
TU Ilmenau | Universitätsbibliothek | ilmedia, 2020
http://www.tu-ilmenau.de/ilmedia

Dietzfelbinger, Martin; Schlag, Philipp; Walzer, Stefan:

A subquadratic algorithm for 3XOR

Original published in: 43rd International Symposium on Mathematical Foundations of
Computer Science / MFCS 43, 2018 Liverpool, United Kingdom. -
Saarbrücken/Wadern, Germany : Schloss Dagstuhl - Leibniz-Zentrum für
Informatik GmbH, Dagstuhl Publishing, August, 2018. - (2018), art. 59,
15 pp.
ISBN 978-3-95977-086-6
(Leibniz International Proceedings in Informatics (LIPIcs) ; 117)

Original published: August 2018
ISSN: 1868-8969
DOI: 10.4230/LIPIcs.MFCS.2018.59
[Visited: 2020-02-25]

This work is licensed under a Creative Commons Attribution 3.0
Unported license. To view a copy of this license, visit
http://creativecommons.org/licenses/BY/3.0/

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.4230/LIPIcs.MFCS.2018.59
https://creativecommons.org/licenses/BY/3.0/
https://creativecommons.org/licenses/BY/3.0/
https://creativecommons.org/licenses/BY/3.0/
https://creativecommons.org/licenses/by/3.0/

A Subquadratic Algorithm for 3XOR

Martin Dietzfelbinger
Technische Universität Ilmenau, Germany
martin.dietzfelbinger@tu-ilmenau.de

https://orcid.org/0000-0001-5484-3474

Philipp Schlag
Technische Universität Ilmenau, Germany
philipp.schlag@tu-ilmenau.de

https://orcid.org/0000-0001-5052-9330

Stefan Walzer
Technische Universität Ilmenau, Germany
stefan.walzer@tu-ilmenau.de

https://orcid.org/0000-0002-6477-0106

Abstract
Given a set X of n binary words of equal length w, the 3XOR problem asks for three elements
a, b, c ∈ X such that a⊕ b = c, where ⊕ denotes the bitwise XOR operation. The problem can be
easily solved on a word RAM with word length w in time O(n2 logn). Using Han’s fast integer
sorting algorithm (STOC/J. Algorithms, 2002/2004) this can be reduced to O(n2 log log n). With
randomization or a sophisticated deterministic dictionary construction, creating a hash table for
X with constant lookup time leads to an algorithm with (expected) running time O(n2). At
present, seemingly no faster algorithms are known.

We present a surprisingly simple deterministic, quadratic time algorithm for 3XOR. Its core
is a version of the PATRICIA tree for X, which makes it possible to traverse the set a⊕X in
ascending order for arbitrary a ∈ {0, 1}w in linear time. Furthermore, we describe a randomized
algorithm for 3XOR with expected running time O(n2 ·min{ log3 w

w , (log logn)2

log2 n
}). The algorithm

transfers techniques to our setting that were used by Baran, Demaine, and Pătraşcu (WADS/Al-
gorithmica, 2005/2008) for solving the related int3SUM problem (the same problem with integer
addition in place of binary XOR) in expected time o(n2). As suggested by Jafargholi and Viola
(Algorithmica, 2016), linear hash functions are employed.

The latter authors also showed that assuming 3XOR needs expected running time n2−o(1) one
can prove conditional lower bounds for triangle enumeration just as with 3SUM. We demonstrate
that 3XOR can be reduced to other problems as well, treating the examples offline SetDisjointness
and offline SetIntersection, which were studied for 3SUM by Kopelowitz, Pettie, and Porat (SODA,
2016).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases 3SUM, 3XOR, Randomized Algorithms, Reductions, Conditional Lower
Time Bounds

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.59

Related Version A full version of the paper is available at [11], http://arxiv.org/abs/1804.
11086.

© Martin Dietzfelbinger, Philipp Schlag, and Stefan Walzer;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 59; pp. 59:1–59:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin.dietzfelbinger@tu-ilmenau.de
https://orcid.org/0000-0001-5484-3474
mailto:philipp.schlag@tu-ilmenau.de
https://orcid.org/0000-0001-5052-9330
mailto:stefan.walzer@tu-ilmenau.de
https://orcid.org/0000-0002-6477-0106
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.59
http://arxiv.org/abs/1804.11086
http://arxiv.org/abs/1804.11086
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

59:2 A Subquadratic Algorithm for 3XOR

1 Introduction

The 3XOR problem [19] is the following: Given a set X of n binary strings of equal length w,
are there elements a, b, c ∈ X such that a⊕ b = c, where ⊕ is bitwise XOR? We work with
the word RAM (Random Access Machine) [13] model with word length w = Ω(log n), and we
assume as usual that one input string fits into one word. Then, using sorting, the problem
can easily be solved in time O(n2 log n). Using Han’s fast integer sorting algorithm [18] the
time can be reduced to O(n2 log log n). In order to achieve quadratic running time, one could
utilize a randomized dictionary for X with expected linear construction time and constant
lookup time (like in [12]) or (weakly non-uniform, quite complicated) deterministic static
dictionaries with construction time O(n log n) and constant lookup time as provided in [17].
Once such a dictionary is available, one just has to check whether a⊕ b ∈ X, for all pairs
a, b ∈ X. No subquadratic algorithms seem to be known.

It is natural to compare the situation with that for the 3SUM problem, which is as follows:1
Given a set X of n real numbers, are there a, b, c ∈ X such that a+ b = c? There is a very
simple quadratic time algorithm for this problem (see Section 3 below). After a randomized
subquadratic algorithm was suggested by Grønlund Jørgensen and Pettie [20], improvements
ensued [14, 16], and recently Chan [8] gave the fastest deterministic algorithm known, with a
running time of n2(log log n)O(1)/ log2 n. The restricted version where the input consists of
integers whose bit length does not exceed the word length w is called int3SUM. The currently
best randomized algorithm for int3SUM was given by Baran, Demaine, and Pǎtraşcu [2, 3];
it runs in expected time O(n2 · min{ log2 w

w , (log logn)2

log2 n
}) for w = O(n log n). The 3SUM

problem has received a lot of attention in recent years, because it can be used as a basis for
conditional lower time bounds for problems, for instance, from computational geometry and
data structures [15, 22, 26]. Because of this property, 3SUM is in the center of attention of
papers dealing with low-level complexity. Chan and Lewenstein [9] give upper bounds for
inputs with a certain structure. Kane, Lovett, and Moran [21] prove near-optimal upper
bounds for linear decision trees. Wang [28] considers randomized algorithms for subset
sum, trying to minimize the space, and Lincoln et al. [23] investigate time-space tradeoffs
in deterministic algorithms for k-SUM. Barba et al. [4] examine a generalization of 3SUM
in which the sum function is replaced by a constant-degree polynomial in three variables.
Chan [7] shows how to adapt the ideas of the subquadratic int3SUM algorithm to the general
position problem.

In contrast, 3XOR received relatively little attention, before Jafargholi and Viola [19]
studied 3XOR and described techniques for reducing this problem to triangle enumeration.
In this way they obtained conditional lower bounds in a way similar to the conditional lower
bounds based on int3SUM.

The main results of this paper are the following: (1) We present a surprisingly simple
deterministic algorithm for 3XOR that runs in time O(n2) (Theorem 5). When X is given
in sorted order, it constructs in linear time a version of the PATRICIA tree [25] for X, using
only word operations and not looking at single bits at all. This tree then makes it possible
to traverse the set a⊕X in ascending order in linear time, for arbitrary a ∈ {0, 1}w. This is
sufficient for achieving running time O(n2). (2) The second result is a randomized algorithm
for 3XOR that runs in time O(n2 ·min{ log3 w

w , (log logn)2

log2 n
}) for w = O(n log n) (Theorem 7),

1 There are many different, but equivalent versions of 3SUM and 3XOR, differing in the way the input
elements are grouped. Often one sees the demand that the three elements a, b, and c with a⊕ b = c or
a+ b = c, resp., come from different sets.

M. Dietzfelbinger, P. Schlag, and S. Walzer 59:3

which is almost the same bound as that of [2] for int3SUM. Finding a deterministic algorithm
for 3XOR with subquadratic running time remains an open problem. (3) Finally, we reduce
3XOR to offline SetDisjointness (Theorem 10) and offline SetIntersection (Theorem 11),
establishing the conditional lower bound n2−o(1) (as in [22] conditioned on the int3SUM
conjecture).

Unfortunately, no (non-trivial) relation between the required (expected) time for 3SUM
and 3XOR is known. In particular, we cannot exclude the case that one of these problems can
be solved in (expected) time O(n2−ε) for some constant ε > 0 whereas the other one requires
(expected) time n2−o(1). Actually, this possibility is the background of some conditional
statements on the cost of listing triangles in graphs in [19, Cor. 2]. However, due to the
similarity of 3XOR to 3SUM, the question arises whether the recent results on 3SUM can be
transferred to 3XOR.

In Section 2, we review the word RAM model and examine 1-universal classes of linear
hash functions. In particular, we determine the evaluation cost of such hash functions
and we restate a hashing lemma [2] on the expected number of elements in “overfull”
buckets. Furthermore, we state how fast one can solve the set intersection problem on
word-packed arrays. In Section 3, we construct a special enhanced binary search tree TX to
represent a set X of binary strings of fixed length. This representation makes it possible
to traverse the set a⊕X in ascending order for any a ∈ {0, 1}w in linear time, which
leads to a simple deterministic algorithm for 3XOR that runs in time O(n2). Then, we
turn to randomized algorithms and show how to solve 3XOR in subquadratic expected
time in Section 4: O(n2 · min{ log3 w

w , (log logn)2

log2 n
}) for w = O(n log n), and O(n log2 n) for

n log n ≤ w = O(2n logn). Our approach uses the ideas of the subquadratic expected
time algorithm for int3SUM presented in [2], i. e., computing buckets and fingerprints, word
packing, exploiting word-level parallelism, and using lookup tables to solve the set intersection
problem on word-packed arrays. Altogether, we get the same expected running time for
w = O(log2 n) and a word-length-dependent upper bound on the expected running time for
w = ω(log2 n) that is worse by a logw factor in comparison to the int3SUM setting. Based
on these results and the similarity of 3XOR to int3SUM, it seems natural to conjecture
that 3XOR requires expected time n2−o(1), too, and so 3XOR is a candidate for reductions
to other computational problems just as 3SUM. In Section 5, we describe how to reduce
3XOR to offline SetDisjointness and offline SetIntersection, transferring the results of [22] from
int3SUM to 3XOR.

Recently, Bouillaguet et al. [6] studied algorithms “for the 3XOR problem”. This is
related to our setting, but not identical. These authors study a variant of the “generalized
birthday problem”, well known in cryptography as a problem to which some attacks on
cryptosystems can be reduced, see [6]. Translated into our notation, their question is: Given
a random set X ⊆ {0, 1}w of size 3 · 2w/3, find, if possible, three different strings a, b, c ∈ X
such that a⊕ b = c. Adapting the algorithm from [2], these authors achieve a running time of
O(22w/3(log2 w)/w2), which corresponds to the running time of our algorithm for n = 3 ·2w/3.
The difference to our situation is that their input is random. This means that the issue of
1-universal families of linear hash functions disappears (a projection of the elements in X on
some bit positions does the job) and that complications from weak randomness are absent
(e. g., one can use projection into relatively small buckets and use Chernoff bounds to prove
that the load is very even with high probability). This means that the algorithm described
in [6] does not solve our version of the 3XOR problem.

MFCS 2018

59:4 A Subquadratic Algorithm for 3XOR

2 Preliminaries

2.1 The Word RAM Model
As is common in the context of fast algorithms for the int3SUM problem [2], we base our
discussion on the word RAM model [13]. This is characterized by a word length w. Each
memory cell can store w bits, interpreted as a bit string or an integer or a packed sequence of
subwords, as is convenient. The word length w is assumed to be at least log n and at least the
bit length of a component of the input. It is assumed that the operations of the multiplicative
instruction set, i. e., arithmetic operations (addition, subtraction, multiplication), word
operations (left shift, right shift), bitwise Boolean operations (and, or, not, xor), and
random memory accesses can be executed in constant time. We will write ⊕ to denote the
bitwise xor operation. A randomized word RAM also provides an operation that in constant
time generates a uniformly random value in {0, 1, . . . , v − 1} for any given v ≤ 2w.

2.2 Linear Hash Functions
We consider hash functions h : U → M , where the domain (“universe”) U is {0, 1}` and
the range M is {0, 1}µ with µ ≤ `. Both universe and range are vector spaces over Z2.
In [2] and in successor papers on int3SUM “almost linear” hash functions based on integer
multiplication and truncation were used, as can be found in [10]. As noted in [19], in
the 3XOR setting the situation is much simpler. We may use Hlin

`,µ, the set of all Z2-linear
functions from U to M . A function hA from this family is described by a µ× ` matrix A, and
given by hA(x) = A ·x, where x = (x0, . . . , x`−1)T ∈ U and hA(x) ∈M are written as column
vectors. For all hash functions h ∈ Hlin

`,µ and all x, y ∈ U we have h(x⊕ y) = h(x)⊕h(y),
by the very definition of linearity. Further, this family is 1-universal, indeed, we have
PrA∈{0,1}µ×` [hA(x) = hA(y)] = PrA∈{0,1}µ×` [hA(x⊕ y) = 0] = 2−µ = 1/|M |, for all pairs
x, y of different keys in U . We remark that the convolution class described in [24], a subfamily
of Hlin

`,µ, can be used as well, as it is also 1-universal, and needs only `+ µ− 1 random bits.
The universe we consider here is {0, 1}w. The time for evaluating a hash function h ∈ Hlin

w,µ

on one or on several inputs depends on the instruction set and on the way h = hA is stored.
In contrast to the int3SUM setting [2], we are not able to calculate hash values in constant
time.

I Lemma 1. For h ∈ Hlin
w,µ and inputs from {0, 1}w we have:

(a) h(x) can be calculated in time O(µ), if Parity of w-bit words is a constant time operation.
(b) h(x) can always be calculated in time O(µ+ logw).
(c) h(x1), . . . , h(xn) can be evaluated in time O(nµ+ logw).

Proof. (Sketch.) Assume h = hA. For (a) we store the rows of A as w-bit strings, and obtain
each bit of the hash value by a bitwise ∧ operation followed by Parity . For (b) we assume
the w columns of A are stored as µ-bit blocks, in O(µ) words. An evaluation is effected by
selecting the columns indicated by the 1-bits of x and calculating the ⊕ of these vectors in
a word-parallel fashion. In logw rounds, these vectors are added, halving the number of
vectors in each round. For (c), we first pack the columns selected for the n input strings into
O(nµ) words and then carry out the calculation indicated in (b), but simultaneously for all
xi and within as few words as possible. This makes it possible to further exploit word-level
parallelism, if µ should be much smaller than w. J

We shall use linear, 1-universal hashing for splitting the input set into buckets and for
replacing keys by fingerprints in Section 4.

M. Dietzfelbinger, P. Schlag, and S. Walzer 59:5

I Remark. In the following, we will apply Lemma 1(c) to map n binary strings of length w
to hash values of length µ = O(log n) in time O(n log n+ logw). Since logw will dominate
the running time only for huge word lengths, we assume in the rest of the paper that
w = 2O(n logn) and that all hash values can be calculated in time O(n log n).

I Remark. When randomization is allowed, we will assume that we have constructed in
expected O(n) time a standard hash table for input set X with constant lookup time [12].
(Arbitrary 1-universal classes can be used for this.)

2.3 A Hashing Lemma for 1-Universal Families
A hash family H of functions from U to M is called 1-universal if Prh∈H[h(x) = h(y)] ≤
1/|M | for all x, y ∈ U , x 6= y. We map a set S ⊆ U with |S| = n into M with |M | = m by
a random element h ∈ H. In [2, Lemma 4] it was noted that for 1-universal families the
expected number of keys that collide with more than 3n/m other keys is bounded by O(m).
We state a slightly stronger version of that lemma. (The strengthening is not essential for
the application in the present paper.)

I Lemma 2 (slight strengthening of Lemma 4 in [2]). Let H be a 1-universal class of hash
functions from U to M , with m = |M |, and let S ⊆ U with |S| = n. Choose h ∈ H uniformly
at random. For i ∈M define Bi = {y ∈ S | h(y) = i}. Then for 2 nm < t ≤ n we have:

Eh∈H[|{x ∈ S | |Bh(x)| ≥ t}|] <
n

t− 2 nm

(The bound in [2] was about twice as large. The proof is given in the full version [11].)
In our algorithm, we will be interested in the number of elements in buckets with size

at least three times the expectation. Choosing t = 3 n
m in Lemma 2, we conclude that the

expected number of such elements is smaller than the number of buckets.

I Corollary 3. In the setting of Lemma 2 we have Eh∈H[|{x ∈ S | |Bh(x)| ≥ 3n/m }|] < m.

2.4 Set Intersection on Unsorted Word-Packed Arrays
We consider the problem “set intersection on unsorted word-packed arrays”: Assume k
and ` are such that k(` + log k) ≤ w, and that two words a and b are given that both
contain k many `-bit strings: a contains a0, . . . , ak−1 and b contains b0, . . . , bk−1. We wish
to determine whether {a0, . . . , ak−1} ∩ {b0, . . . , bk−1} is empty or not and find an element in
the intersection if it is nonempty.

In [3, proof of Lemma 3] a similar problem is considered: It is assumed that a is sorted
and b is bitonic, meaning that it is a cyclic rotation of a sequence that first grows and then
falls. In this case one sorts the second sequence by a word-parallel version of bitonic merge
(time O(log k)), and then merges the two sequences into one sorted sequence (again in time
O(log k)). Identical elements now stand next to each other, and it is not hard to identify them.
We can use a slightly slower modification of the approach of [3]: We sort both sequences
by word-packed bitonic sort [1] (simulating Batcher’s bitonic sort sorting network [5] on a
word-packed array), which takes time O(log2 k), and then proceed as before.2 We obtain the
following result.

2 It is this slower version of packed intersection that causes our randomized 3XOR algorithm to be a little
slower than the int3SUM algorithm for w = ω(log2 n).

MFCS 2018

59:6 A Subquadratic Algorithm for 3XOR

Algorithm 1: A simple quadra-
tic 3SUM algorithm.

1 Algorithm 3SUM(X):
2 sort X as x1 < · · · < xn
3 for a ∈ X do
4 (i, j)← (1, 1)
5 while i ≤ nand j ≤ n do
6 if a+ xi < xj then
7 i← i+ 1
8 else if a+ xi > xj

then
9 j ← j + 1

10 else return (a, xi, xj)

11 return no solution

Algorithm 2: A quadratic 3XOR algo-
rithm.

1 Algorithm 3XOR(X):
2 sort X as x1 < · · · < xn
3 TX ← makeTree(X)
4 for a ∈ X do
5 (i, j)← (1, 1)
6 (yi)1≤i≤n ← traverse(TX , a)
7 while i ≤ nand j ≤ n do
8 if yi < xj then
9 i← i+ 1

10 else if yi > xj then
11 j ← j + 1
12 else return (a, yi⊕ a, xj)

13 return no solution

I Lemma 4. Assume k(`+ log k) = O(w), and assume that two sequences of `-bit strings,
each of length k, are given. Then the t entries that occur in both sequences can be listed in
time O(log2 k + t).

A more detailed description is given in the full version [11].

3 A Deterministic 3XOR Algorithm in Quadratic Time

A well known deterministic algorithm for solving the 3SUM problem in time O(n2) is
reproduced in Algorithm 1. After sorting the input X as x1 < · · · < xn in time O(n log n),
we consider each a ∈ X separately and look for triples of the form a+ b = c. Such triples
correspond to elements of the intersection of a + X = {a + x1, . . . , a + xn} and X. Since
X is sorted, we can iterate over both X and a + X in ascending order and compute the
intersection with an interleaved linear scan.

Unfortunately, the ⊕-operation is not order preserving, indeed, x < y does not imply
a⊕x < a⊕ y for the lexicographic ordering on bitstrings – or, indeed, any total ordering
on bitstrings. We may sort X and each set a⊕X = {a⊕x | x ∈ X}, for a ∈ X, separately
to obtain an algorithm with running time O(n2 log n). Using fast deterministic integer
sorting [18] reduces this to time O(n2 log log n). In order to achieve quadratic running time,
one may utilize a randomized dictionary for X with expected linear construction time and
constant lookup time (like in [12]) or (weakly non-uniform, rather complex) deterministic
static dictionaries with construction time O(n log n) and constant lookup time as provided
in [17]. Once such a dictionary is available, one just has to check whether a⊕ b ∈ X, for all
a, b ∈ X.

Here we describe a rather simple deterministic algorithm with quadratic running time.
For this, we utilize a special binary search tree3 TX that allows, for arbitrary a ∈ {0, 1}w, to
traverse the set a⊕X = {a⊕x | x ∈ X} in lexicographically ascending order, in linear time.
For X 6= ∅, the tree TX is recursively defined as follows.

3 The structure of the tree is that of the PATRICIA tree [25] for X.

M. Dietzfelbinger, P. Schlag, and S. Walzer 59:7

1001

0011

0001x1 0001

0010x2 0011x3

0101

1010x4 1111x5

Figure 1 The tree TX for X = {x1 = 0001, x2 = 0010, x3 = 0011, x4 = 1010, x5 = 1111}. The
first 1-bit of the label of an inner node indicates the most significant bit that is not constant among
the x-values managed by that subtree (the bits after the first 1-bit are irrelevant). According to the
value of this bit, elements are found in the left or right subtree. Apart from the labels of the inner
nodes, TX is essentially the PATRICIA tree [25] for X.

If X = {x}, then TX is LeafNode(x), a tree consisting of a single leaf with label x.
If |X| ≥ 2, let lcp(X) denote the longest common prefix of the elements of X when
viewed as bitstrings. That is, all elements of X coincide on the first k = |lcp(X)| bits,
the elements of some nonempty set X0 (X start with lcp(X)0 and the elements of
X1 = X −X0 start with lcp(X)1. We define TX = InnerNode(TX0 , 0k1b, TX1) for some
b ∈ {0, 1}w−k−1, meaning that TX consists of a root vertex with label ` = 0k1b, a left
subtree TX0 and a right subtree TX1 . The choice of b is irrelevant, but it is convenient to
define the label more concretely as ` = (maxX0)⊕(minX1).

Note that along paths of inner nodes down from the root the labels when regarded as integers
are strictly decreasing. We give an example in Figure 1 and provide a O(n log n) time
construction of TX from X in Algorithm 4.

In the context of TX = InnerNode(TX0 , ` = 0k1b, TX1) as described above, the (k+1)st bit
is the most significant bit where elements of X differ. Crucially, this is also true for the set
a⊕X for any a ∈ {0, 1}w. Since the elements of X are partitioned into X0 and X1 according
to their (k+1)st bit, either all elements of a⊕X0 are less than all elements of a⊕X1, or vice
versa, depending on whether the (k+1)st bit of a is 0 or 1. Using that the (k+1)st bit of a is
1 iff a⊕ ` < a, this suggests a simple recursive algorithm to produce a⊕X in sorted order,
given as Algorithm 3.

With the data structure TX in place, the strategy from 3SUM carries over to 3XOR as
seen in Algorithm 2. Summing up, we have obtained the following result:

I Theorem 5. A deterministic word RAM can solve the 3XOR problem in time O(n2). J

In Algorithm 4 we provide a linear time construction of TX from a stream containing the
sorted array X interleaved with the labels `i = xi⊕xi+1 (due to sorting the total runtime is
O(n log n)). Despite its brevity, the recursive build function is somewhat subtle.

I Claim 6 (Correctness of Algorithm 4). If build() is called while the stream contains
the elements (`i, xi+1, . . . , xn, `n = ∞), the call consumes a prefix of the stream until
top(stream) = `j where j = min{j > i | `j ≥ `i}. It returns TX where X = {xi+1, . . . , xj}.

Once this is established, the correctness of makeTree immediately follows as for the outer
call we have i = 0 and j = n (with the understanding that ∞ ≥∞).

Proof of Claim 6. By the `-call we mean the (recursive) call to build() with top(stream) = `.
In particular the `-call consumes ` from the stream and our claim concerns the `i-call. It
is clear from the algorithm that an `-call can only invoke an `′-call if `′ < `. Therefore the

MFCS 2018

59:8 A Subquadratic Algorithm for 3XOR

Algorithm 3: Given a tree T =
TX and a ∈ {0, 1}w, the algorithm
yields the elements of a⊕X =
{a⊕x | x ∈ X} in sorted order.

1 Algorithm traverse(T , a):
2 if T = LeafNode(x) then
3 yield a⊕x
4 else
5 let T = InnerNode(T0, `, T1)
6 if a⊕ ` > a then
7 traverse(T0, a)
8 traverse(T1, a)
9 else

10 traverse(T1, a)
11 traverse(T0, a)

Algorithm 4: O(n log n)-time algo-
rithm to construct TX from X.

1 Algorithm makeTree(X):
2 sort X as x1 < · · · < xn
3 let `i = xi⊕xi+1, 1 ≤ i < n

4 stream←
(∞, x1, `1, . . . , `n−1, xn,∞)

5 return build() where
6 subroutine build():
7 `← pop(stream)
8 x← pop(stream)
9 T ← LeafNode(x)

10 while top(stream) < ` do
11 `′ ← top(stream)
12 T ← InnerNode(T, `′, build())

13 return T

`i-call cannot directly or indirectly cause the `j-call since `j ≥ `i. At the same time, the
`i-call can only terminate when top(stream) ≥ `i. This establishes that `j = top(stream)
when the `i-call ends – the first part of our claim.

Next, note that since X is sorted, there is some m such that we have X0 = {xi+1, . . . , xm}
and X1 = {xm+1, . . . , xj} where X = X0 ∪ X1 is the partition from the definition of TX .
Moreover, `m is the largest label among `i+1, . . . , `j−1. This implies that the `m-call is
directly invoked from the `i-call. Just before the `m-call is made, the `i-call played out just
as though the stream had been (`i, xi+1, . . . , xm, `

′
m =∞), which would have produced TX0

by induction4. However, due to `m = top(stream) < ` = `i, instead of returning T = TX0 ,
the while loop is entered (again) and produces InnerNode(T = TX0 , ` = `m, build()). The
stream for the `m-call is (`m, . . . , xn, `n) and `j is the first label not smaller than `m. So,
again by induction, the `m-call produces TX1 and ends with top(stream) = `j . Given this, it
is clear that afterwards the loop condition in the `i-call is not satisfied (since `j ≥ `i) and
the new T = TX is returned immediately, establishing the second part of the claim. J

4 A Subquadratic Randomized Algorithm

In this section we present a subquadratic expected time algorithm for the 3XOR problem. Its
basic structure is the same as in the corresponding algorithm for int3SUM presented in [2].
We use 1-universal families of linear hash functions to split the elements into buckets and
to compute short fingerprints. Due to linearity, the bucket of an element c with c = a⊕ b
is uniquely determined when knowing the buckets of a and b. Furthermore, if a⊕ b = c,
then this equation is also true when looking at the fingerprints of these elements. Therefore,
packing the fingerprints of all elements of a (not too full) bucket into one word (a word-packed
array) allows us to evaluate the latter equation for a lot of triples “in parallel”. For this

4 Formally the induction is on the value of j − i. The case of j − i = 1 is trivial.

M. Dietzfelbinger, P. Schlag, and S. Walzer 59:9

purpose, we exploit word-level parallelism and use lookup tables to solve the set intersection
problem on unsorted word-packed arrays. Algorithm 5 illustrates this strategy for large word
lengths w = Ω((log2 n) log log n).

Changes (in comparison to the int3SUM algorithm) are made where necessary to deal
with the different setting. This makes it a little more difficult in some parts of the algorithm
(mainly because xor-ing a sorted sequence with some a will destroy the order) and easier in
other parts (in particular where linearity of hash functions is concerned). Altogether, we get
an expected running time that is the same as in [2] for w = O(log2 n) and slightly worse for
larger w. Recall we assume w = 2O(n logn) throughout.

I Theorem 7. A randomized word RAM with word length w can solve the 3XOR problem
in expected time

O

(
n2 ·min

{
log3 w

w
,

(log log n)2

log2 n

})
for w = O(n log n),

and O(n log2 n), otherwise.

The crossover point between the w and the log n factor is w = (log2 n) log log n. The only
difference to the running time of [2] is in an extra factor logw in the word-length-dependent
part.

Proof. We describe the main ideas of the algorithm. For full details, see [11]. If w =
ω(n log n), we proceed as for w = Θ(n log n). We use two levels of hashing.

Good and Bad Buckets. We split X into R = 2r = o(n) buckets Xu = {x ∈ X |
h1(x) = u }, u ∈ {0, 1}r, using a randomly chosen hash function h1 ∈ Hlin

w,r. The hash
values are calculated once and for all and stored for further use. By linearity, for every
solution a⊕ b = c we also have h1(a)⊕h1(b) = h1(c). Given a ∈ Xu and b ∈ Xv, we only
have to inspect bucket Xu⊕ v when looking for a c ∈ X such that a⊕ b = c.

For a ∈ X, the expected size of bucket Xh1(a) is n/R. A bucket of size larger than 3n/R
is called bad, as are elements of bad buckets. All other buckets and elements are called good.
By Corollary 3, the expected number of bad elements is smaller than R. We can even assume
that the total number of bad elements is smaller than 2R. (By Markov’s inequality, we
simply have to repeat the choice of h1 expected O(1) times until this condition is satisfied.)

Fingerprints and Word-Packed Arrays. Furthermore, we use another hash function h2 ∈
Hlin
w,p for some appropriately chosen p to calculate p-bit fingerprints for all elements in X. If

(3n/R) ·p ≤ w, we can pack all fingerprints of elements of a good bucket Xu into one word X∗u.
This packed representation is called word-packed array. Again by linearity, for every solution
a⊕ b = c we have h2(a)⊕h2(b) = h2(c). On the other hand, the expected number of colliding
triples, i. e., triples with a⊕ b 6= c but h1(a)⊕h1(b) = h1(c) and h2(a)⊕h2(b) = h2(c), is at
most 2n3/(R · 2p). (Since the hash families that we use are 1-universal, the probability that
a triple with a⊕ b 6= c is colliding is at most 2/(R · 2p). The additional factor 2 is due to the
repeated choice of h1 until there are fewer than 2R bad elements.)

The total time for all the hashing steps described so far is O(n · (r + p)), see Section 2.2.
We consider two choices of R = 2r and p, cf. [2, proof of Lemma 3] and [2, proof of Thm.
2]. The first one is better for larger words of length w = Ω((log2 n) log log n) whereas the
second one yields better results for smaller words. In both cases, we search for triples with a
fixed number of bad elements separately. The strategies for finding triples of good elements

MFCS 2018

59:10 A Subquadratic Algorithm for 3XOR

correspond to the approach for int3SUM in [2]. However, for triples with at least one bad
element we have to rely on a more fine-grained examination than in [2]. For this, we will use
hash tables and another lookup table.

Long Words: Exploiting Word-Level Parallelism. If the word length is large enough, i. e.,
w = Ω((log2 n) log log n), we choose R ≈ d6 · n · (logw)/we as a power of 2 and p = b2 · logwc
to be able to pack all fingerprints of elements of a good bucket into one word. We examine
triples with at most one and at least two bad elements separately, as seen in Algorithm 5.

When looking for triples with at most one bad element, we do the following for every
(good or bad) a ∈ X and u ∈ {0, 1}r where Xu and the corresponding bucket Xh1(a)⊕u are
good (as in [2, proof of Lemma 3] when examining triples of three good elements): We xor
every fingerprint of the word-packed array X∗u with h2(a). Then, in time O(log2 (n/R) + t) =
O(log2 w + t), we construct a list of t common pairs in this modified word-packed array and
X∗h1(a)⊕u, which is possible by Lemma 4. For each such pair, we only have to check whether
it derives from a non-colliding triple. Since we can stop when we find a non-colliding triple
and since the expected total number of colliding triples is O(n2/(w logw)), we are done in
expected time O(n ·R · log2 w + n2/(w logw)) = O(n2(log3 w)/w).

In order to examine all triples with at least two bad elements, we provide a hash table
for X with expected construction time O(n) and constant lookup time [12]. Now, for each of
the at most 4R2 = O(n2(log2 w)/w2) pairs (a, b) of bad elements we can check if a⊕ b ∈ X
in constant time.5

The total expected running time for this parameter choice is O(n2(log3 w)/w).

Short Words: Using Lookup Tables. For word lengths w = O((log2 n) log log n), we choose
R ≈ d55 · n · (log log n)/ log ne as a power of 2 and p = b6 · log log nc to pack all fingerprints
of elements of a good bucket into (1

3 − ε) log n bits, for some ε > 0.
We start by looking for triples with no bad element. For this, we consider all ≤ R2

triples of corresponding good buckets (as in [2, proof of Thm. 2]). We use a lookup
table of size n1−Ω(1) to check whether such a triple of buckets yields a triple of fin-
gerprints (in the word-packed arrays) with h2(a)⊕h2(b) = h2(c) in constant time. If
this is the case, we search for a corresponding triple a⊕ b = c in the buckets of size
O((log n)/ log log n) in time O((log3 n)/(log log n)3). Since one table entry can be computed
in time O((log3 n)/(log log n)3), setting up the lookup table takes time n1−Ω(1). Furthermore,
the expected O(n2/((log log n) log5 n)) colliding triples cause additional expected running
time O(n2/((log log n)4 log2 n)). Since we can stop when we find a non-colliding triple, the
total expected time is O(R2) = O(n2(log log n)2/ log2 n).

Searching for triples with exactly one bad element can be done in a similar way. For
each bad element a ∈ X and each good bucket Xu, u ∈ {0, 1}r, we xor all fingerprints in
the word-packed array X∗u with h2(a) and use a lookup table to check whether it has some
fingerprints in common with the word-packed array X∗h1(a)⊕u of the corresponding good
bucket. If this lookup yields a positive result, we check all pairs in the corresponding buckets
in time O((log2 n)/(log log n)2). As before, the expected running time is O(R2), including
the expected time O(n2/((log log n)3 log3 n)) due to colliding triples.

Examining all triples with at least two bad elements can be done using a hash table as
mentioned above in expected time O(n+R2).

The total expected running time for this parameter choice is O(n2(log log n)2/ log2 n). J

5 Note that it would not be possible to derive expected time O(R2) for checking all pairs of bad elements
if we did not start all over if the number of keys in bad buckets is at least 2R.

M. Dietzfelbinger, P. Schlag, and S. Walzer 59:11

Algorithm 5: The randomized subquadratic 3XOR algorithm for the case w =
Ω((log2 n) log log n). For w = o((log2 n) log log n) using lookup tables to search for
solutions involving at most one bad element yields a faster algorithm.

1 Algorithm 3XOR(X):
2 repeat

// partition X into buckets using h1:
3 pick linear, 1-universal h1 : {0, 1}w → {0, 1}r with 2r = R ≈ d6n(logw)/we
4 Xu ← {x ∈ X | h1(x) = u} for u ∈ {0, 1}r
5 B ← {x ∈ X | |Xh(x)| > 3 nR} // bad elements in overfull buckets
6 until |B| < 2R

// search for solution involving at least two bad elements:
7 for a, b ∈ B do // < 4R2 choices
8 if a⊕ b ∈ X then // O(1) using appropriate hash table for X
9 return (a, b, a⊕ b)

// search for solution involving at most one bad element:
10 Xu ← ∅ for u ∈ {0, 1}r with |Xu| > 3 nR // empty the bad buckets
11 pick linear, 1-universal h2 : {0, 1}w → {0, 1}p with p = b2 logwc
12 for u ∈ {0, 1}r do

// pack fingerprints of elements of Xu into one word X∗u
13 X∗u ← h2(Xu) := concatenate {h2(x) | x ∈ Xu}
14 for a ∈ X and u ∈ {0, 1}r do // n ·R iterations
15 X∗,au ← X∗u⊕h2(a) // h2(a) added to each fingerprint in X∗u
16 for v ∈ X∗,au ∩X∗h1(a)⊕u do
17 identify responsible b, c, in particular with

v = h2(a)⊕h2(b) = h2(c), h1(b) = u

18 if a⊕ b = c then
19 return (a, b, c)
20

21 return no solution

needs time
O(log2(n/R))
plus size of in-
tersection

// X ⊆ {0, 1}w, |X| = n

5 Conditional Lower Bounds from the 3XOR Conjecture

As already mentioned in Section 1, the best word RAM algorithm for int3SUM currently
known [2] can solve this problem in expected time O(n2 ·min{ log2 w

w , (log logn)2

log2 n
}) for w =

O(n log n). The best deterministic algorithm [8] takes time n2(log log n)O(1)/ log2 n. It is
a popular conjecture that every algorithm for 3SUM (deterministic or randomized) needs
(expected) time n2−o(1). Therefore, this conjectured lower bound can be used as a basis for
conditional lower bounds for a wide range of other problems [15, 19, 22, 26].

Similarly, it seems natural to conjecture that every algorithm for the related 3XOR
problem (deterministic or randomized) needs (expected) time n2−o(1). (In Theorem 7, the
upper bound for short word lengths is n2 (log logn)2

log2 n
= n2−(2 log logn−2 log log logn)/ logn where

(2 log log n− 2 log log log n)/ log n = o(1).) Therefore, it is a valid candidate for reductions to
other computational problems [19, 27].

The general strategy of the subquadratic int3SUM algorithm [2], already employed in
Section 4, is quite similar to the reductions in [22]. Therefore, we are able to reduce 3XOR
to offline SetDisjointness and offline SetIntersection, too. Hence, the conditional lower bounds

MFCS 2018

59:12 A Subquadratic Algorithm for 3XOR

for the problems mentioned in [22] (and bounds for dynamic problems from [26]) also hold
with respect to the 3XOR conjecture. A detailed discussion can be found in [27]. Below, we
will outline the general proof strategy.

5.1 Offline SetDisjointness and Offline SetIntersection
We reduce 3XOR to the following two problems.

I Problem 8 (Offline SetDisjointness). Input: Finite set C, finite families A and B of
subsets of C, q ∈ N pairs of subsets (S, S′) ∈ A×B.
Task: Find all of the q pairs (S, S′) with S ∩ S′ 6= ∅.

I Problem 9 (Offline SetIntersection). Input: Finite set C, finite families A and B of
subsets of C, q ∈ N pairs of subsets (S, S′) ∈ A×B.
Task: List all elements of the intersections S ∩ S′ of the q pairs (S, S′).

5.2 Reductions from 3XOR
By giving an expected time ≤ n2−Ω(1) reduction from 3XOR to offline SetDisjointness and
offline SetIntersection, we can prove lower bounds for the latter two problems, conditioned on
the 3XOR conjecture.

I Theorem 10. Assume 3XOR requires expected time Ω(n2/f(n)) for f(n) = no(1) on a
word RAM. Then for 0 < γ < 1 every algorithm for offline SetDisjointness that works on
instances with |C| = Θ(n2−2γ), |A| = |B| = Θ(n log n), |S| = O(n1−γ) for all S ∈ A∪B and
q = Θ(n1+γ log n) requires expected time Ω(n2/f(n)).

I Theorem 11. Assume 3XOR requires expected time Ω(n2/f(n)) for f(n) = no(1) on a
word RAM. Then for 0 ≤ γ < 1 and δ > 0, every algorithm for offline SetIntersection which
works on instances with |C| = Θ(n1+δ−γ), |A| = |B| = Θ(

√
n1+δ+γ), |S| = O(n1−γ) for all

S ∈ A∪B, q = Θ(n1+γ) and expected output size O(n2−δ) requires expected time Ω(n2/f(n)).

Proof. (For more details, see [27, ch. 6]. Algorithm 6 reduces 3XOR to offline SetDisjointness.
The pseudocode implementation for offline SetIntersection is given in [11].) Let X ⊆ {0, 1}w
be the given 3XOR instance. As in Section 4, we use two levels of hashing.

At first, we hash the elements of X with a randomly chosen hash function h1 ∈ Hlin
w,r

into R = 2r = Θ(nγ) buckets in time O(n log n). Then, we apply Corollary 3: There are
expected O(R) = O(nγ) elements in buckets with more than three times their expected
size. For each such bad element, we can naively check in time O(n log n) whether it is part
of a triple (a, b, c) with a⊕ b = c or not. Since γ < 1, all bad elements can be checked in
expected time ≤ n2−Ω(1). Therefore, we can assume that every bucket Xu, u ∈ {0, 1}r, has
at most 3 nR = O(n1−γ) elements.

The second level of hashing uses two independently and randomly chosen hash functions
h21, h22 ∈ Hlin

w,p where P = 22p = (5n/R)2 = O(n2−2γ) for offline SetDisjointness and
P = 22p = n1+δ/R = O(n1+δ−γ) for offline SetIntersection. (The function h2 with h2(x) =
h21(x) ◦ h22(x), where ◦ denotes the concatenation of bitstrings, is randomly chosen from a
linear and 1-universal class H of hash functions {0, 1}w → {0, 1}2p.) The hash values can
be calculated in time O(n log2 n). (The additional log n factor is only necessary for offline
SetDisjointness, since we need to use Θ(log n) choices of hash functions h2 to get an error
probability that is small enough.) For each u ∈ {0, 1}r and v ∈ {0, 1}p, we create “shifted”
buckets X↑u,v = {h2(x)⊕(v ◦ 0p) | x ∈ Xu } and X↓u,v = {h2(x)⊕(0p ◦ v) | x ∈ Xu }. One

M. Dietzfelbinger, P. Schlag, and S. Walzer 59:13

such set can be computed in time O(n1−γ). Therefore, all sets can be computed in time
O(R
√
P log n · n1−γ) = O(n2−γ log n) for offline SetDisjointness and O(R

√
P · n1−γ) =

O(n(3+δ−γ)/2) for offline SetIntersection.
We can show that for all u ∈ {0, 1}r and c ∈ X, if there are a, b ∈ X such that

a⊕ b = c and a ∈ Xu, then X↑u,h21(c) ∩ X
↓
u⊕h1(c),h22(c) 6= ∅. Therefore, we create the

following offline SetDisjointness (offline SetIntersection) instance: C := {0, 1}2p, A :=
{X↑u,v | u ∈ {0, 1}r, v ∈ {0, 1}p }, B := {X↓u,v | u ∈ {0, 1}r, v ∈ {0, 1}p } and q queries
(X↑u,h21(c), X

↓
u⊕h1(c),h22(c)) for all u ∈ {0, 1}r and c ∈ X in time ≤ n2−Ω(1). (These are

R · n = Θ(n1+γ) queries for offline SetIntersection. For offline SetDisjointness, we create R · n
queries for each of the Θ(log n) choices of h2.)

After the offline SetDisjointness or offline SetIntersection instance has been solved, we can
use this answer to compute the answer for X in expected time ≤ n2−Ω(1). We only have to
check if a positive answer from offline SetDisjointness (a pair with non-empty intersection) or
offline SetIntersection (an element of an intersection) yields a solution triple of X or not.

For offline SetDisjointness, we can show that the probability for a triple to yield a false
positive can be made polynomially small if we consider K = Θ(log n) choices of h2 and only
examine (Xu⊕ c) ∩Xh1(c)⊕u if this is suggested by all K corresponding queries. For offline
SetIntersection, the expected number of colliding triples is O(n2−δ). By trying to guess a
good triple Θ(n log n) times before creating the offline SetIntersection instance we can avoid
a problem for the expected running time if a 3XOR instance yields an offline SetIntersection
instance with output size ω(n2−δ).

For all relevant values of γ and δ, the total running time is ≤ n2−Ω(1) in addition to the
time needed to solve the offline SetDisjointness or offline SetIntersection instance. J

6 Conclusions and Remarks

We have presented a simple deterministic algorithm with running time O(n2). Its core is a
version of the PATRICIA tree for X ⊆ {0, 1}w, which makes it possible to traverse the set
a⊕X in ascending order for arbitrary a ∈ {0, 1}w in linear time. Furthermore, our random-
ized algorithm solves the 3XOR problem in expected time O(n2 ·min{ log3 w

w , (log logn)2

log2 n
}) for

w = O(n log n), and O(n log2 n) for n log n ≤ w = O(2n logn). The crossover point between
the w and the log n factor is w = (log2 n) log log n. The only difference to the running time
of [2] is in an extra factor logw in the word-length-dependent part. This is due to the
necessity to re-sort a word-packed array of size O(w/ logw) in time O(log2 w) after we have
xor-ed each of its elements with a (common) element. Finally, we have reduced 3XOR to
offline SetDisjointness and offline SetIntersection, establishing conditional lower bounds (as
in [22] conditioned on the int3SUM conjecture).

A simple, but important observation, which is used in apparently all deterministic
subquadratic time algorithms for 3SUM, is Fredman’s trick:

a+ b < c+ d ⇐⇒ a− d < c− b for all a, b, c, d ∈ Z .

Unfortunately, such a relation does not exist in our setting, since there is no linear order
≺ on {0, 1}w such that a⊕ b ≺ c⊕ d ⇐⇒ a⊕ d ≺ c⊕ b holds for all a, b, c, d ∈ {0, 1}w.
Since all elements are self-inverse, for a = b = c = 0w and any d ∈ {0, 1}w, we would get
0w ≺ d ⇐⇒ d ≺ 0w. Is there another, “trivial-looking” trick for 3XOR, that establishes a
basic approach to solve 3XOR in deterministic subquadratic time?

MFCS 2018

59:14 A Subquadratic Algorithm for 3XOR

Algorithm 6: Algorithm reducing 3XOR to offline SetDisjointness, establishing a
conditional lower bound on the runtime of offline SetDisjointness.

1 Reduction 3XOR-to-offlineSetDisjointness(X, γ):
// partition X into buckets using h1:

2 pick linear, 1-universal h1 : {0, 1}w → {0, 1}r with 2r = R ≈ dnγe
3 Xu ← {x ∈ X | h1(x) = u} for u ∈ {0, 1}r
4 B ← {x ∈ X | |Xh(x)| > 3 nR} // bad elements in overfull buckets
5 for b ∈ B do // expected O(R) elements
6 X⊕ b ← sort{a⊕ b | a ∈ X}
7 if ∃c ∈ X⊕ b ∩X then
8 return (c⊕ b, b, c)

// create shifted buckets using hi
21, hi

22:
9 pick linear, 1-universal hi21, h

i
22 : {0, 1}w → {0, 1}p with

22p = P ≈
⌈
(5n/R)2⌉

= O(n2−2γ) and 0 ≤ i < dlog ne
10 for u ∈ {0, 1}r, v ∈ {0, 1}p and 0 ≤ i < dlog ne do
11 X↑,iu,v ← {(hi21(a)⊕ v, hi22(a)) | a ∈ Xu}
12 X↓,iu,v ← {(hi21(a), hi22(a)⊕ v) | a ∈ Xu}

// apply algorithm for offline SetDisjointness:
13 (A,B,C,Q)← ((X↑,iu,v)u,v,i, (X↓,iu,v)u,v,i, {0, 1}2p, ∅)
14 for c ∈ X, u ∈ {0, 1}r and 0 ≤ i < dlog ne do
15 q ← (X↑,i

u,hi21(c), X
↓,i
u⊕h1(c),hi22(c)), identified by (c, u, i)

16 Q← Q ∪ {q}
17 Q′ ← offlineSetDisjointness(A,B,C,Q) // Q′ ⊆ Q

// calculate solution for the 3XOR instance:
18 for c ∈ X and u ∈ {0, 1}r do
19 if (c, u, i) ∈ Q′ for all 0 ≤ i < dlog ne then
20 X⊕ cu ← sort{a⊕ c | a ∈ Xu}
21 if ∃b ∈ X⊕ cu ∩Xh1(c)⊕u then
22 return (b⊕ c, b, c)

23 return no solution

// X ⊆ {0, 1}w, |X| = n, 0 < γ < 1

Another open question is how the optimal running times for 3SUM and 3XOR are related.
At first sight, the two problems seem to be very similar, but the details make the difference.
The observations mentioned above (especially the problem of re-sorting slightly modified
word-packed arrays and the possible absence of a relation like Fredman’s trick) hint at a
larger gap than expected. On the other hand, the fact that both problems can be reduced
to a wide variety of computational problems in a similar way (e. g. listing triangles in a
graph, offline SetDisjointness and offline SetIntersection) increases hope for a more concrete
dependance.

References
1 Susanne Albers and Torben Hagerup. Improved Parallel Integer Sorting without Concurrent

Writing. Inf. Comput., 136(1):25–51, 1997.
2 Ilya Baran, Erik D. Demaine, and Mihai Pătraşcu. Subquadratic Algorithms for 3SUM.

Algorithmica, 50(4):584–596, 2008.
3 Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. Subquadratic Algorithms for 3SUM. In

WADS, pages 409–421, 2005.

M. Dietzfelbinger, P. Schlag, and S. Walzer 59:15

4 Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms, and Noam
Solomon. Subquadratic Algorithms for Algebraic Generalizations of 3SUM. In SoCG,
volume 77 of LIPIcs, pages 13:1–13:15, 2017.

5 K. E. Batcher. Sorting Networks and Their Applications. In SJCC, AFIPS (Spring), pages
307–314, 1968.

6 Charles Bouillaguet, Claire Delaplace, and Pierre-Alain Fouque. Revisiting and Improving
Algorithms for the 3XOR Problem. IACR ToSC, 2018(1):254–276, 2018.

7 Timothy M. Chan. The Art of Shaving Logs. WADS (Invited Talk), 2013.
8 Timothy M. Chan. More Logarithmic-Factor Speedups for 3SUM, (median, +)-Convolution,

and Some Geometric 3SUM-Hard Problems. In SODA, pages 881–897, 2018.
9 Timothy M. Chan and Moshe Lewenstein. Clustered Integer 3SUM via Additive Combina-

torics. In STOC, pages 31–40, 2015.
10 Martin Dietzfelbinger. Universal hashing and k-wise independent random variables via

integer arithmetic without primes. In STACS, pages 569–580, 1996.
11 Martin Dietzfelbinger, Philipp Schlag, and Stefan Walzer. A Subquadratic Algorithm for

3XOR. CoRR, abs/1804.11086, 2018. arXiv:1804.11086.
12 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a Sparse Table with

O(1) Worst Case Access Time. J. ACM, 31(3):538–544, 1984.
13 Michael L. Fredman and Dan E. Willard. Surpassing the Information Theoretic Bound

with Fusion Trees. J. Comput. Syst. Sci., 47(3):424–436, 1993.
14 Ari Freund. Improved Subquadratic 3SUM. Algorithmica, 77(2):440–458, Feb 2017.
15 Anka Gajentaan and Mark H. Overmars. On a Class of O(n2) Problems in Computational

Geometry. Comput. Geom., 5(3):165–185, 1995.
16 Omer Gold and Micha Sharir. Improved Bounds for 3SUM, k-SUM, and Linear Degeneracy.

CoRR, abs/1512.05279, 2015.
17 Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic Dictionaries. J.

Algorithms, 41(1):69–85, 2001. doi:10.1006/jagm.2001.1171.
18 Yijie Han. Deterministic sorting in O(n log log n) time and linear space. J. Algorithms,

50(1):96–105, 2004.
19 Zahra Jafargholi and Emanuele Viola. 3SUM, 3XOR, Triangles. Algorithmica, 74(1):326–

343, 2016.
20 Allan Grønlund Jørgensen and Seth Pettie. Threesomes, Degenerates, and Love Triangles.

In FOCS, pages 621–630, 2014.
21 Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-optimal Linear Decision Trees for

k-SUM and Related Problems. In STOC, pages 554–563, 2018.
22 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjec-

ture. In SODA, pages 1272–1287, 2016.
23 Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams.

Deterministic Time-Space Tradeoffs for k-SUM. CoRR, abs/1605.07285, 2016.
24 Y. Mansour, N. Nisan, and P. Tiwari. The Computational Complexity of Universal Hashing.

Theor. Comput. Sci., 107(1):121–133, 1993.
25 Donald R. Morrison. PATRICIA - Practical Algorithm To Retrieve Information Coded in

Alphanumeric. J. ACM, 15(4):514–534, 1968. doi:10.1145/321479.321481.
26 Mihai Pătraşcu. Towards Polynomial Lower Bounds for Dynamic Problems. In STOC,

pages 603–610, 2010.
27 Philipp Schlag. Untere Schranken für Berechnungsprobleme auf der Basis der 3SUM-

Vermutung. Master’s thesis, TU Ilmenau, Germany, 2016.
28 Joshua R. Wang. Space-Efficient Randomized Algorithms for K-SUM. In ESA, pages

810–829, 2014.

MFCS 2018

http://arxiv.org/abs/1804.11086
http://dx.doi.org/10.1006/jagm.2001.1171
http://dx.doi.org/10.1145/321479.321481

	Introduction
	Preliminaries
	The Word RAM Model
	Linear Hash Functions
	A Hashing Lemma for 1-Universal Families
	Set Intersection on Unsorted Word-Packed Arrays

	A Deterministic 3XOR Algorithm in Quadratic Time
	A Subquadratic Randomized Algorithm
	Conditional Lower Bounds from the 3XOR Conjecture
	Offline SetDisjointness and Offline SetIntersection
	Reductions from 3XOR

	Conclusions and Remarks

