
TU Ilmenau | Universitätsbibliothek | ilmedia, 2020
http://www.tu-ilmenau.de/ilmedia

Abu Zaid, Faried:

Uniformly automatic classes of finite structures

Original published in: 38th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science / IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
38, 2018 Ahmedabad, India. - Saarbrücken/Wadern : Schloss Dagstuhl -
Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, December,
2018. - (2018), art. 10, 21 pp.
ISBN 978-3-95977-093-4
(Leibniz International Proceedings in Informatics (LIPIcs) ; 122)

Original published: December 2018
ISSN: 1868-8969
DOI: 10.4230/LIPIcs.FSTTCS.2018.10
[Visited: 2020-03-05]

This work is licensed under a Creative Commons Attribution 3.0
Unported license. To view a copy of this license, visit
http://creativecommons.org/licenses/BY/3.0/

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.10
https://creativecommons.org/licenses/BY/3.0/
https://creativecommons.org/licenses/BY/3.0/
https://creativecommons.org/licenses/BY/3.0/
https://creativecommons.org/licenses/by/3.0/

Uniformly Automatic Classes of Finite Structures
Faried Abu Zaid1

Camelot Management Consultants, CoE Artificial Intellegence for Information Management,
Munich, Germany
faza@camelot-mc.com

Abstract
We investigate the recently introduced concept of uniformly tree-automatic classes in the realm
of parameterized complexity theory. Roughly speaking, a class of finite structures is uniformly
tree-automatic if it can be presented by a set of finite trees and a tuple of automata. A tree t
encodes a structure and an element of this structure is encoded by a labeling of t. The automata
are used to present the relations of the structure. We use this formalism to obtain algorithmic
meta-theorems for first-order logic and in some cases also monadic second-order logic on classes of
finite Boolean algebras, finite groups, and graphs of bounded tree-depth. Our main concern is the
efficiency of this approach with respect to the hidden parameter dependence (size of the formula).
We develop a method to analyze the complexity of uniformly tree-automatic presentations, which
allows us to give upper bounds for the runtime of the automata-based model checking algorithm
on the presented class. It turns out that the parameter dependence is elementary for all the
above mentioned classes. Additionally we show that one can lift the FPT results, which are
obtained by our method, from a class C to the closure of C under direct products with only a
singly exponential blow-up in the parameter dependence.

2012 ACM Subject Classification Theory of computation → Finite Model Theory, Theory of
computation → Fixed parameter tractability, Theory of computation → Formal languages and
automata theory

Keywords and phrases Automatic Structures, Model Checking, Fixed-Parameter Tractability,
Algorithmic Meta Theorems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.10

1 Introduction

In this paper we investigate the use of automata in algorithmic meta-theorems. Algorithmic
meta-theorems are general algorithmic results stating that a class of problems P can be
efficiently solved on a class of instances C. In many cases P is the class of problems definable
in a certain logic L. Parameterised complexity theory provides one of the key notions to
establish algorithmic meta-theorems: we say that the model checking problem for a logic L
on a class of structures C is fixed-parameter tractable (FPT) (in the size of the formula) if
there is a computable function f and a constant c such that we can decide for every ϕ ∈ L
and every A ∈ C in time f(|ϕ|) · |A|c whether A |= ϕ.

Prototypical examples of automata-based algorithmic meta-theorems are the theorem
of Courcelle [5] for MSO-definable problems (actually MSO2, which has the additional
capability to quantify over subsets of the edge relation) on graphs of bounded treewidth and
the result of Courcelle, Makowsky, and Rotics [4] for MSO-definable problems on graphs of
bounded cliquewidth. The basic idea is in both cases to compute from a graph G a tree-like

1 The presented work was conducted while the author was affiliated with the Technische Universität
Ilmenau.

© Faried Abu Zaid;
licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 10; pp. 10:1–10:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:faza@camelot-mc.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Uniformly Automatic Classes of Finite Structures

decomposition tG and from an MSO-formula ϕ a tree-automaton Aϕ that accepts exactly
the tree-like decompositions of graphs that model ϕ. Since the construction of tG from G

can be performed efficiently, we can efficiently check if G |= ϕ by checking if Aϕ accepts tG.
Note that many NP-complete problems, such as 3-Colourability, are definable in MSO and
hence efficiently solvable on the above mentioned classes.

The idea to present structures by automata is also the basis for the field of automatic
structures. Roughly speaking, a structure is called automatic if its domain can be represented
as a regular set in such a way that its relations become recognisable by synchronous multi-tape
automata. However, it is not very interesting to study automatic presentations on the class of
all finite structures since every finite structure has an automatic presentation (since all finite
languages are regular). Recently the concept of uniformly automatic classes was introduced
in [1]. In this setting the automata obtain an aditional input (called advice) which encodes
the structure that should be presented. Therefore it is possible to present a whole class
of structures by a single presentation and a set of advices. Contrary to the classical case
without advice it is indeed very interesting to ask which classes of finite structures have a
uniformly automatic presentation and which algorithmic consequences can be derived from
the existence of such a presentation for a given class.

From a logical point of view it is worthwhile to mention that the presentations which build
the core of the FPT algorithms for bounded treewidth and bounded cliquewidth graphs are
obtained from MSO-interpretations on trees. Uniformly automatic presentations, however,
correspond to so called set-interpretations, which are strictly more powerful than MSO-
interpretations. In fact, it is not hard to construct even uniformly word-automatic classes of
graphs which have unbounded tree- and cliquewidth. The power to present more complex
classes of structures comes with the trade-off that we have to restrict our consideration to FO
model checking instead of MSO model checking. Still havening a fixed parameter tractable
model checking problem for a class of structures directly leads to FPT results for many other
interesting algorithmic problems. For instance, if FO model checking is FPT on a class of
graphs C then Independent Set is FPT on C in the size of the independent set because for every
k ∈ N and every graph G it holds that G |= ∃x1, . . . , xk(

∧
1≤i<j≤k xi 6= xj ∧

∧
i<j ¬Exixj)

if and only if G contains an independent set of size k.
Meta-theorems for first-order logic have been studied extensively on classes of sparse

graphs. The first result in this direction is due to Seese for graphs of bounded degree [23].
Over the past decades larger and larger classes of sparse graphs have been identified for
which FO model checking is FPT. This development has recently found its climax in the
result of Grohe, Kreutzer, and Siebertz for nowhere dense graphs [15]. They proved that
under certain complexity theoretic assumptions this is the largest possible subgraph-closed
class of graphs where FO model checking is FPT.

We investigate automaticity as a generic notion of simplicity which might bring up
new and interesting classes of structures for which FO model checking is FPT. Towards
the theory, we are concerned with the efficiency of this approach. The concept of fixed
parameter tractability is often criticized since there are no constraints on the complexity of
the parameter. Note that in general the non-elementary worst-case runtime of the automaton
construction process leads to a non-elementary parameter dependence in the algorithmic
meta-theorems. Frick and Grohe [12] showed, unless PTIME = NP, there is no algorithm
that solves the model checking problem for MSO on words or trees in time f(|ϕ|) · poly(|t|)
for any elementary function f : N → N. A similar statement holds for FO on words. As
trees have treewidth one, this renders Courcelle’s approach to model checking of graphs with
bounded treewidth optimal. Moreover, the efficiency of the automata theoretic approach has

F. Abu Zaid 10:3

also been confirmed in practice. For instance, Langer et al. [20] implemented Courcelle’s
technique and found that their implementation can compete with other approaches for
specific problems such as Dominating Set.

Even more interestingly, the automata-based approach also tends to behave tamely when
applied to interpretations of structures whose theory is elementary. Eisinger [8] gave a
triply-exponential upper bound on the size of the minimal automaton for formulae of integer
and mixed-real addition. In [6] Durand-Gasselin and Habermehl showed for word-automatic
structures that the runtime of the generic algorithm can be bounded by a function which
estimates how well the presentation goes along with the Ehrenfeucht-Fraïssé relations of
the structure and gave runtime bounds for integer addition matching Eisinger’s bound.
Additionally they gave a triply-exponential bound for automatic graphs of bounded degree
complementing a result by Kuske and Lohrey who proved, using a specialised algorithm, that
model checking for automatic graphs of bounded degree is solvable in doubly-exponential
space [19].

We adopt Durand-Gasselin’s and Habermehl’s technique and generalise their result to
uniformly tree-automatic presentations. We apply this technique to the presentations that
arise as the presentations of the direct product closures of uniformly tree-automatic classes.
We prove that the bound of the runtime of the model checking algorithm is at most exponential
in the bound of the runtime for the primal classes. Further we apply these findings in the
context of FPT model checking for first order logic. We demonstrate the efficiency of the
automata-theoretic approach by analysing the runtime in terms of the parameter dependence
on structurally rather simple classes. Our results are as follows:

FO model checking is FPT on the class of all finite Boolean algebras that are succinctly
encoded by the number of atoms and can be performed in exp2(poly(|ϕ|)) · log |B|. Unless
NEXP =

⋃
c∈N STA(∗, 2cn, n), this parameter dependence is optimal.

FO model checking is FPT on the class of all finite abelian groups that are suc-
cinctly encoded by the orders of the direct product factors and can be performed in
exp4(poly(|ϕ|)) · log |G|. We generalise this result to finite groups of bounded non-abelian
decomposition width, that is groups whose non-abelian direct product factors are of
bounded size. We obtain the same asymptotic runtime on these classes.
This provides some first results towards Grohe’s question on which classes of algebraic
structures FO model checking is FPT [14]. The mere FPT result for FO model checking
on abelian groups was independently also discovered by Bova and Martin [2]. Their
algorithm assumes that the groups are encoded by their multiplication tables and yields
a non-elementary parameter dependence. Therefore our approach has the two advantages
that it works for succinct encodings and yields an elementary parameter dependence.
MSO model checking is FPT on every class of graphs with tree-depth at most h and
can be performed in exph+2(poly(|ϕ|)) · poly(|G|). This matches the runtime of the best
known algorithm for these classes, which is due to Gajarsky and Hliněný [13]. Their
algorithm uses a kernelisation procedure. Our proof makes use of their analysis.

2 Preliminaries

For natural numbers `,m, n we write m =` n if m = n or m,n ≥ `. We assume that the
reader is familiar with first-order logic (FO) as well as with the connection between monadic
second-order logic (MSO) and tree-automata. Therefore we use this section mainly to fix
our notation.

FSTTCS 2018

10:4 Uniformly Automatic Classes of Finite Structures

A signature is a finite set of relation symbols τ = {R1, . . . , Rk}, where every symbol
Ri ∈ τ has an assigned arity ri. A τ -structure is a tuple A = (A,RA

1 , . . . , R
A
k), where A

is a set and RA
i ⊆ Ari for all i ∈ {1, . . . , k}. From now on we will tacitly assume that all

structures under consideration are finite. The class of all finite τ -structures is denoted by
Str(τ).

Let Σ,Γ be alphabets. A (labeled binary) tree is a function t : domt → Σ, where
domt ⊆ {0, 1}∗ is a finite prefix-closed set. The set of all trees with labels from Σ is denoted
by TΣ. Let t1 ∈ TΣ, t2 ∈ TΓ with domt1 = domt2 =: dom. The convolution t1 ⊗ t2 ∈ TΣ×Γ
is defined by (t1 ⊗ t2)(w) = (t1(w), t2(w)) for all w ∈ dom. When we apply the convolution
to several trees at once we will often write 〈t1, t2, . . . , tk〉 instead of t1⊗ t2⊗· · ·⊗ tk. A reader
that is familiar with automatic presentations might notice that we define the convolution
only for trees with the same domain. This allows us to circumvent the introduction of a
padding symbol. For trees t, t1, . . . , tn and pairwise distinct w1, . . . , wn ∈ domt we define
t[w1/t1, . . . , wn/tn] to be the tree which is obtained by replacing the subtree rooted in wi by
ti for all i ≤ n.

A Σ-context is a tree c ∈ TΣ]{x} such that all nodes except for exactly one leaf w are
labeled with letters from Σ and c(w) = x. The unique leaf w with label x is denoted by
c−1(x). For a Σ-context c and a tree t ∈ TΣ the composition (c ◦ t) ∈ TΣ is defined as
c[c−1(x)/t].

Let us now introduce tree-automata with advice. Formally, these are just ordinary
tree-automata which read letters from a composed alphabet. But since our automatic
presentations will assign special semantics to the first component of such a letter it makes
sense to handle these components differently in our notation.

I Definition 2.1. A (deterministic bottom-up) tree-automaton with advice is a
finite state tree-automaton A = (Q,Σ×Γ, δ, F). The language that A recognizes with advice
α ∈ TΣ is L(A[α]) = {t ∈ TΓ | domt = domα ∧ α ⊗ t ∈ L(A)}. A tree-language T is called
regular with advice α if there is a tree-automaton A with advice such that T = L(A[α]).

For the sake of brevity we usually just speak of an automaton instead of a tree-automaton
with advice. The complement automaton of A is denoted by A = (Q,Σ×Γ, δ, Q\F). Finally
we define uniformly tree-automatic presentations.

I Definition 2.2. Let τ = {R1, . . . , Rk} be a finite relational signature. A uniformly
tree-automatic presentation of a class of τ -structures is a tuple c = (A,AR1 , . . . ,ARk)
of tree-automata with advice such that L(A[α]) ⊆ T{0,1} and L(ARi [α]) ⊆ {〈t1, . . . , tri〉 |
t1, . . . , tri ∈ L(A[α])} for all α ∈ TΣ and all i ∈ {1, . . . , k}. Each α ∈ TΣ with L(A[α]) 6= ∅

presents (the isomorphism type of) a structure S(c[α]) :=
(
L(A[α]),

(
R
S(c[α])
i

)
1≤i≤k

)
, where

Ri := {(t1, . . . , tri) | 〈t1, . . . , tri〉 ∈ L(ARi [α])}. The set {α ∈ TΣ | L(α) 6= ∅} of all advices
that present a structure with respect to c is denoted by P c. The class that is presented by c

is {S(c[α]) | α ∈ P c}.

3 Model Checking Revisited

Since the class of all words is uniformly tree-automatic it is clear by the previously mentioned
result of Frick and Grohe [12] that every algorithm that solves the model checking problem
for structures given by a uniformly tree-automatic presentation has an unavoidable non-
elementary worst-case runtime behaviour. On the other hand, for many important examples
of automatic structures the situation is much better. For instance it is known that the

F. Abu Zaid 10:5

Algorithm 1 Model Checking on Uniformly Tree-Automatic Classes.
Input: Tree-automatic presentation c = (A, (AR)R∈τ), FO-formula ϕ(x1, . . . , xm)
Output: Tree-automaton Aϕ
1: procedure Compose(c, ϕ)
2: if ϕ(x1, . . . , xm) = R(xi1 , . . . , xik), R ∈ τ ∪ {=} then
3: A′R ← Extend(AR,m, i1, . . . , ik)
4: AD ← Domain(A, m)
5: Aϕ ← Intersect(A′R, AD)
6: minimise Aϕ
7: return Aϕ
8: else if ϕ(x1, . . . , xm) = ψ(x1, . . . , xm) ∧ θ(x1, . . . , xm) then
9: Aψ ← Compose((A, (AR)R∈τ), ψ)

10: Aθ ← Compose((A, (AR)R∈τ), θ)
11: return Intersect(Aψ, Aθ)
12: else if ϕ(x1, . . . , xm) = ¬ψ(x1, . . . , xm) then
13: Aψ ← Compose((A, (AR)R∈τ), ψ(x1, . . . , xm))
14: AD ← Domain(A, r)
15: return Intersect(Aψ, AD)
16: else if ϕ(x1, . . . , xm) = ∃xm+1 : ψ(x1, . . . , xm+1) then
17: Aψ ← Compose((A, (AR)R∈τ), ψ(x1, . . . , xm))
18: A′ϕ ← Project(Aψ)
19: Aϕ ← Determinize(A′ϕ)
20: return Aϕ
21: end if
22: end procedure

first-order theory of Presburger Arithmetic can be decided in three-fold exponential time
[21]. It is therefore very natural to analyse the runtime of a given model checking algorithm
for automatic structures with respect to some fixed presentation.

In [6] Durand-Gasselin and Habermehl proposed a method to estimate the time that the
generic automata based model checking algorithm for structures given by a word-automatic
presentation needs when it is used to solve the first order theory of a single structure. They
showed that for certain presentations of (Z,+) the running time of the algorithm is only triply
exponential in the formula. Similar bounds where established for arbitrary word-automatic
presentations of structures of bounded degree.

In the following we want to extend their method to uniformly tree-automatic presentations
of classes of structures. Fortunately this generalization goes through very well because of the
nice analogue of the Myhill-Nerode congruence for regular tree-languages.

We start with a detailed description of the model checking algorithm on structures given
by an advice α from a uniform tree-automatic presentation c. Up to small optimizations it
resembles the standard algorithm that constructs from c, α, and ϕ(x1, . . . , xm) an automaton
Aϕ with L(Aϕ) = {〈α, t1, . . . , tm〉 | S(c[α]) |= ϕ(t1, . . . , tm)} by recursion over the structure
of ϕ. The exact procedure is given by Algorithm 1.

The subroutine Extend(AR,m, i1, . . . , ik) computes the minimal automaton that checks
on input 〈α, t1, . . . , tm〉 if 〈α, ti1 , . . . , tik〉 ∈ L(AR), that is if (ti1 , . . . , tik) ∈ RS(c[α]). The
subroutine Domain constructs the minimal tree-automaton that recognises exactly those trees
in TΣ×Γm that are convolutions of trees t0 ∈ TΣ and t1, . . . , tm ∈ TΓ such that t1, . . . , tm ∈

FSTTCS 2018

10:6 Uniformly Automatic Classes of Finite Structures

S(c[t0]). The subroutine Intersect(A1,A2) uses the standard product construction to
obtain an automaton A∩ with L(A∩) = L(A1)∩L(A2). Note that it is crucial for the runtime
analysis in the following section that we only construct the reachable states of the product
automaton. Finally Project(A) applies the projection (σ, γ1, . . . , γm+1) 7→ (σ, γ1, . . . , γm)
to the input alphabet of A, which yields a non-deterministic automaton, and Determinize(A)
uses the standart determinization preocedure for tree-automata (again omitting non-reachable
states).

4 A Presentation Aware Runtime Analysis

The main ingredient for the runtime analysis of Algorithm 1 is the marriage of the Ehrenfeucht-
Fraïssé relations (EF-relations) on the presented class of structures and the Myhill-Nerode
congruences on the languages which form the presentation. Ehrenfeucht-Fraïssé relations
were introduced by Fraïssé in his seminal work [11] as a purely combinatorial characterisation
of elementary equivalence. His ideas were later popularised by the appealing game-theoretic
presentation given by Ehrenfeucht in [7]. Even the possibility to bound the complexity of
certain logical theories using EF-relations was already present in these early works. This
technique was later systematically studied by Ferrante and Rackoff (see [9]). They used
EF-relations to give upper bounds on the complexity of first-order theories like Presburger
Arithmetic or the theory of one-to-one functions.

Klaetke used in [18] the ideas of Ferrante and Rackoff to bound the size of the automata
for linear arithmetic (R,+, <). Eisinger picked up the techniques and showed in [8] similar
bounds for a certain automata based presentation of mixed integer and mixed real addition,
respectively (we remark here that his way of presenting the structures by automata differs
slightly from our definition of an automatic presentation). Durand-Gasselin and Habermehl
recently showed that if a refinement of the EF-relations for a structure A is compatible with
an automatic presentation of A in the sense that these relations are congruences on the
encodings of the elements (with respect to concatenation) then the runtime of the standard
algorithm for solving the theory of an automatic structure can be bounded in terms of the
index of these relations. In this section we build upon their work and generalise their result
to classes with a uniform tree-automatic presentation. Therefore it is necessary to develop
a suitable notion of EF-congruences for our purposes. Besides switching from automatic
presentations to uniform tree-automatic presentations, there are a few subtle differences to
the definition in [6] in order to make the technique applicable for more presentations.

Let Σ be an advice alphabet and Γ be an input alphabet. In the following we write Σ̂m
for Σ× Γm

I Definition 4.1. Let c = (A, (AR)R∈τ) be a uniformly tree-automatic presentation of a
class C ⊆ Str(τ). An Ehrenfeucht-Fraïssé congruence (EF-congruence) for c is a collection of
equivalence relations (Erm)r,m∈N, where Erm ⊆ TΣ̂m × TΣ̂m and for all r,m ∈ N:
1. The relation Erm separates the trees in TΣ̂m that are a convolution of a tuple (α, t1, . . . , tm)

such that (t1, . . . , tm) represents a tuple of elements in S(c[α]) from those trees in TΣ̂m
that are not the convolution of such a tuple.

2. If t1, . . . , tm ∈ S(c[α]), t′1, . . . , t′m ∈ S(c[β]), and 〈α, t〉E0
m〈β, t

′〉 then (t1, . . . , tm) and
(t′1, . . . , t′m) satisfy the same atomic formulas in S(c[α]) and S(c[β]), respectively.

3. If sEr+1
m s′ for some s, s′ ∈ TΣ̂m then for all t ∈ TΓ there exists a t′ ∈ TΓ such that

〈s, t〉Erm+1〈s′, t′〉.
4. The relation Erm respects contexts, i.e. if tErmt′ for some t, t′ ∈ TΣ̂m then for all Σ̂m-

contexts c the trees c ◦ t and c ◦ t′ are also related by Erm.

F. Abu Zaid 10:7

For a function f : N→ N we say that an EF-congruence (Erm)r,m∈N is f(r +m) bounded if
the index of Erm is bounded by f(r +m) for all r,m ∈ N.

The EF-congruence (Erm)r,m∈N for a presentation c refines the first-order indistinguishably
relations (≡r)r∈N on the presented class C (recall that ≡r means indistinguishable by formulas
up to quantifier rank r). This can be shown using standard game theoretic arguments.

I Lemma 4.2. Let c be a uniform tree-automatic presentation of a class C and (Erm)r,m∈N
an EF-congruence with respect to c. Then for all α, α′ ∈ P c and t1, t

′
1 . . . , tm, t

′
m with

t1, . . . , tm ∈ S(c[α]) and t′1, . . . , t′m ∈ S(c[α′]) the following is true:

〈α, t1, . . . , tm〉Erm〈α′, t′1, . . . , t′m〉 ⇒ (S(c[α]), t1, . . . , tm) ≡r (S(c[α′]), t′1, . . . , t′m).

As mentioned before, an EF-congruence with respect to some parametrized tree-automatic
presentation connects the Myhill-Nerode-congruences of the languages involved in the present-
ation with the EF-relations on the presented class. We want to show that the runtime of
Algorithm 1 largely depends on how well these relations play along with each other.

I Theorem 4.3. Let c = (A, (AR)R∈τ) be a uniformly tree-automatic presentation of a class
of τ -structures. Suppose there is an f(r+m) bounded EF-congruence (Erm)r,m∈N for c. Then
for every ϕ(x1, . . . , xm) ∈ FO of quantifier rank r Algorithm 2 computes the automaton Aϕ
in time O(|ϕ|(|c|m+r · f(m+ r))c) for some constant c.

The proof is similar to [6]. We omit it here due to space constraints. In the following
section we will be concerned with classes of finite structures that arise as the closure under
direct products of a certain prime class. It ist not hard to see that if a class C is uniformly
tree-automatic then the same holds for the closure of C under direct products (see also [1]).
We close this section by showing that also the EF-congruences can (with a certain blow up
of the index) be lifted from the original presentation to a certain presentation of the direct
product closure.

I Definition 4.4. Let C be a class of τ -structures. Then C× denotes the closure of C under
direct products That is C× = {A1 × · · · × An | n ≥ 1,A1, . . . ,An ∈ C}.

I Lemma 4.5 (Abu Zaid, Grädel, Reinhardt [1]). Let C be a uniformly tree-automatic class
of structures. From a given tree-automatic presentation c of C one can effectively construct
tree-automatic presentations c× of C×.

Proof. Construction of (P×, c×): Suppose C is presented by the uniform tree-automatic
presentation c over the advice set P . As the construction is rather straightforward we only
give the parameter set for the presentation and the idea for the encoding. The parameter set
consists of all trees where the right child of every node in the left-most branch induces a
subtree which is in P . This is depicted in Figure 1. Such an advice presents the structure
S(c[α1]) × S(c[α2]) × · · · × S(c[αn]). Let t1, . . . , tn be elements of S(c[α1]), . . . ,S(c[αn]),
respectively. Then the element (t1, . . . , tn) is put together in the same way as the advices. J

In order to ease the process of analyzing the complexity of these presentations, we
introduce some notations. Let Γ be an alphabet with # 6∈ Γ. The n-context-tree t#n is the
tree with domain dom(t#n) = {0k | k < n} ∪ {0k1 | k + 1 < n} and labeling

t#n (w) =


; if w ∈ {0}<n

ci+1 ; if w = 0i1, with 0 ≤ i < n− 1
cn ; if w = 0n−1.

FSTTCS 2018

10:8 Uniformly Automatic Classes of Finite Structures

· ·
·

α1

...α2

...α3

...

Figure 1 The Parameters for the class C×.

With T#,n
Γ we denote the set of all trees that are obtained from t#n by replacing all contexts

with trees from TΓ, that is T#,n
Γ = {t#n [c1/t1, . . . , cn/tn] | t1, . . . , tn ∈ TΓ}. Finally let T#

Γ be
the union of all sets T#,n

Γ with n ≥ 1.

I Theorem 4.6. Let c be a uniformly tree-automatic presentation of a class C with associated
f(r + m) bounded EF-congruences (Erm)r,m∈N. Then there is a uniformly tree-automatic
presentation of C× with associated 2O((r+m)f(r+m) log(f(r+m))) bounded EF-congruences.

Proof. Let c× be the presentation of C× that is derived from c by the construction from
Lemma 4.5. Recall that if P is the set of advice trees for the presentation c and α1, . . . , αn ∈ P ,
then the structure S(c[α1])×· · ·×S(c[αn]) is presented by the advice t#n [c1/α1, . . . , cn/αn] and
an element (t1, . . . , tn) ∈ S(c[α1])×· · ·×S(c[αn]) is represented by the tree t#n [c1/t1, . . . , cn/tn],
where # is a newly introduced letter.

For all r,m ∈ N we define a relation ∼rm on T(Σ∪{#})×(Γ∪{#})m , where t ∼rm t′ if, and
only if, one of the following conditions is true:
1. There are no n, n′ such t and t′ are the convolution of well-formed trees α ∈ T#,n

Σ , t1, . . . , tm

∈ T#,n
Γ and α′ ∈ T#,n′

Σ , t′1, . . . , t
′
m ∈ T

#,n′
Γ , respectively.

2. There are n, n′ such t and t′ are the convolution of well-formed trees α ∈ T#,n
Σ , t1, . . . , tm ∈

T#,n
Γ and α′ ∈ T#,n′

Σ , t′1, . . . , t
′
m ∈ T#,n′

Γ , respectively. That is we can write t =
〈t#n [c1/α1, . . . , cn/αn], t#n c1/t1,1, . . . , cn/t1,n], , t#n [c1/tm,1, . . . , cn/tm,n]〉 and also
t′ = 〈t#n′ [c1/α′1, . . . , cn′/α′n′], t

#
n′ [c1/t′1,1, . . . , cn′/t′1,n′], , t

#
n′ [c1/t′m,1, . . . , cn′/t′m,n′]〉.

Then t ∼rm t′ if for all Erm equivalence classes κ: |{i | 1 ≤ i ≤ n, [〈αi, t1,i, . . . , tm,i〉]Erm =
κ}| =f(r+m)r |{i | 1 ≤ i ≤ n,′ [〈α′i, t′1,i, . . . , tm,i〉′]Erm = κ}|.

One easily checks that ∼rm is an equivalence relation with index bounded by

(f(r +m)r+m + 1)f(r+m) + 1 ∈ 2O((r+m)f(r+m) log f(r+m))

for all r,m ∈ N. What is left is to verify is that (∼rm)r,m∈N is indeed an EF-congruence of
c×. Therefore we check that the collection (∼rm)r,m∈N has the Properties 1 - 4 described in
Definition 4.1. This is done in the lemmata below.

I Lemma 4.7. The relation ∼rm separates the trees that are the convolution of a tuple
(α, t1, . . . , tn) such that (t1, . . . , tm) represents a tuple of elements in S(c×[α]) from those
trees that are not the convolution of such a tuple.

Proof. Suppose t = 〈α, t1, . . . , tm〉 is a convolution of a tuple with α ∈ P c× and (t1, . . . , tm) ∈
S(c×[α]) and suppose t′ is not the convolution of such a tuple. If t′ is not a convolution, then
none of the two conditions holds for t and t′ and they are not equivalent. Otherwise there are n,

F. Abu Zaid 10:9

n′ ≥ 1 with t = 〈t#n [c1/α1, . . . , cn/αn], t#n [c1/t1,1, . . . , cn/t1,n], . . . , t#n [c1/tm,1, . . . , cn/tm,n]〉
and t′=〈t#n′ [c1/α′1,. . . , cn′/α′n′],t

#
n′ [c1/t′1,1, . . . , cn′/t′1,n′], . . . ,t

#
n′ [c1/t′m,1, . . . , cn′/t′m,n′]〉.

From our assumption about t and t′ we know that αi ∈ P c and t1,i, . . . tm,i ∈ S(c[αi]) for
all 1 ≤ i ≤ n and there is a 1 ≤ j ≤ n′ with α′j 6∈ P c or α′j ∈ P c but t′`,j 6∈ S(c[αi]) for some
1 ≤ ` ≤ m.

But then 〈αi, t1,i, . . . , tm,i〉 6Erm〈α′j , t′1,j , . . . , t′m,j〉, since the relation Erm fulfils Property 1
of Definition 4.1. Hence t and t′ do not fulfil condition 2 and therefore t 6∼rm t′. J

I Lemma 4.8. If t1, . . . , tm ∈ S(c[α]), t′1, . . . , t′m ∈ S(c[β]), and 〈α, t〉 ∼0
m 〈β, t

′〉 then
(t1, . . . , tm) and (t′1, . . . , t′m) satisfy the same atomic formulas in S(c[α]) and S(c[β]), respect-
ively.

Proof. Suppose
α = t#n [c1/α1, . . . , cn/αn], β = t#k [c1/β1, . . . , ck/βk] ∈ P c× ,
ti = t#n [c1/ti,1, . . . , cn/ti,n] ∈ S(c×[α]) for i ∈ {1, . . . ,m}, and
t′i = t#k [c1/t′i,1, . . . , ck/t′i,k] ∈ S(c×[β]) for i ∈ {1, . . . ,m}.

We show that if (t1, . . . , tm) and (t1, . . . , t′m) do not fulfil the same atomic propositions in
S(c×[α]) and S(c×[β]), respectively, then they are not ∼0

m-equivalent. Consider an arbitrary
atomic formula Rxi1 . . . xir and suppose S(c×[α]) |= Rti1 . . . , tir and S(c×[α′]) 6|= Rt′i1 . . . , t

′
ir
.

Then by definition S(c[αj]) |= Rtj,i1 . . . tj,ir for all 1 ≤ j ≤ n but S(c[β`]) 6|= Rt′`,i1 . . . t
′
`,ir

for some 1 ≤ ` ≤ k. Consequently 〈αj , tj,1, . . . , tj,m〉 6E0
m〈β`, t`,1, . . . , t`,m〉 for all 1 ≤ j ≤ n

and therefore 〈α, t1, . . . , tm〉 6∼0
m 〈β, t′1, . . . , t′m〉. J

I Lemma 4.9. If s ∼r+1
m s′ then for all t ∈ T(Γ∪{#}) there exists a t′ ∈ T(Γ∪{#}) such that

〈s, t〉 ∼rm+1 〈s′, t′〉.

Proof. Let s, s′ be two trees from T(Σ∪{#})×(Γ∪{#})m such that s ∼r+1
m s′ and t ∈ T(Γ∪{#}).

Then s = 〈t#n [c1/α1, · · · , cn/αn], t#n [c1/t1,1, · · · , cn/t1,n], . . . , t#n [c1/tm,1, · · · , cn/tm,n]〉 and
s′ = 〈t#k [c1/α′1, · · · , ck/α′k], t#k [c1/t′1,1, · · · , ck/t′1,k], . . . , t#k [c1/t′m,1, · · · , ck/t′m,k]〉 for some
n, k ≥ 1 and trees αi, α′j ∈ TΣ and ti,j , t′s,t ∈ TΓ. Let tm+1 be an arbitrary tree from T(Γ∪{#}).
If tm+1 6∈ T#,n

Γ take some tree t′m+1 that is not in T#,k
Γ . Then 〈s, tm+1〉 ∼rm 〈s′,′ t′m+1〉

because of Condition 1. Otherwise tm+1 = t#n [c1/tm+1,1, . . . cn/tm+1,n]. For every Erm
equivalence class κ let κ(s) = {i ∈ {1, . . . , n} | [〈αi, si,1, . . . , si,m〉]Erm = κ}.

Let Xκ
1 , . . . , X

κ
`κ

be the partition of κ(s) with respect to the Erm+1 equivalence classes
of {〈α, t1,i, . . . , tm+1,i〉 | i ∈ κ(t)}. Because s ∼r+1

m s′ it is ensured that |κ(s)| =f(m+r+1)r+1

|κ(s′)| and therefore we can find a partition Y κ1 , . . . , Y κ`κ of κ(s′) with |Xκ
i | =f(r+m+1)r |Y κi |

(if |κ(s)| < f(m + r + 1)r+1 partition κ(s′) according to some bijection between κ(s) and
κ(s′). Otherwise, because `κ < f(m+r+1) there is at least one Xκ

i with |Xκ
i | ≥ f(m+r+1)

which also ensures that we can find such a partition).
By construction, 〈α, t1,i, . . . , tm,i〉Er+1

m 〈α′, t′1,j , . . . , t′m,j〉 whenever i ∈ Xκ
k and j ∈ Y κk .

Thus 〈α, t1,i, . . . , tm+1,i〉Erm+1〈α′, t′1,j , . . . , t′m+1,j〉 for some appropriate t′m+1,j . Now choose
t′m+1 = t#k [c1/t′m+1,1, . . . , ck/t

′
m+1,k]. By construction 〈s, tm+1〉 ∼rm+1 〈s′, t′m+1〉 due to

Condition 2. J

In order to show that Property 4 is fulfilled, it is convenient to define a special kind
of convolution for contexts. For i ∈ {1, . . . , n} let ci be an Γi-context such such that
domc1 = · · · = domcn =: dom and c−1

1 (x) = · · · = c−1
n (x) =: wx. Then 〈c1, . . . , cn〉c is the

(Γ1 × · · · × Γn)-context with dom(〈c1, . . . , cn〉c) = dom and

〈c1, . . . , cn〉c(w) =
{

(γ1, . . . , γn) if w 6= wx,

x otherwise.

FSTTCS 2018

10:10 Uniformly Automatic Classes of Finite Structures

I Lemma 4.10. The relations (∼rm)r,m∈N respect contexts.

Proof. Suppose s ∼rm s′ and let c be a ((Σ ∪ {#})× (Γ ∪ {#})m)-context. We can assume
that s and s′ are equivalent due to Condition 2 and that

c = 〈t#n [c1/α1, . . . , cn/αn], t#n [c1/t1,1, . . . , cn/t1,n], . . . , t#n [c1/tm,1, . . . , cn/tm,n]〉c

for some n ≥ 1 and 〈αi, t1,i, . . . tm,i〉c is a (Σ × Γm)-context for exactly one 1 ≤ i ≤ n

(because in any other case c ◦ t and c ◦ t′ are equivalent by Condition 1). Fix this i and let
c′ := 〈αi, t1,i, . . . tm,i〉. There two cases that we need to consider. First if s, s′ are elements of
T#,1

Σ ⊗ (T#,1
Γ)⊗m (= TΣ ⊗ (TΓ)⊗m). Then the requirement of Condition 2 reduces to sErms′.

But then c′ ◦ tErmc′ ◦ s′ and hence c ◦ s ∼rm c ◦ s′. Otherwise we can even assume that

c = 〈t#n [c1/α1, . . . , cn/x], t#n [c1/t1,1, . . . , cn/x], . . . , t#n [c1/tm,1, . . . , cn/x]〉c

(again otherwise we would get equivalence by Condition 1). But then

c ◦ s = 〈t#n+k−1[c1/α1, . . . , cn−1/αn−1, cn/β1, . . . , cn+k−1/βk],

t#n+k−1[c1/t1,1, . . . , cn−1/t1,n−1, cn/s1,1, . . . , cn+k−1/s1,k],
...

t#n+k−1[c1/tm,1, . . . , cn−1/tm,n−1, cn/sm,1, . . . , cn+k−1/sm,k]〉

and

c ◦ s′ = 〈t#n+k−1[c1/α1, . . . , cn−1/αn−1, cn/β
′
1, . . . , cn+k−1/β

′
k′],

t#n+k−1[c1/t1,1, . . . , cn−1/t1,n−1, cn/s
′
1,1, . . . , cn+k−1/s

′
1,k′],

...

t#n+k−1[c1/tm,1, . . . , cn−1/tm,n−1, cn/s
′
m,1, . . . , cn+k−1/s

′
m,k′]〉

Using that s and s′ are equivalent by Condition 2, it is easy to see that also c ◦ t and c ◦ t′
are equivalent. J

The preceding lemmata show that (∼rm)r,m∈N is an EF-congruence for c×, which completes
the proof of Theorem 4.6. J

Another important class of operations under which uniform tree-automatic presentations
are closed are parametrised first-order interpretations. Also in this case the complexity of
the EF-congruence grows rather tamely under these operations.

I Lemma 4.11. Let c be a uniformly tree-automatic presentation of a class C of τ -structures
and I be a parametrised τ -to-σ-interpretation of width ` that interprets for every A ∈ C a
structure I(A). Further let c be the maximal quantifier rank of any of the formulas in I. If
there is an f(r + m) bounded EF-congruence for c then there is a uniform tree-automatic
presentation Ic of the class IC = {IA(a) | A ∈ C, a ∈ A} with g(r+m) := f((`+c)(r+m)+c)
bounded EF-congruence.

F. Abu Zaid 10:11

5 FPT Model Checking With Elementary Parameter Dependence

The runtime analysis from Section 3 not only enables us to show that first-order model
checking is fixed parameter tractable on several classes of finite structures, but also gives us
elementary bounds on the parameter dependence. In the following we write expk(x) for the
k-fold tower of twos function applied to x, that is exp0(x) = x and expk+1(x) = 2expk(x).

I Theorem 5.1. Let c be a uniformly tree-automatic presentation such that Algorithm 2
computes in time T (|ϕ|) from c the corresponding automaton Aϕ. Suppose for a class of
finite structures C there is a function f : code(C) → Γ∗ that computes in time F (|w|) for
every w ∈ code(A) with A ∈ C a tree α with A ∼= S(c[α]). Then FO model checking on C is
decidable in time O(T (|ϕ|) · |f(w)|+ F (|w|)).

Proof. The runtime is achieved by the straight forward method of checking whether Aϕ
accepts f(w). J

5.1 Boolean Algebras
Our simplest application of Theorem 4.6 and Theorem 5.1 is for the class of all finite Boolean
algebras. It is well known that every finite Boolean algebra is isomorphic to a finite direct
power of the two element Boolean algebra. Especially, every finite Boolean algebra contains
exactly 2n elements for some n ≥ 1 and every finite Boolean algebra is uniquely determined
by the number of elements. Because of this simple structure it is natural to consider succinct
encodings of Boolean algebras as inputs. In the following we will assume that a Boolean
algebra is given by the number of atoms, encoded in unary. In other words, a finite Boolean
algebra B = (B,∩,∪, ,0,1) is encoded by the string 1log |B|.

I Theorem 5.2. First-order model checking is fixed parameter tractable on the class of all
finite Boolean algebras. Given a Boolean algebra B and an FO sentence ϕ one can decide in
time exp2(poly(|ϕ|)) log |B| whether B |= ϕ.

Proof. The class that contains just the Boolean algebra B2 = ({0,1},∩,∪, ,0,1) has the
trivial automatic presentation c over the advice alphabet Σ = {a} and the alphabet Γ = {0, 1}.
The advice a (the tree of height 0 where the root is labeled with a) represents B2 and the
elements 0 and 1 are represented by 0 and 1, respectively. One checks that the relations
(Erm)r,m∈N where Erm is simply the identity relation on TΣ̂m are an EF-congruence with
respect to c and the index of Erm is bounded by f(r +m) = 2r+m + 2 for all r,m ∈ N .

As mentioned before, every finite Boolean algebra is a finite direct product of B2 and hence
c× is a uniform presentation of the class of all finite Boolean algebras. According to Theorem
4.6, c× has an EF-congruence bounded by f ′(r + m) ∈ 2O((r+m+1)(2r+m+2) log(2r+m+2)) ⊆
22poly(|ϕ|) . Using Theorem 5.1, we conclude that for a sentence ϕ of quantifier-rank r Algorithm
1 constructs the corresponding automaton Aϕ in time O

(
|ϕ|
(
|c×|m+r · 22poly(|ϕ|)

)c)
⊆

22poly(|ϕ|) (because |c×| is constant). Note that the Boolean algebra with n atoms is represented
by the tree t#n [c1/a, . . . , cn/a] in c×. We can therefore transform the encoding of the Boolean
algebra into the tree-representation in linear time. Finally the claim follows from Theorem
5.1. J

With respect to the height of the tower of twos in the parameter dependence this result
is probably optimal, as stated by the following theorem.

I Theorem 5.3. Unless
⋃
c∈N STA(∗, 2cn, n) = EXP there is no algorithm that solves the

model checking problem for finite Boolean algebras in time 2poly(|ϕ|) · log |B|.

FSTTCS 2018

10:12 Uniformly Automatic Classes of Finite Structures

Proof. It is known that the theory of all finite Boolean algebras is complete for the complexity
class

⋃
c∈N STA(∗, 2cn, n). Further, using Lemma 4.2 and the computations of Theorem 5.2,

we see that there is a constant c such that if B and B′ are two Boolean algebras with at
least 2rc many atoms then B ≡r B′. To check that a sentence ϕ of quantifier rank r belongs
to the theory of finite Boolean algebras it is sufficient to check whether every finite Boolean
algebra with at most 2rc many atoms models ϕ. If we could perform model-checking in
time O(2poly |ϕ| · log |B|) we could hence solve the theory of finite Boolean algebras in time
O
(

2poly(|ϕ|) ·
∑2r

c

i=1 i
)
⊆ 2poly(|ϕ|), which implies

⋃
c∈N STA(∗, 2cn, n) = EXP. J

I Remark. Needless to say than an analogue of Theorem 5.2 also holds if the Boolean algebra
is encoded traditionally by the multiplication tables of the operators. Obviously one can
compute the succinct encoding from the traditional encoding efficiently by simply counting
the number of atoms.

However, one could also argue that our encoding for the Boolean algebras is not optimal.
Indeed a finite Boolean algebra B can be encoded by a word of length dlog log |B|e when we
encode the number of atoms by its binary expansion. In this case our algorithm would not
have a polynomial runtime in the size of the encoding of the structure because the advice
would be of exponential size. However we could slot in a kernelisation procedure ahead. As
we already explained in the proof of Theorem 5.3, there is a fixed polynomial p such that all
finite Boolean algebras with at least 2p(k) atoms are indistinguishable by a first-order Formula
of quantifier rank at most k. In turn we can compute for a given finite Boolean Algebra B

and a natural number k an advice α of size O
(

22p(k)
)
such that S(c[α]) ≡k B (where c is

the presentation of the finite Boolean algebras constructed in Theorem 5.2). Because we are
more interested in the application of automata based presentations than on encoding issues
we will not work out the details here.

5.2 Finite Groups
Probably a bit more interesting is the class of all finite groups. In [10], Grohe posed the
question on which classes of finite groups first-order model checking is fixed parameter
tractable. In order to tackle this question we propose a structural parameter on finite groups.
The Remak-Krull-Schmidt Theorem [16] states that a factorization of G = G1⊗G2⊗· · ·⊗Gn
into indecomposable subgroups Gi is unique up to permutation and isomorphism of the
occurring subgroups for any finite group G. Therefore the size of the largest non-abelian
subgroup in such a factorisation is uniquely determined. This leads to the following parameter.

I Definition 5.4. Let G be a finite group. The non-abelian decomposition width of G is
dw(G) = max({|G′| | G′ is non-abelian, indecomposable, and G ∼= G′ ⊕ G′′}) the size of a
maximal non-abelian indecomposable factor of G.

Note that the finite abelian groups are exactly the groups with non-abelian decomposition
width one. As for the case of Boolean algebras, finite abelian groups have a quite simple
structure. By the classification of finitely generated abelian groups every finite abelian group
G is isomorphic to a finite sum of finite cyclic groups. That is G ∼= Zn1 ⊕ · · · ⊕ Znk for
some k ≥ 1 and n1, . . . , nk ≥ 1. Hence, a finite abelian group can be encoded by a sequence
of natural numbers (n1, . . . , nk). Bova and Martin have independently shown in [2] that
first-order model-checking is FPT on the class of all finite abelian groups. Their algorithm
uses a quantifier elimination procedure. However, their analysis of the algorithm only yields
a non-elementary parameter dependence. We will show that the automata based approach
yields an algorithm with elementary parameter dependence.

F. Abu Zaid 10:13

Algorithm 2 Decomposing a Finite Abelian Group into Cyclic Factors.
Input: Finite abelian group G

Output: String bin(n1)# · · ·# bin(nk) such that G ∼= Zn1 ⊕ · · · ⊕ Znk
procedure Decompose(G)

Compute g with |g| maximal in G

if 〈g〉 = G then
return bin(|g|)

else
w ← Decompose(G/〈g〉)
return bin(|g|)#w

end if
end procedure

I Theorem 5.5. FO-model-checking is FPT on the class of all finite abelian groups. More
precisely one can decide given a finite abelian group G and a formula ϕ ∈ FO in time
O (exp4(poly(|ϕ|)) · log |G|)) whether G |= ϕ.

Proof. Durand-Gasselin and Habermehl gave in an automatic presentation d of Presburger
arithmetic and proved that there is a f(m+ r) = exp3(c(m+ r)) bounded EF-congruence
with respect to d for some c ∈ N [6, Lemma 15].

We construct a uniform presentation of all finite cyclic groups from d by a parametrised
first-order interpretation I = (δ(n, x), ϕ◦(n, x, y, z)) in Presburger Arithmetic. It is a well
known fact that such an interpretation exists. Then I(N,+)(n) ∼= Zn for all n ∈ N and
therefore Id is a uniform presentation of the class of all finite cyclic groups. By Lemma
4.11 there is a constant c′ such that Id has a g(r + m) = exp3(c′(r + m)) bounded EF-
congruence. Further (Id)× is a uniform presentation of the class of all finite abelian groups
and Theorem 4.6 tells us that it has a (g(r + m)r)g(r+m) ∈ exp4(poly(|ϕ|)) bounded EF-
congruence. Note that in (Id)× a group G ∼= Zn1 ⊕ · · · ⊕ Znk is represented by the tree
t#k [c1/ binR(n1), . . . , ck/ binR(nk)] (The presentation in [6] uses binary encoding). Of course
this tree can trivially be computed in linear time from the encoding (n1, . . . , nk) of G. By
applying Theorem 5.1 we conclude that our algorithm solves the model-checking problem for
finite abelian groups in time O (exp4(poly(|ϕ)) · log |G|). J

I Remark. Although the encoding of an abelian group by the orders of its cyclic factors makes
it trivial to compute the tree-presentation because it makes the relevant structural properties
of the group explicit, it is still true that an analog of Theorem 5.5 holds if the group is encoded
by its multiplication table. Indeed Algorithm 2 provides a simple procedure to compute the
cyclic factors of the group in linear time. To see this, note that if g is an element of maximal
order in a finite abelian group G then G ∼= 〈g〉⊕G/〈g〉. The Algorithm 2 therefore computes
a representant of a decomposition of G into cyclic factors. The computation of an element
with maximal order can be done in time O(|G|2) by computing the order of every element.
The group G/〈g〉 can also be computed in time O(|G|2) by computing the multiplication
table on the cosets of 〈g〉. Finally the procedure Decompose(G) is called at most log2(|G|)
times because |G/〈g〉| = |G|/|g|. Together this gives a running time of O(|G|2 · log(|G|)),
which is linear in the size of the multiplication table.

Finally, we turn our attention to encoding issues. As it was the case for Boolean algebras,
there is an encoding of finite abelian groups, which in some cases allows for a considerably
more succinct presentation. More precisely an abelian group G ∼= (Zn1)k1 × · · · × (Zn`)k`

FSTTCS 2018

10:14 Uniformly Automatic Classes of Finite Structures

can be encoded by the tuple of pairs ((n1, k1), . . . , (n`, k`)). Again, using this encoding we
would not directly obtain an FPT-algorithm from our method. However, using the same
argument as for the Boolean algebras, for some fixed polynomial p we can truncate the second
components of each pair to exp3(p(r)) in a preprocessing step, where r is the quantifier rank
of the formula under consideration. Again we will leave the details of this approach to the
reader.

We extend our ideas from abelian groups to groups of bounded non-abelian decomposition
width.

I Theorem 5.6. First-order model checking is FPT on the class of all finite groups with
bounded non-abelian decomposition width. More precisely there exists a constant c such that
we can decide in time O(exp4(poly(|ϕ|)) · log |G|+ |G|c) whether G |= ϕ.

5.3 Graphs of bounded Tree-Depth and MSO Model Checking

Algorithmic meta-theorems for MSO are particularly interesting because MSO is capable of
defining many NP-complete problems such as 3-colourability. The most famous result of this
kind is probably the theorem of Courcelle that every MSO-definable query can be decided in
linear time on the class of all graphs with treewidth at most c for any given constant c ∈ N
[5]. Because trees have treewidth one, it is immediately clear that the parameter dependence
in Courcelle’s Theorem must be non-elementary. Tree-depth is another parameter on graphs
that has recently drawn quite some attention. Tree-depth is a more restrictive parameter than
treewidth. Indeed, every class of graphs of bounded tree-depth has also bounded treewidth
but there are classes of graphs of bounded treewidth that have unbounded tree-depth. It was
shown by Gajarský and Hliněný that, in terms of the parameter dependence, MSO-model-
checking can be performed significantly faster on graphs of bounded tree-depth [13]. Their
algorithm relies on kernelisation to perform fast MSO-model-checking on trees of bounded
depth. However, transferring their arguments into our framework reveals that no specialised
algorithm is needed to achieve this runtime.

I Definition 5.7. The tree-depth of a graph G = (V,E) is recursively defined as

td(G) :=


1, if |V | = 1
min{td(G � V \ {v}) | v ∈ V }+ 1 if G is connected and |V | > 1
max1≤i≤n td(Gi) G has components G1, . . . , Gn

An equivalent characterisation is the minimal height of a rooted forest such that G is
isomorphic to a subgraph of the symmetric closure of the ancestor-descendant graph of that
forest.

Again a straight forward encoding yields for every h > 0 a uniformly automatic presentation
of the class of all graphs of tree-depth at most h. Translating the ideas of [13] into our
framework shows that our generic algorithm performs just as good as the best known
specialized algorithms.

I Theorem 5.8. The MSO model checking problem for graphs of tree-depth at most h is
fixed parameter tractable. Given an MSO sentence ϕ and a graph G of tree-depth at most h
one can decide in time O

(
exp(h+2)(poly(|ϕ|)) · poly(|G|)

)
whether G |= ϕ.

F. Abu Zaid 10:15

References
1 Faried Abu Zaid, Erich Grädel, and Frederic Reinhardt. Advice Automatic Structures

and Uniformly Automatic Classes. In 26th EACSL Annual Conference on Computer Sci-
ence Logic (CSL 2017), 2017. URL: http://www.logic.rwth-aachen.de/pub/abuzaid/
AbuGraRei17.pdf.

2 Simone Bova and Barnaby Martin. First-Order Queries on Finite Abelian Groups. In
Stephan Kreutzer, editor, 24th EACSL Annual Conference on Computer Science Logic
(CSL 2015), volume 41 of Leibniz International Proceedings in Informatics (LIPIcs), pages
41–59, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.CSL.2015.41.

3 Thomas Colcombet and Christof Löding. Transforming structures by set interpretations.
CoRR, abs/cs/0703039, 2007. arXiv:cs/0703039.

4 B. Courcelle, J. A. Makowsky, and U. Rotics. Linear Time Solvable Optimization Problems
on Graphs of Bounded Clique-Width. Theory Comput. Systems, 33(2):125–150, April 2000.
doi:10.1007/s002249910009.

5 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of fi-
nite graphs. Information and Computation, 85(1):12–75, March 1990. doi:10.1016/
0890-5401(90)90043-H.

6 Antoine Durand-Gasselin and Peter Habermehl. Ehrenfeucht-Fraïssé goes elementarily
automatic for structures of bounded degree. In Christoph Dürr and Thomas Wilke, editors,
29th International Symposium on Theoretical Aspects of Computer Science, STACS 2012,
February 29th - March 3rd, 2012, Paris, France, volume 14 of LIPIcs, pages 242–253.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012. doi:10.4230/LIPIcs.STACS.
2012.242.

7 Andrzej Ehrenfeucht. An application of games to the completeness problem for formalized
theories. Fundamenta Mathematicae, 49(2):129–141, 1961. URL: https://eudml.org/
doc/213582.

8 Jochen Eisinger. Upper Bounds on the Automata Size for Integer and Mixed Real and
Integer Linear Arithmetic (Extended Abstract). In Michael Kaminski and Simone Martini,
editors, Computer Science Logic, number 5213 in Lecture Notes in Computer Science, pages
431–445. Springer Berlin Heidelberg, September 2008. DOI: 10.1007/978-3-540-87531-4_31.
URL: http://link.springer.com/chapter/10.1007/978-3-540-87531-4_31.

9 Jeanne Ferrante and Charles W. Rackoff. The Computational Complexity of Logical Theor-
ies, volume 718 of Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1979. URL:
http://link.springer.com/10.1007/BFb0062837.

10 JÖRG Flum, ERICH Grädel, and THOMAS Wolke, editors. Logic and Automata: His-
tory and Perspectives. Amsterdam University Press, 2008. URL: http://www.jstor.org/
stable/j.ctt46mv83.

11 Roland Fraïssé. Sur l’extension aux relations de quelques propriétés des ordres. Annales
scientifiques de l’École Normale Supérieure, 71(4):363–388, 1954. URL: https://eudml.
org/doc/81696.

12 M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic revis-
ited. In 17th Annual IEEE Symposium on Logic in Computer Science, 2002. Proceedings,
pages 215–224, 2002. doi:10.1109/LICS.2002.1029830.

13 Jakub Gajarsky and Petr Hlineny. Faster Deciding MSO Properties of Trees of Fixed
Height, and Some Consequences. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar
Radhakrishnan, editors, IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2012), volume 18 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 112–123, Dagstuhl, Germany, 2012. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.FSTTCS.2012.112.

FSTTCS 2018

http://www.logic.rwth-aachen.de/pub/abuzaid/AbuGraRei17.pdf
http://www.logic.rwth-aachen.de/pub/abuzaid/AbuGraRei17.pdf
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.41
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.41
http://arxiv.org/abs/cs/0703039
http://dx.doi.org/10.1007/s002249910009
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.242
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.242
https://eudml.org/doc/213582
https://eudml.org/doc/213582
http://link.springer.com/chapter/10.1007/978-3-540-87531-4_31
http://link.springer.com/10.1007/BFb0062837
http://www.jstor.org/stable/j.ctt46mv83
http://www.jstor.org/stable/j.ctt46mv83
https://eudml.org/doc/81696
https://eudml.org/doc/81696
http://dx.doi.org/10.1109/LICS.2002.1029830
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.112

10:16 Uniformly Automatic Classes of Finite Structures

14 Martin Grohe. Logic, Graphs, and Algorithms. Electronic Colloquium on Computational
Complexity (ECCC), 14(091), 2007. URL: http://eccc.hpi-web.de/eccc-reports/
2007/TR07-091/index.html.

15 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding First-order Properties
of Nowhere Dense Graphs. In Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, STOC ’14, pages 89–98, New York, NY, USA, 2014. ACM. doi:10.1145/
2591796.2591851.

16 Thomas W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics.
Springer New York, New York, NY, 1980. URL: http://link.springer.com/10.1007/
978-1-4612-6101-8.

17 Neeraj Kayal and Timur Nezhmetdinov. Factoring Groups Efficiently. In International
Colloquium on Automata, Languages and Programming (ICALP), volume 5555 of Lecture
Notes in Computer Science. Springer Verlag, 2009. URL: http://research.microsoft.
com/apps/pubs/default.aspx?id=102435.

18 Felix Klaedtke. Ehrenfeucht–Fraïssé goes automatic for real addition. Information and
Computation, 208(11):1283–1295, November 2010. doi:10.1016/j.ic.2010.07.003.

19 Dietrich Kuske and Markus Lohrey. Automatic structures of bounded degree revisited. J.
Symbolic Logic, 76(4):1352–1380, December 2011. doi:10.2178/jsl/1318338854.

20 Alexander Langer, Felix Reidl, Peter Rossmanith, and Somnath Sikdar. Evaluation of an
MSO-Solver. In David A. Bader and Petra Mutzel, editors, ALENEX, pages 55–63. SIAM
/ Omnipress, 2012. URL: http://dblp.uni-trier.de/db/conf/alenex/alenex2012.
html#LangerRRS12.

21 Derek C. Oppen. A 222pn upper bound on the complexity of Presburger Arithmetic. Journal
of Computer and System Sciences, 16(3):323–332, June 1978. doi:10.1016/0022-0000(78)
90021-1.

22 Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar. A Faster
Parameterized Algorithm for Treedepth. In Javier Esparza, Pierre Fraigniaud, Thore Hus-
feldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming, number
8572 in Lecture Notes in Computer Science, pages 931–942. Springer Berlin Heidelberg, July
2014. DOI: 10.1007/978-3-662-43948-7_77. URL: http://link.springer.com/chapter/
10.1007/978-3-662-43948-7_77.

23 Detlef Seese. Linear Time Computable Problems and First-Order Descriptions. Mathem-
atical Structures in Computer Science, 6(6):505–526, 1996.

A Proofs Omitted from Section 4

In order to analyse Algorithm 1 with respect to the given presentation, we observe the
following runtime bounds for the subroutines. We omit the proofs here as they are easily
obtainable by a straight forward analysis of the respective routines.

I Lemma A.1. The procedure Intersect(A1,A2) computes a tree-automaton A with s
states and L(A) = L(A1)∩L(A2) in time O(|Γ| ·s2), where s is the number of states reachable
from the initial state in the product automaton A1 ×A2.

I Lemma A.2. The procedure Determinize(A) computes a deterministic tree-automaton
A′ with s states and L(A′) = L(A) in time O(|Γ| · s2), where s is the number of states
reachable from the initial state in the power set automaton of A.

I Lemma A.3. Let Γ be a ranked alphabet, ∼ an equivalence relation on TΓ, and A1 =
(Q1,Γ, δ1, q01, F1), A2 = (Q1,Γ, δ1, q01, F1) tree-automata. Suppose t ∼ t′ implies δ∗i (t) =
δ∗i (t′) for all i ∈ {1, 2} and for all t, t′ ∈ TΓ. Then the number of reachable states from the
initial state in A1 ×A2 is bounded by the index of ∼.

http://eccc.hpi-web.de/eccc-reports/2007/TR07-091/index.html
http://eccc.hpi-web.de/eccc-reports/2007/TR07-091/index.html
http://dx.doi.org/10.1145/2591796.2591851
http://dx.doi.org/10.1145/2591796.2591851
http://link.springer.com/10.1007/978-1-4612-6101-8
http://link.springer.com/10.1007/978-1-4612-6101-8
http://research.microsoft.com/apps/pubs/default.aspx?id=102435
http://research.microsoft.com/apps/pubs/default.aspx?id=102435
http://dx.doi.org/10.1016/j.ic.2010.07.003
http://dx.doi.org/10.2178/jsl/1318338854
http://dblp.uni-trier.de/db/conf/alenex/alenex2012.html#LangerRRS12
http://dblp.uni-trier.de/db/conf/alenex/alenex2012.html#LangerRRS12
http://dx.doi.org/10.1016/0022-0000(78)90021-1
http://dx.doi.org/10.1016/0022-0000(78)90021-1
http://link.springer.com/chapter/10.1007/978-3-662-43948-7_77
http://link.springer.com/chapter/10.1007/978-3-662-43948-7_77

F. Abu Zaid 10:17

I Theorem 4.3. Let c = (A, (AR)R∈τ) be a uniformly tree-automatic presentation of a class
of τ -structures. Suppose there is an f(r+m) bounded EF-congruence (Erm)r,m∈N for c. Then
for every ϕ(x1, . . . , xm) ∈ FO of quantifier rank r Algorithm 2 computes the automaton Aϕ
in time O(|ϕ|(|c|m+r · f(m+ r))c) for some constant c.

Proof. We prove the claim by induction over the structure of ϕ. Actually we prove an
extended claim, namely that the procedure computes the automaton Aϕ in the given time
and Aϕ has the property δ∗Aϕ(t) = δ∗Aϕ(t′) for all t, t′ ∈ TΣ̂m with tErmt′.

Case ϕ = R(xi1 , . . . , xik): Obviously |Aϕ| ≤ |c|m and therefore there is a fixed polynomial
p such that Aϕ is constructed in time p(|c|m). Further, by construction, the automata
A′R and AD, from which Aϕ is build up, are minimal. Let s, s′ be two trees from TΣ̂m
with sE0

ms
′. Then by Property 4 also (c ◦ s)E0

m(c ◦ s′) for all Σ̂m-contexts. If c ◦ s is not
a convolution of a tuple (α, t̄) with t̄ ∈ S(c[α]) then because of the first property of E0

m

the same holds for c ◦ s′. Hence c ◦ s 6∈ L(Aϕ) and c ◦ s 6∈ L(Aϕ). Otherwise c ◦ s = 〈α, t̄〉
and c ◦ s′ = 〈β, t̄′〉 and Property 2 yields 〈α, t̄〉 ∈ L(Aϕ) ⇔ 〈β, t̄′〉 ∈ L(Aϕ). We obtain
from Myhill-Nerode Theorem for tree-languages that δ∗Aϕ(s) = δ∗Aϕ(s′).

Case ϕ = ψ(x1, . . . , xm) ∧ γ(x1, . . . , xm): Let Aψ and Aγ be the automata constructed
by Compose in the recursion step. By the induction hypothesis, we know that all pairs
of tuples t, t′ that are related by Erm the computation of Aψ and Aγ reach the same
state. Lemma A.3 tells us that the number of reachable states in Aϕ ×Aψ is bounded by
f(m+ r). The automata Aψ and Aγ are computed in at most d|ψ|(|c|m+r · f(m+ r))c +
d|γ|(|c|m+r · f(m+ r))c many steps and, according to Lemma A.1, the computation of Aϕ
takes at most d′|Σ̂m|f(m+ r)2. But |c|m+r is an upper bound for |Σ̂m|. Hence the overall
runtime is bounded by d(|ψ|+ |γ|+ 1)(|c|m+r · f(m+ r))c = d|ϕ|(|c|m+r · f(m+ r))c. The
property tErmt′ ⇒ δ∗Aϕ(t) = δ∗Aϕ(t′) follows directly from the induction hypothesis and
the fact that δ∗(t) = (δ∗Aψ (t), δ∗Aγ (t)).

Case ϕ = ¬ψ(x1, . . . , xm): By the induction hypothesis the automaton Aψ is constructed
in time d|ψ|(|c|m+r · f(m + r))c. The automaton AD is the minimal automaton that
recognises exactly the words of the form 〈α, t1, . . . , tm〉, where α ∈ P c and t1, . . . , tm are
elements of S(c[α]). Using the properties 1 and 4 of Definition 4.1, we see that for all
t, t′ ∈ TΣ̂m with tErmt′ and all Σ̂m-contexts c it is the case that c ◦ t ∈ L(AD)⇔ c ◦ t′ ∈
L(AD). Therefore we can once again apply the lemmata A.3 and A.1 to establish that
also Aϕ is constructed in the right amount of time and has the proclaimed property
(recall that Aϕ is the product automaton of Aψ and AD).

Case ϕ = ∃xm+1ψ(x1, . . . , xm, xm+1): Let Aψ be the automaton that is constructed in
the recursion step. Then Aϕ is essentially the reachable part of the power-set automaton
of the projection automaton derived from Aψ under the projection (σ, γ1, . . . , γm+1) 7→
(σ, γ1, . . . , γm). Now suppose sEr+1

m s′ for some s, s′ ∈ TΣ̂m . Then q ∈ δ
∗
Aϕ(s) if and only

if there is a t ∈ TΓ such that δ∗Aψ (〈s, t〉) = q. But then, by Property 3 of Definition 4.1,
there is also a t′ ∈ TΓ with 〈s, t〉Erm〈s′, t′〉. By the induction hypothesis δ∗Aψ(s′, t′) = q

and thus q ∈ δ∗Aϕ(s′). This shows that sErms′ implies δ∗Aϕ(s) = δ∗Aϕ(s′). Consequently
the number of reachable states in the aforementioned power set automaton is bounded
by f(m+ r). We can now apply the induction hypothesis and Lemma A.2 to conclude
that the algorithm takes at most d|ϕ|(cm+rf(m+ r))c many steps to compute Aϕ. J

FSTTCS 2018

10:18 Uniformly Automatic Classes of Finite Structures

B Proofs Omitted from Section 5

I Theorem 5.6. First-order model checking is FPT on the class of all finite groups with
bounded non-abelian decomposition width. More precisely there exists a constant c such that
we can decide in time O(exp4(poly(|ϕ|)) · log |G|+ |G|c) whether G |= ϕ.

Proof. First we build a trivial presentation d for the groups of order at most d. Let G1, . . . ,Gn
be an enumeration of the non-abelian groups of size at most d (up to isomorphism). The
advice alphabet is Σ = {g1, . . . , gn}. The input alphabet Γ is extended by new letters
a1, . . . , ad. For every 1 ≤ i ≤ n we choose a bijection πi : {a1, . . . , a|Gi|} → Gi and
construct the automata that recognise the languages {〈gi, aj〉 | 1 ≤ i ≤ n, j ≤ |Gi|} and
{〈gi, ax, ay, az〉 | 1 ≤ i ≤ n, 1 ≤ x, y, z ≤ |Gi|, πi(ax) ◦Gi πi(y) = πi(az)}. Note that the
trivial EF-congruence for d is g(m+ r) = G(d)dr+m bounded, where G(d) is the number of
groups of size at most d.

Let c be the uniform presentation of the cyclic groups as described previously. We build
automata that recognize the alphabet-disjoint union of the languages in d and corresponding
languages from c and obtain a presentation e of all cyclic groups and groups of order at most
d. It is not hard to see that this presentation is also exp3(poly(|ϕ|)) bounded. Basically
the union of the EF-congruences for d and c (where the “is not a tuple of the presentation”
equivalence class of d is merged with the “is not a convolution” equivalence class of c) is an
EF-congruence for e. Then e× is a presentation of the class of all finite groups with bounded
abelian decomposition width at most d. By Theorem 4.6, e× is exp4(poly(|ϕ|)) bounded.

A decomposition of G = G1⊕· · ·⊕Gk⊕Zn1 ⊕· · ·⊕Zn` with non-abelian indecomposable
factors G1, . . . ,Gk can be computed in polynomial time [17]. From the decomposition we can
compute in linear time an advice that represents G. Note that such an advice has logarithmic
size in |G|. Applying Theorem 5.1 completes the proof. J

In order to handle MSO model-checking on graphs of bounded tree-depth we need to
enrich the structure by the powerset of the universe in order to simulate quantification over
sets.

I Definition B.1 ([3]). Let A = (A,R1, . . . , Rn) be a τ -structure. The power set structure
P(A) is the (τ]{⊆})-structure (P(A), RP(A)

1 , . . . , R
P(A)
n ,⊆), where (P(A),⊆) is the powerset

lattice on A and R
P(A)
i = {({a1}, . . . , {ari}) ∈ P(A)ri | (ai, . . . , ari) ∈ Ri} for all i ∈

{1, . . . , n}.

Clearly the MSO-theory of A is reducible to the FO-theory of P(A) and vice versa. In the
following we also need to make a distinction between trees that serve as an input to a tree
automaton and an unordered rooted tree in the graph theoretic sense. A finite unordered
labeled tree-structure T is a tuple (V,E, P1, . . . , Pn, r) where

V is a finite set of nodes,
E ⊆

(
V
2
)
such that (V,E) is connected and acyclic,

Pi ⊆ V for all 1 ≤ i ≤ n, and
r ∈ V is the root of the tree.

There are standard techniques to encode a finite unordered tree-structures of unbounded
degree by trees of bounded degree.

I Definition B.2. For a finite unordered tree-structure T = (V,E, P1, . . . , Pn, r) the set of
tilts of T, tilt(T) ⊆ TP({1,...,n}), is inductively defined by the following rules.

if T = ({v}, P1, . . . , Pn, v) then tilt(T) = {t}, where dom(t) = {ε} and
t(ε) = {i | v ∈ Pi}

F. Abu Zaid 10:19

if T = (V, P1, . . . , Pn, r) is of depth h > 1 then t ∈ tilt(T) if, and only if, there is an
enumeration T0, . . . ,Tk of the subtrees induced by the children of the root r of T such
that there are trees t0, . . . , tk with
ti is a tilt of Ti,
dom(t) =

⋃
0≤i≤k{1i0}dom(ti),

t(w) =


{i | w ∈ Pi} w = ε

X w ∈ {1}i, 1 ≤ i ≤ k
ti(w′) w = 1i0w′, 0 ≤ i ≤ k

Note that if t is a tilt of a tree-structure T and v ∈ dom(t) with t(v) 6= X then v corresponds
to a node of depth |v|0 + 1 in T.

I Lemma B.3. Let h ∈ N be some fixed number. Then the class Ch of all power set structures
of graphs of tree-depth at most h is uniformly tree-automatic.

Proof. The advice set consists of all tilts of tree-structures (V,E, P1, . . . , Ph−1) of depth at
most h + 1 such that every node of depth ` appears only in sets Pi with i + 1 < `. This
is obviously a regular set. Such a tree α presents (the isomorphism type of) the graph
G = (V,E) with V = dom(α) ∩ ({0, 1}∗{0}) and E = {{v, w} | v � w and |v|0 ∈ α(w)}.
If α is a tilt of an optimal decomposition of G then the subtrees induced by the nodes
in domα ∩ {1}∗{0} correspond to the connected components of G. Building a uniformly
tree-automatic presentation c = (A,AE ,A⊆) is then straight forward. The automaton A is
chosen such that L(A[α]) = {t ∈ T{0,1,X} | dom(t) = dom(α) ∧ ∀w ∈ dom(α) : α(w) = X →
t(w) = X}. A tree t ∈ L(A[α]) represents the set {v ∈ dom(α) | t(v) = 1}. Then the relation
⊆ is trivially regular and the relation E can also be recognised with the advice α, because
the prefix relation is regular on the domain of a tree and |w|0 ≤ h for every w ∈ dom(t) and
every t ∈ L(A[α]), so an automaton can check whether w is the first ancestor with |w|0 = i

of a node v with i ∈ t(v). J

For a tree t ∈ TΣ, w ∈ domt, and a ∈ Σ we write t[w → a] for the tree that is obtained
by replacing the label of the node w by a.

I Theorem 5.8. The MSO model checking problem for graphs of tree-depth at most h is
fixed parameter tractable. Given an MSO sentence ϕ and a graph G of tree-depth at most h
one can decide in time O

(
exp(h+2)(poly(|ϕ|)) · poly(|G|)

)
whether G |= ϕ.

Proof. We define the EF-congruence on the basis of equivalence relations (∼hr,k)r,k∈N on
(P1, . . . , Pk)-labeled tree-structures of depth h:

For tree-structures S,T of depth 1 we define S ∼1
r,k T :⇔ S ∼= T.

Let S,T be trees of depth h+ 1 and let Si
1, . . . ,S

i
ni be the subtrees of depth i rooted in

a child node of the root in S for all i ≤ h and let Ti1, . . . ,Tin′
i
be the corresponding trees

with respect to T. Then S and T are ∼h+1
r,k -equivalent if, and only if, the roots of T and

S share the same labels and for all i < h and all ∼ir,k-equivalence classes κ

|{j ∈ N | j ≤ ni,Si
j ∈ κ}| =index(∼i

r,k
)r+1 |{j ∈ N | j ≤ n′i,Tij ∈ κ}|

The proof of [13, Theorem 3.1] can be easily adapted to show that no FO-formula with
r quantifiers can distinguish between two power set structures of two ∼hr,(r+k)-equivalent
(P1, . . . , Pk)-labeled tree-structures of depth h.

Moreover, a straightforward induction shows that whenever two such tree-structures
S,T of depth h are ∼h0,k-equivalent then the following two observations hold for every path
v0v1 . . . vn in S starting from the root:

FSTTCS 2018

10:20 Uniformly Automatic Classes of Finite Structures

1. There is a path w0w1 . . . wn in T starting from the root of T such that for all 0 ≤ i ≤ n
the nodes vi and wi share the same labels, that is vi ∈ PS

j ⇔ wi ∈ PT
j for all 1 ≤ j ≤ k.

2. If for some subsets I ⊆ {1, . . . , n}, J ⊆ {1, . . . , k} the nodes vi with i ∈ I are unique in
the sense that for every path v′0v′1 . . . v′n with vi ∈ PS

j ⇔ v′i ∈ PS
j for all i ∈ I and j ∈ J

implies vi = v′i for all 1 ≤ i ≤ n then there is also a unique path w0w1 . . . wn T with
wi ∈ PT

j ⇔ vi ∈ PS
j for all i ∈ I, j ∈ J .

Let ∼≤hr,k :=
⋃

1≤i≤h ∼ir,k. We define an EF-congruence for the presentation in Lemma
B.3 from ∼≤hr,k . Let h be fixed.

In a first step, we partition the set of all (P({1, . . . , h+m− 1})] {X})-labeled trees into
2h+ 1 classes Tm1 , . . . , Tmh , Q

m
1 , . . . , Q

m
h , F .

A tree t is in Tmi if, and only if, t is a tilt of a tree of depth i.
A tree t is in Qmi if, and only if, t is not a tilt of a tree of depth i but t[ε→ ∅] is a tilt
of a tree of depth i (this is exactly the case if t = t′[ε→ X] for some tilt t′ of a tree of
depth i).
All other trees are in F .

The EF-congruence is then defined by

tErmt
′ :⇔∃0 ≤ i ≤ h : (t ∈ Tmi ∧ t′ ∈ Tmi ∧

∃S,S′ : t ∈ tilt(S) ∧ t′ ∈ tilt(S′) ∧S ∼ir,(r+m+k) S
′)

∨ ∃0 ≤ i ≤ h : (t ∈ Qmi ∧ t′ ∈ Qmi ∧
∃S,S′ : t[ε→ ∅] ∈ tilt(S) ∧ t′[ε→ ∅] ∈ tilt(S′′) ∧S ∼ir,(r+m+k) S

′)

∨ t, t′ ∈ F

For Property 1 let us consider under which circumstances a tree t does not present a
graph of tree-depth at most h. First of all t might not be a tilt of a tree-structure of depth at
most h+ 1. In this case t ∈ F or t ∈ Qi for some i ≤ h+ 1. In this case Erm seperates t from
all trees that represent a graph from Ch. Otherwise t might be the tilt of a tree-structure T

of depth at most h+ 1 but there is a note v ∈ T of depth i with v ∈ PT
i and i+ 1 ≥ j. But

then by Observation 1 every Erm-equivalent tree-structure contains also a node of depth j
which is contained in Pi and therefore does also not present a graph from Ch.

We use Observation 2 to show that Property 2 is fulfilled. Let s and t be (P({1, . . . , h+
m − 1}) ∪ {X})-labeled trees that present Structures in c with sErmt. Let S,T be the
tree-structures with s ∈ tilt(S) and t ∈ tilt(T), let (Gs, V1, . . . , Vm) be the tuple presented
by s, and (Gt,W1, . . . ,Wm) be the tuple presented by t. If Gs |= E(Vi, Vj) for some i, j ≤ m
then Vi and Vj are singletons and therefore there are unique nodes vi, vj with vi ∈ PS

h+i−1
and vj ∈ PS

h+j−1. Further vi and vj are ordered by the ancestor-relationship. Without loss
generality assume that vi is an ancestor of vj and let d be the depth of vi inS. Then vj ∈ PS

d−1.
By Observation 2 there must be unique nodes wi, wj with wi ∈ PT

h+i−1 and wj ∈ PT
h+j−1.

Further wi has depth d, is an ancestor of wj , and wj ∈ PT
d−1. Hence Gt |= E(Wi,Wj). If

Gs 6|= Vi ⊆ Vj then there is node v ∈ doms such that i ∈ s(v) but j 6∈ s(v). Using similar
arguments as in the previous case we can follow that there is also a w ∈ domt with i ∈ s(v)
and j 6∈ s(v). Hence Gt 6|= Wi ⊆Wj . The case of Gs 6|= Vi = Vj is analogous.

In order to establish Property 3 suppose sEr+1
m t. Let s′ be any tree that can be derived

from s by adding the label (h+m) to some nodes w ∈ dom(s) ∩ {0, 1}∗{0}. We distinguish
three cases.

F. Abu Zaid 10:21

Case s, t ∈ F : then t′ ∈ F and we can extend the labeling of t in an arbitrary way to obtain
an Erm+1-equivalent t′.

Case s, t ∈ Tm
i for some 1 ≤ i ≤ h: then there is a (P1, . . . , Ph+m−1)-labeled tree-

structures S,T of depth i with s ∈ tilt(S) and t ∈ tilt(T). Further there is a set
XS ⊆ S such that s′ is a tilt of (S, XS). Because S ∼h(r+1),((r+1)+h+m) T there must be
a set XT ⊆ T such that (S, XS) ∼hr,(r+h+(m+1)) (T, XT). Finally choose the extension t′
of the labeling of t such that t′ ∈ tilt((T, XT)). Then t′Erm+1s

′.
Case s, t ∈ Qm

i for some 1 ≤ i ≤ h: the case follows analogously to the previous one by
considering s[ε→ ∅] and t[ε→ ∅].

At last, we see that Property 4 holds. Indeed, if t ∈ F then (c ◦ t) ∈ F for every context
c. For the case s, t ∈ Tmi for some 1 ≤ i ≤ h one can distinguish two cases based on the
structure of the context c.

Case c−1(x) ∈ {0, 1}∗{1} ∪ ({1}∗{0})>(h−i): then (c◦s) and (c◦t) do not present trees
of depth at most h and hence s, t ∈ F .

Case c−1(x) ∈ ({1}∗{0})≤(h−i): there are three subcases that might occur.
It might be that (c ◦ t) ∈ F and (c ◦ s) ∈ F (because c is a “template” of a tree of
depth larger than h or c contains an inconsistent labeling). in this case equivalence is
guaranteed by definition.
It is also possible that (c ◦ t) ∈ Tmj and (c ◦ s) ∈ Tmj for some i ≤ j ≤ h. Then let
S,T be trees of depth j such that (c ◦ t) ∈ tilt(S) and (c ◦ s) ∈ tilt(T). By induction
over j − i one shows that S ∼jr,r+h+m T. For j − i = 0 this is the case by definition.
For j − i = k + 1 let S1, . . . ,S` and T1, . . . ,T` be the subtrees of S and T that are
rooted in the children of the roots S and T, respectively. Without loss of generality
assume that S1 and T1 are the subtrees which resulted from adding s and t into the
context c. Then by the induction hypothesis S1 ∼hr,r+h+m T1 and also Sn

∼= Tn for all
1 < n ≤ `. But then for all n < j and all ∼nr,r+h+m-equivalence classes τ the number
of τ -children of the root in S is equal to the number in T, hence S ∼jr,r+h+m T and
therefore (c ◦ s)Erm(c ◦ t).
The last case that might happen is (c ◦ t) ∈ Qmj and (c ◦ s) ∈ Qmj for some i ≤ j ≤ h.
In this case we might again argue analogously to the previous cases by considering
(c ◦ t)[ε→ ∅] and (c ◦ s)[ε→ ∅].

Next, let us estimate the index of Erm. By the definition of Erm, index(Erm) ≤ 1 +
2
∑h+1
i=0 index(∼ir,r+m+h+1). An inductive analysis of index(∼ir,r+m+h+1) (see [13, Lemma

3.1 c)]) shows index(∼ir,r+m+h+1) ∈ exp(i+1)(poly(r + m + h + 1)). Applying this to the
above estimation yields index(Erm) ∈ exp(h+2)(poly(r +m)).

In order to fulfil the prerequisites of Theorem 5.1 we can apply textbook methods to
compute the decomposition of a graph of fixed tree-depth (see for instance [22]). From
the decomposition the construction of an advice for the presentation in Lemma B.3 can be
performed efficiently. J

FSTTCS 2018

	Introduction
	Preliminaries
	Model Checking Revisited
	A Presentation Aware Runtime Analysis
	FPT Model Checking With Elementary Parameter Dependence
	Boolean Algebras
	Finite Groups
	Graphs of bounded Tree-Depth and MSO Model Checking

	Proofs Omitted from Section 4
	Proofs Omitted from Section 5

