< (α+ 1)dw−d
∞∑
`=1

w−` = (α+ 1)d 1
Φd

Φd = (α+ 1)d = Ci(s∗i , s−i),

where in the first inequality we used the bound from (2).
For the second condition, we will consider the deviations of the remaining players.6 Fix

now some i = µ+ 1, . . . , n and assume a strategy profile s−i = (s̃1, . . . , s̃i−1, si+1, . . . , sn+µ)
for the remaining players. If player i chooses strategy s∗i she will experience a cost of

Ci(s∗i , s−i) = ci

 i∑
`=i−µ

w`

 = ci
(
(α+ 1)wi

)
= w−i(d+1)(α+ 1)dwid = (α+ 1)dw−i.

It remains to show that

Ci(s̃i, s−i) < Ci(s∗i , s−i) = (α+ 1)dw−i. (3)

6 For the remaining last µ players i = n+ 1, . . . , n+ µ the proof is similar to the text, and as a matter of
fact easier, since when these players deviate to s̃i they also use the final “dummy” facility n+ µ+ 1
that has zero cost.



G. Christodoulou, M. Gairing, Y. Giannakopoulos, and P. G. Spirakis 150:9

The cost Ci(s̃i, s−i) is complicated to bound immediately, for any profile s−i. Instead,
we will resort to the following claim which characterizes the profile s−i where this cost is
maximized. 7

I Claim 3. There exists a profile s′ with
1. s′j = sj for all j ≤ i and i > i+ µ

2. s′i+µ = s∗i+µ
3. there exists some k ∈ {i+ 1, . . . , i+ µ− 1} such that

s′j = s̃j for all j ∈ {i+ 1, . . . , i+ µ− 1} \ {k},

that dominates s, i.e. Ci(s̃i, s−i) ≤ Ci(s̃i, s′−i).

By use of Claim 3, it remains to show

Ci(s̃i, s′−i) < (α+ 1)dw−i, (4)

just for the special case of profiles s′ that are described in Claim 3. We do this in [26,
Appendix A.4].

Summarizing, we proved that indeed s̃ is the unique Nash equilibrium of our congestion
game. Finally, to conclude with lower-bounding the Price of Stability, let us compute the
social cost on profiles s̃ and s∗. On s∗, any facility j (except the last one) gets a load equal
to the weight of player j, so

C(s∗) =
n+µ∑
j=1

wjcj(wj)

=
µ∑
j=1

wj(α+ 1)d +
n+µ∑
j=µ+1

wjw−j(d+1)(wj)d

= (α+ 1)d
µ∑
j=1

wj +
µ+n∑
j=µ+1

1

= (α+ 1)dww
µ − 1
w − 1 + n

= n+ (βΦd + 1)d
(

1 + 1
Φd

) 1
1−β − 1

1 + 1
Φd
− 1

= n+ (βΦd + 1)d(Φd + 1) β

1− β

≤ n+ β

1− β (Φd + 1)d+1.

On the other hand, at the unique Nash equilibrium s̃ each facility j ≥ µ+ 1 receives a load
equal to the sum of the weights of the previous µ players, i.e.

xj(s̃) =
j−1∑
`=j−µ

w` = αwj

7 For an explanatory figure and a proof of this claim, see the full version of our paper [26, Fig. 3].
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so

C(s̃) ≥
n+µ∑
j=µ+1

xj(s̃)cj(xj(s̃)) =
n+µ∑
j=µ+1

w−j(d+1) (αwj)d+1 = αd+1
µ+n∑
j=µ+1

1 = αd+1n.

By taking n arbitrarily large we get a lower bound on the Price of Stability of

lim
n→∞

C(s̃)
C(s∗) ≥ lim

n→∞

αd+1n

n+ β
1−β (Φd + 1)d+1

= αd+1 = (βΦd)d+1,

where from Lemma 2 we know that 1
3 ≤ β = 1

2 − o(1). J

3.1.1 Network Games
Due to the rather simple structure of the players’ strategy sets in the lower bound construction
of Theorem 1, it can be readily extended to network games as well:

I Proposition 4. Theorem 1 applies also to network weighted congestion games.

3.2 Singleton Games
In this section we give an exponential lower bound for singleton weighted congestion games
with polynomial latency functions. The following theorem handles also approximate equilibria
and provides a lower bound on the Price of Stability in a very strong sense; even if one allows
for the best approximate equilibrium with approximation factor α = o

(
d

ln d
)
, then its cost is

lower-bounded by ω(d) times the optimal cost.8 In other words, in order to achieve linear
guarantees on the Price of Stability, one has to consider Ω

(
d

ln d
)
-approximate equilibria—

almost linear in d; this shows that our positive result in Corollary 10, of the following
Section 4.3, is essentially tight. This is furthermore complemented by [26, Appendix D],
where we show that the socially optimum profile is a (d + 1)-approximate equilibrium
(achieving an optimal Price of Stability of 1).

I Theorem 5. For any positive integer d and any real α ∈ [1, d), the α-approximate (mixed)
Price of Stability of weighted (singleton) congestion games with polynomial latencies of degree
at most d is at least 1

e(d+1)
(
1 + 1

α

)d+1. In particular, for the special case of α = 1, we derive
that the Price of Stability of exact equilibria is Ω(2d/d) = (2− o(1))d+1.

4 Upper Bounds

The negative results of the previous sections, involve constructions where the ratio W of the
largest to smallest weight can be exponential in d. In the main theorem (Theorem 9) of this
section we present an analysis which is sensitive to this parameter W , and identify conditions
under which the performance of approximate equilibria can be significantly improved.

Our upper bound approach is based on the design of a suitable approximate potential
function and has three main steps. First, in Section 4.1, we set up a framework for the
definition of this function by identifying conditions that, on the one hand, certify the existence
of an approximate equilibrium and, on the other, provide guarantees about its efficiency.

8 To see this, just take any upper bound of d+1
c ln(d+1) on α, for a constant c > 2. Then, the lower bound in

Theorem 5 becomes Ω(dc−1).
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Then, in Section 4.2, by use of the Euler-Maclaurin summation formula we present a general
form of an approximate potential function, which extends Rosenthal’s potential for weighted
congestion games (see also [26, Appendix C]). Finally, in Section 4.3, we deploy this potential
for polynomial latencies. Due to its analytic description, our potential differs from other
extensions of the Rosenthal’s potential that have appeared in previous work, and we believe
that this contribution might be of independent interest, and applied to other classes of
latency functions.

4.1 The Potential Method
In the next lemma we lay the ground for the design and analysis of approximate potential
functions, by supplying conditions that not only provide guarantees for the existence of
approximate equilibria, but also for their performance with respect to the social optimum. In
the premises of the lemma, we give conditions on the resource functions φe, having in mind
that Φ(s) =

∑
e∈E φe(xe(s)) will eventually serve as the “approximate” potential function.

I Lemma 6. Consider a weighted congestion game with latency functions ce, for each
facility e ∈ E, and player weights wi, for each player i ∈ N . If there exist functions
φe : [0,∞) −→ R and parameters α1, α2, β1, β2 > 0 such that for any facility e and player
weight w ∈ {w1, . . . , wn}

α1 ≤
φe(x+ w)− φe(x)
w · ce(x+ w) ≤ α2, for all x ≥ 0, (5)

and

β1 ≤
φe(x)
x · ce(x) ≤ β2, for all x ≥ min

n
wn, (6)

then our game has an α2
α1

-approximate pure Nash equilibrium which, furthermore, has Price
of Stability at most β2

β1
.

4.2 Faulhaber’s Potential
In this section we propose an approximate potential function, which is based on the following
classic number-theoretic result, known as Faulhaber’s formula9, which states that for any
positive integers n,m,

n∑
k=1

km = 1
m+ 1

m∑
j=0

(−1)j
(
m+ 1
j

)
Bjn

m+1−j

= 1
m+ 1n

m+1 + 1
2n

m + 1
m+ 1

m∑
j=2

(
m+ 1
j

)
Bjn

m+1−j , (7)

where the coefficients Bj are the usual Bernoulli numbers.10 In particular, this shows that
the sum of the first n powers of m can be expressed as a polynomial of n with degree
m+ 1. Furthermore, this sum corresponds to the well-known potential of Rosenthal [39] for
unweighted congestion games when the latency function is the monomial x 7→ xm.

9 See, e.g., [33, p. 287] or [19, p. 106]).
10 See, e.g., [28, Chapter 6.5] or [1, Chapter 23]. The first Bernoulli numbers are: B0 = 1, B1 = −1/2, B2 =

1/6, B3 = 0, B4 = −1/30, . . . . Also, we know that Bj = 0 for all odd integers j ≥ 3.
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Based on the above observation, we go beyond just integer values of n, and generalize this
idea to all positive reals; in that way, we design a “potential” function that can handle different
player weights and, furthermore, incorporate in a more powerful, analytically smooth way,
approximation factors with respect to both the Price of Stability, as well as the approximation
parameter of the equilibrium (in the spirit of Lemma 6). A natural way to do that is to
directly generalize (7) and simply define, for any real x ≥ 0 and positive integer m,

Sm(x) ≡ 1
m+ 1x

m+1 + 1
2x

m, (8)

keeping just the first two significant terms.11 For the special case of m = 0 we set S0(y) = y.
For any nonnegative integer m we define the function Am : [1,∞) −→ (0,∞) with

Am(x) ≡
[
Sm(x)
xm+1

]−1
=
(

1
m+ 1 + 1

2x

)−1
= 2(m+ 1)x

2x+m+ 1 . (9)

Observe that Am is strictly increasing (in x) for all m ≥ 1,

Am(1) = 2(m+ 1)
m+ 3 ∈ [1, 2), and lim

x→∞
Am(x) = m+ 1. (10)

For the special case of m = 0 we simply have A0(x) = 1 for all x ≥ 0. A graph of these
functions can be found in [26, Fig. 6]. Since Am is strictly increasing for m ≥ 1, its inverse
function, A−1

m : [2m+1
m+3 ,m+ 1] −→ [1,∞), is well-defined and also strictly increasing for all

m ≥ 1.
The following two lemmas describe some useful properties regarding the algebraic beha-

viour, and the relation among, functions Am and Sm:

I Lemma 7. Fix any reals y ≥ x ≥ 1. Then the sequences Am(x)
m+1 and Am(x)

Am(y) are decreasing,
and sequence Am(x) is increasing (with respect to m).

I Lemma 8. Fix any integer m ≥ 0 and reals γ,w ≥ 1. Then

γm+1

Am(γw) ≤
Sm(γ(x+ w))− Sm(γx)

w(x+ w)m ≤ γm+1, for all x ≥ 0, (11)

and

γm+1

m+ 1 ≤
Sm(γx)
xm+1 ≤ γm+1

Am(γ) , for all x ≥ 1. (12)

4.3 The Upper Bound
Now we are ready to state our main positive result:

I Theorem 9. At any congestion game with polynomial latency functions of degree at most
d ≥ 1 and player weights ranging in [1,W ], for any 2(d+1)W

2W+d+1 ≤ α ≤ d + 1 there exists an
α-approximate pure Nash equilibrium that, furthermore, has Price of Stability at most

1 +
(
d+ 1
α
− 1
)
W.

11 See [26, Sec. 4.4] for further discussion on this choice.



G. Christodoulou, M. Gairing, Y. Giannakopoulos, and P. G. Spirakis 150:13

Observe that, as the approximation parameter α increases, the Price of Stability decreases,
in a smooth way, from d+3

2 down to the optimal value of 1. Furthermore, notice how the
interval within which α ranges, shrinks as the range of player weights W grows; in particular,
its left boundary 2(d+1)W

2W+d+1 goes from 2d+1
d+3 (for W = 1) up to d+ 1 (for W →∞).

As a result, Theorem 9 has two interesting corollaries, one for α = 2(d+1)W
2W+d+1 and one for

W = 1 (unweighted games):

I Corollary 10. At any congestion game with polynomial latencies of degree at most d ≥ 1
where player weights lie within the range [1,W ], there is an 2(d+1)W

2W+d+1 -approximate pure Nash
equilibrium with Price of Stability at most d+3

2 .

It is interesting to point out here that, in light of Theorem 5, the above result of Corollary 10
is essentially asymptotically tight as far as the Price of Stability is concerned (see the
discussion preceding Theorem 5).

I Corollary 11. At any unweighted congestion game with polynomial latencies of degree
at most d ≥ 1, the Price of Stability of α-approximate equilibria is at most d+1

α , for any
2d+1
d+3 ≤ α ≤ d+ 1.
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Abstract
Wardrop equilibria in nonatomic congestion games are in general inefficient as they do not in-
duce an optimal flow that minimizes the total travel time. Network tolls are a prominent and
popular way to induce an optimum flow in equilibrium. The classical approach to find such tolls
is marginal cost pricing which requires the exact knowledge of the demand on the network. In
this paper, we investigate under which conditions demand-independent optimum tolls exist that
induce the system optimum flow for any travel demand in the network. We give several char-
acterizations for the existence of such tolls both in terms of the cost structure and the network
structure of the game. Specifically we show that demand-independent optimum tolls exist if and
only if the edge cost functions are shifted monomials as used by the Bureau of Public Roads.
Moreover, non-negative demand-independent optimum tolls exist when the network is a directed
acyclic multi-graph. Finally, we show that any network with a single origin-destination pair ad-
mits demand-independent optimum tolls that, although not necessarily non-negative, satisfy a
budget constraint.
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1 Introduction

The impact of selfish behavior on the efficiency of traffic networks is a longstanding topic
in the algorithmic game theory and operations research literature. Already more than half
a century ago, Wardrop [41] stipulated a main principle of a traffic equilibrium that – in
light of the omnipresence of modern route guidance systems – is as relevant as ever: “The
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151:2 Demand-Independent Optimal Tolls

journey times on all the routes actually used are equal, and less than those which would be
experienced by a single vehicle on any unused route.” This principle can be formalized by
modeling traffic as a flow in a directed network where edges correspond to road segments
and vertices correspond to crossings. Each edge is endowed with a cost function that maps
the total amount of traffic on it to a congestion cost that each flow particle traversing the
edge has to pay. Further, we are given a set of commodities, each specified by an origin, a
destination, and a flow demand. In this setting, a Wardrop equilibrium is a multi-commodity
flow such that for each commodity the total cost of any used path is not larger than the
total cost of any other path linking the commodity’s origin and destination. Popular cost
functions, put forward for the use in traffic models by the U.S. Bureau of Public Roads [40]
are of the form

ce(xe) = te

(
1 + α

(xe
ke

)β)
, (1)

where xe is the traffic flow along edge e, te ≥ 0 is the free-flow travel time, ke is the capacity
of edge e and α and β are parameters fitted to the model.

While Wardrop equilibria are guaranteed to exist under mild assumptions on the cost
functions [4], it is well known that they are inefficient in the sense that they do not minimize
the overall travel time of all commodities [34]. A popular mechanism to decrease the
inefficiency of selfish routing are congestion tolls. A toll is a payment that the system
designer defines for each edge of the graph and that has to be paid by each flow particle
traversing the edge. By carefully choosing the edges’ tolls, the system designer can steer the
Wardrop equilibrium in a favorable direction. A classic approach first due to Pigou [34] is
marginal cost pricing where the toll of each edge is equal to difference between the marginal
social cost and the marginal private cost of the system optimum flow on that edge. Marginal
cost pricing induces the system optimal flow – the one that minimizes the overall travel
time – as a Wardrop equilibrium [4]. Congestion pricing is not only an interesting theoretical
issue that links system optimal flows and traffic equilibria, but also a highly relevant tool in
practice, as various cities of the world, including Stockholm, Singapore, Bergen, and London,
implement congestion pricing schemes to mitigate congestion [22, 39].

The problem. Marginal cost pricing is an elegant way to induce the system optimum flow
as a Wardrop equilibrium, but the concept crucially relies on the exact knowledge of the
travel demand. As an example consider the Pigou network in Figure 1a for an arbitrary flow
demand of µ > 0 going from o to d. The optimal flow only uses the lower edge with cost
function c(x) = x as long as µ ≤ 1/2. For demands µ > 1/2, a flow of 1/2 is sent along the
lower edge and the remaining flow of µ− 1/2 is sent along the upper edge. Using marginal
cost pricing the toll of the lower edge is min{µ, 1/2} and no toll is to be payed for the upper
edge, see Figure 1b.

This toll scheme is problematic as it depends on the flow demand µ in the network. In
particular, when the demand is estimated incorrectly, the resulting tolls will be sub-optimal.
Assume the network designer expects a flow of µ = 1/4 and, thus, sets a (marginal cost) toll
of τ2 = 1/4 on the lower link. When the actual total flow demand is higher than expected
and equal to µ = 1, a fraction 1/4 of the flow uses the upper edge and 3/4 of the flow uses the
lower edge resulting in a cost of 1/4 + 9/16. However, it is optimal to induce an equal split
between the edge which can be achieved by a toll of 1/2 on the lower edge. Quite strikingly,
the toll of τ2 = 1/2 is optimal for all possible demand values as it always induces the optimal
flow. For demands less than 1/2, a toll of 1/2 on the lower edge does not hinder any flow
particle from using the lower edge, which is optimal. On the other hand, for any demand
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Figure 1 Dependence of the marginal cost tolls for the Pigou network.
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Figure 2 Braess network.

larger 1/2, the toll of 1/2 on the lower edge forces the flow on this edge to not exceed 1/2,
which is optimal as well.

The situation is even more severe for the Braess network in Figure 2. When the system
designer expects a traffic demand of 1 going from o to d, marginal cost pricing fixes a toll
of 1 on both the upper left and the lower right edge (both with cost function c(x) = x).
When the demand is lower than expected, say, µ = 1/2, under marginal cost pricing, the flow
is split equally between the lower and the upper path leading to a total cost of 5/4. The
optimal flow with flow value 1/2, however, only uses the zig-zag-path o→ u→ v → d with
cost 1. It is interesting to note that this flow is actually equal to the Wardrop equilibrium
without any tolls. To conclude this example, marginal cost pricing may actually increase the
total cost of the Wardrop equilibrium when the travel demand is estimated incorrectly. We
note that also in the Braess graph, there is a distinct toll vector that enforces the optimum
flow as a Wardop equilibrium for any demand. We will see that by setting a toll of 1 on
the central edge from u to v, the Wardrop equilibrium for any flow demand is equal to the
respective optimum flow.

We conclude that for both the Pigou network and the Braess network, marginal cost
pricing is not robust with respect to changes in the demand since wrong estimates of the travel
demand lead to sub-optimal tolls. Since such changes may occur frequently in road networks
(e.g., due to sudden weather changes, accidents, or other unforeseen events), marginal cost
pricing does not use the full potential of congestion pricing and may even be harmful for the
traffic. On the other hand, for both networks, there exist tolls that enforce the optimum flow
as an equilibrium for any flow demand. In this paper, we systematically study conditions for
such demand-independent optimal tolls to exist.

ICALP 2018
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Our results. In this paper we study the existence of demand-independent optimum tolls
(DIOTs) that induce the optimum flow as an equilibrium for any flow demand. We give
a precise characterization in terms of the cost structure on the edges for DIOTs to exists.
Specifically, we show that DIOTs exist for any network where the cost of each edge is a
BPR-type function, i.e.,

ce(x) = te + aex
β
e for all e ∈ E , (2)

where te, ae ∈ R+ are arbitrary while β ∈ R+ is a common constant for all edges e ∈ E .
This existence result holds regardless of the topology of the network and on the number of
origin-destination (O/D) pairs. On the other hand, for any cost function that is not of the
form as in (2), there is a simple network consisting of two parallel edges with cost function c
and cost function c+ b for some b > 0 that does not admit a DIOT. Our existence result for
networks with BPR-type cost functions is proven in terms of a characterization that uniquely
determines the sum of the tolls along each path that is used by the optimum flow for some
demand.

In general the DIOTs used in the characterization may use negative tolls as well. We
provide an example of a network with BPR-type cost functions where a non-negative DIOT
does not exist. Besides conditions on the costs, conditions on the network are needed to
guarantee the existence of non-negative DIOTs. We show that non-negative DIOTs exist
for directed acyclic multi-graphs (DAMGs) with BPR-type cost functions, like the Pigou
network and the Braess network discussed in Section 1. This condition on the network is
sufficient, but not necessary for the existence of non-negative DIOTs.

Under a weaker condition than DAMG, we prove the existence of DIOTs that follow a
budget constraint of non-negativity of the total amount of tolls. This condition is satisfied
by networks with a single O/D pair.

Due to space constraint, some of the proofs are omitted and can be found in the arXiv
version [15].

Related work. Marginal cost pricing as a means to reduce the inefficiency of selfish resource
allocation was first proposed by Pigou [34] and subsequently discussed by Knight [31].
Wardrop [41] introduced the notion of a traffic equilibrium where each flow particle only uses
shortest paths. Beckmann et al. [4] showed that marginal cost pricing always induces the
system optimal flow as a Wardrop equilibrium. The set of feasible tolls that induce optimal
flows was explored in [5, 26, 32]. They showed that the set of optimal tolls can be described
by a set of linear equations and inequalities.

This characterization led to various developments regarding the optimization of secondary
objectives of the edge tolls, such as the minimization of the tolls collected from the users
[1, 16, 17], or the minimzation of the number of edges that have positive tolls [2, 3]. A problem
closely related to the latter is to compute tolls for a given subset of edges with the objective
to minimize the total travel time of the resulting equilibrium. Hoefer et al. [27] showed that
this problem is NP-hard for general networks, and gave an efficient algorithm for parallel
edges graphs with affine cost functions. Harks et al. [25] generalized their result to arbitrary
cost functions satisfying a technical condition. Bonifaci et al. [8] studied generalizations of
this problem with further restrictions on the set of feasible edge tolls.

For heterogenous flow particles that trade off money and time differently, marginal cost
pricing cannot be applied to find tolls that induce the system optimum flow. In this setting,
Ciole et al. [13] showed the existence of a set of tolls enforcing the system optimal flow, when
there is a single commodity in the network. Similarly, Yang and Huang [42] studied how
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to design toll structure when there are users with different toll sensitivity. Fleischer [18]
showed that in single source series-parallel networks the tolls have to be linear in the latency
of the maximum latency path. Karakostas and Kolliopoulos [28] and Fleischer et al. [19]
independently generalized this result to arbitrary networks. Karakostas and Kolliopoulos [30]
showed similar results for players with elastic demands. Han et al. [24] extended the previous
results to different classes of cost functions.

Most of the literature assumes that the charged tolls cause no disutilty to the network
users. For the case where tolls contribute to the cost, Cole et al. [14] showed that marginal
cost tolls do not improve the equilibrium flow for a large class of instances, including all
instances with affine costs. They further showed that for these networks it is NP-hard to
approximate the minimal total cost that can be achieved as a Wardrop equilibrium with tolls.
Karakostas and Kolliopoulos [29] proved that the total disutility due to taxation is bounded
with respect to the social optimum for large classes of latency functions. Moreover, they
showed that, if both the tolls and the latency are part of the social cost, then for some latency
functions the coordination ratio improves when taxation is used. For networks of parallel
edges, Christodoulou et al. [12] studied a generalization of edge tolls where cost functions
are allowed to increase in an arbitrary way. They showed that for affine cost functions, the
price of anarchy is strictly better than in the original network, even when the demand is not
known.

Brown and Marden [9, 10] studied how marginal tolls can create perverse incentives when
users have different sensitivity to the tolls and how it possible to circumvent this problem.
Caragiannis et al. [11] studied the optimal toll problem for atomic congestion games. They
proved that in the atomic case the optimal system performance cannot be achieved even in
very simple networks. On the positive side they shown that there is a way to assign tolls
to edges such that the induced social cost is within a factor of 2 to the optimal social cost.
Singh [38] observed that marginal tolls weakly enforce optimal flows. Fotakis and Spirakis [21]
showed that in series-parallel networks with increasing cost functions the optimal social cost
can be induced with tolls. Fotakis et al. [20] were the first to consider the problem of defining
tolls for heterogeneous users in atomic congestion games with unsplittable flow. In [7] the
problem of defining tolls for atomic congestion games with polynomial cost functions was
considered for the first time. Meir and Parkes [33] discussed how in atomic congestion games
with marginal tolls multiple equilibria are near-optimal when there is a large number of
players.

Sandholm [36, 37] studied tolls from a mechanism design perspective where the social
planner has no information over the preferences of the users and has limited ability to
observer the users’ behavior. Bhaskar et al. [6] studied the problem of achieving target flows
as equilibria of a nonatomic routing game without knowing the underlying latency functions
and showed that a given target flow can be achieved using a polynomial number of queries
to an oracle that takes tolls as input and outputs the resulting equilibrium flow. Roth et
al. [35] considered the problem of finding optimal tolls in a polynomial number of rounds
when latency functions are unknown. They solved the problem by embedding it in a broad
class of Stackelberg game.

2 Model and preliminaries

In this section, we present some notation and basic definitions that are used in the sequel.
We start with the underlying network model and will then introduce equilibria and tolls.

ICALP 2018
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Network model. We consider a finite directed multi-graph G = (V, E) with vertex set V
and edge set E . We call (v → v′) the set of all edges e whose tail is v and whose head is v′.
We assume that there is a finite set of origin-destination (O/D) pairs i ∈ I, each with an
individual traffic demand µi ≥ 0 that has to be routed from an origin oi ∈ V to a destination
di ∈ V via G. Denote the demand vector by µ = (µi)i∈I . We call Pi the set of (simple)
paths joining oi to di, where each path p ∈ Pi is a finite sequence of edges such that the
head of each edge meets the tail of the subsequent edge. For as long as all pairs (oi, di) are
different, the sets Pi are disjoint. Call P :=

⋃
i∈I Pi the union of all such paths.

Each path p is traversed by a flow fp ∈ R+. Call f = (fp)p∈P the vector of flows in the
network. The set of feasible flows for µ is defined as

F(µ) =
{
f ∈ RP+ :

∑
p∈Pi fp = µi for all i ∈ I

}
. (3)

In turn, a routing flow f ∈ F(µ) induces a load on each edge e ∈ E as

xe =
∑
p3e

fp. (4)

We call x = (xe)e∈E the corresponding load profile on the network. For each e ∈ E consider
a nondecreasing, continuous cost function ce : R+ → R+. Denote c = (ce)e∈E . If x is the
load profile induced by a feasible routing flow f , then the incurred delay on edge e ∈ E is
given by ce(xe); hence, with a slight abuse of notation, the associated cost of path p ∈ P is
given by the expression cp(f) ≡

∑
e∈p ce(xe). We call the tuple Γ = (G, I, c) a (nonatomic)

routing game.

Equilibrium Flows and Optimal Flows. A routing flow f∗ is a Wardrop equilibrium (WE)
of Γ if, for all i ∈ I, we have:

cp(f∗) ≤ cp′(f∗) for all p, p′ ∈ Pi such that f∗p > 0.

This concept was introduced by Wardrop [41]. Beckmann et al. [4] showed that Wardrop
equilibria are the optimal solutions to the convex optimization problem

min
∑
e∈E

∫ xe

0
ce(s) ds

s.t.: xe =
∑
p3e

fp

f ∈ F ,

and, thus, are guaranteed to exist. A social optimum (SO) is a flow that minimizes the
overall travel time, i.e., it solves the following total cost minimization problem:

min L(f) =
∑
p∈P

fpcp(f),

s.t.: f ∈ F . (5)

As shown in [4], all Wardrop equilibria have the same social cost. We write Eq(Γ) = L(f∗)
and Opt(Γ) = minf∈F L(f), where f∗ is a Wardrop equilibrium of Γ. The game’s price
of anarchy (PoA) is then defined as PoA(Γ) = Eq(Γ)/Opt(Γ). It is known that Wardrop
equilibria need not minimize the social cost, in that case PoA(Γ) > 1. For a pair i ∈ I, we
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denote the set of paths that are eventually used in a optimum flow for some demand vector
µ by

P̃i = {p ∈ Pi : f̃p(µ) > 0 for some demand µ and corresponding social optimum f̃(µ)}.

Here and in the following we write f(µ) instead of f when we want to indicate the corre-
sponding demand vector µ.

Tolls. We want to explore the possibility of imposing tolls on the edges of the network
in such a way that the equilibrium flow of the game with tolls produces a flow that is a
solution of the original miminization problem (5). In other words, we want to see whether it
is possible to achieve an optimum flow as an equilibrium of a modified game.

We call τ = (τe)e∈E ∈ RE a toll vector. Note that we allow both for positive and negative
tolls. We call cτe the cost of edge e under the toll τ , i.e., cτe (xe) := ce(xe) + τe. Similarly
cτp(f) :=

∑
e∈p c

τ
e (xe). Define Γτ := (G, I, cτ ). A toll vector τ that for each demand vector

µ ∈ RI+ enforces the corresponding system optimum as the equilibrium in Γτ is called
demand-independent optimal toll.

I Definition 1 (Demand-independent optimal toll (DIOT)). Let Γ = (G, I, c). A toll vector
τ ∈ RE is called demand-independent optimal toll (DIOT) for Γ if for every demand vector
µ ∈ RI+ every corresponding equilibrium with tolls fτ (µ) ∈ Eq(Γτ ) is optimal for Γ, i.e.,
L(fτ (µ)) =

∑
p∈p f

τ
p (µ)cp(fτ (µ)) ≤ L(f(µ)) =

∑
p∈P fpcp(f(µ)) for all f(µ) ∈ F(µ).

In Section 1 we visited two games, the Pigou networks and Braess’ paradox, that admit a
DIOT. The aim of this paper is to characterize the networks Γ = (G, I, c) for which DIOTs
exist.

3 BPR-type cost functions

In this section, we give a complete characterization of the sets of cost functions that admit a
DIOT. On the positive side, we will show that any network with BPR-type cost functions
admits a DIOT, independently of the number of commodities and the network topology. On
the other hand, we show a strong lower bound proving that for any non-BPR cost function
there is a single-commodity game on two parallel edges with costs functions c and c+ t for
some t ∈ R+ that does not admit a DIOT. Formally, for β > 0, let

CBPR(β) = {c : R+ → R+ : c(x) = tc + acx
β for all x ≥ 0, a, t ∈ R+}

be the set of BPR-type cost functions with degree β.
The following theorem gives a sufficient condition for games with BPR-type cost functions

to admit a DIOT.

I Theorem 2. Consider a game Γ = (G, I, c) such that there is β ∈ R+ with ce ∈ CBPR(β)
for all e ∈ E. Let τ be a toll vector such that∑

e∈p

(
τe + β

β+1 te

)
≤
∑
e∈p′

(
τe + β

β+1 te

)
. (6)

for all i ∈ I and all p ∈ P̃i and all p′ ∈ Pi. Then, τ is a DIOT.

ICALP 2018
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Proof. Fix a demand vector µ ∈ RI+ and a corresponding optimum flow f̃(µ) in Γ arbitrarily.
We denote by x̃e =

∑
p∈P:e∈p f̃p(µ) the load imposed on edge e by f̃(µ). The local optimality

conditions of f̃(µ) imply that for all i ∈ I and all p, p′ ∈ Pi with f̃p(µ) > 0 we have∑
e∈p

ce(x̃e) + c′e(x̃e)x̃e ≤
∑
e∈p′

ce(x̃e) + c′e(x̃e)x̃e.

This implies that for all i ∈ I and all p, p′ ∈ Pi with f̃p(µ) > 0, there exists a non-negative
constant λ(p, p′) ≥ 0 such that

λ(p, p′) +
∑
e∈p

(
(β + 1)aex̃βe + te

)
=
∑
e∈p′

(
(β + 1)aex̃βe + te

)
. (7)

We proceed to show that when the toll vector τ satisfies (6), then f̃(µ) is a Wardop
equilibrium of Γτ . To this end, consider arbitrary p, p′ ∈ Pi with f̃p(µ) > 0. We have∑

e∈p

(
ce(x̃e) + τe

)
=
∑
e∈p

(
aex̃

β
e + te + τe

)
=
∑
e∈p

(
(β + 1)aex̃βe + te

)
−
∑
e∈p

(
βaex̃

β
e − τe

)
=
∑
e∈p′

(
(β + 1)aex̃βe + te

)
−
∑
e∈p

(
βaex̃

β
e − τe

)
− λ(p, p′),

=
∑
e∈p′

(
ce(x̃e) + τe

)
+
∑
e∈p′

(
βaex̃

β
e − τe

)
−
∑
e∈p

(
βaex̃

β
e − τe

)
− λ(p, p′),

where the third equality comes from (7). By assumption, the toll vector τ satisfies equation
(6) which implies

∑
e∈p τe −

∑
e∈p′ τe ≤ −

β
β+1

(∑
e∈p te −

∑
e∈p′ te

)
. Therefore,

∑
e∈p

(
ce(x̃e) + τe

)
≤
∑
e∈p′

(
ce(x̃e) + τe + βaex̃

β
e + β

β+1 te

)
−
∑
e∈p

(
βaex̃

β
e + β

β+1 te

)
− λ(p, p′)

=
∑
e∈p′

(
ce(x̃e) + τe

)
+ β

β+1λ(p, p′)− λ(p, p′)

=
∑
e∈p′

(
ce(x̃e) + τe

)
− 1

β+1λ(p, p′),

where the first equality stems from (7). The statement of the theorem follows from the fact
that λ(p, p′) ≥ 0. J

As an immediate corollary of this theorem, we obtain the existence of DIOTs in arbitrary
multi-commodity networks with BPR-type cost functions as long as negative tolls are allowed.

I Corollary 3. Consider a game Γ = (G, I, c) with BPR-type cost functions. Then there
exists a DIOT for Γ.

Proof. Setting the toll vector τ̂ = (τ̂e)e∈E as

τ̂e = − β

β + 1 te, (8)

obviously satisfies (6), so that the claim follows from Theorem 2. J
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In the following, we call τ̂ the trivial DIOT. The necessary condition of Theorem 2
implies in particular that

∑
e∈p τe + β

β+1 te must be equal for all paths p ∈ P̃i and all pairs
i ∈ I. We proceed to show that this is actually a necessary condition for a DIOT.

I Theorem 4. Consider a game Γ = (G, I, c) with BPR-type cost functions. If τ is a DIOT
for Γ, then∑

e∈p

(
τe + β

β+1 te

)
=
∑
e∈p′

(
τe + β

β+1 te

)
.

for all i ∈ I and all p, p′ ∈ P̃i.

Proof. Let i ∈ I and p∗, p∗∗ ∈ P̃i be arbitrary. By definition of P̃i there are demands vectors
µ,µ′ ∈ RI+ such that f̃p∗(µ) > 0 and f̃p∗∗(µ′) > 0. Before we prove that

∑
e∈p∗(

β
β+1 te+τe) =∑

e∈p∗∗(
β
β+1 te + τe), we need some observation regarding the continuity of the optimal path

flow functions.
Hall [23] showed that the path flow functions of a Wardrop equilibrium are continuous

functions in the travel demand. For λ ∈ [0, 1], let µ(λ) = (1− λ)µ+ λµ′ parametrize the
travel demands on the convex combination of µ and µ′. Then, by Hall’s result, there are
continuous path flow functions fp(µ(·)) : [0, 1] → RE+ for all p ∈ P such that f(µ(λ)) is a
Wardrop equilibrium for the travel demand vector µ(λ) for all λ ∈ [0, 1]. As the system
optimal flow f̃ is a Wardrop equilibrium with respect to the marginal cost function (cf. [4]),
the same holds for the system optimum flow vector f̃ , i.e., there are continuous path flow
functions f̃p(µ(·)) : [0, 1] → RE+ for all p ∈ P such that f̃(µ(λ)) is an optimal flow for the
travel demand vector µ(λ) for all λ ∈ [0, 1].

For a flow vector f , let Si(f) = {p ∈ Pi : fp > 0} denote the support of f for i ∈ I. For
a possible support set S ∈ 2Pi , let

Li(S) =
{
λ ∈ [0, 1] : S = Si(f̃(µ(λ))}

}
denote the (possibly empty) set of values of λ for which the optimal flow f̃(µ(λ)) has support
S for i.

Consider an arbitrary support set S with Li(S) 6= ∅ and an arbitrary λ ∈ Li(S). Since τ
is a DIOT for Γ, the optimal flow f̃(µ(λ)) is a Wardrop equilibrium with respect to τ , i.e.,∑
e∈p(ce(x̃e(µ(λ))) + τe) =

∑
e∈p′(ce(x̃e(µ(λ))) + τe) for all p, p′ ∈ S which implies∑

e∈p

(
aex̃e(µ(λ))β + te + τe

)
=
∑
e∈p′

(
aex̃e(µ(λ))β + te + τe

)
. (9)

for all p, p′ ∈ S. By the local optimality conditions of f̃(µ(λ))), we further have∑
e∈p

ce(x̃e(µ(λ)))+ c′e(x̃e(µ(λ)))x̃e(µ(λ)) =
∑
e∈p′

ce(x̃e(µ(λ)))+ c′e(x̃e(µ(λ)))x̃e(µ(λ)), (10)

which is equivalent to∑
e∈p

(
(β + 1)aex̃e(µ(λ))β + te

)
=
∑
e∈p′

(
(β + 1)aex̃e(µ(λ))β + te

)
(11)

for all p, p′ ∈ S. Subtracting (11) from (β + 1) times (9) and dividing by β + 1 we obtain∑
e∈p

(
β
β+1 te + τe

)
=
∑
e∈p′

(
β
β+1 te + τe

)
(12)

for all p, p′ ∈ S.
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By the continuity of the path flow functions f̃p(µ(·)), for each path p ∈ P the set
Li(p) =

⋃
S∈2Pi :p∈S L

i(S) is open in [0, 1], i.e., it is an open set in the relativ topology of
[0, 1]. In addition, we have that neither µi(0) nor µi(1) are zero, so that for all λ ∈ [0, 1] there
is a path p ∈ Pi such that f̃p(µ(λ)) > 0. We conclude that

⋃
p∈P L

i(p) = [0, 1]. Since the
sets Li(p), p ∈ Pi are open and cover the compact [0, 1], there is a finite set {p1, . . . , pt} ⊆ Pi
such that 0 ∈ Li(p1), 1 ∈ Li(pt), Li(p1) ∪ · · · ∪ Li(pt) = [0, 1] and Li(pj) ∩ Li(pj+1) 6= ∅ for
all j ∈ {1, . . . , t − 1}. The latter condition implies that for λ ∈ Li(pj) ∩ Li(pj+1) we have
pj , pj+1 ∈ S(f̃(µ(λ)). Equation (12) then implies

∑
e∈pj

( β
β+1 te+ τe) =

∑
e∈pj+1

( β
β+1 te+ τe).

Iterating this argument shows
∑
e∈p1

( β
β+1 te + τe) =

∑
e∈pt

( β
β+1 te + τe). Finally using that

p1, p
∗ ∈ Si(f̃(µ(0)) and pt, p∗∗ ∈ Si(f̃(µ(1)) gives the claimed result. J

We proceed to show that the set of BPR-type cost functions is the largest set of cost
functions that guarantee the existence of a DIOT, even for single-commodity networks
consisting of two parallel edges. The proof can be found in the arXiv version.

I Theorem 5. Let c be twice continuously differentiable, strictly semi-convex and strictly
increasing, but not of BPR-type. Then there is a congestion game Γ = (G, I, c) with two
parallel edges and cost functions c(x) and c(x) + t for some t ∈ R+ that does not have a
DIOT.

A similar construction as in the proof of Theorem 5 shows also that a network with two
parallel edges with cost functions c1 ∈ CBPR(β1) and c2 ∈ CBPR(β2) does not admit a DIOT
if β1 6= β2.

4 Nonnegative tolls

The trivial DIOT toll τ̂ is the trivial solution for both the sufficient condition for a DIOT
imposed by Theorem 2 and the necessary condition for a DIOT shown in Theorem 4. However,
the trivial DIOT is always negative so that the system designer needs to subsidize the traffic
in order to enforce the optimum flow. One may wonder whether the conditions imposed
by Theorems 2 and 4 admit also a non-negative solution. Our next result shows that, for
games played on a directed acyclic multi-graph (DAMG), a non-negative DIOT can always
be found. The proof can be found in the arXiv version.

I Theorem 6. Consider a game Γ = (G, I, c) with BPR-type cost functions where G is a
DAMG. Then there exists a non-negative DIOT for Γ.

Proof. Given a DAMG there exists a topological sort, namely a linear ordering ≺ of its
vertices such that, if v ≺ v′, then there is no path from v′ to v in the DAMG. Notice
that, in general the topological sort of a DAMG is not unique. Let |V| = n and call
v≺ = (v(1), . . . , v(n)) the vector of ordered vertices. For each edge e ∈ (v(i) → v(j)), define

δe := j − i. (13)

Let τ̂ be the trivial DIOT of the game Γ and let

ξ := min
e∈E

τ̂e
δe

and χ := ξ−, (14)

where ξ− = max{−ξ, 0} is the negative part of ξ. Define now

τe = τ̂e + δeχ. (15)
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v v′

c1(x) = x

c2(x) = 1

c3(x) = x

c4(x) = 1

Figure 3 A cyclic network with positive tolls.

We first prove that the toll vector τ is non-negative. Notice that χ, defined as in (14) is
non-negative and χ = 0 only if τ̂e ≥ 0 for all e ∈ E . Assume that there exists a τ̂e < 0 and
let e∗ ∈ arg mine∈E τ̂e/δe. Then

τe∗ = τ̂e∗ + δe∗χ = τ̂e∗ − δe∗
ˆτe∗
δe∗

= 0.

In general, whenever τe < 0, we have

τe = τ̂e + δeχ = τ̂e − δe
ˆτe∗
δe∗
≥ τ̂e − δe

τ̂e
δe

= 0.

Now we prove that the toll vector τ is a DIOT. By Theorem 2, this means that it satisfies
equation (6). First, notice that, by construction of the δe, for any i ∈ I, we have∑

e∈p
δe =

∑
e∈p′

δe for all p, p′ ∈ Pi. (16)

By (6) we have∑
e∈p

(
(β + 1)τ̂e + βte

)
=
∑
e∈p′

(
(β + 1)τ̂e + βte

)
,

hence, by (16),∑
e∈p

(
(β + 1)(τ̂e + δeχ) + βte

)
=
∑
e∈p′

(
(β + 1)(τ̂e + δeχ) + βte

)
,

that is∑
e∈p

((β + 1)τe + βte) =
∑
e∈p′

((β + 1)τe + βte) ,

which finishes the proof. J

The condition that the graph G is a DAMG is sufficient for the existence of a non-negative
DIOT. It is not necessary, as the following counterexample shows.

I Example 7. Let Γ = (G, I, c) with I = {1, 2}, V = {v, v′}, o1 = d2 = v, o2 = d1 = v′,
e1, e2 ∈ (o1 → d1), e3, e4 ∈ (o2 → d2), and the costs are as in Figure 3. The graph G is not a
DAMG, but the following non-negative toll is a DIOT:

τ1 = 1
2 τ2 = 0, τ3 = 1

2 , τ4 = 0.

We proceed to show that for graphs that contain a directed cycle, non-negative DIOTs
need not exist, even in networks with affine costs.

I Proposition 8. There are networks with affine costs that do not admit a non-negative
DIOT.

ICALP 2018



151:12 Demand-Independent Optimal Tolls

5 Aggregatively non-negative Tolls

When nonnegative DIOTs do not exist, it is conceivable that a social planner may sometime
want to use negative tolls in order to achieve her goal. Nevertheless, the planner may be
subject to budget constraints and not be able to afford a toll system that implies a global
loss. Therefore it is interesting to study the existence of conditions for a DIOT τ such that
the following budget constraint is satisfied:∑

e∈E
τexe ≥ 0, for any feasible flow f . (17)

Intuitively, (17) requires that the social planner does not loose money for any feasible flow. In
this section, we show that when the origin-destination pairs (oi, di) satisfy a order condition,
then a DIOT satisfying the budget constraint exists.

I Theorem 9. Consider a game Γ = (G, I, c) with BPR-type cost functions. If there exists
an order ≺ on V such that for all i ∈ I we have oi ≺ di, then there exists a DIOT τ that
satisfies (17).

We obtain the existence the budget feasible DIOTs for single commodity networks as a
direct corollary of Theorem 9.

I Corollary 10. Consider a game Γ = (G, I, c) with BPR-type cost and a single O/D pair.
Then, there exists a DIOT τ that satisfies (17).

Example 7 shows that the condition of Theorem 9 is only sufficient for the existence of a
DIOT that satisfies (17).

References
1 Lihud Bai, Donald W. Hearn, and Siriphong Lawphongpanich. Decomposition techniques

for the minimum toll revenue problem. Networks, 44:142–150, 2004. doi:10.1002/net.
20024.

2 Lihud Bai, Donald W. Hearn, and Siriphong Lawphongpanich. A heuristic method for
the minimum toll booth problem. Journal of Global Optimization, 48:533–548, 2010. doi:
10.1007/s10898-010-9527-7.

3 Lihud Bai and Paul A. Rubin. Combinatorial Benders cuts for the minimum tollbooth
problem. Operations Research, 57:1510–1522, 2009. doi:10.1287/opre.1090.0694.

4 Martin J. Beckmann, C. B. McGuire, and Christopher B. Winsten. Studies in the Eco-
nomics of Transportation. Yale University Press, New Haven, CT, 1956.

5 Pia Bergendorff, Donald W. Hearn, and Motakuri V. Ramana. Congestion toll pricing of
traffic networks. In P. Pardalos, D. Hearn, and W. Hager, editors, Network Optimization,
volume 450 of LNE, pages 51–71. Springer, 1997. doi:10.1007/978-3-642-59179-2_4.

6 Umang Bhaskar, Katrina Ligett, Leonard J. Schulman, and Chaitanya Swamy. Achieving
target equilibria in network routing games without knowing the latency functions. In
Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 31–40. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.12.

7 Vittorio Bilò and Cosimo Vinci. Dynamic taxes for polynomial congestion games. In
Proceedings of the 17th ACM Conference on Economics and Computation (EC), pages 839–
856, 2016. doi:10.1145/2940716.2940750.

8 Vincenzo Bonifaci, Mahyar Salek, and Guido Schäfer. Efficiency of restricted tolls in non-
atomic network routing games. In G. Persiano, editor, Proceedings of the 4th Symposium
on Algorithmic Game Theory (SAGT), volume 6982 of LNCS, pages 302–313, 2011. doi:
10.1007/978-3-642-24829-0_27.

http://dx.doi.org/10.1002/net.20024
http://dx.doi.org/10.1002/net.20024
http://dx.doi.org/10.1007/s10898-010-9527-7
http://dx.doi.org/10.1007/s10898-010-9527-7
http://dx.doi.org/10.1287/opre.1090.0694
http://dx.doi.org/10.1007/978-3-642-59179-2_4
http://dx.doi.org/10.1109/FOCS.2014.12
http://dx.doi.org/10.1145/2940716.2940750
http://dx.doi.org/10.1007/978-3-642-24829-0_27
http://dx.doi.org/10.1007/978-3-642-24829-0_27


R. Colini-Baldeschi, M. Klimm, and M. Scarsini 151:13

9 Philip N. Brown and Jason R. Marden. Avoiding perverse incentives in affine congestion
games. In Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pages
7010–7015, 2016. doi:10.1109/CDC.2016.7799349.

10 Philip N. Brown and Jason R. Marden. The robustness of marginal-cost taxes in affine
congestion games. IEEE Transactions on Automatic Control, 62:3999–4004, 2017. doi:
10.1109/TAC.2016.2619674.

11 Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis Kanellopoulos. Taxes for linear
atomic congestion games. In Y. Azar and T. Erlebach, editors, Proceedings of the 14th
Annual European Symposium on Algorithms (ESA), pages 184–195. Springer, 2006. doi:
10.1007/11841036_19.

12 Giorgos Christodoulou, Kurt Mehlhorn, and Evangelia Pyrga. Improving the price of
anarchy for selfish routing via coordination mechanisms. Algorithmica, 69:619–640, 2014.
doi:10.1007/s00453-013-9753-8.

13 Richard Cole, Yevgeniy Dodis, and Tim Roughgarden. Pricing network edges for heteroge-
neous selfish users. In Proceedings of the 35th Annual Symposium on Theory of Computing
(STOC), pages 521–530, 2003. doi:10.1145/780542.780618.

14 Richard Cole, Yevgeniy Dodis, and Tim Roughgarden. How much can taxes help selfish
routing? Journal of Computer and System Sciences, 72:444–467, 2006. doi:10.1016/j.
jcss.2005.09.010.

15 Riccardo Colini-Baldeschi, Max Klimm, and Marco Scarsini. Demand-independent optimal
tolls. arXiv, 2017. arXiv:1708.02737.

16 Robert B. Dial. Minimal-revenue congestion pricing part I: A fast algorithm for the
single-origin case. Transportation Research, Part B, 33:189–202, 1999. doi:10.1016/
S0191-2615(98)00026-5.

17 Robert B. Dial. Minimal-revenue congestion pricing part II: An efficient algorithm for
the general case. Transportation Research, Part B, 34:645–665, 2000. doi:10.1016/
S0191-2615(99)00046-6.

18 Lisa Fleischer. Linear tolls suffice: New bounds and algorithms for tolls in single source
networks. Theoretical Computer Science, 348:217–225, 2005. doi:10.1016/j.tcs.2005.
09.014.

19 Lisa Fleischer, Kamal Jain, and Mohammad Mahdian. Tolls for heterogeneous selfish users
in multicommodity networks and generalized congestion games. In Proceedings of the 45th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 277–285,
2004. doi:10.1109/FOCS.2004.69.

20 Dimitris Fotakis, George Karakostas, and Stavros G. Kolliopoulos. On the existence
of optimal taxes for network congestion games with heterogeneous users. In S. Kon-
togiannis, E. Koutsoupias, and P. G. Spirakis, editors, Proceedings of the 3rd Sympo-
sium on Algorithmic Game Theory (SAGT), volume 6386 of LNCS, pages 162–173, 2010.
doi:10.1007/978-3-642-16170-4_15.

21 Dimitris Fotakis and Paul G. Spirakis. Cost-balancing tolls for atomic network conges-
tion games. Internet Mathematics, 5(4):343–364, 2008. doi:10.1080/15427951.2008.
10129175.

22 Jose A. Gómez-Ibáñez and Kenneth A. Small. Road Pricing for Congestion Management:
A Survey of International Practice, volume 210 of NCHRP Synthesis. National Academy
Press, Washington, D.C., 1994.

23 Michael A. Hall. Properties of the equilibrium state in transportation networks. Trans-
portation Science, 12:208–216, 1978. doi:10.1287/trsc.12.3.208.

24 Deren Han, Hong K. Lo, Jie Sun, and Hai Yang. The toll effect on price of anarchy when
costs are nonlinear and asymmetric. European Journal of Operational Research, 186:300–
316, 2008. doi:10.1016/j.ejor.2007.01.027.

ICALP 2018

http://dx.doi.org/10.1109/CDC.2016.7799349
http://dx.doi.org/10.1109/TAC.2016.2619674
http://dx.doi.org/10.1109/TAC.2016.2619674
http://dx.doi.org/10.1007/11841036_19
http://dx.doi.org/10.1007/11841036_19
http://dx.doi.org/10.1007/s00453-013-9753-8
http://dx.doi.org/10.1145/780542.780618
http://dx.doi.org/10.1016/j.jcss.2005.09.010
http://dx.doi.org/10.1016/j.jcss.2005.09.010
http://arxiv.org/abs/1708.02737
http://dx.doi.org/10.1016/S0191-2615(98)00026-5
http://dx.doi.org/10.1016/S0191-2615(98)00026-5
http://dx.doi.org/10.1016/S0191-2615(99)00046-6
http://dx.doi.org/10.1016/S0191-2615(99)00046-6
http://dx.doi.org/10.1016/j.tcs.2005.09.014
http://dx.doi.org/10.1016/j.tcs.2005.09.014
http://dx.doi.org/10.1109/FOCS.2004.69
http://dx.doi.org/10.1007/978-3-642-16170-4_15
http://dx.doi.org/10.1080/15427951.2008.10129175
http://dx.doi.org/10.1080/15427951.2008.10129175
http://dx.doi.org/10.1287/trsc.12.3.208
http://dx.doi.org/10.1016/j.ejor.2007.01.027


151:14 Demand-Independent Optimal Tolls

25 Tobias Harks, Ingo Kleinert, Max Klimm, and Rolf H. Möhring. Computing network tolls
with support constraints. Networks, 65:62–285, 2015. doi:10.1002/net.21604.

26 Donald W. Hearn and Motakuri V. Ramana. Solving congestion toll pricing models. In
P. Marcotte and S. Nguyen, editors, Equilibrium and advanced transportation modeling,
pages 109–124. Springer, New York, 1998. doi:10.1007/978-1-4615-5757-9_6.

27 Martin Hoefer, Lars Olbrich, and Alexander Skopalik. Taxing subnetworks. In C. Papadim-
itriou and S. Zhang, editors, Proceedings of the 4th Workshop on Internet and Network
Economics (WINE), volume 5385 of LNCS, pages 286–294, 2008.

28 George Karakostas and Stavros G. Kolliopoulos. Edge pricing of multicommodity networks
for heterogeneous selfish users. In Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 268–276, 2004. doi:10.1109/FOCS.2004.
26.

29 George Karakostas and Stavros G. Kolliopoulos. The efficiency of optimal taxes. In
A. López-Ortiz and A. Hamel, editors, Proceedings of the 1st Workshop on Combinato-
rial and Algorithmic Aspects of Networking (CAAN), volume 3405 of LNCS, pages 3–12.
Springer, 2005. doi:10.1007/11527954_2.

30 George Karakostas and Stavros G. Kolliopoulos. Edge pricing of multicommodity networks
for selfish users with elastic demands. Algorithmica, 53:225–249, 2009. doi:10.1007/
s00453-008-9181-3.

31 Frank H. Knight. Some fallacies in the interpretation of social cost. Quarterly Journal of
Economics, 38(4):582–606, 1924. doi:10.2307/1884592.

32 Torbjörn Larsson and Michael Patriksson. Side constrained traffic equilibrium models—
analysis, computation and applications. Transportation Research, Part B, 33(4):233–264,
1999. doi:10.1016/S0191-2615(98)00024-1.

33 Reshef Meir and David Parkes. When are marginal congestion tolls optimal? In Proceedings
of the 9th Workshop on Agents in Traffic and Transportation (ATT), volume 1678 of CEUR
Workshop Proceedings, 2016.

34 Arthur C. Pigou. The Economics of Welfare. Macmillan and Co., London, 1st edition,
1920.

35 Aaron Roth, Jonathan Ullman, and Zhiwei Steven Wu. Watch and learn: optimizing
from revealed preferences feedback. In Proceedings of the 48th Annual ACM Symposium
on Theory of Computing (STOC), pages 949–962. ACM, 2016. doi:10.1145/2897518.
2897579.

36 William H. Sandholm. Evolutionary implementation and congestion pricing. Review of
Economic Studies, 69(3):667–689, 2002. doi:10.1111/1467-937X.t01-1-00026.

37 William H. Sandholm. Pigouvian pricing and stochastic evolutionary implementation. Jour-
nal of Economic Theory, 132(1):367–382, 2007. doi:10.1016/j.jet.2005.09.005.

38 Chandramani Singh. Marginal cost pricing for atomic network congestion games. Technical
report, Department of Electrical Communication Engineering, Indian Institute of Science,
2008.

39 Kenneth A. Small and Jose A. Gómez-Ibáñez. Road pricing for congestion management:
the transition from theory to policy. In Tae Hoon Oum, editor, Transport Economics,
chapter 16, pages 373–403. Routledge, London, 1997.

40 U.S. Bureau of Public Roads. Traffic assignment manual. U.S. Department of Commerce,
Urban Planning Division, 1964.

41 John Glen Wardrop. Some theoretical aspects of road traffic research. In Proceedings of
the Institute of Civil Engineers, Part II, volume 1, pages 325–378, 1952.

42 Hai Yang and Hai-Jun Huang. The multi-class, multi-criteria traffic network equilibrium
and systems optimum problem. Transportation Research, Part B, 38:1–15, 2004. doi:
10.1016/S0191-2615(02)00074-7.

http://dx.doi.org/10.1002/net.21604
http://dx.doi.org/10.1007/978-1-4615-5757-9_6
http://dx.doi.org/10.1109/FOCS.2004.26
http://dx.doi.org/10.1109/FOCS.2004.26
http://dx.doi.org/10.1007/11527954_2
http://dx.doi.org/10.1007/s00453-008-9181-3
http://dx.doi.org/10.1007/s00453-008-9181-3
http://dx.doi.org/10.2307/1884592
http://dx.doi.org/10.1016/S0191-2615(98)00024-1
http://dx.doi.org/10.1145/2897518.2897579
http://dx.doi.org/10.1145/2897518.2897579
http://dx.doi.org/10.1111/1467-937X.t01-1-00026
http://dx.doi.org/10.1016/j.jet.2005.09.005
http://dx.doi.org/10.1016/S0191-2615(02)00074-7
http://dx.doi.org/10.1016/S0191-2615(02)00074-7


Greedy Algorithms for Online Survivable Network
Design
Sina Dehghani
University of Maryland, College Park, MD 20742, USA

Soheil Ehsani
University of Maryland, College Park, MD 20742, USA

MohammadTaghi Hajiaghayi
University of Maryland, College Park, MD 20742, USA

Vahid Liaghat
Facebook, Building 25, 190 Jefferson Dr, Menlo Park, CA 94025, USA

Saeed Seddighin
University of Maryland, College Park, MD 20742, USA

Abstract
In an instance of the network design problem, we are given a graph G = (V,E), an edge-cost
function c : E → R≥0, and a connectivity criterion. The goal is to find a minimum-cost subgraph
H of G that meets the connectivity requirements. An important family of this class is the
survivable network design problem (SNDP): given non-negative integers ruv for each pair u, v ∈ V ,
the solution subgraph H should contain ruv edge-disjoint paths for each pair u and v.

While this problem is known to admit good approximation algorithms in the offline case, the
problem is much harder in the online setting. Gupta, Krishnaswamy, and Ravi [14] (STOC’09)
are the first to consider the online survivable network design problem. They demonstrate an
algorithm with competitive ratio of O(k log3 n), where k = maxu,v ruv. Note that the competitive
ratio of the algorithm by Gupta et al. grows linearly in k. Since then, an important open problem
in the online community [22, 14] is whether the linear dependence on k can be reduced to a
logarithmic dependency.

Consider an online greedy algorithm that connects every demand by adding a minimum cost
set of edges to H. Surprisingly, we show that this greedy algorithm significantly improves the
competitive ratio when a congestion of 2 is allowed on the edges or when the model is stochastic.
While our algorithm is fairly simple, our analysis requires a deep understanding of k-connected
graphs. In particular, we prove that the greedy algorithm is O(log2 n log k)-competitive if one
satisfies every demand between u and v by ruv/2 edge-disjoint paths. The spirit of our result is
similar to the work of Chuzhoy and Li [7] (FOCS’12), in which the authors give a polylogarithmic
approximation algorithm for edge-disjoint paths with congestion 2.

Moreover, we study the greedy algorithm in the online stochastic setting. We consider the
i.i.d. model, where each online demand is drawn from a single probability distribution, the
unknown i.i.d. model, where every demand is drawn from a single but unknown probability
distribution, and the prophet model in which online demands are drawn from (possibly) different
probability distributions. Through a different analysis, we prove that a similar greedy algorithm
is constant competitive for the i.i.d. and the prophet models. Also, the greedy algorithm is
O(log n)-competitive for the unknown i.i.d. model, which is almost tight due to the lower bound
of [9] for single connectivity.
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1 Introduction

In an instance of the network design problem, we are given a graph G = (V,E), an edge-cost
function c : E → R≥0, and a connectivity criteria. The goal is to find a minimum-cost
subgraph H of G that satisfies the connectivity requirements. An important family of this
class is the survivable network design problem (SNDP): Given non-negative integers ruv for
each pair u, v ∈ V , the solution subgraph H should contain ruv edge-disjoint paths for each
pair u and v. SNDP arises in fault tolerance management and thus is of much interest in
design community: the connectivity of nodes u and v in H is resilient to even (ruv − 1) edge
failures. This problem clearly generalizes the Steiner tree1 and Steiner forest2 problems.

For a non-empty cut S ⊂ V , let δ(S) denote the set of edges with exactly one endpoint
in S. SNDP falls in the general class of network design problems that can be characterized
by proper cut functions. A function f : 2V → Z≥0 defined over cuts in the graph is proper,
if it is symmetric (f(S) = f(V \ S) for all S ⊂ V ) and it satisfies maximality (f(S ∪ T ) ≤
max{f(S), f(T )} for all S ∩ T = φ). For SNDP, one can choose f(S) = maxu∈S,v/∈S ruv
for every cut S. Given a proper function f over cuts in the graph, the goal is to find a
minimum-cost subgraph H such that

|E(H) ∩ δ(S)| ≥ f(S) ∀non-empty S ⊂ V .

Over the past decades, the offline SNDP and proper cut functions have been extensively
studied especially as an important testbed for primal-dual and iterative rounding methods
(see e.g. [10, 11, 13, 18, 26, 27]). In this paper, we consider SNDP in the online setting: we
are given a graph G = (V,E) and an edge-cost function c in advance. We receive an online
sequence of demands in the form of tuples (u, v, ruv) ∈ V ×V ×Z≥0. We start with an empty
subgraph H. Upon the arrival of a demand (u, v, ruv), we need to immediately augment H
such that there exist at least ruv edge-disjoint paths between u and v in H. The goal is to
minimize the cost of H. The competitive ratio of an algorithm is defined as the maximum
ratio of the cost of its output and that of an optimal offline solution, over all possible input
instances.

The online 1-connectivity problems, in which ruv ∈ {0, 1} for all pairs, have been
extensively studied in the last decades. Imase and Waxman [17] (SIAM’91) were first to
consider the edge-weighted Steiner tree problem. They used a dual-fitting argument to show
that the natural greedy algorithm is O(log n)-competitive where n denotes the number of
vertices3. Their result is asymptotically tight. Later, Berman and Coulston [3] (STOC’97) and
Awerbuch, Azar, and Bartal [2] (TCS’04) demonstrated an O(log n)-competitive algorithm for

1 In the Steiner tree problem, given a set of terminal nodes T ⊂ V , the goal is to find a minimum-cost
subgraph connecting all terminals.

2 In the Steiner forest problem, given a set of pairs of vertices si, ti ∈ V , the goal is to find a minimum-cost
subgraph in which every pair is connected.

3 In fact, the competitive ratio is O(log min{n,D}) where D is the number of demand requests. However,



S. Dehghani, S. Ehsani, M.T. Hajiaghayi, V. Liaghat, and S. Seddighin 152:3

the more general Steiner forest problem by designing an elegant online primal-dual technique.
The latter also shows that the greedy algorithm achieves the competitive ratio of O(log2 n)
for Steiner forest. Indeed, due to the simplicity of greedy approaches, an important open
problem is to settle the competitiveness of the greedy algorithm for Steiner forest. In the
recent years, several primal-dual techniques are developed for solving node-weighted variants
[1, 15, 22], and prize-collecting variants [25, 16] of 1-connectivity problems.

Gupta, Krishnaswamy, and Ravi [14] (SIAM’12) were first to consider the online survivable
network design problem. They demonstrate an elegant algorithm with competitive ratio of
Õ(k log3 n), where k = maxu,v ruv. The crux of their analysis is to use distance-preserving
tree-embeddings in an online setting. More precisely, they first pick a random distance-
preserving spanning subtree T ⊆ G. They satisfy a connectivity demand ruv by iteratively
increasing the connectivity of u and v. In each iteration, they show that it is sufficient to use
cycles that are formed by an edge e = (a, b) /∈ T and the {a, b}-path in T ; hence, reducing
the number of options for satisfying a connectivity demand. This would enable them to use a
set cover approach to solve the problem in an online manner and achieve the first competitive
algorithm for online SNDP.

Single-source SNDP is a variant of SNDP where all demands share the same endpoint.
Naor, Panigrahi, and Singh [22] (FOCS’11) partially improve the results of Gupta et al. [14]
by demonstrating a bi-criteria competitive algorithm for single-source SNDP using structural
properties of a single-source optimal solution. A bi-criteria competitive ratio of (α, β) for
SNDP implies that the solution produced by the online algorithm achieves a connectivity
of b ri

β c for every demand σi and is at most a factor of α more expensive than the optimal
offline solution for connectivity of ri. The algorithm by Naor et al. achieves the competitive
ratio of (O(k logn

ε ), 2 + ε) for any ε > 0. They also study and give bi-criteria algorithms for
the vertex-connectivity problem.

The competitive ratio of algorithms by Gupta et al. and Naor et al. grow linearly in k.
This seems to be inherent to their methods since they may need to solve a set-cover-like
problem in each iteration of incrementing the connectivity of a demand; hence, losing a
polylogarithmic factor in each iteration. One would need a new approach to break the
linear dependency on k. Indeed, both factors of O(log3 n) and O(k) are not plausible in
practice, and an important open problem in the online community [22, 14] is whether the
linear dependency on k can be reduced to a logarithmic dependency.

We circumvent this problem within the class of greedy algorithms. This class has been a
center of attention in many applications due to its simplicity. We would like to note that
the previous algorithms for the problem are based on fairly complex techniques such tree-
embedding and reductions to online set cover. Despite their theoretical provable guarantees,
these approaches are not efficiently implementable for large networks and become extremely
harder to analyze when more parameters of the system are involved, e.g. degree constraints.
For these reasons, we are interested in the theory behind simple algorithms for the online
SNDP. In this paper, we study both the cases with and without the presence of priori
information about connectivity demands.

No Information Setting: for this traditional online setting, we show that the greedy
approach is promising although the classic greedy algorithm4 fails to give a competitive

to simplify the comparison with results for SNDP, in this paper we ignore the distinction between this
factor and O(log n).

4 Which augments the solution with the cheapest set of edges that satisfy full connectivity demands.
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solution. In Section 2, we give a hardness instance for the classic greedy algorithm and
present our modified versions of it which have polylogarithmic competitive ratio. In par-
ticular, we demonstrate a deterministic algorithm with a bi-criteria competitive ratio of
(O(log2 n log1+ε k), 2 + ε) for any constant ε > 0. For the single-rooted variant, the competit-
ive ratio is (O(log n log1+ε k), 2 + ε). Besides, our hardness instance shows a loss of Ω(n) on
the weight criterion if satisfying full connectivities greedily.

Partial Information Setting: one of the recent trends in the study of online problems is
to consider a stochastic model for the online demands. This, in particular, is to model the
scenarios in which the algorithm designer has sufficient data available in hand to be able
to make predictions, i.e. fit distributions, for future requests. In this paper, we consider an
online stochastic model inspired by the well-known prophet inequality problem5 in which
different demands are drawn independently from different distributions. We call it the prophet
setting not only to highlight the similarity between this online stochastic model and prophet
inequalities but also to distinguish it from other online stochastic models6.

In the second half of this paper, we study online SNDP in the prophet setting for both
cases of known and unknown distributions. For the most general case in prophet setting
in which the distributions are known and (possibly) different, we show that the classic
greedy algorithm that satisfies full connectivity results in a constant approximation solution.
Furthermore, we explore the connection between the known i.i.d. case and the general case
and present a framework that transforms an algorithm for the former into one for the latter
by loosing only a constant factor on the approximation ratio. Lastly but more interestingly,
we prove that the classic greedy algorithm is O(log n) approximation7 for the unknown i.i.d.
case8. This result shows that a simple algorithm can significantly outperform the previous
complex algorithms when the demands are drawn from the same distribution without even
learning the underlying distribution!

1.1 Our Results and Techniques

Let σi = (ui, vi, ri) denote the i-th connectivity demand. Consider the following intuitive
greedy approach. Upon the arrival of σi, we augment the solution subgraph H, by finding
the minimum-cost set of edges whose addition to H creates ri edge-disjoint paths between
ui and vi. Awerbuch et al. [2] (TCS’04) show that if all the demands require 1-connectivity
(i.e., ri = 1 for every i), this algorithm achieves a competitive ratio of O(log2 n). This leads
to a natural question that whether greedy works for higher connectivity problems as well.
However, we show an instance of online SND in Section 2, for which the greedy algorithm has
a competitive ratio of Ω(n). Indeed, the connectivity demands in the instance are either zero
or two, hence greedy is not competitive even for low connectivity demands. However, on the
positive side, we show that greedy-like algorithms do surprisingly well in both the stochastic
version of the problem and the case when a small congestion on the edges is acceptable.

5 Given n distributions D1, . . . , Dn on real numbers and an online sequence of random draws
Xi ∼ Di, we have to make an immediate and irrevocable selection Xτ that maximizes the ratio
E[Xτ ]/E[max1≤i≤n Xi].

6 Such as "the (two stage) stochastic version" of Gupta et al [14].
7 Which is almost tight
8 When unknown, it is natural to assume the distributions are i.i.d. Otherwise, the algorithm can be

easily tricked.
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1.1.1 Allowing Small Congestion
We show that a greedy algorithm does surprisingly well, if we relax the connectivity re-
quirements by a constant factor. Let α denote an arbitrary scale factor. We define an
α-scaled variant of the greedy algorithm in which the goal is to find only b ri

α c disjoint paths
between the endpoints of σi. Our main result states that the scaled greedy algorithm is
polylogarithmic competitive.

I Theorem 1. For any constant ε > 0, the (2 + ε)-scaled greedy algorithm is
(O(log2 n log1+ε k), 2 + ε)-competitive. For the single-source variant, the competitive ra-
tio is (O(log n log1+ε k), 2 + ε).
Furthermore, for uniform SNDP, 2-scaled greedy is (O(log2 n), 2)-competitive.

We start by demonstrating a deep connection between the greedy method for SNDP
and the Steiner packing problems. The Steiner packing problems are motivated by vast
applications in VLSI-layout and have been used as an algorithmic toolkit in computer science.
In the Steiner tree packing problem, we are given a graph G = (V,E) and a set S of vertices
and the goal is to find the Steiner decomposition number (SDN), the maximum number
of edge-disjoint subgraphs that each connects the vertices of S. We note that a minimal
connecting subgraph is a Steiner tree with respect to S. In the Steiner forest packing problem,
we are given a set of demand pairs ui, vi ∈ V and the goal is to find SDN, the maximum
number of edge-disjoint subgraphs that in each the demand pairs are connected.

For simplicity, let us assume we have a uniform instance. In a uniform instance, we are
given an integer k in advance and for any demand (u, v) we must k-connect u to v. Let opt
denote the optimal SNDP solution, with the Steiner decomposition number q. In Section 2,
we show that the (kq )-scaled greedy algorithm approximates opt up to logarithmic factors.
Intuitively, every forest in the Steiner forest decomposition, gives us a path to satisfy a
demand. Hence, we need to bound the overall cost of satisfying demands in all the q forests.
The crux of our analysis is then to charge the cost of the scaled greedy to that of a parallel
set of greedy algorithms that solve 1-connectivity instances on every forest. Finally, to get a
polylogarithmic competitive algorithm, we need to find a universal lower bound on the SDN
number q with respect to k.

It is shown that finding SDN is NP-hard and cannot be computed in polynomial time
unless P=NP[6] (Algorithmica’06). Given that there exist q disjoint Steiner forests connecting
a set of demands, it is straight forward to show the graph is q-connected on the demands.
Therefore, a natural upper bound on SDN is the minimum connectivity of the endpoints
of demands. For the case of spanning trees (Steiner tree with S = V (G)), it is proven that
the above upper bound also provides a good approximation guarantee for the problem. In
other words, any k-connected graph can be decomposed into k/2 edge-disjoint spanning
trees[23]. This is also followed by a matching upper bound. The problem is much subtler
when S does not encompass all vertices of the graph. The first lower bound for the Steiner
tree packing problem was achieved by Petingi and Rodriguez[24] (CON’03) who proved every
S-k-connected9 has b(2/3)(|V (G)−|S|)k/2c disjoint Steiner trees. This was later improved by
Kriesell [20] (JCT’03), Jain, Mahdian, and Salavatipour [19] (SODA’03), Lau [21] (FOCS’04),
and DeVos, McDonald, and Pivotto [8] (Man’13), the most recent of which shows for every
S-(5k + 4)-connected graph, we can find k edge-disjoint Steiner trees. However, the main
conjecture is that, similar to the case of spanning trees, every S-k-connected graph admits a
k/2-disjoint Steiner tree decomposition [20].

9 A graph which is k-connected on a set of vertices S
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For a set of demand pairs (ui, vi)’s, let T denote the set of Steiner forests that satisfy
all the demands. In the fractional Steiner forest packing problem, the output is a fractional
assignment x over T such that for every edge e,

∑
T∈T :e∈T xT is not more than one. The

goal is to find a fractional Steiner forest decomposition with the maximum total sum of
weights in x. While the term fractional Steiner forest packing is not explicitly used in the
previous work, it follows from the arguments of [4, 8] that the conjecture of Kriesell holds
for the fractional variant.

I Theorem 2 (proven in [4]). Given a set of demand pairs (ui, vi), if G is k-connected for
every demand pair, then the fractional Steiner decomposition number is at least k/2.

Indeed, in Section 2, we use a dependent rounding method to show that the connection
between SDN and the competitiveness of the greedy approach holds even for the stronger
fractional variant of SDN. Hence, Theorem 2 implies that the 2-scaled greedy algorithm,
achieves a polylogarithmic competitive ratio for the uniform SNDP. Finally, we prove that
the scaled greedy is also competitive for the non-uniform variant if one is willing to lose an
extra O(log k) factor in the competitive ratio (Theorem 1).

1.1.2 Online Stochastic SNDP
A single-source uniform instance of online SNDP is an instance in which for every demand
σi, ui = u, ri = k for some vertex u ∈ V and integer k. For a non-uniform variant, let
k = maxi ri. Let D be a given probability distribution over V . In i.i.d. SNDP, at each online
step i, a random connectivity demand σi = (u, vi, k) arrives, where vi is drawn independently
at random from distribution D. We call the problem unknown distribution SNDP if the
probability distribution D is not given in advance. Another interesting generalization of
the i.i.d. model, which we call the prophet SNDP is defined as follows. In prophet SNDP,
instead of only a single probability distribution D, we are given T probability distributions
D1, . . . , DT , such that the i-th demand is σi = (u, vi, k), where vi is drawn independently at
random from distribution Di. In all three variants of the stochastic SNDP, the competitive-
ratio is defined as the expected cost of an algorithm A over the expected cost of an optimal
offline algorithm while the distributions are chosen by an adversary. More precisely let
E[A(ω)] and E[opt(ω)] denote the expected cost of an algorithm A and the expected cost of
an optimal offline algorithm for an online scenario ω, respectively. Thus the competitive-ratio
of algorithm A is defined as follows.

cr(A) := max
D

Eω∼D[A(ω)]
Eω∼D[opt(ω)] .

We first provide an oblivious10 greedy algorithm for the i.i.d. SNDP. This algorithm
starts with a sampling of the demands and finding a 2-approximation solution for them using
the algorithm of Jain [18]. Let us call this the backbone solution. Then, to satisfy each
demand v, we simply connect it to the backbone using the cheapest set of edges and show
that this greedy approach leads to a 4-competitive solution. The oblivious algorithm for the
i.i.d. case is in fact a stepping stone that enables us to further analyze the greedy algorithm
in the unknown distribution and different known distributions (prophet) cases.

I Theorem 3. The oblivious greedy is 4-competitive algorithm for i.i.d. SNDP.

10An oblivious algorithm connects a demand through a path which is independent of the rest of the
demands
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A similar result to Theorem 3 is also given in [5].

1.1.2.1 Unknown i.i.d.

Although computing the backbone solution is impossible for the unknown i.i.d. case, we take
advantage of our analysis of the oblivious i.i.d. algorithm and show that the classic greedy
algorithm is O(log n)-approximation for unknown i.i.d. SNDP. The main idea is simple but
tricky: due to the sampling nature of the backbone solution, for every 1 ≤ k ≤ T/2 we can
think of a solution for the first k demands as a backbone solution for the next k demands.
Hence, we can exploit our analysis for the known i.i.d. case. This in conjunction with the
submodularity of Steiner networks results in the desired competitive ratio. We note that the
factor O(log n) is almost tight given the Ω( logn

log logn ) lower bound of [9] for the 1-connectivity
case.

I Theorem 4. The classic greedy algorithm is O(log n)-competitive for unknown i.i.d. SNDP.

1.1.2.2 From Oblivious i.i.d. to Prophet

We show if there exists a competitive oblivious algorithm for an online problem in i.i.d.
setting, we can obtain a competitive algorithm for the same problem in prophet setting.
Roughly speaking, we show that we can combine different distributions in the prophet setting
to obtain a single average distribution. Therefore, the i.i.d. oblivious algorithm for the
average distribution does not incur more than a constant factor to the competitive ratio.

I Theorem 5 (restated informally). Given an oblivious α-competitive online algorithm for
problem P in the i.i.d. setting, there exists an α 2e

e−1 (1 + o(1))-competitive online algorithm
for P in prophet setting.

I Corollary 6. There exists a constant competitive algorithm for prophet SNDP.

Using our framework, we can obtain competitive algorithms for many fundamental and
classical problems in prophet setting. For instance, define D1, . . . , DT be T probability
distributions over the elements of a set cover instance. Now let i-th demand of a set cover
problem be an element randomly and independently drawn from distribution Di. We call this
problem the prophet set cover problem. Similarly one may define prophet facility location
the same as the classical facility location problem, with the difference that the i-th demand
is randomly drawn from a known distribution Di. Garg et al. [9] provide oblivious online
algorithms for i.i.d. facility location and i.i.d. vertex cover. Applying the above framework
directly results in the following corollary.

I Corollary 7. There exist constant competitive algorithms for prophet vertex cover and
prophet facility location problems.

Also, Grandoni et al. [12] provide an oblivious online algorithm for i.i.d. set cover. Hence,
we have the following corollary.

I Corollary 8. There exists an O(log n)-competitive algorithm for prophet set cover.
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1.2 Further Related Work
Over the past decades, SNDP and proper cut functions have been an important testbed for
primal-dual and iterative rounding methods. Goemans and Williamson [11] (SIAM’95) were
first to consider the case of {0, 1}-proper functions. They used a primal-dual method to obtain
a 2-approximation algorithm for the problem; which later on got generalized to the celebrated
moat-growing framework for solving connectivity problems. Klein and Ravi [26] (IPCO’93)
considered the two-connectivity problem and the case of {0, 2}-proper functions. They gave
a primal-dual 3-approximation algorithm for the problem. Williamson, Goemans, Mihail,
and Vazirani [27] (Combinatorica’95) were first to consider general proper functions. They
too developed a primal-dual algorithm with approximation ratio 2k, where k = maxS f(S).
Subsequently, Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson [10] (SODA’94)
presented a primal-dual 2H(k)-approximation algorithm, where H(k) is the kth harmonic
number. Finally, in his seminal work [18] (Combinatorica’01), Jain introduced the iterative
rounding method by developing a 2-approximation algorithm for network design problems
characterized by proper cut functions11. We refer the reader to [13] for a survey of results
for (offline) network design problems.

2 Uniform SNDP

In this section we consider the uniform-connectivity version of the online survivable Steiner
network design problem, in which all connectivity requirements are equal to a given number.
For this problem we first give a very simple algorithm and then analyze it using Steiner
packing tools. Further in the paper, we explain how to generalize our algorithm to make it
work for inputs with non-uniform connectivity requirements.

In the online uniform-connectivity survivable Steiner forest problem we are given an
offline graph G = 〈V (G), E(G)〉, an integer k, and an online stream of demands S =
(s1, t1), (s2, t2), . . .. Every time a demand (si, ti) arrives we have to add some of the edges
of G to our current solution H in order to make k edge-disjoint paths between si and ti in
H. The online uniform-connectivity survivable Steiner tree problem is a special case of the
forest problem in which the second endpoints of all demands are fixed at some vertex root.
The objective of the problems is to minimize the cost of the selected subgraph H according
to a given cost function.

A simple approach to solve these problems is to choose edges based on the following
greedy method: for every demand add a minimum-cost subset of edges that satisfies the
k-connectivity between its endpoints. In this section we show that this algorithm is not
competitive to the optimum offline solution. This is shown by Lemma 14 in which we give
an instance graph and a series of demands for which the greedy algorithm gives a solution of
cost Ω(n) times the cost of the optimum offline solution.

However, we show a modified version of the greedy algorithm can be a viable approach
for these problems if we lose some factor on the connectivity requirement. This can be done
by satisfying half of the required connectivity. In particular, for every demand we add a
minimum-cost subset of the edges that makes the current solution (k/2)-connected between
the endpoints of that demand. Let us call this algorithm GA. In this section we show the cost
of the edges GA selects is poly-logarithmically competitive to the optimum offline solution
that satisfies k-connectivity for every demand.

11 Indeed, the results in [10] and [18] applies to the more general class of weakly or skew supermodular cut
functions.



S. Dehghani, S. Ehsani, M.T. Hajiaghayi, V. Liaghat, and S. Seddighin 152:9

Algorithm 1: 2-scaled Greedy
1 Input: A graph G, an integer k, and an online stream of demands (s1, t1), (s2, t2), . . ..
2 Output: A set H of edges such that every given demand (si, ti) is connected through
k edge-disjoint paths in H.

3 Offline Process:
1: Initialize H = ∅.
Online Scheme; assuming a demand (si, ti) is arrived:
1: Pi = A minimum-cost subset of edges, such that si is k/2-connected to ti in
H ∪ Pi.

2: Update H = H ∪ Pi.

I Theorem 9. For the online survivable Steiner forest problem, the output of GA satisfies
(k/2)-connectivity for every demand and its cost is O(log2 n)-competitive.

I Theorem 10. For the online survivable Steiner tree problem, the output of GA satisfies
(k/2)-connectivity for every demand and its cost is O(log n)-competitive.

As a direct consequence of adding edges according to GA, the (k/2)-connectivity is
guaranteed for every demand. To complete the proof of the theorems, we need to show that
the cost of the solution produced by GA is upper bounded by a factor of O(log2 n) for forests,
and O(log n) for trees.

Let c : E(G) → R≥0 be the cost function on the edges. With some abuse of notation,
we also use c(Y ) for a subset of edges Y ⊆ E(G) as the sum of the cost of the edges in Y .
With this notation we can say at every step i GA chooses a subset of edges Pi that satisfies
(k/2)-connectivity and minimizes c(Pi).

The overall idea of the proofs is as follows. We take an optimum solution and charge
every c(Pi) to c(Li), where Li is a set of edges chosen from the optimum solution. The way
we define Li’s allows them to have overlapping edges, but we show that their total cost is
limited by the desired poly-logarithmic factor of the cost of the optimum solution. More
specifically, we charge c(Li) to the cost of a fractional routing Qi between si and ti. Every
Qi is itself a linear combination of routes on different Steiner forests of the optimum solution.
The coefficients of this linear combination are achieved from an Steiner forest packing of the
optimum solution. In this fashion, the problem boils down to finding an upper bound for the
total cost of routings on each Steiner forest. In the following we formally prove every step in
detail.

Let OPT be an optimum offline solution of the survivable Steiner forest problem on
graph G, a stream of demands S, and the connectivity requirement k. Now we define Li for
every demand i as a minimum-cost set of edges in OPT that is (k/2)-connected between si
and ti assuming the endpoints of every previous demand are contracted. In particular, we
call a set of edges a pseudo-path between si and ti if there is a path between these vertices
using those edges and the edges in {(sj , tj)|∀j < i}. A pseudo-routing between si and ti is
hence a set of pseudo-paths between si and ti. With these definitions, Li is a minimum-cost
pseudo-routing between si and ti in OPT that consists of k/2 pseudo-paths. The following
lemma shows the relation between the costs of Li and Pi.

I Lemma 11. For every demand i, c(Pi) ≤ c(Li).

Proof. Every time a demand i arrives, GA finds a set Pi with the minimum cost and adds
it to H in order to satisfy (k/2)-connectivity between si and ti. Note that the endpoints
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of every demand j < i are already connected with k/2 disjoint paths in H. Besides, Li
is a pseudo-routing between si and ti which is (k/2)-connected between si and ti if we
contract the two endpoints of every previous demand. Therefore adding Li to H makes H
(k/2)-connected between si and ti. Since GA finds a minimum-cost set of edges that satisfies
(k/2)-connectivity in H, c(Pi) never exceeds c(Li). J

In the remaining we show how to charge the total cost of Li’s to c(OPT ). As a property
of an optimum solution, OPT contains k edge-disjoint paths between the endpoints of every
demand (si, ti) ∈ S. Therefore, according to Theorem 2 there exists a solution for the
fractional Steiner forest packing of OPT and demand set S with value at least k/2. Let
z be a Steiner forest packing of OPT with value k/2. In the following we use FS(OPT )
to denote the collection of all Steiner forests of OPT with respect to demand set S. The
theorem states there exists a vector z such that∑

F∈FS(OPT )

zF = k/2 (1)

∑
F∈FS(OPT ):e∈F

zF ≤ 1 ∀e ∈ OPT . (2)

Moreover, the following inequality holds for the summation of the costs of these forests.

I Lemma 12.
∑
F∈FS(OPT ) zF .c(F ) ≤ c(OPT ) .

Proof. For each forest we replace its cost with the sum of the cost of its edges.∑
F∈FS(OPT )

zF .c(F ) =
∑

F∈FS(OPT )

zF
∑
e∈F

c(e)

=
∑

e∈OPT

∑
F∈FS(OPT ):e∈F

zF c(e)

=
∑

e∈OPT
c(e)

( ∑
F∈FS(OPT ):e∈F

zF

)
.

Now we use the fact that the load on every edge in the fractional Steiner forest packing is no
more than 1.∑

F∈FS(OPT )

zF .c(F ) ≤
∑

e∈OPT
c(e) Inequality (2)

= c(OPT ) .

J

Now for every forest F ∈ FS(OPT ) and every demand i we define Qi(F ) as a minimum-
cost pseudo-path between si to ti in F . This definition allows using an edge e ∈ F multiple
times in Qi(F ) of different demands. Note that Qi(F ) can be considered as a fractional
pseudo-routing between si and ti with value zF . Considering this for all forests in FS(OPT ),
we achieve a fractional pseudo-routing between si and ti that has a value of k/2. We use Qi
to refer to this fractional pseudo-routing and c(Qi) =

∑
F∈FS(OPT ) zF .c(Qi(F )) to refer to

its cost.
For every demand i we have mentioned two different pseudo-routings between si and ti

in OPT with value k/2: an integral pseudo-routing Li, and a fractional pseudo-routing Qi.
The following lemma shows the relation between the costs of these two.
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I Lemma 13. For every Li and Qi pseudo-paths defined as above, we have:

c(Li) ≤ c(Qi)

In the interest of space, we defer the proof of Lemma 13 to the full-version of the paper.
Finally for a particular F ∈ FS(OPT ) we show an upper bound for the sum of c(Qi(F ))

over all demands. First let us take a closer look at every Qi(F ) on a particular F . Every time
a new demand (si, ti) arrives Qi(F ) connects its endpoints through a pseudo-path in F . This
can be generalized to an algorithm for the online single-connectivity Steiner forest problem
that greedily connects the endpoints of every demand by fully buying a minimum-cost
pseudo-path between si and ti. This is very similar to the greedy algorithm proposed in [2].
Theorem 2.1 of that paper states that their greedy algorithm is O(log2 n)-competitive. The
statement of that theorem is slightly different than Claim 2.1, but the same proof verifies
the correctness of the claim.

I Claim 2.1. For the online Steiner forest problem, the algorithm that connects every demand
with a minimum-cost pseudo-path is O(log2 n)-competitive.

Now we are ready to wrap up the proof of Theorem 9.

Proof of Theorem 9. Let ALG denote the output of GA. The cost of ALG is the sum of
the cost of Pi’s over all demands. Therefore, by applying lemmas 11 and 13 we have

c(ALG) =
∑

(si,ti)∈S

c(Pi)

≤
∑

(si,ti)∈S

c(Li) Lemma 11

≤
∑

(si,ti)∈S

c(Qi) Lemma 13

Now we replace c(Qi) with the weighted sum of c(Qi(F ))’s with respect to z.

c(ALG) ≤
∑

(si,ti)∈S

∑
F∈FS(OPT )

zF .c(Qi(F ))

=
∑

F∈FS(OPT )

zF
∑

(si,ti)∈S

c(Qi(F )) (3)

By applying Claim 2.1 to Inequality (3) we achieve an O(log2 n)-competitive ratio for GA.

c(ALG) ≤
∑

F∈FS(OPT )

zF

(
O(log2 n)c(F )

)
Claim 2.1

≤ O(log2 n)
∑

F∈FS(OPT )

zF .c(F )

≤ O(log2 n)c(OPT ) . Lemma 12

J

Finally, for the survivable Steiner tree problem we show that GA is O(log n)-competitive.
In other words, if one endpoint of every demand is fixed at the root, then the output of GA
is at most O(log n) times the optimum offline solution. To complete the proof of Theorem
10 we use a result from [22]. In that paper the authors prove a competitive ratio of O(log n)
for the algorithm which satisfies every demand using a minimum-cost pseudo-path. The
following claim is a restatement of their result.
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I Claim 2.2. For the online Steiner tree problem, the algorithm that satisfies each demand
with a minimum-cost pseudo-path is O(log n)-competitive.

of Theorem 10. Note that the tree problem is a special case of the forest problem, hence
Inequality (3) also holds for it. By applying Claim 2.2 to that inequality the proof is complete.

c(ALG) ≤
∑

F∈FS(OPT )

zF

(
O(log n)c(F )

)
Claim 2.2

≤ O(log n)
∑

F∈FS(OPT )

zF .c(F )

≤ O(log n)c(OPT ) . Lemma 12

J

The following Lemma shows that there exists a graph G and a sequence of demands σ
such that Greedy algorithm performs Ω(n) times worse than the optimal solution.

I Lemma 14. The competitive ratio of the greedy algorithm for survivable Steiner network
design is Ω(n), even if every connectivity requirement is exactly 2.

Proof. First we provide an online instance of the survivable network design problem where
every connectivity requirement is exactly 2 and show the greedy algorithm performs poorly
in comparison with the optimal solution. We construct a graph G of size n as follows. For
each 1 ≤ i ≤ n− 1, there exist two undirected edges from node i to node i+ 1 of weights 1
and n− i− ε for some small ε > 0. There exist two undirected edges from node n to node 1
with weights 1 and n− ε. Thus G is the union of two cycles of size n. We construct a set of
demands S as follows. For each 1 ≤ i ≤ n− 1, let (i, i+ 1) be the i’th demand in S.

Now we analyze the output of the greedy algorithm for the input instance. We claim that
after satisfying demand i the greedy algorithm has selected both edges between j and j + 1
for every j ≤ i. We prove this claim by induction. For the base case, when the first demand
arrives the greedy algorithm chooses both edges between nodes 1 and 2 which costs n− ε.
Now assume the greedy algorithm has selected every edge between j and j + 1 for every
j < i before the arrival of the i’th demand. When the i’th demand arrives, the set of edges
with minimum cost that provides two edge-disjoint paths from i to i+ 1 is the two edges
between i and i+ 1 which costs n− i− ε. Thus the total cost of the greedy algorithm at the
end is n(n−1)

2 − εn. However, the optimum offline solution chooses the cycle containing all
edges of weight 1. Thus the competitive ratio of the greedy algorithm is Ω(n). J
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Abstract
The noisy broadcast model was first studied by [10] where an n-character input is distributed
among n processors, so that each processor receives one input bit. Computation proceeds in
rounds, where in each round each processor broadcasts a single character, and each reception
is corrupted independently at random with some probability p. [10] gave an algorithm for all
processors to learn the input in O(log log n) rounds with high probability. Later, a matching
lower bound of Ω(log log n) was given by [11].

We study a relaxed version of this model where each reception is erased and replaced with
a ‘?’ independently with probability p, so the processors have knowledge of whether a bit has
been corrupted. In this relaxed model, we break past the lower bound of [11] and obtain an
O(log∗ n)-round algorithm for all processors to learn the input with high probability. We also
show an O(1)-round algorithm for the same problem when the alphabet size is Ω(poly(n)).

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases noisy broadcast, error correction, erasures, distributed computing with
noise

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.153

1 Introduction

In recent years, it is becoming increasingly common for computational tasks to be performed
by multiple processors in a distributed fashion. The communication channels of these
networks may have imperfections, which introduces noise to the system.

A formal version of a noise model was proposed by [7]: There are n processors: 1, 2, . . . , n
and each processor is given a bit. In each round, every processor broadcasts a bit to all other
processors. Every processor will receive the correct message with some probability, and may
receive a different (corrupted) message independently with probability p < 1/2 (i.e., each
reception gets corrupted with probability p). The goal is for the processors to collectively
compute the XOR of all their inputs. An algorithm that takes O(log log n) rounds for all
processors to learn the full input (and hence the XOR as well) was found by [10]. A matching
lower bound of Ω(log log n) rounds was proven by [11].

All of the prior works were concerned with substitution errors. In this paper, we study
such networks in the presence of erasure errors, where instead of messages getting corrupted
into other messages, instead messages may get dropped. Specifically, we study the following
model: in a single round each processor can broadcast a single bit b to all other processors.
For each ordered pair (i, j), independently with some probability p, the character that i
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transmitted is not received by j and a ‘?’ is received instead. In other words, there is a
string X ∈ {0, 1}n and processor i is given the ith bit of X, called xi, and the goal is for
each processor to learn X using as few rounds of communication as possible. We call our
noise model the erasure model.

1.1 Our results

We show that for any alphabet, each processor can learn the inputs of all other processors
with high probability within O(log∗ n) rounds. At the high level, the algorithm involves
recursively running the protocol on groups of size log n, and having each group encode its
input using a constant rate and constant relative distance error correcting code. Then, the
group collectively transmits this encoded string within a constant number of rounds. It
can be shown that with high probability every processor receives enough bits to decode the
group’s input. There are groups for which not enough processors learn the full string (i.e.,
the recursive call fails), and some technical steps are needed to handle these ‘failed groups’.
The protocol is described in full detail in section 2.

We note that in the presence of substitution errors, it was proven in [11] that Ω(log log n)
rounds are required for all processors to learn the whole input. Since we show a O(log∗(n))
algorithm for the problem in the presence of erasure errors, this shows a fundamental
difference between substitution errors and erasure errros in the broadcast model.

We then show that when the alphabet is of polynomial size, there is an O(1) round
algorithm for every processor to learn the full input. The algorithm involves treating the
alphabets as elements of a finite field Fq, and simulating multiplying the input vector with
an appropriate random matrix. Then , the processors receive a random system of linear
equations which one can show has a unique solution with high probability.

We then show that any symmetric function of the input can be computed within a
constant number of rounds via computing the Hamming weight.

1.2 Related Work

A related problem was studied in [10] where the broadcast model assumed was sequential,
where in one round only one processor can broadcast a bit. Additionally, the noise model
assumed was that of bit flips instead of erasures. That is, each transmitted bit is independently
flipped with probability p on the receiving end. In their model, [10] shows that all the
processors can learn the entire input within O(log log n) rounds. However, it left open the
question of whether a faster protocol was possible.

The model of [10] was studied further in [11] where a lower bound of Ω(n log log n) was
proven for the total number of broadcasts, thereby establishing that Gallager’s protocol
is optimal up to constant factors. The lower bound is proved via a reduction to another
model called the generalized noisy decision tree, which is a variant of the noisy decision tree
model introduced in [9]. [11] also studies whether more efficient protocols exist when the
processors only want to compute some specific function on the entire input and shows that
the Hamming weight can be computed with constant probability within O(n) broadcasts.

We note that it follows from the lower bound in [11] that in a variant of our model
where one considers substitution errors instead of erasure errors, any protocol from which all
the processors learn the entire input must take Ω(log log n) rounds. In light of this lower
bound, our result of an O(log∗ n) protocol is interesting, as it shows a fundamental difference
between substitution and erasure errors in this broadcast model.
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Recently, a work by Efremenko, Kol, and Saxena [6] showed that under a model where
the processors can adaptively choose which processor will speak in each round, the lower
bound of [11] breaks down.

Note that the work of Gallager [10] shows that in the substitution model where a
single processor broadcasts to the rest in a round, any function can be computed within
O(n log log n) rounds. A work by Kushilevitz and Mansour [14] studies the question of which
Boolean functions can be computed within O(n log log n) broadcasts. They determine that
threshold functions can be computed with constant probability within O(n) broacasts.

A paper by Feige and Killian [8] studied a harsher noise model than [10], where an
adversary can arbitrarily ‘uncorrupt’ arbitrary corrupted bits, causing the noise to lose
structure. In this harsher model, they show an O(log∗ n) round protocol to compute the OR
of all input bits. Newman [16] studies another noise model where each bit transmitted is
independently flipped with an unknown probability that is at most p and gives algorithms
that use O(n) broadcasts and O(log∗ n) rounds for certain classes of Boolean functions,
including OR, AND, and functions with linear size AC0 formulas.

In [1], the authors show efficient protocols to handle errors in the UCAST model, in which
instead of broadcasting bits, a processor can send a different message to each other processor.
They also show efficient protocols to handle errors when the communication network has
certain expansion properties. For general graphs of low degree, a protocol for handling errors
was found in [17], which was later shown to be optimal in [3].

Our model in the absence of errors is known as the Broadcast Congested Clique, which is a
computational model often studied in distributed computing (see for example, [5, 15, 4, 2, 12].
In this model, n processors each get a piece of the input, and they work together to compute
some function of this shared input. Computation proceeds in rounds, where in each round
each processor can broadcast a short message to all other processors. Our work can be
interpreted as showing that when using messages of constant size, every protocol in the
Broadcast Congested Clique can be made resilient to erasure errors with a blowup of only
O(log∗(n)). In the case where messages are of logarithmic size, we show the Broadcast
Congested Clique can be made resilient to erasure errors with only a constant blowup.

1.3 Notation and conventions
In this section, we state some notational conventions we use. First, we describe the computa-
tional model (without erasures), and then we formally define the model we consider with
erasures.

The Computational Model: In a setting with n processors, each processor is identified
with a distinct number in [n]. Given a stringX, which we denote using an upper case character,
we write the ith bit as xi, using the corresponding lower case character. To denote the
substring of X starting at position i and ending in position j we write X[i,j]. When we wish
to compute some function of a n-bit string X using n processors, assume xi is provided
as input to processor i. In the description of algorithms, Algo(x1, . . . , xn) refers to an
algorithm that runs on n processors where the ith processor is given xi as input.

In all our algorithms, we assume that each broadcast is repeated γ times where γ is some
appropriately chosen constant.

Formally, we have:

I Definition 1. We let the noisy parallel broadcast model be a model of computation where
there are n processors P1, . . . , Pn, and Pi receives input bit xi. In each round of computation,
each processor can broadcast one bit to all other processors. Each reception is corrupted
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with some constant probability 0 ≤ p < 1, in which case the character ‘?’ is received instead
of the bit which was sent.

In this paper, we study the complexity of computing certain functions in the above model.
Specifically, for constant erasure probability p we show a bound of O(log∗(n)) for computing
any function, and a bound of O(1) for symmetric functions.

As part of our algorithm we use error correcting codes, so we include standard results and
notations for codes below: Error Correcting Codes: An error correcting code is described
by functions Enc : {0, 1}n → {0, 1}k and Dec : {0, 1}k → {0, 1}n with the property that
Dec(x) maps to the string y for which Enc(y) is the closest string to x in C = Image(Enc).

The rate of an error correcting code is defined as k
n and the relative distance is defined as

minx,y∈C d(x,y)
k . The quantity d(x,y)

2 is referred to as the decoding radius.
We use the result of [13] that error correcting code families of constant rate and constant

relative distance exist. In particular, for the sake of this paper, we assume the existence of an
error correcting code family E with relative distance 0.25 and rate some absolute constant K.

2 An O(log∗ n) algorithm for computing any function

We consider the following message-passing model. There are n processors, and in each round,
every processor transmits a single bit b to all other processors. Each processor receives each
bit independently and at random with probability 1− p. With probability p, the character
‘?’ is received instead. If each processor starts with a single input bit, we ask how many
rounds are required so that every processor knows all input bits with high probability. We
show a bound of O(log∗(n)) for this problem. Specifically, we will show:

I Theorem 2. For every 0 ≤ p < 1, there is an algorithm in the noisy broadcast parallel
erasure model that computes IDn with high probability within O(log∗(n) log 1

1−p ) rounds.

Without loss of generality, we assume that p ≤ 0.01, since for any erasure probability p < 1,
repeating each message O(log 1

1−p ) times can be used to effectively lower the probability of
receiving ‘?’. We describe our algorithm for the case where the alphabet Σ = {0, 1}. The
protocol generalizes to larger alphabets in a straightforward manner.

We describe a protocol for n processors with the guarantees: at the end of the protocol,
all n processors can output the full string C with probability at least 1 − 1

n5 , and if the
protocol fails (that is, there is some processor who cannot output the full string C), then all
n processors can output ‘⊥’ with probability at least 1− 1

27n . For the rest of this section, we
assume n ≥ n0 for a sufficiently large n0.

We begin by describing algorithms for simpler subproblems.

I Lemma 3. Let bi be the input to processor i, and let the erasure probability p be .01. Then
there is an O(1)-round algorithm and an absolute constant α such that all processors output
the AND of all bi with probability at least 1− 2−αn.

Proof. Algorithm: The algorithm is as follows: in each round, a processor i broadcasts ‘0’
either if xi = 0 or if processor i has received at least one ‘0’ in at least one of the previous
rounds. Otherwise, processor i boradcasts 1. This is repeated for 100 rounds.

Processor j’s output is the AND of all bits it received.
Analysis: First, note that if all of the bi = 1, then all processors must output 1, no

matter what messages were corrupted, since all received bits of all processors must be 1.
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Algorithm 1: EqualityTest(S1, . . . , Sn).
Enc is the encoding function of a code C with relative distance 0.25 and constant rate K.

1. Transmit (Enc(Si))[(i−1)K+1,iK] over K rounds
2. Let At,i be the K-bit string received from processor t and Ai = A1,iA2,i . . . An,i.

Set ci to 1 if Hamming distance between Ai and Enc(Si) is at most 0.06Kn and 0
otherwise

3. The processors run the AND protocol from Lemma 3 and output the AND of all ci

Now, suppose there is an i for which bi = 0. Let t be the number of processors that
received the transmission of i in the first round. The probability that processor j receives
only 1s in the second round is at most pt.

We can use Hoeffding’s inequality to obtain

Pr
[
t <

n

2

]
≤ e−α

′n

for some constant α′. Thus, the probability that there is some j that received only 1’s even
if there is a processor with a 0 is at most n(e−α′n + pn/2), bounded above by e−αn for a
constant α. J

We note that the above protocol does not work in the substitution model (the model
where a message may be flipped with small probability, as opposed to being corrupted to a
‘?’). In fact, in [11] it was proven that computing the AND function with high probability in
the substitution model requires Ω(log log n) rounds.

We next show an O(1) round algorithm for Equality Testing. Each processor is given
an n-bit string Si as input, and the goal is for all processors to output 1 if all their inputs
are equal and 0 otherwise with probability at least 1− 2−Ω(n). Unless otherwise specified,
each step of the algorithm is from the view of processor i. Roughly speaking, this step will
be used in the main algorithm to verify that all processors end up with the same output
string S.

I Lemma 4. When the erasure probability p ≤ .01, Algorithm 1 correctly solves Equality
Testing with probability at least 1− 2−βn for some absolute constant β.

Proof. Let A be the string collectively transmitted by all processors in Step 1. We know

d(Enc(Si),Enc(Sj)) ≤ d(Enc(Si), Ai) + d(Ai, A) + d(A,Aj) + d(Aj ,Enc(Sj))
≤ 2(d(Enc(Si), Ai) + d(Enc(Sj), Aj))

where the second inequality is because d(A,Ai) is the number of ‘?’s received, and lower
bounds d(Enc(Si), Ai).

If both d(Enc(Si), Ai) and d(Enc(Sj), Aj) are at most 0.06Kn, then d(Enc(Si),Enc(Sj))
is at most 0.24Kn, but since they are codewords of a code with relative distance 0.25,
Enc(Si) = Enc(Sj), implying Si = Sj . So if there is a pair i, j with Si 6= Sj , then either ci or
cj must be 0. And then from Lemma 3, with probability at least 1− e−αn, the processors
correctly detect that there is a ci equal to 0.

On the other hand, if all the strings are indeed equal, then cj is 0 only if processor j
receives fewer than 0.94Kn bits. We upper bound the probability that this happens by using
Chernoff bound along with a union bound over all processors.

nPr[processor i receives fewer than 0.88Kn bits] ≤ ne−α
′′n ≤ e−α

′n

where α′ is some constant. We let β = min{α, α′}. J

ICALP 2018



153:6 Algorithms for Noisy Broadcast with Erasures

Let X = x1x2 . . . xn be the input string and processor i is given xi and is required to
output a tuple (Xi, si), where Xi an n-bit string and s either 1, indicating success or 0,
indicating failure, with the goal of having all Xi = X and all si = 1. We say that an
algorithm on a group of processors succeeded if Xi = X and si = 1 for all i, failed with
knowledge if ri = 0 for all i, and failed without knowledge otherwise. We describe an
algorithm for this problem where each step is from the view of processor i unless otherwise
specified. Recall that each broadcast is repeated γ times to effectively reduce the erasure
probability p to be at most .01. For simplicity, we assume that n is a power of 2, and so
log n is an integer. It is easy to generalize the algorithm to all values of n.

At the high level, the algorithm proceeds as follows. We partition the processors into
n/ log n sets of size log n each (Step 2a). Then, we recursively compute the input on each of
these subsets. Now, some of these subsets will have succeeded, and some will have failed.
For the ones that failed, we now recompute the input, but this time we add more processors
to be “helper processors". That is, the processors which succeeded in the recursive calls will
now be used to aid the processors who failed in the recursive call by sending messages on
their behalf. This can be seen in Step 2g, where the processor sends x`i , which is the input
to a processor which failed on the recursive call. This idea of using successful processors
to help others who failed helps ensure that within a constant number of tries, with high
probability all input bits will be known.

We now prove the following proposition, from which Theorem 2 immediately follows.

I Proposition 5. Algorithm 2 runs in O(log∗ n) rounds, succeeds (i.e., each processor outputs
(X, 1), where X is the input to all processors) with probability at least 1− 1

n5 and fails without
knowledge with probability at most 1

27n .

Proof. We list conditions under which the protocol definitely succeeds, and show all these
conditions hold with probability at least 1− 1

n5 . Define R as r′1r′2 . . . r′n from the output of
Step 2a. Define Ms as all j such that n(s−1)

z < j ≤ ns
z where z is the number of 0’s in R.

The protocol definitely succeeds if the following conditions hold:
1. All but at most n

log3 n
groups succeed in the recursive call of Step 2a.

2. No group fails without knowledge in the recursive call of Step 2a, and Ri = R for all i.
3. For all j such that (R)j = 0, for all i, processor i receives at least one transmission from

a processor in M`j ,i in Step 2g where the `jth 0 in R occurs at (R)j .
4. Each processor receives at least 0.88K log n bits from each successful group in at least

one transmission in Step 2d of the algorithm.

Indeed, for any j in a successful group, all processors correctly learn the input to processor
j because Condition 4 is met. By Condition 2, for fixed s, Ms,i is the same for all i since
Ms,i depends on Ri. For any j in a failed group, by Condition 2, (R)j = (Ri)j = 0, and by
Condition 3, each processor receives at least one transmission of processor j’s input in Step
2g and so all processors correctly learn the input to processor j.

We now proceed with showing a lower bound on the probability that all of these conditions
hold.

We can see that Condition 1 holds with probability at least 1 − 1
n6 since by Chernoff

bounds, the number of failed groups exceeds n
log3 n

with probability at most 1
n6 .

Now suppose Condition 1 holds. A group fails without knowledge with probability at
most 1

n7 by the guarantees of the protocol. The probability that there exists a group that
failed without knowledge, by the union bound, is therefore at most 1

n6 . If no group failed
without knowledge, the only way Ri cannot equal R is if there is a group Mj,i that processor
i did not receive a single bit from. The probability that processor i does not receive a single
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Algorithm 2: LearnInput(x1, . . . , xn).
Enc is the encoding function of a code C with relative distance 0.25 and constant rate K

1. Base Case: If n < 100
a. Transmit xi repeatedly 100 times, and set string Si as per

(Si)j =
{
b if b was received in any transmission from j

random bit if all transmissions from j are ‘?’

and go to Step 3a.
2. Recursive Step:

a. Recursively obtain (X ′i, r′i) = LearnInput
(
xb i

lognc logn+1, . . . , xb i
lognc logn+logn

)
.

We call this set of processors the group of i.
b. Broadcast r′i
c. Set Ri by setting (Ri)j to 1 if only 1’s were received from j’s group (i.e., from

the processors which j computed the recursive call with) and 0 otherwise, for each
j ∈ [n].

d. Let i′ = i mod log n and transmit Enc(X ′i)[(i′−1)K+1,i′K] over the next K rounds.
e. Let zi be the number of zeros in Ri and let j =

⌈
izi
n

⌉
and let `i be the index of

the jth zero in Ri. Create set Ms,i to be all t such that

n(s− 1)
zi

< t ≤ ns

zi

f. Transmit xi.
g. Broadcast what was received from `i, which is either ‘?’ or x`i . Let M ′j,i be the

set of characters received from Mj,i.
h. Set Xi by setting (Xi)j to xi if j = i, by decoding the bits received in Step 2d

if (Ri)j = 1 and at least 0.88K log n bits were received from the group of j, to a
random bit if (Ri)j = 1 and fewer than 0.88K log n bits were received from group
j in Step 2d, and to 11∈M ′

j,i
if (Ri)j = 0. Proceed to Step 3a.

3. Verification of output
a. Obtain vi = EqualityTest(X1, . . . , Xn) and output (Xi, vi).

bit from this group is pγ logn, which for appropriate γ is at most 1
n8 . Thus, the probability

that there is some i, j pair such that processor i does not receive a single bit from group j is
at most 1

n6 by a union bound. So the probability that Condition 2 is not met (given that
Condition 1 is met) is at most 2

n6 .
Note that Ri = R means Ms = Ms,i for all i. It follows from Chernoff bounds that the

number of processors in Ms that receive the bit transmitted by processor s is at least log n
with probability at least 1− 1

n6 . The probability that processor i does not receive any bits
from processors in Ms in any of the repetitions of Step 2g is at most pγ logn, which can be
made smaller than 1

n8 by setting γ to be large enough. Now by taking a union bound over
all pairs (i, s) we can conclude that Condition 3 does not hold with probability at most 1

n6 .
The probability that processor i receives fewer than 0.88K log n bits from group j in all

repetitions of Step 2d is at most 1
ncγ for some constant c by Chernoff bounds. A union bound

across all processor-group pairs tells us that Condition 4 does not hold with probability at
most 1

ncγ−2 which can be made smaller than 1
n6 with large enough γ.

ICALP 2018
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Algorithm 3: LearnInputLargeAlphabet(x1, . . . , xn).
Let F be a function that encodes subsets of [6 log n] as elements of Fq

1. Let k = b6 log nc and determine Bi = {njk + 1, . . . , n(j+1)
k }, where j is chosen such

that i ∈ Bi
2. Broadcast xi for 10 rounds
3. For each t from 1 to 10 and for each processor in Bi from which an entry was received

in round t of Step 2, choose the processor with probability 1
2(1−p) and choose i with

probability 1
2 . Let Tt,i be the set of chosen elements.

4. For the next 20 rounds, processor i transmits all the
∑
b∈Tt,i xb (where the xb are

added as elements of Fq) and F (Tt,i)
5. Output Xi consistent with all received pairs

(∑
b∈Tt,i xb, F (Tt,i)

)
. If there is more

than one possibility for such an Xi, pick one at random.

Based on the bounds we obtained on the probability that each of Conditions 1, 2, 3,
4 don’t hold, we can conclude that the probability that all the conditions hold is at least
1− 1

n5 .
It remains to show that the probability that the processors failed without knowledge is at

most 2−7n. If there is Xi such that Xi 6= X, then it differs from X in some index j, which
means (Xi)j 6= (Xj)j by construction of Xj implying Xi 6= Xj . Thus, a failure without
knowledge happens only if Step 3a fails, which happens with probabilty at most e−βn, which
can be made smaller than 2−7n by choosing the number of repetitions γ to be a large enough
constant.

The number of rounds this algorithm takes is given by T (n), which satisfies the recurrence
relation T (n) = T (log n) +L where L is a constant and with base case T (100) = O(1), which
solves to T (n) = O(log∗ n). J

3 An O(1) algorithm for large alphabets

For large alphabets, in the regime where the alphabet Σ is Fq and q = poly(n), we give a
constant round algorithm to have all processors learn the input X with probability at least
1− 1

poly(n) . Unless otherwise specified, the algorithm is from the view of processor i. While
our algorithm works for any q that is polynomial in n, for simplicity of exposition we assume
q ≥ n6 and that q is a prime.

I Theorem 6. With probability at least 1− 1
poly(n) , after running Algorithm 3, all processors

will know all other processors’ inputs. Furthermore, the algorithm terminates within O(1)
rounds.

As a first ingredient towards proving Theorem 6, we prove the following lemma.

I Lemma 7. If A is a 5k × k random binary matrix where each entry is i.i.d. generated by
flipping a fair coin, then with probability at least 1− e−0.4k, A is full rank.

Proof. Suppose V is a subspace of Fkq that is not equal to all of Fkq , then we can find standard
basis vector ei that is not in V . Then for any binary vector v, consider v′ with the bit at the
i-th coordinate flipped. Either v or v′ is not in V , which means at least half of the binary
vectors are not in V , which means each new vector has probability at least 1

2 of not being in
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V . If we let V = span{vectors drawn so far}, then each draw has a probability at least 1
2 of

increasing the dimension. Suppose we flip 5k coins, the probability that the number of heads
is at most k is an upper bound on the probability of the span of 5k randomly drawn vectors
not being the whole space.

By Chernoff bounds, this probability is at most e−0.4k. J

Proof of Theorem 6. Each Tt,i is a uniformly random subset of input bits of set Bi. Let xBi
be a k-dimensional vector of the inputs to processors in Bi, then the transmitted characters
in Round 5 are of the form (〈aBi , xBi〉, F (Tt,i)) where aBi is a random binary vector, and
F (Tt,i) is an encoding of aBi . The transmitted characters can be viewed as elements in the
vector AxBi , where A is a matrix whose rows are the aBi . A single processor’s output of
xBi is given by sampling rows of the equation AyBi = AxBi where yBi is indeterminate
and solving for yBi . If the number of sampled rows is at least 5k, then from Lemma 7 the
probability that the sampled rows span Fkq and hence give a unique solution to yBi is at least
1− 1

n2.4 .
The probability that the number of sampled rows for a group is less than 5k can be upper

bounded by 1
n5 using Chernoff bounds.

So by union bound over all group-processor pairs (i.e., all pairs (i, Bj)), we get a 1
poly(n)

upper bound on the failure probability. J

References
1 Noga Alon, Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Re-

liable communication over highly connected noisy networks. In Proceedings of the 2016
ACM Symposium on Principles of Distributed Computing, pages 165–173. ACM, 2016.

2 Florent Becker, Antonio Fernandez Anta, Ivan Rapaport, and Eric Reémila. Brief announce-
ment: A hierarchy of congested clique models, from broadcast to unicast. In Proceedings of
the 2015 ACM Symposium on Principles of Distributed Computing, pages 167–169. ACM,
2015.

3 Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Constant-rate cod-
ing for multiparty interactive communication is impossible. Journal of the ACM (JACM),
65(1):4, 2017.

4 Keren Censor-Hillel, Petteri Kaski, Janne H Korhonen, Christoph Lenzen, Ami Paz, and
Jukka Suomela. Algebraic methods in the congested clique. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, pages 143–152. ACM, 2015.

5 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Proceedings of the 2014 ACM symposium on Principles of distributed computing,
pages 367–376. ACM, 2014.

6 Klim Efremenko, Gillat Kol, and Raghuvansh Saxena. Interactive coding over the noisy
broadcast channel. In Electronic Colloquium on Computational Complexity (ECCC),
volume 24, page 93, 2017.

7 A El Gamal. Open problems presented at the 1984 workshop on specific problems in com-
munication and computation sponsored by bell communication research. Open Problems
in Communication and Computation, 1987.

8 Uriel Feige and Joe Kilian. Finding or in a noisy broadcast network. Information Processing
Letters, 73(1-2):69–75, 2000.

9 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy
information. SIAM Journal on Computing, 23(5):1001–1018, 1994.

10 Robert G Gallager. Finding parity in a simple broadcast network. IEEE Transactions on
Information Theory, 34(2):176–180, 1988.

ICALP 2018



153:10 Algorithms for Noisy Broadcast with Erasures

11 Navin Goyal, Guy Kindler, and Michael Saks. Lower bounds for the noisy broadcast
problem. SIAM Journal on Computing, 37(6):1806–1841, 2008.

12 Tomasz Jurdzinski and Krzysztof Nowicki. Msf and connectivity in limited variants of the
congested clique. arXiv preprint arXiv:1703.02743, 2017.

13 Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Transac-
tions on Information Theory, 18(5):652–656, 1972.

14 Eyal Kushilevitz and Yishay Mansour. Computation in noisy radio networks. In SODA,
volume 98, pages 236–243, 1998.

15 Pedro Montealegre and Ioan Todinca. Deterministic graph connectivity in the broadcast
congested clique. arXiv preprint arXiv:1602.04095, 2016.

16 Ilan Newman. Computing in fault tolerance broadcast networks. In Computational Com-
plexity, 2004. Proceedings. 19th IEEE Annual Conference on, pages 113–122. IEEE, 2004.

17 Sridhar Rajagopalan and Leonard Schulman. A coding theorem for distributed computation.
In Proceedings of the twenty-sixth annual ACM symposium on Theory of computing, pages
790–799. ACM, 1994.

A An O(1) protocol for computing any symmetric function

We show that any symmetric function can be computed within O(1) rounds in the model.
Symmetric functions are functions whose value doesn’t change under permutation of the
input bits. In other words, these functions only depend on the Hamming weight of the input
string. Hence, an algorithm for every processor to learn the Hamming weight of the string
leads to an algorithm to compute any symmetric function. Our algorithm is inspired by a
similar algorithm (for a different model) of [11].

I Theorem 8. There is an O(1) round algorithm in the noisy broadcast parallel erasure
model that computes Hamming Weight(X) with probability at least 0.75.

Our algorithm proceeds in two phases:
1. Divide the interval [0, n] into subintervals of length c

√
n and find which interval the

Hamming weight belongs to.
2. Figure out exactly which integer in the interval is the Hamming weight.

More precisely, the first step will give us three intervals, and we will show for at least two
of these intervals, with high probability all processors will end up with the same interval.
Then, we will run the second step (where we pinpoint the exact Hamming weight) on each of
the three intervals, and take a majority vote to compute the final output.

We describe the first step below:

I Lemma 9. With probability at least 1 − exp(−Ω(n)), for at least two t in {1, 2, 3}, all
Ci,t outputted in Step 4 of Algorithm 4 are equal and correspond to an interval containing
Hamming Weight(X).

Proof. By Chernoff bounds, the probability that hi deviates from the truth by t
√
n is at

most e−Ct2 for an absolute constant C. This can be made smaller than 0.01 with appropriate
choice of a constant t. Then for at least two values of s, hi lies in the correct interval in Bs
with probability at least 0.99. Without loss of generality, say this happens for s = 0 and
s = 1. Using Chernoff bounds, we can show that for some constant c, with probability at
least 1− exp(−Ω(n)), at least 0.95 fraction of the processors decode the correct interval in
B0 and B1.
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Algorithm 4: DetermineInterval(x1, . . . , xn).
A1, A2, . . . , Ak are disjoint intervals of size ≈ 2t

√
n covering [0, n], with t chosen later.

Let Ai be ∅ if i < 1 or i > k.
Bi := Ai ∪Ai+1 ∪Ai+2.
Bs := {Bi : i ≡ s mod 3}.
Enc is the encoding function of a code with relative distance 0.25 and constant rate K.

1. Transmit xi
2. Compute hi := number of 1’s received

1−p
3. For s = 0, 1, 2:

a. Find interval in Bs containing hi, called I. I is encoded as a string sI (of size
O(log n)).

b. Let i′ = i mod log n and transmit Enc(sI)[K(i′−1)+1,Ki′] over K rounds

c. Ci,s :=
{
sI if at least .88K log n bits were received in Step 3b
decoded string if fewer than .88K log n bits were received in Step 3b

4. Return Ci,0, Ci,1 and Ci,2.

And assuming at least 0.95 fraction of the processors decode the correct intervals in B0
and B1, we can show once again using Chernoff bounds and union bound, that the number
of bits from the encoded string of the correct interval received by each processor is more
than 0.9Kn with probability at least 1− exp(−Ω(n)), which means with exponentially high
probability, every processor decodes the correct interval in B0 and B1. J

For the second step, our goal is the following: given that every processor knows an interval
[a, b] in which the Hamming weight of the input string lies, it can recover the value of the
Hamming weight in O(1) rounds.

I Lemma 10. On running Algorithm 5, all processors return the Hamming weight s of X
with probability at least 0.9.

Proof. Define θ̂s to be the fraction of βi transmitted in Step 3 that are 1.
We can lower bound θ`+1 − θ` for x ≤ ` < y by c√

n
where c is some constant [11,

Lemma 41]. The probability that |θs − θ̂s| is at most c
8
√
n
can be made at least 0.99 with an

appropriate choice of the number of repetitions γ. Similarly, we can ensure that |θ̂s − θ̂s,i| is
at most c

8
√
n
with probability at least 0.99.

By Chernoff bounds, the fraction of processors for which |θ̂s − θ̂s,i| < c
8
√
n
is at least 0.95

with probability at least 1 − exp(−Ω(n)). Thus, conditioned on |θs − θ̂s| < c
8
√
n
, we have

that for at least 0.95 of the processors, |θs − θ̂s,i| < c
4
√
n
. Further, the string S1S2 . . . Sn

transmitted in Step 6 with random erasures has distance less than the decoding radius of C
of Enc(s) with probability at least 1− exp(−Ω(n)), in which case all processors can correctly
output s.

Since the condition |θs − θ̂s| < c
8
√
n
holds with probability at least 0.99, the required

guarantees of the Lemma hold. J

Proof of Theorem 8. The processors run Algorithm 4 to obtain 3 candidate intervals I1, I2
and I3, and with exponentially high probability, at least two of these candidate intervals

ICALP 2018
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Algorithm 5: PinpointWeight(x1, x2, . . . , xn; [a, b]).
[a, b] is the interval of length up to 3

√
n where the Hamming weight is promised to lie

Enc is the encoding function of a code C with relative distance 0.25 that maps log n bit
strings to K log n bit strings
Let θs be defined as the probability that when flipping s coins, each coming up heads
with probability 1− p, at least (1− p)

(
a+b

2
)
come up heads.

1. Transmit xi
Let Y be the number of 1’s received.

2. βi :=
{

1 if number of 1’s received is greater than (1− p)
(
a+b

2
)

0 otherwise
3. Transmit βi
4. Let θ̂s,i be the fraction of received bits from Step 3 that are 1 (i.e., the total number

of 1’s received, divided by the total number of 1’s or 0’s received).
5. ŝi = arg min` |θ` − θ̂s,i|
6. Let i′ = i mod log n and transmit Enc(ŝi)[K(i′−1)+1,Ki′] over K rounds

7. s̃i =
{
decoded string if at least .88K log n bits were received in Step 6
ŝi if fewer than .88K log n bits were received in Step 6

contain the Hamming weight. The processors run Algorithm 5 on each of the three intervals
and processor i obtains outputs n0, n1 and n2 respectively. With constant probability, at
least two of n0, n1 and n2 are the same and equal to the correct Hamming weight, and hence
outputting the majority of the three matches the guarantee. J



Efficient Black-Box Reductions for Separable Cost
Sharing

Tobias Harks
Universität Augsburg, Institut für Mathematik, Augsburg, Germany
tobias.harks@math.uni-augsburg.de

Martin Hoefer
Goethe-Universität Frankfurt am Main, Institut für Informatik, Frankfurt am Main, Germany
mhoefer@cs.uni-frankfurt.de

Anja Huber
Universität Augsburg, Institut für Mathematik, Augsburg, Germany
anja.huber@math.uni-augsburg.de

Manuel Surek
Universität Augsburg, Institut für Mathematik, Augsburg, Germany
manuel.surek@math.uni-augsburg.de

Abstract
In cost sharing games with delays, a set of agents jointly uses a finite subset of resources. Each
resource has a fixed cost that has to be shared by the players, and each agent has a non-shareable
player-specific delay for each resource. A prominent example is uncapacitated facility location
(UFL), where facilities need to be opened (at a shareable cost) and clients want to connect to
opened facilities. Each client pays a cost share and his non-shareable physical connection cost.
Given any profile of subsets used by the agents, a separable cost sharing protocol determines cost
shares that satisfy budget balance on every resource and separability over the resources. Moreover,
a separable protocol guarantees existence of pure Nash equilibria in the induced strategic game
for the agents.

In this paper, we study separable cost sharing protocols in several general combinatorial
domains. We provide black-box reductions to reduce the design of a separable cost sharing
protocol to the design of an approximation algorithm for the underlying cost minimization prob-
lem. In this way, we obtain new separable cost sharing protocols in games based on arbitrary
player-specific matroids, single-source connection games without delays, and connection games
on n-series-parallel graphs with delays. All these reductions are efficiently computable – given an
initial allocation profile, we obtain a profile of no larger cost and separable cost shares turning
the profile into a pure Nash equilibrium. Hence, in these domains any approximation algorithm
can be used to obtain a separable cost sharing protocol with a price of stability bounded by the
approximation factor.
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1 Introduction

Cost sharing is a fundamental task in networks with strategic agents and has attracted a
large amount of interest in algorithmic game theory. Traditionally, cost sharing has been
studied in a cooperative sense, i.e., in the form of cooperative games or mechanism design.
Many of these approaches treat cost in a non-separable way and return a single, global cost
share for each agent. In contrast, when agents jointly design a resource infrastructure in large
networks, it is much more desirable to provide algorithms and protocols for separable cost
sharing that specify which agent needs to pay how much to each resource. Here the natural
approach are strategic cost sharing games with n players that use subsets of m resources.
Each resource generates a cost depending on the subset of players allocating it. A protocol
determines a cost share for each resource and each player using it. In addition to separability,
there are further natural desiderata for such protocols, such as budget-balance (distribute
exactly the arising cost of each resource) and existence of a pure Nash equilibrium (PNE),
i.e., allow the resulting game to stabilize.

Perhaps the most prominent such protocol is the fair share protocol, in which the cost of
each resource is allocated in equal shares to the players using it. This approach has been
studied intensively (see our discussion below), but there are several significant drawbacks.
Even in connection games on undirected networks, it can be PLS-hard to find a PNE [51]
and the PoS (the total cost of the best Nash equilibrium compared to the cost of the optimal
allocation) is not known to be constant. This contrasts the fact that there are polynomial
time approximation algorithms with low approximation factors, see, e.g. [12]. For directed
networks the PoS can even be as large as Ω(log n) [4, 17].

In this paper, we study a slight generalization of cost sharing games, where every resource
has a shareable cost component and a non-shareable player-specific delay component. The
shareable cost needs to be shared by the players using it, the non-shareable player-specific
delay represents, e.g., a physical delay and is thus unavoidable. This setting arises in several
relevant scenarios, such as uncapacitated facility location (UFL) [37]. Here players share
the monetary cost of opened facilities but additionally experience delays measured by the
distance to the closest open facility. Another important example appears in network design,
where players jointly buy edges of a graph to connect their terminals. Besides the monetary
cost for buying edges, each player experiences player-specific delays on the chosen paths. In
such a distributed network environment, it is not clear a priori if an optimal solution can be
stable – i.e., if the shareable costs can be distributed among the players in a separable way
so that players do not want to deviate from it. This question leads directly to the design of
protocols that distribute the costs in order to induce stable and good-quality solutions of the
resulting strategic game.

Our results are three polynomial-time black-box reductions for the price of stability
(PoS) of separable cost sharing protocols in combinatorial resource allocation problems. Our
domains represent broad generalizations of UFL – arbitrary, player-specific matroids, single-
source connection games without delays, and connection games on undirected n-series-parallel
graphs with delays. In each of these domains, we take as input an arbitrary profile and
efficiently turn it into a profile having no larger cost and a sharing of the shareable costs such
that it is a Nash equilibrium. Our protocols are polynomial-time in several ways. Firstly,
the games we study are succinctly represented. In matroids, we assume that strategies
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are represented implicitly via an independence oracle. For connection games on graphs,
the strategies of each player are a set of paths, which is implicitly specified by terminal
vertices of the player and the graph structure. The cost sharing protocol is represented by a
strategy profile S and a sharing of the shareable costs arising in S on each resource. While
in principle the protocol must specify a sharing of the costs for all of the other (possibly
exponentially many) strategy profiles, one can do so implicitly by a simple lexicographic
assignment rule. It guarantees that the profile S becomes a PNE. As such, starting from an
arbitrary initial profile S′, we can give in polynomial time the Nash equilibrium profile S,
the cost shares for S, and the assignment rule for cost shares in the other profiles. Hence,
if S′ is polynomial-time computable, then both protocol and Nash equilibrium S are both
polynomial-time computable and polynomial-space representable.

1.1 Our Results
We present several new polynomial-time black-box reductions for separable cost sharing
protocols with small PoS. We study three domains that represent broad generalizations of
the uncapacitated facility location problem. In each domain, we devise an efficient black-box
reduction that takes as input an arbitrary strategy profile and computes a new profile of
no larger cost together with a separable cost sharing protocol inducing the new profile as a
PNE. Thus, any polynomial-time α-approximation of the social cost can be turned into a
separable cost sharing protocol with PoS at most α.

Matroidal Set Systems. In Section 3 we provide a black-box reduction for matroidal set
systems. Our results even apply to the broad class of subadditive cost functions that include
fixed costs and discrete concave costs even with weighted players as a special case. Here we
assume access to a value oracle for the subadditive cost function for each resource. Matroidal
set systems with player-specific delays include uncapacitated facility location as a special case,
since these correspond to matroid games, where each player has a uniform rank 1 matroid.
For metric UFL, there is for instance a 1.488-approximation algorithm [45] using ideas of a
previous 1.5-approximation algorithm [11]. This leads to a separable cost sharing protocol
with PoS equal 1.488. Also, the existing hardness results for UFL carry over, meaning that for
any polynomial-time computable, separable cost sharing protocol, the cost of an equilibrium
that can be computed in polynomial time is bounded from below by the inapproximability
bound. For metric UFL there is a lower bound of 1.46 [31].

Single-Source Connection Games with Fixed Costs. In Section 4 we consider cost sharing
games on graphs, where the set systems correspond to paths connecting a global source with
a player-specific terminal. We again provide a polynomial-time black-box reduction. Our
result improves significantly over the existing Prim-Sharing [17] with a PoS of 2. We obtain
separable protocols based on any approximation algorithm for Steiner tree, such as, e.g.,
the classic 1.55-approximation algorithm [49], or the celebrated recent 1.39-approximation
algorithm [12]. Our black-box reduction continues to hold even for directed graphs, where
we can use any algorithm for the Directed Steiner Tree problem [15], or games based on
the (directed or undirected) Group Steiner Tree problem [16, 26]. All lower bounds on
approximation hardness translate to the quality of polynomial-time computable equilibria of
polynomial-time computable separable protocols.

Connection Games With Delays. Finally, in Section 5 we study multi-terminal connection
games with delays and fixed costs. For directed graphs, an optimal Steiner forest is not
enforceable by a separable cost sharing protocol, even for two players [17]. Very recently,
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a similar result was shown even for two-player games on undirected graphs [35]. Thus,
for general graphs, we cannot expect separable protocols with optimal or close-to-optimal
equilibria, or (efficient) black-box reductions. We introduce a class of so-called n-series-
parallel graphs, which allows to obtain a black-box reduction in polynomial time. The
transformation directly implies that the n-series-parallel graphs always admit a separable
cost sharing protocol inducing an optimal Steiner forest as an equilibrium.

The reduction also applies to discrete-concave cost functions and player-specific delays,
however, we do not know if polynomial running time is guaranteed. n-series-parallel graphs
have treewidth at most 2, thus, for fixed edge costs and no delays, it is possible to compute
efficiently even an optimal Steiner forest [7]. Hence, in this case we obtain a separable
protocol with PoS of 1 in polynomial time. We finally demonstrate that the specific setting
of n-series-parallel graphs is in some sense necessary: Even for generalized series-parallel
graphs we give a counterexample showing that a black-box reduction is impossible to achieve.

1.2 Preliminaries and Related Work
Cooperative cost sharing games have been studied over the last decades for a variety of
combinatorial optimization problems, such as minimum spanning tree [10], Steiner tree [29,30,
46,52], facility location [28], vertex cover [22], and many more. Cooperative cost sharing games
have interesting implications for (group-)strategyproof cost sharing mechanisms [41,42,47,48].
For Bayesian cost-sharing mechanisms there even exist efficient black-box reductions from
algorithm to mechanism design [27]. A major difference to our work is that cooperative cost
sharing is not separable.

The most prominent example of a separable cost sharing protocol is the fair share protocol,
in which the cost of each resource is divided in equal shares among the players that use it. This
protocol is also anonymous, and it implies that the resulting game is a congestion game [50].
It guarantees the smallest PoS within a class of anonymous protocols [17]. The fair share
protocol has attracted a serious amount of research interest over the last decade [1, 4, 8, 33],
especially the notorious open problem of a constant PoS for connection games in undirected
graphs [9, 23, 25, 43, 44]. However, as a significant drawback - outside of the domain of
undirected connection games - the PoS is often as large as Ω(log n), e.g. [17, 32].

More general separable protocols have been studied mostly in terms of the price of
anarchy, e.g., for scheduling (or matroid games) [6, 13, 19, 24, 53] or single-source network
design with [20,21] and without uncertainty [17]. The best result here is a price of anarchy
(and stability) of 2 via Prim-Sharing [17], a protocol inspired by Prim’s MST algorithm. A
protocol with logarithmic PoS was shown for capacitated UFL games [37].

We observe that separable protocols with low PoS can be obtained using results for
cost sharing games with so-called “arbitrary sharing”, where effectively players pay the cost
increment when changing their strategy (see [36] for a formal definition). A PNE for arbitrary
sharing can be translated directly into a PNE for a suitable separable cost sharing protocol.
A simple proof of Proposition 1 can be found in the full version of this paper [34].

I Proposition 1. If for a cost sharing model, the non-cooperative game with arbitrary sharing
has a PNE, then there is a separable cost sharing protocol with the same PNE.

This implies existence of separable protocols with optimal PNE and PoS 1 for a variety
of classes of games, including matroid games with uniform discrete-concave costs [36],
uncapacitated facility location with fixed [14] and discrete-concave costs [39], connection
games (single-source [5, 38] and other classes [2, 3, 40]) with fixed costs, and more. However,
the large majority of these results are inefficient, i.e., there is no polynomial-time algorithm
that computes the required optimal equilibrium.
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Alternatively, one may resort to approximate equilibria in games with arbitrary sharing
that are efficiently computable. The most prominent technique works via reducing costs
by an additive value ε to ensure polynomial running time (put forward for single-source
connection games in [5] and used in much of the follow-up work [2, 3, 14, 38]). This approach
does not translate to separable protocols, since a player must eventually contribute to all
resources. This is impossible for the model we consider here.

2 Separable Cost Sharing Protocols

We are given a finite set N of players and a finite set E of resources. Each player i ∈ N is
associated with a predefined family of subsets Si ⊆ 2E from which player i needs to pick at
least one. The space of strategy profiles is denoted by S := ×i∈NSi. For S ∈ S we denote
by Ne(S) = {i ∈ N : e ∈ Si} the set of players that use resource e. Every resource e ∈ E
has a fixed cost ce ≥ 0, e ∈ E that is assumed to be shareable by the players. In addition
to the shareable costs, there are player-specific constant costs di,e ≥ 0, i ∈ N, e ∈ E that
are not shareable. If player i chooses subset Si, then the player-specific costs

∑
e∈Si

di,e

must be paid completely by player i. The total cost of a profile S is defined as C(S) =∑
e∈∪i∈N Si

ce +
∑

i∈N

∑
e∈Si

di,e.

A cost sharing protocol assigns cost share functions ξi,e : S → R≥0 for all i ∈ N and
e ∈ E and thus induces the strategic game (N,S, ξ). For a player i, her total private cost
of strategy Si in profile S is πi(S) :=

∑
e∈Si

(ξi,e(S) + di,e). We assume that every player
picks a strategy in order to minimize her private cost. A prominent solution concept in non-
cooperative game theory are pure Nash equilibria. Using standard notation in game theory,
for a strategy profile S ∈ S we denote by (S′i, S−i) := (S1, . . . , Si−1, S

′
i, Si+1, . . . , Sn) ∈ S

the profile that arises if only player i deviates to strategy S′i ∈ Si. A profile is a pure Nash
equilibrium (PNE) if for all i ∈ N it holds πi(S) ≤ πi(S′i, S−i) for all S′i ∈ Si.

In order to be practically relevant, cost sharing protocols need to satisfy several desiderata.
In this regard, separable cost sharing protocols are defined as follows [17].

I Definition 2 (Cost Sharing Protocols and Enforceability). A cost sharing protocol is
1. stable if it induces only games that admit at least one pure Nash equilibrium.
2. budget balanced, if for all e ∈ E with Ne(S) 6= ∅

ce =
∑

i∈Ne(S)

ξi,e(S) and ξi,e(S) = 0 for all i 6∈ Ne(S).

3. separable if it is stable, budget-balanced and induces only games for which in any two
profiles S, S′ ∈ S for every resource e ∈ E,

Ne(S) = Ne(S′)⇒ ξi,e(S) = ξi,e(S′) for all i ∈ Ne(S).

4. polynomial time computable, if the cost sharing functions ξ can be computed in polynomial
time in the encoding length of the cost sharing game.

We call a strategy profile S enforceable, if there is a separable protocol inducing S as a PNE.

Separability means that for any two profiles S, S′ the cost shares on e are the same if the
set of players using e remains unchanged. Still, separable protocols can assign cost share
functions that are specifically tailored to a given congestion model, for example based on an
optimal profile. In this paper, we are additionally interested in polynomial-time computable
protocols that we introduce here.
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3 Matroid Games

In this section, we consider matroid games. As usual in matroid theory, we will write
Bi instead of Si, and B instead of S, when considering matroid games. The tuple M =
(N,E,B, (ce)e∈E , (di,e)e∈E,i∈N ) is called a matroid game if E =

⋃
i∈N Ei, and each set system

Bi ⊆ 2Ei forms the base set of some matroidMi = (Ei,Bi). While seemingly abstract, the
class includes several prominent application domains, such as UFL games. In a UFL game,
the resources are facilities (e.g. common transport hubs) and the players incur delay di,e in
addition to their cost shares for opening used facilities. Every player i chooses exactly one
resource, that is |Bi| = 1 for all Bi ∈ Bi and i ∈ N and hence Bi corresponds to a uniform
matroid of rank one. Recall that every base B of a matroid Mi = (Ei,Bi) has the same
cardinality which we denote with rki (the rank ofMi).

In the following, instead of fixed costs on the resources, we allow for subadditive cost
functions ce : 2N → R≥0, e ∈ E. ce is called subadditive, if it satisfies (1) ce(S) ≤ ce(T )
for all S ⊆ T ⊆ N , and (2) ce(S + {i}) ≤ ce(S) + ce({i}) for all S ⊂ N, i ∈ N . Note
that subadditive functions include fixed costs, but also discrete concave costs, where the
nondecreasing cost ce : N → R≥0 depends on the number of players using e and satisfies
ce(x + δ) − ce(x) ≥ ce(y + δ) − ce(y)∀x ≤ y; x, y, δ ∈ N. As such, in the discrete concave
setting, all players have the same weight of 1, whereas subadditive costs also allow for different
weights (as in weighted congestion games). We furthermore assume ce(∅) = 0, e ∈ E.

Let us denote the cost of the cheapest alternative of player i to resource e for profile B ∈ B
by ∆e

i (B) := minf∈E,Bi+f−e∈Bi
(ce(Bi + f − e,B−i) + di,f ). Here we use the simplified

notations Bi +f − e := Bi∪{f}\{e} and ce(B) := ce(Ne(B)). We recapitulate the following
characterization of enforceable strategy profiles (obtained in [37], where also a cost sharing
protocol inducing the enforceable profile as a PNE is given).1

I Lemma 3. A profile B = (B1, . . . , Bn) is enforceable iff the following two properties are
satisfied. Note that (D1) implies that each summand ∆e

i (B)− di,e in (D2) is nonnegative.

di,e ≤ ∆e
i (B) for all i ∈ N, e ∈ Bi (D1)

ce(B) ≤
∑

i∈Ne(B)

(∆e
i (B)− di,e) for all e ∈ E. (D2)

I Remark. The characterization was used in [37] to prove that an optimal collection of bases
is enforceable. This implies a PoS of 1 for a separable cost sharing protocol that relies on
the optimal profile. As such, the protocol is not efficiently computable (unless P = NP ).

In the following, we devise a black-box reduction in Algorithm 1. It takes as input an
arbitrary collection of bases B and transforms them in polynomial time into an enforceable
set of bases B′ of no larger cost. We define for each i ∈ N, e ∈ E a virtual cost value
ve

i := ce({i}) + di,e, and for each B ∈ B, i ∈ N, e ∈ E a virtual deviation cost ∆̄e
i (B) :=

minf∈E,Bi+f−e∈Bi
vf

i . The algorithm now iteratively checks whether (D1) and (D2) from
Lemma 3 hold true (in fact it checks this condition for smaller values on the right hand side
given by the virtual values), and if not, exchanges one element of some player. We show that
the algorithm terminates with an enforceable profile after polynomially many steps.

I Theorem 4. Let B be a strategy profile for a matroid congestion model with subadditive
costs. There is an enforceable profile B′ with C(B′) ≤ C(B) that can be computed in at most

1The original characterization in [37] was proven for weighted players and load-dependent non-decreasing
cost functions but the proof also works for subadditive cost functions.
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Algorithm 1: Transforming any profile B into an enforceable profile B′

Input: Congestion model (N,B, c, d) and profile B ∈ B
Output: Enforceable profile B′ with C(B′) ≤ C(B).

1 Set B′ ← B

2 while there is e ∈ E that satisfies at least one of the following conditions:

di,e > ∆̄e
i (B′) for some i ∈ Ne(B′) (1) or

ce(B′) >
∑

i∈Ne(B′)

(
∆̄e

i (B′)− di,e

)
(2) do

3 if (1) holds true for some i ∈ Ne(B′) then
4 Let fi ∈ arg min

f∈E
B′

i+f−e∈Bi

vf
i

5 Update B′i ← B′i + fi − e
6 else if (2) holds true then
7 while (2) holds true on e do
8 Pick i ∈ Ne(B′) with ve

i > ∆̄e
i (B′)

9 Let fi ∈ arg min
f∈E

B′
i+f−e∈Bi

vf
i

10 Update B′i ← B′i + fi − e

n ·m · rk(B) iterations of the outer while-loop in Algorithm 1, where rk(B) = maxi∈N rki.
Furthermore, each such iteration needs O(n ·m · rk(B) ·Q+ (m+ n) ·Q′) time, where Q and
Q′ denote the maximum complexities of the independence oracles for the players’ strategies,
and of the value oracles for the subadditive cost functions of the resources, respectively.

Proof. First, observe that if (D1) and (D2) from Lemma 3 hold true for smaller values
0 ≤ ∆̄e

i (B) ≤ ∆e
i (B), i ∈ N, e ∈ E, then the profile B is also enforceable. Hence, if the

algorithm terminates, the resulting strategy profile B′ will be enforceable.
To show that the algorithm is well-defined, we only need to check Line 8. By subadditivity

we get
∑

i∈Ne(B′) ce({i}) > ce(B′). Thus, whenever ce(B′) >
∑

i∈Ne(B′)
(
∆̄e

i (B′)− di,e

)
,

there is an i ∈ Ne(B′) with ce({i}) + di,e > ∆̄e
i (B′).

We now bound the running time. Consider player i and the matroid bases Bi. We
interpret a basis Bi ∈ Bi as distributing exactly rki unit sized packets over the resources in
E. This way, we can interpret the algorithm as iteratively moving packets away from those
resources e ∈ E for which either (1) or (2) holds true. We give each packet a unique ID
ik, k = 1, . . . , rki. For Bi ∈ Bi, let eik

denote the resource on which packet ik is located. We
now analyse the two types of packet movements during the execution of the algorithm. For
a packet movement executed in Line 5 of Algorithm 1, we have di,e > ∆̄e

i (B′), thus, when
packet ik located on e = eik

is moved to fi, it holds that v
eik
i = ve

i ≥ di,e > ∆̄e
i (B′) = vfi

i . For
packet movements executed in Line 10, then by the choice of player i ∈ Ne(B′) (see Line 8)
for the corresponding packet ik it holds veik

i = ve
i > ∆̄e

i (B′) = vfi

i . In both cases we obtain
ve

i > vfi

i . Hence, every movement of a single packet ik is in strictly decreasing order of virtual
value of the resource. Note that the virtual cost value ve

i does not depend on profile B. Thus,
there are at most m different virtual cost values that a packet ik of player i can experience,
and thus packet ik can move at most m− 1 times. The following is an upper bound on the
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total number of packet movements for all players
∑

i∈N rki ·(m− 1) ≤ n ·m · rk(B). Thus, the
number of iterations of the outer while-loop can be at most that value. It is straightforward
to observe the stated complexity of one iteration of the while-loop.

It is left to argue that the final output B′ has cost at most C(B). We prove this inductively
by the different types of packet movements. Consider first a packet movement of type (1). Let
B and B′ be the profiles before and after packet ik has been moved from e to fi, respectively.
We obtain (by using subadditivity and assumption (1))

C(B′)− C(B) = (cfi(B′)− cfi(B) + di,fi)− (ce(B)− ce(B′) + di,e)
≤ cfi

({i}) + di,fi
− (ce(B)− ce(B′) + di,e)

= ∆̄e
i (B)− di,e + (ce(B′)− ce(B)) ≤ ∆̄e

i (B)− di,e < 0.

Now consider packet movements of type (2). We treat all movements occurring in one run of
the while loop in Line 7. Let B denote the profile before and B′ after all these movements.
Let Te(B) ⊆ Ne(B) denote the set of those players whose packet ik on e is moved to fi

for i ∈ Te(B) during the while loop. Let Fe(B) =
⋃

i∈Te(B){fi} and for i ∈ Te(B) define
Tfi

(B) = {j ∈ Te(B) | fj = fi}. We derive some useful observations. Before entering the
while loop, it holds

ce(B) >
∑

i∈Ne(B)

(
∆̄e

i (B)− di,e

)
=

∑
i∈Ne(B)\Te(B)

(
∆̄e

i (B)− di,e

)
+
∑

i∈Te(B)

(
∆̄e

i (B)− di,e

)
. (3)

Moreover, after exiting the while loop it holds

ce(B′) ≤
∑

i∈Ne(B)\Te(B)

(
∆̄e

i (B)− di,e

)
. (4)

Thus, combining (3) and (4) we get

ce(B)− ce(B′) >
∑

i∈Te(B)

(
∆̄e

i (B)− di,e

)
. (5)

Putting everything together, we obtain

C(B′)− C(B) =
∑

fi∈Fe(B)

(
cfi (B′)− cfi (B)

)
+
∑

i∈Te(B)

di,fi −
(

ce(B)− ce(B′) +
∑

i∈Te(B)

di,e

)
≤

∑
fi∈Fe(B)

∑
j∈Tfi

(B)

cfi ({i}) +
∑

i∈Te(B)

di,fi −
(

ce(B)− ce(B′) +
∑

i∈Te(B)

di,e

)
=

∑
i∈Te(B)

∆̄e
i (B)−

(
ce(B)− ce(B′) +

∑
i∈Te(B)

di,e

)
< 0,

where the first inequality follows from subadditivity, and the last inequality from (5). J

4 Single-Source Connection Games without Delays

In this section, we study connection games in an undirected graph G = (V,E) with a common
source vertex s ∈ V . Every player i wants to connect a player-specific terminal node ti ∈ V
to s. Consequently, every strategy Pi of player i is an (s, ti)-path in G. We denote the set of
paths for player i by Pi and the set of profiles by P . Furthermore we focus on fixed shareable
costs ce ≥ 0 and no player-specific delays di,e = 0, for all i ∈ N , e ∈ E.

For single-source games with delays, a black-box reduction is impossible to achieve, since
one can construct instances where no optimal solution is enforceable. To see this, take any
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multi-source multi-terminal connection game and introduce a new auxiliary source vertex
s. Then connect s to each si with an auxiliary edge ei, which has cost cei

= 0 and delays
di,ei

= 0, dj,ei
= M for all other players j (for some prohibitively large constant M). Now

in any equilibrium and any optimal state of the resulting game, player i will choose an
(s, ti)-path which begins with edge ei. Moreover, ei does not generate additional cost for
player i. As such, the optimal solutions, the Nash equilibria, and their total costs correspond
exactly to the ones of the original multi-source game. For the general multi-source case,
there are instances with no enforceable optimal solution (even for only two players, see [35]).

For connection games with fixed shareable costs and no delays, the state of the art for
polynomial-time cost sharing protocols is the Prim-Sharing protocol with a PoS of 2 [17].
Moreover, it is known that an optimal tree profile (a profile in which the union of player paths
constitute a tree) is always enforceable [5,17]. Our result for polynomial-time computation of
cheap enforceable profiles, stated in Theorem 5, represents a significant generalization – for
any (possibly non-enforceable) tree profile, Algorithm 2 (given in detail in [34]) computes an
enforceable profile that can only be cheaper in terms of total cost. Moreover, by combining
the result with existing approximation algorithms, we obtain a protocol with PoS of 1.39.

I Theorem 5. Let P be a strategy profile for a single-source connection game with fixed costs.
There is an enforceable profile P ′ with C(P ′) ≤ C(P ) that can be computed by Algorithm 2
in polynomial time.

It is straightforward that for fixed costs we can transform each profile P into a tree
profile P̂ , in which the union of player paths constitute a tree T , without increasing the cost.
Over the course of the algorithm, we adjust this tree and construct a cost sharing for it in a
bottom-up fashion. The approach has similarities to an approach for obtaining approximate
equilibria for single-source cost sharing games with arbitrary sharing [5]. However, our
algorithm exploits crucial properties of separable protocols, thereby providing an exact Nash
equilibrium and polynomial running time.

When designing a separable protocol based on a state P̂ , we can always assume that
when a player i deviates unilaterally to one or more edges e ∈ G \ P̂i, she needs to pay all of
ce. As such, player i always picks a collection of shortest paths with respect to ce between
pairs of nodes on her current path P̂i. All these paths in G are concisely represented in the
algorithm as “auxiliary edges”. The algorithm initially sets up an auxiliary graph Ĝ given by
T and the set of auxiliary edges based on P̂ . It adjusts the tree T by removing edges of T
and adding auxiliary edges in a structured fashion.

We first show in the following Lemma 6 (for a proof see [34]) that this adjustment
procedure improves the total cost of the tree, and that the final tree T̂ is enforceable in Ĝ.
In the corresponding cost sharing, every auxiliary edge contained in T̂ is completely paid for
by a single player that uses it. In the subsequent proof of Theorem 5, we only need to show
that for the auxiliary edges in T̂ , the edge costs of the corresponding shortest paths in G can
be assigned to the players such that we obtain an equilibrium in G. The proof shows that
the profile P ′ evolving in this way is enforceable in G and has cost no larger than P .

I Lemma 6. Algorithm 2 computes a cost sharing of a feasible tree T̂ in the graph Ĝ. The
total cost C(T̂ ) ≤ C(T ), every auxiliary edge in T̂ is paid for by a single player, and the
corresponding profile P̂ is enforceable in Ĝ.

Proof of Theorem 5. The previous lemma shows that the algorithm computes a cost sharing
of a tree T̂ in Ĝ, such that every player is happy with the path P̂i and every auxiliary edge
in T̂ is paid for completely by a single player. We now transform P̂ into P ′ by replacing each

ICALP 2018



154:10 Efficient Black-Box Reductions for Separable Cost Sharing

auxiliary edge e = (u, v) ∈ P̂i by the corresponding shortest path P (u, v) in G. We denote
by Ei the set of edges introduced in the shortest paths for auxiliary edges in P̂i. For the
total cost of the resulting profile we have that C(P ′) ≤ C(P̂ ) ≤ C(P ), since the sets Ei can
overlap with each other or the non-auxiliary edges of T̂ .

We show that P ′ is enforceable by transforming the cost sharing constructed in function
ĉ into separable cost sharing functions as follows. Initially, set ξi,e(P ′) = 0 for all e ∈ E
and i ∈ N . Then, for each non-auxiliary edge e ∈ T̂ we assign ξi,e(P ′) = ĉe(i) if e ∈ P̂i and
ξi,e(P ′) = 0 otherwise. Finally, number players arbitrarily from 1 to n and proceed in that
order. For player i, consider the edges in Ei. For every e ∈ Ei, if

∑
j<i ξj,e(P ′) = 0, then set

ξi,e(P ′) = ce.
This yields a budget-balanced assignment for state P ′. As usual, if a player i deviates

in P ′ from P ′i to P ′′i , we can assume player i is assigned to pay the full cost ce for every
edge e ∈ P ′′i \ P ′i . To show that there is no profitable deviation from P ′, we first consider
a thought experiment, where every edge in Ei comes as a separate edge bought by player
i. Then, clearly P ′ is enforceable – the cost of P ′i with ξ is exactly the same as the cost of
P̂ with ĉ in Ĝ. Moreover, any deviation P ′′i can be interpreted as an (s, ti)-path in Ĝ by
replacing all subpaths consisting of non-auxiliary edges in P ′′ by the corresponding auxiliary
edge of Ĝ. As such, the cost of P ′′i is exactly the same as the cost of the corresponding
deviation in Ĝ. Now, there is not a separate copy for every edge in Ei. The set Ei can
overlap with other sets Ej and/or non-auxiliary edges. Then player i might not need to pay
the full cost on some e ∈ Ei. Note, however, every edge for which player i pays less than ce

is present in P ′i as well. Hence, P ′′i cannot improve over P ′i due to this property. J

The result continues to hold for various generalizations. For example, we can immediately
apply the arguments in directed graphs, where every player i seeks to establish a directed
path between ti and s. Moreover, the proof can also be applied readily for a group-connection
game, where each player wants to establish a directed path to s from at least one node of a
set Vi ⊂ V . For this game, we simply add a separate super-terminal ti for every player i and
draw a directed edge of cost 0 from ti to every node in Vi.

I Corollary 7. Let P be a strategy profile for a single-source group-connection game in
directed graphs with fixed costs. There is an enforceable profile P ′ with C(P ′) ≤ C(P ) that
can be computed by Algorithm 2 in polynomial time.

5 Connection Games and Graph Structure

In this section, we consider connection games played in undirected graphs G = (V,E) with
player-specific source-terminal pairs. Each player i ∈ N has a source-terminal-pair (si, ti).
Consequently, every strategy Pi of player i is an (si, ti)-path in G. We denote the set of
paths for player i by Pi.

Note that we can assume w.l.o.g. that (G, (s1, t1), . . . , (sn, tn)) is irredundant, meaning
that each edge and each vertex of G is contained in at least one (si, ti)-path for some player
i ∈ N (nodes and edges not used by any player can easily be recognized (and then deleted)
by Algorithm Irredundant in [34]; adapted from Algorithm 1 in [18]).
For the special case without delays, enforceability was characterized via an LP in [35]. We
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can directly adapt this characterization as follows. For a strategy profile P = (P1, . . . , Pn):

LP(P ) max
∑

i∈N,e∈Pi

ξi,e s.t.:
∑

i∈Ne(P )

ξi,e ≤ ce∀e ∈ E with Ne(P ) 6= ∅,

∑
e∈Pi\P ′

i

(ξi,e + di,e) ≤
∑

e∈P ′
i
\Pi

(ce + di,e) ∀P ′i ∈ Pi ∀i ∈ N (NE)

ξi,e ≥ 0 ∀e ∈ Pi ∀i ∈ N

I Theorem 8. P is enforceable iff there is an optimal solution (ξi,e)i∈N,e∈Pi for LP(P ) with∑
i∈Ne(P ) ξi,e = ce ∀e ∈ E with Ne(P ) 6= ∅. (BB)

Given an optimal solution (ξi,e)i∈N,e∈Pi
for LP(P ) with the property (BB), the profile P

becomes a PNE in the game induced by ξ, which assigns for each i ∈ N and e ∈ E and each
strategy profile P ′ = (P ′1, . . . , P ′n) the following cost shares (these cost shares resemble those
introduced in [53]; the proof that P is a PNE can be directly adapted from [35]):

ξi,e(P ′) =


ξi,e, if i ∈ Se(P ′) = Se(P ),
ce, if i ∈ (Se(P ′) \ Se(P )) and i = min(Se(P ′) \ Se(P )),
ce, if i ∈ Se(P ′) ( Se(P ) and i = minSe(P ′),
0, else.

We now introduce a subclass of generalized series-parallel graphs for which we design a
polynomial time black-box reduction.

I Definition 9 (n-series-parallel graph). An irredundant graph (G, (s1, t1), . . . , (sn, tn)) is
n-series-parallel if, for all i ∈ N , the subgraph Gi (induced by Pi) is created by a sequence
of series and/or parallel operations starting from the edge si − ti. For an edge e = u− v, a
series operation replaces it by a new vertex w and two edges u−w,w−v; a parallel operation
adds to e = u− v a parallel edge e′ = u− v.

I Theorem 10. If (G, (s1, t1), . . . , (sn, tn)) is n-series-parallel, the following holds:
(1) Given an arbitrary strategy profile P , an enforceable strategy profile P ′ with cost C(P ′) ≤

C(P ), and corresponding cost share functions ξ, can be computed in polynomial time.
(2) For all cost functions c, d, every optimal strategy profile of (G, (s1, t1), . . . , (sn, tn), c, d)

is enforceable.
(3) For all edge costs c, an optimal Steiner forest of (G, (s1, t1), . . . , (sn, tn), c) can be

computed in polynomial time.

Proof Sketch for Theorem 10. We first describe how to compute, given an arbitrary profile
P = (P1, . . . , Pn), an enforceable strategy profile with cost at most C(P ). Assume that P is
not enforceable, and let (ξi,e)i∈N,e∈Pi

be an optimal solution for LP(P ). In the following,
we denote the variables (ξi,e)i∈N,e∈Pi as cost shares, although they do not correspond to a
budget-balanced cost sharing protocol (since P is not enforceable). There is at least one
edge f which is not completely paid, i.e.

∑
i∈Nf (P ) ξi,f < cf holds. The optimality of the

cost shares implies that each player i ∈ Nf (P ) has an alternative path P ′i with f /∈ P ′i
and equality in the corresponding LP(P )-inequality (so-called tight alternative of player i
that substitutes f). Furthermore, if the path Pi of player i contains more than one edge
which is not completely paid, there is a tight alternative P ′i for player i which substitutes all
non-paid edges. Figure 1 illustrates this for the case that Pi (straight edges) contains the
three non-paid edges f, g, h, and player i substitutes them by using P ′i (thick edges).

ICALP 2018
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si tifg h

Figure 1 Illustration for substitution of nonpaid edges.

The high-level idea of the algorithm now is that all players with unpaid edges in their
paths deviate from those edges by using tight alternatives until we reach a strategy profile
in which all edges are completely paid. This strategy profile will then be enforceable and
cheaper than P . In the following we explain this in more detail. Let P ′ = (P ′1, . . . , P ′n) be the
strategy profile which results from P if all players with unpaid edges in their paths substitute
all these edges by a tight alternative path (as described above). Furthermore we define cost
shares (again not nec. budget-balanced) for P ′ (for each player i ∈ N, e ∈ P ′i ):

ξi,e(P ′) =
{
ξi,e, for e ∈ P ′i ∩ Pi,

ce, for e ∈ P ′i \ Pi.

If
∑

i∈Ne(P ′) ξi,e(P ′) ≥ ce holds for all edges e with Ne(P ′) 6= ∅, the profile P ′ has the
desired properties: The cost of P ′ is strictly smaller than P since the private costs of
the players remain unchanged if they use tight alternatives. Furthermore the cost shares
(ξi,e(P ′))i∈N,e∈P ′

i
induce a feasible solution of LP(P ′) with (BB); thus P ′ is enforceable (we

possibly need to decrease some cost shares to get a feasible solution of LP(P ′)).
It remains to consider the case that there is at least one edge f which is not completely
paid, i.e. for which

∑
i∈Nf (P ′) ξi,f (P ′) < cf holds. We can show that all users of nonpaid

edges again have tight alternatives which substitute those edges, therefore we can again
update the strategy profile (resulting in P ′′) and the corresponding cost shares. If now all
edges are completely paid, P ′′ has the desired properties. Proceeding in this manner, we
can show that one finally reaches a strategy profile for which all edges are completely paid;
thus it is enforceable and cheaper than the profile P . Algorithm n-SePa in [34] summarizes
the described procedure. To complete the proof of the first statement of Theorem 10, it
remains to show that P ′ and ξ can be computed in polynomial time, i.e. Algorithm n-SePa
has polynomial running time. This follows from two facts. First, the number of strategy
profiles that we have to consider until we reach the desired strategy profile is bounded by |P |,
the number of edges in the union of the paths P1, . . . , Pn. Second, we can solve LP(P ) in
polynomial time. To this end we show that, for every player i, we do not need to consider all
paths P ′i ∈ Pi in (NE) of LP(P ), which can be exponentially many paths, but only a set of
alternatives Ai of polynomial cardinality. Algorithm Alternatives(i) in [34] computes this
set of alternatives. This completes the proof sketch for the first statement of Theorem 10.

Our analysis of the cost of P ′ immediately implies that every optimal strategy profile has
to be enforceable: Otherwise Algorithm n-SePa computes a strategy profile with strictly
smaller cost; contradiction. Thus the second statement of Theorem 10 holds.

The third statement follows from [7] where it is shown that an optimal Steiner forest can
be computed in polynomial time if the underlying graph has treewidth at most 2. We show
that every n-series-parallel graph is generalized series-parallel, and since these graphs have
treewidth at most 2, the desired result follows. For a full proof of Theorem 10, see [34]. J

I Remark. The first two results of Theorem 10 can be generalized to nonnegative, non-
decreasing and discrete-concave shareable edge cost functions. However, we do not know
whether or not polynomial running time can be guaranteed.



T. Harks, M. Hoefer, A. Huber, and M. Surek 154:13

We now demonstrate in Theorem 11 (for a proof see [34]) that the assumption of n-series-
parallel graphs is in some sense well justified. Recall that a generalized series-parallel graph
is created by a sequence of series, parallel, and/or add operations starting from a single edge,
where an add operation adds a new vertex w and connects it to an existing vertex v by the
edge w−v. The proofs of Theorem 10 and Theorem 11 show that the n-series-parallel graphs
form a proper subclass of the generalized series-parallel graphs.

I Theorem 11. For n ≥ 3 players, there is a generalized series-parallel graph with fixed edge
costs and no player-specific delays, so that the unique optimal Steiner forest is not enforceable.
Therefore, a black-box reduction as for n-series-parallel graphs is impossible for generalized
series-parallel graphs (even without player-specific delays).
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Abstract
We study the price of anarchy of mechanisms in the presence of risk-averse agents. Previous work
has focused on agents with quasilinear utilities, possibly with a budget. Our model subsumes this
as a special case but also captures that agents might be less sensitive to payments than in the risk-
neutral model. We show that many positive price-of-anarchy results proved in the smoothness
framework continue to hold in the more general risk-averse setting. A sufficient condition is that
agents can never end up with negative quasilinear utility after playing an undominated strategy.
This is true, e.g., for first-price and second-price auctions. For all-pay auctions, similar results
do not hold: We show that there are Bayes-Nash equilibria with arbitrarily bad social welfare
compared to the optimum.
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1 Introduction

Many practical, “simple” auction mechanisms are not incentive compatible, making it
beneficial for agents to behave strategically. A standard example is the first-price auction, in
which one item is sold to one of n agents. Each of these agents is asked to report a valuation;
the item is given to the agent reporting the highest value, who then has to pay what he/she
reported. A common way to understand the effects of strategic behavior is to study resulting
equilibria and to bound the price of anarchy. That is, one compares the social welfare that
is achieved at the (worst) equilibrium of the induced game to the maximum possible welfare.
Typical equilibrium concepts are Bayes-Nash equilibria and (coarse) correlated equilibria,
which extend mixed Nash equilibria toward incomplete information or learning settings
respectively. A key assumption in these analyses is that agents are risk neutral : Agents are
assumed to maximize their expected quasilinear utility, which is defined to be the difference
of the value associated to the outcome and payment imposed to the agent. So, an agent
having a value of 1 for an item would be indifferent between getting this item with probability
10% for free and getting it all the time, paying 0.9.
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However, there are many reasons to believe that agents are not risk neutral. For instance,
in the above example the agent might favor the certain outcome to the uncertain one.
Therefore, in this paper, we ask the question: What “simple” auction mechanisms preserve
good performance guarantees in the presence of risk-averse agents?

The standard model of risk aversion in economics (see, e.g., [16]) is to apply a (weakly)
concave function to the quasilinear term. That is, if agent i’s outcome is xi and his payment
is pi, his utility is given as ui(xi, pi) = hi(vi(xi) − pi), where hi : R → R is a weakly
concave, monotone function. That is, for y, y′ ∈ R and for all λ ∈ [0, 1], it holds that
hi(λy+ (1−λ)y′) ≥ λhi(y) + (1−λ)hi(y′). Agent i is risk neutral if and only if hi is a linear
function. If the function is strictly concave, this has the effect that, by Jensen’s inequality,
the utility for fixed xi and pi is higher than for a randomized xi and pi with the same
expected vi(xi)− pi.

We compare outcomes based on their social welfare, which is defined to be the sum of
utilities of all involved parties including the auctioneer. That is, it is the sum of agents’
utilities and their payments SW(x,p) =

∑
i ui(xi, pi) +

∑
i pi. In the quasilinear setting

this definition of social welfare coincides with the sum of values
∑
i vi(xi). With risk-averse

utilities they usually differ. However, all our results bound the sum of values and therefore
also hold for this benchmark.

We assume that the mechanisms are oblivious to the hi-functions and work like in the
quasilinear model. Only the individual agent’s perception changes. This makes it necessary
to normalize the hi-functions because otherwise they could be on different scales, e.g., if
h1(y) = y and h2(y) = 1000 · y, which would be impossible for the mechanism to cope with
without additional information. Therefore, we will assume that ui(x, pi) = vi(x) if pi = 0
and that ui(x, pi) = 0 if pi = vi. That is, for the two cases that pi is either 0 or the full
value, the utility matches exactly the quasilinear one. However, due to risk aversion, the
agents might be less sensitive to payments.1

1.1 Our Contribution
We give bounds on the price of anarchy for Bayes-Nash and (coarse) correlated equilibria of
mechanisms in the presence of risk-averse agents. Our positive results are stated within the
smoothness framework, which was introduced by [24]. We use the version that is tailored to
quasilinear utilities by [26], which we extend to mechanism settings with general utilities (for
a formal definition see Section 4). Our main positive result states that the loss of performance
compared to the quasilinear setting is bounded by a constant if a slightly stronger smoothness
condition is fulfilled.

I Main Result 1. Given a mechanism with price of anarchy α in the quasilinear model
provable via smoothness such that the deviation guarantees non-negative utility, then this
mechanism has price of anarchy at most 2α in the risk-averse model.

This result relies on the fact that the deviation action to establish smoothness guarantees
agents non-negative utility. A sufficient condition is that all undominated strategies never
have negative utility. First-price and second-price auctions satisfy this condition, we thus get
constant price-of-anarchy bounds for both of these auction formats.

1 We note here that this will not in turn allow the mechanism to arrive at huge utility gains, as compared
to the quasilinear model, for example, by increasing payments arbitrarily. Indeed, Lemma 1 in Section 3
will show that the difference between the two optima is bounded by at most a multiplicative factor of 2.



T. Kesselheim and B. Kodric 155:3

In an all-pay auction every positive bid can lead to negative utility. Therefore, the positive
result does not apply. As a matter of fact, this is not a coincidence because, as we show,
equilibria can be arbitrarily bad.

I Main Result 2. The single-item all-pay auction has unbounded price of anarchy for
Bayes-Nash equilibria, even with only three agents.

This means that although equilibria of first-price and all-pay auctions have very similar
properties with quasilinear utilities, in the risk-averse setting they differ a lot. We feel that
this to some extent matches the intuition that agents should be more reluctant to participate
in an all-pay auction compared to a first-price auction.

In our construction for proving Main Result 2, we give a symmetric Bayes-Nash equilibrium
for two agents. The equilibrium is designed in such a way that a third agent of much higher
value would lose with some probability with every possible bid. Losing in an all-pay auction
means that the agent has to pay without getting anything, resulting in negative utility. In
the quasilinear setting, this negative contribution to the utility would be compensated by
respective positive amounts when winning. For the risk-averse agent in our example, this is
not true. Because of the risk of negative utility, he prefers to opt out of the auction entirely.

We also consider a different model of aversion to uncertainty, in which solution concepts
are modified. Instead of evaluating a distribution over utilities in terms of their expectation,
agents evaluate them based on the expectation minus a second-order term. We find that this
model has entirely different consequences on the price of anarchy. For example, the all-pay
auction has a constant price of anarchy in correlated and Bayes-Nash equilibria, whereas the
second-price auction can have an unbounded price of anarchy in correlated equilibria.

1.2 Related Work
Studying the impact of risk-averseness is a regularly reoccurring theme in the literature. A
proposal to distinguish between money and the utility of money, and to model risk aversion
by a utility function that is concave first appeared in [1]. The expected utility theory, which
basically states that the agent’s behavior can be captured by a utility function and the agent
behaves as a maximizer of the expectation of his utility, was postulated in [27]. This theory
does not capture models that are standardly used in portfolio theory, “expectation minus
variance” or “expectation minus standard deviation” [14], the latter of which we also consider
in Section 7.

In the context of mechanisms, one usually models risk aversion by concave utility func-
tions. One research direction in this area is to understand the effects of risk aversion on a
given mechanism. For example, [6] studies symmetric equilibria in all-pay auctions with a
homogenous population of risk-averse players. Due to symmetry and homogeneity, in this
case, equilibria are fully efficient, that is, the price of anarchy is 1. In [18] a similar analysis
for auctions with a buyout option is performed; [10] considers customers with heterogeneous
risk attitudes in mechanisms for cloud resources. In [4] it is shown that for certain classes of
mechanisms the correlated equilibrium is unique and has a specific structure depending on
the respective valuations but independent of the actual utility function. One consequence of
this result is that risk aversion does not influence the allocation outcome or the revenue.

Another direction is to design mechanisms for the risk-averse setting. For example, the
optimal revenue is higher because buyers are less sensitive to payments. In a number of
papers, mechanisms for revenue maximization are proposed [19, 17, 25, 11, 2, 7]. Furthermore,
randomized mechanisms that are truthful in expectation lose their incentive properties if agents
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are not risk neutral. Black-box transformations from truthful-in-expectation mechanisms
into ones that fulfill stronger properties are given in [3] and [8].

Studying the effects of risk aversion also has a long history in game theory, where different
models of agents’ attitudes towards risk are analyzed. One major question is, for example, if
equilibria still exist and if they can be computed [5, 9]. Price of anarchy analyses have so far
only been carried out for congestion games. Tight bounds on the price of anarchy for atomic
congestion games with affine cost functions under a range of risk-averse decision models are
given in [23].

The smoothness framework was introduced by [24]. Among others, [26] tailored it to the
quasilinear case of mechanisms. It is important to remark here that our approach is different
from the one taken by [20]. They use the smoothness framework to prove generalized price of
anarchy bounds for nonatomic congestion games in which players have biased utility functions.
They assume that players are playing the “wrong game” and their point of comparison is the
“true” optimal social welfare, meaning that the biases only determine the equilibira but do
not affect the social welfare. We take the utility functions as they are, including the risk
aversion, to evaluate social welfare in equilibria and also to determine the optimum, which
makes our models incomparable.

For precise relation of von Neumann-Morgenstern preferences to mean-variance preferences,
see for instance [15]. Mean-variance preferences were explored for congestion games in [21, 22],
while [13] studies the bidding behavior in an all-pay auction depending on the level of variance-
averseness.

2 Preliminaries

2.1 Setting

We consider the following setting: There is a set N of n players and X is the set of possible
outcomes. Each player i has a utility function uθii , which is parameterized by her type
θi ∈ Θi. Given a type θi, an outcome x ∈ X , and a payment pi ≥ 0, her utility is uθii (x, pi).
The traditionally most studied case are quasilinear utilities, in which types are valuation
functions vi ∈ Vi, vi : X → R and uvii (x, pi) = vi(x) − pi. Throughout this paper, we will
refer to quasilinear utilities by ûvii .

For fixed utility functions and types, the social welfare of an outcome x ∈ X and payments
(pi)i∈N is defined as SWθ(x,p) :=

∑
i∈N u

θi
i (x, pi) +

∑
i∈N pi. In the quasilinear case, this

simplifies to
∑
i∈N vi(x). Unless noted otherwise, by OPT(θ), we will refer to the optimal

social welfare under type profile θ, i.e., maxx,p SWθ(x,p).
A mechanism is a triple (A, X, P ), where for each player i, there is a set of actions Ai

and A = ×iAi is the set of action profiles, X : A → X is an allocation function that maps
actions to outcomes and P : A → Rn+ is a payment function that maps actions to payments
pi for each player i. Given an action profile a ∈ A, we will use the short-hand notation uθii (a)
to denote uθii (X(a), pi).

2.2 Solution Concepts

In the setting of complete information, the type profile θ is fixed. We consider (coarse)
correlated equilibria, which generalize Nash equilibria and are the outcome of (no-regret)
learning dynamics. A correlated equilibrium (CE) is a distribution a over action profiles from
A such that for every player i and every strategy ai in the support of a and every action
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a′i ∈ Ai, player i does not benefit from switching to a′i whenever he was playing ai. Formally,

Ea−i|ai [ui(a)] ≥ Ea−i|ai [ui(a
′
i,a−i)], ∀a′i ∈ Ai, ∀i .

In incomplete information, the type of each player is drawn from a distribution Fi over
her type space Θi. The distributions are common knowledge and the draws are independent
among players. The solution concept we consider in this setting is the Bayes-Nash Equilibrium.
Here, the strategy of each player is now a (possibly randomized) function si : Θi → Ai. The
equilibrium is a distribution over these functions si such that each player maximizes her
expected utility conditional on her private information. Formally,

Eθ−i|θi [u
θi
i (s(θ))] ≥ Eθ−i|θi [u

θi
i (ai, s−i(θ−i))], ∀ai ∈ Ai, ∀θi ∈ Θi, ∀i .

The measure of efficiency is the expected social welfare over the types of the players: given
a strategy profile s : ×i Θi → ×iAi, we consider Eθ[SWθ(s(θ))]. We compare the efficiency
of our solution concept with respect to the expected optimal social welfare Eθ[OPT(θ)].

The price of anarchy (PoA) with respect to an equilibrium concept is the worst possible
ratio between the optimal expected welfare and the expected welfare at equilibrium, that is

PoA = max
F

max
D∈EQ(F )

Eθ∼F [OPT(θ)]
Eθ∼F,a∼D[SWθ(a)]

,

where by F = F1×· · ·×Fn we denote the product distribution of the players’ type distributions
and by EQ(F ) the set of all equilibria, which are probability distributions over action profiles.

We assume that players always have the possibility of not participating, hence any rational
outcome has non-negative utility in expectation over the non-available information and the
randomness of other players and the mechanism.

3 Modeling Risk Aversion

When modeling risk aversion, one wants to capture the fact that a random payoff (lottery) X
is less preferred than a deterministic one of value E[X]. The standard approach is, therefore,
to apply a concave non-decreasing function h : R→ R to X and consider h(X) instead. By
Jensen’s inequality, we now know E[h(X)] ≤ h(E[X]).

In the case of mechanism design, the utility of a risk-neutral agent is defined as the
quasilinear utility vi(x)− pi. That is, if an agent has a value of 1 for an item and has to pay
0.9 for it, then the resulting utility is 0.1. The expected utility is identical if the agent only
gets the item with probability 0.1 for free. To capture the effect that the agent prefers the
certain outcome to the uncertain one, we again apply a concave function hi : R→ R to the
quasilinear term vi(x)− pi. We then consider utility functions ui(x, pi) = hi(vi(x)− pi) in
the setting described in Section 2. Note that the mechanisms we consider do not know the
hi-functions. They work as if all utility functions were quasilinear.

We want to compare outcomes based on their social welfare. We use the definition of
social welfare being the sum of utilities of all involved parties including the auctioneer. That
is, SW(x,p) =

∑
i∈N ui(x, pi) +

∑
i∈N pi. It is impossible for any mechanism to choose good

outcomes for this benchmark if the hi-function are arbitrary and unknown. Therefore, we
assume that utility functions are normalized so that the utility matches the quasilinear one
for pi = 0 and pi = vi(x) (see Figure 1). In more detail, we assume the following normalized
risk-averse utilities:
1. uvii (x, pi) ≥ uvii (x, p′i) if pi ≤ p′i (monotonicity)
2. uvii (x, pi) = 0 if pi = vi(x) (normalization at pi = vi(x))
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pi

ui(x, pi)

vi(x)

vi(x)

Figure 1 Normalized risk-averse utility function (bold) and quasilinear utility function for a fixed
allocation x and varying payment pi.

3. uvii (x, pi) = vi(x) if pi = 0 (normalization at pi = 0)
4. uvii (x, pi) ≥ vi(x) − pi if 0 ≤ pi ≤ vi(x) and uvii (x, pi) ≤ vi(x) − pi otherwise (relaxed

concavity)

Assumption 4 is a relaxed version of concavity that suffices our needs for the positive
results. Our negative results always fulfill concavity.

As an effect of normalization, the optimal social welfare of the risk-averse setting can be
bounded in terms of the optimal sum of values, which coincides with the social welfare for
quasilinear utilities.

I Lemma 1. Given valuation functions (vi)i∈N and normalized risk-averse utilities (uvii )i∈N ,
let OPT denote the optimal social welfare with respect to utilities (uvii )i∈N and ÔPT denote
the optimal social welfare with respect to quasilinear utilities (ûvii )i∈N . Then, OPT ≤ 2ÔPT.

Proof. Let x, p denote the outcome and payment profile that maximizes the social welfare∑
i∈N u

vi
i (x, pi)+

∑
i∈N pi. Consider a fixed player i. If 0 ≤ pi ≤ vi(x), then by monotonicity

of uvii (x, ·) and Assumption 3, uvii (x, pi) + pi ≤ uvii (x, 0) + pi ≤ 2vi(x). If pi > vi(x), then
we know from Assumption 4 that uvii (x, pi) + pi ≤ vi(x). So, always, uvii (x, pi) + pi ≤ 2vi(x).

By taking the sum over all players, we get OPT =
∑
i∈N u

vi
i (x, pi) +

∑
i∈N pi ≤∑

i∈N 2vi(x) ≤ 2ÔPT. J

As a consequence, the optimal social welfare changes only within a factor of 2 by risk
aversion and we may as well take ÔPT as our point of comparison. A VCG mechanism,
for example, is still incentive compatible under risk-averse utilities but optimizes the wrong
objective function. Lemma 1 shows that it is still a constant-factor approximation to optimal
social welfare. However, in simple mechanisms, the agents’ strategic behavior may or may
not change drastically under risk aversion, depending on the mechanism. This way, equilbria
and outcomes can possibly be very different.

4 Smoothness Beyond Quasilinear Utilities

Most of our positive results rely on the smoothness framework. It was introduced by [24] for
general games. There are multiple adaptations to the quasilinear mechanism-design setting.
We will use the one by [26]. As our utility functions will not be quasilinear, in this section
we first observe that the framework can be extended to general utility functions. Note that
throughout this section, the exact definition of OPT(θ) is irrelevant. Therefore, it can be set
to the optimal social welfare but also to weaker benchmarks depending on the setting.

I Definition 2 (Smooth Mechanism). A mechanism M is (λ, µ)-smooth with respect to
utility functions (uθii )θi∈Θi,i∈N for λ, µ ≥ 0, if for any type profile θ ∈ ×iΘi and for any
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action profile a there exists a randomized action a∗i (θ, ai) for each player i, such that∑
i u

θi
i (a∗i (θ, ai),a−i) ≥ λOPT(θ)− µ

∑
i pi(a). We denote by uθii (a) the expected utility of

a player if a is a vector of randomized strategies.

Mechanism smoothness implies bounds on the price of anarchy. The following theorem
and its proof are analogous to the theorems in [26], the proof is therefore deferred to the full
version [12]. In cases where the deviation required by smoothness does not depend on ai, the
results extend to coarse correlated equilibria. The important point is that the respective
bounds mostly do not depend on the assumption of quasilinearity.

I Theorem 3. If a mechanism M is (λ, µ)-smooth w.r.t. utility functions (uθii )θi∈Θi,i∈N , then
any Correlated Equilibrium in the full information setting and any Bayes-Nash Equilibrium
in the Bayesian setting achieves efficiency of at least λ

max{1,µ} of OPT(θ) or of Eθ[OPT(θ)],
respectively.

In the standard single-item setting, one item is auctioned among n players, with their
valuations and actions (bids) both being real numbers. In the common auction formats, the
item is given to the bidder with the highest bid.

In a first-price auction, the winner has to pay her bid; the other players do not pay
anything. It is (1− 1/e, 1)-smooth w.r.t. quasilinear utility functions. In an all-pay auction,
all players have to pay their bid. It is (1/2, 1)-smooth w.r.t. quasilinear utility functions.
These smoothness results were given by [26]. They also show that simultaneous and sequential
compositions of smooth mechanisms are again smooth.

What is remarkable here is that first-price and all-pay auctions achieve nearly the same
welfare guarantees. We will show that in the risk-averse setting this is not true. While the
first-price auction almost preserves its constant price of anarchy, the all-pay auction has an
unbounded price of anarchy, even with only three players.

5 Quasilinear Smoothness Often Implies Risk-Averse Smoothness
(Main Result 1)

Our main positive result is that many price-of-anarchy guarantees that are proved via
smoothness in the quasilinear setting transfer to the risk-averse one. First, we consider
mechanisms that are (λ, µ)-smooth with respect to quasilinear utility functions. We show
that if the deviation strategy a∗ that is used to establish smoothness ensures non-negative
utility, then the price-of-anarchy bound extends to risk-averse settings at a multiplicative
constant loss.

I Theorem 4. If a mechanism is (λ, µ)-smooth w.r.t. quasilinear utility functions
(ûvii )i∈N,vi∈Vi and the actions in the support of the smoothness deviations satisfy ûi(a∗i ,a−i) ≥
0, ∀a−i, ∀i, then any Correlated Equilibrium in the full information setting and any Bayes-
Nash Equilibrium in the Bayesian setting achieves efficiency at least λ

2·max{1,µ} of the expected
optimal even in the presence of risk averse bidders.

Using Theorem 3, it suffices to prove the following lemma.

I Lemma 5. If a mechanism is (λ, µ)-smooth w.r.t. quasilinear utility functions (ûvii )i∈N,vi∈Vi
and the actions in the support of the smoothness deviations satisfy

ûi(a∗i ,a−i) ≥ 0, ∀a−i, ∀i , (1)

then the mechanism is (λ/2, µ)-smooth with respect to any normalized risk-averse utility
functions (uvii )i∈N,vi∈Vi .
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Proof. We start from an arbitrary action profile a and want to satisfy Definition 2. Since
there exist smoothness deviations s.t. ûi(a∗i ,a−i) = vi(x(a∗i ,a−i))−pi ≥ 0, ∀a−i, ∀i, we know
from property 4 of the risk aversion definition that uvii (a∗i ,a−i) ≥ û

vi
i (a∗i ,a−i). Therefore,∑

i

uvii (a∗i ,a−i) ≥
∑
i

ûvii (a∗i ,a−i) ≥ λÔPT− µ
∑
i

pi(a) ≥ λ

2OPT− µ
∑
i

pi(a) ,

where the last inequality follows from Lemma 1. J

Note that in order for (1) to hold, it is sufficient if all undominated strategies guarantee
non-negative quasilinear utility. For example, in a first-price auction, the only undominated
bids are the ones from 0 to vi. Regardless of the other players’ bids, these can never result
in negative utilities.

I Corollary 6. Under normalized risk-averse utilities, the first-price auction has a constant
price of anarchy for correlated and Bayes-Nash equilibria.

We in addition note here that the first part of Property 4 of the normalization assumption,
uvii (x, pi) ≥ vi(x) − pi, 0 ≤ pi ≤ vi(x), is not crucial for obtaining a result similar to
Theorem 4. Indeed, a relaxation of the form uvii (x, pi) ≥ C · (vi(x)− pi), 0 ≤ pi ≤ vi(x) for
0 < C < 1, C constant, would incur a loss of at most a factor of C in the efficiency bound of
Theorem 4. More details can be found in the full version [12].

For second-price auctions and their generalizations, for example, the just stated theorems
do not suffice to prove guarantees on the quality of equilibria. One in addition needs a no-
overbidding assumption and this is further taken care of in the framework of weak smoothness,
also introduced in [26]. We defer all definitions and results that deal with weak smoothness,
including the extension from quasilinear to general utility functions and risk-averse utilities
yielding a constant loss as compared to the quasilinear case, to the full version [12].

We also consider the setting where players have hard budget constraints. Note that in this
case the players’ preferences are not quasilinear already in the risk neutral case. Informally,
we show that if a mechanism is (λ, µ)-smooth w.r.t. quasilinear utility functions, then the
loss of performance in the budgeted setting is bounded by a constant, even in the presence
of risk-averse agents. All details can be found in the full version [12].

6 Unbounded Price of Anarchy for All-Pay Auctions (Main Result 2)

From the previous section, we infer that the constant price-of-anarchy bounds for first-price
and second-price auctions immediately extend to the risk-averse setting. This is not true for
all-pay auctions; by definition there is no non-trivial bid that always ensures non-negative
utility. Indeed, as we show in this section, the price of anarchy is unbounded in the presence
of risk-averse players. Missing calculation details can be found in the full version [12].

I Theorem 7. In an all-pay auction with risk-averse players, the PoA is unbounded.

The general idea is to construct a Bayes-Nash equilibrium with two players that very
rarely have high values and only then bid high values. We then add a third player who
always has a high value. However, as the first two players bid high values occasionally, there
is no possible bid that ensures he will surely win. This means, any bid has a small probability
of not getting the item but having to pay. Risk-averse players are more inclined to avoid this
kind of lotteries. In particular, making our third player risk-averse enough, he prefers the
sure zero utility of not participating to any way of bidding that always comes with a small
probability of negative utility.
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Proof of Theorem 7. We consider two (mildly) risk-averse players who both have the same
valuation distributions and a third (very) risk-averse player with a constant value. For a
large number M > 5, the first two players have values v1 and v2 drawn independently from
distributions with density functions of value 2 · (1 − (M − 1) · ε) on the interval [1/2, 1)
and value ε on the interval [1,M ], where ε = 1/M2. The third player always has value
1/3 · ln(M/2) for winning.

We will construct a symmetric pure Bayes-Nash equilibrium involving only the first two
players. It will be designed such that for the third player it is a best response to always bid
0, i.e., to opt out of the mechanism and never win the item. So, the combination of these
strategies will be a pure Bayes-Nash equilibrium for all three players.

Note that the social welfare of any equilibrium of this form is upper-bounded by the
optimal social welfare that can be achieved by the first two bidders. By Lemma 1, it is
bounded by

E[SW] ≤ 2 · E[max{v1, v2}] ≤ 2 · E[v1 + v2] = 2 · (E[v1] + E[v2]) = 4 · E[v1] ≤ 4 .

Furthermore, the third player’s value v3 = 1/3 · ln(M/2) is a lower bound to the optimal
social welfare in the construction containing all three players. So, as pointwise OPT(v) ≥
1/3 · ln(M/2), where v = (v1, v2, v3) ∈ V denotes the valuation profile, this implies that the
price of anarchy can be arbitrarily high.

We define the utility functions by setting

uvii (bi) =
{
hi(vi−bi)
h(vi) · vi if bi is the winning bid

hi(−bi)
h(vi) · vi otherwise

(2)

For the first two players, we use hi(x) := 1− e−x, i ∈ {1, 2}, so in particular increasing and
concave. For the third player, we set hi(x) = x for x ≥ 0 and hi(x) = C · x for x < 0, where
C = (16 · 1

3 · lnM/2) ·M2 ≥ 1. Again this function is increasing and concave2. Note that
the utility functions also satisfy normalizations at pi = vi(x) and at pi = 0. We see that in
this example risk aversion has the effect of heavily penalizing payments without winning the
auction.

I Claim 8. With the third player not participating, it is a symmetric pure Bayes-Nash
equilibrium for the first two players to play according to bidding function β : Vi → R+, i ∈
{1, 2}, such that

β(x) =
∫ x

1
2

f(t)(et − 1)
F (t) + (1− F (t))et dt , (3)

where F denotes the cumulative distribution function of the value and f denotes its density.

Proof. We will argue that playing according to β is always the unique best response if the
other player is playing according to β, too. Due to symmetry reasons, it is enough to argue
about the first player.

Let us fix player 1’s value v1 = x and consider the function g : R≥0 → R that is defined by
g(y) = E[ux1(b1 = y, b2 = β(v2), b3 = 0)]. We claim that g is indeed maximized at y = β(x).

2 Its slope is not an absolute constant. This is indeed necessary because the price of anarchy can be
bounded in terms of the slopes of the hi-functions as we show in the full version [12].
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We have3

g(y) = Pr[β(v2) ≤ y] · h1(x− y)
h1(x) · x+ (1− Pr[β(v2) ≤ y]) · h1(−y)

h1(x) · x

= x

h1(x)

[
F (β−1(y))

(
h1(x− y)− h1(−y)

)
+ h1(−y)

]
= xeyF (β−1(y)) + x(1− ey)

1− e−x .

The first derivative of this function is given by

g′(y) = xeyF (β−1(y)) + xey
d

dy
F (β−1(y))− x

1− e−x e
y .

The inverse function theorem implies d
dyF (β−1(y)) = f(β−1(y))

β′(β−1(y)) . Furthermore, as β′(t) =
f(t)(et−1)

F (t)+(1−F (t))et , we get for all t that f(t)
β′(t) = F (t)+(1−F (t))et

et−1 = (1 − F (t)) + 1
et−1 . This

simplifies g′(y) to

g′(y) = xey + xey

eβ−1(y) − 1
− xey

1− e−x = xey

(1− e−x)(eβ−1(y) − 1)

(
1− e−x+β−1(y)

)
.

Notice that the factor xey

(1−e−x)(eβ−1(y)−1)
is always positive. Therefore, we observe that

g′(y) = 0 if and only if e−x+β−1(y) = 1, which is equivalent to y = β(x). Furthermore,
g′(y) > 0 for y < β(x) and g′(y) < 0 for y > β(x). This means that y = β(x) has to be the
(unique) global maximum of g(y). J

I Claim 9. If the first two players are bidding according to (3), then it is a best response for
the third player to always bid 0.

Proof. We now show that the very risk-averse third player with valuation 1/3 · ln(M/2) will
indeed bid 0 because every bid b′3 > 0 will cause negative expected utility.

We distinguish two cases. For values of b′3 > 1
16 , we use that with a small probability one

of the two remaining players has a valuation of at least M − 1, which leads to negative utility.
For b′3 ≤ 1

16 on the other hand, he loses so often that his expected utility is again negative.
Let us first assume that the third player bids b′3 with 1

16 < b′3 ≤ v3. In this case, with
probability more than ε one of the first two players has value of at least M − 1. The bid of
this player with vi ≥M − 1 can be estimated as follows

β(vi) ≥ β(M − 1) ≥
∫ M−1

M/2

f(t)(et − 1)
1 + (1− F (t))et dt =

∫ M−1

M/2

ε(et − 1)
1 + ε(M − t)et dt

≥ 1
2(1− e−M2 )

∫ M−1

M/2

εet

ε(M − t)et dt = 1
2(1− e−M2 ) ln(M/2) > 1

3 ln(M/2) ,

which means that by bidding b′3 the third player loses with probability of at least ε = 1/M2.
For the expected utility, this implies

E[u3(b′3,b−3)] ≤ (1− ε)(v3 − b′3) + ε(−C · b′3) < 1
3 ln M2 −

1
16 · 16 · 1

3 ln M2 = 0 .

3 Note that the first step assumes tie breaking in favor of player 1. This is irrelevant for the future steps
as the involved probability distributions are continuous.
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In the case where the third player bids b′3, 0 < b′3 ≤ 1
16 , we need to be a bit more careful

with estimating the winning probability. We first give a lower bound on the bidding function
of the first player for v1 < 1

β(v1) ≥
∫ v1

1/2

2(1− M−1
M2 )(et − 1)

2(t− 1
2 )(1− M−1

M2 ) + (1− 2(t− 1
2 )(1− M−1

M2 )) · et
dt >

1
4

(
v1 −

1
2

)
.

Since for v1 ≥ 1, β(v1) > 1
16 with probability 1, this implies that with b′3, the third player

has a winning probability of at most

Pr[β(v1) ≤ b′3] ≤ Pr
[

1
4

(
v1 −

1
2

)
≤ b′3

]
= Pr

[
v1 ≤ 4b′3 + 1

2

]
< 2 · 4b′3 .

Now, having in mind that C = (16v3) ·M2 ≥ 32 · v3, the utility can be estimated as follows

E[u3(b′3,b−3)] ≤ Pr[β(v1) ≤ b′3] · (v3 − b′3)− Pr[β(v1) > b′3] · 32 · v3 · b′3

< 8b′3
(
−v3 −

1
16

)
< 0 .

So also in this case, the expected utility is negative. J

Combining the two claims, we have constructed a class of distributions and Bayes-Nash
equilibria with unbounded price of anarchy. J

As a final remark, we note that the first two bidders occasionally bid high only due to risk
aversion. In a symmetric Bayes-Nash equilibrium of the all-pay auction in the quasilinear
setting, all bids are always bounded by the expected value of a player (see full version [12]).
Therefore, such an equilibrium would not work as a point of departure.

7 Variance-Aversion Model

In this section, we consider a different model that tries to capture the effect that agents
prefer certain outcomes to uncertain ones. It is inspired by similar models in game theory
and penalizes variance of random variables. Rather than reflecting the aversion in the utility
functions, it is modeled by adapting the solution concept.

In the usual definition of equilibria involving randomization, the utility of a randomized
strategy profile is set to be the expectation over the pure strategies. The definition we
consider here is modified by subtracting the respective standard deviation. For a player i, the
utility of a randomized strategy profile a is given as uvii (a) = Eb∼a[ûvii (b)]− γ

√
Var[ûvii (b)],

so a player’s utility for an action profile is his expected quasilinear utility for this profile
minus the standard deviation multiplied by a parameter γ that determines the degree of
variance-averseness, 0 ≤ γ ≤ 1. As already mentioned, ûi(a) denotes the quasilinear utility
of player i for the action profile a.

Bayes-Nash Equilibria and correlated equilibria can be defined the same way as before,
always replacing expectations by the difference of expectation and standard deviation. The
formal definition for s(v) being a Bayes-Nash equilibrium in this setting is that ∀i ∈ N ,
∀vi ∈ Θi, ai ∈ Ai,

Ev−i [û
vi
i (s(v)) | vi]− γ

√
Var[ûvii (s(v)) | vi]

≥ Ev−i [û
vi
i (ai, s−i(v−i)) | vi] − γ

√
Var[ûvii (ai, s−i(v−i)) | vi] .
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Note that we again evaluate social welfare as agents perceive it. That is, for a randomized
strategy profile a, we set SWv(a) =

∑
i u

vi
i (a) +

∑
i pi(a).

Our first result shows that first-price and notably also all-pay auctions have a constant
price of anarchy in this setting. Note that even though the proof looks a lot like smoothness
proofs, it is not possible to phrase it within the smoothness framework, since here we are
dealing with a different solution concept.

I Theorem 10. Bayes-Nash Equilibria and Correlated Equilibria of the first-price and all-pay
auction have a constant price of anarchy in this model.

Proof. For simplicity, we will show the claim only for Bayes-Nash equilibria. The proof for
correlated equilibria works the same way with minor modifications to the notation.

Assume b is a Bayes-Nash equilibrium. We claim that Ev [SWv(b)] ≥ 1
16 · Ev[OPT] ,

where OPT denotes the value of social welfare in the allocation that maximizes it, i.e.
maximized sum of utility and payments of the agents.

Consider a fixed player j and a fixed valuation vj . Let q = Pr[maxi6=j bi ≤ 1
4 · vj ] denote

the probability that no other player’s bid exceeds 1
4 · vj .

Assume first that q ≤ 3
4 . Then, because the total social welfare lower bounded by the

payments Ev−j |vj [SWv(b)] ≥ (1− q) 1
4vj ≥

1
16vj .

On the other hand, if q ≥ 3
4 , since Ev−j |vj [SWv(b)] ≥ Ev−j |vj

[
u
vj
j ( vj4 , b−j)

]
,

Ev−j |vj [SWv(b)] ≥ vjq −
1
4vj − γvj

√
q(1− q) ≥

(
2− γ

√
3

4

)
vj ≥

1
16vj ,

where the first inequality is in fact an equality for the all-pay auction.
From here, by taking the expectation over vj and by weighing the right hand side by the

probability that OPT takes a particular agent, the theorem follows. J

This is contrasted by a correlated equilibrium with 0 social welfare in a setting with
positive values. Indeed, for the special case of λ = 1, we see that the variance-averse model
further differs from the risk-averse model described in previous sections.

I Observation 1. The PoA for CE of second price auctions is unbounded if γ = 1.

The proof can be found in the full version [12]. This is not only a difference between
smoothness and weak smoothness. Our final result is a mechanism that is (λ, µ)-smooth for
constant λ and µ but has unbounded price of anarchy.

I Theorem 11. For any constant γ > 0 there is a mechanism that is (λ, µ)-smooth with
respect to quasilinear utility functions for constant λ and µ but has unbounded price of
anarchy in the variance-aversion model.

Proof. Consider a setting with two items and two players, who have unit-demand valuation
functions such that 1

cvi,1 ≤ vi,2 ≤ cvi,1 for constant c ≥ 1. The players’ possible actions are
to either report one of the two items as preferred or to opt out entirely. Our mechanism first
assigns player 1 her (claimed) favorite item, then assigns player 2 the remaining one unless
she opts out. There are no payments. Obviously, this mechanism is ( 1

c , 0)-smooth because
the allocation is within a 1

c -factor of the optimal allocation by construction.
We will now construct a mixed Nash equilibrium of bad welfare. To this end, let

v1,1 = v1,2 = ε for some small ε > 0. This makes player 1 indifferent between items 1 and 2.
In particular, it is a best response to ask for item 1 with probability q−1

q and for item 2 with
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probability 1
q . We note at this point that in a Bayes-Nash equilibrium we could make this

respective action the unique best response by having random types.
For player 2, we set v2,1 = c, v2,2 = 1. She has the choice of participating or opting out.

Opting out implies utility 0, whereas participating implies

u2(a) = c+ q − 1
q

− γ

√
(c− 1)2(q − 1)

q2 = (c− 1)(1− γ
√
q − 1)

q
+ 1

Now, if we set q = c − 1, then u2(a) = 2 − γ
√
c− 2 which is negative for c > 4

γ2 + 2. We
further set c = 4

γ2 + 3. That is, player 2 prefers to opt out. This outcome has social welfare
ε whereas the optimal social welfare is c. J

Note that this last example shows that variance-averseness yields very strange preferences
for lotteries. In our example, the variance-averse player prefers not to participate although
any outcome in the (free) lottery has positive value.
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Abstract
Starting with Michail, Chatzigiannakis, and Spirakis work [20], the problem of Counting the
number of nodes in Anonymous Dynamic Networks has attracted a lot of attention. The problem
is challenging because nodes are indistinguishable (they lack identifiers and execute the same
program) and the topology may change arbitrarily from round to round of communication, as long
as the network is connected in each round. The problem is central in distributed computing as the
number of participants is frequently needed to make important decisions, such as termination,
agreement, synchronization, and many others. A variety of algorithms built on top of mass-
distribution techniques have been presented, analyzed, and also experimentally evaluated; some
of them assumed additional knowledge of network characteristics, such as bounded degree or
given upper bound on the network size. However, the question of whether Counting can be solved
deterministically in sub-exponential time remained open. In this work, we answer this question
positively by presenting Methodical Counting, which runs in polynomial time and requires
no knowledge of network characteristics. Moreover, we also show how to extend Methodical
Counting to compute the sum of input values and more complex functions without extra cost.
Our analysis leverages previous work on random walks in evolving graphs, combined with carefully
chosen alarms in the algorithm that control the process and its parameters. To the best of our
knowledge, our Counting algorithm and its extensions to other algebraic and Boolean functions
are the first that can be implemented in practice with worst-case guarantees.
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1 Introduction

How much information can one derive deterministically and distributedly from an arbitrarily
evolving connected graph in polynomial time? Can we learn its size, or compute some simple
Boolean functions, on its (distributed) input? In this work, we answer this question, posed
in [20], in the affirmative. Specifically, we address first the problem of Counting the number
of nodes of an Anonymous Dynamic Network (ADN) (and later extend to other algebraic
functions) with a distributed and deterministic protocol. After a polynomial number of
rounds of communication all nodes running our protocols obtain the result and stop. Our
protocols resemble mass-distribution algorithms, however, our method is novel and quite
complex as it has to deal with lack of node identities, lack of knowledge of network parameters,
and adversarial topology changes.

The problem has been thoroughly studied [20, 10, 11, 12, 9, 21, 6] because Counting is
central for distributed computing. Indeed, more complex tasks need the network size to make
various decisions on state agreement, synchronization, termination, and others (e.g. [14, 15]).
However, Anonymous Dynamic Networks pose a particularly challenging scenario. On one
hand, nodes are indistinguishable from each other. For instance, they may lack identifiers or
their number may be so massive that keeping record of them is not feasible. On the other
hand, the topology of the network is highly dynamic. Indeed, the subsets of nodes that may
communicate with each other may change all the time. All these features make ADN a valid
model for anonymous ad hoc communication and computation.

In such a restrictive scenario, finding a way of providing theoretical guarantees of determ-
inistic polynomial time has been elusive. Previous papers have either weaken the objective
(e.g., computing only upper bound, only stochastic guarantees, etc.), assumed availability of
network information (e.g., maximum number of neighbors, size upper bound, etc.), relied on
a stronger model of communication, or provided only superpolynomial time guarantees.

Methodical Counting uses no information about the network. After completing its
execution, all nodes obtain the exact size of the network and stop. Moreover, they stop all
at the same time, allowing the algorithm to be concatenated with other computations.

Our algorithm is based on nodes continuously sharing some magnitude, which we call
potential,3 resembling mass-distribution and push-pull algorithms. Unlike previous algorithms,
in Methodical Counting carefully and periodically (i.e. , “methodically”) some potential
is removed from the network, rather than greedily doing so continuously. This approach is
combined with another methodological innovation testing whether the candidate value (for
the network size) is within some polynomial range of the actual network size. This complex
strategy yields an algorithm in which the progress in mass-distribution can be analyzed
as a sequence of parametrized Markov chains (even though the algorithm itself is purely
deterministic) enhanced by mass drift and alarms controlling the process and its parameters.
Our analysis approach opens the path to study more complex tasks in Anonymous Dynamic
Networks applying similar techniques.

Finally, we also present a variety of extensions of Methodical Counting to compute
more complex functions. Most notably, we present an extension that, concurrently with
finding the network size, computes the sum of input values held at each node without
asymptotic time overhead. Having a method to compute the sum and network size, more
complex computations are possible in polynomial time as well. Indeed, we also describe how
to compute a variety of algebraic and Boolean functions.

3 In previous related works this quantity, used in a different way, was termed energy. We steer away from
such denomination to avoid confusion with node energy supply.
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To the best of our knowledge, ours are the first algorithms for anonymous dynamic
Counting and other algebraic computations that can be implemented in practice with
worst-case polynomial-time guarantees.

Roadmap. The rest of the paper is organized as follows. Model and notation are detailed
in Section 2. We overview previous work in Section 3 and present our results in Section 4.
Section 5 includes the details of Methodical Counting, and we prove its correctness and
running time in Section 6. Extensions to other functions are presented in Section 7.

2 Model, Problem, and Notation

The Counting Problem

The definition of the problem is simple. An algorithm solves the Counting Problem if, after
completing its execution, all nodes have obtained the exact size of the network and stop.

Anonymous Dynamic Networks

The following model is customary in the Anonymous Dynamic Networks literature. We
consider a network composed by a set V of n > 1 network nodes with processing and com-
munication capabilities. It was shown in [20] that Counting cannot be solved in Anonymous
Networks without the availability of at least one distinguished node in the network. Thus,
we assume the presence of such node called leader. Aside from the leader, we assume that all
other nodes are indistinguishable from each other. That is, we do not assume the availability
of labels or identifiers, and all non-leader nodes execute exactly the same program.

Each pair of nodes that are able to communicate define a communication link, and the set
of links is called the topology of the network. The nodes in a communication link are called
neighbors. The event of sending a message to neighbors is called a broadcast or transmission.
Nodes and links are reliable, in the sense that no communication or node failures occur.
Hence, a broadcasted message is received by all neighbors. Moreover, links are symmetric,
that is, if node a is able to send a message to node b, then b is able to send a message to a.

Without loss of generality, we discretize time in rounds. In any given round, a node may
broadcast a message, receive all messages from broadcasting neighbors, and carry out some
computations, in that order. Time needed for computations is assumed negligible.

The set of links among nodes may change from round to round, and nodes have no way
of knowing which were the neighbors they had before. These topology changes are arbitrary,
limited only to maintain the network connected in each round. That is, at any given round
the topology is such that there is a path, i.e., a sequence of links, between each pair of nodes,
but the set of links may change arbitrarily from round to round. This adversarial model of
dynamics was called 1-interval connectivity in [19].

The following notation will be used. The maximum number of neighbors that any node
may have at any given time, called the dynamic maximum degree, is denoted as ∆. An upper
bound on ∆ is denoted as dmax. The maximum length of a shortest path between any pair
of nodes at any given time is called the dynamic diameter and it is denoted as D. The
maximum length of an opportunistic shortest path between any pair of nodes over many
time slots is called the chronopath [13] and it is denoted as D.
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Table 1 Comparison of Counting protocols for Anonymous Dynamic Networks.

algorithm needs computes stops? complexity

size
upper
bound

N

dynamic
maximum
degree u.b.

dmax

time space

Degree
Counting [20] O(dn

max) O(n)

Conscious [10] n
O(eN2

N3) ⇒
O(ed2n

max d3n
max) using [20]

Unconscious [10] n No No theoretical
bounds

AOP [11]
Oracle
for each
node

n Eventually Unknown

EXT [9] n O(nn+4) EXPSPACE

Incremental
Counting [21] n O

(
n (2dmax)n+1 ln n

ln dmax

)
Methodical

Counting
[This work]

n O(n5 ln2 n) PSPACE

3 Previous Work

A comprehensive overview of work related to Anonymous Dynamic Networks can be found in
a survey by Casteigts et al. [5] and references in the papers cited here. The directly related
work overviewed in comparison with our results is summarized in Table 1.

With respect to lower bounds, it was proved in [8] that at least Ω(log n) rounds are
needed, even if D is constant. Also, Ω(D) is a lower bound since at least one node needs to
hear about all other nodes to obtain the right count.

Counting and Naming was already studied in [20] for dynamic and static networks,
showing that it is impossible to solve Counting without the presence of a distinguished node,
even if the network is static. The Counting protocol requires knowledge of an upper bound
on ∆, and obtains only an upper bound, which may be as bad as exponential.

Conscious Counting [10] computes the exact count, but it needs to start from an upper
bound, and it takes exponential time only if the size upper bound is tight. In the same work
and follow-up papers [11, 12], more challenging scenarios where ∆ is unknown are studied,
but protocols either do not terminate [10], or the protocol is terminated heuristically [12].
In experiments [12], such heuristic was found to perform well on dense topologies, but for
other topologies the error rate was high. Another protocol in [11] is shown to terminate
eventually, without running-time guarantees and under the assumption of having for each
node an estimate of the number of neighbors in each round. In [20] it was conjectured that
some knowledge of the network such as the latter would be necessary, but the conjecture was
disproved later in [9]. On the other hand the protocol in [9] requires exponential space.

Incremental Counting, presented recently in [21], reduced exponentially the best-known
running time guarantees. The protocol obtains the exact count, all nodes terminate simul-
taneously, the topology dynamics is only limited to 1-interval connectivity, it only requires
polynomial space, and it only requires knowledge of of an upper bound (dmax) on the dynamic
maximum degree. The running time is still exponential, but reducing from doubly-exponential
was an important step towards understanding the complexity of Counting.
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In a follow-up paper [6], Incremental Counting was tested experimentally showing a
promising polynomial behavior. The study was conducted on pessimistic inputs designed to
slow the convergence, such as bounded-degree trees rooted at the leader uniformly chosen
at random for each round, and a single path starting at the leader with non-leader nodes
permuted uniformly at random for each round. The protocol was also tested on static versions
of the inputs mentioned, classic random graphs, and networks where some disconnection is
allowed. The results exposed important observations. Indeed, even for topologies that stretch
the dynamic diameter, the running times obtained are below ∆n3. It was also observed
that random graphs, as used in previous experimental studies [12], reduce the convergence
time, and therefore are not a good choice to indicate worst-case behavior. These experiments
showed good behavior even for networks that sometimes are disconnected, indicating that
more relaxed models of dynamics, such as (α, β)-connectivity [13, 16], are worth to study.
All in all, the experiments in [6] showed that Incremental Counting behaves well in a variety
of pessimistic inputs, but not having a proof of what a worst-case input looks like, and being
the experiments restricted to a range of values of n far from the expected massive size of
an Anonymous Dynamic Network, a theoretical proof of polynomial time remained an open
problem even from a practical perspective.

In a recent manuscript [2] a polynomial Counting algorithm is presented relying on the
availability of an algorithm to compute average with polynomial convergence time. Such
average computation is modeled as a Markov chain with underlying doubly-stochastic matrix,
which requires topology information within two hops (cf. [23]). In our model of Anonymous
Dynamic Network, such information is not available, and gathering it may not be possible
due to possible topology changes from round to round.

Other studies also dealing with the time complexity of information gathering exist [7, 3,
24, 4, 22], but include in their model additional assumptions, such as the network having the
same topology frequently enough.

4 Our Contributions

We present a deterministic distributed algorithm, which we call Methodical Counting, to
compute the number of nodes in an Anonymous Dynamic Network. As opposed to previous
works, our algorithm does not require any knowledge of network characteristics, such as
dynamic maximum degree or an upper bound on the size. After O(n5 ln2 n) communication
rounds of running Methodical Counting, all nodes obtain the network size and stop at
the same round. To the best of our knowledge, this is the first polynomial deterministic
Counting algorithm in the pure model of Anonymous Dynamic Network.

Our algorithm distributes potential in a mass-distribution fashion resembling previous
works for Counting. The main novelty in our approach is that the leader participates in the
process as any other node, removing potential only after it has accumulated enough. This
approach allowed us to leverage previous work on random walks in evolving graphs. For this
approach to work, we combine it with testing whether the candidate value for the network
size is polynomially close to the actual value. Our approach also opens the path to study
more complex computations in Anonymous Dynamic Networks using the same analysis.

Finally, we also present extensions of Methodical Counting to compute more complex
functions. Most notably, we show how to modify Methodical Counting to compute the
sum of input values held by nodes at the same time than counting. Having an algorithm to
compute the network size and the sum of input values, we also show how to compute other
algebraic and Boolean functions.
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Algorithm 1 Methodical Counting algorithm for the leader. N is the set of neighbors
of the leader in the current round. The parameters d, p, r and τ are as defined in Theorem 6.
1: procedure Count
2: ρ← 0 // accumulator of consumed potential
3: Φ← 0 // current potential
4: k ← 2 // current estimate
5: status← normal // status=normal|alarm|done
6: while status 6= done do // iterating epochs
7: for phase = 1 to p do // iterating phases
8: for round = 1 to r do // iterating rounds
9: Broadcast 〈Φ, status〉 and Receive 〈Φi, statusi〉, ∀i ∈ N

10: if status = normal and |N | ≤ d−1 and ∀i ∈ N : statusi = normal then
11: Φ← Φ +

∑
i∈N Φi/d− |N |Φ/d // update potential

12: else // k is wrong
13: status← alarm

14: Φ← 1
/* r rounds completed */

15: if phase = 1 and Φ > τ then // k is wrong
16: status← alarm

17: Φ← 1
18: if status = normal then // prepare for next phase
19: ρ← ρ+ Φ
20: Φ← 0

/* p phases completed */
21: if status = normal and k − 1− 1/k ≤ ρ ≤ k − 1 then // the size is k

22: status← done

23: else // prepare for next epoch
24: ρ← 0
25: Φ← 0
26: k ← k + 1
27: status← normal

28: for round = 1 to k do // disseminate termination
29: Broadcast 〈status〉 and Receive 〈statusi〉, ∀i ∈ N

/* epoch completed */

30: return k

5 Methodical Counting

In this section we present Methodical Counting. First, we give the intuition of the
algorithm, the details can be found in Algorithms 1 and 2. (References to algorithm lines
are given as 〈algorithm#〉.〈line#〉.)

Initially, the leader is assigned a potential of 0 and all the other nodes are assigned a
potential of 1. Then, the algorithm is composed by epochs, each of which is divided into
phases composed by rounds of communication. Epoch k corresponds to a size estimate k
that is iteratively increased from epoch to epoch until the correct value n is found. Each
epoch is divided into p phases. The purpose of each phase is for the leader to collect as much
potential as possible from the other nodes in a mass-distribution fashion as follows.
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Algorithm 2 Methodical Counting algorithm for each non-leader node i. N is the
set of neighbors of i in the current round. The parameters d, p, r and τ are as defined in
Theorem 6.
1: procedure Count
2: Φ← 1 // current potential
3: k ← 2 // current estimate
4: status← normal // status=normal|alarm|done
5: while status 6= done do // iterating epochs
6: for phase = 1 to p do // iterating phases
7: for round = 1 to r do // iterating rounds
8: Broadcast 〈Φ, status〉 and Receive 〈Φi, statusi〉, ∀i ∈ N
9: if status = normal and |N | ≤ d−1 and ∀i ∈ N : statusi = normal then

10: Φ← Φ +
∑
i∈N Φi/d− |N |Φ/d // update potential

11: else // k is wrong
12: status← alarm

13: Φ← 1
/* r rounds completed */

14: if phase = 1 and Φ > τ then // k is wrong
15: status← alarm

16: Φ← 1
/* p phases completed */

17: for round = 1 to k do // disseminate termination
18: Broadcast 〈status〉 and Receive 〈statusi〉, ∀i ∈ N
19: if ∃i ∈ N : statusi = done then
20: status← done

21: if status 6= done then
22: k ← k + 1
23: status← normal

/* epoch completed */

24: return k

Each phase is composed by r rounds of communication. In each round, each node4
broadcasts its potential and receives the potential of all its neighbors. Each node keeps
only a fraction 1/d of the potentials received. The parameters p, r, and d are functions
of k. The specific functions needed to guarantee correctness and saught efficiency are
defined in Theorem 6. This varying way of distributing potential is different from previous
approaches using mass distribution. After communication, each node updates its own
potential accordingly (cf. Lines 1.11 and 2.10). That is, it adds a fraction 1/d of the
potentials received, and subtracts a fraction 1/d of the potential broadcasted times the
number of potentials received. Then, a new round starts.

At the end of each phase the leader “consumes” its potential. That is, it increases an
internal accumulator ρ with its current potential, which is zeroed for starting the next phase
(cf. Lines 1.19 and 1.20). A node stops the update of potential described, raises its potential
to 1, and broadcasts an alarm in each round until the end of the epoch if any of the following
happens: 1) at the end of the first phase its potential is above some threshold τ as defined in

4 As opposed to previous work, in Methodical Counting the leader also follows this procedure.
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Theorem 6 (cf. Lines 1.15 and 2.14), 2) at any round it receives more than d− 1 messages
(cf. Lines 1.12 and 2.11), or 3) at any round it receives an alarm (cf. Lines 1.12 and 2.11).
The alarm for case 1) allows the leader to detect that the estimate is wrong when k1+ε < n

for some ε > 0 (Lemmas 4 and 5), the alarm for case 2) allows the leader to detect that d is
too small and hence the estimate is wrong, and the alarm for case 3) allows dissemination of
all alarms. In the alarm status the potential is set to 1 to facilitate the analysis, but it is not
strictly needed by the algorithm.

At the end of each epoch, the leader checks the value of ρ. If k − 1− 1/k ≤ ρ ≤ k − 1
the current estimate is correct and the leader changes its status to “done” (cf. Line 1.21).
Otherwise, all its variables are reset to start a new epoch with the next estimate (cf. Line 1.23).
Before starting a new epoch the network is flooded with the status of the leader for k rounds
(cf. Lines 1.28 and 2.17). If k = n, the leader initiates message “done” and the k rounds are
enough for all the nodes to receive the “done” status and after completing the k rounds stop.
Otherwise, nodes will not receive the “done” status and after completing the k rounds they
start a new epoch.

6 Analysis

In this section we analyze Methodical Counting. References to algorithm lines are given
as 〈algorithm#〉.〈line#〉. We use standard notations I for the unit vector, and Lp for the
norm of vector x = (x1, x2, . . . , xn) as ||x||p = (

∑n
i=1 |xi|p)

1/p, for any p ≥ 1. Only for the
analysis, nodes are labeled as 0, 1, 2, . . . , n− 1, where the leader has label 0. The potential of
a node i at the beginning of round s of phase t is denoted as Φs,t[i], the potential of all nodes
is denoted as a vector Φs,t, and the aggregated potential is then ||Φs,t||1. The subindices s,
t, or both are omitted sometimes for clarity. We will refer to the potential right after the
last round of a phase as Φr+1. Round r + 1 does not exist in the algorithm, but we use
this notation to distinguish between the potential right before the leader consumes its own
potential (cf. Line 1.23) and the potential at the beginning of the first round of the next
phase.

First, we provide a broad description of our analysis of Methodical Counting. Consider
the vector of potentials Φi held by nodes at the beginning of any given phase i. The
way that potentials are updated in each round (cf. Lines 1.11 and 2.10) is equivalent to
the progression of a d-lazy random walk on the evolving graph underlying the network
topology [1], where the initial vector of potentials is equivalent to an initial distribution Πi

on the overall potential ||Φi||1 and the probability of choosing a specific neighbor is 1/d.
For instance, the initial vector of potentials Φ0 = 〈0, 1, 1, . . . 〉, corresponds to a distribution
Π0 = 〈0, 1/(n− 1), 1/(n− 1), . . . 〉 on the initial ||Φ0||1 = n− 1.

Note that our Methodical Counting is not a simple “derandomization” of the lazy
random walk on evolving graphs. First, in the Anonymous Dynamic Network model neighbors
cannot be distinguished, and even their number is unknown at transmission time (only at
receiving time the node learns the number of its neighbors). Second, due to unknown network
parameters, it may happen in an execution of Methodical Counting that the total
potential received could be bigger than 1. Third, our algorithm does not know a priori
when to terminate and provide result even with some reasonable accuracy, as the formulas
on mixing and cover time of lazy random walks depend on (a priori unknown) number of
nodes n. Nevertheless, we can still use some results obtained in the context of analogous
lazy random walks in order to prove useful properties of parts of algorithm Methodical
Counting, namely, some parts in which parameters are temporarily fixed and the number
of received messages does not exceed parameter d.
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It was shown in [1] that random walks on d-regular explorable evolving graphs have a
uniform stationary distribution, and bounds on the mixing and cover time were proved as
well. Moreover, it was observed that those properties hold even if the graph is not regular
and d is only an upper bound on the degree.5

Thus, for the cases where d is an upper bound on the number of neighboring nodes, we
analyze the evolution of potentials within each phase leveraging previous work on random
walks on evolving graphs. Specifically, we use the following result which is an extension of
Corollary 14 in [1].

I Theorem 1. (Corollary 14 in [1].) After t rounds of a dmax-lazy random walk on an
evolving graph with n nodes, dynamic diameter D, upper bound on maximum degree dmax,
and initial distribution Π0, the following holds:∣∣∣∣∣∣∣∣Πt −

I
n

∣∣∣∣∣∣∣∣2
2
≤
(

1− 1
dmaxDn

)t ∣∣∣∣∣∣∣∣Π0 −
I
n

∣∣∣∣∣∣∣∣2
2
.

In between phases the leader “consumes” its potential, effectively changing the distribution
at that point. Then, a new phase starts.

In Methodical Counting, given that d is a function of the estimate k, if the estimate
is low, there may be inputs for which d is not an upper bound on the number of neighbors.
We show in our analysis that in those cases the leader detects the error and after some time
all nodes increase the estimate.

First, we prove correctness when k = n in the following lemma. The proof, left to the
full version of this paper, is based on upper bounding the potential left in the system after
running the algorithm.

I Lemma 2. If d ≥ k and k = n, after running the Methodical Counting protocol for
p ≥ k

1−1/k ln(k(k − 1)) phases, each of r ≥ 4dk2 ln k rounds, the potential ρ consumed by the
leader is k − 1− 1/k ≤ ρ ≤ k − 1.

Lemma 2 shows that if ρ > k−1 or ρ < k−1−1/k we know that the estimate k is wrong,
but the complementary case, that is, k− 1− 1/k ≤ ρ ≤ k− 1, may occur even if the estimate
is k < n and hence the error has to be detected by other means. To prove correctness in that
case, we show first that if k < n ≤ k1+ε for some ε > 0 the leader must consume ρ > k − 1
potential if the protocol is run long enough. To ensure that d ≥ ∆ + 1, we restrict d ≥ k1+ε.
The proof of the following lemma, based again on upper bounding the potential left in the
system after running the algorithm, is left to the full version of this paper.

I Lemma 3. If 1 < k < n ≤ k1+ε ≤ d, ε > 0, after running the Methodical Counting
protocol for p ≥ (2+ε)k1+ε

1−1/k ln k phases, each of r ≥ (4 + 2ε)dk2+2ε ln k rounds, the potential ρ
consumed by the leader is ρ > k − 1.

It remains to show that even if n > k1+ε Methodical Counting still detects that the
estimate is low. First, we prove the following two claims that establish properties of the
potential during the execution of Methodical Counting. (Recall that we use round r + 1
to refer to potentials at the end of the phase right before the leader consumes its potential in
Line 1.23.) The proofs of both claims, based on observing the mass-distribution properties
and the alarms in the algorithm, are left to the full version of this paper.

5 Their analysis relies on Lemma 12, which bounds the eigenvalues of the transition matrix as long as it
is stochastic, connected, symmetric, and non-zero entries lower bounded by 1/d. Those conditions hold
for all the transition matrices, even if the evolving graph is not regular.
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I Claim 1. Given an Anonymous Dynamic Network of n nodes running Methodical
Counting with parameter d, for any round t of the first phase, such that 1 ≤ t ≤ r + 1,
if d was larger than the number of neighbors of each node x for every round t′ < t, then
||Φ1,t||1 = n− 1.

I Claim 2. Given an Anonymous Dynamic Network of n nodes running Methodical
Counting, for any round t of any phase and any node x, it is 0 ≤ Φt[x] ≤ 1.

It remains to show that even if n > k1+ε Methodical Counting still detects that the
estimate is low. We focus on the first phase. We define a threshold τ such that, after the
phase is completed, all nodes that have potential above τ can send an alarm to the leader, as
such potential indicates that the estimate is low. We show that the alarm must be received
after k1+ε further rounds of communication in the following lemma. The proof, based on
bounding the “room” that nodes have up to the maximum potential, is left to the full version
of this paper.

I Lemma 4. For ε > 0, after running the first phase of the Methodical Counting
protocol, there are at most k1+ε nodes that have potential at most τ = 1− 1/k1+ε.

In our last lemma, we show that if k1+ε < n the leader detects the error. The proof,
based on bounding the number of nodes with low potential at the end of the first phase, is
left to the full version of this paper.

I Lemma 5. If k1+ε < n, ε > 0, and r ≥ (4 + 2ε − 2 ln(kε − 1)/ ln k)dk2 ln k, within the
following k1+ε rounds after the first phase of the Methodical Counting protocol, the
leader has received an alarm message.

Based on the above lemmata, we establish our main result in the following theorem.

I Theorem 6. Given an Anonymous Dynamic Network with n nodes, after running Meth-
odical Counting for each estimate k = 2, 3, . . . , n with parameters

d = k1+ε,

p =
⌈

(2 + ε)k1+ε

1− 1/k ln k
⌉
,

r =
⌈(

4 + 2ε+ max
{

0,−2 ln(kε − 1)
ln k

})
dk2+2ε ln k

⌉
,

τ = 1− 1/k1+ε,

where ε > 0, all nodes stop after
∑n
k=2(pr + k) rounds of communication and output n.

Proof. Notice that the above parameters fulfill the conditions of the previous lemmas. First,
we prove that Methodical Counting is correct. To do so, it is enough to show that for
each estimate k < n the algorithm detects the error and moves to the next estimate, and
that if otherwise k = n the algorithm stops and outputs k. We consider three cases: k = n,
k < n ≤ k1+ε, and k1+ε < n, for a chosen value of ε > 0.

Assume first that k < n ≤ k1+ε. Then, even if the leader does not receive an alarm
during the execution, as shown in Lemma 3, at the end of the epoch in Line 1.21 the leader
will detect that ρ is out of range and will not change its status to done. Therefore, no other
node will receive a termination message (loop in Line 1.28), and all nodes will continue to
the next epoch.
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Assume now that k1+ε < n. Lemma 5 shows that within the following k1+ε rounds after
the first phase the leader has received an alarm message, even if no node has more than d− 1
neighbors during the execution and alarms due to this are not triggered. For the given value
of p and k ≥ 2, the epoch has more than one phase. Therefore, within k1+ε rounds into the
second phase the leader will change to alarm status in Line 1.13, will not change its status
to done later in this epoch, and no other node will receive a termination message. Hence, all
nodes will continue to the next epoch.

Finally, if k = n, Lemma 2 shows that the accumulated potential ρ will be k − 1− 1/k ≤
ρ ≤ k − 1. Thus, in Line 1.21 the leader will change its status to done, and in the loop of
Line 1.28 will inform all other nodes that the current estimate is correct. The number of
iterations of such loop are enough due to 1-interval connectivity.

The claimed running time can be obtained by inspection of the algorithm, either for the
leader or non-leader since they are synchronized. Refer for instance to the leader algorithm
in Algorithm 1. The outer loop in Line 1.6 corresponds to each epoch with estimates
k = 2, 3, . . . , n. For each epoch, Line 1.7 starts a loop of p phases followed by k rounds
in Line 1.28. Each of the p phases has r rounds. Thus, the overal number of rounds is∑n
k=2(pr + k). J

Choosing ε = logk 2 and replacing in Theorem 6 yields the following corollary.

I Corollary 7. The time complexity of Methodical Counting is O(n5 log2 n).

7 Extensions

We argue that Methodical Counting can be extended to compute the sum of values
stored in the nodes, and thus also the average (as it computes the number of nodes n),
and other functions. Given that our Counting algorithm is based on mass-distribution, the
standard approach could be to compute the average (by sharing the input values repeatedly
until convergence to average) at the same time we compute the count. Then, the sum would
be simply the average times the count. However, mass-distribution algorithms only converge
to the result. That is, we may not get the exact sum with the procedure described. Then, a
more careful method is needed.

Assume that each node of the Anonymous Dynamic Network initially stores a value,
represented as a sequence of bits. Without loss of generality, we could assume that the value
stored at the leader is zero; otherwise, the nodes could compute the sum of other initial
values (with the leader value set up to 0), and later the leader could propagate its actual
initial value appended to the message “done” at the end of the execution to be added to the
computed sum of other nodes.

The modified Methodical Counting prepends the potential to the sequence. Instead
of sending potential by the original Methodical Counting, each node transmits its current
sequence (in which the potential stands in the first location). Changes at each position
of the sequence are done independly by the same algorithm as used for the potential, cf.
Algorithms 1 and 2. Re-setting the values, in the beginning of each epoch, means putting
back the initial values of the sequence. It means that the modified algorithm maintains
potential in exactly the same way as the original Methodical Counting, regardless of
the initial values. At the end of some epoch, with number corresponding to the number of
nodes n, all nodes terminate. When it happens, each node recalls the sequence stored in it
at the end of the first phase of the epoch, multiplies the values stored at each position of
the sequence by the epoch number n, and rounds each of the results to the closest integer;
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then it sums up the subsequent values multiplied by corresponding (consecutive) powers of
2. Note that such “recalling” could be easily implemented by storing and maintaining the
sequence after the first phase of each epoch.

We argue that the computed value is the sum of the initial values. It is enough to analyze
how the modified algorithm processes values at one position of the sequence, as positions are
treated independently; therefore, w.l.o.g. we assume that each node has value 0 or 1 in the
beginning. Consider the last epoch before the leader sends the final sequence (in our case,
representing one value). In the beginning of the epoch, the values are re-set to the original
one, and manipulated independently according to the rules in Algorithms 1 and 2. Therefore,
let us focus on the first phase of this epoch. Since we already proved that the estimate of
the last epoch is equal to the number of nodes, the value of d in this epoch (and thus also in
its first phase) is an upper bound on the node degree. Thus, the mass distribution scaled
down by the sum of the initial values behaves exactly the same as the probabilities of being
at nodes in the corresponding round of the lazy random walk, with parameter d and starting
from initial distribution equal to the initial values divided by the sum. Since the length of the
phase is set up to guarantee that the distribution is close to the stationary uniform within
error 1/n, and the sum of bits is not bigger than n, at the end of the phase the value stored
by each node is close to the sum (i.e., scaling factor) divided by n by at most 1/n4 (cf. proof
of Lemma 2). Therefore, after multiplying it by n, each node gets value of sum within error
of at most 1/n3, which after rounding will give the integer equal to the value of the sum.

Once having the number n and the sum, each node can compute the average. As
argued in [17], the capacity of computing the sum of the input values makes possible the
computation of more complex functions. As opposed to [17] where the computation only
converges, our approach outputs the exact sum. Therefore, the extension to database queries
that can be approximated using linear synopses6 is straightforward. Boolean functions
f : {0, 1}n → {0, 1}, such as AND (sum = n), OR (sum > 0), and XOR (sum = 1), as well
as their complementaries NAND (sum 6= n), NOR (sum = 0), and XNOR (sum 6= 1), can
also be implemented having n and the sum. This applies also to other “symmetric” (i.e., do
not depend on the order of variables) Boolean functions, as they could be computed based
on computed sum of ones and n [18]. Maximum (L∞ norm) and minimum can be computed
subsequently by flooding. That is, each node broadcasts the maximum and minimum input
values seen so far. Due to 1-interval connectivity within n rounds all nodes have the answers.

Note that all these computations, including the Methodical Counting, could be
done using only polynomial estimates of values, that is, with messages of length O(log n),
multiplied by the maximum number of coordinates of any of the initial values. This could be
also traded for time: we could use only messages of length O(log n) with time increased by
the maximum number of coordinates of any initial value (which is still polynomial in the size
of the input,7 which in this case is at least n plus the maximum number of coordinates).

8 Open Directions

Straightway questions emerging from our work include existence of polynomial (in n) lower
bound and improvement of our upper bound. One of the potential ways could be through
investigating bi-directional relationships between random processes and computing algebraic
functions in Anonymous Dynamic Network. Extending the range of polynomially computable

6 Additive functions on multisets, e.g. f(A ∪ B) = f(A) + f(B).
7 The input in this case is distributed among the nodes, and each node possesses at least one bit
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functions is another intriguing future direction. Finally, generalizing the model by not assum-
ing connectivity in every round or dropping assumption on synchrony could introduce even
more challenging aspects of communication and computation, including group communication
and its impact on the common knowledge about the system parameters.
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1 Chen Avin, Michal Kouckỳ, and Zvi Lotker. How to explore a fast-changing world (cover
time of a simple random walk on evolving graphs). In Automata, languages and program-
ming, pages 121–132. Springer, 2008.

2 Roberto Baldoni and Giuseppe A Di Luna. Counting on anonymous dynamic networks:
Bounds and algorithms. manuscript, 2016.

3 Siddhartha Banerjee, Aditya Gopalan, Abhik Kumar Das, and Sanjay Shakkottai. Epidemic
spreading with external agents. IEEE Transactions on Information Theory, 60(7):4125–
4138, 2014.

4 Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip
algorithms. IEEE Transactions on Information Theory, 52(6):2508–2530, 2006.

5 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-
varying graphs and dynamic networks. International Journal of Parallel, Emergent and
Distributed Systems, 27(5):387–408, 2012.

6 Maitri Chakraborty, Alessia Milani, and Miguel A. Mosteiro. Counting in practical anonym-
ous dynamic networks is polynomial. In Proceedings of the 4th International Conference
on Networked Systems, volume 9944 of Lecture Notes in Computer Science, pages 131–136,
2016.

7 Yuxin Chen, Sanjay Shakkottai, and Jeffrey G Andrews. On the role of mobility for mul-
timessage gossip. IEEE Transactions on Information Theory, 59(6):3953–3970, 2013.

8 Giuseppe Antonio Di Luna and Roberto Baldoni. Investigating the cost of anonymity on
dynamic networks. CoRR, abs/1505.03509, 2015. URL: http://arxiv.org/abs/1505.
03509, arXiv:1505.03509.

9 Giuseppe Antonio Di Luna and Roberto Baldoni. Non trivial computations in anonymous
dynamic networks. In Proceedings of the 19th International Conference on Principles of
Distributed Systems, Leibniz International Proceedings in Informatics, 2015. To appear.

10 Giuseppe Antonio Di Luna, Roberto Baldoni, Silvia Bonomi, and Ioannis Chatzigiannakis.
Conscious and unconscious counting on anonymous dynamic networks. In Proceedings of
the 15th International Conference on Distributed Computing and Networking, volume 8314
of Lecture Notes in Computer Science, pages 257–271. Springer Berlin Heidelberg, 2014.

11 Giuseppe Antonio Di Luna, Roberto Baldoni, Silvia Bonomi, and Ioannis Chatzigiannakis.
Counting in anonymous dynamic networks under worst-case adversary. In Proceedings of
the 34th International Conference on Distributed Computing Systems, pages 338–347. IEEE,
2014.

12 Giuseppe Antonio Di Luna, Silvia Bonomi, Ioannis Chatzigiannakis, and Roberto Baldoni.
Counting in anonymous dynamic networks: An experimental perspective. In Proceedings
of the 9th International Symposium on Algorithms and Experiments for Sensor Systems,
Wireless Networks and Distributed Robotics, volume 8243 of Lecture Notes in Computer
Science, pages 139–154. Springer Berlin Heidelberg, 2014.

13 M. Farach-Colton, A. Fernández Anta, A. Milani, M. A. Mosteiro, and S. Zaks. Opportun-
istic information dissemination in mobile ad-hoc networks: adaptiveness vs. obliviousness
and randomization vs. determinism. In Proc. of the 10th Latin American Theoretical In-
formatics Symposium, volume 7256 of Lecture Notes in Computer Science, pages 303–314.
Springer-Verlag, Berlin, 2012.

ICALP 2018

http://arxiv.org/abs/1505.03509
http://arxiv.org/abs/1505.03509
http://arxiv.org/abs/1505.03509


156:14 Polynomial Counting in Anonymous Dynamic Networks

14 Martin Farach-Colton and Miguel A. Mosteiro. Initializing sensor networks of non-
uniform density in the weak sensor model. Algorithmica, 73(1):87–114, 2015. doi:
10.1007/s00453-014-9905-5.

15 A. Fernández Anta and M. A. Mosteiro. Contention resolution in multiple-access chan-
nels: k-selection in radio networks. Discrete Mathematics, Algorithms and Applications,
02(04):445–456, 2010. doi:10.1142/S1793830910000796.

16 Antonio Fernández Anta, Alessia Milani, Miguel A. Mosteiro, and Shmuel Zaks. Opportun-
istic information dissemination in mobile ad-hoc networks: the profit of global synchrony.
Distributed Computing, 25(4):279–296, 2012. doi:10.1007/s00446-012-0165-9.

17 D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information.
In Proc. of the 44th IEEE Ann. Symp. on Foundations of Computer Science, pages 482–491,
2003.

18 E. Kranakis, D. Krizanc, and J. Vandenberg. Computing boolean functions on anonymous
networks. Information and Computation, 114(2):214–236, 1994. doi:10.1006/inco.1994.
1086.

19 Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Proceedings of the 42nd ACM Symposium on Theory of Computing, pages
513–522. ACM, 2010.

20 Othon Michail, Ioannis Chatzigiannakis, and Paul G Spirakis. Naming and counting in an-
onymous unknown dynamic networks. In Stabilization, Safety, and Security of Distributed
Systems, pages 281–295. Springer, 2013.

21 Alessia Milani and Miguel A. Mosteiro. A faster counting protocol for anonymous dynamic
networks. In Proceedings of the 19th International Conference on Principles of Distributed
Systems, volume 46 of Leibniz International Proceedings in Informatics, pages 1–13, 2015.

22 Damon Mosk-Aoyama and Devavrat Shah. Fast distributed algorithms for computing sep-
arable functions. IEEE Transactions on Information Theory, 54(7):2997–3007, 2008.

23 Angelia Nedic, Alex Olshevsky, Asuman Ozdaglar, and John N Tsitsiklis. On distributed
averaging algorithms and quantization effects. IEEE Transactions on Automatic Control,
54(11):2506–2517, 2009.

24 Sujay Sanghavi, Bruce Hajek, and Laurent Massoulié. Gossiping with multiple messages.
IEEE Transactions on Information Theory, 53(12):4640–4654, 2007.

http://dx.doi.org/10.1007/s00453-014-9905-5
http://dx.doi.org/10.1007/s00453-014-9905-5
http://dx.doi.org/10.1142/S1793830910000796
http://dx.doi.org/10.1007/s00446-012-0165-9
http://dx.doi.org/10.1006/inco.1994.1086
http://dx.doi.org/10.1006/inco.1994.1086


The Unfortunate-Flow Problem
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Abstract
In the traditional maximum-flow problem, the goal is to transfer maximum flow in a network
by directing, in each vertex in the network, incoming flow into outgoing edges. The problem
is one of the most fundamental problems in TCS, with application in numerous domains. The
fact a maximal-flow algorithm directs the flow in all the vertices of the network corresponds
to a setting in which the authority has control in all vertices. Many applications in which the
maximal-flow problem is applied involve an adversarial setting, where the authority does not
have such a control.

We introduce and study the unfortunate flow problem, which studies the flow that is guar-
anteed to reach the target when the edges that leave the source are saturated, yet the most
unfortunate decisions are taken in the vertices. When the incoming flow to a vertex is greater
than the outgoing capacity, flow is lost. The problem models evacuation scenarios where traffic
is stuck due to jams in junctions and communication networks where packets are dropped in
overloaded routers.

We study the theoretical properties of unfortunate flows, show that the unfortunate-flow prob-
lem is co-NP-complete and point to polynomial fragments. We introduce and study interesting
variants of the problem: integral unfortunate flow, where the flow along edges must be integral,
controlled unfortunate flow, where the edges from the source need not be saturated and may be
controlled, and no-loss controlled unfortunate flow, where the controlled flow must not be lost.
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1 Introduction

A flow network is a directed graph in which each edge has a capacity, bounding the amount
of flow that can travel through it. The amount of flow that enters a vertex equals the amount
of flow that leaves it, unless the vertex is a source, which has only outgoing flow, or a target,
which has only incoming flow. The fundamental maximum-flow problem gets as input a
flow network and searches for a maximal flow from the source to the target [4, 10]. The
problem was first formulated and solved in the 1950’s [8, 9]. It has attracted much research
on improved algorithms, variants, and applications [6, 5, 11, 15].

The maximum-flow problem can be applied in many settings in which something travels
along a network. This covers numerous application domains, including traffic in road or
rail systems, fluids in pipes, packets in a communication network, and many more [1]. Less
obvious applications involve flow networks that are constructed in order to model settings
with an abstract network, as in the case of scheduling with constraints [1]. In addition, several
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(a) (b) (c)

Figure 1 A flow network G, and preflows that attain its maximum-flow and unfortunate-flow
values.

classical graph-theory problems can be reduced to the maximum-flow problem. This includes
the problem of finding a maximum bipartite matching, minimum path cover, maximum
edge-disjoint or vertex-disjoint path, and many more [4, 1]. Variants of the maximum-flow
problem can accommodate further settings, like circulation problems [18], multiple source
and target vertices, costs for unit flows, multiple commodities, and more [7].

Studies of flow networks so far assume that the vertices in the network are controlled by
a central authority. Indeed, maximum-flow algorithms directs the flow in all vertices of the
network. In many applications of flow networks, however, vertices of the network may not be
controlled. Thus, every vertex may make autonomous and independent decisions regarding
how to direct incoming flow to outgoing edges.

Consider, for example, a road network of a city, where the source s models the center of
the city and the target t models the area outside the city. In order to evacuate the center
of the city, drivers navigate from s to t. In each vertex, every incoming driver chooses an
arbitrary outgoing edge with free capacity. If the outgoing capacity from a vertex is less than
the incoming flow, then a traffic jam occurs, and flow is lost. As another example, consider a
communication network in which packets are sent from a source router s and should reach a
target router t. Whenever an internal router receives a packet it forwards it to an arbitrary
neighbor router. If the outgoing capacity from a vertex is less than the incoming flow, then
packets are dropped, and flow is lost.

In both examples, we want to find the flow that is guaranteed to reach the target in the
worst scenario. We now formalize this intuition. Let G = 〈V,E, c, s, t〉 be a flow network,
where 〈V,E〉 is a directed graph, c : E → IN assigns a capacity for each edge, and s, t are
the source and target vertices. A preflow is a function f : E → IR that assigns to each edge
e ∈ E, a flow in [0, c(e)] such that the incoming flow to each vertex is greater or equal to
its outgoing flow. A saturating preflow is a preflow in which all outgoing edges from s are
saturated, and for every vertex v ∈ V \ {s, t}, the outgoing flow from v is the minimum
between the incoming flow to v and the outgoing capacity from v. That is, in a saturating
preflow, flow loss occurs in a vertex v if and only if the incoming flow to v is greater than the
capacity of the edges outgoing from v. The unfortunate flow value of G is the minimal flow
that reaches t in a saturating preflow. Thus, it is the flow that is guaranteed to reach t when
the edges that leave s are saturated, yet the most unfortunate routing decisions are taken in
junctions. In the unfortunate-flow problem, we want to find the unfortunate flow value of G.

I Example 1. Consider the flow network G appearing in Figure 1 (a). A maximum flow
in G has value 8, attained, for example, with the preflow in (b). A saturating preflow in G
appears in (c), and has value 5. While the edges leaving s are saturated, the routing of 7
flow units to the vertex at the bottom leads to a loss of 4 flow units in this vertex. J

We introduce the unfortunate-flow problem, study the theoretical properties of saturating
preflows, and study the complexity of the problem. We also introduce and study interesting
variants of the problem: integral unfortunate flow, where the flow along edges must be
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integral, controlled unfortunate flow, where the edges from the source need not be saturated
and may be controlled, and no-loss controlled unfortunate flow, where the controlled flow
must avoid loss.

Before we describe our contribution, let us review flow games and their connection to
our contribution here. In flow games [14], the vertices of a flow network are partitioned
between two players. Each player controls how incoming flow is partitioned among edges
outgoing from her vertices. Then, one player aims at maximizing the flow that reaches t
and the other player aims at minimizing it. It is shown in [14] that when the players are
restricted to integral strategies, thus when the flows along the edges are integers, then the
problem of finding the maximal flow that the maximizer player can guarantee is ΣP2 -complete.
The restriction to integral strategies is crucial. Indeed, unlike the case of the traditional
maximum-flow problem, non-integral strategies may be better than integral ones. In fact, the
problem of finding a maximal flow for the maximizer in a setting with non-integral strategies
was left open in [14]. The unfortunate-flow problem can be viewed as a special case of flow
games, in which the maximizer player controls no vertex.

We start with the complexity of the unfortunate-flow problem. We consider the decision-
problem variant, where we are given a threshold γ > 0 and decide whether the unfortunate
flow value is at least γ. In the case of maximal flow, the problem can be solved in polynomial
time [9], and so are many variants of it. We first show that, quite surprisingly, the unfortunate-
flow problem is co-NP-hard and that it is NP-hard to approximate within any multiplicative
factor. We then point to a polynomial fragment. Intuitively, the fragment restricts the
number of vertices in which flow may be lost, which we pinpoint as the computational
bottleneck. Formally, we say that a vertex is a funnel if its incoming capacity is greater than
its outgoing capacity. We show that the unfortunate-flow problem can be solved in time
O(2|H| · (|E|2log|V |+ |E||V |log2|V |)), where H ⊆ V is the set of funnels in G. In particular,
the problem can be solved in strongly-polynomial time if the network has a logarithmic
number of funnels. Our solution reduces the problem to a sequence of min-cost max-flow
problems [1], implying the desirable integral flow property: the unfortunate-flow value can
always be attained by an integral flow. The integral flow property implies a matching co-NP
upper bound, thus the unfortunate-flow problem is co-NP-complete.

In some scenarios, we have some initial control on the flow. For example, in evacuation
scenarios, as in the example of traffic leaving the city, police may direct cars at the center of
the city, but has no control on them once they leave the center. Likewise, when entering or
evacuating stadiums, police may direct the crowd to different gates, but has no control on
how people proceed once they pass the gates [13]. We study the controlled unfortunate-flow
problem, where the outgoing flow from s is bounded and controlled. Formally, there is an
integer α ≥ 0 such that the total outgoing flow from s is bounded by α, and it is possible to
control how this outgoing flow is partitioned among the edges that leave s. Our goal is to
control this flow so that the flow that reaches t in the most unfortunate case is maximized.
1 We show that the integral-flow property no longer holds in this setting. Thus, there are
networks in which an optimal strategy is to partition the α units of flow that leave s into
non-integers. A troublesome implication of this is that an algorithm that guesses the strategy
has to go over unboundedly many possibilities. This challenge is what has left flow games
undecidable [14]. We show that we can still reduce the controlled unfortunate-flow problem
into the second alternation level of the theory of real numbers under addition and order [17].

1 We note that this is different from work done in evacuation planning, where the goal is to find routes
and schedules of evacuees (for a survey, see [16]).
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The reduction implies membership in ΣP2 , and we show a matching lower bound. Thus, the
controlled unfortunate-flow problem is ΣP2 -complete. We also study a generalization of the
problem, where control can be placed in a subset of the vertices.2

Finally, in some scenarios it is crucial for flow not to get lost. For example, in evacu-
ation scenarios, we may prefer to give up an evacuation attempt under a loss risk, and in
communication networks, we may tolerate low traffic and not tolerate dropping of packets.
We say that a flow network G is safe if all saturating preflows have no loss. For example,
networks with no funnels are clearly safe. It is easy to see that G is safe if its unfortunate
flow value is equal to the maximal flow the source can generate, thus to the capacity of
the edges outgoing from the source. This gives a co-NP algorithm for deciding the safety
of a network. We show one can do better and reduce the safety problem to a maximum
weighted flow problem, which can be solved in polynomial time. We then turn to study the
no-loss controlled unfortunate-flow problem, where we control the flow in edges from s, and
we want to maximize the flow to t but in a way that flow loss is impossible. We show that
the problem is NP-complete.

Due to space limitations, some examples and proofs are omitted and can be found in the
full version, in the authors’ URLs.

2 Preliminaries

A flow network is G = 〈V,E, c, s, t〉, where V is a set of vertices, E ⊆ V × V is a set of
directed edges, c : E → IN is a capacity function, and s, t ∈ V are source and target vertices.
The capacity function assigns to each edge e ∈ E a nonnegative capacity c(e) ≥ 0. We define
the size of G, denoted |G| by |V |+ |E|+ |c|, where |c| is the size required for encoding the
capacity function c, thus assuming the capacities are given in binary. For a vertex v ∈ V , let
E�v and Ev� be the sets of incoming and outgoing edges to and from v, respectively. That
is, E�v = (V × {v}) ∩ E and Ev� = ({v} × V ) ∩ E. A sink is a vertex v with no outgoing
edges, thus Ev� = ∅. We assume that t is a sink, it is reachable from s, and E�s = ∅. We
also assume that 〈V,E〉 does not contain parallel edges and self loops. For a vertex v ∈ V ,
let c(�v) =

∑
e∈E�v c(e) and c(v�) =

∑
e∈Ev� c(e) be the sums of capacities of edges that

enter and leave v, respectively. We say that a vertex v ∈ V is a funnel if c(v�) < c(�v). We
use Cs to denote the total capacity of edges outgoing from the source, thus Cs = c(s�).

A preflow in G is a function f : E → IR that satisfies the following two properties:
For every e ∈ E, we have that 0 ≤ f(e) ≤ c(e).
For every vertex v ∈ V \ {s}, the incoming flow to v is greater or equal to its outgoing
flow. Formally,

∑
e∈E�v f(e) ≥

∑
e∈Ev� f(e).

For a preflow f and an edge e ∈ E, we say that e is saturated if f(e) = c(e). We extend
f to vertices: for every vertex v ∈ V , let f(�v) =

∑
e∈E�v f(e) and f(v�) =

∑
e∈Ev� f(e).

For a vertex v ∈ V \ {s, t}, the flow loss of f in v, denoted lf (v), is the quantity that enters
v and does not leave v. Formally, lf (v) = f(�v)− f(v�). Then, Lf =

∑
v∈V \{s,t} lf (v) is

the flow loss of f . The value of a preflow f , denoted val(f), is f(�t); that is, the incoming
flow to t. Note that val(f) = f(s�)− Lf . A flow is a preflow f with Lf = 0. A maximum
flow is a flow with a maximal value.

2 Not to confuse with the problem of finding critical nodes for firefighters [2, 3]. While there the firefighters
block the fire, in our setting they direct the evacuation. Thus, there, the goal is to block undesired
vulnerabilities in the network, and here the goal is maximize desired traffic.
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Figure 2 The flow network G. The capacities of the edges entering C1, . . . , Cm are 1.

A saturating preflow is a preflow in which all edge in Es� are saturated, and for every
v ∈ V \ {s, t}, we have f(v�) = min{f(�v), c(v�)}. That is, in a saturating preflow, flow
loss may occur in a vertex v only if the incoming flow to v is bigger than the capacities of
the edges outgoing from v.

The unfortunate value of a flow network G, denoted uval(G), is the minimal value of
a saturating preflow in G. That is, it is the value that is guaranteed to reach t when the
edges that leave s are saturated, yet the most unfortunate routing decisions are taken in
junctions. An unfortunate saturating preflow is a saturating preflow that attains the network’s
unfortunate value. The unfortunate flow problem (UF problem, in short) is to decide, given
a flow network G and a threshold γ > 0, whether uval(G) ≥ γ.

3 The Complexity of the Unfortunate-Flow Problem

In this section we study the complexity of the unfortunate-flow problem. We start with
bad news and show that the problem is co-NP-hard, and in fact is NP-hard to approximate
within any multiplicative factor. A more precise analysis of the complexity then enables us
to point to a polynomial fragment and to prove an integral-flow property, which implies a
matching co-NP upper bound.

I Theorem 2. The UF problem is co-NP-hard.

Proof. We show a reduction from CNF-SAT to the complement problem, namely deciding
whether uval(G) < γ for some γ ∈ IN. Let ψ = C1 ∧ . . . ∧ Cm be a CNF formula over the
variables x1 . . . xn. We assume that every literal in x1, . . . , xn, x̄1, . . . , x̄n appears in exactly
k clauses in ψ. Indeed, every CNF formula can be converted to such a formula in polynomial
time and with a polynomial blowup. We construct a flow network G = 〈V,E, c, s, t〉 as
demonstrated in Figure 2. Let Z = {x1, . . . , xn, x̄1, . . . , x̄n}. For a literal z ∈ Z and a clause
Ci, the network G contains an edge 〈z, Ci〉 iff Ci contains z. Thus, each vertex in Z has
exactly k outgoing edges. The capacities of these edges are 1. Each vertex Ci has two
outgoing edges – to t and to the sink u. In the full version, we prove that ψ is satisfiable iff
uval(G) < kn−m+ 1. J

By a simple manipulation of the network G constructed in the reduction in the proof
of Theorem 2, we can obtain, given a CNF-SAT formula ψ, a network G′ such that if ψ is
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satisfiable, then uval(G′) = 0, and otherwise, uval(G′) ≥ 1. Hence the following (a detailed
proof can be found in the full version.

I Theorem 3. It is NP-hard to approximate the UF problem within any multiplicative factor.

Following the hardness of the problem, we turn to analyze its complexity in terms of the
different parameters of the flow network. Our analysis points to a class of networks for which
the UF problem can be solved in polynomial time.

Consider a flow network G = 〈V,E, c, s, t〉. Let H ⊆ V \ {s, t} be the set of funnels in G.
Thus, H = {v : c(�v) > c(v�)}. For L ⊆ V , let FL be a set of saturating preflows in which
edges outgoing from vertices in L are saturated, and flow loss may occur only in vertices
in L. Thus, f ∈ FL iff f is a saturating preflow in G such that for every u ∈ L, we have
f(u�) = c(u�), and for every u ∈ V \L, we have lf (u) = 0. By the definition of a saturating
flow, flow loss in G may occur only in vertices in H. Accordingly, we have the following.

I Lemma 4.
⋃
L⊆H FL contains all the saturating preflows in G.

By Lemma 4, a search for the unfortunate value of G can be restricted to preflows in
FL, for L ⊆ H. Accordingly, the UF problem can be solved by solving 2|H| optimization
problems, solvable by either linear programming (Theorem 5) or a reduction to the min-cost
max-flow problem (Theorem 6).

I Theorem 5. Consider a flow network G and let H be the set of funnels in G. The UF
problem for G can be solved in time 2|H| · poly(|G|).

Proof. The algorithm goes over all the subsets of H and for each subset L ⊆ H, finds a
minimum-value preflow in FL. The latter is done by linear programming. Given L, the linear
program for FL is described below. The variable xe, for every e ∈ E, stands for f(e). The
program is of size linear in |G|, thus the overall complexity is 2|H| · poly(|G|).

minimize
∑
e∈E�t xe

subject to 0 ≤ xe ≤ c(e) for each e ∈ E
xe = c(e) for each u ∈ L ∪ {s}, e ∈ Eu�∑
e∈Eu� xe ≤

∑
e∈E�u xe for each u ∈ L∑

e∈Eu� xe =
∑
e∈E�u xe for each u 6∈ L ∪ {s, t} J

The complexity of solving each linear program in the algorithm described in the proof of
Theorem 5 is polynomial in |G|, but not strongly polynomial . Thus its running time depends
(polynomially) on the number of bits required for representing the capacities in G. We now
describe an alternative algorithm whose complexity depends only on the number of vertices
and edges in the network.

Our algorithm reduces the problem of finding a minimal-value preflow in FL to the
min-cost max-flow problem in flow networks with costs [1]. A flow network with costs is
G = 〈V,E, a, c, s, t〉, where 〈V,E, c, s, t〉 is a flow network and a : E → IR is a cost function.
The cost of a flow f in G, denoted cost(f), is

∑
e∈E a(e) · f(e). In the min-cost max-flow

problem we are given a flow network with costs, and find a maximum flow with a minimum
cost. By [1], this problem can be solved in time O(|E|2log|V |+ |E||V |log2|V |).

I Theorem 6. Consider a flow network G = 〈V,E, c, s, t〉 and let H be the set of funnels in
G. The UF problem for G can be solved in time O(2|H| · (|E|2log|V |+ |E||V |log2|V |)).

Proof. The algorithm finds, for each subset L ⊆ H, a minimum-value preflow in FL by a
reduction to the min-cost max-flow problem. By Lemma 4, the minimum value found for
some L ⊆ H is uval(G).
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Consider the flow network with costs G′ = 〈V ′, E′, a, c′, s, t′〉 that is obtained from G as
follows. We add a new vertex t′ and edges 〈u, t′〉 for every u ∈ L∪{t}, thus V ′ = V ∪{t′} and
E′ = E∪(L∪{t})×{t′}. The capacity c′(e) for every new edge e ∈ E′\E is large (for example,
it may be Cs), and for every e ∈ E, we have c′(e) = c(e). Let C = max{c(e) : e ∈ E} denote
the maximal capacity in G. For edges e ∈ L×{t′}, we define a(e) = −1; for edges e ∈ L× V ,
we define a(e) = −C · |V |2; and for all the other edges, we define a(e) = 0. Intuitively, the
costs of the edges in L× V are negative and small enough, so that a min-cost max-flow in G′
would have to saturate them first, and only then try to direct flow to edges in L× {t′}.

In the full version, we prove the correctness of the following algorithm: First, find a min-
cost max-flow f ′ in G′. If val(f ′) < Cs or cost(f ′) > −C · |V |2 ·

∑
e∈L×V c(e), then FL = ∅.

Otherwise, the minimal value of a preflow in FL is Cs + cost(f ′) + C · |V |2 ·
∑
e∈L×V c(e).

Since the min-cost max-flow problem can be solved in time O(|E|2log|V |+ |E||V |log2|V |)
[1] and there are 2|H| subsets of funnels to check, the required complexity follows. J

I Corollary 7. The UF problems for networks with a logarithmic number of funnels can be
solved in strongly-polynomial time.

We say that a preflow f : E → IR is integral if f(e) ∈ IN for all e ∈ E. It is sometimes
desirable to restrict the flow to an integral one, for example in settings in which the objects
we transfer along the network cannot be partitioned into fractions. We now show that the
UF problem always has an integral-flow solution, and that such a solution can be obtained
by the algorithm shown in the proof of Theorem 6. Essentially (see proof in the full version),
it follows from the fact that the min-cost max-flow problem has an integral solution. As we
show in Section 4, this integral flow property is not maintained in variants of the UF problem.

I Theorem 8. The UF problem has an integral-flow solution: for every flow network, there
exists an integral unfortunate saturating preflow. Moreover, such integral preflow can be
found by the algorithm described in the proof of Theorem 6.

The integral-flow property suggests an optimal algorithm for solving the UF problem:

I Theorem 9. The UF problem is co-NP-complete.

Proof. Hardness in co-NP is proven in Theorem 2. We prove membership in NP for the
complementary problem: given γ > 0 and a flow network G, we need to decide whether
uval(G) < γ. According to Theorem 8, it is enough to decide whether there is a saturating
preflow f in which for every e ∈ E, the value f(e) is an integer, and val(f) < γ. Given
a function f : E → IN, checking whether f satisfies these requirements can be done in
polynomial time, implying membership in NP. J

4 The Controlled Unfortunate-Flow Problem

In this section we study the controlled unfortunate-flow problem, where the outgoing flow
from s is bounded and controlled. That is, there is 0 ≤ α ≤ Cs such that the total outgoing
flow from s is bounded by α, and it is possible to control how this outgoing flow is partitioned
among the edges that leave s. Our goal is to control this flow so that the flow that reaches
t in the worst case is maximized. As discussed in Section 1, this problem is motivated
by scenarios where we have an initial control on the flow, say by positioning police at the
entrance to a stadium or at the center of a city we need to evacuate, or by transmitting
messages we want to send from a router we own.
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For α ≥ 0, a regulator with bound α is a function g : Es� → IR that directs α flow
units from s. Formally, for every e ∈ Es�, we have 0 ≤ g(e) ≤ c(e), and

∑
e∈Es� g(e) ≤ α.

A controlled saturating preflow that respects a regulator g is a preflow f : E → IR such
that for every e ∈ Es�, we have f(e) = g(e), and for every v ∈ V \ {s, t}, we have
f(v�) = min{f(�v), c(v�)}. Thus, unlike saturating preflow, here the edges in Es� need
not be saturated and the flow in them is induced by g. The unfortunate g-controlled value of
G, denoted cuval(G, g), is the minimal value of a controlled saturating preflow that respects g.
Then, the unfortunate α-controlled value of G, denoted cuval(G, α) is the maximal unfortunate
g-controlled value of G for some regulator g with bound α. In the controlled unfortunate flow
problem (CUF problem, for short), we are given a flow network G, a bound α ≥ 0, and a
threshold γ > 0, and we need to decide whether cuval(G, α) ≥ γ. Thus, in the CUF problem
we need to decide whether there is a regulator g with bound α that ensures a value of at
least γ.

For two regulators g and g′, we denote g ≥ g′ if for every e ∈ Es�, we have g(e) ≥ g′(e).
In the following theorem we show that the g-controlled unfortunate value is monotonic with
respect to g. Thus, increasing g can only increase the value. In particular, it follows that
a maximal cuval(G, α) is obtained with α = Cs and a regulator g in which g(e) = c(e) for
every e ∈ Es�. Thus, if the outgoing flow from s is not bounded, then the optimal behavior
is to saturate the edges in Es�. Essentially (see full proof in the full version of the paper), it
follows from the fact that given g and g′ such that g ≥ g′, and a minimum-value controlled
saturating preflow f that respects g, we can construct a controlled saturating preflow f ′ that
respects g′ and such that val(f) ≥ val(f ′).

I Theorem 10. Consider a flow network G, and let g, g′ be two regulators such that g ≥ g′.
Then, cuval(G, g) ≥ cuval(G, g′).

We now turn to study the complexity of the CUF problem. We first explain why the
problem is challenging. One could expect an algorithm in which, given G, α, and γ, we
guess an integral regulator g : Es� → IN with bound α, and then use an NP oracle in order
to check whether cuval(G, g) ≥ γ. The problem with the above idea is that it restricts the
regulators to integral ones. In Theorem 11 below we show that in some cases, an optimal
regulator must use non-integral values. Accordingly, an algorithm that guesses a regulator,
as has been the case with the guessed flows in Theorem 9, has to go over unboundedly many
possibilities. In fact, when an arbitrary set of vertices (rather than the source only) may be
controlled, the problem is not known to be decidable [14].

I Theorem 11. Integral regulators are not optimal: There is a flow network G such that for
every integral regulator g : Es� → IN with bound 2 we have cuval(G, g) = 1, but there is a
regulator g′ : Es� → IR with bound 2 such that cuval(G, g′) = 2.

Proof. Consider the flow network G appearing in Figure 3. For every pair 〈ui, uj〉 for
1 ≤ i < j ≤ 4, the network G contains a vertex vij with incoming edges from ui and uj . The
capacities of the edges in G are all 1. It is not hard to see that for every integral regulator g
with bound 2 we have cuval(G, g) = 1. Indeed, for such g there is a controlled saturating
preflow that respects g, which directs a flow of 2 to some vertex vij , causing a loss of 1 in vij .
Consider now the regulator g′ that assigns a flow of 0.5 to every edge in Es�. In this case, a
flow of more than 1 cannot be directed to any vertex vij and therefore cuval(G, g′) = 2. J

We turn to solve the CUF problem. Theorem 11 forces us to consider non-integral
regulators. We do this by a reduction to a problem with a similar challenge, namely the second
alternation level of the theory of real numbers under addition and order. There, we are given a
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Figure 3 The flow network G. All capacities are 1.

formula of the form ∃x1 . . . xn∀y1 . . . ymF (x1, . . . , xn, y1, . . . , ym), where F is a propositional
combination of linear inequalities of the form a1x1 + . . . anxn + b1y1 + . . . + bmym ≤ d,
for constant integers a1, . . . , an, b1, . . . , bm, and d, and we have to decide whether there is
an assignment of x1, . . . , xn to real numbers so that F is satisfied for every assignment of
y1, . . . , ym to real numbers. Even though the domain of possible solutions is infinite, It is
shown in [17] that the problem can be solved in ΣP2 , namely the class of problems that can
be solved by a nondeterministic polynomial Turing machine that has an oracle to some
NP-complete problem. In [14], a ΣP

2 lower bound is proven for the problem of finding the
value of a flow game, where the outgoing flow of a subset of the vertices can be controlled.
Recall that in the CUF problem, only the flow from the source vertex can be controlled.
While this corresponds to the “exists-forall” nesting of quantifiers that characterizes reasoning
in ΣP

2 , it not clear how to reduce Boolean formulas to unfortunate flows. Indeed, in the
reduction in [14], control in intermediate vertices is used in order to model disjunctions in
the formulas. In the CUF problem, such a control is impossible, as all vertices in the network
except for the source are treated in a conjunctive manner.

I Theorem 12. The CUF problem is ΣP2 -complete.

Proof. We first prove membership in ΣP
2 by a reduction to the second alternation level of

the theory of real numbers under addition and order. Given G, α, and γ, we construct a
propositional combination F of linear inequalities over the variables xe for every e ∈ Es�,
and variables ye, for every e ∈ E. The formula F states that the values of the variables
xe corresponds to a regulator g with bound α, and that if the values of the variables ye
correspond to a controlled saturating preflow f that respects g then val(f) ≥ γ. Then, our
problem amounts to deciding whether there are real values xe such that for every real values
ye the formula F holds.

For the lower bound, we describe a reduction from QBF2, namely satisfiability for
quantified Boolean formulas with one alternation of quantifiers, where the external quantifier
is “exists”. Let ψ be a propositional formula over the variables x1, . . . , xn, y1, . . . , ym, and
let θ = ∃x1 . . . ∃xn∀y1 . . . ∀ymψ. Also, let X = {x1, . . . , xn}, X̄ = {x̄1, . . . , x̄n}, Y =
{y1, . . . , ym}, Ȳ = {ȳ1, . . . , ȳm}, Z = X ∪ Y , and Z̄ = X̄ ∪ Ȳ . We construct a flow network
Gθ and define α and γ, such that θ holds iff there is a regulator g with bound α such that
cuval(Gθ, g) ≥ γ.

We assume that ψ is given in a positive normal form; that is, ψ is constructed from the
literals in Z ∪ Z̄ using the Boolean operators ∨ and ∧, and that there is k ≥ 1 such that
every literal in Z ∪ Z̄ appears in ψ exactly k times. Clearly, every Boolean propositional
formula can be converted with only a quadratic blow-up to an equivalent one that satisfies
these conditions.
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Figure 4 The Boolean circuit Cψ and the external-source flow network Gψ.

We first translate ψ into a Boolean circuit Cψ with k(2n + 2m) inputs – one for each
occurrence of a literal in ψ. For example, in Figure 4, on the left, we describe Cψ for
ψ = x ∨ (x̄ ∧ y) ∧ ((x ∧ ȳ) ∨ (y ∨ ȳ ∨ x̄)). Each gate in Cψ has fan-in 2 and fan-out 1. We
say that an input assignment to Cψ is consistent if it corresponds to an assignment to the
variables in Z. That is, for each variable z ∈ Z, there is a value b ∈ {0, 1} such that all the k
inputs that correspond to the literal z have value b and all the k inputs that correspond to
the literal z̄ have value 1− b. If the input to Cψ is consistent then Cψ computes the value of
ψ for the corresponding assignment.

Now, we translate Cψ to an external-source flow network Gψ = 〈V,E, c, t〉: a flow network
in which there is no source vertex, and an input flow is given externally. Formally, some of
the edges in E have an unspecified source, to be later connected to edges with an unspecified
target. The idea behind the translation is as follows: The capacities in Gψ are all 1. Each OR
gate in Cψ induces a vertex v that has in-degree 2 and out-degree 1. Thus, if the incoming
flow in each incoming edge to v is 0 or 1, then its outgoing flow is 1 iff at least one of its
incoming edges has flow 1. Then, each AND gate in Cψ induces a vertex v that has in-degree
2 and out-degree 2, yet, one of the two edges that leaves v leads to a sink. Accordingly, if
the incoming flow in each incoming edge to v is 0 or 1, then the outgoing flow in the edge
that does not lead to the sink must be 1 iff both incoming edges have flow 1. For example,
the Boolean circuit Cψ from Figure 4 is translated to the external-source flow network Gψ to
its right.

Given a flow from the external source, we define the unfortunate value of Gψ as the
minimal value of a controlled saturating preflow that respects the external flow. The following
lemma can be easily proved by induction on the structure of ψ.

I Lemma 13. Consider a Boolean formula ψ and its corresponding external-source flow
network Gψ.
1. Given input flows to Gψ, if we increase some input flow, then the new unfortunate value

of Gψ is greater than or equal to the original unfortunate value.
2. Given input flows in {0, 1} to Gψ, the unfortunate value of Gψ is equal to the output of
Cψ with the same input. Thus, if the input flow to Gψ corresponds to a consistent input to
Cψ, then the unfortunate value of Gψ is the value of ψ for the corresponding assignment.

We complete the reduction by constructing the flow network Gθ that uses Gψ as a sub-
network as shown in Figure 5 The vertices dy1 , . . . , dym

are associated with the variables
in Y . The vertices xi, x̄i, yi, ȳi for every i are associated with the literals in Z ∪ Z̄. Each
outgoing edge from a literal vertex that enters Gψ is connected to an input of Gψ that
corresponds to this literal. The outgoing edge from the subnetwork Gψ corresponds to an
edge from the target vertex of Gψ. In the full version we describe the network Gθ for the case
ψ = (x ∨ y) ∧ (x̄ ∨ ȳ).
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Figure 5 The flow network Gθ.

In the full version we prove that θ holds iff there is a regulator g with bound (2k +
1)m+ (k + 1)n such that for every controlled saturating preflow f that respects g we have
val(f) ≥ m+ n+ 1.

J

In Theorem 11 we showed that in some cases an optimal regulator must use non-integral
values. Sometimes, however, it is desirable to restrict attention to integral regulators. In the
following theorem (see proof in the full version) we show that the ΣP

2 -completeness stays
valid also for integral regulators.

I Theorem 14. Let G be a flow network and let α, γ be integral constants. Deciding whether
there exists an integral regulator g : Es� → IN with bound α such that cuval(G, g) ≥ γ, is
ΣP2 -complete.

I Remark. [Bounded Global Control] In the CUF problem, it is possible to control the
flow leaving the source. This could be generalized by letting an authority control also internal
vertices in the network. In the bounded global control problem, we get as input a flow network
G, a number k ≥ 0, and a threshold γ > 0, and we need to decide whether we can guarantee
an unfortunate flow of at least γ by controlling the outgoing flow in at most k vertices. Note
that while in the problem of finding critical nodes for firefighters [2, 3], a firefighter blocks
the fire, in our setting the firefighters direct the evacuation. Thus, there, the goal is to block
undesired vulnerabilities in the network, and here the goal is maximize desired traffic in
the network. The formal definition of the bounded global control problem goes through
the flow games of [14], which includes the notion of strategies for controlling flow. The ΣP2
algorithm for solving flow games with integral flows can be extended to solve the bounded
global control problem. By making the control on the source vertex essential (say, by adding
a transition with a large capacity to a sink), the CUF problem can be reduced to the global
control problem with k = 1, implying ΣP2 completeness.
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5 Safe Networks and No-Loss Unfortunate Flow

In this section we consider settings in which loss must be avoided. We say that a flow network
G is safe if Lf = 0 for every saturating preflow f . For example, networks with no funnels
are clearly safe. It is easy to see that G is safe iff uval(G) = Cs. Together with Theorem 9,
this gives a co-NP algorithm for deciding the safety of a network. We first show that by
reducing the safety problem to the maximum weighted flow problem, we can decide safety
in polynomial time. Essentially, the reduction checks, for every vertex v ∈ V , whether it is
possible to direct to v flow that is greater than its outgoing capacity, and the weights are
used in order to filter flow incoming to v. For details, see the full version.

I Theorem 15. Deciding whether a flow network is safe can be done in polynomial time.

We now consider the case where the total outgoing flow from s is controlled, and we
need to find an optimal regulator that guarantees no flow loss. Formally, in the no-loss
controlled unfortunate-flow problem (NLCUF problem, for short), we are given a flow network
G and an integer γ > 0, and we need to decide whether there exists a regulator g such that∑
e∈Es� g(e) ≥ γ, and for every controlled saturating preflow that respects g the flow loss is

0 (equivalently, cuval(G, g) = γ). That is, decide whether there is a regulator that ensures
no loss and a value of at least γ. We show that the NLCUF problem is NP-complete. For
the upper bound one could expect an algorithm in which we guess an integral regulator
g : Es� → IN in which the total flow is at least γ, and then use Theorem 15 in order to check
in polynomial time whether flow loss is possible. However, Theorem 11 shows that in some
cases a regulator must use non-integral values in order to ensure that flow loss is impossible.
Consequently, our algorithm is more complicated and uses a result from the theory of real
numbers with addition.

I Theorem 16. The NLCUF problem is NP-complete.

Proof. We start with the upper bound. For a rational number q we denote by #(q)
the length of q, namely, if q = a/b with a, b relatively prime, then #(q) is the sum of
the number of bits in the binary representations of a and b. Consider a formula ϕ =
∃x1, ..., xn∀y1, ..., ymF (x1, ..., xn, y1, ..., ym), where F is a propositional combination of linear
inequalities of the form a1x1 + ... + anxn + b1y1 + ... + bmym ≤ d for integral constants
a1, ..., an, b1, ..., bm, and d. The variables x1, ..., xn, y1, ..., ym are real. In [17] (in the proof
of Theorem 3.1 there) it is shown that ϕ holds iff there exists rational values x1, ..., xn such
that for every i the length #(xi) is polynomial in the size of ϕ and for every real values
y1, ..., ym the formula F holds.

We construct a propositional combination F of linear inequalities over the variables xe,
for every e ∈ Es�, and ye, for every e ∈ E. The formula F states that the values of the
variables xe correspond to a regulator g with bound γ, and that if the values of the variables
ye correspond to a controlled saturating preflow f that respects g, then Lf = 0. Then, our
problem amounts to deciding whether there are real values xe such that for every real values
ye, the formula F holds. By [17], it is enough to check whether there are rational values xe
for e ∈ Es� with polynomial lengths such that for every real values ye for e ∈ E, the formula
F holds. Given values for the variables xe, checking whether for every real values ye the
formula F holds can be done in polynomial time with the algorithm shown in the proof of
Theorem 15. Hence the membership in NP.

We proceed to the lower bound. We show a reduction from CNF-SAT. Let ψ = C1∧. . .∧Cm
be a CNF formula over the variables x1 . . . xn. We denote Z = {x1, . . . , xn, x̄1, . . . , x̄n}. We
assume that for every literal z ∈ Z there is at least one clause in ψ that does not contain
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Figure 6 The flow network G. Unless stated otherwise, the capacities are 1.

z. We construct a flow network G = 〈V,E, c, s, t〉 as demonstrated in Figure 6. For a literal
z ∈ Z and a clause Ci, the network G contains an edge 〈z, Ci〉 iff the clause Ci does not
contain the literal z. Let γ = 2n. In the full version, we show that ψ is satisfiable iff there is
a regulator that ensures no loss and a value of at least γ. J

Sometimes it is desirable to restrict attention to integral regulators. As we show below,
NP-completeness applies for them too (see the full version for proof).

I Theorem 17. Let G be a flow network and let γ > 0 be an integer. Deciding whether there
exists an integral regulator g : Es� → IN in G such that

∑
e∈Es� g(e) ≥ γ, and for every

controlled saturating preflow that respects g the flow loss is 0, is NP-complete.

6 Discussion

The unfortunate-flow problem captures settings in which the authority has no control on
how flow is directed in the vertices of a flow network. For many problems, a transition
from a cooperative setting to an adversarial one dualizes the complexity class to which the
problem belongs, as in NP for satisfiability vs. co-NP for validity. In the case of flow, the
polynomial complexity of the maximum-flow problem is not preserved when we move to the
dual unfortunate-flow problem, and we prove that the problem is co-NP-complete.

On the positive side, the integral-flow property of maximal flow is preserved in unfortunate
flows. This property, however, is lost once we move to controlled unfortunate flows, where
non-integral regulators may be more optimal than integral ones. The need to consider
real-valued flows questions the decidability of the controlled unfortunate-flow problem. As we
show, the problem is decidable, by a reduction to the second alternation level of the theory of
real numbers under addition and order [17]. There, the infinite domain of the real numbers
is reduced to a finite one, namely rational numbers of length polynomial in the input. A
direct algorithm for the controlled unfortunate-flow problem, thus one that does not rely
on [17], is still open. Such a direct algorithm would reduce the real-number domain to a
finite one in a tighter manner – one that depends on the network. We see several interesting
problems in this direction, in particular finding a sufficient granularity that a regulator may
need, and bounding the non-optimality caused by integral regulators. Similar problems are
open in the settings of flow games with two or more players [14, 12].

Finally, the unfortunate-flow problem sets the stage to problems around network design,
where the goal is to design networks with maximal unfortunate flows. In particular, in
network repair, we are given a network and we are asked to modify it in order to increase
its unfortunate flow value. Different algorithms correspond to different types of allowed
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modifications. For example, we may be allowed to change the capacity of a fixed number of
edges. Note that unlike the case of maximal flow, here a repair may reduce the capacity of
edges. Also, unlike the case of maximal flow, there is no clear theory of minimal cuts that
may assist us in such a repair.
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Abstract
We introduce the problem of finding a spanning tree along with a partition of the tree edges into
fewest number of feasible sets, where constraints on the edges define feasibility. The motivation
comes from wireless networking, where we seek to model the irregularities seen in actual wireless
environments. Not all node pairs may be able to communicate, even if geographically close –
thus, the available pairs are specified with a link graph L = (V,E). Also, signal attenuation need
not follow a nice geometric formula – hence, interference is modeled by a conflict (hyper)graph
C = (E,F ) on the links. The objective is to maximize the efficiency of the communication, or
equivalently, to minimize the length of a schedule of the tree edges in the form of a coloring.

We find that in spite of all this generality, the problem can be approximated linearly in terms
of a versatile parameter, the inductive independence of the interference graph. Specifically, we
give a simple algorithm that attains a O(ρ log n)-approximation, where n is the number of nodes
and ρ is the inductive independence, and show that near-linear dependence on ρ is also necessary.
We also treat an extension to Steiner trees, modeling multicasting, and obtain a comparable
result.

Our results suggest that several canonical assumptions of geometry, regularity and “niceness”
in wireless settings can sometimes be relaxed without a significant hit in algorithm performance.
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1 Introduction

We introduce the problem of finding a spanning tree along with a partition of the tree edges into
fewest number of feasible sets, which are independent sets in a given conflict (hyper)graph.
The motivation comes from wireless networking, where we seek a basic communication
structure while capturing the irregularities seen in actual wireless environments.

A spanning tree is the minimal structure for connecting the given set of nodes into a
mutually communicable network. The cost of a communication spanning tree is the time
required to schedule all the tree edges – the transmission links – while obeying the interference
caused by simultaneous transmissions. The scheduling complexity of the tree represents its
throughput capacity: how much communication can be sustained in the long run. The task
might be to aggregate the data measured at the sensor nodes, or to broadcast using one-to-one
communication to all nodes of the network.

Algorithmic studies of wireless connectivity to date have generally involved strong “nice-
ness” assumptions. One core assumption is that points are located in the Euclidean plane
and all (close enough) pairs of nodes are available as links for use in the spanning tree.
Interference modeling has become progressively more realistic, starting with range-based
graph models to the fractional SINR model of interference, but the common thread is that
interference is a direct function of the geometry. While natural, these assumptions depend
on a simplified view of the nature of wireless communication.

Wireless networking in the real world behaves quite different from these theoretical
models [10, 32, 38] and typically displays a high degree of irregularity. This manifests
in how the strength of signals (and the corresponding interference) often varies greatly
within the same region, and is often poorly correlated with distance [2]. This behavior
holds even in simple outdoor environments, but is magnified inside buildings. It is also
evidenced by fluctuations, sensitivity to environmental changes (even levels of humidity),
and hard-to-explain unreliability.

There has been increased emphasis for greater robustness in the design and analysis of
wireless algorithms to address the observed irregularities. In the world of communications
engineering, the default is to introduce stochastic distributions, e.g., on signal strengths. The
algorithms world prefers more adversarial effects, but that can easily lead to intractability.

The objective of this work is to embrace this irregularity in connectivity problems. We
replace the previous assumptions by the opposite premises:

A link may not be usable even if it should be.
and

Interference need not follow (or even relate to) the underlying geometry.

Technically, the former premise means that the set of usable or available links is now
given as a link graph L = (V,L). We place no restrictions on the structure of this graph.
The second premise implies another graph, this time on top of the links. Namely, the
conflict (hyper)graph C = (L,F ) specifies whether a given pair of links in L can coexist in
the same color (of a spanning tree). In the Connectivity Scheduling problem, we seek a
spanning tree T of L and a coloring of the links of T minimizing the number of colors used.

These formulations naturally raise a number of questions: Can arbitrary sets of avail-
able/usable links actually be handled effectively? Can we disconnect the conflicts/interference
from the geometry? Since the ugly specter of intractability is bound to raise its head some-
where, what are minimal restrictions that keep these problems well-approximable?
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Our Results. Given the generality of the ConnectivityScheduling problem, it is unsur-
prising that it is very hard even to approximate. We show that strong n1−ε-approximation
hardness holds, even for the natural special case of 2-hop interference. Instead, we aim to
obtain approximations in terms of natural instance parameters.

We show that the problem is approximable within O(ρ log n)-factor, where ρ is the
inductive independence of the (fractional) conflict graph. This is particularly relevant since ρ
is known to be constant in both of the predominant interference models: the physical (or
SINR) model, and the protocol model. This is attained by a simple greedy algorithm that
can be viewed as a combination of Kruskal’s MST algorithm and a link scheduling algorithm
for the physical model. In contrast, we find that the (perhaps more natural) approach of
selecting and coloring an MST fails badly.

We also generalize the problem to Steiner trees and obtain a similar logarithmic approxi-
mation. The results carry over to the SINR model, where we obtain the first results that
hold for general metric spaces. We also give a supplementary result in the full version (for
space reasons), involving natural geometric interference assumptions, namely that all links of
length smaller than a threshold are available.

Definitions. In line with a modern view of wireless interference, we represent the interference
conflicts by a fractional conflict graph C = (L,W ). Here L is the set of communication links
and W : L× L→ R+ is a function on ordered pairs of links, where W (e, f) represents (or
approximates) the degree to which a transmission on link e interferes with a transmission on
link f . Of particular interest are functions W in terms of geometric relationships involving
link lengths and distances between links. Note that W may be asymmetric. For convenience,
let W (e, e) = 0. We shall write W (S, e) =

∑
f∈SW (f, e) and W (f, S) =

∑
e∈SW (f, e). Let

C[Y ] = (Y,W �Y ) denotes the subgraph induced by a given subset Y ⊆ L.
A set S of links is an independent or a feasible set if W (S, e) ≤ 1, for all e ∈ S. A

coloring of C = (L,W ) is a partition of L into independent sets. Observe that when W

is a 0-1 function, we have the usual independent sets and colorings of graphs. Also, the
formulation with fractional conflicts corresponds to hypergraphs that contain a hyperedge
for each minimal set S′ where W (S′, e) ≥ 1 holds for some e ∈ S′.

We can now state our Connectivity Scheduling problem formally:

Given a link graph L = (V,L) and a fractional conflict graph C = (L,W ), we seek a
spanning tree T of L and a coloring of C[T ], using the fewest number of colors.

A fractional conflict graph C = (L,W ) is said to be ρ-inductive independent, w.r.t. an
ordering ≺ of the links, if for every link e and every feasible set I with e ≺ I, W (I, e) +
W (e, I) ≤ ρ, where e ≺ I means that e precedes each link in I. Here, “inductive” refers
to how the interference is measured only towards later links, and “independence” that it is
towards independent sets. In geometric settings (including range-based and SINR models),
≺ corresponds to a non-decreasing ordering by link length.

For a fractional conflict graph C = (L,W ), let χ(C) denote the smallest number of
independent sets into which L can be partitioned; when C is an ordinary graph, χ(C) is the
chromatic number of C. We view a coloring of C also as a schedule and refer to the colors
also as slots (which could be time slots or frequency bands).

Notable Instantiations. Connectivity Scheduling has a number of special cases of
independent interest, both graph-based and geometric:
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A well-studied setting is where two links conflict if they are incident on a common link,
i.e., when C is the square of the line graph of the link graph L. This case corresponds
to bidirectional version of the classic radio network model. The directed version of
Connectivity Scheduling was treated in [9] as the radio aggregation scheduling
problem.
In range-based or disk models, nodes are embedded in the plane and two links are adjacent
if the distance between (the closest points on) them is less than K times the length of the
longer link, where K is some fixed constant. In a variant, the condition is on distances
between particular nodes on the links. Also, in the the related protocol model, adjacency
occurs if the distance is less than K1 times the length of the longer link plus K2 times
the length of the shorter link, for some constants K1,K2.
The original driving motivation is when nodes and links are embedded in a metric space
and the fractional conflicts follow the geometric SINR model of interference in terms of
the lengths and distances between links. Before this work, only the case when L is the
complete graph over a set of points in a Euclidean metric was considered.
A different geometric version is when we view that no signal gets transmitted between
nodes on unavailable links, perhaps due to an obstacle. The links are then unavailable,
but the nodes also don’t interfere with each other. We refer to this as the Missing Links
version.
A natural special case occurs when link unreliability is restricted by link length, so that
only reasonably long links are unavailable or attenuated, but short links follow the normal
SINR laws (short links are reliable). This is treated in the full version of this paper.
Finally, when the conflict graph C is the line graph of the link graph L, i.e., C = L(L),
we obtain the well-known minimum degree spanning tree (MDST) problem, where given
a graph L, the goal is to find a spanning tree of smallest maximum degree. By König’s
theorem, the chromatic number of the line graph of a tree (in fact, of any bipartite graph)
is equal to the maximum degree of the tree. This problem has more structure that allows
for better solution: while it is NP-hard, it can be approximated within an additive one
[8]. In particular, L(L) is claw-free (does not contain an induced star graph K1,3), which
is stronger than being 2-inductive independent), and is intimately related to L.

Related Work. The connectivity problem in the geometric SINR model was first considered
by Moscibroda and Wattenhofer [35]. It was, in fact, the first work on worst-case analysis in
the SINR model. They show that unlike in random networks, the worst-case connectivity
depends crucially on the use of power control, and with optimal power control, O(log4 n)
slots suffice to connect the nodes. They soon improved this to O(log2 n) [36, 34]. Currently,
the best upper bounds known are O(log n) [17] and O(log∗ Λ) [23], where Λ is the ratio
between the longest to the shortest length of a link in a minimum spanning tree (MST), a
structural parameter that is independent of n. Both of these results hold for the MST of the
pointset; there are pointsets where Ω(log∗ Λ) slots are necessary for scheduling an MST [21].

The scheduling complexity of connectivity relates closely to the efficiency of aggregation,
a key primitive for wireless sensor networks. We refer the reader to [26] for bibliography on
aggregation/collection problems.

There are many approaches that have been proposed to model irregularity in wireless
networks. We first examine static cases, or the modeling of non-geometric behavior. The
basic SINR model allows the pathloss constant α to be adjusted [13], giving a first-order
approximation of the signal gain. In the engineering community, it is most common to
assume that the deviations are drawn from a particular stochastic distribution, typically
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assuming independence of events. In the TCS camp, the prevailing approach is to view the
variations as conforming the plane into a non-Euclidean metric space [7, 16], while retaining
some tractable characteristics. This can also entail identifying appropriate parameters [4].

For frequent temporal changes, the standard engineering assumption is Rayleigh fading.
Dams et al. [6] (see also [22]) showed that link scheduling algorithms are not significantly
affected by such variation, assuming independence across time.

For unpredictably changing behavior, there is much research on adapting to new conditions,
particularly with exponential backoff. A theoretic model proposed to specifically capture
unreliability is the dual graph model [33], which extends the radio network model to a pair of
graphs, the reliable and the unreliable links, where the latter are under adversarial control.
The focus there is on distributed algorithms for one-shot problems, like global and local
broadcast problems, where the nodes do not know which links are reliable. As far as we
know, it has not been considered in settings involving a long-term communication structure.

Inductive independence was first defined by [1] and studied by [37] in the graph setting,
while the weighted version was introduced by Hoefer and Kesselheim [25]. It has been used as
a performance measure for various problems related to wireless networks, including admission
control [11], dynamic packet scheduling [31, 15], and spectrum auctions [25, 24, 15].

Outline of the paper. We first examine, in Sec. 2, how the standard approach – finding a
minimum spanning tree – fares for our problem, and show that it can give poor solutions
in every known interference model when there are missing or unreliable links. We then
give in Sec. 3 a greedy algorithm for Connectivity Scheduling achieving O(ρ log n)-
approximation, where ρ is the inductive independence number of the conflict graph. This
dependence on ρ is shown to be essentially tight in Sec. 5. We also obtain a similar
approximation of a Steiner or multicast version of the problem in Sec. 4. Implications of our
results to the SINR (or physical) model are given in Sec. 6. The rest of the paper can safely
be read without any background in that model. We then close with open problems. Missing
proofs, as well as a brief primer on SINR concepts, are given in the full version of the paper.

2 MST Fails

In a basic setting, the nodes are located on the plane, and the interference between two links
is a function of the lengths of links (distance between the two end-nodes), and the distance
between the (endpoints of) links. For instance, in the SINR model, the interference between
two links is a decreasing function of their distance, and an increasing function of the length
of the interfered link. In this setting, the Euclidean minimum spanning tree (MST) over the
set of nodes is a natural candidate for connectivity, since it favors short links and has low
degree (or, more generally, contains few links in the vicinity of any node). Indeed, the MST
of n nodes can be scheduled in O(log n) slots in the Euclidean SINR model [17].

Somewhat surprisingly, we find that when the set of possible links is restricted, the MST
can actually fail quite badly. This holds in every reasonable model of interference.

I Interference Assumption 1. We say that an interference model is reasonable if: a)
incident links cannot be scheduled together, while b) sparse instances of equal length links
can be scheduled in O(1) slots, where a set of length ` links is sparse if any ball of radius `
contains O(1) endpoints of those links.

Every geometrically-defined wireless interference model known satisfies this reasonableness
property. In particular, this holds in the protocol and Euclidean SINR models.
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Figure 1 The construction from Thm. 1

I Theorem 1. For any n, there is an instance of n nodes embedded on the plane together
with a spanning tree that is schedulable in O(1) slots while scheduling the MST requires
Ω(n1/3) slots, in every reasonable interference model.

Proof. Let k ≥ 1 be a number and K = 2k2. Let V = {o} ∪ {vi,j : i = 0, 1, . . . , k − 1, j =
0, 1, . . . ,K − 1} denote the set of n = kK + 1 = 2k3 + 1 nodes. We position the nodes in
the plane using polar coordinates, with the node o as the origin. For node vi,j , angular
coordinate ri,j is 2π · i/k, while its radial coordinate is k + j.

The links are given by L = O ∪ T ∪ Y , where O = {(o, vi,1) : i = 0, . . . , k − 1},
T = {(vi,j , vi,j+1) : i = 0, . . . , k − 1, j = 0, . . . ,K − 2}, Y = {(vi,K−1, vi+1 mod k,K−1) : i =
0, . . . , k − 1}, or the ordinary, the tiny and the yuge links. That is, the link graph is in the
form of a wheel, centered at origin, with k spokes, and K nodes on each spoke (see Fig. 1).
Ordinary links are incident with the origin, while the yuge links form the tire of the wheel.

We observe that d(vi,K−1, vi+1 mod k,K−1) > k = d(o, vi′,1), for any i, i′. Thus, the MST
consists of the ordinary and tiny links, S ∪ L. Since all the ordinary links have an endpoint
in the origin, they must all be scheduled in different slots, implying that the MST requires
k = Θ(n1/3) slots. On the other hand, a more efficient solution is to use the set Q, consisting
of T , Y and one (arbitrary) link from O. This set Q is a union of three sparse subsets, and
therefore can be scheduled in O(1) slots. J

This same example shows why the known results for Euclidean SINR do not carry over to
general metric spaces (even without missing links). Namely, one could simply form a metric
space on the n nodes by shortest-path distances in the link graph.

3 Greedy Algorithm

A natural greedy approach is to find a large feasible subset of edges, assign it a fresh color,
contract it, and iterate on the contracted graph. The key step is obtaining a constant-
approximation for a maximum feasible subset. A logarithmic approximation then follows
from a set cover argument.

We assume in this section that L can have parallel edges but no loops. We assume that the
conflict graph C is ρ-inductive independent for a number ρ > 0, and the corresponding conflict
function W and ordering of edges ≺ are given. In the maximum feasible forest problem, the
goal is to find a maximum cardinality subset of edges of L, which is both independent in C
and acyclic in L.

The algorithm, given as Alg. 1, is a greedy Kruskal-like algorithm that mixes the edge
selection criteria of wireless capacity algorithms [16, 29] with the classic MST algorithm of
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Kruskal, thus the name CapKruskal. It processes the edges in order of precedence ≺ and
adds an edge to the forest if: a) the interference on that edge from previously selected edges
is small, and b) the edge does not induce a cycle (as per Kruskal). We state it in terms of
the classic union-find operations of MakeSet, Connected, and Union.

Algorithm 1 CapKruskal(L, C)
1: MakeSet(v), for each v ∈ V (L)
2: S ← ∅
3: for e = (u, v) in L in ≺ order do
4: if W (S, e) + W (e, S) ≤ 1/2 and not

Connected(u, v) then
5: S ← S ∪ {e}
6: Union(u, v)
7: end if
8: end for
9: return S′ = {e ∈ S : W (S, e) ≤ 1}

Algorithm 2 Conn(L, C)
1: i← 0
2: L0 ← L
3: while Li has an edge do
4: Si ← CapKruskal(Li, C[Li])
5: Li+1 ← Contract(Li, Si)
6: i← i+ 1
7: end while
8: return S0, S1, . . . , Si−1

Recall that a subset S of edges in L is feasible if W (S, e) =
∑
f∈SW (f, e) ≤ 1, for

all e ∈ S. Define the ordered weight function W+ as W+(e, f) = W (e, f) if e ≺ f , and
W+(e, f) = 0, otherwise. Similarly, define W− as W−(e, f) = W (e, f) if f ≺ e, and
W−(e, f) = 0, otherwise. Also define the cumulative versions W+(S, e), W+(e, S) as before.

We say that a set S is semi-feasible if for each e ∈ S,W+(S, e)+W−(e, S) ≤ 1/2. Namely,
the weighted indegree from shorter nodes and to longer nodes is bounded, but the total
indegree of e may not be. By an averaging argument, a semi-feasible set I contains a feasible
subset of at least half its size. Indeed, using semi-feasibility and sum rearrangements, we
have,

∑
e∈S

W (S, e) =
∑
e∈S

(
W+(S, e) +W−(e, S)

)
≤ |S|2 (1)

so for at least half of the links e ∈ S it holds that W (S, e) ≤ 1.

I Theorem 2. Let F be a maximum feasible forest of L. Then CapKruskal(L, C) outputs
a feasible forest of size Ω(|F |/ρ).

Proof. Let S and S′ be the sets computed in CapKruskal(L, C). By definition, S′ is
feasible. To argue that S′ is large, we examine an arbitrary feasible forest, break it into
three parts, and show that none of the parts can be too large compared to S′. This will
hold, in particular, for the optimal feasible forest. By (1), we can focus on bounding |S|, as
|S′| ≥ |S|/2.

Let I be a feasible forest. Observe that the selection condition of the algorithm is
equivalent to W+(S, e) +W−(e, S) ≤ 1/2, since the edges are considered in the order of ≺.
Let IR be those edges e in I that failed the degree condition (W+(S, e) +W−(e, S) > 1/2),
and IT those edges e = (u, v) in I that failed the connectivity condition (Connected(u, v)).
The rest, IS = I \ (IR ∪ IT ) are contained in S. We bound these sets in terms of S.

Since IT contains only edges inside components that S also connects (recalling that I
induces a forest), |IT | ≤ |S|. Also, clearly IS ⊆ I ∩S ⊆ S, so |IS | ≤ |S|. To bound the size of
IR, observe first that by the definition of ρ-inductive independence, W−(IR, f)+W+(f, IR) ≤
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ρ, for every edge f ∈ S. This implies that

W−(IR, S) +W+(S, IR) =
∑
f∈S

[
W−(IR, f) +W+(f, IR)

]
≤ ρ · |S|.

On the other hand, by the selection criteria,

W+(S, IR) +W−(IR, S) =
∑
e∈IR

[
W+(S, e) +W−(e, S)

]
>
∑
e∈IR

1
2 = |IR|2 .

Thus, |IR| ≤ 2ρ · |S| and |I| ≤ (2ρ+ 2)|S| ≤ 4(ρ+ 1)|S′|. J

Connectivity Scheduling Algorithm. The algorithm Conn repeatedly calls CapKruskal
to obtain a large independent set of links and assigns it to a new color class. These links are
then contracted and the process repeated until we have obtained a spanning tree.

The contraction of an edge is defined in the standard way, except we discard loops. Note
that contraction leaves the conflict graph C intact. The operation Contract(L, S) contracts
all edges in S of a link graph L and outputs the resulting graph.

The pseudocode of the algorithm is given in Alg. 2. The proof of the following theorem,
which is relegated to the full version, follows the classic set cover argument [27].

I Theorem 3. Conn terminates in O(ρ log n) · χ rounds, where χ is the number of colors
needed for coloring an optimum spanning tree.

4 Multicast Tree Schedules

A natural generalization of Connectivity Scheduling is to allow for a set of optional
nodes that can be used in the tree construction but need not. Formally, the node set V
contains a subset X of terminals and we seek a Steiner tree that spans all the terminals.
As before, we ask also for the shortest schedule of the tree links. We refer to this as the
Steiner Connectivity Scheduling.

It is not hard to construct examples for which optimal multicast trees are arbitrarily
better than trees that use only the terminals, even in a geometric setting. One instance can
be obtained from the example of Sec. 2 by restricting the terminals to only the origin and
the nodes incident on yuge links.

We give an algorithm for Steiner Connectivity Scheduling with unweighted conflict
graph C, and analyse it in terms of a parameter similar to ρ but involving clique covers
rather than independence (this setting is also applicable to the SINR model, see Sec. 6).
An unweighted graph C = (L,E) is η-simplicial if there is an ordering ≺ of L such that for
each link v ∈ L, the subgraph induced by v’s neighbors that are later in the ordering can be
covered with η cliques. We refer to neighbors later in the ordering as post-neighbors. As
before, in the geometric setting, the ordering is given by link length. Observe that ρ ≤ η,
while the best bound in the other direction is η ≤ ρ log n.

Our algorithm is a reduction to a multi-dimensional version of the Steiner tree (MMST)
problem, recently treated by Bilò et al. [3]. In MMST, each edge of the input graph has
an associated d-dimensional weight vector, where the weight of edge e along dimension i

indicates how much of the i-th resource is required by e. The objective is to find a tree that
minimizes the `p-norm of its load vector, where the load vector of a Steiner tree is the sum of
the weight vectors of its edges. We use the `∞-norm, as we want to minimize the maximum
use of a resource. They give a greedy O(log d)-approximation algorithm for that case.
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Given an instance of Steiner Connectivity Scheduling with link graph L and
conflict graph C, our reduction is as follows. Each link e in L is itself (or corresponds to) a
resource, so there are n (=number of edges) resources. The weight of link f along dimension
e is 1 if f is a post-neighbor of e in the conflict graph C, and 0 otherwise.

Suppose now that the MMST algorithm of [3] returns a tree T with `∞-norm Z. Then,
the sum of the tree edges along each dimension is at most Z, namely, each link (whether in
T or not) has at most Z post-neighbors in T . In particular, C[T ] is Z-inductive, and can
then be colored greedily using Z + 1 colors.

On the other hand, consider an optimal tree T ∗ and let Z∗ denote the infinity norm
of its load vector. From [3], we know that Z = O(log n) · Z∗. Let f be a link with Z∗

post-neighbors in T ∗, and let Nf be its set of post-neighbors in T ∗. By assumption, C[Nf ]
can be covered with η cliques, and thus Nf contains a clique of size at least |Nf |/η = Z∗/η.
It follows that the length of the schedule of the optimal tree is at least the chromatic number
of C[Nf ], which is at least Z∗/η. Thus, our solution yields a O(η log n)-approximation.

I Theorem 4. There is a O(η log n)-approximation algorithm for Steiner Connectivity
Scheduling, where conflicts are given by a η-simplicial graph.

It is a folklore that η ≤ 6 in disk graphs.

I Corollary 5. There is a O(log n)-approximation algorithm for Steiner Connectivity
Scheduling, where conflicts are given by a disk graph.

5 Hardness of Approximation

It is easy to see that with an arbitrary conflict graph C, the problem is hard to approximate.
For instance, if the link graph L is already a spanning tree, Connectivity Scheduling
becomes simply the classical graph coloring problem (of C). We show below that the hardness
extends to other more restricted settings. These results also show that near-linear dependence
on ρ, the inductive independence, is unavoidable.

We first show that hardness holds when C is the square of the line graph of L (for general
L), C = L2(L), then extend the construction to the case when L is a complete graph and C is
general (Thm. 7), and to signal strength models (Sec. 6). This corresponds to (bidirectional)
2-hop interferences: two transmission links conflict if they are incident on a common edge.
The reduction is from the Distance-2 Edge Coloring problem in general graphs, also
known as Strong Edge Coloring: Given a graph L, find a partition of the edge set into
induced matchings, i.e., induced subgraphs where every vertex is of degree 1.

I Theorem 6. The Connectivity Scheduling problem is hard to approximate within a
n1−ε-factor, for any ε > 0, even when C = L2(L).

Proof. Given an instance of Strong Edge Coloring with graph G′ = (V ′, E′), we
construct an instance of Connectivity Scheduling problem with the graph L constructed
as follows. Consider a bipartite graph G′′ = (V1, V2, E), as follows. For each vertex v in V ′,
there are two vertices v1, v2 in V = V1 ∪ V2, where vi ∈ Vi, i = 1, 2. If uv ∈ E′ then v1u2
and v2u1 are in E. Link graph L is obtained from G′′ by taking a complete binary tree with
|V2| leaves and identifying each leaf with a vertex of V2. The conflict graph is given by a
simple graph C with vertex set E, where e1, e2 ∈ E are adjacent in C if and only if they form
an induced matching in G′, i.e., there is no edge in G′ connecting an endpoint of e1 to an
endpoint of e2. This completes the construction.
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First, let us show that a strong edge coloring of G′ can be used to construct a spanning
tree in L with a similar coloring number. Consider a strong coloring that partitions the
edges of G′ into c color classes E1, E2, . . . , Ec. Each class Ei induces a pair of feasible slots
Si, S′i in L, where Si = {v1u2 : uv ∈ Ei} and S′i = {u1v2 : uv ∈ Ei}. Indeed, since Ei is an
induced matching in G′, each of the slots Si, S′i is also an induced matching in L (and hence
independent in C). Note that the edges in these slots cover all vertices of L, except for the
binary tree. We also add O(log n) slots to the schedule, two for each layer in the binary tree.
The number of slots used then is O(c+ log n). This gives us a connected subgraph of L that
can be scheduled in O(c+ log n) slots.

Next, consider a spanning tree of L with a corresponding schedule of the edges in slots
S1, S2, . . . , St. Ignoring all edges within the binary tree, we obtain a partition of the edges
of the bipartite graph G′′ between V1 and V2. We claim that each class corresponds to an
induced matching in G′, leading to a strong edge coloring of G′ with t colors.

Consider a pair of edges v1u2 and w1x2 in the same feasible slot. Since they are feasible,
there are no edges v1x2 nor w1u2 in L, and thus no edges vx nor wu in E. Then vu and wx
form an induced matching in G′.

Hence, the optimum number of colors in strong edge coloring of G′ is within a constant
factor plus a logarithmic term of the optimal number of slots needed for scheduling a spanning
tree in L. Since the former is hard to approximate within n1−ε-factor [5], so is the latter. J

I Theorem 7. For general graphs C, the Connectivity Scheduling problem is hard to
approximate within a n1−ε-factor, for any ε > 0, even if the link graph L is complete.

Proof. We modify the instance of Thm. 6, by adding to L all edges that were not there and
make them adjacent (in C) to all other edges in the graph. If these new edges are used in a
spanning tree, they have to be scheduled separately in individual time slots. Thus, using
them can only increase the length of any schedule. J

6 Implications to Signal Strength Models

We consider in this section the implementation and implication of our results to signal
strength models, most importantly metric SINR model.

SINR-feasibility, besides the underlying metric, also depends on the transmission power
control regime. Different power control methods give different notions of feasibility. Never-
theless, it is known that for most interesting cases, SINR-feasibility has constant-inductive
independence property. In particular, power control is usually split into two modes:
fixed monotone power schemes, where links use only local information, such as the link
length, to define the power level, and global power control, where all power levels are con-
trolled simultaneously to give larger independent sets. The former includes the uniform
power mode, where all links use equal power. Another technical issue is directionality of
links, which is not explicitly addressed by our general results, but will be addressed below.

Let us start the discussion from Euclidean metrics (or more generally doubling metrics).
For the global power control mode, [29] introduced a weight function W and proved that with
this function, the conflict graph of any set of links is constant-inductive independent (see [29,
Thm. 1]), so our results apply here directly (except for directionality issues, addressed below).
Similarly, for fixed monotone power schemes (excluding uniform power), [15] showed that
in order to get constant-inductive independence, one may take the natural weight function,
affectance (also called relative or normalized interference) [15, Thm.3.3]. In all cases, the
ordering ≺ corresponds to a non-decreasing order of links by length.
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For general metric spaces, a slightly more technical definition of inductive independence
is used, where a fractional conflict graph C = (L,W ) is (ρ, γ)-inductive independent, w.r.t.
an ordering ≺ of the links, if for every link e and every feasible set I ∈ F with e ≺ I,
there is a subset I ′ ⊆ I of size |I ′| ≥ |I|/γ, such that W (I, e) + W (e, I) ≤ ρ. The old
definition corresponds to the setting γ = 1. It is easily verified that Thms. 2 and 3 extend
to cover this new definition, with approximation ratios multiplied by a factor of γ. Now,
the counterparts of the results from the previous paragraph in general metrics can be found
in [18, Lemmas 2,4] and [30, Thm. 1, Lemma 3], where it is shown that with appropriate
weight functions, feasibility for any fixed monotone power scheme (including uniform power),
as well as feasibility with global power control, can be expressed by a fractional conflict
graph, which is (O(1), O(1))-inductive independent.

The claims above concern settings where the links have fixed directions. In particular, if
we apply Thm. 3 to the weighted functions from the previous paragraph, then we should
add “there exists a direction of links, such that...” to the claim. This issue is easily resolved
for the global power control mode, where the weight function of [29] does not depend on
directions. Namely, it gives a schedule, such that whatever direction is assigned to the links,
one can find a power assignment that makes it work (the power assignment could be different
for different orientations of links).

For oblivious powers, the following trick applies. It is known that for a set of links with
some direction and an oblivious power assignment, and with the weight function W defined
in terms of the affectances, if W (e, S) ≤ 1/2 for all e ∈ S (call this dual-feasibility), then
there is another oblivious power assignment (called the dual of the original one) that makes
S feasible with the reversed directions of links [28]. Thus, we would like to have schedules
with slots S being also dual-feasible. To this end, it is enough to modify CapKruskal, so
that the threshold 1/2 in the acceptance condition is replaced with 1/4, and the output set
S′ is given by S′ = {e ∈ S : (W (S, e) ≤ 1) ∧ (W (e, S) ≤ 1/2)}. Very similar methods then
show that this again gives an O(ρ)-approximation to the maximum feasible forest problem.
The rest of the analysis is left intact, so we obtain an O(log n)-approximation as before, but
with schedule slots that are both feasible and dual-feasible. Then we can replace each slot
with its two copies and revert the directions of links in one of the copies. Every link thus
gets scheduled in both directions, while the schedule length increases by a factor of two.

Summarizing the observations above, we state the following theorem.

I Theorem 8. There is an O(log n)-approximation to Connectivity Scheduling problem
in the SINR model in arbitrary metric spaces. This holds both in the case of fixed monotone
power assignments, and for arbitrary power control. It holds even when only a subset of the
node-pairs are available as links (but interferences follow the metric SINR definitions).

These are the first results that hold in general metrics. They are necessarily relative
approximations, since in general metric spaces, there is no good upper bound on the
connectivity number, even for complete graphs. Two simple examples are the metric induced
by the star K1,t with unit-length edges, and the unit metric formed by distances on the
unit-length clique metric.

For the case of points in the plane (i.e., a complete link graph with conflicts induced by
distances), connectivity can be achieved in O(log n) slots [17]. Since it is not known if O(1)
slots always suffice, this result is not directly implied by Thm. 3. However, it was also shown
in [17] that the MST contains a feasible forest of Ω(n) edges. The rest of our analysis (using
constant-inductive independence) then implies a result matching [17].

I Corollary 9. Let P be a set of points in the plane. Then, Conn finds and schedules a
spanning tree of P in O(log n) slots.
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Steiner trees. In the geometric SINR model with a fixed monotone power scheme (with not
all links available), we reduce the problem to a graph question as follows. It was observed in
[14] that links of the same length class behave approximately like unit-disk graphs, where a
length class refers to links whose lengths differ by at most a factor of 2. Namely, there are
constants c1 and c2 such that for a set S of links of length approximately `, if all links are of
mutual distance greater than c2`, then they form a feasible set, whereas any pair of links in
S of distance at most c1` must be scheduled separately.

We modify the reduction to MMST to that of the graph construction so that weight of
link f along dimension e is 1 only if f is a post-neighbor of e in C and f and e are of the
same length class. We then take the resulting tree and schedule the length classes separately,
at an extra cost of O(log Λ) (the number of length classes).

I Corollary 10. There is a O(log Λ log n)-approximation algorithm for Steiner Connec-
tivity Scheduling in the geometric SINR model, under any fixed monotone power scheme.

Using power control, we can do considerably better. The main result of [19] shows
that for any set L of links, there is an unweighted conflict graph C(L), such that every
independent set in C is feasible, and the chromatic number of C is at most O(log∗∆) factor
away from the optimum schedule length of L (using global power control). Moreover, C is
constant-simplicial [19, Prop. 1].

I Corollary 11. There is a O(log n log∗ Λ)-approximation algorithm for Steiner Connec-
tivity Scheduling in the geometric SINR model with global power control.

A similar result with O(log log Λ)-factor holds also for certain monotone power schemes
(but not, for instance, uniform power) [20].

Hardness. A special Missing Links variant of the geometric case is where the nodes/links
are embedded in the plane and all interferences are either zero or follow the SINR model
(with either fixed power or global power control).

I Theorem 12. The geometric Missing Links variant is n1−ε-hard to approximate, for any
ε > 0. It is also Λ2−ε-hard, where Λ is the ratio between the longest to the shortest node
distance. This holds even if all unavailable links are missing links.

Proof. We embed the instance of Thm. 6 in the plane. The nodes of V1 are located in a unit
square in a mesh pattern, 1/

√
n apart in

√
n columns

√
n abreast. At a unit distance, a

similar unit square holds the nodes of V2. The length of an edge in L (in distance in the
plane) is then between 1 and 4.

An induced matching in L corresponds to a set of links with no mutual interference. On
the other hand, a pair of links that are incident on a common edge or share a vertex, will
receive interference from each other according to the SINR formula (using the shared edge
or each other). Given that distances along available edges vary only by a constant factor,
the interference between the links is a constant (specifically, at least 1/4α, where α is the
“pathloss” constant of the SINR model). Thus, in the setting where the SINR threshold is
at least the reciprocal of that constant (i.e., β ≥ 4α), feasible sets are necessarily induced
matchings in L. We can then conclude by recalling a “signal-strengthening” result [12] that
shows that varying the threshold by a constant factor only affects the schedule length by a
constant factor.

The longest node distance is at most log n, which is from the root of the binary tree to
its leaves, while the shortest distance is 1/

√
n. Thus, Λ ≤ 4

√
n log n, and n1−ε ≥ Λ2−ε′ , for

some ε′ ≥ ε/3.
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We can restrict the available edges incident to (non-leaf) nodes on the binary tree to
the tree edges alone. Thus, non-leaf nodes in the tree must be connected via the tree edges.
Then, all unavailable edges are missing edges. J

7 Open Issues

Many related problems are left addressing; we list the most prominent ones.
Latency minimization: Bounding the time it takes for a packet to filter through the tree
from a leaf to a root (and back). This requires optimizing both the height of the tree as
well as the ordering of the links in the schedule.
Directed case: Finding an arborescence. This requires new techniques, as our argument
crucially depends on the graph being undirected.
Distributed algorithms: This relates also to the issue of detecting or learning whether a
link is usable/reliable or not.
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Abstract
We give a simple distributed algorithm for computing adjacency matrix eigenvectors for the
communication graph in an asynchronous gossip model. We show how to use this algorithm
to give state-of-the-art asynchronous community detection algorithms when the communication
graph is drawn from the well-studied stochastic block model. Our methods also apply to a natural
alternative model of randomized communication, where nodes within a community communicate
more frequently than nodes in different communities.

Our analysis simplifies and generalizes prior work by forging a connection between asyn-
chronous eigenvector computation and Oja’s algorithm for streaming principal component anal-
ysis. We hope that our work serves as a starting point for building further connections between
the analysis of stochastic iterative methods, like Oja’s algorithm, and work on asynchronous and
gossip-type algorithms for distributed computation.
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1 Introduction

Motivated by the desire to process and analyze increasingly large networks – in particular
social networks – considerable research has focused on finding efficient distributed protocols
for problems like triangle counting, community detection, PageRank computation, and
node centrality estimation. Many of the most popular systems for massive-scale graph
processing, including Google’s Pregel [19] and Apache Giraph [29] (used by Facebook), employ
programming models based on the simulation of distributed message passing algorithms, in
which each node is viewed as a processor that can send messages to its neighbors.

EA
T

C
S

© Frederik Mallmann-Trenn, Cameron Musco, and Christopher Musco;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 159; pp. 159:1–159:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mallmann@mit.edu
mailto:cnmusco@mit.edu
mailto:cpmusco@mit.edu
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.159
https://arxiv.org/abs/1804.08548
https://arxiv.org/abs/1804.08548
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


159:2 Eigenvector Computation and Community Detection in Asynchronous Gossip Models

Apart from computational benefits, distributed graph processing can also be required
when privacy constraints apply: for example, EU regulations restrict the personal data
sent to countries outside of the EU [8]. Distributed algorithms avoid possibly problematic
aggregation of network information, allowing each node to compute a local output based on
their own neighborhood and messages received from their neighbors.

One of the main problems of interest in network analysis is the computation of the
eigenvectors of a networks’ adjacency matrix (or related incidence matrices, such as the
graph Laplacian). The extremal eigenvectors have many important applications – from graph
partitioning and community detection [13, 23], to embedding in graph-based machine learning
[5, 26], to measuring node centrality and computing importance scores like PageRank [6].

Due to their importance, there has been significant work on distributed eigenvector
approximation. In synchronous message passing systems, it is possible to simulate the well-
known power method for iterative eigenvector approximation [17]. However, this algorithm
requires that each node communicates synchronously with all of its neighbors in each round.

In an attempt to relax this requirement, models in which a subset of neighbors are
sampled in each communication round [18] have been studied. However, the computation
of graph eigenvectors in fully asynchronous and gossip-based message passing systems, in
which nodes communicate with a single neighbor at a time in an asynchronous fashion, is not
well-understood. While a number of algorithms have been proposed, which give convergence
to the true eigenvectors as the number of iterations goes to infinity, strong finite iteration
approximation bounds are not known [14, 24].

Our contributions

In this work, we give state-of-the-art algorithms for graph eigenvector computation in
asynchronous systems with randomized schedulers, including the classic gossip model [7, 12]
and population protocol model [2]. We show that in these models, communication graph
eigenvectors can be computed via a very simple adaption of Oja’s classic iterative algorithm
for principal components analysis [27]. Our analysis leverages recent work studing Oja’s
algorithm for streaming covariance matrix eigenvector estimation [1, 16].

By making an explicit connection between work on streaming eigenvector estimation and
asynchronous computation, we hope to generally expand the toolkit of techniques that can
be applied to analyzing graph algorithms in asynchronous systems.

As a motivating application, we use our results to give state-of-the-art distributed
community detection protocols, significantly improving upon prior work for the well-studied
stochastic-block model and related models where nodes communicate more frequently within
their community than outside of it. We summarize our results below.

Asynchronous eigenvector computation. First, we provide an algorithm (Algorithm 2)
that approximates the k largest eigenvectors v1, ...,vk for an arbitrary communication matrix
(essentially a normalized adjacency matrix, defined formally in Theorem 1).

For an n-node network, the algorithm ensures, with good probability, that each node
u ∈ [n] computes the uth entries of vectors ṽ1, ..., ṽk such that for all i ∈ [k], ‖ṽi − vi‖22 ≤ ε.
Each message sent by the algorithm requires communicating just O(k) numbers, and the
global time complexity is Õ( Λk3

gap ·min(gap,γmix)ε3 ) local rounds, where gap is the minimal
gap between the k largest eigenvalues, γmix is roughly speaking the spectral gap, i.e., the
difference between the largest and second-largest eigenvalue, and Λ is the sum of the k largest
eigenvalues. We note that we use Õ(·) to suppress logarithmic terms, and in particular,
factors of poly log n. See Theorem 6 for a more precise statement.
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For illustration, consider a communication graph generated via the stochastic block model –
G(n, p, q), which has n nodes, partitioned into two equal-sized clusters. Each intracluster edge
added independently with probability p and each intercluster edge is added with probability
q < p. If, for example, p = Ω

(
logn
n

)
and q = p/2, and k = 2, we can bound with high

probability Λ = Θ(1/n), gap = Θ(1/n), and γmix = Θ(1/n), which yields an eigenvector
approximation algorithm running in Õ( nε3 ) global rounds, or Õ( 1

ε3 ) local rounds.

Approximate community detection. Second, we harness our eigenvector approximation
routine for community detection in the stochastic block model with connection probabilities
p, q (we give two natural definitions of this model in an asynchronous distributed system
with a random scheduler; see Theorem 2 and Theorem 3). After executing our protocol
(Algorithm 5), with good probability, all but an ε fraction of the nodes output a correct
community label in Õ

(
1/ε3ρ2) local rounds, where ρ = min

(
q
p+q ,

p−q
p+q

)
. For example, when

q = p/2, this complexity is Õ
(
1/ε3

)
. See Theorem 8 and Theorem 9 for precise bounds.

Exact community detection. Finally, we show how to produce an exact community labeling,
via a simple gossip-based error correction scheme. For ease of presentation, here we just state
our results in the case when q = p/2 and we refer to section 5 (Theorem 10 and Theorem 11)
for general results. Starting from an approximate labeling in which only a small constant
fraction of the nodes are incorrectly labeled, we show that, with high probability, after
O(log n) local rounds, all nodes are labeled correctly.

Related work

Community detection via graph eigenvector computation and other spectral methods has
received ample attention in centralized setting [22, 9, 32]. Such methods are known to recover
communities in the stochastic block model close to the information theoretic limit. Interest-
ingly, many state-of-the-art community detection algorithms in this model, which improve
upon spectral techniques, are based on message passing (belief propagation) algorithms
[11, 25]. However, these algorithms are not known to work in asynchronous contexts.

Community detection in asynchronous distributed systems has received less attention. It
has recently been tackled in a beautiful paper by Becchetti et al. [3]. The algorithm studied
in this paper is a very simple averaging protocol, originally considered by the authors in a
synchronous setting [4]. Each node starts with a random value chosen uniformly in {−1, 1}.
Each time two nodes communicate, they update their values to the average of their previous
values. After each round of communication, a node’s estimated community is given by the
sign of the change of its value due to the averaging update in that round.

Beccheti et al. analyze their algorithm for regular clustered graphs, including regular
stochastic block model graphs, where all nodes have exactly a edges to (randomly selected)
nodes in their cluster and exactly b < a edges to nodes outside their cluster. As discussed
in [3], for regular graphs their protocol can be viewed as estimating the sign of entries in
the second largest adjacency matrix eigenvector. Thus, it has close connections with our
protocols, which explicitly estimate this eigenvector and label communitues using the signs
of its entries.

The results of Becchetti et al. apply with O(polylog n) local rounds of communication
when either a

b = Ω(log2 n), or when a − b = Ω(
√
a+ b). In contrast, our results for the

(non-regular) stochastic block model give O(polylog n) local runtime when p
q = Ω(1) or

n(p− q) = Ω(
√
n(p+ q) log n). Here we assume that q is not too small – see Theorem 9 for
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details. Note that n·p and n·q can be compared to a and b, since they are the expected number
of intra- and inter-cluster edges respectively. Thus, our results give comparable bounds,
tightening those of Becchetti et al. in some regimes and holding in the most commonly
studied family of stochastic block model graphs, without any assumption of regularity1.

Outside of community detection, our approach to asynchronous eigenvector approximation
is related to work on asynchronous distributed stochastic optimization [31, 10, 28]. Often, it
is assumed that many processors update some decision variable in parallel. If these updates
are sufficiently sparse, overwrites are rare and the algorithm converges as if it were run in
a synchronous manner. Our implementation of Oja’s algorithm falls under this paradigm.
Each update to our eigenvector estimates is sparse – requiring a modification just by the two
nodes that communicate at a given time. In this way, we can fully parallelize the algorithm,
even in an asynchronous system.

2 Preliminaries

2.1 Notation
For integer n > 0, let [n] def= {1, . . . , n}. Let 1n,m be an n×m all-ones matrix and In×n be
an n× n identity. Let ei be the ith standard basis vector, with length apparent from context.
Let V denote a set of nodes with cardinality |V | = n. Let P be the set of all unordered node
pairs (u, v) with u 6= v. |P| =

(
n
2
)
.

For vector x ∈ Rn, ‖x‖2 is the Euclidean norm. For matrix M ∈ Rn×m, ‖M‖2 =
maxx

‖Mx‖2
‖x‖2

is the spectral norm. ‖M‖F =
√∑n

i=1
∑m
j=1 M2

i,j denotes the Frobenius norm.
MT is the matrix transpose of M. When M ∈ Rn×n is symmetric we let λ1(M) ≥ λ2(M) ≥
... ≥ λn(M) denote its eigenvalues. M is positive semidefinite (PSD) if λi(M) ≥ 0 for all i.
For symmetric M,N ∈ Rn×n we use M � N to indicate that N−M is PSD.

2.2 Computational model
We define an asynchronous distributed computation model that encompasses both the well-
studied population protocol [2] and asynchronous gossip models [7]. Computation proceeds
in rounds and a random scheduler chooses a single pair of nodes to communicate in each
round. The choice is independent across rounds, but may be nonuniform across node pairs.

I Definition 1 (Asynchronous communication model). Let V be a set of nodes with |V | = n.
Computation proceeds in rounds, with every node v ∈ V having some state s(v, t) in round t.

Recall that P denotes all unordered pairs of nodes in V . Let w : P → R+ be a
nonnegative weight function. In each round, a random scheduler chooses exactly one
(u, v) ∈ P with probability w(u, v)/

[∑
(i,j)∈P w(i, j)

]
and u, v both update their states

according to some common (possibly randomized) transition function σ. Specifically, they
set s(v, t+ 1) = σ(s(v, t), s(u, t)) and s(u, t+ 1) = σ(s(u, t), s(v, t)).

Note that in our analysis we often identify the weight function w with a symmetric
weight matrix W ∈ Rn×n where Wu,u = 0 and Wu,v = Wv,u = w(u, v)/

[∑
(i,j)∈P w(i, j)

]
.

Let D be a diagonal matrix with Du,u =
∑
v∈V Wu,v. Du,u is the probability that node u

1 We note that the analysis of Bechitti et al. seems likely to extend to our alternative communication
model (Theorem 2), where the communication graph is weighted and regular



F. Mallmann-Trenn, C. Musco, and C. Musco 159:5

communicates in any given round. Since two nodes are chosen in each round,
∑
u Du,u = 2.

We will refer to D + W as the communication matrix of the communication model.
I Remark (Asynchronous algorithms). Since the transition function σ in Theorem 1 is universal,
nodes can be seen as identical processes, with no knowledge of w or unique ids. We do assume
that nodes can initiate and terminate a protocol synchronously. That is, nodes interact from
round 0 up to some round T , after which they cease to interact, or begin a new protocol.
This assumption is satisfied if each node has knowledge of the global round number but, in
general, is much weaker. For example, in the asynchronous gossip model discussed below, it
is sufficient for nodes to have access to a synchronized clock.

We use algorithm to refer to a sequence of transition functions, each corresponding to
a subroutine run for specified number of rounds. Subroutines are run sequentially. The
first has input nodes with identical starting states (as prescribed by Theorem 1) but later
subroutines start once nodes have updated their states and thus have distinguished inputs.
I Remark (Simulation of existing models). The standard population protocol model [2] is recov-
ered from Theorem 1 by setting w(u, v) = 1 for all (u, v) – i.e., pairs of nodes communicate
uniformly at random. A similar model over a fixed communication graph G = (E, V ) is
recovered by setting w(u, v) = 1 for all (u, v) ∈ E and w(u, v) = 0 for (u, v) /∈ E.

Theorem 1 also encompasses the asynchronous gossip model [7, 12], where each node
holds an independent Poisson clock and contacts a random neighbor when the clock ticks.
If we identify rounds with clock ticks, let λu be the rate of node u’s clock, and let p(u, v)
be the probability that u contacts v when its clock ticks. Then the probability that nodes

u and v interact in a given round is 1
2

[
λu∑
z∈V

λz
· p(u, v) + λv∑

z∈V
λz
· p(v, u)

]
. With w(u, v)

set to this value, Theorem 1 corresponds exactly to the asynchronous gossip model.

2.3 Distributed community detection problem
This paper studies the very general problem of computing communication matrix eigenvectors
with asynchronous protocols run by the nodes in V . One primary application of computing
eigenvectors is to detect community structure in G. Below we formalize this application as
the distributed community detection problem and introduce two specific cases of interest.

In the distributed community detection problem, the weight function w and corresponding
weight matrix W of Theorem 1 are clustered: nodes in the same cluster are more likely to
communicate than nodes in different clusters. The goal is for each node to independently
identify what cluster it belongs to (up to a permutation of the cluster labels).

We consider two models of clustering. In the first (n, p, q)-weighted communication model,
the weight function directly reflects the increased likelihood of intracluster communication.
In the second, G(n, p, q)-communication model, weights are uniform on a graph sampled from
the well-studied planted-partition or stochastic block model [15]. For simplicity, we focus on
the setting in which there are two equal sized clusters, but believe that our techniques can
be extended to handle a larger number of clusters, potentially with unbalanced sizes.

I Definition 2 ((n, p, q)-weighted communication model). An asynchronous model (Theo-
rem 1), where node set V is partitioned into disjoint sets V1, V2 with |V1| = |V2| = n/2. For
values q < p, w(u, v) = p if u, v ∈ Vi for some i and w(u, v) = q if u ∈ Vi and v ∈ Vj for
i 6= j.

I Definition 3 (G(n, p, q)-communication model). An asynchronous model (Theorem 1),
where node set V is partitioned into disjoint sets V1, V2 with |V1| = |V2| = n/2. The weight
matrix W is a normalized adjacency matrix of a random graph G(V,E) generated as follows:
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for each pair of nodes u, v ∈ V , add edge (u, v) to edge set E with probability p if u and v
are in the same partition Vi and probability q < p if u and v are in different partitions.

Analysis of community detection in the (n, p, q)-weighted communication model is more
elegant, and will form the basis of our analysis for the G(n, p, q)-communication model, which
more closely matches models considered in prior work on in both distributed and centralized
settings. Formally, we define the distributed community detection problem as follows:

I Definition 4 (Distributed community detection problem). An algorithm executing in the
communication models of Theorem 2 and Theorem 3 solves community detection in T rounds
if for every t ≥ T , all nodes in V1 hold some integer state s1 ∈ {−1, 1}, while all nodes in
V2 hold state s2 = −s1. An algorithm solves the community detection problem in L local
rounds if every node’s state remains fixed after L local interactions with other nodes.

3 Asynchronous Oja’s algorithm

Our main contribution is a distributed algorithm for computing eigenvectors of the commu-
nication matrix D + W. These eigenvectors can be used to solve the distributed community
detection problem or in other applications. Our main algorithm is a distributed, asynchronous
adaptation of Oja’s classic iterative eigenvector algorithm [27], described below:

Algorithm 1 Oja’s method (centralized)
Input: x0, ...,xT−1 ∈ Rn drawn i.i.d. from some distribution D such that for some constant
C, Px∼D[‖x‖22 ≤ C] = 1 and Ex∼D[xxT ] = M. Rank parameter k and step size η.
Output: Orthonormal Ṽ ∈ Rn×k whose columns approximate M’s k top eigenvectors.

1: Choose Q0 with entries drawn i.i.d. from the standard normal distribution N (0, 1).
2: for t = 0, ...., T − 1 do
3: Qt+1 := (I + ηxtxTt )Qt.
4: end for
5: return ṼT := orth(QT ). . Orthonormalizes the columns of QT .

3.1 Approximation bounds for Oja’s method
A number of recent papers have provided strong convergence bounds for the centralized
version of Oja’s method [1, 16]. We will rely on the following theorem, which we prove in
full verison using a straightforward application of the arguments in [1].

I Theorem 5. Let M ∈ Rn×n be a PSD matrix with
∑k

i=1
λi(M)
C ≤ Λ and λk(M)−λk+1(M)

C ≥
gap for some values Λ, gap. For any ε, δ ∈ (0, 1), let ξ = n

δε·gap , η = c1ε
2·gap ·δ2

CΛk log3 ξ
for some

sufficiently small constant c1, and T = c2·(log ξ+1/ε)
C·gap ·η for sufficiently large c2. Then with

probability ≥ 1− δ, Algorithm 1 run with step size η returns ṼT satisfying,

‖ZT ṼT ‖2F ≤ ε.

where Z is an orthonormal basis for the bottom n− k eigenvectors of M.

If ṼT exactly spanned M’s top k eigenvectors, ‖ZT ṼT ‖2F would equal 0. To obtain an
approximation of ε, the number of iterations required by Oja’s method naturally depends
inversely on ε, the failure probability δ, and the gap between eigenvalues λk(M) and λk+1(M).
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3.2 Distributed Oja’s method via random edge sampling
Oja’s method can be implemented in the asynchronous communication model (Theorem 1)
to compute top eigenvectors of the communication matrix D + W, defined in subsection 2.2.

For any pair of nodes (u, v), let eu,v = eu + ev be the vector with all zero entries except
1’s in its uth and vth positions. Given weight function w and associated matrix W, let DW
be the distribution in which each eu,v is selected with probability Wu,v. That is, the same
distribution by which edges are selected to be active by the scheduler in Theorem 1. Noting
that eu,veTu,v is all zero except at its (u, u), (v, v), (u, v), and (v, u) entries, we can see that

E
eu,v∼DW

[
eu,veTu,v

]
=

∑
(u,v)∈P

Wu,v · eu,veTu,v = D + W, (1)

where P denotes the set of unordered node pairs (u, v) with u 6= v. So if we run Oja’s
algorithm with eu,v sampled according to DW, we will obtain an approximation to the top
eigenvectors of D + W. Note that this matrix is PSD, by the fact that each eu,veTu,v is PSD.

Furthermore, the algorithm can be implemented in our communication model as an
extremely simple averaging protocol. Each iteration of Algorithm 1 requires computing
Qt+1 = (I + ηxtxTt )Qt. If xt = eu,v for eu,v ∼ DW, we can see that computing Qt+1 just
requires updating the uth and vth rows of Qt. Thus, if the n rows of Qt are distributed
across n nodes, this update can be done locally by nodes u and v when they are chosen to
interact by the randomized scheduler. Specifically, letting [q(1)

u , ..., q
(k)
u ] be the uth row of Qt,

stored as the state at node u, applying (I + ηeu,veTu,v) just requires setting for all i ∈ [k]:

q(i)
u := (1 + η)q(i)

u + ηq(i)
v . (2)

Node v makes a symmetric update, and all other entries of Qt remain fixed.
We give the pseudocode for this protocol in Algorithm 2. Along with the main iteration

based on the simple update in (2), the nodes need to implement Step 5 of Algorithm 1, where
QT is orthogonalized. This can be done with a gossip-based protocol, which we abstract as
the routine AsynchOrth. We give an implementation of AsynchOrth in subsection 3.3.
I Remark (Choice of communication matrix). While, as we will show, the eigenvectors of D+W
are naturally useful in our applications to community detection, the above techniques easily
extend to computing eigenvectors of other matrices. For example, if we set eu,v = eu − ev,
Eeu,v∼DW [eu,veTu,v] = D−W = L, a scaled Laplacian of the communication graph.

Algorithm 2 Asynchronous Oja’s (AsynchOja(T, T ′, η))
Input: Time bounds T, T ′, step size η.
Initialization: ∀u, chose [q(1)

u , ..., q
(k)
u ] independently from standard Gaussian N (0, 1).

1: if t < T then
2: (u, v) is chosen by the randomized scheduler.
3: For all i ∈ [k], q(i)

u := (1 + η)q(i)
u + ηq

(i)
v . . Computes of (I + ηeu,veTu,v)Qt.

4: else
5: [v̂(1)

u , ..., v̂
(k)
u ] = AsynchOrth([q(1)

u , ..., q
(k)
u ], T ′). . Implements of ṼT = orth(QT ).

6: end if

Note that in the pseudocode above, when nodes u, v interact in the asynchronous model,
they only need to share their respective values of q(i)

u and q(i)
v for i ∈ [k].

Up to the orthogonalization step, we see that Algorithm 2 exactly simulates Algorithm 1
on input M = D + W. Thus, assuming that AsynchOrth([q(1)

u , ..., q
(k)
u ]) exactly computes
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ṼT = orth(QT ) as in Step 5 of Algorithm 1, the error bound of Theorem 5 applies directly.
Specifically, if we let the local states, [q(1)

1 , . . . , q
(1)
n ], . . . , [q(k)

1 , . . . , q
(k)
n ] correspond to the k

length-n vectors in ṼT , Theorem 5 shows that ‖ZT ṼT ‖2F ≤ ε. In subsection 3.3 we show
that this bound still holds when AsynchOrth computes an approximate orthogonalization.

3.3 Distributed orthogonalization and eigenvector guarantees
In fact, a specific orthogonalization strategy yields a stronger bound, which is desirable in
many applications, including community detection: Algorithm 2 can actually well approximate
each of D + W’s top k eigenvectors, instead of just the subspace they span.

Specifically, let ṽi denote the ith column of ṼT and vi denote the ith eigenvector of
D + W. We want (ṽTi vi)2 ≥ 1− ε for all i. Such a guarantee requires sufficiently large gaps
between the top k eigenvalues, so that their corresponding eigenvectors are identifiable. If
these gaps exist, the guarantee can by using the following orthogonalization procedure:

Algorithm 3 Orthogonalization via Cholesky Factorization (centralized)
Input: Q ∈ Rn×k with full column rank. Output: Orthonormal span for Q, Ṽ ∈ Rn×k.

1: L := chol(QTQ) . Cholesky decomp. returns lower triangular L with LLT = QTQ.
2: return Ṽ := Q(LT )−1 . Orthonormalize QT ’s columns using the Cholesky factor.

I Remark. Algorithm 3 requires an input that is full-rank, which always includes QT in
Algorithms 1 and 2: Q0’s entries are random Gaussians so it is full-rank with probability 1
and each (I + ηxTt xt) is full-rank since η < ‖xt‖. Thus, QT =

∏T−1
t=0 (I + ηxTt xt)Q0 is too.

Ultimately, our AsynchOrth is an asynchronous distributed implementation of Algo-
rithm 3. We first prove an eigenvector approximation bound under the assumption that this
implementation is exact and then adapt that result to account for the fact that AsynchOrth
only outputs an approximate solution.

Pseudocode for AsynchOrth is included below. Each node first computes a (scaled)
approximation to every entry of QTQ using a simple averaging technique. Nodes then locally
compute L = chol

(
QTQ

)
and the uth row of ṼT = Q(LT )−1. In the full version of this

paper [20] we argue that, due to numerical stability of Cholesky decomposition, each node’s
output is close to the uth row of an exactly computed ṼT , despite the error in constructing
QTQ.

Algorithm 4 Asynchronous Cholesky Orthogonalization (AsynchOrth(T ))
Input: Time bound T .
Initialization: Each node holds [q(1)

u , ..., q
(k)
u ]. For all i, j ∈ [k], let r(i,j)

u := q
(i)
u · q(j)

u .
1: if t < T then
2: (u, v) is chosen by the randomized scheduler.
3: for all i, j ∈ [k], r(i,j)

u := r(i,j)
u +r(i,j)

v

2 . . Estimation of 1
nqTi qj via averaging.

4: else
5: Form Ru ∈ Rk×k with (Ru)i,j = (Ru)j,i := n · r(i,j)

u . . Approximation of QTQ.
6: Lu := chol(Ru).
7: [v̂(1)

u , ..., v̂
(k)
u ] := [q(1)

u , ..., q
(k)
u ] · (LTu )−1. . Approximation of uth row of Q(LTu )−1.

8: end if

Ultimately in [20] we prove the following result when Algorithm 4 is used to implement
AsynchOrth as a subroutine for Algorithm 2, AsynchOja(T, T ′, η):
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I Theorem 6 (Asynchronous eigenvector approximation). Let v1, ...,vk be the top k eigenvec-
tors of the communication matrix D + W in an asynchronous communication model, and
let Λ, gap, γmix be bounds satisfying: Λ ≥

∑k
j=1 λj(D + W), gap ≤ minj∈[k][λj(D + W)−

λj+1(D + W)], and γmix ≤ min
[ 1
n , log

(
λ−1

2 (I− 1
2D + 1

2W)
)]
.

For any ε, δ ∈ (0, 1), let ξ = n
δε·gap . Let η = c1ε

2·gap ·δ2

Λk3 log3 ξ
for sufficiently small c1, and T =

c2·(log ξ+1/ε)
gap ·η , T ′ = c3(log ξ+1/ε)·λ1(D+W)

gap ·γmix for sufficiently large c2, c3. For all u ∈ [n], i ∈ [k],
let v̂(j)

u be the local state computed by Algorithm 2. If V̂ ∈ Rn×k is given by (V̂)u,j = v̂
(j)
u

and v̂i is the ith column of V̂, then with probability ≥ 1− δ − e−Θ(n), for all i ∈ [k]:∣∣v̂Ti vi
∣∣ ≥ 1− ε and ‖v̂i‖2 ≤ 1 + ε.

4 Distributed community detection

From the results of section 3, we obtain a simple population protocol for distributed community
detection that works for many clustered communication models, including the (n, p, q)-
weighted communication and G(n, p, q)-communication models of Definitions 2 and 3.

In particular, we show that if each node u ∈ V can locally compute the uth entry of an
approximation v̂2 to the second eigenvector of the communication matrix D + W, then it
can solve the community detection problem locally: u just sets its state to the sign of this
entry.

Algorithm 5 Asynchronous Community Detection (AsynchCD(T, T ′, η))
Input: Time bounds T, T ′, step size η.

1: Run AsynchOja(T, T ′, η) (Algorithm 2) with k = 2.
2: Set χ̂u := sign(v̂(2)

u ).

Here χ̂u ∈ {−1, 1} is the final state of node u. We will claim that this state solves the
community detection problem of Theorem 4. We use the notation χ̂u because we will use χ to
denote the true cluster indicator vector for communities V1 and V2 in a given communication
model: χu = 1 for u ∈ V1 and χu = −1 for u ∈ V2.

In particular, we will show that if η is set so that AsynchOja outputs eigenvectors with
accuracy ε, then a 1−O(ε) fraction of nodes will correctly identify their clusters. In section 5
we show how to implement a ‘cleanup phase’ where, starting with ε set to a small constant
(e.g. ε = .1), the nodes can converge to a state with all cluster labels correct with high
probability.

4.1 Community detection in the (n, p, q)-weighted communication
model

We start with an analysis for the (n, p, q)-weighted communication model. Recall that in this
model the nodes are partitioned into two sets, V1 and V2, each with n/2 elements. Without
loss of generality we can identify the nodes with integer labels such that 1, . . . , n/2 ∈ V1 and
n/2 + 1, . . . , n ∈ V2. We define the weighted cluster indicator matrix, C(p,q) ∈ Rn×n:

C(p,q) def=
[
p · 1n

2×
n
2

q · 1n
2×

n
2

q · 1n
2×

n
2

p · 1n
2×

n
2

]
. (3)
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p and q can be arbitrary, but we will always take p > q > 0. It is easy to check that C(p,q) is
a rank two matrix with eigendecomposition:

C(p,q) = n

2

v1 v2

[p+ q 0
0 p− q

] [
vT1
vT2

]
where v1 = 1n×1√

n
, v2 = χ√

n
. (4)

So, if all nodes could compute their corresponding entry in the second eigenvector of C(p,q),
then by simply returning the sign of this entry, they would solve the distributed community
detection problem (Theorem 4). If they compute this eigenvector approximately, then we
can still show that a large fraction of them correctly solve community detection. Specifically:

I Lemma 7. Let v2 be the second eigenvector of C(p,q) for any p > q > 0. If ṽ2 satisfies:∣∣ṽT2 v2
∣∣ ≥ 1− ε and ‖ṽ2‖2 ≤ 1 + ε. (5)

for ε ≤ 1, then sign(ṽ2) gives a labeling such that, after ignoring at most 5εn nodes, all
remaining nodes in V1 have the same labeling, and all in V2 have the opposite.

A proof can be found in [20]. With Theorem 7 in place, we can then apply Theorem 6 to
prove the correctness of AsynchCD (Algorithm 5) for the (n, p, q)-weighted communication
model

I Theorem 8 (ε-approximate community detection: (n, p, q)-weighted communication model).
Consider Algorithm 5 in the (n, p, q)-weighted communication model. Let ρ = min

(
q
p+q ,

p−q
p+q

)
.

For sufficiently small constant c1 and sufficiently large c2 and c3, let

η = c1ε
2δ2ρ

log3
(
n
εδρ

) , T =
c2n

(
log3

(
n
εδρ

)
+ log( n

εδρ )
ε

)
ε2δ2ρ2 , T ′ =

c3n
(

log
(
n
εδρ

)
+ 1

ε

)
ρ2 .

With probability 1 − δ, after ignoring εn nodes, all remaining nodes in V1 terminate in
some state s1 ∈ {−1, 1}, and all nodes in V2 terminate in state s2 = −s1. Suppressing
polylogarithmic factors in the parameters, the total number of global rounds and local rounds
required are: T + T ′ = Õ

(
n

ε3δ2ρ2

)
and L = Õ

(
1

ε3δ3ρ2

)
.

Proof. In the (n, p, q)-weighted communication model the weight and degree matrices are:

W = 4
n2(p+ q)− 2np · (C

(p,q) − p · In×n) and D = 2
n
· In×n.

Thus, referring to the eigendecomposition of C(p,q) shown in (4), the top eigenvector of D+W
is v1 = 1n×1/

√
n with corresponding eigenvalue: λ1 = 4

n2(p+q)−2np ·
(
n(p+q)

2 − p
)

+ 2
n = 4

n .

The second eigenvector is the scaled cluster indicator vector v2 = χ/
√
n with eigenvalue

λ2 = 4
n2(p+ q)− 2np ·

(
n(p− q)

2 − p
)

+ 2
n

= 4
n
· p

p+ n
n−2 · q

.

Finally, for all remaining eigenvalues of D + W, {λ3, ..., λn}, λi = 2
n −

4p
n2(p+q)−2np . We can

bound the eigenvalue gaps:

λ1 − λ2 ≥
4
n
− 4
n
· p

p+ q
= 4q
n(p+ q) λ2 − λ3 = 2(p− q)

n(p+ q)− 2p ≥
2(p− q)
n(p+ q)
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Let ρ = min
(

q
p+q ,

p−q
(p+q)

)
. We bound the mixing time of W + D by noting that λ2(I−

1/2D + 1/2W) ≤ 1− 2q
n(p+q) . Then using that log(1/x) ≥ 1−x for all x ∈ (0, 1], log(λ−1

2 (I−
1/2D+1/2W) ≥ 2q

n(p+q) ≥
2ρ
n . We then apply Theorem 6 with k = 2, Λ = 4

n + 4
n

p
p+ n

n−2 q
≤ 8

n ,

gap = 4
n · min

(
q
p+q ,

p−q
2(p+q)

)
≥ 2ρ

n , and γmix = 2ρ
n . With these parameters we set, for

sufficiently small c1 and large c2, c3,

η = c1ε
2δ2 · ρ

log3
(
n
εδρ

) , T =
c2 · n ·

(
log3

(
n
εδρ

)
+ log( n

εδρ )
ε

)
ε2δ2ρ2 , T ′ =

c3 · n ·
(

log
(
n
εδρ

)
+ 1

ε

)
ρ2

where to bound T ′ we use that λ1(D+W)
gap ≤ 2

ρ . Let V̂ ∈ Rn×k be given by (V̂)u,j = v̂
(j)
u where

v̂
(j)
u are the states of AsynchOja(T, T ′, η) and let v̂2 be the second column of V̂. With these
parameters, Theorem 6 gives with probability ≥ 1− δ that

∣∣v̂T2 v2
∣∣ ≥ 1− ε and ‖v̂2‖2 ≤ 1 + ε.

Applying Theorem 7 then gives the theorem if we adjust ε by a factor of 1/5. Recall that
the second eigenvector of D + W is identical to that of C(p,q). Additionally, in expectation,
each node is involved in L = 2(T+T ′)

n interactions. This bound holds for all nodes within
a factor 2 with probability 1 − δ by a Chernoff bound, since L = Ω(log(n/δ)). We can
union bound over our two failure probabilities and adjust δ by 1/2 to obtain overall failure
probability ≤ δ. J

4.2 Community Detection in the G(n, p, q)-communication model
In the G(n, p, q)-communication model, nodes communicate using a random graph which
is equal to the communication graph in the (n, p, q)-weighted communication model in
expectation. Using an approach similar to [30], which is a simplifies the perturbation
method used in [21], we can prove that in the G(n, p, q)-communication model W is a small
perturbation of C(p,q) and so the second eigenvector of D + W approximates that of C(p,q) –
i.e., the cluster indicator vector χ. We defer this analysis to the full version [20], stating the
main result here:

I Theorem 9 (ε-approximate community detection: G(n, p, q)-communication model). Consider
Algorithm 5 in the G(n, p, q)-communication model. Let ρ = min

(
q
p+q ,

p−q
p+q

)
. For sufficiently

small constant c1 and sufficiently large c2 and c3 let

η = c1ε
2δ2ρ

log3
(
n
εδρ

) , T =
c2n

(
log3

(
n
εδρ

)
+ log( n

εδρ )
ε

)
ε2δ2ρ2 , T ′ =

c3n
(

log
(
n
εδρ

)
+ 1

ε

)
ρ2 .

If min[q,p−q]√
p+q ≥ c4

√
log(n/δ)
ε
√
n

for large enough constant c4, then, with probability 1 − δ, after
ignoring εn nodes, all remaining nodes in V1 terminate in some state s1 ∈ {−1, 1}, and all
nodes in V2 terminate in state s2 = −s1. Supressing polylogarithmic factors, the total number
of global rounds and local rounds required are: T + T ′ = Õ

(
n

ε3δ2ρ2

)
and L = Õ

(
1

ε3δ3ρ2

)
.

If for example, p, q = Θ(1) and thus the G(n, p, q) graph is dense, we can recover the
communities with probability 1− δ up to O(1) error as long as q ≤ p− c

√
log(n/δ)/n for

sufficiently large constant c. Alternatively, if p, q = Θ (log(n/δ)/n), so the G(n, p, q) graph is
sparse, we require q ≤ cp for sufficiently small c.
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5 Cleanup Phase

After we apply Theorem 9 (respectively, Theorem 8) an ε-fraction of nodes are incorrectly
clustered. The goal of this section is to provide a simple algorithm that improves this
clustering so that all nodes are labeled correctly after a small number of rounds.

For the (n, p, q)-weighted communication model, doing so is straightforward. After
running Algorithm 2 and selecting a label, each time a node communicates in the future it
records the chosen label of the node it communicates with. Ultimately, it changes its label to
the majority of labels encountered. If ε is small enough so p(1− ε) > q + εp, this majority
tends towards the node’s correct label. The number of required rounds for the majority to
be correct, with good probability for all nodes, is a simple a function of p, q, and ε.

The G(n, p, q)-communication model is more difficult. Theorem 9 does not guarantee
how incorrectly labeled nodes are distributed: it is possible that a majority of a node’s
neighbors fall into the set of εn “bad nodes”. In that case, even after infinitely many rounds
of communication, the majority label encountered will not tend towards the node’s correct
identity.

As a remedy, we introduce a phased algorithm (Algorithm 6) where each node updates
its label to the majority of labels seen during a phase. We show that in each phase the
fraction of incorrectly labeled nodes decreases by a constant factor. Our analysis establishes
a graph theoretic bound on the external edge density of most subsets of nodes. Specifically,
for all subsets S below a certain size, we show that, with high probability, there are at most
|S|/3 nodes which have enough connections to S so that if an adversary gave all nodes in S
incorrect labels, it could cause these nodes to have an incorrect majority label. This bound
guarantees that at most |S|/3 bad labels ‘propagate’ to the next phase of the algorithm.

Algorithm 6 Cleanup phase (pseudocode for node u)
Input: Number of phases k and number of rounds per phase r.
Output: Label χ̂u ∈ {−1, 1}

1: for Phase 1 to k do
2: for Round i = 1 to r do
3: Si := χ̂v, where χ̂v denotes the ith sample of node u.
4: end for
5: χ̂u := 1 if

∑r
i Si ≥ 0, χ̂u := −1 otherwise.

6: end for

I Theorem 10. Consider the (n, p, q)-weighted communication model. Assume that a fraction
of at most ε ≤ 1/64 of the nodes are incorrectly clustered after Algorithm 2. As long as
p′ = (1− ε)p and q′ = q + εp satisfy p′ > q′, Algorithm 6 ensures that all nodes are correctly
labeled with high probability after O( p lnn

(
√
p′−
√
q′)2

) local rounds. In particular, for q ≤ p/2 and
ε < 1/8, the number of local rounds required is O(log n).

I Theorem 11. Consider the G(n, p, q)-communication model. Let ∆ = p
2−

q
2−
√

12p lnn/n−√
12q lnn/n. Assume that ∆ = Ω(lnn/n) and at most ε ≤ ∆/24p nodes are incorrectly

clustered after Algorithm 2. As long as p′′ = p
2 −

√
6p lnn
n − ∆

12 and q′′ = q
2 +

√
6q lnn
n + ∆

12
satisfy p′′ > q′′, Algorithm 6 ensures that all nodes are correctly labeled with high probability
after O( p ln2 n

(
√
p′′−
√
q′′)2

) local rounds. In particular, for q ≤ p/2 the number of local rounds

required is O(log2 n).
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Note that if p − q = Ω(
√

log n/n), then ∆ simplifies to ∆ = Θ(p − q). Incidentally,
p− q = Ω(

√
log n/n) is sometimes tight because, in this regime, clustering correctly can be

infeasible: some nodes will simply have more neighbors in the opposite cluster. Consider for
example when p = 1/2 +

√
lnn/(10n) and q = 1/2.
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Abstract
In this paper, we present improved algorithms for the (∆ + 1) (vertex) coloring problem in the
Congested Clique model of distributed computing. In this model, the input is a graph on n nodes,
initially each node knows only its incident edges, and per round each two nodes can exchange
O(log n) bits of information.

Our key result is a randomized (∆ + 1) vertex coloring algorithm that works in O(log log ∆ ·
log∗∆)-rounds. This is achieved by combining the recent breakthrough result of [Chang-Li-Pettie,
STOC’18] in the LOCAL model and a degree reduction technique. We also get the following results
with high probability: (1) (∆ + 1)-coloring for ∆ = O((n/ log n)1−ε) for any ε ∈ (0, 1), within
O(log(1/ε) log∗∆) rounds, and (2) (∆ + ∆1/2+o(1))-coloring within O(log∗∆) rounds.
Turning to deterministic algorithms, we show a (∆+1)-coloring algorithm that works in O(log ∆)
rounds. Our new bounds provide exponential improvements over the state of the art.
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1 Introduction & Related Work

Graph coloring is one of the most central symmetry breaking problems, with a wide range
of applications to distributed systems and wireless networks. The most studied coloring
problem is the (∆ + 1) vertex coloring in which all nodes are given the same palette of ∆ + 1
colors, where ∆ is the maximum degree in the graph. Vertex coloring among other LCL
problems1 (e.g., MIS, matching) are traditionally studied in the LOCAL model in which any
two neighboring vertices in the input graph can exchange arbitrarily long messages.

In recent years there has been a tremendous progress in the understanding of the
randomized and the deterministic complexities of many LCL problems in the LOCAL model
[6, 20, 8, 9, 1]. Putting our focus on the (∆ + 1) coloring problem, in a seminal work,
Schneider and Wattenhofer [23] showed that increasing the number of colors from ∆ + 1 to
(1 + ε)∆ has a dramatic effect on the round complexity and coloring can be computed in just
O(log∗ n) rounds when ε = Ω(1) and ∆ > poly log n. This has led to two recent breakthroughs.
Harris, Schneider and Su [13] showed an O(

√
log ∆)-round algorithm for (∆ + 1) coloring,

providing a separation for the first time between MIS and coloring (due to the MIS lower
bound of [17]). In a recent follow-up breakthrough, Chang, Li and Pettie [7] extended the

1 LCL stands for Locally Checkable Labelling problems, see [21].
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technique of [13] to obtain the remarkable and quite extraordinary round complexity of
O(log∗ n + Detdeg(polylogn)) for the (∆ + 1)-list coloring problem where Detdeg(n′) is the
deterministic round complexity of (deg +1) list coloring algorithm2 in n′-vertex graph. Both
of these recent breakthroughs use messages of large size, potentially of Ω(n) bits.

In view of these recent advances, the understanding of LCL problems in bandwidth-
restricted models is much more lacking. Among these models, the congested clique model
[19], which allows all-to-all communication has attracted a lot of attention in the last decade
and more recently, in the context of LCL problems [4, 15, 14, 5, 12, 24]. In the congested
clique model, each node can send O(log n) bits of information to any node in the network
(i.e., even if they are not connected in the input graph). The ubiquitous of overlay networks
and large scale distributed networks make the congested clique model far more relevant
(compared to the LOCAL and the CONGEST models) in certain settings.

Randomized LCL in the Congested Clique Model. Starting with Barenboim et al. [2],
currently, all efficient randomized algorithms for classical LCL problems have the following
structure: an initial randomized phase and a post-shattering deterministic phase. The
shattering effect of the randomized phase which dates back to Beck [3], breaks the graph
into subproblems of poly log n size to be solved deterministically. In the congested-clique
model, the shattering effect has an even more dramatic effect. Usually, a node survives
(i.e., remained undecided) the randomized phase with probability of 1/poly(∆). Hence, in
expectation the size of the remaining unsolved graph is3 O(n). At that point, the entire
unsolved subgraph can be solved in O(1) rounds, using standard congested clique tools (e.g.,
the routing algorithm by Lenzen [18]). Thus, as long as the main randomized part uses short
messages, the congested clique model “immediately" enjoys an improved round complexity
compared to that of the LOCAL model.

In a recent work [12], Ghaffari took it few steps farther and showed an Õ(
√

log ∆)-round
randomized algorithm for MIS in the congested clique model, improving upon the state-of-
the-art complexity of O(log ∆ + 2O(

√
log logn)) rounds in the LOCAL model, also by Ghaffari

[11]. When considering the (∆ + 1) coloring problem, the picture is somewhat puzzling. On
the one hand, in the LOCAL model, (∆ + 1) coloring is provably simpler then MIS. However,
since all existing o(log ∆)-round algorithms for (∆ + 1) coloring in the LOCAL model, use
large messages, it is not even clear if the power of all-to-all communication in the congested
clique model can compensate for its bandwidth limitation and outperform the LOCAL round
complexity, not to say, even just match it. We note that on hind-sight, the situation for MIS
in the congested clique was somewhat more hopeful (compared to coloring), for the following
reason. The randomized phase of Ghaffari’s MIS algorithm although being in the LOCAL
model [11], used small messages and hence could be implemented in the CONGEST model
with the same round complexity. To sum up, currently, there is no o(log ∆)-round algorithm
for (∆ + 1) coloring in any bandwidth restricted model, not even in the congested-clique.

Derandomization of LCL in the Congested-Clique Model. There exists a curious gap
between the known complexities of randomized and deterministic solutions for local problems
in the LOCAL model ([6, 20]). Censor et al. [5] initiated the study of deterministic LCL
algorithms in the congested clique model by means of derandomization. The main take home
message of [5] is as follows: for most of the classical LCL problems there are poly log n round

2 In the (deg +1) list coloring problem, each vertex v is given a palette with deg(v, G) + 1 colors.
3 Using the bounded dependencies between decisions, this holds also with high probability.
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randomized algorithms (even in the CONGEST model). For these algorithms, it is usually
sufficient that the random choices made by vertices are almost independent. This implies
that each round of the randomized algorithm can be simulated by giving all nodes a shared
random seed of poly log n bits. To dernadomize a single round of the randomized algorithm,
nodes should compute (deterministically) a seed which is at least as “good"4 as a random
seed would be. To compute this seed, they need to estimate their “local progress" when
simulating the random choices using that seed. Combining the techniques of conditional
expectation, pessimistic estimators and bounded independence leads to a simple “voting"-like
algorithm in which the bits of the seed are computed bit-by-bit. Once all bits of the seed are
computed, it is used to simulate the random choices of that round. For a recent work on
other complexity aspects in the congested clique, see [16].

1.1 Main Results and Our Approach
In this paper, we show that the power of all-to-all communication compensates for the
bandwidth restriction of the model:

I Theorem 1. There is a randomized algorithm that computes a (∆ + 1) coloring in
O(log log ∆ · log∗ n) rounds of the congested clique model, with high probability5.

This significantly improves over the state-of-the-art of O(log ∆)-round algorithm for (∆ + 1)
in the congested clique model. It should also be compared with the round complexity of
(2O(
√

log logn)) in the LOCAL model, due to [7]. As noted by the authors, reducing the LOCAL
complexity to below O((log log n)2) requires a radically new approach.

Our O(log log ∆·log∗ n) round algorithm is based on a recursive degree reduction technique
which can be used to color any almost-clique graph with ∆ = Õ(n1−o(1)) in essentially
O(log∗ n) rounds.

I Theorem 2. (i) For every ε ∈ (0, 1), there is a randomized algorithm that computes a
(∆ + 1) coloring in O(log(1/ε) · log∗ n) rounds for graphs with ∆ = O((n/ log n)1−ε), (ii)
This also yields a (∆ + ∆1/2+o(1)) coloring in O(log∗ n) rounds, with high probability.

Claim (ii) improves over the O(∆)-coloring algorithm of [14] that takes O(log log log n) rounds
in expectation. We also provide fast deterministic algorithms for (∆ + 1) list coloring. The
stat-of-the-art in the LOCAL model is Õ(

√
∆) + log∗ n rounds due to Fraigniaud, Heinrich,

Marc and Kosowski [10].

I Theorem 3. There is a deterministic algorithm that computes a (∆ + 1) coloring in
O(log ∆) rounds of the congested clique model and an O(∆2) coloring in O(1) rounds.

In [5], a deterministic algorithm for (∆ + 1) coloring in O(log ∆) round was shown only
for the case where ∆ = O(n1/3). Here it is extended for ∆ = Ω(n1/3). This is done by
derandomizing an (∆ + 1)-list coloring algorithm which runs in O(log n) rounds. Similarly
to [5], we first show that this algorithm can be simulated when the random choices made by
the nodes are pairwise independent. Then, we enjoy the small search space and employ the
method of conditional expectations. Instead of computing the seed bit by bit, we compute it
in chunks of blog nc bits at a time, by fully exploiting the all-to-all power of the model.

4 The random seed is usually shown provide a large progress in expectation. The deterministically
computed seed should provide a progress at least as large as the expected progress of a random seed.

5 As usual, by high probability we mean 1− 1/nc for some constant c ≥ 1.
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Δ∗ = 𝑛

Figure 1 Illustration of the recursive sparsification. Gray boxes correspond to subgraphs with
maximum degree O(

√
∆).

The Challenges and the Degree Reduction Technique. Our starting observation is that
the CLP algorithm [7] can be implemented in O(log∗ n) rounds in congested clique model for
∆ = O(

√
n). When ∆ = O(

√
n), using Lenzen’s routing algorithm [18], each node can learn

in O(1) rounds, the palettes of all its neighbors along with the neighbors of its neighbors.
Such knowledge is mostly sufficient for the CLP algorithm to go through.

To handle large degree graphs, we design a graph sparsification technique that essentially
reduces the problem of (∆ + 1) coloring for an arbitrarily large ∆ = Õ(n1−ε) into ` =
O(log(1/ε)) (non-independent) subproblems. In each subproblem, one has to compute
a (∆′ + 1) coloring for a subgraph with ∆′ = O(

√
n), which can be done in O(log∗ n)

rounds, using a modification of the CLP algorithm, that we describe later on. Since there
many dependencies between these ` sub-problems, it is required by our algorithm to solve
them one-by-one, leading to a round complexity of O(log(1/ε) log∗ n). See Figure 1 for an
illustration of the recursion levels. To get an intuition into our approach and the challenges
involved, consider an input graph G with maximum degree ∆ = (n/ log n)1−ε and a palette
Pal(G) = {1, . . . ,∆ + 1} given to each node in G. A natural approach (also taken in [14]) for
handling a large degree graph is to decompose it (say, randomly) into k vertex disjoint graphs
G1, G2, . . . , Gk, allocate a distinct set of colors for each of the subgraphs taken from Pal(G)
and solve the problem recursively on each of them, enjoying (hopefully) smaller degrees in
each Gi. Intuitively, assigning a disjoint set of colors to each Gi has the effect of removing
all edges connecting nodes in different subgraphs. Thus, the input graph G is sparsified into
a graph G′ =

⋃
Gi such that a legal coloring of G′ (with the corresponding palettes given

to the nodes) is a legal coloring for G. The main obstacle in implementing this approach is
that assigning a distinct set of ∆(Gi) + 1 colors to each of the Gi subgraph might be beyond
the budget of ∆ + 1 colors. Indeed in [14] this approach led to O(∆) coloring rather than
(∆ + 1). To reduce the number of colors allocated to each subgraph Gi, it is desirable that
the maximum degree ∆(Gi) would be as small as possible, for each Gi. This is exactly the
problem of (k, p) defective coloring where one needs to color the graph with k colors such that
the number of neighbors with the same color is at most p. To this point, the best defective
coloring algorithm for large degrees is the randomized one: let each node pick a subgraph Gi
(i.e., a color in the defective coloring language) uniformly at random. By a simple application
of Chernoff bound, it is easy to see that the partitioning is “almost" perfect: w.h.p., for
every i, ∆(Gi) ≤ ∆/k +

√
log n ·∆/k. Hence, allocating ∆(Gi) + 1 colors to each subgraphs

consumes ∆ + Õ(
√

∆k) colors. To add insult to injury, this additive penalty of Õ(
√

∆k) is
only for one recursion call!

It is interesting to note that the parameter k – number of subgraphs (colors) – plays a
key role here. Having a large k has the benefit of sharply decreasing the degree (i.e., from ∆
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to ∆/k). However, it has the drawback of increasing the standard deviation and hence the
total number of colors used. Despite these opposing effects, it seems that for whatever value
of k chosen, increasing the number of colors to ∆ + ∆ε is unavoidable.

Our approach bypasses this obstacle by partitioning only a large fraction of the vertices
into small-degree subgraphs but not all of them. Keeping in mind that we can handle
efficiently graphs with maximum degree

√
n, in every level of the recursion, roughly 1−1/

√
∆

of the vertices are partitioned into subgraphs G1, . . . , Gk. Let ∆(Gi) be the maximum degree
of Gi. The remaining vertices join a left-over subgraph G∗. The number of subgraphs, k, is
chosen carefully so that allocating ∆(Gi) + 1 colors to each of the k subgraphs, consumes
at most ∆ colors, on the one hand; and that the degree reduction in each recursion level
is large enough on the other hand. These subgraphs are then colored recursively, until all
remaining subgraphs have degree of O(

√
n). Once all vertices in these subgraphs are colored,

the algorithm turns to color the left-over subgraph G∗. Since the maximum degree in G∗ is
O(
√
n), it is tempting to use the CLP algorithm to complete the coloring, as this can be

done in O(log∗ n) rounds for such bound on the maximum degree. This is not so immediate
for the following reasons. Although the degree of v in G∗ is O(

√
n), the graph G∗ cannot be

colored independently (as at that point, we ran out of colors to be solely allocate to G∗).
Instead, the coloring of G∗ should agree with the coloring of the rest of the graph and each v
might have Ω(∆) = n1−ε neighbors in G. At first glance, it seems that this obstacle is easily
solved by letting each v ∈ G∗ pick a subset of deg(v,G∗) = O(

√
n) colors from its palette

(i.e., removing the colors taken by its neighbors in G \ G∗). Now, one can consider only
the graph G∗ with maximum degree

√
n, where each vertex has a palette of deg(v,G∗) + 1

colors. Unfortunately, this seemingly plausible approach has a subtle flaw: for the CLP
algorithm it is essential that each vertex receives a palette with exactly ∆(G∗) + 1 colors.
This is indeed crucial and as noted by the authors adopting their algorithm to a (deg +1)
coloring algorithm is highly non-trivial and probably calls for a different approach.

In our setting, allocating each vertex v ∈ G the exact same number of colors seems to
be impossible as the number of available colors of each v depends on the number of its
neighbors in G \G∗, and this number has some fluctuations due to the random partitioning
of the vertices. To get out of this impasse, we show that after coloring all vertices in G \G∗,
every vertex v ∈ G∗ has rv ∈ [∆(G∗) ± (∆(G∗))3/5] available colors in its palette where
rv ≥ deg(v,G∗). In other words, all vertices can be allocated “almost" the same number of
colors, but not exactly the same. We then carefully revise the basic definitions of the CLP
algorithm and show that the analysis still goes through (upon minor changes) for this narrow
range of variation in the size of the palettes.

Paper Organization. In Section 2, we explain how the CLP algorithm of [7] can be simulated
in O(log∗ n) congested-clique rounds when ∆ = O(

√
n). In Section 3.1, we illustrate the

degree-reduction technique on the case where ∆ = O((n/ log n)3/4). Section 3.2 extends this
approach for ∆ = O((n/ log n)1−ε) for any ε ∈ (0, 1), and Section 3.3 handles the general
case and provides the complete algorithm. Finally, Section 4 discusses deterministic coloring
algorithms. Missing proofs are deferred to the full version.

2 The Chang-Li-Pettie (CLP) Alg. in the Congested Clique

High-level Description of the CLP Alg. in the LOCAL Model. In the description below,
we focus on the main randomized part of the CLP algorithm [13].

Harris-Schneider-Su algorithm is based on partitioning the graph into an ε-sparse subgraph
and a collection of vertex-disjoint ε-dense components, for a given input parameter ε. Since

ICALP 2018



160:6 (∆ + 1) Coloring in the Congested Clique Model

the CLP algorithm extends this partitioning, we next formally provide the basic definitions
from [13]. For an ε ∈ (0, 1), an edge e = (u, v) is an ε-friend if |N(u) ∩N(v)| ≥ (1− ε) ·∆.
The endpoints of an ε-friend edge are ε-friends. A vertex v is ε-dense if v has at least (1− ε)∆
ε-friends, otherwise it is ε-sparse. A key structure that arises from the definition of ε dense
vertices is that of ε-almost clique which is a connected component of the subgraph induced
by the ε-dense vertices and ε-friend edges. The dense components, ε-almost cliques, have
some nice properties: each component C has at most (1 + ε)∆ many vertices, each vertex
v ∈ C has O(ε∆) neighbors outside C (called external neighbors) and O(ε∆) vertices in
C which are not its neighbors. In addition, C has weak diameter at most 2. Coloring the
dense vertices consists of O(log1/ε ∆) phases. The efficient coloring of dense regions is made
possible by generating a random proper coloring inside each clique so that each vertex has a
small probability of receiving the same color as one of its external neighbors. To do that, in
each cluster a random permutation is computed and each vertex selects a tentative color
from its palette excluding the colors selected by lower rank vertices. Since each component
has weak diameter at most 2, this process is implemented in 2 rounds of the LOCAL model.
The remaining sparse subgraph is colored using a Schneider-Wattenhofer style algorithm [23]
within O(log(1/ε)) rounds.

In Chang-Li-Pettie algorithm the vertices are partitioned into ` = dlog log ∆e layers
in decreasing level of density. This hierarchical partitioning is based on a sequence of `
sparsity thresholds ε1, . . . , ε` where εi = √εi−1. Roughly speaking, level i consists of the
vertices which are εi-dense but εi−1-sparse. Instead of coloring the vertices layer by layer, the
algorithm partitions the vertices in level i into large and small components and partitions the
layers into O(log∗∆) strata. It then colors the vertices in O(log∗∆) phases, giving priority
to vertices in small components. The algorithms used to color these vertices are of the same
flavor of the dense-coloring procedure of Harris-Schneider-Su. The key benefit in having the
hierarchical structure is that the dense-coloring procedure is applied for O(1) many phases
on each stratum, rather than applying it for O(log1/ε ∆) phases as in [13].

An O(log∗∆)-Round Alg. for ∆ = O(
√
n) in the Congested Clique. We next observe

that the randomized part of the CLP algorithm [7] can be implemented in the congested
clique model when ∆ = O(

√
n) within O(log∗∆) rounds. We note that we obtain a round

complexity of O(log ∆∗) rather than O(log∗ n) as in [7], due to the fact that the only part of
the CLP algorithm that requires O(log∗ n) rounds was for coloring a subgraph with maximum
constant degree. In the congested-clique model such a step can be implemented in O(1)
rounds using Lenzen’s routing algorithm. We show:

I Theorem 4. For every graph with maximum degree ∆ = O(
√
n), there is an O(log∗∆)-

round randomized algorithm that computes (∆ + 1)-list coloring in the congested clique
model.

The main advantage of having small degrees is that it is possible for each node to collect
its 2-neighborhood in O(1) rounds (i.e., using Lenzen’s routing [18]). As we will see, this
is sufficient in order to simulate the CLP algorithm in O(log∗∆) rounds. The hierarchical
decomposition of the vertices depends on the computation of ε-dense vertices. By collecting
the neighbors of its neighbors, every vertex can learn its ε-dense friends and based on that
deduce if it is an ε-dense vertex for every ε. In particular, for every edge (u, v), v can
learn the minimum i such that u and v are εi-friends. To allow each vertex v compute the
ε-almost cliques to which it belongs, we do as follows. Each vertex v sends to each of its
neighbors N(v), the minimum εi such that u, v are εi-friends, for every u ∈ N(v). Since the
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weak diameter of each almost-clique is at most 2, each vertex has collected all the required
information from its 2nd neighborhood to locally compute its εi-almost cliques for every εi.
Overall, each vertex sends O(∆) messages and receives O(∆2) = O(n) messages, collection
this information can be done in O(1) rounds for all nodes, using Lenzen’s routing algorithm.
The next obstacle is the simulation of the algorithm that colors the ε-dense vertices. Since
each ε-almost clique C has (1 + ε)∆ = O(

√
n) vertices, we can make the leader of each

such C learn the palettes of all the vertices in its clique as well as their neighbors in O(1)
rounds. The leader can then locally simulate the dense-coloring procedure and notify the
output color to each of its almost-clique vertices. Finally, coloring the sparse regions in a
Schneider-Wattenhofer style uses messages of size O(∆) and hence each vertex is the target
of O(∆2) = O(n) messages which again can be implemented in O(1) many rounds. A more
detailed description appears in the full version [22]. By the above description, we also have:

I Corollary 5. Given q vertex-disjoint subgraphs G1, . . . , Gq each with maximum degree
∆ = O(

√
n), a (∆ + 1) coloring can be computed in O(log∗∆) rounds, for all subgraphs

simultaneously.

Handling Non-Equal Palette Size for ∆ = O(
√
n). The CLP algorithm assumes that each

vertex is given a list of exactly (∆ + 1) colors. Our coloring algorithms requires a more
relaxed setting where each vertex v is allowed to be given a list of rv ∈ [∆−∆3/5,∆ + 1]
colors where rv ≥ deg(v,G) + 1. In this subsection we show:
I Lemma 6. Given a graph G with ∆ = O(

√
n), if every vertex v has a palette with

rv ≥ deg(v,G) + 1 colors and rv ∈ [∆−∆3/5,∆ + 1] then a list coloring can be computed in
O(log∗∆) rounds in the congested clique model.

The key modification for handling non-equal palette sizes is in definition of ε-friend (which
affects the entire decomposition of the graph). Throughout, let q = ∆3/5 and say6 that u, v
are (ε, q)-friends if |N(u) ∩N(v)| ≥ (1− ε) · (∆− q). Clearly, if u, v are ε-friends, they are
also (ε, q)-friends. A vertex v is an (ε, q)-dense if it has at least (1− ε) · (∆− q) neighbors
which are (ε, q)-friends. An (ε, q)-almost clique is a connected component of the subgraph
induced by (ε, q)-dense vertices and their (ε, q) friends edges. We next observe that for the
ε-values used in the CLP algorithm, the converse is also true up to some constant. The full
proof of Theorem 6 is in the full version.

I Observation 7. For any ε ∈ [∆−10,K−1], where K is a large constant, and for q = ∆3/5,
it holds that if u, v are (ε, q) friends, they are (2ε)-friends. Also, if v is an (ε, q)-dense, then
it is 2ε-dense.

3 (∆ + 1)-Coloring for ∆ = Ω(
√
n)

In this section, we describe a new recursive degree-reduction technique. As a warm-up, we
start with ∆ = O((n/ log n)3/4). We make use of the following fact.

I Theorem 8 (Simple Corollary of Chernoff Bound). Suppose X1, X2, . . . , X` ∈ [0, 1] are
independent random variables, and let X =

∑`
i=1 Xi and µ = E[X]. If µ ≥ 5 log n, then

w.h.p. X ∈ µ±
√

5µ log n, and if µ < 5 logn, then w.h.p. X ≤ µ+ 5 log n.

6 The value of q is chosen to be a bit above the standard deviation of
√

∆ log n that will occur in our
algorithm.
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3.1 An O(log∗∆)-round algorithm for ∆ = O((n/ logn)3/4)
The algorithm partitions G into O(∆1/3) subgraphs as follows. Let ` = d∆1/3e. We define
`+ 1 subsets of vertices V1, . . . , V`, V

∗. A vertex joins each Vi with probability

pi = 1/`− 2
√

5 logn/(∆1/3 · `),

for every i ∈ {1, . . . , `}, and it joins V ∗ with the remaining probability of p∗ = 2
√

5 logn/∆1/3.
Let Gi = G[Vi] be the induced subgraph for every i ∈ {1, . . . , `, ∗}. Using Chernoff bound

of Theorem 8, the maximum degree ∆′ in each subgraph Gi, i ∈ {1, . . . , `} is w.h.p.:

∆′ ≤ ∆/`− 2∆2/3√
5 logn/`+

√
5∆ log n/` ≤ ∆/`− 1

In the first phase, all subgraphs G1, . . . , G` are colored independently and simultaneously.
This is done by allocating a distinct set of (∆′ + 1) colors for each of these subgraphs.
Overall, we allocate ` · (∆′ + 1) ≤ ∆ colors. Since ∆′ = O(∆2/3) = O(

√
n), we can apply

the (∆′ + 1)-coloring algorithm of Theorem 5 on all the graphs G1, . . . , G` simultaneously.
Hence, all the subgraphs G1, . . . , G` are colored in O(log∗∆) rounds.

Coloring the remaining left-over subgraph G∗. The second phase of the algorithm com-
pletes the coloring for the graph G∗. This coloring should agree with the colors computed
for G \G∗ computed in the previous phase. Hence, we need to color G∗ using a list coloring
algorithm. We first show that w.h.p. the maximum degree ∆∗ in G∗ is O(

√
n). The

probability of vertex to be in G∗ is p∗ = 2
√

5 logn/∆1/3. By Chernoff bound of 8, w.h.p.,
∆∗ ≤ p∗ ·∆ +

√
5p∗ ·∆ · log n. Since ∆ ≤ (n/ log n)3/4, ∆∗ = O(

√
n). To be able to apply

the modified CLP of Theorem 6, we show:

I Lemma 9. Every v ∈ G∗ has at least ∆∗ − (∆∗)3/5 available colors in its palette after
coloring all its neighbors in G \G∗.

Proof. First, consider the case where deg(v,G) ≤ ∆−(∆∗−
√

5∆∗ · log n). In such case, even
after coloring all neighbors of v, it still has an access of ∆∗ −

√
5∆∗ · log n ≥ ∆∗ − (∆∗)3/5

colors in its palette after coloring G \ G∗ in the first phase. Now, consider a vertex v

with deg(v,G) ≥ ∆ − (∆∗ −
√

5∆∗ · log n). Using Chernoff bound, w.h.p., deg(v,G∗) >
(∆− (∆∗ −

√
∆∗ · 5 logn)) · p∗ −

√
5 logn∆p∗ ≥ ∆∗ − (∆∗)3/5. J

Also note that a vertex v ∈ G∗ has at least deg(v,G∗) + 1 available colors, since all its
neighbors in G∗ are uncolored at the beginning of the second phase and initially it was given
(∆ + 1) colors. Eventhough, v ∈ G∗ might have Ω(∆) neighbors not in G∗, to complete
the coloring of G∗, by Theorem 9, after the first phase, each v can find in its palette
r ∈ [∆∗ − (∆∗)3/5,∆∗ + 1] available colors and this sub-palette is sufficient for its coloring in
G∗. Since ∆∗ = O(

√
n), to color G∗ (using these small palettes), one can apply the O(log∗∆)

round list-coloring algorithm of Theorem 6.

3.2 An O(log(1/ε) · log∗∆)-round algorithm for
∆ = O((n/ logn)1−ε)

Let N = n/(5 log n). First assume that ∆ ≤ N/2 and partitions the range of relevant
degrees [

√
n,N/2] into ` = Θ(log log ∆) classes. The yth range contains all degrees in

[N1−1/2y

, N1−1/(2y+1)] for every y ∈ {1, . . . , `}. Given a graph G with maximum degree
∆ = O(N1−1/(2y+1)), Algorithm RecursiveColoring colors G in y ·O(log∗∆) rounds, w.h.p.
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Step (I): Partitioning (Defective-Coloring). For i ∈ {0, . . . , y − 1}, in every level i of the
recursion, we are given a graph G′, with maximum degree ∆i = O(N1−1/2y−i+1), and a
palette Pali of (∆i + 1) colors. For i = 0, ∆0 = ∆ and the palette Pal0 = {1, . . . ,∆ + 1}.

The algorithm partitions the vertices of G′ into qi + 1 subsets: V ′1 , . . . , V ′qi
and a special

left-over set V ∗. The partitioning is based on the following parameters. Set x = 2y−i and

qi = d∆1/(2x−1)
i e and δi = 2

√
5 logn · q3/2

i /
√

∆i.

Each vertex v ∈ V (G′) joins V ′j with probability pj = 1/qi − δi/(qi)2 for every j ∈
{1, . . . , qi}, and it joins V ∗ with probability p∗ = δi/qi. Note that p∗ ∈ (0, 1) as x ≥ 2. For
every j ∈ {1, . . . , qi}, let G′j = G′[V ′j ] and let G∗ = G′[V ∗].

Step (II): Recursive coloring of G′1, . . . , G′qi
. Denote by ∆̃j to be the maximum degree in

G′j for every j ∈ {1, . . . , qi} and by ∆∗, the maximum degree in G∗. The algorithm allocates
a distinct subset of (∆̃j + 1) colors from Pali for every j ∈ {1, . . . , qi}. In the analysis, we
show that w.h.p. Pali contains sufficiently many colors for that allocation. The subgraphs
G′1, . . . , G

′
qi

are colored recursively and simultaneously, each using its own palette. It is easy
to see that the maximum degree of each G′j is O(N1−1/2y−i) (which is indeed the desire
degree for the subgraphs colored in level i+ 1 of the recursion).

Step (III): Coloring the left-over graph G∗. Since the algorithm already allocated at
most ∆i colors for coloring the G′j subgraphs, it might run out of colors to allocate for
G∗. This last subgraph is colored using a list-coloring algorithm only after all vertices of
G′1, . . . , G

′
qi

are colored. Recall that ∆∗ is the maximum degree of G∗. In the analysis,
we show that w.h.p. ∆∗ = O(

√
n). For every v ∈ G∗, let Pal(v) ⊆ Pali be the remaining

set of available colors after coloring all the vertices in V ′1 , . . . , V
′
qi
. Each vertex v ∈ G∗

computes a new palette Pal∗(v) ⊆ Pal(v) such that: (i) |Pal∗(v)| ≥ deg(v,G∗) + 1, and (ii)
|Pal∗(v)| ∈ [∆∗ −∆3/5,∆∗ + 1]. In the analysis section, we show that w.h.p. this is indeed
possible for every v ∈ G∗. The algorithm then applies the modified CLP algorithm, and G∗
gets colored within O(log∗∆) rounds.

Example:

Δ0 = 𝑛15/16

Δ1 = 𝑛7/8

…

𝑞1 = Θ(𝑛1/16)

𝑞2 = Θ(𝑛1/8)

Δ2 = 𝑛3/4
𝑞3 = Θ(𝑛1/4)

Δ3 = 𝑛1/2

…

…

𝐺

Δ∗ = 𝑛

Assume that input graph G has maximum degree ∆0 = n15/16. The algorithm partitions G
into k0 = n1/15 subgraphs in the following manner. For sake of clarity, we omit logarithmic
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factors in the explanation. With probability 1/(∆0)1/2+o(1), v joins a left-over subgraph G∗,
and with the remaining probability it picks a subgraph [1, k0] uniformly at random. It is easy
to see that the maximum degree in each of these subgraphs is at most ∆1 = n7/8 + n7/16.
A distinct set of ∆1 colors from [1,∆0 + 1] is allocated to each of the k subgraphs. Each
such subgraph is now partitioned into k1 = n1/8 subgraphs plus a left-over subgraph. This
continues until all subgraphs have their degrees sharply concentrated around

√
n. At that

point, the modified CLP algorithm can be applied on all the subgraphs in the last level `.
Once these subgraphs are colored, the left-over subgraphs in level ` − 1 are colored, this
continues until the final left-over subgraph of the first level is colored. We next provide a
compact and high level description of the algorithm.

Algorithm 1 RecursiveColoring(G′,Pali)

Input: Graph G′ with maximum degree ∆i = O(N1−1/2y−i+1).
A palette Pali of (∆i + 1) colors (same for all nodes).

Partitions G′ into qi + 1 vertex-disjoint subgraphs:
qi vertex-subgraphs G′1, . . . , G′qi

with maximum degree ∆i+1 = O(N1−1/2y−i).
Left-over subgraph G∗ with maximum degree ∆∗ = O(

√
n).

Allocate a distinct palette Palj ⊂ Pali of (∆i+1 + 1) colors for each j ≤ qi.
Apply RecursiveColoring(Gj ,Palj) for every j ≤ qi simultaneously.
Apply a (∆i + 1)-list coloring restricted to Pali, to complete the coloring of G[V ∗].

Analysis.

I Lemma 10. (i) For every j ∈ {1, . . . , qi}, w.h.p., ∆̃j = O(N1−1/2y−i). (ii) One can
allocate (∆̃j + 1) distinct colors from Pali for each G′j, j ∈ {1, . . . , qi}.

Proof. Using Chernoff bound of Theorem 8, w.h.p., for every j ∈ {1, . . . , qi − 1}, the
maximum degree ∆̃j in G′j is at most ∆̃j = O(∆i/qi). Since ∆i = O(N1−2y−i+1), claim (i)
follows. We now bound the sum of all colors allocated to these subgraphs:

∆̃j ≤ ∆i/qi − (∆i · δi)/(qi)2 +
√

5 logn ·∆i/qi ≤ ∆i/qi − 1 .

where the last inequality follows by the value of δi. We get that
∑qi

j=1(∆̃j + 1) ≤ ∆i and
since Pali contains ∆i + 1 colors, claim (ii) follows. J

We next analyze the final step of the algorithm and begin by showing that, w.h.p., the
maximum degree in the left-over graph G∗ is O(

√
n). By Chernoff bound of Theorem 8,

w.h.p., the maximum degree ∆∗ ≤ ∆i ·δi/qi+
√

log n ·∆i · δi/qi. Since ∆i = O(N1−1/2y−i+1),
we get that ∆∗ = O(

√
n). We now claim:

I Lemma 11. After coloring for all the vertices in G′1, . . . , G
′
qi
, each vertex v ∈ G∗ has a

palette Pal∗(v) of free colors such that (i) |Pal∗(v)| ≥ deg(u,G∗) + 1, and (ii) |Pal∗(v)| ∈
[∆∗ − (∆∗)3/5),∆∗ + 1].

Proof. Since each vertex v ∈ G′ has a palette of size (∆i + 1) ≥ deg(v,G′), after coloring all
its neighbors in G′1, . . . , G′qi

, it has at least deg(v,G∗) + 1 free colors in its palette. Claim
(ii) follows the same argument as in Theorem 9. We show that the palette of v has at least
∆∗ − O(

√
∆∗ · 5 log n) ≥ (∆∗ − (∆∗)3/5) available colors after coloring all the vertices in
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G \ G∗. First, when deg(v,G′) ≤ ∆i − (∆∗ −
√

∆∗ · 5 logn), then even after coloring all
neighbors of v in G′, it still has an access of ∆∗−

√
∆∗ · 5 logn colors in its palette. Consider

a vertex v with deg(v,G′) ≥ ∆i − (∆∗ −
√

∆∗ · 5 logn). By Chernoff, w.h.p. it holds that:

deg(v,G∗) ≥ (∆i − (∆∗ −
√

∆∗ · 5 logn)) · p∗ −
√

5 logn ·∆i · p∗

≥ ∆i · δi/qi −O(
√

∆i · δi log n/qi) ≥ ∆∗ − (∆∗)3/5 .

Hence, by combining with claim (i), the lemma follows. J

This completes the proof of Theorem 2(i).

(∆ + ∆1/2+ε) Coloring in Log-Star Rounds

I Lemma 12. For any fixed ε ∈ (0, 1), one can color, w.h.p., a graph with (∆ + ∆1/2+ε)
colors in O(log(1/ε) · log∗∆) rounds.

Proof. Due to Theorem 4, it is sufficient to consider the case where ∆ = Ω(
√
n). Partition

the graph into k = b∆εc subgraphs G1, . . . , Gk, by letting each vertex independently pick
a subgraph uniformly at random. By Chernoff bound of Theorem 8, the maximum degree
∆i in each subgraph Gi is at most ∆i ≤ ∆1−ε + ∆1/2−ε/2 ·

√
5 logn. Allocate a distinct set

of ∆i + 1 colors Pali to each subgraph Gi. Since ∆1−ε = O((n/ log n)1−ε/2), we can apply
Alg. RecursiveColoring on each of these subgraphs which takes O(log(1/ε) · log∗∆) rounds.
It is easy to see, that since the subgraphs are vertex disjoint, Alg. RecursiveColoring can be
applied on all k subgraphs simultaneously with the same round complexity. Overall, the
algorithm uses ∆ + ∆1/2+ε colors. J

3.3 (∆ + 1) Coloring Algorithm for General Graphs

For graphs G with ∆ ≤ n/(10 log n), we simply apply Alg. RecursiveColoring. Plugging
ε = 1/ log n in Theorem 2, we get that this is done in O(log log ∆ · log∗∆) rounds. It remains
to handle graphs with with ∆ ∈ [n/(10 log n), n]. We partition the graph into ` = d5 log ne
subgraphs G1, G2, . . . , G` and a left-over graph G∗ in the following manner. Each v ∈ V
joins Gi with probability p = 1/`− 2

√
5 logn/(∆ · `) for every i ∈ {1, . . . , `}, and it joins G∗

with probability p∗ = 1− ` · p = Θ(log n/
√

∆). By Chernoff bound, the maximum degree in
Gi for i ∈ {1, 2, . . . , `} is ∆i ≤ ∆/`− 2

√
(∆ · 5 logn)/`+

√
∆ · 5 logn/` ≤ ∆/`− 1 . Hence,

we have the budget to allocate a distinct set Pali of ∆i colors for each Gi.
The first phase applies Algorithm RecursiveColoring on each (Gi,Pali) simultaneously for

every i. Since ∆i = O(n/ log n), and the subgraphs are vertex-disjoint, this can be done in
O(log log ∆ · log∗∆) rounds for all subgraphs simultaneously (see Theorem 2(i)).

After all the vertices of G \G∗ get colored, the second phase colors the left-over subgraph
G∗. The probability of a vertex v to be in G∗ is O(log n/

√
∆) = O(log2 n/

√
n). Hence, G∗

contains O(log2 n ·
√
n) vertices with high probability. We color G∗ in two steps. First, we use

the deg +1 list coloring Algorithm OneShotColoring from [2] to reduce the uncolored-degree
of each vertex to be O(

√
n/ log2 n) with high probability. This can be done in O(log log n)

rounds. In the second step, the entire uncolored subgraph G′′ ⊂ G∗ has O(n) edges and can
be solved locally in O(1) rounds. Note that for each v ∈ G′′, it is sufficient to consider a
palette with deg(v,G′′) + 1 colors, and hence sending all these palettes can be done in O(1)
rounds as well. The complete proof of Theorem 1 is in the full-version.
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Algorithm 2 FastColoring(G)

If ∆ ≤ n/(10 log n), call RecursiveColoring(G, [1,∆ + 1]).
Else, partition G into vertex-subgraphs as follows:
G′1, . . . , G

′
q with the maximum degree Θ(∆/ log n), and

a left-over subgraph G∗ with maximum degree ∆∗ = O(
√
n).

Allocate a distinct palette Palj ⊂ [1,∆ + 1] of (∆(Gj) + 1) colors for each j ≤ qi.
Apply RecursiveColoring(Gj ,Palj) for all G1, . . . , Gq simultaneously.
Apply a (deg +1)-list coloring algorithm on G∗ for O(log log n) rounds.
Solve the remaining uncolored subgraph locally.

4 Deterministic Coloring Algorithms

In this section, we provide deterministic coloring algorithms using the tools of bounded
inpdendent and conditional expectation introduced in [5].

I Theorem 13. There is a deterministic (∆ + 1) list coloring using O(log ∆) rounds, in the
congested clique model.

In [5], a deterministic (∆ + 1) coloring was presented only for graphs with maximum degree
∆ = O(n1/3). Here, we handle the case of ∆ = Ω(n1/3). We derandomize the following
simple (∆ + 1)-algorithm that runs in O(log n) rounds.

Algorithm 3 Round i of Algorithm SimpleRandColor (for node v with palette Palv)

Let Fv be the set of colors taken by the colored neighbors of v.
Pick a color cv uniformly at random from Palv \ Fv.
Send colors to neighbors and if cv 6= 0 and legal, halt.

I Observation 14. The correctness of Algorithm SimpleRandColor is preserved, even if the
coin flips are pairwise-independent.

The goal of phase i in our algorithm is to compute a seed that would be used to simulate
the random color choices of round i of Alg. SimpleRandColor. This seed will be shown to
be good enough so that at least 1/4 of the currently uncolored vertices, get colored when
picking their color using that seed. Let Vi be the set of uncolored vertices at the beginning
of phase i. We need the following construction of bounded independent hash functions:

I Lemma 15. [25] For every γ, β, d ∈ N, there is a family of d-wise independent functions
Hγ,β =

{
h : {0, 1}γ → {0, 1}β

}
such that choosing a random function from Hγ,β takes

d ·max {γ, β} random bits, and evaluating a function from Hγ,β takes time poly(γ, β, d).

For our purposes, we use Theorem 15 with d = 2, γ = log n, β = log ∆ and hence the size of
the random seed is α · log n bits for some constant α. Instead of revealing the seed bit by bit
using the conditional expectation method, we reveal the assignment for a chunk of z = blog nc
variables at a time. To do so, consider the i’th chunk of the seed Y ′i = (y′1, . . . , y′z). For
each of the n possible assignments (b′1, . . . , b′z) ∈ {0, 1}z to the z variables in Y ′, we assign a
leader u that represent that assignment and receives the conditional expectation values from
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all the uncolored nodes Vi, where the conditional expectation is computed based on assigning
y′1 = b′1, . . . , y

′
z = b′z. Unlike the MIS problem, here the vertex’s success depends only on its

neighbors (i.e., and does not depend on its second neighborhood). Using the partial seed
and the IDs of its neighbors, every vertex v can compute the probability that it gets colored
based on the partial seed. It then sends its probability of being colored using a particular
assignment y′1 = b′1, . . . , y

′
z = b′z to the leader u responsible for that assignment. The leader

node u of each assignment y′1 = b′1, . . . , y
′
z = b′z sums up all the values and obtains the

expected number of colored nodes conditioned on the assignment. Finally, all nodes send to
the leader their computed sum and the leader selects the assignment (b∗1, . . . , b∗z) ∈ {0, 1}z of
largest value. After O(1) many rounds, the entire assignment of the O(log n) bits of the seed
are revealed. Every yet uncolored vertex v ∈ Vi uses this seed to simulate the random choice
of Alg. SimpleRandColor, that is selecting a color in {0, 1, 2, . . . ,∆ + 1} \ Fv and broadcasts
its decision to its neighbors. If the color cv 6= 0 is legal, v is finally colored and it notifies
its neighbors. By the correctness of the conditional expectation approach, we have that
least 1/4 · |Vi| vertices got colored. Hence, after O(log n) = O(log ∆) rounds, all vertices are
colored. In the full version, we also show a deterministic O(∆2) coloring in O(1) rounds.

References

1 Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Dennis Olivetti,
and Jukka Suomela. New classes of distributed time complexity. CoRR, abs/1711.01871,
2017. arXiv:1711.01871.

2 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. Journal of the ACM (JACM), 63(3):20, 2016.

3 József Beck. An algorithmic approach to the lovász local lemma. i. Random Structures &
Algorithms, 2(4):343–365, 1991.

4 Andrew Berns, James Hegeman, and Sriram V Pemmaraju. Super-fast distributed algo-
rithms for metric facility location. In International Colloquium on Automata, Languages,
and Programming, pages 428–439. Springer, 2012.

5 Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local dis-
tributed algorithms under bandwidth restrictions. In 31st International Symposium on Dis-
tributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria, pages 11:1–11:16,
2017.

6 Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between
randomized and deterministic complexity in the LOCAL model. In IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA, pages 615–624, 2016.

7 Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (∆ + 1) coloring
algorithm? arXiv preprint arXiv:1711.01361, 2018.

8 Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the local model. FOCS, 2017.
9 Manuela Fischer and Mohsen Ghaffari. Sublogarithmic distributed algorithms for Lov\’asz

local lemma, and the complexity hierarchy. DISC, 2017.
10 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In Founda-

tions of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 625–634.
IEEE, 2016.

11 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 270–277. Society for Industrial and Applied Mathematics, 2016.

ICALP 2018

http://arxiv.org/abs/1711.01871


160:14 (∆ + 1) Coloring in the Congested Clique Model

12 Mohsen Ghaffari. Distributed MIS via all-to-all communication. In Proceedings of the ACM
Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA,
July 25-27, 2017, pages 141–149, 2017.

13 David G Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (δ + 1)-coloring in
sublogarithmic rounds. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, pages 465–478. ACM, 2016.

14 James W Hegeman and Sriram V Pemmaraju. Lessons from the congested clique applied
to mapreduce. Theoretical Computer Science, 608:268–281, 2015.

15 James W Hegeman, Sriram V Pemmaraju, and Vivek B Sardeshmukh. Near-constant-time
distributed algorithms on a congested clique. In International Symposium on Distributed
Computing, pages 514–530. Springer, 2014.

16 Janne H Korhonen and Jukka Suomela. Brief announcement: Towards a complexity the-
ory for the congested clique. In LIPIcs-Leibniz International Proceedings in Informatics,
volume 91. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

17 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower
and upper bounds. Journal of the ACM (JACM), 63(2):17, 2016.

18 Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In
PODC, pages 42–50, 2013.

19 Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight spanning
tree construction in o (log log n) communication rounds. SIAM Journal on Computing,
35(1):120–131, 2005.

20 Y Maus, F Kuhn, and M Ghaffari. On the complexity of local distributed graph problems.
In Proceedings of the Annual ACM Symposium on Theory of Computing, pages 784–797,
2017.

21 Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995.

22 Merav Parter. (δ + 1) coloring in the congested clique model. arXiv, 2018. arXiv:1805.
02457.

23 Johannes Schneider and Roger Wattenhofer. A new technique for distributed symmetry
breaking. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, pages 257–266. ACM, 2010.

24 Gregory Schwartzman. Adapting sequential algorithms to the distributed setting. arXiv
preprint arXiv:1711.10155, 2017.

25 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1–336, 2012. doi:10.1561/0400000010.

http://arxiv.org/abs/1805.02457
http://arxiv.org/abs/1805.02457
http://dx.doi.org/10.1561/0400000010


CacheShuffle: A Family of Oblivious Shuffles

Sarvar Patel
Google LLC, Mountain View, USA
sarvar@google.com

Giuseppe Persiano
Google LLC, Mountain View, USA and Università di Salerno, Salerno, Italy
giuper@gmail.com

Kevin Yeo
Google LLC, Mountain View, USA
kwlyeo@google.com

Abstract
We consider oblivious two-party protocols where a client outsources N blocks of private data
to a server. The client wishes to access the data to perform operations in such a way that the
access pattern does not leak information about the data and the operations. In this context, we
consider oblivious shuffling with a focus on bandwidth efficient protocols for clients with small
local memory. In the shuffling problem, the N outsourced blocks, B1, . . . , BN , are stored on the
server according to an initial permutation π. The client wishes to reshuffle the blocks according to
permutation σ. Oblivious shuffling is a building block in several applications that hide patterns of
data access. In this paper, we introduce a generalization of the oblivious shuffling problem, the K-
oblivious shuffling problem, and provide bandwidth efficient algorithms for a wide range of client
storage requirements. The task of a K-oblivious shuffling algorithm is to shuffle N encrypted
blocks that were previously randomly allocated on the server in such a way that an adversarial
server learns nothing about either the new allocation of blocks or the block contents. The
security guarantee must hold when an adversary has partial information on the initial placement
of a subset of K ≤ N revealed blocks. The notion of oblivious shuffling is obtained for K = N .

We first study the N -oblivious shuffling problem and start by presenting CacheShuffleRoot,
that is tailored for clients with O(

√
N) blocks of memory and uses approximately 4N blocks

of bandwidth. CacheShuffleRoot is a 4x improvement over the previous best known N -oblivious
shuffle for practical sizes of N . We then generalize CacheShuffleRoot to CacheShuffle that can be
instantiated for any client memory size S and requires O(N logS N) blocks of bandwidth. Next,
we present K-oblivious shuffling algorithms that require 2N+f(K,S) blocks of bandwidth for all
K and a wide range of S. Any extra bandwidth above the 2N lower bound depends solely on K
and S. Specifically, for clients with O(K) blocks of memory, we present KCacheShuffleBasic that
uses exactly 2N blocks of bandwidth. For clients with memory S ≤ K, we present KCacheShuffle,
that requires 2N + O(K logS K) blocks of bandwidth. Finally, motivated by applications to
ORAMs, we consider the case where the server stores D dummy blocks whose contents are irrel-
evant in addition to the N real blocks. For this case, we design algorithm KCacheShuffleDummy
that shuffles N + D blocks with K revealed blocks using O(K) blocks of client storage and
approximately D + 2N blocks of bandwidth.
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Related Version A full version of the paper can be found at [11], https://arxiv.org/abs/1705.
07069.

1 Introduction

In recent years, cloud storage has increased in popularity due to the great benefits available to
users. Outsourcing files to the cloud allows users to share documents conveniently. Users are
able to access documents from many different machines without transferring data. The burden
of data replication for recovery is placed on the storage provider. For many corporations,
cloud storage is cost efficient compared to maintaining their own internal storage systems.
With the widespread use of cloud storage, providing privacy for outsourced data becomes
crucial. Unfortunately, encrypting outsourced data is not sufficient. Previous works [8, 9]
show that learning the patterns of data access may leak information about the contents of
encrypted data. This scenario provides motivation towards the study of oblivious algorithms.

In this paper, we focus on oblivious algorithms for shuffling data stored on a server. The
ability to obliviously move blocks of encrypted data is an important primitive for privacy-
conscious users of cloud storage. We consider the scenario where a client has outsourced the
encryptions of N identically-sized blocks, B1, . . . , BN , to a server. The N blocks are stored
by the server on an array Source according to a permutation π. That is, an encryption of Bi
is stored as Source[π(i)], for all i = 1, . . . , N . The client wishes to shuffle the blocks into a
server-stored destination array, Dest, according to a permutation σ.

An oblivious shuffle is an algorithm whose pattern of block movement and operations
involving the server does not leak information about either σ or the contents of B1, . . . , BN .
If the client has N blocks of client memory available, oblivious shuffling is trivial. All N
blocks are downloaded, decrypted, re-encrypted and re-uploaded to their correct location
in Dest according to σ. Similarly, if bandwidth is unlimited, then oblivious shuffling is also
trivial. The client streams all N blocks and keeps block Bσ−1(1) to be be placed into Dest[1]
after all blocks have been streamed. The client repeats this algorithm for all i = 2, . . . , N ,
which costs N2 blocks of bandwidth. Our work focuses on oblivious shuffles that minimize
bandwidth while the client has only a sublinear number of blocks of memory available.

Our Contributions. Our contribution is two-fold. We propose an obliviousness notion
that abstracts the initial knowledge of π given to the adversarial server. Then, we present
bandwidth efficient oblivious shuffles for any possible initial knowledge of π by the adversary
and a wide range of client memory requirements.

Our work generalizes the notion of obliviousness studied in previous work by presenting
the notion of K-oblivious shuffling that takes into account the knowledge of the adversary
on the initial positioning of the blocks (that is, π). In the K-oblivious shuffling problem, the
adversary fixes the position of K ≤ N blocks, which we denote as the revealed blocks. The
client wishes to shuffle the N blocks into the server-stored destination array, Dest, without
revealing information about σ or the contents of B1, . . . , BN to the adversarial server. The
parameter K describes the difficulty of the problem. Intuitively, as K decreases, K-obliviously
shuffling should be more efficient. In our work, we present algorithms whose bandwidth
above inherent lower bounds depend only on K. For K = N , the notion of K-oblivious
shuffling coincides with the original notion of a oblivious shuffling by Ohrimenko et al. [10],
which assumes that the adversary has initial knowledge about all N input blocks.

The notion ofK-oblivious shuffling is suitable in the context of Oblivious RAMs. Oblivious
RAM (or ORAM) is a storage primitive introduced by Goldreich [4] that allows random

https://arxiv.org/abs/1705.07069
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access to N encrypted blocks that are stored by an adversarial server. Many ORAMs use
oblivious shuffling as a building block to move blocks without revealing information about
the final positions of blocks as well as the contents of the blocks. In the majority of ORAM
constructions, the adversary does not learn the position of all blocks that are going to be
shuffled. By incorporating the initial amount of knowledge available to the adversary about
the N input blocks, we can improve the bandwidth efficiency of ORAM constructions such
as the Square Root ORAM [4, 5].

Before designing efficient K-oblivious shuffling algorithms, we revisit the original obliv-
ious shuffling (that is, N -oblivious shuffling) problem and present new oblivious shuffling
algorithms with improved bandwidth efficiency. Our algorithms use a client-stored cache
to store blocks. The main technical difficulty in our algorithms is showing that the size of
the cache remains small. We first apply this design principle in Section 3 by presenting
an oblivious shuffling algorithm, CacheShuffleRoot, that uses approximately 4N blocks of
bandwidth and O(

√
N) block of client storage. For similar client memory usage, the previous,

state-of-the-art algorithm, the Melbourne Shuffle [10], uses about 4 times more bandwidth.
We present a generalization of CacheShuffleRoot, CacheShuffleS , in Section 4 when the client
has S = ω(logN) blocks of available client storage. CacheShuffleS uses O(N logS N) blocks
of bandwidth.

Next, we focus on designing K-oblivious shuffling algorithms when K < N . All previous
oblivious shuffling algorithms have always considered the most difficult scenario when K = N .
To our knowledge, our work is the first to separate the two problems. In Section 5, we present
a simple K-oblivious shuffling algorithm, KCacheShuffleBasic, when the client has O(K)
blocks of available client storage. KCacheShuffleBasic uses exactly 2N blocks of bandwidth.
In Section 6, we present KCacheShuffleS for clients with only O(S) blocks of client storage
available. KCacheShuffle uses 2N + O(K logS K) blocks of bandwidth. For the case of
S =

√
K, we present KCacheShuffleRoot, which uses approximately 2N + 4K blocks of

bandwidth. In general, any K-oblivious shuffling algorithm must upload and download each
block at least once meaning a lower bound of 2N blocks of bandwidth when K > 0. The
amount of bandwidth used by all our K-oblivious shuffling algorithms beyond the lower
bound only depends on K.

In many ORAM schemes, encryptions of dummy blocks are also outsourced to the server.
The contents of a dummy block is irrelevant. However, it is important that an adversarial
server cannot learn whether a block is dummy or not. In the full version [11], we consider
a scenario where the client has outsourced the encryptions of D dummy blocks and N real
blocks inspired by the work of Stefanov et al. [12]. Any K-oblivious shuffling algorithm
could be used to perform shuffling by treating dummy blocks as real blocks. By using the
fact that the contents of dummy blocks are irrelevant, we present KCacheShuffleDummy
that uses approximately D + 2N blocks of bandwidth when the client has O(K) blocks
of available client storage. Applying directly KCacheShuffleBasic would require 2(N + D)
blocks of bandwidth. Therefore, KCacheShuffleDummy saves D blocks of bandwidth. The
bandwidth savings come at the cost of a small amount of server computation.

We complement our theoretical analysis with experiments to show that our algorithms
are of practical interest in the full version.

Previous works. The early approach to oblivious shuffling was based on oblivious sorting
algorithms which could be immediately derived from any sorting circuit. To evaluate a
compare-exchange gate of a sorting circuit, the client downloads the two input encrypted
blocks, decrypts and re-encrypts both blocks and uploads them in the correct order. Batcher’s
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sort [2] is considered the most practical sorting circuit even though it has asymptotic cost of
O(N log2 N). Sorting networks such as AKS [1] and Zig-Zag [7] have O(N logN) size but
large hidden constants. Randomized Shellsort [6] is another O(N logN) oblivious sort with
smaller hidden constants but larger depth. Waksman [13] presents a circuit for oblivious
shuffling of size O(N logN). Oblivious shuffling based on sorting circuits is interesting
because the client only needs to store O(1) blocks at any point. However, sorting circuits
incur a large Ω(N logN) blocks of bandwidth cost. The first oblivious shuffling algorithm
not based on sorting circuits, the Melbourne Shuffle, was introduced by Ohrimenko et al. [10].
The Melbourne Shuffle uses O(N) bandwidth while only requiring O(

√
N) blocks to be stored

on the client at any time.
In the table below, we compare our algorithms with the Melbourne Shuffle [10].

Table 1 N denotes the number of blocks. Algorithm KCacheShuffleDummy receives D additional
dummy blocks, for a total of N +D blocks. Algorithm KCacheShuffleRoot is obtained from algorithm
KCacheShuffle by setting S =

√
N . For all algorithms, server storage is cN , for a small constant c.

Client Storage Bandwidth

K
=
N Melbourne Shuffle [10] O(

√
N) ≈ 18N

CacheShuffleRoot O(
√
N) (4 + ε)N

CacheShuffle O(S) O(N logS N)

G
en

er
al
K KCacheShuffleBasic O(K) 2N

KCacheShuffleRoot O(
√
K) 2N + (4 + ε)K

KCacheShuffle O(S) 2N +O(K logS K)
KCacheShuffleDummy O(K) D + (2 + ε)N

An algorithm similar to CacheShuffleRoot was developed in parallel and independent work
in [3] for the context of privacy-preserving software monitoring.

2 Definitions

In this section, we give formal definition for shuffling algorithms and oblivious shuffling
algorithms. Our reference scenario is a cloud storage model where a client outsources the
storage of N identically-sized data blocks to a server with the capacity to store M ≥ N

blocks.
We assume the N data blocks are uploaded by the Setup algorithm. As input, Setup

receives N data blocks, B = (B1, . . . , BN ), each of size B and a permutation π : [N ]→ [N ].
Setup randomly selects an encryption key, key, whose length is determined by the security
parameter λ, for a symmetric encryption scheme and uploads an encryption of each of the
N data blocks to the server according to π. Formally, an encryption of Bi under key will
be stored at server location π(i), for all i ∈ [N ]. Once Setup has uploaded all N blocks, an
adversary A is allowed to learn the initial position of a subset of the data blocks, which we
denote Revealed ⊆ [N ]. For each index i ∈ Revealed, π(i) is revealed to A. We call the data
blocks in Revealed, the revealed data blocks.

The shuffling algorithm takes as input the encryption key key, the permutation map
π, the set of revealed data blocks Revealed, and a new permutation σ. The task of the
shuffling algorithm is to re-permute the N data blocks stored on the server according to the
new permutation map σ. In particular, we are interested in oblivious shuffling algorithms.
Roughly speaking, oblivious shuffles hide information about both the contents of B1, . . . , BN
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and σ even when the adversary has partial information on π (restricted to the input set
Revealed) and observes the blocks movements performed by the shuffling algorithm.

For convenience, we will abuse the notation of array indexing and function evaluation
throughout our work. For any array A and index i, A[i] refers to the element stored at
location i in A. For a set of indices S, we define A[S] := {A[s] : s ∈ S}. Similarly for any
function f and input set S, we define f(S) := {f(s) : s ∈ S}.

2.1 Mechanics of the Shuffling Algorithm

A shuffling algorithm receives as input the initial permutation π, the final permutation σ
and the set Revealed. A shuffling algorithm proceeds in steps. The state after the q-th step
is described by a server allocation map ρq : [M ]→ [N ] ∪ {⊥} and by a client allocation map
Lq : [S]→ [N ] ∪ {⊥}. Each allocation map specifies the block currently occupying each of
the M server locations and S client locations, respectively. More precisely, ρq(j) = i means
that, after the q-th step is performed, the j-th server location contains an encryption of
the Bi. If instead ρq(j) =⊥, then an encryption of a dummy block is stored at location j.
Similar statements are true for the client allocation map, Lq.

When a shuffling algorithm starts, the server allocation map ρ0 coincides with permutation
map π on the first N storage location of the M server memory locations. That is, ρ0(i) =
π−1(i) for all i = 1, . . . , N . The remaining N −M locations contain encryptions of dummy
blocks. All S client block locations initially contain dummy blocks. That is, L0(i) =⊥ for all
i = 1, . . . , S. During each step, a shuffling algorithm can perform either a move operation or a
server computation operation. A move operation can be either a download or an upload move
and they modify the state as follows. All download and upload operations are associated
with a source and a destination. Suppose the q-th operation is a download with source sq
and destination dq. Then, an encryption of block Bρq−1(sq) stored at server location sq is
copied to location dq of client storage. Before storing in client storage, the block is decrypted
and re-encrypted. As a consequence, the ρq is identical to ρq−1. On the other hand, Lq
is identical to Lq−1 except that Lq(dq) = ρq−1(sq). If the q-th operation was an upload
with source sq and destination dq, then the encryption of block BŁq−1(sq) stored at client
location sq is copied to location dq of server storage. In this case, Lq is identical to Lq−1.
However, Sq is obtained by modifying Sq−1 such that Sq(dq) = Lq−1(sq). Shuffle algorithms
may perform upload moves with the source as ⊥. In this case, an encryption of a dummy
block is uploaded to the destination location of server storage.

A server computation operation is specified by the server performing a circuit that uses a
subset of the blocks as input and copies the circuit’s output to a subset of server storage
locations. In our shuffling algorithms, server computation operations consist of homomorphic
operations on block ciphertexts, which reduce bandwidth by using small amounts of server
computation. The circuit description sent by the client must be considered as bandwidth.

2.2 Efficiency Measures

In our work, we consider three measures of efficiency for a shuffling algorithm: bandwidth,
client memory and server memory. Our work focuses on minimizing bandwidth for a given
amount of client memory, which is typically sublinear. While we do not prioritize optimizing
server storage, all our shuffling algorithms use server storage that is linear with small constants
in the number N of blocks. For shuffling algorithms with small client storage, we assume
that the input permutations π and σ are space-efficient pseudorandom permutations.
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Throughout this work, we consider blocks as our unit of measure. For example, if a
shuffling algorithm uses T bandwidth, it means the shuffling algorithm uses T blocks of
bandwidth.

2.3 Obliviousness

We define a transcript produced an execution of a shuffling algorithm Sh as the information
seen by the adversarial server. The transcript consists of the initial encryptions of the data
blocks as stored in server memory, the ordered list of the sources of all download moves,
the ordered list of the destinations of all upload moves as well as the encryptions of the
uploaded block and the list of circuits uploaded by the client. We stress that a transcript
only contains the server locations that are involved in each move. That is, the transcript only
contains the source for downloads and the destination for uploads. The transcript does not
contain the involved client locations in each upload and download. The transcript models
that an adversarial server A cannot observe information about the client’s storage such as
the destination of a download and the source of an upload.

Using the definition of a transcript, we now formally define an oblivious shuffling algorithm.
For every sequence of N blocks B = (B1, . . . , BN ), every subset Revealed of revealed blocks,
and every pair of permutations (π, σ), a shuffling algorithm Sh naturally induces a probability
distribution TSh(B, π, σ,Revealed) over all possible transcripts. We capture the notion of a
K-oblivious shuffling algorithm by the following game OSGameASh for a shuffling algorithm
Sh between an adversary A and a challenger C. In the formalization of our security notion,
the adversary A receives partial information on the starting permutation map π to reflect
the fact that the shuffling algorithm Sh might be part of a larger protocol whose execution
leaks information about π. More precisely, A chooses the initial server locations of a subset
of the N data blocks, Revealed. We parametrize the security notion by the cardinality of
the set Revealed, which we denote as K. We say that an adversary A is K-restricted if it
specifies the location of at most K blocks. That is, |Revealed| ≤ K. C fills in the remaining
N − |Revealed| locations randomly under the constraint that each of the N blocks appears in
exactly one location on the server. Then, A proposes two sequences of N blocks, B0 and
B1, and two permutations, σ0 and σ1. C randomly picks b ∈ {0, 1} and samples a transcript
trans according to TSh(Bb, π, σb,Revealed). On input trans, A outputs its guess b′ for b.
We present the formal definition below.

I Definition 1. For a shuffle algorithm Sh, we define the game OSGameASh(N,λ) between an
adversary A and a challenger C for N data blocks and security parameter λ as follows:
1. A chooses a subset Revealed ⊆ [N ], specifies π(i) for each i ∈ Revealed, and sends

(Revealed, π(Revealed) to C;
2. A chooses two pairs (B0, σ0) and (B1, σ1) and sends them to C;
3. C completes the permutation π by randomly choosing the values at the point left unspec-

ified by A;
4. C randomly selects b ← {0, 1} and sends A transcript trans drawn according to
TSh(Bb, π, σb,Revealed);

5. A on input trans outputs b′;
The game outputs 1 iff b = b′.

I Definition 2 (K-oblivious shuffling). We say that shuffling algorithm Sh is a K-oblivious
shuffling algorithm if for all K-restricted probabilistically polynomial time adversaries A,
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and for all N = poly(λ)

Pr[OSGameASh(N,λ) = 1] ≤ 1
2 + negl(λ).

We refer to N -oblivious shuffling algorithms as just oblivious shuffling algorithms.

2.4 Move-Based shuffling Algorithms
Move-based algorithms are shuffling algorithm that only perform move operations between
client and server storage; that is, the server does not perform any computation on the stored
encrypted blocks. To prove K-obliviousness for move-based algorithms, it suffices to show
that for every random π and for every subset Revealed ⊆ [N ] containing at most K indices,
the probability distribution consisting of both the sources of downloads and the destinations
of uploads are independent of σ conditioned on Revealed and π(Revealed). More precisely, we
defineMSh(B, π, σ,Revealed) as the distribution of the move transcript Mtrans obtained from
a transcript trans drawn from TSh(B, π, σ,Revealed) by removing the encryption of server-
stored blocks and the encrypted blocks associated with upload moves. This is equivalent to
considering the blocks as opaque indistinguishable balls. It is straightforward to prove that if
the encryption scheme is IND-CPA and TSh(B, π, σ,Revealed) is independent of σ conditioned
on Revealed and π(Revealed), then Sh is a K-oblivious shuffling algorithm.

In the full version, we show that move-based K-oblivious shuffles have an inherent lower
bound of 2N blocks of bandwidth when K ≥ 1.

3 Oblivious Shuffling with O(
√

N) Client Memory

In this section, we describe CacheShuffleRoot, which is an oblivious shuffling algorithm that
uses O(

√
N) blocks of client storage except with negligible probability. For every ε > 0,

we describe an algorithm CacheShuffleRootε that uses (3 + ε/2)N blocks of server storage,
(4 + ε)N blocks of bandwidth and δε

√
N blocks of client storage except with negligible

probability in N . The value δε is a constant that depends solely on ε and not from N .
Whenever ε is clear from the context, we will just call the algorithm CacheShuffleRoot.

3.1 Intuition
We start by describing a simple algorithm, which is insufficient to perform oblivious shuffling.
However, the algorithm provides a general idea of our techniques.

Let us recall the inputs to oblivious shuffling. The client is provided permutations π and
σ. Note that in our security model, σ is provided privately to the client and hidden from the
adversarial server. On the server, N block ciphertexts are stored in the array Source. An
encryption of block Bi is stored at Source[π(i)], for all i = 1, . . . , N . At the termination of an
oblivious shuffling, an encryption of block Bi should appear at Dest[σ(i)], for all i = 1, . . . , N .

We now describe a simple, but incorrect, algorithm to provide intuition of our tech-
niques. The N indices of Dest are randomly partitioned into q :=

√
N destination buckets,

destInd1, . . . , destIndq. Each i ∈ [N ] is assigned to a uniformly and independently chosen
destination bucket. The indices of Source are partitioned into s :=

√
N source groups,

srcInd1, . . . , srcInds, of exactly N/s =
√
N blocks. The j-th source group consists of blocks

located in Source[(j − 1)N/s + 1, . . . , j · N/s], for all j = 1, . . . , s. Finally, there will be q
temporary server-stored arrays, temp1, . . . , tempq, each of size s and initially empty.

On average, each destination bucket will contain N/q =
√
N indices. Furthermore, each

destination bucket will receive one block from each of the s source groups according to σ
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in expectation. For now, let us suppose that each destination bucket receives exactly one
block from each of the s source groups. In this case, we show that oblivious shuffling can be
easily performed. Our algorithm would process each of the s source groups one at a time.
When processing srcIndj , the algorithm downloads all

√
N blocks of Source[srcIndj ]. Then,

exactly one block is uploaded to each of temp1, . . . , tempq from srcIndj . In particular, the
block to tempk is the only block from srcIndj that will be placed to Dest[destIndk] according
to σ. After all s source groups have been processed, each tempk contains all the blocks that
are to be placed in a location of Dest[destIndk] but in the incorrect order. The algorithm
performs another q phases to process each of temp1, . . . , tempq. When processing tempk, all
s blocks of tempk are downloaded and re-uploaded to their correct locations in Dest[destIndk]
in any arbitrary order (such as as increasing order of destIndk).

This algorithm is easily seen to be oblivious but, unfortunately, it is unlikely that each
destination bucket receives exactly the expected number blocks from each group. We thus
present algorithm CacheShuffleRoot, which modifies the above algorithm to handle variances
in expectation. CacheShuffleRoot does not expect each source group to contain exactly one
block that should be uploaded to each destination bucket. Any time more than one block
from a source group should be uploaded to a destination bucket, the extra blocks will be
stored in a cache in the client’s private storage. To ensure that the client’s cache does
not grow too large, we slightly increase the number of destination buckets from

√
N to

(1 + ε/2)
√
N , for any constant ε > 0. Let us now proceed more formally.

3.2 CacheShuffleRoot Description
For any constant ε > 0, we describe algorithm CacheShuffleRoot. As input, the client receives
permutations π and σ. On the server, the N blocks are stored in the source array Source
according to π. That is, a ciphertext of block Bi appears in Source[π(i)], for all i = 1, . . . , N .
CacheShuffleRoot will output a server-stored destination array, Dest, such that an encryption
of block Bi is stored as Dest[σ(l)], for all l = i, . . . , N .

CacheShuffleRoot proceeds by partitioning the indices of Source into s :=
√
N source

groups srcInd1, . . . , srcInds. For all j = 1, . . . , s, srcIndj consists of blocks stored at loca-
tions Source[(j − 1)s + 1, . . . , js]. The N indices of the destination array Dest are ran-
domly partitioned into q := (1 + ε/2)

√
N destination buckets, destInd1, . . . , destIndq. For-

mally, index i ∈ [N ] is assigned to uniformly and independently chosen destination bucket.
CacheShuffleRoot also initializes q server-stored temporary arrays, temp1, . . . , tempq and q
client-stored caches, Q1, . . . , Qq. Each temporary array initially contains s empty block
locations and each cache is initially empty.

CacheShuffleRoot consists of two phases: Spray and Recalibrate. The Spray phase consists
of s rounds, one for each of the s source groups. In the j-th Spray round, the algorithm
downloads all blocks in Source[srcIndj ]. Each downloaded ciphertext is decrypted and re-
encrypted with fresh randomness. Each downloaded block is placed into one of the q caches
according to their placement by σ. If block Bi is downloaded, then the re-encryption of Bi
is placed into Qk such that σ(i) ∈ destIndk. After all blocks of Source[srcIndj ] are placed into
their respective queues, exactly one block from each of Q1, . . . , Qq is uploaded to the server.
In particular, one block from Qk is uploaded to tempk. If any Qk is empty, a dummy block
containing an encryption of any arbitrary block is uploaded instead. After all s rounds of the
Spray phase are completed, each of temp1, . . . , tempq contains exactly s blocks. Furthermore,
there might be some blocks remaining in Q1, . . . ,Qq. Every block that is assigned to a
location of Dest[destIndk] according to σ appears in either Qk or tempk.

The Recalibrate phase will simply rearrange all non-dummy blocks of Qk and tempk into
the correct locations of Dest[destIndk]. Formally, Recalibrate operates in q rounds, one round
for each pair of (Q1, temp1), . . . , (Qq, tempq). In the k-th round, all s blocks of tempk are
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downloaded. All non-dummy blocks of tempk are decrypted and re-encrypted before being
placed into Qk. At this point, all blocks assigned to Dest[destIndk] according to σ appear
in Qk. All blocks are simply uploaded to Dest[destIndk] in any arbitrary order (such as
increasing order of destIndk). After all q rounds of Recalibrate, CacheShuffleRoot finishes
executing.

The proof of the following theorem can be found in the full version.

I Theorem 3. CacheShuffleRoot is an oblivious shuffle algorithm that uses (4 + ε)N blocks
of bandwidth, (3 + ε/2)N blocks of server memory and O(

√
N) blocks of client memory except

with probability negligible in N .

4 Oblivious Shuffling with Smaller Client Memory

In this section, we generalize algorithm CacheShuffleRoot from Section 3. For any S =
ω(logN), we provide an oblivious shuffling algorithm that uses O(S) blocks of client memory
and O(N logS N) blocks of bandwidth.

Let us take another look at CacheShuffleRoot. Once CacheShuffleRoot completes the Spray
phase, all the blocks that should be placed into Dest[destIndk] according to σ are stored either
in tempk or Qk. Afterwards the k-th round of Recalibrate arranges all non-dummy blocks in
tempk and Qk into their correct location in Dest[destIndk]. Each round of Recalibrate requires
|tempk| + |Qk| blocks of client memory. Therefore, the key to a oblivious shuffling using
less blocks of client memory requires a modification to the Spray phase so that less blocks
are placed into each tempk and Qk. We present RSpray, a modification of Spray, to achieve
smaller server-stored temporary arrays and client-stored caches. Additionally, the output of
RSpray is structured such that RSpray may be recursively applied.

4.1 RSpray Description
First, we abstract the input to RSpray to handle recursive applications. As input, RSpray
receives a server-stored source array, RSource, of n block ciphertexts. In addition, the client
privately receives, destInd ⊆ [N ], of d destination indices. For every i such that σ(i) ∈ destInd,
an encryption of block Bi appears in RSource. The remaining n− d ciphertexts of RSource
are dummy blocks.

RSpray is parameterized by the number of blocks of client storage available, which we
denote by S. As output, RSpray outputs S temporary arrays, temp1, . . . , tempS , which
contain block ciphertexts as well as a partition of destInd into S destination buckets,
destInd1, . . . , destIndS ⊂ destInd. Furthermore, RSpray guarantees that if σ(i) ∈ destIndk,
then an encryption of Bi will appear in tempk. To keep the same notation as Section 3, we
set q = S.

We now formally describe RSpray. RSpray partitions destInd into q destination buckets,
destInd1, . . . , destIndq. Each index d ∈ destInd is assigned to one of the q subsets uniformly
and independently at random. RSpray will initialize q server-stored temporary arrays,
temp1, . . . , tempq. Each tempk will contain s := n/q empty block locations. RSpray also
initializes q client-stored caches, Q1, . . . ,Qq. All q caches are initially empty. Finally,
RSpray partitions RSource into s server-stored source buckets, srcInd1, . . . , srcInds. Each block
ciphertext in RSource is assigned to one of the s source buckets uniformly and independently
at random. Unlike Spray, RSpray initializes the s source buckets randomly.

RSpray performs s rounds, one for each of srcInd1, . . . , srcInds. In the j-th round, RSpray
downloads all blocks of srcIndj . All non-dummy blocks are decrypted and re-encrypted.
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If block Bi is downloaded, then the new encryption of Bi is placed into Qk such that
σ(i) ∈ destIndk. After all blocks in srcIndj are placed into their corresponding cache, exactly
one block ciphertext is uploaded from each Q1, . . . ,Qq to the server. In particular, a block
from Qk is uploaded to tempk, for all k = 1, . . . , q. If Qk is empty, a dummy block is uploaded
instead.

After all s rounds complete, each tempk contains exactly s block ciphertexts. Furthermore,
RSpray guarantees that if σ(i) ∈ destIndk, then an encryption of Bi appears in either tempk
or Qk. RSpray performs another q adjustment rounds to move all client-stored blocks in Qk

to the server-stored tempk. In the k-th adjustment round, RSpray downloads all s blocks
of tempk. All dummy blocks of tempk are discarded. The non-dummy blocks of tempk
are decrypted and re-encrypted. Now, all blocks of Qk are combined with the non-dummy
downloaded blocks of tempk. If more than s non-dummy blocks remain, then RSpray fails.
If there are less than s non-dummy blocks, dummy blocks are added until exactly s blocks
remain. Finally, all s blocks are uploaded back to tempk. RSpray terminates upon completion
of the s rounds.

4.2 CacheShuffle Description
We now describe CacheShuffle, which uses RSpray and Spray as subroutines. CacheShuffle
starts by running the Spray algorithm of CacheShuffleRoot with parameters s := N/S and
q := (1 + ε)S. Under these parameters, Spray uses O(S) client memory and outputs the
following:
1. q caches Q1, . . . ,Qq on the client;
2. q temporary arrays temp1, . . . , tempq on the server;
3. q destination buckets destInd1, . . . , destIndq on the client such that if σ(i) ∈ destIndk then

Qk or tempk contain an encryption of Bi;
For j = 1, . . . , q, we perform the adjustment round of RSpray for each pair of (Qk, tempk)
outputted by Spray. In particular, all blocks of Qk are placed into tempk. After all q
adjustment rounds, we have the property that if σ(i) ∈ destIndk, then tempk contains an
encryption of Bi.

Next, CacheShuffle recursively calls RSpray on each temp1, . . . , tempq exactly l = O(logS N)
times. Formally, each application of RSpray will produce q pairs of temporary arrays and
destination buckets. RSpray will be applied to each of the q pairs independently. After l
recursive applications of RSpray, we will receive ql temporary arrays and destination buck-
ets, (templ,1, destIndl,1),. . . ,(templ,ql , destIndl,ql). Furthermore, all temporary arrays and
destination buckets will contain less than S2 elements. Each templ,k is obliviously shuffled
into Dest[destIndl,k] using CacheShuffleRoot, for all k = 1, . . . , ql. CacheShuffleRoot may be
applied since the client has at least S blocks of client memory.

The proof of the following theorem can be found in the full version.

I Theorem 4. CacheShuffle is an Oblivious Shuffle algorithm that uses O(N logS N) blocks
of bandwidth, O(N) blocks of server memory and O(S) blocks of client memory except with
probability negligible in N .

5 K-Oblivious Shuffling with O(K) Client Memory

In this section, we present an K-oblivious shuffling algorithm, KCacheShuffleBasic, for clients
with at least K blocks of client memory. The algorithm uses 2N blocks of bandwidth to
shuffle N data blocks We remind the reader that the client of a K-oblivious shuffling receives
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two permutations (π, σ) as well as a subset of indices Revealed ⊆ [N ]. Identical to Oblivious
Shuffling, KCacheShuffleBasic also receives ciphertexts of the N blocks in Source according
to π and must place the N blocks in Dest according to σ.

KCacheShuffleBasic starts by downloading the ciphertexts from locations
Source[π(Revealed)]. That is, the encryption of every block whose index belongs to Revealed is
downloaded. Each block is decrypted and re-encrypted. Then, KCacheShuffleBasic initializes
tbDown = [N ] \Revealed, which is the set of indices of blocks that have not been downloaded
yet.

Then, KCacheShuffleBasic runs N rounds. The goal of the i-th round is to place a cipher-
text of Bσ−1(i) into Dest[i]. If σ−1(i) ∈ tbDown, and thus the ciphertext of Bσ−1(i) has not
been downloaded yet, KCacheShuffleBasic simply downloads Bσ−1(i) from Source[π(σ−1(i))]
and removes σ−1(i) from tbDown. If σ−1(i) /∈ tbDown, then Bσ−1(i) has already been down-
loaded from Source[π(σ−1(i))]. If tbDown 6= ∅, any arbitrary index i′ ∈ tbDown is removed
and Bi′ is downloaded from Source[π(i′)]. In any of the above cases, the downloaded block is
decrypted and re-encrypted. Finally, Bσ−1(i) is placed into Dest[i].

From first look, it seems that KCacheShuffleBasic requires O(N) roundtrips of client-server
communication. However, the number of roundtrips may be reduced by grouping indexes
of Dest together. Specifically, we can group indexes of Dest into groups of size O(K) and
perform the required downloads and uploads in O(N/K) roundtrips.

The proof of the following theorem can be found in the full version.

I Theorem 5. KCacheShuffleBasic is a K-Oblivious Shuffle that uses 2N blocks of bandwidth,
2N blocks of server storage and O(K) blocks of client storage.

6 K-Oblivious Shuffling with Smaller Client Memory

In this section, for any constant ε > 0, we describe KCacheShuffleε,S , a K-oblivious shuffling
that uses O(S) blocks of client memory. For convenience, we fix ε and S and refer to
KCacheShuffleε,S as simply KCacheShuffle.

KCacheShuffle will invoke a modification of CacheShuffle (using the same value of ε).
Recall that CacheShuffle invokes CacheShuffleRoot before completion. KCacheShuffle invokes
CacheShuffle such that the last Recalibrate phase of CacheShuffleRoot is skipped. Note, only
the last Recalibrate phase of CacheShuffleRoot actually places ciphertexts of blocks into the
destination array Dest. Therefore, the modified CacheShuffle does not actually use Dest at
all. Formally, CacheShuffle invokes KCacheShuffle using Source[Revealed] as the source array
and (π, σ) restricted to the input set Revealed as the input permutations. The output of the
modified CacheShuffle is:
1. q client-stored destination buckets destInd1, . . . , destIndq, which is a partition of Revealed;
2. q server-stored temporary arrays temp1, . . . , tempq containing exactly S block ciphertexts

such that if i ∈ Revealed and σ(i) ∈ destIndk then tempk contains an encryption of Bi;

In the next step, KCacheShuffle merges the revealed and unrevealed blocks. KCacheShuffle
will extend destInd1, . . . , destIndq from a partition of Revealed to a partition of [N ]. That is,
each index of [N ] \ σ(Revealed) is assigned uniformly and independent at random to one
of destInd1, . . . , destIndq. KCacheShuffle initializes tbDownk = σ−1(destIndk \ σ(Revealed)),
which is all unrevealed blocks assigned to Dest[destIndk] by σ, for all k = 1, . . . , q. Then,
KCacheShuffle will run up to q rounds, one for each of destInd1, . . . , destIndq. In the k-th
round, KCacheShuffle downloads all S ciphertexts of tempk.

We quickly diverge by mentioning an obvious, but incorrect, next step. In particular, it
might be tempting to just download all of Source[π(tbDownk)] to upload into Dest[destIndk].
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However, this step would reveal to the adversary the number of revealed (as well as unrevealed
blocks) that are placed into Dest[destIndk] according to σ. This possible next step would cause
our algorithm to lose K-obliviousness. In particular, our algorithm cannot leak knowledge
about the number of revealed (and unrevealed) blocks that belong in the set Dest[destIndk].

Instead, KCacheShuffle downloads exactly uk := |destIndk|− (1− ε)K/q unrevealed blocks
in the k-th round. If |tbDownk| > uk, then KCacheShuffle will fail and abort (in Theorem 6
we shall prove that this happens with negligible probability). On the other hand, suppose that
|tbDownk| ≤ uk. In this case, the algorithm will download all blocks in Source[π(tbDownk)]
and if more are needed, that is if |tbDownk| < uk, then extra unrevealed blocks that are
not assigned to Source[destIndk] are downloaded from the destination array with the largest
index that has not been used yet. Formally, KCacheShuffle initializes leftover = q before
any of the q rounds begins. The |tbDownk| − uk extra blocks are chosen arbitrarily from
the set Source[π(tbDownleftover)], which have not been downloaded yet. If all blocks of
Source[π(tbDownleftover)] have been been downloaded, then leftover is decremented.

All uk blocks downloaded by KCacheShuffle in the k-th round will be decrypted and
re-encrypted. Then, KCacheShuffle will upload all blocks belonging to Dest[destIndk] in any
arbitrary order such as increasing in destIndk. Furthermore, KCacheShuffle has a set of extra
unrevealed blocks, which we denote Remk, that are not assigned to Dest[destIndk] by σ. If
|Remk| > 2εK/q, then KCacheShuffle fails and aborts Otherwise, KCacheShuffle pads Remk

to contain exactly 2εK/q ciphertexts by adding encryptions of dummy blocks. Afterwards,
Remk is uploaded to the server.

At some point, leftover and k will be equal. Once leftover and k are the same, KCacheShuffle
will stop running these rounds. However, KCacheShuffle still has to place blocks into
Dest[destIndleftover], . . . ,Dest[destIndq] from templeftover, . . . , tempq and Rem1, . . . , Remleftover−1.
To achieve this, KCacheShuffle invokes CacheShuffle using templeftover ∪ . . . ∪ tempq ∪ Rem1 ∪
. . .Remleftover−1 as the source array, Dest[destIndleftover∪ . . .∪destIndq] as the destination array
and (π, σ) restricted to σ−1(destIndleftover) ∪ . . . ∪ σ−1(destIndq) as the permutations. In the
full version, we show that destIndleftover ∪ . . . ∪ destIndq contains O(K) indices.

If the client has O(
√
K) blocks of client storage, then we may replace CacheShuffle with

CacheShuffleRoot above. We refer to this construction as KCacheShuffleRoot.
The proof of the following theorem can be found in the full version.

I Theorem 6. For every S = ω(logN) and for every ε, KCacheShuffleε,S is a K-oblivious
shuffling algorithm that uses 2N +O(K logS K) blocks of bandwidth, O(N) blocks of server
storage, O(S) blocks of client storage and fails with probability negligible in N .

7 Conclusions

In this paper, we studied the notion of oblivious algorithms for the problem of shuffling data.
We introduce the notion of K-oblivious shuffling, a fine-grained notion of obliviousness, which
accurately describes the adversary’s knowledge about the initial position of the N blocks. In
particular, we assume the adversary gains information about the initial position of exactly
K blocks. This notion has direct application to the design of Oblivious RAMs. Previous
notions only considered the extreme case where the adversary has complete knowledge about
the initial positioning of all N input blocks (that is, K = N).

We present bandwidth efficient moved-based K-oblivious shuffling algorithms for any K
and for any client with S = ω(logN) blocks of available storage. The bandwidth required by
our algorithms is of the form 2N + f(K,S). We also look at the previous considered the case
of K = N corresponding to previous oblivious shuffling notions. We present an oblivious
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shuffle using essentially 4N blocks of bandwidth. The previous, state-of-the-art oblivious
shuffle [10] required approximately 18N blocks of bandwidth for similar failure probabilities.

We also consider the case where we shuffle N real blocks along with D dummy blocks. In
this case, the contents of dummy blocks are irrelevant. By utilizing server-side computation,
we shuffle using essentially D + (2 + ε)N blocks of bandwidth. Thus, our algorithm uses less
bandwidth than any move-based algorithm uses at least 2(N +D) blocks of bandwidth.
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Abstract
Solving large-scale graph problems is a fundamental task in many real-world applications, and
it is an increasingly important problem in data analysis. Despite the large effort in designing
scalable graph algorithms, many classic graph problems lack algorithms that require only a
sublinear number of machines and space in the input size. Specifically when the input graph is
large and sparse, which is indeed the case for many real-world graphs, it becomes impossible to
store and access all the vertices in one machine – something that is often taken for granted in
designing algorithms for massive graphs. The theoretical model that we consider is the Massively
Parallel Communications (MPC) model which is a popular theoretical model of MapReduce-like
systems. In this paper, we give an algorithmic framework to adapt a large family of dynamic
programs on MPC. We start by introducing two classes of dynamic programming problems,
namely “(poly log)-expressible” and “linear-expressible” problems. We show that both classes
can be solved efficiently using a sublinear number of machines and a sublinear memory per
machine. To achieve this result, we introduce a series of techniques that can be plugged together.
To illustrate the generality of our framework, we implement in O(log n) rounds of MPC, the
dynamic programming solution of fundamental problems such as minimum bisection, k-spanning
tree, maximum independent set, longest path, etc., when the input graph is a tree.
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1 Introduction

With the inevitable growth of the size of datasets to analyze, the rapid advance of distributed
computing infrastructure and platforms (such as MapReduce, Spark [11], Hadoop [10],
Flume [6], etc.), the need for developing better distributed algorithms is felt far and wide
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nowadays. The past decade has seen a lot of progress in studying important computer
science problems in the large-scale setting, which led to either adapting the sequential
algorithms to modern parallel settings or at times designing from scratch algorithms for these
problems [1, 2, 4, 7, 5]. Despite this trend, we still have limited theoretical understanding of
the status of several fundamental problems when it comes to designing large-scale algorithms.
In fact, even simple and widely used techniques such as the greedy approach or dynamic
programming seem to suffer from an inherent sequentiality that makes them difficult to adapt
in parallel or distributed settings on the aforementioned platforms. Finding methods to run
generic greedy algorithms or dynamic programming algorithms on MapReduce, for instance,
has broad applications. This is the main goal of this paper.

We consider the Massively Parallel Communication (MPC) model among previously
studied MapReduce-like models [9, 8, 3]. Let n denote the input size and let m denote the
number of available machines which is given in the input. At each round, every machine can
use a space of size s = Õ(n/m) and run an algorithm that is preferably linear time (but at
most polynomial time) in the size of its memory. Machines may only communicate between
the rounds, and no machine can receive or send more data than its memory.

In this paper, we give an algorithmic framework that could be used to simulate many
natural dynamic programs on trees. Indeed we formulate the properties that make a dynamic
program (on trees) amenable to our techniques. These properties, we show, are natural and
are satisfied by many known algorithms for fundamental optimization problems. To illustrate
the generality of our framework, we design O(log n) round algorithms for well-studied graph
problems on trees, such as, minimum bisection, minimum k-spanning tree, maximum weighted
matching, etc.

2 Main Results

We introduce a class of dynamic programming problems which we call f -expressible problems.
Here, f is a function and we get classes such as (poly log)-expressible problems or linear-
expressible problems. Roughly speaking, f is proportional to the amount of data that each
node of the tree stores in the dynamic program. Thus, linear-expressible problems are
generally harder to solve than (poly log)-expressible problems.

(poly log)-Expressible Problems. Many natural problems can be shown to be (poly log)-
expressible. For example, the following graph problems are all (poly log)-expressible if
defined on trees: maximum (weighted) matching, vertex cover, maximum independent set,
dominating set, longest path, etc. Intuitively, the dynamic programming solution of each
of these problems, for any vertex v, computes at most a constant number of values. Our
first result is to show that every (poly log)-expressible problem can be efficiently solved in
MPC. As a corollary of that, all the aforementioned problems can be solved efficiently on
trees using the optimal total space of Õ(n).

I Theorem 1. For any given m, there exists an algorithm that w.h.p. solves any (poly log)-
expressible problem in O(log n) rounds of MPC using m machines while each machine uses
a space of size at most Õ(n/m).

Proof sketch. The first problem in solving dynamic programs on trees is that there is
no guarantee on the depth of the tree. If the given tree has only logarithmic depth one
can obtain a logarithmic round algorithm by simulating a bottom-up dynamic program in
parallel, where nodes at the same level are handled in the same round simultaneously. This is
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reminiscent of certain parallel algorithms whose number of rounds depends on the diameter
of the graph. Unfortunately the input tree might be quite unbalanced, with superlogarithmic
depth. An extreme case is a path of length n. In this case we can partition the path into
equal pieces (despite not knowing a priori the depth of each particular node), handling each
piece independently, and then stitching the results together. Complications arise, because
the subproblems are not completely independent. Things become more nuanced when the
input tree is not simply a path. To resolve this issue, we adopt a celebrated tree contraction
method of parallel computing to our model. Roughly speaking, the algorithm decomposes
the tree into pieces of size at most Õ(m) (i.e., we can fit each component completely on one
machine), with small interdependence. Omitting minor technical details, the latter property
allows us to almost independently solve the subproblems on different machines. This results
in a partial solution that is significantly smaller than the whole subtree; therefore, we can
send all these partial solutions to a master machine in the next round and merge them.

Linear-Expressible Problems. Although many natural problems are indeed (poly log)-
expressible, there are instances that are not. Consider for example the minimum bisection
problem. In the natural dynamic programming solution of this problem, for a subtree T of
size nT , we store O(nT ) different values. That is, for any i ∈ [nT ], the dynamic program
stores the weight of the optimal coloring that assigns blue to i vertices and red to the rest
of nT − i vertices. This problem is not necessarily (poly log)-expressible unless we find
another problem specific dynamic programming solution for it. However, it can be shown
that minimum bisection, as well as many other natural problems, including k-spanning-tree,
k-center, k-median, etc., are linear-expressible. It is notoriously more difficult to solve
linear-expressible problems. However, using a slightly more total memory, we show that it is
still possible to obtain the same result.

I Theorem 2 (Main Result). For any given m, there exists an algorithm that w.h.p. solves
any linear-expressible problem that is splittable in O(log n) rounds ofMPC using m machines
that each uses a space of size Õ(n4/3/m)

Proof sketch. Recall that linear-expressibility implies that the dynamic programming data
on each node, can be as large as the size of its subtree (i.e., even up to O(n)). Therefore,
even by using the tree decomposition technique, the partial solution that is computed for
each component of the tree can be linear in its size. This means that the idea of sending all
these partial data to one master machine, which worked for (poly log)-expressible problems,
does not work here since when aggregated, they take as much space as the original input.
Therefore we have to distribute the merging step among the machines.

Assume for now that each component that is obtained by the tree decomposition algorithm
is contracted into a node and call this contracted tree. The tree decomposition algorithm has
no guarantee on the depth of the contracted tree and it can be super-logarithmic; therefore
a simple bottom-up merging procedure does not work. However, it is guaranteed that the
contracted tree itself (i.e., when the components are contracted) can be stored in one machine.
Using this, we send the contracted tree to a machine and design a merging schedule that
informs each component about the round at which it has to be merged with each of its
neighbours. The merging schedule ensures that after O(log n) phases, all the components are
merged together. The merging schedule also guarantees that the number of neighbours of
the components, after any number of merging phases, remains constant. This is essential to
allow (almost) independent merging for many linear-expressible problems such as minimum
bisection. Observe that after a few rounds, the merged components grow to have up to
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Ω(n) nodes and even the partial data of one component cannot be stored in one machine.
Therefore, even merging the partial data of two components has to be distributed among the
machines. For this to be possible, we use a splitting technique of independent interest that
requires a further splittability property on linear-expressible problems. Indeed we show that
the aforementioned linear-expressible problems have the splittability property, and therefore
Theorem 2 implies they can also be solved in O(log n) rounds ofMPC.
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Abstract
Many networking applications require timely access to recent network measurements, which can
be captured using a sliding window model. Maintaining such measurements is a challenging task
due to the fast line speed and scarcity of fast memory in routers. In this work, we study the impact
of allowing slack in the window size on the asymptotic requirements of sliding window problems.
That is, the algorithm can dynamically adjust the window size betweenW andW (1+τ) where τ is
a small positive parameter. We demonstrate this model’s attractiveness by showing that it enables
efficient algorithms to problems such as Maximum and General-Summing that require Ω(W )
bits even for constant factor approximations in the exact sliding window model. Additionally, for
problems that admit sub-linear approximation algorithms such as Basic-Summing and Count-
Distinct, the slack model enables a further asymptotic improvement.

The main focus of our paper [4] is on the widely studied Basic-Summing problem of com-
puting the sum of the last W integers from {0, 1 . . . , R} in a stream. While it is known that
Ω(W logR) bits are needed in the exact window model, we show that approximate windows
allow an exponential space reduction for constant τ .

Specifically, for τ = Θ(1), we present a space lower bound of Ω(log(RW )) bits. Additionally,
we show an Ω(log (W/ε)) lower bound for RWε additive approximations and a Ω(log (W/ε) +
log logR) bits lower bound for (1 + ε) multiplicative approximations. Our work is the first
to study this problem in the exact and additive approximation settings. For all settings, we
provide memory optimal algorithms that operate in worst case constant time. This strictly
improves on the work of [12] for (1 + ε)-multiplicative approximation that requires
O(ε−1 log (RW ) log log (RW )) space and performs updates in O(log (RW )) worst case time. Fi-
nally, we show asymptotic improvements for the Count-Distinct, General-Summing and
Maximum problems.
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163:2 Give Me Some Slack: Efficient Network Measurements

Figure 1 We need to answer each query with respect to a τ -slack window that must include the
last W items, but may or may not consider a suffix of the previous Wτ elements.

1 Introduction

Network algorithms in diverse areas such as traffic engineering, load balancing and quality
of service [1, 8, 17, 20, 27] rely on timely link measurements. In such applications recent
data is often more relevant than older data, motivating the notions of aging and sliding
window [5, 10, 13, 21, 23]. For example, a sudden decrease in the average packet size on a
link may indicate a SYN attack [22]. Additionally, a load balancer may benefit from knowing
the current utilization of a link to avoid congestion [1].

While conceptually simple, conveying the necessary information to network algorithms
is a difficult challenge due to current memory technology limitations. Specifically, DRAM
memory is abundant but too slow to cope with the line rate while SRAM memory is fast
enough but has a limited capacity [9, 11, 25]. Online decisions are therefore realized through
space efficient data structures [6, 7, 14, 15, 3, 19, 24, 26] that store measurement statistics
in a concise manner. For example, [14, 24] utilize probabilistic counters that only require
O(log logN) bits to approximately represent numbers up to N . Others conserve space using
variable sized counter encoding [15, 19] and monitoring only the frequent elements [5].

Basic-Summing is one of the most basic textbook examples of such approximated sliding
window stream processing problems [12]. In this problem, one is required to keep track of
the sum of the last W elements, when all elements are non-negative integers in the range
{0, 1, . . . , R}. The work in [12] provides a (1+ε)-multiplicative approximation of this problem
using O

( 1
ε ·

(
log2 W + logR · (logW + log logR)

))
bits. The amortized time complexity is

O( logR
logW ) and the worst case is O(logW + logR). In contrast, we previously showed an

RWε-additive approximation with Θ
( 1
ε + logWε

)
bits [2].

Sliding window counters (approximated or accurate) require asymptotically more space
than plain stream counters. Such window counters are prohibitively large for networking
devices which already optimize the space consumption of plain counters.

This paper explores the concept of slack, or approximated sliding window, bridging this
gap. Figure 1 illustrates a “window” in this model. Here, each query may select a τ -slack
window whose size is between W (the green elements) and W (1 + τ) (the green plus yellow
elements). The goal is to compute the sum with respect to this chosen window.

Slack windows were also considered in previous works [12, 23] and we call the problem of
maintaining the sum over a slack window Slack Summing. Datar et al. [12] showed that con-
stant slack reduces the required memory from O( 1

ε ·
(
log2 W + logR · (logW + log logR)

)
)

to O(ε−1 log(RW ) log log(RW )). For τ -slack windows they provide a (1 + ε)-multiplicative
approximation using O(ε−1 log(RW )(log log(RW ) + log τ−1)) bits.

Our Contributions

Our paper [4] studies the space and time complexity reductions that can be attained by
allowing slack – an error in the window size. Our results demonstrate exponentially smaller
and asymptotically faster data structures compared to various problems over exact windows.
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Table 1 Comparison of Basic-Summing algorithms. Our contributions are in bold. All algorithms
process elements in constant time except for the rightmost column where both update in O(log (RW ))
time. We present matching lower bounds to all our algorithms.

Exact Sum Additive Error Multiplicative Error
τ = Θ(1) Θ(log (RW)) Θ(log(W/ε)) Θ(log (W/ε) + loglogR) O(ε−1 log(RW ) log log(RW )) [12]

Exact Window Θ(W logR) Θ(ε−1 + logW ) [2] O(ε−1 log2(RW )) [18] O(ε−1 logRW log (W logR)) [12]

We start with deriving lower bounds for three variants of the Basic-Summing problem –
when computing an exact sum over a slack window, or when combined with an additive and a
multiplicative error in the sum. We present algorithms that are based on dividing the stream
into Wτ -sized blocks. Our algorithms sum the elements within each block and represent each
block’s sum in a cyclic array of size τ−1. We use multiple compression techniques during
different stages to drive down the space complexity. The resulting algorithms are space
optimal, substantially simpler than previous work, and reduce update time to O(1).

For exact Slack Summing, we present a lower bound of Ω(τ−1 log(RWτ)) bits. For (1+ε)
multiplicative approximations we prove an Ω

(
log(W/ε) + τ−1 (log (τ/ε) + log log (RW ))

)
bits bound when τ = Ω

(
1

logRW

)
. We show that Ω(τ−1 log b1 + τ/εc+ log (W/ε)) bits are

required for RWε additive approximations.
Next, we introduce algorithms for the Slack Summing problem, which asymptotically

reduce the required memory compared to the sliding window model. For the exact and
additive error versions of the problem, we provide memory optimal algorithms. In the
multiplicative error setting, we provide an O

(
τ−1 (

log ε−1 + log log (RWτ)
)

+ log(RW )
)

space algorithm. This is asymptotically optimal when τ = Ω(log−1 W ) and R = poly(W ).
It also asymptotically improves [12] when τ−1 = o(ε−1 log (RW )). We further provide an
asymptotically optimal solution for constant τ , even when R = Wω(1). All our algorithms
are deterministic and operate in worst case constant time. In contrast, the algorithm of [12]
works in O(logRW ) worst case time.

To exemplify our results, consider monitoring the average bandwidth (in bytes per second)
passed through a router in a 24 hours window, i.e., W , 86400 seconds. Assuming we use a
100GbE fiber transceiver, our stream values are bounded by R ≈ 234 bytes. If we are willing
to withstand an error of ε = 2−20 (i.e., about 16KBps), the work of [2] provides an additive
approximation over the sliding window and requires about 120KB. In contrast, using a 10
minutes slack (τ , 1

144 ), our algorithm for exact Slack Summing requires only 800 bytes,
99% less than approximate summing over exact sliding window. For the same slack size, the
algorithm of [12] requires more space than our exact algorithm even for a large 3% error.
Further, if we also allow the same additive error (ε = 2−20), we provide an algorithm that
requires only 240 bytes - a reduction of more than 99.8% !

Table 1 compares our results for the important case of constant slack with [12]. As
depicted, our exact algorithm is faster and more space efficient than the multiplicative
approximation of [12]. Comparing our multiplicative approximation algorithm to that of [12],
we present exponential space reductions in the dependencies on ε−1 and R, with an asymptotic
reduction in W as well. We also improve the update time from O(log (RW )) to O(1).

Finally, we apply the slack window approach to multiple streaming problems, including
Maximum, General-Summing, Count-Distinct and Standard-Deviation. We show
that, while some of these problems cannot be approximated on an exact window in sub-linear
space (e.g. Maximum and General-Summing), we can easily do so for slack windows. In
the count distinct problem, a constant slack yields an asymptotic space reduction over [10, 16].
The full version of our paper appears in [4].
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Abstract
A theoretical model is suggested for abstracting the interaction between an expert system and its
users, with a focus on reputation and incentive compatibility. The model assumes users interact
with the system while keeping in mind a single “retention parameter” that measures the strength
of their belief in its predictive power, and the system’s objective is to reinforce and maximize
this parameter through “informative” and “correct” predictions.

We define a natural class of retentive scoring rules to model the way users update their
retention parameter and thus evaluate the experts they interact with. Assuming agents in the
model have an incentive to report their true belief, these rules are shown to be tightly connected
to truth-eliciting “proper scoring rules” studied in Decision Theory.

The difference between users and experts is modeled by imposing different limits on their
predictive abilities, characterized by a parameter called memory span. We prove the monotonicity
theorem (“more knowledge is better”), which shows that experts with larger memory span retain
better in expectation.

Finally, we focus on the intrinsic properties of phenomena that are amenable to collaborative
discovery with a an expert system. Assuming user types (or “identities”) are sampled from a
distributionD, the retention complexity ofD is the minimal initial retention value (or “strength of
faith”) that a user must have before approaching the expert, in order for the expert to retain that
user throughout the collaborative discovery, during which the user “discovers” his true “identity”.
We then take a first step towards relating retention complexity to other established computational
complexity measures by studying retention dynamics when D is a uniform distribution over a
linear space.
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1 Motivation

Aspiring gurus face the problem of attracting new followers, and retaining existing ones,
as they journey together to a better future. This is an old problem. Moses, for instance,
raised it before The Lord before assuming leadership of the Israelite Exodus from Egypt,
asking: “What if they won’t believe me or listen to me?” [Exodus 4:1]. Many gurus resolve
the problem by predicting unlikely events as a demonstration of their powers; the Biblical
Exodus story contains several such events (culminating with the crossing of the Red Sea), all
of which were predicted correctly by Moses.

In today’s information society, crowd-based automated gurus gather data from users on
a voluntary basis in order to produce meaningful insights. The quality of insights greatly
depends on the amount and quality of data provided by the users, but those users have limited
attention, giving rise to the study of attention economy [2, 4], and the design of interactive
systems taking limited attention span into account. By asking “interesting questions” and
making “meaningful predictions”, an automated interactive system can retain users, but only
if it “knows” how to ask “interesting” questions and provide “meaningful” feedback.

The phenomenon that motivated this research is that of early child development; the
gurus are experts in this field and the followers are parents of newborn babies [1]. For the
sake of concreteness we shall continue using this particular setting to describe our model
but it may be conveniently replaced by the reader with physicians or psychologists playing
the gurus as they interact with patients (followers) regarding a complex medical or mental
problem, or with financial advisors as gurus and their follower clientele. In these and similar
settings, gurus and followers discuss a complex phenomenon that evolves over time, which
the followers wish to understand, and about which the guru claims to have an advantage of
“wisdom” over them.

The main goal of this work is the development of a clean mathematical model which
mimics the retention dynamics of interactive systems, and can be used to explain why
“smarter” gurus tend to retain a larger following. A clean mathematical model often sheds
light on the studied phenomena, and may facilitate the future design of more efficient and
successful automated gurus.

2 The Collaborative Discovery Model

The phenomenon about which the guru and her followers interact is modeled by a distribution
T over XΓ, where Γ is the set of properties manifested by the phenomenon and X is an
arbitrary input space. In the context of childhood development, Γ is the set of developmental
milestones (like “first smile”), and each follower is represented by a sample u ∈ XΓ that
describes the ages at which that child achieved each milestone.

The guru and follower interact over a number of rounds: At the start of each round
of interaction, the guru picks an undisclosed property γt ∈ Γ, and makes a prediction by
announcing a distribution Pγt

over X that she claims is the true one for a latent attribute
γt 6∈ Γt; the follower has a distribution Qγt

that he believes corresponds to γt. After
announcing both distributions, the true value uγt

∈ X is revealed.
After each round, the follower updates the strength of his retention by the guru. We

assume this strength is given by a retention parameter rt that starts with a fixed value r0
and varies with time; once rt turns negative, the follower will be said to have lost all faith
in the guru and therefore terminate the interaction. The main objective of the guru is to
maintain rt ≥ 0 for all t ≥ 0.
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3 Main Contributions

Retentive Scoring Rules

The retention parameter rt mentioned above and the dynamics that form around it are the
key ingredients that give the model its expressive strength. Defining the retention parameter
update rules, and the surprising corollaries of the chosen definitions, are what dominates the
first part of our study.

We assume the retention parameter changes in an additive manner after each round,
according to a function S(·, ·, ·) that is real-valued and takes three inputs: (i) the guru’s
predicted distribution Pγt ; (ii) the follower’s assessment of that distribution Qγt ; and (iii)
the value uγt

that materialized, picked by Nature. Analysis is further facilitated by assuming
that S belongs to a class of functions that elicit the true beliefs of both guru and follower
regarding the distribution of the attribute γt. Truth eliciting rules are ones that incentivize
rational players to supply the rule with what they believe to be the truth.

Truthfulness under rationality is a powerful assumption which often leads to non-trivial
corollaries. We characterize the functions that can act as retentive scoring rules, showing
that such rules can take a surprisingly simple form.

Memory Span and Monotonicity

To model the different predictive capacities of gurus and followers, we characterize the
forecasting abilities of agents in the Collaborative Discovery model by a parameter called
memory span.

A variety of psychological studies could be summarized by saying that the human
short-term memory has a capacity of about “seven, plus-or-minus two” chunks, where each
chunk can be roughly defined as a collection of elementary information relating to a single
concept [5, 6], where the “information capacity” of a chunk depends on the knowledge of the
person being tested.

We model the discrepancy between users and experts by imposing the different limits on
their memory spans. In this context, we show that the definition of memory span is monotone,
verifying that experts with larger memory span retain followers longer in expectation.

Retention Complexity and Linear Codes

A distribution T for which there exists a guru that, in expectation, manages to retain
followers to eternity (or until t = |Γ| for finite Γ) will be said to be r0-retainable and the
retention complexity of T will be the minimal r0 such that T is r0-retainable.

To initiate the study of the retention complexity of specific distribution, a class of simple-
to-understand, but non-trivial distributions, is needed. Inspired by other initial works, like
that of Valiant which studied machine learning in the “restricted, but nontrivial context”
of boolean functions [7] and that of Goldreich, Goldwasser and Ron that studied property
testing in the context of graph properties [3], we begin by studying retention complexity of
uniform distributions over linear spaces.

Uniform distributions over linear spaces are such a family and our final object of discussion.
While such distributions are far from ones appearing in the “real world”, studying them in
this context provide convenient tools and insights about the Collaborative Discovery model,
and the intuition and techniques we develop here will be generalized as we move to more
“applied” settings.

ICALP 2018



164:4 Towards an Abstract Model of User Retention Dynamics

References
1 Ayelet Ben-Sasson, Eli Ben-Sasson, Kayla Jacobs, and Eden Saig. Baby CROINC: An

online, crowd-based, expert-curated system for monitoring child development. In Pro-
ceedings of the 11th EAI International Conference on Pervasive Computing Technologies
for Healthcare, PervasiveHealth ’17, pages 110–119, New York, NY, USA, 2017. ACM.
doi:10.1145/3154862.3154887.

2 Michael H. Goldhaber. The attention economy and the net. First Monday, 2(4), 1997.
doi:10.5210/fm.v2i4.519.

3 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998.

4 Richard A Lanham. The economics of attention: Style and substance in the age of inform-
ation. University of Chicago Press, 2006.

5 George A Miller. The magical number seven, plus or minus two: some limits on our capacity
for processing information. Psychological review, 63(2):81, 1956.

6 Endel Tulving and Fergus IM Craik. The Oxford handbook of memory. Oxford: Oxford
University Press, 2000.

7 Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

http://dx.doi.org/10.1145/3154862.3154887
http://dx.doi.org/10.5210/fm.v2i4.519


Brief Announcement: Energy Constrained Depth
First Search
Shantanu Das1

LIS, Aix-Marseille University, University of Toulon, CNRS, Marseille, France
shantanu.das@lif.univ-mrs.fr

Dariusz Dereniowski2

Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology,
Gdańsk, Poland
deren@eti.pg.edu.pl

https://orcid.org/0000-0003-4000-4818

Przemysław Uznański
Department of Computer Science, ETH Zürich, Zürich, Switzerland
przemyslaw.uznanski@inf.ethz.ch

Abstract
Depth first search is a natural algorithmic technique for constructing a closed route that visits
all vertices of a graph. The length of such route equals, in an edge-weighted tree, twice the total
weight of all edges of the tree and this is asymptotically optimal over all exploration strategies.
This paper considers a variant of such search strategies where the length of each route is bounded
by a positive integer B (e.g. due to limited energy resources of the searcher). The objective is
to cover all the edges of a tree T using the minimum number of routes, each starting and ending
at the root and each being of length at most B. To this end, we analyze the following natural
greedy tree traversal process that is based on decomposing a depth first search traversal into a
sequence of limited length routes. Given any arbitrary depth first search traversal R of the tree
T , we cover R with routes R1, . . . , Rl, each of length at most B such that: Ri starts at the root,
reaches directly the farthest point of R visited by Ri−1, then Ri continues along the path R as far
as possible, and finally Ri returns to the root. We call the above algorithm piecemeal-DFS and
we prove that it achieves the asymptotically minimal number of routes l, regardless of the choice
of R. Our analysis also shows that the total length of the traversal (and thus the traversal time)
of piecemeal-DFS is asymptotically minimum over all energy-constrained exploration strategies.
The fact that R can be chosen arbitrarily means that the exploration strategy can be constructed
in an online fashion when the input tree T is not known in advance. Each route Ri can be
constructed without any knowledge of the yet unvisited part of T . Surprisingly, our results show
that depth first search is efficient for energy constrained exploration of trees, even though it is
known that the same does not hold for energy constrained exploration of arbitrary graphs.
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1 Introduction

Consider a mobile robot (also called an agent) that needs to explore an initially unknown
edge-weighted tree, where the weight of each edge is its length. Starting from a single vertex
(the root), the robot must traverse all edges of and return to its initial location. Upon
visiting a vertex v for the first time, the robot discovers the edges incident to v and can
choose one of them to continue the exploration. Provided that the robot can remember
the visited vertices and edges, a simple depth first search (DFS) is an efficient algorithm
for exploring the tree, achieving the optimal cost of twice the sum of the lengths of edges
in the tree. In a more interesting scenario, the robot has a limited source of energy (e.g.
a battery) which allows it to traverse a path of length at most B (we say such a robot is
energy constrained). Naturally, we assume that each vertex of the tree is at distance at most
B/2 from the root, otherwise the tree cannot be fully explored. In this case, exploration is
possible if the robot can recharge its battery whenever it returns back to the initial location.
Thus, the exploration is a collection of routes of the robot, each of which starts and ends at
the root, and has length at most B. We are interested in minimizing the number of such
routes (i.e. the number of times the robot has to recharge) to completely explore the tree.

Related work. There exists extensive literature on graph traversal and exploration. We
refer interested reader to works on several models that do not consider any energy limitation
for the agents, including results on general graphs [22], trees [9, 17, 18, 19], lower bounds on
exploration time [9, 13, 14, 20, 21], or exploration with little memory [1, 12].

The energy constrained exploration problem was first studied under the name of Piecemeal
Graph Exploration [8], with the assumption that the route length B ≥ 2(1 + β)r, where r is
the furthest distance from the starting vertex to other vertices, and 0 < β < 1. That paper
provided exploration algorithms for a special class of grid graphs with ‘rectangular obstacles’.
Awerbuch et al. [4] showed that, for general graphs, there exists an energy constrained
exploration algorithm with a total cost of O(m+ n1+o(1)). This has been further improved
(by an algorithm that is a combination of DFS and BFS) to O(m+ n log2 n) in [5]. Finally
[15] provided an exploration algorithm for general unknown weighted graphs with total cost
asymptotic to the sum of edge weights of the graph. Note that, as mentioned, all the above
strategies require the length of each route to be strictly larger than the shortest path from
the starting vertex to the farthest vertex. In other words, these algorithms fail in the extreme
cases when the height of the explored tree (or the diameter of the graph) is equal to half of
the energy budget, which seem to be the most challenging ones. The off-line version of the
problem is NP-hard, see e.g. [18].

See [6, 11, 16] for works on the tree exploration model we consider, with one difference:
each route, also of length at most B, starts at the root but may end at any vertex of the
tree. Distributed algorithms for energy constrained agents have been a subject of recent
investigation, see e.g. [2, 3, 7, 10].

2 Problem statement and DFS exploration

Let T = (V (T ), E(T ), ω : E(T ) → R+) be an edge-weighted tree with root r. We define a
route R = (v0, v1, . . . , vl) as a sequence of vertices that satisfies: (i) {vi, vi+1} ∈ E(T ) for
each i ∈ {0, . . . , l − 1}, and (ii) v0 = vl is the root r of T . Informally speaking, a route is a
sequence of vertices forming a walk in T that starts and ends at the root. We define the
length of R to be `(R) =

∑l
i=1 ω({vi−1, vi}). We say that a vertex v is visited by the route

if v = vi for some i ∈ {1, . . . , l}.
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Given a tree T and a real number B, we say that S = (R1, . . . , Rk) is a B-exploration
strategy for T if for each i ∈ {1, . . . , k}, Ri is a route in T of length at most B, and each
vertex of T is visited by some route in S. We write |S| to refer to the number of routes in S,
k = |S|. We formulate the combinatorial problem we study in this work as follows.
Energy Constrained Tree Exploration problem (ECTE)

Given a real number B > 1 and an edge-weighted rooted tree T of height at most B/2
what is the minimum integer k such that there exists a B-exploration strategy that
consists of k routes?

Our goal is to analyze a particular type of solution to this problem, namely, an exploration
strategy that behaves like a depth first search traversal but adopted to the fact that route
lengths are bounded by B. Let RDFS = (v0, v1, . . . , vl) be a route in T that covers the tree
T and performs a depth first search traversal of T . (Note that RDFS is a route and thus
we consider a depth first search traversal to have vertex repetitions.) For two vertices u
and v of T , d(u, v) denotes the distance between u and v understood as the sum of weights
of the edges of the path connecting these vertices. We refer by PDFS(T ) = (R1, . . . , Rk)
(Piecemeal Depth First Search) to the following B-exploration strategy constructed iteratively
for i := 1, . . . , k:
(i) let j0 = 0 i.e. vj0 = v0 = r,
(ii) Ri continues DFS exploration from where Ri−1 stopped making progress (from the

vertex vji−1) as long as for currently visited vp: d(r, vji−1) + `((vji−1 , vji−1+1, . . . , vp)) +
d(vp, r) ≤ B,

(iii) furthest vp (for p ≤ l) that satisfies condition from ii is denoted as vji
, the vertex where

Ri stopped making progress,
(iv) let Ri = Pi−1 ◦ (vji−1 , vji−1+1, . . . , vji−1, vji) ◦ PR

i , where Pi−1 is the path from r to
vji−1 , and PR

i is the path from vji
to r.

Such a strategy PDFS(T ) is called a DFS B-exploration.
We remark that different depth first search traversals RDFS may result in different values

of k (different number of routes) in the resulting DFS B-exploration, although for a particular
choice of RDFS the corresponding PDFS(T ) is unique. We point out that our results stated
below hold for an arbitrary choice of RDFS.

3 Our results

The following theorem provides the first main result of this work.

I Theorem 1. Let T be a tree and let the longest path from the root to a leaf in T be at
most B/2. It holds |PDFS(T )| ≤ 10 |R|, where R is a B-exploration strategy that consists of
the minimum number of routes.

The theorem refers to the number of routes in an exploration strategy. However, in order to
analyze the behavior of PDFS(T ), we introduce another parameter which turns out to be
simpler to analyze. For any B-exploration strategy S = (R1, . . . , Rk) of T we will denote by
ξ(S) the cost of S defined as ξ(S) =

∑k
i=1 `(Ri). Then, COPT(T ) is an optimal solution

with respect to the cost, that is, a B-exploration strategy whose cost is minimum over
all B-exploration strategies. Thus, in order to prove Theorem 1, we obtain, on route, the
following second main result of our work.

I Theorem 2. Let T be a tree and let B/2 be greater than or equal to the longest path from
the root to a leaf in T . It holds ξ(PDFS(T )) ≤ 10 · ξ(COPT(T )).
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