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Preface

This volume contains the proceedings of the 29th International Symposium on Algorithms
and Computation (ISAAC 2018), held in Jiaoxi, Yilan, Taiwan, December 16–19, 2018.
ISAAC is an annual international symposium that covers the very wide range of topics in
the field of algorithms and computation. The main purpose of the symposium is to provide
a forum for researchers working in algorithms and theory of computation from all over the
world.

In response to our call for papers, we received 195 submissions from 37 countries. Each
submission was reviewed by at least three Program Committee members, possibly with the
assistance of external reviewers. After an extremely rigorous review process and extensive
discussion, the Program Committee selected 71 papers. The best paper award was given to
“Exploiting Sparseness for Bipartite Hamiltonicity” by Andreas Björklund. Selected from
submissions authored by students only, the best student paper award was given to “Opinion
Forming in Erdős-Rényi Random Graph and Expanders” by Ahad N. Zehmakan.

In addition to selected papers, the program also included plenary talks by two prominent
invited speakers, Shang-Hua Teng, University of Southern California, USA and Clifford Stein,
Columbia University, USA.

We thank all the Program Committee members and external reviewers for their professional
service and volunteering their time to review the submissions under time constraints. We also
thank all authors who submitted papers for consideration, thereby contributing to the high
quality of the conference. We would like also to acknowledge our supporting organizations
for their assistance and support, in particular Ministry of Science and Technology, Taiwan,
National Tsing Hua University, Academia Sinica, Taiwan, and Association for Algorithms
and Computation Theory. Finally, we are deeply indebted to the Organizing Committee
Co-Chairs, Ho-Lin Chen and Wing-Kai Hon, whose excellent effort and professional service
to the community made the conference an unparalleled success.

December, 2018 Wen-Lian Hsu, Der-Tsai Lee and Chung-Shou Liao
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Going Beyond Traditional Characterizations in the
Age of Big Data and Network Sciences
Shang-Hua Teng
University of Southern California, Los Angeles, USA

Abstract
What are efficient algorithms? What are network models? Big Data and Network Sciences have
fundamentally challenged the traditional polynomial-time characterization of efficiency and the
conventional graph-theoretical characterization of networks.

More than ever before, it is not just desirable, but essential, that efficient algorithms should
be scalable. In other words, their complexity should be nearly linear or sub-linear with respect to
the problem size. Thus, scalability, not just polynomial-time computability, should be elevated
as the central complexity notion for characterizing efficient computation.

For a long time, graphs have been widely used for defining the structure of social and inform-
ation networks. However, real-world network data and phenomena are much richer and more
complex than what can be captured by nodes and edges. Network data are multifaceted, and
thus network science requires a new theory, going beyond traditional graph theory, to capture
the multifaceted data.

In this talk, I discuss some aspects of these challenges. Using basic tasks in network analysis,
social influence modeling, and machine learning as examples, I highlight the role of scalable
algorithms and axiomatization in shaping our understanding of “effective solution concepts” in
data and network sciences, which need to be both mathematically meaningful and algorithmically
efficient.
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Mathematics of computing → Discrete mathematics, Mathematics of computing → Probability
and statistics, Information systems → World Wide Web, Information systems → Data mining
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Approximate Matchings in Massive Graphs via
Local Structure
Clifford Stein
Columbia University, New York City, USA

Abstract
Finding a maximum matching is a fundamental algorithmic problem and is fairly well understood
in traditional sequential computing models. Some modern applications require that we handle
massive graphs and hence we need to consider algorithms in models that do not allow the entire
input graph to be held in the memory of one computer, or models in which the graph is evolving
over time.

We introduce a new concept called an “Edge Degree Constrained Subgraph (EDCS)”, which
is a subgraph that is guaranteed to contain a large matching, and which can be identified via
local conditions. We then show how to use an EDCS to find 1.5-approximate matchings in several
different models including Map Reduce, streaming and distributed computing. We can also use
an EDCS to maintain a 1.5-optimal matching in a dynamic graph.

This work is joint with Sepehr Asadi, Aaron Bernstein, Mohammad Hossein Bateni and
Vahab Marrokni.
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Exploiting Sparsity for Bipartite Hamiltonicity
Andreas Björklund
Department of Computer Science, Lund University, Sweden

Abstract
We present a Monte Carlo algorithm that detects the presence of a Hamiltonian cycle in an
n-vertex undirected bipartite graph of average degree δ ≥ 3 almost surely and with no false
positives, in (2−21−δ)n/2 poly(n) time using only polynomial space. With the exception of cubic
graphs, this is faster than the best previously known algorithms. Our method is a combination
of a variant of Björklund’s 2n/2 poly(n) time Monte Carlo algorithm for Hamiltonicity detection
in bipartite graphs, SICOMP 2014, and a simple fast solution listing algorithm for very sparse
CNF-SAT formulas.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Hamiltonian cycle, bipartite graph

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.3

Funding This work was supported in part by the Swedish Research Council grant VR-2016-03855,
“Algebraic Graph Algorithms”.

1 Introduction

Given an n-vertex undirected graph G = (V,E), a Hamiltonian cycle is a vertex permutation
(v1, v2, . . . , vn) such that vivi+1 ∈ E for all i, including also vnv1 ∈ E. The algorithmic
problem of deciding if a graph has a Hamiltonian cycle was one of the first problems
recognised as NP-hard [12]. For general graphs, an O(1.657n) time algorithm is known [1].
A natural question to ask is if one can do better in sparse graphs, since the average number
of entry and exit alternatives for the cycle at a vertex is smaller. Cygan et al. [5] proved
a (2 +

√
2)pw(PG) poly(n) time algorithm that detects a Hamiltonian cycle given a path-

decomposition PG of the graph G of width pw(PG). In sparse graphs of average degree δ,
path-decompositions of width at most δn/11.538 can be found in polynomial time as proved
by Kneis et al. [13]. Hence the combination of these two results gives faster algorithms
for Hamiltonicity in sparse undirected graphs when δ < 4.73. However, the techniques in
both [5] and [13] do not seem to directly give much faster algorithms when we guarantee
that the graph in addition of being sparse is also bipartite. In contrast, there is a much
faster 2n/2 poly(n) ⊂ O(1.415n) time algorithm for general bipartite graphs [1]. In this paper
we propose a method to speed up the latter algorithm to get faster algorithms in sparse
bipartite graphs. Our main result says

I Theorem 1. There is a Monte Carlo algorithm that given an undirected bipartite graph on
n vertices and average degree δ ≥ 3 detects if it has a Hamiltonian cycle in poly(n) space and

(2− 21−δ)n/2 poly(n)

time, without false positives and false negatives with probability at most 2−n.

See Table 1 for some typical running time bases.
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3:2 Exploiting Sparseness for Bipartite Hamiltonicity

Table 1 The base c in the running time bound cn of our algorithm for the first small δ’s.

δ 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25
c 1.3229 1.3378 1.3503 1.3606 1.3693 1.3765 1.3826 1.3877 1.3919 1.3955

As far as we know, this is the first example of a Hamiltonicity algorithm that operates in
less than 2n/2 time for sparse bipartite graphs, save for the special case of cubic (3-regular)
graphs for which much faster algorithms have been found. However, the techniques used in
these cubic graph algorithms do not scale gracefully with the average degree and already for
4-regular graphs our algorithm is much faster than previous ones. Confer the related work
section below for more discussion of earlier algorithms. We also note that our algorithm can
be modified to compute the parity of the number of Hamiltonian cycles:

I Theorem 2. There is a Las Vegas algorithm that given an undirected bipartite graph on n
vertices and average degree δ ≥ 3 computes the parity of the number of Hamiltonian cycles in
poly(n) space and

(2− 21−δ)n/2 poly(n)

expected time.

The combination of techniques employed by our algorithms is similar to the overall idea
in the algorithm by Björklund and Husfeldt [2] to compute the parity of the number of
Hamiltonian cycles, and subsequently the modular counting algorithm for Hamiltonian cycles
in Björklund et al. [4]. The idea is as follows: We first devise an algebraic fingerprint for
Hamiltonian cycles, i.e., an exponential sum S with variables on the edges of the graph
such that S evaluates to a non-zero value only if the underlying graph has a Hamiltonian
cycle. Furthermore, if it has a Hamiltonian cycle, it evaluates to a non-zero value with large
probability under a random assignment to the variables. Next we show that the exponential
sum S can in fact be randomly chosen from a family of exponential sums, all of which
evaluate to the same value. In a randomly chosen exponential sum in the family only a small
fraction of the exponentially many terms contribute non-zero values in expectation. If we
only knew which those terms were, we could evaluate the exponential sum much faster than
summing over all terms. To this end, we show that listing a small superset of the terms that
evaluate to non-zero values can be done by means of another exponential time algorithm. In
our case here we can encode the interesting terms as solutions to a very sparse CNF-SAT
formula. These solutions can in turn be listed by a branching algorithm in combination with
a perfect matching algorithm. An alternative listing algorithm for the most interesting values
δ ≤ 5.5 can also be done by a dynamic programming algorithm across a path decomposition
of the variable/clause incidence graph of the formula.

1.1 Related Work
Several diverse ideas for Hamiltonicity detection in general and sparse graphs have been
pursued to get improved worst case running time bounds. We give here a brief list of the
results we are aware of.

1.1.1 Dynamic programming across a path decomposition
Cygan et al. [5] prove that one can decide the existence of Hamiltonian cycles in undi-
rected graphs in (2 +

√
2)pw(PG) poly(n) time, where pw(PG) is the path-width of any

path-decomposition PG of G given as input. It relies on dynamic programming across the
path decomposition and hence requires exponential space usage in pw(PG).
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Using the best known bound on the path-width for graphs of average degree δ by Kneis
et al. [13], which says that one can construct a path-decomposition P with pw(PG) ≤ δn

11.538 ,
we get an O(1.0619δn) time bound. This running time is worse than ours for all δ ≥ 3.
However, in graphs of maximum degree three, another algorithm of Cygan et al. [6] can be
accelerated to run in 3pw(G) poly(n) time. It uses the efficient path decomposition in cubic
graphs devised by Fomin and Høie [10], to arrive at an O(1.201n) time algorithm. We note
that the efficient path-decomposition for cubic graphs of Fomin and Høie [10] is in fact used
by the path-decomposition of Kneis et al. [13] in combination with branching. We also note
that the very fast algorithm for cubic graphs above is the result not only of the efficient
path-decomposition bound in cubic graphs, but also the fact that one only needs 3 states per
vertex in a bag for cubic graphs as opposed to the (amortised) 2 +

√
2 number of states per

vertex in the general algorithm of Cygan et al. [5] (Confer Corollary 1.6 in Cygan et al. [6]).
Hence, the cubic case is indeed special for this approach.

1.1.2 Branching
A very natural approach to Hamiltonicity detection in cubic graphs is to guess which two
of the three edges incident to a vertex are used on the cycle and branch. This will in
turn diminish the number of alternatives for how the cycle can pass through the three
neighbor vertices. There is an O(1.251n) algorithm for Hamiltonicity decision in graphs of
maximum degree three based on carefully analysed branching [11]. It improves slightly over
the O(1.260n) time algorithm by Eppstein [9]. The algorithms in fact work for the Travelling
Salesman problem solving for the minimum cost edge-weighted Hamiltonian cycle. Eppstein
also provides an O(1.297n) time algorithm that can list the solutions and hence determine
their number. He also exhibits bipartite maximum degree three graphs that has Ω(1.260n)
Hamiltonian cycles, demonstrating that any algorithm that enumerates the cycles one-by-one
must take this long in the worst case.

1.1.3 Directed algorithms
For directed bipartite graphs, there is an O(1.733n) time algorithm [4]. However, it is still
open whether there exists an O(cn) time algorithm for some c < 2 for decision in directed
graphs. In directed graphs of average degree δ, counting the Hamiltonian cycles can be done
in 2n−Ω(n/δ5) time [4]. The speedup is obtained by a fast modular counting algorithm for
small prime powers and the Chinese remainder theorem after noting that the Hamiltonian
cycles cannot be too many in a sparse graph.

1.1.4 Parity algorithms
In addition to the above decision algorithms, we know of an even faster algorithm for the
seemingly more difficult problem of computing the parity of the number of Hamiltonian
cycles: There is an O(1.619n) time algorithm computing the parity in directed graphs [2].
For bipartite graphs there is also an O(1.5n) time algorithm [2], and for bipartite undirected
graphs, the O(1.415n) time decision algorithm in [1] is also capable of computing the parity.
Thomason [16] showed that the parity of the number of Hamiltonian cycles through any
specific edge in an undirected graph is always even in a graph where every vertex has odd
degree. Note that it does not mean that there always are an even number of Hamiltonian
cycles in the graph, e.g. K4 has three Hamiltonian cycles. In fact, computing the parity in
planar undirected graphs of maximum degree three is ⊕P-hard [18].

ISAAC 2018



3:4 Exploiting Sparseness for Bipartite Hamiltonicity

1.1.5 Sparsity-aware TSP algorithms
For the n-vertex Travelling Salesman Problem, i.e., in an edge-weighted graph find the
Hamiltonian cycle of smallest total weight, there is a 2n−Ω(n/2∆) time algorithm, with ∆ the
maximum degree in the graph [3]. The proof uses the fact that in a dynamic programming
across vertex subsets for Hamiltonian cycles one only needs to consider induced subgraphs
that have degree at least two at every vertex. An upper bound of these can be found by the
use of Shearer’s lemma. There is also a 2n−Ω(n/22δ ) time algorithm with δ the average degree
in the graph [7].

2 The Three Parts of our Design

On a high level, our algorithmic design consists of three parts:

1. Defining an algebraic fingerprint for Hamiltonicity with few non-zero terms in expectation.
2. Encoding possibly non-zero terms as solutions to a CNF-SAT formula.
3. Listing the solutions to the formula by a separate algorithm.

We will first describe each of these three parts before we present the algorithm in pseudocode
in Section 3 along with its analysis.

2.1 A family of algebraic fingerprints
Let G = (U, V,E) be a balanced |U | = |V | = n

2 bipartite undirected graph. We will introduce
variables for the directed versions of the edges in G. We will next define a polynomial over a
field of characteristic two as an exponential sum of determinants, and prove that it can be
used to detect the presence of a Hamiltonian cycle in G. The construction and its analysis
are very similar to the one for bipartite graphs in [1] with only one major difference. In [1]
matrices in which rows and columns represented vertices from one part of the bipartition were
used. Here we take an alternative approach with rows representing one part and columns
representing the other part, as we feel it is more natural for describing how many terms can
vanish in the summation in sparse graphs.

The idea is to define the polynomial so that it will be non-zero only if there is a Hamiltonian
cycle in the graph. We will in fact describe an exponential number of exponential sums, all of
which evaluate to the same polynomial. These are identified by variables ai,j for every ij ∈ E,
and will not contribute to the sum. I.e., regardless of what they are set to, in the exponential
sum they will cancel each other and the sum will always evaluate to the same value. They
are introduced solely to make sure that under a random assignment, the expected number of
non-zero terms in the exponential sum is quite small. We will show that in the next section.

Continuing the fingerprint design, we note that every Hamiltonian cycle H ⊆ E can be
oriented in two ways in the sense that starting from any vertex you can choose which of its
two neighbors on the cycle to visit next. We will fix a special vertex s ∈ V in the graph which
we will use to break symmetry with respect to orientations. I.e., every oriented Hamiltonian
cycle will be associated with a monomial in the polynomial, and the introduced asymmetry
around s will ensure that different monomials are assigned to the two orientations of any
Hamiltonian cycle to avoid that they cancel each other.

For every edge ij ∈ E with i 6= s and j 6= s, we introduce two identical variables zi,j = zj,i,
i.e., they are only different names for the same variable, but for every is ∈ E we introduce
the two different variables zi,s and zs,i. For ij 6∈ E, we set zi,j = zj,i = 0. We define a
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polynomial matrix in a third set of variables x = {xv|v ∈ V }, with rows representing vertices
from V , and columns representing vertices from U , as

Mi,j(a, x, z) =
∑

k∈V \{i}

zi,jzj,k(aj,k + xk). (1)

We will use

φ(G) =
∑

x∈{0,1}n/2

det(M(a, x, z)), (2)

as a fingerprint of the existence of a Hamiltonian cycle in G. I.e., we sum over all 2n/2
assignments to x with each xi ∈ {0, 1} to obtain a polynomial in the z-variables only
(monomials with a-variables will cancel each other). We will prove that φ(G) can only be
non-zero if G has a Hamiltonian cycle.

I Lemma 3. Let H be the family of oriented Hamiltonian cycles in G, then

φ(G) =
∑
h∈H

∏
uv∈h

zu,v. (3)

Proof. Consider the Leibnitz expansion of the n× n matrix determinant in characteristic
two,

det(B) =
∑
σ∈Sn

n∏
i=1

Bi,σ(i).

If we furthermore expand each product of entries of the matrix M(a, x, z) into a sum of
products, we have that each term in the Leibnitz expansion of det(M(a, x, z)) is the product
of exactly n/2 factors, each of which is either zi,jzj,kaj,k or zi,jzj,kxk for some i, j, k with
i 6= k. This means a term is the product of n z-variables and n/2 a- or x-variables. We first
note that if such a term does not contain xv for some v ∈ V , it will be counted an even
number of times in (2). Let Z be the set of these omitted vertices v, and note that the term
will be included both for xv = 0 and xv = 1 for all v ∈ Z for any fixed assignment to the
other variables. It will be counted 2|Z| times, an even number for non-empty Z, and hence
it will cancel in a characteristic two summation. This also means that in a surviving term,
i.e., a term that is counted an odd number of times, each xv for v ∈ V is included precisely
once as there are at most n/2 of them in total. Moreover, this means that no surviving term
includes an a-variable.

Note that a term that includes xv for all v ∈ V describes a cycle cover as every double-arc
factor is from a unique row (every vertex in V has outdegree 1), from a unique column (every
vertex in U is the endpoint of exactly one arc and the start of another), and has a unique
x-variable (every vertex in V has indegree 1). Moreover, there are no cycles on exactly 2
vertices due to the constraint i 6= k in the summation in (1). Every cycle cover corresponds
to some term in the Leibnitz expansion. If a cycle cover has more than one cycle, we can fix
the lexicographically first cycle C that does not go through the special vertex s, and reverse
its orientation to obtain a different cycle cover with the same monomial term. However this
cycle cover is the result of another term in the Leibnitz expansion because the reversed cycle
has length larger than 2. If we apply the cycle reversal operation again, the original cycle
cover is obtained. Hence we have paired up all cycle covers with at least two cycles, proving
that these will also cancel each other in a characteristic two summation. We are left with
the Hamiltonian cycles, counted in both orientations as claimed. J
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2.1.1 Limiting the number of contributing terms
The value of φ(G) in (3) is insensitive to the a-variables. No matter what we set them to
the result is the same. We will now take advantage of this fact. By choosing a random
assignment to the a-variables, we will end up with a formula in which many determinant
terms for assignments to the x-variables in (2) will be trivially zero, and there is no need for
us to evaluate them to compute φ(G).

We say that an assignment x : V → {0, 1} is possibly contributing if no column of
M(a, x, z) is all zeros. That is, det(M(a, x, z)) is not trivially zero for the reason of having a
column with no non-empty entries.

We will bound the probability that not too many assignments to x are possibly contributing
under a random assignment to the variables a. Consider a fixed assignment x and let εu
for u ∈ U be the event that the column representing u in M(a, x, z) is not identically zero
under a randomly uniformly chosen a. We have from (1) that if au,v + xv = 0(mod 2) for all
uv ∈ E for a fixed u, then the event εu happens, hence

Pr(εu) = 1− Pr
( ∏
uv∈E

(1 + au,v + xv)) = 1(mod 2)
)

= 1− 1
2du ,

where du is the degree of vertex u in G. Clearly, the events {εu : u ∈ U} are mutually
independent as they depend on different independent a-variables, so

Pr
(⋂
u∈U

εu

)
=
∏
u∈U

(
1− 2−du

)
. (4)

By using Jensen’s inequality for a concave function ϕ,

ϕ

(∑m
i=1 xi
m

)
≥
∑m
i=1 ϕ(xi)
m

,

after noting that ϕ(x) = log(1− 2−x) is concave, we have from (4) that

Pr
(⋂
u∈U

εu

)
≤ (1− 2−δ)n/2.

Consequently, by the linearity of expectation, the expected number of possibly contributing
terms in (2) under a random assignment to the a-variables is at most

2n/2 Pr
(⋂
u∈U

εu

)
≤ (2− 21−δ)n/2. (5)

2.2 Encoding possibly contributing terms as a CNF SAT formula
We will next turn to how we can classify which x-assignments are possibly contributing
without explicitly constructing all the matrices M(a, x, z).

To encode the possibly contributing assignments, we consider propositional Boolean
formulas in conjunctive normal form (CNF-SAT). An instance I = (W, C) consists of a set of
variables W , and a set of clauses C. Each clause in C is a finite set of literals, and a literal is
an occurrence of a variable in W that may or may not be negated. For every assignment a we
associate a CNF-SAT instance I(a) = (Wa, Ca), where Wa is a set of n/2 Boolean variables,
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with one variable wv for each v ∈ V with the interpretation that wv = True ⇐⇒ xv = 1.
Remember, we have from (1) that the event εu happens if some au,v + xv = 1(mod 2) for
some uv ∈ E. Let Pu = {v : uv ∈ E, au,v = 0} and Nu = {v : uv ∈ E, au,v = 1}. Hence the
clause

Cu =
( ∨
v∈Pu

wv

)∨( ∨
v∈Nu

wv

)
,

where wv means the negation of wv, expresses the truth-value of event εu. We equate
Ca with the set {Cu, u ∈ U} as the clauses’ conjunction expresses that all events happen.
Consequently, every solution to I(a) represents an assignment x : V → {0, 1} that is possibly
contributing. Note that I(a) has n/2 variables and n/2 clauses. We next turn to how to
find them efficiently.

2.3 Listing possibly contributing terms
We will show that given a CNF-SAT instance I on ` variables and as many clauses, its
solutions can be listed fast enough for our application.

I Lemma 4. The solutions to a CNF-SAT formula on ` variables and at most ` clauses can
be listed by a polynomial space algorithm in time

O(1.619` + s poly(`)),

where s is the number of solutions.

Remark: Note that in our case ` = n/2, so the first term amounts to a 1.272n running
time term that is dominated by the second term as there will be (2− 21−δ)n/2 solutions in
expectation according to (5), which is larger than 1.272n for δ ≥ 3.

Proof. The algorithm is a two-step procedure. First, as long as there is a variable that
occurs both as positive and negative literals in the clauses and there are more than two
occurrences of them, we use branching on that variable. Second, when no such variables
exist, we can use an idea implicit in Tovey [17] to construct a bipartite perfect matching
between clauses and variables to see if there is a solution at all. If so, we branch on any
vertex and repeat to learn each variable’s value one at a time for each of the assignments.

A partial assignment sets each variable in w to either True, False, or Undecided. Initially
all variables are Undecided. We will gradually turn partial assignments into full assignments
that satisfy the original instance. In the first step, we produce a set S of tuples of partial
assignments and CNF-SAT instances resulting from the original instance by removing all
clauses satisfied by the partial assignment. These will all have the following property: if a
variable occurs both positively and negatively in the clauses, it has precisely two occurrences.
The set S is generated by taking any yet undecided variable that occurs at least three times
and both positively and negatively and setting it in turn to both truth values and recursively
continuing on the clauses that are still unsatisfied by the partial assignment so far. If we
let t(`) be an upper bound on the number of instances generated this way from an original
instance with ` clauses, we have that

t(`) ≤ t(`− 1) + t(`− 2),

since at least one respectively two clauses are satisfied by the two assignments. In combination
with t(0) = 1, we can solve this recurrence as t(`) ≤ 1.619`. Hence |S| ≤ 1.619`.
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3:8 Exploiting Sparseness for Bipartite Hamiltonicity

In the second step, we consider each partial assignment and instance pair in S in turn.
To see if the instance has a solution at all, we can first set all undecided variables that
occur either only positively or negatively to the value that would satisfy some remaining
clauses. After that we are left with a set of variables that occur in precisely two clauses but
of opposite polarity. We construct a bipartite graph with one part representing clauses and
one representing vertices, and edges between a clause and its variables. If such a bipartite
graph has a perfect matching, we know the instance can be satisfied, by assigning to the
variables the truth value that would satisfy the clause associated to the variable by the
matching. Conversely, if there is a satisfying assignment, we can also find a perfect matching
by connecting clauses with the variable that makes them true.

As long as there is a perfect matching, we know there is at least one satisfying assignment.
We branch on any yet undecided variable and check again if there is a perfect matching. If
not, we backtrack to another branch, but otherwise we continue to a full assignment and
output it. This way we can list all satisfying assignments to the current instance in S with
polynomial delay, as checking for a perfect matching is a polynomial time task. In fact, in
our case checking for a perfect matching is particularly easy as every variable vertex on one
side of the bipartition has only two choices. We can imagine another graph with vertices
representing clauses, and variables representing edges, with edges between any two clauses
that share a variable. Hall’s marriage theorem now yields that a perfect matching in the
original clause-variable bipartite graph exists if every connected component in the latter
imagined graph has a cycle. This can be checked in linear time. J

2.4 An alternative listing algorithm for δ < 5.5
If the average degree is small enough, we can use another way of listing the solutions, albeit
using exponential space. We will use the path decomposition construction of Kneis et al. [13]
to obtain a path-decomposition PG of width at most pw(PG) = δn/11.538 in polynomial
time. We first take the incidence graph of the CNF-SAT instance, the bipartite graph with
vertices for clauses and variables, and edges between a clause and all its variables.

We can next use a path decomposition of the incidence graph to compute the number of
satisfying assignments by a dynamic programming algorithm that uses one bit per variable
vertex to keep track of its truth value, and one bit per clause vertex to keep track of whether
the clause has been satisfied by the variables seen so far in the dynamic programming. The
algorithm is analysed in Samer and Szeider [14] for tree-width, but leaving out the join nodes
from the analysis gives a 2pw(G) poly(n) time algorithm.

From the resulting dynamic programming table, we can list the solutions to the CNF-SAT
formula with polynomial delay. Since the time needed to compute the dynamic programming
across the path-decomposition is smaller than the expected number of solutions to the
CNF-SAT instance

2δ/11.538 < (2− 21−δ)1/2,

for all δ ≤ 5.5, our running time bound follows.
We also note that Kneis et al. [13] presents another slightly larger path-width decom-

position P ′G of size pw(P ′G) ≤ δn/10.434 that has a particularly nice structure: All bags
share a large fraction of the vertices, and the remaining vertices induce a graph of constant
bounded path-width. Hence one can get rid of the exponential space requirement with these
path-decompositions for our application by guessing the assignment of the common vertices
of all bags (i.e., try all of them), and then solve for the solutions by a path-decomposition
dynamic programming of constant size in the remaining vertices. This works for all δ ≤ 4.97.
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3 Algorithm

We are ready to describe and analyse the decision algorithm in pseudocode, and thereby
prove Theorem 1. The algorithm operates over the field GF(2κ). For now, it suffices to think
of the parameter κ as logarithmic in n, it will be given a precise value in the next section.
The following procedure is called n times, and as soon as a call returns “yes” we report the
detection of a Hamiltonian cycle, otherwise we report no Hamiltonian cycles found.

HamiltonianCycle(G).
1. Pick random values a : U × V → {0, 1}.
2. Use Lemma 4 to construct a list L of solutions to I(a).
3. If in the process more than 3(2− 21−δ)n/2 solutions are found, abort immediately and

return “no”.
4. Set s = 0.
5. Pick random values z : V × U → GF(2κ).
6. Set zu,v = zv,u for u 6= s.
7. Pick random values z : {s} × V → GF(2κ).
8. Set zu,v = 0 for all uv 6= E.
9. For each x ∈ L,

10. Evaluate t = det(M(a, x, z)) over GF(2κ).
11. s = s+ t over GF(2κ).
12. If s 6= 0 return “yes” otherwise return “no”.

3.1 Analysis
We first analyse the correctness of the algorithm. We will set κ so that the probability of
false negatives in a call to HamiltonianCycle(G) is at most 1

2 . By calling the procedure n
times the claimed false negative probability in Theorem 1 follows.

Consider first step 2 of the algorithm. The expected number of solutions is

E (|L|) = (2− 21−δ)n/2,

according to (5). By Markov’s inequality,

Pr (|L| ≥ 3 · E (|L|)) ≤ 1
3 .

Hence the false negative rate reported at step 3 is at most 1
3 . If the algorithm proceeds

past step 3, steps 4–12 computes (2), which according to Lemma 3 is non-zero only if G
has a Hamiltonian cycle. Hence there is no chance of false positives. We use the following
well-known Lemma to bound the probability of false negatives.

I Lemma 5 (DeMillo–Lipton–Schwartz–Zippel[8, 15]). Let p(x1, x2, ..., xm) be a nonzero m-
variate polynomial of total degree d over a field F . Pick r1, r2, ..., rm ∈ F uniformly and
independently at random, then

Pr (p(r1, r2, ..., rm) = 0) ≤ d

|F |
.
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In our case the polynomial has degree n as seen by (3) and because of the asymmetry around
s it is a non-zero polynomial whenever there are Hamiltonian cycles in the graph. We use
F = GF(2κ) with κ = dlog 4ne in the above Lemma, to get false negative rate at most 1

4 .
Combining the two sources of false negatives, we get total false negative probability at most

1
3 + 2

3 ·
1
4 = 1

2 ,

as claimed.
We next analyse the running time. In step 2 we use the listing algorithm in Lemma 4 (or

the alternative from 2.4) to list the solutions but aborting as soon as 3(2− 21−δ)n/2 solutions
have been found. According to the lemma, this takes O(1.619n + 3(2 − 21−δ)n/2 poly(n))
time, which is dominated by the second term for δ ≥ 3. Note that basic arithmetic
computations over GF(2κ) can be done in polylog(n) time. The determinant computation
at step 10 requires polynomial time in n by using Gaussian elimination and multiplication
of the diagonal elements to retrieve the value of the determinant (note that the sign of a
permutation doesn’t matter in characteristic two).

3.2 The proof of the parity counting theorem
We finally show how to modify the decision algorithm to obtain Theorem 2. First, to get
a Las Vegas algorithm we simply omit bailing out in step 3 of the algorithm if the list of
solutions to I(a) is too long. This gives a list of solution of expected length (2− 21−δ)n/2
according to (5). Second, we will replace the random values zu,v for u, v 6= s by ones if
uv ∈ E, and zeros otherwise. Third, we will run the algorithm several times, once for each
pair of distinct neighbors v, w of s, setting only zv,s = zs,w = 1 whereas all other variables
incident on s, zs,u and zu,s are set to zero for every u. This will make sure that we only
count the parity of Hamiltonian cycles through v, s, w and in one orientation. Summing over
all pairs of neighbors to s we obtain the parity of the number of all Hamiltonian cycles.
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Abstract
Assume for a graph G = (V,E) and an initial configuration, where each node is blue or red, in
each discrete-time round all nodes simultaneously update their color to the most frequent color
in their neighborhood and a node keeps its color in case of a tie. We study the behavior of this
basic process, which is called majority model, on the Erdős–Rényi random graph Gn,p and regular
expanders. First we consider the behavior of the majority model on Gn,p with an initial random
configuration, where each node is blue independently with probability pb and red otherwise. It
is shown that in this setting the process goes through a phase transition at the connectivity
threshold, namely logn

n . Furthermore, we say a graph G is λ-expander if the second-largest
absolute eigenvalue of its adjacency matrix is λ. We prove that for a ∆-regular λ-expander graph
if λ/∆ is sufficiently small, then the majority model by starting from ( 1

2 − δ)n blue nodes (for an
arbitrarily small constant δ > 0) results in fully red configuration in sub-logarithmically many
rounds. Roughly speaking, this means the majority model is an “efficient” and “fast” density
classifier on regular expanders. As a by-product of our results, we show regular Ramanujan
graphs are asymptotically optimally immune, that is for an n-node ∆-regular Ramanujan graph
if the initial number of blue nodes is s ≤ βn, the number of blue nodes in the next round is at
most cs

∆ for some constants c, β > 0. This settles an open problem by Peleg [33].
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1 Introduction

A social network, the graph of relationships among a group of individuals, plays a fundamental
role as a medium for the spread of information, ideas, and influence among its members. For
example, social media such as Facebook, Twitter, and Instagram have served as a crucial tool
for communication and information disseminating in today’s life. Recently, studying different
social behaviors like how people form their opinion regarding a new product or an election or
how the information spreads through a social network have attracted a substantial amount
of attention. Many different processes, from bootstrap percolation [4] to rumor spreading [6],
have been introduced to model this sort of social phenomena.

A considerable amount of attention has been devoted to the study of the majority-based
models, like voter model, majority bootstrap percolation, and majority model. In the
majority bootstrap percolation for a given graph and an initial configuration where each node
is blue or red, in each round all blue nodes update their color to the most frequent color
in their neighborhood and red nodes stay unchanged. The main motivation behind the
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4:2 Opinion Forming in Erdős–Rényi Random Graph and Expanders

majority bootstrap percolation is to model monotone processes like rumor spreading, where a
red/blue node corresponds to an informed/uninformed individual and an informed individual
will always stay informed of the rumor. However, to analyze non-monotone processes like
the diffusion of two competing technologies over a social network or opinion forming in a
community, the majority model is considered where each node updates its color to the most
frequent color in its neighborhood and keeps it unchanged in case of a tie. The blue/red
color, for instance, could stand for positive/negative opinion regarding a reform proposal.

Let us first fix some notations and define the majority model formally. For a graph
G = (V,E) and a node v ∈ V , let N(v) := {u ∈ V : {v, u} ∈ E} be the neighborhood of v and
d(v) := |N(v)| be the degree of v. Furthermore, for a set S ⊆ V , we define NS(v) := N(v)∩S
and N(S) :=

⋃
v∈S N(v). For two node sets S, S′ ⊂ V , define e(S, S′) := |{(v, u) : v ∈ S, u ∈

S′, {v, u} ∈ E}|. We also write n for the number of nodes in a graph G = (V,E), i.e. |V |.
A configuration is a function C : V → {b, r}, where b and r represent blue and red. For

a set S ⊆ V , C|S = a means ∀v ∈ S, C(v) = a for color a ∈ {b, r}. For a given initial
configuration C0, assume ∀ t ≥ 1 and v ∈ V , Ct(v) is equal to the color that occurs most
frequently in v’s neighborhood in Ct−1, and in case of a tie v keeps its current color, i.e.
Ct(v) = Ct−1(v). This deterministic process is called the majority model. For a given initial
configuration C0, let B(t) and R(t) for t ≥ 0 denote the set of blue and red nodes in Ct.

Since for a graph G there are 2n possible configurations and the majority model is a
deterministic process, by starting from any initial configuration, the process must eventually
reach a cycle of configurations. The length of the cycle and the number of rounds the process
needs to reach it are respectively called the period and the consensus time of the process. 2n
is a trivial upper bound on both the period and the consensus time of the process. However,
Goles and Olivos [18] provided the tight upper bound of two on the period of the process, and
Poljak and Turzik [34] showed the consensus time is upper-bounded by O(n2), which is shown
to be tight up to some poly-logarithmic factor by Frischknecht, Keller, and Wattenhofer [13].

The majority model has been studied on different classes of graphs, like lattice [16, 36, 38,
15], infinite lattice [10], random regular graphs [17], and infinite trees [22], when the initial
configuration is random, meaning each node is independently blue with probability pb and
red otherwise (without loss of generality, we always assume pb ≤ 1/2). We are interested in
the behavior of the process when the underlying graph is the Erdős–Rényi random graph
Gn,p, where the node set is [n] = {1, · · · , n} and each edge is added with probability p

independently. It is worth to mention that several other dynamic processes also have been
studied on Gn,p, for instance rumor spreading by Fountoulakis, Huber, and Panagiotou [11],
bootstrap percolation by Coja-Oghlan, Feige, Krivelevich, and Reichman [7], and interacting
particle systems by Schoenebeck and Yu [35].

We prove that in the majority model with pb ≤ 1
2 −ω( 1√

np ) on Gn,p with (1 + ε)p∗ ≤ p for
any constant ε > 0 and p∗ = logn

n , the process gets fully red in constant number of rounds
asymptotically almost surely (for an n-node graph G we say an event happens asymptotically
almost surely (a.a.s.) if it happens with probability 1− o(1) as n tends to infinity). We also
argue the tightness of this result. This explains the experimental observations from [25].

Furthermore, it is shown that in the majority model on Gn,p with p ≤ (1 − ε)p∗ (for
any constant ε > 0) if pb = o(enp/n), then the process gets fully red but it does not for
pb = ω(enp/n) a.a.s.

Putting the two aforementioned results together implies that the process exhibits a
threshold behavior at p∗. More precisely, for p = (1 + ε)p∗, if the initial density of blue nodes
is slightly less than one half, namely 1

2 − ω(1/
√

log n), then the process gets fully red, but
for p = (1− ε)p∗, pb must be very close to zero, namely smaller than en(1−ε) logn

n /n = 1
nε , to
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guarantee that it gets fully red a.a.s. Even though the proofs of the above statements require
some effort, the main intuition behind this phase transition simply comes from the fact that
p∗ is the connectivity threshold for Gn,p, that is Gn,p is connected and disconnected a.a.s.
respectively for (1 + ε)p∗ ≤ p and p ≤ (1− ε)p∗.

For (1 + ε)p∗ ≤ p and pb ≤ 1
2 − ω( 1√

np ) we distinguish two cases of sparse, p ≤ nγ

n , and
dense, n

γ

n < p for some small constant γ > 0. We argue that in the sparse case a very close
neighborhood of each node includes only a constant number of cycles a.a.s., meaning it has a
tree-like structure. Building on this tree-like structure, we prove that after constantly many
rounds the probability of being blue for each node is so small that the union bound over all
nodes yields our desired result. For the dense case, we argue in the first round the number
of blue nodes decreases to n

c′ a.a.s. for a large constant c′. Then, relying on the high edge
density of the graph we show s ≤ n

c′ blue nodes can create at most s/n
γ
2 blue nodes in the

next round; thus the process gets fully red in constantly many rounds.
For p ≤ (1− ε)p∗ and pb = ω(enp/n), the idea is to show that there exist sufficiently many

constant-size components so that initially there is a fully blue and a fully red component
a.a.s., which guarantee the coexistence of both colors. For pb = o(enp/n), we argue the blue
density is small enough to show that in at most two rounds all nodes are red a.a.s.

So far we considered the random setting, but one might approach the model from an
extremal point of view, which brings up the very well-studied concept of dynamic monopoly.
For a graph G = (V,E) and the majority model a set D ⊆ V is a dynamic monopoly, or
shortly dynamo, when the following holds: if in some configuration all nodes in D are red
(similarly blue) then the process eventually gets fully red (resp. blue), regardless of the colors
of the other nodes. Though the concept of dynamo had been studied before, e.g. by Balogh
and Pete [3] and Schonmann [37], it was introduced formally by Kempe, Kleinberg, and
Tardos [23] and Peleg [31] independently and motivated from two different contexts. The
minimum size of a dynamo has been extensively studied on different graph classes, from
the d-dimensional lattice, motivated from the literature of statistical physics, by Flocchini,
Lodi, Luccio, Pagli, and Santoro [9], Balister, Bollobás, Johnson, and Walters [2], and Jeger
and Zehmakan [21] to planar graphs by Peleg [32]. As a notable example, although it had
been conjectured by Peleg [32] that the minimum size of a dynamo in any n-node graph is
in Ω(

√
n), surprisingly Berger [5] proved for any n ∈ N there is an n-node graph which has

a constant-size dynamo, meaning a constant number of red nodes is sufficient to make the
whole graph red. We study the minimum size of a dynamo in Gn,p, and prove it is larger
than ( 1

2 −
c√
np )n a.a.s. for some constant c > 0.

As we discussed, in Gn,p and above the connectivity threshold if pb is slightly less than
one half then the process reaches fully red configuration and the minimum size of a dynamo is
close to n/2 a.a.s. This raises the notorious and well-studied problem of density classification.
For a given graph G, in the density classification problem [14] the task is to find an updating
rule so that for whatever initial configuration, the process gets fully red if the number of
reds is more than blues initially, and fully blue otherwise. This is a very central problem
in the literature of cellular automata and distributed computing since it is a good test case
to measure the power of local computations in gathering global information. This problem
turned to be hard, in the sense that Land and Belew [24] proved such an updating rule does
not exist even when the underlying graph is a cycle. Mustafa and Pekec [29, 30] approached
the problem from a different angle and asked for which classes of graphs the majority model,
which is probably one of the most natural candidates, classifies the density, and they proved
that it is the case for graphs which have at least n/2 nodes of degree n− 1. These hardness
results however did not stop the quest for the best, although imperfect, solutions and different
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weaker variants of the problem have been suggested. A natural way of relaxing the problem
would be to require any configuration with less than ( 1

2 − δ)n blue nodes for some small
δ > 0 results in fully red configuration. What are the graphs for which the majority model
classifies the density for reasonably small values of δ? To address this question, we argue
that regularity and expansion are two determining factors.

Expanders are graphs which are highly connected; meaning to disconnect a large part
of the graph, one has to sever many edges. A standard algebraic way of characterizing the
expansion of a graph G is to consider the second-largest absolute eigenvalue of its adjacency
matrix, which is denoted by λ(G). For a ∆-regular graph G, λ(G) ≤ ∆ and smaller λ(G)
implies better expansion. We show that in the majority model on a ∆-regular graph G, any
starting configuration satisfying |B(0)| ≤ ( 1

2 − δ)n, for some fixed but arbitrarily small δ > 0,
results in fully red configuration in sub-logarithmically many rounds if λ(G)/∆ is sufficiently
small. In other words, if initially all nodes have the same color (which could correspond to
some information) and an adversary is allowed to corrupt the color of ( 1

2 − δ)n number of
nodes, there is a large class of graphs for which if the nodes simply apply the majority rule,
they all retrieve the original color in sub-logarithmically many rounds. Roughly speaking,
the majority model is an “efficient” and “fast” density classifier on regular expanders.

In a graph G = (V,E) and the majority model for two sets S, S′ ⊆ V , we say S controls
S′ when the following holds: if S is fully blue (similarly red) in some configuration C, S′
will be fully blue (resp. red) in the next configuration. The main idea of our results is that
in regular expander graphs the number of edges between any two node sets S, S′ is almost
completely determined by their cardinality. This simple fact implies the number of nodes
that a set can control is proportional to its size, meaning a small set of blue nodes cannot
make a big part of the graph blue. Applying this argument iteratively and some careful
computations lead into the above result on regular expanders. It seems expansion is not only
a sufficient condition for such a behavior but also some sort of a necessary condition since
otherwise there can exist a small node set S so that each node in S has at least half of its
neighbors inside S. Thus, if S is initially blue, it stays blue forever, regardless of other nodes.

Motivated from fault-local mending in distributed systems, where redundant copies of
data are kept and the majority rule is applied to overcome the damage caused by failures,
Peleg [33] defined the concept of immunity. An n-node graph G is (α, β)-immune if any node
set of size s ≤ βn can control at most αs nodes in the majority model. Immunity and density
classification are related in the sense that for an (α, β)-immune graph with 0 < α, β < 1,
|B(0)| ≤ βn results in fully red configuration in O(log1/α n) rounds. For a ∆-regular graph
and some constant β > 0 the best achievable α is c2

∆ for some constant c2 > 0 because s
nodes can occupy the full neighborhood of at least b s∆c arbitrary nodes. A ∆-regular graph
is called asymptotically optimally immune if it is ( c2

∆ , β)-immune for some constants c2, β > 0.
These graphs are interesting since they prevent a small number of malicious/failed processors
to take over a big fraction of the underlying graph. Peleg proved for any ∆ > c1 for some
constant c1 there exists an asymptotically optimally immune ∆-regular graph (actually he
left a logarithmic gap, which was closed by Gärtner and Zehmakan [17], recently). These
results are existential, but one might be interested in constructing asymptotically optimally
immune ∆-regular graphs. For ∆ ≥

√
n, Peleg established explicit construction of such

graphs by using symmetric block designs. He also asked “It would be interesting to construct
asymptotically optimally immune regular graphs of degrees smaller than

√
n ”. We settle

this problem exploiting a large family of Cayley graphs, called Ramanujan graphs.
In Section 2, we study the behavior of the majority model on the random graph Gn,p,

and then in Section 3 we present our results regarding regular expander graphs and density
classification. The uninterested reader might directly jump into Section 3 since the sections
are supposed to stand by their own.
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2 Erdős–Rényi Random Graph

In this section, we first study the behavior of the majority model on Gn,p with an initial
random configuration (where each node is independently blue with probability pb and red
otherwise) above the connectivity threshold in Theorem 3 and below it in Theorem 5. As a
corollary of these results it is easy to see that the process goes through a phase transition:
above the connectivity threshold if pb is slightly less than 1/2, the process gets fully red
but below it the value of pb must be very close to zero to guarantee that it gets fully red
a.a.s. Then in Theorem 6, we prove the minimum size of a dynamo in Gn,p is larger than
( 1

2 −
c√
np )n a.a.s. for some constant c > 0, that is ( 1

2 −
c√
np )n blue nodes cannot make the

whole graph blue no matter how they are placed in the graph.
Let us state two variants of the Chernoff bound which we will use several times later.

I Theorem 1 ([8]). Suppose x1, · · · , xn are independent Bernoulli random variables taking
values in {0, 1} and let X denote their sum, then

(i) P[(1 + ε′)E[X] ≤ X] ≤ e−
ε′2E[X]

3 and P[X ≤ (1− ε′)E[X]] ≤ e−
ε′2E[X]

2 for 0 ≤ ε′ ≤ 1

(ii) P[(1 + ε′)E[X] ≤ X] ≤ e−
ε′E[X]

3 for ε′ ≥ 1.
To prove Theorem 3, we need Lemma 2, which states in Gn,p the degree of each node is
concentrated around its expectation. This can be proven by simply applying the Chernoff
bound (for a formal proof see e.g. [20]).

I Lemma 2. In Gn,p if p ≥ (1 + ε) logn
n for some constant ε > 0, then for each node v

P[d(v) < np
c′′ ] = o( 1

n ) for some constant c′′ > 0 (as a function of ε).

The main idea behind the proof of Theorem 3 is to apply the fact that the edges of each
node are distributed randomly all over the graph.

I Theorem 3. In the majority model with pb ≤ 1
2 − ω( 1√

np ) on Gn,p with p ≥ (1 + ε) logn
n

for ε > 0, the process gets fully red in constant number of rounds a.a.s.

Proof. We divide the proof into two parts of dense, which is p ≥ nγ

n , and sparse, which is
p < nγ

n for a sufficiently small constant γ > 0.

Dense case. We first show that in one round a.a.s. the number of blue nodes decreases
to n/c′ for an arbitrarily large constant c′. Then, we prove n/c′ blue nodes disappear in
constant number of rounds, no matter how they are placed in the graph.

We argue that for an arbitrary node v, P[C1(v) = b] = o(1), which implies the expected
number of blue nodes in C1 is equal to o(n). By applying Markov’s inequality [8], the
number of blue nodes in C1 is less than n/c′ a.a.s. for an arbitrarily large constant c′. To
compute the probability that node v is blue in C1, consider an arbitrary labeling u1, · · · , ud(v)
of v’s neighbors and define Bernoulli random variable xi for 1 ≤ i ≤ d(v) to be 1 if and
only if C0(ui) = r. Assume random variable dr(v) denotes the number of red nodes in
v’s neighborhood in C0; clearly, E[dr(v)] =

∑d(v)
i=1 xi = d(v)(1 − pb). Let pb = 1/2 − δ for

δ = ω(1/√np) then by applying the Chernoff bound (Theorem 1 (i)) we have

P[C1(v) = b] ≤ P[dr(v) ≤ d(v)/2] ≤ P[dr(v) ≤ (1− δ)(1
2 + δ)d(v)] =

P[dr(v) ≤ (1− δ)E[dr(v)]] ≤ e−
δ2(1/2+δ)d(v)

2 .
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Thus, for some positive constant c′′, we have P[C1(v) = b|d(v) ≥ np
c′′ ] ≤ e

− δ
2(1/2+δ)np

2c′′ = e−ω(1),
where we used δ = ω(1/√np). Now, by applying Lemma 2,

P[C1(v) = b] = P[C1(v) = b|d(v) ≥ np

c′′
] · P[d(v) ≥ np

c′′
]+

P[C1(v) = b|d(v) < np

c′′
] · P[d(v) < np

c′′
] ≤ e−ω(1) · 1 + 1 · o(1) = o(1).

Now, we prove any non-empty node set of size s ≤ n/c′ controls at most s/n
γ
2 nodes a.a.s.

This implies by starting from n/c′ blue nodes (regardless of how they are placed in the graph)
the process gets fully red after at most 2/γ rounds (notice that 2/γ is a constant). Let S be a
set of size s ≤ n/c′ and S′ be a set of size s′ = s/nγ/2. Since E[e(S′, V \ S)] = s′(n− s)p, by
applying the Chernoff bound (Theorem 1 (i)) and using p ≥ nγ

n , n−s ≥ n/2, and s′ = s/nγ/2

we have

P[e(S′, V \ S) ≤ (1− 1
2)E[e(S′, V \ S)]] ≤ e−

E[e(S′,V \S)]
8 = e−

s′(n−s)p
8 ≤ e−Θ(sn

γ
2 ) (1)

Similarly, since E[e(S′, S)] = s′sp again by applying the Chernoff bound (Theorem 1 (ii))

P[e(S′, S) ≥ (1 + ( n4s − 1))E[e(S′, S)]] ≤ e−( n4s−1) E[e(S′,S)]
3 = e−( n4s−1) s

′sp
3 ≤ e−Θ(sn

γ
2 ) (2)

Clearly, P[S controls S′] ≤ P[e(S′, V \ S) ≤ e(S′, S)] because if e(S′, V \ S) > e(S′, S)
then there is at least one node in S′ which has more than half of its neighbors in V \ S.
Furthermore, (1 + ( n4s − 1))E[e(S′, S)] = n

4ss
′sp = n

4 s
′p and by using (n− s) ≥ n/2 we have

(1− 1
2 )E[e(S′, V \ S)] = 1

2s
′(n− s)p ≥ n

4 s
′p. Thus by Equations 1 and 2, P[S controls S′] ≤

2e−Θ(snγ/2) = e−Θ(snγ/2) since s ≥ 1.
By the union bound, the probability that there exits a set S of size s ≤ n/c′ which

controls a set of size s/nγ/2 is bounded by

n/c′∑
s=1

(
n

s

)(
n

s/nγ/2

)
e−Θ(snγ/2) ≤

n/c′∑
s=1

n2se−Θ(snγ/2) ≤
n/c′∑
s=1

(n2e−Θ(nγ/2))s.

(n2e−Θ(nγ/2))s is maximized for s = 1 since n2e−Θ(nγ/2) < 1. Thus, the summation is
upper-bounded by n

c′n
2e−Θ(nγ/2) = o(1) which proves our claim.

Sparse case. Let us first present the following proposition, which roughly speaking states
that for small values of p, the close neighborhood of each node looks like a tree.

I Proposition 4. In Gn,p with p < nγ

n for some small constant γ > 0, a.a.s. there is no
node which is in two different cycles of size 3 or 4.

To prove Proposition 4, it suffices to show a.a.s. there exits no subgraph with 4 ≤ k ≤ 7
nodes and k + 1 edges. By the union bound, the probability of having such a subgraph is
upper-bounded by

∑7
k=4

(
n
k

)(
k(k−1)/2
k+1

)
pk+1 ≤

∑7
k=4 Θ(nk)n

(k+1)γ

nk+1 = o(1), where in the last
step we used the fact that γ is a sufficiently small constant (for instance γ < 1/8). This
finishes the proof of Proposition 4.

Now building on this tree-like structure and Lemma 2, we prove the probability that
an arbitrary node is blue after two rounds of the process is so small that the union bound
over all nodes implies the process is fully red a.a.s. Let v be an arbitrary node and label
its neighbors from u1 to ud(v). We want to upper-bound P[C2(v) = b]. For 1 ≤ i ≤ d(v)
let u1

i , · · · , u
d(ui)−1
i be the neighbors of ui except v. Define random variable Xi to be the
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number of red nodes among u1
i , · · · , u

d(ui)−1
i in C0. We say node ui is almost blue in C1 if

Xi ≤ d(ui)
2 (notice if a node is blue in C1, it is also almost blue, but not necessarily the other

way around). Now, we bound P[Xi ≤ d(ui)
2 ], which is the probability that ui is almost blue.

Since E[Xi] = (d(ui)− 1)(1− pb) for pb = 1
2 − δ and δ = ω( 1√

np ), by applying the Chernoff
bound (Theorem 1 (i)) we have

P[Xi ≤ d(ui)
2 ] ≤ P[Xi ≤ (1 − δ)(1

2 + δ)(d(ui) − 1)] = P[Xi ≤ (1 − δ)E[Xi]] ≤ e− δ2(1/2+δ)(d(ui)−1)
2 .

Thus for any large constant c′′, P[Xi ≤ d(ui)
2 |d(ui) ≥ np

c′′ ] ≤ e−
δ2(1/2+δ)(np

c′′
−1)

2 = o(1) by
δ = ω( 1√

np ). Now by applying Lemma 2, we have

pi := P[Xi ≤
d(ui)

2 ] = P[Xi ≤
d(ui)

2 |d(ui) ≥
np

c′′
] · P[d(ui) ≥

np

c′′
]+

P[Xi ≤
d(ui)

2 |d(ui) <
np

c′′
] · P[d(ui) <

np

c′′
] ≤ o(1) · 1 + 1 · o(1) ≤ δ′

for an arbitrarily small constant δ′ > 0.
Now, we bound the probability P[C2(v) = b]. Based on Proposition 4, a.a.s. every node,

including v, is in at most one cycle of length three, say with u1 and u2, and in at most
one cycle of length four, say with u3 and u4, and other uis share no neighbor except v (see
Figure 1). Let Y denote the number of nodes among u5, · · · , ud(v) which are almost blue in
C1. Then, P[C2(v) = b] ≤ P[Y ≥ d(v)

2 − 4] because for ui to be blue in C1 it must be almost
blue in C1 by definition and for v to be blue in C2 it needs at least d(v)

2 − 4 blue nodes among
u5, · · · , ud(v). Notice that being almost blue and being blue are pretty much the same except
being almost blue is not a function of the color of node v (we some sort of assume node v is
blue in C0 and still the impact of this assumption is small enough to let us get our desired
tail bound). This gives us the independence among pis for 4 ≤ i ≤ d(ui)− 1 (which we apply
in the next step) because the only neighbor they share is v. Since we upper-bounded pi by δ′,

P[C2(v) = b] ≤ P[Y ≥ d(v)
2 − 4] =

d(v)−4∑
j= d(v)

2 −4

(
d(v)− 4

j

)
δ′j(1− δ′)d(v)−4−j ≤ 2d(v)δ′

d(v)
2 −4

which is equal to (2
√
δ′)d(v)

δ′4 . Thus, P[C2(v) = b|d(v) ≥ np
c′′ ] ≤

(2
√
δ′)

np

c′′

δ′4 which is less than
e−2np by selecting δ′ sufficiently small. Furthermore, e−2np = o( 1

n ) by p ≥ (1 + ε) logn
n . Now

by Lemma 2,

P[C2(v) = b] = P[C2(v) = b|d(v) ≥ np

c′′
] · P[d(v) ≥ np

c′′
]+

P[C2(v) = b|d(v) < np

c′′
] · P[d(v) < np

c′′
] ≤ o( 1

n
) · 1 + 1 · o( 1

n
) = o( 1

n
).

The union bound implies a.a.s. there is no blue node in C2. J

Regarding the tightness of the result of Theorem 3, notice that it does not hold if we replace
ω( 1√

np ) with c√
np for any constant c. For p = 1, which corresponds to the complete graph, if

we color each node blue independently with probability pb = 1
2 −

c√
n
and red otherwise for

some constant c > 0, then by Central Limit Theorem [8] the probability that more than half
of the nodes are blue is a positive constant. This implies the process gets fully blue after one
round with some positive constant probability.
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v

u1 u2 u3 u4 u5 ui ud(v)

u1
i

u
d(ui)−1

i...

... ...

Figure 1 The neighborhood of node v.

I Theorem 5. In the majority model on Gn,p with p ≤ (1− ε) logn
n for ε > 0, a.a.s.

(i) pb = ω(enp/n) results in the coexistence of both colors
(ii) pb = o(enp/n) results in fully red configuration.

We present the proof of part (i). For part (ii), the idea is to show that all nodes distinguish
that the major color is red by looking at nodes in distance at most two when pb is sufficiently
small, namely pb = o(enp/n). The formal proof of part (ii) is given in the extended version
of the paper.

Proof. Notice that a blue/red isolated node never changes its color in majority model. Thus,
it suffices to show for Pb = ω(enp/n), a.a.s. there is a blue and a red isolated node in the
initial configuration. We discuss the blue case and the proof carries on analogously for red.

Let random variable X denote the number of blue isolated nodes in C0. Consider an
arbitrary labeling v1, · · · , vn on the nodes and define the Bernoulli random variable xi, for
1 ≤ i ≤ n, to be one if and only if node vi is isolated and blue in C0. Clearly, X =

∑n
i=1 xi

and P[xi = 1] = pb(1− p)n−1. Thus, by linearity of expectation E[X] = npb(1− p)n−1. By
applying the estimate 1− x ≥ e−x−x2 for 0 ≤ x ≤ 1/2, plugging in pb = ω(enp/n), and using
the fact that enp2 ≤ e

log2 n
n ≤ e, we have E[X] ≥ n ω( e

np

n ) e−np−np2 = ω(1). Now, we argue
that Var(X) = o(E[X]2), which then simply by applying Chebychev’s inequality [8] implies
P[X = 0] ≤ Var(X)/E[X]2 = o(1). Therefore, a.a.s. there exist a blue and a red isolated
node in C0 which result in the coexistence of both colors.

Var(X) = E[X2]− E[X]2 =
∑

1≤i,j≤n
E[xi · xj ]− E[X]2 =

n∑
i=1

E[x2
i ] +

∑
1≤i6=j≤n

E[xi · xj ]− E[X]2 = E[X] +
∑

1≤i6=j≤n
P[xi = 1 ∧ xj = 1]− E[X]2 =

E[X] + n(n− 1)(1− p)2n−3p2
b − E[X]2 = E[X] + E[X]2((1− 1

n
) 1
1− p − 1).

Since E[X] = ω(1), we have E[X] = o(E[X]2). Furthermore by using p = o(1) we have

(1− 1
n

) 1
1− p − 1 = p

1− p −
1
n
· 1

1− p = pn− 1
n(1− p) = o(1).

Putting both together we thus conclude that Var[X] = o(E[X]2). J

I Theorem 6. In Gn,p any dynamo is of size at least ( 1
2 −

c√
np )n for a large constant c a.a.s.

Proof. The main idea of the proof is similar to the dense case in Theorem 3. It suffices to
prove that a.a.s. a set of size s = ( 1

2 − δ)n for δ = c√
np cannot control a set of the same

size. By definition of controlling, this implies no set of size s or smaller can control a set
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of size s or larger; consequently, there is no dynamo of size s or smaller. We show that the
probability that an arbitrary node set of size s controls a set of the same size is so small that
the union bound over all possibilities yields our claim.

Let S, S′ be two node sets of size s. we want to bound the probability that S controls S′.
Since E[e(S′, S)] = s2p, by applying the Chernoff bound (Theorem 1 (i)) and δ2 = c2

np for a
sufficiently large constant c, we have

P[(1 + δ)E[e(S′, S)] ≤ e(S′, S)] ≤ e−
δ2E[e(S,S′)]

3 = e−
c2s2p

3np ≤ e−2n.

Similarly, since E[e(S′, V \ S)] = s(n− s)p,

P[e(S′, V \ S) ≤ (1− δ)E[e(S′, V \ S)]] ≤ e−
c2s(n−s)p

2np ≤ e−2n.

Furthermore,

(1+ δ)E[e(S′, S)] = (1+ δ)(1
2 − δ)

2n2p ≤ (1− δ)(1
2 + δ)(1

2 − δ)n
2p = (1− δ)E[e(S′, V \S)].

This implies P[e(S′, S) ≥ e(S′, V \S)] ≤ 2e−2n. Furthermore, P[S controls S′] ≤ P[e(S′, S) ≥
e(S′, V \ S)] because if e(S′, S) < e(S′, V \ S), then there is a node in S′ which shares more
than half of its neighbors with V \ S. Therefore, P[S controls S′] ≤ 2e−2n. By the union
bound, the probability that there exist sets S, S′ of size s such that S controls S′ is upper-
bounded by 22n2e−2n = o(1), where 22n is an upper bound on the number of possibilities of
choosing sets S and S′. J

3 Expanders

Roughly speaking, our main goal in this section is to show that the majority model is an
“efficient” and “fast” density classifier on regular expanders. Let us first state Lemma 7,
which is our main tool. Recall that for a graph G the second-largest absolute eigenvalue of
its adjacency matrix is denoted by λ(G) (to lighten the notation we simply write λ where G
is clear from the context).

I Lemma 7. (Lemma 2.3 in [19]) In a ∆-regular graph G = (V,E) for any two node sets
S, S′ ⊆ V , |e(S, S′)− |S||S

′|∆
n | ≤ λ

√
|S||S′|.

In the above lemma, the left-hand side is roughly the deviation between the number
of edges among S and S′ in G and the expected number of edges among S and S′ in the
random graph Gn,∆/n on the node set V . A small λ (i.e., good expansion) implies that this
deviation is small, so the graph is nearly random in this sense; in other words, the number
of edges between any two node sets is almost completely determined by their cardinality.
Intuitively, this implies in the majority model the number of blue nodes that a blue set can
create in the next round is proportional to its size. We phrase this argument more formally
in Lemma 8 and Lemma 9.

I Lemma 8. In the majority model and ∆-regular graph G, if |B(t)| ≤ ( 1
2 −

2λ
∆ )n then

|B(t+ 1)| ≤ n
4 .

Proof. For each node in B(t+ 1), the number of neighbors in B(t) is at least as large as the
number of neighbors in R(t), which implies e(B(t+ 1), R(t)) ≤ e(B(t+ 1), B(t)). Now, by
applying Lemma 7 to both sides of the inequality, we have

|B(t+ 1)||R(t)|∆
n

− λ
√
|B(t+ 1)||R(t)| ≤ |B(t+ 1)||B(t)|∆

n
+ λ

√
|B(t+ 1)||B(t)|.
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Dividing by
√
|B(t+ 1)| and re-arranging the terms give√

|B(t+ 1)|(|R(t)| − |B(t)|) ≤ λn

∆ (
√
|B(t)|+

√
|R(t)|).

Since |R(t)| − |B(t)| ≥ 4λ
∆ n and

√
|B(t)|+

√
|R(t)| ≤ 2

√
n, we have

|B(t+ 1)|16λ2n2

∆2 ≤ λ2n2

∆2 4n⇒ |B(t+ 1)| ≤ n

4 . J

I Lemma 9. In the majority model and ∆-regular graph G, |B(t)| ≤ n
4 implies |B(t+ 1)| ≤

16 λ
2

∆2 |B(t)|.

Proof. Since each node in B(t + 1) must have at least ∆/2 neighbors in B(t), we have
|B(t+1)|∆

2 ≤ e(B(t+ 1), B(t)). Applying Lemma 7 to the right side of the inequality gives

|B(t+ 1)|∆
2 ≤ |B(t+ 1)||B(t)|∆

n
+ λ

√
|B(t+ 1)||B(t)| ⇒

√
|B(t+ 1)|(1− 2|B(t)|

n
) ≤ 2λ

∆
√
|B(t)|.

Now, utilizing |B(t)|
n ≤ 1

4 and taking the square of both sides of the equation imply |B(t+1)| ≤
16 λ

2

∆2 |B(t)|. J

Putting Lemma 8 and Lemma 9 together immediately provides Theorem 10.

I Theorem 10. In the majority model and ∆-regular graph G, if |B(0)| ≤ ( 1
2 −

2λ
∆ )n then

the process gets fully red in O(log∆2/λ2 n) rounds.

I Corollary 11. In the majority model and ∆-regular graph G with λ(G) = o(∆), |B(0)| ≤
( 1

2−δ)n for an arbitrary constant δ > 0 results in fully red configuration in sub-logarithmically
many rounds.

So far we proved our desired density classification property of the majority model on regular
expanders. Now, we discuss that combining these results with some prior works yields some
very interesting propositions, in particular solving an open problem by Peleg [33].

The random ∆-regular graph G∆
n is the random graph with a uniform distribution over all

∆-regular graphs on n vertices, say [n]. It is known [12] that a.a.s. λ(G∆
n ) = O(

√
∆) for ∆ ≥ 3.

Therefore, Theorem 10 implies that in the majority model on G∆
n , if |B(0)| ≤ ( 1

2 −
c√
∆

)n for
some large constant c then the process gets fully red a.a.s. This result is already known by
Gärtner and Zehmakan [17], however with a much more involved proof.

Recall that a graph is (α, β)-immune if any node set of size s ≤ βn controls at most αs
nodes, and it is asymptotically optimally immune if it is ( c2

∆ , β)-immune for some constants
c2, β > 0. As argued in the introduction, by [33, 17] we know that for any ∆ > c1 for some
constant c1, there exists an asymptotically optimally immune ∆-regular graph. However, it
would be interesting to construct such graphs explicitly. For ∆ ≥

√
n, Peleg [33] established

explicit constructions by using structures for symmetric block designs, and he left the case
of ∆ <

√
n as an open problem. We settle this problem by exploiting a large family of

regular Cayley graphs, called Ramanujan graphs. A ∆-regular graph G is Ramanujan if
λ(G) =

√
2∆− 1. Ramanujan graphs are “optimal” expanders because Alon and Boppana [1]

proved that for a ∆-regular graph G, λ(G) ≥
√

2∆− 1 − o(1). Thus, Lemma 9 implies
that for any ∆-regular Ramanujan graph a node set of size s ≤ n

4 can control at most
16λ2

∆2 s = 16(2∆−1)
∆2 s ≤ 32

∆ s nodes. This means that any ∆-regular Ramanujan graph is
( 1

4 ,
32
∆ )-immune; i.e., it is asymptotically optimally immune.
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I Theorem 12. All regular Ramanujan graphs are asymptotically optimally immune.

Lubotzky, Phillips, and Sarnak [26] showed that arbitrarily large ∆-regular Ramanujan
graphs exist when ∆ − 1 is prime, and moreover they can be explicitly constructed (see
also [27, 28]). This result plus Theorem 12 answer the aforementioned question by Peleg.

Finally, as we argued regularity and expansion are sufficient properties for efficient density
classification, but a natural question arises: are they also necessary? Some certain level of
expansion seems to be needed for a graph to show such a density classification behavior
under the majority model because otherwise there can exist a relatively small subset S such
that each node in S has at least half of its neighbors in S; clearly, if S is fully blue initially,
it stays blue forever, even though all the remaining nodes are red. Regarding regularity, if
the graph is not regular but almost regular, that is the minimum degree and the maximum
degree differ by a constant factor, then the same proof ideas provide similar results. However,
large degree gaps can lead into the state where a small subset of nodes of large degrees
controls a large set of nodes of small degrees, which is in contrast with density classification.
All in all, this would be an interesting question to be addressed rigorously in future work.
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5:2 Colouring (Pr + Ps)-Free Graphs

1 Introduction

Graph colouring is a popular concept in Computer Science and Mathematics due to a wide
range of practical and theoretical applications, as evidenced by numerous surveys and books
on graph colouring and many of its variants (see, for example, [5, 14, 21, 24, 28, 30, 33]).
Formally, a colouring of a graph G = (V, E) is a mapping c : V → {1, 2, . . .} that assigns each
vertex u ∈ V a colour c(u) in such a way that c(u) 6= c(v) whenever uv ∈ E. If 1 ≤ c(u) ≤ k,
then c is also called a k-colouring of G and G is said to be k-colourable. The Colouring
problem is to decide if a given graph G has a k-colouring for some given integer k.

It is well known that Colouring is NP-complete even if k = 3 [27]. To pinpoint the
reason behind the computational hardness of Colouring one may impose restrictions on the
input. This led to an extensive study of Colouring for special graph classes, particularly
hereditary graph classes. A graph class is hereditary if it is closed under vertex deletion.
As this is a natural property, hereditary graph classes capture a very large collection of
well-studied graph classes. It is readily seen that a graph class G is hereditary if and only
if G can be characterized by a unique set HG of minimal forbidden induced subgraphs. If
HG = {H}, then a graph G ∈ G is called H-free.

Král’, Kratochvíl, Tuza, and Woeginger [23] started a systematic study into the complexity
of Colouring on H-free graphs for sets H of size at most 2. They showed polynomial-
time solvability if H is an induced subgraph of P4 or P1 + P3 and NP-completeness for all
other graphs H. The classification for the case where H has size 2 is far from finished;
see the summary in [14] or an updated partial overview in [11] for further details. Instead
of considering sets H of size 2, we consider H-free graphs and follow another well-studied
direction, in which the number of colours k is fixed, that is, k no longer belongs to the input.

k-Colouring: Given a graph G does there exist a k-colouring of G?

A k-list assignment of G is a function L with domain V such that the list of admissible
colours L(u) of each u ∈ V is a subset of {1, 2, . . . , k}. A colouring c respects L if c(u) ∈ L(u)
for every u ∈ V. If k is fixed, then we obtain the following generalization of k-Colouring:

List k-Colouring: Given a graph G and a k-list assignment L does there exist a colouring
of G that respects L?

For every k ≥ 3, k-Colouring on H-free graphs is NP-complete if H contains a cycle [13]
or an induced claw [19, 26]. Hence, the case where H is a linear forest (a disjoint union
of paths) remains. The situation is far from settled yet, although many partial results are
known [2, 3, 4, 6, 7, 8, 9, 10, 15, 18, 20, 25, 29, 31, 34]. Particularly, the case where H is
the t-vertex path Pt has been well studied. The cases k = 4, t = 7 and k = 5, t = 6 are
NP-complete [20]. For k ≥ 1, t = 5 [18] and k = 3, t = 7 [2], even List k-Colouring
on Pt-free graphs is polynomial-time solvable (see also [14]). For a fixed integer k, the
k-Precolouring Extension problem is to decide a given k-colouring defined on an induced
subgraph of a graph G can be extended to a k-colouring of G. Recently it was shown in [7, 8]
that 4-Precolouring Extension, and therefore 4-Colouring, is polynomial-time solvable
for P6-free graphs. In contrast, the more general problem List 4-Colouring is NP-complete
for P6-free graphs [15]. See Table 1 for a summary of all these results.

From Table 1 we see that only the cases k = 3, t ≥ 8 are still open, although some partial
results are known for k-Colouring for the case k = 3, t = 8 [9]. The situation when H

is a disconnected linear forest
⋃

Pi is less clear. It is known that for every s ≥ 1, List
3-Colouring is polynomial-time solvable for sP3-free graphs [4, 14]. For every graph H,



T. Klimošová, J. Malík, T. Masařík, J. Novotná, D. Paulusma, and V. Slívová 5:3

Table 1 Summary for Pt-free graphs.

k-Colouring k-Precolouring Extension List k-Colouring
t k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6

t ≤ 5 P P P P P P P P P P P P
t = 6 P P NP-c NP-c P P NP-c NP-c P NP-c NP-c NP-c
t = 7 P NP-c NP-c NP-c P NP-c NP-c NP-c P NP-c NP-c NP-c
t ≥ 8 ? NP-c NP-c NP-c ? NP-c NP-c NP-c ? NP-c NP-c NP-c

List 3-Colouring is polynomial-time solvable for (H + P1)-free graphs if it is polynomially
solvable for H-free graphs [4, 14]. If H = rP1 + P5 (r ≥ 0) a stronger result is known.

I Theorem 1 ([10]). For all k ≥ 1, r ≥ 0, List k-Colouring is polynomial-time solvable
on (rP1 + P5)-free graphs.

Theorem 1 cannot be extended to larger linear forests H, as List 4-Colouring is NP-
complete for P6-free graphs [15] and List 5-Colouring is NP-complete for (P2 + P4)-free
graphs [10]. As mentioned, 5-Colouring is known to be NP-complete for P6-free graphs [20],
but the existence of integers k ≥ 3 and 2 ≤ r ≤ 5 such that k-Colouring is NP-complete
for (Pr + P5)-free graphs has not been shown in the literature.

Another way of making progress is to complete a classification by bounding the size of H .
It follows from the above results and the ones in Table 1 that for a graph H with |V (H)| ≤ 6,
3-Colouring and List 3-Colouring (and consequently, 3-Precolouring Extension)
are polynomial-time solvable on H-free graphs if H is a linear forest, and NP-complete
otherwise; see also [14]. In [14] it was also shown that, to obtain the same statement for
graphs H with |V (H)| ≤ 7, only the two cases where H ∈ {P2 + P5, P3 + P4} must be solved.

Our Results. In Section 2 we solve the two missing cases listed above.

I Theorem 2. List 3-Colouring is polynomial-time solvable for (P2 + P5)-free graphs and
for (P3 + P4)-free graphs.

We prove Theorem 2 as follows. If the graph G of an instance (G, L) of List 3-Colouring
is P7-free, then we can use the aforementioned result of Bonomo et al. [2]. Hence we may
assume that G contains an induced P7. We consider every possibility of colouring the vertices
of this P7 and try to reduce each resulting instance to a polynomial number of smaller
instances of 2-Satisfiability. As the latter problem can be solved in polynomial time, the
total running time of the algorithm will be polynomial. The crucial proof ingredient is that
we partition the set of vertices of G that do not belong to the P7 into subsets of vertices
that are of the same distance to the P7. This leads to several “layers” of G. We analyse how
the vertices of each layer are connected to each other and to vertices of adjacent layers so as
to use this information in the design of our algorithm.

Combining Theorem 2 with the aforementioned known results yields the following com-
plexity classifications for graphs H up to seven vertices.

I Corollary 3. Let H be a graph with |V (H)| ≤ 7. If H is a linear forest, then List
3-Colouring is polynomial-time solvable for H-free graphs; otherwise already 3-Colouring
is NP-complete for H-free graphs.

In Section 3 we complement Theorem 2 by proving the following result.

I Theorem 4. 5-Colouring is NP-complete for (P3 + P5)-free graphs.
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Preliminaries
Let G = (V, E) be a graph. For a vertex v ∈ V , we denote its neighbourhood by N(v) =
{u | uv ∈ E}, its closed neighbourhood by N [v] = N(v)∪{v} and its degree by deg(v) = |N(v)|.
For a set S ⊆ V , we write N(S) =

⋃
v∈S N(v) \ S and N [S] = N(S) ∪ S, and we let

G[S] = (S, {uv | u, v ∈ S}) be the subgraph of G induced by S. The contraction of an edge
e = uv removes u and v from G and introduces a new vertex which is made adjacent to every
vertex in N(u) ∪N(v). The identification of a set S ⊆ V by a vertex w removes all vertices
of S from G, introduces w as a new vertex and makes w adjacent to every vertex in N(S).
The length of a path is its number of edges. The distance distG(u, v) between two vertices u

and v is the length of a shortest path between them in G. The distance distG(u, S) between
a vertex u ∈ V and a set S ⊆ V \ {v} is defined as min{dist(u, v) | v ∈ S}.

For two graphs G and H , we use G + H to denote the disjoint union of G and H , and we
write rG to denote the disjoint union of r copies of G. Let (G, L) be an instance of List
3-Colouring. For S ⊆ V (G), we write L(S) =

⋃
u∈S L(u). We let Pn and Kn denote the

path and complete graph on n vertices, respectively. The diamond is the graph obtained
from K4 after removing an edge. We say that an instance (G′, L′) is smaller than some
other instance (G, L) of List 3-Colouring if either G′ is an induced subgraph of G with
|V (G′)| < |V (G)|; or G′ = G and L′(u) ⊆ L(u) for each u ∈ V (G), such that there exists at
least one vertex u∗ with L′(u∗) ⊂ L(u∗).

2 The Two Polynomial-Time Results

In this section we show that List 3-Colouring problem is polynomial-time solvable for
(P2 + P5)-free graphs and for (P3 + P4)-free graphs. As arguments for these two graph classes
are overlapping, we prove both cases simultaneously. Our proof uses the following two results.

I Theorem 5 ([2]). List 3-Colouring is polynomial-time solvable for P7-free graphs.

I Theorem 6 ([12]). The 2-List Colouring problem is linear-time solvable.

Outline of the proof of Theorem 2. Our goal is to reduce, in polynomial time, an instance
(G, L) of List 3-Colouring, where G is (P2 + P5)-free or (P3 + P4)-free, to a polynomial
number of smaller instances of 2-List-Colouring in such a way that (G, L) is a yes-
instance if and only if at least one of the new instances is a yes-instance. As for each of the
smaller instances, we can apply Theorem 6, the total running time of our algorithm will be
polynomial.

If G is P7-free, then we do not have to do the above and may apply Theorem 5 instead.
Hence, we assume that G contains an induced P7. We put the vertices of the P7 in a set N0
and define sets Ni (i ≥ 1) of vertices of the same distance i from N0; we say that the sets Ni

are the layers of G. We then analyse the structure of these layers using the fact that G is
(P2 + P5)-free or (P3 + P4)-free. The first phase of our algorithm is about preprocessing
(G, L) after colouring the seven vertices of N0 and applying a number of propagation rules.
We consider every possible colouring of the vertices of N0. In each branch we may have to
deal with vertices u that still have a list L(u) of size 3. We call such vertices active and prove
that they all belong to N2. We then enter the second phase of our algorithm. In this phase
we show, via some further branching, that N1-neighbours of active vertices either all have
a list from {{h, i}, {h, j}}, where {h, i, j} = {1, 2, 3}, or they all have the same list {h, i}.
In the third phase we reduce, again via some branching, to the situation where only the
latter option applies: N1-neighbours of active vertices all have the same list. Then in the
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fourth and final phase of our algorithm we know so much structure of the instance that we
can reduce to a polynomial number of smaller instances of 2-List-Colouring via a new
propagation rule identifying common neighbourhoods of two vertices by a single vertex.

I Theorem 2 (restated). List 3-Colouring is polynomial-time solvable for (P2 + P5)-free
graphs and for (P3 + P4)-free graphs.

Proof Sketch. Due to space limitation we omit the proof for the (more involved) case where
H = P3 + P4. Hence, let (G, L) be an instance of List 3-Colouring, where G = (V, E) is
a (P2 + P5)-free graph. Whenever possible, we base our arguments on (P3 + P5)-freeness.
Since the problem can be solved component-wise, we may assume that G is connected. If G

contains a K4, then G is not 3-colourable, and thus (G, L) is a no-instance. As we can decide
if G contains a K4 in O(n4) time by brute force, we assume that from now on G is K4-free.
By brute force we either deduce in O(n7) time that G is P7-free or we find an induced P7 on
vertices v1, . . . , v7 in that order. In the first case we use Theorem 5. It remains to deal with
the second case.

I Definition 7 (Layers). Let N0 = {v1, . . . , v7}. For i ≥ 1, we define Ni = {u | dist(u, N0) =
i}. We call the sets Ni (i ≥ 0) the layers of G.

In the remainder, we consider N0 to be a fixed set of vertices. That is, we will update (G, L)
by applying a number of propagation rules and doing some (polynomial) branching, but we
will never delete the vertices of N0. This will enable us to exploit the H-freeness of G.

We show the following two claims about layers (proofs omitted).

I Claim 8. V = N0 ∪N1 ∪N2 ∪N3.

I Claim 9. G[N2 ∪ N3] is the disjoint union of complete graphs of size at most 3, each
containing at least one vertex of N2 (and thus at most two vertices of N3).

We will now introduce a number of propagation rules, which run in polynomial time. We are
going to apply these rules on G exhaustively, that is, until none of the rules can be applied
anymore. Note that during this process some vertices of G may be deleted (due to Rules 2
and 2), but as mentioned we will ensure that we keep the vertices of N0, while we may
update the other sets Ni (i ≥ 1). We say that a propagation rule is safe if the new instance
is a yes-instance of List 3-Colouring if and only if the original instance is so.

Rule 1. (no empty lists) If L(u) = ∅ for some u ∈ V , then return no.
Rule 2. (not only lists of size 2) If |L(u)| ≤ 2 for every u ∈ V , then apply Theorem 6.
Rule 3. (connected graph) If G is disconnected, then solve List 3-Colouring on each

instance (D, LD), where D is a connected component of G that does not contain N0 and
LD is the restriction of L to D. If D has no colouring respecting LD, then return no;
otherwise remove the vertices of D from G.

Rule 4. (no coloured vertices) If u /∈ N0, |L(u)| = 1 and L(u) ∩ L(v) = ∅ for all v ∈ N(u),
then remove u from G.

Rule 5. (single colour propagation) If u and v are adjacent, |L(u)| = 1, and L(u) ⊆ L(v),
then set L(v) := L(v) \ L(u).

Rule 6. (diamond colour propagation) If u and v are adjacent and share two common neigh-
bours x and y with L(x) 6= L(y), then set L(x) := L(x) ∩ L(y) and L(y) := L(x) ∩ L(y).

Rule 7. (twin colour propagation) If u and v are non-adjacent, N(u) ⊆ N(v), and L(v) ⊂
L(u), then set L(u) := L(v).
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Rule 8. (triangle colour propagation) If u, v, w form a triangle, |L(u) ∪ L(v)| = 2 and
|L(w)| ≥ 2, then set L(w) : = L(w) \ (L(u) ∪ L(v)), so |L(w)| ≤ 1.

Rule 9. (no free colours) If |L(u) \ L(N(u))| ≥ 1 and |L(u)| ≥ 2 for some u ∈ V , then set
L(u) := {c} for some c ∈ L(u) \ L(N(u)).

Rule 10. (no small degrees) If |L(u)| > | deg(u)| for some u ∈ V \ N0, then remove u

from G.
As mentioned, our algorithm will branch at several stages to create a number of new but
smaller instances, such that the original instance is a yes-instance if and only if at least one of
the new instances is a yes-instance. Unless we explicitly state otherwise, we implicitly assume
that Rules 2–2 are applied exhaustively immediately after we branch (see also Claim 10). If
we apply Rule 2 or 2 on a new instance, then a no-answer means that we will discard the
branch. So our algorithm will only return a no-answer for the original instance (G, L) if we
discarded all branches. On the other hand, if we can apply Rule 2 on some new instance
and obtain a yes-answer, then we can extend the obtained colouring to a colouring of G that
respects L, simply by restoring all the already coloured vertices that were removed from the
graph due to the rules. We will now state (without proof) Claim 10.

I Claim 10. Rules 2–2 are safe and their exhaustive application takes polynomial time.
Moreover, if we have not obtained a yes- or no-answer, then afterwards G is a connected
(H, K4)-free graph, such that V = N0∪N1∪N2∪N3 and 2 ≤ |L(u)| ≤ 3 for every u ∈ V \N0.

Phase 1. Preprocessing (G, L)

In Phase 1 we will preprocess (G, L) using the above propagation rules. To start off the
preprocessing we will branch via colouring the vertices of N0 in every possible way. By
colouring a vertex u, we mean reducing the list of permissible colours to size exactly one.
(When L(u) = {c}, we consider vertex coloured by colour c.) Thus, when we colour some
vertex u, we always give u a colour from its list L(u), moreover, when we colour more than
one vertex we will always assign distinct colours to adjacent vertices.

Branching I. (O(1) branches)
We now consider all possible combinations of colours that can be assigned to the vertices
in N0. That is, we branch into at most 37 cases, in which v1, . . . , v7 each received a colour
from their list. We note that each branch leads to a smaller instance and that (G, L) is
a yes-instance if and only if at least one of the new instances is a yes-instance. Hence, if
we applied Rule 2 in some branch, then we discard the branch. If we applied Rule 2 and
obtained a no-answer, then we discard the branch as well. If we obtained a yes-answer, then
we are done. Otherwise we continue by considering each remaining branch separately. For
each remaining branch, we denote the resulting smaller instance by (G, L) again.

We will now introduce a new rule, namely Rule 2. We apply Rule 2 together with the
other rules. That is, we now apply Rules 2–2 exhaustively. However, each time we apply
Rule 2 we first ensure that Rules 2–2 have been applied exhaustively.

Rule 11. (N3-reduction) If u and v are in N3 and are adjacent, then remove u and v from G.
We state (without proofs) the following claims.

I Claim 11. Rule 2, applied after exhaustive application of Rules 2–2, is safe and takes
polynomial time. Moreover, afterwards G is a connected (H, K4)-free graph, such that
V = N0 ∪N1 ∪N2 ∪N3 and 2 ≤ |L(u)| ≤ 3 for every u ∈ V \N0.
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I Claim 12. The set N3 is independent, and moreover, each vertex u ∈ N3 has |L(u)| = 2
and exactly two neighbours in N2 which are adjacent.

The following claim follows immediately from Claims 9 and 12.

I Claim 13. Every connected component D of G[N2 ∪N3] is a complete graph with either
|D| ≤ 2 and D ⊆ N2, or |D| = 3 and |D ∩N3| ≤ 1.

The following claim (proof omitted) describes the location of the vertices with a list of size 3.

I Claim 14. For every u ∈ V , if |L(u)| = 3, then u ∈ N2.

We will now show how to branch in order to reduce the lists of the vertices u ∈ N2 with
|L(u)| = 3 by at least one colour. We formalize this approach in the following definition.

I Definition 15 (Active vertices). A vertex u ∈ N2 and its neighbours in N1 are called active
if |L(u)| = 3. Let A be the set of all active vertices. Let A1 = A ∩N1 and A2 = A ∩N2. We
deactivate a vertex u ∈ A2 if we reduce the list L(u) by at least one colour. We deactivate a
vertex w ∈ A1 by deactivating all its neighbours in A2.

Note that every vertex w ∈ A1 has |L(w)| = 2 by Rule 2 applied on the vertices of N0. Hence,
if we reduce L(w) by one colour, all neighbours of w in A2 become deactivated by Rule 2,
and w is removed by Rule 2. For 1 ≤ i ≤ j ≤ 7, we let A(i, j) ⊆ A1 be the set of active
neighbours of vi that are not adjacent to vj and similarly, we let A(j, i) ⊆ A1 be the set of
active neighbours of vj that are not adjacent to vi.

Phase 2. Reduce the number of distinct sets A(i, j)

We will now branch into O(n45) smaller instances such that (G, L) is a yes-instance of List
3-Colouring if and only if at least one of these new instances is a yes-instance. Each new
instance will have the following property:
(P) for 1 ≤ i ≤ j ≤ 7 with j − i ≥ 2, either A(i, j) = ∅ or A(j, i) = ∅.

Branching II. (O
(
n

(
3·((7

2)−6)
))

= O(n45) branches)
Consider two vertices vi and vj with 1 ≤ i ≤ j ≤ 7 and j − i ≥ 2. Assume without loss of
generality that vi is coloured 3 and that vj is coloured either 1 or 3. Hence, every w ∈ A(i, j)
has L(w) = {1, 2}, whereas every w ∈ A(j, i) has L(w) = {2, q} for q ∈ {1, 3}. We branch as
follows. We consider all possibilities where at most one vertex of A(i, j) receives colour 2
(and all other vertices of A(i, j) receive colour 1) and all possibilities where we choose two
vertices from A(i, j) to receive colour 2. This leads to O(n) + O(n2) = O(n2) branches. In
the branches where at most one vertex of A(i, j) receives colour 2, every vertex of A(i, j)
will be deactivated. So Property (P) is satisfied for i and j.

Now consider the branches where two vertices x1, x2 of A(i, j) both received colour 2.
We update A(j, i) accordingly. In particular, afterwards no vertex in A(j, i) is adjacent
to x1 or x2, as 2 is a colour in the list of each vertex of A(j, i). We now do some further
branching for those branches where A(j, i) 6= ∅. We consider the possibility where each vertex
of N(A(j, i))∩A2 is given the colour of vj and all possibilities where we choose one vertex in
N(A(j, i)) ∩A2 to receive a colour different from the colour of vj (we consider both options
to colour such a vertex). This leads to O(n) branches. In the first branch, every vertex of
A(j, i) will be deactivated. So Property (P) is satisfied for i and j.

Now consider a branch where a vertex u ∈ N(A(j, i))∩A2 receives a colour different from
the colour of vj . We will show that also in this case every vertex of A(j, i) will be deactivated.
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For contradiction, assume that A(j, i) contains a vertex w that is not deactivated after
colouring u. As u was in N(A(j, i)) ∩A2, we find that u had a neighbour w′ ∈ A(j, i). As u

is coloured with a colour different from the colour of vj , the size of L(w′) is reduced by one
(due to Rule 2). Hence w′ got deactivated after colouring u, and thus w′ 6= w. As w is still
active, w has a neighbour u′ ∈ A2. As u′ and w are still active, u′ and w are not adjacent to
w′ or u. Hence, u, w′, vj , w, u′ induce a P5 in G. As x1 and x2 both received colour 2, we find
that x1 and x2 are not adjacent to each other. Hence, x1, vi, x2 induce a P3 in G. Recall that
all vertices of A(j, i), so also w and w′, are not adjacent to x1 or x2. As u and u′ were still
active after colouring x1 and x2, we find that u and u′ are not adjacent to x1 or x2 either.
By definition of A(j, i), w and w′ are not adjacent to vi. By definition of A(i, j), x1 and x2
are not adjacent to vj . Moreover, vi and vj are non-adjacent, as j − i ≥ 2. We conclude
that G contains an induced P3 + P5, namely with vertex set {x1, vi, x2} ∪ {u, w′, vj , w, u′}, a
contradiction. Hence, every vertex of A(j, i) is deactivated. So Property (P) is satisfied for i

and j also for these branches.
Finally by recursive application of the above procedure for all pairs vi, vj such that

1 ≤ i ≤ j ≤ 7 and j − i ≥ 2 we get a graph satisfying Property (P).

We now consider each resulting instance from Branching II. We denote such an instance
by (G, L) again. Note that vertices from N2 may now belong to N3, as their neighbours in
N1 may have been removed due to the branching. The exhaustive application of Rules 2– 2
preserves (P) (where we apply Rule 2 only after applying Rules 2–2 exhaustively). Hence
(G, L) satisfies (P).

We observe that if two vertices in A1 have a different list, then they must be adjacent to
different vertices of N0. Hence, by Property (P), at most two lists of {{1, 2}, {1, 3}, {2, 3}}
can occur as lists of vertices of A1. Without loss of generality this leads to two cases: either
every vertex of A1 has list {1, 2} or {1, 3} and both lists occur on A1; or every vertex of A1
has list {1, 2} only. In the next phase of our algorithm we reduce, via some further branching,
every instance of the first case to a polynomial number of smaller instances of the second
case.

Phase 3. Reduce to the case where vertices of A1 have the same list

Recall that we assume that every vertex of A1 has list {1, 2} or {1, 3}. In this phase we
deal with the case when both types of lists occur in A1. We first show, without proof, the
following two claims.

I Claim 16. Let i ∈ {1, 3, 5, 7}. Then every vertex from A1 ∩ N(vi) is adjacent to some
vertex vj with j 6∈ {i− 1, i, i + 1}.

I Claim 17. It holds that N(A1) ∩N0 = {vi−1, vi, vi+1} for some 2 ≤ i ≤ 6. Moreover, we
may assume without loss of generality that vi−1 and vi+1 have colour 3 and both are adjacent
to all vertices of A1 with list {1, 2}, whereas vi has colour 2 and is adjacent to all vertices of
A1 with list {1, 3}.

By Claim 17, we can partition the set A1 into two (non-empty) sets X1,2 and X1,3, where
X1,2 is the set of vertices in A1 with list {1, 2} whose only neighbours in N0 are vi−1 and
vi+1 (which both have colour 3) and X1,3 is the set of vertices in A1 with list {1, 3} whose
only neighbour in N0 is vi (which has colour 2).

Our goal is to show that we can branch into at most O(n2) smaller instances, in which
either X1,2 = ∅ or X1,3 = ∅, such that (G, L) is a yes-instance of List 3-Colouring if and
only if at least one of these smaller instances is a yes-instance. Then afterwards it suffices to



T. Klimošová, J. Malík, T. Masařík, J. Novotná, D. Paulusma, and V. Slívová 5:9

show how to deal with the case where all vertices in A1 have the same list in polynomial time;
this will be done in Phase 4 of the algorithm. We start with the following O(n) branching
procedure (in each of the branches we may do some further O(n) branching later on).

Branching III. (O(n) branches)
We branch by considering the possibility of giving each vertex in X1,2 colour 2 and all
possibilities of choosing a vertex in X1,2 and giving it colour 1. This leads to O(n) branches.
In the first branch we obtain X1,2 = ∅. Hence we can start Phase 4 for this branch. We now
consider every branch in which X1,2 and X1,3 are both nonempty. For each such branch we
will create O(n) smaller instances of List 3-Colouring, where X1,3 = ∅, such that (G, L)
is a yes-instance of List 3-Colouring if and only if at least one of the new instances is a
yes-instance.

Let w ∈ X1,2 be the vertex that was given colour 1 in such a branch. Although by Rule 2
vertex w will need to be removed from G, we make an exception by temporarily keeping w

after we coloured it. The reason is that the presence of w will be helpful for analysing the
structure of (G, L) after Rules 2–2 have been applied exhaustively (where we apply Rule 2
only after applying Rules 2–2 exhaustively). In order to do this, we first show the following
three claims (proofs omitted).

I Claim 18. Vertex w is not adjacent to any vertex in A2 ∪X1,2 ∪X1,3.

I Claim 19. The graph G[X1,3 ∪ (N(X1,3) ∩A2) ∪N3] is the disjoint union of one or more
complete graphs, each of which consists of either one vertex of X1,3 and at most two vertices
of A2, or one vertex of N3.

I Claim 20. For every pair of adjacent vertices s, t with s ∈ A2 and t ∈ N2, either t is
adjacent to w, or N(s) ∩X1,3 ⊆ N(t).

We now continue as follows. Recall that X1,3 6= ∅. Hence there exists a vertex s ∈ A2 that
has a neighbour r ∈ X1,3. As s ∈ A2, we have that |L(s)| = 3. Then, by Rule 2, we find that
s has at least two neighbours t and t′ not equal to r. By Claim 19, we find that neither t nor
t′ belongs to X1,3 ∪N3. We are going to fix an induced 3-vertex path P s of G, over which
we will branch, in the following way.

If t and t′ are not adjacent, then we let P s be the induced path in G with vertices t, s, t′

in that order. Suppose that t and t′ are adjacent. As G is K4-free and s is adjacent to r, t, t′,
at least one of t, t′ is not adjacent to r. We may assume without loss of generality that t is
not adjacent to r.

First assume that t ∈ N2. Recall that s has a neighbour in X1,3, namely r, and that r is
not adjacent to t. We then find that t must be adjacent to w by Claim 20. As s ∈ A2, we
find that s is not adjacent to w by Claim 18. In this case we let P s be the induced path in
G with vertices s, t, w in that order.

Now assume that t /∈ N2. Recall that t /∈ N3. Hence, t must be in N1. Then, as t /∈ X1,3
but t is adjacent to a vertex in A2, namely s, we find that t ∈ X1,2. Recall that t′ /∈ X1,3. If
t′ ∈ N1 then the fact that t′ /∈ X1,3, combined with the fact that t′ is adjacent to s ∈ A2,
implies that t′ ∈ X1,2. However, by Rule 2 applied on s, t, t′, vertex s would have a list of
size 1 instead of size 3, a contradiction. Hence, t′ /∈ N1. As t′ /∈ N3, this means that t′ ∈ N2.
If t′ is adjacent to r, then t ∈ X1,2 with L(t) = {1, 2} and r ∈ X1,3 with L(r) = {1, 3} would
have the same lists by Rule 2 applied on r, s, t, t′, a contradiction. Hence t′ is not adjacent
to r. Then, by Claim 20, we find that t′ must be adjacent to w. Note that s is not adjacent
to w due to Claim 18. In this case we let P s be the induced path in G with vertices s, t′, w
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in that order. We conclude that either P s = tst′ or P s = stw or P s = st′w. We are now
ready to apply two more rounds of branching.

Branching IV. (O(n) branches)
We branch by considering the possibility of removing colour 2 from the list of each vertex in
N(X1,3)∩A2 and all possibilities of choosing a vertex in N(X1,3)∩A2 and giving it colour 2.
In the branch where we removed colour 2 from the list of every vertex in N(X1,3) ∩ A2,
we obtain that X1,3 = ∅. Hence for that branch we can enter Phase 4. Now consider a
branch where we gave some vertex s ∈ N(X1,3) ∩A2 colour 2. Let P s = tst′ or P s = stw or
P s = st′w. We do some further branching by considering all possibilities of colouring the
vertices of P s that are not equal to the already coloured vertices s and w (should w be a
vertex of P s) and all possibilities of giving a colour to the vertex from N(s) ∩X1,3 (recall
that by Claim 19, |N(s) ∩X1,3| = 1). This leads to a total of O(n) branches. We claim that
in both branches, |X1,3| has reduced to at most 1 (proof omitted).

Branching V. (O(1) branches)
We branch by considering both possibilities of colouring the unique vertex of X1,3. This leads
to two new but smaller instances of List 3-Colouring, in each of which the set X1,3 = ∅.
Hence, our algorithm can enter Phase 4.

Phase 4. Reduce to a set of instances of 2-List Colouring

Recall that in this stage of our algorithm we have an instance (G, L) in which every vertex
of A1 has the same list, say {1, 2}. As G is (P2 + P5)-free, G[N2 ∪N3] is an independent
set; otherwise two adjacent vertices of N2 ∪N3 form, together with v1, . . . , v5, an induced
P2 + P5. Hence, we can safely colour each vertex in A2 with colour 3, and afterwards we
may apply Theorem 6.
The correctness of our algorithm follows from the description. The branching in the five stages
(Branching I-V), yields a total number of O(n47) branches and each branch we created takes
polynomial time to process. Hence, the running time of our algorithm is polynomial. J

I Remark. Except for Phase 4 of our algorithm, all arguments in our proof hold for (P3 +P5)-
free graphs. The difficulty in Phase 4 is that in contrary to the previous phases we cannot
use the vertices from N0 to find an induced P3 + P5 and therefore obtain the contradiction.

3 The Hardness Result

We show that 5-Colouring is NP-complete for (P3 + P5)-free graphs by reducing from
the NP-complete problem [32] Not-All-Equal 3-Satisfiability with positive literals
only, defined as follows: given a set X = {x1, x2, ..., xn} of logical variables and a set
C = {C1, C2, ..., Cm} of 3-literal clauses over X in which all literals are positive, is there a
truth assignment for X such that each clause contains at least one true literal and at least
one false literal? We call such a truth assignment satisfying.

I Theorem 4 (restated). 5-Colouring is NP-complete for (P3 + P5)-free graphs.

Proof. Proof Sketch. From a given instance (C, X) of Not-All-Equal 3-Satisfiability
with positive literals only, we first construct a graph G with a list assignment L. For each
xi ∈ X we introduce two vertices xi and xi, which we make adjacent to each other. We say
that xi and xi are of x-type. We set L(xi) = L(xi) = {4, 5}. For each Cj ∈ C we introduce
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a vertex Cj and a vertex C ′j called the copy of Cj . We say that Cj and C ′j are of C-type.
We set L(Cj) = L(C ′j) = {1, 2, 3}. We add an edge between each x-type vertex and each
C-type vertex. For each Cj ∈ C we do as follows. We fix an arbitrary order of the literals in
Cj . Say Cj = {xg, xh, xi} in that order. Then we add six vertices ag,j , ah,j , ai,j , a′g,j , a′h,j ,
a′i,j and edges xgag,j , ag,jCj , xhah,j , ah,jCj , xiai,j , ai,jCj and also edges xga′g,j , a′g,jC ′j ,
xha′h,j , a′h,jC ′j , xia

′
i,j , a′i,jC ′j . We say that ag,j , ah,j , ai,j , a′g,j , a′h,j , a′i,j are of a-type. We

set L(ag,j) = L(a′g,j) = {1, 4}, L(ah,j) = L(a′h,j) = {2, 4} and L(ai,j) = L(a′i,j) = {3, 4}.
We now extend G into a graph G′ by adding a clique consisting of five new vertices

k1, . . . , k5, which we say are of k-type, and by adding an edge between a vertex k` and a
vertex u ∈ V (G) if and only if ` /∈ L(u). We can show that (C, X) has a satisfying truth
assignment if and only if G′ has a 5-colouring, and moreover that G′ is (P3 + P5)-free (proof
omitted). As 5-Colouring belongs to NP, this proves the theorem. J

4 Conclusions

By solving two new cases we completed the complexity classifications of 3-Colouring
and List 3-Colouring on H-free graphs for graphs H up to seven vertices. We showed
that both problems become polynomial-time solvable if H is a linear forest, while they stay
NP-complete in all other cases. Recall that k-Colouring (k ≥ 3) is NP-complete on H-free
graphs whenever H is not a linear forest. For the case where H is a linear forest, our new
NP-hardness result for 5-Colouring for (P3 + P5)-free graphs bounds, together with the
known NP-hardness results of [20] for 4-Colouring for P7-free graphs and 5-Colouring
for P6-free graphs, the number of open cases of k-Colouring from above.

For future research we aim to our extend our results. In fact we still do not know if
there exists a linear forest H such that 3-Colouring is NP-complete for H-free graphs.
This is, however, a notorious open problem studied in many papers; for a recent discussion
see [16]. It is also open for List 3-Colouring, where an affirmative answer to one
of the two problems yields an affirmative answer to the other one [15]. For k ≥ 4, we
emphasize that all open cases involve linear forests H whose connected components are
small. For instance, if H has at most six vertices, then the polynomial-time algorithm for
4-Precolouring Extension on P6-free graphs [7, 8] implies that there are only three
graphs H with |V (H)| ≤ 6 for which we do not know the complexity of 4 Colouring on
H-free graphs, namely H ∈ {P1 + P2 + P3, P2 + P4, 2P3} (see [14]).

The main difficulty to extend the known complexity results is that hereditary graph classes
characterized by a forbidden induced linear forest are still not sufficiently well understood due
to their rich structure. We need a better understanding of these graph classes to make further
progress on a wide range of problems. For example, Independent Set is polynomial-time
solvable for P6-free graphs [17], but it is not known if there exists a linear forest H such that
it is NP-complete for H-free graphs. A similar situation holds for Odd Cycle Transversal
and Feedback Vertex Set and many other problems; see [1] for a survey.
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Abstract
We address the following general question: given a graph class C on which we can solve Maximum
Matching in (quasi) linear time, does the same hold true for the class of graphs that can be
modularly decomposed into C? As a way to answer this question for distance-hereditary graphs
and some other superclasses of cographs, we study the combined effect of modular decomposition
with a pruning process over the quotient subgraphs. We remove sequentially from all such
subgraphs their so-called one-vertex extensions (i.e., pendant, anti-pendant, twin, universal and
isolated vertices). Doing so, we obtain a “pruned modular decomposition”, that can be computed
in quasi linear time. Our main result is that if all the pruned quotient subgraphs have bounded
order then a maximum matching can be computed in linear time. The latter result strictly
extends a recent framework in (Coudert et al., SODA’18). Our work is the first to explain why
the existence of some nice ordering over the modules of a graph, instead of just over its vertices,
can help to speed up the computation of maximum matchings on some graph classes.
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1 Introduction

Can we compute a maximum matching in a graph in linear-time? – i.e., computing a
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and the design of elegant combinatorial and linear programming techniques, the best-known

© Guillaume Ducoffe and Alexandru Popa;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 6; pp. 6:1–6:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.ducoffe@ici.ro
mailto:alexandru.popa@fmi.unibuc.ro
https://doi.org/10.4230/LIPIcs.ISAAC.2018.6
https://arxiv.org/abs/1804.09407
https://arxiv.org/abs/1804.09407
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


6:2 Pruned modular decomposition and Maximum Matching

algorithms for this fundamental problem have stayed blocked to an O(m
√
n)-time complexity

on n-vertex m-edge graphs [22]. Nevertheless, we can use some well-structured graph classes
in order to overcome this superlinear barrier for particular cases of graphs. Our work
combines two successful approaches for this problem, namely, the use of a vertex-ordering
characterization for certain graph classes [5, 10, 21], and a recent technique based on the
decomposition of a graph by its modules [9]. We detail these two approaches in what follows,
before summarizing our contributions.

1.1 Related work

A cornerstone of most Maximum Matching algorithms is the notion of augmenting paths [2,
15]. However, although we can compute a set of augmenting paths in linear-time [16], this
is a tedious task that involves the technical notion of blossoms and this may need to be
repeated Ω(

√
n) times before a maximum matching can be computed [19]. A well-known

greedy approach consists in, given some total ordering (v1, v2, . . . , vn) over the vertices in
the graph, to consider the exposed vertices vi by increasing order, then to try to match them
with some exposed neighbour vj that appears later in the ordering [12]. The vertex vj can
be chosen either arbitrarily or according to some specific rules depending on the graph class
we consider. Our initial goal was to extend similar reduction rules to module-orderings.

Modular decomposition. A module in a graph G = (V,E) is any vertex-subset X such
that every vertex of V \ X is either adjacent to every of X or nonadjacent to every of
X. The modular decomposition of G is a recursive decomposition of G according to its
modules [18]. We postpone its formal definition until Section 2. For now, we only want to
stress that the vertices in the “quotient subgraphs” that are outputted by this decomposition
represent modules of G (e.g., see Fig. 1 for an insightful illustration). Our main motivation for
considering modular decomposition in this note is its recent use in the field of parameterized
complexity for polynomial problems. More precisely, let us call modular-width of a graph G
the minimum k ≥ 2 such that every quotient subgraph in the modular decomposition of G
is either “degenerate” (i.e., complete or edgeless) or of order at most k. With Coudert, we
proved in [9] that many “hard” graph problems in P – for which no linear-time algorithm is
likely to exist – can be solved in kO(1)(n+m)-time on graphs with modular-width at most k.
In particular, we proposed an O(k4n+m)-time algorithm for Maximum Matching.

One appealing aspect of our approach in [9] was that, for most problems studied, we
obtained a linear-time reduction from the input graph G to some (smaller) quotient subgraph
G′ in its modular decomposition. – We say that the problem is preserved by quotient. –
This paved the way to the design of efficient algorithms for these problems on graph classes
with unbounded modular-width, assuming their quotient subgraphs are simple enough w.r.t.
the problem at hands. We illustrated this possibility through the case of (q, q − 3)-graphs
(i.e., graphs where no set of at most q vertices, q ≥ 7, can induce more than q − 3 paths of
length four). However, this approach completely fell down for Maximum Matching. Indeed,
our Maximum Matching algorithm in [9] works on supergraphs of the quotient graphs
that need to be repeatedly updated every time a new augmenting path is computed. Such
approach did not help much in exploiting the structure of quotient graphs. We managed
to do so for (q, q − 3)-graphs only through the help of a deeper structural theorem on the
nontrivial modules in this class of graphs. Nevertheless, to take a shameful example, it was
not even known before this work whether Maximum Matching could be solved faster than
with the state-of-the art algorithms on graphs that can be modularly decomposed into paths!
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1.2 Our contributions

We propose pruning rules on the modules in a graph (some of them new and some others
revisited) that can be used in order to compute Maximum Matching in linear-time on
several new graph classes. More precisely, given a module M in a graph G = (V,E),
recall that M is corresponding to some vertex vM in a quotient graph G′ of the modular
decomposition of G. Assuming vM is a so-called one-vertex extension in G′ (i.e., it is pendant,
anti-pendant, universal, isolated or it has a twin), we show that a maximum matching for G
can be computed from a maximum matching of G[M ] and a maximum matching of G \M
efficiently (see Section 4). Our rules are purely structural, in the sense that they only rely on
the structural properties of vM in G′ and not on any additional assumption on the nontrivial
modules. Some of these rules (e.g., for isolated or universal modules) were first introduced
in [9] – although with slightly different correctness proofs. Our main technical contributions
in this work are the pruning rules for, respectively, pendant and anti-pendant modules (see
Sections 4.2 and 4.3). The latter two cases are surprisingly the most intricate. In particular,
they require amongst other techniques: the computation of specified augmenting paths of
length up to 7, the addition of some “virtual edges” in other modules, and a careful swapping
between some matched and unmatched edges.

Then, we are left with pruning every quotient subgraph in the modular decomposition
by sequentially removing the one-vertex extensions. We prove that the resulting “pruned
quotient subgraphs” are unique (independent from the removal orderings) and that they can
be computed in quasi linear-time using a trie data-structure (Section 3). Furthermore, as
a case-study we prove that several superclasses of cographs are totally decomposable w.r.t.
this new “pruned modular decomposition”. These classes are further discussed in Section 5.
Note that for some of them, such as distance-hereditary graphs, we so obtain the first known
linear-time algorithm for Maximum Matching – thereby extending previous partial results
obtained for bipartite and chordal distance-hereditary graphs [10]. Our approach actually
has similarities with a general greedy scheme applied to distance-hereditary graphs [7]. With
slightly more work, we can extend our approach to every graph that can be modularly
decomposed into cycles. The case of graphs of bounded modular treewidth [23] is left as an
interesting open question.

Definitions and our first results are presented in Section 2. We introduce the pruned
modular decomposition in Section 3, where we show that it can be computed in quasi
linear-time. Then, the core of the paper is Section 4 where the pruning rules are presented
along with their correctness proofs. In particular, we state our main result in Section 4.4.
Applications of our approach to some graph classes are discussed in Section 5. Finally, we
conclude in Section 6 with some open questions. Due to lack of space, several proofs are
omitted. Full proofs can be found in our technical report [14].

2 Preliminaries

For the standard graph terminology, see [3]. We only consider graphs that are finite, simple
and unweighted. For any graph G = (V,E) let n = |V | and m = |E|. Given a vertex
v ∈ V , we denote its (open) neighbourhood by NG(v) = {u ∈ V | {u, v} ∈ E} and its closed
neighbourhood by NG[v] = NG(v) ∪ {v}. Similarly, we define the neighbourhood of any
vertex-subset S ⊆ V as NG(S) =

(⋃
v∈S NG(v)

)
\ S. In what follows, we introduce our main

algorithmic tool for the paper as well as the graph problems we study.
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Figure 1 A graph and its modular decomposition.

Modular decomposition

A module in a graph G = (V,E) is any subset M ⊆ V (G) such that for any u, v ∈ M we
have NG(v) \M = NG(u) \M . There are trivial examples of modules such as ∅, V, and {v}
for every v ∈ V . Let P = {M1,M2, . . . ,Mp} be a partition of the vertex-set V . If for every
1 ≤ i ≤ p, Mi is a module of G, then we call P a modular partition of G. By abuse of
notation, we will sometimes identify a module Mi with the induced subgraph Hi = G[Mi],
i.e., we will write P = {H1, H2, . . . Hp}. The quotient subgraph G/P has vertex-set P, and
there is an edge between every two modules Mi,Mj ∈ P such that Mi×Mj ⊆ E. Conversely,
let G′ = (V ′, E′) be a graph and let P = {H1, H2, . . . Hp}. be a collection of subgraphs.
The substitution graph G′(P) is obtained from G′ by replacing every vertex vi ∈ V ′ with a
module inducing Hi. In particular, for G′ =def G/P we have that G′(P) = G.

We say that G is prime if its only modules are trivial (i.e., ∅, V, and the singletons {v}).
We call a module M strong if it does not overlap any other module, i.e., for any module
M ′ of G, either one of M or M ′ is contained in the other or M and M ′ do not intersect.
LetM(G) be the family of all inclusion wise maximal strong modules of G that are proper
subsets of V . The family M(G) is a modular partition of G [18], and so, we can define
G′ = G/M(G). The following structure theorem is due to Gallai.

I Theorem 1 ([17]). For an arbitrary graph G exactly one of the following conditions is
satisfied.
1. G is disconnected;
2. its complement G is disconnected;
3. or its quotient graph G′ = G/M(G) is prime for modular decomposition.

We now formally define the modular decomposition of G – introduced earlier in Section 1.
We output the quotient graph G′ = G/M(G) and, for any strong module M ∈M(G) that is
nontrivial (possibly none if G = G′), we also output the modular decomposition of G[M ]. By
Theorem 1 the subgraphs from the modular decomposition are either edgeless, complete, or
prime for modular decomposition. See Fig. 1 for an example. The modular decomposition of
a given graph G = (V,E) can be computed in linear-time [25]. There are many graph classes
that can be characterized using the modular decomposition.In particular, G is a cograph
if and only if every quotient subgraph in its modular decomposition is either complete or
disconnected [8].

Maximum Matching

A matching in a graph is defined as a set of edges with pairwise disjoint end vertices. The
maximum cardinality of a matching in a given graph G = (V,E) is denoted by µ(G).
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I Problem 2 (Maximum Matching).
Input: A graph G = (V,E).
Output: A matching of G with maximum cardinality.

We remind the reader that Maximum Matching can be solved in O(m
√
n)-time on

general graphs [22] – although we do not use this result directly in our paper. Furthermore,
let G = (V,E) be a graph and let F ⊆ E be a matching of G. We call a vertex matched if it
is incident to an edge of F , and exposed otherwise. Then, we define an F -augmenting path
as a path where the two ends are exposed, and the edges belong alternatively to F and not
to F . It is well-known and easy to check that, given an F -augmenting path P , the matching
E(P )∆F (obtained by symmetric difference on the edges) has larger cardinality than F .

I Lemma 3 (Berge, [2]). A matching F in G = (V,E) is maximum if and only if there is
no F -augmenting path.

In this paper, we will consider an intermediate matching problem, first introduced in [9].

I Problem 4 (Module Matching).
Input: A graph G′ = (V ′, E′) with the following additional information;

a collection of subgraphs P = {H1, H2, . . . ,Hp};
a collection F = {F1, F2, . . . , Fp},
with Fi being a maximum matching of Hi for every i.

Output: A matching of G = G′(P) with maximum cardinality.

A natural choice for Module Matching would be to take P = M(G). However, we
will allow P to take different values for our reduction rules.

Additional notations. Let 〈G′,P,F〉 be any instance of Module Matching. The order of
G′, equivalently the cardinality of P , is denoted by p. For every 1 ≤ i ≤ p letMi = V (Hi) and
let ni = |Mi| be the order of Hi. We denote δi = |E(Mi,Mi)| the size of the cut E(Mi,Mi)
with all the edges between Mi and NG(Mi). In particular, we have δi =

∑
vj∈NG′ (vi) ninj .

Let us define ∆m(G′) =
∑p

i=1 δi. We will omit the dependency in G′ if it is clear from the
context. Finally, let ∆µ = µ(G)−

∑p
i=1 µ(Hi).

Our framework is based on the following lemma (inspired from [9]).

I Lemma 5. Let G = (V,E) be a graph. Suppose that for every H ′ in the modular
decomposition of G we can solve Module Matching on any instance 〈H ′,P,F〉 in time
T (p,∆m,∆µ), where T is a subadditive function1. Then, we can solve Maximum Matching
on G in time O(T (O(n),m, n)).

An important observation for our subsequent analysis is that, given any module M of a
graph G, the internal structure of G[M ] has no more relevance after we computed a maximum
matching FM for this subgraph. More precisely, we will use the following lemma:

I Lemma 6 ([9]). Let M be a module of G = (V,E), let G[M ] = (M,EM ) and let FM ⊆ EM

be a maximum matching of G[M ]. Then, every maximum matching of G′M = (V, (E \EM ) ∪
FM ) is a maximum matching of G.

By Lemma 6 we can modify our algorithmic framework as follows. For every instance
〈G′,P,F〉 for Module Matching, we can assume that Hi = (Mi, Fi) for every 1 ≤ i ≤ p.

1 We stress that every polynomial function is subadditive.
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Data structures. Finally, let 〈G′,P,F〉 be any instance for Module Matching. A ca-
nonical ordering of Hi (w.r.t. Fi) is a total ordering over V (Hi) such that the exposed
vertices appear first, and every two vertices that are matched together are consecutive. In
what follows, we will assume that we have access to a canonical ordering for every i. Such
orderings can be computed in time O(

∑
i |Mi|+ |Fi|) by scanning all the modules and the

matchings in F , that is an O(∆m) provided G′ has no isolated vertex.
Furthermore, let F be a (not necessarily maximum) matching for the subdivision G =

G′(P). We will make the standard assumption that, for every v ∈ V (G), we can decide in
constant-time whether v is matched by F , and if so, we can also access in constant-time to
the vertex matched with v.

3 A pruned modular decomposition

In this section, we introduce a pruning process over the quotient subgraphs, that we use in
order to refine the modular decomposition.

I Definition 7. Let G = (V,E) be a graph. We call v ∈ V a one-vertex extension if it falls
in one of the following cases:

NG[v] = V (universal) or NG(v) = ∅ (isolated);
NG[v] = V \ u (anti-pendant) or NG(v) = {u} (pendant), for some u ∈ V \ v;
NG[v] = NG[u] (true twin) or NG(v) = NG(u) (false twin), for some u ∈ V \ v.

A pruned subgraph of G is obtained from G by sequentially removing one-vertex extensions
(in the current subgraph) until it can no more be done. This terminology was introduced
in [20], where they only considered the removals of twin and pendant vertices. Also, the
clique-width of graphs that are totally decomposed by the above pruning process (i.e., with
their pruned subgraph being a singleton) was studied in [24] 2. Our contribution in this part
is twofold. First, we show that the gotten subgraph is “almost” independent of the removal
ordering, i.e., there is a unique pruned subgraph of G (up to isomorphism). The latter can
be derived from the following (easy) lemma:

I Lemma 8. Let G = (V,E) be a graph and let v, v′ ∈ V be one-vertex extensions of G. If
v, v′ are not pairwise twins then v′ is a one-vertex extension of G \ v.

I Corollary 9. Every graph G = (V,E) has a unique pruned subgraph up to isomorphism.

For many graph classes a pruning sequence can be computed in linear-time. We observe
that the same can be done for any graph (up to a logarithmic factor).

I Proposition 10. For every graph G = (V,E), we can compute a pruned subgraph in
O(n+m log n)-time.

Proof. By Corollary 9, we are left with greedily searching for, then eliminating, the one-vertex
extensions. We can compute the ordered degree sequence of G in O(n+m)-time. Furthermore,
after any vertex v is eliminated, we can update this sequence in O(|N(v)|)-time. Hence, up
to a total update time in O(n+m), at any step we can detect and remove in constant-time
any vertex that is either universal, isolated, pendant or anti-pendant. Finally, in [20] they
proposed a trie data-structure supporting the following two operations: suppression of a
vertex; and detection of true or false twins (if any). The total time for all the operations on
this data-structure is in O(n+m log n) [20]. J

2 Anti-twins are also defined as one-vertex extensions in [24]. Their integration to this framework remains
to be done.
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We will term “pruned modular decomposition” of a graph G the collection of the pruned
subgraphs for all the quotient subgraphs in the modular decomposition of G. Note that
there is a unique pruned modular decomposition of G (up to isomorphism) and that it can
be computed in O(n+m log n)-time by Proposition 10 (applied to every quotient subgraph
in the modular decomposition separately). Furthermore, we remark that most cases of
one-vertex extensions imply the existence of non trivial modules, and so, they cannot exist
in the prime quotient subgraphs of the modular decomposition. Nevertheless, such vertices
may appear after removal of pendant or anti-pendant vertices (e.g., in the bull graph).

4 Reduction rules

Let 〈G′,P,F〉 be any instance of Module Matching. Suppose that v1, the vertex corres-
ponding to M1 in G′, is a one-vertex extension. Under this assumption, we present reduction
rules to a smaller instance 〈G∗,P∗,F∗〉 where |P∗| < |P|. Each rule can be implemented to
run in O(∆m(G′)−∆m(G∗))-time. Due to lack of space, we skip the complexity analysis.

In Section 4.1 we recall the rules introduced in [9] for universal and isolated modules
(explicitly) and for false or true twin modules (implicitly). Our main technical contributions
are the reduction rules for pendant and anti-pendant modules (in Sections 4.2 and 4.3,
respectively), which are surprisingly the most intricate. Finally, we end this section stating
our main result (Theorem 29).

4.1 Simple cases
We introduce two local operations on a matching, first used in [26] for cographs. Let F ⊆ E
be a matching and let M ⊆ V be a module.

I Operation 11 (MATCH). While there are x ∈M, y ∈ N(M) exposed, add {x, y} to F .

I Operation 12 (SPLIT). While there are x, x′ ∈M, y, y′ ∈ N(M) such that x and x′ are
exposed, and {y, y′} ∈ F , replace {y, y′} in F by {x, y}, {x′, y′}.

Let G = H1 ⊕ H2 be the join of the two graphs H1, H2 and let F1, F2 be maximum
matchings for H1, H2, respectively. The “MATCH and SPLIT” technique consists in
applying Operations 11 then 12 to M = V (H1) and F = F1 ∪ F2, thereby obtaining a new
matching F ′, then to M = V (H2) and F = F ′. Based on this technique, we design the
following rules:

I Reduction rule 13 (see also [9]). Suppose v1 is isolated in G′. We set G∗ = G′ \ v1,
P∗ = P \ {H1}, and F∗ = F \ {F1}. Furthermore, let F ∗ be a maximum matching of
G∗(P∗) = G[V \M1]. We output F ∗ ∪ F1.

I Reduction rule 14 (see also [9]). Suppose v1 is universal in G′. We set G∗ = G \ v1,
P∗ = P \ {H1}, F∗ = F \ {F1}. Furthermore, let F ∗ be a maximum matching of the
subdivision G∗(P∗) = G[V \M1]. We apply the “MATCH and SPLIT” technique to M1, F1
with V \M1, F

∗.

I Reduction rule 15. Suppose v1, v2 are false twins in G′. We set G∗ = G′ \ v1, P∗ =
{H1 ∪ H2} ∪ (P \ {H1, H2}), F∗ = {F1 ∪ F2} ∪ (F \ {F1, F2}). We output a maximum
matching of G∗(P∗) = G.

I Reduction rule 16. Suppose v1, v2 are true twins in G′. Let F ∗2 be the matching of H1⊕H2
obtained from the “MATCH and SPLIT” technique applied to M1, F1 with M2, F2. We set
G∗ = G \ v1, P∗ = {H1 ⊕H2} ∪ (P \ {H1, H2}), F∗ = {F ∗2 } ∪ (F \ {F1, F2}). We output a
maximum matching of G∗(P∗) = G.
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4.2 Anti-pendant
Suppose v1 is anti-pendant in G′. W.l.o.g., v2 is the unique vertex that is nonadjacent to
v1 in G′. By Lemma 6, we can also assume w.l.o.g. that E(Hi) = Fi for every i. In this
situation, we start applying Reduction rule 13, i.e., we set G∗ = G′ \ v1, P∗ = P \ {H1},
F∗ = F \ {F1}. Then, we obtain a maximum matching F ∗ of G \M1 (i.e., by applying our
reduction rules to this new instance). Finally, from F1 and F ∗, we compute a maximum
matching F of G, using an intricate procedure. We detail this procedure next.

First phase: pre-processing. Our correctness proofs in what follows will assume that some
additional properties hold on the matched vertices in F ∗. So, we start correcting the initial
matching F ∗ so that it is the case. For that, we introduce two “swapping” operations. Recall
that v2 is the unique vertex that is nonadjacent to v1 in G′.

I Operation 17 (REPAIR). While there exist x2, y2 ∈M2 such that {x2, y2} ∈ F2 and y2
is exposed in F ∗, we replace any edge {x2, w} ∈ F ∗ by {x2, y2}.

I Operation 18 (ATTRACT). While there exist x2 ∈ M2 exposed and {u,w} ∈ F ∗ such
that u ∈ NG(M2), w /∈M2, we replace {u,w} by {u, x2}.

Let F (0) = F1 ∪ F ∗. Summarizing, we get:

I Definition 19. A matching F of G is good if it satisfies the following two properties:
1. every vertex matched by F1 ∪ F2 is also matched by F ;
2. either every vertex in M2 is matched, or there is no matched edge in NG(M2)×NG(M1).

I Fact 20. F (0) is a good matching of G.

Main phase: a modified Match and Split. We now apply the following three operations
sequentially:
1. Match(M1, F

(0)) (Operation 11). Doing so, we obtain a larger good matching F (1).
2. Split(M1, F

(1)) (Operation 12). Doing so, we obtain a larger good matching F (2).
3. the operation Unbreak, defined in what follows (see also Fig. 2 for an illustration):

I Operation 21 (Unbreak). While there exist x1 ∈ M1 and x2 ∈ M1 ∪M2 exposed,
and there also exist {y2, z2} ∈ F2 \ F (2), we replace any two edges {y2, u}, {z2, w} ∈ F (2)

by the three edges {x2, u}, {y2, z2} and {w, x1}.
We stress that the two edges {y2, u}, {z2, w} ∈ F (2) always exist since F (2) is a good
matching of G. Furthermore doing so, we obtain a larger matching F (3).

The resulting matching F (3) is not necessarily maximum. However, this matching satisfies
the following crucial property:

I Lemma 22. No vertex of M1 can be an end in an F (3)-augmenting path.
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Figure 3 An augmenting path of length 7 with ends x2, c. Matched edges are drawn in bold.

Finalization phase: breaking some edges in F1. Intuitively, the matching F (3) may not
be maximum because we sometimes need to borrow some edges of F1 in augmenting paths.
So, we complete our procedure by performing the following two operations: Let U1 contain
all the exposed vertices in N(M1). Consider the subgraph G[M1 ∪ U1] = G[M1] ⊕ G[U1].
The set U1 is a module of this subgraph. We apply Split(U1, F

(3)) in G[M1 ∪ U1]. Doing
so, we obtain a larger good matching F (4). Then, we apply LocalAug, defined next (see
also Fig. 3 for an illustration):

I Operation 23 (LocalAug). While there exist x2 ∈ M2 and c ∈ N(M1) exposed, and
there also exist {x1, y1} ∈ F1 ∩ F (4) and {y2, z2} ∈ F2 \ F (4), we do the following:

we remove {x1, y1} and any edge {a, y2}, {b, z2} from F (4);
we add {x2, a}, {y2, z2}, {b, x1} and {y1, c} in F (4).

We stress that the two edges {y2, a}, {z2, b} ∈ F (4) always exist since F (4) is a good matching
of G. Furthermore doing so, we obtain a larger matching F (5).

I Lemma 24. F (5) is a maximum-cardinality matching of G.

4.3 Pendant
Suppose v1 is pendant in G′. W.l.o.g., v2 is the unique vertex that is adjacent to v1 in G′.
This last case is arguably more complex than the others since it requires both a pre-processing
and a post-processing treatment on the matching.

First phase: greedy matching. We apply the “Match and Split” technique toM1. Doing
so, we obtain a set F1,2 of matched edges between M1 and M2. We remove V (F1,2), the set
of vertices incident to an edge of F1,2, from G. Then, there are three cases. If M2 ⊆ V (F1,2)
then M1 \ V (F1,2) is isolated. We apply Reduction rule 13. If M1 ⊆ V (F1,2) then M1 is
already eliminated. The interesting case is when both M1 \ V (F1,2) and M2 \ V (F1,2) are
nonempty. In particular, suppose there remains an exposed vertex x1 ∈M1 \ V (F1,2). Since
M2 \ V (F1,2) 6= ∅, there exists {x2, y2} ∈ F2 such that x2, y2 /∈ V (F1,2). We remove x1 from
M1, x2 from M2, {x2, y2} from F2 and then we add {x1, x2} in F1,2. Our first result in this
section is that there always exists an optimal solution that contains F1,2. This justifies a
posteriori the removal of V (F1,2) from G.

I Lemma 25. There is a maximum matching of G that contains all edges in F1,2.

We stress that during this phase, all the operations except maybe the last one increase the
cardinality of the matching. Furthermore, the only possible operation that does not increase
the cardinality of the matching is the replacement of an edge in F2 by an edge in F1,2. Doing
so, either we fall in one of the two pathological cases M1 ⊆ V (F1,2) or M2 ⊆ V (F1,2) (easy to
solve), or then we obtain through the replacement operation the following stronger property:

I Property 26. All vertices in M1 are matched by F1.
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We will assume Property 26 to be true for the remaining of this section.

Second phase: virtual split edges. We complete the previous phase by performing a Split
between M2,M1 (Operation 12). That is, while there exist two exposed vertices x2, y2 ∈M2
and a matched edge {x1, y1} ∈ F1 we replace {x1, y1} by {x1, x2}, {y1, y2} in the current
matching. However, we encode the Split operation using virtual edges in H2. Formally, we
add a virtual edge {x2, y2} in H2 that is labeled by the corresponding edge {x1, y1} ∈ F1. Let
H∗2 and F ∗2 be obtained from H2 and F2 by adding all the virtual edges. We set G∗ = G′ \ v1,
P∗ = {H∗2} ∪ (P \ {H1, H2}) and F∗ = {F ∗2 } ∪ (F \ {F1, F2}).

Intuitively, virtual edges are used in order to shorten the augmenting paths crossing M1.

Third phase: post-processing. Let F ∗ be a maximum-cardinality matching of the sub-
division G∗(P∗) (i.e., obtained by applying our reduction rules to the new instance). We
construct a matching F for G as follows. We add in F all the non virtual edges in F ∗. For
every virtual edge {x2, y2}, let {x1, y1} ∈ F1 be its label. If {x2, y2} ∈ F ∗ then we add
{x1, y2}, {x2, y1} in F , otherwise we add {x1, y1} in F . In the first case, we say that we
confirm the Split operation, whereas in the second case we say that we cancel it. Finally,
we complete F with all the edges of F1 that do not label any virtual edge (i.e., unused during
the second phase).

I Lemma 27. F is a maximum-cardinality matching of G.

The above result is proved by contrapositive. More precisely, we prove intricate properties
on the intersection of shortest augmenting paths with pendant modules. Using these
properties and the virtual edges, we could transform any shortest F -augmenting path into
an F ∗-augmenting path, a contradiction.

4.4 Main result

Our framework consists in applying any reduction rule presented in this section until it can
no more be done. Then, we rely on the following result:

I Theorem 28 ([9]). We can solve Module Matching for 〈G′,P,F〉 in O(∆µ · p4)-time.

We are now ready to state our main result in this paper (the proof of which directly
follows from all the previous results in this section).

I Theorem 29. Let G = (V,E) be a graph. Suppose that, for every prime subgraph H ′ in
the modular decomposition of G, its pruned subgraph has order at most k. Then, we can
solve Maximum Matching for G in O(k4 · n+m log n)-time.

5 Applications

We conclude this paper presenting applications and refinements of our main result to some
graph classes. Recall that cographs are exactly the graphs that are totally decomposable
by modular decomposition [8]. We start showing that several distinct generalizations of
cographs in the literature are totally decomposable by the pruned modular decomposition.
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Distance-hereditary graphs. A graph G = (V,E) is distance-hereditary if it can be reduced
to a singleton by pruning sequentially the pendant vertices and twin vertices [1]. Conversely,
G is co-distance hereditary if it is the complement of a distance-hereditary graph, i.e., it can
be reduced to a singleton by pruning sequentially the anti-pendant vertices and twin vertices.
In both cases, the corresponding pruning sequence can be computed in linear-time [11, 13].
Therefore, we can derive the following result from our framework:

I Proposition 30. We can solve Maximum Matching in linear-time on graphs that can
be modularly decomposed into distance-hereditary graphs and co-distance hereditary graphs.

Trees are a special subclass of distance-hereditary graphs. We say that a graph has
modular treewidth at most k if every prime quotient subgraph in its modular decomposition
has treewidth at most k. In particular, graphs with modular treewidth at most one are
exactly the graphs that can be modularly decomposed into trees3. We stress the following
consequence of Proposition 30:

I Corollary 31. We can solve Maximum Matching in linear-time on graphs with modular-
treewidth at most one.

The case of graphs with modular treewidth k ≥ 2 is left as an intriguing open question.

Tree-perfect graphs. Two graphs G1, G2 are P4-isomorphic if there exists a bijection from
G1 to G2 such that a 4-tuple induces a P4 in G1 if and only if its image in G2 also induces a
P4 [6]. The notion of P4-isomorphism plays an important role in the study of perfect graphs.
A graph is tree-perfect if it is P4-isomorphic to a tree [4]. We prove the following result:

I Proposition 32. Tree-perfect graphs are totally decomposable by the pruned modular
decomposition. In particular, we can solve Maximum Matching in linear-time on tree-
perfect graphs.

Our proof is based on a deep structural characterization of tree-perfect graphs [4].

The case of unicycles. We end up this section with a refinement of our framework for the
special case of unicyclic quotient graphs (a.k.a., graphs with exactly one cycle).

I Proposition 33. We can solve Maximum Matching in linear-time on the graphs that
can be modularly decomposed into unicycles.

For that, we reduce the case of unicycles to the case of cycles (removing pendant modules).
Then, we test for all possible numbers of matched edges between two adjacent modules.
Doing so, we reduce the case of cycles to the case of paths.

6 Open problems

The pruned modular decomposition happens to be an interesting add up in the study of
Maximum Matching algorithms. An exhaustive study of its other algorithmic applications
remains to be done. Moreover, another interesting question is to characterize the graphs that
are totally decomposable by this new decomposition. We note that our pruning process can

3 Our definition is more restricted than the one in [23] since they only impose the quotient subgraph G′

to have bounded treewidth.
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6:12 Pruned modular decomposition and Maximum Matching

be seen as a repeated update of the modular decomposition of a graph after some specified
modules (pendant, anti-pendant) are removed. However, we can only detect a restricted
family of these new modules (i.e., universal, isolated, twins). A fully dynamic modular
decomposition algorithm could be helpful in order to further refine our framework.
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Abstract
Given a 2-edge connected, unweighted, and undirected graph G with n vertices and m edges, a
σ-tree spanner is a spanning tree T of G in which the ratio between the distance in T of any
pair of vertices and the corresponding distance in G is upper bounded by σ. The minimum value
of σ for which T is a σ-tree spanner of G is also called the stretch factor of T . We address the
fault-tolerant scenario in which each edge e of a given tree spanner may temporarily fail and has
to be replaced by a best swap edge, i.e. an edge that reconnects T − e at a minimum stretch
factor. More precisely, we design an O(n2) time and space algorithm that computes a best swap
edge of every tree edge. Previously, an O(n2 log4 n) time and O(n2 + m log2 n) space algorithm
was known for edge-weighted graphs [Bilò et al., ISAAC 2017]. Even if our improvements on
both the time and space complexities are of a polylogarithmic factor, we stress the fact that the
design of a o(n2) time and space algorithm would be considered a breakthrough.
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1 Introduction

Given a 2-edge connected, unweighted, and undirected graph G with n vertices and m edges,
a σ-tree spanner is a spanning tree T of G in which the ratio between the distance in T

of any pair of vertices and the corresponding distance in G is upper bounded by σ. The
minimum value of σ for which T is a σ-tree spanner of G is also called the stretch factor of T .
The stretch factor of a tree spanner is a measure of how the all-to-all distances degrade w.r.t.
the underlying communication graph if we want to sparsify it. Therefore, tree spanners find
several applications in the network design problem area as well as in the area of distributed
algorithms (see also [13, 16] for some additional practical motivations).

Unfortunately, tree-based network infrastructures are highly sensitive to even a single
transient link failure, since this always results in a network disconnection. Furthermore, when
these events occur, the computational costs for rearranging the network flow of information
from scratch (i.e., recomputing a new tree spanner with small stretch factor, reconfiguring
the routing tables, etc.) can be extremely high. Therefore, in such cases it is enough to
promptly reestablish the network connectivity by the addition of a swap edge, i.e. a link
that temporarily substitutes the failed edge.
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7:2 A Novel Algorithm for the ABSE Problem on Tree Spanners

Table 1 The state of the art for the ABSE problem on tree spanners. The naive algorithm works
as follows: for each edge e of the tree spanner T (that are O(n)), we look at all the possible swap
edges (that are O(m)) and, for each swap edge f , we compute the stretch factor of T where e is
swapped with f (this requires O(n2)). We observe that the naive algorithm needs to store the
all-to-all (post-failure) distances in G− e.

Algorithm weighted graphs unweighted graphs
time space time space

naive Θ(n3m) Θ(n2) Θ(n3m) Θ(n2)
Das et al. [7] O(m2 log n) O(m) O(n3) O(n2)
Bilò et al. [2] O(m2 logα(m,n)) O(m) O(mn log n) O(m)
Bilò et al. [3] O(n2 log4 n) O(n2 +m log2 n) O(n2 log4 n) O(n2 +m log2 n)
this paper - - O(n2) O(n2)

In this paper we address the fault-tolerant scenario in which each edge e of a given tree
spanner may undergo a transient failure and has to be replaced by a best swap edge, i.e.
an edge that reconnects T − e at a minimum stretch factor. More precisely, we design an
O(n2) time and space algorithm that computes all the best swap edges (ABSE for short) in
unweighted graphs, that is a best swap edge for every edge of T . Previously, an O(n2 log4 n)
time and O(n2 +m log2 n) space algorithm was known for edge-weighted graphs. Even though
the overall improvements in both the time and space complexities are of a polylogarithmic
factor, we stress the fact that designing an o(n2) time and space algorithm would be considered
a breakthrough in this field (see [3]). Furthermore, the approach proposed in this paper uses
only one technique provided in [2]; all the remaining ideas are totally new and are at the
core of the design of both a time and space efficient algorithm. Our algorithm is also easy to
implement and makes use of very simple data structures.

1.1 Related work
The ABSE problem on tree spanners has been introduced by Das et al. in [7], where the
authors designed two algorithms for both the weighted and the unweighted case, running
in O(m2 log n) and O(n3) time, respectively, and using O(m) and O(n2) space, respectively.
Subsequently, Bilò et at. [2] improved both results by providing two efficient linear-space
solutions for both the weighted and the unweighted case, running in O(m2 logα(m,n)) and
O(mn log n) time, respectively. Recently, in [3] the authors designed a very clever recursive
algorithm that uses centroid-decomposition techniques and lower envelope data structures to
solve the ABSE problem on tree spanners in O(n2 log4 n) time and O(n2 +m log2 n) space.
Table 1 summarizes the state of the art for the ABSE problem on tree spanners.

1.2 Other related work on ABSE
The ABSE problems in spanning trees have received a lot of attention from the algorithmic
community. The most famous and first studied ABSE problem was on minimum spanning
trees, where the quality of a swap edge is measured w.r.t. the overall cost of the resulting
tree (i.e., sum of the edge weights). This problem, a.k.a. sensitivity analysis problem on
minimum spanning trees, can be solved in O(m logα(m,n)) time [15], where α denotes the
inverse of the Ackermann function. In the minimum diameter spanning tree a quality of a
swap edge is measured w.r.t. the diameter of the swap tree [12, 14]. Here the ABSE problem
can also be solved in O(m logα(m,n)) time [6]. In the minimum routing-cost spanning tree,
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the best swap minimizes the overall sum of the all-to-all distances of the swap tree [18].
The fastest algorithm for solving the ABSE problem in this case has a running time of
O
(
m2O(α(n,n)) log2 n

)
[5]. Concerning the single-source shortest-path tree, several criteria for

measuring the quality of a swap edge have been considered. The most important ones are:
the maximum or the average distance from the root; here the corresponding ABSE
problems can be solved in O(m logα(m,n)) time (see [6]) and O(mα(n, n) log2 n) time
(see [17]), respectively;
the maximum and the average stretch factor from the root for which the corresponding
ABSE problems have been solved in O(mn + n2 log n) and O(mn logα(m,n)) time,
respectively [4].

Finally, the ABSE problems have also been studied in a distributed setting [8, 9, 10].

2 Preliminary definitions

Let G = (V (G), E(G)) be a 2-edge-connected, unweighted, and undirected graph of n vertices
and m edges, respectively, and let T be a spanning tree of G. Given an edge e ∈ E(G), we
denote by G − e = (V (G), E(G) \ {e}) the graph obtained after the removal of e from G.
Given an edge e ∈ E(T ), let S(e) denote the set of all the swap edges of e, i.e., all edges in
E(G) \ {e} whose endpoints belong to two different connected components of T − e. For any
e ∈ E(T ) and f ∈ S(e), let Te/f denote the swap tree obtained from T by replacing e with f .
Given two vertices x, y ∈ V (G), we denote by dG(x, y) the distance between x and y in G,
i.e., the number of edges contained in a shortest path in G between x and y. We define the
stretch factor σG(T ) of T w.r.t. G as

σG(T ) = max
x,y∈V (G)

dT (x, y)
dG(x, y) .

I Definition 1 (Best Swap Edge). Let e ∈ E(T ). An edge f∗ ∈ S(e) is a best swap edge for
e if f∗ ∈ arg minf∈S(e) σG−e

(
Te/f

)
.

For a rooted tree T and two vertices u and v of T , we denote by A(v) the set of all the
proper ancestors of v in T , we denote by p(v) the parent of v in T , and we denote by lca(u, v)
the least common ancestor of u and v in T .

3 The algorithm

In this section we design an O(n2) time and space algorithm that computes a best swap edge
for every edge of T . Let r be an arbitrarily chosen vertex of T . For the rest of the paper, we
assume that T is rooted at r. The algorithm works as follows. First, for every vertex x of
T , the algorithm computes the set E(x) :=

{
(x, y) ∈ E(G) \ E(T ) | x 6∈ A(y)

}
of non-tree

edges of the form (x, y), where x is not an ancestor of y in T (see Figure 1). Observe that
some sets E(x) may be empty. Observe also that each edge (x, y) such that x 6∈ A(y) and
y 6∈ A(x) is contained in both E(x) and E(y). The precomputation of the all the sets E(x)
requires linear time if we use a data structure that can compute the least common ancestor
of any 2 given vertices in constant time [11].

The algorithm visits the edges of T in postorder and, for each edge e ∈ E(T ), it computes
a corresponding best swap edge in O(n) time. For the rest of the paper, unless stated
otherwise, let e = (p(v), v) be a fixed tree edge and let X be the set of vertices contained in
the subtree of T rooted at v. The algorithm computes a best swap edge f∗ of e as follows.
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x

r

f1

f2 f3

f4

Figure 1 An example showing how the set E(x) is defined. Tree edges are solid, while swap
edges are dashed. In this example E(x) = {f1, f2, f3}.

First, for every x ∈ X, the algorithm computes a candidate best swap edge fx of e that is
chosen among the edges of F (x, e) := E(x) ∩ S(e).1 More precisely,

fx ∈ arg min
f∈F (x,e)

σG−e(Te/f ).

The best swap edge f∗ is then selected among the computed candidate best swap edges.
More precisely,

f∗ ∈ arg min
fx s.t. x∈X

σG−e
(
Te/fx

)
. (1)

We can prove the following lemma.

I Lemma 2. The edge f∗ computed as in (1) is a best swap edge of e.

Proof. Let x ∈ X and let (x, y) ∈ S(e) be any swap edge of e incident to x. Since x 6∈ A(y), we
have that (x, y) ∈ E(x). Therefore, (x, y) ∈ F (x, e). As a consequence, S(e) =

⋃
x∈X F (x, e).

Hence

σG−e
(
Te/f∗

)
= min
fx s.t. x∈X

σG−e
(
Te/fx

)
= min
x∈X

min
f∈F (x,e)

σG−e
(
Te/f

)
= min
f∈S(e)

σG−e
(
Te/f

)
.

The claim follows. J

3.1 How to compute the candidate best swap edges
As already proved in Lemma 3 of [2], the candidate best swap edge fx can be computed via
a reduction to the subset minimum eccentricity problem on trees. We revise the reduction in
the following. In the subset minimum eccentricity problem on trees, we are given a tree T ,
with a cost c(y) associated with each vertex y, and a subset Y ⊆ V (T ), and we are asked to
find a vertex in Y of minimum eccentricity, i.e., a vertex y∗ ∈ Y such that

y∗ ∈ arg min
y∈Y

max
y′∈V (T )

(
dT (y, y′) + c(y′)

)
.

The reduction from the problem of computing the candidate best swap edge fx to the
subset minimum eccentricity problem on trees is as follows. The input tree corresponds
to T , the cost associated with each vertex y is cx(y) := maxx′∈X,(x′,y)∈S(e) dT (x′, x),2 and
the subset of vertices from which we have to choose the one with minimum eccentricity is
Y (x, e) :=

{
y | (x, y) ∈ F (x, e)

}
. As the following lemma shows, the problem can be solved

by computing:

1 With a little abuse of notation, if F (x, e) = ∅, then fx =⊥ and σG−e(Te/fx
) = +∞.

2 If S(e) contains no edge incident to y, then cx(y) = −∞.
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the endvertices of a diametral path of T , i.e., two (not necessarily distinct) vertices
ax, bx ∈ V (T ) such that

{ax, bx} ∈ arg max
{a,b},a,b∈V (T )

(
cx(a) + dT (a, b) + cx(b)

)
;

a center of T , i.e., a vertex γx ∈ V (T ) such that

γx ∈ arg min
γ∈V (T )

max
y∈V (T )

(
dT (γ, y) + cx(y)

)
.

I Lemma 3 (Bilò et al. [2], Lemma 6 and Lemma 7). Let γx be a center of T and let ax and bx
be the two endvertices of a diametral path P in T . Then γx is also a center of P . Furthermore,
if yx ∈ Y (x, e) is the vertex closest to the center γx, i.e., yx ∈ arg miny∈Y (x,e) dT (y, γx), then
fx := (x, yx) is a candidate best swap edge of e and σG−e

(
Te/fx

)
= 1 + max

{
dT (yx, ax) +

cx(ax), dT (yx, bx) + cx(bx)
}
.

In what follows we show how all the vertices yx and all the values σG−e
(
Te/fx

)
, for

every x ∈ X, can be computed in O(n) time and space. More precisely, the algorithm first
computes the endvertices ax and bx, for every x ∈ X, in O(n) time and space. Thanks to
Lemma 3, once both ax and bx are known, and since all tree edges have length equal to 1,
we can compute γx in constant time using a constant number of least common ancestor and
level ancestor queries [1].3 Finally, for each x ∈ X, we show how to compute the vertex yx
that is closest to γx in constant time using range-minimum-query data structures [1, 11].

3.1.1 How to compute the endvertices of the diametral paths
To compute ax and bx, we make use of the following key lemma.

I Lemma 4 (Merge diameter lemma). Let T be a tree, with a cost c(y) associated with each
y ∈ V (T ). Let c1, . . . , c` be ` (vertex-cost) functions and let k1, . . . , k` be ` constants such
that, for every vertex y ∈ V (T ), c(y) = maxi=1,...,`

(
ci(y) + ki

)
. For every i = 1, . . . , `, let

ai, bi be the two endvertices of a diametral path of T w.r.t. the cost function ci. Then, there
are two indices i, j = 1, . . . , ` (i may also be equal to j) and two vertices a ∈ {ai, bi} and
b ∈ {aj , bj} such that:
1. a and b are the two endvertices of a diametral path of T w.r.t. cost function c;
2. c(a) = ci(a) + ki;
3. c(b) = cj(b) + kj.
Furthermore, if ai, bi, and their corresponding costs ci(ai) and ci(bi) are known for every
i = 1, . . . , `, then the vertices a and b can be computed in O(`) time and space.

Proof. Let a, b be the two endvertices of a diametral path in T w.r.t. the cost function c.
For some i, j = 1, . . . , `, we have that c(a) = ci(a) + ki as well as c(b) = cj(b) + kj (i may
also be equal to j). Let Pi (resp., Pj) be the path in T between ai (resp., aj) and bi (resp.,
bj). Let t be the first vertex of the path in T from a to ai that is also in Pi, where we assume
that the path is traversed in the direction from a to ai. Similarly, let t′ be the first vertex of
the path in T from b to bj that is also in Pj , where we assume that the path is traversed in
the direction from b to bj . We claim that there are ā ∈ {ai, bi} and b̂ ∈ {aj , bj} such that

dT (ā, b̂) = dT (ā, t) + dT (t, t′) + dT (t′, b̂). (2)

3 Indeed, by computing the least common ancestor between ax and bx, say x̄, we know whether γx is
along either the x̄ to ax path or the x̄ to bx path. If γx is an ancestor of ax, then its distance from
ax is equal to

⌈
(cx(ax) + dT (ax, bx) + cx(bx))/2

⌉
− cx(ax). If γx is an ancestor of bx, then its distance

from bx is equal to
⌈
(cx(ax) + dT (ax, bx) + cx(bx))/2

⌉
− cx(bx).
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a

t′

ai bi

t

b

t′

aj bj

ai

t

b

t′

aj bj

ai

t

Figure 2 On the left side the path from ai to t′ passes through t. In the middle, the path from
ai to bj passes through t′, and thus to t. On the right side, the path from ai to aj passes through t′,
and thus to t.

Indeed, we observe that at least one of the two paths in T from ai to t′ and from bi to t′
passes through t. W.l.o.g., we assume that the path in T from ai to t′ passes through t

(see Figure 2). Similarly, at least one of the two paths in T from ai to aj and from ai to bj
passes through t′. As a consequence, such a path also passes through t. Therefore ā = ai
and b̂ ∈ {aj , bj} (see Figure 2).

Let b̄ ∈ {ai, bi}, with b̄ 6= ā, and â ∈ {aj , bj}, with â 6= b̂. Since ā and b̄ are the endvertices
of a diametral path in T w.r.t. the cost function ci, we have that

ci(a) + dT (a, t) + dT (t, b̄) + ci(b̄) = ci(a) + dT (a, b̄) + ci(b̄)
≤ ci(ā) + dT (ā, b̄) + ci(b̄)
= ci(ā) + dT (ā, t) + dT (t, b̄) + ci(b̄),

from which we derive

ci(a) + dT (a, t) ≤ ci(ā) + dT (ā, t). (3)

Similarly, since â and b̂ are the endvertices of a diametral path in T w.r.t. the cost function
cj , we have that

cj(â) + dT (â, t′) + dT (t′, b) + cj(b) = cj(â) + dT (â, b) + cj(b)

≤ cj(â) + dT (â, b̂) + cj(b̂)

= cj(â) + dT (â, t′) + dT (t′, b̂) + cj(b̂),

from which we derive

dT (t′, b) + cj(b) ≤ dT (t′, b̂) + cj(b̂). (4)

Using Inequality (3) and Inequality (4), together with Equality (2), we obtain

c(a) + dT (a, b) + c(b) ≤ c(a) + dT (a, t) + dT (t, t′) + dT (t′, b) + c(b)
= ci(a) + ki + dT (a, t) + dT (t, t′) + dT (t′, b) + cj(b) + kj

≤ ci(ā) + ki + dT (ā, t) + dT (t, t′) + dT (t′, b̂) + cj(b̂) + kj

= ci(ā) + ki + dT (ā, b̂) + cj(b̂) + kj

≤ c(ā) + dT (ā, b̂) + c(b̂).

Since a and b are the two endvertices of a diametral path in T w.r.t. cost function c, the
above inequality is satisfied at equality. As a consequence, a = ā and b = b̂ satisfy all the
three conditions of the lemma statement.
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We complete the proof by showing that a and b can be computed in O(`) time using
dynamic programming. For every i = 1, . . . , `, we compute the endvertices αi and βi of a
diametral path in T w.r.t. the cost function ψi := max1≤j≤i

(
cj(y) + kj

)
, together with

their corresponding costs. Clearly, for i = 1, α1 = a1, β1 = b1, ψ1(α1) = c1(a1) + k1, and
ψ1(β1) = c1(b1) + k1. Moreover, for every i ≥ 2, we can compute αi and βi, together with
ψi(αi) and ψi(βi), in constant time and space from αi−1 and βi−1, where ψi(x) = ψi−1(x)
for x ∈ {αi−1, βi−1}, and from ai and bi, where ψi(x) = ci(x) + ki for x ∈ {ai, bi}. Therefore,
α` and β`, together with ψ`(α`) and ψ`(β`), can be computed in O(`) time and space. The
claim follows by observing that a = α` and b = β`. J

Lemma 4 is extensively used by our algorithm to precompute some useful information.
For every x ∈ V (T ) and every z ∈ A(x), the algorithm precomputes Y (x|z) =

{
y | (x, y) ∈

E(x) and lca(x, y) = z
}
. Next, the algorithm computes the two endvertices ax|z and bx|z of

a diametral path of T , together with their associated costs, w.r.t. the following cost function:

cx|z(y) :=
{

0 if y ∈ Y (x|z);
−∞ otherwise.

I Lemma 5. For every x ∈ V (T ) and every z ∈ A(x), all the vertices ax|z, bx|z and their
corresponding costs w.r.t. cx|z can be computed in O(n2) time and space.

Proof. We show that, for any x ∈ V (T ) and any z ∈ A(x), the vertices ax|z and bx|z can be
computed in O

(
1 + |Y (x|z)|

)
time and space. The claim would follow immediately since

∑
x∈V (T )

∑
z∈A(x)

O
(

1+
∣∣Y (x|z)

∣∣) =
∑

x∈V (T )

O

 ∑
z∈A(x)

(
1 +

∣∣Y (x|z)
∣∣) =

∑
x∈V (T )

O(n) = O(n2).

Let x ∈ V (T ) and z ∈ A(x) be fixed, and let ` =
∣∣Y (x|z)

∣∣. Let y1, . . . , y` be the ` vertices of
Y (x|z) and, finally, for every i = 1, . . . , `, let

ci(y) :=
{

0 if y = yi;
−∞ otherwise.

We have that ai = bi = yi are the two endvertices of the unique diametral path in T w.r.t.
cost function ci. Moreover, for every y ∈ V (T ), we have that cx|z(y) = maxi=1,...,` ci(y).
Therefore, using Lemma 4, we can compute ax|z, bx,z, and their corresponding costs w.r.t.
cx|z, in O

(
1 + |Y (x|z)|

)
time and space. J

Let cx,e be a cost function that, for every y ∈ V (T ), is defined as follows cx,e(y) :=
maxz∈A(v) cx|z(y). The algorithm also precomputes the two endvertices ax,e and bx,e of a
diametral path of T w.r.t. the cost function cx,e, together with the corresponding values
cx,e(ax,e) and cx,e(bx,e). The following lemma holds.

I Lemma 6. For every x ∈ V (T ) and every edge e in the path in T between r and x, all the
vertices ax,e, bx,e and their corresponding costs w.r.t. cx,e can be computed in O(n2) time
and space.

Proof. Let x ∈ V (T ) and let e be an edge of the path between r and x in T . We show that
ax,e, bx,e (and their corresponding costs w.r.t. cx,e) can be computed in constant time and
space. The claim then follows since V (T ), E(T ) = O(n). We divide the proof into two cases.

ISAAC 2018



7:8 A Novel Algorithm for the ABSE Problem on Tree Spanners

x

e

Z(x, 1) Z(x, 2)

Z(x, 3)

Figure 3 An example showing how the set Z(x, 1), Z(x, 2) e Z(x, 3) are defined. Tree edges are
solid, while triangles are subtrees.

The first case occurs when e is incident to r. Clearly, for every y ∈ V (T ), cx,e(y) = cx|r(y).
As a consequence, ax,e = ax|r and bx,e = bx|r.

The second case occurs when e =
(
u = p(v), v

)
, with u 6= r. Let e′ =

(
p(u), u

)
. Then, for

every y ∈ V (T ), cx,e(y) = max
{
cx,e′(y), cx|u(y)

}
.

Therefore, using Lemma 4, all the vertices ax,e, bx,e (and their corresponding costs w.r.t.
cx,e), with x ∈ V (T ) and e in the path in T between r and x, can be computed in O(n2)
time and space via a preorder visit of the tree edges. J

In the following we show how to compute ax and bx, for every x ∈ X, in O(n) time and
space. First, for every x ∈ X, we consider a subdivision of X into three sets Z(x, 1), Z(x, 2),
and Z(x, 3) (see Figure 3) such that:

Z(x, 1) is the set of all the descendants of x in T (x included);
Z(x, 2) is the union of all the sets Z(s, 1), for every sibling s of x;
Z(x, 3) = X \

(
Z(x, 1) ∪ Z(x, 2)

)
.

Each set Z(x, i) is associated with a cost functions cx,i that, for every y ∈ V (T ), is defined
as follows:

cx,i(y) := max
x′∈Z(x,i),(x′,y)∈S(e)

dT (x′, x).

Let ax,i and bx,i be the two endvertices of a diametral path in T w.r.t. cost function cx,i.
The algorithm computes all the vertices ax,i, bx,i and their corresponding values w.r.t. cost
function cx,i, for every x ∈ X and every i = 1, 2, 3.

I Lemma 7. For every x ∈ X and every i ∈ {1, 2, 3}, all the vertices ax,i, bx,i and their
corresponding costs w.r.t. cx,i can be computed in O(n) time and space.

Proof. We divide the proof into three cases, according to the value of i.
The first case is i = 1. Clearly, if x is a leaf vertex, then ax,1 = ax,e and bx,1 = bx,e.

Moreover, cx,1(ax,1) = cx,e(ax,e) as well as cx,1(bx,1) = cx,e(bx,e). Therefore, we can assume
that x is not a leaf vertex. Let x1, . . . , x`−1 be the `− 1 children of x in T . Since Z(x, 1) =
{x} ∪

⋃`−1
i=1 Z(xi, 1), for every y ∈ V (T ), we have that

cx,1(y) = max
{
cx,e(y), 1 + max

i=1,...,`−1
cxi,1(y)

}
.

Therefore, using Lemma 4, for every x ∈ X, all the vertices ax,1, bx,1, together with their
corresponding costs w.r.t. cx,i, can be computed in O(n) time and space via a postorder
visit of the vertices in X.
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We consider the case in which i = 2 and we assume that, for every x ∈ X, all the vertices
ax,1, bx,1 and their corresponding costs w.r.t. cx,1 are known. Let x̄ be the parent of x in T
and let x1, . . . , x` be the ` ≥ 1 children of x̄ in T . For every i = 1, . . . , `, let c̄x̄,i and ĉx̄,i be
two cost functions that, for every y ∈ V (T ), are defined as follows:

c̄x̄,i(y) := 2 + max
j=1,...,i−1

cxj ,1(y),

ĉx̄,i(y) := 2 + max
j=i+1,...,`

cxj ,1(y).

For every i = 2, . . . , `−1, the algorithm computes the vertices āx̄,i, b̄x̄,i, âx̄,i, b̂x̄,i and the costs
c̄x̄,i(āx̄,i), c̄x̄,i(b̄x̄,i), ĉx̄,i(âx̄,i), ĉx̄,i(b̂x̄,i) using simple dynamic programming and Lemma 4.
Indeed, c̄x̄,2(y) = 2 + cx1,1(y) as well as ĉx̄,`−1(y) = 2 + cx`,1(y). Furthermore, for every
i > 2,

c̄x̄,i(y) = max
{
c̄x̄,i−1(y), 2 + cxi−1,1(y)

}
,

while for every i < `− 1,

ĉx̄,i(y) = max
{
ĉx̄,i+1(y), 2 + cxi+1,1(y)

}
.

We observe that āx̄,i, b̄x̄,i, âx̄,i, b̂x̄,i and the costs c̄x̄,i(āx̄,i), c̄x̄,i(b̄x̄,i), ĉx̄,i(âx̄,i), ĉx̄,i(b̂x̄,i) can
be computed in O(`) time and space. As a consequence, these pieces of information can be
precomputed for every x ∈ V (T ) in O(n2) time and space. Let x = xi, for some i = 1, . . . , `.
Since

Z(x, 2) =
⋃

j=1,...,`:j 6=i
Z(xj , 1) =

i−1⋃
j=1

Z(xj , 1) ∪
⋃̀

j=i+1
Z(xj , 1),

for every y ∈ V (T ), we have that

cx,2(y) = max
{
c̄x̄,i(y), ĉx̄,i(y)

}
.

Therefore, using Lemma 4, all the vertices ax,2, bx,2 and their corresponding costs w.r.t. cx,2
can be computed in O(n) time and space for every x ∈ X.

Finally, we consider the case in which i = 3 and we assume that all the vertices ax,j , bx,j
and the costs cx,j(ax,j), cx,j(bx,j), with x ∈ X and j = 1, 2, are known. If x = v, then
Z(x, 3) = ∅. Therefore, we only need to prove the claim when x 6= v. Let x̄ be the parent of
x in T . Since

Z(x, 3) =
{
x̄
}
∪ Z(x̄, 2) ∪ Z(x̄, 3)

for every y ∈ V (T ), we have that

cx,3(y) = 1 + max
{
cx̄,e(y), cx̄,2(y), cx̄,3(y)

}
.

Therefore, using Lemma 4, for every x ∈ X, all the vertices ax,3, bx,3, and the corresponding
costs w.r.t. cx,3, can be computed in O(n) time and space by a preorder visit of the tree
vertices. This completes the proof. J

We can now prove the following.

I Lemma 8. For every x ∈ X, all the vertices ax, bx, γx and the costs cx(ax) and cx(bx) can
be computed in O(n) time and space.
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Proof. Let x ∈ X be fixed. Since X = Z(x, 1) ∪ Z(x, 2) ∪ Z(x, 3), by definition of cx,i, for
every y ∈ V (T ), we have that cx(y) = max

{
cx,1(y), cx,2(y), cx,3(y)

}
. Therefore, under the

assumption that all the vertices ax,i, bx,i and all the values cx,i(ax,i), cx,i(bx,i), with x ∈ X
and i = 1, 2, 3, are known, using Lemma 4, we can compute ax and bx, together with the
values cx(ax) and cx(bx) in constant time. The claim follows since, as we already discussed
at the end of Section 3.1, γx can be computed in constant time. J

3.2 How to compute the vertex yx

I Lemma 9. The labeling λ and the two range-minimum-query data structures R and R′
can be computed in O(n) time and space.

Proof. It is known that the range-minimum-query data structure of size h can be computed
in O(h) time and space [1, 11]. The labeling λ can be computed in O(n) time and space by
a simple algorithm that, for every i = 1, . . . , h, first initializes λ(y) = y for every y ∈ Y (x, zi)
and then, during phase φ, labels all the still unlabeled vertices which are at distance φ from
some vertex in Y (x|zi). J

Let e = (zi = p(v), v) be the failing edge. We show how to find the vertex yx ∈ Y (x, e) that
is closest to γx in constant time. First we compute j such that zj = lca(γx, x). Next we
make at most two range minimum queries to compute the following two indices:

the index t′ containing the minimum value within the range [1, j − 1] in R′;
the index t containing the minimum value within the range [j + 1, i] in R.

The algorithm chooses yx such that

yx ∈ arg min
y∈{λ(γx),λ(zt′ ),λ(zt)}

dT (y, γx),

I Lemma 10. The vertex yx selected by the algorithm satisfies yx ∈ arg miny∈Y (x,e) dT (y, γx).

Proof. Let y∗ ∈ arg miny∈Y (x,e) dT (y, γx). Clearly, for some k = 1, . . . , i, y∗ ∈ Y (x|zk). We
prove the claim by showing that dT (yx, γx) ≤ dT (y∗, γx). We divide the proof into three
cases, according to the value of k.

The first case is when k = j. We have that dT (yx, γx) ≤ dT
(
λ(γx), γx

)
= dT (y∗, γx).

The second case occurs when k < j. Clearly, dT
(
λ(zk), zk

)
≤ dT (y∗, zk). Moreover,

dT
(
λ(zt′), zt′

)
− t′ ≤ dT

(
λ(zk), zk

)
− k. Therefore,

dT (yx, γx) ≤ dT
(
λ(zt′), γx

)
= dT

(
λ(zt′), zt′

)
+ dT (zt′ , zj) + dT (zj , γx)

= dT
(
λ(zt′), zt′

)
+ j − t′ + dT (zj , γx) ≤ dT

(
λ(zk), zk

)
+ j − k + dT (zj , γx)

≤ dT (y∗, zk) + j − k + dT (zj , γx) = dT (y∗, γx).

The third case occurs when j < k ≤ i. Clearly, dT
(
λ(zk), zk

)
≤ dT (y∗, zk). Moreover,

dT
(
λ(zt), zt

)
+ t ≤ dT

(
λ(zk), zk

)
+ k. Therefore,

dT (yx, γx) ≤ dT
(
λ(zt), γx

)
= dT

(
λ(zt), zt

)
+ dT (zt, zj) + dT (zj , γx)

= dT
(
λ(zt), zt

)
+ t− j + dT (zj , γx) ≤ dT

(
λ(zk), zk

)
+ k − j + dT (zj , γx)

≤ dT (y∗, zk) + k − j + dT (zj , γx) = dT (y∗, γx).

The claim follows. J

We can finally state the main theorem.
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I Theorem 11. All the best swap edges of a tree spanner T in 2-edge-connecte, unweighted,
and undirected graphs can be computed in O(n2) time and space.

Proof. From Lemma 8, for a fixed edge e ∈ E(T ), all the vertices ax, bx, γx and all the
values cx(ax), cx(bx), with x ∈ X, can be computed in O(n) time and space. Therefore, such
vertices and values can be computed for every edge of T in O(n2) time and space.

By Lemma 10, for a fixed edge e of T and a fixed vertex x, we can compute yx, i.e.,
fx = (x, yx), by making at most two queries, each of which requires constant time, on the
two range-minimum-query data structures associated with x. Therefore, the O(n) candidate
best swap edges of e can be computed in O(n) time. Furthermore, using Lemma 3, we can
compute σ

(
Te/fx

)
= 1 + max

{
dT (yx, ax) + cx(ax), dT (yx, bx) + cx(bx)

}
in constant time.

Hence, thanks to Lemma 2, the best swap edge f∗ of e can be computed in O(n) time. The
claim follows. J
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Abstract
A dominating set D of a graph G is a set of vertices such that any vertex in G is in D or its
neighbor is in D. Enumeration of minimal dominating sets in a graph is one of central problems
in enumeration study since enumeration of minimal dominating sets corresponds to enumera-
tion of minimal hypergraph transversal. However, enumeration of dominating sets including
non-minimal ones has not been received much attention. In this paper, we address enumeration
problems for dominating sets from sparse graphs which are degenerate graphs and graphs with
large girth, and we propose two algorithms for solving the problems. The first algorithm enumer-
ates all the dominating sets for a k-degenerate graph in O (k) time per solution using O (n + m)
space, where n and m are respectively the number of vertices and edges in an input graph. That
is, the algorithm is optimal for graphs with constant degeneracy such as trees, planar graphs,
H-minor free graphs with some fixed H. The second algorithm enumerates all the dominating
sets in constant time per solution for input graphs with girth at least nine.
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1 Introduction

One of the fundamental tasks in computer science is to enumerate all subgraphs satisfying
a given constraint such as cliques [23], spanning trees [25], cycles [2], and so on. One of
the approaches to solve enumeration problems is to design exact exponential algorithms,
i.e., input-sensitive algorithms. Another mainstream of solving enumeration problems is to
design output-sensitive algorithms, i.e., the computation time depends on the sizes of both
of an input and an output. An algorithm A is output-polynomial if the total computation
time is polynomial of the sizes of input and output. A is an incremental polynomial time
algorithm if the algorithm needs O (poly(n, i)) time when the algorithm outputs the ith

solution after outputting the (i− 1)th solution, where poly(·) is a polynomial function. A
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runs in polynomial amortized time if the the total computation time is O (poly(n)N), where
n and N are respectively the sizes of an input and an output. In addition, A runs in
polynomial delay if the maximum interval between two consecutive solutions is O (poly(n))
time and the preprocessing and postprocessing time is O (poly(n)). From the point of
view of tractability, efficient algorithms for enumeration problems have been widely studied
[1, 2, 6, 11,12,20,23,25,27]. On the other hands, Lawler et al. show that some enumeration
problems have no output-polynomial time algorithm unless P = NP [21]. In addition,
recently, Creignou et al. show a tool for showing the hardness of enumeration problems [8].

A dominating set is one of a fundamental substructure of graphs and finding the minimum
dominating set problem is a classical NP-hard problem [12]. A vertex set D of a graph G is
a dominating set of G if every vertex in G is in D or has at least one neighbors in D. The
enumeration of minimal dominating sets of a graph is closely related to the enumeration of
minimal hypergraph transversals of a hypergraph [10]. Kanté et al. [18] show that the minimal
dominating set enumeration problem and the minimal hypergraph transversal enumeration
problem are equivalent, that is, the one side can be solved in output-polynomial time if the
other side can be also solved in output-polynomial time. Several algorithms that run in
polynomial delay have been developed when we restrict input graphs, such as permutation
graphs [18], chordal graphs [19], line graphs [20], graphs with bounded degeneracy [16],
graphs with bounded tree-width [7], graphs with bounded clique-width [7], and graphs with
bounded (local) LMIM-width [14]. Incremental polynomial-time algorithms have also been
developed, such as chordal bipartite graphs [13], graphs with bounded conformality [3], and
graphs with girth at least seven [15]. Kanté et al. [17] show that the conformality of the closed
neighbourhood hypergraphs of line graphs, path graphs, and (C4, C5, claw)-free graphs is
constant. However, it is still open whether there exists an output-polynomial time algorithm
for enumerating minimal dominating sets from general graphs.

Since the number of solutions exponentially increases compared to the minimal version,
even if we can develop an enumeration algorithm that runs in constant time per solution, the
algorithm becomes theoretically much slower than some enumeration algorithm for minimal
dominating sets. However, when we consider the real-world problem, we sometimes use
another criteria for enumerating solutions that form dominating sets in a graph. That is,
enumeration algorithms for minimal dominating sets may not fit in with other variations of
minimal domination problems. E.g., a tropical dominating set [9] and a rainbow dominating
set [4] are such a dominating set. Thus, when we enumerate solutions of such domination
problems, our algorithm becomes a base-line algorithm for these problems. Thus, our main
goal is to develop an efficient enumeration algorithm for dominating sets.

Main results: In this paper, we consider the relaxed problems, i.e., enumeration of all
dominating sets that include non-minimal ones in a graph. We present two algorithms, EDS-D
and EDS-G. EDS-D enumerates all dominating sets in O (k) time per solution, where k is the
degeneracy of a graph (Theorem 13). Moreover, EDS-G enumerates all dominating sets in
constant time per solution for a graph with girth at least nine (Theorem 25), where the girth
is the length of minimum cycle in the graph.

By straightforwardly using an enumeration framework such as the reverse search tech-
nique [1], we can obtain an enumeration algorithm for the problem that runs in O (n) or
O (∆) time per solution, where n and ∆ are respectively the number of vertices and the
maximum degree of an input graph. Although dominating sets are fundamental in computer
science, no enumeration algorithm for dominating sets that runs in strictly faster than such
a trivial algorithm has been developed so far. Thus, to develop efficient algorithms, we focus
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on the sparsity of graphs as being a good structural property and, in particular, on the
degeneracy and girth, which are the measures of sparseness. As our contributions, we develop
two optimal algorithms for enumeration of dominating sets in a sparse graph. We first focus
on the degeneracy of an input graph. A graph is k-degenerate [22] if any subgraph of the
graph has a vertex whose degree is at most k. The degeneracy of a graph is the minimum
value of k such that the graph is k-degenerate. Note that k ≤ ∆ always holds. It is known
that some graph classes have constant degeneracy, such as forests, grid graphs, outerplanar
graphs, planer graphs, bounded tree width graphs, and H-minor free graphs for some fixed
H [5,26]. A k-degenerate graph has a good vertex ordering, called a degeneracy ordering [24],
as shown in Section 3. So far, this ordering has been used to develop efficient enumeration
algorithms [6,11,27]. By using this ordering and the reverse search technique [1], we show
that our proposed algorithm EDS-D can solve the relaxed problem in O (k) time per solution.
This implies that EDS-D can optimally enumerate all the dominating sets in an input graph
with constant degeneracy.

We next focus on the girth of a graph. Enumeration of minimal dominating sets can
be solved efficiently if an input graph has no short cycles since its connected subgraphs
with small diameter form a tree. Indeed, this local tree structure has been used in minimal
dominating sets enumeration [15]. For the relaxed problem, by using the reverse search
technique, we can easily show that the delay of our proposed algorithm EDS-G for general
graphs is O

(
∆3) time. However, if an input graph has the large girth, then each recursive

call generates enough solutions, that is, we can amortize the complexity of EDS-G. Thus, by
amortizing the time complexity using this local tree structure, we show that the problem can
be solve in constant time per solution for graphs with girth at least nine.

2 A Basic Algorithm Based on Reverse Search

Let G = (V (G), E(G)) be a simple undirected graph, that is, G has no self loops and multiple
edges, with vertex set V (G) and edge set E(G) is a set of pairs of vertices. If no confusion
arises, we will write V = V (G) and E = E(G). Let u and v be vertices in G. An edge e with
u and v is denoted by e = {u, v}. u and v are adjacent if {u, v} ∈ E. We denote by NG(u)
the set of vertices that are adjacent to u on G and by NG[u] = NG(u) ∪ {u}. We say v is a
neighbor of u if v ∈ NG(u). The set of neighbors of U is defined as N(U) =

⋃
u∈U NG(u) \U .

Similarly, let N [U ] be
⋃

u∈U NG(u) ∪ U . Let dG(v) = |NG(v)| be the degree of u in G. We
call the vertex v pendant if dG(v) = 1. ∆(G) = maxv∈V d(v) denotes the maximum degree
of G. A set X of vertices is a dominating set if X satisfies N [X] = V .

For any vertex subset V ′ ⊆ V , we call G[V ′] = (V ′, E[V ′]) an induced subgraph of G,
where E[V ′] = {{u, v} ∈ E(G) | u, v ∈ V ′}. Since G[V ′] is uniquely determined by V ′, we
identify G[V ′] with V ′. We denote by G \ {e} = (V, E \ {e}) and G \ {v} = G[V \ {v}]. For
simplicity, we will use v ∈ G and e ∈ G to refer to v ∈ V (G) and e ∈ E(G), respectively.

We now define the dominating set enumeration problem as follows:

I Problem 1. Given a graph G, then output all dominating sets in G without duplication.

In this paper, we propose two algorithms EDS-D and EDS-G for solving Problem 1. These
algorithms use the degeneracy ordering and the local tree structure, respectively. Before
we enter into details of them, we first show the basic idea for them, called reverse search
method that is proposed by Avis and Fukuda [1] and is one of the framework for constructing
enumeration algorithms.

An algorithm based on reverse search method enumerates solutions by traversing on an
implicit tree structure on the set of solution, called a family tree. For building the family tree,

ISAAC 2018
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Algorithm 1: EDS enumerates all dominating sets in amortized polynomial time.
1 Procedure EDS(G = (V, E)) // G: an input graph
2 AllChildren(V, V, G);
3 Procedure AllChildren(X, C (X) , G = (V, E)) // X: the current solution
4 Output X;
5 for v ∈ C (X) do
6 Y ← X \ {v}; C (Y )← {u ∈ C (X) | N [Y \ {u}] = V ∧ P (Y \ {u}) = Y };
7 AllChildren(Y, C (Y ) , G);

4
5

2

1
3 6

78

4 521 3 6 7 8

Figure 1 An example of a degeneracy ordering for a 2-degenerate graph G. In this ordering, each
vertex v is adjacent to vertices at most two whose indices are larger than v.

we first define the parent-child relationship between solutions as follows: Let G = (V, E) be
an input graph with V = {v1, . . . , vn} and X and Y be dominating sets on G. We arbitrarily
number the vertices in G from 1 to n and call the number of a vertex the index of the vertex.
If no confusion occurs, we identify a vertex with its index. We assume that there is a total
ordering < on V according to the indices. pv (X), called the parent vertex, is the vertex
in V \X with the minimum index. For any dominating set X such that X 6= V , Y is the
parent of X if Y = X ∪ {pv (X)}. We denote by P (X) the parent of X. Note that since
any superset of a dominating set also dominates G, thus, P (X) is also a dominating set of
G. We call X is a child of Y if P (X) = Y . We denote by F (G) a digraph on the set of
solutions S (G). Here, the vertex set of F (G) is S (G) and the edge set E (G) of F (G) is
defined according to the parent-child relationship. We call F (G) the family tree for G and
call V the root of F (G). Next, we show that F (G) forms a tree rooted at V .

Our basic algorithm EDS is shown in Algorithm 1. We say C (X) the candidate set of X

and define C (X) = {v ∈ V | N [X \ {v}] = V ∧ P (X \ {v}) = X}. Intuitively, the candidate
set of X is the set of vertices such that any vertex v in the set, removing v from X generates
another dominating set. We show a recursive procedure AllChildren(X, C (X) , G) actually
generates all children of X on F (G). We denote by ch(X) the set of children of X, and by
gch(X) the set of grandchildren of X.

From Lemmas 1, 2, and 3, we can obtain the correctness of EDS.

I Lemma 1. For any dominating set X, by recursively applying the parent function P (·) to
X at most n times, we obtain V .

I Lemma 2. F (G) forms a tree.

I Lemma 3. Let X and Y be distinct dominating sets in a graph G. Y ∈ ch(X) if and only
if there is a vertex v ∈ C (X) such that X = Y ∪ {v}.

I Theorem 4. By traversing F (G), EDS solves Problem 1.
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Algorithm 2: EDS-D enumerates all dominating sets in O (k) time per solution.
1 Procedure EDS-D(G = (V, E)) // G: an input graph
2 for v ∈ V do Dv ← ∅;
3 AllChildren(V, V,D(V ) :=

{
D1, . . . , D|V |

}
);

4 Procedure AllChildren(X, C,D)
5 Output X;
6 C ′ ← ∅; D′ ← D; // D′ :=

{
D′1, . . . , D′|V |

}
7 for v ∈ C do // v has the largest index in C

8 Y ← X \ {v};
9 C ← C \ {v}; // Remove vertices in Del3 (X, v).

10 C (Y )← Cand-D(X, v, C); // Vertices larger than v are not in C.
11 D(Y )← DomList(v, Y, X, C (Y ) , C ′ ⊕ C (Y ) ,D′);
12 AllChildren(Y, C (Y ) ,D(Y ));
13 C ′ ← C (Y ); D′ ← D(Y );
14 for u ∈ N(v)v< do D′u ← D′u ∪ {v} ;
15 Procedure Cand-D(X, v, C)
16 Y ← X \ {v}; Del1 ← ∅; Del2 ← ∅;
17 for u ∈ (N(v) ∩ C) ∪N(v)v< do
18 if u < v then
19 if N(u)u< ∩ Y = ∅ ∧N(u)<u ∩ Y = ∅ then Del1 ← Del1 ∪ {u} ;
20 else
21 if N [u] ∩ (X \ C) = ∅ ∧ |N [u] ∩ C| = 2 then Del2 ← Del2 ∪ (N [u] ∩ C) ;
22 return C \ (Del1 ∪Del2); // C is C (X \ {v})
23 Procedure DomList (v, Y, X, C ′ ⊕ C (Y ) ,D′)
24 for u ∈ C ′ ⊕ C(Y ) do
25 for w ∈ N(u)u< do
26 if u /∈ D′w(X) then
27 if u /∈ C ′ then D′w ← D′w ∪ {u} ;
28 else D′w ← D′w \ {u} ;
29 for u ∈ N(v)v< do
30 if u ∈ X then D′v ← D′v ∪ {u} ;
31 return D′; // D′ is D(Y )

3 Efficient Enumeration for Bounded Degenerate Graphs

The bottle-neck of EDS is the maintenance of candidate sets. Let X be a dominating set and
Y be a child of X. We can easily see that the time complexity of EDS is O

(
∆2) time per

solution since a removed vertex u ∈ C (X) \ C (Y ) has the distance at most two from v. In
this section, we improve EDS by focusing on the degeneracy of an input graph G. G is a
k-degenerate graph [22] if for any induced subgraph H of G, the minimum degree in H is
less than or equal to k. The degeneracy of G is the smallest k such that G is k-degenerate.
A k-degenerate graph has a good vertex ordering. The definition of orderings of vertices in
G, called a degeneracy ordering of G, is as follows: for any vertex v in G, the number of
vertices that are larger than v and adjacent to v is at most k. We show an example of a
degeneracy ordering of a graph in Fig. 1. Matula and Beck show that the degeneracy and a
degeneracy ordering of G can be obtained in O (n + m) time [24]. Our proposed algorithm

ISAAC 2018
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Figure 2 Let X be a dominating set {1, 2, 3, 4, 5, 6, 11}. An example of the maintenance of C (X)
and D(X). Each dashed directed edge is stored in D(X), and each solid edge is an edge in G. A
directed edge (u, v) implies v ∈ Du(X). The index of each vertex is according to a degeneracy
ordering. White, black, and gray vertices belong to V \ X, X \ C (X), and C (X), respectively.
When EDS-D removes vertex 6, C (X \ {6}) = {1}.

EDS-D, shown in Algorithm 2, achieves amortized O (k) time enumeration by using this good
ordering. In what follows, we fix some degeneracy ordering of G and number the indices of
vertices from 1 to n according to the degeneracy ordering. We assume that for each vertex v

and each dominating set X, N [v] and C (X) are stored in a doubly linked list and sorted
by the ordering. Note that the larger neighbors of v can be listed in O (k) time. Let us
denote by V <v = {1, 2, . . . , v − 1} and V v< = {v + 1, . . . n}. Moreover, A<v = A ∩ V v< and
Av< = A ∩ V <v for a subset A of V . We first show the relation between C (X) and C (Y ).

I Lemma 5. Let X be a dominating set of G and Y be a child of X. Then, C (Y ) ⊂ C (X).

From the Lemma 5, for any v ∈ C (X), what we need to obtain the candidate set
of Y is to compute Del (X, pv (Y )) = C (X) \ C (Y ), where Y = X \ {v}. In addi-
tion, we can easily sort C (Y ) by the degeneracy ordering if C (X) is sorted. In what
follows, we denote by Del1 (X, v) =

{
u ∈ C (X)<v ∣∣ N [u] ∩X = {u, v}

}
, Del2 (X, v) ={

u ∈ C (X)<v ∣∣ ∃w ∈ V \ (X \ {v})(N [w] ∩X = {u, v})
}
, and Del3 (X, v) = C (X)v≤. Next,

we show the time complexity for obtaining Del (X, pv (Y )).

I Lemma 6. For each v ∈ C (X), Del (X, v) = Del1 (X, v)∪Del2 (X, v)∪Del3 (X, v) holds.

We show an example of dominated list and a maintenance of C (X) in Fig. 2. To compute
a candidate set efficiently, for each vertex u in V , we maintain the vertex lists Du(X) for
X. We call Du(X) the dominated list of u for X. The definition of Du(X) is as follows: If
u ∈ V \X, then Du(X) = N(u)∩(X \C (X)). If u ∈ X, then Du(X) = N(u)<u∩(X \C (X)).
For brevity, we write Du as Du(X) if no confusion arises. We denote by D(X) =

⋃
u∈V {Du}.

By using D(X), we can efficiently find Del1 (X, v) and Del2 (X, v).

I Lemma 7. Let X be a dominating set of G. Suppose that for each vertex u in G, we can
obtain the size of Du in constant time. Then, for each vertex v ∈ C (X), we can compute
Del1 (X, v) in O (k) time on average over all children of X.

I Lemma 8. Suppose that for each vertex w in G, we can obtain the size of Dw in constant
time. For each vertex v ∈ C (X), we can compute Del2 (X, v) in O (k) time on average over
all children of X.

In Lemma 7 and Lemma 8, we assume that the dominated lists were computed when we
compute Del (X, v) for each vertex v in C (X). We next consider how we maintain D. Next
lemmas show the transformation from Du(X) to Du(Y ) for each vertex u in G.



K. Kurita, K. Wasa, H. Arimura, and T. Uno 8:7

I Lemma 9. Let X be a dominating set, v be a vertex in C (X), and Y = X \ {v}. For each
vertex u ∈ G such that u 6= v, Du(Y ) = Du(X) ∪ (N(u)<u ∩ (Del1 (X, v) ∪Del2 (X, v))) ∪
(N(u)<u ∩ (Del3 (X, v) \ {v})).

I Lemma 10. Let X be a dominating set, v be a vertex in C (X), and Y = X \ {v}.
Dv(Y ) = Dv(X) ∪ (N(v)<v ∩ (Del1 (X, v) ∪Del2 (X, v))) ∪ (N(v)v< ∩X).

We next consider the time complexity for obtaining the dominated lists for children of X.
From Lemma 9 and Lemma 10, a naïve method for the computation needs O(k |Del (X, v)|+k)
time for each vertex v of X since we can list all larger neighbors of any vertex in O (k) time.
However, if we already know C (W ) and D(W ) for a child W of X, then we can easily obtain
D(Y ), where Y is the child of X immediately after W . The next lemma plays a key role in
EDS-D. Here, for any two sets A, B, we denote by A⊕B = (A \B) ∪ (B \A).

I Lemma 11. Let X be a dominating set, v, u be vertices in C (X) such that u has the
maximum index in C (X)<v, Y = X \ {u}, and W = X \ {v}. Suppose that we already
know C (Y ) ⊕ C (W ), D(W ), Del (X, v), and Del (X, u). Then, we can compute D(Y ) in
O (k |C (Y )⊕ C (W )|+ k) time.

Proof. Suppose that z is a vertex in G such that z 6= v and z 6= u. From the definition,
Dz(W ) \Dz(Y ) = (Del (X, v) \Del (X, u)) ∩N(z)<z and Dz(Y ) \Dz(W ) = (Del (X, u) \
Del (X, v)) ∩ N(z)<z. Hence, we first compute Del (X, v) ⊕ Del (X, u). Now, (C (X) \
C (W ))⊕ (C (X) \ C (Y )) = C (W )⊕ C (Y ). Next, for each vertex c in C (W )⊕ C (Y ), we
check whether we add to or remove c from Dz(Y ) or not. Note that added or removed vertices
from Dz(Y ) is a smaller neighbor of z. From the definition, if c /∈ Dz(Y ) or c ∈ Dz(X),
then we add c to Dz(Y ). Otherwise, we remove c from Dz(Y ). Thus, since each vertex in
C (W )⊕ C (Y ) has at most k larger neighbors, for all vertices other than u and v, we can
compute the all dominated lists in O (k |C (W )⊕ C (Y )|) time. Next we consider the update
for Du(Y ) and Dv(Y ). Note that from the definition, Dv(W ) and Du(Y ) contain larger
neighbors of v and u, respectively. However, the number of such neighbors is O (k). Finally,
since v belongs to Y , v ∈ Du′(Z) if u′ ∈ N(v)v< for any vertex u′. Thus, as with the above
discussion, we can compute Du(Y ) and Dv(Y ) in O (k |C (W )⊕ C (Y )|+ k) time. J

I Lemma 12. Let X be a dominating set. Then, AllChildren(X, C (X) ,D(X)) of EDS-D
other than recursive calls can be done in O (k |ch(X)|+ k |gch(X)|) time.

Proof. We first consider the time complexity of Cand-D. From Lemma 7 and Lemma 8,
Cand-D correctly computes Del1 (X, v) and Del2 (X, v) in from line 18 to line 19 and from
line 20 to line 21, respectively. For each loop from line 7, the algorithm picks the largest
vertex in C. This can be done in O (1) since C is sorted. The algorithm needs to remove
vertices in Del3 (X, v). This can be done in line 9 and in O (1) time since v is the largest
vertex. Thus, for each vertex v in C (X), C (X \ {v}) can be obtained in O (k) time on
average. Hence, for all vertices in C (X), the candidate sets can be computed in O (k |ch(X)|)
time. Next, we consider the time complexity of DomList. Before computing DomList, EDS-D
already computed C (Y ) ⊕ C (W ), D(W ), Del (X, v), and Del (X, v′). Note that we can
compute C (Y ) ⊕ C (W ) when we compute C (Y ) and C (W ). Here, W is the previous
dominating set, C ′ stores C (W ), and D′ stores D(W ). Thus, by using Lemma 11, we can
compute D(Y ) in O (k |C (Y )⊕ C (W )|+ k) time. In addition, for all vertices in C (X), the
dominated lists can be computed in O (k |C (X)|+ k |gch(X)|) time since Y has at least
|C (W ) \ C (Y )| − 1 children and |gch(X)| is at least the sum of |C (W ) \ C (Y )| − 1 over
all Y ∈ {X \ {v} | v ∈ C (X)} and the previous solution W of Y . When EDS-D copies data
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such as D, EDS-D only copies the pointer of these data. By recording operations of each line,
EDS-D restores these data when backtracking happens. These restoring can be done in the
same time of the above update computation. J

I Theorem 13. EDS-D enumerates all dominating sets in O (k) time per solution in a
k-degenerate graph by using O (n + m) space.

Proof. The parent-child relation of EDS-D and EDS are same. From Lemma 5 and Lemma 6,
EDS-D correctly computes all children. Hence, the correctness of EDS-D is shown by the same
manner of Theorem 4. We next consider the space complexity of EDS-D. For any vertex v in
G, if v is removed from a data structure used in EDS-D on a recursive procedure, v will never
be added to the data structure on descendant recursive procedures. In addition, for each
recursive procedure, the number of data structures that are used in the procedure is constant.
Hence, the space complexity of EDS-D is O (n + m). We finally consider the time complexity.
Each recursive procedure needs O (k |ch(X)|+ k |gch(X)|) time from Lemma 12. Thus, the
time complexity of EDS-D is O

(
k
∑

X∈S(|ch(X)|+ |gch(X)|)
)
, where S is the set of solutions.

Now, O
(∑

X∈S(|ch(X)|+ |gch(X)|)
)

= O (|S|). Hence, the statement holds. J

4 Efficient Enumeration for Graphs with Girth at Least Nine

In this section, we propose an optimum enumeration algorithm EDS-G for graphs with girth
at least nine, where the girth of a graph is the length of a shortest cycle in the graph.
That is, the proposed algorithm runs in constant amortized time per solution for such
graphs. The algorithm is shown in Algorithm 3. To achieve constant amortized time
enumeration, we focus on the local structure Gv(X) for (X, v) of G defined as follows:
Gv(X) = G[(V \N [X \ C (X)≤v]) ∪ C (X)≤v]. Fig. 3 shows an example of Gv(X). Gv(X)
is a subgraph of G induced by vertices that (1) are dominated by vertices only in C (X)≤v

or (2) are in C (X)≤v. Intuitively speaking, we can efficiently enumerate solutions by using
the local structure and ignoring vertices in G \Gv(X) since the number of solutions that
are generated according to the structure is enough to reduce the amortized time complexity
to constant. We denote by G(X) = G[(V \N [X \ C (X)]) ∪ C (X)] the local structure for
(X, v∗) of G, where v∗ is the largest vertex in G.

We first consider the correctness of EDS-G. The parent-child relation between solutions
used in EDS-G is the same as in EDS. Suppose that X and Y are dominating sets such that X is
the parent of Y . Recall that, from Lemma 6, C (X)\C (Y ) = Del (X, v), where X = Y ∪{v}.
We denote by fv(u, X) = True if there exists a neighbor w of u such that w ∈ X \ C (X)≤v;
Otherwise fv(u, X) = False. Thus, Cand-G correctly computes Del1 (X, v) and Del2 (X, v)
from line 17 to 19. Moreover, in line 14, vertices in Del3 (X, v) are removed from C (X) and
hence, Cand-G also correctly computes C (X \ {v}). Moreover, for each vertex w removed
from G during enumeration, w is dominated by some vertices in G. Hence, by the same
discussion as Theorem 4, we can show that EDS-G enumerates all dominating sets. In the
remaining of this section, we show the time complexity of EDS-G. Note that Gv(X) does not
include any vertex in N [Del3 (X, v) \ {v}] \C (X)≤v. Hence, we will consider only vertices in
Del1 (X, v) ∪Del2 (X, v) ∪ {v}. We denote by Del′ (X, v) = Del1 (X, v) ∪Del2 (X, v) ∪ {v}.
We first show the time complexity for updating the candidate sets.

In what follows, if v is the largest vertex in C (X), then we simply write f(u, X) as
fv(u, X). We denote by N ′v(u) = NGv(X)(u), N ′v[u] = N ′v(u)∪{u}, and d′v(u) = |N ′v(u)| if no
confusion arises. Suppose that G and Gv(X) are stored in an adjacency list, and neighbors
of a vertex are stored in a doubly linked list and sorted in the ordering.
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Algorithm 3: EDS-G enumerates all dominating sets in O (1) time per solution for
a graph with girth at least nine.

1 Procedure EDS-G(G = (V, E)) // G: an input graph
2 for v ∈ V do fv ← False ;
3 AllChildren (V, V,

{
f1, . . . , f|V |

}
, G);

4 Procedure AllChildren (X, C, F, G)
5 Output X;
6 for v ∈ C (X) do // v is the largest vertex in C

7 Y ← X \ {v};
8 (C (Y ) , F (Y ), G(Y ))← Cand-G (v, C, F, G);
9 AllChildren (Y, C (Y ) , F (Y ), G(Y ));

10 for u ∈ NG(v) do
11 if u ∈ C then fu ← True ;
12 else G← G \ {u} ;
13 G← G \ {v};
14 C ← C \ {v}; // Remove vertices in Del3 (X, v).
15 Procedure Cand-G (v, C, F, G)
16 Del1 ← ∅; Del2 ← ∅;
17 for u ∈ NG(v) do
18 if NG[u] ∩X = {u, v} and fu = False then Del1 ← Del1 ∪ {u} ;
19 else if ∃w(NG[u] ∩X = {w, v}) then Del2 ← Del2 ∪ {w} ;
20 C ′ ← C \ (Del1 ∪Del2 ∪ {v});
21 for u ∈ N ′[Del1 ∪Del2] do // Lemma 17
22 fu ← True;
23 if u /∈ C ′ then G← G \ {u} ;
24 if fv = True then G← G \ {v};
25 return (C ′, F, G);

I Lemma 14. Let X be a dominating set, v be a vertex in C (X), and u be a vertex in G.
Then, u ∈ Del1 (X, v) if and only if N ′v[u] ∩X = {u, v} and fv(u, X) = False.

I Lemma 15. Let X be a dominating set, v be a vertex in C (X), and u be a vertex in G.
Then, u ∈ Del2 (X, v) if and only if there is a vertex w in Gv(X) such that N ′v[w]∩X = {u, v}.

I Lemma 16. Let X be a dominating set and v be a vertex in C (X). Suppose that for any
vertex u, we can check the number of u’s neighbors in the local structure Gv(X) and the value
of fv(u, X) in constant time. Then, we can compute C (X \ {v}) from C (X)≤v in O (d′v(v))
time

I Lemma 17. Let X be a dominating set, v be a vertex in C (X), and Y = X \ {v}. Then,
we can compute G(Y ) from Gv(X) in O

(∑
u∈Del′(X,v) d′v(u) +

∑
u∈Gv(X)\G(Y ) d′v(u)

)
time.

Note that N ′v(u) = NGv(X)(u) and d′v(u) = |N ′v(u)|.

From Lemma 16 and Lemma 17, we can compute the local structure and the candidate
set of Y from those of X in O

(∑
u∈Del′(X,v) d′v(u) +

∑
u∈Gv(X)\G(Y ) d′v(u)

)
time. We next

consider the time complexity of the loop in line 10. In this loop procedure, EDS-G deletes
all the neighbors u of v from Gv(X) if u /∈ C (X)≤v because for each descendant W of
dominating set Y ′, v ∈W \C (W ), where Y ′ is a child of X and is generated after Y . Thus,
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Figure 3 An example of Gv(X), where v = 1. The vertices in the grey area are Del′ (X, v) ∪
(Gv(X) \ G(Y )) ∪ (N ′

v(v) \ X). Each horizontal line represents the distance between 1 and any
vertex.

this needs O
(

d′v(v) +
∑

u∈N ′(v)\X d′v(u)
)
time. Hence, from the above discussion, we can

obtain the following lemma:

I Lemma 18. Let X be a dominating set, v be a vertex in C (X), and Y = X \ {v}. Then,
AllChildren other than a recursive call runs in the following time bound:

O

 ∑
u∈Del′(X,v)

d′v(u) +
∑

u∈Gv(X)\G(Y )

d′v(u) +
∑

u∈N ′
v(v)\X

d′v(u)

 . (1)

Before we analyze the number of descendants of X, we show the following lemmas.

I Lemma 19. Let us denote by Penv(X) = {u ∈ Del′ (X, v) | d′v(u) = 1}. Then,∑
v∈C(X) |Penv(X)| is at most |C (X)|.

Let v be a vertex in C (X) and a pendant in Gv(X). Since the number of such pendants
is at most |C (X)|, the sum of degree of such pendants is at most |C (X)| in each execution of
AllChildren without recursive calls. Hence, the cost of deleting such pendants is O (|C (X)|)
time. Next, we consider the number of descendants of X. From Lemma 19, we can ignore
such pendant vertices. Hence, for each u ∈ Del′ (X, v), we will assume that d′v(u) ≥ 2 below.

I Lemma 20. Let X be a dominating set, v be a vertex in C (X), and Y be a dominating
set X \ {v}. Then, |C (Y )| is at least |(N ′v(v) ∩X) \Del′ (X, v)|.

I Lemma 21. Let X be a dominating set, v be a vertex in C (X), and Y be a dominating
set X \ {v}. Then, |C (Y )| is at least

∑
u∈N ′

v(v)\X(d′v(u)− 1).

I Lemma 22. Let X be a dominating set, v be a vertex in C (X), and Y be a dominating
set X \ {v}. Then, |C (Y )| is at least

∑
u∈Del′(X,v)\{v} (d′v(u)− 1).

I Lemma 23. Let X be a dominating set v be a vertex in C (X), and Y be a dom-
inating set X \ {v}. Then, the number of children and grandchildren of Y is at least∑

u∈Gv(X)\(G(Y )∪Del′(X,v)∪N ′
v(v)) (d′v(u)− 1).

Note that for any pair of candidate vertices v and v′, X \ {v} and X \ {v′} do not share
their descendants. Thus, from Lemma 20, Lemma 21, Lemma 22, and Lemma 23, we can
obtain the following lemma:
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I Lemma 24. Let X be a dominating set. Then, the sum of the number of X’s children,
grandchildren, and great-grandchildren is bounded by the following order:

Ω

|C (X)|+
∑

v∈C(X)

 ∑
u∈Del′(X,v)

d′v(u) +
∑

u∈Gv(X)\G(Y )

d′v(u) +
∑

u∈N ′
v(v)\X

d′v(u)

 . (2)

From Lemma 18, Lemma 19, and Lemma 24, each iteration outputs a solution in constant
amortized time. Hence, by the same discussion of Theorem 13, we can obtain the following
theorem.

I Theorem 25. For an input graph with girth at least nine, EDS-G enumerates all dominating
sets in O (1) time per solution by using O (n + m) space.

Proof. The correctness of EDS-G is shown by Theorem 4, Lemma 14, and Lemma 15. By
the same discussion with Theorem 13, the space complexity of EDS-G is O (n + m). We next
consider the time complexity of EDS-G. From Lemma 18, Lemma 19, and Lemma 24. we
can amortize the cost of each recursion by distributing O (1) time cost to the corresponding
descendant discussed in the above lemmas. Thus, the amortized time complexity of each
recursion becomes O (1). Moreover, each recursion outputs a solution. Hence, EDS-G
enumerates all solutions in O (1) amortized time per solution. J

5 Conclusion

In this paper, we proposed two enumeration algorithms. EDS-D solves the dominating set
enumeration problem in O (k) time per solution by using O (n + m) space, where k is a
degeneracy of an input graph G. Moreover, EDS-G solves this problem in constant time per
solution if an input graph has girth at least nine.

Our future work includes to develop efficient dominating set enumeration algorithms for
dense graphs. If a graph is dense, then k is large and G has many dominating sets. For
example, in the case of complete graphs, k is equal to n− 1 and every nonempty subset of V

is a dominating set. That is, the number of solutions for a dense graph is much larger than
that for a sparse graph. This allows us to spend more time in each recursive call. However,
EDS-D is not efficient for dense graphs although the number of solutions is large. Moreover,
if G is small girth, that is, G is dense then EDS-G does not achieve constant amortized time
enumeration. Hence, the dominating set enumeration problem for dense graphs is interesting.
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1 Introduction

Conjunctive normal form formulas (CNFs) are among the most prevalent representations of
boolean functions. All sorts of computational problems concerning CNFs – such as satisfying
them, minimizing them, learning them, refuting them, fooling them, and playing games on
them – play central roles in complexity theory. A CNF is a conjunction of clauses, where
each clause is a disjunction of literals; a w-CNF has at most w literals per clause. The width
w is often the most important parameter governing the complexity of problems concerning
CNFs. The following are three classical games played on a CNF ϕpx1, . . . , xnq:

In the ordered game, player 1 assigns a bit value for x1, then player 2 assigns x2, then
player 1 assigns x3, and so on, and the winner is determined by whether ϕ gets satisfied.
Note that the variables must be played in the prescribed order x1, x2, x3, . . .. Deciding
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who has a winning strategy – better known as TQBF or QSAT – is PSPACE-complete for
3-CNFs [11] and in P for 2-CNFs [2, 6]. Many PSPACE-completeness results have been
shown by reducing from the ordered 3-CNF game.
In the unordered game, each player is allowed to pick which remaining variable to play next
(as well as which bit value to assign it), and again the winner is determined by whether ϕ
gets satisfied. Deciding who has a winning strategy is PSPACE-complete for 6-CNFs [1]
and for 11-CNFs with only positive literals [9, 10]. The unordered game on positive CNFs
is also known as the maker–breaker game, and a simplified proof of PSPACE-completeness
for unbounded-width positive CNFs appears in [5]. Many PSPACE-completeness results
have been proven by reducing from the unordered positive CNF game [7, 5, 8]. For
the general unordered CNF game, nothing was known for width ă 6; in particular, the
complexity of the unordered 2-CNF game was not studied in the literature before.
In the partitioned game, the set of variables is partitioned into two halves and each player
may only pick variables from his/her half. This is, in a sense, intermediate between
ordered and unordered: the ordered game restricts the set of variables available to
each player and the order they must be played; the unordered game restricts neither;
the partitioned game restricts only the former. Deciding who has a winning strategy
was shown to be PSPACE-complete for unbounded-width CNFs in [9, 10], where it was
explicitly posed as an open problem to show PSPACE-completeness with any constant
bound on the width. This game has been used for PSPACE-completeness reductions [3],
and a variant with a matching between the two players’ variables has also been studied
[4]. The partitioned 2-CNF game was not studied in the literature before.

We prove that the unordered and partitioned games are both PSPACE-complete for 5-
CNFs; the former improves the width 6 bound from [1], and the latter resolves the 42-year-old
open problem from [9, 10]. We also prove that the unordered and partitioned games are
both in P for 2-CNFs. The complexity for width 3 and 4 remains open. In the following
section we give the precise definitions and theorem statements.

1.1 Statement of results
The unordered CNF game is defined as follows. There are two players, denoted T (for “true”)
and F (for “false”). The input consists of a CNF ϕ, a set of variables X “ tx1, . . . , xnu

containing all the variables that appear in ϕ (and possibly more), and a specification of which
player goes first. The players alternate turns, and each turn consists of picking a remaining
variable from X and assigning it a value 0 or 1. Once all variables have been assigned, the
game ends and T wins if ϕ is satisfied, and F wins if it is not. We let G (for “game”) denote
the problem of deciding which player has a winning strategy, given ϕ, X, and who goes first.

The partitioned CNF game is similar to the unordered CNF game, except that X is
partitioned into two halves XT and XF, and each player may only pick variables from his/her
half. If n is even we require |XT| “ |XF|, and if n is odd we require |XT| “ |XF| ` 1 if T
goes first, and |XF| “ |XT| ` 1 if F goes first. We let G% denote the problem of deciding
which player has a winning strategy, given ϕ, the partition X “ XT YXF, and who goes
first.

We let Gw and G%
w denote the restrictions of G and G%, respectively, to instances where

ϕ has width w, i.e., each clause has at most w literals. Now, we state our results as the
following theorems:

I Theorem 1. G5 is PSPACE-complete.
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I Theorem 2. G%
5 is PSPACE-complete.

I Theorem 3. G2 is in P, in fact, in Linear Time.

I Theorem 4. G%
2 is in P, in fact, in Linear Time.

We prove Theorem 1 and Theorem 2 in Section 2 by showing reductions from the PSPACE-
complete games G and G% respectively. For Theorem 3 and Theorem 4 in Section 3 we prove
characterizations in terms of the graph representation from the classical 2-SAT algorithm –
who has a winning strategy in terms of certain graph properties – and we design linear time
algorithms to check these properties.1

In the proofs, it is helpful to distinguish four patterns for “who goes first” and “who goes
last”, we introduce new subscripts. For a, b P tT,Fu, the subscript a ¨ ¨ ¨ b means player a
goes first and player b goes last, a ¨ ¨ ¨ means a goes first, and ¨ ¨ ¨ b means b goes last. These
may be combined with the width w subscript. For example, G%

T¨¨¨F (which was denoted
G% freepCNFq in [9, 10], by the way) corresponds to the partitioned game where T goes first
and F goes last (so n “ |X| must be even), and G5,¨¨¨T corresponds to the unordered game
with width 5 where T goes last (so either n is even and F goes first, or n is odd and T goes
first).

2 5-CNF

We prove Theorem 1 in Section 2.1 and Theorem 2 in Section 2.2.

2.1 G5

In this section we prove Theorem 1. It is trivial to argue that G5 P PSPACE. We prove
PSPACE-hardness by showing a reduction GT¨¨¨F ď G5,T¨¨¨F in Section 2.1.2. GT¨¨¨F is already
known to be PSPACE-complete [9, 10, 5, 1]. We will talk about the other three patterns
GF¨¨¨F, GT¨¨¨T, GF¨¨¨T in the full version. Before the formal proof we develop the intuition in
Section 2.1.1.

2.1.1 Intuition
In NP-completeness, recall the following simple reduction from SAT with unbounded width to
3-SAT. Suppose a SAT instance is given by ϕ over set of variables X. If p`1_`2_`3_¨ ¨ ¨_`kq

is a clause in ϕ with width k ą 3, then the reduction introduces fresh variables z1, z2, . . . , zk´1
and generates a chain of clauses in ϕ1 as follows:

p`1_ z1q^ pz1_ `2_ z2q^ ¨ ¨ ¨ ^ pzi´1_ `i_ ziq^ ¨ ¨ ¨ ^ pzk´2_ `k´1_ zk´1q^ pzk´1_ `kq

Each clause of ϕ gets a separate set of fresh variables for its chain, and we let Z “ tz1, z2, . . .u

be the set of all fresh variables for all chains. The reduction claims that ϕ is satisfiable if
and only if ϕ1 is satisfiable. We are going to have a stronger property in Claim 1.

I Claim 1. For every assignment x to X: ϕpxq is satisfied iff there exists an assignment z
to Z such that ϕ1px, zq is satisfied.

1 We remark that it is not automatic that two-player games on 2-CNFs are solvable in polynomial time;
e.g., the game played on a 2-CNF with only negative literals in which players alternate turns assigning
variables of their choice to 0 and where the loser is the first to falsify the 2-CNF, as well as the partitioned
variant of this game, are PSPACE-complete [9, 10].
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Proof. Suppose x satisfies ϕ. If x satisfies p`1 _ `2 _ `3 _ ¨ ¨ ¨ _ `kq in ϕ by `i “ 1, then in
the corresponding chain of clauses in ϕ1, the clause having `i also gets satisfied by `i “ 1
and the rest of the clauses in that chain can get satisfied by assigning all z’s on the left side
of `i as 1 and right side of `i as 0.

Now suppose x does not satisfy ϕ. Then at least one of the clauses of ϕ has all literals
assigned as 0. The corresponding chain of clauses in ϕ1 essentially becomes:

pz1q ^ pz1 _ z2q ^ ¨ ¨ ¨ ^ pzi´1 _ ziq ^ ¨ ¨ ¨ ^ pzk´2 _ zk´1q ^ pzk´1q

In order to satisfy the above chain, z1 “ 1 and zk´1 “ 0. It also introduces the following
chain of implications: z1 ñ z2 ñ z3 ñ ¨ ¨ ¨ ñ zk´1. Following the chain we get (z1 ñ zk´1)
= (1 ñ 0). Therefore, we conclude that ϕ1px, zq cannot be satisfied for any assignment z. J

Now this reduction does not show GT¨¨¨F ď G3,T¨¨¨F since the games on ϕ and ϕ1 are not
equivalent. We show a simple example to make our point. Consider the following GT¨¨¨F
game over variables tx0, x1, . . . , xku.

ϕ “ x0 ^ px1 _ x2 _ x3 _ ¨ ¨ ¨ _ xkq, where k ą 1

In the above GT¨¨¨F game, T has a winning strategy: On the first move T plays x0 “ 1. Then
whatever F plays, T plays one of the k ´ 1 many unassigned xi from tx1, x2, . . . , xku as 1. T
wins.

But if we introduce fresh variables tz1, z2, z3, . . .u as in the NP-completeness reduction
then we get a game over variables tx0, x1, x2, . . . , xku Y tz1, . . . , zk´1u:

ϕ1 “ x0 ^ px1 _ z1q ^ ¨ ¨ ¨ ^ pzi´1 _ xi _ ziq ^ ¨ ¨ ¨ ^ pzk´1 _ xkq

In the above G3,T¨¨¨F game, F has a winning strategy: On the first move T must play x0 “ 1,
otherwise F wins by x0 “ 0. Then F plays x1 “ 0 and T must reply by z1 “ 1, otherwise
F wins by z1 “ 0. Then F plays x2 “ 0 and T must reply by z2 “ 1, otherwise F wins by
z2 “ 0. The strategy goes on like this until the last clause and F wins by xk “ 0.

The G3,T¨¨¨F game is disadvantageous for T compared to the GT¨¨¨F game. The disadvant-
age arises from F having the beginning move in a fresh chain of clauses.

Now the intuition is to design a game version of the NP-completeness reduction by fixing
the imbalance. We design ψ in such a way that the games on ϕ and ψ stay equivalent. In
order to counter the unfairness for T due to fresh variables tz1, z2, z3, . . .u, we replace zi

by a pair of variables (ai, bi) which gives T more opportunities to satisfy the clauses. The
construction of a chain of clauses in ψ from a clause p`1 _ `2 _ `3 _ ¨ ¨ ¨ _ `kq in ϕ goes as
follows:

p`1 _ a1 _ b1q ^ ¨ ¨ ¨ ^ pai´1 _ bi´1 _ `i _ ai _ biq ^ ¨ ¨ ¨ ^ pak´1 _ bk´1 _ `kq

We just constructed a 5-CNF ψ. Let us consider the G5,T¨¨¨F game on ψ. In an optimal
gameplay, no player should play a’s or b’s before playing x’s. Intuitively, this is because, if F
plays any ai or bi, then T can reply by making ai ‰ bi and both clauses involving ai and bi

will be satisfied, which benefits T. If T plays any ai or bi, F can reply by making ai “ bi,
which satisfies one clause involving ai and bi but the other clause gets two 0 literals. Since
only one of the two clauses gets satisfied by ai, bi, T would like to wait for more information
before deciding which one to satisfy with ai, bi: it depends on whether they are on the right
side or left side of a satisfied `i in a chain, which in turn depends on the assignment x.
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So, an optimal gameplay consists of two phases. In the first phase, players should play
only x’s. Whoever deviates from this optimal strategy does not have the upper hand. The
second phase begins when all the x’s have been played and someone must start playing a’s
and b’s. Since the number of fresh variables is even (2|Z|) and F plays last, T must be the
one to start the second phase, which is essential since if F started the second phase then T
could satisfy all the clauses regardless of what happened in the first phase. This observation
also allows us to show PSPACE-completeness of G5,F¨¨¨F, discussed in the full version.

In the second phase, after T plays any ai or bi, it is optimal for F to reply by making
ai “ bi. Assuming this optimal gameplay by F, we can consider a pair (ai,bi) as a single
variable zi which can be assigned only by T. Effectively, the second phase just consists of
T choosing an assignment z to ϕ1 from the NP-completeness reduction. Thus ψpx, a, bq is
satisfied iff ϕ1px, zq is satisfied, which by Claim 1 is possible iff ϕpxq is satisfied, where x is
the assignment from the first phase.

2.1.2 Formal Proof
We show GT¨¨¨F ď G5,T¨¨¨F. Suppose an instance of GT¨¨¨F is given by pϕ,Xq where ϕ is a
CNF with unbounded width over set of variables X. We show how to construct an instance
pψ, Y q for G5,T¨¨¨F where ψ is a 5-CNF over set of variables Y . Suppose p`1_`2_`3_¨ ¨ ¨_`kq

is a clause in ϕ. If k ď 3, the same clause remains in ψ. If k ą 3, we show how to construct
a chain of clauses in ψ. We introduce two sets of fresh variables ta1, a2, a3, . . . , ak´1u and
tb1, b2, b3, . . . , bk´1u as follows:

p`1 _ a1 _ b1q ^ ¨ ¨ ¨ ^ pai´1 _ bi´1 _ `i _ ai _ biq ^ ¨ ¨ ¨ ^ pak´1 _ bk´1 _ `kq

Each clause of ϕ gets separate sets of fresh variables for its chain, and we let A “

ta1, a2, a3, . . .u and B “ tb1, b2, b3, . . .u be the sets of all fresh variables for all chains. Finally
we get a 5-CNF ψ over set of variables Y “ X YAYB.

We claim that T has a winning strategy in pϕ,Xq iff T has a winning strategy in pψ, Y q.
Suppose T has a winning strategy in pϕ,Xq. We describe T’s winning strategy in pψ, Y q

as Algorithm 1. To see that the strategy works, note that the winning strategy in pϕ,Xq
ensures that ϕpxq is satisfied by the assignment x to X in the first phase, so according to 1,
there is an assignment z to Z such that ϕ1px, zq is satisfied. T can ensure that for each i,
either ai “ zi or bi “ zi (since ai “ zi or bi “ zi due to line 8, or ai ‰ bi due to line 4 or line
7) and thus ψpx, a, bq gets satisfied, since ϕ1px, zq is satisfied and each clause of ψ is identical
to a clause from ϕ1 but with each zi replaced with ai _ bi and zi replaced with ai _ bi.

Suppose F has a winning strategy in pϕ,Xq. We describe F’s winning strategy in pψ, Y q
as Algorithm 2. To see that the strategy works, note that the winning strategy in pϕ,Xq
ensures that ϕpxq is unsatisfied by the assignment x to X, so according to Claim 1, for
all assignments z to Z, ϕ1px, zq is unsatisfied. F can ensure that for each i, ai “ bi; let us
call this common value zi. Thus ψpx, a, bq is unsatisfied, since ϕ1px, zq is unsatisfied and
ψpx, a, bq “ ϕ1px, zq.

2.2 G%
5

In this section we prove Theorem 2. It is trivial to argue that G%
5 P PSPACE. We prove

PSPACE-hardness by showing a reduction G%
T¨¨¨F ď G%

5,T¨¨¨F in Section 2.2.2. G%
T¨¨¨F is already

known to be PSPACE-complete [9, 10]. We will talk about the other three patterns G%
F¨¨¨F,

G%
T¨¨¨T, G%

F¨¨¨T in the full version. Before the formal proof we develop the intuition in
Section 2.2.1.
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9:6 Complexity of Unordered CNF Games

Algorithm 1: T’s winning strategy in pψ, Y q when T has a winning strategy in
pϕ,Xq.

1 while there is a remaining X-variable do
2 if (first move) or (F played an X-variable in the previous move) then
3 play according to the same winning strategy as in pϕ,Xq
4 else if F played ai or bi in the previous move then play the other one to make

ai ‰ bi

5 while there is a remaining A-variable or B-variable do
6 if (F played ai or bi in the previous move) and (one of ai or bi remains unplayed)

then
7 play the other one to make ai ‰ bi

8 else pick a remaining ai or bi and assign it zi’s value from Claim 1

Algorithm 2: F’s winning strategy in pψ, Y q when F has a winning strategy in
pϕ,Xq.

1 while there is a remaining variable do
2 if T played an X-variable in the previous move then
3 play according to the same winning strategy as in pϕ,Xq
4 else if T played ai or bi in the previous move then play the other one to make

ai “ bi

2.2.1 Intuition
This intution is a continuation of Section 2.1.1. The reduction is the same as GT¨¨¨F ď G5,T¨¨¨F
reduction except giving A-variables to T and B-variables to F. In the general unordered
game if any player plays ai or bi, then the other player can immediately play the other one
from ai, bi in a certain advantageous way. In the partitioned version they can do the same
thing if ai belongs to T and bi belongs to F.

2.2.2 Formal Proof
We show G%

T¨¨¨F ď G%
5,T¨¨¨F. Suppose an instance of G%

T¨¨¨F is given by pϕ,XT, XFq where ϕ is
a CNF with unbounded width over sets of variables XT and XF. We show how to construct
an instance pψ, YT, YFq for G%

5,T¨¨¨F where ψ is a 5-CNF over sets of variables YT and YF.
Suppose p`1 _ `2 _ `3 _ ¨ ¨ ¨ _ `kq is a clause in ϕ. If k ď 3, the same clause remains in ψ.
If k ą 3, we show how to construct a chain of clauses in ψ. We introduce two sets of fresh
variables ta1, a2, a3, . . . , ak´1u for T and tb1, b2, b3, . . . , bk´1u for F as follows:

p`1 _ a1 _ b1q ^ ¨ ¨ ¨ ^ pai´1 _ bi´1 _ `i _ ai _ biq ^ ¨ ¨ ¨ ^ pak´1 _ bk´1 _ `kq

Each clause of ϕ gets separate sets of fresh variables for its chain, and we let A “

ta1, a2, a3, . . .u for T and B “ tb1, b2, b3, . . .u for F be the sets of all fresh variables for
all chains. Finally we get a 5-CNF ψ over sets of variables YT “ XT YA and YF “ XF YB.

We claim that T has a winning strategy in pϕ,XT, XFq iff T has a winning strategy in
pψ, YT, YFq.
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Algorithm 3: T’s winning strategy in pψ, YT, YFq when T has a winning strategy
in pϕ,XT, XFq.

1 while there is a remaining XT-variable do
2 if (first move) or (F played an XF-variable in the previous move) then
3 play according to the same winning strategy as in pϕ,XT, XFq

4 else if F played bi in the previous move then play ai to make ai ‰ bi

5 while there is a remaining A-variable do
6 if (F played bi in the previous move) and (ai remains unplayed) then
7 play ai to make ai ‰ bi

8 else pick a remaining ai and assign it zi’s value from Claim 1

Algorithm 4: F’s winning strategy in pψ, YT, YFq when F has a winning strategy
in pϕ,XT, XFq.

1 while there is a remaining variable do
2 if T played an XT-variable in the previous move then
3 play according to the same winning strategy as in pϕ,XT, XFq

4 else if T played ai in the previous move then play bi to make ai “ bi

Suppose T has a winning strategy in pϕ,XT, XFq. We describe T’s winning strategy in
pψ, YT, YFq as Algorithm 3. To see that the strategy works, note that the winning strategy in
pϕ,XT, XFq ensures that ϕpxq is satisfied by the assignment x to XTYXF in the first phase,
so according to Claim 1, there is an assignment z to Z such that ϕ1px, zq is satisfied. T can
ensure that for each i, either ai “ zi or bi “ zi (since ai “ zi due to line 8, or ai ‰ bi due to
line 4 or line 7) and thus ψpx, a, bq gets satisfied, since ϕ1px, zq is satisfied and each clause of
ψ is identical to a clause from ϕ1 but with each zi replaced with ai _ bi and zi replaced with
ai _ bi.

Suppose F has a winning strategy in pϕ,XT, XFq. We describe F’s winning strategy in
pψ, YT, YFq as Algorithm 4. To see that the strategy works, note that the winning strategy in
pϕ,XT, XFq ensures that ϕpxq is unsatisfied by the assignment x to XT YXF, so according
to Claim 1, for all assignments z to Z, ϕ1px, zq is unsatisfied. F can ensure that for each
i, ai “ bi; let us call this common value zi. Thus ψpx, a, bq is unsatisfied, since ϕ1px, zq is
unsatisfied and ψpx, a, bq “ ϕ1px, zq.

3 2-CNF

In order to analyze the complexity of the games G2 and G%
2 , we construct a directed graph

gpϕ,Xq by the classical technique for 2-SAT:
For each variable xi P X, form two nodes xi and xi. Let `i refer to either xi or xi.2

For each clause p`i _ `jq, add two directed edges `i Ñ `j and `i Ð `j . In case of a single
variable clause p`iq, consider the clause as p`i _ `iq and add one directed edge `i Ñ `i.

2 In Section 2, `i represented an arbitrary literal; in Section 3, `i always represents either xi or xi.
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9:8 Complexity of Unordered CNF Games

In the graph, every path `i ù `j has a mirror path `i ø `j . If there exist two paths
`i ù `j and `i ø `j , we express this as `i ú `j . We are interested in strongly connected
components, which we call strong components for short.

The 2-CNF game analogy on this graph is, if any variable xi is assigned a bit value in
ϕ, then in the graph both nodes xi and xi are assigned. Conversely, if say a player assigns
a bit value to a node `i, then the complement node `i simultaneously gets assigned the
opposite value. If `i refers to xi, then xi gets assigned the same value as `i and similarly for
`i referring to xi. Thus we can describe strategies as assigning bit values to nodes in the
graph.

In a satisfying assignment for ϕ, there must not exist any false implication edge (1 Ñ 0)
in the graph. In fact, the graph must not have any path (1 ù 0) since the path will contain
at least one (1 Ñ 0) edge. Player F’s goal is to create a false implication and player T will
try to make all implications true.

We prove Theorem 3 in Section 3.1 and Theorem 4 in the full version.

3.1 G2

G2 is the unordered analogue of the 2-TQBF game. We prove Theorem 3 by separately
considering the cases G2,F¨¨¨F in Section 3.1.1, G2,F¨¨¨T in Section 3.1.2, and G2,T¨¨¨ in Sec-
tion 3.1.3.

3.1.1 G2,F¨¨¨F P Linear Time
I Lemma 5. F has a winning strategy in G2,F¨¨¨F iff at least one of the following statements
holds in the graph gpϕ,Xq:
(1) There exists a node `i such that `i ù `i.
(2) There exist three nodes `i, `j, `k such that `j ù `i ø `k.
(3) There exist two nodes `i, `j such that `i ú `j.

Proof. Suppose at least one of the statements holds.
If statement (1) holds, F can win by `i “ 0 as the very first move.
If statement (2) holds but statement (1) does not, there can be two cases:
In the first case, `i, `j , `k represent three distinct variables. At the beginning, F can play
`i “ 0, then whatever T plays, F still has at least one of `j or `k to play. F can assign `j

or `k as 1 and wins.
In the second case, `i, `j , `k do not represent three distinct variables. The only possibility
is that `k is `j , i.e., `j ù `i ø `j . F can play `i “ 0, then whatever the value of `j , F
wins.

If statement (3) holds but statement (1) does not, F can wait by playing variables other
than xi, xj with arbitrary values until T plays xi or xj . Then F can immediately respond
by making `i ‰ `j and win. As F moves last, he/she can always wait for that opportunity.

Conversely, suppose none of the statements hold. Then we claim the graph has no two
edges that share an endpoint. Otherwise, two edges that share an endpoint would cause
statement (2) or statement (3) to be satisfied. We show this by considering all possible ways
of two edges sharing an endpoint:

`i Ø `j : Satisfies statement (3).
`j Ñ `i Ð `k or its mirror `j Ð `i Ñ `k: Satisfies statement (2).
`k Ñ `j Ñ `i: Satisfies statement (2).
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x1

x1

x2 x3

x2 x3

x4 x5

x4 x5

Figure 1 T has a winning strategy in G2,F¨¨¨F for px2 _ x3q ^ px4 _ x5q.

Algorithm 5: Linear Time Algorithm for G2,F¨¨¨F.

1 construct gpϕ,Xq
2 foreach xi P X do
3 if (xi Ñ xi) or (xi Ð xi) or (xi has at least two incident edges) then output F
4 output T

So, the graph can only have some isolated nodes and isolated edges. Since statement (1)
does not hold, there are no edges between complementary nodes. An example of such a graph
looks like Figure 1. Conversely, in any such graph (like Figure 1) none of statements (1), (2),
(3) holds.

Now, we describe a winning strategy for T on such a graph. If F plays `i or `j of any
fresh (both endpoints unassigned) edge `i Ñ `j , T plays in the same edge by the same bit
value for the other node, i.e., making `i “ `j . Otherwise, T picks any remaining node `i. If
`i is isolated, T assigns any arbitrary bit value. If `i has an incoming edge, T plays `i “ 1.
If `i has an outgoing edge, T plays `i “ 0.

The strategy works, since all the edges `i Ñ `j will be satisfied, by either `i “ `j or `i “ 0
or `j “ 1. J

The characterization of such a graph in the proof of Lemma 5 can be verified in linear
time, and that yields a Linear Time algorithm for G2,F¨¨¨F. Details of the idea have been
described as Algorithm 5.

3.1.2 G2,F¨¨¨T P Linear Time
The characterization is the same as for G2,F¨¨¨F but without statement (3).

I Lemma 6. F has a winning strategy in G2,F¨¨¨T iff at least one of the following statements
holds in the graph gpϕ,Xq:
(1) There exists a node `i such that `i ù `i.
(2) There exist three nodes `i, `j, `k such that `j ù `i ø `k.

Proof. Suppose one of the statements holds. In Lemma 5, we have already seen that
statement (1) and statement (2) allow player F to win at the beginning.

Conversely, suppose none of the statements hold. The graph can have strong components
of size 2. Other than that, there are no two edges sharing an endpoint because statement (2)
does not hold. So, the graph can only have some isolated nodes, isolated edges, and isolated
strong components of size 2. Since statement (1) does not hold, there are no edges between
complementary nodes. An example of such a graph looks like Figure 2. Conversely, in any
such graph (like Figure 2) none of statements (1), (2) holds.
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Figure 2 T has a winning strategy in G2,F¨¨¨T for px3 _ x4q ^ px5 _ x6q ^ px7 _ x8q ^ px7 _ x8q.

Algorithm 6: Linear Time Algorithm for G2,F¨¨¨T.

1 construct gpϕ,Xq
2 foreach xi P X do
3 if (xi Ñ xi) or (xi Ð xi) or (xi has at least two neighbors) then output F
4 output T

Now, we describe a winning strategy for T on such a graph. If F plays `i or `j of any
fresh (both endpoints unassigned) edge `i Ñ `j or strong component `i Ø `j , T plays in the
same edge or strong component by the same bit value for the other node, i.e., making `i “ `j .
Otherwise, T picks any remaining isolated node and gives it any arbitrary bit value. Since
|X| is even, T can always play such a node.

The strategy works, since all the edges `i Ñ `j will be satisfied by `i “ `j . J

The characterization of such a graph in the proof of Lemma 6 can be verified in linear
time, and that yields a Linear Time algorithm for G2,F¨¨¨T. Details of the idea have been
described as Algorithm 6.

3.1.3 G2,T¨¨¨ P Linear Time
In order to win G2,T¨¨¨, at the beginning T must locate a node `i such that after playing it,
the game is reduced to a G2,F¨¨¨ game such that T still has a winning strategy in it. So, T’s
success depends on finding such a node `i. On the other hand, F’s success depends on there
not existing such a node `i.

I Lemma 7. T has a winning strategy in G2,T¨¨¨ iff there exists an `i with no outgoing
edges such that after deleting `i, `i and their incident edges, in the rest of the graph T has a
winning strategy in G2,F¨¨¨.

Proof. Suppose T has a winning strategy in G2,T¨¨¨. Let T’s first move in the winning
strategy be `i “ 1 (or `i “ 0). Then `i must not have any outgoing edge, otherwise either
that edge goes to `i or F could play the other endpoint node of that edge as 0 and win.

Conversely, suppose there exists such an `i. At the beginning, T can play `i “ 1, and
all the incoming edges to `i and outgoing edges from `i get satisfied. Then T can continue
the game according to the winning strategy in G2,F¨¨¨ for the rest of the graph and win. For
example, in Figure 3, T’s winning strategy is to play `i “ 1 at the beginning then continue
the winning strategy for G2,F¨¨¨. J

We define L as the set of all nodes that have no outgoing edges. If |L| “ 0, then according
to Lemma 7, T has no winning strategy in G2,T¨¨¨. If |L| ą 0, then the trivial algorithm for
G2,T¨¨¨ is, checking for each node `i P L, whether or not after playing `i “ 1 the rest of the
graph becomes a winning graph for T in G2,F¨¨¨, i.e., running Algorithm 5 or Algorithm 6 for
Op|L|q times, which is a quadratic time algorithm. We argue that we can do better than that.
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`i

`i

T’s winning graph
in G2,F¨¨¨

Figure 3 T’s winning graph in G2,T¨¨¨ (all edges incident to `i or `i are optional).

We filter the possibilities in L and show that there are only three cases to consider:
There exists a node `i P L such that statement (1) from Lemma 5 and Lemma 6 holds.
We consider this case in Claim 2.
There exists a node `i P L such that statement (2) from Lemma 5 and Lemma 6 holds.
We consider this case in Claim 3.
There exists no node `i P L such that statement (1) or statement (2) from Lemma 5 and
Lemma 6 holds. We consider this case in Claim 4.

Then in Claim 5 and Claim 6 we analyze the efficiency of this approach. We will provide
proofs of Claim 2 to Claim 6 in the full version.

I Claim 2. If there exists `i P L such that `i ù `i and T has a winning strategy in G2,T¨¨¨,
then T’s first move must be `i “ 1.

I Claim 3. If there exists `i P L such that `j ù `i ø `k for two other nodes `j , `k and T
has a winning strategy in G2,T¨¨¨, then T’s first move must be `i “ 1 or `j “ 1 or `k “ 1.

I Claim 4. If there exists no `i P L such that `i ù `i or `j ù `i ø `k for two other
nodes `j , `k and T has a winning strategy in G2,T¨¨¨, then for all `i P L, T has a winning
strategy in G2,T¨¨¨ beginning with `i “ 1.

The overall idea is: If we can find an `i for which statement (1) or statement (2) from
Lemma 5 and Lemma 6 holds, then Claim 2 and Claim 3 allow us to narrow down T’s first
move to Op1q possibilities. If we cannot find such an `i, then Claim 4 allows T to play any
arbitrary `i P L as the first move because all of them are equivalent as the first move. We
define L˚ as the Op1q possibilities in L. Then we can run Algorithm 5 or Algorithm 6 for
|L˚| “ Op1q times.

In the following two claims, we show how we can efficiently verify whether or not there
exists such an `i for which statement (1) or statement (2) from Lemma 5 and Lemma 6 holds.

I Claim 5. There exists a constant-time algorithm for: given `i, find two other nodes `j , `k

such that `j ù `i ø `k or determine they do not exist.

I Claim 6. There exists a constant-time algorithm for: given `i for which there are no `j,
`k as in Claim 5, decide whether there exists a path `i ù `i.

Now combining the whole idea from Claim 2 to Claim 6 we can develop an algorithm for
G2,T¨¨¨. Details of the idea have been described as Algorithm 7.
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Algorithm 7: Linear Time Algorithm for G2,T¨¨¨.

1 construct gpϕ,Xq
2 let L “ tu, L˚ “ tu
3 foreach node `i do
4 if `i has no outgoing edges then L “ LY t`iu

5 if |L| “ 0 then output F
6 foreach `i P L do
7 if `j ù `i ø `k for two other nodes `j , `k (using Claim 5) then
8 L˚ “ LX t`i, `j , `ku (Claim 3), break loop
9 else if `i ù `i (using Claim 6) then L˚ “ t`iu (Claim 2), break loop

10 if |L˚| “ 0 then L˚ “ t`iu for an arbitrary `i P L (Claim 4)
11 foreach `i P L

˚ do
12 form graph g1 from gpϕ,Xq by deleting nodes `i, `i and their incident edges
13 run Algorithm 5 or Algorithm 6 on g1 as the G2,F¨¨¨ game
14 if T has a winning strategy in G2,F¨¨¨ then output T
15 output F

References
1 Lauri Ahlroth and Pekka Orponen. Unordered Constraint Satisfaction Games. In Pro-

ceedings of the 37th International Symposium on Mathematical Foundations of Computer
Science (MFCS), pages 64–75. Springer, 2012.

2 Bengt Aspvall, Michael Plass, and Robert Tarjan. A Linear-Time Algorithm for Testing the
Truth of Certain Quantified Boolean Formulas. Information Processing Letters, 8(3):121–
123, 1979.

3 Kyle Burke, Erik Demaine, Harrison Gregg, Robert Hearn, Adam Hesterberg, Michael
Hoffmann, Hiro Ito, Irina Kostitsyna, Jody Leonard, Maarten Löffler, Aaron Santiago,
Christiane Schmidt, Ryuhei Uehara, Yushi Uno, and Aaron Williams. Single-Player and
Two-Player Buttons & Scissors Games. In Proceedings of the 18th Japan Conference on Dis-
crete and Computational Geometry and Graphs (JCDCGG), pages 60–72. Springer, 2015.

4 William Burley and Sandy Irani. On Algorithm Design for Metrical Task Systems. Al-
gorithmica, 18(4):461–485, 1997.

5 Jesper Byskov. Maker-Maker and Maker-Breaker Games Are PSPACE-Complete. Technical
Report RS-04-14, BRICS, Department of Computer Science, Aarhus University, 2004.

6 Chris Calabro. 2-TQBF Is in P, 2008. Unpublished. URL: https://cseweb.ucsd.edu/
~ccalabro/essays/complexity_of_2tqbf.pdf.

7 Aviezri Fraenkel and Elisheva Goldschmidt. PSPACE-hardness of some combinatorial
games. Journal of Combinatorial Theory, Series A, 46(1):21–38, 1987.

8 Robert Hearn. Amazons, Konane, and Cross Purposes are PSPACE-complete. In Games
of No Chance 3, Mathematical Sciences Research Institute Publications, pages 287–306.
Cambridge University Press, 2009.

9 Thomas Schaefer. Complexity of Decision Problems Based on Finite Two-Person Perfect-
Information Games. In Proceedings of the 8th Symposium on Theory of Computing (STOC),
pages 41–49. ACM, 1976.

10 Thomas Schaefer. On the Complexity of Some Two-Person Perfect-Information Games.
Journal of Computer and System Sciences, 16(2):185–225, 1978.

11 Larry Stockmeyer and Albert Meyer. Word Problems Requiring Exponential Time. In
Proceedings of the 5th Symposium on Theory of Computing (STOC), pages 1–9. ACM,
1973.

https://cseweb.ucsd.edu/~ccalabro/essays/complexity_of_2tqbf.pdf
https://cseweb.ucsd.edu/~ccalabro/essays/complexity_of_2tqbf.pdf


Half-Duplex Communication Complexity
Kenneth Hoover
University of California San Diego, USA
khooveri@eng.ucsd.edu

Russell Impagliazzo
University of California San Diego, USA
russell@cs.ucsd.edu

Ivan Mihajlin
University of California San Diego, USA
ivmihajlin@gmail.com

Alexander V. Smal
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences,
Russia
smal@pdmi.ras.ru

Abstract
Suppose Alice and Bob are communicating in order to compute some function f , but instead of
a classical communication channel they have a pair of walkie-talkie devices. They can use some
classical communication protocol for f where in each round one player sends a bit and the other
one receives it. The question is whether talking via walkie-talkie gives them more power? Using
walkie-talkies instead of a classical communication channel allows players two extra possibilities:
to speak simultaneously (but in this case they do not hear each other) and to listen at the
same time (but in this case they do not transfer any bits). The motivation for this kind of a
communication model comes from the study of the KRW conjecture. We show that for some
definitions this non-classical communication model is, in fact, more powerful than the classical
one as it allows to compute some functions in a smaller number of rounds. We also prove lower
bounds for these models using both combinatorial and information theoretic methods.
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and Bob, are trying to compute f(x, y), for some function f , where Alice knows only x and
Bob knows only y. Alice and Bob can communicate by sending bits to each other, one bit per
round. The essential property of this classical model is that in every round of communication
one player sends some bit and the other one receives it.
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We define three new communication models that generalize the classical one and resemble
communication over so-called half-duplex channels. A well-known example of half-duplex
communication is talking via walkie-talkie: one has to hold a “push-to-talk” button to
speak to another person, and one has to release it to listen. If two persons try to speak
simultaneously then they do not hear each other. We consider communication models where
players are allowed to speak simultaneously. Every round each player chooses one of three
actions: send 0, send 1, or receive. There are three different types of rounds. If one player
sends some bit and the other one receives then communication works like in the classical case,
we call such rounds normal. If both players send bits during the round then these bits get
lost (the same happens if two persons try to speak via walkie-talkie simultaneously), we call
these rounds spent. If both players receive, we call these rounds silent. We distinguish three
possible models, based on what happens in silent rounds. If in silent rounds both players
receive 0, i.e., players cannot distinguish a silent round from a normal round where the other
player sends 0, we call this model half-duplex communication with zero. A somewhat similar
model was studied in [3] for multi-party communication with the noisy broadcast channel.
Two other models, we will define later.

In this paper, we study the communication complexity of Boolean functions that are hard
in the classical case. It is important to note that we care about multiplicative constants.
Every classical communication can be viewed as half-duplex communication with zero and
every half-duplex communication with zero can be simulated with classical communication
doubling the number of rounds (see Theorem 6 and 7). So the complexity of half-duplex
communication is sandwiched between the complexity of the classical case and a half of it.
The task of this study is to improve these bounds.

1.1 Motivation
The original motivation to study these kinds of communication models arose from the
question of the complexity of Karchmer-Wigderson games [8] for multiplexers. The Karchmer-
Wigderson game for a function f : {0, 1}n → {0, 1} (KW game) is a (classical) communication
problem where Alice is given x ∈ f−1(0), Bob is given y ∈ f−1(1), and they want to find an
i ∈ [n] such that xi 6= yi. Let D(KW (f)) be a minimal number of rounds that is enough to
the KW game for f on any pair of possible inputs.

I Conjecture 1 (KRW conjecture [7]). Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be
Boolean non-constant functions. Then D(KW (g ◦ f)) ≈ D(KW (g)) + D(KW (f)), where
g ◦ f denotes a composition g ◦ f : ({0, 1}n)m → {0, 1} is defined by (g ◦ f)(x1, . . . , xm) =
g(f(x1), . . . , f(xm)) where x1, . . . , xn ∈ {0, 1}m.

This conjecture implies a super-logarithmic formula depth lower bound (and hence a super-
polynomial size lower bound): we can start with a maximally hard function on log n
variables that requires log n depth and construct a formula on n variables that requires super-
logarithmic depth. In attempt to prove it a lot of work has been done studying KW games
where one or both functions are replaced with universal relations [5, 2, 4]. Another approach
to resolving the conjecture lies in examining multiplexer functions. A multiplexer (or indexing
function) is a function Mn : {0, 1}2n × {0, 1}n → {0, 1}, such that Mn(t, i) = t[i], i.e., Mn

interprets the first part of its input as the truth table of some function f : {0, 1}n → {0, 1}
and the second part as an input x to the function, and outputs f(x). Multiplexers are similar
to universal relations in the sense that there is a natural reduction from a KW game for
some function f : {0, 1}n → {0, 1} to a KW game for multiplexer Mn: if Alice and Bob are
given x and y in the game for f we give them (tt(f), x) and (tt(f), y), respectively, in the
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game for Mn, where tt(f) is a truth table of function f . On the other hand, multiplexers
are functions, not relations, so proving analogous results for multiplexers would be one step
toward proving the KRW conjecture. Unfortunately, all the techniques that were used for
universal relations cannot be applied directly to multiplexers because it is impossible to
give Alice and Bob the same input string; all these techniques exploited the symmetry of
universal relations that allows giving players the same input string, but this is impossible for
functions because inputs of Alice and Bob come from disjoint sets.

Suppose now that Alice and Bob are solving the KW game for multiplexer Mn: Alice
is given (tt(f), x), x ∈ f−1(0), and Bob is given (tt(g), y), y ∈ g−1(1). If the players are
also given a promise that f = g (note that f and g are parts players inputs, so Alice and
Bob plays KW game for Mn on a subset of inputs) then they can use a protocol for KW
game for f . However, what if they do not have such a promise (i.e., all inputs are possible,
in particular, such that f 6= g)? Alice can still try to act as if she plays KW game for f ,
Bob at the same time can try to act as if he plays KW game for g, but if in fact f 6= g

then in some round of this “mixed” protocol they might both want to send or both want
to receive at the same time. Such protocol “mixing” is impossible in the classical model.
To make it possible we extend the communication model by allowing players to speak or
listen simultaneously. How does it affect the communication complexity? When answering
this question we care about multiplicative constants – if in this model all (hard) functions
become two times easier than in the classical case then this model is useless for proving the
KRW conjecture. As a first step toward answering this question, we study the half-duplex
communication complexity of Boolean functions {0, 1}n × {0, 1}n → {0, 1}.

1.2 Organization of this paper
In Section 2, we give definitions for the new communication models. Then, in Section 3, we
prove trivial upper and lower bounds that follow immediately from the definitions. Next,
in Section 4, we discuss methods for proving communication complexity lower bounds. In
Sections 5, 6 and 7, we present our main results, upper and lower bounds for proposed
communication models. Finally, in Section 8, we state several open questions.

2 Definitions

I Definition 1. Let X, Y , and Z be some finite sets. We say that two players, Alice and
Bob, are solving the half-duplex communication problem for a relation R ⊆ X × Y × Z if
sets X, Y , Z, and the relation R are known by both players, Alice is given some x ∈ X,
Bob is given some y ∈ Y , and players want to find some z ∈ Z such that (x, y, z) ∈ R, by
communicating to each other via a half-duplex channel. The communication is organized into
rounds. At each round, both players decide (depending only on their inputs and previous
communication) to do one of three available actions: send 0, send 1 or receive. If one player
sends some bit b ∈ {0, 1} and the other one receives then the latter gets bit b, we call such
rounds normal. If both players send bits at the same time then these bits get lost, we call
such rounds spent (it is crucial that the player that is sending cannot distinguish whether
this round is normal or spent). If both players receive at the same time, we call such rounds
silent. There are three variants of half-duplex communication problem depending on how
silent rounds work.

In a silent round both players receive a special symbol silence, so it is possible for both
players to distinguish a silent round from a normal one, the corresponding problem is
called half-duplex communication problem with silence.

ISAAC 2018
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In a silent round both players receive 0, i.e., players cannot distinguish a silent round
from a normal round where the other player sends 0, the corresponding problem is called
half-duplex communication problem with zero;
In a silent round each player receives some arbitrary bit, not necessarily the same as the
other player; the corresponding problem is called half-duplex communication problem with
adversary.

We say that half-duplex communication problem for R is solved if at the end of communication
both players know some z, such that (x, y, z) ∈ R.

Next, we define a notion of communication protocol. In the classical case, a protocol is
a binary rooted tree that describes communication of players on all possible inputs: every
internal node corresponds to a state of communication and defines which of players is sending
this round. Unlike the classical case in half-duplex communication player does not always
know what the other’s player action was – the information about it can be “lost,” i.e., in
spent rounds player do not know what the other player’s action was. It means that a player
might not know what node of the protocol corresponds to the current state of communication.
Note also that solving half-duplex communication problem with zero there is no need to send
zeros – player can receive instead and the other player will not notice the difference. Keeping
all this in mind, we give the following definition of half-duplex protocol.

I Definition 2. Half-duplex communication protocol with silence that solves a relation
R ⊂ X × Y × Z is a pair (TA, TB) of rooted trees that describe how Alice and Bob
communicate on all possible inputs (x, y) ∈ X × Y . Every node of TA corresponds
to a state of Alice, every node of TB to a state of Bob. Every leaf l is labeled with
zl ∈ Z. Let A = {send(0), send(1), receive} be the set of possible actions, and E =
{send(0), send(1), receive(0), receive(1), silence} be the set of all possible events. Ev-
ery node v of TA and (of TB) is labeled with two functions gv : X → A (gv : Y → A) and
hv : E → C(v), where C(v) is a set of child nodes of v. Root nodes of TA and TB correspond,
respectively, to the initial states of Alice and Bob. If Alice (Bob) is in a state that corresponds
to node v ∈ TA (v ∈ TB), then she does action gv(x) (he does action gv(y)). Events of both
players are defined in a natural way by their actions in this round. The next node of the
protocol is defined by the function h. When players reach a leaf they stop (they always
reach a leaf simultaneously). The protocol is correct if for every input pair (x, y) ∈ X × Y
communication ends in a pair of leaves labeled with the same z ∈ Z such that (x, y, z) ∈ R.

Half-duplex communication protocol with zero is defined in the same way with a different set
of possible events E = {send(1), receive(0), receive(1)}, i.e it does not include send(0).

Half-duplex communication protocol with adversary that solves a relation R ⊂ X × Y ×Z
is a pair (TA, TB) of rooted trees that describe how Alice and Bob communicate on all
possible inputs (x, y) ∈ X × Y and for any strategy of adversary w ∈ {0, 1}∗. The structure
of the protocol is the same as in half-duplex communication protocol with zero, but with
E = {send(0), send(1), receive(0), receive(1)}. If both players decide to receive in
round i, then Alice and Bob receive bits w2i−1 and w2i respectively. The protocol is correct if
for every input pair (x, y) ∈ X×Y and any strategy of adversary w ∈ {0, 1}∗ communication
ends in two leaves labeled with the same z ∈ Z such that (x, y, z) ∈ R.

For each of these models, a partial transcript after k rounds is a pair (πa, πb) of length-k
sequences over E that lists the events observed by Alice and Bob, respectively, after running
some protocol on a pair of inputs for k rounds.

The cardinality of set E upper bounds arity of trees TA and TB: arity is 5 for half-duplex
communication with silence, 3 for half-duplex communication with zero, and 4 for half-duplex
communication with the adversary.
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I Definition 3. Half-duplex communication protocol solves a communication problem for
function f : X × Y → Z if it solves a relation R(f) = {(x, y, f(x, y)) | x ∈ X, y ∈ Y }.

The classical communication complexity of a communication problem for function f ,
D(f), is defined in terms of the minimal depth of a protocol solving it. Analogously, we
define communication complexity for half-duplex communication problems.

I Definition 4. The minimal depth of a communication protocol solving half-duplex com-
munication problem for function f with silence, with zero, with adversary, defines half-duplex
communication complexity of function f with silence, denoted Dhd

s (f), with zero, denoted
Dhd

0 (f), with adversary, denoted Dhd
a (f), respectively. Analogously, we define half-duplex

communication complexity of relation R with silence, Dhd
s (R), with zero, Dhd

0 (R), and with
adversary, Dhd

a (R).

In this paper we study half-duplex communication complexity for a special case of Boolean
functions {0, 1}n × {0, 1}n → {0, 1} (i.e., X = Y = {0, 1}n, Z = {0, 1}).

I Definition 5.
Equality function EQn : {0, 1}n × {0, 1}n → {0, 1}, such that EQn(x, y) = 1 ⇐⇒ x = y.
Inner product function IPn : {0, 1}n×{0, 1}n → {0, 1}, such that IPn(x, y) =

⊕
i∈[n] xiyi.

Disjointness function DISJn : {0, 1}n × {0, 1}n → {0, 1}, such that DISJn(x, y) = 1 ⇐⇒
∀i : xi 6= 1 ∨ yi 6= 1.

All these function require n bits of communication in the classical model.

3 Trivial bounds

As far as half-duplex communication generalizes classical communication the following upper
bound is immediate.

I Theorem 6. For every function f : {0, 1}n × {0, 1}n → {0, 1}, Dhd
s (f) ≤ Dhd

0 (f) ≤
Dhd
a (f) ≤ D(f).

Proof. Every classical communication protocol can be embedded in half-duplex communica-
tion protocol that does not use spent and silent rounds. J

Next theorem shows that one can always transform half-duplex protocol with zero or
with the adversary into a classical communication protocol of double depth.

I Theorem 7. For every function f : {0, 1}n × {0, 1}n → {0, 1}, D(f)
2 ≤ Dhd

0 (f) ≤ Dhd
a (f).

Proof. Every t-round half-duplex communication protocol with zero or with the adversary
can be transformed into 2t-round classical communication protocol. Every round of the
original protocol corresponds to two consecutive rounds of the new one: on the first round
Alice sends a bit she was sending in the original protocol or sends 0 if she was receiving, at
second round Bob does the same thing. J

As we will see later, half-duplex protocols with silence can use silent rounds as an
additional third symbol and hence not every t-round half-duplex protocol with silence can be
embedded in 2t classical protocol. The following theorem shows that instead, we can embed
every such protocol in a classical protocol with 3t rounds.

I Theorem 8. For every function f : {0, 1}n × {0, 1}n → {0, 1}, Dhd
s (f) ≥ D(f)

3 .
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Proof. Every t-round half-duplex communication protocol with silence can be transformed
into 3t-round classical communication protocol. Every round of the original protocol cor-
responds to three consecutive rounds of the new one: on the first round, Alice sends 1 to
indicate if she was sending a bit in the original protocol, or sends 0 otherwise, at second round
Bob does the same thing symmetrically. After that, they are both aware of the intentions of
each other. If they were both planning to send, they could skip the third round. If they were
both planning to receive, then they can assume that they heard silence. If one player was
planning to send and the other one was planning to receive they can perform such action on
the third round. J

I Remark. Theorems 6, 7, and 8 holds also for f : {0, 1}n × {0, 1}n → {0, 1}k.

4 Methods for lower bounds

4.1 Rectangles
Many lower bounds on classical communication complexity were proved by considering
combinatorial rectangles associated with the nodes of communication protocol [10]: it is easy
to see that every node v of the (classical) protocol corresponds to a combinatorial rectangle
Rv = Xv × Yv, where Xv ⊆ X, Yv ⊆ Y , such that if Alice and Bob are given an input from
Rv then their communication will necessarily pass through node v. This implies that the
rectangles associated with the child nodes of v define a subdivision of Rv.

There is a general technique [10] for proving lower bounds using associated combinational
rectangles in: if for some sub-additive measure µ defined on combinatorial rectangles we
show both a lower bound on the measure of X × Y , the rectangle in the root node, i.e.,
µ(X × Y ) ≥ µr for some µr > 0, and an upper bound on the measure of rectangles in leaves,
i.e., for every leaf l the measure of the corresponding rectangle Rl is at most µ` for some
µ` > 0, then we can claim lower bound of log(µr/µ`) on the depth of the protocol.

One of the most studied sub-additive measure on rectangles is µM (R) that is equal to the
minimal number of monochromatic rectangles that covers R. Rectangle R is z-monochromatic
respect to function f for some z ∈ Z if for all (x, y) ∈ R, f(x, y) = z. As far as both players
have to come up with the same answer at the end of communication every rectangle in leaves
is monochromatic, thus for this measure µ` = 1.

We can use almost the same technique for half-duplex protocols. There are some technical
differences that we have to keep in mind. First of all, we can apply this idea to both trees TA
and TB . We should also note that trees TA and TB are non-binary; hence arity became the
base of the logarithm. Secondly, we should be careful while defining associated combinatorial
rectangles for half-duplex protocols with adversary – in case of silent rounds the next node
of the protocol depends also on a strategy w of adversary, so we have to formally consider w
as a part of input. This leads to the following lower bound for equality.

I Theorem 9.
Dhd
s (EQn) ≥ log5 2n = n/ log 5,

Dhd
0 (EQn) ≥ log3 2n = n/ log 3,

Dhd
a (EQn) ≥ log4 2n = n/2.

Proof. Let µ = µM . All leaf rectangles are monochromatic, µ` = 1. Every 1-monochromatic
rectangle is of size one: if some rectangle contains two elements, say (x, x) and (x′, x′), then
it also contains (x, x′) and (x′, x), so it is not 1-monochromatic. Thus, the root rectangle
has measure at least µr = 2n + 1 (see [10] for more information). J
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Surprisingly, as we will see later, first two result are sharp up to additive logarithmic term.
We developed an extension of this technique that we call round elimination.

4.2 Round elimination
Let us fix a protocol for some half-duplex communication problem and consider the first
round. Let Rc = X × Y be the corresponding rectangle of all possible inputs. We can
subdivide Rc in nine rectangles, one for each possible combination of actions.

Alice\Bob send(0) send(1) receive
send(0) R00 R01 R0r

send(1) R10 R11 R1r

receive Rr0 Rr1 Rrr

Consider two rectangles: Rgood = R00 ∪R01 ∪R0r and Rbad = R0r ∪R1r. If we restrict f to
be a partial function defined only on Rgood, i.e., players will always get some (x, y) ∈ Rgood,
then there is no need in the first round – the information the players get about the other
part of the input is fixed: Alice does not get any information, Bob can receive 0 if he decides
to receive. On the other hand if we restrict f to Rbad then the first round is still needed:
Bob can receive both 0 and 1 and this information in necessary to proceed to the next round.
Lets call a rectangle R good for (partial) function f if restricting f to R makes the first round
unnecessary (i.e., protocol without the first round is correct for all (x, y) ∈ R). The idea
of this method is to consider some covering of Rc with a set of good rectangles and prove
that there is always a good rectangle of large enough measure. If we can show that there is
always a rectangle of measure at least α · µ(Rc) then we can iterate this idea and claim that
protocol depth is at least log1/α(µr/µ`), where µr is a lower bound on the measure of the
root rectangle and µ` is an upper bound on the measure of leaf rectangles.

I Lemma 10. Let µ be some sub-additive measure on rectangles such that µ(X × Y ) ≥ µr
and for any leaf rectangle Rl, µ(Rl) ≤ µ`. Fix a protocol P. If for any rectangle R appearing
in the protocol there is a good subrectangle for function f � R of measure at least α · µ(R)
then the depth of the protocol is at least log1/α

µr

µ`
.

Proof. We start with R = X × Y . Every round we show that f � R can be restricted to
some good Rgood ⊂ R such that µ(Rgood) ≥ α · µ(R), let R to be Rgood, and proceed to the
next round until we reach a leaf. Thus there are at least log1/α(µr/µ`) rounds. J

4.3 Upper bound on internal information
Another useful tool for proving lower bounds on the communication complexity of problems
in the classical model is the upper bound on the information Alice and Bob have learned
about the other’s inputs, as a function of the number of rounds.

I Definition 11. Let f be a partial function and P a half-duplex communication protocol
computing f , and D an arbitrary distribution over the domain of f . Let X , and Y be the
marginal distributions over inputs to Alice and Bob, also, let ΠA and ΠB be the marginal
distributions over Alice and Bob’s transcripts induced by D. An internal information
cost of protocol P is ICD(P) = I(X : ΠB | Y) + I(Y : ΠA | X ). For any k let Πk

A and
Πk
B be the marginal distributions over Alice and Bob’s partial transcripts after running
P for k rounds induced by D. An internal information cost of first k rounds of P is
ICkD(P) = I(X : Πk

B | Y) + I(Y : Πk
A | X ).

ISAAC 2018



10:8 Half-Duplex Communication Complexity

For more information on information theory, we refer to [1, 4]. We use this approach to
prove lower bounds on the inner product using the following Lemma.

I Lemma 12. Let D be uniform distribution over all input pairs of IPn (pairs of n-bit
strings). If any half-duplex communication protocol with silence/zero/adversary P computing
IPn and for every k, ICkD(P) ≤ αk, for some α ≥ 1, then half-duplex complexity of IPn with
silence/zero/adversary is at least n/α.

To prove this Lemma we use the following property of IPn.

I Lemma 13. Every leaf rectangle of a protocol for IPn has size at most 2n.

Proof of Lemma 12. For uniform distribution over all input pairs H(X | Y) +H(Y | X ) =
2n. By Lemma 13 each leaf of any correct protocol contains at most 2n input pairs in its
rectangle, thus H(X | Y ,ΠB) +H(Y | X ,ΠA) ≤ n. If IPn has a protocol of depth k then

αk ≥ I(X : Πk
B | Y) + I(Y : Πk

A | X )
= H(X | Y)−H(X | Y ,Πk

B) +H(Y | X )−H(Y | X ,Πk
A) ≥ n. J

5 Half-duplex communication with silence

The main advantage of this model over the other models we consider is that whenever
players have silent round, they learn about it. In some sense they have a third symbol in the
alphabet – receiving player can get either 0/1 or a special symbol corresponding to “silence”.
Next theorem shows how players can take the advantage of silence to transfer data.

I Theorem 14. For every f : {0, 1}n × {0, 1}n → {0, 1}, Dhd
s (f) ≤ dn/ log 3e+ 1.

Proof. Alice encodes x in ternary alphabet {0, 1, 2} and sends it to Bob: in order to send 0
or 1 Alice sends the corresponding bit, sending 2 is emulated by receiving (keeping silence).
This requires dlog3 2ne = dn/ log 3e bits. At the last round Bob computes f(x, y) and sends
the result back to Alice. J

Using the idea of non-binary encoding, we prove a better upper bound for equality.

I Theorem 15. Dhd
s (EQn) ≤ dn/ log 5e+ dlog n/ log 3e+ 2.

Proof. Alice and Bob encode their inputs in alphabet of size five {0, 1, 2, 3, 4}. Then they
process their inputs symbol by symbol sequentially in dn/ log 5e rounds. At round i they
process ith symbol in the following manner.

Symbol Alice Bob
0 send(0) receive
1 send(1) receive
2 receive send(0)
3 receive send(1)
4 receive receive

If ith round is normal then one player can check whether ith symbols are different. If ith
round is silent then again one player knows if ith symbols are different. If after dn/ log 5e
rounds one of the players has already learned that the answer is 0, then he or she sends 0. If
this round is not silent, then both players know that the answer is 0. Otherwise, Alice and
Bob have to make sure that there were no spent rounds. To check it, Alice sends the number
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of normal rounds she was receiving encoded in ternary, that requires dlog n/ log 3e rounds.
Bob checks whether this number is equal to the number of rounds he was sending in. If so,
inputs are equal. In the last round, Bob sends the answer back to Alice. J

Using almost the same ideas we can show an upper bound for disjointness.

I Theorem 16. Dhd
s (DISJn) ≤ dn/2e+ 2.

Proof. Alice and Bob process their inputs two bits per round, dn/ log 2e rounds. At round i
they process symbols 2i− 1 and 2i in the following manner.

Symbols Alice Bob
00 send(0) receive
01 receive send(0)
10 receive send(1)
11 receive receive

At the end of communication Bob tells Alice whether there was a silent round in which Bob’s
input was 11 (i.e., inputs are not disjoint). Alice tells Bob whether she ever received 0 having
01 or 11, or received 1 having 10 or 11 (again, inputs are not disjoint). J

To prove lower bounds one can use round elimination and get the following lower bound
for the inner product (see full version [6] for the proof).

I Theorem 17. Dhd
s (IPn) ≥ n/2.

This lower bound can be improved using upper bound on internal information.

I Theorem 18. Dhd
s (IPn) ≥ n/1.67.

Proof. To apply Lemma 12 it is enough to show that I(X : Πk
B | Y) + I(Y : Πk

A | X ) ≤ αk,
where α ≤ 1.67. We will induct on k: the number of rounds. For k = 0, there is only one
possible partial transcript for either player, the empty transcript, and thus the result is
immediate. Now suppose that this is true in round k. Let Ek+1

A and Ek+1
B be the marginal

distributions over which event each player will observe. Note that

I(X : Πk+1
B | Y) = I(X : Πk

B , Ek+1
B | Y) = I(X : Πk

B | Y) + I(X : Ek+1
B | Y,Πk

B).

Thus, it suffices to show that I(X : Ek+1
B | Y,Πk

B) + I(Y : Ek+1
A | X ,Πk

A) ≤ α. Note that

I(X : Ek+1
B | Y,Πk

B) = H(Ek+1
B | Y,Πk

B)−H(Ek+1
B | Y,Πk

B ,X ) = H(Ek+1
B | Y ,Πk

B).

The second term here is zero because values of X and Y unambiguously determine the entire
protocol. So it is enough to bound H(Ek+1

B | Y,Πk
B) = Ey,π[H(Ek+1

B | Y = y,Πk
B = π)].

Let Ak+1
A and Ak+1

B be the marginal distributions over players actions in round k+1. Note
that Ak+1

B is a function of y and π. If for some pair (y, π) Bob sends, i.e. Ak+1
B = send(0)

or Ak+1
B = send(1), then H(Ek+1

B | Y = y,Πk
B = π) = 0. For the sake of brevity we denote

Ey,π an event “Y = y,Πk
B = π” and r an action receive ∈ A.

H(Ek+1
B | Y ,Πk

B) = Pr[Ak+1
B = r] ·H(Ek+1

B | Y,Πk
B ,Ak+1

B = r).

Notice that player’s action choices are independent, hence

H(Ek+1
B | Y,Πk

B ,Ak+1
B = r) = H(Ak+1

A | Y ,Πk
B) ≤ H(Ak+1

A ).

ISAAC 2018
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This gives us the following bound.

H(Ek+1
B | Y ,Πk

B) ≤ Pr[Ak+1
B = r] ·H(Ak+1

A ).

The same argument works for I(Y : Πk
A | X ) and hence we get,

I(X : Πk
B | Y) + I(Y : Πk

A | X ) ≤ Pr[Ak+1
B = r] ·H(Ak+1

A = a)
+ Pr[Ak+1

A = r] ·H(Ak+1
B = a).

Now let’s denote a0 and a1 to be the fractions of inputs for which Alice sends 0 or 1,
respectively, and symmetrically b0 and b1 to be the fractions of inputs for which Bob sends 0
or 1, respectively. The right hand side of the above inequality can be rewritten as follows.

(1− b0 − b1) ·
(
a0 · log 1

a0
+ a1 · log 1

a1
+ (1− a0 − a1) · log 1

(1− a0 − a1)

)

+ (1− a0 − a1) ·
(
b0 · log 1

b0
+ b1 · log 1

b1
+ (1− b0 − b1) · log 1

(1− b0 − b1)

)
.

Numerical analysis of this expression shows that it’s maximum is less then 1.67 (for a0 =
a1 = b0 = b1 ≈ 0.17), hence I(X : Πk

B | Y) + I(Y : Πk
A | X ) ≤ 1.67. J

6 Half-duplex communication with zero

As we have already mentioned before there are only two reasonable actions in this model:
send 1 or receive. The following theorem shows that half-duplex communication with zero is
more powerful than classical communication; namely, it is possible to compute equality in
less than n rounds of communication.

I Theorem 19. Dhd
0 (EQn) ≤ dn/ log 3e+ 2dlog ne+ 1.

Proof. Alice and Bob encode their inputs in ternary. In the first phase of the protocol, they
process their inputs sequentially symbol by symbol in dn/ log 3e rounds. At round i they
process ith symbol in the following manner.

Symbol Alice Bob
0 receive receive
1 send(1) receive
2 receive send(1)

In the next 2dlog ne they send each other the number of ones they sent in the first phase.
Depending on values of corresponding inputs, i.e., xi and yi, we distinguish 6 types of
witnesses of inequality: (0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1). If we make sure that each
type can be detected by at least one of the players we are done. In the first phase, Alice can
detect types (0, 2), (2, 0), (2, 1), while Bob can detect types (1, 0), (0, 1), and (2, 1) (again).
This leaves us with detecting witnesses of type (1, 2). Assuming that there are no witnesses
of other types, this will be detected in the second phase. J

The best lower bound for this model is again for IPn. The next theorem is proved using
round elimination (see full version [6] for the proof).

I Theorem 20. Dhd
0 (IPn) ≥ n/ log 2

3−
√

5 > n/1.39.
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The better lower is proved with information theoretic approach.

I Theorem 21. Dhd
0 (IPn) ≥ n/1.234.

Proof. The proof repeats the proof of Theorem 18. The only difference is that in this model
players never send 0. So at the end we end up maximizing (1− b1) · h(a1) + (1− a1) · h(b1),
where h(p) = p · log 1

p + (1 − p) · log 1
1−p is a binary entropy function. Maximum of this

expression is slightly less then 1.234 (a1 = b1 ≈ 0.29). J

7 Half-duplex communication with adversary

The main feature of this model is that receiving player cannot be 100% sure that the received
bit if in fact is “real”, i.e., this bit originates from the other player, not from an adversary.
The protocol must be correct for any strategy of the adversary. Our intuition prompts that
in this setting silent and spent rounds would be useless. Using combinatorial methods, one
can show the following two lower bounds (see full version [6] for the proof).

I Theorem 22. Dhd
a (EQn) ≥ n/ log 2.5.

I Theorem 23. Dhd
a (IPn) ≥ n/ log 7

3 .

And again better lower bound for IPn can be obtained using information-theoretic approach.

I Theorem 24. Dhd
a (IPn) ≥ n.

To prove this theorem we use the ideas from the proof of Theorem 18: in order to apply
Lemma 12 we show that I(X : Πk

B | Y) + I(Y : Πk
A | X ) ≤ k, and hence we get the desired

bound (see full version [6] for the detailed proof).
Using the same approach we can show 2 log n lower bound on the complexity of Karchmer-

Wigderson relation for parity function.

IDefinition 25. LetX = f−1(0), Y = f−1(1) for some Boolean function f : {0, 1}n → {0, 1}.
The KW relation for function f , Rf ⊆ X × Y × [n], is defined by Rf = {(x, y, i) | xi 6= xi}.

It it well known that parity function ⊕n : {0, 1}n → {0, 1}, ⊕n(x) =
⊕n

i=1 xi, requires
n2 formula size [9]. In the classical case it is equivalent to saying that KW relations for
parity requires 2 log n rounds of communication. In the proof of Theorem 24 we shown that
I(X : Ek+1

B | Y ,Πk
B) + I(Y : Ek+1

A | X ,Πk
A) ≤ 1. It allows us to prove the following analogue

of this result.

I Corollary 26. Dhd
a (R⊕n

) ≥ 2 logn.

Proof. Take the uniform distribution over valid input pairs with a single bit of difference.
Then H(Y | X ) +H(X | Y) = 2 log n before any communication takes place. On the other
hand it is easy to see that H(Y | X ,ΠA) +H(X | Y ,ΠB) = 0 at any leaf. J

8 Open problems

The following table lists lower and upper bounds that we prove in this paper.

EQ IP DISJ

Dhd
s

≥ n/ log 5 ≥ n/1.67
≤ n/ log 5 + o(n) ≤ n/2 + O(1)

Dhd
0

≥ n/ log 3 ≥ n/1.234
≤ n/ log 3 + o(n)

Dhd
a ≥ n/ log 2.5 ≥ n

ISAAC 2018
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It would be interesting to improve presented bounds to determine the true half-duplex
complexity of these functions. We propose the following list of open problems.
1. Prove better upper and lower bounds for the half-duplex models with silence and zero.
2. Is there any α < 1 such that for any f : {0, 1}n × {0, 1}n → {0, 1}, Dhd

0 (f) ≤ αn+ o(n)?
3. Is there any f : {0, 1}n × {0, 1}n → {0, 1}, such that at the same time D(f) ≥ n− o(n)

and Dhd
a (f) ≤ αn+ o(n) for some α < 1.
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Abstract
In this paper, we consider the complexity of the problem of finding a stable fractional match-
ing in a hypergraphic preference system. Aharoni and Fleiner proved that there exists a stable
fractional matching in every hypergraphic preference system. Furthermore, Kintali, Poplawski,
Rajaraman, Sundaram, and Teng proved that the problem of finding a stable fractional match-
ing in a hypergraphic preference system is PPAD-complete. In this paper, we consider the
complexity of the problem of finding a stable fractional matching in a hypergraphic preference
system whose maximum degree is bounded by some constant. The proof by Kintali, Poplawski,
Rajaraman, Sundaram, and Teng implies the PPAD-completeness of the problem of finding a
stable fractional matching in a hypergraphic preference system whose maximum degree is 5. In
this paper, we prove that (i) this problem is PPAD-complete even if the maximum degree is
3, and (ii) if the maximum degree is 2, then this problem can be solved in polynomial time.
Furthermore, we prove that the problem of finding an approximate stable fractional matching in
a hypergraphic preference system is PPAD-complete.
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1 Introduction

The stable matching model introduced by Gale and Shapley [7] is one of the most important
mathematical models for matching problems. The classical stable matching model is defined
on undirected graphs. Thus, this model is naturally generalized to hypergraphs. It is not
difficult to see that there exists an instance of the stable matching problem in hypergraphs
that has no stable hypergraph matching. Thus, in this paper, we consider the following
relaxation concept called a fractional matching. In the ordinary stable matching problem,
the value 0 or 1 is assigned to each edge. On the other hand, in a fractional matching, a
real number between 0 and 1 is assigned to each edge. Fortunately, it is known [1] that
there exists a stable fractional matching in every hypergraph. The proof of this result in [1]
was based on Scarf’s Lemma [16]. For example, the concept of stable fractional matchings
in hypergraphs is used in [2, 3, 13]. It should be noted that stable fractional matchings
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in hyergraphs are closely related to the stable matching problem with couples [4] that is a
practically and theoretically important variant of the stable matching problem (see, e.g.,
[3, 13]). In this paper, we consider the problem of finding a stable fractional matching in a
hypergraph.

For considering the computational complexity of a problem for which every instance is
guaranteed to have a solution, Megiddo and Papadimitriou [11] introduced the complexity
class TFNP that consists of all search problems in NP for which every instance is guaranteed
to have a solution. The class PPAD introduced by Papadimitriou [14] is the class of all
search problems such that the above property (i.e., every instance is guaranteed to have a
solution) is proved by using a directed parity argument. Some problem A in PPAD is said to
be PPAD-complete, if every problem in PPAD is reducible to A in polynomial time.2 The
assumption that PPAD contains hard problems is considered as a reasonable hypothesis (see
e.g., [15, Section 2.4.1]). Thus, it is reasonable to consider that a PPAD-complete problem
is hard. For example, it is known [5, 6] that the problem of finding a Nash equilibrium [12]
is PPAD-complete.

Kintali, Poplawski, Rajaraman, Sundaram, and Teng [10] proved that the problem of
finding a stable fractional matching in a hypergraphic preference system is PPAD-complete.
In this paper, we consider the complexity of the problem of finding a stable fractional
matching in a hypergraphic preference system whose maximum degree is bounded by some
constant. It is natural to consider that in many practical applications, the length of a
preference list (i.e., the degree of a vertex) is constant. Thus, it is important to reveal
the complexity of this problem with low constant degree. The proof by Kintali, Poplawski,
Rajaraman, Sundaram, and Teng [10] implies the PPAD-completeness of the problem of
finding a stable fractional matching in a hypergraphic preference system whose maximum
degree is 5. However, to the best of our knowledge, the complexity of the problem of finding a
stable fractional matching in a hypergraphic preference system whose maximum degree is at
most 4 is open. In this paper, we prove that (i) this problem is PPAD-complete even if the
maximum degree is 3, and (ii) if the maximum degree is 2, then this problem can be solved in
polynomial time. Furthermore, we prove that the problem of finding an approximate stable
fractional matching in a hypergraphic preference system is PPAD-complete.

2 Problem Formulation and Main Results

A hypergraphic preference system P consists of the following two components. The first
component is a finite hypergraph (V,E). The second component is a set of strict total orders
�v for vertices v in V such that for each vertex v in V , �v is a strict total order on E(v),
where for each vertex v in V , we denote by E(v) the set of hyperedges e in E such that
v ∈ e. We denote by P = (V,E, {�v}) this hypergraphic preference system P . Notice that
if |e| = 2 for every hyperedge e in E, then P is just an instance of the well-known stable
roommate problem (see, e.g., [8]). Define deg(P ) := maxv∈V |E(v)|.

Assume that we are given a hypergraphic preference system P = (V,E, {�v}). Then a
vector x in RE+ is called a fractional matching in P , if

∑
e∈E(v) x(e) ≤ 1 for every vertex v in

2 A polynomial-time computable function f is called a polynomial-time reduction from a problem B
in PPAD to a problem A in PPAD, if for every instance IB of B, f(IB) is an instance of A, and
furthermore there exists a polynomial-time computable function g such that for every solution y of
f(IB), g(y) is a solution of IB . A problem A in PPAD is said to be PPAD-complete, if for every
problem B in PPAD, there exists a polynomial-time reduction from B to A.
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V , where R+ is the set of non-negative real numbers. Furthermore, a fractional matching x
in RE+ is said to be stable, if for every hyperedge e in E, there exists a vertex v in e such that

x(e) +
∑

f∈E(v) : f�ve

x(f) = 1.

It is known [1, Theorem 2.1] that there exists a stable fractional matching in every hyper-
graphic preference system. The problem called Fractional Hypergraph Matching is
defined as follows. In this problem, we are given a hypergraphic preference system P . Then
the goal of this problem is to find a stable fractional matching in P . The following result
about the computational complexity of Fractional Hypergraph Matching is known.

I Theorem 1 (Kintali, Poplawski, Rajaraman, Sundaram, and Teng [10, Theorem 5.7]). Frac-
tional Hypergraph Matching is PPAD-complete.

The proof by Kintali, Poplawski, Rajaraman, Sundaram, and Teng [10] implies the PPAD-
completeness of the problem of finding a stable fractional matching in a hypergraphic
preference system P such that deg(P ) = 5. However, to the best of our knowledge, the
complexity of the problem of finding a stable fractional matching in a hypergraphic preference
system P such that 2 ≤ deg(P ) ≤ 4 is open. (If deg(P ) = 1, then the answer of Fractional
Hypergraph Matching is trivial.) In this paper, we prove the following theorems.

I Theorem 2. Fractional Hypergraph Matching in a hypergraphic preference system
P such that deg(P ) = 3 is PPAD-complete.

It should be noted that Theorem 2 implies the PPAD-completeness of Fractional Hy-
pergraph Matching in a hypergraphic preference system P such that deg(P ) = 4. (It is
sufficient to add a vertex with degree 4 to the instance used in the proof of Theorem 2.)

I Theorem 3. Fractional Hypergraph Matching in a hypergraphic preference system
P such that deg(P ) = 2 can be solved in polynomial time.

Furthermore, we consider Approximate Fractional Hypergraph Matching that is
an approximate variant of Fractional Hypergraph Matching. In this problem, we are
given a hypergraphic preference system P = (V,E, {�v}) and a positive rational number ε
that may depend on |V | and |E|. Then a fractional matching x in RE+ is said to be ε-stable,
if for every hyperedge e in E, there exists a vertex v in e such that

x(e) +
∑

f∈E(v) : f�ve

x(f) ≥ 1− ε.

Notice that since a stable fractional matching in P always exists, an ε-stable fractional
matching in P always exists. The goal of this problem is to find an ε-stable fractional
matching in P . We prove the following theorem.

I Theorem 4. Approximate Fractional Hypergraph Matching is PPAD-complete.

3 Proof of Theorem 2

For proving Theorem 2, we need the following lemma.

I Lemma 5. Assume that we are given a hypergraphic preference system P such that
deg(P ) ≥ 4. Then there exists a hypergraphic preference system Q such that (i) deg(Q) = 3
and (ii) we can construct a stable fractional matching in P from a stable fractional matching
in Q in polynomial time. Furthermore, we can construct Q in polynomial time.
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Before proving Lemma 5, we prove Theorem 2 by using this lemma.

Proof of Theorem 2. It follows from Theorem 1 that Fractional Hypergraph Match-
ing in a hypergraphic preference system P such that deg(P ) = 3 is in PPAD. Furthermore,
Theorem 1 and Lemma 5 imply that every problem in PPAD is reducible to Fractional
Hypergraph Matching in a hypergraphic preference system P such that deg(P ) = 3 in
polynomial time. This completes the proof. J

3.1 Proof of Lemma 5
In this subsection, we prove Lemma 5. The following proof is inspired by the proof of the
PPAD-completeness of Preference Game with degree 3 by Kintali, Poplawski, Rajaraman,
Sundaram, and Teng [10].

Assume that we are given a hypergraphic preference system P = (V,E, {�v}) such that
deg(P ) ≥ 4. Then we construct a new hypergraphic preference system Q = (W,F, {Bv}) as
follows (see Figure 1). Define

W :=
{
vi | v ∈ V, i ∈ {1, 2, . . . , |E(v)|}

}
∪
{
vi | v ∈ V, i ∈ {1, 2, . . . , |E(v)| − 1}

}
.

For each vertex v in V and each hyperedge e in E(v), we define

r(v, e) := 1 + |{f ∈ E(v) | f �v e}|.

For each hyperedge e in E, we define e := {vr(v,e) | v ∈ e}. Define E := {e | e ∈ E} and

F := E ∪
{
{vi, vi}, {vi, vi+1} | v ∈ V, i ∈ {1, 2, . . . , |E(v)| − 1}

}
.

For each vertex v in V and each integer i in {1, 2, . . . , |E(v)|}, we denote by hvi the hyperedge
e in E such that vi ∈ e. For each vertex w in W , we define the strict total order Bw as
follows. We first consider the case where w = vi for some vertex v in V and some integer i
in {1, 2, . . . , |E(v)|}. It suffices to consider the case where |E(v)| ≥ 2. In this case, we define

hv1 Bw {v1, v1} if i = 1
{v|E(v)|−1, v|E(v)|}Bw hv|E(v)| if i = |E(v)|
{vi−1, vi}Bw hvi Bw {vi, vi} otherwise.

Next we assume that w = vi for some vertex v in V and some integer i in {1, 2, . . . , |E(v)|−1}.
In this case, we define {vi, vi}Bw {vi, vi+1}. Since |W | ≤ 2|V ||E| and |F | ≤ |E|+ 2|V ||E|,
Q can be constructed in polynomial time. Furthermore, deg(Q) = 3.

In what follows, we prove that we can construct a stable fractional matching in P from
a stable fractional matching in Q in polynomial time. Assume that we are given a stable
fractional matching z in Q. Then we define the vector x in RE+ by x(e) := z(e). Clearly,
we can construct x from z in polynomial time. What remains is to prove that x is a stable
fractional matching in P . For proving this, we need the following lemma.

I Lemma 6. For every vertex v in V and every integer i in {1, 2, . . . , |E(v)| − 1},

(T1) z({vi, vi}) = 1−
i∑

j=1
z(hvj ), and

(T2) z({vi, vi+1}) =
i∑

j=1
z(hvj ).
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e2e1

e3 e4

(a)
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(b)

Figure 1 (a) A vertex v and the hyperedges containing v. We assume that e1 �v e2 �v e3 �v e4.
(b) The copies of v in Q and the hyperedges containing these copies. For every integer i in {1, 2, 3, 4},
we have hv

i = ei.

Proof. Let v be a vertex in V such that |E(v)| ≥ 2. We prove by induction on i.
We first consider the case of i = 1. Since z is a fractional matching in Q, we have

1 ≥
∑

e∈F (v1)

z(e) = z(hv1) + z({v1, v1}).

This implies that z({v1, v1}) ≤ 1 − z(hv1). For proving (T1) by contradiction, we assume
that z({v1, v1}) < 1− z(hv1). Since z is a stable fractional matching in Q, at least one of the
following statements holds.

1 = z({v1, v1}) +
∑

e∈F (v1) : eBv1{v1,v1}

z(e) = z({v1, v1}) + z(hv1). (1)

1 = z({v1, v1}) +
∑

e∈F (v1) : eBv1{v1,v1}

z(e) = z({v1, v1}). (2)

However, since z(hv1) ≥ 0, the above assumption implies that z({v1, v1}) + z(hv1) < 1 and
z({v1, v1}) < 1. These observations contradict (1) and (2). Thus, z({v1, v1}) = 1− z(hv1).

Next we consider (T2). Since z is a fractional matching in Q, we have

1 ≥
∑

e∈F (v1)

z(e) = z({v1, v1}) + z({v1, v2}).

Since (T1) for the case of i = 1 implies that z({v1, v1}) = 1− z(hv1), we have z({v1, v2}) ≤
z(hv1). For proving (T2) by contradiction, we assume that z({v1, v2}) < z(hv1). Since z is a
stable fractional matching in Q, at least one of the following statements holds.

1 = z({v1, v2}) +
∑

e∈F (v1) : eBv1{v1,v2}

z(e) = z({v1, v2}) + z({v1, v1}). (3)

1 = z({v1, v2}) +
∑

e∈F (v2) : eBv2{v1,v2}

z(e) = z({v1, v2}). (4)

Since (T1) for the case of i = 1 implies that z({v1, v1}) = 1− z(hv1), the above assumption
implies that

z({v1, v2}) + z({v1, v1}) = z({v1, v2}) + 1− z(hv1) < z(hv1) + 1− z(hv1) = 1.
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This contradicts (3). Furthermore, since z is a fractional matching in Q, we have z(hv1) ≤ 1,
Thus, the above assumption implies that z({v1, v2}) < 1. This contradicts (4), and completes
the proof of z({v1, v2}) = z(hv1).

Let k be an integer in {2, 3, . . . , |E(v)| − 1}, and we assume that this lemma holds in the
case of i = k − 1. Then we prove that this lemma holds in the case of i = k. Since z is a
fractional matching in Q, we have

1 ≥
∑

e∈F (vk)

z(e) = z({vk−1, vk}) + z(hvk) + z({vk, vk}).

Since the induction hypothesis implies that

z({vk−1, vk}) + z(hvk) + z({vk, vk}) =
k−1∑
j=1

z(hvj ) + z(hvk) + z({vk, vk}),

we have

z({vk, vk}) ≤ 1−
k∑
j=1

z(hvj ). (5)

For proving (T1) by contradiction, we assume that the inequality in (5) strictly holds. Since
z is a stable fractional matching in Q, at least one of the following statements holds.

1 = z({vk, vk}) +
∑

e∈F (vk) : eBvk
{vk,vk}

z(e) = z({vk, vk}) + z({vk−1, vk}) + z(hvk). (6)

1 = z({vk, vk}) +
∑

e∈F (vk) : eBvk
{vk,vk}

z(e) = z({vk, vk}). (7)

However, the above assumption and the induction hypothesis imply that

z({vk, vk}) + z({vk−1, vk}) + z(hvk) = z({vk, vk}) +
k−1∑
j=1

z(hvj ) + z(hvk)

< 1−
k∑
j=1

z(hvj ) +
k∑
j=1

z(hvj ) = 1.

This contradicts (6). Furthermore, since z ∈ RF+, z({vk, vk}) < 1 follows from the above
assumption. This contradicts (7). This completes the proof of (T1).

Next we consider (T2). Since z is a fractional matching in Q, we have

1 ≥
∑

e∈F (vk)

z(e) = z({vk, vk}) + z({vk, vk+1}).

Since (T1) for the case of i = k implies that

z({vk, vk}) = 1−
k∑
j=1

z(hvj ), (8)

we have

z({vk, vk+1}) ≤
k∑
k=1

z(hvj ). (9)
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For proving (T2) by contradiction, we assume that the inequality in (9) strictly holds. Since
z is a stable fractional matching in Q, at least one of the following statements holds.

1 = z({vk, vk+1}) +
∑

e∈F (vk) : eBvk
{vk,vk+1}

z(e) = z({vk, vk+1}) + z({vk, vk}). (10)

1 = z({vk, vk+1}) +
∑

e∈F (vk+1) : eBvk+1{vk,vk+1}

z(e) = z({vk, vk+1}). (11)

Notice that (8) and the above assumption implies that

z({vk, vk+1}) + z({vk, vk}) <
k∑
j=1

z(hvj ) + 1−
k∑
j=1

z(hvj ) = 1.

This contradicts (10). Furthermore, (8) and z ∈ RF+ imply that
∑k
j=1 z(hvj ) ≤ 1. This and

the above assumption imply that z({vk, vk+1}) < 1. This contradicts (11), and completes
the proof. J

We are now ready to prove that x is a stable fractional matching in P . We first prove
that x is a fractional matching in P . Let v be a vertex in V . Define k := |E(v)|. If k = 1,
then∑

e∈E(v)

x(e) = z(hv1) ≤ 1.

If k > 1, then

∑
e∈E(v)

x(e) =
k∑
i=1

z(hvi )

=
k−1∑
i=1

z(hvi ) + z(hvk)

= z({vk−1, vk}) + z(hvk) (by (T2) of Lemma 6)

=
∑

e∈F (vk)

z(e) ≤ 1,

where the inequality follows from the fact that z is a fractional matching in Q.
Lastly, we prove that x is a stable fractional matching in P . Let e be a hyperedge in E.

Then since z is a stable fractional matching in Q, there exists a vertex w in e such that

z(e) +
∑

f∈F (w) : fBwe

z(f) = 1.

Assume that w = vk for some vertex v in e and some integer k in {1, 2, . . . , |E(v)|}. Notice
that e = hvk. For each integer i in {1, 2, . . . , k}, we assume that hvi = ei. Notice that ek = e,
e1 �v e2 �v · · · �v ek, and e �v f holds for every hyperedge f in E(v) \ {e1, e2, . . . , ek}. For
each integer i in {1, 2, . . . , k}, x(ei) = z(hvi ). If k = 1, then

1 = z(e) +
∑

f∈F (w) : fBwe

z(f) = z(e) = x(e) = x(e) +
∑

f∈E(v) : f�ve

x(f).
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Figure 2 (a) A hypergraph H = (V, E) such that e3 �v1 e2, e2 �v2 e1, e2 �v3 e4, e4 �v4 e3,
e5 �v5 e4, e6 �v6 e4, e7 �v8 e6, and e7 �v9 e5. (b) The directed graph D constructed from H.

If k > 1, then

1 = z(e) +
∑

f∈F (w) : fBwe

z(f)

= z(hvk) + z({vk−1, vk})

= z(hvk) +
k−1∑
i=1

z(hvi ) (by (T2) of Lemma 6)

= x(e) +
k−1∑
i=1

x(ei)

= x(e) +
∑

f∈E(v) : f�ve

x(f).

These imply that x is a stable fractional matching in P . This completes the proof.

4 Proof of Theorem 3

Throughout this section, we assume that we are given a hypergraphic preference system
P such that deg(P ) = 2. Define V ∗ as the set of vertices v in V such that |E(v)| = 2. In
addition, we define the directed graph D = (N,A) as follows. For each hyperedge e in E, N
contains a vertex ne. For each vertex v in V ∗, A contains an arc from nf to ne, where we
assume that distinct hyperedges e, f in E contain v and e �v f . See Figure 2 for an example
of D.

Our algorithm is described in Algorithm 1. This algorithm can be intuitively explained
as follows. If there exists a vertex ne in N such that any arc in A does not leave ne, then
the hyperedge e is most preferred by every vertex v in e. Thus, we set the value for e to be
1. For every arc a = (nf , ne) in A, since some vertex in V is contained in e, f , we must set
the value for f to be 0. Then we can remove vertices in N whose value is determined from
D. We repeat this. Finally, we obtain a directed graph D′ in which the out-degree of every
vertex is at least one. Thus, by setting the value for each vertex of D′ to be 1/2, we can
construct a stable fractional matching in P .

Here we apply Algorithm 1 for the example in Figure 2. Since ne7 is the only vertex such
that any arc in At does not leave this vertex, we set ξ2(ne7) := 1 and the value of ξ2 for
other vertex is equal to 0. Then the vertices ne5 , ne6 , ne7 (and the arcs around them) are
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Algorithm 1:
1 Define D1 := D and N1 := N .
2 Define the vector ξ1 in RN+ by ξ1(v) := 0 for each vertex v in N .
3 Set t := 1.
4 while there exists a vertex v in Nt such that any arc of Dt does not leave v do
5 Define St as the set of vertices v in Nt such that any arc of Dt does not leave v.
6 Define the vector ξt+1 in RN+ by ξt+1(v) := 1 for each vertex v in St and

ξt+1(v) := ξt(v) for each vertex v in N \ St.
7 Define Tt as the set of vertices v in Nt such that there exists an arc of Dt from v

to some vertex in St.
8 Define Nt+1 := Nt \ (St ∪ Tt), and Dt+1 as the subgraph of Dt induced by Nt+1.
9 Set t := t+ 1.

10 end
11 Define the vector ξ∗ in RN+ by ξ∗(v) := 1/2 for each vertex v in Nt and ξ∗(v) := ξt(v)

for each vertex v in N \Nt.
12 Define the vector x in RE+ by x(e) := ξ∗(ne) for each hyperedge e in E.
13 Output x, and halt.

removed. In the remaining graph, for every vertex, at least one arc leaves it. Thus, the value
1/2 are assigned to the remaining vertices, and the algorithm halts. In the obtained stable
fractional matching x, x(ei) = 1/2 for every integer i in {1, 2, 3, 4}, x(e5) = 0, x(e6) = 0, and
x(e7) = 1.

I Lemma 7. The output of Algorithm 1 is a stable fractional matching in P .

Proof. Assume that Algorithm 1 halts when t = k. For proving this lemma, it suffices to
prove the following conditions are satisfied.

(P1) For every arc a = (u, v) in A, we have ξ∗(u) + ξ∗(v) ≤ 1.
(P2) For every vertex v in N such that ξ∗(v) 6= 1, there exist a vertex w in N such that an

arc from v to w is contained in A and ξ∗(v) + ξ∗(w) = 1.

We first prove (P1). Assume that we are given an arc a = (u, v) in A. If ξ∗(u) = 0, then
(P1) clearly holds. Next we assume that ξ∗(u) = 1. Then there exists a positive integer t
such that u ∈ Nt and any arc of Dt does not leave u. Notice that v /∈ Nt. This implies
that ξ∗(v) ∈ {0, 1}. If ξ∗(v) = 1, then then there exists a positive integer t′ such that t′ < t,
v ∈ Nt′ , and any arc of Dt′ does not leave v. Furthermore, the definition of Tt′ implies that
u ∈ Tt′ . This implies that u /∈ Nt, which contradicts the fact that u ∈ Nt. Thus, we have
ξ∗(v) = 0. Lastly, we consider the case where ξ∗(u) = 1/2, i.e., u ∈ Nk. If ξ∗(v) = 1, then
u /∈ Nk, which contradicts the fact that u ∈ Nk. This implies that ξ∗(v) ∈ {0, 1/2}. This
completes the proof of (P1).

Next we prove (P2). Assume that we are given a vertex v in N such that ξ∗(v) 6= 1.
Assume that ξ∗(v) = 0. In this case, there exists a positive integer t such that v ∈ Tt. That
is, there exists a vertex w in St such that there exists an arc of Dt from v to w. Since w ∈ St,
ξ∗(w) = 1. This implies that ξ∗(v) + ξ∗(w) = 1. Next we assume that ξ∗(v) = 1/2. In this
case, there exists a vertex w in Nk such that there exists an arc of Dk from v to w. Since
ξ∗(w) = 1/2, we have ξ∗(v) + ξ∗(w) = 1. This completes the proof. J

Proof of Theorem 3. This theorem immediately follows from Lemma 7. J
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5 Proof of Theorem 4

In this section, we prove Theorem 4. Since a stable fractional matching is clearly an ε-stable
fractional matching for any positive rational number ε, Theorem 1 (i.e., the fact that Frac-
tional Hypergraph Matching is in PPAD) implies that Approximate Fractional
Hypergraph Matching is in PPAD. What remains is to prove that every problem in
PPAD is reducible to Approximate Fractiona Hypergraph Matching in polynomial
time. For this, Theorem 1 implies that it is sufficient to prove that Fractional Hyper-
graph Matching is reducible to Approximate Fractional Hypergraph Matching in
polynomial time. This fact immediately follows from the following lemma.

I Lemma 8. Assume that we are given a hypergraphic preference system P = (V,E, {�v}).
Furthermore, we define ε := 1/220|E|4 . Then we can construct a stable fractional matching in
P from an ε-stable fractional matching in P in polynomial time.

Notice that the bit-length of ε in Lemma 8 is bounded by a polynomial in the size of P .
More precisely, the bit-length of ε in Lemma 8 is O(|E|4).

What remains is to prove Lemma 8. We prove Lemma 8 by using the following known
result called LP compactness. Assume that we are given positive integers m,n and vectors
a in Qm×n and b in Qm, where Q is the set of rational numbers. Then we consider the
following linear inequality system whose variable is a vector x in Rn.

n∑
j=1

a(i, j) · x(j) ≥ b(i) (i ∈ {1, 2, . . . ,m}). (12)

For each positive real number δ and each vector y in Rn, we say that y satisfies the linear
inequality system (12) to within δ, if

n∑
j=1

a(i, j) · y(j) ≥ b(i)− δ

for every integer i in {1, 2, . . . ,m}.

I Theorem 9 (LP compactness (see [10, Lemma 4.11])). Assume that we are given positive
integers m,n and vectors a in Qm×n and b in Qm. Furthermore, we assume that there exists
a positive integer β satisfying the condition that for every pair of integers i in {1, 2, . . . ,m}
and j in {1, 2, . . . , n}, there exist integers p, q, r, s such that a(i, j) = p/q, b(i) = r/s, and
|p|, |q|, |r|, |s| ≤ 2β. Then we consider the following linear inequality system whose variable is
a vector x in Rn.

n∑
j=1

a(i, j) · x(j) ≥ b(i) (i ∈ {1, 2, . . . ,m}). (13)

If there exists a vector y in Rn satisfying the linear inequality system (13) to within 1/220n4β,
then there exists a vector x in Rn that is feasible for the linear inequality system (13).

We are now ready to prove Lemma 8.

Proof of Lemma 8. Assume that we are given an ε-stable fractional matching y in P . For
each hyperedge e in E, we define set U(e) as the set of vertices v in e such that

y(e) +
∑

f∈E(v) : f�ve

y(f) ≥ 1− ε.
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Notice that since y in an ε-stable fractional matching in P , U(e) 6= ∅ for any hyperedge e in
E. We consider the following linear inequality system whose variable is a vector x in RE .

−
∑

e∈E(v)

x(e) ≥ −1 (v ∈ V )

x(e) +
∑

f∈E(v) : f�ve

x(f) ≥ 1 (e ∈ E, v ∈ U(e))

x(e) ≥ 0 (e ∈ E). (14)

Notice that the number of constraints of the linear inequality system (14) is bounded by a
polynomial in the input size of Fractional Hypergraph Matching.

Notice that y satisfies the linear inequality system (14) to within 1/220|E|4 . Thus, by
setting n := |E| and β := 1, Theorem 9 implies that there exists a vector x in RE that is
feasible for the linear inequality system (14). Notice that we can find a vector x in RE that
is feasible for the linear inequality system (14) in polynomial time by using the ellipsoid
method [9].

Let x be a vector in RE that is feasible for the linear inequality system (14). Then we
prove that x is a stable fractional matching in P . For this, it suffices to prove that for every
hyperedge e in E, there exists a vertex v in e such that

x(e) +
∑

f∈E(v) : f�ve

x(f) = 1. (15)

Let e be a hyperedge in E. The first constraint of (14) implies that

x(e) +
∑

f∈E(v) : f�ve

x(f) ≤ 1

for every vertex v in U(e). Thus, the second constraint of (14) implies that

x(e) +
∑

f∈E(v) : f�ve

x(f) = 1

for every vertex v in U(e). Since U(e) 6= ∅, this implies that there exists a vertex v in e

satisfying (15). This completes the proof. J

References
1 R. Aharoni and T. Fleiner. On a lemma of Scarf. Journal of Combinatorial Theory, Series

B, 87(1):72–80, 2003.
2 P. Biró and T. Fleiner. Fractional solutions for capacitated NTU-games, with applications

to stable matchings. Discrete Optimization, 22:241–254, 2016.
3 P. Biró, T. Fleiner, and R. W. Irving. Matching couples with Scarf’s algorithm. Annals of

Mathematics and Artificial Intelligence, 77(3-4):303–316, 2016.
4 P. Biró and F. Klijn. MATCHINGWITH COUPLES: A MULTIDISCIPLINARY SURVEY.

International Game Theory Review, 15(02):1340008, 2013.
5 X. Chen, X. Deng, and S.-H. Teng. Settling the Complexity of Computing Two-player Nash

Equilibria. Journal of the ACM, 56(3):14:1–14:57, 2009.
6 C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The Complexity of Computing

a Nash Equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.
7 D. Gale and L. S. Shapley. College Admissions and the Stability of Marriage. The American

Mathematical Monthly, 69(1):9–15, 1962.

ISAAC 2018



11:12 On the Complexity of Stable Fractional Hypergraph Matching

8 D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithm.
MIT Press, 1989.

9 L. G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational
Mathematics and Mathematical Physics, 20(1):53–72, 1980.

10 S. Kintali, L. J. Poplawski, R. Rajaraman, R. Sundaram, and S.-H. Teng. Reducibility
among Fractional Stability Problems. SIAM Journal on Computing, 42(6):2063–2113, 2013.

11 N. Megiddo and C. H. Papadimitriou. On total functions, existence theorems and compu-
tational complexity. Theoretical Computer Science, 81(2):317–324, 1991.

12 J. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Science, 36(1):48–49, 1950.

13 T. Nguyen and R. Vohra. Near Feasible Stable Matchings. In Proceedings of the 16th ACM
Conference on Economics and Computation, pages 41–42, 2015.

14 C. H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs
of existence. Journal of Computer and System Sciences, 48(3):498–532, 1994.

15 C. H. Papadimitriou. The Complexity of Finding Nash Equilibria. In N. Nisan,
T. Roughgarden, E. Tardos, and V. V. Vazirani, editors, Algorithmic game theory, pages
29–52. Cambridge university press, 2007.

16 H. E. Scarf. The Core of an N Person Game. Econometrica, 35(1):50–69, 1967.



Deciding the Closure of Inconsistent Rooted
Triples Is NP-Complete
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Abstract
Interpreting three-leaf binary trees or rooted triples as constraints yields an entailment relation,
whereby binary trees satisfying some rooted triples must also thus satisfy others, and thence
a closure operator, which is known to be polynomial-time computable. This is extended to
inconsistent triple sets by defining that a triple is entailed by such a set if it is entailed by any
consistent subset of it.

Determining whether the closure of an inconsistent rooted triple set can be computed in
polynomial time was posed as an open problem in the Isaac Newton Institute’s “Phylogenetics”
program in 2007. It appears (as NC4) in a collection of such open problems maintained by Mike
Steel, and it is the last of that collection’s five problems concerning computational complexity
to have remained open. We resolve the complexity of computing this closure, proving that its
decision version is NP-Complete.

In the process, we also prove that detecting the existence of any acyclic B-hyperpath (from
specified source to destination) is NP-Complete, in a significantly narrower special case than the
version whose minimization problem was recently proven NP-hard by Ritz et al. This implies it
is NP-hard to approximate (our special case of) their minimization problem to within any factor.
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1 Introduction

We investigate the computational complexity of a problem in which, based on a given
collection of relationships holding between the leaves of a hypothetical (rooted) binary tree
T , the task is to infer whatever additional relationships (of the same form) must also hold
between T ’s leaves as a consequence. Various problems in phylogenetic tree reconstruction
involve inference of this kind. The specific relationship form in question here, obtaining
between some three leaves p, q, o and denoted pq|o, is that of the path between p and q being
node-disjoint from the path between o and the root, or equivalently, of the lowest common
ancestor (lca) of p and q not being an ancestor of o. This relationship is modeled as a rooted
triple, i.e., the (rooted, full) binary tree on leaves p, q, o in which p and q are siblings, and their
parent and o are both children of the root. Then pq|o holding in T is equivalent to having the
subtree of T induced by p, q, o be homeomorphic to pq|o’s corresponding three-leaf binary tree.
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The problem of computing the set of all rooted triples entailed by a given triple set R′
(its closure R′) is known to be polynomial-time computable by, e.g., Aho et al.’s BUILD
algorithm [6, 1] if R′ is consistent, i.e., if there exists a binary tree satisfying all triples in R′.

If a rooted triple set R is inconsistent, then a given triple is said to be entailed by R if it
is entailed by any consistent subset R′ ⊂ R. That is, the closure R equals the union of the
closures of all R’s consistent subsets. Thus the naive brute-force algorithm for computing R
suggested by the definition is exponential-time in |R|.

Determining the complexity of the problem of computing R was posed in the Isaac Newton
Institute’s “Phylogenetics” program in 2007 [9], and it appears (as NC4) in a collection of
such open problems maintained by Mike Steel [13]. That collection’s other four problems
concerning computational complexity were all solved by 2009 or 2010, but NC4 has remained
open. We resolve the complexity of computing R, proving that it is NP-hard. In particular,
we prove that its decision version, i.e., deciding whether a given rooted triple is entailed by
R, is NP-Complete.

In the process, we also obtain stronger hardness results for a problem concerning acyclic
B-hyperpaths, a directed hypergraph problem that has recently been applied to another
computational biology application, but interestingly one unrelated to phylogenetic trees and
rooted triples: signaling pathways, the sequences of chemical reactions through which cells
respond to signals from their environment (see Ritz et al. [11]).

Specifically, we prove that detecting the existence of any acyclic B-hyperpath (between
specified source and destination) is NP-Complete, in a significantly narrower special case
(viz., the case in which every hyperarc has one tail and two heads) than the version whose
minimization problem was recently proven NP-hard by Ritz et al. This immediately implies
it is NP-hard to approximate (our special case of) their minimization problem to within
any factor. Moreover, even if we restrict ourselves to feasible problem instances (i.e., those
for which there exists at least one such acyclic B-hyperpath), we show that this “promise
problem” [8] special case is NP-hard to approximate to within factor |V |1−ε for all ε > 0.

Related Work

Inference of new triples from a given set of rooted triples holding in a binary tree was studied
by Bryant and Steel [6, 5], who proved many results on problems involving rooted triples, as
well as quartets, and defined the closure of an inconsistent triple set. The polynomial-time
BUILD algorithm of Aho et al. [1] (as well as subsequent extensions and speedups) can be
used to construct a tree satisfying all triples in R (and to obtain the closure R), or else to
conclude than none exists.

Gallo et al. [7] defined a number of basic concepts involving paths and cycles in directed
hypergraphs, including B-connectivity. Ausiello et al. [2] studied path and cycle problems
algorithmically in directed hypergraphs and showed, via a simple reduction from Set Cover,
that deciding whether there exists a B-hyperpath from specified source to destination with
≤ ` hyperarcs is NP-Complete. Ritz et al. [11] recently studied a problem involving “signaling
hypergraphs”, which are directed hypergraphs that can contain “hypernodes”. They modify
Ausiello et al.’s hardness reduction from Set Cover to show that deciding the existence of
a length≤` B-hyperpath is NP-Complete already in the special case of directed hypergraphs
each of whose hyperarcs has at most 3 head nodes and at most 3 tail nodes (due to Set
Cover becoming hard once sets of size 3 are permitted). Ritz et al.’s hardness proof actually
does not use the fact that their problem formulation requires the computed B-hyperpath to
be acyclic. Because the entire directed hypergraph they construct is (like Ausiello et al.’s)
always acyclic, their proof provides hardness regardless of whether the formulation includes
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an acyclicity constraint. This constraint is essential to our hardness proof, however, so our
result does not rule out the possibility that a B-hyperpath minimization problem formulation
without an acyclicity requirement would be easier to approximate.

2 Preliminaries

2.1 Rooted Triples
I Definition 1. For any nodes u, v of a rooted binary tree (or simply a tree):

v ≤ u denotes that v is a descendent of u (and u is an ancestor of v), i.e., u appears on
the path from v to the root; v < u denotes that v is a proper descendent of u (and u is a
proper ancestor of v), i.e., v ≤ u and v 6= u.
uv denotes their lowest common ancestor (lca), i.e., the node w of maximum distance
from the root that satisfies w ≥ u and w ≥ v.

I Definition 2.
A rooted triple (or simply a triple) t = ({p, q}, o) ∈

(
L
2
)
× L (with p, q, o all distinct, for

an underlying finite leaf set L) is denoted by the shorthand notation pq|o and represents
the constraint: the path from p to q is node-disjoint from the path from o to the root.
The left-hand side (LHS) of a triple pq|o is pq, and its right-hand side (RHS) is o.
L(T ) denotes the set of leaves of a tree T , and L(R′) denotes the set of leaves appearing
in any of the triples within a set R′, i.e., L(R′) =

⋃
pq|o∈R′{p, q, o}.

A tree T with p, q, o ∈ L(T ) displays the triple pq|o (or, pq|o holds in T ) if the corre-
sponding constraint holds in T . The set of all triples displayed by T is denoted by r(T ).
The set of all trees that display all triples in R′ is denoted by 〈R′〉. A set of triples R′ is
consistent if 〈R′〉 is nonempty.

I Definition 3.
For a consistent triple set R′, a given triple t (which may or may not be a member of R′)
is entailed by R′, denoted R′ ` t, if every tree displaying all the triples in R′ also displays
t, i.e., if t is displayed by every tree in 〈R′〉. The closure R′ is the set of all triples entailed
by R′, i.e., R′ = {t : R′ ` t}, which can also be defined as R′ =

⋂
T∈〈R′〉 r(T ) [6].

For an inconsistent triple set R, a given triple t (which may or may not be a member of
R) is entailed by R, again denoted R ` t, if there exists a consistent subset R′ ⊂ R that
entails t. The closure R is again the set of all triples entailed by R, or equivalently the
union, taken over every consistent subset R′ ⊂ R, of R′, i.e., ⋃cons.R′⊂RR

′.

We first state a few immediate consequences of these definitions.

I Observation 4.
It can happen that pp′ = qq′ even if {p, p′} ∩ {q, q′} = ∅.
In any given tree T having p, q, o ∈ L(T ), exactly one of pq|o, po|q, and qo|p holds.
pq|o iff qp|o iff (path: p to q) ∩ (path: o to the root) = ∅ iff pq < po = qo.
Equivalently, the 3-point condition for ultrametrics [12] holds: for all p, q, o ∈ L(T ), we
have pq < po = qo or oq < op = qp or op < oq = pq.
Regardless of whether triple set R is consistent, its closure R satisfies R ⊆ R ⊆

(
L
2
)
× L,

and so |R| = O(|L|3).

We state the problem formally.

ISAAC 2018



12:4 Deciding the Closure of Inconsistent Rooted Triples Is NP-Complete

Table 1 Variable name conventions, many of which (also) represent leaves in the triple set R
constructed in the reduction. Note that the notation pq (for leaves p, q) is used to denote both
lca(p, q) and the hypergraph node whose outgoing hyperarcs represent triples of the form pq|o, i.e.,
those constraining lca(p, q) from above.

p, q, p′, q′, o, o′ generic leaf variables, especially in triples’ LHSs or RHSs (resp.) (leaves)
bi, b

′
i, cj , dj , etc. particular leaf names (leaves)
pq, etc. lowest common ancestor lca(p, q) of leaves p, q (leaf 2-sets)
α, β, γ leaves of target triple αβ|γ (leaves)
t rooted triple, especially of form pkqk|ok = uk|ok

R or R′ set of triples, especially inconsistent or consistent (resp.)
L or L(R) set of leaves or set of leaves appearing in members of R (resp.) (leaf sets)

u, uk, v, v
′, vk, v

′
k hypergraph nodes, especially tail node or head nodes (resp.) (leaf 2-sets)

pq, etc. hypergraph node corresponding to leaves p, q (leaf 2-sets)
αβ, cm+1γ source and destination nodes (resp.) (leaf 2-sets)

ak 1-2-hyperarc, especially of form uk→{vk, v
′
k} = pkqk→{pkok, qkok}, with

k ∈ [`] = {1, ..., `} indicating ak’s position in a path P of length |P | = `

xi ith SAT variable, with i ∈ [n]
Cj jth SAT clause, with j ∈ [m]

xi, x̄i or x̃i literals (positive, negative or either, resp.) of xi

xj
i , x̄

j
i or x̃j

i the appearance (positive, negative or either, resp.) of xi in Cj (leaves)
xj

ŵ, x̄
j
ŵ or x̃j

ŵ the wth variable appearance in Cj (leaves)
xj
·̂ , x̄

j
·̂ or x̃

j
·̂ some (unspecified) variable appearance in Cj (leaves)

yj
i , ȳ

j
i helper leaves in xi gadget for xj

i and x̄j
i (resp.) (leaves)

z̃j
i jth element in sequence bj , b

′
j , x̃

1
i , ỹ

1
i ..., x̃

m
i , ỹ

m
i , bj+1, b

′
j+1 (leaves)

F SAT formula

Inconsistent Rooted Triple Set Closure
Instance: An inconsistent rooted triple set R.
Solution: R’s closure R = {t : R ` t}.

By the observation above, computing the closure is equivalent to solving the following
decision problem for each of the O(|L|3) triples t ∈

(
L
2
)
× L.

Inconsistent Rooted Triple Set Entailment
Instance: An inconsistent rooted triple set R and a rooted triple t.
Question: Does R ` t, i.e., does there exists a consistent triple set R′ ⊂ R satisfying R′ ` t?

Although there is no finite set of inference rules that are complete [6], there are only
three possible inference rules inferring from two triples [6].

I Definition 5. The three dyadic inference rules (∀ p, q, o, p′, o′ ∈ L) are:

{pq|o, qp′|o} ` pp′|o
{pq|o, qo|o′} ` {pq|o′, po|o′} (1)
{pp′|o, oo′|p} ` {pp′|o′, oo′|p′}
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A type of graph (distinct from hypergraphs discussed below) that will be used in the
hardness proof is the Ahograph [1], which is defined for a given triple set R and leaf set L.1

I Definition 6. For a given triple set R and leaf set L, the Ahograph [R,L] is the following
undirected edge-labeled graph:

its vertex set equals L;
for every triple pq|o ∈ R, if p, q, o ∈ L, then there exists an {p, q} with label o.

For a hypergraph (V,A), the corresponding Ahograph is the Ahograph [triples(A), V ].
To avoid confusion with the nodes of the hypergraph, we refer to the Ahograph’s nodes

and edges as A-nodes and A-edges.

2.2 Directed Hypergraphs
Definitions of paths and cycles in hypergraphs are subtler and more complicated than
the corresponding definitions for graphs (see [10]). We adopt versions of Gallo et al. [7]’s
definitions, simplified for the special case in which every hyperarc has exactly one tail and
two heads.

I Definition 7. A 1-2-directed hypergraph (or simply hypergraph) H = (V,A) consists of a
set of nodes V and a set of 1-2-hyperarcs A. A 1-2-hyperarc (or 1-2-directed hyperedge2, or
simply hyperarc or arc) is an ordered pair a = (u, {v, v′}) ∈ V ×

(
V
2
)
, with u, v, v′ all distinct,

which we denote by u→{v, v′}. Let t(a) = u be a’s tail and h(a) = {v, v′} be a’s heads. A
node with out-degree 0 is a sink.

I Definition 8.
A simple path from u0 to u` is a sequence of distinct 1-2-hyperarcs P = (a1, ..., a`), where
u0 = t(a1), u` ∈ h(a`) and t(ak+1) ∈ h(ak) for all k ∈ [`− 1]. The length |P | = ` is the
number of arcs.
A cycle is a simple path having h(a`) 3 t(a1). An arc ak ∈ P having one of its heads be
the tail of some earlier arc ak′ of P , i.e., where ∃ak′ ∈ P : k′ < k and h(ak) 3 t(ak′),
is a back-arc. A simple path is cycle-free or acyclic if it has no back-arcs, and is cyclic
otherwise. More generally, a set A′ ⊆ A is cyclic if it is a superset of some cycle, and
acyclic otherwise.

I Definition 9. In general directed hypergraphs (i.e., with no restrictions on arcs’ numbers
of heads and tails), a node v is B-connected3 to u0 if v = u0 or (generating such B-connected
nodes bottom-up, through repeated application of this definition) if there is a hyperarc a with
v ∈ h(a) and every node t(a) is B-connected to u0. A path P from u0 to u` is a B-hyperpath
if u` is B-connected to u0 (using only the arcs a ∈ P ).

Due to the following observation, for the remainder of this paper any use of the term
“path” will be understood to mean “B-hyperpath”.

I Observation 10. If all arcs are 1-2-hyperarcs, then every simple path is also a B-hyperpath.

Via the hypergraph representation used in our hardness proof for Inconsistent Rooted
Triple Set Entailment below, we also obtain hardness results for the following problem
formulations as a by-product.

1 We choose to define the Ahograph as a multigraph whose edges each have exactly one label, rather than
the more common definition as a graph whose edges each have a set of labels.

2 Called a 2-directed F-hyperarc in [14], extending definitions introduced by Gallo et al. [7].
3 Note also that Gallo et al. [7] defines B-hyperarc simply to mean an arc a having |h(a)| = 1.
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Acyclic B-Hyperpath Existence in a 1-2-Hypergraph
Instance: A 1-2-directed hypergraph H = (V,A) and nodes u, v ∈ V .
Question: Does there exist an acyclic B-hyperpath in H from from u to v?

We want to define an optimization version of the problem where the objective is to
minimize path P ’s length |P |, but since a given problem solution may contain no solutions
at all (it may be infeasible, specifically if v is not B-connected to u), we obtain the following
somewhat awkward definition. Note that defining the cost of an infeasible solution to be
infinity is consistent with the convention that min∅ =∞.

Min Acyclic B-Hyperpath in a 1-2-Hypergraph
Instance: A 1-2-directed hypergraph H = (V,A) and nodes u, v ∈ V .
Solution: A B-hyperpath P in H.
Measure: P ’s length |P |, (i.e., its number of hyperarcs), if P is a feasible solution (i.e., an
acyclic B-hyperpath from u to v), and otherwise infinity.

Alternatively, we can formulate a “promise problem” [8] special case of the minimization
problem, restricted to instances admitting feasible solutions.

Min Acyclic B-Hyperpath in a B-Connected 1-2-Hypergraph
Instance: A 1-2-directed hypergraph H = (V,A) and nodes u, v ∈ V , where the v is
B-connected to u.
Solution: An acyclic B-hyperpath P in H from u to v.
Measure: P ’s length |P |.

3 The Construction

3.1 High-level Strategy
We will prove that Inconsistent Rooted Triple Set Entailment is NP-Complete
by reduction from 3SAT, using a construction similar to that of [3] (see also [4]) for the
problem of deciding whether a specified pair of nodes in a directed graph are connected by
an induced path.4 So, given a SAT formula F , we must construct a problem instance (R, t)
such that R ` t iff F is satisfiable. Intuitively, we want to define R in such a way that it will
be representable as a graph (or rather, as a directed hypergraph), whose behavior will mimic
that of the induced subgraph problem.

In slightly more detail, the instance (R, t) that we define based on F will have a structure
that makes it representable as a certain directed hypergraph. This hypergraph (see Fig. 1)
will play an intermediate role between (R, t) and F , yielding a two-step reduction between
the three problems. In particular, we will show:
1. A path P (from αβ to cm+1γ) determines a truth assignment v(·), and vice versa.
2. P will be acyclic iff v(·) satisfies F .
3. An acyclic path P (or an acyclic superset of it) determines a consistent subset R′ ⊂ R

entailing t = αβ|γ, and vice versa.
4. Hence R′ will be consistent and entail αβ|γ iff P is acyclic iff v(·) satisfies F .

4 That problem becomes trivial if either the graph is undirected or the induced constraint is removed.
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αβ βb1 x1 x2 · · · xn−1 xn

Cm Cm−1 · · · C2 C1

b′
n+1
c1

cm+1

γ

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 1 Construction overview, with the path P from αβ to cm+1γ shown in red. Each ellipse
represents the gadget for one variable xi (see Fig. 2a), and each hexagon represents the gadget for
one clause Cj (see Fig. 2b). (Sink nodes are omitted for clarity.) The path shown corresponds to a
truth assignment in which x2 is true and x1, x3, x4 are false. For example, the path shown takes x1’s
positive (upper) side, passing through its positive nodes, which renders x1’s positive appearances
unusable, thus setting x1 to false. Cm’s upper witness path points to x1’s negative (lower) side,
indicating that x1’s appearance in Cm is negative. Thus x1 being false satisfies Cm.

The challenge we face is designing a construction that will force cycles to autonomously
result from non-satisfiable formulas (mimicking the logic of an induced subgraph) is that the
definition of entailment of a triple t from an inconsistent set R allows us to pick and choose
among the members of R, selecting any consistent subset as the witness to t’s entailment,
seemingly indicating that any troublesome members of R corresponding to back-arcs causing
a cycle could simply be omitted – independently of our choices when selecting the triples
that we are relying on.

The way we disallow this freedom is that we model a rooted triple not as a directed
edge in a graph but as a directed hyperedge, pointing from one tail node to two head nodes.
Although the definition of entailment from an inconsistent triple set R means we can omit
any hyperarc we like in defining a possible H ′, we cannot omit half a hyperarc: “turning on”
a 1-2-hyperarc u→{v, v′} because we want tail u to point to head v also necessarily causes u
to point to v′.

For most of the arcs we define in our construction, these second head nodes will be just
spinning wheels: sink nodes having no effect, and omitted for clarity from some figures. The
important ones are those in which tail u and one head v both lie in a clause gadget and the
other head v′ lies in a variable gadget.

3.2 Identifying Rooted Triples and 1-2-Hyperarcs
A core idea of our construction and proof is a correspondence between rooted triples and H ’s
hyperarcs (all 1-2-hyperarcs), which renders them mutually definable in terms of one anther.
Each of H ’s nodes will be identified with an unordered pair of leaves {p, q} ∈

(
L
2
)
(written for

convenience pq), and each of its hyperarcs will have structure of the form pq→{po, qo}, with
p, q, o all distinct. That is, each of an arc u→{v, v′}’s two heads v, v′ will contain one of the
tail u’s two leaves plus a different leaf common to both v and v′. This structure ensures that
each hyperarc encodes a rooted triple, rather than a constraint of the more general form
pp′ < qq′ Thus we can write A = {pq→{po, qo} : pq|o ∈ R} or R = {pq|o : pq→{po, qo} ∈ A}.
Indeed, we can simply identify them with one another as follows.

I Definition 11. For a triple pq|o, the corresponding hyperarc is arc(pq|o) = pq→{po, qo};
conversely, for a 1-2-hyperarc pq→{po, qo}, the corresponding triple is triple(pq→{po, qo}) =
pq|o. For a triple set R′, we write arcs(R′) to denote the same set R′, with but its members
treated as arcs, and similarly in reverse, for an arc set A′, we write triples(A′).

ISAAC 2018
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Given this, we can also give a more abstract correspondence.

I Definition 12. For a 1-2-hyperarc u→{v, v′}, the corresponding triple is triple(u→{v, v′})
= v ⊕ v′|v ∩ v′, where ⊕ denotes symmetric difference. We also combine the two models’
syntax, writing u|o to denote pq|o when u = pq, i.e., when hyperarc u→{v, v′} = arc(pq|o).

This leads to the following equivalent restatements of the second dyadic inference rule
(recall Def. 5) in forms that will sometimes be more convenient.

I Observation 13. The first inference of dyadic inference rule (1) can be stated as:

{pq→{po, qo}, qo→{qo′, oo′}} ` pq→{po′, qo′} (∀ p, q, o, o′ ∈ L)
{uk−1|o, uk|o′} ` uk−1|o′ (∀ uk−1, uk ∈ V, o ∈ uk s.t. |uk−1 ∩ uk| = 1)

(2)

We emphasize again the following two related facts about the meaning of an arc
pq→{po, qo} ∈ A:
1. If T is a tree with p, q, o ∈ L(T ) and pq|o ∈ r(T ), then lowest common ancestors po and

qo are equal, i.e., they refer to the same node in T .
2. Yet po and qo are two distinct A-nodes (in V ) of the hypergraph H.

That is, “turning on” triple pq|o (by adding it to the triple set R′) has the effect of
causing the hypergraph nodes po and qo to thence refer to the same tree node (in any tree
displaying R′).

3.3 Defining L and R

Let the SAT formula F on variables x1, ..., xn consist of m clauses Cj , each of the form
Cj = (x̃ji1 ∨ x̃

j
i2
∨ x̃3

i3
) or Cj = (x̃ji1 ∨ x̃

j
i2

), where each literal x̃ji has the form either xi or x̄i
for some i.

We define the leaf set L underlying R as L = L1 ∪ L2 ∪ L3 ∪ L4, where:
L1 =

⋃
i∈[n],j∈[m]{x

j
i , x̄

j
i , y

j
i , ȳ

j
i } (4nm leaves)5

L2 =
⋃
i∈[n+1]{bi, b′i} (2n+ 2 leaves)

L3 =
⋃
j∈[m]{cj , dj} (2m leaves)

L4 = {α, β, γ} (3 leaves)

For each variable xi in F , we create a gadget consisting of two parallel length-2m+2 paths
intersecting at their first and last nodes but otherwise node-disjoint (see Fig. 2a), where the
path taken will determine the variable’s truth value. The rooted triples in R corresponding
to variable xi’s gadget are:

On its positive side:
{bib

′
i|x1

i , b′ix
1
i |y1

i , x1
i y

1
i |x2

i , y1
i x

2
i |y2

i , ..., x
m−1
i

ym−1
i
|xm

i , ym−1
i

xm
i |ym

i , xm
i y

m
i |bi+1, ym

i bi+1|b′i+1}
On its negative side:
{bib

′
i|x̄1

i , b′ix̄
1
i |ȳ1

i , x̄1
i ȳ

1
i |x̄2

i , ȳ1
i x̄

2
i |ȳ2

i , ..., x̄
m−1
i

ȳm−1
i
|x̄m

i , ȳm−1
i

x̄m
i |ȳm

i , x̄m
i ȳ

m
i |bi+1, x̄m

i bi+1|b′i+1}

For each clause Cj = (x̃ji1 ∨ x̃
j
i2
∨ x̃ji3) in F , we create a gadget consisting of three (or

two, in the case of a two-literal clause) parallel length-3 paths, intersecting in their first and
fourth nodes, followed by one additional (shared) edge (see Fig. 2b), where the path taken
(the witness path) will correspond to which of Cj ’s literal satisfies the clause (or one among
them, in the case of multiple true literals). The second node of Cj ’s witness path (of the

5 Alternatively, we could create such nodes only corresponding to actual appearances of variables in
clauses, i.e., L1 =

⋃
i,j:xi∈Cj

{xj
i , y

j
i } ∪

⋃
i,j:x̄i∈Cj

{x̄j
i , ȳ

j
i } (≤ 3m leaves).
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x1
i y1

i x2
i y2

i

b′ix
1
i y1

i x2
i · · ·

b′iy
1
i x1

i x2
i y1

i y2
i

bix
1
i

bib
′
i

bix
1
i

b′iȳ
1
i x̄1

i x2
i ȳ1

i ȳ2
i

b′ix̄
1
i ȳ1

i x̄2
i · · ·

x̄1
i ȳ1

i x̄2
i ȳ2

i

bi+1

b′i+1

ym

i

bi+1

ȳm

i

bi+1

xi
m−1

yi
m−1

xm

i

ym

i

x̄i
m−1

ȳi
m−1

x̄m

i

ȳm

i

ym−1
i

xm

i

ȳm−1
i

x̄m

i

xm−1
i

xm

i

ym−1
i

ym

i

xm

i

bi+1 ym

i

b′i+1

x̄m−1
i

x̄m

i

ym−1
i

ym

i

x̄m

i

bi+1

ȳm

i

b′i+1

(a) Variable gadget for xi. Any path passing through this gadget (drawn left to right) has two options,
taking its negative (lower) side, making xi true, or its positive (higher) side, making xi false. That is, the
truth value corresponding to the path is the one making the literals in the nodes on the unused side true.
Intuitively, a path traversing one of the gadget’s two sides renders all the literals appearing within that
side’s nodes unusable. Note that the rightmost node (bi+1b

′
i+1) is also (for each i < n) the leftmost node

of xi+1’s gadget.

cjyj

3̂ cjxj

3̂

dj x̄j

2̂ djxj

3̂

cj ȳj

2̂ cj x̄j

2̂ cjdj

djxj

1̂

cjyj

1̂ cjxj

1̂

cj+1

dj+1

cj

cj+1

cj

dj+1

yj

3̂
cj+1

yj

1̂
cj+1

ȳj

2̂
cj+1

xj

1̂yj

1̂ xj

2̂yj

2̂ xj

3̂yj

3̂

(b) Clause gadget for Cj = (xj
i1
∨ x̄j

i2
∨ xj

i3
), which is followed (drawn outside the shaded region) by node

cj+1dj+1 (or cm+1γ, in the case of j = m). Any path passing through this gadget (drawn right to left)
has three options: going up, straight across, or down, each corresponding to one choice among Cj ’s three
possible witness paths. The arrow from the witness path’s witness node, say, cj x̃

j
i , to a node x̃j

i ỹ
j
i lying

within one of the two sides of xi’s gadget (and outside the shaded region) represents the appearance of xi

in Cj ; the 1-2-hyperarc that arrow is constituent of forces an acyclic path taking this witness path to have
taken the opposite side of xi’s gadget.

Figure 2 Gadgets used in the reduction. Each pair of arrows drawn forking from the same tail
node represents one 1-2-hyperarc. Sink nodes have dashed borders and are shaded lighter (gray)
than non-sink nodes (blue). The clause gadget nodes that point to variable gadget nodes and the
variable gadget nodes that can be pointed to by them are both drawn with thick borders.
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form cj x̃
j
i , and corresponding to the appearance of literal x̃i) is its witness node. The rooted

triples in R corresponding to clause Cj ’s gadget are:
{cjdj |xji , cjx

j
i |yji , cjy

j
i |cj+1}, for each positive appearance of a variable xi in Cj

{cjdj |x̄ji , cj x̄
j
i |ȳji , cj ȳ

j
i |cj+1}, for each negative appearance of a variable xi in Cj

cjcj+1|dj+1, if j < m

Finally, R has the following triples connecting the pieces together, connecting the source
node αβ to a chained-together series of variable gadgets, the last of which is connected (via
an intermediate node) to the first of a chained-together series of clause gadgets, the last of
which is connected to the destination node cm+1γ:
{αβ|b1, βb1|b′1}
{bn+1b

′
n+1|c1, b′n+1c1|d1}

cmcm+1|γ

It is important to remember that all these connections are 1-2-hyperarcs. Sometimes
both heads will be nodes within variable and clause gadgets, but in most cases one of the
two heads will be a sink node whose only role is to permit the hyperarc to conform to the
required structure.

4 The Proof

Clearly Inconsistent Rooted Triple Set Entailment is in NP: if we guess the subset
R′ ⊂ R, then we can verify both that R′ is consistent and that R′ ` t by executing Aho et
al. [1]’s polynomial-time BUILD algorithm on R′ [6]. Min Acyclic B-Hyperpath in a
1-2-Hypergraph is as well: guess the path, and check that it is acyclic.

Now we prove hardness, arguing that R contains a consistent subset entailing αβ|γ iff H
contains an acyclic path P from αβ to cm+1γ iff F admits a satisfying assignment v(·), in
two steps. Due to lack of space, the proofs are deferred to the full version.

4.1 Acyclic Path ⇔ Satisfying Truth Assignment
First we argue that acyclic paths correspond to satisfying truth assignments.

I Lemma 14. There is an an acyclic path P from αβ to cm+1γ iff F admits a satisfying
truth assignment v(·).

Thus we have proven:

I Theorem 15. Acyclic B-Hyperpath Existence in a 1-2-Hypergraph is NP-Complete.

Since an infeasible solution is defined to have infinite cost, an algorithm with any
approximation factor would allow us to distinguish between positive and negative problem
instances, which immediately implies:

I Corollary 16. Approximating Min Acyclic B-Hyperpath in a 1-2-Hypergraph to
within any factor is NP-hard.

Even if we restrict ourselves to problem instances admitting feasible solutions, this
“promise problem” [8] special case is hard to approximate within any reasonable factor.

I Corollary 17. Min Acyclic B-Hyperpath in a B-Connected 1-2-Hypergraph is
NP-hard to approximate to within factor |V |1−ε for all ε > 0.
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Second, to extend the reduction to Inconsistent Rooted Triple Set Entailment,
we argue that H is a faithful representation of R in the sense that acyclic paths from αβ to
cm+1γ (or acyclic supersets of such paths) correspond to consistent subsets entailing αβ|γ,
and vice versa.

4.2 Consistent Entailing Subset ⇐ Acyclic Path
We prove this direction via two lemmas, proving that the set of triples corresponding to an
acyclic path are consistent and entail αβ|γ, respectively.

I Lemma 18. If there is an acyclic path P ⊆ A from αβ to cm+1γ, then R′ = triples(P ) is
consistent.

I Lemma 19. If there is an acyclic path P ⊆ A from αβ to cm+1γ, then R′ = triples(P )
entails αβ|γ.

Thus we have:

I Corollary 20 (⇐). If there is an acyclic path P ⊆ A from αβ to cm+1γ, then R′ = triples(P )
is consistent and entails αβ|γ.

4.3 Consistent Entailing Subset ⇒ Acyclic Path
Now we argue for the reverse direction, proving through a series of lemmas that if there is
no acyclic αβ−cm+1γ path, then there will be no consistent triple subset entailed αβ|γ.

I Lemma 21. Let A′ ⊆ A. Suppose there exists a cyclic path P ⊆ A′ from αβ to cm+1γ.
Then R′ = triples(A′) is inconsistent.

Most of the remainder of this subsection will be dedicated to showing constructively that
if A′ contains no path from αβ to cm+1γ at all, cyclic or otherwise, then R′ does not entail
αβ|γ. We do so by showing that in the case of such a (consistent) R′, there exist trees
displaying R′ ∪ {αβ|γ}. Therefore assume w.l.o.g. that R′ is consistent and maximal in the
sense that adding any other triple of R to it would either make R′ inconsistent or would
introduce an αβ−cm+1γ path in A′ = arcs(R′).

Observe that the missing arcs A× = A−A′ can be thought of as the (source side to sink
side) cross arcs of a cut separating source αβ and sink cm+1γ. In the following argument we
will refer to hypergraph Hγ = (V ∪ {γα}, A′ ∪ arc(γα|β)) and its corresponding Ahograph
Gγ .

Recalling the construction of H , there are three types of places where the absent cross-arcs
A× could be located: within a clause gadget, within a variable gadget, or elsewhere, i.e.,
forced arcs (viz., connecting arcs a1, ..., a4 or arcs with tail of the form cjcj+1 following a
clause Cj ’s gadget). There is one special subcase, which we give a name to.

I Definition 22. We call A× degenerate if A× lies within a variable xi’s gadget, |A×| = 2,
and exactly one of its members has the form arc(bib′i|x̃1

i ). (Its other member must by
definition lie within the xi gadget’s opposite side.)

We deal with all cases besides an degenerate A× in the following lemma.

I Lemma 23. Let R′ be consistent. Suppose there is no path P ⊆ A′ from αβ to cm+1γ,
and that A× is non-degenerate. Then R′ does not entail αβ|γ.

ISAAC 2018
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The problematic situation is when exactly one of the two arcs is outgoing from bib
′
i. In

this case, their absence deletes only one of the Ahograph’s two A-edges between the pair
{bi, b′i}, which does not disconnect the graph, meaning BUILD will fail.

We have been arguing that if a consistent R′ entails αβ|γ then arcs(R′) must contain an
acyclic path from αβ to cm+1γ. Now we refine this to a slightly weaker (yet strong enough)
implication: if a consistent R′ entails αβ|γ, then a slightly different consistent R+ will too,
and an acyclic path must exist within arcs(R+).

This implies:

I Corollary 24 (⇒). If there is a consistent R′ entailing αβ|γ then there exists an acyclic
path P .

Combining the Corollary 20 and 24 with Theorem 15, we conclude:

I Theorem 25. Inconsistent Rooted Triple Set Entailment is NP-Complete.

And because computing the closure reduces to deciding whether R ` t for O(|L|3) triples
t, we also have:

I Corollary 26. Inconsistent Rooted Triple Set Closure is NP-hard.
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Abstract
We consider the problem of computing k ∈ N internally vertex-disjoint paths between special
vertex pairs of simple connected graphs. For general vertex pairs, the best deterministic time
bound is, since 42 years, O(min{k,

√
n}m) for each pair by using traditional flow-based methods.

The restriction of our vertex pairs comes from the machinery of maximal adjacency orderings
(MAOs). Henzinger showed for every MAO and every 1 ≤ k ≤ δ (where δ is the minimum degree
of the graph) the existence of k internally vertex-disjoint paths between every pair of the last
δ− k+ 2 vertices of this MAO. Later, Nagamochi generalized this result by using the machinery
of mixed connectivity. Both results are however inherently non-constructive.

We present the first algorithm that computes these k internally vertex-disjoint paths in linear
time O(m), which improves the previously best time O(min{k,

√
n}m). Due to the linear running

time, this algorithm is suitable for large graphs. The algorithm is simple, works directly on the
MAO structure, and completes a long history of purely existential proofs with a constructive
method. We extend our algorithm to compute several other path systems and discuss its impact
for certifying algorithms.
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1 Introduction

Vertex-connectivity is a fundamental parameter of graphs that, by a result due to Menger [12],
can be characterized by the existence of internally vertex-disjoint paths between vertex pairs.
Thus, much work has been devoted to the following question: Given a number k, a simple
graph G = (V,E), and two vertices of G, compute k internally vertex-disjoint paths between
these vertices if such paths exist. Despite all further efforts, the traditional flow-based
approach by Even and Tarjan [3] and Karzanov [7] gives still the best deterministic bound
O(min{k,

√
n}m) for this task, where n := |V | and m := |E|.
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Our research is driven by the question whether k internally vertex-disjoint paths can be
computed faster deterministically. This question has particular impact for large graphs, as
we aim for linear-time algorithms. We have no general answer, but show for specific pairs
of vertices that this can actually be done using maximal adjacency orderings (MAOs, also
known under the name maximum cardinality search). MAOs order the vertices of a graph
and can be computed in time O(n+m) [18] (we will define MAOs in detail in Section 2).

One of the key properties of MAOs is that their last vertices are highly vertex-connected,
i.e., have pairwise many internally vertex-disjoint paths. In more detail, let G be a simple
unweighted graph of minimum degree δ and let < be a MAO of G. Then < decomposes G
into edge-disjoint forests F1, . . . , Fm in a natural way (we will give the precise background
on MAOs and such forest decompositions later). Let a subset of vertices be k-connected
if G contains k internally vertex-disjoint paths between every two vertices of this subset.
Henzinger proved for every 1 ≤ k ≤ δ that the last δ− k+ 2 vertices of < are k-connected [6].

In order to appreciate Henzinger’s result, it is important to mention that its special case
k = δ alone was predated by many results in the (weaker) realm of edge-connectivity: a well-
known line of research [14, 4, 17] proved that the last two vertices of < are δ-edge-connected.
In fact, we exhibit the following forgotten link to a result by Mader [10, 9] in 1971, who used
a preliminary variant of MAOs over one decade before MAOs were introduced and proved
that their last two vertices are even δ-connected. In 2006, Nagamochi generalized all the
mentioned results as follows.

I Theorem 1 ([13][15, Thm. 2.28]). Let < be a MAO of a simple graph G and let F1, . . . , Fm
be the forests into which < partitions E. For every two vertices s and t that are in the same
component of some Fk, G contains k internally vertex-disjoint paths between s and t.

Theorem 1 specializes to Henzinger’s result by taking the component Tk of Fk that contains
the last vertex of < (this tree contains the last δ − k + 2 vertices of <). Its proof depends
heavily on the machinery of mixed connectivity, and so does its most general statement
(which we omit here, although all our results extend to this setting). Theorem 1 may be
seen as the currently strongest result on MAOs regarding vertex-connectivity. However, all
proofs known so far about vertex-connectivity in MAOs (including the ones by Henzinger
and Nagamochi) are non-constructive and thus do not give any faster algorithm than the
flow-based one for the initial question of computing internally vertex-disjoint paths.

The main result of this paper is an algorithm that computes the k paths of Theorem 1 in
linear time O(n+m). This improves upon the previously best time O(min{k,

√
n}m). To

our surprise, its key idea is simple; the details of its correctness proof however are subtle. We
therefore explain the algorithm in two incremental variants: The slightly weaker variant in
Section 3 computes internally vertex-disjoint paths between one vertex s and a fixed set of k
vertices of the forest decomposition; it does so by performing a right-to-left sweep through
the MAO, in which the k paths are switched cyclically whenever one of the k paths would be
lost. Section 4 then invokes two of these computations (one for s and one for t) in parallel in
order to obtain our main result. We show also how the computation can be extended to find
the k internally vertex-disjoint paths between a vertex and a vertex set, and between two
vertex sets, whose existence was shown by Menger [12].

It is not easy to quantify for how many vertex pairs our faster algorithm can be applied.
If we require δ internally vertex-disjoint paths, there are δ-regular graphs for which the only
component of Fδ consists of one vertex pair joined by an edge and Fδ+1 = · · · = Fm = ∅. In
this case, we can apply our algorithm only to a single vertex pair. However, in practice, many
more of these sets occur and each of them may have a much larger size. If k < δ internally
vertex-disjoint paths are sufficient, all pairs of a much larger set of size δ− k+ 2 can be taken
(even in the worst case), at the expense of the linearly decreased pairwise connectivity k.
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Certifying Algorithms

Being able to compute k internally vertex-disjoint paths has a benefit that purely existential
proofs and algorithms that only argue about vertex separators do not have: It certifies the
connectivity between the two vertices. For related problems on edge-connectivity, this has
already been used to make algorithms certifying (in the sense of [11]).

The perhaps most prominent such result is the minimum cut algorithm of Nagamochi and
Ibaraki [14], which refines the work of Mader [10, 9], and was simplified by Frank [4] and by
Stoer and Wagner [17]. This algorithm computes iteratively a MAO and then contracts the
last two δ(-edge)-connected vertices of it. For unweighted multigraphs, this is easily made
certifying by storing the k edge-disjoint paths between these last two vertices in every step;
the global k-edge-connectivity then follows by transitivity. In fact, the desired k edge-disjoint
paths for every MAO can be obtained by just taking, for every 1 ≤ i ≤ k, the unique s-t-path
in the tree Ti of Fi that contains t. Using more involved methods, Arikati and Mehlhorn [1]
made the algorithm of Nagamochi and Ibaraki certifying even for weighted graphs, again
without increasing the quadratic asymptotic running time and space.

For the problem of recognizing k-connectivity, linear-time certifying algorithms are known
for every k ≤ 3 [19, 16]. For arbitrary k, the best known deterministic certifying algorithm is
still the traditional flow-based one [3, 5], which achieves a running time of O((k+

√
n)k
√
nm).

By using a geometric characterization of graphs, also a non-deterministic certifying algorithm
with running time O(n5/2 + k5/2n) is known [8]. For designing faster certifying algorithms,
finding a good certificate for k-connectivity seems to be the crucial open graph-theoretic
problem, even when k is fixed:
I Open Problem. For every k ∈ N, find a small and easy-to-verify certificate that proves the
k-vertex-connectivity of simple graphs.

Our main result plays the same important role for certifying the vertex-connectivity
between two vertices, as s-t-flows do for certifying the edge-connectivity between s and
t in the results described above. For example, the 2-approximation algorithm for vertex-
connectivity [6] by Henzinger can be made certifying using our new algorithm.

2 Maximal Adjacency Orderings

Throughout this paper, our input graph G = (V,E) is simple, unweighted and of minimum
degree δ. We assume standard graph theoretic notation as in [2]. A maximal adjacency
ordering < of G is a total order 1, . . . , n on V such that, for every two vertices v < w, v
has at least as many neighbors in {1, . . . , v − 1} as w has. For ease of notation, we always
identify the vertices of G with their position in <.

Every MAO < decomposes G into edge-disjoint forests F1, . . . , Fm (some of which may
be empty)1 as follows: If v > 1 is a vertex of G and w1 < · · · < wl are the neighbors of v in
{1, . . . , v − 1}, the edge {wi, v} belongs to Fi for all i ∈ {1, . . . , l}. For every i, the graph
(V, Fi) is an edge-maximal forest of G \ {E(F1), . . . , E(Fi−1)} (we refer to [15, Section 2.2]
for a proof). For the sake of conciseness, we identify this forest with its edge set Fi. The
partition of E into the non-empty forests is called the forest decomposition of <. For vertices
v < w, we say v is left of w. If there is an edge between v and w, we call this a left-edge of w.

For any k, we allow to compute k internally vertex-disjoint paths between any two vertices
that are contained in a tree Tk of the forest Fk. Hence, throughout the paper, let s > 1 be
an arbitrary but fixed vertex of G and let k be a positive integer that is at most the number

1 In fact, every forest Fi that satisfies i > n is empty, as G is simple.
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of left-edges of s. The vertex s will be the start vertex of the k internally vertex-disjoint
paths to find (the end vertex will be left of s). E.g., if we choose s as the last vertex of the
MAO (or any other vertex with at least that many left-edges), k can be chosen as any value
that is at most the degree of vertex n; in particular, k can be chosen arbitrary in the range
1, . . . , δ, as claimed in the introduction.

For i ∈ {1, . . . , k}, let Ti be the component of Fi that contains s. As i ≤ k, Ti is a tree
on at least two vertices. Let the smallest vertex ri of Ti with respect to < be the root of Ti.
For the purpose of this paper, it suffices to consider the subgraph of G induced by the edges
of T1, . . . , Tk.

I Lemma 2 ([15, Lemma 2.25]). Let i ∈ {1, . . . , k}. Then V (Ti) consists of the consecutive
vertices ri, ri + 1, . . . , w in < such that s ≤ w. Moreover, for each vertex v ∈ Ti \ {ri}, the
vertex set {ri, ri + 1, . . . , v} induces a connected subgraph of Ti.

Hence, for every i ∈ {1, . . . , k}, every vertex v > ri of Ti has exactly one left-edge that
is in Ti and thus at least i left-edges that are in G. Let lefti(v) be the end vertex of the
left-edge of v in Fi. The root ri of Ti has left-degree exactly i− 1, as if it had more, ri would
have a left-edge in Fi and thus not be the root of Ti and, if it had less, the left-degree of ri+1
cannot be at least i, as this violates the MAO (this uses that G is simple). We conclude that
r1 < r2 · · · < rk. Thus, the definition of Fi and Lemma 2 imply the following corollary.

I Corollary 3. Let i < j ≤ k and let v be a vertex with rj < v < s. Then v is in Tj and Ti,
ri ≤ lefti(v) < leftj(v) < v and rj ≤ leftj(v).

For a vertex-subset S ⊆ V , let S := V \ S. For convenience, we will denote sets {v} by
v. For a vertex-subset S ⊆ V , a set of paths is S-disjoint if no two of them intersect in a
vertex that is contained in S. Thus, V -disjointness is the usual vertex-disjointness and a set
of paths is v-disjoint if every two of them intersect in either the vertex v or not at all. We
represent paths as lists of vertices. The length of a path is the number of edges it contains.
For a path A, let end(A) be the last vertex of this list and, if the path has length at least
one, let sec(A) be the second to last vertex of this list.

3 The Loose Ends Algorithm

We first consider the slightly weaker problem of computing k internally vertex-disjoint
paths between s and the root set {r1, . . . , rk}. We will extend this to compute k internally
vertex-disjoint paths between two vertices in the next section.

I Lemma 4. Algorithm 1 computes k s-disjoint paths in T1 ∪ · · · ∪ Tk from s to {r1, . . . , rk}
in time O(|E(T1 ∪ · · · ∪ Tk)|) ⊆ O(n+m).

The outline of our algorithm is as follows. We initialize each Ai to be the path that
consists of the two vertices s and lefti(s) (in that order). The vertices lefti(s) are marked as
active; throughout the algorithm, let a vertex be active if it is an end vertex of an unfinished
path Ai.

So far the Ai are s-disjoint. We aim for augmenting each Ai to ri. Step by step, for every
active vertex v from s− 1 down to r1 in <, we will modify the Ai to longer paths, similar as
in sweep line algorithms from computational geometry. The modification done at an active
vertex v is called a processing step. From a high-level perspective, the end vertices of several
paths Ai may be replaced or augmented by new end vertices w such that ri ≤ w < v during
the processing step of v. Such vertices w are again marked as active, which results in a
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Algorithm 1 LooseEnds(G,<, s, k).
1: for all i do . initialize all Ai
2: Ai := (s, lefti(s))
3: Mark lefti(s) as active
4: while there is a largest active vertex v do . process v
5: Let j1 < j2 < · · · < jl be the indices of the paths Aji

that end at v
6: for i := 2 to l do . replace end vertices
7: Replace end(Aji) with leftji−1(sec(Aji))
8: Mark leftji−1

(sec(Aji
)) as active

9: Perform a cyclic downshift on Aj1 , . . . , Ajl
. Aji

:= Aji+1 , Ajl
:= Aj1

10: if v = rjl
then

11: Ajl
is finished . rjl

is reached
12: else
13: Append leftjl

(v) to Ajl
. append predetermined vertex

14: Mark leftjl
(v) as active

15: Unmark v from being active
16: Output A1, . . . , Ak

continuous modification of each Ai to a longer path. By the above restriction on w, each
path Ai will have strictly decreasing vertices in < throughout the algorithm. At the end of
the processing step of v, we unmark v from being active.

Let v be the active vertex that is largest in <. Assume that v is the end vertex of
exactly one Ai. If v = ri, Ai is finished. Otherwise, we append the vertex lefti(v) to Ai
(see Algorithm 1). The important aspect of this approach is that the index of the path Ai
predetermines the vertex that augments Ai. Clearly, this way Ai will reach ri at some point,
according to Lemma 2.

However, if at least two paths end at v, this approach does not ensure vertex-disjointness.
Let Aj1 , . . . , Ajl

be these l ≥ 2 paths and assume j1 < j2 < · · · < jl. We first replace the
end vertex v of Aji

with the vertex leftji−1
(sec(Aji

)) for all i 6= 1. We will show that these
modified end vertices are strictly smaller than v, which will re-establish the vertex-disjointness.
The key idea of the algorithm is then to switch the indices of the l paths appropriately such
that the appended vertices are again predetermined by the path index.

Let a cyclic downshift on Aj1 , . . . , Ajl
replace the index of each path by the next smaller

index of a path in this set (where the next smaller index of j1 is jl), i.e. we set Aji
:= Aji+1

for every i 6= l and then replace Ajl
with the old path Aj1 . We perform a cyclic downshift

on Aj1 , . . . , Ajl
. Note that we did not alter the path Ajl

(which was named Aj1 before) yet.
If v = rjl

, Ajl
is finished; otherwise, we append the vertex leftjl

(v) to Ajl
. See Algorithm 1

for a description of the algorithm in pseudo-code. Figure 1 shows a run of Algorithm 1.
We prove the correctness of Algorithm 1. Before the processing step of any active vertex v,

the Ai satisfy several invariants, the most crucial of which are that they are {v+1, . . . , s−1}-
disjoint and that the vertices of every Ai are decreasing in <. In detail, we have the following
invariants.

I Invariants. Let v < s be the largest active vertex, or v := 0 if there is no active vertex left.
Before processing v, the following invariants are satisfied for every 1 ≤ i ≤ k:
(1) The vertices of Ai start with s and are strictly decreasing in <.
(2) The path Ai is finished if and only if end(Ai) > v. In this case, end(Ai) = ri.

If Ai is not finished, ri ≤ end(Ai) ≤ v and the last edge of Ai is in Ti.
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1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(a) A MAO of a graph G and its forests F1 (green), F2 (red, dashed) and F3 (blue, dotted).

1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(b) Paths A1 (green), A2 (red, dashed) and A3 (blue, dotted) after the initialization phase and processing
vertex 11. The paths A2 and A3 end at the largest active vertex 10.

1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(c) After processing vertex 10, the paths A2 and A3 have been shifted, which is here depicted by a color
change. The last vertex of A2 is then replaced, while A3 is extended in F3.

1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(d) After processing 9, the largest active vertex is 6.

1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(e) After shifting and extending A1 and A3, all three paths meet at the largest active vertex 4.

1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(f) Downshift: The old path A3 is now A2, the old A2 is now A1 and the old A1 is now A3.

1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(g) After processing root r3 = 3, A2 and A3 are shifted and A3 is finished.

1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(h) After processing the roots r2 = 2 and r1 = 1, the paths A1 and A2 are finished.

Figure 1 A run of Algorithm 1 on the graph depicted in (a) when s = 12 and k = 3.
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(3) sec(Ai) > v

(4) Every vertex w ∈ Ai satisfying v < w < s is not contained in any Aj 6= Ai.
(5) Ai ⊆ T1 ∪ · · · ∪ Tk

We first clarify the consequences. Invariant (2) implies that the algorithm has finished all
paths Ai precisely after processing r1, and that every Ai ends at ri. The Invariants (1) and (3)
are necessary to prove Invariant (4), which in turn implies that the Ai are {v + 1, . . . , s− 1}-
disjoint before processing an active vertex v. Hence, the final paths Ai are s-disjoint. With
Invariant (5) this gives the claim of Lemma 4.

It remains to prove Invariants (1)–(5). Immediately after initializing A1, . . . , Ak, the
next active vertex is end(Ak) < s. It is easy to see that all five invariants are satisfied for
v = end(Ak), i.e. before processing the first active vertex. We will prove that processing
any largest active vertex v preserves all five invariants for the active vertex v′ that follows v
(where v′ := 0 if v is the only remaining active vertex). For this purpose, let A′i be the path
with index i immediately before processing v′ and let Ai be the path with index i before
processing v; by hypothesis, the paths Ai satisfy all invariants for v.

For Lines 7 and 13 in the processing step of v, we have to prove the existence of
leftji−1

(sec(Aji
)) and leftjl

(v) respectively. In Line 7, we have i ≥ 2 and end(Aji
) = v as

can be seen in the pseudo-code. Then Invariant (2) implies that Aji is not finished and
v = end(Aji

) = leftji
(sec(Aji

)). Thus, leftji−1(sec(Aji
)) exists. In Line 13, we have v 6= rjl

and end(Ajl
) = v (here, Ajl

refers by definition to the path with index jl before the cyclic
downshift; note this is not the path dealt with in Line 13). Then Invariant (2) implies that
rjl
≤ v. This proves rjl

< v and the existence of leftjl
(v).

We prove v′ < v next. Consider the vertices that are newly marked as active in the
processing step of v. According to Line 5 of Algorithm 1, every such vertex is the new end
vertex of some path Aji with end vertex v that was modified in the processing step of v (we
do not count index transformations as modifications). There are exactly two cases how Aji

may have been modified, namely either by Line 7 (then 2 ≤ i ≤ l and leftji−1
(sec(Aji

)) is the
vertex that is newly marked as active) or by Line 13 (then leftjl

(v) is the vertex that is newly
marked as active); in particular, Aji

was not modified by both lines. In the first case, Aji

satisfies Invariant (2) before the processing step of v by hypothesis. In fact, we have rji ≤ v,
as v < rji

implies that Aji
is finished and since end(Aji

) > v would contradict end(Aji
) = v.

Hence, the last edge of Aji is in Tji , which shows v = leftji
(sec(Aji)). Since ji−1 < ji

by Line 5 and due to Corollary 3, we conclude leftji−1
(sec(Aji

)) < v. In the second case,
Corollary 3 implies leftjl

(v) < v. Thus, in both cases, every new active vertex is strictly
smaller than v, which proves v′ < v.

This gives Invariant (1), as every A′ji
starts with s and every new vertex is left of its

predecessor in the path by Corollary 3.
For Invariant (2), consider the path A′i for any i. First, assume that A′i is finished. Then

either Ai is finished or v = ri, according to Line 11 of Algorithm 1 in the processing step of
v. In the former case, Ai satisfies Invariant (2) for v and so does A′i for v′ < v. In the latter
case, we have v′ < v = ri and end(A′i) = end(Aj1) = v.

Second, assume that A′i was not modified in the processing step of v and is not finished.
Then end(A′i) < v, as every path with end vertex at least v is modified or finished in the
processing step of v or finished before. In particular, processing v did not change the index of
Ai = A′i. As Ai satisfies Invariant (2) for v by hypothesis, the only condition of Invariant (2)
that may be violated for v′ is end(A′i) ≤ v′. However, as end(A′i) < v was marked as active
in some previous step of Algorithm 1 and since v′ is the largest active vertex, end(A′i) ≤ v′.
Thus, A′i satisfies Invariant (2) for v′.

Third, assume that A′ji
was modified in the processing step of v and is not finished. Then

A′ji
was modified either by Line 7 or 13. If A′ji

was modified by Line 7, we have i < l and
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2 ≤ l after the cyclic downshift, as the path Aj1 is not modified by Line 7. In addition, we
know end(A′ji

) = leftji
(sec(Aji+1)) < leftji+1(sec(Aji+1)) = v by Corollary 3 and that the last

edge of A′ji
is in Tji

. Thus, rji
≤ end(A′ji

). If A′ji
was modified by Line 13, we have i = l

and rjl
≤ leftjl

(v) = end(A′jl
) by Corollary 3. Then the last edge of A′jl

is in Tjl
. In both

cases, end(A′jl
) is active before processing v′ and it follows end(A′jl

) ≤ v′.
For Invariant (3), assume to the contrary that sec(A′i) ≤ v′. Since v′ < v < sec(Aj) for

all j ∈ {1, . . . , k}, a new end vertex was appended to A′i in the processing step of v (the
end vertex was not replaced, as this would not have changed sec(A′i)). This must have been
done in Line 13 of Algorithm 1 and we conclude v′ < v = sec(A′i), which contradicts the
assumption.

For Invariant (4), consider Line 7 of the processing step of v. As showed in the proof of
v′ < v above, we have leftji−1

(sec(Aji
)) < v for all 1 < i ≤ l. Thus, Invariants (1) and (3)

imply that exactly the path A′jl
of the paths A′1, . . . , A′k contains v.

Invariant (5) follows directly from the definition of lefti. This concludes the correctness
part of the proof of Lemma 4.

So far we have shown an algorithmic proof for the existence of k s-disjoint paths from s

to the roots r1, . . . , rk. It remains to show the running time for Lemma 4. At every point
in time, we maintain the order A1 < · · · < Ai on our i ≤ k internally vertex-disjoint paths,
where i is the index of the root vertex ri that will be visited next. This ordered list can
be updated in constant time after each cyclic downshift by modifying the position of one
element.

Let v be the currently active vertex and let ri ≤ v be the root vertex that will be visited
next. Consider the ordered list of unfinished paths A1 < · · · < Ai just before invoking
Line 5. For Line 5, we need to sort the subset Aj1 , . . . , Ajl

(jl ≤ i) of such paths paths
ending at v according to <. In order to do this, we run through the i paths A1 < · · · < Ai
in that order, check for each entry whether its end vertex is v, and if so, append it to the
sorted list Aj1 < Aj2 < . . . . Since v has precisely i (or i − 1 in case of v = ri) left-edges
in T1 ∪ · · · ∪ Tk ⊆ G, this running time is upper-bounded by the number of such left-edges
plus one. Summing the number of these left-edges for every visited v thus gives a running
time bound of O(|E(T1 ∪ · · · ∪ Tk)|) for all invocations of Line 5. Since the algorithm
visits every edge only a constant number of times, this implies a total running time of
O(|E(T1 ∪ · · · ∪ Tk)|) = O(n+m).

4 Computing Vertex-Disjoint Paths Between Two Vertices

We use the algorithm of the last section to prove our following main result.

I Theorem 5. Let t < s be a vertex in Tk. Then k internally vertex-disjoint paths between
s and t can be computed in time O(|E(T1 ∪ · · · ∪ Tk)|) ⊆ O(n+m).

This theorem is directly implied by the following lemma.

I Lemma 6. Let t < s be a vertex in Tk. Then there are k paths A1, . . . , Ak with start
vertex s and k paths B1, . . . , Bk with start vertex t such that end(Ai) = end(Bi) for every
i and {A1 ∪ B1, . . . , Ak ∪ Bk} is a set of k internally vertex disjoint paths from s to t.
Moreover, all paths are contained in T1 ∪ · · · ∪ Tk and can be computed by Algorithm 2 in
time O(|E(T1 ∪ · · · ∪ Tk)|).

A first idea would be to use the loose ends-algorithm twice, once for the start vertex s and
once for the start vertex t, in order to find the paths Ai and Bi for all i. However, in general



J. E. Preißer and J.M. Schmidt 13:9

this is bound to fail. In some cases, the union of both outputs is a graph in which s and t
are not k-connected. A second attempt may try to finish two paths Ai and Bj whenever
they end at the same active vertex. However, this may fail when i 6= j, as then two single
paths Ai′ and Bj′ may remain that end at the respective roots ri′ and rj′ > ri′ such that
Bj′ cannot be extended to ri′ without violating the index scheme of Invariant (2).

We will nevertheless use Algorithm 1 to prove Lemma 6, but in a more subtle way, as
outlined next. First, we compute the paths A1, . . . , Ak with start vertex s using Algorithm 1,
until the largest active vertex v is less or equal t (i.e. the parts of the Ai between s and t are
just computed by Algorithm 1). As soon as v ≤ t, we additionally construct a second set of
paths B1, . . . , Bk with start vertex t using Algorithm 1.

The main difference to Algorithm 1 from this point on is that we extend the paths Ai and
the paths Bi in parallel (i.e. we take the largest active vertex of both running constructions)
such that, after the processing step of v, the vertex v is not contained in any two paths Ai
and Bj with i 6= j. This ensures the vertex-disjointness.

If no A-path or no B-path ends at v, we again just perform Algorithm 1; then at most
one path contains v after the processing step. Otherwise, some A-path and some B-path
ends at v. After the processing step at v, we want to have exactly two paths Aj and Bj
(i.e. having the same index) that end at v; such a pair of paths is then finished. In order to
ensure this, we choose j as the largest index such that Aj or Bj ends at v before processing
v. If both Aj and Bj end at v, we perform one processing step of Algorithm 1 at v for the
A-paths and the B-paths, respectively, which implies that no other path is ending at v.

Otherwise, exactly one of the paths Aj and Bj ends at v, say Aj . Then Bj is not
finished, as we finish only paths having the same index, and the last edge of Bj is in Fj . By
assumption, there is an index i < j such that Bi ends at v. We then apply a processing step
of Algorithm 1 (including a cyclic downshift) on Bj and all B-paths that end at v, and one
on all A-paths, respectively. Then the new paths Aj and Bj (due to cyclic downshifts, these
correspond to the former A- and B-paths with lowest index ending at v) end at v afterward,
but no other A- or B-path, as desired. Note that the replacement of the last edge of (the
old) Bj , which did not end at v but, say, at a vertex w, may cause w to be active although
neither an A-path nor a B-path ends at w.

For a precise description of the approach, see Algorithm 2. The following observations
follow directly from Algorithm 2.

I Observation 1. Throughout Algorithm 2 the paths A1, . . . , Ak, B1, . . . , Bk satisfy the
following properties.
(1) For every i ∈ {1, . . . , k}, Ai and Bi are both finished or both unfinished.
(2) As long as the largest active vertex is larger than t, B1 = B2 = · · · = Bk = (t).
(3) The end vertex of every unfinished path is active.

Before the processing step of any active vertex v, the paths Ai and Bi satisfy several
invariants, the most crucial of which are that they are {v + 1, . . . , s − 1}\{t}-disjoint and
that the vertices of every Ai and Bi are decreasing in <.

I Invariants. Let v < s be the largest active vertex, or v := 0 if there is no active vertex left.
Before processing v, the following invariants are satisfied for every 1 ≤ i ≤ k:
(1) Ai starts with s, Bi starts with t, and the vertices of both paths are strictly decreasing in

<.
(2) The paths Ai and Bi are finished if and only if v < end(Ai) = end(Bi). If Ai and Bi

are not finished, then ri ≤ end(Ai) ≤ v, ri ≤ end(Bi) ≤ v, and the last edge of Ai as
well as the last edge of Bi (if Bi has length at least 1) are in Ti.
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Algorithm 2 MatchingEnds(G,<, s, t, k). . t is a vertex in Tk, t < s

1: for all i do . initialize all Ai and Bi
2: Ai := (s, lefti(s))
3: Mark lefti(s) as active
4: Bi := (t)
5: Mark t as active
6: while there is a largest active vertex v do . process v
7: if v=t then
8: for all i do . initialize all Ai
9: if end(Ai) = t then

10: Ai, Bi are finished
11: else
12: Append lefti(t) to Bi
13: Mark lefti(t) as active
14: Unmark t from being active
15: else
16: IA := {i|end(Ai) = v}
17: IB := {i|end(Bi) = v}
18: if IA and IB are empty then
19: Unmark v from being active and go to Line 6
20: j := max(IA ∪ IB)
21: for all pairs (i1, i2) of consecutive indices i1 < i2 in IA ∪ {j} do
22: Replace end(Ai2) with lefti1(sec(Ai2)) . replace ends
23: Mark lefti1(sec(Ai2)) as active
24: for all pairs (i1, i2) of consecutive indices i1 < i2 in IB ∪ {j} do
25: Replace end(Bi2) with lefti1(sec(Bi2)) . replace ends
26: Mark lefti1(sec(Bi2)) as active
27: Perform a cyclic downshift on all Ai with i ∈ IA ∪ j
28: Perform a cyclic downshift on all Bi with i ∈ IB ∪ j
29: if v = end(Aj) = end(Bj) then . if and only if IA 6= ∅ 6= IB
30: Aj , Bj are finished
31: else if v = end(Aj) then
32: Append leftj(v) to Aj . append predetermined vertex
33: Mark leftj(v) as active
34: else if v = end(Bj) then
35: Append leftj(v) to Bj . append predetermined vertex
36: Mark leftj(v) as active
37: Unmark v from being active
38: Output A1, . . . , Ak, B1, . . . , Bk
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(3) sec(Ai) > v. If v ≥ t, Bi = (t). If v < t, either Bi is finished with Bi = (t) or Bi has
length at least 1 such that sec(Bi) > v.

(4) Let w 6= t be a vertex with v < w < s. If w ∈ Ai ∪ Bi, w is neither contained in a
path Aj 6= Ai nor in a path Bj 6= Bi. If w ∈ Ai ∩ Bi, Ai and Bi are finished with
w = end(Ai) = end(Bi).

(5) Ai ∪Bi ⊆ T1 ∪ · · · ∪ Tk

Invariant (2) implies that the algorithm has finished all paths when v = 0 and that
the end vertices of Ai and Bi match for all i. Invariants (1) and (3) will be necessary to
prove Invariant (4), which in turn implies that the paths A1 ∪B1, . . . , Ak ∪Bk are internally
vertex-disjoint. Invariant (5) settles the first part of the second claim of Lemma 6. We
continue with further consequences of some of these invariants, which can be used to prove
the invariants for the next largest active vertex v′ after processing v.

I Observation 2. Let v < s be the largest active vertex, or v := 0 if there is no active vertex
left. Before processing v, we have the following observations:
(1) Assume Invariants (1) and (3). Then, for every 1 ≤ i ≤ k, all vertices of the paths Ai

and Bi except end(Ai) and end(Bi) are greater than v before processing v.
(2) Assume Invariant (2). Then no finished path is modified while processing v, as Algorithm 2

modifies Ai or Bi, 1 ≤ i ≤ k, only if at least one of them ends at v.
(3) Assume Invariants (2) and (3). Then the largest active vertex after processing v > 0 is

smaller than v.

Due to space constraints, we omit the proofs of the Invariants (1)–(5) and Observation 2.
As in the loose ends algorithm, the running time of Algorithm 2 is upper bounded by

O(|E(T1 ∪ · · · ∪ Tk)|) and thus by O(n + m), as it suffices to visit every edge in the trees
T1, . . . , Tk a constant number of times.

4.1 Variants

Several variants of Menger’s theorem [12] are known. Instead of computing k paths between
two vertices, we can compute paths between a vertex and a set of vertices (fan variant) and
between two sets of vertices (set variant). Our algorithm extends to these variants.

I Theorem 7. Let G be a simple graph and <, s and T1, . . . , Tk be defined as in Section 2.
(i) (Fan variant) Let T = {t1, . . . , tk} be a subset of V such that ri ≤ ti < s for every

i. Then k internally vertex-disjoint paths between s and T can be computed in time
O(|E(T1 ∪ · · · ∪ Tk)|) ⊆ O(n+m).

(ii) (Set variant) Let T = {t1, . . . , tk} and S = {s1, . . . , sk} be disjoint vertex sets such that
ri ≤ ti < s and ri ≤ si ≤ s for every i. Then k internally vertex-disjoint paths between
S and T can be computed in time O(|E(T1 ∪ · · · ∪ Tk)|) ⊆ O(n+m).

Let α : V → N+ be a weight function. In the area of mixed connectivity, a set of paths
connecting two vertices s and t of G is called α-independent if every vertex v /∈ {s, t} is
contained in at most α(v) of these paths. For suitable multigraphs G, Nagamochi [13]
generalized Theorem 1 by showing that these contain k α-independent s-t-paths. Algorithm 2
can be modified to compute also these paths without increasing its running time, by replacing
the two cyclic downshifts by a more complicated algorithm that transforms the path indices.
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Abstract
We model evacuation in emergency situations by dynamic flow in a network. We want to minimize
the aggregate evacuation time to an evacuation center (called a sink) on a path network with
uniform edge capacities. The evacuees are initially located at the vertices, but their precise
numbers are unknown, and are given by upper and lower bounds. Under this assumption, we
compute a sink location that minimizes the maximum “regret.” We present the first sub-cubic
time algorithm in n to solve this problem, where n is the number of vertices. Although we
cast our problem as evacuation, our result is accurate if the “evacuees” are fluid-like continuous
material, but is a good approximation for discrete evacuees.
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1 Introduction

The goal of evacuation planning is to evacuate all the evacuees to some sinks, optimizing a
certain objective function [8, 16]. Some aspects of such planning can be modeled by dynamic
flow in a network [6] whose vertices represent the places where the evacuees are initially
located and the edges represent possible evacuation routes. Associated with each edge is the
transit time across the edge and its capacity in terms of the number of people who can enter
it per unit time. Evacuation starts from all vertices at the same time.

A completion time k-sink, a.k.a. minmax k-sink, is a set of k sinks that minimizes the
time until every evacuee has moved to a sink. If the edge capacities are uniform, it is easy to
compute a completion time 1-sink in path networks in linear time [5, 10]. Mamada et al. [16]
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solved this problem for the tree networks with non-uniform edge capacities in O(n log2 n)
time, when the sink is constrained to be at a vertex. Higashikawa et al. proposed an
O(n log n) algorithm without this constraint when the edges have the same capacity [12].

The concept of regret was introduced by Kouvelis and Yu [15], to model the situations
where optimization is required when the exact values (such as the number of evacuees at
the vertices) are unknown, but are given by upper and lower bounds. A particular instance
of the set of such numbers, one for each vertex, is called a scenario. The objective is to
find a solution which is as good as any other solution in the worst case, where the actual
scenario is the most unfavorable. Cheng et al. [5] proposed an O(n log2 n) time algorithm
for finding a minmax regret 1-sink in path networks with uniform edge capacities. This
initial result was soon improved to O(n log n) [10, 17], and further to O(n) [4]. Bhattacharya
and Kameda [4] propose an O(n log4 n) time algorithm to find a minmax regret 2-sink
on path networks. For the k-sink version of the problem, Arumugam et al. [1] give two
algorithms, which run in O(kn3 log n) and O(kn2(log n)k) time, respectively. As for the tree
networks with uniform edge capacities, Higashikawa et al. [12] propose an O(n2 log2 n) time
algorithm for finding a minmax regret 1-sink. Golin and Sandeep [7] recently proposed an
O(max{k2, log2 n}k2n2 log5 n) time algorithm for finding a minmax reget k-sink.

The objective function we adopt in this paper is the aggregate evacuation time, i.e.,
the sum of the evacuation time of every evacuee, a.k.a. minsum [11]. It is equivalent to
minimizing the average evacuation time, and is motivated by the desire to minimize the
transportation cost of evacuation and the total amount of psychological duress suffered by
the evacuees, etc. It is more difficult than the completion time variety because the objective
cost function is not unimodal along the given path. The minimization of the evacuation
completion time (resp. aggregate evacuation time) reduces to the center (resp. median)
problem, when the edge capacities are infinite, but finite capacities can cause congestion [5]
which complicates the problems. To the best of our knowledge very little is known about
this problem, except [2, 11, 13]. It is recently shown by Benkoczi et al. [2] that an aggregate
time k-sink in path networks can be found in O(kn log3 n) (resp. O(kn2 log2 n)) time, if edge
capacities are uniform (resp. nonuniform).

The main contribution of this paper is to find an aggregate time 1-sink that minimizes
regret in O(n2 log2 n) time, improving the required time from O(n3) in [11]. A set of O(n2)
dominating scenarios was identified in [11]. We first compute the aggregate time sinks for
these scenarios, then the upper envelope of the “regret functions” of all these scenarios.
Finally, we compute the lowest point of the upper envelope, which corresponds to the optimal
sink µ∗. We make use of a few novel ideas. One is used in Sec. 4 to compute an aggregate
time sink under each of the O(n2) pseudo-bipartite scenarios [11] in amortized O(log2 n) time
per sink. Another is used in Sec. 5 to compute the upper envelope of O(n2) regret functions
(with O(n3) linear segments in total) in O(n2 log2 n) time, taking advantage of a special
relationship among the regret functions.

In the next section, we define the terms that are used throughout this paper, and review
some known facts which are relevant to later discussions. Sec. 3 discusses preprocessing
which makes later operations more efficient. In Sec. 4 we show how to compute an aggregate
time sink under scenarios that “dominate” others. We then compute in Sec. 5 an optimum
sink that minimizes the max regret. The proofs of some lemmas could not be included due to
space limitation. The interested reader is referred to the arXived version [3], which provides
the proofs of all the lemmas and formal statements of three algorithms.
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2 Preliminaries

2.1 Notations/definitions

Let P (V,E) denote a given path network with vertex set V = {v1, v2, . . . , vn}. We assume that
the vertices are arranged from left to right horizontally in the index order. For 1 ≤ i ≤ n− 1,
there is an edge ei = (vi, vi+1) ∈ E, whose length is denoted by d(ei). We write p ∈ P for
any point p (on an edge or vertex) of P , and for two points a, b ∈ P , we write a ≺ b or b � a
if a lies to the left of b. The distance between them is denoted by d(a, b). If a and/or b lies
on an edge, the distance is prorated. The capacity (the upper limit on the flow rate) of
each edge is c (a constant), and the transit time is τ per unit distance. For 1 ≤ i ≤ j ≤ n,
P [vi, vj ] denotes the subpath of P from vi to vj .

For vertex vi, w(vi) ∈ R+ (the set of the positive reals) denotes its weight, which represents
the number of “evacuees” initially located at vi. Under scenario s, vertex vi has a weight
ws(vi) such that w(vi) ≤ ws(vi) ≤ w(vi), where w(vi) and w(vi) are assumed to be known.
We define the Cartesian product S ,

∏n
i=1[w(vi), w(vi)], and consider each member of S as

a scenario. Most of the above definitions were introduced in [5].
Our objective function under scenario s, Φs(x), is the sum of the evacuation times

(sometimes called cost) of all the individual evacuees to point x. More formally, for vi ≺ x �
vi+1 (resp. vi � x ≺ vi+1), let Φs

L(x) (resp. Φs
R(x)) denote the cost at x for the evacuees

from the vertices on P [v1, vi] (resp. P [vi+1, vn]). We thus have Φs(x) , Φs
L(x) + Φs

R(x). Let
µs , argminxΦs(x) be an aggregate time sink under s. Then Rs(x) , Φs(x) − Φs(µs) is
called regret at x under s [15]. We say that scenario s′ dominates scenario s at point x if
Rs′(x) ≥ Rs(x) holds. The max regret at x is given by Rmax(x) , maxs∈S R

s(x) [15]. Our
goal is to find a 1-sink, x = µ∗, that minimizes Rmax(x).

By si we denote the scenario under which w(vj) = w(vj) for all j ≤ i and w(vj) = w(vj)
for all j > i, where 0 ≤ i ≤ n. Similarly, by si we denote the scenario under which
w(vj) = w(vj) for all j ≤ i and w(vj) = w(vj) for all j > i. We call si and si bipartite
scenarios. Finally, we define weight arrays W [vi] ,

∑i
k=1 w(vk) and W [vi] ,

∑i
k=1 w(vk),

which can be precomputed in O(n) time for all i, 1 ≤ i ≤ n.

2.2 Clusters

In order to analyze congestion, in this subsection we review the notion of a cluster [11], and
introduce some new related concepts, which play important roles in subsequent discussions.
Given a point x ∈ P , which is not the sink, the evacuee flow at x toward the sink is a function
of time, in general, alternating between no flow and flow at the rate limited by capacity c. A
maximal group of vertices that provide uninterrupted flow without any gap forms a cluster.
Such a cluster observed on edge ek−1 = (vk−1, vk), arriving from right via vk, is called an
Rs-cluster with respect to (any point on) ek−1, including vk−1, but excluding vk. The vertex
of such a cluster that is closest to ek−1 is called its head vertex. An Ls-cluster with respect
to ek, including vk+1, is similarly defined for evacuees arriving from left toward the sink.

If a cluster C contains a vertex v, the cluster is said to carry the evacuees from v. We
now define particular clusters and cluster sequences.

Cs
R,k(vi) , Rs-cluster with respect to ek−1 that contains vertex vi (i ≥ k).
Cs

R,k: sequence of all Rs-clusters with respect to ek−1 (k = 2, . . . , n).
Cs

L,k(vi) , Ls-cluster with respect to ek that contains vertex vi (i ≤ k).
Cs

L,k: sequence of all Ls-clusters with respect to ek (k = 1, . . . , n− 1).

ISAAC 2018
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The total weight under scenario s of the vertices contained in cluster C is denoted by λs(C).
From now on we mainly discuss Rs-clusters, since Ls-clusters have analogous, symmetric
properties. According to the above definition, Cs

R,k(vk) is the first cluster of sequence Cs
R,k. If

vh and vi (vh ≺ vi) are the head vertices of two adjacent clusters in Cs
R,k, then the following

holds.

d(vh, vi)τ > λs(Cs
R,k(vh))/c. (1)

Intuitively, this means that when the first evacuee from vi arrives at vh, all evacuees carried
by Cs

R,k(vh) have left vh already. For vk−1 � x ≺ vk, let us analyze the cost of Cs
R,k(vi) at x,

where vi � vk. For the λs(Cs
R,k(vi)) evacuees to move to x, let us divide the time required

into two parts. The first part, called the intra cost [2], is the weighted waiting time before
departure from the head vertex, vj , of Cs

R,k(vi), and can be expressed as

{λs(Cs
R,k(vi))}2/2c. (2)

Intuitively, (2) can be interpreted as follows. As far as the travel time to vj and the
waiting time at vj are concerned, we may assume that all the λs(Cs

R,k(vi)) evacuees were
at vj to start with. Since evacuees leave vj at the rate of c, the mean wait time for
the evacuees carried by Cs

R,k(vi) is λs(Cs
R,k(vi))/2c, and thus the total for all of them is

λs(Cs
R,k(vi))/2c × λs(Cs

R,k(vi)) = {λs(Cs
R,k(vi))}2/2c. Note that the intra cost does not

depend on x, as long as vk−1 � x ≺ vk. This formula is accurate only when it is an integer,
but for simplicity, we adopt (2) as our intra cost [5].1

The second part, called the extra cost [2], is the total transit time from the head vertex
vj of Cs

R,k(vi) to x for all the evacuees carried by Cs
R,k(vi), and can be expressed as

d(x, vj)λs(Cs
R,k(vi))τ. (3)

For the evacuees carried by Cs
L,k(vi), moving to the right, we similarly define its intra cost

and extra cost, where vi � vk ≺ x � vk+1. For vk−1 � x ≺ vk, we now introduce a cost
function for cluster sequence Cs

R,k.

Φs
R,k(x) ,

∑
C∈Cs

R,k

d(x, vi)λs(C)τ +
∑

C∈Cs
R,k

λs(C)2/2c. (4)

We name the first (resp. second) term in (4) Es
R,k (resp. Is

R,k). Similarly, for x (vk ≺ x �
vk+1), we define

Φs
L,k(x) ,

∑
C∈Cs

L,k

d(vi, x)λs(C)τ +
∑

C∈Cs
L,k

λs(C)2/2c , Es
L,k + Is

L,k. (5)

When vk is clear from the context, or when there is no need to refer to it, we may write
Φs

R(x) (resp. Φs
L(x)) to mean Φs

R,k(x) (resp. Φs
L,k(x)). The aggregate of the evacuation

times to x of all evacuees is given by

Φs(x) =
{

Φs
L,k(x) + Φs

R,k+1(x) for vk ≺ x ≺ vk+1
Φs

L,k−1(x) + Φs
R,k+1(x) for x = vk.

(6)

A point x that minimizes Φs(x) is called an aggregate time sink, a.k.a. minsum sink, under s.
An aggregate time sink shares the following property of a median [14].

I Lemma 1 ([13]). Under any scenario, there is an aggregate time sink at a vertex.

1 It is accurate for fluid-like “evacuees” that is always divisible by capacity c.
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2.3 What is known
I Lemma 2 ([11]). For any given scenario s ∈ S,
(a) We can compute {Φs

L(vi),Φs
R(vi) | i = 1, . . . , n} in O(n) time.

(b) We can compute µs and Φs(µs) in O(n) time.

A scenario s under which all vertices on the left (resp. right) of a vertex have the max
(resp. min) weights is called an L-pseudo-bipartite scenario [11]. The vertex vb, where
1 ≤ b ≤ n, that may take an intermediate weight w(vb) ≤ w(vb) ≤ w(vb), is called the
boundary vertex, a.k.a. intermediate vertex [11]. Let b(s) denote the index of the boundary
vertex under pseudo-bipartite scenario s. We consider the bipartite scenarios, under which
w(vb) = w(vb) and w(vb) = w(vb), also as special pseudo-bipartite scenarios, and in the
former (resp. latter) case, either b(s) = b− 1 or b(s) = b (resp. b(s) = b or b(s) = b + 1).
The vertices that have the maximum (resp. minmum) weights comprise the max-weighted
(resp. min-weighted) part. We define an R-pseudo-bipartite scenario symmetrically with the
max-weighted part and the min-weighted part reversed. As w(vb) increases from w(vb) to
w(vb), clusters may merge.

Weight ws(vb) is called a critical weight, if two clusters with respect to any point merge
as w(vb) increases to become a scenario s. Let S∗L (resp. S∗R) denote the set of the L- (resp.
R-)pseudo-bipartite scenarios that correspond to the critical weights. Thus each scenario in
S∗L (resp. S∗R) can be specified by vb and w(vb). Let S∗ , S∗L ∪ S∗R.

I Lemma 3 ([11]).
(a) Any scenario in S is dominated at every point x by a scenario in S∗.2
(b) |S∗| = O(n2), and all scenarios in S∗ can be determined in O(n2) time.

2.4 Road map
From now on, we proceed as follows.
(1) Investigate important properties of clusters to prepare for later sections. (Sec. 3)
(2) Compute {µs | s ∈ S∗} in O(n2 log2 n) time. (Sec. 4)
(3) Compute Rmax(x) = max{Rs(x) | s ∈ S∗} in O(n2 log2 n) time. (Sec. 5.1) Rmax(x) is a

piecewise linear function, and can be specified by the set of its bending points.
(4) Find point x = µ∗ that minimizes Rmax(x) in O(n2) time. (Sec. 5.2)

3 Clusters under pseudo-bipartite scenarios

3.1 Preprocessing
Without loss of generality, we concentrate on Rs-clusters for s ∈ S∗L, since the other
combinations, such as Rs-clusters for s ∈ S∗R, etc., can be treated analogously. For k =
2, . . . , n, let Cs

R,k consist of qs(k) clusters

Cs
R,k = 〈C1, C2, . . . , Cqs(k)〉, (7)

and let ui be the head vertex of Ci, where vk = u1 ≺ . . . ≺ uqs(k). By (1), d(ui, ui+1)τ >
λ(Ci)/c holds for i = 1, 2, . . . , qs(k)− 1.

2 Not necessarily by the same scenario. The scenario depends on a particular x.
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I Lemma 4.
(a) For any scenario s ∈ S, the number of distinct clusters in {Cs

R,k | k = 2, . . . , n} is O(n).
(b) For any scenario s ∈ S, we can construct {Cs

R,k | k = 2, . . . , n} in O(n) time.

Proof. (a) Consider Cs
R,k in the order k = n, n − 1 . . . , 2. Cluster sequence Cs

R,vn
consists

of just one cluster composed of vn. Let Cs
R,k+1 = 〈C ′1, C ′2 . . . , C ′qs(k+1)〉 for some k. Cluster

C1 ∈ Cs
R,k contains vertex vk and possibly the vertices of C ′1, . . . , C ′h for some h, where

0 ≤ h ≤ qs(k + 1) and h = 0 means C1 contains just vk and no other vertex. Note that C1
is new when we go from k + 1 to k, but the other clusters of Cs

R,k, i.e., C2, . . . , Cqs(k) are
C ′h+1, . . . , C

′
qs(k+1). This means that each k introduces just one new cluster, and thus the

number of distinct clusters is O(n).
(b) Let us construct Cs

R,k in the order k = n, n− 1 . . . , 2. Assume that we have computed
Cs

R,k+1, and want to compute C1. If (1) does not hold between the new singleton cluster
vk and the first cluster, C ′1, of Cs

R,k+1, namely if d(vk, vk+1)τ ≤ λs({vk})/c, then vk and C ′1
merge to form a single cluster. (1) may become violated for this new cluster and C ′2, in
which case they also merge. As a result of such chain reaction, if vk merges with the first
h clusters in Cs

R,k+1 this way, we spend O(h) time in computing C1. Those h clusters will
never contribute to the computation time from now on. If we pay attention to the head
vertex, ui, of Ci, it gets absorbed into a larger cluster at most once, and each time such an
event takes place, constant computation time incurs. J

Computing the extra cost Es
R,k in (4) is fairly easy, because the extra cost of cluster C is

linear in λs(C). The intra costs can also be computed efficiently.

I Lemma 5 ([11]). Given a scenario s ∈ S,
(a) We can compute {Es

R,k, I
s
R,k | k = 1, . . . , n− 1} in O(n) time.

(b) We can compute {Es
L,k, I

s
L,k | k = 2, . . . , n} in O(n) time.

Let s0 , sn and sM , sn. The following corollary follows easily from Lemmas 4 and 5.

I Corollary 6.
(a) There are O(n) distinct clusters among the cluster sequences in {Cs0

L,k∪C
s0
R,k∪C

sM

L,k∪C
sM

R,k |
k = 1, . . . , n}, and we can compute them in O(n) time.

(b) We can compute {Es0
R,k, I

s0
R,k, E

sM

R,k, I
sM

R,k | k = 1, . . . , n − 1} and {Es0
L,k, I

s0
L,k, E

sM

L,k, I
sM

L,k |
k = 1, . . . , n− 1} in O(n) time

(c) For each cluster sequence in Cs0
L,k ∪ C

s0
R,k ∪ C

sM

L,k ∪ C
sM

R,k, we can compute the prefix sum of
the intra costs in O(n) time. Thus we can compute the prefix sums of the intra costs for
all k in O(n2) time, if we do not repeat the common data.

From now on, we assume that we have precomputed all the data mentioned in Corollary 6.

3.2 Constructing set of pseudo-bipartite scenarios S∗

Let s = s0 in (7). Starting with b = k, we increase w(vb) until Cs0
R,k(vk) merges with the

next cluster in Cs0
R,k, and record the value of b and the amount of increase δ above w(vb)

that caused this merger. We repeat this with the newly formed cluster, instead of Cs0
R,k(vk).

If w(vb) is reached we fix w(vb) = w(vb), increment b and repeat, as long as vb ∈ CsM

R,k(vk)
holds. We will end up with a list

∆R,k , {(b1, δk,1), (b2, δk,2), . . .}, (8)
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(a)

(b)
vl

vl

CsM
R,k(vk)

vk

vk
Cs0

R,k(vk)

Figure 1 (a) Some clusters in Cs0
R,k; (b) CsM

R,k(vk).

where k ≤ b1 ≤ b2 ≤ · · · , and for any two adjacent items, (bi, δk,i) and (bi+1, δk,i+1), if bi =
bi+1 then δk,i < δk,i+1. Intuitively, (bi, δk,i) ∈ ∆R,k means that when w(vbi) = w(vbi) + δk,i

the first cluster of Cs
R,k(vk) expands by merging with the next cluster, where s is the scenario

reflecting the weight changes made so far. Fig. 1(a) illustrates some clusters in the beginning
of Cs0

R,k, and Fig. 1(b) shows CsM

R,k(vk). We start with vb = vk in Cs0
R,k(vk) in Fig. 1(a), which

is a part of Cs0
R,k that we already have. We increase w(vb) by δk,1 from ws0(vb) = w(vb) until

Cs0
R,k(vk) expands by merging with the next cluster on its right. This δk,1 is obtained by

solving3

d(u1, u2)τ = {λs0(Cs0
R,k(vk)) + δk,1}/c. (9)

Assuming w(vb) + δk,1 ≤ w(vb), for ws(vb) = w(vb) + δk,1, Cs0
R,k(vk) may merge with the next

h− 1 clusters in Cs0
R,k, where h ≥ 2, resulting in a combined cluster C under s ( 6= s0), and

the first item (k, δk,1) being created in ∆R,k. If w(vb) + δk,1 ≤ w(vb), on the other hand,
we repeat this operation to find the increment δk,2, if any, above w(vb) that causes C to
absorb the h + 1st cluster in Cs0

R,k, etc. If w(vb) + δk,1 > w(vb), on the other hand, we set
w(vb) = w(vb) and increment b by one without recording δk,1. When this process terminates,
we end up with CsM

R,k(vk) in Fig. 1(b), because all the vertices involved now have their max
weights, and we will have constructed ∆R,k.4 Clearly, each item (bj , δk,j) ∈ ∆R,k corresponds
to a scenario sj ∈ S∗L in the following way.

wsj (vi) =


wsM (vi) for 1 ≤ i < bj

w(vbj ) + δk,j for i = k

ws0(vi) for bj < i ≤ n
(10)

Let S∗L,k denote the set of scenarios corresponding to the increments in ∆R,k according to
(6). It is clear that S∗L = ∪n

k=1S∗L,k. Note that under any s ∈ S∗L,k, Cs
R,k(vb(s)) is the first

cluster in Cs
R,k.

I Lemma 7.
(a) We can compute ∆R,k in O(|CsM

R,k(vk)|) time, where |CsM

R,k(vk)| denotes the number of
vertices in cluster CsM

R,k(vk).
(b) We can construct {∆R,k | k = 2, . . . , n}, hence S∗L, in O(n2) time.
(c) For each scenario s ∈ S∗L,k, we can identify the last vertex in Cs

R,k(vk) in constant extra
time while computing ∆R,k.

3 Let ui be as defined after (7) for s = s0.
4 The above method to compute ∆R,k is presented as a formal algorithm in [3].

ISAAC 2018



14:8 Minsum Sink on Dynamic Flow Path Networks

4 Computing sinks {µs | s ∈ S∗}

4.1 Computing {Φs(x) | s ∈ S∗}
Let us now turn our attention to the computation of the extra and intra costs under the
scenarios in S∗L,k. Those under the scenarios in S∗R,k can be computed similarly. While
computing ∆R,k as in Sec. 3.2, we can update the extra and intra costs at vk under the
corresponding scenario s ∈ S∗L,k as follows.

When the first increment δk,1 causes the merger of the first two clusters in Cs0
R,k, for

example, we subtract the extra cost contributions of those two clusters from Es0
R,k, and add

the new contribution from the merged cluster in order to compute Es
R,k for the new scenario

s that results from the incremented weight ws(vk) = w(vk) + δk,1. We can similarly compute
Is

R,k from Is0
R,k in constant time. Carrying out these operations whenever a newly expanded

cluster is created thus takes O(n) time for a given k and O(n2) time in total for all k’s.
Define ∆R , ∪n

k=2∆R,k.

I Lemma 8. Assume that ∆R, as well as all the data mentioned in Corollary 6, are available.
Then under any given scenario s ∈ S∗L, we can compute the following in O(log n) time.
(a) Φs(vi) = Φs

L(vi) + Φs
R(vi) for any given index i.

(b) Φs(x) = Φs
L(x) + Φs

R(x) for any given point x.

Among the items in ∆R, there is a natural lexicographical order, ordered first by b and
then by w(vb), from the smallest to the largest. We write sl s′ if s is ordered before s′ in
this order. In what follows we assume the items in ∆R are sorted by l.

4.2 Tracking sink µs

Observe that we have Φs
L(x) = ΦsM

L (x) for x � vb, which is independent of w(vb). Similarly,
we have Φs

R(x) = Φs0
R (x) for x � vb, which is also independent of w(vb). We initialize the

current scenario by s = s0, the boundary vertex vb by b = 1, and its weight by w(vb) = ws0(v1).
For each successive increment in ∆R, from the smallest (according to l), we want to know
the leftmost 1-sink under the corresponding scenario. It is possible that, as we increase the
weight w(vb), the sink may jump across vb from its right side to its left side, and vice versa,
back and forth many times. We shall see how this can happen below.

By Lemma 8, for a given index b, we can compute {Φsb−1(vi) | i = 1, 2, . . . , n} in O(n log n)
time.5 We first scan Φsb−1(vb),Φsb−1(vb−1), . . . ,Φsb−1(v1), and whenever we encounter a
value smaller than those we examined so far, we record the index of the corresponding vertex.
Let Ib

L be the recorded index set, starting with b. We then scan Φsb−1(vb),Φsb−1(vb+1), . . . ,
Φsb−1(vn) similarly, and let Ib

R be the recorded index set, starting with b. We now plot point
(vi,Φsb−1(vi)) for i ∈ Ib

L ∪ Ib
R in the x-y coordinate system, with distance d(v1, vi) as the x

value and Φsb−1(vi) as the y value. See Fig. 2, where d(v1, vi) is indicated by vi. It is clear
from the definition that for i, j ∈ Ib

L such that i < j, we have Φsb−1(vi) < Φsb−1(vj), and
for i, j ∈ Ib

R such that i < j, we have Φsb−1(vi) > Φsb−1(vj). Therefore, the points plotted
on the left (resp. right) side of vb get higher and higher as we approach vb from left (resp.
right), as seen by the black dots in Fig. 2.

Note that for a vertex vi (≺ vb), as w(vb) is increased, Φs
R(vi) increases, while Φs

L(vi)
remains fixed at ΦsM

L (vi), where s is the scenario reflecting the change in w(vb). For vi � vb,
on the other hand, as w(vb) is increased, Φs

L(vi) increases, while Φs
R(vi) remains fixed at

5 Recall the definition of sj from Sec. 2.1.
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vb

Φs(vb)

Φs(vj)

Φs(vi)

Φs(v)

0 vi vjvi1 vip vj1 vjq

Figure 2 Graphical representation of Φsb−1 (vi) = Φsb−1
L (vi) + Φsb−1

R (vi).

Φs0
R (vi). A vertical arrow in Fig. 2 indicates the relative amount of increase in the cost at

the corresponding vertex when w(vb) is increased by a certain amount. Note that the farther
away a vertex is from vb, the more is the increase in the cost.

The following proposition summarizes the above observations.

I Proposition 9.
(a) Φs(vi) < Φs(vj) holds for any pair i, j ∈ Ib

L such that i < j.
(b) Φs(vi) > Φs(vj) holds for any pair i, j ∈ Ib

R such that i < j.
(c) Either the vertex with the smallest index in Ib

L or the vertex with the largest index in Ib
R

has the lowest cost, i.e., it is a 1-sink.

Note that the cost at vb, Φs
R(vb), is the highest among the points plotted, and is not

affected by the change in w(vb). We consider the three properties in Proposition 9 as invariant
properties, and remove the vertices that do not satisfy (a) or (b), as we increase w(vb). As we
increase w(vb), in the order of the sorted increments in ∆R, we update Ib

L and Ib
R, looking

for the change of the sink.

I Proposition 10. As w(vb) is increased, there is a sink at the same vertex for all the
increments tested since the last time the sink moved, until the smallest index in Ib

L or the
largest index in Ib

R changes, causing the sink to move again. The sink cannot move away
from vb.

We are thus interested in how Ib
L and Ib

R change, in particular, when its smallest index
in Ib

L or the largest index in Ib
R changes.

I Lemma 11. Let i and j be vertex indices such that either they are adjacent in Ib
L and

i < j holds, or adjacent in Ib
R and i > j holds. The smallest6 (b, δ) ∈ ∆R, if any, such that

increasing w(vb) by δ above w(vb) causes the cost at vi to reach or exceed that at vj can be
determined in O(log2 n) time.

Proof. Use binary search on ∆R (sorted by l), and compare the costs at vi and vj for each
probe in O(log n) time, using Lemma 8. J

If such a δ in Lemma 11 does not exist, we set δ =∞. From Lemma 11, it follows that the
total time for all adjacent pairs is O(n log2 n). We insert a triple (δ; i, j) into a min-heap Hb,
organized according to the first component δ, from which we can extract the item with the
smallest first component. For a given b, once Hb has been constructed this way, we pop the
item (δ; i, j) with the smallest δ from Hb in constant time. If i, j ∈ Ib

L (resp. i, j ∈ Ib
R) then

6 According to l.
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we remove i (resp. j) from Ib
L (resp. Ib

R), and compute (δ′; i−, j) (resp. (δ′; i, j+)) where i−
(resp. j+) is the index in Ib

L (resp. Ib
R) that is immediately before (resp. after) i (resp. j).

By Lemma 11 we can find δ′ in O(log2 n) time, and insert (δ′; i−, j) (resp. (δ′; i, j+)) into
Hb, taking O(log n) time. If i was the smallest index in Ib

L, the sink may have moved. In
this case no new item is inserted into Hb. Similarly, if j was the largest index in Ib

R, the sink
may have moved, and no new item is inserted into Hb.

We repeat this until either Hb becomes empty or the minimum δ-value in Hb is ∞. It is
repeated O(n) times, so the total time required is O(n log2 n). If the sink moves when the
smallest index in Ib

L or the largest index in Ib
R changes, we have determined the sink under all

the scenarios with the lighter w(vb) since the last time the sink moved. Once w(vb) = w(vb)+δ
reaches w(vb), b is incremented, and the new boundary vertex now lies to the right of the old
boundary vertex vb in Fig. 2. For each b = 1, 2, . . . , n, let Sb = {s ∈ S∗ | b(s) = b}.7

I Lemma 12.
(a) Sinks {µs | s ∈ Sb ∩S∗L} can be computed in O(n log2 n) time for a given boundary vertex

vb.
(b) Sinks {µs | s ∈ Sb∩S∗R} can be computed in O(n log2 n) time for a given boundary vertex

vb.

For the clusters in Cs
R,i that lie to the right of Cs

R,i(vb) and are not merged as a result of
an increase in w(vb), the sum of their intra costs was already precomputed. Repeating the
above operations for b = 1, 2, . . . , n, we get our first major result.

I Lemma 13. The sinks {µs | s ∈ S∗} can be computed in O(n2 log2 n) time.

5 Minmax regret sink

Now that we know how to compute the sinks {µs | s ∈ S∗}, we proceed to compute the upper
envelope for the O(n2) regret functions {Rs(x) = Φs(x) − Φs(µs) | s ∈ S∗}. The minmax
regret sink µ∗ is at the lowest point of this upper envelope.

5.1 Upper envelope for {Rs(x) | s ∈ S∗}
If we try to find the upper envelope maxs∈S∗ Φs(x) in a naïve way, it would take at least
O(n3) time, since |S∗| = O(n2), and for each s, Φs(x) consists of O(n) linear segments. We
employ the following two-phase approach.
Phase 1: For each b, compute the upper envelope maxs∈Sb

Rs(x).
Phase 2: Compute the upper envelope for the results from Phase 1.
In Phase 1, we successively update the upper envelope, incorporating regret functions one
at a time, which can be done in amortized O(log2 n) time per regret function. Thus the
total time for a given b is O(n log2 n) and the total time for all b is O(n2 log2 n). In Phase
2, we then compute the upper envelope for the resulting O(n) regret functions with a total
of O(n2) linear segments in O(n2 log n) time. To implement Phase 1, we first present the
following lemma.

I Lemma 14. Let s, s′ ∈ Sb be two scenarios such that and sl s′. As x moves to the right,
the difference D(x) = Φs′(x)− Φs(x) decreases monotonically for v1 � x � vb and increases
monotonically for vb � x � vn.

7 The above method is presented as a formal algorithm in [3].
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v1 vnµ(s′)

Rs′(x)
Rs(x)

µ(s) vb

Figure 3 Rs(x) and Rs′(x) cross each other at two points in this example.

We divide each regret function in {Rs(x) | s ∈ Sb} into two parts: the left of vb and
the right of vb. We then find the upper envelope for the left set and right set separately.
Note that each Rs(x) has O(n) bending points, since they bend only at vertices. Taking the
maximum of two such functions may add one extra bending point on an edge, so the total
bending points in the upper bound is still O(n). By definition we have

Rs′(x)−Rs(x) = Φs′(x)− Φs′(µs′)− {Φs(x)− Φs(µs)}
= Φs′(x)− Φs(x)− {Φs′(µs′)− Φs(µs)}. (11)

Since the second term in (11) is independent of position x, Lemma 14 implies

I Lemma 15. Let s, s′ ∈ Sb be two scenarios such that and sl s′. Then Rs′(x) may cross
Rs(x) at most once in the interval [v1, vb] from above, and at most once in the interval
[vb, vn] from below.

See Fig. 3 for an illustration for Lemma 15. For x � vb, we compute maxs∈S∗
b
Rs(x),

updating a partially computed upper envelope U(x) by successively incorporating the “next”
regret function Rs(x) to it. We can use binary search to find the crossing point of U(x) and
Rs(x), and invoke Lemma 8.

I Lemma 16.
(a) The upper envelope maxs∈Sb

Rs(x) has O(|Sb|+ n) line segments.
(b) We can compute the upper envelope maxs∈Sb

Rs(x) in O(|Sb| log2 n) time.

Proof. (a) Without loss of generality, consider the upper envelope in the interval [vb, vn].
Since Rs(x) = Φs(x)− Φs(µs), Rs(x) is linear over the edge connecting any adjacent pair of
vertices, and maxs∈Sb

Φs(x) has O(|Sb|+ n) line segments on all edges by Lemma 15.
(b) See the analysis of Algorithm 3 in [3]. J

5.2 Main theorem
Since ∪n

b=1Sb = S∗ and |S∗| = O(n2), Lemma 16 implies that it takes O(n2 log2 n) time
to compute {maxs∈Sb

Rs(x) | b = 1, . . . , n}. These n upper envelope together have O(n2)
linear segments. Hershberger [9] showed that the upper envelope of m line segments can be
computed in O(m logm) time. We can use his method to compute the global upper envelope
for {maxs∈Sb

Rs(x) | b = 1, . . . , n} in O(n2 log n) additional time.

I Lemma 17. The upper envelope maxs∈S∗ R
s(x) can be computed in O(n2 log2 n) time.

So far we have paid no attention to the negative spikes in Rs(x) at vertices. Divide the
problem in two subproblems: minmax regret sink is (i) on an edge, and (ii) at a vertex.
Compare the two solutions and pick the one with the smaller cost. In addition to Lemma 17,
we should evaluate the regret at each vertex. The true minmax regret sink is at the point
with the minimum of these maximum regrets. Corollary 6 and Lemmas 3, 13 and 17 imply
our main result.
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I Theorem 18. The minmax regret sink on path networks can be computed in O(n2 log2 n)
time.

6 Conclusion

We presented an O(n2 log2 n) time algorithm for finding a minmax regret aggregate time
(a.k.a. minsum) sink on path networks with uniform edge capacities, which improves upon
the previously most efficient O(n3) time algorithm in [11]. We hope some methods we devised
in this paper will find applications in solving some other related problems. Future research
topics include efficiently solving the minmax regret problem for aggregate time sink for more
general networks such as trees. No such polynomial time algorithm is known at present.
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Abstract
We study augmenting a plane Euclidean network with a segment, called shortcut, to minimize the
largest distance between any two points along the edges of the resulting network. Questions of
this type have received considerable attention recently, mostly for discrete variants of the problem.
We study a fully continuous setting, where all points on the network and the inserted segment
must be taken into account. We present the first results on the computation of optimal shortcuts
for general networks in this model, together with several results for networks that are paths,
restricted to two types of shortcuts: shortcuts with a fixed orientation and simple shortcuts.
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1 Introduction

A fundamental task in network analysis, especially in the context of geographic data (for
instance, for networks that model roads, rivers, or train tracks), is analyzing how an existing
network can be improved. This can arise in many different contexts: in relation to facility
location analysis, for instance, to guarantee a certain maximum travel time from any point
on the network to the nearest hospital, or in road network design problems, to decide where
to add road segments to reduce network congestion [16].

Networks like the ones above are naturally modeled as a geometric network: an undirected
graph whose vertices are points in R2 and whose edges are straight-line segments connecting
pairs of points. Moreover, in many applications, it is reasonable to assign lengths to the
edges equal to the Euclidean distance between their endpoints. These are called Euclidean
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p

q

r

r̄

Figure 1 Left: Example of network with diameter 4 (each edge has unit length); in the highway
model, no single segment insertion can improve the diameter. Right: in the planar model, segment
pq is a shortcut, since its insertion reduces the diameter to d(r, r̄) = 3.5. However, pq is not a
shortcut in the highway model as its insertion increases the diameter to 5.

networks. When, in addition, there are no crossings between edges, the Euclidean network
is said to be plane. Many problems in geographic analysis, for instance, those involving
transportation networks, can be accurately modeled with a plane Euclidean network. In the
following, we shall simply write network, it being understood as plane and Euclidean.

One of the most fundamental ways to improve a network is by adding edges. This increases
the connectivity of the network and potentially can decrease travel times and congestion.
The most studied criteria to measure network improvement, in the geometric setting, are
related to distances. Particularly important is the maximum distance, or diameter of the
network, which provides an upper bound on the distance between any two network points.
Another important distance-related criterion in this context is the dilation, which captures
the maximum detour between two points on the network.

In this work, we focus on the problem of adding edges to a network in order to improve its
diameter. This can be seen as a variant of the Diameter-Optimal-k-Augmentation problem,
which consists in inserting k additional segments into a graph, while minimizing the largest
distance in the resulting network (see the survey [14] for more on augmentation problems
over plane geometric graphs). More precisely, we study a continuous version of the problem
for k = 1: we consider the addition of one segment, called shortcut, whose endpoints can be
any two points (not necessarily vertices) on the network. A segment will be considered a
shortcut only if its insertion improves the diameter of the resulting network. Note that the
resulting network includes the points on the shortcut inserted.

Our goal is to find an optimal shortcut: one minimizing the diameter of the resulting
network, over all possible shortcuts.

Two major variants of the problem arise, depending on how the shortcut is inserted into
the network. In the first variant, which we call highway model, the crossings between the
shortcut and the network edges do not form new network vertices: a path can only enter and
leave the shortcut through its endpoints. In contrast, in the planar model, every crossing
creates a new vertex, which can be used by paths in the network. Figure 1 illustrates some
of the differences between the two models.

In this work, we focus on the planar model. This model is more general, and is applicable
to a wider range of situations, like the addition of segments to road or pedestrian networks.
From a theoretical point of view, the difference between the highway and planar model is
important. The latter results in more complex problems, since the fact that a shortcut can
be used only in part, implies that the structural information on how the distances in the
network change after adding a segment is more difficult to maintain. Moreover, as we show
in this work, many intuitive properties of shortcuts do not hold in the planar model anymore.
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Related work. There has been a considerable amount of work devoted to the graph version
of the Optimal-k-Augmentation problem. Due to space constraints, we only discuss the
geometric version of the problem (i.e., where the graph is embedded in the plane), and where
the continuous diameter is used (i.e., the distances are taken over all pairs of points in the
network, as opposed to considering only pairs of vertices).

Most attention to the problem studied here has been on the highway model, for certain
classes of graphs. For paths, De Carufel et al. [6] gave an algorithm to find an optimal
shortcut in linear time, and also optimal pairs of shortcuts (i.e., k = 2) for convex cycles.
Trees have been studied in a recent follow-up work [7], which presents an algorithm to find
an optimal shortcut for a tree of size n in O(n log n) time. For circles, very recently Bae et
al. [1] have analyzed how to add up to seven shortcuts in an optimal way.

For the planar model much less is known. Yang [15] designed three different approximation
algorithms to compute an optimal shortcut for certain types of paths. Cáceres et al. [5]
were the first to consider general networks, for which they show that one can find a shortcut
in polynomial time if one exists (note that there are networks whose diameter cannot be
improved by adding only one segment, e.g., a cycle), but they do not look for an optimal one.

Our results. We present the first study of optimal shortcuts in the planar model for general
networks, and several improved results for paths. An important contribution of our work
is to highlight many important differences between the highway and planar models, the
latter resulting in considerably harder problems. In Section 2, we give a polynomial time
algorithm to compute an optimal shortcut if one exists. Moreover, we present a discretization
of the problem that immediately leads to an approximation algorithm for general networks,
generalizing an existing result for paths [15]. Section 3 focuses on paths: we first show that
the diameter of a path network after adding a shortcut can be computed in Θ(n) time. Then
we improve the method of Section 2 for shortcuts of any fixed direction. Finally, we study
simple shortcuts, a variant that has been studied before, which has applications in settings
where the added edge cannot intersect the existing network.

Due to space limitations, most proofs are not included here; they can be found in [12].

1.1 Preliminaries

We will use N = (V (N ), E(N )) to denote a network with n vertices, and N` for its locus,
the set of all points of the Euclidean plane that are on N . Thus, N` is treated indistinctly
as a network or as a closed point set. When N` is a path, we use P` instead of N`. Further,
we write a ∈ N` for a point a on N`, and V (N ) ⊂ N`.

A path P connecting two points a, b on N` is a sequence au1 . . . ukb such that u1u2,. . . ,
uk−1uk ∈ E(N ), a is a point on an edge ( 6= u1u2) incident to u1, and b is a point on an edge
( 6= uk−1uk) incident to uk. We use |P | to denote the length of P , i.e., the sum of the lengths
of all edges uiui+1 plus the lengths of the segments au1 and buk. The length of a shortest
path from a to b is the distance between a and b on N`. This distance is written as dN`

(a, b)
or d(a, b) when the network is clear, and whenever ab /∈ E(N`), it is larger than |ab|, the
Euclidean distance between the points.

The eccentricity of a point a ∈ N` is ecc(a) = maxb∈N`
d(a, b), and the diameter of N` is

diam(N`) = maxa∈N`
ecc(a). Two points a, b ∈ N` are diametral whenever d(a, b) = diam(N`),

and a shortest path connecting a and b is then called diametral path.
The diameter of N`, diam(N`), can be computed in polynomial time [5, 8]. Furthermore,

the diametral pairs of N` are either (i) two vertices, (ii) two points on distinct non-pendant
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edges1, or (iii) a pendant vertex and a point on a non-pendant edge [5, Lemma 6]. Thus, with
some abuse of notation, in Section 2, we will say that a diametral pair α, β ∈ V (N ) ∪ E(N )
may be (i) vertex-vertex, (ii) edge-edge, or (iii) vertex-edge.

A shortcut for N` is a segment s with endpoints on N` such that diam(N`∪s) < diam(N`).
We say that shortcut s is simple if its two endpoints are the only intersection points with
N`, and s is maximal if it is the intersection of a line and (N` ∪ s), i.e., s = (N` ∪ s) ∩ `, for
some line `. A shortcut is optimal if it minimizes diam(N` ∪ s) among all shortcuts s for N`.

2 General networks

The main result in [5] states that one can always determine in polynomial time whether
a network N` has a shortcut (and compute one, in case of existence). In this section, we
first prove the analogous result for optimal shortcuts. Our proof uses some ideas in [5]
but captures the property of being optimal with a much shorter argument based on some
functions defined in Lemma 1 below.

Let α, β ∈ V (N ) ∪ E(N ), and let e = uv and e′ = u′v′ be two edges of N . When α

is an edge, we use ecc(u, α) to indicate the maximum distance from u to the points on α
(analogous for β and the remaining endpoints of e and e′); if α is a vertex, ecc(u, α) = d(u, α).
In general, ecc(α, β) = maxt∈α,z∈βd(t, z).

I Lemma 1. Let y = ax+ b be a line intersecting edges e = uv and e′ = u′v′ on points p
and q, respectively, and let α, β ∈ V (N ) ∪ E(N ). For each pair (w, z) with w ∈ {u, v} and
z ∈ {u′, v′}, function fw,zα,β (a, b) = ecc(w,α) + |wp|+ |pq|+ |qz|+ ecc(z, β) is linear in b.

The following theorem is the optimality version of Theorem 8 in [5].

I Theorem 2. It is possible to determine in polynomial time whether a network N` admits
an optimal shortcut, and compute one in case of existence.

It should be noted that the approach that leads to the preceding result, albeit polynomial,
has a very high running time. A direct implementation involves O(n4) functions fw,zα,β (a, b)
that must be computed, and this has to be done for O(n4) different cases. Moreover, each
evaluation of fw,zα,β (a, b) takes O(n2) time. All in all, its running time would add up to O(n10).

2.1 Discretizing the set of possible shortcuts: approximation
In light of the high running time of the previous approach, it becomes interesting to look for
faster approximation algorithms. Moreover, given the continuous nature of the problem, it
is natural to wonder to what extent the problem can be discretized. In other words, how
good can shortcuts be if we restrict them to some discrete collection of segments? The most
natural choice for such a collection is probably the segments defined by pairs of vertices u, v
of N`, but this choice can lead to poor results, as the example in Figure 2(left) shows. In
some cases, one can do better by considering the maximal extensions of the segments uv (i.e.,
the largest segment through uv with endpoints on N`), as Yang [15] did to obtain an additive
approximation for paths. Unfortunately, as Figure 2(right) shows, maximal extensions do not
work anymore as soon as N` is a tree. However, in this section, we show that if one considers
all extensions of segments defined by two vertices of N`, then it is possible to guarantee an
approximation factor for general networks.

1 An edge uv ∈ E(N ) is pendant if either u or v is a pendant vertex (i.e., has degree 1).
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a

b
c e

da b

Figure 2 Left: the optimal shortcut is the dashed purple segment, which contains the blue
segment. That blue segment (and any other segment between two vertices) gives a larger diameter
as points a and b are diametral for both segments. Right: the original diameter is given by the
orange path. The best shortcut connecting two vertices is bc. Contrary to intuition, extending bc to
bd worsens the diameter, which becomes given by points a and e (pink path).
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Figure 3 Left: approximating a shortcut s with a segment s′ ∈ S2. Right: using s′ instead s to
go from a to b causes a detour of at most 4ρ (purple path).

Let S be the infinite set of segments with endpoints in N`, and let S2 ⊂ S be the subset
of segments of S that contain two vertices of N`. The following proposition states that set
S2 is an approximation of S.

I Proposition 3. Let ρ be largest edge length in N`. Then, mins∈S diam(N` ∪ s) ≤
mins∈S2 diam(N` ∪ s) ≤ mins∈S diam(N` ∪ s) + 4ρ.

Proof. The first inequality is straightforward. For the second, it suffices to prove that given
s = pq ∈ S \ S2 there exists s′ ∈ S2 such that diam(N` ∪ s′) ≤ diam(N` ∪ s) + 4ρ.

Segment s may cross several faces of N`, refer to Figure 3. Consider the first and the last
ones, say F1 and F2, together with the vertices of N` that are adjacent to p and q in those
faces: u, v in F1 and u′, v′ in F2. Let V1 be the vertices of N` in the quadrilateral upqu′
(including u and u′), and let C1 be its convex hull. Analogously, we have V2 and C2 for the
quadrilateral vpqv′. Note that both convex hulls may have one point in common. Extending
one of the common internal tangents of C1 and C2 gives rise to a segment s′ with endpoints
on two of the edges of F1 and F2 containing points p and q. Observe that s′ intersects all
the edges of N` that are crossed by s. Thus, this construction allows us to show that, for any
two points a, b ∈ N`, the length of the shortest path between a and b that uses s′ is at most
4ρ plus the corresponding length but using s. To do this, we first use the triangle inequality
to compare the lengths of the used portions of segments s and s′, which gives a difference of
2ρ, and then we add the two distances indicated in Figure 3(right). A similar argument is
used for a ∈ s′ and b ∈ N`. J

The collection S2 is finite but quite large, it has size O(n4), which gives a time complexity
of O(n6) to compute the optimal among the segments in S2 (there are O(n2) possible
extensions per each pair of vertices, and for each of them one needs to compute the diameter
from scratch in O(n2) time [13]).
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Figure 4 Left: function Φst
uv. Right: if the distance from p1 to st decreases when adding s0 = uv,

then, after adding s1 = up1 it will become even smaller.

We would like to find a small subset of S2 that preserves the property in Proposition
3. Ideally, we would like to consider not all the extensions of a segment with endpoints in
V (N`) (that is exactly S2), but only the best extension for each segment. Unfortunately, this
appears rather difficult: already for a tree with a single vertex of degree larger than two, it
may happen that an extension of a segment gives a worse diameter than the segment itself,
see Figure 2(right). However, we show next that we can speed-up the computation of the
diameter for each extension in S2, saving a nearly-linear factor in the total running time.

Given a segment s′ = p′q′, let r be the ray starting at p′ and containing s′, and let
P = p0, p1, . . . , pk be the sorted list of intersection points of r with edges of N` (note that
q′ = pj for some j). Segments si = p′pi are called extensions of s′ to the right; the extensions
to the left are defined similarly. Next we show how to speed-up the re-computation of
the diameter of N` ∪ si as we insert s0, s1, . . . sk, in that order. To that end, we split the
re-computation of distances into two parts: distances from points on si to points on N`, and
distances (in N` ∪ si) between two points on N`.

I Lemma 4. Let u and v be vertices of N`. It is possible to compute the eccentricities of all
the extensions to the right of segment uv in O(n2) time.

Proof. As a preprocessing step, we store the distances from each vertex to all the other edges
and the point at each edge attaining that maximum distance. This allows us to construct
the functions Φstuv : [0, 1]→ R+ that encode the information of the maximum distance from
each point on an edge uv to an edge st (see [13, Theorem 2] for their analytic expression).
Their shape is as follows – see also Figure 4(left): let u′ and v′ be the farthest points to,
respectively, u and v in edge st. Function Φstuv increases uniformly from 0 and from 1 until
the distance between both lines equals the distance between u′ and v′, at that moment it
stabilizes horizontally. Thus, knowing the farthest points u′ and v′ to u and v in the segment
st (and the distance between them), it is possible to build Φstuv in constant time.

The main idea of the proof of this lemma is that it is possible to update each map Φstuv
for each extension of a segment again in constant time. Observe that Φst

uv encloses the
information of the largest distance from any point of uv to the segment st.

In a first step, we insert segment s0 = uv. As u and v are in N`, they belong to some
edges g and g′, and we use the information of Φstg and Φstg′ to find the largest distance from
u and v to st (in N`). With that information, we compute Φstuv in constant time. Thus, the
maximum eccentricity of the edge s0 = uv can be computed in linear time.

Observe that building the map Φst
uv it is possible to detect if ecc(v, st) changes when

adding s0, so, we update the values of the distances from vp0 to all the other edges, and the
point on each edge giving that maximum distance (again, in linear time).
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s0 s1 s2 s3 s4 s5 s6 s7

N(0)

E(0)

Figure 5 For each segment extension, we consider two values: E(i) – maximum eccentricity on
si – (blue points), and N(i) – maximum eccentricity in N` ∪ si for points in N`– (red squares). For
each si, the diameter of N` ∪ si is given by the maximum of these two values. Only the blue points
with green arrows must be tested (they are the maximal blue points).

Of course, the addition of s0 can change the eccentricity of p1 with respect to some other
edge (and the same with any of the other pi’s), but we will see that we do not need to update
that information at this moment. Indeed, if the distance from p1 to st changes when adding
s0, it can only decrease. Then, the addition of s1 is going to make it even smaller – see
Figure 4(right). Thus, in step i, we only need to update the information of the new vertex
pi, since by adding si, the value of pi+1 is going to be updated. J

I Lemma 5. Let u and v be vertices of N`. It is possible to find the extension s of segment
uv that minimizes diam(N` ∪ s) in O(n3 log n) time.

Proof. The value of diam(N`∪s) can be computed by calculating the eccentricity of segment
s and comparing with the eccentricities in N` ∪ s of all the points in N`. Thus, for each
extension s′ of uv to the left, we compute the eccentricities E(i) of all its extensions si to
the right using Lemma 4, in O(n2) time. Let N(i) be the maximum distance in N` ∪ si
between pairs of points in N`. Our goal is to compute mini max{E(i), N(i)}. Since N(i) is
a decreasing function as i grows, we do not need to compute N(i) for all values of i, but
only for those i for which E(i) is maximal: there is no j > i with E(j) < E(i) (see Figure 5).
Therefore, we can look for that minimum by binary search, computing N(i) only for O(log n)
values of i. Using [10], we can update the distances between vertices in quadratic time
and then compute N(i) also in quadratic time (the distance between pairs edge–edge and
vertex-edge can be computed in constant time knowing the distance between vertices), giving
a total time of O(n3 log n). J

We thus obtain the main result in this section.

I Theorem 6. Let ρ be the length of a longest edge of a network N`. Then, it is possible to
find a segment s′ such that diam(N` ∪ s′) ≤ mins∈S diam(N` ∪ s) + 4ρ in O(n5 log n) time.

This result immediately gives a simple approximation algorithm: subdivide each edge
in N` by adding dummy vertices such that the largest resulting edge length is ε. Then the
previous theorem implies the following result, which is a generalization to general networks
of the result for paths presented in [15, Theorem 8.1].

I Corollary 7. Let ρ be the length of a longest edge of a network N`. Then, for any 0 < ε <

ρ/2 it is possible to find a segment s′ such that diam(N` ∪ s′) ≤ mins∈S diam(N` ∪ s) + 4ε
in O((nρ/ε)5 log(nρ)) time.
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op q

pi

qj

Figure 6 Schematic construction showing that the insertion of a shortcut pq can create Θ(n2)
diametral pairs. The distance between the top of one spike on the left of o and one on its right, like
pi and qj , can be made to be |pq|, and equal to the diameter of P` ∪ pq.

3 Path networks

In the remaining, we focus on networks that are paths. To illustrate the complexity of this
seemingly simple setting, we begin by observing that the insertion of a shortcut to a path can
create a quadratic number of diametral pairs; as illustrated in the construction in Figure 6.
It consists of Θ(n) spikes placed symmetrically with respect to the midpoint of the shortcut,
denoted with o. After inserting pq, each spike forms a face with a cycle of length roughly
twice its height. The spikes are spaced by one unit each, while their heights are set such that
the distance from o to the top of the spike is always the same, namely |pq|/2. In this way,
for any two spike tops pi and qj on the left and right of o, respectively, the distance between
pi and pj on P` ∪ pq is always equal to |pq|, which is also the diameter of P` ∪ pq.

3.1 Diameter after inserting a shortcut
The diameter of P` can be immediately computed in linear time, however, the addition of a
shortcut s can create a linear number of new faces, thus in principle it is not clear whether
diam(P` ∪ s) can be computed in linear time, i.e., without computing the diameter between
each pair of faces. The main result in this section is that this is still possible.

Path networks have the nice property that the maximal extension of an optimal shortcut
is also optimal [15]. Thus, we can assume that s = pq is maximal and horizontal. The
insertion of s splits P` into polygonal chains, which bound the different faces created. Our
goal is to compute the pair of chains that have maximum distance in P` ∪ s.

We number the polygonal chains from 0 to m in the order of their left endpoints from left
to right along s (using right endpoints to disambiguate). Except for possibly the first and
last, all chains have both endpoints on s. For the ith chain Ci, we denote its left and right
endpoints by pli and pri , respectively. If the first vertex of P` is not on s, we consider the
path from its first vertex to the first intersection of P` with s as a degenerate loop chain with
equal left and right endpoints on s (analogous for the last vertex of P`). Refer to Figure 7.

Let |Ci| be the length of Ci, let Li = |ppli| and Ri = |pri q|, and let si denote the segment
plip

r
i . Note that Ci ∪ si forms a cycle. We use Di for the distance on P` ∪ s from pli to its

furthest point p̄li on Ci ∪ si (i.e., Di is the semiperimeter of Ci ∪ si).
We make some basic observations about the diameter between two chains, depending on

their relative position. They reveal a key property of the problem: the linear ordering between
chains induced by s defines uniquely how the diameter between two chains is achieved.

I Observation 8 (Disjoint chains). Let Ci, Cj be two chains of P` ∪ s with si ∩ sj = ∅ and si
to the left of sj . The diameter of Ci∪pliprj ∪Cj is Di+ |pri plj |+Dj = Di+Ri−Rj−|sj |+Dj .
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Figure 7 Left: chains created by s; C0 and C8 are degenerate chains. Right: detail for chain C3,
showing the cycle formed by C3 ∪ s3. Thick lines are used here to denote distances.

I Observation 9 (Nested chains). Let Ci, Cj be two chains of P` ∪ s with sj ⊂ si. The
diameter of Ci∪ si∪Cj is 1

2 (|Ci|+ |pliplj |+ |pri prj |+ |Cj |) = 1
2 (|Ci|+Lj −Li+Rj −Ri+ |Cj |).

I Observation 10 (Overlapping chains). Let Ci, Cj be two chains of P` ∪ s with si ∩ sj 6= ∅,
pli /∈ sj and prj /∈ si. The diameter of Ci ∪ pliprj ∪ Cj is 1

2 (|Ci| + |pliplj | + |pri prj | + |Cj |) =
1
2 (|Ci|+ Lj − Li +Ri −Rj + |Cj |).

Note that, while in the case of disjoint chains the diameter is achieved by a unique pair
of points, that is not the case of nested and overlapping chains, for which an infinite number
of diametral pairs of points may exist. Also, observe that expressions in Obs. 9 and Obs. 10
are the same except for adding up either Rj −Ri or Ri −Rj . This difference only exists to
differentiate between the two possible orders of the right endpoints of the two chains.

The algorithm for computing diam(P` ∪ s) in linear time starts by going along P` and
computing all intersections with s in the order of P`. Then we apply a linear-time algorithm
for Jordan sorting [11] to obtain the intersections in the order along s, say, from left to right.
Within the same running time we can compute Ck and sk. Next, we sweep the endpoints of
the chains along s to compute, for each chain Ck, its furthest chain from the ones seen so far.
To that end, certain information is computed and stored:
1. The furthest chain from Ck to the left, given by arg max0≤i<k αi, where αi = Di + Ri.

Similarly, we store the furthest chain to the right.
2. The furthest chain nested inside Ck. This is given by arg maxj∈Nk

βj , where βj =
|Cj |+ Lj +Rj and Nk is the set of indices of all chains nested inside Ck.

3. The furthest chain with one endpoint in Ck, and one outside: given by arg maxj∈Or
k
γj ,

where γj = |Cj |+Lj −Rj and Ork is the set of indices of all overlapping chains with their
left endpoint inside Ck and their right endpoint outside. Similarly, we store those with
their left endpoints outside and the right one inside of sk.

The computation of the information in (1) is straightforward when sweeping along s, say,
from left to right. We just maintain the largest value of αi seen so far as we sweep. The case
of nested or overlapping chains, which is explained next, is more complicated because one
needs the maximum restricted to those chains that are contained or overlap with Ck. For
that reason, what we will do is to store βj and γj values for all chain endpoints. Suppose that
Ci starts to the left of Cj (the other case is analogous). We use a data structure for range
minimum queries [2,3]. This allows to preprocess an array A in linear time in order to find the
maximum value in any subarray A[a, b] in O(1) time. In our context, we need two such data
structures. We use arrays An and Ao to store the maximum β and γ values defined above
for the chains that are nested and overlapping, respectively. Each array has one position for
each endpoint of a chain, thus 2m in total. The positions are as they appear sorted along
s, from left to right. Refer to Figure 8. For a chain Cj , the position corresponding to its
left endpoint has a value equal to βj in the array An, and value γj in array Ao. The values
corresponding to the right endpoints of the chains are not used, i.e., they have value −∞, in
both arrays. At each array position, we also store pointers to the corresponding chains.
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Figure 8 Example of arrays with distances to chains that are nested (An) and overlapping (Ao).

To find the nested or overlapping chain furthest from Ci we would like to perform one
maximum range query in An and one in Ao, in both cases with a subarray corresponding
to the interval between the endpoints of Ci. The goal is to use these queries to obtain the
furthest chain of each type: nested and overlapping. However, there is an issue. In the
way An and Ao are defined, the result of a range query cannot distinguish between nested
or overlapping chains, it necessarily searches in both sets (i.e., Ni ∪Ori ). Fortunately, the
geometry of the problem guarantees that we can still use the result obtained, as we show
next. The following lemma shows that if the furthest face is associated to a βi value, then it
must be nested, and similarly, if it is associated to a γi value, it must be overlapping.

I Lemma 11. Let Ck be a chain with distance to Ci equal to d∗ = max{maxj∈(Ni∪Or
i

) |Ci|−
Li−Ri+βj ,maxj∈(Ni∪Or

i
) |Ci|−Li+Ri+γj}. Then it holds: (i) if d∗ = |Ci|−Li−Ri+βk,

then k ∈ Ni; (ii) if d∗ = |Ci| − Li +Ri + γk, then k ∈ Ori .

Therefore, when processing a chain Ck, we perform one maximum range query in An
and one in Ao, and keep the maximum of those two values. Lemma 11 guarantees that the
associated chain is the furthest one that is either nested or overlapping. Proceeding in an
analogous way for the chains that are overlapping with one endpoint to the left of Ck, the
furthest face from Ck of any of the three types (disjoint, nested, overlapping) can be found in
O(1) time, and the maximum distance between two chains can thus be found in linear time.

I Theorem 12. For every path P` with n vertices and a shortcut s, it is possible to compute
the diameter of (P` ∪ s) in Θ(n) time.

It is worth noting that the ideas used in this section do not extend to networks that are
trees, since in that case the structural results in Observations 8–10 do not hold anymore.

3.2 Optimal horizontal shortcuts
In this section we compute an optimal horizontal shortcut for a path considerably faster
than using the general method in Section 2. After a suitable rotation, this allows to find an
optimal shortcut of any fixed orientation.

Assume as in Section 3.1 that shortcuts are horizontal and maximal, so they can be treated
as horizontal lines. Now, consider the vertices in P` sorted increasingly by y-coordinate,
and let ya, yb, with ya < yb, be the y-coordinates of two consecutive vertices in that order.
Observations 8–10 are stated in terms of chains, but they also apply to faces. Indeed, they
imply that the distance between any two faces fi and fj is a linear function dij(y) for
ya ≤ y ≤ yb. Thus, each face fi is associated with k − 1 lines in 2D where k is the total
number of faces (each line represents the corresponding function dij(y) for j 6= i). Considering
all faces, we obtain a set L of Θ(k2) lines (note that k = O(n)). The optimal shortcut over
all y ∈ [ya, yb] is given by the minimum of the upper envelope of L, which can be computed
in O(k2 log k) time [9]. If this is done with each of the n − 1 horizontal strips formed by
consecutive vertices of N`, the optimal horizontal shortcut is obtained in total O(n3 log n)
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time. Now, this method can be improved if, instead of computing from scratch the upper
envelope of L at each horizontal strip, we maintain the upper envelope between consecutive
strips and only add or remove the lines that change when going from one strip to the next
one. The changes between two consecutive strips are of three types: (i) one of the two line
segments bounding a face within the strip changes; (ii) a face ends; (iii) a new face appears.
In the worst case, n− 1 lines are removed from L and another n− 1 lines are added to L.
Maintaining the upper envelope of N lines is equivalent to maintaining the convex hull of
N points in 2D, which can be done in amortized O(logN) time per insert/delete operation
with a data structure of size O(N) [4]. Since we have N = O(n2), we obtain the following:

I Theorem 13. For every path P` with n vertices, it is possible to find an optimal horizontal
shortcut in O(n2 log n) time, using O(n2) space.

3.3 Optimal simple shortcuts
In this section we consider optimal simple shortcuts, i.e., we restrict the possible shortcuts to
those whose interior does not intersect N`. We show that an optimal simple shortcut can be
computed much faster if it exists. Note that one must distinguish between an optimal simple
shortcut and a simple optimal shortcut. The first is a shortcut that is optimal in the set of
simple shortcuts; this is different of being optimal in the set of all shortcuts and, in addition,
to be simple. Interestingly, it is known that optimal simple shortcuts may not exist, even
for paths [16] (e.g., when the only optimal shortcut goes through a vertex, see [12, Figure
12(a)])). It is not clear, however, what the conditions for a network N` to have an optimal
shortcut are, even restricted to simple shortcuts. The following proposition is a first approach
to this question (note that its converse is not true, see [12, Figure 12(b)]).

I Proposition 14. Let N be a network whose locus N` admits a simple shortcut, and let N
be the network resulting from adding to N all edges of the convex hull of V (N ). If all faces
of N are convex, then N` has an optimal simple shortcut.

We now turn our attention to the computation of an optimal simple shortcut if one exists.
Let s = pq be a simple shortcut for a path P` with endpoints u, v. Suppose that point p

is closer to u than q along P`; let x = d(u, p) and y = d(v, q). There is only one bounded
face in P` ∪ s whose boundary is a cycle C(p, q). Let p and q be the farthest points from,
respectively, p and q on C(p, q), and let z = (dP`

(p, q)− |pq|)/2. Note that d(p, q) = |pq| and
z = d(p, q) = d(p, q). There are three candidates for diametral path in P` ∪ s (see [6]):
1. The path from u to v via s is diametral if and only if z = min{x, y, z},
2. the path from u to p via s is diametral if and only if y = min{x, y, z},
3. the path from v to q via s is diametral if and only if x = min{x, y, z}.

Thus, diam(P` ∪ s) ∈ {x+ y + |pq|, x+ z + |pq|, y + z + |pq|}. For the highway model, it
was proved in [6] that P` has an optimal shortcut satisfying x = y, which allows to compute
it in linear time. In the planar model the situation is more complicated but, in a similar
fashion, we can prove the following lemma, which lead to Theorem 16.

I Lemma 15. Let pq be an optimal simple shortcut for P`. The following statements hold.
1. If neither p nor q are vertices of P` then x = y = z.
2. If p or q are vertices of P` then the two smallest values among x, y, z are equal.

I Theorem 16. It is possible to decide whether a path P` with n vertices has an optimal
simple shortcut and compute one (in case of existence) in O(n2) time.

ISAAC 2018



15:12 Computing Optimal Shortcuts for Networks

4 Conclusions

In this work, we have presented the first results on the computation of optimal shortcuts for
the planar model. We have shown that an optimal shortcut can be computed in polynomial
time, and given a discretization of the problem that results in an approximation of the original
continuous version. Even though the discretization obtained is too large to be of practical
use, it is interesting from a theoretical point of view, and hopefully will be useful to obtain
smaller discretizations in the future. We also presented new results for paths, including how
to quickly compute the diameter after inserting a shortcut, the computation of an optimal
shortcut of fixed orientation, and of an optimal simple shortcut. These are important first
steps on a relevant and difficult problem, which leave many intriguing questions open. The
existence of small discrete set of segments to approximate an optimal shortcut, or a fast
algorithm to find an optimal shortcut for paths (any orientation), are some examples. Finally,
the questions studied but for optimal sets of k > 1 shortcuts pose challenging open problems.
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Abstract
Payment networks, also known as channels, are a most promising solution to the throughput
problem of cryptocurrencies. In this paper we study the design of capital-efficient payment
networks, offline as well as online variants. We want to know how to compute an efficient
payment network topology, how capital should be assigned to the individual edges, and how to
decide which transactions to accept. Towards this end, we present a flurry of interesting results,
basic but generally applicable insights on the one hand, and hardness results and approximation
algorithms on the other hand.
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1 Introduction

Cryptocurrencies such as Bitcoin [15] or Ethereum [1] have a serious throughput problem [6].
They can process tens of transactions per second, whereas non-blockchain systems (credit
card companies, inter-banking payment systems, paypal, etc.) can handle tens of thousands
of transactions per second. Various proposals have been made in an attempt to solve this
throughput problem, e.g., sharding [13, 12] or sidechains [4]. However, payment networks
(also known as channels) [7, 16, 2] are widely accepted to be the most promising of these
so-called “layer 2” solutions, since payment networks allow data to go off-chain securely.

Duplex micropayment channels [7], Lightning [16] or Raiden [2] are fast and scalable
payment networks, where transactions between two users are executed in off-chain two-party
channels. The blockchain is involved when opening a channel, as the foundation of a channel
must be registered with the blockchain. In exceptions, if the two parties of a channel are in
disagreement, the blockchain may also be involved as a safety net when closing a channel.

While the efficiency of channels is undisputed, payment networks have a reputation to be
capital hungry and as such difficult to deploy. In this paper we want to better understand
this demand for capital, studying the issue from an algorithmic perspective. We want to
know the complexity an operator of a payment network, a Payment Service Provider (PSP),
will face when setting up a payment network.
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1.1 From Payment Channels to Network Design
Consider a PSP wants to create a payment network. The PSP can open a channel between
any two parties; technically this can be achieved using multi-party channels [5], where the
two parties and the PSP join a three-party channel funded only by the PSP.

Algorithmically speaking, a payment network is a graph, where each undirected edge
(u, v) is a payment channel between the parties u, v. When a channel (an edge) is established,
PSP capital is locked into the channel on each side of the edge. This capital can then be
moved on the channel, from u to v or vice versa, much like moving tokens from one side of
an abacus to the other. For example, if initially a capital of 5 is locked on each side of the
(u, v) channel, then a transaction with a value of 2 from u to v will reduce the capital on
u’s side to 3, and increase the capital on v’s side to 7. Transactions can also be multi-hop,
moving capital on each edge of the path, in the direction of the path of the transaction. The
only constraint is that the capital on any side of any edge must be non-negative at all times.

The PSP needs to decide how to design the network, i.e., which edges (channels) the PSP
should establish. Moreover, the PSP needs to decide how much capital it should assign to
these newly established edges, in particular how much capital on each side of every edge.

Establishing a new channel not only involves capital (which is going to be reclaimed
eventually), but will also cost (since each newly established channel needs to be registered
with the blockchain). We model this channel opening cost as a constant, given that the fee
the blockchain asks is (more or less) constant. The total cost is then the number of open
channels (the edges of the network) times this constant cost to open each channel.

Our goal is to define a strategy for the PSP regarding which transactions to execute in
order to maximize profit (fees from transactions minus costs to set up channels) and minimize
capital (cryptomoney that is temporarily locked into channels). Note that there is a trade-off
between profit and capital, as more capital may allow to accept more transactions, earning fees
for each transaction, hence increasing profit In particular, we discuss the following questions:
What is the minimum capital needed to be able to accept a given set of transactions? What
is the maximum profit we can achieve with a given capital? These questions are at the heart
of understanding the Pareto-nature of the trade-off between profit and capital in payment
networks.

1.2 Related Work
Current work on payment channels has mainly focused on designing routing algorithms for
the implemented decentralized payment networks, such as the Lightning [16] and Raiden
[2] networks. Prihodko et al. [17] present Flare, an efficient routing algorithm for the
Lightning network by collecting information on the network’s local topology. Malavolta et
al. [14] introduce the IOU credit network SilentWhispers where they use landmark routing
to discover multiple paths and multi-party computation to decide the amount of capital to
be locked on each path. Roos et al. [18] propose SpeedyMurmurs, a routing algorithm for
payment networks that uses embedding-based path discovery to find routes from sender to
receiver. However, all these protocols assume a network structure created by the individuals
participating in the network. The goal is to discover the network topology and possible
routes from sender to receiver of every transaction. Our objective is to design the optimal
network structure assuming a central authority, the PSP.

An active line of research on payment channels is the construction of secure and private
systems that can act as payment hubs. Heilman et al. [9] propose a Bitcoin-compatible
construction of a payment hub for fast and anonymous off-chain transactions through
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an untrusted intermediary. Green et al. [8] present Bolt (Blind Off-chain Lightweight
Transactions) for constructing privacy-preserving unlinkable and fast payment channels.
However, they do not analyze how expensive the construction of a payment hub is for a PSP.
In this work, we answer the following questions: is a payment hub a good solution for a
PSP? How much capital is required to build a payment hub compared to the capital of a
capital-optimal network? These answers are highly relevant to the economic viability of a
payment hub as a practical solution for payment networks, and ultimately whether payment
networks can solve the eminent throughput problem of cryptocurrencies.

Our paper can be seen as a cryptocurrency variant of classic work on network design. It is
as such somewhat related to fundamental work starting in the 1970s. For example, Johnson
et al. [11] prove that given a weighted undirected graph, finding a subgraph that connects all
the original vertices and minimizes the sum of the shortest path weights between all vertex
pairs, subject to a budget constraint on the sum of its edge weights is NP-hard. Another
similar problem is the optimum communication spanning tree problem [10], whose input is a
set of nodes, the distances and requests between them, and the goal is to find the spanning
tree that minimizes the cost of communication (for each pair, the request multiplied by the
sum of distance). Our channel design problem seems similar to these problems since the
routing of a transaction matters, and our objective is to minimize the capital on the channels
(like the original network design work wants to minimize the sum of the distances). However,
in contrast with traditional network design, in payment networks the order of transactions
matters, as the capital moves from one side of the channels to the other. Moving capital
gives network design a surprising twist, as classic techniques do not work anymore. With
the anticipated importance of payment networks, we believe one should have a fresh look at
network design.

1.3 Our Contribution
We introduce an algorithmic framework for the channel network design problem. First, we
study the offline problem, i.e., we are given the future sequence of transactions. We show that
maximizing the profit given the capital assignments is NP-hard, even for a single channel.
Then, we present a fully polynomial time approximation scheme for the single channel case.
Later, we consider the case where the PSP wants to maximize its profit and thus execute all
profitable transactions. We prove that a hub (a star graph) is a 2-approximation with respect
to the capital. Moreover, we show the problem is NP-complete under graph restrictions.

In addition, we examine online variants. First, we examine the online single channel case
assuming the PSP wants to maximize its profit under capital constraints. We show that
there is no deterministic competitive algorithm for adaptive adversaries. Later, we study the
online channel design problem assuming all profitable transactions are executed. We show
that the star graph yields an O(logC)-competitive algorithm, where C denotes the optimal
capital.

2 Notation and Problem Variants

We assume the fee of a transaction on the blockchain to be constant, without loss of generality
simply 1. The fee of a transaction in the payment network cannot be higher than the fee on
the blockchain, or a potential user may prefer the blockchain over the payment network. A
rational PSP will ask for a transaction processing fee which is as high as possible but lower
than the blockchain fee, hence for 1− ε. In our analysis we will usually assume that ε→ 0.

Let us now formally define the problems we will study.
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I Problem 1 (General Payment Network Design).
Input: Capital C, profit P , the sequence of n transactions ti = (si, ri, vi) with 1 ≤ i ≤ n,

each containing the sender node si, the receiver node ri and the value vi of the transaction ti.
Output: Strategy S = {0, 1}n, a binary vector where the ith position is 1 if we choose to

execute the ith transaction of the input and 0 else. The graph G(V,E,Cl, Cr) is the network
we created to execute the chosen transactions, where V is the set of senders and receivers
that participate in any transaction, E is the set of channels we open and Cl, Cr the capital
on each side of each edge. Each transaction can be routed arbitrarily in G, denoted by
Se = {−1, 0, 1}n, for all e ∈ E, i.e., Se(i) = 1 (or −1) if transaction i is routed through
edge e from left to right (from right to left, respectively) and Se(i) = 0 if transaction i is not
routed through edge e.

Our goal is to return (if it exists) a strategy S, a graph G and a routing Se subject to the
following constraints:
1. |S| − |E| ≥ P
2. ∀e ∈ E, ∀j ∈ {1, 2, . . . n}, −Cr(e) ≤

∑j
i=1 Se(i) · vi ≤ Cl(e)

3.
∑
∀e∈E Cl(e) + Cr(e) + |E| ≤ C

The first inequality guarantees that the fees of the accepted transactions minus the cost
of opening the channels is at least as high as the intended profit. The second inequality
makes sure that at any time the capital on each side of each channel is non-negative. The
third inequality ensures that the used capital on the channels and the cost of opening the
channels is at most the available capital.

Problem 1 in all its generality is difficult, as it features many variables. Consequentially,
we mostly focus on the most interesting special cases of Problem 1: We consider transactions
on a single channel between just two nodes. And we consider minimizing the capital assuming
all profitable transactions are executed. Formally the problems we examine are the following.

I Problem 2 (Single Channel). Given a sequence of n transactions ti = (s, r, vi), where s and
r are the nodes of the single edge e, a capital assignment Cr(e), Cl(e), and a profit P , decide
whether there is a strategy S such that |S| ≥ P and ∀j ∈ [n], −Cl(e) ≤

∑j
i=1 S(i) ·vi ≤ Cr(e).

I Problem 3 (Channel Design for All Transactions). Given a sequence of n transactions
ti = (si, ri, vi), return the graph G(V,E) that achieves maximum profit with minimum
capital C.

I Problem 4 (Capital Assignment and Routing). Given a graph G(V,E), a sequence of n
transactions ti = (si, ri, vi) and a capital C, determine whether all transactions can be
executed in G with the given capital C.

3 Offline Channel Design

In this section, we study the offline channels network design problem, i.e., we assume we
know the future transactions (for the next period). First, we explore the network topology
for the general problem. Then, we examine the case where we are given a specific capital (or
even a capital assignment) and we aim to maximize the PSP’s profit, hence execute as many
transactions as possible. We focus on solving the problem for a single edge of the network,
since even in this simple case the problem is challenging. Later, we focus on minimizing the
capital given the PSP wants to execute all the profitable transactions.
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3.1 Graph Topology
We first prove some observations concerning the optimal graph structure. We consider
as optimal the solution that maximizes the profit while respecting the capital constrains
(optimization version of Problem 1).

I Lemma 5. The graph of the optimal solution does not contain any node that sends and
receives less than two transactions.

Thus, during preprocessing we can safely remove all transactions that contain a node that is
only sender or receiver of a transaction in this one transaction. The time complexity of this
procedure is linear in the number of transactions.

I Lemma 6. The optimal graph is not necessarily a tree (or forest).

Due to the complexity of the problem we focus on a single channel. It turns out that
even for this degenerate case, the problem is far from trivial.

3.2 Single Channel
We now focus on a single channel. We prove that even in this case the problem of choosing
the transactions that maximize the profit given capital assignments is NP-hard and present
an FPTAS.

Specifically, we are given a sequence of transactions on a single edge of a network and their
values, the capital assignment on the edge and a target profit. Our goal is to decide whether
we can execute at least as many transactions as the given target profit while respecting the
capital constraints. Since the number of edges is fixed and equal to 1 the profit now is the
number of executed transactions (Problem 2). The problem is equivalent to a variant of the
0/1 knapsack problem where each transaction represents an item. Each item has profit 1
and either positive or negative size (values). The capacity of the knapsack is represented by
the capital assignments and the goal is to maximize the profit while respecting the capacity.

I Problem 7 (Fixed Weight Subset Sum (FWSS)). Given a set of non-negative integers
U = {a1, a2, . . . , an}, and non-negative integers A and l, is there a non-empty subset U ′ ⊆ U
such that |U ′| = l and

∑
ai∈U ′ ai = A?

I Lemma 8. FWSS is NP-hard.

I Theorem 9. Problem 2 is NP-hard.

Proof. We will reduce Fixed Weight Subset Sum (FWSS) to Problem 2.
Assuming we are given an instance of the FWSS, we present a polynomial time trans-

formation to an instance of Problem 2. We first define the capital assignment on the edge
Cr(e) = A(l + 1), Cl(e) = 0 and the profit P = l + n(l + 1). Then, we define the sequence
of transactions as follows: vi = ai + A, ∀1 ≤ i ≤ n and vi = −A/n, ∀n < i ≤ n(l + 2). We
will prove that there is a non-empty set that satisfies the FWSS problem if and only if we
can choose transactions that satisfy the capital constraints and profit in the aforementioned
instance.

Assume we have a “yes” instance of the problem. Then, we have chosen at least
P = l + n(l + 1) transactions to execute. We will show that this corresponds to choosing
l positive transactions that sum up to A(l + 1), thus to a solution of the FWSS problem.
Towards contradiction, we examine the following three cases:
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Algorithm 1: MaxProfit.
Data: number of transactions n, values of the sequence of transactions

vi ∈ R, ∀1 ≤ i ≤ n, capital C, approximation factor ε.
Result: binary vector S = {0, 1}n that indicates which transactions to execute.
Let K = εV

n , where V = max1≤i≤n vi;
For all transactions 1 ≤ i ≤ n define v′i = b vi

K c;
Let T (i, j) = 0, for all 1 ≤ i ≤ n and 1 ≤ j ≤ n2

ε ;
for i = 1 to n do

for j = 1 to n2

ε do

T (i, j) =
{

max{T (i− 1, j), 1 + T (i− 1, j − v′i)} , if C
K ≥ j − v

′
i > 0

T (i− 1, j) , else

Store for every T (i, j) a n-binary vector Si,j that has value 1 in the k-th
position if the k-th transactions is chosen to be executed;

end
end
Return vector Si,j for the maximum T (i, j) such that

∑n
k=1 Si,j(k) · vk ≤ C;

If the number of positive transactions is less than l, the total profit is less than l+n(l+1),
since there are only n(l + 1) negative transactions.
If the number of positive transactions is more than l, then we violate the capital constraints,
since

∑
i vi ≥ A(l + 1) +

∑
i ai > A(l + 1) = Cr(e), where i corresponds to the chosen

transactions.
Suppose the l chosen transactions’ values sum to more than A(l + 1). Then, the capital
constraint is violated.
Suppose the l chosen transactions’ values sum to less than A(l + 1); suppose the sum
is Al + σ with some σ < A. Then, then negative transactions to be executed can be at
most lA

A/n + σ
A/n < ln+ n. Thus, the profit is strictly less than l + ln+ n. Contradiction.

Thus, a “yes” instance of our problem implies a “yes” instance of the FWSS problem. For
the other direction, we will prove that if there is no subsequence of transactions of size at
least P that satisfies the capital constraints, then there is no subset of size l that sums to
A in FWSS. Equivalently, we will show that if there is a subset of size l that sums to A
in FWSS, then there exists a subsequence of transactions of size at least P that satisfies
the capital constraints. Suppose there is a non-empty set U ′ ⊆ U such that |U ′| = l and∑
ai∈U ′ ai = A. Then we can execute the l transactions that correspond to the chosen ai’s

with exactly the Cr(e) capital, which will be transfered on Cl(e) = A(l + 1). Then, we can
execute all the negative transactions since they are n(l + 1) many with values A/n, thus
we need A(l + 1) = Cl(e) capital. Therefore, we can execute P = l + n(l + 1) transactions,
achieving the required profit while satisfying the capital constraints. J

Both FWSS and Problem 2 are also polynomially verifiable, hence NP-complete.
The classic dynamic programming approach that typically yields a polynomial time algorithm
when profits are fixed is not efficient since in this variation we cannot optimize using the
minimum value at each step due to negative values. Instead, we present a fully polynomial
time approximation scheme (FPTAS).
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I Theorem 10. Algorithm MaxProfit is a fully polynomial time approximation scheme for
Problem 2.

Proof. The running time of the algorithm is O(n
3

ε ), which is polynomial in both n and 1
ε .

We will prove that the profit of the output of algorithm MaxProfit is at least (1− ε) times
the optimal. We denote by S the set of transactions returned by the algorithm, O the set
returning the optimal profit and prof(X) the profit from the set of transactions X. Since we
scaled down by K and then rounded down, for every transaction i we have that Kv′i ≤ vi.
Therefore, the optimal set’s profit can decrease at most nK, prof(O)− prof ′(O)K ≤ nK.
The dynamic program returns the optimal set for the scaled instance. Thus, prof(S) ≥
prof ′(O)K ≥ prof(O)− nK = prof(O)− εV ≥ (1− ε)prof(O), since prof(O) ≥ V . J

Scaling to many channels. Unfortunately, even when the graph is a tree, algorithm 1 does
not scale efficiently. Creating an m-dimensional tensor for the dynamic program, where m
are the edges of the tree, has time complexity O(Cmn) where C is the maximum capital
from all edges. Even if we bound the capital by a polynomial on n the algorithm remains
exponential due to the number of edges on the exponent. In the general case where the
graph could contain cycles, the problem becomes even more complex. Now, we need to
additionally consider all possible routes for each transaction; this adds an exponential factor
on the running time of the algorithm.
Since Problem 1 is complex, we study special cases that might be useful in practice and
provide an insight to the general problem.

3.3 Channel Design for Maximum Profit
In this section, our goal is to find the minimum capital for which we can achieve maximum
profit, i.e., execute all profitable transactions (Problem 3). At first, we note some simple
observations for the graph structure. Then, we prove that any star graph is a 2-approximate
solution with respect to the capital, but even the “best” star is not an optimal solution. Last,
we prove the problem is NP-hard when there are graph restrictions.
Throughout this section, we refer to the optimal solution of Problem 3 as the optimal network
for maximum profit.

I Lemma 11. When the capital is unlimited, the optimal network for maximum profit does
not contain cycles.

I Lemma 12. When the capital is unlimited, there exists an algorithm, with time complexity
Θ(n), where n denotes the number of transactions, that returns the optimal network for
maximum profit.

I Lemma 13. The optimal network for maximum profit is not necessarily a connected graph.

We refer to transactions that increase the PSP’s profit as profitable transactions. We assume
all nodes participate in at least two transactions (Lemma 5).

I Lemma 14. Not all transactions are profitable transactions.

Despite Lemma 13, we note that payment channels are monetary systems. As such, large
companies are expected to participate in the network as highly connected nodes, ensuring
that the optimal graph is one connected component. Thus, for the rest of the section we can
safely assume that the optimal graph is connected.
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We will now define some formal notation to prove that choosing any star as the graph
to route all transactions requires at most twice the capital of the optimal graph. This
immediately implies we have a 2-approximation to Problem 3.

Now, suppose we can update the capital of an edge before executing each transaction. This
way we can guarantee there is enough capital on all channels for each transaction execution.
These updates are for free, like assigning tokens, and we use them as a stepping stone to
calculate the total capital (amortized analysis). Let us denote cG(uv, i) the additional capital
required at the edge (u, v), for transaction ti with direction from u to v on graph G. Now,
we have that the total capital on graph G, denoted by CG, is

CG =
∑
∀(u,v)

∑
∀i

cG(uv, ti)

Moreover, let opt denote the optimal graph and V the set of nodes involved in opt.
We will show that the capital used to route a sequence of transactions on any star that
contains the same set of nodes as the optimal graph is at most twice the capital used by the
optimal solution for the same sequence.

I Theorem 15. Any star graph yields a 2-approximate solution for Problem 3.

Proof. To prove the theorem, we just need to prove that for any sequence of transactions
t1, t2, . . . , tn, for any star graph S(V ), CS ≤ 2Copt. We will show that we can execute on
the star graph the same sequence of transaction as the optimal solution with twice as many
tokens (amortized capital). Initially we have zero tokens on all edges on both the optimal
and the star graph. Every time a new transaction ti comes the optimal solution finds a
path from sender to receiver. For every edge (u, v) on this path the optimal solution assigns
copt(uv, t) tokens. Then, we assign on the star, S, copt(uv, t) tokens on the edges mu and
vm, where m is the central node on S. The only exceptions are the sender and receiver
nodes, s and r respectively, where the tokens are initially placed on sm and mr to execute
the transaction. Thus, for every transaction the sum of the tokens used on the star graph
are twice the sum of the tokens used on the optimal solution. Therefore, the overall required
capital on the star is at most twice the optimal capital, CS ≤ 2Copt.
To complete our proof, we need to show we assigned in total enough tokens to execute the
given sequence of transactions. When a new transaction comes from s to t, we only need to
guarantee there enough tokens on sm and mt. Obviously, if a transaction needs additional
tokens to be executed on the optimal graph then the aforementioned strategy guarantees the
additional tokens for the star graph as well. If there are already some tokens on the optimal
graph for the sender then either he was previously an intermediate node or a receiver node.
In both those cases the same amount of tokens would have been stored on sm as well. With
a similar argument, if there were some tokens for the last edge to reach the receiver on the
optimal graph then r was either an intermediate node or a sender. Again, in both those
cases the same amount of tokens would have been assigned to mr on the star. J

I Lemma 16. The star graph is not an optimal solution for Problem 3.

Discussion. The centralized nature of the star is quite convenient for a payment network
operated by a PSP. The star alleviates the problem of participation incentives detected on
decentralized payment networks; now the participants of the network can be online only
when they want to execute a transaction. Although the star graph is not optimal, it is a good
enough solution for a PSP, since the capital he needs to lock in the channels is at most twice
the minimum. Thus, payment hubs are an economically viable solution for the throughput
problem on cryptocurrencies.
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3.4 Channel Design with Graph Restrictions
An interesting variation of the problem is when the network has restrictions (Problem 4).
Instead of allowing all possible channels, we assume some of them cannot occur in real life. In
this case, we are given a graph with all the potential channels, the sequence of transactions
and the capital, and we want to find the induced subgraph that maximizes the profit. We
prove that the problem of deciding whether all given transactions can be executed in the
given graph with a fixed capital is NP-complete.

The graph is given so the capital needed to open the channels is fixed in each given
instance. Thus, we assume the capital corresponds solely to the capital we lock on the edges
but not the one we require to open the channels.

I Theorem 17. Problem 4 is NP-complete.

4 Online Channel Design

In this section, we study the online case, assuming no prior knowledge for the future
transactions. When there is a transaction request we instantly decide whether to execute it
or not through our network, assuming we have enough capital on the edges of the path we
want to route the transaction. If there is not enough capital on some of the edges, we can
refund a channel, which costs 1, the same as opening a new channel.

4.1 Single Channel with Capital Constraints
Similarly to the offline case, we first focus on the simpler case where we have a single edge
and limited capital. The transactions arrive online, for each transaction we immediately
decide whether it is accepted.

I Theorem 18. There is no competitive algorithm for adaptive adversaries.

Proof. Suppose we have a channel with Cr = Cl = 5. Transactions from left to right have
positive values, those from right to left have negative values. Let us consider two different
transaction sequences:
1. (1, 5,−10, 10,−10, 10, . . .)
2. (1, 4,−10, 10,−10, 10, . . .)
Apart from the second transaction, both sequences are identical: The first transaction has
value 1, starting with the third transaction we always move the complete capital with every
transaction. The only difference is the second transaction.

If some online algorithm accepts the first transaction, then the adversary presents the
first sequence; if the online algorithm denies the first transaction, then the adversary reveals
the second sequence. Therefore, no matter whether this online algorithm accepts the first
transaction or not, it can at most accept one transaction, while the optimal offline algorithm
can accept almost all transactions (in case of the first sequence, the offline algorithm only needs
to deny the first transaction, in case of the second sequence it will accept all transactions). J

4.2 Channel Design for Maximum Profit
We assume again that we want to execute all transactions, thus the optimal graph does
not contain cycles. Our objective is to minimize the capital, given all transactions will be
executed through our payment network. Wlog, we assume the PSP is a node in the network.

ISAAC 2018
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Algorithm 2: OnlineMaxProfit.
Data: online sequence of transactions ti = (si, ri, vi)
Result: capital C
We denote by s the node corresponding to the PSP.
E ← ∅
C ← 0
for each transaction ti do

if si is not connected to s then
E ← E ∪ (si, s)
csi,s ← vi, cs,si

← vi
C ← C + 1

else if csi,s < vi then
csi,s ← csi,s + vi
cs,si

← cs,si
+ vi

C ← C + 1
else

csi,s ← csi,s − vi
cs,si

← cs,si
+ vi

end
For the case of ri we follow a similar (invert) procedure.

end
for all i 6= s do

C ← C + ci,s + cs,i
end
Return capital C

Similarly to the offline case, we show that constructing a star network to connect the nodes
with payment channels is a good solution. Specifically, we present a log-competitive algorithm
that takes advantage of the star graph structure.

In Algorithm OnlineMaxProfit, we gradually form a star where the center is the PSP.
At each step, we check whether there is enough capital on the edges to and from the center
to execute the current transaction. If the capital on an edge is smaller that the value of the
current transaction, we refund the channel and add to the capacity of this edge twice the
value of the current transaction.

I Theorem 19. Algorithm OnlineMaxProfit is Θ(logCopt)-competitive.

Proof. The star is a 2-approximation to the optimal offline solution, thus we start with a
competitive ratio of 2. The way we update the capacities, each time adding twice the value
of the transaction if the capacity is less than the transaction’s value, yields also a competitive
ratio of two on the edges’ capacities. Moreover, at each such step we at least double the
capacity of an edge thus we reach the edge’s optimal capital, Ce, in logCe steps. If we sum
over all edges, in total we refund the channels at most (n − 1) logCedges times, where n
is the number of nodes in the network and Cedges the edges’ optimal capital of the offline
solution. Therefore, algorithm OnlineMaxProfit returns C ≤ (n− 1) logCedges + 4Cedges,
while the offline solution requires Copt = (n− 1) + Cedges. This yields a competitive ratio of
Θ(logCopt). J
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5 Conclusion

We introduced a graph theoretic framework for payment networks. We studied the problem
for a specific epoch, i.e., for a fixed number of transactions. This restriction is due to
privacy issues, such as timing attacks on the payment network that can leak information
on the customers’ personal data. We tried to maximize the profit (the number of accepted
transactions minus the number of generated channels) and to minimize the capital needed to
execute these transactions. Due to the multi-objective nature, there are several versions of
this problem. In this paper, we mainly focused on two interesting variations:
1. How to choose transactions to execute on a single channel with given capital assignments

to maximize the profit,
2. How to design a network and assign capitals to accept all transactions and minimize the

needed capital.
It turns out, these two problems are challenging, as we show that the first problem and a
variation of the second one are both NP-hard. We propose a dynamic programming based
algorithm for the single channel problem and show that it is an FPTAS. For the network
design and capital assignment problem, we show that stars achieve approximation ratio 2.
In other words, hubs are not only an implementable and privacy-guaranteed solution, as
mentioned in [9] and [8], but also a satisfactory solution for PSP from the profit-maximization
point of view.

We also studied the online versions of these problems. For the single channel case we
show that it is impossible to design a competitive algorithm against an adaptive adversary.
For the online channel design for maximum profit, we devise an O(logC)-competitive online
algorithm based on the star structure.

The results presented in this paper and the proposed algorithms can be applied to other
fields such as traffic network design. For example, every airline would want to maximize
the profit and to minimize the costs (of creating new routes and purchasing new airplanes).
Interestingly, similar to what we discovered, hubs are indeed used by almost all airlines, e.g.,
most flights of the Turkish airline departure from or fly to Istanbul.

Apart from capital assignment, fee assignment of payment networks [3] is also related to
the traffic network design problem. One need to pay for using highways in some countries
(e.g., Greece, China and France), thus the companies need to decide which cities are connected
by highways and how much one needs to pay for every path. In this way, the drivers prefer
highways (analog to the payment channels) to other slow paths (analog to the main chain),
and hence the profit is maximized.
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Abstract
We study the problem of counting the isomorphic occurrences of a k-vertex pattern graph P as
a subgraph in an n-vertex host graph G. Our specific interest is on algorithms for subgraph
counting that are sensitive to the maximum degree ∆ of the host graph.

Assuming that the pattern graph P is connected and admits a vertex balancer of size b, we
present an algorithm that counts the occurrences of P in G in O

(
(2∆−2) k+b

2 2−b n∆k
2 log n

)
time.

We define a balancer as a vertex separator of P that can be represented as an intersection of two
equal-size vertex subsets, the union of which is the vertex set of P , and both of which induce
connected subgraphs of P .

A corollary of our main result is that we can count the number of k-vertex paths in an n-vertex
graph in O

(
(2∆ − 2)b k2 cnk2 log n

)
time, which for all moderately dense graphs with ∆ ≤ n1/3

improves on the recent breakthrough work of Curticapean, Dell, and Marx [STOC 2017], who
show how to count the isomorphic occurrences of a q-edge pattern graph as a subgraph in an
n-vertex host graph in time O(qqn0.17q) for all large enough q. Another recent result of Brand,
Dell, and Husfeldt [STOC 2018] shows that k-vertex paths in a bounded-degree graph can be
approximately counted in O(4kn) time. Our result shows that the exact count can be recovered
at least as fast for ∆ < 10.

Our algorithm is based on the principle of inclusion and exclusion, and can be viewed as a
sparsity-sensitive version of the “counting in halves”-approach explored by Björklund, Husfeldt,
Kaski, and Koivisto [ESA 2009].
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1 Introduction

Subgraph statistics are among the most fundamental and extensively studied invariants of
graphs. A canonical task in this domain is to count the number of isomorphic occurrences of
a connected k-vertex pattern graph as a subgraph in an n-vertex host graph.

Assuming k is a constant, we can explicitly list all the occurrences of the pattern in
the host graph in time O(nk). A substantial literature exists on counting algorithms that
improve on the O(nk) bound. Currently the fastest algorithm design for the general case
of an unconstrained k-vertex pattern remains the O(nωk/3)-time algorithm of Nešetřil and
Poljak [27] (see also Eisenbrand and Grandoni [14]), where 2 ≤ ω < 2.3728639 is the
exponent of n × n matrix multiplication (cf. Le Gall [24] and Vassilevska Williams [30]).
By parameterizing on the structure of the pattern graph, many further and faster algorithm
designs become possible; we postpone a detailed discussion of earlier work after a statement
of our present focus and main result.

Sensitivity to the maximum degree. In this paper, we are interested in subgraph-counting
algorithms that are sensitive to the maximum degree ∆ in addition to the number of vertices
n in the host graph.1 Our interest is in particular on algorithm designs that scale to massive
graphs where ∆ can be orders of magnitude smaller than n. Such study of algorithms that
are sensitive to ∆ can be found, for example, in the work of Komusiewicz and Soren [23] in
the context of optimization over all k-vertex subgraphs.

In our case of connected subgraph counting, it is immediate that the host can contain
at most n(∆− 1)k−1 subgraphs that are isomorphic to the pattern, and furthermore these
subgraphs can be trivially listed in O(n(∆− 1)k−1) time.

Our goal in this paper is to improve the trivial running time of connected subgraph
counting to the general form

O
(
n(α∆)βk

)
(1)

for constants α ≥ 1 and 0 ≤ β ≤ 1 that depend on the topology of the pattern but not on
the parameters k, n, and ∆. In particular, the main conceptual contribution of this paper
is to establish that nontrivial ∆-sensitive exponents β < 1 can be achieved for elementary
connected topologies, such k-vertex paths and cycles, for which we establish β = 1/2 and
α = 2 independently of k (cf. Corollary 3 for a precise statement). Furthermore, our
algorithms scale linearly in the number of vertices n, thus enabling a more fine-grained
control of subgraph counting by isolating the complexity to the maximum degree ∆ and the
topology of the connected pattern.

Our results. Let us now proceed with a detailed statement of our results. (The standard
graph-theoretic terminology and preliminaries can be found in Section 2.) We are interested
in connected pattern graphs that admit a small balancer in the following sense.

I Definition 1 (Balancer). A vertex subset B ⊆ V (P ) of a connected graph P is a balancer
if there exist subsets C1, C2 ⊆ V (P ) such that
1. |C1| = |C2|,
2. C1 ∪ C2 = V (P ),
3. the induced subgraphs P [C1] and P [C2] are connected, and
4. B = C1 ∩ C2 is a (C1 \ C2, C2 \ C1)-separator in P .

1 To avoid degenerate cases, let us assume ∆ ≥ 2 in what follows.
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For example, a k-vertex path has a balancer of size 2− (k mod 2), a k-vertex cycle has a
balancer of size 2 + (k mod 2), and a k-vertex tree for k ≥ 3 has a balancer of size at most
dk/3e (cf. Lemma 7). Trivially, every k-vertex connected graph has a balancer of size at most
k. It is also immediate that a balancer and k must have the same parity.

I Theorem 2 (Main; Counting connected subgraphs with a small balancer). Let P be a
connected k-vertex graph with a balancer of size b, and let G be an n-vertex graph with
maximum degree ∆ ≥ 2. There exists an algorithm that counts the number of isomorphic
occurrences of P as a subgraph in G in time

O

(
(2∆− 2)

k+b
2 2−b n∆k2 log n

)
. (2)

Let us illustrate the use of Theorem 2 by stating a corollary for elementary connected
patterns such as paths, cycles, and trees with arbitrary topology.

I Corollary 3. There exist algorithms that output, given as input an n-vertex host graph G
of maximum degree ∆ ≥ 2,
1. the number of k-vertex paths in G in time O

(
(2∆− 2)b k2 cnk2 log n

)
,

2. the number of k-vertex cycles in G in time O
(
(2∆− 2)d k2 enk2 log n

)
, and

3. the number of isomorphic occurrences of any fixed k-vertex tree T for k ≥ 3 in G in time
O
(
(2∆− 2)d 2k−3

3 enk2 log n
)
.

Discussion and related work. Recently, Patel and Regts [29] have shown that the number
of subgraphs of G that induce an isomorphic occurrence of a given k-vertex pattern graph can
be computed in time ∆O(k)n; their precise bound is O

(
(n(4∆)2k + 210k)poly(k)

)
. This result

is sensitive to the sparsity of the host graph even when the pattern graph is disconnected.
Just as recently, Curticapean, Dell, and Marx [12] showed that the isomorphic occurrences

of a q-edge pattern graph in an n-vertex host graph can be counted for all large enough q
in O(qqn0.17q) time, building on the connection between the number of subgraphs and the
number of homomorphisms established by Lovász 50 years ago [25]. As further motivation for
our present study, we observe that the Curticapean–Dell–Marx algorithm cannot in a direct
way utilise sparsity of the host graph, even when the pattern graph is connected. Indeed,
the Curticapean–Dell–Marx algorithm is based on homomorphism-counting over low-width
tree-decompositions of consolidations of the pattern graph, and there is no guarantee that the
bags of such a tree-decomposition induce connected subgraphs, which means their algorithm
has to track essentially arbitrary mappings of vertices to the host graph. In contrast, our
present algorithm tracks embeddings of connected subgraphs of the pattern graph, which
enables us to control the number of such embeddings with ∆. For k-vertex paths, or any
connected pattern graph with a balancer much smaller than k, we obtain a faster subgraph
counting algorithm for every ∆ ≤ n1/3.

In another very recent work, Brand, Dell, and Husfeldt [8] show that one can approximately
count the number of k-vertex paths in a bounded-degree n-vertex host graph in O(4kn) time
with a randomized approximation scheme. That is, for every ε > 0 they present a Monte-Carlo
algorithm that computes, with probability at least 99

100 , a factor-(1 + ε) approximation of the
exact count, with running time inversely proportional to ε2. Our algorithm is deterministic
and recovers the exact count in the same time, or faster, for all graphs with ∆ < 10.

A third improvement concerns deterministic k-path detection. Zehavi [33] shows that there
is a deterministic algorithm for k-path detection in general graphs running in O(2.6k poly(n))
time. No better algorithm is known for ∆ = 4. For ∆ = 3, one can enumerate the non-
backtracking walks in O(2kn) time. For ∆ = 4, we directly obtain a O(2.44kn) time algorithm
as a special case of Corollary 3.
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Methodology. Our algorithmic insight here is an old one: that one can use a meet-in-
the-middle approach dividing the pattern graph (or more precisely in our present case, an
embedding of the pattern graph) into two equal halves. To count half-pairs that together
define an embedding of the pattern into the host, we can use an inclusion–exclusion sieve
that cancels every pair with overlaps outside a controlled root. Björklund et al. [6] showed
one can count the occurrences of a subgraph in nk/2 time using fast zeta transforms and an
inclusion–exclusion sieve on the subset lattice. However, as far as we can tell, one cannot
exploit sparsity in this sieve directly. Our new algorithm here is based on observing that
many of the computation points on the sieve will be zero. Rather than applying a fast zeta
transform, we are better off by explicitly computing the points where the result is non-zero.

Further earlier work and complexity results. Subgraph counting has received a substantial
amount of attention in the algorithms community. A non-exhaustive sample of earlier work
includes Itai and Rodeh [19], Nešetřil and Poljak [27], Alon, Yuster, Zwick [3], Alon and
Gutner [2], Eisenbrand and Grandoni [14], Björklund, Husfeldt, Kaski, and Koivisto [6],
Björklund, Kaski, and Kowalik [7], Vassilevska Williams, Wang, Williams, and Yu [31],
Vassilevska Williams and Williams [32], Amini, Fomin, and Saurabh [4], Fomin, Lokshtanov,
Raman, Saurabh, and Raghavenda Rao [17], Floderus, Kowaluk, Lingas, and Lundell [15],
Olariu [28], Kloks, Kratsch, Müller [22], Curticapean, Dell, and Marx [12], Brand, Dell, and
Husfeldt [8], and Austrin, Kaski, and Kubjas [5].

From a parameterized complexity perspective, subgraph counting parameterized by the
number of vertices k in the pattern graph P is a hard problem in the class #W[1] when P
has unbounded vertex cover number. Cf. Flum and Grohe [16], Chen and Flum [9], Chen,
Thurley, Weyer [10], Curticapean [11], Curticapean and Marx [13], Jerrum and Meeks [20,21],
and Meeks [26]. The specific problem of finding and counting cliques is used as a source of
fine-grained hardness reductions by Abboud, Backurs, and Vassilevska Williams [1].

Under the Exponential Time Hypothesis (ETH), Impagliazzo et al. [18] have shown that
there can be no algorithm for detecting a Hamiltonian path in time exp o(n). By inspecting
the textbook reduction from 3-Satisfiability to Hamiltonicity used in that argument, we
observe that this result holds even if the input graph has constant degree. Thus, the constant
β in (1) cannot be arbitrarily reduced, even if the dependency on ∆ is much relaxed. In
particular, the hypothesis forbids an algorithm for counting (or even detecting) k-paths with
running time (f(∆))o(k)poly(n) for any computable function f .

Organization. The rest of this paper is organized as follows. Section 2 reviews the standard
definitions and notational conventions used in this paper. Section 3 presents our main sieving
lemma for counting embeddings from two parts. Section 4 gives an algorithm for listing the
embeddings of a connected pattern graph to a host graph. Section 5 develops our sieving
algorithm for counting embeddings from two parts. Section 6 completes our main algorithm
design and the proof of Theorem 2. Section 7 proves Corollary 3 and studies balancers in
elementary families of connected graphs.

2 Preliminaries

This section reviews the standard definitions and notational conventions used in this paper.

Graphs and subgraphs. Unless mentioned otherwise, all graphs in this paper are undirected,
loopless, and without parallel edges. For a graph G, we write V = V (G) for the vertex set
and E = E(G) for the edge set of G, where each edge e ∈ E(G) is a 2-element subset of
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V (G). Let us write ∆ = ∆(G) for the maximum degree of a vertex in G. A graph H is a
subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). We write H ⊆ G to indicate
that H is a subgraph of G. For a set S ⊆ V (G), the subgraph G[S] of G induced by S is
defined by V (G[S]) = S and E(G[S]) = {{u, v} ∈ E(G) : u, v ∈ S}. We tacitly assume in
what follows that all algorithms accept their input graphs in adjacency list form.

Separators. Let G be a graph and let A,B ⊆ V (G). We say that a set S ⊆ V (G) is an
(A,B)-separator in G if for all a ∈ A and all b ∈ B it holds that every path in G joining a
and b contains at least one vertex in S.

Mappings. For a mapping ϕ : X → Y and a subset S ⊆ X, we write ϕ|S : S → Y for the
restriction of ϕ to S and ϕ(S) = {ϕ(x) : x ∈ S} ⊆ Y for the image of S under ϕ. For two
mappings ϕ : X → Y and ψ : Y → Z, let us write ψ ◦ ϕ : X → Z for their composition
defined for all x ∈ X by ψ ◦ ϕ(x) = ψ(ϕ(x)).

Homomorphism, embedding, isomorphism, automorphism. Let P and G be graphs. A
mapping ϕ : V (P )→ V (G) is a homomorphism from P to G if for all {u, v} ∈ E(P ) it holds
that {ϕ(u), ϕ(v)} ∈ E(G). An injective homomorphism is called an embedding (or a mono-
morphism) of P into G. A bijective homomorphism whose inverse is also a homomorphism is
an isomorphism. An isomorphism from a graph P to itself is an automorphism of P .

Let us write Hom(P,G), Emb(P,G), Iso(P,G) for the set of all homomorphisms, embed-
dings, and isomorphisms, respectively, from P to G. Similarly, let us write Aut(P ) for the
set of all automorphisms of P .

Subgraph occurrences and subgraph counting. Let P and G be graphs. Let us write
Sub(P,G) for the set of all subgraphs H ⊆ G such that P and H are isomorphic. We call
each element of Sub(P,G) an occurrence of P in G. The number of embeddings of P to G
and the number of occurrences of P in G are related by the identity

|Emb(P,G)| = |Aut(P )| · |Sub(P,G)| . (3)

In particular, assuming |Aut(P )| is known, knowledge of one of |Emb(P,G)| or |Sub(P,G)|
enables one to solve for the other via (3).

Iverson bracket notation. For a logical proposition P , it will be convenient to use Iverson’s
bracket notation

[[P ]] =
{

1 if P is true;
0 if P is false.

Model of computation. We work in a word-RAM model where basic word operations on
O(log n)-bit words take time O(1), where n = |V (G)| is the number of vertices in the input
host graph G.

3 A sieving lemma for the number of embeddings

This section starts our work towards the proof of Theorem 2. The goal of this section is a
technical sieving lemma that enables us to count embeddings ϕ “in halves” (in analogy with
Björklund et al. [6]) by sieving pairs (ϕ1, ϕ2) of partial embeddings for those pairs that both
agree with a root map ρ and are otherwise disjoint in terms of their image sets.
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In more precise terms, let P and G be graphs and let C1, C2 ⊆ V (P ) such that
1. C1 ∪ C2 = V (P ) and
2. C1 ∩ C2 is a (C1 \ C2, C2 \ C1)-separator in P .

Let us fix a root map ρ : C1 ∩ C2 → V (G). We say that an embedding ϕ ∈ Emb(P,G) is
ρ-rooted if ϕ|C1∩C2 = ρ. Let us write Embρ(P,G) for the set of all ρ-rooted embeddings in
Emb(P,G).

The following sets will form the core of the sieve. For X ⊆ V (G) and S ⊆ V (P ) with
C1 ∩ C2 ⊆ S, let us define

Iρ,S(X) = {ϕ ∈ Embρ(P [S], G) : X ⊆ ϕ(S)} . (4)

We are now ready for our main sieving lemma.

I Lemma 4 (Sieving ρ-rooted embeddings from two parts). We have

|Embρ(P,G)| =
∑

X⊆V (G)\ρ(C1∩C2)

(−1)|X| · |Iρ,C1(X)| · |Iρ,C2(X)| . (5)

Proof. Recalling that every nonempty finite set has equally many even-sized and odd-sized
subsets, for any (possibly empty) finite set Y we have∑

X⊆Y

(−1)|X| = [[Y = ∅]] . (6)

Let us use the notational shorthands Vρ = V (G) \ ρ(C1 ∩ C2), E1 = Embρ(P [C1], G), and
E2 = Embρ(P [C2], G). Expanding the right-hand side of (5), we obtain∑

X⊆Vρ

(−1)|X| · |Iρ,C1(X)| · |Iρ,C2(X)|

=
∑
X⊆Vρ

(−1)|X|
∑
ϕ1∈E1

[[X ⊆ ϕ1(C1)]]
∑
ϕ2∈E2

[[X ⊆ ϕ2(C2)]]

=
∑
ϕ1∈E1

∑
ϕ2∈E2

∑
X⊆Vρ

(−1)|X|[[X ⊆ ϕ1(C1)]][[X ⊆ ϕ2(C2)]]

=
∑
ϕ1∈E1

∑
ϕ2∈E2

∑
X⊆Vρ

(−1)|X|[[X ⊆ ϕ1(C1) ∩ ϕ2(C2)]]

=
∑
ϕ1∈E1

∑
ϕ2∈E2

∑
X⊆ϕ1(C1\C2)∩ϕ2(C2\C1)

(−1)|X|

=
∑
ϕ1∈E1

∑
ϕ2∈E2

[[ϕ1(C1 \ C2) ∩ ϕ2(C2 \ C1) = ∅]] .

To establish the lemma, it now suffices to show that the last double sum equals |Embρ(P,G)|.
Toward this end, let us observe that a pair (ϕ1, ϕ2) ∈ E1×E2 of embeddings defines a unique
embedding ϕ ∈ Embρ(P,G) if and only if we have

ϕ1(C1 \ C2) ∩ ϕ2(C2 \ C1) = ∅ . (7)

In the “if” direction, each pair (ϕ1, ϕ2) ∈ E1×E2 defines a map ϕ : V (P )→ V (G) via the
restrictions ϕ|C1 = ϕ1 and ϕ|C2 = ϕ2. Indeed, we observe that ϕ is a well-defined injective
map because we have ϕ1|C1∩C2 = ϕ2|C1∩C2 = ρ together with C1 ∪ C2 = V (P ) and (7).
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Furthermore, ϕ is a homomorphism from P to G because ϕ1, ϕ2 are homomorphisms and
because C1 ∩ C2 is a (C1 \ C2, C2 \ C1)-separator in P ; that is, ϕ maps every edge of P to
an edge of G since every edge of P has both of its end-vertices in C1 or in C2.

In the “only if” direction, each embedding ϕ ∈ Embρ(P,G) restricts to ϕ1 = ϕ|C1 and
ϕ2 = ϕ|C2 . It is immediate that we have ϕ1 ∈ E1, ϕ2 ∈ E2, and (7) holds. This completes
the lemma. J

I Remark. From (4) it is immediate that we have Iρ,Cj (X) = ∅ unless |X| ≤ |Cj |, so it
suffices to restrict the sieve (5) to sets X with |X| ≤ min(|C1|, |C2|).

4 Listing the embeddings of a connected pattern graph

To turn Lemma 4 into an algorithm that is sensitive to the maximum degree ∆ = ∆(G) of
the host graph G, we will rely on a subroutine that we use to explicitly list the embeddings
in Emb(P [C1], G) and in Emb(P [C2], G). This ∆-sensitive listing subroutine is the content
of this section and the following lemma.

I Lemma 5 (Listing embeddings of a connected pattern graph). Let Q be a connected graph
with q = |V (Q)|. Let G a graph with n = |V (G)| and ∆ = ∆(G) ≥ 2. There exists an
algorithm that lists all the embeddings in Emb(Q,G) in time

O
(
n(∆− 1)q−1q2 log n

)
. (8)

Proof. Since Q is connected, it has a spanning tree. Fix an arbitrary spanning tree T of Q
and fix an arbitrary vertex r ∈ V (T ) as the root of T . Use a recursive procedure to construct
all embeddings ϕ : V (T ) → V (G) one image ϕ(x) ∈ V (G) at a time for each x ∈ V (T ),
starting from the root r, and proceeding so that whenever the image of x 6= r is being
fixed, the parent p ∈ V (T ) of x in T (towards the root r) has its image ϕ(p) already fixed.
Whenever an embedding ϕ : V (T )→ V (G) is completed, we test whether ϕ is an embedding
of Q to G and output ϕ if this is the case.

To analyze the running time, we observe that there are at most n choices for the image
ϕ(r) ∈ V (G) of the root r. Since the next image needs to be adjacent to ϕ(r), there are at
most ∆ choices for the next image (if any). For all subsequent q− 2 images (if any), we have
that there are at most ∆ − 1 choices for ϕ(x) since ϕ(x) and ϕ(p) are adjacent and ϕ(x)
needs to be distinct from all the previously fixed images. Thus, in total there are at most
n∆(∆−1)q−2 = O(n(∆−1)q−1) embeddings ϕ ∈ Emb(T,G). The (unoptimized) component
q2 log n in the running time bound (8) comes from testing that the |E(Q)| ≤ q2 adjacencies
{ϕ(z), ϕ(w)} ∈ E(G) hold for each {z, w} ∈ E(Q) by binary search to the adjacency lists of
G given by ϕ. J

I Remark. We observe that the listing algorithm in Lemma 5 would not work without the
assumption that Q is connected.

5 A sieving algorithm for the number of embeddings

This section continues our work towards Theorem 2 by combining Lemma 4 and Lemma 5
to a sieving algorithm for the number |Emb(P,G)| of embeddings of a connected k-vertex
pattern graph P to an n-vertex host graph G.

The sieving algorithm will rely on a balancer for P . In more precise terms, let C1, C2 ⊆
V (P ) so that B = C1 ∩ C2 is a balancer of size b = |B|. Recalling Definition 1, we have
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1. |C1| = |C2|,
2. C1 ∪ C2 = V (P ),
3. the induced subgraphs P [C1] and P [C2] are connected, and
4. C1 ∩ C2 is a (C1 \ C2, C2 \ C1)-separator in P .
Furthermore, since k = |V (P )| and b = |C1 ∩ C2|, we thus have |C1| = |C2| = k+b

2 .

I Lemma 6 (Sieving algorithm for the number of embeddings). Let P be a connected k-vertex
graph with a balancer of size b. Let G be a graph with n = |V (G)| and ∆ = ∆(G) ≥ 2. There
exists an algorithm that computes |Emb(P,G)| in time

O

(
(2∆− 2)

k+b
2 2−b n∆k2 log n

)
. (9)

Proof. Let C1, C2 be the sets in that define the balancer of size b. Recall the sets (4) that
form the core of the sieve in Lemma 4. The algorithm works with a dictionary data structure
that records and builds the nonempty sets Iρ,Cj (X) indexed by three-tuples (ρ, Cj , X) with
ρ : C1 ∩ C2 → V (G), j = 1, 2, and X ⊆ V (G) \ ρ(C1 ∩ C2). We build the nonempty sets
Iρ,Cj (X) using the listing algorithm in Lemma 5.

First, we use the algorithm in Lemma 5 with Q = P [C1] and |V (Q)| = k+b
2 to list

all the embeddings ϕ1 ∈ Emb(P [C1], G). By the analysis in Lemma 5, there are at most
n(∆− 1) k+b

2 −1 such embeddings. For each listed ϕ1, we insert ϕ1 into the set Iρ,C1(X) for
ρ = ϕ1|C1∩C2 and for each X ⊆ ϕ1(C1 \ C2). Since |ϕ1(C1 \ C2)| = |C1 \ C2| = k−b

2 , the
number of nonempty sets Iρ,C1(X) will be at most

n(∆− 1)
k+b

2 −12
k−b

2 = O

(
n

∆(2∆− 2)
k+b

2 2−b
)
. (10)

Second, we use the algorithm in Lemma 5 with Q = P [C2] and |V (Q)| = k+b
2 to list all

the embeddings ϕ2 ∈ Emb(P [C2], G). For each listed ϕ2, we insert ϕ2 into the set Iρ,C2(X)
for ρ = ϕ2|C1∩C2 and for each X ⊆ ϕ2(C2 \C1). The number of nonempty sets Iρ,C2(X) will
similarly be at most (10).

Third, let us observe that we have used total time (10) and have available all nonempty
sets Iρ,C1(X) and Iρ,C2(X). From Lemma 4 we observe that

|Emb(P,G)| =
∑

ρ:C1∩C2→V (G)

|Embρ(P,G)|

=
∑

ρ:C1∩C2→V (G)

∑
X⊆V (G)\ρ(C1∩C2)

(−1)|X| · |Iρ,C1(X)| · |Iρ,C2(X)| . (11)

Thus, we can compute |Emb(P,G)| using the nonempty sets Iρ,C1(X) and Iρ,C2(X) by sorting
the index tuples based first on ρ and then based on X. We then evaluate |Emb(P,G)| using
the double sum in (11). The total time is bounded by (9) since the embeddings ϕj and
indices ρ, Cj , X can both be represented using O(k) words of O(log n) bits. J

6 The main algorithm

This section proves Theorem 2. Let P be a connected k-vertex graph with a vertex balancer
of size b and let G be an n-vertex graph.

First, let us observe that we have trivially |Sub(P,G)| = 0 unless ∆(P ) ≤ ∆(G). Further-
more, we observe that Aut(P ) = Emb(P, P ).
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The main algorithm starts by verifying that both k ≤ n and ∆(P ) ≤ ∆(G); if this is not
the case, the algorithm gives the output 0 and stops.

Next, the algorithm computes |Aut(P )| = |Emb(P, P )| using the algorithm in Lemma 6
with G set to equal P . Since k ≤ n and ∆(P ) ≤ ∆(G), it is immediate from (9) that this
computation of |Aut(P )| runs within the main time bound (2).

Finally, the algorithm computes |Emb(P,G)| using the algorithm in Lemma 6 and, using
(3), gives the output

|Sub(G,P )| = |Emb(P,G)|
|Aut(P )| .

Since (9) is bounded by (2), the total running time is bounded by (2). This completes the
proof of Theorem 2.

7 Corollaries for elementary connected graphs

This section establishes Corollary 3. We start with a straightforward lemma on balancers.

I Lemma 7.
1. A k-vertex path admits a balancer of size 2− (k mod 2).
2. A k-vertex cycle admits a balancer of size 2 + (k mod 2).
3. A k-vertex tree for k ≥ 3 admits a balancer of size at most dk/3e.

Proof. A k-vertex path v1, . . . , vk contains the balancer {vdk/2e} for odd k and the balancer
{vdk/2e, vdk/2e+1} for even k. A k-vertex cycle v1, . . . , vk for k ≥ 2 contains the balancer
{v1, vdk/2e} for even k and the balancer {v1, vdk/2e, vk} for odd k.

We turn to the third item. Every k-vertex tree contains a centroid vertex c, which cuts
it into subtrees T1, . . . , Tr of size k1, . . . , kr with ki ≤ k/2,

∑
i ki = k − 1, and r ≥ 2. Put

the largest two subtrees, say T1 and T2, into C1 and C2, respectively, and add c to each. If
r = 2 then k1 = k2 = (k − 1)/2 and c itself is a singleton balancer. Otherwise, add each of
the remaining r − 2 trees, smallest first, to C1 or C2 such that |C1| and |C2| both remain at
most (k − 1)/2. This process continues until the last tree, say T3, which is instead added
to both C1 and C2. If C1 and C2 now have unequal size, say |C1| > |C2| then repeatedly
remove leaf nodes of T3 from C1 until |C1| = |C2|. The resulting balancer C1 ∩ C2 consists
of c together with a subtree of T3, so we have

|C1 ∩ C2| ≤ k3 + 1 ,

and since

k3 ≤ k2 ≤ k1 ≤ 1
3 (k − 1) , (12)

so we see that the balancer is roughly 1
3k. For the precise bound in the lemma, the proceed

by cases. If (k mod 3) = 1 then 1
3 (k − 1) is an integer, so we can just write

k3 + 1 ≤ 1
3 (k − 1) + 1 = b(k − 1)/3c+ 1 = dk/3e .

If (k mod 3) ∈ {0, 2} then the bound (12) cannot hold with equality, since otherwise the
total number of vertices would be k1 + k2 + k3 + 1 = 1 (mod 3). Thus,

k3 + 1 < 1
3 (k − 1) + 1 = 1

3k + 2
3 ≤ dk/3e+ 1 .

Since both sides of this strict inequality are integers, the bound in the lemma holds. J
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Let us now proceed with a proof of Corollary 3. Recalling (2), for a connected k-vertex
pattern P with balancer size b, the main algorithm runs in time

O

(
(2∆− 2)

k+b
2 2−b n∆k2 log n

)
.

For a k-vertex path, we have b = 2− (k mod 2) ≤ 2 by Lemma 7 and thus

k + b

2 − 1 =
⌊
k

2

⌋
implies the claimed running time

O
(
(2∆− 2)b k2 cnk2 log n

)
.

For a k-vertex cycle, we have b = 2 + (k mod 2) ≤ 3 by Lemma 7 and thus

k + b

2 − 1 =
⌈
k

2

⌉
implies the claimed running time

O
(
(2∆− 2)d k2 enk2 log n

)
.

For a k-vertex tree wtih k ≥ 3, we have b ≤ dk/3e by Lemma 7 and thus

k + b

2 − 1 ≤ k + dk/3e
2 − 1 ≤

⌈
2k − 3

3

⌉
implies the claimed running time

O
(
(2∆− 2)d

2k−3
3 enk2 log n

)
.

This completes the proof of Corollary 3.

Treewidth. The notion of balancer is reminiscent of, but different from, the “balanced
separators” that appear in the study of the graph parameter treewidth. However the latter
is both more permissive and more strict, and no general corollaries for graphs of bounded
treewidth follow from our results.

To see this, we exhibit infinite families of graphs where the two notions differ.
One one hand, low treewidth is a global property that extends to all subgraphs. For

instance, consider the k-vertex graph formed by connecting two r-cliques, where r = 1
2k − 1,

by identifying one vertex in each clique with the endpoints of a 3-vertex path. (This is the
r-barbell graph with a subdivided bridge.) This graph has linear treewidth 1

2k − 2, but
admits a one-vertex balancer.

On the other hand, Definition 1 requires C1 and C2 to be connected, which the parts
arising from a tree-decomposition need not be. For instance, consider the k-vertex graph T
formed by from three r-vertex paths, where r = 1

3 (k− 1), by identifying one endpoint in each
path with the leaves of the 4-vertex “Claw graph” K1,3. This graph is a tree and thus has
treewidth 1. Any partition of V (T ) into C1 and C2 must put at least two leaves into the same
part, say C1. Since T [C1] is connected, the unique path between these leaves must belong to
C1, so |C1| ≥ 2r+1. By the balancing condition, |C2| = |C1| ≥ 2r+1. But then the balancer
has size at least |C1 ∩ C2| = |C1|+ |C2| − |C1 ∪ C2| ≥ 4r + 2− (3r + 1) = r + 1 = 1

3k + 2
3 .

(Note that this derivation matches the tree bound from Lemma 7, showing that neither
construction can be improved.) We conclude that there is an infinite family of graphs of
treewidth 1 whose balancers have size at least 1

3k.
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Abstract
In this paper we study the Target Set Selection problem from a parameterized complexity
perspective. Here for a given graph and a threshold for each vertex the task is to find a set of
vertices (called a target set) to activate at the beginning which activates the whole graph during
the following iterative process. A vertex outside the active set becomes active if the number of
so far activated vertices in its neighborhood is at least its threshold.

We give two parameterized algorithms for a special case where each vertex has the threshold
set to the half of its neighbors (the so called Majority Target Set Selection problem) for
parameterizations by the neighborhood diversity and the twin cover number of the input graph.

We complement these results from the negative side. We give a hardness proof for the Ma-
jority Target Set Selection problem when parameterized by (a restriction of) the modular-
width – a natural generalization of both previous structural parameters. We show that the
Target Set Selection problem parameterized by the neighborhood diversity when there is
no restriction on the thresholds is W[1]-hard.
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1 Introduction

We study the Target Set Selection problem (also called Dynamic Monopolies), using
notation according to Kempe et al. [16], from parameterized complexity perspective. We use
standard notions of parameterized complexity, see [9]. Let G = (V, E) be a graph, S ⊆ V ,
and f : V → N be a threshold function. The activation process arising from the set S0 = S is
an iterative process with resulting sets S0, S1, . . . such that for i ≥ 0
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18:2 Target Set Selection in Dense Graph Classes

where by N(v) we denote the set of vertices adjacent to v. Note that after at most n = |V |
rounds the activation process has to stabilize – that is, Sn = Sn+i for all i > 0. We say that
the set S is a target set if Sn = V (for the activation process S = S0, . . . , Sn).

Target Set Selection
Input: A graph G = (V, E), f : V → N, and a positive integer b ∈ N.
Task: Find a target set S ⊆ V of size at most b or report that there is no such set.

We call the input integer b the budget. The problem interpretation and computational
complexity clearly may vary depending on the input function f . There are three important
settings studied (as we will discus later) – namely constant, majority, and a general function.
If the threshold function f is the majority (i.e., f(u) = ddeg(u)/2e for every vertex u ∈ V )
we denote the problem as Majority Target Set Selection.

Motivation. The Target Set Selection problem was introduced by Domingos and
Richardson [10] in order to study influence of direct marketing on a social network. It is
noted therein that it captures e.g. viral marketing [21]. The Target Set Selection
problem is important also from the graph theoretic viewpoint, since it generalizes many well
known NP-hard problems on graphs. These problems include

Vertex Cover [4] – set f(v) = deg(v) for all v ∈ V and
Irreversible k-Conversion Set [11], k-Neighborhood Bootstrap Percola-
tion [2] – the Target Set Selection problem with all thresholds fixed to k.

Previous Results. The Target Set Selection problem received attention of researchers
in theoretical computer science in the past years. A general upper bound on the number
of selected vertices under majority constraints is |V |/2 [1]. The Target Set Selection
problem admits an FPT algorithm when parameterized by the vertex cover number [19].
A tO(w) poly(n) algorithm is known, where w is the tree-width of the input graph and
t is an upper-bound on the threshold function [3], that is, f(v) ≤ t for every vertex v.
This is essentially optimal, as the Target Set Selection problem parameterized by
the path-width is W[1]-hard for majority [6] and general functions [3]. The Target Set
Selection problem is solvable in linear time on trees [4] and more generally on block-cactus
graphs [5]. The optimization variant of the Target Set Selection problem is hard to
approximate [4] within a polylogarithmic factor. For more and less recent results we refer
the reader to a survey by Peleg [20]. Cicalese et al. [8, 7], considered versions of the problem
in which the number of rounds of the activation process is bounded. For graphs of bounded
clique-width, given parameters a, b, `, they gave polynomial-time algorithms to determine
whether there exists a target set of size b, such that at least a vertices are activated in at most
` rounds. Recently Hartmann [15] gave a single-exponential FPT algorithm for Target Set
Selection parameterized by clique width when all thresholds are bounded by a constant.

Our Results. In this work we generalize some results obtained by Nichterlein et al. [19].
Chopin et al. [6] essentially proved that in sparse graph classes (such as graphs with the
bounded tree-width) parameterized complexity of the Majority Target Set Selection
problem is the same as for the Target Set Selection problem. For these graph classes,
it is not hard to see that e.g. if the threshold for vertex v is set above the majority (i.e.,
f(v) > ddeg(v)/2e), then we may add 2

(
f(v)− ddeg(v)/2e

)
vertices neighboring with v only

and the parameter stays unchanged whereas the threshold of v dropped to majority. However,
this is not true in general for dense graph classes. We demonstrate this phenomenon for
the parameterization by the neighborhood diversity. We show parameterized algorithm for
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a function which generalizes both constant and majority threshold functions. We call this
function uniform (and the corresponding problem Uniform Target Set Selection), see
the next section for a proper definition. Roughly speaking all vertices belonging to a same
part of a graph decomposition must possess the same value of the threshold function. In
a slight contrast to the previous results, we derive an FPT algorithm that, instead of the
maximal threshold value t, depends on the size of the image of the threshold function for
graphs having bounded neighborhood diversity.

I Theorem 1. There is an FPT algorithm for the Uniform Target Set Selection
problem parameterized by the neighborhood diversity of the input graph.

I Theorem 2. The Target Set Selection problem is W[1]-hard parameterized by the
neighborhood diversity of the input graph.

The complexity of the Majority Target Set Selection problem is not resolved for
parameterization by the cluster vertex deletion number [6] (the number of vertices whose
removal from the graph results in a collection of disjoint cliques). We have a positive result
for a slightly stronger parameterization: we assume that for every vertex we remove and
every clique the vertex is either completely adjacent to the whole clique or is completely
nonadjacent. This result also suggests that various weighted variants of the Target Set
Selection problem may be in FPT when parameterized by the vertex cover number.

I Theorem 3. There is an FPT algorithm for the Uniform Target Set Selection
problem parameterized by the size of the twin cover of the input graph.

Previous results [6] imply that the parameterized complexity of the Target Set Se-
lection and the Majority Target Set Selection problems is the same in graphs
with bounded clique-width. Of course, much more is known – the proof herein shows that
the Majority Target Set Selection problem is W[1]-hard on graphs of the bounded
tree-depth (even though only the tree-width is claimed). We show that this is already the case
for parameterization by the (restricted) modular-width that generalizes both neighborhood
diversity and twin cover number.

I Theorem 4. The Majority Target Set Selection problem is W[1]-hard parameterized
by the modular-width of the input graph.

2 Preliminaries on Structural Graph Parameters

We give formal definitions of several graph parameters used in this work. To get better
acquainted with these parameters, we provide a map of the considered parameters in Figure 1.

For a graph G = (V, E) the set U ⊆ V is called a vertex cover of G if for every edge
e ∈ E it holds that e ∩ U 6= ∅. The vertex cover number of a graph, denoted as vc(G), is the
least integer k for which there exists a vertex cover of size k.

As the vertex cover number is (usually) too restrictive, many authors focused on defining
other (i.e., weaker) structural parameters. Three most well-known parameters of this kind
are the path-width, the tree-width, and the clique-width. Classes of graphs with the bounded
tree-width (respectively the path-width) are contained in the so called sparse graph classes.

There are (more recently introduced) structural graph parameters which also generalize
the vertex cover number but, in contrast with e.g. the tree-width, these parameters focus on
dense graphs. First, up to our knowledge, of these parameters is the neighborhood diversity
defined by Lampis [17]. We denote the neighborhood diversity of a graph G = (V, E)
as nd(G).

ISAAC 2018
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cw

mw tw

cvdn rmw

ndtc pw

vc

Figure 1 A map of the considered parameters. A black arrow stands for a linear upper bound,
while a gray arrow stands for an exponential upper bound. That is, if a graph G has vc(G) ≤ k

then nd(G) ≤ 2k + k.

Neighborhood Diversity. We say that two distinct vertices u, v are of the same neighborhood
type if they share their respective neighborhoods, that is, when N(u) \ {v} = N(v) \ {u}.

I Definition 5 (Neighborhood diversity [17]). A graph G = (V, E) has neighborhood diversity
at most w (nd(G) ≤ w) if there exists a decomposition Dnd = (Ci)wi=1 of V = C1

·
∪ · · ·

·
∪ Cw

(we call the sets Ci types) such that all vertices in a type have the same neighborhood type.

Note that every type induces either a clique or an independent set in G and two types
are either joined by a complete bipartite graph or no edge between vertices of the two types
is present in G. Thus, we use the notion of a type graph – that is a graph TG representing
the graph G and its neighborhood diversity decomposition in the following way. The vertices
of type graph TG are the types C1, . . . , Cw and two such vertices are joined by an edge if
all the vertices of corresponding types are adjacent. We would like to point out that it is
possible to compute the neighborhood diversity of a graph in linear time [17].

Twin Cover. If two vertices u, v have the same neighborhood type and e = {u, v} is an
edge of the graph, we say that e is a twin edge.

I Definition 6 (Twin cover number [14]). A set of vertices T ⊆ V is a twin cover of a graph
G = (V, E) if for every edge e ∈ E either T ∩ e 6= ∅ or e is a twin edge. We say that G has
twin cover number t (tc(G) = t) if the size of a minimum twin cover of G is t.

Note that after removing T from a graph G the resulting graph consists of disjoint union
of cliques – we call them twin cliques. Moreover, for every vertex v in T and a twin clique
C holds that v is either adjacent to every vertex in C or to none of them. A twin cover
decomposition Dtc = (Ci)νi=1 of a graph G is a partition of V (G) such that each Ci is either
a vertex of the twin cover or a twin clique.

Note that the twin cover number can be upper-bounded by the vertex cover number. The
structure of graphs with bounded twin cover is very similar to the structure of graphs with
bounded vertex cover number. Thus, there is a hope that many of known algorithms for
graphs with bounded vertex cover number can be easily turned into algorithms for graphs
with bounded twin cover number.

Uniform Threshold Function. As it is possible to compute the neighborhood diversity
(or the twin cover) decomposition in polynomial time (or FPT-time, respectively), we may
assume that the decomposition is given in the input. Given a decomposition D (Dnd or Dtc) a
threshold function f : V (G)→ N is uniform with respect to D if f(u) = f(v) for every u, v ∈ C
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and every C ∈ D. Observe that this notion generalizes the previously studied [6] model in
which the threshold function is required to satisfy f(u) = f(v) whenever |N(u)| = |N(v)|,
since this indeed holds if u, v ∈ C and C ∈ D. It is not hard to see that the uniform function
generalizes both the constant and the majority functions for the twin cover number and the
neighborhood diversity; this is true already for the later notion.

Moreover, if f(v) is bounded by a constant c for all v ∈ V (G), then there exists Dnd
with ‖Dnd‖ ≤ c · nd(G) such that f is uniform with respect to Dnd. We stress here that
this construction is not legal for the twin cover decompositions. Uniform Target Set
Selection is a variant of Target Set Selection, where the input instance (G, f, b,D) is
restricted in such a way that the function f is uniform with respect to D.

Modular-width. Both the neighborhood diversity and the twin cover number are generalized
by the modular-width. Here we deal with graphs created by an algebraic expression that
uses the following four operations:
1. Create an isolated vertex.
2. The disjoint union of two graphs, that is from graphs G = (V, E), H = (W, F ) create a

graph (V ∪W, E ∪ F ).
3. The complete join of two graphs, that is from graphs G = (V, E), H = (W, F ) create a

graph with vertex set V ∪W and edge set E ∪ F ∪
{
{v, w} : v ∈ V, w ∈W

}
. Note that

the edge set of the resulting graph can be also written as E ∪ F ∪ (V ×W ).
4. The substitution operation with respect to a template graph T with vertex set {v1, v2, . . . ,

vk} and graphs G1, G2, . . . , Gk created by an algebraic expression; here Gi = (Vi, Ei) for
i = 1, 2, . . . , k. The substitution operation, denoted by T (G1, G2, . . . , Gk), results in the
graph on vertex set V = V1 ∪ V2 ∪ · · · ∪ Vk and edge set

E = E1 ∪ E2 ∪ · · · ∪ Ek ∪
⋃

{vi,vj}∈E(T )

{
{u, v} : u ∈ Vi, v ∈ Vj

}
.

I Definition 7 (Modular-width [13]). Let A be an algebraic expression that uses only
operations 1–4 above. The width of the expression A is the maximum number of operands
used by any occurrence of operation 4 in A. The modular-width of a graph G, denoted
mw(G), is the least positive integer k such that G can be obtained from such an algebraic
expression of width at most k.

An algebraic expression of width mw(G) can be computed in linear time [22].

Restricted Modular-width. We would like to introduce here a restriction of the modular-
width that still generalizes both the neighborhood diversity and the twin cover number. The
algebraic expression used to define a graph G may contain the substitution operation at
most once and if it contains the substitution operation it has to be the last operation in the
expression. However, there is no limitation for the use of operations 1–3.

3 Positive Results

In this section we give proofs of Theorem 1 and 3. In the first part we discuss the crucial
property of dense structural parameters – the uniformity of neighborhoods. This, opposed
to e.g. the cluster vertex deletion number, allows us to design parameterized algorithms.
In this section by a decomposition D we mean a neighborhood diversity or a twin cover
decomposition.

ISAAC 2018



18:6 Target Set Selection in Dense Graph Classes

I Lemma 8. Let G = (V, E) be a graph, D be a decomposition of G, S ⊆ V be a target set,
and f be a uniform threshold function with respect to D. Let C ∈ D and S = S0, S1, . . . be
an activation process arising from S. For each round i ∈ N0 one of the following holds either
1. Si ∩ C = S0 ∩ C, or
2. Si ∩ C = C.
Moreover, there exist j with j ∈ N0 such that for C the first item applies in rounds 0, . . . , j

and the second in rounds j + 1, . . ..

Proof. Since f is uniform, it is constant on C. The proof is by induction on the round
number i. The statement clearly holds for i = 0. Suppose that the statement is valid for
all i′ < i but not for i, that is, in the i-th round there are two vertices u, v ∈ C such that
u ∈ Si \ Si−1 and v /∈ Si. This is impossible, as both u and v have the same neighborhood
type and f(u) = f(v). Thus if u gets activated, then v must be activated as well. The
“moreover” part follows from the monotonicity of the activation process (Si ⊆ Si+1). J

Let C ∈ D. For a threshold function f which is constant on C we define f ′(C) as f(v) for
arbitrary vertex v in C. By Lemma 8, we say that C is activated in a round i if Si ∩ C = C

and Sj ∩ C = S0 ∩ C for every j < i. We denote aSi (v) the number |Si−1 ∩N(v)|, i.e., the
number of active neighbors of v in the round i in the activation process arising from the set
S. Thus, a vertex v is activated in the first round i when aSi (v) ≥ f(v) holds.

3.1 Uniformity and Twin Cover
In this subsection we present an algorithm for Uniform Target Set Selection paramet-
erized by the twin cover number.

Trivial Bounds on the Minimum Target Set. Let G = (V, E) be a graph with twin cover
T of size t and let C1, C2, . . . , Cq be the twin cliques of G. For a twin clique C by N(C) we
denote the common twin cover neighborhood, that is, N(v) ∩ T for any v ∈ C. We show
that there is a small number of possibilities how the optimal target set can look like. Let
bC = max(f ′(C)− |N(C)|, 0) for a twin clique C.

I Observation 9. If the minimum target set of G has size s, then B ≤ s ≤ B + t for
B =

∑q
i=1 bCi

.

Proof. Let S be a target set for G of size s. Suppose there is a twin clique C such that
|S ∩ C| = p < bC . It means that bC > 0. Let v ∈ C \ S. Note that p < |C|, thus such a
vertex v exists. For the vertex v it holds that aSi (v) < p + |N(C)| for every round i of the
process. Thus, the vertex v is never activated because p + |N(C)| < bC + |N(C)| = f ′(C)
and S is not a target set. On the other hand, if we put bC vertices from each twin clique C

into a set S′, then the set S′ ∪ T is a target set because every vertex not in S′ is activated in
the first round. J

Structure of the Solution. Let (G, f, b,Dtc) be an instance of Uniform Target Set
Selection with tc(G) = t. By Observation 9, if b <

∑
bC , then we automatically reject.

On the other hand, if b ≥ t +
∑

bC , then we automatically accept. Let w = b−
∑

bC . Thus,
to find a target set of size b we need to select w excess vertices from the twin cliques and the
twin cover. We will show there are at most g(t) interesting choices for these w excess vertices
for some computable function g and those choices can be efficiently generated. Since we can
check if a given set S ⊆ V (G) is a target set in polynomial time, there is an FPT-algorithm
for Uniform Target Set Selection.
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We start with an easy preprocessing. Let C be a twin clique with bC > 0. We select bC
vertices V ′ ⊆ C and remove them from the graph G. We also decrease the threshold value
by bC of every vertex which was adjacent to V ′ (recall that vertices in V ′ have the same
neighborhood type, thus any vertex adjacent to some vertex in V ′ is adjacent to all vertices
in V ′). Formally, we get an equivalent instance (G1, f1, b− bC ,D′tc), where G1 is G without
vertices V ′, D′tc is Dtc restricted to V (G1) and

f1(v) =
{

f(v) v 6∈ NG(V ′)
f(v)− bC v ∈ NG(V ′).

It is easy to see that the instances (G, f, b,Dtc) and (G1, f1, b−bC ,D′tc) are equivalent, because
any target set of G needs at least bC vertices in the twin clique C due to Observation 9.
Note that the function f1 is uniform with respect to D′tc. We repeat this process for all twin
cliques. From now on we suppose that the instance (G, f, b,Dtc) is already preprocessed.
Thus, for every twin clique C it holds that bC = 0 and f ′(C) ≤ N(C) ≤ t.

We say that a twin clique C is of a type (Q, r) for Q ⊆ T, r ≤ t if Q = N(C) and f ′(C) = r.
Two twin cliques C and D are of the same type if N(C) = N(D) and f ′(C) = f ′(D). Note
that there are at most (t + 1) · 2t distinct types of the twin cliques.

We start to create a possible target set S of size b. We add w1 (for some w1 ≤ w) vertices
from the twin cover T to S (there are at most 2t such choices). Now we need to select
w2 = w − w1 excess vertices from twin cliques to S.

The number of the twin cliques of one type may be large. Thus, for the twin cliques we
need some more clever way than try all possibilities. The intuition is that if we want to
select some excess vertices from a clique of a type (Q, r) it is a “better” choice to select the
vertices from large cliques of the type (Q, r). We assign to each type (Q, r) a number w(Q,r)
how many excess vertices would be in twin cliques of type (Q, r). We prove that it suffices
to distribute w(Q,r) excess vertices among the w(Q,r) largest twin cliques of the type (Q, r).

I Definition 10. Let C1, . . . , Cp be all twin cliques of type (Q, r) ordered by the size in a
descending order, i.e., for all i < p holds that |Ci| ≥ |Ci+1|. We say that a target set has a
hole (Ci, Cj) for i < j if |S ∩Ci| = 0 and |S ∩Cj | ≥ 1. A target set is (Q, r)-leaky if it has a
hole and it is (Q, r)-compact otherwise.

Our goal is to prove that if there is a target set S which is (Q, r)-leaky, then there is also a
target set R which is (Q, r)-compact and |R| = |S|.

I Lemma 11. Suppose there is a target set S for a graph G with a threshold function f and
S is (Q, r)-leaky for some twin clique type (Q, r). Then, there is a target set R such that:
1. It holds that |R| = |S|.
2. The sets R and S differ only at the twin cliques of the type (Q, r).
3. The set R is (Q, r)-compact.

Proof Sketch. Let set S has a hole (Ci, Cj) for the twin cliques of the type (Q, r). We create
a target set R by removing vertices from Cj and adding the same number of vertices from
Ci. Formally, R =

(
S \ Cj

)
∪X, where X ⊆ Ci and |X| = |S ∩ Cj |. The verification that R

is a target set is technical but rather straightforward. The whole proof is in the full version
of the paper. J

If we repeat Lemma 11 for every type (Q, r), we get a target set without any hole. To
summarize how to distribute w excess vertices:

ISAAC 2018



18:8 Target Set Selection in Dense Graph Classes

1. Pick w1 vertices from the twin cover T , in total 2t choices.
2. Distribute w2 = w − w1 excess vertices among t · 2t types of twin cliques, in total

(t · 2t)t = 2O(t2) choices.
3. Distribute w(Q,r) excess vertices among the w(Q,r) largest cliques of type (Q, r), in total

tt choices.
By this we create 2O(t2) candidates for a target set. For each candidate we test whether it is
a target set for G or not. If any candidate is a target set, then we find a target set of size b.
If no candidate is a target set, then by argumentation above we know the graph G has no
target set of size b. This finishes the proof of Theorem 3.

3.2 Neighborhood diversity

In this section we prove that the Uniform Target Set Selection problem admits an
FPT algorithm on graphs of the bounded neighborhood diversity. We again use Lemma 8.
Note that in each round of the activation process at least one type has to be activated. This
implies that there are at most nd(G) rounds of the activation process. We use this fact to
model the whole activation process as an integer linear program which is then solved using
Lenstra’s celebrated result:

I Proposition 12 ([18, 12]). Let p be the number of integral variables in a mixed integer
linear program and let L be the number of bits needed to encode the program. Then it is
possible to find an optimal solution in time O

(
p2.5p poly(L)

)
and a space polynomial in L.

There has to be an order in which the types are activated in order to activate whole
graph. Since there are t = nd(G) types, we can try all such orderings. Let us fix an order ≺
on types. To construct the ILP we further need to know which types are fully activated at
the beginning. Denote by c0 the number of such types. Once the order ≺ is fixed the set of
fully activated types at the beginning is determined by c0. Since c0 can attain values 0, . . . , t

we can try all t + 1 possibilities. Now, with both ≺ and c0 fixed, denote the set of the types
activated in the beginning by T0.

Observe further that, as the vertices in a type share all neighbors, the only thing that
matters is the number of activated vertices in each type and not the actual vertices activated.
Thus, we have variables xC which corresponds to the number of vertices in type C selected
into a target set S.

Let C be a type and nC be the number of vertices in C. Since we know when C is
activated, we know how many active vertices are in C in each round. There are xC vertices
before the activation of C and nC after the activation. To formulate the integer linear
program we denote the set of types by T and we write D ∈ N(C) if the two corresponding
vertices in the type graph TG are connected by an edge.

ILP Formulation.

minimize
∑
C∈T

xC

subject to f ′(C) ≤
∑

D≺C,D∈N(C)

nD +
∑

D�C,D∈N(C)

xD + [C is a clique]xC ∀C ∈ T \ T0

where 0 ≤ xC < nC ∀C ∈ T \ T0

xC = nC ∀C ∈ T0
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As there are at most t! orders of the set T and t + 1 choices of c0 this implies that the
Uniform Target Set Selection problem can be solved in time (t + 1)t!tO(t) poly(n) =
tO(t) poly(n). Thus, we have proven Theorem 1.

4 Hardness Reductions

In this section we prove that Target Set Selection is W[1]-hard on graphs of the bounded
neighborhood diversity for a general threshold function. We use an FPT-reduction from
k-Multicolored Clique.

k-Multicolored Clique Parameter: k
Input: A k-partite graph G = (V1 ∪ · · · ∪ Vk, E), where Vc is an independent set for every

c ∈ [k] and they are pairwise disjoint.
Task: Find a clique of the size k.

Let G be an input of k-Multicolored Clique. We refer to a set Vc as to a color class of
G and to a set Ecd as to edges between color classes Vc and Vd. The problem is W[1]-hard [9]
even if every color class Vc has the same size and the number of edges between every Vc and
Vd is the same. For an easier notation, we denote the size of an arbitrary color class Vc by
n + 1 and the size of an arbitrary set Ecd by m + 1. We describe a reduction from the graph
G to an instance of Target Set Selection (G′, f : V → N, b) where nd(G′) is O(k2). The
reduction runs in time poly(|G|). The graph G has a clique of size k if and only if the graph
G′ has a target set of size b.

In the k-Multicolored Clique problem we need to select exactly one vertex from each
color class Vc and exactly one edge from each set Ecd. Moreover, we have to make certain
that if {u, v} ∈ Ecd is a selected edge, then u ∈ Vc and v ∈ Vd are selected vertices.

An Overview of Proof of Theorem 2. We present a way of encoding a vertex v in a color
class Vc of the graph G by two numbers v-pos and v-neg with v-pos + v-neg = n. We proceed
with encoding of edges similarly, however, edges are encoded by multiples of sufficiently large
number q. This we do in such a way that sum of the encoding of a vertex and an incident
edge is unique. We create three types of gadgets: for selection vertices, for selection edges,
and gadgets which check that the selected vertices are incident to the selected edges. Proofs
of lemmas and theorems in this section are quite technical and they are presented in the full
version of this paper.

4.1 Proof of Theorem 2
In order to present the hardness reduction we have to introduce some gadgets. We denote the
name of a gadget by capital letters and we write parameters of the gadget into parentheses
(e.g. L(s)). When speaking about concrete instance of a gadget kind L(s) we add a subscript,
i.e., Lc(s). We omit parameters of the gadget it they are clear from the context.

Selection Gadget. First, we describe gadgets of the graph G′ for selecting vertices and
edges of the graph G. For an overview of the reduction see Figure 2. The gadget L(s) is
formed by two types L-neg and L-pos of equal size s (the number s will be determined later);
we refer to these two types as the selection part. For a vertex v in the selection part we set
the value f(v) of the threshold to the degree of v. It means that if some vertex v from the
selection part is not selected into the target set, then all neighbors of v have to be active
before the vertex v can be activated by the activation process. The selection gadget L is
connected to the rest of the graph using only vertices from the selection part.
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The last part of the gadget L is formed by type L-guard of s + 1 vertices connected to
both types in the selection part. For each vertex v in L-guard type we set f(v) = s.

Numeration of Vertices and Edges. Now, we describe how we use the selection gadget.
Let Vc = {v0, . . . , vn}. For every color class Vc we create a selection gadget Lc = L(n). We
select a vertex vi ∈ Vc to the multicolor clique if i vertices in the Lc-pos type and n − i

vertices in the Lc-neg type of the gadget Lc are selected into the target set.
The selection of edges is similar, however, a bit more complicated. Let q ∈ N and

Ecd = {e0, . . . , em}. For every set Ecd we create a selection gadget Lcd of kind L(qm). We
select an edge ej ∈ Ecd to the multicolor clique if qj vertices in the Lcd-pos type of the
gadget Lcd are selected into the target set (and q(m− j) vertices in the Lcd-neg are selected
into the target set). Suppose s vertices in the Lcd-pos type are selected into the target set.
If s is not divisible by q, then it is an invalid selection. We introduce a new gadget which
controls that s has to be divisible by q.

Multiple Gadget. A multiple gadget M(q, s) consists of a selection gadget L(qs) and 3
other types: M -pos, M -neg of s vertices and M -guard of qs vertices. The type M -pos is
connected to the type L-pos and the type M -neg is connected to the type L-neg. The type
M -guard is connected to the types M -pos and M -neg. Still, the rest of graph G′ is connected
only to types L-pos and L-neg. Let {u1, . . . , us} and {w1, . . . , ws} be vertices in M -pos type
and M -neg type, respectively. We set thresholds f(ui) = f(wi) = qi. For each vertex v in
M -guard we set f(v) = s.

Incidence Gadget. So far we described how we encode in graph G′ selecting vertices and
edges to multicolor clique. It remains to describe how we encode the correct selection, i.e., if
v ∈ Vc and e ∈ Ecd are selected vertex and edge to multicolor clique, then v ∈ e. We create
Lc(n) selection gadget for a color class Vc. We set the number q to n2 and create a multiple
gadget Mcd of kind M(n2, m) (with selection gadget Lcd) for a set Ecd. We join gadgets
Lc and Mcd through an incidence gadget Ic:cd. The incidence gadget Ic:cd has three types
Ic:cd-pos and Ic:cd-neg of m + 1 vertices and Ic:cd-guard of n + n2m vertices. We connect
the Ic:cd-guard type to the types Ic:cd-pos and Ic:cd-neg. Furthermore, we connect the type
Ic:cd-pos to the types Lc-pos and Lcd-pos. Similarly, we connect the type Ic:cd-neg to the
types Lc-neg and Lcd-neg.

We set thresholds of all vertices in the Ic:cd-guard type to m + 2. Recall there are
m + 1 edges in the set Ecd. Thus, we can associate edges in Ecd with vertices in Ic:cd-pos
(Ic:cd-neg respectively) one-to-one. I.e., V (Ic:cd-pos) = {u` : e` ∈ Ecd} and V (Ic:cd-neg) =
{w` : e` ∈ Ecd}. Let vi ∈ Vc, ej ∈ Ecd and vi ∈ ej . Recall that selecting vi and ej into a
multicolor clique is encoded as selecting i vertices in Lc-pos type and n2j vertices in Lcd-pos
type into a target set. We set threshold of uj to i + n2j and threshold of wj to the “opposite”
value n− i + n2(m− j).

Since we set the coefficient q to n2, for each edge ej ∈ Ecd and each vertex vi ∈ Vc the
sum i + n2j is unique. Thus, every vertex in Ic:cd-pos (Ic:cd-neg) has a unique threshold. We
will use this number to check the incidence.

Reduction Correctness. We described how from the graph G with k color classes (instance
of k-Multicolored Clique) we create the graph G′ with the threshold function f (input
for Target Set Selection). For every color class Vc we create a selection gadget Lc. For
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Figure 2 An overview of the reduction. The number inside a type is the number of vertices of
the type. The threshold of vertices in a type is displayed next to the type in orange (light-gray).

every edge set Ecd we create a multiple gadget Mcd. We join the gadgets Lc and Mcd by an
incidence gadget Ic:cd (gadgets Ld and Mcd are joint by a gadget Id:cd). It is easy to see the
following observations by constructions of G′.

I Observation 13. The graph G′ has polynomial size in the size of the graph G.

I Observation 14. Neighborhood diversity of the graph G′ is O(k2).

To finish the construction of an instance of Target Set Selection, we set the budget b to
kn +

(
k
2
)
n2m. The main idea of proofs of the following theorems is that we select a vertex

vi ∈ Vc (or an edge ej ∈ Ecd) into a clique if and only if we select i vertices from the Lc-pos
type (or n2j vertices from the Lcd-pos type). Theorem 2 is a corollary of Observation 13, 14
and the following theorem.

I Theorem 15. The graph G contains a clique of size k if and only if the graph G′ with the
threshold function f contains a target set of size b.

4.2 Overview of Proof of Theorem 4
In fact this can be seen as a clever twist of the ideas contained in the proof of Theorem 2.
There are some nodes of the neighborhood diversity decomposition already operating in
the majority mode – e.g. guard vertices – these we keep untouched. For vertices with
threshold set to their degree one has to “double” the number of vertices in the neighborhood.
Finally, one has to deal with types having different thresholds for each of its vertices, which
is quite technical.

5 Conclusions

We have generalized ideas of previous works [3, 19] for the Target Set Selection problem.
The presented results give a new idea how to encode selecting vertices and edges in the
k-Multicolored Clique problem for showing W[1]-hardness. In particular, only few
problems are known to be W[1]-hard when parameterized by neighborhood diversity – which
is the case for the Target Set Selection problem.

Thus, we would like to address an open problem regarding structural parameterizations of
the Target Set Selection problem. Determine parameterized complexity of the Target
Set Selection problem parameterized by twin cover number. Furthermore, we are not
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aware of other positive results concerning the number of different thresholds instead of the
threshold upper-bound.

We would like to point out that in our proofs of W[1]-hardness the activation process
terminates after constant number of rounds (independent of the parameter value and the
size of the input graph). This is true also for all reductions given by Chopin et al. [6].
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Abstract
Given an undirected graph and two disjoint vertex pairs s1, t1 and s2, t2, the Shortest two disjoint
paths problem (S2DP) asks for the minimum total length of two vertex disjoint paths connecting
s1 with t1, and s2 with t2, respectively.

We show that for cubic planar graphs there are NC algorithms, uniform circuits of polynomial
size and polylogarithmic depth, that compute the S2DP and moreover also output the number
of such minimum length path pairs.

Previously, to the best of our knowledge, no deterministic polynomial time algorithm was
known for S2DP in cubic planar graphs with arbitrary placement of the terminals. In contrast,
the randomized polynomial time algorithm by Björklund and Husfeldt, ICALP 2014, for general
graphs is much slower, is serial in nature, and cannot count the solutions.

Our results are built on an approach by Hirai and Namba, Algorithmica 2017, for a general-
isation of S2DP, and fast algorithms for counting perfect matchings in planar graphs.
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1 Introduction

Shortest disjoint A,B-paths, introduced by Hirai and Namba [12], is the following problem:
Let G be an undirected graph with two non-empty disjoint vertex subsets A,B ⊆ V (G) of
even size and an edge length function ` : E(G)→ {1, . . . , L}. An edge subset E′ ⊆ E(G) is a
solution to Disjoint A,B-paths if it consists of 1

2 (|A|+ |B|) disjoint paths with endpoints both
in A or both in B. The length `(E′) of a solution is

∑
e∈E′ `(e), and a shortest solution has

length `A,B = minE′ `(E′). The objective is to compute `A,B . The special case |A| = |B| = 2
is a well-studied problem called Shortest two disjoint paths.

We write SA,B for the number of solutions of length `A,B . A graph is cubic (sometimes
called 3-regular) if every vertex has degree 3. We prove the following:
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Figure 1 A solution of minimum length `A,B = 11 to Shortest disjoint A, B-paths with A =
{a1, a2} and B = {b1, b2}. Since |A| = |B| = 2, this is also an example of Shortest two disjoint paths.
Note that neither path is a shortest path between its terminals.

I Theorem 1. For any cubic planar n-vertex graph G, disjoint vertex subsets A and B, and
edge length function ` : E(G)→ {1, . . . , L}, we can compute `A,B and SA,B in deterministic
Õ(2|A∪B|nω/2+2L2) time1, where ω < 2.373 is the exponent of square matrix multiplication.

In particular, for |A|+ |B| = O(1), the algorithm runs in deterministic time Õ(nω/2+2L2).
To the best of our knowledge, no polynomial-time deterministic algorithm was known even

for |A| = |B| = 2. Hirai and Namba’s algorithm [12] works for general graphs in randomized
time nO(|A∪B|), so Theorem 1 also shows that cubic planar graphs allow better exponential
dependency on |A ∪B|. In the appendix we show that all our algorithms extend to the case
where the graph has maximum degree 3.

Because we can count the solutions we can use well-known techniques to retrieve a witness
for the shortest length. By using our algorithm as a subroutine, we can retrieve the ith
witness in a lexicographical order of the solutions by a polynomial overhead self reduction,
by peeling off edges one at a time and remeasuring the number of solutions. In particular, by
choosing i uniformly from {1, . . . , SA,B}, we can sample uniformly over the solutions without
first explicitly constructing the list of solutions.

Our algorithm is based on counting perfect matchings in a planar graph. Vazirani [30]
showed how every bit in the number of perfect matchings in a planar graph can be decided
by an NC algorithm, i.e., uniform polylogarithmically shallow polynomial size circuits, an
observation he attributes to Luby. Using his algorithm as a subroutine, we arrive at an
efficient parallel algorithm. We state the result for Shortest two disjoint paths:

I Theorem 2. For any cubic planar n-vertex graph G, disjoint vertex subsets A and B with
|A| = |B| = 2, and edge length function ` : E(G) → {1, . . . , L}, we can compute `A,B and
SA,B by an NC algorithm.

The same statement holds as long as |A|+ |B| is logarithmic in n.
Via the Isolation lemma of Mulmuley et al. [23] we can also obtain a witness, i.e., a

solution E′ of length `(E′) = `A,B, with a randomized NC algorithm. We note that the
recent breakthrough result showing how to find a perfect matching in a planar graph in
NC by Anari and Vazirani [2] doesn’t seem to be directly applicable to our problem. Our
algorithm counts the solutions to Shortest two disjoint paths by an annihilation sieve, i.e.
the number of solutions is an alternating sum of perfect matchings in a set of graphs, but
many of the terms cancel each other. Hence there are many perfect matchings that do not
correspond to a solution. Finding one deterministically won’t help us.

We also provide evidence that the exponential dependence on |A|+ |B| is necessary:

1 The Õ(f(n)) notation suppresses factors polylogarithmic in f(n).
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I Theorem 3. It is #P-hard to simultaneously compute the length and the number of
solutions to Shortest disjoint A,B-paths in cubic planar graphs.

1.1 Hirai and Namba’s Result
Hirai and Namba [12] shows that Shortest disjoint A,B-paths has a randomized algorithm
running in nO(|A∪B|) time, that w.h.p. finds the length of the shortest disjoint paths. Their
algorithm is inspired by the algorithm of Gallai [9] that can be used to address the special case
B = ∅, and the algorithm by Björklund and Husfeldt [4] for the special case |A| = |B| = 2.
They apply a two-step method: First, expand G into another edge weighted graph G′ using
so-called Gallai paths, in a way that the weighted perfect matchings in G′ can be used to
obtain the solution to the original problem. Then it uses the fact that counting perfect
matchings in G′ modulo 2k has a nO(k) time algorithm. In their reduction, each solution is
counted 2|A∪B|/2 times, so they need to set k > 1

2 |A ∪ B| to count something meaningful,
but still small enough to keep the running time down. Thus, their algorithm is capable only
of counting the solutions modulo a fixed small power of 2. The Isolation lemma [23] ensures
that the number of solutions is not divisible by this small power of two. This is why [12]
need randomness; the same problem appears in the shortest paths algorithm of [4].

1.2 Our Approach
We apply Hirai and Namba’s approach to the planar cubic case. It is well-known that in any
planar graph we can count the perfect matchings in polynomial time. In particular we don’t
just obtain the result modulo a small power of two. We use this, but there is one obstacle
that needs to be addressed to accomplish this: The reduction Hirai and Namba use does
not preserve planarity. Our contribution is to show that for cubic planar graphs, we can
construct a set of 2|A∪B|/2 cubic planar graphs, each having non-negative edge weights, so
that a linear combination of the number of weighted perfect matchings in these graphs can
be used to deduce the number of solutions to the Shortest disjoint A,B-paths in the original
instance. We are inspired by the result of Galluccio and Loebl [10] that shows how to count
perfect matchings in graphs of genus g by constructing 4g orientations and computing the
Pfaffian for each of them. We choose to use a more direct approach instead of reducing to
their result to make the description of our algorithm more self contained.

1.3 Related Work
Björklund and Husfeldt [4] showed that Shortest two disjoint paths in a general unweighted
undirected graph has a polynomial time Monte Carlo algorithm. Colin de Verdiére and
Schrijver [8], and Kobayachi and Sommer [19] showed that for planar graphs, deterministic
polynomial-time algorithms for the Shortest two disjoint paths exist if the four terminals lie
on the boundary of at most two faces. The algorithm in the present paper works no matter
where the terminals are, but is much slower. Still, it is significantly faster than the general
O(n11) time algorithm by Björklund and Husfeldt [4].

Very recently, Datta et al. [7] presented a deterministic algorithm independently of ours
for Shortest k-disjoint paths in planar graphs conditioned on the terminals either all being
placed on the same face or all source terminals on one face and the target terminals on
another. In particular, restricted to the Shortest two disjoint path problem, their algorithm
does not work for arbitrary placement of the terminals as ours does. Interestingly, their
algorithm is also based on computing determinants just as ours and can count the solutions
just as our algorithms can, although they don’t use Pfaffian orientations as we do.
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For the decision problem of detecting two disjoint paths joining given vertex pairs, no
matter their length, deterministic polynomial-time algorithms have been known since 1980 for
general graphs, by Ohtsuki [24], Seymour [25], Shiloah [26], and Thomassen [28]; all published
independently. Tholey [27] reduced the running time for that problem to near-linear. Khuller
et al. [17] showed that the problem can be solved in NC.

The k-disjoint paths problem is the natural generalisation of the two disjoint paths
problem: Given a list {(s1, t1), . . . , (sk, tk)} of terminal pairs, decide if there exist k disjoint
paths connecting si with ti for i ∈ {1, . . . , k}. Again neglecting the length of the solution, this
problem has a polynomial time algorithm in general graphs for fixed k, but the dependence
on k is horrible (exp exp exp expO(k), see [16]). For planar graphs, there exists a doubly
exponential (exp expO(k)) poly(n) time algorithm, by Adler et al. [1]. For comparison, our
running time dependence is singly exponential in the size of the terminal set, but of course
our criteria for allowed connections is much relaxed.

The special case B = ∅ in Disjoint A,B-paths is referred to as A-Paths in Lovász and
Plummer [22]. Its solution in general undirected graphs by a polynomial time algorithm
was given by Gallai [9] by a reduction to finding a perfect matching. Using Mulmuley,
Vazirani, and Vazirani’s algorithm for the problem they call Exact Matching [23] on Gallai’s
construction, one can in randomized polynomial time solve the Shortest disjoint A-paths.

The idea of using perfect matching counting in restricted graph classes to solve other
combinatorial optimisation problems is not new, a classic example is the polynomial time
algorithm for Max Cut in graphs of bounded genus by Galluccio, Loebl, and Vondrák [11].

2 Algorithmic Results: Theorems 1 and 2

2.1 Notation
We consider an undirected graph G with vertex set V = V (G) and edge set E = E(G). A
(u, v)-path is a path from vertex u to vertex v. A perfect matching in G is a subset E′ ⊆ E
of the edges of size |E′| = 1

2 |V |, such that every vertex in v ∈ V is the endpoint of exactly
one edge in E′. Let w : E → N be an edge weight function to positive integers. Let M(G) be
the family of perfect matchings in G. We denote by pm(G) the sum of the weighted perfect
matchings in a graph G, i.e.,

pm(G) =
∑

M∈M(G)

∏
e∈M

w(e).

If the weights are unity, this is the number of perfect matchings. In our algorithm’s analysis,
some edges are weighted by an indeterminate s and pm(G) is a polynomial in s. However,
the algorithm itself only works directly over the integers after replacing the indeterminate s
for a numerical value.

2.2 Pfaffian Orientations
A Pfaffian orientation of a graph G with edge weights w : E → N, is an orientation of the
edges q : E → {−1, 1} so that the skew-symmetric adjacency matrix AG, where

∀uv ∈ E, u < v : q(u, v)w(uv) = AG(u, v) = −AG(v, u) = −q(u, v)w(uv),

satisfies

pm(G) =
∣∣∣√det(AG)

∣∣∣ . (1)



A. Björklund and T. Husfeldt 19:5

An orientation of a graph G is Pfaffian if and only if every even-length cycle C such that
G \ V (C) has a perfect matching, has an odd number of edges directed in either direction
along C. Kasteleyn [15], famously proved that all planar graphs have a Pfaffian orientation,
and moreover showed how you given a planar graph can find a Pfaffian orientation fast.
Nowadays it is even known how to find one in planar graphs in linear time, and Vazirani [30]
showed it can be computed in NC. In general it only holds that |pm(G)| =

∣∣∣√det(AG)
∣∣∣,

but we only consider positive edge weights in this paper and hence already know pm(G) to
be non-negative. Little [21] extended Kasteleyn’s method to also work constructively for
graphs that do not have a K3,3 subgraph as a minor. However, cubic K3,3 minor free graphs
coincide with the set of cubic planar graphs.

2.3 Reduction from Disjoint A,B-Paths to Counting Perfect Matchings
Consider as input a cubic planar graph G and let ` : E → {1, . . . , L} be an edge length
function, along with two disjoint subsets A and B of the vertices, each having even size. Set
Λ =

∑
e∈E `(e). We will reduce Shortest disjoint A,B-paths to counting perfect matchings so

that planarity is preserved. In this section, we write Z for the set of terminals, Z = A ∪B.
We build a larger graph H from G as follows. Replace each nonterminal v ∈ V \ Z with

three vertices h1(v), h2(v), and h3(v) forming a triangle. Replace each terminal z ∈ Z by a
3-star on vertices h1(z), h2(z), h3(z), and terminal center h(z). The gadgets look like this:

h1(v)

h2(v) h3(v)

h1(z)

h2(z) h3(z)

h(z)

We call the edges within these two gadgets internal edges.
Moreover, if uv ∈ E(G), then hi(u)hj(v) is also an edge in H for some i, j ∈ {1, 2, 3} in

such a way that each vertex in H is used in exactly one of the additional edges. We call these
edges in H between gadgets external edges. We write f(uv) = hi(u) and g(uv) = hj(v) to
identify the two gadget vertices in H connected by the external edge representing uv. Confer
figure 2. The graph H has the property that every vertex except the terminal centers h(z)
for z ∈ Z is part of exactly one external edge. Our first insight is the following:

I Lemma 4. If G is planar, then so is H.

Proof. Both gadgets are easily seen to be planar. To see that H is planar, use an embedding
of G. For each vertex v in G, consider a small enough circle Cv around v containing no other
edge or vertex. Now replace v with a copy of its gadget small enough to fit Cv. J

Hence, if G is planar, we can find a Pfaffian orientation of H , as well as for any subgraph
of it, as any subgraph is also planar. (We note in passing that a Pfaffian orientation of a
graph is not necessarily a Pfaffian orientation of its subgraph.)

From H, we create several graphs depending on a subset of the terminal vertices. We
write H(X) for X ⊆ Z to mean the graph obtained from H by removing the terminal centers
h(z) and all incident edges for each terminal z /∈ X. We have H = H(Z).

We introduce an indeterminate s to control the length of the paths. We write D(X, s)
for a skew-symmetric adjacency matrix of a Pfaffian orientation of H(X), where we have
multiplied all entries representing an external edge e in H(X) with s`(e).

Our algorithm is a direct application of the following result:
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z1

z2

h(z1)

h(z2)

Figure 2 Left: The instance graph G with two terminal nodes z1 and z2. Middle: The gadget
graph H. Right: The union of two matchings in H(X) and H(Z \ X) for some X containing both
z1 and z2. Together, they form a path between h(z1) and h(z2), along with three double edges.

I Lemma 5. For a graph G, consider

p(G, s) =
∑
X⊆Z

(−1)|X∩A|
∣∣∣√det(D(X, s)) det(D(Z \X, s))

∣∣∣ (2)

as a polynomial in the indeterminate s. Let csd be the largest degree monomial with a
positive coefficient in p(G, s). Then, `A,B = 2Λ− d is the shortest total length of any disjoint
A,B-paths in G, and c is 2|Z|/2 times the number of solutions having that minimum length.

Proof. We begin by arguing that p(G, s) indeed is a polynomial in the indeterminate s. Fix
X ⊆ Z. Write M(X) for the set M(H(X)) of perfect matchings in H(X). By (1), we have∣∣∣√det(D(X, s))

∣∣∣ = pm(H(X)) =
∑

M∈M(X)

∏
e∈M

w(e) ,

where w(e) = s`(e) if e is external and w(e) = 1 if e is internal. Thus, for a pair of perfect
matchings M1 ∈M(X) and M2 ∈M(Z \X), their contributing term t(M1,M2) is

t(M1,M2) =
( ∏
e∈M1

w(e)
)
·
∏
e∈M2

w(e) ,

which is clearly a polynomial in s, and write

p(G, s) =
∑
X⊆Z

(−1)X∩A
∑

M1∈M(X)

∑
M2∈M(Z\X)

t(M1,M2) .

Now view M1∪M2 as a subgraph in H , by identifying each vertex in H(X) and H(Z \X)
with its copy in H. (It is helpful to view M1 ∪M2 as a multiset, so the corresponding
subgraph is in fact a multigraph using the edges M1 ∩M2 twice.) We can visualise this as
placing the two graphs on top of each other and looking at the subgraph formed by the
two matchings. It is clear that every vertex in H has degree at most 2 in this subgraph, so
M1 ∪M2 can be partitioned into three edge subsets P,C,D ⊆ E(H), such that P is a disjoint
union of simple paths, C is a disjoint union of simple cycles, and D, which is equal to the
intersection M1 ∩M2, is a disjoint union of isolated edges.

We claim that every path in P has its endpoints in terminal centers. To see this, first
note that each terminal centre h(z) for z ∈ Z is present in exactly one of the graphs H(X)
and H(Z \X). Therefore, h(z) is matched by exactly one edge in M1 ∪M2 and therefore is
the endpoint of a path. Every other vertex in H appears in both H(X) and H(Z \X) and
is therefore matched in both M1 and M2; in particular, no such vertex is the endpoint of a
simple path. Figure 2 shows a small example.
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We next argue that unions M1 ∪M2 whose paths connect terminal centers h(a) and
h(b) with a ∈ A and b ∈ B contribute nothing to p(G, s). To this end, consider such a
term t(M1,M2) with M1 ∈M(X) and M2 ∈M(Z \X) and let P = (u1, . . . , uk) with u1 =
h(a), uk = h(b) be the lexicographically first such path in P.

If k is odd, then the edges u1u2, u3u4, . . ., uk−2uk−1 belong to one matching, say M1, and
the edges u2u3, . . ., uk−1uk belong to M2. In particular, the terminal center h(a) is matched
in M1, which implies h(a) ∈ V (H(X)) and therefore a ∈ X. Conversely, h(b) is matched in
M2, which implies h(b) ∈ V (H(Z \X)) and b /∈ X. Now form X ′ = (X ∪ {b}) \ {a} and
consider the two matchings M ′1 ∈ M(X ′) and M ′2 ∈ M(Z \X ′) created from M1 and M2
by swapping the edges on P . Note that the edge uk−1uk incident on h(b) now belongs to
M ′1, and since b belongs to X ′, the matching M ′1 is indeed a perfect matching in M(X ′).
Similarly, M ′2 ∈M(Z \X ′). Starting the exact same process from the matchings M ′1 and M ′2
and set X ′ would get us back to M1, M2, and X, since the same path P will be chosen by
the lexicographical order, so the process defines a fixed-point free involution on the set of
terms t(M1,M2) and subsets of Z. Crucially, the contribution to (2) of terms paired by this
involution cancel:

(−1)|X∩A|t(M1,M2) + (−1)|X
′∩A|t(M ′1,M ′2) = 0 ,

because the multisets M1 ∪M2 and M ′1 ∪M ′2 are the same, and X ′ and X differ in exactly
one terminal from A. Hence no such terms survive in the computation of p(G, s).

If k is even, then u1u2, u3u4, . . ., uk−1uk belong to the same matching, say M1. Thus,
both h(a) and h(b) belong to H(X), so a and b belong to X. Set X ′ = X \ {a, b}, and follow
the same argument as above.

In other words, t(M1,M2) survives in p(G, s) only if the disjoint paths in P have their
endpoints either both in A or both in B. The contribution is

t(M1,M2) =
(∏
e∈D

w(e)2

)
·
∏

e∈C∪P

w(e) = sd ,

where

d =
(

2
∑
e∈D

`(e)
)

+
∑

e∈C∪P

`(e) = 2Λ−
∑

e∈C∪P

`(e) ,

with the convention that `(e) = 0 for internal edges. The last term is at least `A,B, and
attains that value exactly if C is empty and P contains the external edges of a solution E′ to
Shortest disjoint A,B-paths in G. Otherwise, d < 2Λ− `A,B .

We finally turn to the other direction, to show that if there exists disjoint A,B-paths in
G, we will detect them in p(G, s). Moreover, we argue that we can count the ones of shortest
total length. To see this, first consider a solution E′ ⊆ E(G) to Shortest disjoint A,B-paths,
i.e., a disjoint union of paths

E′ = P1 ∪ · · · ∪ P|Z|/2 ,

each of which has terminal endpoints either both in A, or both in B. Let T be a subgraph
of H obtained in the following way. For each such path P = (v1, . . . , vk), first add the
external edges f(v1v2)g(v1v2), . . ., f(vk−1vk)g(vk−1vk) to T . Second, add the internal
edges h(v1)f(v1v2) and g(vk−1vk)h(vk) in the two terminal gadgets, and the internal edges
g(vivi+1)f(vi+1vi+2) in the nonterminal gadgets for i ∈ {1, . . . , k − 2}. This adds precisely
one internal edge per gadget representing a vertex on P . Third, for every vertex u ∈ V (H)
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not used in an edge so far, we add to T its unique external edge in H. This is where we
use the property of H that every non-terminal vertex has a unique external edge. Thus, T
consists of disjoint edge sets P,D ⊆ E(H) where P consists of disjoint paths and D consists
of disjoint (external) edges.

We continue to account for the contribution of T to (2). Let X ⊆ Z be a subset of
terminals such that the endpoints of the paths in P are either both in X or both in Z \X.
In particular, |X ∩A| is even, and there are 2|Z|/2 such subsets. There is exactly one perfect
matching M1 in H(X) that is a subgraph of T ; this matching contains all the internal edges
on the paths of P with endpoints both in X. There is also exactly one perfect matching M2
in H(Z \X) that is a subgraph of T ; this matching contains all the external edges on the
paths of P with endpoints both in Z \X. In particular, every external edge in D appears
exactly twice in the multiset M1 ∪M2, and every external edges in P appears exactly once.
(The internal edges have weight 1, so we need not count their contribution to a product.)
Thus, the total contribution of M1 and M2 is

t(M1,M2) =
(∏
e∈D

w(e)2

)
·
∏
e∈P

w(e) = sd , where d = 2Λ− `A,B ,

and the solution E′ accounts for the contribution∑
X⊆Z

(−1)|X∩A|t(M1,M2) = 2|Z|/2sd .

All other surviving terms have lower degree in p(G, s), and the lemma follows. J

2.4 Algorithm
Our algorithm computes the coefficients of p(G, s) in (2) viewed as a polynomial in s, using
polynomial interpolation. The algorithm works through direct evaluation in sufficiently
many points s ∈ {0, 1, . . . , 2Λ} of p(G, s) after replacing s for its numerical value. Hence all
computations are over the integers.

1. For s = 0 to 2Λ,
2. Set sums = 0.
3. For X ⊆ Z, |X| even,
4. Construct H(X) and H(Z \X) and their Pfaffian orientations.
5. Compute the integers det2(D(X)) and det2(D(Z \X)) for the current value of s.
6. Take the fourth root of the two determinants and multiply them.
7. Add the product with the sign (−1)|X∩A| to sums.
8. Use polynomial interpolation to compute the coefficients of p(G, s) from the array sum.
9. Locate the largest non-zero monomial csd.

10. Return `A,B = 2Λ− d and SA,B = c/2|Z|/2.

2.5 Sequential Running Time
We turn to the sequential running time of the algorithm from section 2.4. Recall that the
polynomial p(G, s) has degree at most 2Λ, and hence the number of evaluated points is
sufficient to uniquely recover its coefficients. We can bound the value of the two determinants
using the Leibniz formula for the determinant. There are at most 33n+|A∪B| terms since
there are at most 3 choices per vertex in H(X). For each choice, the largest value is obtained
when the external edges are picked twice, i.e., every term is at most (2Λ)2Λ. Hence the
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determinant can be a β = Õ(nL) bit number. We can compute the determinants in row
5 using O(nω/2) arithmetic operations, using Yuster’s algorithm [32] for the square of the
determinant, which in turn uses the dissection method developed by Lipton et al. [20]. Note
that since we know all our determinants to be positive (each is the square of the number
of perfect matchings), no information is lost by computing even powers of the determinant.
Every arithmetic operation can be computed in Õ(β) time [31]. Computing all determinants
requires at most Õ(Λ2|A∪B|nω/2β) = Õ(2|A∪B|nω/2+2L2) time. This part dominates the
computation time, since taking the square roots in row 7 using Newton’s method requires
only about log nL iterations for an integer square, and the polynomial interpolation in row 8
can be done in quadratic time. It requires Ω̃(Λ) operations over a finite field, cf. [31], and
we need a field, or several fields and the Chinese remainder theorem, of total size Ω(β) to
recover the integer values. This completes the proof of Theorem 1.

2.6 Parallel Circuit Depth
In this section we prove that our algorithm in section 2.4 can be efficiently implemented
as a circuit of polynomial size and polylogarithmic depth. First we note that all values
of s and all values of X in row 1 and 3 of the algorithm can be evaluated in parallel. All
computations are made on integers of β = Õ(nL) bits as claimed in the previous section.
Addition and multiplication on β bit integers can be done in polylog(β) depth. Constructing
the graphs H(X) in row 4 can be done even without a planar embedding of G, as it doesn’t
matter how the external edges are mapped to the gadget’s connectors, planarity is always
preserved. Vazirani shows that the number of perfect matchings can be computed by an
NC algorithm [30], see also the textbook [14]. He describes how a Pfaffian orientation for a
planar graph can be obtained via Klein and Reif’s parallel planar embedding algorithm [18].
He next uses the fact that the determinant can be computed in NC, a consequence of
Csansky’s algorithm for the determinant [6]. Berkowitz algorithm [3] via iterated matrix
product can also be used (see Cook [5]). Computing the integer square root at row 6 is a
logarithmic depth task with Newton’s method since the convergence is quadratic. Once all
evaluations are done, the inner loop summation at row 7 can be computed for all s, again in
polylogarithmic depth by a balanced binary tree of adders of β-sized integers. Finally, Cook
describes how polynomial interpolation is in NC [5] by reducing to Berkowitz algorithm for
the determinant [3]. This completes the proof of Theorem 2.

3 Hardness Result: Theorem 3

Our hardness reduction is from counting maximum independent sets in cubic planar graphs,
proven #P-hard in Vadhan [29] (Corollary 4.2.1). The NP-hardness result for Disjoint
A,B-paths in general graphs by Hirai and Namba [12], follows Hirai and Pap [13]. It is a
reduction directly from 3-Satisfiability but it is not (weakly) parsimonious. We give here
such a strengthened reduction.

Consider a cubic planar graph G in which we want to count the maximum independent
sets. From G, we construct a maximum degree 3 planar instance I to Shortest disjoint
A,B-paths. As described in the previous section, we can by adding a few vertices per vertex
of degree less than three make sure the graph is cubic while preserving planarity. Here we
will stick with a few vertices of degree two in our description of I for simplicity. First, for
every vertex v ∈ V , we add a clockwise ordered cycle v′1, . . . , v′8. The edge v′8v′1 has length
12 whereas all other edges v′iv′i+1 for i ∈ {1, . . . , 7} have length 2 if i is odd and length 1 if i
is even. Furthermore, vertices v′1 and v′8 belong to A for every vertex v. Second, for every
edge uv ∈ E, we add two vertices w′1 and w′2 to I. We add edges w′1u′i,w′2ui+1,w′1v′j , and
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2

2
12

2

2 2

2
12

2

2

a2a1

b2

b1

a4a3

Figure 3 Two vertex gadgets and one edge gadget in the constructed instance I in the #P-
hardness proof. The edge terminals in B must connect through some vertex gadget, forcing the A

terminals on it to connect through the longer length 12 edge alternative.

w′2vj−1 of length 1 for some indices i and j so that no vertex is used more than once, and
the resulting graph I is planar. This is easy to accomplish by using a planar embedding of G
and order edges incident on a vertex in clockwise order. See Figure 3. Furthermore, we add
w′1 and w′2 to B.

I Lemma 6. Let `A,B and SA,B be the solution to Shortest disjoint A,B-paths on I, then
the maximum independent set in G has size α(G) = 12|V |+ 3|E(G)| − `A,B and the number
of such sets are SA,B/2|E(G)|−3α(G).

Proof. Any vertex pair in A on the same vertex gadget cycle must be connected with each
other through a path, since there are no paths between different vertex gadget cycles that
do not also pass through a terminal in B. Hence there are only two possibilities for every
such pair: either it is connected through the 12-long edge between them, or it uses the path
around the cycle of length 11. Let I ⊆ V be the set of vertices whose vertex gadgets uses
paths of length 11 to connect its two A terminals. The set I must be an independent set
in G, since the terminals on every edge gadget must use some edge on either of the two
vertex gadgets it is connected to. Moreover, any pair of terminals in B cannot be connected
with a path shorter than 3 as there exist no such short paths between any pair of them.
A lower bound on the attainable length of a Shortest disjoint A,B-paths solution is hence
12|V | − α(G) + 3|E|, where α(G) is the size of a maximum independent set in G. Any such
solution can naturally be interpreted as a maximum independent set in G by identifying the
A-paths of length 11.

Moreover, from any maximum independent set I in G, we can construct disjoint paths of
this length, simply by taking the 12-long edge for every vertex not in I for a vertex gadget’s
A terminals, and the shorter 11-long path for the other vertex gadgets. The edge gadgets’ B
terminals can be connected pairwise with each other through a 3-long path using an edge
on either of its two adjacent vertex gadgets, whenever it represents a vertex not in I. It
might be possible to connect the B terminals in other ways, but those paths will be of length
strictly longer than 3 as they need to use a 2-long edge on some vertex gadget. There are
precisely |E| − 3α(G) edges with neither endpoint in I, and hence the maximum independent
sets will be counted 2|E|−3α(G) times in the Shortest disjoint A,B-paths. J

Theorem 3 now directly follows from Lemma 6, since if we can find `A,B in I, we can
also compute the number of maximum independent sets in G from SA,B .
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A Appendix

We extend the algorithm to planar graphs of maximum degree 3. First consider an edge ua
where u is a nonterminal vertex of degree 3 and a is a terminal of degree 1. Then ua can
be removed and u inserted into the terminal set of a; the resulting instance has a shortest
solution of size `A,B − `(ua). When u is also a terminal vertex, there are two cases: If u
belongs to the same terminal set as a then ua must be a path in the shortest solution, so we
can remove both u and a and discount the resulting value by `(ua). If u belongs to the other
terminal set than a then there is no solution and we can output SA,B = 0.

Consider a u, v-path P whose internal vertices all have degree 2. If none of P ’s internal
vertices are terminals then P can be contracted into a single edge with the sum of the original
edge lengths. If P contains alternating terminals, say a ∈ A, b ∈ B, a′ ∈ A in that order, no
solution can exist. If P contains exactly two terminals a ∈ A and b ∈ B then its prefix from
u to a can be contracted into a single edge, and so can its suffix from b to v; the infix from a

to b can be removed. The resulting dangling edges ua and vb are handled as above.
In general, we can replace a degree-2 terminal a incident on the edges ua and av with

the 4-vertex ‘diamond’ graph, introducing 3 new nonterminal vertices. The original edges
retain their lengths, and the new edges receive length 1, so that

u a v

`1 `2 becomes
u u′

a

w
v′ v

`1
1

1

1
1
1

`2 .
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No path with endpoint a in an optimal solution uses w, because uu′a is shorter than uu′wa.
No other solution uses the nonterminal w either, because this would isolate a. Thus, an
optimal solution uses either au′u or av′v and no other edges in the gadget. We conclude that
every optimal solution in the transformed graph corresponds to exactly one optimal solution
in the original, and `A,B increments by one for each of these modifications.

ISAAC 2018





Data-Compression for Parametrized Counting
Problems on Sparse Graphs

Eun Jung Kim1

Université Paris-Dauphine, PSL Research University, CNRS/LAMSADE, 75016, Paris, France
eun-jung.kim@dauphine.fr

Maria Serna2

Computer Science Department & BGSMath, Universitat Politècnica de Catalunya,
Barcelona, Spain
mjserna@cs.upc.edu

Dimitrios M. Thilikos3

AlGCo project-team, LIRMM, Université de Montpellier, CNRS, Montpellier, France; and
Department of Mathematics, National and Kapodistrian University of Athens, Greece
sedthilk@thilikos.info

Abstract
We study the concept of compactor, which may be seen as a counting-analogue of kernelization in
counting parameterized complexity. For a function F : Σ∗ → N and a parameterization κ : Σ∗ →
N, a compactor (P,M) consists of a polynomial-time computable function P, called condenser, and
a computable function M, called extractor, such that F = M◦P, and the condensing P(x) of x has
length at most s(κ(x)), for any input x ∈ Σ∗. If s is a polynomial function, then the compactor
is said to be of polynomial-size. Although the study on counting-analogue of kernelization is
not unprecedented, it has received little attention so far. We study a family of vertex-certified
counting problems on graphs that are MSOL-expressible; that is, for an MSOL-formula φ with
one free set variable to be interpreted as a vertex subset, we want to count all A ⊆ V (G)
where |A| = k and (G,A) |= φ. In this paper, we prove that every vertex-certified counting
problems on graphs that is MSOL-expressible and treewidth modulable, when parameterized by
k, admits a polynomial-size compactor on H-topological-minor-free graphs with condensing time
O(k2n2) and decoding time 2O(k). This implies the existence of an FPT-algorithm of running time
O(n2k2) + 2O(k). All aforementioned complexities are under the Uniform Cost Measure (UCM)
model where numbers can be stored in constant space and arithmetic operations can be done in
constant time.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Parameterized counting, compactor, protrusion decomposition

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.20

Related Version The full version of this extended abstract has appeared in [35], http://arxiv.
org/abs/1809.08160.

1 Supported by project ESIGMA (ANR-17-CE23-0010).
2 Partially funded by MINECO and FEDER funds under grants TIN2017-86727-C2-1-R (GRAMM) and

MDM-2014-044 (BGSMath), and by AGAUR grant 2017SGR-786 (ALBCOM).
3 Supported by projects DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA (ANR-17-CE23-0010).

© Eun Jung Kim, Maria Serna, and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 20; pp. 20:1–20:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eun-jung.kim@dauphine.fr
mailto:mjserna@cs.upc.edu
mailto:sedthilk@thilikos.info
https://doi.org/10.4230/LIPIcs.ISAAC.2018.20
http://arxiv.org/abs/1809.08160
http://arxiv.org/abs/1809.08160
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


20:2 Data-Compression for Parametrized Counting Problems on Sparse Graphs

1 Introduction

A large part of research on parameterized algorithms has been focused on algorithmic
techniques for parametrizations of decision problems. However, relatively less effort has been
invested for solving parameterized counting problems. In this paper, we provide a general
data-reduction concept for counting problems, leading to a formal definition of the notion of a
compactor. Our main result is an algorithmic meta-theorem for the existence of a polynomial
size compactor, that is applicable to a wide family of problems of graphs.

1.1 General context
Algorithmic meta-theorems. Parameterized complexity has been proposed as a multi-
variable framework for coping with the inherent complexity of computational problems .
Nowadays, it is a mature discipline of modern Theoretical Computer Science and has offered
a wealth of algorithmic techniques and solutions (see [12, 17, 22, 38] for related textbooks). In
some cases, in-depth investigations on the common characteristics of parameterized problems
gave rise to algorithmic meta-theorems. Such theorems typically provide conditions, logical
and/or combinatorial, for a problem to admit a parameterized algorithm [30, 29, 36, 40].
Important algorithmic meta-theorems concern model-checking for Monadic Second Order
Logic (MSOL) [10, 7, 2, 41] on bounded treewidth graphs and model checking for First Order
Logic (FOL) on certain classes of sparse graphs [21, 28, 13, 20, 19, 31].

In some cases, such theorems have a counterpart on counting parameterized problems.
Here the target is to prove that counting how many solutions exist for a problem is fixed
parameter tractable, under some parameterization of it. Related meta-algorithmic results
concern counting analogues of Courcelle’s theorem, proved in [9], stating that counting
problems definable in MSOL are fixed-parameter tractable when parameterized by the tree-
width of the input graph. Also similar results for certain fragments of MSOL hold when
parameterized by the rank-width of the input graph [9]. Moreover, it was shown in [27]
that counting problems definable in first-order logic are fixed-parameter tractable on locally
tree-decomposable graphs (e.g. for planar graphs and bounded genus graphs).

Kernelization and data-reduction. A well-studied concept in parameterized complexity is
kernelization. We say that a parameterized problem admits a polynomial kernel if there is an
algorithm – called kernelization algorithm – that can transform, in polynomial time, every
input instance of the problem to an equivalent one, whose size is bounded by a function
of the parameter. When this function is polynomial then we have a polynomial kernel. A
polynomial kernel permits the drastic data-reduction of the problem instances to equivalent
“miniatures” whose size is independent from the bulk of the input size and is polynomial on
the parameter. That way, a polynomial kernel, provides a preprocessing of computationally
hard problems that enables the application of exact algorithmic approaches (however still
super-polynomial) on significantly reduced instances [37].

Meta-algorithmic results for kernelization. Apart from the numerous advances on the
design of polynomial kernels for particular problems, algorithmic meta-theorems appeared
also for kernelization. The first result of this type appeared in [4], where it was proved
that certain families of problems on graphs admit polynomial kernels on bounded genus
graphs. The logic-condition of [4] is CMSOL-expressibility or, additionally, the Finite Integer
Index (FII) property (see [1, 6, 14]). Moreover, the meta-algorithmic results of [4] require
additional combinatorial properties for the problems in question. The results in [4] where
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extended in [23] (see also [25]) where the combinatorial condition for the problem was related
to bidimensionality, while the applicability of the results was extended in minor-closed graph
classes. Finally, further extensions appeared in [34] where, under the bounded treewidth-
modulability property (see Subsection 1.2), some of the results in [23, 4] could be applied to
more graph classes, in particular those excluding some fixed graph as a topological minor.

Data reduction for counting problems. Unfortunately, not much has been done so far in
the direction of data-reduction for parameterized counting problems. The most comprehens-
ive work in this direction was done by Marc Thurley [42] (see also [43]) who proposed the
first formal definition of a kernelization analogue for parameterized problems called counting
kernelization. In [42] Thurley investigated up to which extent classic kernelization techniques
such as Buss’ Kernelization and crown decomposition may lead to counting counterparts
of kernelization. In this direction, he provided counting kernelizations for a series of para-
meterized counting problems such as and p-#VertexCover, p-card-#Hitting Set and
p-#Unique Hitting Set.

Compactor enumeration. Another framework for data-reduction on parameterized counting
problems is provided by the notion of a compactor. In a precursory level, it appeared for
the first time in [16]. The rough idea in [16] was to transform the input of a parameterized
counting problem to a structure, called the compactor, whose size is (polynomially) bounded
by the parameter and such that the enumeration of certain family of objects (referred as
compactor enumeration in [16]) in the compactor is able to derive the number of solutions
for the initial instance. This technique was introduced in [16] for counting restrictive list
H-colorings and, later in [39], for counting generalized coverings and matchings. However
none of [16, 39] provided a general formal definition of a compactor, while, in our opinion,
the work of Thurley provides a legitimate formalization of compactor enumeration.

In this paper, we define formally the concept of a compactor for parameterizations of
function problems (that naturally include counting problems) that is not based on enumeration.
As a first step, we observe that for parameterized function problems, the existence of a
compactor is equivalent to the existence of an FPT-algorithm, a fact that is also the case for
classic kernels on decision problems and for counting kernels in [42].

Under the above formal framework, we prove an algorithmic meta-theorem on the existence
of polynomial compactors for a general family of graph problems. In the next subsection, we
define the compactor concept and we present the related meta-algorithmic results.

1.2 Our results
Counting problems and parameterizations. First of all notice that, for a counting problem,
it is not possible to have a kernelization in the classic sense, that is to produce an reduced
instance, bounded by a function of k, that is counting-equivalent in the sense that the number
of solutions in the reduced instance will provide the number of solutions in the original
one. For this reason we need a more refined notion of data compression where we transform
the input instance to “structure”, whose size is bounded by a function of k. This structure
contains enough information (combinatorial and arithmetical) so as to permit the recovering
of the number of the solutions in the initial instance. We next formalize this idea to the
concept of a compactor.

Let N be all non-negative integers and by poly the set of all polynomials. Let Σ be a
fixed alphabet. A parameterized function problem is a pair (F, κ) where F, κ : Σ∗ → N.
An FPT-algorithm for (F, κ) is one that, given x ∈ Σ∗, outputs F (x) in f(κ(x)) · poly(|x|)
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steps. When evaluating the running time, we use the standard Uniform Cost Measure (UCM)
model where all basic arithmetic computations are carried out in constant time. We also
disregard the size of the numbers that are produced during the execution of the algorithm.

Compactors. Let (F, κ) be a parameterized function problem. A compactor for (F, κ) is a
pair (P,M) where

P : Σ∗ → Σ∗ is a polynomially computable function, called an condenser,
M : Σ∗ → N is a computable function, called a extractor,
F = M ◦ P , i.e., ∀x ∈ Σ∗, F (x) = (M ◦ P )(x), and
there is a recursive function s : N→ N where ∀x ∈ Σ∗ |P (x)| ≤ s(κ(x)).

We call the function s size of the compactor (P,M) and, if s ∈ poly, we say that (P,M) is a
polynomial-size compactor for (F, κ). We call the running time of the algorithm computing
P , measured as a function of |x|, condensing time of (P,M). We also call the running time
of the algorithm computing M , measured as a function of κ(x), decoding time of (P,M). We
can readily observe that parameterized function problem has an FPT-algorithm if and only if
there is a compactor for it.

Up to our best knowledge, the notion of compactor as formalized in this paper is
new. As discussed in Subsection 1.1, similar notions have been proposed such as counting
kernelization [42] and compactor enumeration [16]. In both counting kernelization and
compact enumeration, a mapping from the set of all certificates to certain objects in the new
instance is required. While this approach comply more with the idea of classic kernelization,
it seems to be more restrictive. The main difference of our compactor from the previous
notions is that (the condenser of) a compactor is free of this requirement, which makes the
definition more flexible and easier to work with. Due to this flexibility and succinctness, we
believe that our notion might be amenable for lower bound machineries akin to those for
decision problem kernelizations.

Parameterized counting problems on graphs. A structure is a pair (G,A) where G is a
graph and A ⊆ V (G). Given a MSOL-formula φ on structures and some graph class G, we
consider the following parameterized counting problem Πφ,G .

Πφ,G
Input: a graph G ∈ G, an non-negative integer k.
Parameter: k.
Count: the number of vertex sets A ⊆ V (G) such that (G,A) |= φ and |A| = k.

We say that an instance (G, k) ∈ G × N of Πφ,G is a null instance if it has no solutions.
Given a graph G, we say that a vertex set A ⊆ V (G) is a t-treewidth modulator of G if the
removal of A from G leaves a graph of treewidth at most t. Given an MSOL-formula φ and
a graph class G, we say that Πφ,G is treewidth modulable if there is a constant t (depending
on φ and G only) such that, for every non-null instance (G, k) of Πφ,G , G has a t-treewidth
modulator of size at most t · k.

Let FH be the class of all graphs that do not contain a subdivision of H as a subgraph.
The next theorem states our main result.

I Theorem 1. For every graph H and every MSOL-formula φ, if Πφ,FH is treewidth
modulable, then there is a compactor for Πφ,FH of size O(k2) with condensing time O(k2n2)
and decoding time 2O(k).

As a corollary of the main theorem we have the following.
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I Corollary 2. For every graph H and every MSOL-formula φ, if Πφ,FH is treewidth mod-
ulable, then Πφ,FH can be solved in O(k2n2) + 2O(k) steps.

In the above results, the constants hidden in the O-notation depend on the choice of φ,
on the treewidth-modulability constant t, and on the choice of H.

Recall that the above results are stated using the UCM model. As for Πφ,FH , the number
of solutions is O(nk) and this number can be encoded in O(k log n) bits. Assuming that
summations of two r-bit numbers can be done in O(r) steps and multiplications of two r-bit
numbers can be done in O(r2) steps, then the size of the compactor in Theorem 1 is O(k2 log n)
the condensing and extracting times are O(k4n2 log2 n) and 2O(k) log2 n respectively. Con-
sequently, the running time of the algorithm in Corollary 2 is O(k4n2 log2 n) + 2O(k) log2 n.

Coming back to the algorithmic meta-theorems on parameterized counting problems
we should remark that the problem condition of Corollary 2 is weaker than MSOL, as it
additionally demands treewidth-modulability. However, the graph classes where this result
applies have unbounded treewidth or rankwidth. That way our results can be seen as
orthogonal to those of [9].

On the side of FOL, the problem condition of Corollary 2 is stronger than FOL, while its
combinatorial applicability includes planar graphs or graphs of bounded genus where, the
existing algorithmic meta-theorems require FOL-expressibility (see [27]).

1.3 Outline of the compactor algorithms
Our approach follows the idea of applying data-reduction based on protrusion decomposability.
This idea was initiated in [4] for the automated derivation of polynomial kernels on decision
problems. The key-concept in [4] is the notion of a protrusion, a set of vertices with small
neighborhood to the rest of the graph and inducing a graph of small treewidth. Also, [4]
introduced the notion of a protrusion decomposition, which is a partition of G to O(k) graphs
such the first one is a “center”, of size O(k), and the rest are protrusions whose neighborhoods
are in the center.

The meta-algorithmic machinery of [4] is based on the following combinatorial fact:
for the problems in question, YES-instances – in our case non-null instances– admit a
protrusion decomposition that, when the input has size Ω(k), one of its protrusions is “big
enough”. This permits the application of some “graph surgery” that consists in replacing a big
protrusion with a smaller one and, that way, creates an equivalent instance of the problem (the
replacements are based on the MSOL-expressibiliy of the problem). In the case of counting
problems, this protrusion replacement machinery does not work (at least straightforwardly)
as we have to keep track, not only of the way some part of a solution “invades” a protrusion,
but also of the number of all those partial solutions. Instead, we take another way that
avoids stepwise protrusion replacement. In our approach, the condenser of the compactor
first constructs an approximate protrusion decomposition, then, it computes how many
possible partial solutions of all possible sizes may exist in each one of the protrusions. This
computation is done by dynamic programming (see Section 4) and produces a total set of
O(k2) arithmetic values. These values, along with the combinatorial information of the center
of the protrusion decomposition and the neighborhoods of the protrusions in the center,
constitutes the output of the condenser. This structure can be stored in O(k2) space (given
that arithmetic values can be stored in constant space) and contains enough information to
obtain the number of all the solutions of the initial instance in 2O(k) steps (Section 4).

We stress that the above machinery demands the polynomial-time construction of a
constant-factor approximation of a protrusion-decomposition. To our knowledge, this remains
an open problem in general. So far, no such algorithm has been proposed, even for particular

ISAAC 2018



20:6 Data-Compression for Parametrized Counting Problems on Sparse Graphs

graph classes, mostly because meta-kernelization machinery in [4] (and later in [25, 23, 34, 24])
is based on stepwise protrusion replacement and does not actually need to construct such a
decomposition. Based on the result in [34], we show that that the construction of such an
approximate protrusion decomposition is possible on H-topological-minor-free graphs, given
that it is possible to construct an approximate t-treewidth modulator of G. In fact, this can
been done in general graphs using the randomized constant-factor approximation algorithm
in [24]. Responding to the need for a deterministic approximation we provide a constant-
factor approximation algorithm that finds a t-treewidth modulator on H-topological-minor
free graphs (Section 3). This algorithm runs in O(k2n2) steps and, besides from being a
necessary step of the condenser of our compactor, is of independent algorithmic interest.

2 Preliminaries

We use N to denote the set of all non-negative integers. Let χ : N2 → N and ψ : N → N.
We say that χ(n, k) = Ok(ψ(n)) if there exists a function φ : N → N such that χ(n, k) =
O(φ(k) · ψ(n)). Given a, b ∈ N, we define by [a, b] = {a, . . . , b}. Also, given some a ∈ N we
define [a] = {1, . . . , a}. Given a set Z and a k ∈ N, we denote

(
Z
k

)
= {S ⊆ Z | |S| = k}.

2.1 Graphs and boundary graphs
Graphs. All graphs in this paper are simple and undirected. Given a graph G, we use
V (G) to denote the set of its vertices. Given a S ⊆ V (G) we denote by NG(S) the set of all
neighbours of S in G that are not in S. We also set NG[S] = S ∪NG(S) and we use N(S)
and N [S] as shortcuts of NG(S) and NG[S] (when the index is a graph denoted by G). We
define G− S as the graph obtained from G if we remove the vertices in S, along with the
edges incident to them. The subgraph of G induced by S is the graph G[S] := G− (V (G)\S).
Finally, we set ∂G(S) = NG(V (G − S)). We call |V (G)| the size of a graph G and n is
reserved to denote the size of the input graph for time complexity analysis.

Given a graph G, a subdivision of G is any graph that is obtained from G after replacing
its edges by paths with the same endpoints. We say that a graph H is a topological
minor of G if G contains as a subgraph some subdivision of H. We also say that G is
H-topological-minor-free if it excludes H as a topological minor.

Boundaried structures. A labeling of a graph G is any injective function λ : V (G) → N.
Given a structure (G,A), we call A the annotated set of (G,A) and the vertices in A annotated
vertices of (G,A).

A boundaried structure, in short a b-structure, is a triple G = (G,B,A) where G is a
graph and B,A ⊆ V (G). We say that B is the boundary of G and A is the annotated set of
G. Also we call the vertices of B boundary vertices and the vertices in A annotated vertices.
We use notation B(t) to denote all b-structures whose boundary has at most t vertices. We
set G(G) = G, V (G) = V (G), B(G) = B, A(G) = A. We refer to G as the underlying graph
of G and we always assume that the underlying graph of a b-structure is accompanied with
some labelling λ. Under the presence of such a labelling, we define the index of a boundary
vertex v as the quantity |{u ∈ B | λ(u) ≤ λ(v)}| i.e., the index of v when we arrange the
vertices of B according to λ in increasing order. We extend the notion of index to subsets of
B in the natural way, i.e., the index of S ⊆ B consists of the indices of all the vertices in S.

A boundaried graph, in short b-graph, is any b-structure G = (G,B,A) such that
A = V (G). For simplicity we use the notation G = (G,B,−) to denote b-graphs instead of
using the heavier notation G = (G,B, V (G)). For every t ∈ N, we use B(t) to denote the
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b-graphs in B(t). We avoid denoting a boundary graph as an annotated graph as we want to
stress the role of B as a boundary.

We say that two b-structures G1 = (G1, B1, A1) and G2 = (G2, B2, A2) are compatible,
denoted by G1 ∼ G2, if A1 ∩B1 and A2 ∩B2 have the same index and the labeled graphs
G[B1] and G[B2], where each vertex of Bi is labeled by its index, are identical.

Given two compatible b-structures G1 = (G1, B1, A1) and G2 = (G2, B2, A2), we define
G1 ⊕G2 as the structure (G,A) where

the graph G is obtained by taking the disjoint union of G1 and G2 and then identifying
boundary vertices of G1 and G2 of the same index, and
the vertex set A is obtained from A1 and A2 after identifying equally-indexed vertices in
A1 ∩B1 and A2 ∩B2.

Keep in mind that (G,A) = G1 ⊕G2 is an annotated graph and not a b-structure. We
always assume that the labels of the boundary of G1 prevail during the gluing operation,
i.e., they are inherited to the identified vertices in (G,A) while the labels of the boundary
of G2 dissapear in (G,A). Especially, when G1 and G2 are compatible b-graphs, we treat
G1 ⊕G2 as a graph for notational simplicity.

Treewith of b-structures. Given a b-structure G = (G,B,A), we say that the triple
D = (T, χ, r) is a tree decomposition of G if (T, χ) is a tree decomposition of G, r ∈ V (T ),
and χ(r) = B.We see T as a tree rooted on r. The width of a tree decomposition D = (T, χ, r)
is the width of the tree decomposition (T, χ). The treewidth of a b-structure G is the minimum
width over all its tree decompositions and is denoted by tw(G). We use T (t) (resp. T (t)) to
denote all b-structures (resp. b-graphs) in B(t) (resp. B(t)) with treewidth at most t.

Protrusion decompositions. Let G be a graph. Given α, β, γ ∈ N, an (α, β, γ)-protrusion
decomposition of G is a sequence of G1 = (G1, B1,−), . . . ,Gs = (Gs, Bs,−) of b-graphs
where, given that Xi = V (Gi) \Bi, i ∈ [s], it holds that
1. s ≤ α
2. ∀i ∈ [s], Gi ∈ T

(β)

3. ∀i ∈ [s], Gi is a subgraph of G
4. ∀i, j ∈ [s], i 6= j ⇒ Xi ∩Xj = ∅
5. |V (G) \

⋃
i∈[s] Xi| ≤ α

6. ∀i ∈ [s], tw(G[Xi]) ≤ γ.
We cal the set V (G) \

⋃
i∈[s] Xi center of the above (α, β, γ)-protrusion decomposition.

Protrusion decompositions have been introduced in [4] in the context of kernelization al-
gorithms (see also [25, 23]). The above definition is a modification of the original one in [4],
adapted for the needs of our proofs. The only essential modification is the parameter γ, used
in the last requirement. Intuitively, γ bounds the “internal” treewidth of each protrusion Bi.

2.2 Equivalence on boundaried structures.

(Counting) Monadic Second Order Logic. We say that a MSOL-formula φ is a formula on
structures if it has a free variable corresponding to a set of vertices. A structure G = (G,A) is
a model for such a formula φ, we write this G |= φ, if it becomes true on G when instantiating
the free variable of φ by the set A. Given a MSOL-formula φ we denote by |φ| the length of
the formula.
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Equivalences between b-structures and b-graphs. Let φ be a MSOL-formula and t ∈ N.
Given two b-structures G1,G2 ∈ B(t), we say that G1 ≡φ,t G2 if

G1 ∼ G2 and
∀F ∈ B(t) F ∼ G1 ⇒ (F⊕G1 |= φ ⇐⇒ F⊕G2 |= φ)

Notice that ≡φ,t is an equivalence relation on B(t). The following result is widely known
as Courcelle’s theorem and was proven [10]. The same result was essentially proven in [7]
and [2]. The version on structures that we present below appeared in [4, Lemma 3.2.].

I Proposition 3. There exists a computable function ξ : N2 → N such that for every CMSO-
formula φ and every t ∈ N, the equivalence relation ≡φ,t has at most ξ(|φ|, t) equivalence
classes.

Given a MSOL-formula φ and under the light of Proposition 3, we consider a (finite) set
Rφ,t containing one minimum-size member from each of the equivalence classes of ≡φ,t .
Keep in mind that Rφ,t ⊆ B(t). Notice that for every G ∈ B(t), there is a b-structure in Rφ,t,
we denote it by repφ,t(G), such that repφ,t(G) ≡φ,t G.

3 Approximating protrusion decompositions

The main result of this section is a constant-factor approximation algorithm computing a t-
treewidth modulator (Lemma 5). Based on this we also derive a constant-factor approximation
algorithm for a protrusion decomposition (Theorem 6). For our proofs we need the following
lemma that is a consequence of the results in [34].

I Lemma 4. For every h-vertex graph H and every t ∈ N, there exists a constant c and an
algorithm that takes as input an H-topological-minor-free graph G and a t-treewidth modulator
X ⊆ V (G) and outputs a (c|X|, c, t)-protrusion decomposition along with tree decompositions
of its b-graphs of width at most c, in Oh+t(n) steps.

As a consequence of Lemma 4, as long as the input graph G has many vertices (linear in
k), there is a vertex set Y whose (internal) treewidth is at most t and contains sufficiently
many vertices. The key step of the approximation algorithm, to be shown in the next lemma,
is to replace N [Y ] with a smaller graph of the same ‘type’. Two conditions are to be met
during the replacement: first, the minimum-size of a t-treewidth modulator remains the
same. Secondly, a t-treewidth modulator of the new graph can be ‘lifted’ to a t-treewidth
modulator of the graph before the replacement without increasing the size.

I Lemma 5. For every h-vertex graph H and every t, there is a constant c, depending
on h and t, and an algorithm that, given a graph G ∈ FH and k ∈ N, either outputs an
t-treewidth-modulator of G of size at most c · k or reports that no t-treewidth modulator of G
exists with size at most k. This algorithm runs in Oh+t(n2) steps.

Notice that the above lemma, with worst running time, is also a consequence of the recent
results in [32]. We insist to the above statement of Lemma 5, as we are interested for a
quadratic time approximation algorithm for protrusion decompositions. Indeed, based on
Lemma 5 we can prove the following that is the main result of this section.

I Theorem 6. Let H be an h-vertex graph and φ be a MSOL-formula that is treewidth
modulable. Then there is a constant c, depending on h and |φ|, and an algorithm that, given
an input (G, k) of Πφ,FH , either reports no A ⊆ V (G) with (G,A) |= φ has size at most k
or outputs a (ck, c, c)-protrusion decomposition of G along with tree decompositions of its
b-graphs, each of width at most c. This algorithm runs in O|φ|+h(n2) steps.
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4 The compactor

By Theorem 6, we may assume that a (tk, t, t)-protrusion decomposition G1, . . . ,Gs of G,
with Gi = (Gi, Bi,−), is given for some t. For counting the sets A ⊆ V (G) of size at most
k with (G,A) |= φ, we view such a set A as a union of A0 ∪ A1 ∪ · · ·As, where A0 is the
subset of A residing in the the center of the decomposition, and Ai = A ∩ V (Gi) for each
i ∈ [s]. Suppose that A′i ⊆ V (Gi) for some i ∈ [s] satisfies (Gi, Bi, Ai) ≡φ,t (Gi, Bi, A′i) and
|Ai| = |A′i|. Then, (A \Ai) ∪A′i has the same size as |A| and we have (G,A \Ai ∪A′i) |= φ.
In other words, A′i and Ai are indistinguishable when seen from outside of Gi.

The basic idea of the condenser is to replace all the occurrences of such sets A′i (include
Ai itself) with O(1)-bit information; that is, the number of such sets, the size of |A′i|, and the
equivalence class containing (Gi, Bi, A′i). Formally, for the given CMSO-formula φ and t ∈ N,
we define the function #solφ,t so that for each R ∈ Rφ,t, G := (G,B,−) ∈ T (t), we set

#solφ,t(R,G, k) = |{A ∈
(
V (G)
k

)
| R ≡φ,t (G,B,A)}|.

This function can be fully computed in linear time on a b-graph of bounded treewidth.

I Lemma 7. For every CMSO-formula φ and every t ∈ N, there exists an algorithm that,
given a G ∈ T (t) and a tree decomposition of G of width at most t, outputs #solφ,t(R,G, k′)
for every (R, k′) ∈ Rφ,t × [0, k]. This computation takes O|φ|,t(nk2) steps.

The proof of Lemma 7 is based on a dynamic programming procedure. This may follow
implicitly from the proofs of Courcelle’s theorem (see [11, 9]).

We are now in position to prove Theorem 1.

Proof of Theorem 1. We describe a polynomial size compactor (P,M) for Πφ,FH . Given
an input (G, k) ∈ FH × N, the condenser P of the compactor runs as a first step the
algorithm of Theorem 6. If this algorithm reports that there is no set A of size k with
(G, k) |= φ, the the condenser outputs $, i.e., A(G, k) = $. Suppose now that the output
is a (tk, t, t)-protrusion decomposition G1, . . . ,Gs of G, along with the corresponding tree
decompositions, for some constant t that depends only on h and |φ|. Let K be the center
of this protrusion decomposition and recall that |K|, s ≤ tk. We set G0 = G[K] and let
Gi = (Gi, Bi,−) for each i ∈ [s]. We also define B = {Bi, | i ∈ [s]} where Bi is the boundary
of Gi, i ∈ [s]. The next step of the condenser is to apply the algorithm of Lemma 7 and
compute #solφ,t(R,Gi, k

′) for every (R, k′, i) ∈ Rφ,t× [0, k]× [s], in O|φ|+h(nk2) steps. The
output of the condenser P is

P(G, k) = (G0,B, {#solφ,t(R,Gi, k
′) | (R, k′, i) ∈ Rφ,t × [0, k]× [s]}).

Clearly, P(G, k) can be encoded in O|φ|+h(k2) memory positions.
We next describe the extractor M of the compactor. For simplicity, we write z := P(G, k)

and we define M($) = 0. We assume that there is a fixed labeling λ of G0. The extractor
M first computes the set A containing all subsets of K of at most k vertices. Notice that
|A| = 2O|φ|+h(k). Next, for each A0 ∈ A, the algorithm builds the set MA0 containing all
mappings m : [s] → Rφ,t with the property that, for every i ∈ [s], (G0, Bi, A0) ∼ m(i).
As the boundary of m(i) induces an identical labeled graph as Bi does, we denote m(i) as
(Gm

i , Bi, A
m
i ). Notice that |MA0 | = 2O|φ|+h(k), for every A0 ∈ A.

Let A0 ∈ A and m ∈ MA0 . For each such pair, the extractor runs a routine that
constructs an annotated graph (Dm, Am) as follows: first it initializes Dm

0 = (D0, A
m
0 )

with D0 = G0 and Am
0 = A0. After constructing Dm

i = (Di,
⋃
j∈[i] A

m
j ), the routine
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sets Dm
i+1 = ((Di, Bi+1,−) ⊕ (Gm

i+1, Bi+1,−),
⋃
j∈[i+1] A

m
j ) iteratively from i = 0 up to

s − 1. We set (Dm, Am) = Dm
s . Notice that the routine runs in O|φ|+h(k) steps and that

|Dm| = O|φ|+h(k).
The extractor M is defined as

M(z)=
∑
A0∈A

∑
m∈MA0

[(Dm, Am) |= φ] ·
( ∑
ζ∈Kk−|A0|

∏
i∈[s]

#solφ,t(m(i),Gi, ζ(i) + |Bi ∩A0|)
)

where [·] is a function indicating whether a sentence is true (=1) or false (=0), and K`−|A0|
is the set of all vectors ζ ∈ [0, k]s such that

∑
i∈[s] ζ(i) = `− |A0|.

Having access to {#solφ,t(R,Gi, k
′) | (R, k′, i) ∈ Rφ,t× [0, k]× [s]}, we can compute M(z)

in 2O|φ|+h(k) steps. Therefore, the extractor runs in the claimed running time. It remains to
prove that M(z) equals |{A ∈

(
V (G)
k

)
| (G,A) |= φ}|.

Before proceeding, we present a key claim (for the proof, see the full version of the paper).

I Claim 8. Let Hi = (Hi, B,Ai) for i = 1, 2 be two compatible b-structures from B(t). Let
H′2 = (H ′2, B,A′2) be a b-structure equivalent with H2. Then for every B′ ⊆ V (H1) of size at
most t, the two b-structures D and D′ are equivalent under ≡φ,t, where

D = ((H1, B,−)⊕(H2, B,−), B′, A1∪A2) and D′ = ((H1, B,−)⊕(H ′2, B,−), B′, A1∪A′2)

Now, consider an arbitrary sequence A′1, . . . , A′s of vertex sets with A′i ⊆ V (Gi), each of
which is counted in #solφ,t(m(i),Gi, ζ(i) + |Bi ∩ A0|). Claim 8, [(Gm, Am) |= φ] = 1, and
mi ≡φ,t (Gi, Bi, A′) ensure that (G,A0 ∪

⋃
i∈[s] A

′
i) |= φ. Observe that

|A0 ∪
⋃
i∈[s]

A′i| = |A0|+
∑
i∈[s]

|A′i \Bi| = |A0|+
∑
i∈[s]

|Ai| = |A0|+
∑
i∈[s]

ζ(i) = k.

That is, each combination of A0, m, ζ, and a sequence A′1, . . . , A′s contributing 1 to the sum
M(z), a vertex set A of size precisely k can be uniquely defined and we have (G,A) |= φ.
Clearly, distinct combinations lead to distinct such sets. Therefore, |{A ∈

(
V (G)
k

)
| (G,A) |=

φ}| is at least the value of M(z). This completes the proof. J

5 Conclusions

Concerning Theorem 1, we stress that the treewidth-modulability condition can be derived by
other meta-algorithmic conditions. Such conditions are minor/contraction bidimensionality
and linear separability for graphs excluding a graph/apex graph as a minor [23, 25]. This
extends the applicability of our meta-algorithmic result to more problems but in more
restricted graph classes. Natural follow-up questions are whether the size of the compactor
can be made linear and whether its combinatorial applicability can be extended to more
general graph classes.

We envision that the formal definition of a compactor that we give in this paper may
encourage the research on data-reduction for counting problems. The apparent open issue is
whether other problems (or families of problems) may be amenable to this data-reduction
paradigm (in particular, the results in [16, 39, 42, 43] can be interpreted as results on
polynomial compactors).

Another interesting question is whether (and to which extent) the fundamental complexity
results in [8, 3, 26, 15, 5, 18, 33] on the non-existence of polynomial kernels may have their
counterpart for counting problems.
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Abstract
Perfect matchings in planar graphs have been extensively studied and understood in the context
of parallel complexity [21, 36, 25, 6, 2]. However, corresponding results for maximum matchings
have been elusive. We partly bridge this gap by proving:
1. An SPL upper bound for planar bipartite maximum matching search.
2. Planar maximum matching search reduces to planar maximum matching decision.
3. Planar maximum matching count reduces to planar bipartite maximum matching count and

planar maximum matching decision.
The first bound improves on the known [18] bound of LC=L and is adaptable to any special
bipartite graph class with non-zero circulation such as bounded genus graphs, K3,3-free graphs
and K5-free graphs. Our bounds and reductions non-trivially combine techniques like the Gallai-
Edmonds decomposition [23], deterministic isolation [6, 7, 3], and the recent breakthroughs in
the parallel search for planar perfect matchings [2, 32].
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1 Introduction

Matchings are one of the most fundamental and well-studied objects in graph theory and in
theoretical computer science (see e.g. [23, 20]) and have played a central role in Algorithms
and Complexity Theory. Edmond’s blossom algorithm [8] for Maximum-Matching is one
of the first examples of a non-trivial polynomial time algorithm. It has had a considerable
share in initiating the study of efficient computation, including the class P itself; Valiant’s
#P-hardness [35] for counting perfect matchings in bipartite graphs provides surprising
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insights into counting complexity classes. The rich combinatorial structure of matching
problems combined with their potential to serve as central problems in the field invites their
study from several perspectives.

We consider the following variants of the Maximum-Matching problem. Given w, the
Decision (or Cardinality) version asks to decide if there is a maximum matching of cardinality
at least w. The Search and the Counting versions ask respectively for a (witness to a)
maximum matching and the number of maximum matchings.

1.1 Parallel Complexity of Matching
The study of whether matching is parallelizable has yielded powerful tools, such as the
isolating lemma [29], that have found numerous other applications. The RNC bound remains
the best known parallel complexity for Maximum-Matching till date. One of the biggest open
problems in this area is to derandomize such construction. Recently, a partial derandomization
has put the Perfect-Matching problem in quasi-NC, first for bipartite graphs [10], followed
by [34] for general graphs. The best known (non-uniform) upper bound for Perfect-Matching
is non-uniform SPL [1].

Matching in Planar and Other Sparse Graphs

A well known example where planarity is a boon is that of counting perfect matchings. The
problem in planar graphs is in P [21] and can in fact be placed in NC[36]; thus Perfect-
Matching (Decision) in planar graphs is in NC.

In the case of parallel algorithms for planar graphs, the search version seemed harder than
the problem of counting. Though the bipartite planar case is known to be in NC[28, 25, 22, 6],
the construction version of Perfect-Matching in planar graphs in NC was an outstanding open
question and has been solved very recently by Anari and Vazirani [2] and Sankowski [32].

The space complexity of matching problems in planar graphs was first studied in [6]
where it is shown that min-weight Perfect-Matching in bipartite planar graphs is in SPL via
non-zero circulations. The isolation lemma has also been derandomized for K3,3-free and
K5-free bipartite graphs, giving the SPL upperbound [3].

However, known results on Maximum-Matching are limited. The only relevant result
known to us is computing a maximum matching for bipartite planar graphs in LC=L ⊆ NC
by Hoang [18]. A different NC algorithm is given for the same problem in [32]. The related
approximation problem has been investigated more. An NC approximation scheme [19] and a
Logspace approximation scheme [5] for Maximum-Matching are known for general graphs and
classes of sparse graphs (including bounded degree graphs and planar graphs) respectively.

1.2 Maximum Matching and Our Contribution
Since Perfect-Matching is a specialisation of Maximum-Matching, upper bounds applicable
for the latter directly translate to the former. Edmond’s blossom-shrinking algorithm and
the Micali-Vazirani [27] algorithm fall in this category. Occasionally, it is possible to lift the
bounds in the other direction also such as the following:

I Observation 1. Perfect-Matching and Maximum-Matching are equivalent in general graphs
under logspace Turing reduction.

Though if we start with a planar graph such reductions does not necessarily keep the graph
planar and the goal of this paper is to explore such possibilities for special graph classes.
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Recent years have seen considerable progress in upper bounds for Perfect-Matching in
planar and other restricted graph classes culminating in [2, 32] which yield efficient parallel
algorithms for planar Perfect-Matching Search. In this paper we try to close the gap between
perfect and maximum matchings for planar and related graph classes in the context of parallel
complexity. Unless otherwise stated, our results hold in planar, bounded genus, K3,3-free
and K5-free graphs. Our main result is the following.

I Theorem 2. Maximum-Matching Search in graphs with non-zero circulation is in SPL.

The class SPL, prominently studied in [1], consists of languages whose characteristic function
is computed by a determinant. The bound improves on the best known upper bound of LC=L

by Hoang [18] and matches the known upper bound for bipartite Perfect-Matching for the
same classes of graphs [6, 3]. Hoang uses a rank argument whose complexity doesn’t seem to
be in SPL - the seemingly best bound being LC=L. Instead, we use the standard isolation
technique but in a multi-graph (i.e. with self-loops) but make sure that the loop-paths
are never optimal and we can focus on the min-weight cycle covers which deterministic
isolation helps us find. Since, a deterministic construction of non-zero circulation is known
for K3,3-free and K5-free bipartite graphs [3] and bounded genus bipartite graphs [7], the
result holds for these classes also.

Next, we reduce the problem of finding a maximum matching to determining the size of
a maximum matching in the presence of algorithms to (a) find a perfect matching and to (b)
solve the bipartite version of the maximum matching, all in the same class of graphs. We use
the classic Gallai-Edmonds decomposition theorem for this reduction. Since NC algorithms
are now known for Perfect-Matching in bounded genus [2], K3,3-free and K5-free graphs [9]
then in these classes of graphs using Theorem 2 we get the following:

I Theorem 3. Maximum-Matching Search NC-reduces to Maximum-Matching Decision in
planar graphs, in bounded genus graphs, in K3,3-free graphs and in K5-free graphs.

This shows that, unlike for perfect matching where decision was known to be in NC and
the main bottleneck was the search version, for maximum matching the decision problem
is the hard cornerstone. Though we are not able to get an NC upper bound for Maximum-
Matching, we show that Maximum-Matching Search for the above mentioned classes of
graphs is in Pseudo-deterministic NC. Pseudo-deterministic algorithms are probabilistic
algorithms for search problems that produce a unique output for each given input except
with small probability. That is, they return the same output for all but few of the possible
random choices. We call an algorithm pseudo-deterministic NC if it is in RNC, and is
pseudo-deterministic. Bipartite Perfect-Matching is known to be in this class [14].

The class of search problems that can be solved in pseudo-deterministic polynomial time
was first studied by Goldwasser and Gat [12]. Since then the field of pseudo-determinism
has received significant interest, see e.g. [12, 13, 16] with some very recent progress e.g.
[31, 14, 17, 15]. As the size of the maximum matching can be found in RNC [29], from
Theorem 3 we get that,

I Theorem 4. Maximum-Matching Search is in pseudo-deterministic NC for planar graphs,
bounded genus graphs, K3,3-free graphs and K5-free graphs.

We also consider the counting version of the Maximum-Matching problem. Though we don’t
have an NC algorithm even in planar graphs (in fact, to the best of our knowledge it is
not even known to be in P), we show that counting maximum matchings in planar graphs
NC-reduces to the question in bipartite planar graphs.
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21:4 Planar Maximum Matching

I Theorem 5. Maximum-Matching Count NC-reduces to Bipartite-Maximum-Matching
Count and Maximum-Matching Decision in planar, bounded genus, K3,3-free and K5-free
graphs.

The main questions left unanswered in this study are:

I Open Question 1. Is Maximum-Matching Decision in planar graphs in NC?

I Open Question 2. Is Maximum-Matching Count in bipartite planar graphs in NC?

Organization. After some preliminaries in Section 2, we describe in Section 3 the SPL
algorithm for finding maximum matchings in graphs that have non-zero circulations. For
bounded genus, K3,3-free and K5-free graphs, we the give an NC-reduction from the problem
of finding a maximum matching to determining the size of a maximum matching, in Section 4.
In Section 5, for the same graph classes we show that counting maximum matching NC-
reduces to counting maximum matchings in bipartite graphs and determining the size of a
maximum matching. We conclude in Section 6 with some open ends.

2 Preliminaries

Let G = (V,E) be an undirected embedded planar graph with |V | = n. We sometime think
of the edges as bi-directed i.e. they are directed in both the directions. For e ∈ E, let w(e)
denote the weight of the edge e. A planar graph is a graph that can be embedded in the
plane so that no edges cross each other. A graph G is said to have genus g if G has a minimal
embedding (an embedding where every face of G is homeomorphic to a disc) on a genus g
surface. An H-minor free graph G does not contain the graph H as a minor. See standard
texts on Graph theory (e.g. [37]) for further information. Consult [30] for definitions and
properties of various other sparse graph classes.

A matching in G is a set M ⊆ E, such that no two edges in M have a vertex in common.
A matching M is called perfect if M covers all vertices of G, M of maximum size is called
maximum matching. An alternating path is one whose edges alternate between M and E \M .
We denote the size (the number of edges in the matching) of M by |M | and the weight (sum
of the weight of the edges in the matching) by w(M). Size of the maximum matching in G
is denoted by ν(G). We call two edges (also self-loops and multiple edges) of G′ disjoint, if
the set of vertices which are incident on the edges are disjoint. A matching M of G is said
to be near-perfect if exactly one vertex of G is not matched in M . For a complete treatment
on matching see [23].

Complexity Classes. The complexity classes L and NL are the classes of languages accepted
by deterministic and non-deterministic logspace Turing machines, respectively. For a non-
deterministic Turing machine M , let accM (x) and rejM (x) denote the number of accepting
and rejecting computations respectively, on an input x. Denote gapM (x) = accM (x)−rejM (x).
GapL is the class of functions f(x) such that for some NL machine M , f(x) = gapM (x). A
language L is in SPL if so that for all inputs x, gapM (x) ∈ {0, 1} and x ∈ L if and only if
gapM (x) = 1. For a complexity class C, we say that a language L C-reduces to a language
L′ if there is a many-one reduction from L to L′ computable in the class C. NC (RNC) is
the class of problems which can be solved using deterministic (randomized) polynomial size
circuits of polylogarithmic depth. Define pseudo-deterministic algorithms as follows:
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v tv

Figure 1 Gadget added at each vertex v ∈ G to construct G′.

I Definition 6 ([14]). An algorithm A for a relation R is pseudo-deterministic if there exists
some function s such that A, when executed on input x, outputs s(x) with high probability,
and s satisfies (x, s(x)) ∈ R.

A pseudo-deterministic NC algorithm is an RNC algorithm which is also pseudo-deterministic.

Non-zero Circulation Weights. For any simple cycle C of G, we define the circulation of C,
denoted by circ(C), as the alternating sum of the weights of the edges of the cycle. Formally,
if the cycle is given by (e0, e1, . . . e`) then, circ(C) =

∑`
i=0(−1)iw(ei). In this paper the

classes of graphs, where deterministic weighting schemes are known such that each cycle
in the given graph gets non-zero circulation weight, are together referred to as graphs with
non-zero circulation.

It is shown in [6] that non-zero circulation weights imply isolating weights for matchings.
Also, a simple L-computable weighting function is constructed for grid graphs such that the
circulation of every simple cycle is non-zero. In [7] it is shown that using [4] this weighting
function can be extended to all bipartite graphs embeddable on a fixed surface. This was
further extended to K3,3-free and K5-free bipartite graphs in [3].

3 Maximum-Matching Search in graphs with non-zero circulations

In this section we show that given an undirected unweighted graph G = (V,E) admitting
non-zero circulations, finding a maximum matching is in SPL. The basic idea is to construct
an auxiliary graph G′ having the property that finding a maximum matching in G reduces
to finding a min-weight generalized perfect matching (defined later) in G′. Assign non-zero
circulation weights to the edges in G′ which are also isolating weights for matchings. Then
we extract a min-weight generalized perfect matching from G′ which in turn extracts a
maximum matching from G.

A deterministic construction of non-zero circulation is known in planar bipartite graphs [6],
bounded genus bipartite graphs [7] and also in K3,3-free and K5-free bipartite graphs [3].
We construct a graph G′ = (V ′, E′) from G by adding vertex tv with a self loop for each
vertex v ∈ V and join v and tv using an undirected edge, as shown in Figure 1. Thus,
|V ′| = 2n ≡ 0(mod 2). Notice that the genus and the H-minor freeness property of G′
remains the same as G. Define a weight function w′ : E′ 7→ {0, 1} for G′ as follows. The
original edges of G have weight 1, the self-loops are of weight zero and rest of the new edges
have weight 1 (suffices to pick any weight > 1/2). We define a generalized matching as a set
of disjoint edges (possibly) inclusive of self-loops. Various notions for matching naturally
extends to generalized matchings. Call a generalized matching as perfect wherein every
vertex is matched and as min-weight perfect if it is perfect and of minimum weight.

I Proposition 7. Any matching M in G can be extended to a generalized perfect matching
P in G′. Moreover, w′(P ) = n− ν(G′).

Proof. For each v ∈ V unmatched in G use the (v, tv) edge of G′ in P , thereby matching tv
also. This contributes (n− 2|M |) to w′(P ). For the rest of the 2|M | vertices v ∈ V matched
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in G, match the corresponding new vertices using the self loop at tv. Since the self loops are
of weight zero, the matched edges contribute |M | to w′(P ). These form a generalized perfect
matching P in G′ with w′(P ) = (n− 2|M |) + |M | = n− ν(G′) . J

I Observation 8. An extension of a maximum matching in G to G′ corresponds to a min-
weight generalized perfect matching in G′ and a restriction of a min-weight generalized perfect
matching of G′ to G corresponds to a maximum matching in G.

Thus the problem of finding a maximum matching in G is equivalent to that of finding
a min-weight generalized perfect matching in G′. Now we address the problem of finding
isolating weights for extracting a min-weight generalized perfect matching. We define a
weight function w (by combining several other weight functions) for which we show the
following:

I Lemma 9. With respect to the weight function w : E′ 7→ [N], the min-weight generalized
perfect matching in G′ is unique.

To prove this we need some definitions first. Define a loop-path as a closed trail (e0, e1, e2, . . . ,

ek) (for k odd, k > 1) where e0 is a self loop, the subtrail (e1, e2, . . . ek−1) is a path of
non-zero length and ek is also a self loop. Define a 2-cycle as a length 2 directed cycle
corresponding to an undirected edge as the underlying graph. Define a 2-self loop as a
closed walk (e, e) where e is a self loop. Define the alternating weight of a loop-path
P ′ = (e0, e1, e2, . . . , ek) (for k ≥ 2) to be the alternating sum of the weight of the edges in
P ′ i.e. AW (P ′) =

∑k
i=0(−1)iw(ei) = (w(e0)− w(ek)) + (−w(e1) + w(e2)− . . .+ w(ek−1)).

Let the graph G′ has at most c′n many edges for some constant c′. Define a weight
function w′′ on the edges of G′ which assigns non-zero weights to the self-loops as follows,

w′′(e) =
{
ic′, if e = (ti, ti) 1 ≤ i ≤ |V |
0 otherwise

}
The non-zero circulation weights of [3], which works for planar, K3,3-free and K5-free bipartite
graphs, compute the weights for the graph directly. For bounded genus graphs the weighting
scheme of [7] work on a grid embedding where they use the weighting scheme of [6] to assign
the weights. Following [7], given a graph H whose genus is bounded by some constant, the
idea is to create a new graph H ′ with maximum degree 3 by expanding large degree vertices
of H into binary trees preserving the bipartition. Now embed H ′ onto a constant genus grid
H ′′ such that each edge of H ′ gets expanded into an odd length path in the grid. These are
L-reductions preserving the bipartiteness and perfect matchings between H and H ′′ but not
maximum matchings. Hence we need to finally pull back the weights assigned in H ′′ to the
original graph H ensuring that the non-zero circulation property is preserved.

I Lemma 10. The pull-back weights from H ′′ give non-zero circulation to the cycles in H
and are polynomially bounded.

Denote this non-zero circulation weight for an edge e by w′′′(e) which are bounded by, say nc

for some constant c. We combine the weights w′′ and w′′′ into a single weight w∗. Using bit
shift, we define the new weight w∗(e) on the edges of G′ by w∗(e) = w′′(e) · 2d(c+1)log2(n)e +
w′′′(e) for e ∈ E(G). The weights w∗(e) are bounded by w′′(e) · nc+1 ≤ c′n · nc+1 ≤ c′nc+2.
Notice that for the non self-loop edges w∗(e) is bounded by w′′′(e) ≤ nc.

I Lemma 11. With respect to the weighing scheme w∗, the alternating sum of each simple
alternating cycle of G′ and each loop-path is non-zero.
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Proof. Using the weights w′′′(e) from Lemma 10, each simple alternating cycle of G has
non-zero circulation, and since each simple cycle of G′ is necessarily a simple cycle in G,
thus every simple alternating cycle of G′ has non-zero circulation. Now consider the loop-
path given by P = (e0, e1, e2, . . . ek) (for k ≥ 2). Then, |AW (P)| = |

∑k
i=0(−1)iw∗(ek)| ≥

|w∗(e0)− w∗(ek)| − |(w∗(e1)− w∗(e2) + . . .+ (−1)kw∗(ek−1))|. And,

|(w∗(e1)− w∗(e2) + . . .+ (−1)kw∗(ek−1))| < |w∗(e1)|+ |w∗(e2)|+ . . .+ |w∗(ek−1)|
< (k − 1) · nc (as w∗(ei) ≤ nc here)
< (c′n− 1) · nc (k < |E(G′)| ≤ c′n)
≤ c′nc+1

Then |AW (P)| > |w∗(e0)−w∗(ek)| − c′nc+1 ≥ 0 and thus every loop-path also has non-zero
alternating weight. J

Now we combine the weights w′ and w∗ into a single weight w. Using bit shift again, we
define the new weight w(e) on the edges of G′ as w(e) = w′(e) · 2d(c+2)log2(c′n)e + w∗(e) for
e ∈ E(G). The weights w(e) are bounded by w′(e) · c′nc+2 ≤ c′nc+2 as w′(e) ∈ {0, 1}.

I Lemma 12. A min-weight generalized perfect matching of G′ corresponding to the weight
function w′ is also a min-weight generalized perfect matching corresponding to the weight
function w. Moreover, the alternating sum of the weights with respect to w of simple
alternating cycles and loop-paths are non-zero.

We are now ready to prove Lemma 9.

Proof of Lemma 9. The components of the superposition of any two generalized perfect
matchings are either simple alternating cycles, loop-paths, 2-cycles or 2-self-loops. Suppose
that there is more than one min-weight generalized perfect matching of G′, call them P1
and P2, such that P1 6= P2. Since P1 6= P2, there exists atleast one component of P1 ∪ P2
which is a simple alternating cycle or an loop-path. And since w′′(e) assigns a non-zero
alternating sum weight on all simple alternating cycle and loop-paths, this implies that the
sum of weights of edges from one of P1 and P2 is lesser than the other. Swapping the edges
between P1 and P2 in this component will give rise to a new generalized perfect matching
having weight lower than both of P1 and P2, which is a contradiction. J

We use the determinant polynomial to compute the size of the maximum matching.

I Lemma 13. The union of two generalized perfect matchings of G′, whose corresponding
maximum matchings on G match a distinct set of vertices, do not appear in the determinant
polynomial.

Proof. Since the union of two generalized perfect matchings of G′, whose corresponding
maximum matchings on G match a distinct set of vertices of G will have an loop-path. Such
terms are not represented by any permutation σ, and do not appear in the summation. J

Notice that since the generalized perfect matchings containing a loop-path are of larger
weight (from the weights w′′) than the minimum, we can safely ignore such matchings.

I Observation 14. Let P be the unique min-weight generalized perfect matching in G′ of
weight W . Then the least degree term in the determinant polynomial is x2W corresponding
to the unique min-weight cycle cover in G′ which is a superposition of P with itself.
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Now we compute the the least degree term in the determiant polynomial using the layered
graph method as used in [6]. Start querying from i = −c′nc+2 to +c′nc+2 to find the first
term with non-zero coefficient. Once the weight is known, we can extract P by deleting
each edge e in parallel from G′ and computing the weight of the min-weight generalized
perfect matching in G′ \ {e}. If the weight is unchanged, it implies the edge is not in P ,
and otherwise it is. Once we have P in G′, we can find a maximum matching M in G using
M = P ∩ E. Now if w(P ) = W , then |M | = n − y, where y = b W

2d(c+2)log2(c′n)e c. Thus we
arrive at the main result of this section:

I Theorem 15. Maximum-Matching Search in graphs with non-zero circulation is in SPL.

Proof. Since the edge weights are polynomially bounded, they can be computed in logspace.
Moreover computing the coefficient of a term in the determinant polynomial is in GapL [26].
However since we have used isolating weights, the coefficient of the terms starting from
−c′nc+2 to the least degree term is either 0 or 1, and hence this computation is in SPL [1].
As a result, we are able to extract a min-weight generalized perfect matching in the graph
G′ in LSPL = SPL. Hence, from the Observation 8 and the previous discussion, we can find
a maximum matching of the given graph G in SPL. J

4 Reduction from Search to Decision

We reduce the problem of finding a maximum matching to oracle calls for determining the
size of a maximum matching in the presence of a parallel algorithm to find a perfect matching
and a parallel algorithm to solve the bipartite version of maximum matching.

The reduction uses the classic Gallai-Edmonds theorem (see Theorem 3.2.1 [23]). The
crucial observation is based on partition of the vertices given as follows. A vertex v ∈ V (G)
belongs to the set of “deficient” vertices D(G) if there exists some maximum matching of G
that leaves v unmatched. A vertex v ∈ V (G) belongs to A(G), the set of vertices “adjacent”
to D(G) if v is a neighbour of some vertex u ∈ D(G) and v /∈ D(G). Rest of the vertices in
V (G) \ (D(G) ∪A(G)) are in the “critical” set C(G). A graph G is said to be factor-critical
if for every v ∈ V (G), ν(G) = ν(G− v).

I Theorem 16 (Gallai-Edmonds). Let G be a graph and D(G), A(G), C(G) are defined as
above then the components of D(G) are factor-critical and every maximum matching in G

is a perfect matching on C(G),
is near-perfect matching on each component of D(G), and
matches each vertex in A(G) to a distinct component in D(G).

I Observation 17. For a vertex v ∈ V (G), v ∈ D(G) if and only if ν(G) = ν(G− v).
Next we can find if v ∈ A(G) if and only if v /∈ D(G) and there is a vertex u ∈ D(G)
such that v ∈ N(u). Finally, C(G) = V (G) \ (D(G) ∪ A(G)). From the statement of the
Gallai-Edmonds theorem it suffices to find:
1. A perfect matching in each connected component of C(G).
2. A maximum matching in the bipartite graph formed by contracting each component of

D(G) into a single vertex d and adding an edge to each vertex a ∈ A(G) such that the
corresponding component had an edge to a.

3. A perfect matching in each component of D(G) minus an arbitrary vertex.

I Lemma 18. For any class of graphs closed under vertex deletions and edge contractions,
there is an NC algorithm for Maximum Matching Search in the class, with oracle queries to
Maximum-Matching Size, Maximum-Bipartite-Matching Search and Perfect-Matching Search
all for the same class of graphs.
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Then from the recent breakthrough works for NC algorithms for perfect matching respect-
ively in bounded genus [2] and in K3,3-free and K5-free graphs [9] along with our maximum
matching algorithm for bipartite graphs from Section 3, we obtain the following,

I Corollary 19. Maximum-Matching Search NC-reduces to Maximum-Matching Decision in
planar graphs, in bounded genus graphs, in K3,3-free graphs and in K5-free graphs.

From the above result we also get a pseudo-deterministic NC algorithm for Maximum-
Matching Search in the same class of graphs. Recall that pseudo-deterministic algorithms
are probabilistic algorithms for search problems that produce a unique output for each given
input except with small probability. Since size of the maximum matching can be found in
RNC [29] from the above result we get that,

I Theorem 4 (Restated). Maximum-Matching Search is in pseudo-deterministic NC for
planar graphs, bounded genus graphs, K3,3-free graphs and K5-free graphs.

5 Reducing Count to Bipartite Count

We reduce the problem of counting the number of maximum matchings in a (possibly non-
bipartite) graph to oracle calls for counting maximum matchings in bipartite graphs in the
presence of a parallel algorithm to count the number of perfect matchings. We do this via a
two step process: first reduce the problem of counting maximum matchings in the given graph
to counting maximum weight matchings in a bipartite graph and then subsequently reducing
the problem of counting of maximum weight matching to counting maximum cardinality
matchings while the graph remains bipartite.

This reduction again uses the Gallai-Edmonds decomposition theorem. Recall that, in the
decomposition, the vertices in C(G) have a perfect matching and each of the component of
D(G) is factor-critical. So we have that the count of maximum matchings in G is the product
of the count of the perfect matchings in C(G) and the count of the maximum matchings in
G \ C(G) = A(G) ∪D(G).

I Lemma 20. Maximum-Matching Count L-reduces to weighted Bipartite-Maximum-Matching
Count and Maximum-Matching Decision in the presence of Perfect-Matching Count.

Proof. Let D1, D2, . . . Dk be the components of D(G). Replace each edge (a, d) between a
vertex a ∈ A(G) and a vertex d ∈ Di, by adding a weight equal to the number of perfect
matchings in the component Di \ d. Next we contract each component of D(G) into a single
vertex d. Replace all the parallel edges between a and d (created due to the contraction) with
a single edge (a, d) of weight equal to the sum of weights on the corresponding parallel edges.
Since from the Gallai-Edmonds theorem we know that no maximum matching contains an
edge between any two vertices of A(G), we have ourselves the weighted bipartite graph
instance G′. It is easy to see that the number of maximum matchings in A(G)∪D(G) equals
to the sum

∑
M∈MMG′ wt(M) whereMMG′ is the set of maximum weighted matchings in

G′. This completes the first part of the reduction. In the presence of an oracle access to
Perfect-Matching Count the construction is easily seen to be in L. J

Gadget Construction. We now replace the weighted bipartite graph G′ by an unweighted
instance G′′ while keeping the counts same. Notice that the the count of the perfect
matchings and hence the edge weights takes polynomial (in n) bits, say ` bits, to store. For
a ∈ A(G′) and d ∈ D(G′), let the weight of the edge (a, d) be w(a, d) and let b1b2b3 . . . b`
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Figure 2 Replacement Gadget Ga,d for each weighted edge (a, d) in G′. The circled and non-circled
vertices belong to different bipartitions A(G′′) and D(G′′) respectively.

be the binary expansion of w(a, d) i.e. w(a, d) = b12`−1 + b22`−2 + . . .+ b`20. Equivalently,
w(a, d) =

∑
i∈S 2`−i where the set S is the set of indices corresponding to the non-zero bits

in the binary expansion of w(a, d). We replace the edge (a, d) by the gadget Ga,d where a and
d are connected by |S| many disjoint paths where the i-th path, which corresponds to the bit
bi and is present iff bi = 1 (i.e. these paths are indexed by 1 to `), is of length 2(`− i) + 2.
Consider the i-th path. Call the vertices adjacent to a and d as ai0 and di0, respectively.
Call the rest of the 2(` − i) vertices on the path as xij , yij alternately for 1 ≤ j ≤ ` − i
where xi1 is attached to ai0 and yi(`−i) is attached to di0. For the i-th path, add 2(` − i)
new vertices and call them as x′ij , y′ij alternately for 1 ≤ j ≤ ` − i. Add the undirected
edges (xij , x

′
ij), (x′ij , y′ij), (yij , y

′
ij) for all i ∈ S and 1 ≤ j ≤ `− i. Each such modified path is

informally called as box-path. Connect xi1 and yi(`−i) with a separate path xi1, ai1, di1, yi(`−i)
of length 3 where each consecutive vertex has an edge between them. See Figure 2 where we
assume b1 = 1. Notice that the graph remains bipartite after attaching the gadgets.

I Lemma 21. The gadget Ga,d has the following properties:
1. There is a unique perfect matchings in Ga,d \ {a, d}.
2. If a is matched inside Ga,d then Ga,d has a perfect matching. If a is matched with a vertex

outside Ga,d, then Ga,d \ {a} has a near-perfect matching.
3. The vertices a and d remain in different bipartitions. A vertex v ∈ Ga,d is in A(G′′) if

only if it is in the same bipartition as a. Rest of the vertices are in D(G′′).
4. There are 3w(a, d) many maximum (either perfect or near-perfect) matchings in Ga,d.
Recall that, in a maximum matching in the weighted graph G′ all the A(G′) edges are
matched. Since for each edge (a, d) in the matching we get a factor 3 extra in the count
than the desired w(a, d) (notice that these weights are multiplicative), we finally divide the
count of the maximum matchings in the bipartite unweighted graph G′′ by 3(|A(G′)|) to get
the correct count. For any w ∈ N we can construct such a gadget and replace every non-unit
weight edge of G′ by the gadget of the corresponding weight. This completes the second part
of the reduction. Since other than counting perfect matchings all the steps of the reduction
can be done in L, we have that:

I Theorem 22. Maximum-Matching Count L-reduces to Bipartite-Maximum-Matching Count
and Maximum-Matching Decision in the presence of Perfect-Matching Count.

A modification of the result of [11] combined with the techniques from [24] gives an NC
algorithm for counting perfect matchings in logarithmic genus graphs [25]. Vazirani [36] and
Straub et al. [33] show that counting perfect matchings is in NC in K3,3-free graphs and
K5-free graphs respectively. And hence, along with Theorem 22 we have the following result,
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I Corollary 23. Maximum-Matching Count NC-reduces to Bipartite-Maximum-Matching
Count and Maximum-Matching Decision in planar, bounded genus, K3,3-free and K5-free
graphs.

6 Conclusion and Open Ends

The main contribution of this investigation is a better complexity bound on bipartite planar
maximum matching which matches the upper bound for bipartite planar perfect matching.
We also show an NC reduction from planar maximum matching search to planar maximum
matching decision along with an NC reduction from counting planar maximum matchings
to counting bipartite planar maximum matchings and planar maximum matching decision
(where the NC-bounds hide the complexity of finding and counting planar perfect matching,
respectively). To reiterate, the main open questions are to find NC algorithms to determine
the size of planar maximum matching and for counting bipartite planar maximum matchings.
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Abstract
In this paper we will give two distributed approximation algorithms (in the Local model) for
the minimum dominating set problem. First we will give a distributed algorithm which finds
a dominating set D of size O(γ(G)) in a graph G which has no topological copy of Kh. The
algorithm runs Lh rounds where Lh is a constant which depends on h only. This procedure can
be used to obtain a distributed algorithm which given ε > 0 finds in a graph G with no Kh-minor
a dominating set D of size at most (1 + ε)γ(G). The second algorithm runs in O(log∗ |V (G)|)
rounds.
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1 Introduction

The minimum dominating set (MinDS) problem is one of the classical graph-theoretic
problems which is of theoretical and practical importance. A subset D of the vertex set in a
graph G is called a dominating set in G if every vertex of G is either in D or has a neighbor
in D. In the minimum dominating set problem the objective is to find a dominating set D of
the smallest size. In this paper we will study distributed approximation algorithms in the
Local model for the MDS problem in Kh-minor-free graphs.

Although the MDS problem is NP-complete even in planar graphs, there are efficient
approximation algorithms. Significant progress has been made in recent years in understand-
ing distributed complexity of many classical graph-theoretic problems in some classes of
sparse graphs. In the case of the maximum independent set problem, (MaxIS Problem), it is
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22:2 Distributed Approximation for MDS

known ([2]) that finding deterministically a constant approximation of α(G) even in the case
when G is a cycle on n vertices requires Ω(log∗ n) rounds. At the same time, it is possible to
find an independent set in a planar graph G of size at least (1− ε)α(G) in O(log∗ n) rounds
([2]). In fact, this result immediately extends to graphs G with no Kh-minor using the same
approach. Even more can be proved for the maximum matching problem (MaxM Problem).
On one hand, the above lower bound for the independence number extends to matchings
and on the other hand, there is a distributed algorithm which finds in O(log∗ n) rounds a
matching M of size at least (1 − ε)β(G) even in graphs of bounded arboricity ([1]). This
procedure relies on augmenting paths and is very specific to the maximum matching problem.
At the same time, the lower bound for the approximation of maximum independent set, does
not extend to the minimum dominating set problem, and a constant-approximation which
runs in a constant number of rounds is known for planar graphs and graphs with bounded
genus. Specifically, Lenzen et. al. gave in [4] a distributed algorithm which in O(1) rounds
finds a dominating set of size at most 126γ(G) in a planar graph G and Amiri et. al. ([6])
gave O(g)-approximation for graphs of genus bounded by g which runs in O(1) rounds. The
landscape changes when randomization is allowed. It can be shown that there is a randomized
algorithm which in O(1) rounds finds with high probability an independent set I of size at
least (1− ε)α(G) in O(1) rounds in a planar graph G ([2]) and similar results can be obtained
for the maximum matching. In addition, Lenzen and Wattenhofer [3] showed that there is a
O(a2)-approximation of a minimum dominating set can be found in the randomized time
O(log ∆) in a graph of arboricity a.

In this paper, we will propose deterministic distributed approximation algorithms for the
MinDS problem in Kh-minor-free graph.

Recall that H is called a minor of G if H can be obtained from a subgraph of G by a
sequence of edge contractions. A graph is called Kh-minor-free if it doesn’t contains the
complete graph Kh as a minor. For a graph H, TH, a topological copy of H, is a graph
obtained from H by subdividing each edge e ∈ H le times, for some le ∈ N0. Many important
classes of graphs, like for example planar graphs, graphs of bounded genus, or bounded
tree-width are Kh-minor-free for some h. As a result our work on Kh-minor-free graphs
generalizes previous results on planar and bounded-genus graphs.

Our algorithms work in the Local model. This is a synchronous model where a network
is modeled as an undirected graph. Each vertex corresponds to a computational unit and
an edge to a communication link between two units. Computations proceed in synchronous
rounds and in each round a vertex can send and receive messages from its neighbors and
can perform local computations. Neither the amount of local computations nor the size
of messages is restricted in any way. In addition, we shall assume that vertices of G have
unique identifiers from {1, . . . , n}, where n is the order of G. Consequently, in the case of
the MinDS problem, for an underlying network G the objective is to find a set D ⊆ V (G), in
the above model, which is a minimum dominating set and has size O(γ(G)).

We will prove two results on distributed algorithms for the minimum dominating set
problem. Our main theorem shows that in the case of graphs H which no TKh it is possible
to find a constant approximation of γ(H) in O(1) rounds. Specifically, we have the following
theorem.

I Theorem 1. Let h ≥ 2. There exists a distributed algorithm which in a graph H of order
n which has no TKh finds in Lh rounds a dominating set D such that |D| ≤ Chγ(H), where
Lh and Ch are depending on h only.

We didn’t try to optimize constants Ch and Lh and especially in the case of Ch our proof
gives a very big constant. In addition, its value depends on the constant from one of the
facts from [5] (see Lemma 3), which in turn, depends on h.
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Theorem 1 generalizes results for planar graphs from [4] and bounded genus graphs
from [6] to graphs with no topological copy of Kh. In addition, it gives a deterministic
O(1)-approximation of the MinDS Problem which runs in a constant number of rounds in an
important subclass of graphs of bounded arboricity. The proof of Theorem 1 is split into two
main steps. In the first step, an algorithm finds certain partitions of N(v) for vertices v, and
in the second, for every set W in these partitions, W finds a vertex v such that W ⊆ N(v)
and v is a “safe” choice to be added to a dominating set. The proof uses a fact from [5], in
addition with some new ideas.

Clearly, if G is a graph which is Kh-minor-free then it contains no TKh. Consequently,
Theorem 1 can also be used, in connection with methods from [2], to obtain a much better
approximation ratio in O(log∗ n) rounds when restricted to graphs with no Kh-minor.

I Theorem 2. Let h ≥ 2. There exists a distributed algorithm which given ε > 0 finds in a
Kh-minor-free graph H of order n a dominating set D such that |D| ≤ (1 + ε)γ(H). The
algorithm runs C log∗ n rounds where C depends on h and ε only.

Basically, to prove Theorem 2, we first find a constant approximation of γ(H) in H using
Theorem 1 and then apply a procedure from [2] to find a better approximation. This in turn,
generalizes a corresponding result from [2] to graphs which are Kh-minor free. Note that
once Theorem 1 is established, Theorem 2 can be proved by appealing to a fact from [2]
which extends to graphs with no Kh-minors in a straightforward way and the rest of the
paper is focused on proving Theorem 1. On the other hand, proving Theorem 1 requires new
approach as the ideas from [4] and [6] are specific to planar graphs and graphs of bounded
genus.

The rest of the paper is structured as follows. In Section 2, in addition to preliminary
observations, we will discuss our main tool of building certain partitions of sets N(v) arising
from the so-called pseudo-covers. In Section 3 we will prove Theorem 1.

2 Preliminaries

In this section, we will introduce auxiliary concepts which are used in our algorithm. We
will start with some definitions. Let G = (V,E) be a graph. For two sets A,B ⊆ V , an
A,B-path is a path which starts in a vertex from A, ends in a vertex from B and has all
internal vertices from V \ (A ∪B). In the case A = {a}, we will simplify the notation to an
a,B-path.

Let D ⊂ V and let v ∈ V \D. A v,D-fan is a set of v,D-paths P1, . . . , Ps such that for
i 6= j, V (Pi) ∩ V (Pj) = {v}. For k, l ∈ Z+ and set D, let Dk,l be the set of vertices w such
that there is w,D-fan consisting of k paths each of length at most l. We have the following
fact from [5].

I Lemma 3. For h, l ∈ Z+ there is c such that the following holds. Let G be a graph with
no TKh and let D be a dominating set in G. Then |Dh−1,l| ≤ c|D|.

To describe the intuition behind our approach for approximating a minimum dominating set
D∗ consider a planar graph G. Let v ∈ G be an arbitrary vertex. Then N(v) is dominated
by some vertices from D∗. It is possible that the minimum number of vertices needed to
dominate N(v) is “big”, in this case, in view of Lemma 3 (with l = 1), adding v or any other
vertex of a similar type, will yield a dominating set of size O(|D∗|). Consequently, we have
to address the case when the number of such vertices in D∗ is small. The main idea of how
to build on this intuition is as follows. Supposing |N(v)| ≥ 3 it is not possible to have three
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different vertices which dominate the whole set N(v), as it gives a copy of K3,3. A similar
fact should be true if instead of three vertices dominating N(v), we have for some constant t
sets U1, . . . , Ut such that the size of each each Ui is constant and vertices from Ui dominate
N(v). This however is not exactly true. Indeed, for example, it is possible that there is
one vertex u dominating all but one vertex from N(v) and many vertices v1, . . . , vs, each
dominating the remaining vertex from N(v), so that Ui = {u, vi}. However the contribution,
i.e. the number of vertices covered in N(v), by each vi is minimal and, as it turns out, it
can be ignored. Building on this, our approach is to find for N(v), a family of the so-called
pseudo-covers, that is sets of a constant size which cover almost all vertices from N(v) and
such that each vertex makes a substantially contribution. Note that {v} is a choice for such
a pseudo-cover. We will argue that the number of such pseudo-covers must be constant and
will use these covers to partition N(v) into a constant number of sets of which each, but
the exceptional class, will be big and will be covered by a constant number of vertices. Of
course, it is not clear which of these vertices should be included in a dominating set, but
suppose initially that there are only two vertices v and u which cover a set in this partition.
We claim that adding u is a reasonable choice. As indicated above, we will be able to assume
that one of u and v is in D∗. If we are lucky then u ∈ D∗; If however v ∈ D∗, then since
there is a constant number of vertices in pseudo-partitions, adding u or any other vertex
because of v yields a constant approximation.

Describing these ideas more formally requires a little bit of preparation. Let G = (V,E)
be a graph. We say that Z ⊆ V is a cover of W ⊆ V if Z ∩W = ∅ and W ⊆

⋃
x∈Z N(x).

Let W ⊆ V and let x ∈ V \W . We say that x is α-strong for W if |N(x) ∩W | ≥ α|W |.
Using the same idea as in a proof of the Kövári-Sos-Turán theorem we have the following
fact.

I Fact 4. Let α ∈ (0, 1), t, s ∈ Z+ and let M := (t−1)es

αs . If G = (V,E) is a graph with no
Kt,s and W ⊆ V is such that |W | ≥ s/α, then there are at most M α-strong vertices in
V \W for W .

Proof. Let U denote the set of α-strong vertices for W . We will count the number of claws
K1,s in the graph G[U,W ] with centers in U . On one hand, the number of claws is at least
|U |
(
α|W |
s

)
, and on the other hand, since G[U,W ] has no Kt,s, every s-element subset of W

can be involved in at most t− 1 claws. Thus

|U |
(
α|W |
s

)
≤
(
|W |
s

)
(t− 1)

and so

|U |
(
α|W |
s

)s
≤
(
e|W |
s

)s
(t− 1)

which gives |U | ≤ (t−1)es

αs . J

We are now ready to define the main concept which is used in our algorithm, the notion of
an (α, q, l,K)-pseudo-cover.

IDefinition 5. An (α, q, l,K)-pseudo-cover of a setW ⊆ V is a vector of vertices (x1, . . . , xm)
such that for every i, xi /∈W , and the following conditions are satisfied.
(a) |W \

⋃m
i=1 N(xi)| ≤ q;

(b) xi is α-strong for W \
⋃
j<iN(xj);

(c) |N(xi) ∩ (W \
⋃
j<iN(xj))| ≥ l;

(d) m ≤ K.
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When using the concept, α will be a constant from (0, 1), and q, l,K will be constants which
depend on h when we consider graphs with no TKh. To be more precise,

K := 2h− 2, α := 1
K
, l := h

α
+ 1, q := K · l. (1)

In addition, we will have

s := h, t :=
(
h

2

)
+ h.

Also note, that in the degenerate case when |W | ≤ q, we will allow the empty vector.
It is not difficult to see that any cover of a set W with at most K vertices contains an

(α, q, l,K)-pseudo-cover with α = 1/K and l = q/K.

I Fact 6. For every q and every cover Z of W such that |Z| = K there is an ordering of
vertices of Z, (x1, . . . , xK), such that for some m ≤ K, (x1, . . . , xm) is an (α, q, l,K)-pseudo-
cover of W with α = 1

K and l = q
K .

Proof. Let l := q/K. If |W | ≤ q, then the pseudo-cover is empty. Otherwise, let x1 ∈
Z be such that |N(x1) ∩ W | is maximum. Then |N(x1) ∩ W | ≥ |W |/K ≥ l. For the
general step. Suppose |W \

⋃
j<iN(xj)| > q. Then there exists y ∈ Z \ {x1, . . . , xi−1}

such that |N(y) ∩ (W \
⋃
j<iN(xj))| ≥ |W \

⋃
j<iN(xj)|/K. Set xi := y. We have

|N(y) ∩ (W \
⋃
j<iN(xj))| > q/K. J

One of the key observations used in the proof is that the number of (α, q, l,K)-pseudo-cover
of a set W does not depend on |W |.

I Lemma 7. Let α ∈ (0, 1) s, t,K ∈ Z+, let l > s/α and q := l ·K. Then for every graph G
with no Ks,t and every W ⊆ V (G) such that |W | ≥ l, the number of (α, q, l,K)-pseudo-covers

of W is at most 2
(

(t−1)es

αs

)K
.

Proof. Suppose the number of (α, q, l,K)-pseudo-covers is bigger than C := 2
(

(t−1)es

αs

)K
.

Since the first positions are α-strong for W and |W | ≥ s/α, by Fact 4 there can be at
most M := (t−1)es

αs of (α, q, l,K)-pseudo-covers with distinct first positions. Let x1 be
a vertex which appears most often in the first position of these covers. Then at least
C/M > 1 of the covers have x1 in the first position and out of these there can be at most
one (α, q, l,K)-pseudo-cover which contains only x1. If |W \N(x1)| ≤ l then no vertex can
cover more than l vertices of W \ N(x1). Thus we may assume otherwise. Now we can
iterate the above argument restricting attention to those (α, q, l,K)-pseudo-covers which
have x1 in the first position. We have |W \ N(x1)| > l > s/α, and so by Fact 4 at least
(C/M − 1)/M = (C − M)/M2 > 1 vectors have the second position equal to some x2.
Iterating the above gives that there are at least

(C −M −M2 − · · · −M i−1)/M i

(α, q, l,K)-pseudo-covers starting with x1, x2, . . . , xi for some x1, . . . , xi. Since a pseudo-cover
has at most K vertices, C < 2MK for the above quantity to be at most one when i = K; a
contradiction. J

Let v be such that there exist K vertices x1, . . . , xK ∈ V \ {v} with the property N(v) ⊆⋃
j≤K N(xj). The number of such covers of N(v) can be “large” but in view of Fact 6 and

Lemma 7 the number of (α, q, l,K)- pseudo-covers such that l > s/α obtained from covers of
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N(v)

N(v)

N(v)

N(v)

Figure 1 An illustration of refining partitions for three pseudo-covers of N(v). For simplicity the
sets in partitions are depicted as intervals but they can be arbitrary.

N(v) is a constant independent of |N(v)|. In the rest of the section we will use the fact that
the number of (α, q, l,K)-pseudo-covers is constant to refine partitions determined by the
covers into a constant number of sets. Fix 0 < α < 1 and s,K ∈ Z+ and l so that l > s/α.
Let v be such that |N(v)| ≥ l.

Let T (v) denote the set of (α, q, l,K)-pseudo-covers of N(v). By Lemma 7, we have

|T (v)| ≤ C where C := 2
(

(t−1)es

αs

)K
. For S := (x1, . . . , xm) ∈ T (v) consider the following

partition PS = {W0,W1, . . . ,Wm} of N(v). LetW1 := N(x1)∩N(v),Wi := (N(xi)∩N(v))\⋃
1≤j<iWj for i > 1, and let W0 := N(v) \

⋃
j≤mN(xj). Since S is an (α, q, l,K)-pseudo-

covers of N(v), we have |W0| ≤ q.
Let Q(v) be the minimal partition which refines partitions PS over all (α, q, l,K)-pseudo-

covers S from T (v). For example, if there are only two partitions, PS = {W0,W1, . . . ,Wm}
and PT = {U0, U1, . . . , Um}, then Q(v) contains all non-empty intersections Wi ∩ Uj .

I Fact 8. |Q(v)| ≤ 2(K+1)C

Proof. For S = (x1, . . . , xm), we have |PS | ≤ m + 1 ≤ K + 1 and so there are at most
(K+1)C different subsets of N(v) over all S ∈ T (v). Taking the refinement of these partitions
results in at most 2(K+1)C sets. J

We will now modify Q(v) as follows. Let V0 be the union of these partition classes in
Q(v) which are subsets of W0 = N(v) \

⋃m
j=1 N(xj) for at least one S = (x1, . . . , xm). Let

{V1, . . . , Vs} denote the remaining partition classes. Then {V0, V1, . . . , Vs} is a partition of
N(v) (See Figure 1 for an illustration). In addition, we have the following fact.

I Fact 9. The following conditions are satisfied.
(1) |V0| ≤ Cq.
(2) For i ≥ 1 and for every (x1, . . . , xm) ∈ T (v), Vi ⊂ N(xj) for some j ∈ [m].

Proof. The number of vertices which belong to at least one set W0 is at most Cq. For part
(2), fix Vi for i ≥ 1 and let (x1, . . . , xm) ∈ T (v). Then vertices from Vi are covered by⋃m
j=1 N(xj) because Vi doesn’t intersect N(v)\

⋃m
j=1 N(xj). Let j1 be the smallest index such

that Vi ∩N(xj1) 6= ∅ and suppose that for some j2 > j1, we have Vi ∩ (N(xj2) \N(xj1)) 6= ∅.
Then Vi intersects Wj1 , but since it is not contained in Wj1 , it intersects another set
in the (α, q, l,K)-pseudo-cover determined by (x1, . . . , xm), and so it cannot belong to
{V0, V1, . . . , Vs}. J
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da b c da b c

d’b’ c’a’

H=(V,F) G=(V,V’,E)

V’

VV

Figure 2 The bipartite graph G associated with H.

We will end this section with some more notation which will be used later. Recall that T (v)
denotes the set of (α, q, l,K)-pseudo-covers of N(v). For set of vertices U we will define
T (U) :=

⋃
v∈U T (v). For a set S of (α, q, l,K)-pseudo-covers we let VS be the set of vertices

which belong to at least one pseudo-cover from S. We will slightly abuse above notation
and define

T (S) := T (VS).

Using the above convention, we will use T (i)(U) := T (T (i−1)(U)) with T (1)(U) := T (U) and
T (≤k)(U) :=

⋃
1≤i≤k T (i)(U).

3 Algorithm

In this section we will give the main algorithm. The algorithm consists of two phases. In the
first phase we simply add to a dominating set D vertices v which have only one vector in
T (v), namely (v). In the second phase, we analyze sets in Q(v) and argue that if a set Vi is
big enough then we will be able to find a “good” choice among a constant number of vertices
from vectors in T (v) to dominate Vi.

Let H = (V, F ) be a graph with no TKh and recall that K,α, l, q are given in (1). It will
be convenient to work in the double-cover of H which we are going to define next. We say
that the bipartite graph G = (V, V ′, E) is associated with H if V ′ = {v′ : v ∈ V } and we
have vu′ ∈ E if and only if vu ∈ F or u = v. In other words, edge vu ∈ F corresponds to
two edges vu′, uv′ in E and vv′ ∈ E for every v from V . Let γ′(G) denote the minimum size
of a set S ⊆ V which dominates V ′ in G. Before discussing the first phase of the algorithm,
we will mention a few facts on the relation between H and G.

I Fact 10. X is a dominating set in H if and only if NG(X) = V ′.

Proof. Suppose X is a dominating set in H . Then every vertex u ∈ V (H) \X is adjacent to
a vertex v ∈ X, and so u′v ∈ E(G), and for every u ∈ X, uu′ ∈ E(G). Now, let Y ⊂ V and
let u ∈ V (H) \ Y . Since NG(Y ) = V ′, there is a vertex v ∈ Y such that u′v ∈ E(G). Then
uv ∈ E(H) as u′ 6= v′. J

In particular, we have

γ(H) = γ′(G).

Rather than studying topological minors in G in relation to topological minors in H, we note
the following simple fact.
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I Fact 11. Let D ⊆ V , v ∈ V \D, and suppose there is a v,D-fan in G of size 2t− 1 such
that every path has length two. Then v ∈ Dt,2 in H.

Proof. A v,D-fan in G consists of paths of the form v, u′, w, where w ∈ D. Such paths are
mapped to paths of length one (if the corresponding copy of u′ is in D) or paths of length
two (if the corresponding copy of u′ is not in D). Thus for every vertex from D there are at
most two paths that are mapped to ones that contain this vertex in H. As a result we can
always choose t vertex disjoint paths of a v,D-fan in G out of the 2t− 1 paths of v,D-fan
in H. J

Lemma 3 and Fact 11 give the following corollary.

I Corollary 12. If H has no TKh and D ⊂ V is such that NG(D) = V ′, then the number
of vertices v ∈ V such that there is a v,D-fan in G of size 2h− 1 such that each path has
length two is O(|D|).

Since we will partition sets NG(v) ⊆ V ′ (for v ∈ V ), all the partition classes will be subsets
of V ′. It will be convenient to introduce the following notion.

IDefinition 13. We say that the partition {V ′0 , V ′1 , . . . , V ′s} ofNG(v) from Fact 9 is associated
with v.

Let D∗ ⊂ V be an optimal set which dominates V ′ in G and let V ∗ be the set of vertices
v ∈ V \D∗ such that there is a v,D∗-fan consisting of K + 1 paths, each of length at most
two. Then, by Corollary 12, |V ∗| = O(|D∗|). In view of the previous discussion adding
vertices from V ∗ ∪ D∗ to our solution results in a dominating set of size O(|D∗|). The
remaining vertices v from V \ (V ∗ ∪D∗) will have N(v) dominated by a “few” vertices from
D∗. Suppose v ∈ V \ (V ∗ ∪D∗). Then N(v) is dominated by vertices from D∗ and so there
exist d1, . . . , dm ∈ D∗ for some m ≤ K, such that N(v) ⊆

⋃
N(di). Therefore {d1, . . . , dm} is

a cover of N(v) and by Fact 6, {d1, . . . , dm} gives an (α, q, l,K)-pseudo-cover which belongs
to T (v). In addition, by Fact 9, if {V ′0 , V ′1 , . . . , V ′s} is the partition associated with v, then
for every i ≥ 1, V ′i ⊂ N(dj) for some j ≤ m. In view of the previous discussion, we have the
following fact.

I Fact 14. Let D∗ ⊆ V be an optimal set which dominates V ′ in G and let v ∈ V \(D∗∪V ∗).
In addition, let V ′0 , V ′1 , . . . , V ′s be the partition associated with v, and for i ≥ 1, let Ui = {x ∈
S : S ∈ T (v) ∧ V ′i ⊆ N(x)}. Then Ui ∩D∗ 6= ∅.

In the main part of our algorithm, we will find a set D ⊆ V which dominates some vertices
from V ′ so that when NG(D) is removed from V ′, then every vertex in V has its degree
bounded by a constant. To extend D and find a set which dominates all vertices from V ′ we
will rely on the following simple observation.

I Fact 15. Let s ∈ Z+ and let X = (V, V ′, E) be a bipartite graph such that for every vertex
v ∈ V , d(v) ≤ s and for every v′ ∈ V ′, d(v′) ≥ 1. Then γ′(X) ≥ |V ′|/s.

Proof. If D ⊆ V is an optimal set which dominates V ′, then s|D| ≥ |E(D,V ′)| ≥ |V ′|. J

Recall that for every v ∈ V , T (v) 6= ∅ because (v) ∈ T (v). To motivate our discussion
suppose first that |T (v)| = 1. Then either v ∈ V ∗ (defined above) or otherwise, in view of
Fact 14, v ∈ D∗. In either case we can add such a vertex to our solution. In fact a stronger
observation is true, if for some Vi in the partition associated with v, v is the only vertex in
some S ∈ T (v) such that Vi ⊆ N(v), then v ∈ V ∗ ∪D∗. Unfortunately, in many cases there



A. Czygrinow, M. Hanćkowiak, W. Wawrzyniak, and M. Witkowski 22:9

will be more than one vertex u such that Vi ⊆ N(u) and the challenge is to select one which
will lead to a constant approximation of γ′(G). The assumption that H has no TKh implies
that the number of choices of u is bounded by a constant which depends on h only but only
some of these vertices will be good choices. The algorithm will consist of two main phases.
The first one deals with those vertices v for which |T (v)| = 1, and the second one addresses
the more difficult case.

Phase 1

Input: Graph H = (V, F ) with no TKh.
1. Consider the double cover G = (V, V ′, E) of H. Let D1 := ∅.
2. Compute T (v) for every v ∈ V . If |T (v)| ≥ 2 then mark v. Add all unmarked vertices to

D1 and delete all vertices from V ′ dominated by D1.
Next fact follows from previous discussion.

I Lemma 16. Let D1 be the set obtained in Phase 1. Then |D1| = O(γ(H)).

We will now continue our analysis assuming we have set D1 obtained in Phase 1 and G has
been modified by possibly deleting some vertices from V ′. Let V ′′ denote the remaining
vertices in V ′, that is V ′′ := V ′ \NG(D1). In addition, we shall use V ′′i to denote V ′i ∩ V ′′.

Consider a sequence of constants M0,M1, . . . ,Mh such that Mh ≥
(
h
2
)

+ h and for every
1 ≤ i ≤ h, we have

Mi−1 > (2(K+1)C + 1)(Cq +Mi2(K+1)C),

where C = 2
(

(t−1)es

αs

)K
and K, q, s, t are defined in (1). In fact, we will only need that

Mh−1 ≥
(
h
2
)

+ h but in the process described below, which uses constants Mi, we will allow
it to continue more than h− 1 times. Let v ∈ V \D1 and let V ′i be a set in the partition
associated with v which satisfies

|V ′′i | ≥M0.

We set v0 := v and consider V ′′i . For every v1 ∈ V \ (D1 ∪ {v}) which belongs to
some S ∈ T (v) and is such that V ′′i ⊆ N(v0) take partition W ′0,W

′
1, . . . ,W

′
p associated

with v1 and let W ′′i := W ′i ∩ V ′′. We have p ≤ 2(K+1)C by Fact 8, |W ′0| ≤ Cq by Fact
9. Let PV

′′
i

v0v1 = {W ′′j ∩ V ′′i : |W ′′j ∩ V ′′i | ≥ M1 ∧ j ≥ 1}. We have
⋃
PV

′′
i

v0v1 ⊆ V ′′i and⋃
j≥0 V

′′
i ∩W ′j = V ′′i . Therefore,

|
⋃
PV

′′
i

v0v1 | ≥ |V ′′i | − Cq − 2(K+1)C ·M1.

We call sets W ′′j ∩ V ′′i ∈ PUv0v1
fragments. Now we iterate the process for every fragment

W ′′j ∩ V ′′i ∈ P
V ′′i
v0v1 , that is, we consider v2 ∈ V \ (D1 ∪ {v1}) such that for some S ∈ T (v1)

we have v2 ∈ S, W ′j ⊆ NG(v2) and v2 6= vi for i < 2. Define PW
′′
j ∩V

′′
i

v0v1v2 = {Z ′′k ∩W ′′j ∩ V ′′i :
|Z ′′k ∩W ′′j ∩ V ′′i | ≥M2 ∧ k ≥ 1}. We have

|
⋃
PW

′′
j ∩V

′′
i

v0v1v2 | ≥ |W ′′j ∩ V ′′i | − 2Cq − 2(K+1)C ·M2.

We repeat the process for as long as possible (See Figure 3 for an illustration). We will now
establish three claims about the above process. First claim states that the process must end
after h− 1 steps or the original graph H contains a TKh. The second claim shows that in
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U

Figure 3 Constructing fragments from a set U as vertices are added to a sequence starting
with v0.

the sequences of vertices obtained by the process, the last vertices are a good choice to be
added to a solution. Finally, the last claim states that when last vertices are added then all
but a constant number of vertices from V ′′i are dominated.

I Claim 17. If v0, v1, . . . , vi is a sequence obtained in the above process, then i ≤ h− 2.

Proof. Suppose i ≥ h − 1. Then {v0, . . . , vh−1} contains distinct vertices, every fragment
U ∈ PWv0...vh−1

has size |U | ≥Mh−1, and U ⊆ N(v0) ∩ · · · ∩N(vh−1). Since Mh−1 ≥
(
h
2
)

+ h,
G contains Kh,(h

2)+h, and as a result H contains TKh. J

For every maximal sequence v0, v1, . . . , vj obtained in the process above for V ′′i , we add vj
to D2(V ′i ).

Let Z be the set of vertices z ∈ V that belong to some S where S ∈ T (≤h)(d) for some
d ∈ D∗. Then we have |Z| = O(|D∗|) because there is a constant number of vertices which
belong to some S ∈ T (≤h)(d). In addition, we have the following.

I Claim 18. We have D2(V ′i ) ⊆ V ∗ ∪D∗ ∪ Z.

Proof. Suppose v0 . . . vi is a maximal sequence. Let U be a fragment in PWv0...vi
and let

X ′0, . . . , X
′
l denote the partition associated with vi. Then U ⊆ X ′j for some j ≥ 1. By

Fact 14, either vi ∈ V ∗ ∪D∗ or for at least one d ∈ D∗, we have d in some S ∈ T (vi) and
X ′j ⊆ NG(d). Recall that T (d) is non-empty and so there is a partition associated with
d, but it can be trivial. We have |U ∩ Y ′j | ≥ Mi+1 for at least one set Y ′j such that j ≥ 1
and Y ′j is in the partition associated with d. Thus d is an option for vi+1 and so, since the
sequence is maximal d = vk for some k < i. We have i ≤ h− 2 by Claim 17. Consequently
vi ∈ V ∗ ∪D∗ ∪ Z. J

Finally we show that vertices from D2(V ′i ) cover all but a constant number of vertices in V ′′i .
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I Claim 19. There is a constant L = L(K,C, l, h) such that |V ′′i \
⋃
x∈D2(V ′

i
) NG(x)| ≤ L.

Proof. If v0v1 . . . vj is maximal and U is a fragment in PWv0v1...vj
, then U ⊆ N(vj) and

vj ∈ D2(V ′i ). For any fragment U and any sequence v0v1 . . . vk which is not maximal, U is
partitioned using the process above, the sequence is extended, and the process terminates
with a maximal sequence which has at most h− 1 vertices. For every fragment U obtained
in the process above, we have

|
⋃
PUv0...vk

| ≥ |U | − kCq − 2(K+1)CMk

and the number of all possible fragments is constant. In addition, the number of vertices
in the union of the exceptional sets is constant. Consequently |V ′′i \

⋃
x∈D2(V ′

i
) N(x)| is a

constant. J

We can now describe the second phase of the algorithm.

Phase 2

Input: G = (V, V ′, E) and D1 ⊆ V
1. For every marked vertex v ∈ V such that dG(v) ≥ q, construct T (v) consisting of all

(α, q, l,K)-pseudo-covers of size at most K and the partition V ′0 , V
′

1 , . . . , V
′
s associated

with v in G.
2. Let V := V \D1 and let V ′′ := V ′ \

⋃
v∈D1

N(v).
3. For every v and every set V ′i in the partition associated with v let V ′′i := V ′i ∩ V ′′. If
|V ′′i | ≥M0, compute D2(V ′i ) and add all vertices from D2(V ′i ) to D2.

4. For every v′ ∈ V ′′ \
⋃
v∈D2

N(v) add its mate v ∈ V to D3.
5. Return D := D1 ∪D2 ∪D3.

Let Algorithm Dominating Set consist of Phase 1 followed by Phase 2. We will
note a few facts about Algorithm Dominating Set which will complete our proof of
Theorem 1.

First note the following:

I Fact 20. Algorithm Dominating Set runs in O(1) rounds in the Local model.

Proof. Phase 1 runs in O(1) rounds because computing the virtual graph G and T (v), in
parallel for every v, requires only knowledge of vertices within distance two of v. Phase 2
runs in O(1) rounds. Finding the partition is done locally by every vertex v and vertices in
all sets considered in Phase 2 for v are within distance O(1) of v. J

In addition, because of the 4th step of Phase 2, set D returned by Algorithm Dom-
inatingSet dominates V ′ in G and consequently V in H. Thus we have the following
fact.

I Fact 21. Set D returned by Algorithm DominatingSet is a dominating set in H.

To finish our analysis, we will show that Algorithm DominatingSet returns a set of size
O(γ(H)).

I Fact 22. Let k ∈ Z and let H be a graph with no TKk. There is a constant s = s(k) such
that for the set D returned by the algorithm Algorithm Dominating Set, |D| ≤ sγ(H).
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Proof. Let D∗ ⊆ V be such that |D∗| = γ′(G). From Lemma 16, |D1| = O(γ(H)). From
Claim 18, we have D2(V ′i ) ⊆ V ∗ ∪D∗ ∪ Z for every vertex v and every set V ′i considered in
step 3. Thus D2 ⊆ V ∗ ∪D∗ ∪ Z and since |Z| = O(γ(H)), we have |D2| = O(γ(H)). Let
X := G[V \ (D1 ∪D2), V ′′ \

⋃
v∈D2

N(v)] and let v ∈ V \ (D1 ∪D2). By Claim 19, for every
set V ′i with i ≥ 1 in the partition associated with v, only a constant number of vertices L
are not dominated by vertices in D2. Since, by Fact 8 the number of sets V ′i is at most
2(K+1)C and by Fact 9, |V ′0 | ≤ Cq, we have dX(v) bounded by some constant p for every
v ∈ V \ (D1 ∪D2). By Fact 15, γ′(X) ≥ |V ′′ \

⋃
v∈D2

N(v)|/p and at the same time vertices
in V ′′ \

⋃
v∈D2

N(v) can only be dominated by vertices in V \ (D1 ∪D2) and so γ′(X) ≤ |D∗|.
Consequently, |D3| = |V ′′ \

⋃
v∈D2

N(v)| = O(γ′(X)) = O(|D∗|). J

Proof of Theorem 1. Combining Fact 20, Fact 21 and Fact 22 shows that given a graph
H with no TKh, Algorithm DominatingSet finds in Lh rounds a dominating set D such
that |D| ≤ Chγ(H) for some constants Lh and Ch which depend on h only.

As noted in the introduction, Theorem 1 in connection with methods developed in [2]
(Theorem 3.4) immediately imply Theorem 2.
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1 Introduction

Oritatami model was introduced in [6] to try to understand the kinetics of co-transcriptional
folding. This process has been shown to play an important role in the final shape of
biomolecules [1], especially in the case of RNA [4]. The rationale of this choice is that the
wetlab version of Oritatami already exists, and has been successfully used to engineer shapes
with RNA in the wetlab [8].

In oritatami, we consider a finite set of bead types, and a periodic sequence of beads, each
of a specific bead type. Beads are attracted to each other according to a fixed symmetric
relation, and in any folding (a folding is also called a configuration), whenever two beads
attracted to each other are found at adjacent positions, a bond is formed between them.

At each step, the latest few beads in the sequence are allowed to explore all possible
positions, and we keep only those positions that minimise the energy, or otherwise put, those
positions that maximise the number of bonds in the folding. “Beads” are a metaphor for
domains, i.e. subsequences, in RNA and DNA.

Previous work on oritatami includes the implementation of a binary counter [6], the Heigh-
way dragon fractal [12], folding of shapes at small scale [3], and NP-hardness of the rule
minimization [15, 9] and of the equivalence of non-deterministic oritatami systems [10].

Main result. In this paper, we construct a “universal” set of 542 bead types, along with a
single universal attraction rule for these bead types, with which we can simulate any tag
system, and therefore any Turing machine M, within a polynomial factor of the running
timeM. The reduction proceeds as follows:

Turing machine
[16, 13]
−−−−−→ Cyclic tag system

Prop. 2
−−−−−→ Skipping cyclic tag system Lem. 3−−−−−→ Oritatami system

Our result relies on the development of a generic toolbox, which is easily reusable for future
work to design complex functions in oritatami systems.

Proving our designs. The main challenge we faced in this paper was the size of our
constructions: indeed, while we developed higher-level geometric constructs to program
useful shapes, there is a large number of possible interactions between all different parts
of the sequence. Getting solid proofs on large objects is a common problem in discrete
dynamical systems, for instance on cellular automata [5, 2] or tile assembly systems [11]. In
this paper, we introduce a general framework to deal with that complexity, and prove our
constructions rigorously. This method proceeds by decomposing the sequence into different
modules, and the space into different areas: blocks, where exactly one step of the simulation
is performed, which are composed of bricks, where exactly one module grows. We can then
reason on the modules separately, and only deal with interactions at the border between all
possible modules that can have a common border.

2 Definitions and Main results

2.1 Oritatami Systems
Let B be a finite set of bead types. A configuration c of a bead type sequence p ∈ B∗ ∪BN is
a directed self-avoiding path in the triangular lattice T,3 where for all integer i, vertex ci of c

3 The triangular lattice is defined as T = (Z2,∼), where (x, y) ∼ (u, v) if and only if (u, v) ∈
∪ε=±1{(x+ ε, y), (x, y + ε), (x+ ε, y + ε)}. Every position (x, y) in T is mapped in the euclidean plane
to x · ~E+ y · ~SW using the vector basis ~E = (1, 0) and ~SW = RotateClockwise

(
~E, 120◦

)
= (− 1

2 ,−
√

3
2 ).
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is labelled by pi. ci is the position in T of the (i+ 1)th bead, of type pi, in configuration c.
A partial configuration of a sequence p is a configuration of a prefix of p.

For any partial configuration c of some sequence p, an elongation of c by k beads (or
k-elongation) is a partial configuration of p of length |c|+ k extending by k positions the
self-avoiding path of c. We denote by Cp the set of all partial configurations of p (the index p
will be omitted when the context is clear). We denote by c.k the set of all k-elongations of a
partial configuration c of sequence p.

Oritatami systems. An oritatami system O = (p, , δ) is composed of (1) a (possibly
infinite) bead type sequence p, called the transcript, (2) an attraction rule, which is a
symmetric relation ⊆ B2, and (3) a parameter δ called the delay. O is said periodic
if p is infinite and periodic. Periodicity ensures that the “program” p embedded in the
oritatami system is finite (does not hardcode any specific behavior) and at the same time
allows arbitrary long computation.

We say that two bead types a and b attract each other when a b. Furthermore, given
a (partial) configuration c of a bead type sequence q, we say that there is a bond between
two adjacent positions ci and cj of c in T if qi qj and |i− j| > 1. The number of bonds of
configuration c of q is denoted by H(c) = |{(i, j) : ci ∼ cj , j > i+ 1, and qi qj}|.

Oritatami dynamics. The folding of an oritatami system is controlled by the delay δ.
Informally, the configuration grows from a seed configuration (the input), one bead at a time.
This new bead adopts the position(s) that maximise(s) the potential number of bonds the
configuration can make when elongated by δ beads in total. This dynamics is oblivious as it
keeps no memory of the previously preferred positions; it differs thus slightly from the hasty
dynamics studied in [6]; it might also be considered as closer to experimental conditions such
as in [8].

Formally, given an oritatami system O = (p, , δ) and a seed configuration σ of a seed
bead type sequence s, we denote by Cσ,p the set of all partial configurations of the sequence
s · p elongating the seed configuration σ. The considered dynamics D : 2Cσ,p → 2Cσ,p maps
every subset S of partial configurations of length ` elongating σ of the sequence s · p to the
subset D(S) of partial configurations of length `+ 1 of s · p as follows:

D(S) =
⋃
c ∈ S

arg max
γ ∈ c.1

(
max

η ∈ γ.(δ−1)
H(η)

)
The possible configurations at time t of the oritatami system O are the elongations of the
seed configuration σ by t beads in the set D t({σ}).

We say that the oritatami system is deterministic if at all time t, D t({σ}) is either a
singleton or the empty set. In this case, we denote by ct the configuration at time t, such
that: c0 = σ and D t({σ}) = {ct} for all t > 0; we say that the partial configuration ct folds
(co-transcriptionally) into the partial configuration ct+1 deterministically. In this case, at
time t, the (t+ 1)-th bead of p is placed in ct+1 at the position that maximises the number
of bonds that can be made in a δ-elongation of ct.

We say that the oritatami system halts at time t if t is the first time for which D t({σ}) = ∅.
The folding process may only stop because of a geometric obstruction (no more elongation is
possible because the configuration is trapped in a closed area).

Please refer to Fig. 1(d) and 1(e) for examples of the dynamical folding of a transcript.
Observe that a given transcript may fold (deterministically) into different paths because of
its interactions with its local environment (see section 2.3 for more details).
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2.2 Main result
Our main result consists in proving the following theorem that demonstrates that oritatami
systems are able to complete arbitrary Turing computation. It shows in particular that
deciding whether a given oritatami system folds into a finite size shape for a given seed is
undecidable.

I Theorem 1 (Main result). There is a fixed set B of 542 bead types with a fixed attraction
rule on B, together with two encodings:

π that maps in polynomial time, any single tape Turing machine M to a bead type
sequence πM ∈ B∗;
(s, σ) that maps in polynomial-time, any single-tape Turing machine M and any input x
of M to a seed configuration σM(x) of a bead type sequence sM(x) of length OM(|x|),
linear in the size of the input x (and polynomial in |M|);

such that: For any single tape Turing machineM and every input x ofM, the deterministic
and periodic oritatami system OM = ((πM)∞, , 3) whose transcript has period πM and
whose delay is δ = 3, halts its folding from the seed configuration σM(x) if and only if M
halts on input x. Furthermore, for all t and all input x ofM, if M halts on x after t steps,
then the folding of OM from seed configuration σM(x) halts after folding OM(t4 log2 t) beads.

There is one Turing-universal periodic transcript. Note that if we apply this theorem to
an intrinsically universal single tape Turing machine U (see [14]), then we obtain one single
absolutely fixed transcript πU such that the deterministic and periodic oritatami system
OU = ((πU )∞, , 3) with 542 bead types can simulate efficiently the halting of any Turing
machineM on any input x using a suitable seed configuration obtained via the encoding of
M and x in U . It follows that this absolutely fixed oritatami system consisting of one single
periodic transcript is able of arbitrary Turing computation.

From now on, we only consider deterministic periodic oritatami systems with delay δ = 3.

2.3 Basic design tool: Glider/Switchback
As a warm-up, let us introduce a special type of bead sequence (see Fig. 1) that, depending on
the initial context of its folding, either folds as a glider (a long and thin self-supported shape
heading in a fixed direction) or as switchbacks (a narrow and high shape allowing compact
storage). This only requires a small number of distinct beads types (12 per switchbacks, that
can be repeated every 4 switchbacks). This is achieved by designing a rule with minimum
interactions ensuring minimum interferences between both folding patterns. Compatibility
between the glider and the turns in switchbacks is ensured by aligning the switchback turns
with the turns of the glider, exploiting thus the similarity of their finger-like shape there.

This glider/switchback sequence will be used to store (as switchbacks) and expose (as
glider) specific information encoded in the transcript when needed.

2.4 Skipping Cyclic Tag Systems and Turing-Universality
Our proof of the Turing-universality of oritatami systems consists in simulating a special
kind of cyclic tag systems (CTS), called skipping cyclic tag system. Cook introduced CTS in
[2] and proved that they combined the tremendous advantage of simulating efficiently any
Turing machines, while not requiring a random access lookup table, which makes simulation
a lot easier.
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(a) Glider.
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(c) Glider/Switchback turn folding compatibil-
ity.

E20

E16

E18

E21

E19

E23

E14

E22

E12

E13

E20

E16

E18

E21

E19

E23

E14

E22

E12

E13

E15

E17

E20

E16

E18

E21

E19

E23

E14

E22

E12

E13

E21

E19

E23

E14

E22

E12

E15

E13

E17

E16

E20

E18

E21

E19

E23

E14

E22

E12

E15

E13

E17

E16

E14

E22

E12

E15

E13

E17

E20

E16

E18

E19

E21

E19

E23

E14

E22

E12

E15

E13

E17

E16

(d) from left to right: the folding of the subsequence as a glider.
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(e) from left to right: the folding of the subsequence as a switchback.

Figure 1 Glider/switchback subsequence. The folding path of the transcript is represented
as the thick colorful line and the -bonds between beads are represented as dashed lines. The
bond-maximizing path for the δ = 3 lastly produced beads is represented by a thick black line,
possibly terminated by several colorful paths if several paths realize the maximum of number of
bonds.

A skipping cyclic tag system (SCTS). consists of a cyclic list of n words α = 〈α0, . . . , αn−1〉
∈ {0, 1}∗, called appendants, and an initial dataword u0 ∈ {0, 1}∗. Intuitively, α encodes
the program and u0 encodes the input. Its configuration at time t consists of a marker
mt, recording the index of the current appendant at time t, and a dataword ut. Initially,
m0 = 0 and the dataword is u0. At each time step t, the SCTS acts deterministically on
configuration (mt, ut) in one of three ways:
(Halt step) If ut is the empty word ε, then the SCTS halts;4

(Nop step) If the first letter ut
0 of ut is 0, then ut0 is deleted and the marker moves to the

next appendant cyclically: i.e., mt+1 = (mt + 1) mod n and ut+1 = ut1 · · ·ut|ut|−1;

(Skip-append step) If ut
0 = 1, then ut0 is deleted, the next appendant α(mt+1 mod n) is

appended onto the right end of ut, and the marker moves to the second next appendant:
i.e., ut+1 = ut1 · · ·ut|ut|−1 · α

(mt+1 mod n) and mt+1 = (mt + 2) mod n.

For example, consider the SCTS E = (〈110, ε, 11, 0〉;u0 = 010). Its execution ([mt]ut)t is:

[0]010→ [1]10
Append−−−−→
[2:11]

[3]011→ [0]11
Append−−−−→

[1:ε]
[2]1

Append−−−−→
[3:0]

[0]0→ [1] Halt

4 Note that SCTS halting condition requires the dataword to be empty as opposed to [2, 16] where the
computation of a cyclic tag system is said to end also if it repeats a configuration.
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23:6 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

Turing universality. A sequence of articles and thesis by Cook [2], and Neary and Woods [16,
13], allows to show that SCTS are able to simulate any Turing machine efficiently in the
following sense: (proof omitted see [7])

I Proposition 2 ([16, 13]). Let M be a deterministic Turing machine using a single tape.
There is a polynomial algorithm that computes a skipping cyclic tag system SM, together
with a linear-time encoding uM(x) of the input x ofM as an input dataword for SM, such
that for all input x: SM halts on input dataword uM(x) if and only if M halts on input
x. Furthermore, for all t, if M halts after t steps, then S halts after OM(t2 log t) steps.
Moreover, the number of appendants of S is a multiple of 4.

In order to prove Theorem 1, we are thus left with proving that there is an oritatami
system that simulates in quadratic time any SCTS system (see Theorem 6 in [7] for a precise
statement).

3 The block simulation of SCTS: Proving the correctness of local
folding is enough

Given a SCTS S, we design an oritatami system OS that folds into a version, at a larger
scale, of the annotated trimmed space-time diagram of S (or trimmed diagram for short)
defined as follows:

Trimmed diagram of SCTS. Any SCTS proceeds as follows: it trims all the leading 0s in
the dataword and then appends the currently marked appendant when it reads the first 1
(if any; otherwise it halts). It is thus natural to group all these steps (trim leading 0s and
process the leading 1) as one single macro step. This motivates the following representation.
Given a SCTS (α0, . . . , αn−1;u0), we denote by 0 6 t1 < t2 < · · · all the times t such that the
dataword ut starts with letter 1 and set t0 = −1 by convention. Let us now group all deletion
steps occurring during steps ti+1 to ti+1−1 by simply indicating in exponent the marker mt

before each letter read. In the case of our STCS E , we have t0 = −1, t1 = 1, t2 = 3, t3 = 4 and
its execution is now represented as: [0]0[1]10

Append−−−−→
[2:11]

[3]0[0]11
Append−−−−→

[1:ε]
[2]1

Append−−−−→
[3:0]

[0]0[1] Halt.
Now, let’s align the resulting datawords in a 2D diagram according to their common parts:

t0
↓

t1
↓

t2
↓

t3
↓

[0]0 [1]1 0 −→ Append [2 : 11]
[3]0 [0]1 1 −→ Append [1 : ε]

[2]1 −→ Append [3 : 0]
[0]0 [1] −→ Halt [1 : ε]

This defines the annotated trimmed space-time diagram for the SCTS E . We refer to Lemma 4
in [7] for the formal definition for an arbitrary SCTS.

The transcript. The proof of Theorem 1 (see Theorem 6 in [7]) relies on constructing
a transcript (and a fixed rule) that will reproduce faithfully the trimmed diagram of the
simulated STCS. Figure 2 illustrates the folded configuration of the transcript corresponding
to SCTS E . Macroscopically, the transcript folds into a zig-zag sequence of blocks, each
performing a specific operation.
The current dataword is encoded at the bottom of each row of blocks: 0s are encoded by a

spike, and 1s are encoded by a flat surface.
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The seed configuration encodes the initial dataword and opens the first zig row at which
the folding of the transcript starts. Letters 0 and 1 are encoded by a spike (see Fig. 3(a))
and a flat surface (see Fig. 3(b)) respectively.

In each zig row (left to right), the transcript folds into a series of Read0I blocks (trimming
the leading 0s from the dataword encoded above), and then into a Read1I block, if the
dataword contains a 1, or into a Halt block terminating the folding, otherwise; this is the
zig-up phase. Then, the transcript starts the zig-down phase which consists in folding
into CopyI block copying the remaining letters of the dataword encoded above to the
bottom of the row; once the end of the dataword is reached, the transcript folds into an
AppendIJReturn block which encodes, at the bottom of the row, the currently marked
appendant, and finally, opens the next zag row.

In each zag row (right to left), the transcript folds into CopyJ blocks copying the new
dataword encoded above to the bottom of the row. For the leftmost letter, the transcript
folds into the special CopyJILineFeed block which also opens the next zig row.

The transcript is a periodic sequence whose period is the concatenation of n bead type
sequences Appendant α0 , . . . , Appendant αn−1 called segments, each encoding one appendant.

Encoding of the marker. ReadI and AppendIJReturn blocks consist of the folding of exactly
one segment, whereas CopyI, CopyJ and CopyJILineFeed consist of the folding of exactly
n segments. It follows that the appendant encoded in the leading segment folded inside
each block corresponds to the currently marked appendant in the simulated SCTS. As a
consequence, the appendant contained in the folded AppendIJReturn block is indeed the
appendant to be appended to the dataword.

The segment sequence. Each segment Appendant αi encodes the appendant αi as a se-
quence of 6 + |αi| modules: one of each module A , B , and C , then |αi| of module D ,
then one of each module E , F and G . Each module is a bead type sequence that plays a
particular role in the design:
Module A folds into the initial scaffold upon which the next modules rely.
Module B detects if the dataword is empty: if so, it folds to the left so as the folding

gets trapped in a closed space and halts; otherwise, it folds to the right and the folding
continues.

Module C detects the end of the dataword and triggers the appending of the marked
appendant accordingly.

Module D encodes each letter of the appendant: its two variants D0 and D1 encode
respectively 0s and 1s .

Module E ensures by padding that all appendant sequences have the same length when
folded (even if the appendant have different length). It serves two other purposes: Module
B senses its presence to detect if the dataword is empty; and its folding initiates the
opening of the zag row once the marked appendant has been appended to the dataword.

Module F is the scaffold upon which module G folds. It is specially designed to induce
two very distinct shapes on G depending on the initial shift of G . Furthermore, when
module F is exposed, module C folds along F which triggers the appending of the
marked appendant encoded by the modules D following C .

Module G is the “logical unit” of the transcript. It implements three distinct functions
which are triggered by its interactions with its environment: (1) reading the 0∗(1|ε) prefix
of the dataword, (2) copying a letter of the dataword, and (3) opening the next zig row
at the leftmost end of each zag row.
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ZOOM IN FOR DETAILS
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[3]0 [0]1 1 −→ Append [1 : ε]

[2]1 −→ Append [3 : 0]
[0]0 [1] −→ Halt [1 : ε]

(a) Folding of the oritatami system simulating the STCS E .
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(b) Exploded view of the bricks and modules inside the blocks involved in the simulation above.

Figure 2 Folding of the transcript simulating the STCS E , and some block internal structures.

We call bricks the folding of each of these modules. The blocks into which the transcript
folds, depend on the bricks in which its modules fold, as illustrated in Fig. 2(b). We refer
to sections C to F in [7] for the description of blocks in terms of bricks and of how they
articulate with each other to produce the desired macroscopic folding pattern.

The full description of each of these sequences is given in Section F in [7].

Let S = (α0, α1, . . . , αn−1;u0) be a SCTS, and, as before, let for all integer i > 0, ti be
the ith step where ut starts with 1 (starting from 0, i.e. t0 is the first step where ut0 starts
with 1). The following lemma shows that the transcript described above folds indeed into
blocks that simulate the trimmed diagram of S. Proposition 2 and Theorem 1 are direct
corollaries of this lemma.
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I Lemma 3 (Key lemma). There is a bead type set B and a rule such that: for every SCTS
S, there are πS and (σS , sS) defined as in Theorem 1 such that, for every initial dataword
u0, the (possibly infinite) final folded path of the oritatami system OS = ((πS)∞, , δ = 3)
from the seed configuration (σ(u0), s(u0)) is exactly structured as the following sequence of
blocks organized in zig and zag rows as follows: (recall Fig. 2(a))

First, the block Seed(u0) ending at coordinates (−1, 0).
Then, for i > 0, the i-th row consists of a zig row located between y = 2(i− 1)h+ 1 and
y = 2ih, and a zag row located between y = 2ih + 1 and y = 2(i + 1)h, composed as
follows:
• (Compute) if u1+ti = 0r1 · s and if s 6= ε or α1+i+ti+1 6= ε: then
r = ti+1 − ti − 1 and:

the i-th zig-row consists from left to right of the following sequence of blocks whose
origins are located at the following coordinates:
↙ y 2ih (2i− 1)h+ 1

→ x ih+ (1 + ti)W · · · ih+ (ti+1 − 1)W ih+ ti+1W ih+ (1 + ti+1)W − 1 · · · ih+ (|s|+ ti+1)W − 1 ih+ (1 + |s|+ ti+1)W − 1
Blocks Read0I · · · Read0I Read1I Copy(s0)I · · · Copy(s|s|−1)I Append[α1+i+ti+1 ]IJReturn

Marker i+ 1 + ti · · · i+ r + ti i+ ti+1 i+ 1 + ti+1 · · · i+ 1 + ti+1 i+ 1 + ti+1

This row ends at position ((i+ 1)h+ (1 + |s|+ |αi+1+ti+1 |+ ti+1)W − 7, 2ih+ 2).
the i-th zag-row consists from right to left of the following sequence of blocks whose
origins are located at the following coordinates:
↙ y 2ih+ 1

→ x (i+ 1)h+ (2 + ti+1)W − 8 (i+ 1)h+ (3 + ti+1)W − 8 · · · (i+ 1)h+ (1 + |v|+ ti+1)W − 8
Blocks Copy(v0)JILineFeed Copy(v1)J · · · Copy(v|v|−1)J

Marker i+ 2 + ti+1 i+ 2 + ti+1 · · · i+ 2 + ti+1

where v = u1+ti+1 = s · pi+1+ti+1 6= ε (as s and αi+1+ti+1 are not both ε). This row
ends at position ((i+ 1)h+ (1 + ti+1)W − 1, 2(i+ 1)h).

• (Halt 1) if u1+ti = 0r1 and α1+i+ti+1 = ε: then r = ti+1− ti−1 and the last rows
of the configuration consists from left to right of the following sequence of blocks located
at the following coordinates:
↙ y 2ih (2i− 1)h+ 1 2(i+ 1)h

→ x ih+ (1 + ti)W · · · ih+ (ti+1 − 1)W ih+ ti+1W ih+ (1 + ti+1)W − 1 (i+ 1)h+ (1 + ti+1)W
Blocks Read0I · · · Read0I Read1I CarriageReturnIJLineFeedJI Halt

Marker i+ 1 + ti · · · i+ ti+1 − 1 i+ ti+1 i+ 1 + ti+1 i+ 2 + ti+1

• finally, (Halt 2) if u1+ti = 0r for some r > 0: then the i-th zig-row is last row of
the configuration and consists of the following sequence of blocks located at the following
coordinates:
↙ y 2ih

→ x ih+ (1 + ti)W · · · ih+ (r + ti)W ih+ (1 + r + ti)W
Blocks Read0I · · · Read0I Halt

Marker i+ 1 + ti · · · i+ r + ti i+ r + 1 + ti

The following sections are dedicated to the proof of Key Lemma 3.

4 Advanced Design Tool box

In this section, we present several key tools to program Oritatami design and which we
believe to be generic as they allowed us to get a lot of freedom in our design.
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4.1 Implementing the logic
As in [6], the internal state of our “molecular computing machinery” consists essentially of
two parameters: 1) the position inside the transcript of the part currently folding; and 2) the
entry point of transcript inside the environment. Indeed, depending on the entry point or
the position inside the transcript, different beads will be in contact with the environment
and thus different functions will be applied as a result of their interactions. This happens
during the zig phase: in the first (zig-up) part, the transcript starts folding at the bottom,
forcing the modules G to fold into GIRead bricks; whereas during the second (zig-down)
part, the transcript starts folding at the top, forcing the modules G to fold into GICopy
bricks instead. Similarly, the memory of the system consists of the beads already placed
on the surrounding of the area currently visited (the environment). This happens in every
row of the folding: depending on the letter encoded at the bottom of the row above, the
modules G fold into GIRead0 or GIRead1 bricks (zig-up phase), GICopy0 or GICopy1

bricks (zig-down phase), and GJCopy0 or GJCopy1 bricks (zag phase).
At different places, we need the transcript to read information from the environment and

trigger the appropriate folding. This is obtained through different mechanisms.

Default folding. By default, during the zig-up phase, B is attracted to the left by F and
folds to the right only in presence of E above. This allows to continue the folding only if
the tape word is not empty or to halt it otherwise (see Figure 27 in [7]).

Geometry obstruction. A typical example is illustrated by G . During the zig-up phase
where the absence of environment below the block ReadI allows G to fold downward
at the beginning (see Figure 41 in [7]) which shift the transcript by 7 beads along F
resulting in G to adopt the glider-shape (more details on this mechanism in the next
section). Whereas during the zig-down phase, G cannot make this loop because it is
occupied by a previously placed G . This results in a perfect alignment of G with F
whose strong attraction forces G to adopt the switchback shape (see Figure 43 in [7]).

Geometry of the environment. Figure 3 shows how the shape of the environment is used
to change the direction of G in glider-shape. This results in modifying the entry point
in the environment and allows the Oritatami system to trim the leading 0s in the tape
word by going back to the same entry point (Fig. 3(a)), switch from zip-up to zig-down
phase when reading a 1 by opening the next block from the top (Fig. 3(b)), and from zag
to zig-up phase when it has rewound to the beginning of the tape word, by getting down
to the bottom of the next zig row (Fig. 3(c)).

4.2 Easing the design: getting the freedom you need
Several key tools allowed to ease considerably our design, and even in some cases to make
it feasible. These tools are generic enough to be considered as programming paradigms.
One main difficulty we faced is that the different functions one wants to implement tend to
concentrate at the same “hot-spots” in the transcript. A typical example is the midpoint
of G where one wants to implement all the functions: Read, Copy and Line Feed. The
following powerful tools allow to overcome these difficulties:

Socks work by letting a glider/switchback module fold into a switchback turn conformation
for some time when it would otherwise fold into a glider. Examples are given in Figure 4.
They are easy to implement: indeed, the socks naturally adopt the same shape as the
corresponding switchback turn and require thus no extra interfering bonds. They allow a
lot of freedom in the design, for several reasons:
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n°347 Module C: End of Tapen°347 Module C: End of Tape

(a) G bounces southeastward in
presence of a spike encoding a 0
and folds into GIRead0 .
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(b) G bounces eastward on a flat
surface encoding a 1, and folds
into GIRead1 .
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n°347 Module C: End of Tapen°347 Module C: End of Tape

(c) G goes straight southwest-
ward in absence of obstacle, and
folds into G JI LineFeed .

Figure 3 The interactions of module G in “glider”-mode with different environments result in
heading to different entry points to the next area of the folding.
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(c) Confinement.

Figure 4 Different uses of socks: (a) Easing the design of switchback/glider by letting the
switchback (in green) folds into its natural shape at its extremities even in “glider”-mode.; (b)
Module G : Realigning a pattern by slowing its folding down at the end to compensate speeding it
at the beginning.; (c) Module D : Preventing unwanted interactions between the beads outlined in
red and the ones below, by concealing the red ones on top of the glider.

First, they simplify the design of important switchback part by lifting the need for
implementing the glider configuration for that part, as shown in Figure 4(a).
Second, a glider naturally progresses at speed 1/3. Adding a sock allows us to slow its
progression down to speed 1/5 for some time (see Fig. 4(b)) and therefore to realign
them. We used that feature repeatedly to “shift” some modules: starting the folding
at an initial speed-1 (i.e. straight line) and then compensating for that speed later on
by introducing socks (see Fig. 4(b)). This is a key point in our design, as it allowed us
to spread apart the Read and Copy functions into different subsequences of module G ,
and therefore to get less constraints on our rule design. In the specific case of module
G , the Copy-function occurs at the center of the module, while the Read-function is
implemented earlier in module! (see section F.10 in [7] for full details)
Finally, socks allow to prevent unwanted interactions between beads by concealing
potentially harmful beads in an unreachable area as in Figure 4(c).

Exponential bead type coloring is a key tool to allow module G to fold into different
shapes, glider or switchback, along module F , when folding in the ReadI configuration.
The problem it solves is that in order for G to fold into switchbacks, we need strong
interactions between G and its neighboring module F (see Fig. 41 in [7]), whereas in
order for G to fold as glider, we want to avoid those interactions (see Fig. 43 in [7]).
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(a) Proof tree for the glider turn in GIRead0 .
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(b) Proof tree for the glider turn in GIRead1 .

Figure 5 Two examples of proof trees for the same subsequence in two different environements.
The number at the upper-left corner of every ball stands for the number of bonds for the path inside
the ball. The number at the lower right corner of each ball stands for the number of paths grouped
in the ball, allowing to check that no path was omitted. Balls highlighted in black bold contain the
bonds-maximizing paths. Balls highlighted in grey bold contain the paths that places the bead at
the same location as the bonds-maximizing paths, and which must thus be considered in the next
level as well.

This is made possible because gliders progress at speed 1/3 while switchbacks progress at
speed 1. Using a power-of-3 coloring, we manage to easily achieve these contradicting
goals altogether (the construction is analysed in Lemma 11 in Section G.1 in [7]).

5 Correctness of local folding: Proof tree certificates

The goal of this section is to conclude the proof of our design by proving Key Lemma 3. The
proof works by induction, assuming that the preceding beads of the transcript fold at the
locations claimed by the lemma. We proceed in 3 steps:

We first enumerate all the possible environments for every part of the transcript. As,
we carefully aligned our design, most of the beads only see a small number of different
environments.

For the few cases (three in total) where the number of environments is unbounded, we
give an explicit proof of correctness of their folding (Lemmas 9–11 in section G.1 in [7]).
This is where the concealing feature of socks and the exponential bead type coloring play
a crucial role.

For all the other cases, we designed human-checkable computer-generated certificates,
called proof trees. It consists in listing in a compact but readable manner all the
possible paths for the transcript in every possible environment. In order to match
human readability, paths with identical bonding patterns are grouped into one single ball.
Balls containing the paths maximizing the number of bonds are highlighted in bold and
organized in a tree. This reduces the number of cases to less than 5 balls in most of the
levels of the tree, achieving human-checkability of the computed certificate (see Fig. 5).
Proof trees are available at https://www.irif.fr/~nschaban/oritatami/.

https://www.irif.fr/~nschaban/oritatami/
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Abstract

Motivated by the recent rapid growth of research for algorithms to cluster multi-layer and tem-
poral graphs, we study extensions of the classical Cluster Editing problem. In Multi-Layer
Cluster Editing we receive a set of graphs on the same vertex set, called layers and aim to
transform all layers into cluster graphs (disjoint unions of cliques) that differ only slightly. More
specifically, we want to mark at most d vertices and to transform each layer into a cluster graph
using at most k edge additions or deletions per layer so that, if we remove the marked vertices,
we obtain the same cluster graph in all layers. In Temporal Cluster Editing we receive a
sequence of layers and we want to transform each layer into a cluster graph so that consecutive
layers differ only slightly. That is, we want to transform each layer into a cluster graph with at
most k edge additions or deletions and to mark a distinct set of d vertices in each layer so that
each two consecutive layers are the same after removing the vertices marked in the first of the
two layers. We study the combinatorial structure of the two problems via their parameterized
complexity with respect to the parameters d and k, among others. Despite the similar definition,
the two problems behave quite differently: In particular, Multi-Layer Cluster Editing is
fixed-parameter tractable with running time kO(k+d)sO(1) for inputs of size s, whereas Temporal
Cluster Editing is W[1]-hard with respect to k even if d = 3.
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1 Introduction

Cluster Editing and its weighted form Correlation Clustering are two important
and well-studied models of graph clustering [1, 4, 6, 12, 18]. In the former, we are given a
graph and we aim to edit (that is, add or delete) the fewest number of edges in order to
obtain a cluster graph, a graph in which each connected component is a clique. Cluster
Editing has attracted a lot of attention from a parameterized-algorithms point of view
(e.g. [4, 6, 12, 18]) and the resulting contributions have found their way back into practice [4].

Meanwhile, additional information is now available and used in clustering methods. In
particular, research on clustering so-called multi-layer and temporal graphs grows rapidly
(e.g. [16, 22, 23, 24, 25]). A multi-layer graph is a set of graphs, called layers, on the same
vertex set [5, 16, 17]. In social networks, a layer can represent social interactions, geographic
closeness, common interests or activities [16].1 A temporal graph is a multi-layer graph in
which the layers are ordered linearly [14, 15, 19, 20, 24, 25]. Temporal graphs naturally
model the evolution of relationships of individuals over time or their set of time-stamped
interactions.

The goals in clustering multi-layer and temporal graphs are, respectively, to find a
clustering that is consistent with all layers [16, 17, 22, 23] or a clustering that slowly evolves
over time consistently with the graph [24, 25]. The methods used herein are often heuristic
and beyond observing NP-hardness, to the best of our knowledge, there is no deeper analysis
of the complexity of the general underlying computational problems that are attacked in
this way. Hence, there is also a lack of knowledge about the possible avenues for algorithmic
tractability. We initiate this research here.

We analyze the combinatorial structure behind cluster editing for multi-layer and temporal
graphs, defined formally below, via studying their parameterized complexity with respect
to the most basic parameters, such as the number of edits. That is, we aim to find fixed-
parameter algorithms, which have running time f(p) · `O(1) where p is the parameter and
` the input length, or to show W[1]-hardness, which indicates that there cannot be such
algorithms.

As we will see, both problems offer rich interactions between the layers on top of the
structure inherited from Cluster Editing. Our main contributions are an intricate fixed-
parameter algorithm for multi-layer cluster editing, whose underlying techniques should be
applicable to a broader range of multi-layer problems, and a hardness result for temporal
cluster editing, which shows that certain non-local structures harbor algorithmic intractability.

1 When considering the activity in different communities, we typically obtain a large number of layers [21].
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Temporal Cluster Editing (TCE). Berger-Wolf and Tantipathananandh [25] were motivated
by cluster detection problems from practice to study the following problem. Given a temporal
graph, edit each layer into a cluster graph, that is, add or remove edges such that the layer
becomes a disjoint union of cliques, while minimizing the total number of edits and the
number of vertices moving between different clusters in two consecutive layers. TCE is a
variant of this problem where we instead minimize the layer-wise maxima of the number of
edits and moving vertices, respectively. The problem can be formalized as follows.

Let G = (Gi)i∈[`] be a temporal graph with vertex set V , that is, Gi is the ith layer. Let
Gi = (V,Ei). An edge modification set for a graph G = (V,E) is a set of pairs of vertices
from V . A clustering for G is a sequenceM = (Mi)i∈[`] of edge modification sets such that
each layer Gi is turned into a cluster graph G′i = (V,Ei ⊕Mi).2 (Throughout this work, G′i
denotes the modified ith layer of the temporal or multi-layer graph and the corresponding
clustering understood from the context.) Intuitively, sets Mi contain the data that we need
to disregard in order to cluster our input and hence we want to minimize their sizes [24, 25].
For that, we say thatM is k-bounded for some integer k ∈ N if |Mi| ≤ k for each i ∈ `.

A fundamental property of clusterings of temporal graphs is their evolution over time. In
practice, these clusterings evolve only slowly as measured by the number of vertices switching
between clusters from one layer to another [24, 25]. This requirement can be formalized as
follows. Let d ∈ N. ClusteringM for G (as above) is temporally d-consistent if there exists a
sequence (Di)i∈[`−1] of vertex sets such that G′i[V \Di] = G′i+1[V \Di] for each i ∈ [`− 1].
Hence, the sets Di contain the vertices changing clusters. We arrive at the following.

Temporal Cluster Editing (TCE)
Input: A temporal graph G and two integers k, d.
Question: Is there a temporally d-consistent k-bounded clustering for G?

We also say that the corresponding sets Di ⊆ V and Mi ⊆
(

V
2
)
as above form a solution and

the vertices in Di are marked.
The most natural parameters are the “number k of edge modifications per layer”, the

“number d of marked vertices”, the “number ` of layers”, and the “number n = |V | of vertices”.
An overview on our results is shown in Figure 1. (Note that, within these parameters, we
have d ≤ n and k ≤ n2.) A straightforward reduction yields that TCE is NP-complete even
if both d = 0 and ` = 1 (?)3. On the positive side, we obtain an algorithm for TCE with
running time nO(k)`: The basic idea is to check whether any two possible cluster editing
sets for two consecutive layers allow for a small number of marked vertices by matching
techniques. As it turns out, even for d = 3, we cannot obtain an improved running time on
the order of (n`)o(k) unless the Exponential Time Hypothesis (ETH) fails. The reason is an
obstruction represented by small clusters which may have to be joined or split throughout
many layers, to be able to form clusters in some later layer. Finally, we give a polynomial
kernel with respect to the parameter combination (d, k, `) and show that the problem does
not admit a polynomial kernel for parameter “number n of vertices” unless NP ⊆ coNP/poly.

Multi-Layer Cluster Editing (MLCE). For clusterings of multi-layer graphs we typically
have to consider the tradeoff between closely matching individual layers and getting an

2 Herein, ⊕ denotes the symmetric difference: A⊕B = (A \B)∪ (B \A) and [`] denotes the set {1, . . . , `}
for ` ∈ N.

3 The proofs of results marked by (?) and proofs of correctness and safeness of reduction rules and
branching rules marked by (?) are omitted due to space constraints and deferred to a full version [7].
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(d, k)

W[1]-hard even for
d = 3 [Thm 12]

FPT [Thm 1] open
para-NP-
hard (?)

(k, `)

para-NP-hard (?)

(d, `)

FPT, No poly kernel
[Thm 11 & Prop 15]

n (same as (d, n), (k, n), (d, k, n))

Poly kernel [Thm 13]

(d, k, `)

(same as (d, n, `), (k, n, `), (d, k, n, `))

(n, `): Instance size

d

para-NP-hard

`

para-NP-hard
k

XP [Thm 11] para-NP-hard

Figure 1 Our results for TCE and MLCE in a Hasse diagram of the upper-boundedness relation
between the parameters the “number k of edge modifications per layer”, the “number d of marked
vertices”, the “number ` of layers”, and the “number n = |V | of vertices” and all of their combinations.
A node is split into two parts if the complexity results differ; the left part shows the result for
TCE, the right part for MLCE. Red entries mean that the corresponding parameterized problem
is para-NP-hard. Orange entries mean that the corresponding parameterized problem is W[1]-hard
while contained in XP. It is in FPT for all parameter combinations colored yellow or green and
admits a polynomial kernel for all parameter combinations colored green. It does not admit a
polynomial kernel for all parameter combinations that are colored yellow unless NP ⊆ coNP/poly. A
tight parameterized complexity classification for the gray colored parameter combination is open.

overall sufficient fit [22, 23]. A local upper bound on the number of allowed edits per layer
and a global set of marked vertices allow us to study the influence of this tradeoff on the
complexity of multi-layer cluster editing. Formally, a clustering M = (Mi)i∈[`] for a multi-
layer graph {Gi | i ∈ [`]} is defined in the same way as for temporal graphs. ClusteringM is
totally d-consistent if there is a single subset D of vertices such that G′i[V \D] = G′j [V \D]
for all i, j ∈ [`].4 In Multi-Layer Cluster Editing (MLCE) the input is a multi-layer
graph G and two integers k and d and we ask for a totally d-consistent k-bounded clustering
for G.

To briefly summarize our results for MLCE: While strong overall fit (small parameter d)
or closely matched layers (small parameter k) alone do not lead to fixed-parameter tractability,
jointly they do. Indeed, we obtain an kO(k+d) · n3 · `-time algorithm, in contrast to TCE.
At first glance, this is surprising because in the temporal case, we only need to satisfy the
consistency condition “locally”. This requires less interaction among layers and thus, seemed
to be easier to tackle than the multi-layer case. The algorithm uses a novel method that
allows us make decisions over a large number of layers at once. It can be compared with
greedy localization [9] in that some of the decisions are greedy and transient, meaning that
they seem intuitively favorable and can be reversed in individual layers if they later turn out
to be wrong. However, the application of this method is not straightforward, requires new
techniques to deal with the interaction between layers and consequently intricately tuned
branching and reduction rules.

4 Below we drop the qualifiers “temporally” and “totally” if they are clear from the context.
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Algorithm 1: MLCE.
Input:

A set of graphs G1, . . . , G` = (V,E1), . . . , (V,E`) two integers k and d.
A set of marked vertices D, edge modification sets M1, . . . ,M`.
A set B ⊆

(
V \D

2
)
of permanent vertex pairs.

1 if |D| > d or there is an i ∈ [`] such that |Mi ∩B| > k then return false
2 Apply the first applicable rule in the following ordered list: 1, Greedy Rule, 2,

Clean-up Rule, 3, and 4.
3 return true

We in fact completely classify MLCE in terms of fixed-parameter tractability and
existence of polynomial-size problem kernels with respect to the parameters k, d, `, and n,
and all of their combinations, see Figure 1 for an overview. MLCE is para-NP-hard for
all parameter combinations which are smaller or incomparable to k + d. Straightforward
reductions yield NP-completeness even if both d = 0 and ` = 1 or both k = 0 and ` = 3; the
problem is polynomial-time solvable if k = 0 and ` ≤ 2 (?). Finally, the kernelization results
for TCE also hold for MLCE, that is, the problem admits a polynomial kernel with respect
to (d, k, `) and does not admit a polynomial kernel for the “number n of vertices” unless
NP ⊆ coNP/poly.

Related Work. We are not aware of studies of the fundamental algorithmic properties of
multilayer and temporal graph clustering. In terms of parameterized algorithms, only the
indirect approach of aggregating clusterings into one has been studied for multilayer [3,
11] and temporal graphs [24]. These approaches are less accurate, however [2, 25]. The
approximability of temporal versions of k-means clustering and its variants was studied by
Dey et al. [10].

2 Multi-Layer Cluster Editing (MLCE)

In this section, we show that MLCE can be solved efficiently for small k and d.

I Theorem 1. MLCE is FPT with respect to the number k of edge modifications per layer
and number d of marked vertices combined. It can be solved in kO(k+d) · n3 · ` time.

We describe a recursive search-tree algorithm (see algorithm 1) for the following input:
An instance I of MLCE consisting of a multi-layer graph G1, . . . , G` = (V,E1), . . . , (V,E`)
and two integers k and d.
A constraint P = (D, (Mi)i∈[`], B), consisting of a set of marked vertices D ⊆ V , edge
modification sets M1, . . . ,M` ⊆

(
V
2
)
, and a set B ⊆

(
V \D

2
)
of permanent vertex pairs.

The algorithm follows the greedy localization approach [9] in which we make some decisions
greedily, which we possibly revert through branching later on. The greedy decisions herein
give us some structure that we can exploit to keep the search-tree size small. The edge
modification sets Mi represent both the greedy decisions and those that we made through
branching. The set B contains only those made by branching.

Throughout the algorithm, we try to maintain a property that the constraint at hand is
good which intuitively means that the constraint can be turned into a solution (if one exists).

ISAAC 2018
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I Definition 2 (Good Constraint). Let I be an instance of MLCE. A constraint P =
(D,M1, . . . ,M`, B) is good for I if there is a solution S = (M?

1 , . . . ,M
?
` , D

?) such that (i)
D ⊆ D?, (ii) there is no {u, v} ∈ B such that u ∈ D?, and (iii) for all i ∈ [`] we have
Mi ∩B = M?

i ∩B. We also say that S witnesses that P is good.

Furthermore, it is easy to see that an “empty” constraint is good.

I Observation 3. For any yes-instance I = (G1, . . . , G`, d, k) of MLCE, we have that
P0 = (D = ∅,M1 = ∅, . . . ,M` = ∅, B = ∅) is a good constraint.

We also call the above constraint P0 trivial. The initial call of our algorithm is with the
input instance of MLCE together with the trivial constraint P0.

Our algorithm uses various different branching rules to search for a solution to an MLCE
input instance: A branching rule takes as input an instance I of MLCE and a constraint
P and returns a set of constraints P (1), . . . , P (x). When a branching rule is applied, the
algorithm invokes a recursive call for each constraint returned by the branching rule and
returns true if at least one of the recursive calls returns true; otherwise, it returns false.
For that to be correct, whenever a branching rule is invoked with a good constraint, at least
one of the constraints returned by the branching rule has to be a good constraint as well. In
this case we say that a branching rule is safe.

In the following, we introduce the branching rules used by the algorithm and prove that
each of them is safe. This together with Theorem 3 will allow us to prove by induction
that the algorithm eventually finds a solution for the input instance of MLCE if it is a
yes-instance. To make the description of the branching rules more readable, we introduce
four types of non-marked vertex pairs. Say that a vertex pair {u, v} ∈

(
V \D

2
)
is

settled if {u, v} ∈ Ei ⊕Mi for all i ∈ ` or {u, v} /∈ Ei ⊕Mi for all i ∈ [`] (edge always
present or never present),
frequent if |{i | {u, v} ∈ Ei ⊕Mi}| ≥ 2`

3 (edge almost always present),
scarce if |{i | {u, v} ∈ Ei ⊕Mi}| ≤ `

3 (edge almost never present), and
unsettled otherwise, that is, `

3 < |{i | {u, v} ∈ Ei ⊕Mi}| < 2`
3 (edge sometimes present).

Note that, if a vertex pair {u, v} falls in one of the above categories, both u, v are not marked.
Our aim with the first two rules is to settle all pairs in

(
V \D

2
)
. In order to achieve our

running time bound, we can only afford to exhaustively search through all unsettled vertex
pairs:

I Branching Rule 1 (?). If there is an unsettled vertex pair {u, v} ∈
(

V \D
2
)
, then output

the following up to four constraints:
1. For all i ∈ [`], put M (1)

i = Mi ∪ ({{u, v}} \ Ei), D(1) = D, and B(1) = B ∪ {{u, v}}.
2. For all i ∈ [`], put M (2)

i = Mi ∪ ({{u, v}} ∩ Ei), D(2) = D, and B(2) = B ∪ {{u, v}}.
3. If there is no x ∈ V \D with {u, x} ∈ B, then D(3) = D ∪ {u}, the rest stays the same.
4. If there is no x ∈ V \D with {v, x} ∈ B, then D(4) = D ∪ {v}, the rest stays the same.

The following Greedy Rule deals with all frequent and scarce vertex pairs. It only
produces one constraint and hence no branching occurs in that sense. For formal reasons it
is nevertheless useful to treat the Greedy Rule as a special case of a branching rule. Note
that the algorithm also invokes a recursive call with the output constraint of this rule. The
rule greedily adds the edge corresponding to a frequent vertex pair in all layers where it is
not present and removes edges corresponding to scarce vertex pairs in all layers where it is
present. Intuitively, the Greedy Rule is safe, because all of its decisions can be reverted later.

I Greedy Rule (?). If there is a frequent or a scarce vertex pair {u, v} ∈
(

V \D
2
)
, then return

one of the following two constraints:
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Frequent: for all i ∈ [`] put M (1)
i = Mi ∪ ({{u, v}} \ Ei), the rest stays the same.

Scarce: for all i ∈ [`] put M (1)
i = Mi ∪ ({{u, v}} ∩ Ei), the rest stays the same.

After the above two rules have been applied exhaustively, all pairs in
(

V \D
2
)
are settled.

With the following rule we edit the subgraphs induced by all non-marked vertices into
cluster graphs. This branching rule represents a well-known rule from the classical Cluster
Editing with the addition that we also branch on marking vertices.

I Branching Rule 2 (?). If there is an induced P3 = ({u, v}, {v, w}) in G′i[V \D] for some
i ∈ [`], where G′i = (V,Ei ⊕Mi), then return the following up to six constraints:
1. If {u, v} /∈ B: for all i ∈ [`] putM (1)

i = Mi⊕{{u, v}}, D(1) = D, and B(1) = B∪{{u, v}}.
2. If {v, w} /∈ B: for all i ∈ [`] putM (2)

i = Mi⊕{{v, w}}, D(2) = D, and B(2) = B∪{{v, w}}.
3. If {u,w} /∈ B: for all i ∈ [`] put M (3)

i = Mi ⊕ {{u,w}}, D(3) = D, and B(3) =
B ∪ {{u,w}}.

4. For each x ∈ {u, v, w}: If there is no y ∈ V \ D such that {x, y} ∈ B, then return a
constraint with D(·) = D ∪ {x}, the rest stays the same.

If none of the above possibilities apply, then reject the current branch.5

The next rule keeps the sets of edge modifications Mi free of marked vertices. Pairs in Mi

can become marked if vertices of vertex pairs processed by the Greedy Rule are marked by
other branching rules further down the search tree. Like the Greedy Rule, it only produces
one constraint and hence no branching occurs, so it is also a degenerate branching rule. Note
that the algorithm also invokes a recursive call with the output constraint of this rule.

I Clean-up Rule (?). If there is an i ∈ [`] such that there is a {u, v} ∈Mi with u ∈ D, then
return a constraint with M (1)

i = Mi \ {{u, v}}, the rest stays the same.

The next rule tries to repair any budget violations that might occur. Since with the
Greedy Rule we greedily make decisions and do not exhaustively search through the whole
search space, we expect that some of the choices were not correct. This rule will then revert
these choices. Also, to have a correct estimate of the sizes of the current edge modification
sets, this rule requires that the Clean-up Rule is not applicable. For technical reasons, it also
requires that 1 and the Greedy Rule are not applicable.

I Branching Rule 3 (?). If there is an Mi for some i ∈ [`] with |Mi| > k, then if |Mi \B| ≤
k + 1, let M ′i = Mi \B, otherwise, take any M ′i ⊆Mi \B with |M ′i | = k + 1 and return the
following constraints:
1. For each {u, v} ∈ M ′i return a constraint in which for all j ∈ [`] we put M (·)

j =
Mj ⊕ {{u, v}}, D(·) = D, and B(·) = B ∪ {{u, v}}.

2. For each {u, v} ∈M ′i :
If there is no x ∈ V \D such that {u, x} ∈ B, then return a constraint with D(·) =
D ∪ {u}, B(·) = B, and 1 ≤ j ≤ `: M (·)

j = Mj \ {{u, v}}.
If there is no x ∈ V \D such that {v, x} ∈ B, then return a constraint with D(·) =
D ∪ {v}, B(·) = B and 1 ≤ j ≤ `: M (·)

j = Mj \ {{u, v}}.
If M ′i = ∅, then reject the current branch.

5 This technically does not fit the definition of a branching rule but we can achieve the same effect by
returning trivially unsatisfiable constraints such as a constraint with |D(·)| > d.
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The last rule, 4, requires that all other rules are not applicable. In this case the non-
marked vertices induce the same cluster graph in every layer. 4 checks whether in every layer
it is possible to turn the whole layer (including the marked vertices) into a cluster graph
such that the cluster graph induced by the non-marked vertices stays the same and the edge
modification budget is not violated in any layer. If this is not the case for a layer i, the rule
checks whether it is necessary to revert a greedy decision or whether there is an induced
P3 where exactly one vertex is marked and it is necessary to modify the vertex pair not
containing the marked vertex. To achieve the latter we introduce a modified version of a
known kernelization algorithm [13] for classic Cluster Editing. We call the algorithm K

and it takes as input a tuple (Gi, k,D,Mi, B) and either outputs a distinct failure symbol
or two sets R and C, where R contains all unmarked vertex pairs modified by K and C

contains unmarked vertex pairs of the produced kernel that are part of induced P3s. The
formal description is as follows.

I Modified Kernelization Algorithm K. Given an input (Gi, k,D,Mi, B). First, set all
vertex pairs in Mi ∪B to obligatory and exhaustively apply the following modified versions of
standard data reduction rules for Cluster Editing to G′i = (V,Ei⊕Mi). Let ki = k−|Mi|
and R = ∅.

If ki < 0 or there is an induced P3 where all vertex pairs are obligatory, then abort and
output a failure symbol.
If a vertex pair {u, v} is involved in ki + 1 induced P3’s, then, if it is obligatory, abort
and output a failure symbol, otherwise modify it, set it to obligatory, and reduce ki by
one. If u /∈ D and v /∈ D, then add {u, v} to R.
If there is an isolated clique, then remove it.

Let G(R)
i be the reduced version of Gi. If the number of vertices in G(R)

i is larger than k2
i +2ki,

then abort and output a failure symbol. Otherwise, let C be the set of all vertex pairs of
unmarked (not contained in D) vertices that are part of an induced P3 in G(R)

i . Output R
and C.

I Branching Rule 4 (?). For all 1 ≤ i ≤ ` we use Mi to denote the set of all possible
edge modifications where each edge is incident to at least one marked vertex, that turn
G′i = (V,Ei ⊕Mi) into a cluster graph. More specifically, we have

Mi = {M ⊆
(

V
2
)
| ∀e ∈M : e ∩D 6= ∅ ∧ G′′i = (V,Ei ⊕ (Mi ∪M)) is a cluster graph}.

If there is an 1 ≤ i ≤ ` such that minM∈Mi
|M | > k− |Mi| then let M ′i = Mi \B and invoke

the modified kernelization algorithm K on (Gi, k,D,Mi, B). If it outputs a failure symbol
and M ′i = ∅, then reject the current branch. Otherwise let R and C be the sets output by K
or R = C = ∅ if K output a failure symbol, and return the following constraints:
1. For each {u, v} ∈M ′i :

Return a constraint in which for all j ∈ [`] we put M (·)
j = Mj ⊕ {{u, v}}, D(·) = D,

and B(·) = B ∪ {{u, v}}.
If there is no x ∈ V \D such that {u, x} ∈ B, then return a constraint with D(·) =
D ∪ {u}, B(·) = B, and 1 ≤ j ≤ `: M (·)

j = Mj \ {{u, v}}.
If there is no x ∈ V \D such that {v, x} ∈ B, then return a constraint with D(·) =
D ∪ {v}, B(·) = B and 1 ≤ j ≤ `: M (·)

j = Mj \ {{u, v}}.
2. For each u ∈ V \D such that {u, v} ∈ R for some v ∈ V : If there is no x ∈ V \D such

that {u, x} ∈ B, then return a constraint with D(·) = D ∪ {u}, B(·) = B, and 1 ≤ j ≤ `:
M

(·)
j = Mj . If R 6= ∅, then output a constraint with D(·) = D, B(·) = B ∪Mi ∪R, and

1 ≤ j ≤ `: M (·)
j = Mj ⊕R.
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3. For each {u, v} ∈ C:
If there is no x ∈ V \D such that {u, x} ∈ B, then return a constraint with D(·) =
D ∪ {u}, and the rest stays the same. If there is no x ∈ V \D such that {v, x} ∈ B,
then return a constraint with D(·) = D ∪ {v}, and the rest stays the same.
Return a constraint with D(·) = D, B(·) = B ∪Mi ∪ R ∪ {{u, v}}, and 1 ≤ j ≤ `:
M

(·)
j = Mj ⊕R⊕ {{u, v}}.

We now prove the correctness of the algorithm. By a straightforward analysis of the
branching rules it follows that, if none is applicable, then the current constraint P yields a
solution. Hence, whenever the algorithm outputs true, then the input is indeed a yes-instance.

I Lemma 4 (?). Given an instance I of MLCE, if algorithm 1 outputs true on input I
and the trivial partial solution P0, then I is a yes-instance.

To show that, whenever the input instance I of the algorithm is a yes-instance, then
the algorithm outputs true, we define the quality of a good constraint and show that the
algorithm increases the quality until it eventually finds a solution.

I Definition 5 (Quality of a constraint). Let I = (G1, . . . , G`, k, d) be an instance of MLCE.
The quality γI(P ) of a constraint P = (D,M1, . . . ,M`, B) for I is γI(P ) = |D| + |B| −
|{{u, v} ∈

(
V \D

2
)
| {u, v} is frequent or scarce}|.

I Lemma 6 (?). Let P be a good constraint for a yes-instance of MLCE. If applicable, each
of the Greedy Rule and Branching Rules 1, 2, 3, and 4 return a good constraint with strictly
increased quality in comparison to P .

Next we show that the notion of quality of a good constraint is indeed a measure that allows
us to argue that the algorithm eventually produces a solution (if it exists).

I Lemma 7 (?). Let I be a yes-instance of MLCE, then there is a constant cI ≥ 0 such that
for every good constraint P we have that γI(P ) ≤ cI and there is at least one good constraint
Pmax with γI(Pmax) = cI . Furthermore, for any good constraint P ′max with γI(P ′max) = cI ,
we have that algorithm 1 outputs true on input I and P ′max.

We can now show the correctness of algorithm 1. Theorem 4 ensures that we only output
true if the input is actually a yes-instance and Lemmas 6 and 7 together with the safeness
of all branching rules ensures that if the input is a yes-instance, the algorithm outputs true.

I Corollary 8 (Correctness of algorithm 1) (?). Given a MLCE instance I, algorithm 1
outputs true on input I and the trivial good constraint P0 if and only if I is a yes-instance.

It remains to show that algorithm 1 has the claimed running time upper-bound. We
can check that all branching rules create at most O(k4) recursive calls. The differentiation
between unsettled, frequent and scarce vertex pairs ensures that the edge modification sets
in sufficiently many layers increase for the search tree to have depth of at most O(k + d).
The time needed to apply a branching rule is dominated by 4, where we essentially have to
solve classical Cluster Editing in every layer.

I Lemma 9 (?). The running time of algorithm 1 is in kO(k+d) ·O(n3 · `).

ISAAC 2018



24:10 Cluster Editing in Multi-Layer and Temporal Graphs

3 Temporal Cluster Editing (TCE)

In this section we provide an algorithm for TCE with a running time nO(k)` and show that
the running time cannot substantially be improved unless the Exponential Time Hypothesis
(ETH) fails. The algorithm uses the following algorithm for the two-layer case as a subroutine.
The algorithm uses similar ideas as Exercise 4.5 and its hint in Cygan et al. [8].

I Proposition 10 (?). If k = 0 and ` = 2, then TCE and MLCE can be solved in
O(n2 log n) time, where n denotes the number of vertices.

I Theorem 11. TCE can be solved in O(` · n4k+2 log n) time.

Proof. Given an instance ((Gi)i∈[`], k, d) of TCE, build an `-partite graph G as follows: For
each possible cluster editing set of Gi of size at most k, add a vertex to the ith part of G.
Note that G contains O(n2k`) vertices since each part contains O(n2k) vertices. For each i,
1 ≤ i ≤ n − 1, and each pair of vertices u, v in G such that u is in part i and v is in part
(i + 1) add to G the edge {u, v} if the algorithm of Theorem 10 accepts on input of the
following instance of MLCE. Let Mu,Mv be the cluster editing sets corresponding to u
and v, respectively. The MLCE instance consists of a multi-layer graph with the two layers
(V,Ei ⊕Mu) and (V,Ei ⊕Mv), edit budget equal to zero, and marking budget equal to d.
For each pair of vertices u, v, constructing the corresponding MLCE instance and solving
it takes O(n2 log n) time, amounting to overall O(` · n4k+2 log n) time, because there are at
most n4k` pairs of vertices to consider. Finally, we test whether there is a path from a vertex
in the first part to a vertex in the last part in G. As there are at most n4k` edges in G, this
takes O(n4k`) time. Hence, overall the running time is O(` · n4k+3 log n). The correctness is
deferred to a full version [7]. J

Theorem 11 implies that TCE is fixed-parameter tractable when parameterized by the
number n of vertices. At first glance, it seems wasteful to iterate over all possible cluster
editing sets for each layer. Rather, the interaction between two consecutive layers seems to
be limited by k and d, since the necessary edits are local to induced P3, and the necessary
markings are local to incongruent clusters (perhaps resulting from destroying P3s). However,
to our surprise, when the number of layers grows, this interaction spirals out of control. As
the reduction of the following hardness result implies, we have to take into account splitting
up small clusters in an early layer (even though locally they were already cliques), so as to
be able to form cluster graphs a large number of layers later on. This behavior stands in
stark contrast to MLCE, where the combinatorial explosion is limited to k and d.

I Theorem 12 (?). TCE is W[1]-hard with respect to k, even if d = 3. Moreover, it does
not admit an f(k)(n`)o(k)-time algorithm unless the ETH fails.

4 Kernelization for MLCE and TCE

In this section we investigate the kernelizability of MLCE and TCE for different combinations
of the four parameters as introduced in section 1. More specifically, we identify the parameter
combinations for which MLCE and TCE admit polynomial kernels, and then we identify
the parameter combinations for which no polynomial kernels exist, unless NP ⊆ coNP/poly.

We first present a polynomial kernel for MLCE for the parameter combination (k, d, `)
and then argue that essentially the same reduction rules give a polynomial kernel for TCE.

I Theorem 13. MLCE admits a kernel of size O(`3 · (k + d)4) and TCE admits a kernel
of size O(`3 · (k + d · `)4). Both kernels can be computed in O(` · n3) time.
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We provide several reduction rules that subsequently modify the instance and we assume
that if a particular rule is to be applied, then the instance is reduced with respect to all
previous rules, that is, all previous rules were already exhaustively applied. We introduce
Multi-Layer Cluster Editing with Separate Budgets (MLCEwSB) which differs
from MLCE only in that, instead of a global upper bound k on the number of edits, we
receive ` individual budgets ki, i ∈ [`], and we require that |Mi| ≤ ki.

We first transform the input instance of MLCE to an equivalent instance of MLCEwSB
by letting ki = k for every i ∈ [`]. Then we apply all our reduction rules to MLCEwSB.
Finally, we transform the resulting instance of MLCEwSB to an equivalent instance of
MLCE with just a small increase of the vertex set. Through the presentation, let (G1 =
(V,E1), . . . , G` = (V,E`), k1, . . . , k`, d) be the current instance and k = max{ki | i ∈ [`]}.

Next, we apply slightly modified versions of well known rules for classical Cluster
Editing [13] and apply them on each layer individually (?). These rules are known to
produce a kernel of size k2 + 2k. Notably, we leave out a rule that removes isolated cliques.
Hence, after the application of these rules we either conclude that we face a no-instance
or every layer i consists of a set Ri ⊆ V , that contains the vertices v that appear in some
induced P3 in Gi, and a number of isolated cliques. Furthermore, let R =

⋃`
i=1 Ri.

As a major difference to Cluster Editing for a single layer, we cannot simply remove
the vertices that are not involved in any P3 since we require the cluster graphs in individual
layers not to differ too much. Only vertices in the clusters that do not change can be removed.

I Reduction Rule 1 (?). If there is a subset A ⊆ V \ R such that for each layer i ∈ [`],
the subset A is the vertex set of a connected component of Gi, then remove A (and the
corresponding edges) from every Gi.

The next rule allows us to reduce vertices that appear in exactly the same clusters.

I Reduction Rule 2 (?). If there is a set A ⊆ V \R with |A| ≥ k+ d+ 3 such that for every
layer i ∈ [`] it holds that all vertices of A are in the same connected component of Gi, then
select an arbitrary v ∈ A and remove v from every Gi.

The next rule shows that the remaining clusters in a yes-instance cannot be too large.

I Reduction Rule 3 (?). If there is a layer i ∈ [`] and a connected component A of Gi with
|A \R| ≥ k + 2d+ 3, then answer NO.

Now we introduce our final rule bounding the number of vertices in the instance.

I Reduction Rule 4 (?). If |V | > ` · (k2 + 2k + d · (k + 2d+ 2) + 2k), then answer NO.

After bounding the size of the instance through 4 it remains to transform the resulting
instance of MLCEwSB to an equivalent instance of MLCE. To this end we introduce new
vertex set A of size exactly 2k + 2 to V and to each Ei introduce all edges from

(
A
2
)
. Then,

for each i ∈ {1, . . . , `} we remove k − ki arbitrary edges between vertices of A from Ei and
set ki = k. It is straightforward to show that this produces an equivalent instance, which
can be turned into an equivalent instance of MLCE in an obvious way.

Since no rule increases k, d, or `, |V | = O(` · (k + d)2), the resulting instance can be
described using O(`3 · (k + d)4) bits and it is equivalent to the original instance, it remains
to show that the kernelization is computable in polynomial time.

I Lemma 14 (?). The kernelization can be done in O(` · n3) time.
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Lastly, we argue that slightly modified reduction rules can be applied to TCE (with
individual edge-modification budgets, where the resulting instance can be transformed back).
Intuitively this follows from the following observations: The reduction rules do not mark
vertices, and the union of all marked vertices of a TCE solution together with the edge
modification sets forms a solution for a MLCE instance, where the maximal number of
marked vertices is d · `. Hence, replacing d with d · ` in the description of all reductions rules
yields a set of rules that produce a kernel of size O(`3 · (k + d · `)4) for TCE (?).

In contrast, we have the following.

I Proposition 15 (?). MLCE and TCE do not admit polynomial kernels with respect to
the number n of vertices, unless NP ⊆ coNP/poly.

5 Conclusion

Our results highlight that TCE and MLCE are much richer in structure than classical
Cluster Editing. Techniques for the classical problem seem to only carry over somewhat
for kernelization algorithms and otherwise new methods are necessary. In this regard, we
contribute our fixed-parameter algorithm for MLCE with respect to the combination of k
and d. In contrast, the W[1]-hardness for TCE with respect to k for d = 3 highlights the
obstacles we need to overcome. Perhaps we can break the temporal non-locality by bounding
the number of allowed modifications at one vertex in any interval of layers of some fixed size.
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Abstract
In this paper, we study the query complexity of parameterized decision and optimization versions
of Hitting-Set. We also investigate the query complexity of Packing. In doing so, we use
generalizations to hypergraphs of an earlier query model, known as BIS introduced by Beame et
al. in ITCS’18. The query models considered are the GPIS and GPISE oracles. The GPIS and
GPISE oracles are used for the decision and optimization versions of the problems, respectively.
We use color coding and queries to the oracles to generate subsamples from the hypergraph,
that retain some structural properties of the original hypergraph. We use the stability of the
sunflowers in a non-trivial way to do so.
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1 Introduction

In query complexity models for graph problems, the aim is to design algorithms that have
access to the vertices V (G) of a graph G, but not the edge set E(G). Instead, these algorithms
construct local copies by using oracles to probe or infer about a property of a part of the
graph. Due to the lack of knowledge about global structures, often it is difficult to design
algorithms even for problems that are classically known to have polynomial time algorithms.

A natural optimization question in this model is to minimize the number of queries to
the oracle to solve the problem. The most generic approach towards this is to ask as few
queries to the oracle before the local copy of the graph is an equivalent sample of the actual
graph. This spawns the study of query complexity. The query complexity of the algorithm
is the number of queries made to the oracle. Keeping this in mind, several query models
have been designed through the years. Let us take the example of the problem of finding a
global minimum cut that has led to the introduction of different query models, in order to

© Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, and Saket Saurabh;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 25; pp. 25:1–25:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ISAAC.2018.25
https://arxiv.org/abs/1807.06272
https://arxiv.org/abs/1807.06272
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


25:2 Hitting Set Using Stability of Sunflowers

achieve a query complexity that is less than the complexity of the actual graph. The query
models started from the simple neighbor query, but soon people realized that this was not
ideal for minimizing the query complexity for most problems [7, 9]. Therefore, in the case
of the minimum cut problem, the cut query was introduced to achieve subquadratic query
complexity [13].

There is a vast literature available on the query complexity of problems with classical
polynomial time algorithms (Refer to book [8]). However, there has been almost negligible
work on algorithmically hard problems [10, 11, 12]. In this paper, we use ideas of para-
meterized complexity in order to study the query complexity of NP-hard problems. The
Hitting Set and Vertex Cover problems are test problems for all new techniques of
parameterized complexity and also in every subarea that parameterized complexity has
explored. We continue the tradition and study the query complexity of these problems.
We start by defining a generalization of a recently introduced query model [2] to handle
hypergraphs.

1.1 The model

A hypergraph is a set system (U(H),F(H)), where U(H) is the set of vertices and F(H)
is the set of hyperedges. A hypergraph H′ is a sub-hypergraph of H if U(H′) ⊆ U(H)
and F(H′) ⊆ F(H). For a hyperedge F ∈ F(H), U(F ) or simply F denotes the subset of
elements that form the hyperedge. A d-uniform hypergraph has each hyperedge of size d. A
packing in a hypergraph H is a family F ′ of hyperedges such that for any two hyperedges
F1, F2 ∈ F ′, U(F1) ∩ U(F2) = ∅.

For us “choose a random hash function h : V → [N ]”, means that each vertex in V is
colored with one of the N colors uniformly and independently at random.

In this paper, for a problem instance (I, k) of a parameterized problem Π, a high
probability event means that it occurs with probability at least 1− 1

kc , where k is the given
parameter and c is a constant. The set {1, 2, . . . , n} is denoted by [n]. For a function f(k),
the set of functions O(f(k) · log k), is denoted by Õ(f(k)).

Motivated by [2] and [11], we consider the following oracles to look at the parameterized
query complexity of NP hard graph problems.
Generalized d-partite independent set oracle (GPIS): For a d-uniform hypergraphH, given

d pairwise disjoint non-empty subsets A1, . . . , Ad ⊆ U(H) as input, a GPIS query oracle
answers whether there exists an edge (u1, . . . , ud) ∈ F(H) such that ui ∈ Ai, for each
i ∈ [d].

Generalized d-partite independent set edge oracle (GPISE): For a d-uniform hypergraph
H, given d pairwise disjoint non-empty subsets A1, . . . , Ad ⊆ U(H) as input, a GPISE
query oracle outputs a hyperedge (u1, . . . , ud) ∈ F(H) such that ui ∈ Ai, for each i ∈ [d];
otherwise, the GPISE oracle reports NULL.

For d = 2, GPIS oracle is same as Bipartite Independent Set (BIS) oracle introduced by
Beame et al. [2]. Similarly, we can define BISE oracle as GPISE oracle for d = 2. Notice
that BIS is an existence query and is a natural extension of edge existence query. To get
a clear motivation behind BIS query, please refer to [2]. BISE (GPISE) is powerful over
BIS (GPIS) as BISE (GPISE) can return an edge (a hyperedge) between sets.

As mentioned earlier, queries like degree query, edge existence query, neighbor query,
that obtain local information about the graph have its limitation in terms of not being able
to achieve efficient query costs [7, 9]. This necessitates looking at powerful queries that
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goes beyond obtaining local information and generalizes earlier queries. Beame et al. [2]
introduced BIS query model and approximately estimated the number of edges in a graph.

In the context of NP-Hard problems, it is not known if any problem can have efficient query
complexity with conventional query models. So, it is reasonable to study query complexity
for parameterized versions of NP-Hard problems. Iwama and Yoshida [11] initiated the study
of parameterized version of some NP-Hard problems in the graph property testing framework
with the access to standard oracles. We will give the details of their work in Section 1.3 and
compare with ours. Now, a natural question to ask is “can we improve the query complexity
(of NP-Hard problems) with no assumption on the input by considering a relatively stronger
oracle” ? As a first step in this direction, we use GPIS (GPISE) oracles, which are nothing
but BIS oracle for hypergraphs, to study parameterized decision (optimization) version of
Hitting Set. We believe that these query models will be useful to study the (parameterized)
query complexity of other NP-Hard problems.

1.2 Problem definition and our results

The d-Hitting-Set problem is defined as follows. Note that d is a constant in this paper
and HS(H) denote a minimum hitting set of a hypergraph H.

d-Hitting-Set
Input: The set of vertices U(H) of a d-uniform hypergraph H, the access to a GPISE
oracle, and a positive integer k.
Output: A set HS(H) having at most k vertices such that any hyperedge in H intersects
with HS(H) if such a set exists. Otherwise, we report such a set does not exist.

The d-Decision-Hitting-Set problem is the usual decision version of d-Hitting-Set;
here the oracle access is to GPIS instead of GPISE.

In our solution framework, we make queries to oracles to build a reduced instance of the
problem. On this reduced instance, one can run the traditional (FPT) algorithms. While
stating the results, we will bother only about the number of queries required to build the
reduced instance. In the query complexity setting, the algorithms are required to make
bounded number of queries (good bounds on the total time complexity is not an issue). Our
main focus in this paper is to make the query complexity results parameterized, in the sense
that they have query complexities bounded by some input parameters of the problem. So,
our bounds on the query complexity are not directly comparable with the time complexities
of the FPT algorithms in the literature of parameterized complexity. Our results hold with
high probability. Our methods use the technique of color coding [1, 5] to restrict the number
of queries required to generate a reduced instance of interest. The main result of our paper
is the following.

I Theorem 1.1. d-Hitting-Set can be solved with Õ(k2d) GPISE queries and d-Decision-
Hitting-Set can be solved with Õ(k2d2) GPIS queries.

Our solution to d-Hitting-Set needs us to solve another problem of interest termed as
d-Packing in a hypergraph, which is a generalization of Matching in a graph. We describe
the sketch of our query procedure to solve d-Packing in Section 2. Section 3 has the detailed
study on Hitting Set. Table 1 gives the overview of our results.

ISAAC 2018
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Table 1 Query complexities for hypergraph problems using GPIS and GPISE oracles. Observe
that Vertex Cover results follow by putting d = 2 in the above table.

Problems Query Oracles
GPIS GPISE

d-Hitting-Set — Õ(k2d)
d-Decision-Hitting-Set Õ(k2d2

) Õ(k2d)
d-Promised-Hitting-Set — Õ(kd)

d-Packing — Õ(k2d)

1.3 Related Works

Several query complexity models have been proposed in the literature to study various
problems [7, 9]. The only work prior to ours related to parameterization in the query
complexity model was by Iwama and Yoshida [11]. They studied property testing for several
parameterized NP optimization problems in the query complexity model. For the query,
they could ask for the degree of a vertex, neighbors of a vertex and had an added power
of sampling an edge uniformly at random, which is quite unlike in usual query complexity
models. To justify the added power of the oracle to sample edges uniformly at random, they
have shown that Ω(

√
n) degree and neighbor queries are required to solve Vertex-Cover.

Apart from that, an important assumption in their work is that the algorithms knew the
number of edges, which is not what is usually done in query complexity models. Also, the
algorithms that are designed gives correct answer only for stable instances. In contrast, our
query oracles do not use any randomness, does not know the number of edges, consider all
instances, and have a unifying structure. Hence, in this paper, oracles have less power than
that of [11] in the context of amount of randomness used by the oracles. Of significance
to us, is the vertex cover problem. Their vertex cover algorithm admits a query complexity
of Õ( 2k

ε2 ) and either finds a vertex cover of size at most k or decides that there is no vertex
cover of size bounded by k even if we delete εm edges, where the number of edges m is known
in advance. In contrast, our algorithm uses BISE query for the vertex cover problem; it
does not need to estimate the number of edges. Our algorithm admits a query complexity
of Õ(k4) and we either find a vertex cover of size at most k if it exists or decide that there
is no vertex cover of size bounded by k. If it is promised that the vertex cover is bounded
by k, then we can give an algorithm that makes Õ(k2) BISE queries. These results on
the Vertex Cover are not the main focus of this paper and are mentioned in the full
version [3]. The main foucus of this paper is our results on d-Hitting-Set; extension of
Vertex Cover to d-Hitting-Set requires a deeper understanding of stability of sunflowers
under random sampling. Hence, it is evident that GPIS (BIS) and GPISE (BISE) open up
a new dimension in the study of query complexity. It will be interesting to study what other
NP-hard problems can be solved efficiently with these oracles.

Recent papers have considered strengthened query complexity models. In [2], the BIS
oracle was introduced to design better edge estimation algorithms. In the same work, the IS
oracle was also introduced, to estimate the number of edges, where the input to the oracle
is a vertex subset A ⊆ V (G) and the output is 1, if the subgraph of G induced by A is an
independent set and 0, otherwise. Similarly, in [13], the cut query was introduced to obtain
better query complexity for minimum cut problem.
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2 d-Packing

We first define d-Packing and then design the query procedure.

d-Packing
Input: The set of vertices U(H) of a d-uniform hypergraph H, the access to a GPISE
oracle, and a positive integer k.
Output: A pairwise disjoint set of at least k hyperedges if such a set of hyperedges
exists. Otherwise, we report such a set of hyperedges does not exist.
As the usual matching in a graph (denoted here as Matching) is a special case of

d-Packing, we explain the main ideas of the query procedure of d-Packing with Matching.
In Matching, our objective is to either report a matching of at least k edges or decide there
does not exist a matching of size at least k. We use a hash function to color all the vertices
of G. In fixing the number of colors needed, we need to ensure that the endpoints of the
matched edges belong to different color classes. If the hash function uses O(k2) colors, then
with constant probability the endpoints of a k-sized edge set, that certifies the existence of a
matching of size at least k, will be in different color classes. For each pair of color classes,
we query the BISE oracle and construct a subgraph Ĝ according to the outputs of BISE
queries. We will show that if G has a matching of k edges, then Ĝ has a matching of k
edges. As Ĝ is a subgraph of G, any matching of Ĝ is also a matching of G and the size of
maximum matching in Ĝ is less than that of G. So, we report the required answer from the
matching of Ĝ. By repeating the query procedure for O(log k) times and taking maximum of
all the outcomes, we can report the correct answer with high probability. We carry over the
above ideas to the hypergraph setting with the oracle being GPISE. Let Pack(H) denote a
maximum packing of H.

I Theorem 2.1. d-Packing can be solved with Õ(k2d) GPISE queries.

Proof Sketch. Observe that it is enough to give an algorithm that solves d-Packing with
probability at least 2/3 by using O(k2d) GPISE queries. The details are in the full version [3].

We choose a random hash function h : U(H)→ [γk2], where γ = 100d2. Let Ui = {u ∈
U(H) : h(u) = i}, where i ∈ [γk2]. Note that {U1, . . . , Uγk2} form a partition of U(H),
where some of the Ui’s can be empty. We make a GPISE query with input (Ui1 , . . . , Uid)
for each 1 ≤ i1 < . . . < id ≤ γk2 such that Uij 6= ∅ ∀j ∈ [d]. Observe that we make O(k2d)
queries to the GPISE oracle. Let F ′ be the set of hyperedges that are output by the O(k2d)
GPISE queries. Now, we can generate a sub-hypergraph Ĥ of H such that U(Ĥ) = U(H)
and F(Ĥ) = F ′. We find Pack(Ĥ). If

∣∣∣Pack(Ĥ)
∣∣∣ ≥ k, then we report Pack(Ĥ) as Pack(H).

Otherwise, we report there does not exist a packing of size k. The correctness of our query
procedure follows from Lemma 2.2 (proof is in the full version [3]) along with the fact that
any packing of Ĥ is also a packing of H, as Ĥ is a sub-hypergraph of H.

I Lemma 2.2. If |Pack(H)| ≥ k, then
∣∣∣Pack(Ĥ)

∣∣∣ ≥ k with probability at least 2/3. J

3 Algorithm for Hitting Set (Theorem 1.1)

3.1 Our ideas in a nutshell
The main ideas explained with Vertex Cover
The d-Hitting-Set problem with d = 2 is Vertex-Cover. We first explain the intuition
behind our algorithm for d-Hitting-Set with Vertex Cover. The first step is to solve
the problem on instances where there is a promise of a Vertex-Cover solution of size
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at most k. For this promised version, we use a hash function to color all the vertices of
the graph G. We sample a subgraph of G by querying the BISE oracle for each pair of
color classes. We sample several such subgraphs of G using the BISE oracle, and finally
take the union of these subgraphs to form a single subgraph Ĝ of G. Finally, we analyse
that a minimum vertex cover of Ĝ is also a minimum vertex cover of G and vice versa.
Our analysis is inspired by the analysis of the streaming algorithm for Vertex-Cover [4],
and presented in the full version [3]. The non-promised version of Vertex-Cover can be
solved by using the algorithm for the promised version along with the algorithm explained
for Matching in Section 2. If there exists a matching of size more than k, then the vertex
cover is also more than k. Otherwise, the vertex cover is bounded by 2k. Now we can use
our algorithm for the promised version of Vertex Cover to find an exact vertex cover from
which we can give final answer to the non-promised Vertex Cover. When we consider
the decision version of Vertex-Cover, we only need access to the BIS oracle. We use
the fact that the Vertex-Cover problem has an efficient representative set of edges [5]
associated with it (please refer to the full version [3]) to solve Decision-Vertex-Cover.
This helps us to design an algorithm with access to the BIS oracle. This technique also
works for d-Decision-Hitting-Set.

Moving from Vertex Cover to d-Hitting-Set
The algorithm for d-Hitting-Set, having a query complexity of Õ(k2d) GPISE queries, will
use an algorithm admitting query complexity Õ(kd) for a promised version of this problem.
In the promised version, we are guaranteed that the input instance has a hitting set of size at
most k. The main idea to solve the promised version is to sample a suitable sub-hypergraph
having bounded number of hyperedges, using GPISE queries, such that the hitting set of
the sampled hypergraph is a hitting set of the original hypergraph and vice versa. We use
the stability of sunflowers under random sampling. Recall that a hypergraph can be thought
of as a set system. The core of a sunflower is the pairwise intersection of the hyperedges
present in the sunflower, which is formally defined as follows.

I Definition 3.1. Let H be a d-uniform hypergraph; S = {F1, . . . , Ft} ⊆ F(H) is a t-
sunflower in H if there exists C ⊆ U(H) such that Fi ∩ Fj = C for all 1 ≤ i < j ≤ t. C is
defined to be the core of the sunflower S in H and P = {Fi \C : i ∈ [t]} is defined as the set
of petals of the sunflower S in H.

The core of a sunflower can be large, or significant, or small; based on the number of
hyperedges forming the sunflower. We define large, significant and small in such a way that
each large core is significant and each significant (and thus, large) core must intersect with
any hitting set. The formal definition of different types of cores is given below.

I Definition 3.2. Let SH(C) denote the maximum integer t such that C is the core of a
t-sunflower in H. If SH(C) > 10dk, the core C is said to be large. If SH(C) > k, core C is
said to be significant.

The promise that the hitting set is bounded by k, will help us (i) to bound the number
of hyperedges that do not contain any large core as a subset, (ii) to guarantee that all the
large cores, that do not contain any significant cores as subsets in the original hypergraph,
are significant in the sampled hypergraph with high probability, and hence will intersect any
hitting set of the sampled hypergraph, (iii) to guarantee that all the hyperedges that do
not contain any large core as a subset, are present in the sampled hypergraph with high
probability. Using the above properties, we can prove that reporting the hitting set of the
sampled hypergraph as the hitting set of the original graph is correct with high probability.
The formal definitions and arguments are given in Section 3.3.
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In this Section we also give algorithm for d-Decision-Hitting-Set, where we have access
to the GPIS oracle and obtain an algorithm with query complexity Õ(k2d2). The main idea
to solve d-Decision-Hitting-Set is to use the concept of representative sets [5] (For details
see the full version [3]). The size of a k-representative set corresponding to a hypergraph is
bounded by O(kd). Thus, the number of vertices that are present in the k-representative
set is also bounded by O(dkd). All the O(dkd) vertices will be uniquely colored with high
probability if enough number of colors are used for the hash function. Then we make GPIS
queries to extract a sufficient number of hyperedges such that the hyperedges corresponding
to the representative set are embedded in the sampled sub-hypergraph. The formal arguments
are given in Section 3.3.

3.2 d-Promised-Hitting-Set
In this part, we study the following problem.

d-Promised-Hitting-Set
Input: The set of vertices U(H) of a d-uniform hypergraph H such that |HS(H)| ≤ k
and the access to a GPISE oracle, and a positive integer k.
Output: A hitting set of H that is of size at most k.

For d-Promised-Hitting-Set, we design an algorithm with query complexity Õ(kd).

I Theorem 3.3. There exists an algorithm that makes Õ(kd) GPISE queries and solves
d-Promised-Hitting-Set with high probability.

Here, we give an outline of the algorithm. The first step of designing this algorithm
involves, for a positive integer b, a sampling primitive Sb for the problem. Let H be the
d-uniform hypergraph whose vertex set U(H) is known and hyperedge set F(H) is unknown
to us. Let h : U(H) → [b] be a random hash function. Let Ui = {u ∈ U(H) : h(u) = i},
where i ∈ [b]. Note that U1, . . . , Ub form a partition of U(H), some of the Ui’s can be empty.
We make a GPISE query with input (Ui1 , . . . , Uid) for each 1 ≤ i1 < . . . < id ≤ b such
that Uij 6= ∅ ∀j ∈ [d]. Observe that we make O(bd) queries to the oracle. Let F ′ be the
set of hyperedges that are output by the O(bd) GPISE queries. Now, we can generate a
sub-hypergraph Hh of H such that U(Hh) = U(H) and F(Hh) = F ′.

Henceforth, the term edge and graph would essentially mean a hyperedge and a d-uniform
hypergraph, respectively.

We find α log k samples by calling the sampling primitive Sβk for α log k times, where α =
100d2 and β = 100d32d+5. Let the subgraphs resulting from the sampling be H1, . . . ,Hα log k.
Let Ĥ = H1 ∪ . . .∪Hα log k. Note that we can construct Ĥ by making Õ(kd) GPISE queries.
Observe that if we prove the following lemma, then we are done with the proof of Theorem 3.3
(the detailed proof is in the full version [3]).

I Lemma 3.4. If |HS(H)| ≤ k, then HS(H) = HS(Ĥ) with high probability.

To prove Lemma 3.4, we need some intermediate results. We state the following proposition
and then define some sets, which will be needed for our analysis.

I Proposition 3.5 ([6]). Let H be a d-uniform hypergraph. If |F(H)| > d!kd, then there
exists a (k + 1)-sunflower in H.

I Definition 3.6. In the hypergraph H, C is the set of large cores; Fs is the family of edges
that do not contain any large core; C′ is the family of large cores none of which contain a
significant core as a proper subset.

ISAAC 2018
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The following two results (Lemma 3.7 and 3.8) give useful bounds with respect to the
input instances of d-Promised-Hitting-Set.

I Lemma 3.7. If |HS(H)| ≤ k, then |Fs| ≤ d!(10dk)d.

Proof. If |Fs| > d!(10dk)d, then there exists a (10dk+1)-sunflower S in H by Proposition 3.5
such that each edge in S belongs to Fs. First, since HS(H) ≤ k, the core CH(S) of S must
be non-empty. Note that CH(S) is a large core and CH(S) is contained in every edge in S.
Observe that we arrived at a contradiction, because any edge in S is also an edge in Fs and
any edge in Fs does not contain a large core by definition. Hence, |Fs| ≤ d!(10dk)d. J

I Lemma 3.8. If |HS(H)| ≤ k, then |C′| ≤ (d− 1)!kd−1.

Proof. Let us consider the set system of all cores in C′. Note that the number of elements
present in each core in C′ is at most d − 1. If |C′| > (d − 1)! · kd−1, then there exists a
k + 1-sunflower S ′. Let C1, . . . , Ck+1 be the sets present in the sunflower S ′ and let CS′ be
the core of S ′. Observe that if CS′ = C1 ∩ . . . ∩ Ck+1 = ∅, then |HS(H)| > k.

Now consider the following observation for the case when CS′ is non-empty.

I Observation 3.9. If CS′ is non-empty, then CS′ is the pair-wise intersection of a family
of k + 1 edges in H.

Proof. Let Ai be the set of at least 10dk edges that form a sunflower with core Ci, where
i ∈ [k+ 1]. Observe that this is possible as each Ci is a large core. Before proceeding further,
note that Ci ∩ Cj = CS′ and (Ci \ CS′) ∩ (Cj \ CS′) = ∅ for all i, j ∈ [k + 1] and i 6= j.

Consider Bi ⊆ Ai such that for each F ∈ Bi, F ∩ Cj = CS′ ∀j 6= i and |Bi| ≥ 9dk. First,
we argue that Bi exists for each i ∈ [k + 1]. Recall that for each j ∈ [k + 1], |Cj | ≤ d − 1.
Also, for any pair of edges F1, F2 ∈ Ai, (F1 \ Ci) ∩ (F2 \ Ci) = ∅. Thus, using the fact that
Ci ∩ Cj = CS′ for i 6= j, a vertex in Cj \ CS′ can belong to at most one edge in Ai. This
implies that there are at most (d− 1)k < dk sets F in Ai such that F ∩ Cj 6= CS′ for some
j 6= i ∈ [k + 1]. We can safely assume that k + 1 ≥ d and therefore, the number of edges
F ∈ Ai such that F ∩Cj = CS′ ∀j 6= i ∈ [k + 1] is at least 10dk − dk = 9dk. Next, we argue
that there exists k + 1 edges F1, . . . , Fk+1 such that Fi ∈ Bi ∀i ∈ [k + 1] and Fi ∩ Fj = CS′

for all i, j ∈ [k + 1] and i 6= j. We show the existence of the Fi’s inductively. For the
base case, take any arbitrary edge in B1 as F1. Assume that we have chosen F1, . . . , Fp,
where 1 ≤ p ≤ k, such that the required conditions hold. We will show that there exists
Fp+1 ∈ Bp+1 such that Fi ∩ Fp+1 = CS′ for each i ∈ [p]. By construction of Bi’s, no edge in
Bp+1 intersects with Ci \ CS′ , i ≤ p; but every edge in Bp+1 contains CS′ . Also, none of the
chosen edges out of F1, . . . , Fp, intersects Cp+1 \ CS′ . So, if we can select an edge F ∈ Bp+1
such that F \ Cp+1 is disjoint from Fi \ Ci ∀i ∈ [p], then we are done. Note that for two
edges F ′, F ′′ ∈ Bp+1, F ′ \ Cp+1 and F ′′ \ Cp+1 are disjoint. Consider the set B′p+1 ⊆ Bp+1
such that each edge F ∈ B′p+1 intersects with at least one out of {F1 \ C1, . . . , Fp \ Cp}.∣∣B′p+1

∣∣ ≤ dp ≤ dk, because (Fi \ Ci) ∩ (Fj \ Cj) = ∅ ∀i 6= j ∈ [p] and |Fi| ≤ d, i ∈ [p]. As
|Bp+1| ≥ 9dk, we select any edge in Bp+1 \B′p+1 as Fp+1. J

The above observation implies the following. If CS′ is non-empty, then there exists a (k + 1)-
sunflower in H. So, SH(CS′) > k or equivalently CS′ is a significant core. Note that each
Ci contains CS′ , which is a significant core; which contradicts the definition of C′. Hence,
|C′| ≤ (d− 1)!kd−1. J

The following Lemma provides insight into the structure of Ĥ and thereby is the most
important part of proving Lemma 3.4.



A. Bishnu, A. Ghosh, S. Kolay, G. Mishra, and S. Saurabh 25:9

I Lemma 3.10. Let Ĥ = H1 ∪ . . . ∪Hα log k. If |HS(H)| ≤ k, then (a) Fs ⊆ F(Ĥ), and (b)
∀C ∈ C′, SĤ(C) > k hold with high probability.

Proof Sketch. First, consider the two claims stated below.

I Claim 3.11. ∀i ∈ [α log k], P(F ∈ F(Hi) | F ∈ Fs) ≥ 1
2 .

I Claim 3.12. ∀i ∈ [α log k], P(SHi
(C) > k | C ∈ C′) ≥ 1

2 .

The proofs of Claims 3.11 and 3.12 are involved which we prove below. Observe that
Lemma 3.10 follows from Claim 3.11 and 3.12. The detailed proof of Lemma 3.10 is in the
full version [3]. J

Proof of Claim 3.11. Without loss of generality, we will prove the statement for the graph
H1. Let h : U(H)→ [βk] be the random hash function used in the sampling of H1. Observe
that by the construction of H1, F ∈ F(H1) if the following two conditions hold.

h(u) = h(v) if and only if u = v, where u, v ∈ F .
For any F ′ 6= F and F ′ ∈ F(H), F ′ and F differ in the color of at least one vertex.

Hence, P(F /∈ F(H1) | F ∈ Fs) ≤
∑

u,v∈F :u 6=v
P(h(u) = h(v)) + P(E1), where

E1 : ∃ an edge F ′ ∈ F(H) such that F ′ 6= F and {h(z) : z ∈ F} = {h(z) : z ∈ F ′}.

Before we bound the probability of the occurrence of E1, we show the existence of a set
D ⊆ U(H) \ F of bounded cardinality such that each edge in F(H) \ {F} intersects with D.

I Observation 3.13. Let F ∈ Fs. Then there exists a set D ⊆ U(H) \F such that each edge
in F(H) \ {F} intersects with D and |D| ≤ 2d+5d2k.

Proof. For each C ⊂ F , consider the hypergraph HC such that U(HC) = U(H) \ C and
F(Hc) = {F ′ \C : F ′ ∈ F(H) and F ′ ∩ F = C}. First, we prove that the size of HS(HC) is
at most dSH(C). For the sake of contradiction, assume that |HS(HC)| > dSH(C). Then
we argue that there exists F ′ ⊆ F(HC) such that each pair of hyperedges in F ′ are vertex
disjoint and |F ′| > SH(C). If |F ′| ≤ SH(C), then the vertex set {w : w ∈ F ′, F ′ ∈ F ′} is a
hitting set of Hc and it has size at most dSH(C), which is a contradiction. Therefore, there
is a F ′ ⊆ F(HC) such that each pair of hyperedges in F ′ is vertex disjoint and |F ′| > SH(C).
Observe that the set of edges {F ′′∪C : F ′′ ∈ F ′} forms a t-sunflower in H, where t > SH(C);
which contradicts the definition of SH(C).

The required set D is (HS(H) \ F ) ∪
⋃
C⊂F

HS(HC).

If a hyperedge F ∗ in F(H) \ {F} intesects with F , then it must intersect with HS(HC)
for some C ⊂ F ; otherwise F ∗ intersects with HS(H)\F . So, each hyperedge in F(H)\{F},
intersects with D. Now, we bound the size of D.

|D| ≤ |HS(H)|+

∣∣∣∣∣ ⋃
C⊂F

HS(HC)

∣∣∣∣∣
≤ k +

∑
C⊂F

dSH(C) (∵ |HS(H)| ≤ k and |HS(HC)| ≤ dSH(C))

≤ k + 2d · d · 10dk (∵ F does not contain any large core)
≤ 2d+5d2k

J
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With respect to the set D, we define another event E2 such that E2 ⊇ E1

E2 : ∃ z ∈ D such that h(z) = h(y) for some y ∈ F.

We will now bound P(E2).
So, P(E2) ≤ d |D|βk = d·2d+5d2k

βk = d32d+5

β < 1
10 . Putting everything together,

P(F /∈ F(H1)|F ∈ Fs) ≤
∑

u,v∈F :u 6=v
P(h(u) = h(v)) + P(E1)

≤ d2

βk
+ P(E2) ≤ d2

βk
+ 1

10 <
1
2 .

J

Proof of Claim 3.12. Without loss of generality, we will prove the statement for the graph
H1. Let h : U(H)→ [βk] be the random hash function used in the sampling of H1.

Let S be the sunflower with core C and F ′ be the set of edges corresponding to sunflower
S. Note that |F ′| > 10dk. Let F ′′ ⊆ F ′ be such that ∀F ∈ F ′′, (F \ C) ∩HS(H) = ∅, and
|F ′′| = (10d− 1)k. Note that such an F ′′ exists as |F ′′| > 10dk and HS(H) ≤ k.

For F ∈ F ′′, let XF be the indicator random variable that takes value 1 if and only if
there exists F ′ ∈ F ′ such that F ′ ∈ F(H1) and {h(v) | v ∈ F} = {h(v) | v ∈ F ′}. Define
X =

∑
F∈F ′′

XF . Observe that SH1(C) is a random variable such that SH1(C) ≥ X. Recall

that we have to prove P(SH1(C) > k | C ∈ C′) ≥ 1
2 . So, if we can show P(X ≤ k) < 1

2 , then
we are done. Observe that XF = 1 if the following events occur.
E1: h(u) = h(v) if and only if u = v, where u, v ∈ F .
E2: There does not exist y ∈ F and z ∈ HS(H) \ C such that h(y) = h(z).
So, P(XF = 1) ≥ P(E1 and E2) and using the fact that |HS(H)| ≤ k, we have

P(XF = 0) ≤
∑

u,v∈F ;u6=v
P(h(u) = h(v)) +

∑
y∈F

∑
z∈HS(H)\{u}

P(h(y) = h(z))

≤ d2

βk
+ d · |HS(H)|

βk
<

1
200

Hence, E[X] =
∑

F∈F ′′
P(XF = 1) ≥ (10d− 1)k · 199

200 > 9dk.

P(X ≤ k) ≤ P(
∣∣∣F ′′

∣∣∣−X ≥ (10d− 2)k) (∵ |F
′′
| = (10d− 1)k)

≤
E[
∣∣∣F ′′

∣∣∣−X]

(10d− 2)k <
(10d− 1)k − 9dk

(10d− 2)k ≤ d− 1
10d− 2 <

1
2 .

The first inequality is by Markov and second one is due to E[X] > 9dk. J

Now, we have all the ingredients to prove Lemma 3.4.

Proof of Lemma 3.4. First, since Ĥ is a subgraph of H, a minimum hitting set of H is also
a hitting set of Ĥ. To prove this Lemma, it remains to show that when |HS(H)| ≤ k, then a
minimum hitting set of Ĥ is also a hitting set of H. By Lemma 3.10, it is true that with
high probability Fs ⊆ F(Ĥ) and SĤ(C) > k if C ∈ C′. It is enough to show that when
Fs ⊆ F(Ĥ) and SĤ(C) > k, ∀C ∈ C′, then a minimum hitting set of Ĥ is also a minimum
hitting set of H.

First we show that each significant core intersects with HS(H). Suppose there exists a
significant core C that does not intersect with HS(H). Let S be a t-sunflower in H, t > k,
such that C is the core of S. Then each of the t petals of S must intersect with HS(H).
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But the petals of any sunflower are disjoint. This implies HS(H) ≥ t > k, which is a
contradiction. So, each significant core intersects with HS(H). As large cores are significant,
each large core also intersects with HS(H).

Let us consider a subhypergraph of H, say H̃1, with the following definition. Take a large
core C1 in H that contains a significant core C2 as a subset. Let S1 be a sunflower with
core C1. Let S2 be a sunflower with core C2 that has more than k petals. Note that there
can be at most one hyperedge F1 of S1 that is also present in S2. We delete all hyperedges
participating in S1 except F1. The remaining hyperedges remain the same as in H. Notice
that a hitting set of H̃1 is also a hitting set of H; the significant core C2 remains significant
in H̃1. Thus, any hitting set of H̃1 must intersect with C and therefore, must hit all the
hyperedges of S1. We can think of this as a reduction rule, where the input hypergraph and
the output hypergraph have the same sized minimum hitting sets. Let H̃ be a hypergraph
obtained after applying the above reduction rule exhaustively on H. The following properties
must hold for H̃: (i) HS(H) = HS(H̃), (ii) all large cores in H̃ do not contain significant
cores as subsets, (iii) all hyperedges of Fs in H are still present in H̃.

By Lemma 3.10, it is also true with high probability that SĤ(C) > k when C is a large
core of H̃ that does not contain any significant core as a subset. Note that the arguments
in Lemma 3.10 can be made for such large cores without significant cores in H̃. Thus, we
continue the arguments with the assumption that SĤ(C) > k when C is a large core of H̃
that does not contain any significant core as a subset.

Now we show that when HS(H) ≤ k, HS(H̃) = HS(Ĥ). We know that Fs ⊆ F(H̃).
That is, any hyperedge that does not contain any large core as a subset, is present in H̃.
Each hyperedge in Fs must be covered by any hitting set of H as well as any hitting set of
H̃ and Ĥ. Now, it is enough to argue that an hyperedge F ∈ F(H̃) \ Fs, must be covered by
any hitting set of Ĥ. Note that each F ∈ F(H̃) \ Fs contains a large core, say Ĉ, which does
not contain a significant core as a subset. By our assumption, Ĉ is a significant core in Ĥ
and therefore, must be hit by any hitting set of Ĥ.

Putting everything together, when |HS(H|) ≤ k, each edge in H is covered by any hitting
set of Ĥ. Thus, HS(H) = HS(Ĥ). J

3.3 Algorithms for d-Hitting-Set and d-Decision-Hitting-Set
Now, we explain the algorithms for d-Hitting-Set and d-Decision-Hitting-Set.

I Theorem 3.14. d-Hitting-Set can be solved with Õ(k2d) GPISE queries.

Proof. Let Pack(H) denote a maximum packing of hypergraph H. By Theorem 2.1, with
high probability, we can find Pack(H) if |Pack(H)| ≥ k + 1 or decide that there does not
exist any packing of size k + 1, by making Õ(k2d) GPISE queries.

If |Pack(H)| ≥ k + 1, then |HS(H)| ≥ k + 1. So, in this case we report that there does
not exist any hitting set of size at most k. Otherwise, if |Pack(H)| ≤ k, then |HS(H)| ≤ dk.
As |HS(H)| ≤ dk, HS(H) can be found using our algorithm for d-Promised-Hitting-Set
by making Õ(kd) GPISE queries. If |HS(H)| ≤ k, with high probability we output HS(H)
and if |HS(H)| > k, we report there does not exist a hitting set of size at most k. The total
query complexity is Õ(k2d). J

I Theorem 3.15. d-Decision-Hitting-Set can be solved with Õ(k2d2) GPIS queries.

Proof. Observe that, it is enough to give an algorithm that solves d-Decision-Hitting-Set
with probability at least 2/3 by using O(k2d2) GPIS queries. The details are in the full
version [3].
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We choose a random hash function h : U(H) → [γk2d], where γ = 1009dd2. Let
Ui = {u ∈ U(H) : h(u) = i}, where i ∈ [γk2d]. Note that Ui’s form a partition of U(H),
where some of the Ui’s can be empty. We make a GPIS query with input (Ui1 , . . . , Uid)
for each 1 ≤ i1 < . . . < id ≤ γk2d such that Uij 6= ∅ ∀j ∈ [d]. Recall that the output
of a GPIS query is Yes or No. We create a hypergraph Ĥ where we create a vertex
for each part Ui, i ∈ [γk2d]. We abuse notation and denote U(Ĥ) = {U1, . . . , Uγk2d}
and F(Ĥ) = {(Ui1 , . . . , Uid) : GPIS oracle answers yes when given (Ui1 , . . . , Uid) as input}.
Observe that we make O(k2d2) queries to the GPIS oracle. We find HS(Ĥ) and report
|HS(H)| ≤ k if and only if

∣∣∣HS(Ĥ)
∣∣∣ ≤ k. The correctness of our query procedure follows

from the following Lemma (proof is in the full version [3]).

I Lemma 3.16. If
∣∣∣HS(Ĥ)

∣∣∣ ≤ k, then |HS(H)| ≤ k with probability at least 2/3. J
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A A+ tB B

Figure 1 Two sets A and B, and a matching of size k = 6 after translation.
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1 Introduction

The following problem arises in pattern matching: given point sets A, B, with |A| = m and
|B| = n, and k ≤ min{m,n}, find subsets A′ ⊆ A and B′ ⊆ B with |A′| = |B′| = k and a
transformation R that matches R(A) and B as closely as possible, see Figure 1. We think
of A as a collection of features, or interest points of some pattern, that we want to match,
bijectively, with similar features in a large image B. Moreover, since the coordinate frames
for A and B are not necessarily aligned, we want to transform A to get the best possible fit.

This problem comes in many variants, depending on the class of permissible transforma-
tions R and on the similarity measure for the match. Here, we want to match A′ and B′ in a
one-to-one manner, where the cost of a matching depends on the distances between matched
points. Moreover, we only consider translations as permissible transformations, and write
A+ t for the set A translated by a vector t ∈ R2. A feasible solution is given by a translation
t ∈ R2 and by a matching M ⊂ A × B of size k (in short, a k-matching): a set of k pairs
(a, b) ∈ A×B so that any point a ∈ A or b ∈ B occurs in at most one pair. The parameter
k is part of the input. We consider the Lp-cost of such a solution, for some p ∈ [1,∞]:

costp(M, t) = cost(M, t) :=


[

1
k

∑
(a,b)∈M ‖a+ t− b‖p

]1/p
for finite p,

max(a,b)∈M ‖a+ t− b‖ for p =∞.
(1)

We will regard p as a fixed constant and will omit it from the notation. Noteworthy special
cases arise when p = 1 (sum of distances, minimum-weight Euclidean matching), p = 2
(root-mean-square matching, in short RMS matching), and p =∞ (bottleneck matching). In
(1), we always measure the distances ‖a+ t− b‖ by the Euclidean norm. It is not hard to
extend the treatment to other norms, but we stick with Euclidean distances for simplicity.

https://doi.org/10.4230/LIPIcs.ISAAC.2018.26
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One important special case occurs when we have a small point set A (the pattern) that
we want to locate within a larger set B (the image), and k = |A| < |B|. This problem was
considered for p = 2 by Rote [11] and in subsequent work [3, 8], under the name RMS partial
matching. Another important instance has |A| ≈ |B| and k slightly smaller than |A|, |B|.
Now, we want to discard a few outliers from each set, to allow for some erroneous data.

For a fixed translation vector t ∈ R2, we define cost*(t) = minM cost(M, t) to be the cost
of the minimum-cost k matching between A+ t and B. We set Mt = arg minM cost(M, t) to
be an optimal matching from A+ t to B, i.e., cost*(t) = cost(Mt, t).

Let Π be the set of all k-matchings from A into B. The function cost* is the lower envelope
(i.e., the pointwise minimum) of the set of functions F = {t 7→ cost(M, t) | M ∈ Π}. The
vertical projection of this lower envelope induces a planar subdivision, called the minimization
diagram of F . It is denoted by M := M(A,B). Each face σ of M is a maximal connected
set of points t for which cost*(t) is realized by the same matching Mσ. The combinatorial
complexity of M is the number of its faces. We refer to M as the (k-)matching diagram of A
and B. We are interested in two questions:

(P1) Compute t∗ = arg mint cost*(t) and M∗ := Mt∗ .
(P2) What is the combinatorial complexity of M(A,B), and how quickly can it be computed?

These questions have been studied, p = 2, by Rote [11] and by Ben-Avraham et al. [3].
Two challenging, still open problems are whether the size of M is polynomial in both m and
n, and whether t∗ and M∗ can be computed in polynomial time. These previous works have
raised the questions only for the case p = 2, but they are open for arbitrary p <∞. There is
extensive work on pattern matching and on computing similarity between two point sets.
We refer the reader to [2, 15] for surveys. Here, we confine ourselves to a brief discussion of
work directly related to the problem at hand.

Much work has been done on computing a minimum-cost perfect matching in geometric
settings. Here, n = |A| = m = |B| = k. A minimum-cost perfect matching, for any Lp-norm,
can be found in Õ(n2) time [1, 9, 10].5 These algorithms are based on the Hungarian
algorithm for a minimum-cost maximum matching in a bipartite graph, and are made more
efficient than the general technique by using certain efficient geometric data structures. Thus,
they also work when the two point sets A and B have different sizes, say, |A| = n and
|B| = m, with k = m ≤ n. In this case, the running time of the algorithm is Õ(mn).

Approximation algorithms for the minimum-weight perfect matching in geometric settings
have been developed in a series of papers; see, e.g., [12] and the references therein. For the case
when the weight of a matching is the sum of the Euclidean lengths of its edges, a near-linear
algorithm is known [12]. If the weight is the Lp-norm of the Euclidean lengths of the edges, for
some p > 1, then the best known algorithm runs in Õ(n3/2) time [13, 14]. In particular, for
RMS matching (p = 2) and for p = 1,∞, the time for finding a (1 + ε)-approximate optimal
matching is Õ(n3/2), and for a general p, the running time is Õ

(
n3/2

ε3/2

)
. These algorithms use

the scaling method by Gabow and Tarjan [6] that at each scale computes a minimum-weight
matching by finding n augmenting paths in O(

√
n) phases, where each phase takes Õ(n)

time (see also [7]). If |A| = n, |B| = m, and k = m ≤ n, then the m augmenting paths can
be found in O(

√
m) phases, each of which takes Õ(n) time. Hence, the total running time

in this case is Õ(
√
mn), for p = 1, 2,∞, or Õ(

√
mn/ε3/2), for general p. When k ≤ m ≤ n,

the minimum-weight k-matching is constructed, using the geometrically enhanced version

5 The notation Õ(·) hides polylogarithmic factors in n, m, and also polylogarithmic factors in 1/ε, when
we only seek a (1 + ε)-approximate solution.
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of the Hungarian algorithm, in k augmenting steps, each of which can be performed in
O(n polylog(n)) time. That is, the exact minimum-weight k-matching can be computed in
Õ(kn) time. The case of computing an approximate k-matching is somewhat trickier. If
k = Θ(m), one can show, adapting the technique in [13], that the running time remains
O(
√
mn polylog(n)). For smaller values of k, one can still get a bound depending on k, but

we do not treat this case in the paper. It is also much less motivated from the point of view
of applications.

Cabello et al. [4] considered optimal shape matching under translations and/or rotations.
They considered the more general setting of weighted point sets, where each point of A
and B comes with a multiplicity or “weight”. Accordingly, the similarity criterion is the
earth-mover’s distance, or transportation distance, which measures the minimum amount of
work necessary to transport all the weight from A to B, where transporting a weight w by
distance δ costs w · δ. For the special case of unit weights, this reduces, via the integrality of
the minimum-cost flows, to one-to-one matching.

We apply several ideas from Cabello et al.’s paper: (1) the use of point-to-point transla-
tions to get constant-factor approximations, (2) the selection of a random subset of these
transformations to get fast Monte Carlo algorithms, and (3) tiling the vicinity of these
transformations in the parameter space by an ε-grid to get (1 + ε)-approximations. We go
beyond the results of Cabello et al. in the following aspects.

We give a greedy “disk-eating” algorithm in the space of translations to get an improved
deterministic approximation (Theorem 4.5). This idea could be useful for other problems.
We introduce approximate matching diagrams: Such a diagram is a subdivision of the
translation plane together with a matching for each cell. This matching is approximately
optimal for every translation in the cell. As a consequence, this diagram provides
approximate optimal matchings for all translations. We show that there is an approximate
matching diagram of small size, and we describe how to compute it efficiently (Section 2.1).
Less importantly, our results cover a broader class of similarity measures: The lengths of
the k matching edges can be aggregated in the objective function using any Lp norm, p ≥ 1,
whereas Cabello et al. only dealt with the L1 norm. By indentifying the crucial property
that lies at the basis of the approximation, namely Lipschitz continuity (Corollary 2.2),
this generalization comes without much additional effort. Our results are also slightly
more general because we allow outliers (i.e., k < min{m,n}), whereas Cabello et al.
match the smaller set completely.
By using better data structures, some of our algorithms are more efficient.

We present approximate solutions for (P1) and (P2). They use approximation algorithms for
matching between stationary sets as a black box. We write W (m,n, k, ε) for the time that
is needed to compute a (1 + ε)-approximate minimum-weight matching of size k between
two given (stationary) sets A and B of m and n points in the plane, where the weight is the
Lp-norm of the vector or Euclidean edge lengths, for k ≤ min{m,n} and for a given ε ≥ 0.
We abbreviate W (m,n, k, 0) as simply W (m,n, k). Table 1 summarizes the known running
times. We obtain two main results:
(i) We present an Õ(mn+ mn

ε2kW (m,n, k, ε/2))-time algorithm for computing a translation
vector t̃ and a k-matching M̃ between A and B such that cost(M̃, t̃) ≤ (1 + ε) cost*(t∗).

(ii) We present an Õ(mn + mn
ε2kW (m,n, k, ε/2))-time algorithm for computing a (1 + ε)-

approximate matching diagram of size O
(
n
ε2 log 1

ε

)
, i.e., a planar subdivision M̃ and a

collection of k-matchings Mσ, one matching for each face σ of M̃, such that for each
face σ of M̃ and for every t ∈ σ, cost(Mσ, t) ≤ (1 + ε) cost*(t).
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Table 1 Known time bounds for various matching problems between stationary sets. We assume
m ≤ n, and in the last two rows k = Θ(m).

norm time reference

p ∈ [1,∞] exact W (m, n, k) = Õ(kn) Hungarian method, geo-
metric version [1, 9, 10]

p ∈ {1, 2,∞} (1 + ε)-approximate W (m, n, k, ε) = Õ(
√

mn) [13]
p ∈ [1,∞] (1 + ε)-approximate W (m, n, k, ε) = Õ(

√
mn/ε3/2) [14]

The paper is organized as follows. We start with simple solutions to (P1) and (P2) with
constant-factor approximations (Section 2). We then refine them to obtain (1+ε)-approximate
solutions, in Section 3. Finally, we present improved algorithms, which attain the bounds
claimed in (i) and (ii), in Section 4. All our statements hold for p =∞. In some cases, the
proofs require a special treatment for this case, but for brevity, we will mostly omit the
treatment for p =∞.

2 Simple Constant-Factor Approximations

The following lemma establishes a Lipschitz condition for the cost of a matching of size k.

I Lemma 2.1. Let M ⊂ A×B be a matching of size k, and let t,∆ ∈ R2 be two translation
vectors. Then, for any p ∈ [1,∞], the cost under the Lp-norm satisfies

cost(M, t+ ∆) ≤ cost(M, t) + ‖∆‖. (2)

Proof. Let M = {(a1, b1), . . . , (ak, bk)}, and define two nonnegative k-dimensional vectors ~v
and ~w by ~vi = ‖ai+t−bi‖ and ~wi = ‖ai+t+∆−bi‖, for 1 ≤ i ≤ k. By the triangle inequality
for the Euclidean norm, we have, for each i, ~wi = ‖ai + t+ ∆− bi‖ ≤ ‖ai + t− bi‖+ ‖∆‖ =
~vi + ‖∆‖. Thus, we obtain the component-wise inequality ~w ≤ ~v + ‖∆‖ ·~1, where ~1 denotes
the k-dimensional vector in which all components are 1. Now,

cost(M, t+ ∆) = ‖~w‖p
k1/p ≤

∥∥∥~v + ‖∆‖ ·~1
∥∥∥
p

k1/p ≤ ‖~v‖p
k1/p + ‖∆‖ · ‖

~1‖p
k1/p = cost(M, t) + ‖∆‖,

using the definition (1) of cost, the fact that the Lp-norm is a monotone function in the
components whenever they are nonnegative, and the triangle inequality for the Lp-norm. J

Here is an immediate corollary of Lemma 2.1:

I Corollary 2.2 (Lipschitz continuity of the optimal cost). For any two translation vectors
t1, t2 ∈ R2, cost*(t2) ≤ cost*(t1) + ‖t2 − t1‖.

Proof. For the respective optimal k-matchings M1 and M2 between A+ t1 and B and A+ t2
and B,

cost*(t2) = cost(M2, t2) ≤ cost(M1, t2) ≤ cost(M1, t1) + ‖t2− t1‖ = cost*(t1) + ‖t2− t1‖.J

Approximating t∗ by point-to-point translations. As in [4], we consider the set T = {b−a |
a ∈ A, b ∈ B} of at most mn point-to-point translations where some point in A is moved to
some point in B. The following simple observation turns out to be very useful:
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I Lemma 2.3 ([4, Observation 1]). Let t ∈ R2 be an arbitrary translation vector, and let
t0 ∈ T be the nearest neighbor of t in T . Then cost*(t) ≥ ‖t− t0‖.

Proof. By definition, t0 = b− a is the translation in T with ‖t− t0‖ = min(a′,b′)∈A×B ‖t−
b′ + a′‖. Thus, for p <∞, all summands in the definition (1) of cost*(t) are at least ‖t− t0‖,
implying cost*(t) ≥ ‖t− t0‖. The last conclusion is trivially valid for p =∞ as well. J

I Lemma 2.4 ([4, Lemma 1]). There is a translation t0 ∈ T with cost*(t0) ≤ 2 cost*(t∗).

Proof. Let t∗ be an optimal translation and M∗ a corresponding matching of size k. Take
the translation ∆ = b− a− t∗ ∈ R2 for which ‖a+ t∗− b‖ is minimized, over (a, b) ∈M∗. By
Lemma 2.3, ‖∆‖ ≤ cost*(t∗). The claim now follows from Lipschitz continuity (Corollary 2.2)
with t1 = t∗ and t2 = t∗ + ∆, where the latter translation is the desired t0 ∈ T . J

We remark that for RMS matching (p = 2), the factor 2 in the lemma can be improved to√
2. Lemma 2.4 leads to the following simple algorithm for 2-approximating the optimum

matching. Compute T , and iterate over its elements. For each t0 ∈ T compute cost*(t0)
(exactly), and return the matching with the minimum weight, in O(mnW (m,n, k)) time.

If we are willing to tolerate a slightly larger approximation factor, we can compute, for
any δ > 0 and for each t0 ∈ T , a (1 + δ)-approximate matching, resulting in a 2(1 + δ)-
approximation. This approach has overall running time O(mnW (m,n, k, δ)).

I Theorem 2.5. Let A,B ⊂ R2, with |A| = m and |B| = n, m ≤ n, and let k ≤ m be a size
parameter. A translation vector t̃ ∈ R2 can be computed in O(mnW (m,n, k)) time, such that
cost*(t̃) ≤ 2 cost*(t∗), where t∗ is the optimum translation. Alternatively, for any constant
δ > 0, one can compute a translation vector t̃ ∈ R2 and a k-matching M̃ between A and B,
in O(mnW (m,n, k, δ)) time, such that cost(M̃, t̃) ≤ 2(1 + δ) cost*(t∗).

2.1 An Approximate Matching Diagram
We construct a planar subdivision M̃ that approximates the matching diagram M up to
factor 3. This means that, for each face σ of M̃, there is a single matching Mσ (that we
provide) so that, for each t ∈ σ, we have cost*(t) ≤ cost(Mσ, t) ≤ 3 cost*(t).

We need a lemma that relates the best matching for a given translation t to the closest
translation in T .

I Lemma 2.6. Let t be an arbitrary translation, and let t0 ∈ T be its nearest neighbor in T ,
i.e., the translation in T that minimizes the length of ∆ = t0 − t. Then,

cost*(t) ≤ cost(Mt0 , t) ≤ 3 cost*(t). (3)

(Recall that Mt0 denotes the optimal matching for t0.)

Proof. Since Mt0 is a k-matching between A and B, we have, by definition, cost*(t) ≤
cost(Mt0 , t). We prove the second inequality. By Corollary 2.2, cost*(t0) ≤ cost*(t) + ‖∆‖,
and by Lemma 2.3, ‖∆‖ ≤ cost*(t). Applying Lemma 2.1, we obtain

cost(Mt0 , t) ≤ cost(Mt0 , t0) + ‖t− t0‖ = cost*(t0) + ‖∆‖
≤ cost*(t) + 2‖∆‖ ≤ cost*(t) + 2 cost*(t) = 3 cost*(t). J

Our approximate map M̃ is simply the Voronoi diagram VD(T ), where each cell VC(t0),
for t0 ∈ T , is associated with the optimal matchingMt0 at t0. Correctness follows immediately
from Lemma 2.6. Since the complexity of VD(T ) is O(|T |) = O(mn), we have a diagram
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of complexity O(mn). For each point t0 ∈ T , we can either directly compute an optimal
k-matching between A + t0 and B and associate the resulting map with VC(t0), or use
the (1 + δ)-approximation algorithm of [13]. In the former case, VD(T ) is a 3-approximate
matching diagram, and in the latter case it is a 3(1 + δ)-approximate matching diagram. We
thus conclude the following:

I Theorem 2.7. Let A,B ⊂ R2, with |A| = m and |B| = n, m ≤ n, and let k ≤ m be a size
parameter. There is a 3-approximate k-matching diagram of A and B of size O(mn), and it
(and the matchings in each cell) can be computed in O(mnW (m,n, k)) time. Alternatively, a
3(1 + δ)-approximate matching diagram, for constant δ > 0, of size O(mn) can be computed,
using the same planar decomposition, in O(mnW (m,n, k, δ)) time.

For p = 2, there is an alternative, potentially better approximating, construction. For each
t ∈ T , define the function ft(s) := cost(Mt, s), and set F = {ft | t ∈ T}. We let M̃0 be the
minimization diagram of the functions in F . Simple algebraic manipulations, similar to those
for Euclidean Voronoi diagrams, show that M̃0 is the minimization diagram of a set of |T | ≤
mn linear functions, namely, the functions f̃t(s) = 2

∑
(a,b)∈Mt

〈a− b, s〉+
∑

(a,b)∈Mt
‖a− b‖2,

for t ∈ T . The resulting map M̃0 is a 3-approximate diagram of complexity O(mn). To see
this, consider a Voronoi cell VC(t0) in M̃. We divide it into subcells in M̃0, each associated
with some matching. All these matchings, other than Mt0 , have smaller weights than the
matching computed for t0, over their respective subcells. Note that this subdivision is
only used for the analysis, the algorithm outputs the original minimization diagram. We
emphasize that this construction works only for p = 2, while the Voronoi diagram applies for
any p ∈ [1,∞].

For p = 2, using the fact that the Euclidean norm is derived from a scalar product, we
can improve the constant factors in Lemma 2.4 and Lemma 2.6. However, we chose to
present the more general results, since they are simpler and since we derive a more powerful
approximation below anyway.

3 Improved Approximation Algorithms

Computing a (1 + ε)-approximation of the optimum matching. This algorithm uses the
same technique that was used by Cabello et al. [4, Section 4.1, Theorem 6] in a slightly
different setting. We include the description of this algorithm as a preparation for the
approximate minimization diagram, and for the improved solutions in the following section.

Let t∗ be the optimum translation, as above. Our goal is to compute a translation t̃ and
a matching M̃ so that cost(M̃, t̃) ≤ (1 + ε) cost*(t∗).

Suppose we know the translation t0 ∈ T that minimizes the length of ∆ = t0 − t∗.
By Lemma 2.3 and Lipschitz continuity (Corollary 2.2), ‖∆‖ ≤ cost*(t∗) ≤ cost*(t0) ≤
cost*(t∗)+‖∆‖ ≤ 2 cost*(t∗). Using Theorem 2.5 with δ = 1/2, we compute a 3-approximation
for cost*(t∗), This allows us to choose some radius r0 with 2 cost*(t∗) ≤ r0 ≤ 6 cost*(t∗). We
take the disk D0 of radius r0 centered at t0, and we tile it with the vertices of a square grid
of side-length δ := ε

√
2

18 r0 ≤ ε
√

2
3 cost*(t∗). We define G0 as the set of vertices of all grid cells

that lie in D0 or that overlap D0 at least partially. G0 contains O(r0/δ)2 = O(1/ε2) vertices.
We compute, by [13], a (1 + ε/2)-approximate minimum-weight matching at each transla-

tion in G0 and return the one that achieves the smallest weight. Since t∗ has distance at most
δ/
√

2 from some grid vertex g ∈ G0, we have, again by Lipschitz continuity (Corollary 2.2),

cost*(g) ≤ cost*(t∗) + δ√
2
≤ cost*(t∗) + ε

3 cost*(t∗) ≤
(

1 + ε

3

)
cost*(t∗).
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cost∗(t0)

t0

B0

B1

B2

Figure 2 Partition of a Voronoi cell into nested grids, for the (unrealistically large) choice ε = 1/2.

Since we compute a (1 + ε/2)-approximate matching for each grid point, the best computed
matching has cost at most (1 + ε/3)(1 + ε/2) cost*(t∗) ≤ (1 + ε) cost*(t∗), assuming ε ≤ 1.

Since we do not know t0, we apply this procedure to all mn translations of T , for a total
of O(mn/ε2) approximate matching calculations for fixed sets.

I Theorem 3.1. Let A,B ⊆ R2, |A| = m ≤ |B| = n, and let k ≤ m be a size parameter and
0 < ε ≤ 1 a constant. A translation vector t̃ ∈ R2 and a matching M̃ of size k between A and
B can be computed in O

(
mn
ε2 ·W (m,n, k, ε2 )

)
time, such that cost(M̃, t̃) ≤ (1 + ε) cost*(t∗).

Cabello et al. [4, Theorem 4] give an O
(
n3m
ε4 log2 n

)
-time algorithm for the weighted

problem, which includes the matching problem with k = m ≤ n as a special case. It follows
the same technique: it solves O(mn/ε2) problems, each with a fixed translation, but each
such problem takes longer than in our case because it uses the earth mover’s distance.

A (1+ε)-approximation of M. We now construct a (1+ε)-approximate matching diagram
M̃ of A and B by refining VD(T ). Without loss of generality, we assume that ε = 2−α, for
some natural number α, and we set u := log2(1/ε) + 2 = α+ 2. We subdivide each Voronoi
cell of VD(T ) into smaller subcells, as follows. Fix t0 ∈ T . For i = 0, . . . , u, let Bi be the
square of side-length 2i cost*(t0), centered at t0. Set B−1 = ∅. For i = 0, . . . , u, we partition
Bi \ Bi−1 into a uniform grid with side-length ε2i−3 cost*(t0). We clip each grid cell τ to
VC(t0), i.e., if τ ∩ VC(t0) 6= ∅, we take τ ∩ VC(t0) as a face of M̃. Let tτ be the center of
the grid cell τ . We associate Mτ := Mtτ with the face τ ∩VC(t0). Finally, each connected
component of VC(t0) \Bu becomes a (possibly non-convex) face of M̃. There are at most
four such faces, and we associate Mt0 with each of them.

The above procedure partitions VC(t0) into O( 1
ε2 log 1

ε ) cells, and their total complexity
is O(k0 + 1

ε2 log 1
ε ), where k0 is the number of vertices on the boundary of VC(t0). We repeat

our procedure for all Voronoi cells of VD(T ). Since the total complexity of VD(T ) is O(mn),
the total complexity of M̃ is O(mnε2 log 1

ε ).

I Lemma 3.2. M̃ is a (1 + ε)-approximate matching diagram of A and B.

Proof. Let t ∈ R2 be an arbitrary translation vector, and let t0 ∈ T be the nearest neighbor
of t in T , i.e., t ∈ VC(t0). First, consider the case when t 6∈ Bu. Then ‖t− t0‖ ≥ 2 cost*(t0)/ε
and Mt0 is the matching associated with the cell of M̃ containing t. Hence, using Lemmas 2.1
and 2.3, we obtain

cost*(t) ≤ cost(Mt0 , t) ≤ cost*(t0) + ‖t− t0‖ ≤
(

1 + ε

2

)
‖t− t0‖ ≤

(
1 + ε

2

)
cost*(t).
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Suppose t ∈ B0. Then ‖t− t0‖ ≤ cost*(t0)/
√

2. Therefore, by Corollary 2.2,

cost*(t) ≥ cost*(t0)− ‖t− t0‖ ≥ cost*(t0)− 1√
2

cost*(t0) =
(

1− 1√
2

)
cost*(t0).

Let τ be the grid cell inside B0 containing t, and let tτ be the center of τ . Then ‖t− tτ‖ ≤
ε

8
√

2 cost*(t0). By Corollary 2.2, cost*(tτ ) ≤ cost*(t) + ‖t− tτ‖. Furthermore,

cost(Mτ , t) ≤ cost(Mτ , tτ ) + ‖t− tτ‖ = cost*(tτ ) + ‖t− tτ‖

≤ cost*(t) + 2‖t− tτ‖ ≤ cost*(t) + ε

4
√

2
cost*(t0)

≤ cost*(t) + ε

4
√

2
·
√

2√
2− 1

cost*(t) ≤ (1 + ε) cost*(t).

Finally, suppose t ∈ Bi \ Bi−1, for some i ≥ 1. Since t 6∈ Bi−1, we have ‖t − t0‖ ≥
2i−2 cost*(t0). Let τ be the grid cell of Bi \Bi−1 containing t, and let tτ be its center. Then
‖t− tτ‖ ≤ 2i−3

√
2 ε · cost*(t0). Starting with the inequality that was established above, we get

cost(Mτ , t) ≤ cost*(t) + 2‖t− tτ‖ ≤ cost*(t) + 22i−3ε√
2

cost*(t0)

≤ cost*(t) + ε√
2
‖t− t0‖ ≤ cost*(t) + ε√

2
cost*(t) ≤ (1 + ε) cost*(t). J

Similar to the O(1)-approximate matching diagram, we can improve the construction time
by setting ε′ = ε/3 instead of ε and computing a (1 + ε/2)-approximate optimal matching
(instead of the exact matching) for the center of every cell:

I Theorem 3.3. Let A,B ⊆ R2, with |A| = m, |B| = n, m ≤ n and a size parameter k ≤ m.
For 0 < ε ≤ 1, one can compute a (1 + ε)-approximate k-matching diagram of A and B, of
size O(mnε2 log 1

ε ), in O(mnε2 log 1
ε )W (m,n, k, ε2 ) time.

4 Improved Algorithms

We now present techniques that improve, by a factor of m or of k, both algorithms for
computing an approximate optimal matching and an approximate matching diagram. These
algorithms work well for the case k ≈ m, and they deteriorate when k becomes small. The
first algorithm is based on an idea of Cabello et al. [4, Lemma 2]: The best matching contains
a substantial number of edges whose length does not exceed the optimum cost by more than
a constant factor (cf. Lemma 4.1). This gives a randomized constant-factor approximation
algorithm that requires O(mn/k) approximate matching computations between stationary
sets in order to succeed with probability 1

2 (Theorem 4.2). We proceed to an improved
algorithm that computes a constant-factor approximation with the same number of fixed-
translation matching calculations deterministically. By tiling the vicinity of each candidate
translation by an ε-grid, we then obtain a (1 + ε)-approximation (Theorem 4.5).

Markov’s inequality bounds the number of items in a sample that are substantially above
average. We will use the following consequence of it:

I Lemma 4.1. Let M be a matching of size k between a (possibly translated) set A and
a set B, with cost µ. Let 0 < c ≤ 1. Then the number of pairs (a, b) ∈ M for which
‖a− b‖ < (1 + c)µ is at least k − k/(1 + c)p.
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Proof. For p =∞, we interpret (1 + c)p as ∞, and the result is obvious because ‖a− b‖ <
(1 + c)µ for all pairs (a, b). For 1 ≤ p <∞, we argue by contradiction. The total number of
pairs is k. If there were more than k/(1 + c)p pairs (a, b) ∈M with ‖a− b‖ ≥ (1 + c)µ, the
total cost would be

µ = cost(M) =
[

1
k ·
∑

(a,b)∈M
‖a− b‖p

]1/p
>
[ 1
k · k/(1 + c)p · ((1 + c)µ)p

]1/p = µ. J

Consider the optimal translation t∗ and the corresponding optimal matching M∗. By the
lemma, the fraction of the pairs (a, b) ∈M∗ that satisfy ‖a+ t∗ − b‖ ≤ (1 + c) cost*(t∗) is at
least 1− 1/(1 + c)p ≥ 1− 1/(ec/2)p = 1− e−cp/2, since c ≤ 1. Hence, with probability at least
(1− e−cp/2) km , a randomly chosen a ∈ A will participate in such a “close” pair of M∗. We do
not know the b ∈ B with (a, b) ∈M∗, so we try all n possibilities. That is, we choose a single
random point a0 ∈ A, and we try all n translations b−a0 ∈ T , returning the minimum-weight
partial matching over these translations. With probability at least (1− e−cp/2) km , we get, by
Lemma 2.6, a matching whose weight is at most cost*(t∗) + (1 + c) cost*(t∗) = (2 + c) cost*(t∗).
The runtime of this procedure is n ·W (m,n, k), or n ·W (m,n, k, δ) if we compute at each of
the above translations t0 a (1+δ)-approximation to cost*(t0). To boost the success probability,
we repeat this drawing process s times and obtain a (2 + c)(1 + δ)-approximation to the best
matching, with probability at least 1 −

(
1− (1− e−cp/2) km

)s. By setting c = δ = ε/4, we
get the following theorem.

I Theorem 4.2. Let A,B ⊂ R2 with |A| = m and |B| = n, m ≤ n, and let k ≤ m and s ≥ 1
be parameters. Then, a translation vector t̃ ∈ R2 and a matching M̃ of size k between A and
B can be computed in O(sn ·W (m,n, k, ε/4)) time, such that cost(M̃, t̃) ≤ (2 + ε) cost*(t∗)
with probability at least 1−

(
1− (1− e−εp/8) km

)s, for any ε with 0 < ε ≤ 1.

If εp is small, the probability is approximately equal to the simpler expression 1− e−s·εpk/8m.
Cabello et al. [4] proceeded from this result to a (1 + ε)-approximation by tiling the

vicinity of each selected translation with an ε-grid [4, Theorem 7]. We will first replace the
randomized algorithm by a deterministic one, and apply the ε-grid refinement afterwards.

We now describe a deterministic algorithm for approximating t∗ and the corresponding
matching M∗. At a high level, the mn points of T are partitioned into O(mn/k) clusters of
size Ω(k), and one point, not necessarily from T , is chosen to represent each cluster. We will
argue that the point in the resulting set X of representatives that is nearest to t∗ yields a
matching whose value at t∗ is an O(1)-approximation of cost*(t∗).

Here is the main idea of how we cluster the points in T and construct X, in an incremental
manner. In step i, we greedily choose the smallest disk Di that contains k/2 points of T
(or all of T , if |T | ≤ k/2), add the center of Di to X, delete the points of Di ∩ T from
T , and repeat. Carmi et al. [5] have described an efficient algorithm for this clustering
problem. It preprocesses T into a data structure (consisting of three compressed quadtrees)
in O(mn log n) time, so that in step i, the disk Di can be computed in Õ(k2) time and Di∩T
can be deleted from the data structure in Õ(k2) time, leading to an Õ(mnk)-time algorithm.
They also present a faster approximation algorithm for this clustering problem: in step i,
instead of computing the smallest enclosing disk Di, they show that a disk of radius at most
twice that of Di that still contains k/2 points of T can be computed in Õ(k) time, and that
Di ∩ T can be deleted in Õ(k) time, thereby improving the overall running time to Õ(mn).
This approximation algorithm is sufficient for our purpose. We next give a more formal
description of our method:

At the beginning of step i, we have a set Pi ⊆ T and the current set X. Initially, P1 = T

and X = ∅. We preprocess P1, in Õ(|T |) = Õ(mn) time, into the data structure described
by Carmi et al. [5]. We perform the following operations in step i: if Pi = ∅, the algorithm
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terminates. If 0 < |Pi| ≤ k/2, we compute the smallest disk Di containing Pi. If |Pi| > k/2,
then let ρ∗i be the radius of the smallest disk that contains at least k/2 points of Pi. Using
the algorithm in [5], we compute a disk Di of radius ρi ≤ 2ρ∗i containing at least k/2 points
of Pi. We add the center ξi of Di to X, and we set Pi+1 := Pi \Di. We remove Pi ∩Di from
the data structure, as described in [5]. Let D be the set of disks computed by the above
procedure. By construction, ρ∗i ≤ ρ∗i+1, ρi ≤ 2ρ∗i ≤ 2ρ∗i+1 ≤ 2ρi+1, and |X| = |D| ≤ 2mn/k.
The following two lemmas establish the correctness of our method.

I Lemma 4.3. Let t ∈ R2 be a translation vector, and let ξ0 be its nearest neighbor in X.
Then ‖t− ξ0‖ ≤ 3 · 21/p cost*(t).

Proof. Let D be the disk of radius 21/p cost*(t) centered at t, and let S = D ∩ T . By
Lemma 4.1 with 1 + c = 21/p, we have |S| ≥ k/2. Let Di be the first disk chosen by the
above procedure that contains a point t0 of S, so S ⊆ Pi. We must have ρ∗i ≤ 21/p cost*(t),
because the smallest disk that contains at least k/2 points of Pi is not larger than D. Hence,
ρi ≤ 2 · 21/p cost*(t), and

‖t− ξi‖ ≤ ‖t− t0‖+ ‖t0 − ξi‖ ≤ 21/p cost*(t) + ρi

≤ 21/p cost*(t) + 2 · 21/p cost*(t) = 3 · 21/p cost*(t). J

I Lemma 4.4. min
ξ∈X

cost*(ξ) ≤ (1 + 3 · 21/p) cost*(t∗).

Proof. Let ξ0 be the nearest neighbor to t∗ in X. Applying Lemma 4.3 with t = t∗, we obtain
‖t∗−ξ0‖ ≤ 3 ·21/p cost*(t∗). By Corollary 2.2, we then have cost*(ξ0) ≤ cost*(t∗)+‖t∗−ξ0‖ ≤
(1 + 3 · 21/p) cost*(t∗). J

We fix a constant δ ∈ (0, 1]. We compute a (1 + δ)-approximate k-matching Mξ between
A + ξ and B, for every ξ ∈ X, and choose the best among them. This will give an O(1)-
approximation of the minimum-cost k-matching under translation. We can extend this
algorithm to yield a (1 + ε)-approximation algorithm following the same procedure as in
Section 3: We draw a disk of radius (1 + 3 · 21/p + 4ε) cost*(t∗) around each point of X. We
draw a uniform grid of cell size O(ε) and look at all vertices t of grid cells that overlap one of
these disks at least partially. We compute a (1 + ε/2)-approximation for the best matching
of size k between A+ t and B for each of the grid point t under consideration, and we choose
the best matching among them. Putting everything together, we obtain the following:

I Theorem 4.5. Let A,B ⊂ R2, with |A| = m and |B| = n, and let 0 < ε ≤ 1 and
k ≤ min{m,n} be parameters. Then, a translation vector t̃ ∈ R2 and a matching M̃ of
size k between A and B can be computed in Õ(mn + mn

ε2kW (m,n, k, ε2 )) time, such that
cost(M̃, t̃) ≤ (1 + ε) cost*(t∗).

We show that VD(X) is indeed an O(1)-approximate matching diagram of A and B. This
is analogous to Section 2.1 (Lemma 2.6).

I Lemma 4.6. Let t ∈ R2 be a translation vector, and let ξ0 be its nearest neighbor in X.
Then, cost*(t) ≤ cost(Mξ0 , t) ≤ (1 + 6 · 21/p) cost*(t).

Proof. Since Mξ0 is a matching of size k between A and B, we have, by definition, cost*(t) ≤
cost(Mξ0 , t). We now prove the second inequality. By Corollary 2.2, cost*(ξ0) ≤ cost*(t) +
‖t− ξ0‖, Lemma 2.1, and Lemma 4.3,

cost(Mξ0 , t) ≤ cost(Mξ0 , ξ0) + ‖t− ξ0‖

= cost*(ξ0) + ‖t− ξ0‖ ≤ cost*(t) + 2‖t− ξ0‖ ≤ (1 + 6 · 21/p) cost*(t). J
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The combinatorial complexity of VD(X) is O(mn/k). We can now construct a (1 + ε)-
approximate matching diagram by refining each Voronoi cell of VD(X), as in Section 3, but
the constants have to be chosen differently. The diagram has O(mnkε2 log 1

ε ) cells, and we need
W (m,n, k, ε2 ) time per cell. We obtain the following:

I Theorem 4.7. Let A,B ⊂ R2, |A| = m ≤ |B| = n, and let k ≤ m, ε ∈ (0, 1] be parameters.
There exists a (1 + ε)-approximate k-matching diagram of A and B of size O(mnkε2 log 1

ε ), and
it can be computed in Õ(mn) +O

(
mn
kε2 log 1

εW (m,n, k, ε2 )
)
time.

For the case when cm ≤ k ≤ (1 − c)n for some constant c > 0, we can show that the
bound in Theorem 4.7 on the size of the diagram is tight in the worst case in terms of m,
n, and k (but not of ε): If A is a unit grid of size

√
m ×

√
m and B is a unit grid of size√

n×
√
n, then there are Ω(n) translation vectors at which A and B are perfectly aligned

and have at least k points in common. Thus, any O(1)-approximate matching diagram of A
and B needs to have Ω(n) distinct faces.
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Abstract
The tree inclusion problem is, given two node-labeled trees P and T (the “pattern tree” and
the “text tree”), to locate every minimal subtree in T (if any) that can be obtained by applying
a sequence of node insertion operations to P . Although the ordered tree inclusion problem is
solvable in polynomial time, the unordered tree inclusion problem is NP-hard. The currently
fastest algorithm for the latter is from 1995 and runs in O(poly(m,n) · 22d) = O∗(22d) time,
where m and n are the sizes of the pattern and text trees, respectively, and d is the maximum
outdegree of the pattern tree. Here, we develop a new algorithm that improves the exponent 2d
to d by considering a particular type of ancestor-descendant relationships and applying dynamic
programming, thus reducing the time complexity to O∗(2d). We then study restricted variants
of the unordered tree inclusion problem where the number of occurrences of different node labels
and/or the input trees’ heights are bounded. We show that although the problem remains NP-
hard in many such cases, it can be solved in polynomial time for c = 2 and in O∗(1.8d) time for
c = 3 if the leaves of P are distinctly labeled and each label occurs at most c times in T . We
also present a randomized O∗(1.883d)-time algorithm for the case that the heights of P and T
are one and two, respectively.
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27:2 Algorithms for Unordered Tree Inclusion

1 Introduction

Tree pattern matching and measuring the similarity of trees are classic problem areas in
theoretical computer science. One intuitive and extensively studied measure of the similarity
between two rooted, node-labeled trees T1 and T2 is the tree edit distance, defined as the
length of a shortest sequence of node insertion, node deletion, and node relabeling operations
that transforms T1 into T2 [7]. When T1 and T2 are ordered trees, the tree edit distance can
be computed in polynomial time. The first algorithm to achieve this bound ran in O(n6)
time [20], where n is the total number of nodes in T1 and T2, and it was gradually improved
upon until Demaine et al. [12] presented an O(n3)-time algorithm thirty years later which
was proved to be worst-case optimal under a conjecture that there is no truly subcubic time
algorithm for the all pairs shortest paths problem [9]. On the other hand, the tree edit
distance problem is NP-hard for unordered trees [25]. It is MAX SNP-hard even for binary
trees in the unordered case [24], which implies that it is unlikely to admit a polynomial-
time approximation scheme. Akutsu et al. [3, 5] have developed efficient exponential-time
algorithms for this problem variant. As for parameterized algorithms, Shasha et al. [19]
developed an O(4`1+`2 min(`1, `2)mn)-time algorithm for the problem, where `1 and `2 are
the numbers of leaves in T1 and T2, respectively. Using another parameter k, an O∗(2.62k)-
time algorithm was developed for the unit-cost edit operation model [4], where k is the edit
distance and O∗(f(· · · )) means O(f(· · · )poly(m,n)). See [7] for other related results.

An important special case of the tree edit distance problem known as the tree inclusion
problem is obtained when only node insertion operations are allowed. This problem has
applications to structured text databases and natural language processing [8, 14, 21]. Here,
we assume the following formulation of the problem: given a “text tree” T and a “pattern
tree” P , locate every minimal subtree in T (if any) that can be obtained by applying a
sequence of node insertion operations to P . (Equivalently, one may define the tree inclusion
problem so that only node deletion operations on T are allowed.) For unordered trees,
Kilpeläinen and Mannila [14] proved the problem to be NP-hard in general but solvable in
polynomial time when the degree (outdegree) of the pattern tree is bounded from above
by a constant. More precisely, the running time of their algorithm is O(d · 22d ·mn) time,
where m = |P |, n = |T |, and d is the maximum degree of P . Bille and Gørtz [8] gave a
fast algorithm for the case of ordered trees, and Valiente [21] developed a polynomial-time
algorithm for a constrained version of the unordered case. Also note that the special case of
the tree inclusion problem where node insertion operations are only allowed to insert new
leaves corresponds to a subtree isomorphism problem, which can be solved in polynomial
time for unordered trees [17].

1.1 Practical applications
Due to the rapid advance of AI technology, matching methods for knowledge base become
more important. As a fundamental technique for searching knowledge base, researchers in
database community have been studying the subtree similarity search. For example, Cohen
and Or proposed a subtree similarity search algorithm for various distance functions [11],
while Chang et al. proposed a top-k tree matching algorithm [10]. In the Natural Language
Processing (NLP) field, researchers are incorporating the deep learning techniques into NLP
problems and developing parsing/dependency trees processing algorithms [16]. Bibliographic
matching is one of the most popular applications of real-world matching problems [15]. In
most cases, single article has at most two or three versions, and it is very rare that single
article includes the same name co-authors. Therefore, it may be reasonable to assume that
the leaves of P are distinctly labeled and each label occurs at most c times in T .
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Table 1 The computational complexity of some special cases of the unordered tree inclusion
problem, where the last one is a randomized one. For any tree T , h(T ) denotes the height of T and
OCC(T ) the maximum number of times that any leaf label occurs in T . As indicated in the table,
either all nodes or only the leaves are labeled (the former is harder since it generalizes the latter).

Restriction Labels on Complexity Reference
h(T ) = 2, h(P ) = 1, OCC(T ) = 3, OCC(P ) = 1 all nodes NP-hard Corollary 8
h(T ) = 2, h(P ) = 2, OCC(T ) = 3, OCC(P ) = 1 leaves NP-hard Theorem 9
OCC(T ) = 2, OCC(P ) = 1 all nodes P Theorem 11
OCC(T ) = 3, OCC(P ) = 1 all nodes O∗(1.8d) time Theorem 12
h(T ) = 2, h(P ) = 1 all nodes O∗(1.883d) time Theorem 14

The extended tree inclusion problem was proposed in [18], which is an optimization
problem designed to make the unordered tree inclusion problem more useful for practical tree
pattern matching applications, e.g., involving glycan data from the KEGG database [13],
weblogs data [23], and bibliographical data from ACM, DBLP, and Google Scholar [15].
This problem asks for an optimal connected subgraph of T (if any) that can be obtained by
performing node insertion operations as well as node relabeling operations to P while allowing
non-uniform costs to be assigned to the different node operations; it was shown in [18] that
the unrooted version can be solved in O∗(22d) time and a further extension of the problem
that also allows at most k node deletion operations can be solved in O∗((ed)kk1/222(dk+d−k))
time where e is the base of the natural logarithm.

1.2 New results
We improve the exponential contribution to the time complexity of the fastest known
algorithm for the unordered tree inclusion problem (Kilpeläinen and Mannila’s algorithm
from 1995 [14]) from 22d to 2d, where d is the maximum degree of the pattern tree, so
that the time complexity becomes O(d2dmn2) = O∗(2d). This improved bound is achieved
by introducing a simple but quite useful idea of minimal inclusion and a different way of
dynamic programming. Next, we study the problem’s computational complexity for several
restricted cases (see Table 1 for a summary) and give a polynomial-time algorithm for when
the leaves in P are distinctly labeled and every label appears at most twice in T . Then, we
derive an O∗(1.8d)-time algorithm for the NP-hard case where the leaves in P are distinctly
labeled and each label appears at most three times in T . Both are obtained by effectively
utilizing a polynomial-time algorithm for 2-SAT. Finally, we derive a randomized O∗(1.883d)
time algorithm for the case where the heights of P and T are one and two, respectively.
It is obtained by a simple but non-trivial combination of the O∗(2d) time algorithm, an
O∗(1.234m) time algorithm for SAT with m clauses [22], and color-coding [6]. Because of
the page limit, some proofs are omitted in this version.

2 Preliminaries

From here on, all trees are rooted, unordered, and node-labeled. Let T be a tree. A node
insertion operation on T is an operation that creates a new node v having any label and
then: (i) attaches v as a child of some node u currently in T and makes v become the parent
of a (possibly empty) subset of the children of u; or (ii) makes the current root of T become
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27:4 Algorithms for Unordered Tree Inclusion

a child of v and lets v become the new root. For any two trees T1 and T2, we say that T1 is
included in T2 if there exists a sequence of node insertion operations such that applying the
sequence to T1 yields T2 (i.e., T1 is obtained by node deletions from T2).

For a tree T , r(T ), h(T ), and V (T ) denote its root, height, and the set of nodes in T ,
respectively. A mapping between two trees T1 and T2 is a subset M ⊆ V (T1)× V (T2) such
that for every (u1, v1), (u2, v2) ∈ M , it holds that: (i) u1 = u2 if and only if v1 = v2; and
(ii) u1 is an ancestor of u2 if and only if v1 is an ancestor of v2. T1 is included in T2 if
and only if there is a mapping M between T1 and T2 such that |M | = |V (T1)| and u and v
have the same node label for every (u, v) ∈M [20]. Such a mapping is called an inclusion
mapping.

In the tree inclusion problem, the input consists of two trees P and T (also referred to as
the “pattern tree” and the “text tree”), and the objective is to locate every minimal subtree
of T that includes P . Define m = |V (P )| and n = |V (T )|, and d denote the maximum
degree of P . For any node v, let `(v) and Chd(v) denote its label and the set of its children.
Also let Anc(v) and Des(v) denote the sets of strict ancestors and strict descendants of v,
respectively, i.e., where v itself is excluded from these sets. For a node v in a tree T , T (v) is
the subtree of T induced by Des(v)∪ {v}. We write P (u) ⊂ T (v) if P (u) is included in T (v)
under the condition that u is mapped to v. For two trees T1 and T2, T1 ∼ T2 denotes that
T1 is isomorphic to T2 (with label information). The following concept plays a key role in
our algorithm.

I Definition 1. We say that T (v) minimally includes P (u) (denoted as P (u) ≺ T (v)) if
P (u) ⊂ T (v) holds and there is no v′ ∈ Des(v) such that P (u) ⊂ T (v′).

I Proposition 2. Let Chd(u) = {u1, . . . , ud}. P (u) ⊂ T (v) holds if and only if the following
conditions are satisfied.
(1) `(u) = `(v).
(2) v has a set of descendants D(v) = {v1, . . . , vd} such that vi /∈ Des(vj) for all i 6= j.
(3) There exists a bijection φ from Chd(u) to D(v) such that P (ui) ≺ T (φ(ui)) holds for all

ui ∈ Chd(u).

Proof. Conditions (1) and (2) are obvious. To prove (3), suppose there exists a bijection φ′
from Chd(u) to D(v) such that P (uj) ⊂ T (φ′(uj)) holds for all uj ∈ Chd(u) and P (ui) ≺
T (φ(ui)) does not hold for some ui ∈ Chd(u). Then, there must exist v′ ∈ Des(φ′(ui))
such that P (ui) ≺ T (v′) holds. Let φ′′ be the bijection obtained by replacing a mapping
from ui to φ′(ui) with that from ui to v′. Clearly, φ′′ gives a part of an inclusion mapping.
Repeatedly applying this procedure, we can obtain a bijection satisfying all conditions. J

Note that the conditions of this proposition mainly state that all children of u must be
mapped to descendants of v that do not have ancestor-descendant relationships. Since P is
included in T if and only if there exists v ∈ V (T ) such that P ≺ T (v), we focus on how to
decide if P (u) ≺ T (v) assuming that whether P (uj) ≺ T (vi) holds is known for all (uj , vi)
with uj ∈ Des(u) ∪ {u}, vi ∈ Des(v) ∪ {v}, and (uj , vi) 6= (u, v).

I Proposition 3. Suppose that P (u) ≺ T (v) can be decided in O(f(d,m, n)) time assuming
that whether P (uj) ≺ T (vi) holds is known for all descendant pairs (uj , vi). Then the
unordered tree inclusion problem can be solved in O(f(d,m, n)mn) time by using a bottom-up
dynamic programming procedure.
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3 An O(d2dmn2)-time algorithm

The crucial parts of the algorithm in [14] are the definition of S(v) and its computation (see
[14] for the details since our algorithms are significantly different from theirs). For each fixed
u in P , S(v) is defined by

S(v) = {U ⊆ Chd(u)| P (U) ⊂ T (v)},

where P (U) is the forest induced by nodes in U and their descendants and P (U) ⊂ T (v)
means that forest P (U) is included in T (v) (i.e., T (v) can be obtained from P (U) by node
insertion operations). Clearly, the size of S(v) is no greater than 2d. Note that in this paper,
we use S or S(v) only to denote a set, not to denote a subtree. In the algorithm of [14], the
following operation is performed from left to right for the children v1, . . . , vl of v:

S := {U ∪R|U ∈ S,R ∈ S(vi)},

beginning from S = ∅, and S(v) is determined based on the resulting S. However, this
update operation on S causes an O(d22d) factor because it examines O(2d)×O(2d) set pairs.
Therefore, in order to avoid this kind of operation, we need a new approach for computing
S(v), as explained below.

Given an unordered tree T , we fix any left-to-right ordering of its nodes (the ordering
does not affect the correctness). Then, for any two nodes vi, vj ∈ V (T ) that do not have
any ancestor-descendant relationship, either “vi is left of vj” or “vi is right of vj” is uniquely
determined. We denote “vi is left of vj” by vi / vj .

We focus on deciding if P (u) ≺ T (v) holds for fixed (u, v) because this part is crucial to
reduce the exponential factor (we analyze the whole time complexity in Theorem 7). Assume
w.l.o.g. (without loss of generality) that Chd(u) = {u1, . . . , ud} (i.e., u has d children). For
simplicity, we assume until the end of this section that P (ui) ∼ P (uj) does not hold for any
ui 6= uj ∈ Chd(u). For any vi ∈ V (T (v)), define M(vi) by M(vi) = {uj ∈ Chd(u)|P (uj) ≺
T (vi)}. For example, M(v0) = ∅, M(v2) = {uC}, and M(v3) = {uD, uE} in Figure 1. For
any vi ∈ V (T (v)), LF (v, vi) denotes the set of nodes in V (T (v)) each of which is left of vi
(see Figure 1 for an example). Then, we define S(v, vi) by

S(v, vi) = {U ⊆ Chd(u)|P (U) ⊂ T (LF (v, vi))}
∪ {U ⊆ Chd(u)|(U = U ′ ∪ {uj}) ∧ (P (U ′) ⊂ T (LF (v, vi))) ∧ (uj ∈M(vi))}

where T (LF (v, vi)) is the forest induced by nodes in LF (v, vi) and their descendants. Note
that P (∅) ⊂ T (...) always holds. The definition of S(v, vi) leads to a dynamic programming
procedure for its computation. We explain S(v, vi) and related concepts using an example in
Figure 1. Suppose that we have the relations of P (uA) ≺ T (v1), P (uB) ≺ T (v1), P (uC) ≺
T (v2), P (uD) ≺ T (v3), P (uE) ≺ T (v3), P (uD) ≺ T (v4), P (uF ) ≺ T (v4). Then, the following
holds: S(v, v0) = { ∅ }, S(v, v1) = { ∅, {uA}, {uB} }, S(v, v2) = { ∅, {uC} }, S(v, v3) =
{ ∅, {uD}, {uE} }, S(v, v4) = { ∅, {uD}, {uE}, {vF }, {uD, uE}, {uD, uF }, {uE , uF } }.

I Proposition 4. S(v) = ∪vi∈Des(v)S(v, vi).

Proof. Let U ∈ S(v) and dU = |U |. Let φ be an injection from U toDes(v) giving an inclusion
mapping for P (U) ⊂ T (v). Let {v′1, . . . , v′dU } = {φ(uj)|uj ∈ U}, where v′1 / v′2 / · · · / v′dU .
Then, v′i ∈ LF (v, v′i+1) and v′i ∈ LF (v, v′dU ) hold for all i = 1, . . . , dU − 1. Furthermore,
P (uj) ≺ T (v′i) holds for v′i = φ(uj). Therefore, U ∈ S(v, v′dU ).

It is straightforward to see that S(v, vi) does not contain any element not in S(v). J
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F

uF

u

T(v)

A B

D E D F

v

v0
v1

v2

v3 v4

v5

v6

LF(v,v5)

D C

Figure 1 Example for explaining the key idea. A triangle X attached to vi means that P (uX) ⊂
T (vi) holds. Note that triangle D appears at v2, v3, and v4. However, P (uD) ≺ T (v2) does not hold
since it does not satisfy the minimality condition. Therefore, v2 is never selected for matching to uD

in AlgInc1: if we need to match uD to v2, we can instead use a matching between uD and v3.

v

v1 v2

v3

v4 v5
v6

Figure 2 Example of a DAG G(V, E) constructed from T (v), where v /∈ V , E is shown by dashed
arrows, and T (v) is shown by bold lines.

We construct a DAG (directed acyclic graph) G(V,E) from T (v) (see also Figure 2). V
is defined by V = V (T (v)) − {v}, and E is defined by E = {(vi, vj)| vi / vj , }. Then, we
traverse G(V,E) so that node vi is visited only after all of its predecessors are visited. Let
Pred(vi) denote the set of the predecessors of vi (i.e., Pred(vi) is the set of nodes left of vi).
Recall that M(vi) = {uj ∈ Chd(u)| P (uj) ≺ T (vi)}.

Then, we compute S(v, vi) by the following procedure, which is referred to as AlgInc1.
(1) S0(vi)←

⋃
vj∈Pred(vi) S(v, vj).

(2) S(v, vi)← S0(vi) ∪ {S ∪ {uh}| uh ∈M(vi), S ∈ S0(vi)}.
If Pred(vi) = ∅, we let S(v, vi) ← {∅} ∪ {{uh}| uh ∈ M(vi)}. Finally, we let S(v) ←⋃
vi∈Des(v) S(v, vi). Then, P (u) is included in T (v) with u corresponding to v iff u and v

have the same label and Chd(u) ∈ S(v).

I Lemma 5. AlgInc1 correctly computes S(v, vj) for all vj ∈ Des(v) in O(d2dn2) time.

Proof. Since it is straightforward to prove the correctness, we analyze the time complexity.
The sizes of S(v), S(v, vij )s, and S0(vi)s are O(d2d), and computation of each of such sets
can be done in O(d2dn) time. Since the number of S(v, vij )s and S0(vi)s (per v) are O(n),
the total computation time is O(d2dn2). J

If there exist ui, uj ∈ Chd(u) such that P (ui) ∼ P (uj), we treat each element in S(v),
S(v, vij )s, and S0(vi)s as a multiset where any ui and uj such that P (ui) ∼ P (uj) are
identified and the multiplicity of ui is bounded by the number of P (uj)s isomorphic to P (ui).
Then, since |Chd(u)| ≤ d for all u in P , the size of each multiset is at most d and the number
of different multisets is not greater than 2d. Therefore, the same time complexity result
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holds. This discussion can also be applied to the following sections. Note that by treating
these ui and uj separately, we need not change the algorithm. However, use of multi-sets
plays an important role in Section 7.

AlgInc1 does a lot of redundant computations. In order to compute S0(vi), we do not
need to consider all vij s that are left of vi. Instead, we construct a tree T ′(v) from a given
T (v) by the following rule: for each pair of consecutive siblings (vi, vj) in T (v), add a new
sibling (leaf) v(i,j) between vi and vj . Newly added nodes are called virtual nodes. We
construct a DAG G′(V ′, E′) on V ′ = V (T ′(v)) by: (vi, vj) ∈ E′ iff one of the following holds

vj is a virtual node, and vi is in the rightmost path of T ′(vj1), where vj = v(j1,j2).
vi is a virtual node, and vj is in the leftmost path of T ′(vi2), where vi = v(i1,i2).

Then, we can use the same technique as AlgInc1, except that G(V,E) is replaced by
G′(V ′, E′). We denote the resulting algorithm by AlgInc2.

I Lemma 6. AlgInc2 correctly computes S(v, vj) for all vj ∈ Des(v) in O(d2dn) time.

Since checking the minimality can be done in O(m) time per (u, v), it is seen from
Proposition 3 that the total time complexity is O(d2dmn2). Since the size of each S(v, vi) is
O(d2d) and we need to maintain information about P (u) ≺ T (v) and P (u) ⊂ T (v) for all
(u, v), the total space is O(d2dn+mn),

I Theorem 7. Unordered tree inclusion can be solved in O(d2dmn2) time using O(d2dn+mn)
space.

If we analyze the time complexity carefully, we can see that it is O(d2dh(T )mn) because
each vi is involved in computation of P (u) ≺ T (v) only for v ∈ Anc(vi). This result is better
than that of [14] if d is not small (precisely, d > c log(h(T )) for some constant c).

4 NP-hardness of unordered tree inclusion for pattern trees with
unique leaf labels

For any node-labeled tree T , let L(T ) be the set of all leaf labels in T . For any c ∈
L(T ), let OCC(T, c) be the number of times that c occurs in T , and define OCC(T ) =
maxc∈L(T ) OCC(T, c).

The decision version of the tree inclusion problem is to determine whether T can be
obtained from P by applying node insertion operations. Kilpeläinen and Mannila [14]
proved that the decision version of unordered tree inclusion is NP-complete by reducing
from Satisfiability. In their reduction, the clauses in a given instance of Satisfiability are
represented by node labels in the constructed trees; in particular, for every clause C, each
literal in C introduces one node in T whose node label represents C. By using 3-SAT instead
of Satisfiability in their reduction, we immediately have:

I Corollary 8. The decision version of the unordered tree inclusion problem is NP-complete
even if restricted to instances where h(T ) = 2, h(P ) = 1, OCC(T ) = 3, and OCC(P ) = 1.

In Kilpeläinen and Mannila’s reduction, the labels assigned to the internal nodes of T
are significant. Here, we consider the computational complexity of the special case of the
problem where all internal nodes in P and T have the same label, or equivalently, where only
the leaves are labeled. Then, we have the following.

I Theorem 9. The decision version of the unordered tree inclusion problem is NP-complete
even if restricted to instances where h(T ) = 2, h(P ) = 2, OCC(T ) = 3, OCC(P ) = 1, and
all internal nodes have the same label.
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Figure 3 For these trees, Occ(u1, M) = Occ(u2, M) = 3, Occ(u3, M) = Occ(u4, M) =
Occ(u5, M) = 2, d2 = 3, d3 = 2, and OCC(P, T ) = 3.

5 A polynomial-time algorithm for case of OCC(P, T ) = 2

In this and the following sections, for the simplicity, we consider the decision version of
unordered tree inclusion. However, by repeatedly applying each procedure O(n) times, we
can solve the locating problem version and thus the theorems hold as they are.

In this section, we require that each leaf of P has a unique label and that it appears at
no more than k leaves in T . We denote this number k by OCC(P, T ) (see Figure 3). Note
that the case of OCC(P ) = 1 and OCC(T ) = k is included in the case of OCC(P, T ) = k.
From the unique leaf label assumption, we have the following observation.

I Proposition 10. Suppose that P (u) has a leaf labeled with b. If P (u) ⊂ T (v), then v is an
ancestor of a leaf (or leaf itself) with label b.

We say that vj is a minimal node for ui if P (ui) ≺ T (vj) holds. It follows from this
proposition that the number of minimal nodes is at most k for each ui if OCC(P, T ) = k.

When k = 2, we can have a chain of choices of the subtrees of P in T . This suggests that
2-SAT is useful. Indeed, by using a polynomial-time reduction to 2-SAT, we have:

I Theorem 11. Unordered tree inclusion can be solved in polynomial time if OCC(P, T ) = 2.

6 An O∗(1.8d)-time algorithm for case of OCC(P, T ) = 3

In this section, we present an O∗(1.8d)-time algorithm for the case of OCC(P, T ) = 3, where
d is the maximum degree of P , m = |V (P )|, and n = |V (T )|. Note that this case remains
NP-hard from Theorem 9.

The basic strategy is use of dynamic programming: decide whether P (u) ⊂ T (v) in
a bottom-up way. Suppose that u has a set of children U = {u1, . . . , ud}. Since we use
dynamic programming, we can assume that P (ui) ≺ T (vj) is known for all ui and for all vj ∈
V (T (v))− {v}. We defineM(u, v) byM(u, v) = {(ui, vj)| P (ui) ≺ T (vj) ∧ vj ∈ V (T (v))}.

The crucial task of the dynamic programming procedure is to find an injective mapping ψ
from {u1, . . . , ud} to V (T (v))−{v} such that P (ui) ≺ T (ψ(ui)) holds for all ui (i = 1, . . . , d)
and there is no ancestor/descendant relationship between any ψ(ui) and ψ(uj) (ui 6= uj). If
this task can be performed in O(f(d,m, n)) time, from Proposition 3, the total complexity
will be O∗(f(d,m, n)). We assume w.l.o.g. that ψ is given as a set of mapping pairs. For
each vj ∈ V (T (v)) and each M ⊆M(u, v), we define AncDes(vj , T,M) by

AncDes(vj , T,M) = {(uk, vh)| (uk, vh) ∈M ∧ vh ∈ ({vj} ∪Anc(vj , T ) ∪Des(vj , T ))},

where Anc(vj , T ) (resp., Des(vj , T )) denotes the set of ancestors (resp., descendants) of vj
in T where vj /∈ Anc(vj , T ) (resp., vj /∈ Des(vj , T )).
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Here, we define Occ(ui,M) by Occ(ui,M) = |{j | (ui, vj) ∈ M}|, where M =M(u, v).
Let d3 (resp., d2) be the number of uis such that Occ(ui,M) = 3 (resp., Occ(ui,M) = 2)
(see also Figure 3). We assume w.l.o.g. that d2 + d3 = d because Occ(ui,M) = 1 means
that ψ(ui) is uniquely determined and thus we can ignore uis with Occ(ui,M) = 1. From
Theorem 11, we can see the following if there are no two pairs (ui1 , vj1), (ui2 , vj2) ∈M such
that Occ(ui1 ,M) = 3, Occ(ui2 ,M) = 3, and (ui2 , vj2) ∈ AncDes(vj1 , T (v),M).

The problem can be solved in O∗(2d3) time:
For each ui such that Occ(ui,M) = 3 (i.e., (ui, vj1), (ui, vj2), (ui, vj3) ∈ M), we choose
ψ(ui) = vj1 (i.e., (ui, vj1) ∈ ψ) or not. Thus, there exist 2d3 possibilities. After all the
choices, there is no ui such that Occ(ui,M) = 3 and Theorem 11 can be applied.
The problem can also be solved in O∗(2d2) time:
For each ui with Occ(ui,M) = 2 (i.e., (ui, vj1), (ui, vj2) ∈M), we must choose ψ(ui) = vj1

or ψ(ui) = vj2 . Thus, there are 2d2 possibilities. After all choices, each (ui, vj) ∈ M
with Occ(ui,M) = 2 is removed, and thus there is no pairs (ui1 , vj1), (ui2 , vj2) ∈M such
that (ui2 , vj2) ∈ AncDes(vj1 , T (v),M) from the ‘if’ condition. Therefore, the problem is
reduced to bipartite matching, which can be solved in polynomial time.

It means the problem can be solved in O∗(min(2d3 , 2d2)) time. We denote the condition
(i.e., ‘if’ part of the above) and this algorithm by (##) and ALG-##, respectively,
Therefore, the crucial point is how to (recursively) remove pairs such that Occ(ui1 ,M) = 3,
Occ(ui2 ,M) = 3, and (ui2 , vj2) ∈ AncDes(vj1 , T (v),M).

For a mapping ψ, we let ψ∪NULL = NULL, where NULL means that there is no valid
mapping. The following is a pseudocode of the algorithm for finding a mapping ψ, where it
is invoked as FindMapping({u1, . . . , ud},M) with M =M(u, v).

Procedure FindMapping(U,M)
if condition (##) is satisfied then

return mapping by ALG-(##); (#1)
Choose arbitrary (ui1 , vj1), (ui2 , vj2) ∈M such that Occ(ui1 ,M) = 3, Occ(ui2 ,M) = 3,

and (ui2 , vj2) ∈ AncDes(vj1 , T (v),M); (#2)
M ′ ←M − {(ui1 , vj1)}; (#3)
ψ ← FindMapping(U,M ′);
if ψ 6= NULL return ψ;
M ′ ←M −AncDes(vj1 , T (v),M); (#4)
return {(ui1 , vj1)} ∪ FindMapping(U − {ui1},M ′).

I Theorem 12. Unordered tree inclusion can be solved in O∗(1.8d) time if OCC(P, T ) = 3.

7 A randomized algorithm for case of h(P ) = 1 and h(T ) = 2

In this section, we consider the case of h(P ) = 1 and h(T ) = 2, which is denoted by IncH2
and remains NP-hard from Corollary 8. We assume w.l.o.g. that the roots of P and T have
the same unique label and thus they must match in any inclusion mapping.

Let U = {u1, . . . , ud} be the set of children of r(P ). Let v1, . . . , vg be the children of
r(T ), and let vi,1, . . . , vi,ni be the children of each vi.

First, we assume that `(ui) 6= `(uj) holds for all i 6= j, where `(v) denotes the label of v.
This special case is denoted by IncH2U. Recall that IncH2U remains NP-hard.

ISAAC 2018
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IncH2U can be solved by a reduction to CNF SAT, which is different from the one in
Section 5 and is considered as a reverse reduction of the one used for proving NP-hardness
of unordered tree inclusion [14]. For each ui, we define XPOS

i and XNEG
i by

XPOS
i = {xj | `(ui) = `(vj)}, XNEG

i = {xj | (∃vj,k ∈ Chd(vj))(`(ui) = `(vj,k))}.

For each ui, we construct a clause Ci by Ci =

 ∨
xj∈XPOSi

xj

 ∨
 ∨
xj∈XNEGi

xj

 . Then, the

resulting SAT instance is {C1, . . . , Cd}. Intuitively, xj = 1 corresponds to a case that ui is
mapped to vj , where `(ui) = `(vj). Of course, multiple vjs may correspond to ui. However,
it is enough to consider an arbitrary one.

Then, it is straightforward to see that P is included in T iff {C1, . . . , Cd} is satisfiable.
Using Yamamoto’s algorithm for SAT with d clauses [22], we have:

I Proposition 13. IncH2U can be solved in O∗(1.234d) time.

Next, we consider IncH2. We combine two algorithms: (A1) random sampling-based
algorithm, and (A2) modified version of the O(d2dmn2) time algorithm in Section 3.

For (A1), we employ a technique used in color-coding [6]. Let d0 be the number of uis
having unique labels. Let d1 ≤ d2 ≤ · · · ≤ dh be the multiplicities of other labels in U . Note
that d0 + d1 + · · ·+ dh = d holds. Let d− d0 = αd.

For each label ai with di > 1 (i.e., i > 0), we change the labels of nodes with label ai
in P to a1

i , a
2
i , . . . , a

di
i in an arbitrary way. For each node v in T having label ai, we assign

aji (j = 1, . . . , di) to v uniformly at random, and then apply the SAT-based algorithm for
IncH2U. Let M be the set of pairs for an inclusion mapping from P to T . If all nodes of
T appearing in M have different labels, a valid inclusion mapping can be obtained. This
success probability is given by

d1!
dd1

1
· d2!
dd2

2
· · · dh!

ddhh
≥ (αd)!

(αd)(αd) .

Note that this inequality is proved by repeatedly applying d1!
dd1

1
· d2!
dd2

2
≥ (d1 + d2)!

(d1 + d2)d1+d2
,

which is seen from (d1 + d2)d1+d2

dd1
1 d

d2
2

≥
(
d1 + d2
d1

)
= (d1 + d2)!

d1!d2! . Since k!
kk
≥ e−k holds for

sufficiently large k, the success probability is at least e−αd. Therefore, if we repeat the random
sampling procedure eαd times, the failure probability is at most (1− e−αd)eαd ≤ e−1 < 1

2 .
If we repeat the procedure k(log n)eαd times where k is any positive constant (i.e., the

total time complexity is O∗(1.234d · eαd)), the failure probability is at most 1
nk

.
For (A2), we modify the O(d2dmn2) time algorithm as follows. Recall that if there

exist labels with multiplicity more than one, S(v, vi) is a multi-set. In order to represent a
multi-set, we memorize the multiplicity of each label. Then, the number of distinct multi-sets
is given by

N(d0, . . . , dh) = 2d0 ·
h∏
l=1

(dl + 1).

Since di + 1 ≤ 3ddi/2e holds for any di ≥ 2, this number is bounded as

N(d0, . . . , dh) ≤ 2d0 · 3d(d−d0)/2e.

Then, the time complexity of (A2) is O∗(2(1−α)d · 3(α/2)d).
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Since we can use the minimum of the time complexities of (A1) and (A2), the resulting
time complexity is given by

max
α

min(O∗(1.234d · eαd), O∗(2(1−α)d · 3(α/2)d)).

By numerical calculation, this is O∗(1.883d).

I Theorem 14. IncH2 can be solved in randomized O∗(1.883d) time with probability at
least 1− 1

nk
, where k is any positive constant.

It seems that the above algorithm can be de-randomized by using the k-perfect hash
family as in [6]. However, since the construction of a k-perfect hash family has a high
complexity, the resulting algorithm might have a time complexity much worse than O∗(2d).

8 Concluding remarks

We have improved the exponential factor of Kilpeläinen and Mannila’s [14] well-known
algorithm from 1995 for unordered tree inclusion from 22d to 2d. Observe that the 2d factor
may not be optimal. Indeed, we have presented a randomized O∗(1.883d)-time algorithm
for the case of h(P ) = 1 and h(T ) = 2. However, we could not obtain an O∗((2− ε)d)-time
algorithm for any constant ε > 0 even for the case of h(P ) = h(T ) = 2. Development of an
O∗((2− ε)d)-time algorithm for unordered tree inclusion, or showing an Ω(2d) lower bound
using recent techniques for proving lower bounds on various matching problems [1, 2, 9], is
left as an open problem.
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Abstract
Beyond-planarity focuses on the study of geometric and topological graphs that are in some sense
nearly planar. Here, planarity is relaxed by allowing edge crossings, but only with respect to some
local forbidden crossing configurations. Early research dates back to the 1960s (e.g., Avital and
Hanani 1966) for extremal problems on geometric graphs, but is also related to graph drawing
problems where visual clutter due to edge crossings should be minimized (e.g., Huang et al. 2018).

Most of the literature focuses on Turán-type problems, which ask for the maximum number
of edges a beyond-planar graph can have. Here, we study this problem for bipartite topological
graphs, considering several types of beyond-planar graphs, i.e. 1-planar, 2-planar, fan-planar, and
RAC graphs. We prove bounds on the number of edges that are tight up to additive constants;
some of them are surprising and not along the lines of the known results for non-bipartite graphs.
Our findings lead to an improvement of the leading constant of the well-known Crossing Lemma
for bipartite graphs, as well as to a number of interesting questions on topological graphs.
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1 Introduction

Planarity has been a central concept in the areas of graph algorithms, computational geometry,
and graph theory since the beginning of the previous century. While planar graphs were
originally defined in terms of their geometric representation, they exhibit a number of
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(a) 1-planar (b) 3-quasiplanar (c) fan-planar (d) RAC

Figure 1 Different forbidden crossing configurations.

terms of forbidden minors, to the existence of linear-time algorithms to test planarity, to
the Four-Color theorem, and to the Euler’s polyhedron formula, which implies that n-vertex
planar graphs have at most 3n− 6 edges.

For the applicative purpose of visualizing real-world networks, however, the concept of
planarity turns out to be overly restrictive. Graphs representing such networks are too dense
to be planar, even though one can often confine non-planarity in some local structures. Also,
cognitive experiments [28] show that this does not affect the readability of the drawing too
much, if these local structures satisfy specific properties. In other words, these experiments
indicate that even non-planar drawings may be effective for human understanding, as long as
the crossing configurations satisfy certain properties. Different requirements on the crossing
configurations naturally give rise to different classes of beyond-planar graphs. Beyond-
planarity is then defined as a generalization of planarity, which encompasses all these classes.
Early works date back to 60’s [12] in the field of extremal graph theory, and continued over
the years [3, 7, 33]; also due to the aforementioned experiments, a strong attention on the
topic was recently raised (e.g., [21]), which led to many results, described below.

Some of the most studied beyond-planar graphs include:
(i) k-planar graphs, in which each edge is crossed at most k times [2, 32, 33], see Fig. 1a;
(ii) k-quasiplanar graphs, which disallow sets of k pairwise crossing edges [1, 3, 24], see

Fig. 1b;
(iii) fan-planar graphs, in which no edge is crossed by two independent edges or by two

adjacent edges from different directions [14, 30], see Fig. 1c;
(iv) RAC graphs, in which crossings happen at right angles [20, 22]; see Fig. 1d.
Two notable sub-families of 1-planar graphs are the IC-planar graphs [38], where crossings are
independent (i.e., no two crossed edges share an endpoint), and the NIC-planar graphs [37],
where crossings are nearly independent (i.e., no two pairs of crossed edges share two endpoints).
For a survey providing an overview on beyond-planarity see [21].

From the combinatorial point of view, the main extremal graph theory question, also
called Turán-type [15], concerns the maximum number of edges for graphs in a certain class.
Tight density bounds are known for several classes [20, 30, 33, 37, 38]; a main open question
is to determine the density of k-quasiplanar graphs, which is conjectured to be linear in n
for any fixed k [1, 3, 7, 24]. The new bounds for 1-, 2-, 3- and 4-planar graphs have led
to progressive improvements on the leading constant of the lower bound on the number of
crossings of a graph, provided by the well-known Crossing Lemma, from 1

100 = 0.01 [5, 31]
to 1

64 ≈ 0.0156 [4], to 1
33.75 ≈ 0.0296 [33], to 1

31.1 ≈ 0.0322 [32], to 1
29 ≈ 0.0345 [2]. Related

combinatorial problems concern inclusion relationships between classes [8, 14, 17, 22, 25].
From the complexity side, in contrast to efficient planarity testing algorithms [27],

recognizing a beyond-planar graph has often been proven to be NP-hard [10, 14]. Polynomial-
time testing algorithms can be found when posing additional restrictions on the produced
drawings, namely, that the vertices are required to lie either on two parallel lines (see,
e.g., [14, 19]) or on the outer face of the drawing (see, e.g., [11, 26]).



P. Angelini, M. A. Bekos, M. Kaufmann, M. Pfister, and T. Ueckerdt 28:3

Table 1 Summary of our results (from sparse to dense); the bound with asterisk (∗) is not tight.

General Bipartite

Graph class Bound (tight) Ref. Lower bound Ref. Upper bound Ref.

IC-planar: 3.5n− 7 [38] 2.25n− 4 Thm.1 2.25n− 4 Thm.2
NIC-planar: 3.6n− 7.2 [37] 2.5n− 5 Thm.1 2.5n− 5 Thm.3

1-planar: 4n− 8 [34] 3n− 8 [18] 3n− 8 [18]
RAC: 4n− 10 [20] 3n− 9 Thm.4 3n− 7 Thm.5

2-planar: 5n− 10 [33] 3.5n− 12 Thm.13 3.5n− 7 Thm.15
fan-planar: 5n− 10 [30] 4n− 16 Thm.6 4n− 12 Thm.11

3-planar: 5.5n− 11 [32] 4n−O(1) Sec.6 — —
k-planar: 3.81

√
kn ∗ [2] — — 3.005

√
kn Thm. 17

Another natural restriction, yet rarely explored in the literature, is to pose additional
structural constraints on the graphs themselves, rather than on their drawings. For 3-
connected 1-plane graphs, Alam et al. [6] presented a polynomial-time algorithm to construct
1-planar straight-line drawings. Further, Brandenburg [16] gave an efficient algorithm to
recognize optimal 1-planar graphs, i.e., those with the maximum number of edges.

For the important class of bipartite graphs, very few results have been discovered so far.
From the density point of view, the only result we are aware of is a tight bound of 3n− 8
edges for bipartite 1-planar graphs [18, 29]. Didimo et al. [19] characterize the complete
bipartite graphs that admit RAC drawings, but their result does not extend to non-complete
graphs.

Our contribution. Along this direction, we study several classes of beyond-planar bipartite
topological or geometric graphs, focusing on Turán-type problems. Table 1 shows our findings.
The new bound on the edge density of bipartite 2-planar graphs leads to an improvement
of the leading constant of the Crossing Lemma for bipartite graphs from 1

29 ≈ 0.0345,
which holds for general graphs [2], to 1

18.1 ≈ 0.0554 (see Theorem 16). To the best of our
knowledge, this is the first non-trivial adjustment of the Crossing Lemma that is specific
for bipartite graphs, besides the Zarankiewicz conjecture [36], which however only concerns
complete bipartite graphs. Our results also unveil an interesting tendency in the density of
k-planar bipartite graphs with respect to the one of general k-planar graphs. At first sight,
the differences seem to be around n, as it is in the planar and in the 1-planar cases (i.e.,
n− 2). This turns out to be true also for RAC and fan-planar graphs. However, for IC- and
NIC-planar graphs, and in particular for 2-planar graphs, the differences are larger.

Another notable observation from our results is that, in the bipartite setting, fan-planar
graphs can be denser than 2-planar graphs, while in the non-bipartite case these two classes
have the same maximum density, even though none of them is contained in the other [14].
In Section 6 we discuss a number of open problems that are raised by our work.

Methodology. We focus on five classes of bipartite beyond-planar graphs; see Sections 2–5.
To estimate the maximum edge density of each class we employ different counting techniques.

For the class of bipartite IC-planar graphs, we apply a direct counting argument based on
the number of crossings that are possible due to the restrictions posed by IC-planarity.
Our approach is different for NIC-planarity. We show that a bipartite NIC-planar graph
of maximum density contains a set of uncrossed edges forming a plane subgraph whose
faces have length 6, and that each such face contains exactly one crossing pair of edges.

ISAAC 2018
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(a) (b)

Figure 2 Bipartite n-vertex IC- and NIC-planar graphs with (a) 2.25n−4 and (b) 2.5n−5 edges.

To estimate the maximum number of edges of a bipartite RAC graph, we adjust a technique
by Didimo et al. [20], who proved the corresponding bound for general RAC graphs.
For fan-planarity, our technique is more involved. After examining structural properties
of maximal bipartite fan-planar graphs, we show how to augment them so that they
contain a planar quadrangulation as a subgraph. Then, we develop a charging scheme
which charges edges involved in fan crossings to the corresponding vertices, to prove that
there are at least as many edges in the quadrangulation as in the rest of the graph.
For 2-planarity, we again show that maximal bipartite 2-planar graphs have a planar
quadrangulation as a subgraph. We then use a counting scheme based on an auxiliary
directed plane graph, defined by orienting the dual of the quadrangulation, describing
dependencies of adjacent quadrangular faces posed by the edges not belonging to it.

Preliminaries. We consider connected topological graphs, i.e., drawn in the plane with
vertices represented by points in R2 and edges by Jordan arcs connecting their endvertices,
so that:
(i) no edge passes through a vertex different from its endpoints,
(ii) no two adjacent edges cross,
(iii) no edge crosses itself,
(iv) no two edges meet tangentially, and
(v) no two edges cross more than once.

A graph has no self-loops or multiedges. Otherwise, it is a topological multigraph, for which
we assume that the two regions defined by self-loops or multiedges contain at least one vertex
in their interiors, i.e., all edges are non-homotopic.

We refer to a beyond-planar graph G with n vertices and maximum possible number of
edges as optimal. Consider all the plane spanning subgraphs of G (i.e., in their drawings
inherited from G there exists no two crossing edges). Among those, we select one with the
largest number of edges, which we denote by Gp and call it the planar structure of G. Let
f = 〈u0, u1, . . . , uk−1〉 be a face of Gp. We say that f is simple if ui 6= uj for each i 6= j; face
f is connected if edge (ui, ui+1) exists for each i = 0, . . . , k − 1 (indices modulo k).

2 Bipartite IC- and NIC-Planar Graphs

In this section, we give tight bounds on the density of bipartite IC- and NIC-planar graphs.
For the proofs of the lower bounds, we refer to Fig. 2. Full proofs can be found in [9].

I Theorem 1. For infinitely many values of n, there exists a bipartite n-vertex IC-planar
graph with 2.25n− 4 edges, and a bipartite n-vertex NIC-planar graph with 2.5n− 5 edges.

I Theorem 2. A bipartite n-vertex IC-planar graph has at most 2.25n− 4 edges

Proof. Our proof is an adjustment of the one for general IC-planar graphs [38]. Let G be
a bipartite n-vertex optimal IC-planar graph. Let cr(G) be the number of crossings of G.
Since every vertex of G is incident to at most one crossing, cr(G) ≤ n

4 . By removing one edge
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Gk−1

Figure 3 Construction for a bipartite n-vertex RAC graph with 3n− 9 edges.

from every pair of crossing edges of G, we obtain a plane bipartite graph, which has at most
2n− 4 edges. Hence, the number of edges of G is at most 2n− 4 + cr(G) = 2.25n− 4. J

I Theorem 3. A bipartite n-vertex NIC-planar graph has at most 2.5n− 5 edges.

Proof. Among all bipartite optimal NIC-planar graphs with n vertices, let G be the one with
the maximum number of uncrossed edges, i.e., G is such that the plane (bipartite) subgraph
H obtained by removing every crossed edge in G has maximum density. It is not difficult to
show that each face of H containing two crossing edges in G is connected and has length
6 (for details see [9]). Thus, every face of H has length either 6, if it contains two edges
crossing in G, or 4 otherwise (due to bipartiteness and maximality).

Let ν and µ be the number of vertices and edges of H, respectively. Clearly, n = ν. Let
also φ4 and φ6 be the number of faces of length 4 and 6 in H, respectively. We have that
2φ4 + 3φ6 = µ. By Euler’s formula, we also have that µ + 2 = ν + φ4 + φ6. Combining
these two equations, we obtain: φ4 + 2φ6 = ν − 2. So, in total the number of edges of G is
µ+ 2φ6 = 2φ4 + 5φ6 = 2n− 4 + φ6. By Euler’s formula, the number of faces of length 6 of a
planar graph is at most (n− 2)/2, which implies that G has at most 2.5n− 5 edges. J

3 Bipartite RAC Graphs

We continue our study on bipartite beyond-planarity with the class of geometric RAC graphs.
We prove an upper bound on their density that is optimal up to a constant of 2.

I Theorem 4. For infinitely many values of n, there exists a bipartite n-vertex RAC graph
with 3n− 9 edges.

Proof. For any k > 1, we recursively define a graph Gk by attaching six vertices and 18
edges to Gk−1; see the left part of Fig. 3. The base graph G1 is a hexagon containing two
crossing edges. So, Gk has 6k vertices and 18k − 10 edges. The right part of Fig. 3 shows
that Gk is RAC: if Gk−1 is drawn so that its outerface is a parallelogram, then it can be
augmented to a RAC drawing of Gk whose outerface is a parallelogram with sides parallel to
the ones of Gk−1. The bound follows by adding an edge in the outerface of Gk by slightly
“adjusting” its drawing; ses [9]. J

I Theorem 5. A bipartite n-vertex RAC graph has at most 3n− 7 edges.

Proof. Let G be a (possibly non-bipartite) RAC graph with n vertices. Since G does not
contain three mutually crossing edges, as in [20] we can color its edges with three colors (r,
b, g) so that the crossing-free edges are the r-edges, while b-edges cross only g-edges, and
vice-versa. Thus, the subgraphs Grb, consisting of only r- and b-edges, and Grg, consisting
of only r- and g-edges, are both planar. Didimo et al. [20, Lemma 4] showed that each face
of Grb has at least two r-edges, by observing that if this property did not hold, then the
drawing could be augmented by adding r-edges. Thus, the number mb of b-edges is at most

ISAAC 2018
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(a) (b) (c)

Figure 4 (a) K4,n−4 with four additional multiedges (thick), (b) K2,n−2 with 2n− 8 additional
multiedges (thick), and (c) K5,5 − e with four additional multiedges (thick).

n − 1 − dλ/2e, where λ ≥ 3 is the number of edges in the outer face of G. Suppose now
that G is additionally bipartite. We still have mb ≤ n− 1− dλ/2e, but in this case λ ≥ 4
holds (by bipartiteness). Hence, mb ≤ n − 3. Since Grg is bipartite and planar, it has at
most 2n− 4 edges (i.e., mr +mg ≤ 2n− 4). Hence, G has at most 3n− 7 edges. J

4 Bipartite Fan-Planar Graphs

We continue our study with the class of fan-planar graphs. We begin as usual with the lower
bound (Theorem 6), which we suspect to be best-possible both for graphs and multigraphs.
For fan-planar bipartite graphs, we prove an almost tight upper bound (Theorem 11).

I Theorem 6. For infinitely many values of n, there exists a bipartite n-vertex fan-planar
(i) graph with 4n− 16 edges, and
(ii) multigraph with 4n− 12 edges.

Proof sketch. Figs. 4a, 4b, and 4c show constructions that yield bipartite n-vertex fan-planar
multigraphs with 4n− 12 edges. Removing the thick edges in Figs. 4a and 4c gives bipartite
n-vertex fan-planar graphs with 4n− 16 edges. J

To prove the upper bound, consider a bipartite fan-planar graph G with a fixed fan-planar
drawing. W.l.o.g. assume that G is edge-maximal and connected, and A, B are the two
bipartitions of G. We shall denote vertices in A by a, a′, or ai for some index i, and similarly
vertices in B by b, b′, or bi. By fan-planarity, for each crossed edge e of G all edges crossing
e have a common endpoint v. We call e an A-edge (respectively, B-edge) if this vertex v lies
in A (respectively, B). If e is crossed exactly once, it is A-edge and B-edge.

A cell of some subgraph H of G is a connected component c of the plane after removing
all vertices and edges in H; see also [30]. The size of c, denoted by ||c|| is the total number
of vertices and edge segments on the boundary ∂c of c, counted with multiplicities.

I Lemma 7 ([30]). Each fan-planar graph G admits a fan-planar drawing such that if c is a
cell of any subgraph of G, and ||c|| = 4, then c contains no vertex of G in its interior.

We choose a fan-planar drawing of G with the property given in Lemma 7.

I Corollary 8. If e = (a, b), with a ∈ A and b ∈ B, is crossed at point p by an A-edge e′,
then each edge crossing e between a and p is an A-edge crossed by each edge crossing e′.

Proof. Let x be the common endpoint of all edges crossing e and e′ = (x, y) be the A-edge
crossing e in p. Let e′′ = (x, y′) be an edge that crosses e between p and a. If e′′ is not an
A-edge, it is crossed by an edge e1 = (a′, b) with a′ 6= a. The A-edge e′ is not crossed by e1.
But then there is a cell c1 bounded by vertex b and segments of e, e′′ and e1, which contains
vertex x or y in its interior (see Fig. 5a), contradicting Lemma 7. Symmetrically, if there is
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Figure 5 Illustration of (a)-(b) the proof of Corollary 8, and (c) Lemma 10.

an edge e2 = (a, b′) that crosses e′ but not e′′, then there is a similar cell c2 with ||c2|| = 4
containing vertex x or y′ (see Fig. 5b), again contradicting Lemma 7. J

Kaufmann and Ueckerdt [30] derive Lemma 7 from the following lemma.

I Lemma 9 ([30]). Let G be given with a fan-planar drawing. If two edges (v, w) and (u, x)
cross in a point p, no edge at v crosses (u, x) between p and u, and no edge at x crosses
(v, w) between p and w, then u and w are on the boundary of the same cell of G.

By the maximality of G we have in this case that (u,w) is an edge of G, provided u and w
lie in distinct bipartition classes. We can use this fact to derive the following lemma.

I Lemma 10. Assume that e1 = (a1, b1) and e2 = (a2, b2) cross. If e1 and e2 are both A- or
B-edges, then (a2, b1) belongs to G and can be drawn so that each edge that crosses (a2, b1)
also crosses e2. Otherwise, (a2, b1) belongs to G and can be drawn crossing-free.

Proof. First assume that e1 and e2 are both A-edges; the case where e1 and e2 are both
B-edges is analogous. Let p1 be the crossing point on e1 that is closest to b1. Since e1 is
an A-edge crossing (a2, b2), the edge e crossing e1 at p1 (possibly e = e2) is incident to a2.
Now either e = e2 or the subgraph H of G consisting of e, e1 and e2 (and their vertices) has
one bounded cell c of size 4, which by Lemma 7 contains no vertex. In both cases, every
edge of G crossing e between a2 and p1, also crosses e2 and ends at a1 (as e2 is an A-edge
crossing (a1, b1)). Thus, drawing an edge from b1 along e1 to p1 and then along e to a2 does
not violate fan-planarity; see Fig. 5c. By the maximality of G, (a2, b1) belongs to G .

Now assume that e1 is an A-edge and e2 is a B-edge. Let p be the crossing point of e1
and e2. By Lemma 9, a2 and b1 lie on the same cell in G and hence, by the maximality of G,
we have that the edge (a2, b1) is contained in G and can be drawn crossing-free. J

We are now ready to prove the main theorem of this section (see also [9] for omitted parts).

I Theorem 11. Any n-vertex bipartite fan-planar graph has at most 4n− 12 edges.

Proof sketch. We start by considering the planar structure Gp of G, i.e., an inclusion-
maximal subgraph of G whose drawing inherited from G is crossing-free. Let EA and EB be
the set of all A-edges and B-edges, respectively, in E[G]−E[Gp]. Each e ∈ EA is crossed by
a non-empty (by maximality of Gp) set of edges in G with common endpoint a ∈ A, and we
say that e charges a. Similarly, every e ∈ EB charges a unique vertex b ∈ B.

For any vertex v in G, let ch(v) denote the number of edges in EA ∪ EB charging v.
Moreover, for a multigraph H containing v, let degH(v) denote the degree of v in H , i.e., the
number of edges of H incident to v. Our goal is to show that for every vertex v of G we have
degGp

(v)− ch(v) ≥ 2. However, this is not necessarily true when Gp is not connected or has
faces of length 6 or more. To overcome this issue, we shall add in a step-by-step procedure
vertices and edges (possibly parallel but non-homotopic to existing edges in Gp) to the plane
drawing of Gp such that:
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Figure 6 Illustrations for Thm 11; edges in Gp are thick, newly added vertices and edges are red.

(P.1) the obtained multigraph Ḡp is a planar quadrangulation,
(P.2) the drawing of the multigraph Ḡ := G ∪ Ḡp is again fan-planar, and
(P.3) each new vertex is added with three edges to other (possibly earlier added) vertices.

To find Ḡp (refer to [9] for a full proof), we first assume that Gp is not connected. In this
case there must be an edge e with endpoints in different connected components of Gp, which
is crossed by some edge e′ in Gp. Depending on which of e, e′ is an A-edge or B-edge, we
either use Lemma 10 to add a new edge to Gp or we carefully add a new vertex of degree
three to Gp. Once we may assume that Gp is connected but not a quadrangulation, there
exists a face f whose facial walk W has length at least 6. For edges e with one endpoint in
V [W ] that run through face f and leave f by crossing an edge e′ of Gp, we define a stick to
be the initial segment of e that is contained in f . Such a stick s splits W into two parts,
each going from the start vertex of e to the crossing of e and e′. As G is bipartite, exactly
one part, the inner side of s, contains an even number of vertices, and s is called short if its
inner side has only two vertices, and long otherwise. In case f has a long stick, then again
depending on which of e, e′ is an A-edge or B-edge, we either use Lemma 10 to add a new
edge to Gp (see Fig. 6a) or we carefully add a new vertex of degree three to Gp (see Fig. 6b).
Finally, if all sticks are short, we can add a crossing-free edge to Gp, or a new vertex with
three crossing-free edges to Gp, as shown in Fig. 6c.

Adding to Gp an edge or a vertex with three edges, strictly increases the average degree
in Gp. Hence, we ultimately obtain supergraphs Ḡ of G and Ḡp of Gp satisfying P.1–P.3.
Next, we show that the charge of every original vertex v is at most its degree in Ḡp minus 2.

I Claim 12. Every v ∈ V [G] satisfies degḠp
(v)− ch(v) ≥ 2.

Proof. W.l.o.g. consider any a ∈ A and let k := degḠp
(a) and S ⊆ EA be the set of edges

charging a. Observe that no two edges of S can cross. In fact, if (a1, b1) ∈ EA charges a and
(a2, b2) ∈ EA crosses (a1, b1), then (a2, b2) charges a1 6= a. Consider the face f of Ḡp − {a}
containing a, and the closed facial walk W around f . Walk W has length 2k (counting with
repetitions) as Ḡp is a quadrangulation. Further, each edge in S lies in f and has both
endpoints on W . Hence, the subgraph of Ḡ consisting of all edges in W ∪ S is crossing-free
and has vertex set V [W ]. Define graph J by breaking the repetitions along W , i.e., J consists
of a cycle of length 2k and every edge in S is an uncrossed chord of this cycle. J has ≤ k− 2
chords, as it is bipartite outerplanar. Thus, |S| = ch(a) ≤ k − 2 = degḠp

(a)− 2. J

Let X = V [Ḡ]− V [G] be the set of newly added vertices. For each x ∈ X, degḠp
(x) ≥ 3 and

ch(x) = 0 hold. Thus, degḠp
(x)−ch(x) ≥ 3, and by Claim 12 we get 2|E[Ḡp]|−(|EA|+|EB |) =∑

v∈V [Ḡp]

(
degḠp

(v)− ch(v)
)
≥ 2n+3|X| which implies |EA|+ |EB | ≤ 2|E[Ḡp]|−2n−3|X|.

On the other hand, |E[Gp]|+ 3|X| ≤ |E[Ḡp]| by P.3 and |E[Ḡp]| = 2(n + |X|) − 4 by P.1,
which together give |E[G]| = |E[Gp]|+ |EA|+ |EB | ≤ 3|E[Ḡp]| − 6|X| − 2n = 4n− 1. J



P. Angelini, M. A. Bekos, M. Kaufmann, M. Pfister, and T. Ueckerdt 28:9

(a) (b)

Figure 7 Constructions for dense bipartite n-vertex 2-planar (a) graphs and (b) multigraphs.

ui ui+1

ui+2s

(a) short stick

ui ui+1

s

ui−1

(b) long stick (c) scissor+twin (d) pseudo-scissor

Figure 8 Illustration of sticks, scissors and twins.

5 Bipartite 2-Planar Graphs

In this section, we overview our result for bipartite 2-planar graphs. For reasons of space, we
sketch the proof; the full version is in [9]. We start with the lower bound; see Fig.7.

I Theorem 13. For infinitely many values of n, there exists a bipartite n-vertex 2-planar
(i) graph with 3.5n− 12 edges, and
(ii) multigraph with 3.5n− 8 edges.

For the upper bound, we study structural properties of the planar structure Gp of an
optimal bipartite 2-planar graph G. Let (u, v) be an edge of G that does not belong to Gp.
By the maximality of Gp, (u, v) has at least one crossing with an edge of Gp. As already
mentioned, the part of (u, v) that starts from u (v) and ends at the first intersection point of
(u, v) with an edge of Gp is a stick of u (v). When (u, v) has two crossings, there is a part
that is not a stick, called middle-part. Each stick or middle-part lies in a face f of Gp; we say
that f contains this part. Let f = 〈u0, u1, . . . , uk−1〉 be a face of Gp with k ≥ 4 and let s be
a stick of ui contained in f , i ∈ {0, 1, . . . , k − 1}. We call s a short stick, if it ends either at
(ui+1, ui+2) or at (ui−1, ui−2) of f ; otherwise, s is called a long stick; see Figs. 8a-8b.

W.l.o.g. we assume that among all optimal bipartite n-vertex 2-planar graphs, G is such
that its planar structure Gp is the densest among the planar structures of all other optimal
bipartite n-vertex 2-planar graphs; we call Gp maximally dense. We first prove that Gp is a
spanning quadrangulation. For this, we first show that Gp is connected, as otherwise it is
always possible to augment it by adding an edge joining two connected components of it.
Then, we show that all faces of Gp are of length four. Our proof by contradiction is rather
technical; assuming that there is a face f with length greater than four in Gp, we consider
two main cases:
(i) f contains no sticks, but middle-parts, and
(ii) f contains at least one stick.

With a careful case analysis, we lead to a contradiction either to the maximality of Gp or to
the fact that G is optimal.

Since Gp is a quadrangulation, it has exactly 2n− 4 edges and n− 2 faces. Our goal is to
prove that the average number of sticks for a face is at most 3. Since the number of edges of
G \Gp equals half the number of sticks over all faces of Gp, this implies that G cannot have
more than 2n− 4 + 3

2 (n− 2) = 3.5n− 7 edges, which gives the desired upper bound.
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f1

f

f2

(a)

f

f1 f2

(b) (c)

Figure 9 Illustration of (a) the 8-sticks configuration, (b) its elimination, and (c) a bipartite
3-planar graph with 4n−O(1) edges; note that all vertices have degree 8, except for few boundary ones.

Let f be a face of Gp. Denote by h(f) the number of sticks contained in f . A scissor of f
is a pair of crossing sticks starting from non-adjacent vertices of f , while a twin of f is a pair
of sticks starting from the same vertex of f crossing the same boundary edge of f ; see Fig. 8c.
We refer to a pair of crossing sticks starting from adjacent vertices of f as a pseudo-scissor ;
see Fig. 8d. The following lemma shows that a face of Gp contains a maximum number of
sticks (that is, 4) only in the presence of scissors or twins, due to 2-planarity; see [9].

I Lemma 14. Let G be an optimal bipartite 2-planar graph, such that its planar structure
Gp is maximally dense. Then, for each face f of Gp, it holds h(f) ≤ 4. Further, if h(f) = 4,
then f contains one of the following: two scissors, or two twins, or a scissor and a twin.

An immediate consequence of Lemma 14 is that h(f) ≤ 3, for every face f containing a
pseudo-scissor. We now consider specific “neighboring” faces of a face f of Gp with four sticks
and prove that they cannot contain so many sticks. Observe that each edge corresponding to
a stick of f starts from a vertex of f and ends at a vertex of another face of Gp. We call this
other face, a neighbor of this stick. The set of neighbors of the sticks forming a scissor (twin)
of f form the so-called neighbors of this scissor (twin).

By Lemma 14 and since h(f) = 4, face f contains two sticks s1 and s2 forming a twin or
a scissor, with neighbors f1 and f2. By 2-planarity and based on a technical case analysis,
we show that h(f1) + h(f2) ≤ 7 except for a single case, called 8-sticks configuration and
illustrated in Fig. 9a, for which h(f1) + h(f2) = 8.

Assume first that G does not contain any 8-sticks configuration. Let H be an auxiliary
graph, called dependency graph, having a vertex for each face of Gp. Then, for each face f of
Gp containing a scissor or a twin with neighbors f1 and f2, s.t. h(f1) ≤ h(f2), there is an
edge from f to f1 in H ; f1 = f2 is possible. To prove that the average number of sticks for a
face of Gp is at most 3 (which implies the upper bound), it suffices to prove that the number
of faces of Gp that contain two sticks is at least as large as the number of faces that contain
four sticks. This holds due to the following facts for every face f of Gp:
(i) if h(f) = 4, then f has two outgoing edges and no incoming edge in H,
(ii) if h(f) = 3, then the number of outgoing edges of f in H is at least as large as the

number of its incoming edges, and
(iii) if h(f) = 2, then f has at most two incoming edges in H.
So, G has at most 3.5n− 7 edges in the absence of 8-sticks configurations.

Finally, if G contains 8-sticks configurations, we eliminate each of them (without creating
new) by adding one vertex, and by replacing two edges of G by six other edges violating
neither bipartiteness nor 2-planarity, as in Fig. 9b. The derived graph G′ has a planar
structure that is a spanning quadrangulation without 8-sticks configurations. Since G′ has
one vertex and four edges more than G for each 8-sticks configuration and since the vertices
of G′ have degree at most 3.5 on average, by reversing the augmentation steps we conclude
that G cannot be denser than G′. We summarize our result in the following.
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I Theorem 15. A bipartite n-vertex 2-planar multigraph has at most 3.5n− 7 edges.

Implications of Theorem 15. In the following, we adjust the well-known Crossing Lemma
to bipartite graphs and use it to obtain a bound on the density of bipartite k-planar graphs,
when k > 2. Our proofs are inspired by the ones for general graphs; see, e.g., [4].

I Theorem 16. Let G be a bipartite topological graph with n ≥ 3 vertices and m ≥ 17
4 n

edges. Then, cr(G) ≥ 16
289 ·

m3

n2 ≈ 1
18.1 ·

m3

n2 , where cr(G) is the crossing number of G.

Proof. We first prove a weaker bound which holds for every m, that is, cr(G) ≥ 3m− 17
2 n+19.

This bound clearly holds when m ≤ 2n− 4. Hence, we may assume w.l.o.g. that m > 2n− 4.
It follows from [18] that if m > 3n− 8, then G has an edge that is crossed by at least two
other edges. Also, by Theorem 15 we know that if m > 7

2n− 7, then G has an edge that is
crossed by at least three other edges. We obtain by induction on the number of edges of G
that cr(G) ≥ (m− (2n− 4)) + (m− (3n− 8)) + (m− ( 7

2n− 7)) = 3m− 17
2 n+ 19.

Assume that G admits a drawing on the plane with cr(G) crossings and let p = 17n
4m ≤ 1.

Choose independently every vertex of G with probability p, and denote by Hp the graph
induced by the chosen vertices. Let also np, mp and cp be the random variables corresponding
to the number of vertices, of edges and of crossings of Hp. Taking expectations on the
relationship cp ≥ 3mp − 17

2 np + 19, which holds by our weaker bound, we obtain that
p4cr(G) ≥ 3p2m − 17

2 np, or equivalently that cr(G) ≥ 3m
p2 − 17n

2p3 . The proof follows by
plugging p = 17n

4m (which is at most 1 by our assumption) to the last inequality. J

I Theorem 17. Let G be a bipartite k-planar graph with n ≥ 3 vertices and m edges, for
some k ≥ 1. Then: m ≤ 17

8
√

2kn ≈ 3.005
√
kn.

Proof. For k = 1, 2, the bounds are weaker than the ones of [18] and of Theorem 15. So, we
may assume w.l.o.g. that k > 2. We may also assume that m ≥ 17

4 n, as otherwise there is
nothing to prove. Combining the fact that G is k-planar with the bound of Theorem 16 we
obtain that 16

289 ·
m3

n2 ≤ cr(G) ≤ 1
2mk, which implies that m ≤ 17

8
√

2kn ≈ 3.005
√
kn. J

6 Conclusions and Open Problems

We presented tight bounds for the density of bipartite beyond-planar graphs, yielding an
improvement of the leading constant of the Crossing Lemma for bipartite graphs. We
conclude with open problems.
(i) What is the maximum density of bipartite k-planar graphs with k > 2? Such bounds

may further improve the leading constant of the Crossing Lemma for bipartite graphs;
Fig. 9c shows a bipartite 3-planar graph with 4n−O(1) edges. Bounds for other classes
of bipartite beyond-planar (e.g., quasi-planar) graphs are also interesting.

(ii) The ratio of the maximum density of general over bipartite graphs for large n approaches
3n
2n = 1.5 for planar graphs, 4n

3n ≈ 1.33 for 1-planar graphs, 5n
3.5n ≈ 1.43 for 2-planar

graphs and at most 5.5n
4n ≈ 1.37 for 3-planar graphs, leaving room for speculation

on how it develops for k-planar graphs with k > 3; note that for classes closed under
subgraphs, it is at most 2 [23].

(iii) Optimal 1-, 2- and 3-planar graphs allow for characterizations [13, 35], while recognizing
general beyond-planar graphs is often NP-hard. Does the restriction of bipartiteness
allow for characterizations or efficient recognition algorithms in some cases?

(iv) Finally, one should study properties that not only hold for general beyond-planar graphs
but also for bipartite ones, e.g., is every optimal bipartite RAC graph also 1-planar?
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Abstract
Traversing game is a two-person game played on a connected undirected simple graph with a
source node and a destination node. A pebble is placed on the source node initially and then
moves autonomously according to some rules. Alice is the player who wants to set up rules for
each node to determine where to forward the pebble while the pebble reaches the node, so that
the pebble can reach the destination node. Bob is the second player who tries to deter Alice’s
effort by removing edges. Given access to Alice’s rules, Bob can remove as many edges as he
likes, while retaining the source and destination nodes connected. Under the guide of Alice’s
rules, if the pebble arrives at the destination node, then we say Alice wins the traversing game;
otherwise the pebble enters an endless loop without passing through the destination node, then
Bob wins. We assume that Alice and Bob both play optimally.

We study the problem: When will Alice have a winning strategy? This actually models a
routing recovery problem in Software Defined Networking in which some links may be broken. In
this paper, we prove a dichotomy result for certain traversing games, called cyclic-order traversing
games. We also give a linear-time algorithm to find the corresponding winning strategy, if
one exists.
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Algorithm 1: The pebble-moving algorithm.
Input :A connected undirected simple graph G = (V ∪ {s, t}, E),

Alice’s strategy {πv→x, πx→v : (v, x) ∈ E},
Bob’s removal of edges EB so that G− EB remains st-connected.

1 pre← s, cur ← s;
2 while cur 6= t do
3 foreach (cur, u) in ordered list πpre→cur do
4 if (cur, u) /∈ EB then
5 pre← cur, cur ← u;
6 break;
7 end
8 end
9 end

10 return “Alice wins”;

can be forwarded from the source s to the destination t as long as s and t remain connected
under some link and node failures, which is the most reliable one among all routing models.
However, as noted in [17], the cyclic-order routing model does not apply to every network G,
but no exact graph characterization is known. In this paper, we will show the exact graph
class that admits the cyclic-order routing scheme, i.e. a dichotomy result. To simplify the
presentation, we formulate the cyclic-order routing scheme as follows.

We define traversing game to be a two-person game played on a connected undirected
simple graph G = (V ∪ {s, t}, E) with a pebble starting at node s. Alice is the player who
wants to set up rules for each node x ∈ V ∪ {s, t} that determines where to forward the
pebble while the pebble reaches x, so that the pebble can be moved autonomously from the
source node s to the destination node t. Bob is the second player who tries to deter Alice’s
effort by removing edges. Given access to Alice’s rules, Bob can remove as many edges as he
likes, while retaining s and t connected. We note that removing a node x is equivalent to
removing all the edges incident to x, and therefore it suffices to consider edge removals only.
More formally, Alice assigns an ordered list πv→x to each ordered pair of nodes v → x if
(v, x) ∈ E, where πv→x is a permutation of the edges incident to x with (x, v) as the last edge.
Note that for an undirected edge (x, v), there are two corresponding ordered lists, i.e. πv→x

and πx→v, indicating the pebble is moving in opposite direction. We say Alice’s strategy
is the set of ordered lists X = {πv→x, πx→v : (v, x) ∈ E}. Given access to X, Bob removes
some edges from E. Then the system simulates the tour of the pebble starting from node s.
When the pebble reaches node x from node v, the next edge for the pebble to traverse is
(x, u) where (x, u) is the first edge in πv→x not removed by Bob. Such an edge must exist
because (x, v) is one possible candidate. We assume that there is a self-loop at node s which
is the starting edge in the tour of the pebble. This edge is also associated with a permutation
πs→s and Bob is not allowed to remove it. If the pebble arrives the destination t at some
moment in the tour, then we say Alice wins the traversing game; otherwise the pebble enters
an endless loop without passing through t, then Bob wins. The pseudocode for the above
pebble moving is described in Algorithm 1. We assume further that Alice and Bob both play
optimally.

The traversing game actually models a link failure recovery mechanism of Software Defined
Network (SDN) with OpenFlow protocol [18, 19], whose network control plane is separated
from the packet forwarding plane, and whose switches have very limited computing capacity
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that may only support matching and forwarding packets. Software Defined Networking has
been a focus in network and communication research in recent years, since McKeown et al.
published their pioneering work [18]. Because an SDN controller needs to monitor multiple
OpenFlow switches and constant interaction between controller and switches may slow down
the network, some fast failover mechanism is devised [19], in particular the group table used
in the OpenFlow protocol. When a packet enters an OpenFlow switch, the flow rules will
match related fields in the packet to determine from which port the packet enters and then
go to the corresponding group table. Each group table has a bucket list to watch whether
the links are up or down. The bucket lists relate to the ordered lists πv→x for each ordered
pair of nodes v → x in the traversing game. When a link is down, the switch can quickly
select the next bucket in the link’s failover group table with a watch port that is up. It thus
can be used to reduce the interaction between controllers and switches when link failures
are detected, which is an important issue studied in SDN [19]. The traversing game is an
abstraction of the above protocol.

Deciding who wins the traversing game is a problem in Σp
2 [8, 2], which is the set of all

languages L for which there exists a polynomial time Turing machine M and a polynomial q
such that x ∈ L⇔ ∃u ∈ {0, 1}q(|x|) ∀y ∈ {0, 1}q(|x|)M(x, u, y) = 1. We do not know whether
it can be solved in polynomial time, even with a nondeterministic Turing machine. We thus
impose a restriction on all the ordered lists πv→x in the traversing game, which makes the
traversing game solvable in linear time. Let πx be a cyclic order of the edges incident to
x. The restriction is, for each node x ∈ V ∪ {s, t}, there exists a cyclic order πx so that for
every ordered pair of nodes v → x, the ordered list πv→x is equal to the segment of πx that
starts from the successor of (x, v) and finishes at (x, v). We say a traversing game with the
above restriction cyclic-order traversing game. In [17], the authors show that Alice has
a winning strategy for a cyclic-order traversing game if the underlying graph G is comprised
of (hierarchical) node-disjoint paths. We will show how to generalize this finding.

We need some notions to state our main result. st-planar graphs were first introduced
by Lempel et al. [16], which are acyclic planar digraphs with exactly one source node s and
exactly one sink node t and can be embedded in the plane so that s, t are both on the outer
face. This definition was later adapted, for example in [3], to be such undirected graphs that
have a planar embedding with s and t on the same face, or equivalently both on the outer
face. We use the latter definition of st-planar graphs in this paper.

The st-biconnected component Bst(G) of an undirected graph G is defined to be the
subgraph of G induced by the nodes in the biconnected component of G ∪ {(s, t)} that
contains (s, t). Or equivalently, as shown in Lemma 2, Bst(G) is the node-induced subgraph
of G with the removal of all the nodes that are not on any simple path in G from node
s to node t, i.e. ignorable nodes. It is clear that the removal of ignorable nodes cannot
make the status of other nodes changed from unignorable to ignorable, so Bst(G) is a unique
subgraph of G, regardless of the sequence of node removals.

Our main result is:

I Theorem 1. For a cyclic-order traversing game with underlying graph G = (V ∪ {s, t}, E),
Alice has a winning strategy if and only if Bst(G) is st-planar. In addition, there exists an
O(|V |+ |E|)-time algorithm that either outputs Alice’s winning strategy or determines that
there is none.
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Related Work

Annexstein et al. [1] also proposed a mathematical model for fault-tolerant routing. In
their routing scheme, they need to assign an acyclic orientation to the underlying graph
G = (V ∪ {s, t}, E) so that every node other than t (the sink node) has at least k out-going
directed edges and k is the maximum possible among all acyclic orientations. Given the
acyclic orientation, packets at node x are forwarded to any available out-going edge of x. As
long as t is functioning and fewer than k nodes malfunction, packets can arrive t from nodes
other than t. The orientation can be found in linear time.

The routing scheme by Annexstein et al. has no re-routing, so it is efficient to forward
packets. It is clear that our routing scheme covers all the cases that Annexstein et al.’s model
can handle if the st-biconnected component Bst(G) of the underlying graph G is st-planar,
so it is more fault-tolerant for such graphs, in tradeoff of the cost to re-route packets. Our
routing strategy can be found in linear time as well.

Organization

The rest of the paper is organized as follows. In Section 2, we show some graph properties
for st-biconnected components, which are used as building blocks for the proofs in the
subsequent sections. In Section 3, we show that Alice has a winning strategy for any cyclic-
order traversing game when the Bst(G) of the underlying graph G = (V ∪ {s, t}) is st-planar.
In Section 4, we show that the graph class studied in Section 3 is the exact graph class that
Alice has a winning strategy for cyclic-order traversing games, by studying the situations
that Bob has a winning strategy. Finally, in Section 5, a linear-time algorithm is given to
compute Alice’s winning strategy, if one exists.

2 Properties of st-Biconnected Components

In this section, we show some properties of st-biconnected components, which are used as
building blocks for the proofs in subsequent sections. Here are some notations to simplify
the presentation. By G− {x} (resp. G− {(x, y)}), we denote to remove node x (resp. edge
(x, y)) from G. By G ∪ {(x, y)}, we denote to add an edge (x, y), if not existing, to G. Let
st-path denote an undirected path from s to t. We say a graph is st-connected if it has an
st-path.

We begin with a proof showing that the two definitions of Bst(G) are equivalent.

I Lemma 2. For every connected undirected simple graph G = (V ∪ {s, t}, E), removing all
nodes that are not on any simple st-path in G yields Bst(G).

Proof. Let C be the graph obtained by removing all nodes that are not on any simple st-path
from G. Since G is connected, s and t are on a simple st-path, so s, t ∈ C. On the other
hand, s, t ∈ Bst(G) by the definition of st-biconnected component. We need to discuss for
those nodes other than s and t.

Let v be a node in Bst(G) other than s, t. Since Bst(G) ∪ {(s, t)} is biconnected, there
are two node-disjoint paths from {v} to {s, t} in Bst(G) ∪ {(s, t)} that have only node v in
common by Menger’s Theorem [14]. Joining these two paths gives a simple path from s to t
that passes through v, so v is a node in C.

Let v be a node in C other than s, t. Then there is a simple st-path that passes through
v. Together with the edge (s, t), this gives a simple cycle containing s, v, t, so v is a node in
Bst(G). J
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By Lemma 2 and the properties of block-cut trees [10, 13], we get:

I Corollary 3. For every node v in a connected undirected simple graph G = (V ∪ {s, t}, E),
v is not contained in Bst(G) if and only if v can be disconnected from s and t by removing
an articulation point x where x ∈ Bst(G) and x 6= v.

I Lemma 4. Given a connected undirected simple graph G = (V ∪ {s, t}, E), let H be any
subgraph of Bst(G) so that H has at least two nodes and one edge, then there exists a simple
st-path in Bst(G) that contains at least two nodes in H.

Proof. If both s and t are in H, then any simple path P in Bst(G) from s to t contains at
least two nodes in H, e.g. s and t. Such a simple path P must exist because G is connected.

If precisely one of s, t is in H, then H has a node v /∈ {s, t}. By the definition of
st-biconnected component, there exists a simple path P in Bst(G) from s to t that passes
through v. Hence, P contains at least two nodes in H.

The remaining case happens when none of s and t is in H, so H has an edge (u, v) where
u, v /∈ {s, t}. Let V1 be the node set {u, v} and V2 be the node set {s, t}. By the definition
of st-biconnected component, there is a simple path Pu (resp. Pv) in Bst(G) from s to t
that passes through u (resp. v). In the subgraph Pu ∪ Pv, to disconnect u (resp. v) from
V2 by removing a single node, u (resp. v) must be the node to be removed. Since u 6= v,
one cannot disconnect V1 from V2 by removing a single node. Thus by Menger’s Theorem,
there are two node-disjoint paths P1, P2 from V1 to V2. Joining P1, P2 with (u, v) yields the
desired path. J

I Lemma 5. For any cyclic-order traversing game, if the pebble-moving algorithm does not
stop, i.e. the pebble does not arrive t, then every possible move v → x either does not occur
or occur more than once.

Proof. If the pebble-moving algorithm does not stop, then the tour of the pebble can be
represented as an infinite sequence of moves v1 → x1, v2 → x2, . . . Let Si be the subsequence
of the moves after vi → xi, and let j be the smallest j ≥ i so that vj → xj occurs more than
once in Si. Such a move vj → xj must exist in Si because Si is an infinite sequence of moves
and the number of different moves is finite. We claim that j = i. Here is why. Suppose j > i,
then vj−1 → xj−1 is also a move repeated in Si because in a cyclic-order traversing game
the predecessor moves of each occurrence of vj → xj are the same, yielding a contradiction.
Therefore vi → xj is the first move repeats in Si. This fact holds for every single i ≥ 1, so
every move in the tour repeats more than once. J

We are ready to show that Alice can create a winning strategy by bypassing ignorable
nodes.

I Lemma 6. Alice has a winning strategy for a cyclic-order traversing game with underlying
graph G = (V ∪ {s, t}, E) if and only if Alice has a winning strategy for a cyclic-order
traversing game with underlying graph Bst(G).

Proof. (⇒) Let X = {πv→x, πx→v : (v, x) ∈ E} be Alice’s winning strategy on G. Then it
works for all st-connected subgraphs, in particular Bst(G). Then we let X ′ = X, and remove
all the edges in E(G)−E(Bst(G)) from these ordered lists in X ′, and therefore X ′ is a valid
strategy on Bst(G). Since X ′ has the same behavior as X on Bst(G) and its st-connected
subgraphs, X ′ is a winning strategy on Bst(G).

(⇐) We prove by induction on |V (G)| − |V (Bst(G))|. It is clear that the statement is
true when |V (G)| = |V (Bst(G))|. Assume |V (G)| − |V (Bst(G))| = k for some k ≥ 1, and the
statement holds up to k − 1. By Corollary 3, there is an articulation point u separating s, t
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Figure 1 An illustration of the tour of the pebble, i.e. along the outer face.

from a node not in Bst(G). Let C be the subgraph of G− u obtained by removing all the
components of G− u that contains s or t. Because of the existence of u, all the nodes in C
are not in Bst(G) and thus Bst(G) = Bst(G−C). Then by the induction hypothesis, there is
a winning strategy Y = {πv→x, πx→v : (v, x) ∈ E(G− C)} on G− C, by which we construct
a winning strategy Y ′ = {π′v→x, π

′
x→v : (v, x) ∈ E} on G. Let y be any neighbor of u, and

z be the neighbor of u connected by πy→u(1), i.e. the first edge in the ordered list πy→u.
Set π′y→u as any ordered list of those edges connecting u to C followed by πy→u. For each
neighbor v of u other than y, set π′v→u as a circular shift of π′y→u so that the requirement of
cyclic-order strategy is satisfied. For each node x in Bst(G) − {u} and its neighbor v, set
π′v→x as πv→x. In this way, the neighbors of u in C are placed together. If the pebble moves
from y to u and then C, by Lemma 5 it will eventually leave C and u by traversing the
edge (u, z), i.e. it will move from u to z after several steps rather than loop in C endlessly.
Therefore, when applying Y ′ to G, the pebble moves exactly the same as applying Y to
G− C if we ignore the tour of the pebble outside G− C. Finally, to see that Y ′ is indeed a
winning strategy, consider any st-connected subgraph H of G. Let P be a simple st-path on
H . P does not pass through C and therefore H −C is st-connected. Then the pebble moves
to t when applying Y to H − C, as well as when applying Y ′ to H. J

3 Winning Strategies for Alice

In this section, we will show that Alice has a winning strategy for a cyclic-order traversing
game with underlying graph G = (V ∪ {s, t}, E) if Bst(G) is st-planar; that is, the direction
(⇐) in Theorem 1. Surprisingly, Alice has no winning strategy if the underlying graph is
outside the above graph class, as shown in Section 4. Hence we get a dichotomy result for
cyclic-order traversing games.

We begin with a proof showing a base case that the underlying graph G = (V ∪ {s, t}, E)
is st-planar.

I Lemma 7. Alice has a winning strategy for a cyclic-order traversing game with underlying
graph G = (V ∪ {s, t}, E) if G is st-planar.

Proof. Since G is st-planar, one can have a planar embedding for G so that s, t, (s, s) are
on the outer face. Given the planar embedding, for each node x ∈ V ∪ {s, t}, order the edges
incident to x clockwise with respect to x, which yields a cyclic order cx. We claim that Alice
has a winning strategy by setting πx = cx for each x ∈ V ∪ {s, t}. In the pebble-moving
algorithm, when the pebble is moved from node x to node y, the algorithm searches for the
next available edge in πx→y, say (y, z), then the pebble is moved along (y, z). Since we set
πy = cy, the transit from (x, y) to (y, z) acts like rotating clockwise with respect to y. As
noted in [20], such a sequence of moves makes the pebble traverse all the edges on a single
face if G is connected. Since the pebble starts the tour from the edge (s, s), an edge on the
outer face, it will visit all the nodes on the outer face, in particular s and t. We depict the
tour of the pebble in Figure 1.
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Figure 2 st-connected subgraphs of K5 ∪ {(s, s)}.

No matter how Bob removes edges from G, s and t still stay on the outer face. To see
why, imagine that for every point p on the outer face there is a curve from p to infinity
without crossing any node or edge in G. Clearly, removing any subset of edges in G cannot
cut the curve, a certificate that p is on the outer face. This yields that, the pebble always
visits s and t after any removal of edges, unless s and t are disconnected. In other words,
Alice has a winning strategy when the underlying graph is st-planar, as claimed. J

Together with Lemma 6, we get:

I Theorem 8. Alice has a winning strategy for a cyclic-order traversing game with underlying
graph G = (V ∪ {s, t}, E) if Bst(G) is st-planar.

We remark that, in the proof of Lemma 7, if all nodes in G are on the outer face in
the planar embedding, i.e. an outerplanar graph [5], then the pebble will visit all nodes
regardless of Bob’s removal of edges. This immediately yields that:

I Corollary 9. Alice has a fixed winning strategy for a cyclic-order traversing game with
underlying graph G = (V,E), if G is outerplanar and for all choices of s, t ∈ V .

4 Winning Strategies for Bob

In this section, we will show that Bob has a winning strategy for a cyclic-order traversing
game with underlying graph G = (V ∪ {s, t}, E) if Bst(G) is not st-planar; that is, the
contraposition of the direction (⇒) in Theorem 1. Together with the results shown in
Section 3, this gives a dichotomy result for cyclic-order traversing games.

We begin with proofs showing base cases where G is K5, K3,3, and their subdivisions.

I Lemma 10. Bob has a winning strategy for a cyclic-order traversing game with underlying
graph G = (V ∪ {s, t}, E) if G ∪ {(s, t)} is isomorphic to K5.3

Proof. We prove the case where (s, t) /∈ E, then the other case follows. The graphs in
Figure 2 are possible subgraphs of G after Bob’s removal of edges. We show that Alice
cannot assign an ordered list to each πv→x that simultaneously works for H1, H2, and H3.
Hence, Bob has a winning strategy on G.

To see why, Alice may set πs→s as any of the following six ordered lists.

list1: (s, v1), (s, v2), (s, v3), (s, s)
list2: (s, v1), (s, v3), (s, v2), (s, s)
list3: (s, v2), (s, v1), (s, v3), (s, s)

3 In Lemmas 10, 11, and 12, we ignore the self-loop (s, s) while deciding graph isomorphism.
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Figure 3 st-connected subgraphs of K3,3 ∪ {(s, s)}.
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Figure 4 st-connected subgraphs of K3,3 ∪ {(s, s)}.

list4: (s, v2), (s, v3), (s, v1), (s, s)
list5: (s, v3), (s, v1), (s, v2), (s, s)
list6: (s, v3), (s, v2), (s, v1), (s, s)

However, if Alice sets πs→s = list2, then it does not work for H1, because πv2→s =
(s, s), (s, v1), (s, v3), (s, v2) and the pebble moves in the cycle s, s, v1, v2, s, s without passing
through t. Moreover, if Alice sets πs→s = list4, then it also does not work for H1, because
the pebble moves in the cycle s, s, v2, v1, s, s. By the same argument, one can show that
setting πs→s = list1 or list6 does not work for H2, and setting πs→s = list3 or list5 does
not work for H3. This already excludes all possibilities, thus completing the proof. J

I Lemma 11. Bob has a winning strategy for a cyclic-order traversing game with underlying
graph G = (V ∪ {s, t}, E) if G or G ∪ {(s, t)} is isomorphic to K3,3.

Proof. First we consider the case where s and t are in the same partition. The graphs in
Figure 3 are possible subgraphs of G after Bob’s removal of edges. Alice may set πs→s as
any of the following six ordered lists.

list1: (s, v2), (s, v3), (s, v4), (s, s)
list2: (s, v2), (s, v4), (s, v3), (s, s)
list3: (s, v3), (s, v2), (s, v4), (s, s)
list4: (s, v3), (s, v4), (s, v2), (s, s)
list5: (s, v4), (s, v2), (s, v3), (s, s)
list6: (s, v4), (s, v3), (s, v2), (s, s)

However, if Alice sets πs→s = list2, then it does not work for H1, because πv3→s =
(s, s), (s, v2), (s, v4), (s, v3) and the pebble moves in the cycle s, s, v2, v1, v3, s, s without passing
through t. Moreover, if Alice sets πs→s = list4, then it also does not work for H1, because
the pebble moves in the cycle s, s, v3, v1, v2, s, s. By the same argument, one can show that
setting πs→s = list1 or list6 does not work for H2, and setting πs→s = list3 or list5 does
not work for H3.
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Figure 5 Subdivisions of K5 and K3,3.

Next we consider the case where s and t are in different partitions, and prove the subcase
where (s, t) /∈ E, then the other subcase follows. Consider the graphs in Figure 4. Alice may
set πs→s as any of the following two ordered lists.

list1: (s, v3), (s, v4), (s, s)
list2: (s, v4), (s, v3), (s, s)

Alice may also set πs→v3 as any of the following two ordered lists.

list3: (v3, v1), (v3, v2), (v3, s)
list4: (v3, v2), (v3, v1), (v3, s)

However, if Alice sets πs→s = list1 and πs→v3 = list3, then it does not work for H4,
because the pebble moves in the cycle s, s, v3, v1, v4, s, s without passing through t. Moreover,
if Alice sets πs→s = list2 and πs→v3 = list4, then it also does not work for H4, because
the pebble moves in the cycle s, s, v4, v1, v3, s, s. By the same argument, one can show
that setting πs→s = list1 and πs→v3 = list4 does not work for H5. Setting πs→s = list2
and πs→v3 = list3 also does not work for H5. This already excludes all possibilities, thus
completing the proof. J

I Lemma 12. Bob has a winning strategy for a cyclic-order traversing game with underlying
graph G = (V ∪ {s, t}, E) if G or G ∪ {(s, t)} is isomorphic to a subdivision of K5 or K3,3.

Proof. Bob has a winning strategy if and only if he has one after removing a node with
degree one, except s and t. This is also true for smoothing out a node with degree two
or subdividing an edge, because removing an incident edge of a node with degree two is
equivalent to removing both. Therefore we first transform G or G ∪ {(s, t)} into one of the
graphs in Figure 5.

If both s and t belong to V (K5) or V (K3,3), by Lemma 10 and Lemma 11 the statement
is true. In what follows, we consider other choices of s and t.
Case 1: G or G ∪ {(s, t)} is isomorphic to G1.

Case 1(a): {s, t} = {v1, v6}, or s = v6 and t = v7. Note that (s, t) may or may not
belong to E(G). Assume (s, t) /∈ E(G), s = v6, and t = v1. By Lemma 10 Alice has
no winning strategy to move pebble from v2 to v1, and therefore from v6 to v1. The
remaining cases can be reduced to this one.

Case 1(b): s = v1 and t = v8. Note that G is isomorphic to G1 in this case. We first
smooth out nodes with degree two, i.e. v6, v7, and v9. Let D be the collection of
v1v2-connected subgraphs of K5−{(v1, v2)}. Let R be the collection of v1v8-connected
subgraphs of G that contains (v2, v8) but not (v1, v2). Define f : D → R to be the
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Figure 6 Subgraphs of G1 ∪ {(s, s)}.

bijection from D to R such that f(D) ∈ R is obtained from D ∈ D by adding (v2, v8)
and replacing (v2, v3) with (v8, v3) if it is in D. For any D ∈ D, the pebble moves
exactly the same on D and f(D). By Lemma 10, for each of Alice’s strategies, the
pebble cannot move from v1 to v2 for some D ∈ D, and also cannot move from v1 to
v8 for f(D).

Case 1(c): s = v7 and t = v8. Similar to the proof of Case 1(b), we let R be the
collection of v7v8-connected subgraphs of G that contains (v2, v8) and (v7, v1), but not
(v7, v2).

Case 1(d): s = v8 and t = v1, or s = v8 and t = v9. Consider the graphs in Figure 6.
Alice may set πs→s as any of the following two ordered lists.
list1: (s, v2), (s, v3), (s, s)
list2: (s, v3), (s, v2), (s, s)
Alice may also set πs→v2 as any of the following two ordered lists.
list3: (v2, v4), (v2, v5), (v2, s)
list4: (v2, v5), (v2, v4), (v2, s)
However, if Alice sets πs→s = list1 and πs→v2 = list3, then it does not work for H1,
because the pebble moves in the cycle s, s, v2, v4, v3, s, s without passing through t.
Moreover, if Alice sets πs→s = list2 and πs→v2 = list4, then it also does not work for
H1, because the pebble moves in the cycle s, s, v3, v4, v2, s, s. By the same argument,
one can show that setting πs→s = list1 and πs→v2 = list4 does not work for H2, and
setting πs→s = list2 and πs→v2 = list3 also does not work for H2.

Case 2: G or G ∪ {(s, t)} is isomorphic to G2.
Case 2(a): {s, t} = {v1, v7} or s = v7 and t = v8. Assume (s, t) /∈ E(G), s = v7,

and t = v1. By Lemma 11 Alice has no winning strategy to move pebble from v4 to
v1, and therefore from v7 to v1. The remaining cases can be reduced to this one.

Case 2(b): s = v1 and t = v9. Similar to the proof of Case 1(b), we let R be the
collection of v1v9-connected subgraphs of G that contains (v4, v9) but not (v1, v4).

Case 2(c): s = v8 and t = v9. Similar to the proof of Case 1(b), we let R be the
collection of v8v9-connected subgraphs of G that contains (v4, v9) and (v1, v8), but not
(v4, v8).

Case 2(d): s = v9 and t = v1, or s = v9 and t = v10. Consider the graphs in Fig-
ure 7. Alice may set πs→s as any of the following two ordered lists.
list1: (s, v2), (s, v4), (s, s)
list2: (s, v4), (s, v2), (s, s)
Alice may also set πs→v2 as any of the following two ordered lists.
list3: (v2, v5), (v2, v6), (v2, s)
list4: (v2, v6), (v2, v5), (v2, s)
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Figure 7 Subgraphs of G2 ∪ {(s, s)}.

However, if Alice sets πs→s = list1 and πs→v2 = list4, then it does not work for H3,
because the pebble moves in the cycle s, s, v2, v6, v3, v4, s, s without passing through t.
Moreover, if Alice sets πs→s = list2 and πs→v2 = list3, then it also does not work for
H3, because the pebble moves in the cycle s, s, v4, v3, v6, v2, s, s. By the same argument,
one can show that setting πs→s = list1 and πs→v2 = list3 does not work for H4, and
setting πs→s = list2 and πs→v2 = list4 also does not work for H4. J

I Theorem 13. Bob has a winning strategy for a cyclic-order traversing game with underlying
graph G = (V ∪ {s, t}, E) if Bst(G) is not st-planar.

Proof. Bst(G) is not st-planar implies that Bst(G)∪ {(s, t)} is non-planar. By Kuratowski’s
Theorem [15], Bst(G) ∪ {(s, t)} has a Kuratowski subgraph H, i.e. a subdivision of K5 or
K3,3. By Lemma 4, Bob can find a simple path P from s to t in Bst(G) that passes through
at least two nodes in H. Let P1 be the subpath starting from s and finishing at the first
node in P that is contained in H. Let P2 be the subpath starting from the last node in P
that is contained in H and finishing at t. Bob’s winning strategy is to remove all the edges
outside H − {(s, t)} ∪ P1 ∪ P2. By applying Lemma 12 and Lemma 6, we are done. J

5 Linear-Time Algorithm

Finally, we give a linear-time algorithm that either outputs Alice’s winning strategy or
outputs “Bob wins.” This completes the proof of Theorem 1.

I Theorem 14. For any cyclic-order traversing game, one can use Algorithm 2 to find a
winning strategy for Alice in linear time, if one exists.

Proof. By Lemma 2, Step 1 is equivalent to finding the biconnected component in G∪{(s, t)}
that contains s and t, which can be computed in linear time [11]. By Theorem 8, Step 2,
3, and 4 are equivalent to testing planarity and embedding Bst(G) ∪ {(s, t)} in the plane,
which also can be solved in linear time [6, 12, 21]. For Step 5, the conversion can be done by
bypassing ignorable nodes as shown in Lemma 6, which also takes linear time. In total, it
takes linear time to find a winning strategy for Alice. J

6 Conclusion

We identify an interesting traversal problem from a practical network paradigm– software
defined networking. We discover that for st-planar graphs we can always find a way in
linear time to set up the cyclic-order rules for autonomous re-routing. This can be useful
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Algorithm 2: Algorithm to find Alice’s winning strategy in linear time.
Input :G = (V ∪ {s, t}, E)
Output :Alice’s winning strategy if one exists, or determine that there is none.

1 Find the st-biconnected component Bst(G);
2 if Bst(G) is st-planar then
3 Embed Bst(G) ∪ {(s, t)} in the plane so that s, t, (s, s) are on the same face;
4 Find Alice’s winning strategy Y on Bst(G);
5 Convert Y to a winning strategy X on G;
6 return X;
7 else
8 return “Bob wins”;
9 end

for designing fault-tolerant network. However, if we allow different type of rules, instead of
cyclic ones, then it is not clear when Alice can have a winning strategy. We leave it as an
open problem. Meanwhile, we do not know the exact complexity class of the traversing game.
We conjecture that it can be Σp

2-complete.
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Abstract
We make progress on the fine-grained complexity of Maximum-Cardinality Matching on
graphs of bounded clique-width. Quasi linear-time algorithms for this problem have been recently
proposed for the important subclasses of bounded-treewidth graphs (Fomin et al., SODA’17)
and graphs of bounded modular-width (Coudert et al., SODA’18). We present such algorithm
for bounded split-width graphs – a broad generalization of graphs of bounded modular-width, of
which an interesting subclass are the distance-hereditary graphs. Specifically, we solve Maximum-
Cardinality Matching in O((k log2 k) ·(m+n) · log n)-time on graphs with split-width at most
k. We stress that the existence of such algorithm was not even known for distance-hereditary
graphs until our work. Doing so, we improve the state of the art (Dragan, WG’97) and we
answer an open question of (Coudert et al., SODA’18). Our work brings more insights on the
relationships between matchings and splits, a.k.a., join operations between two vertex-subsets in
different connected components. Furthermore, our analysis can be extended to the more general
(unit cost) b-Matching problem. On the way, we introduce new tools for b-Matching and
dynamic programming over split decompositions, that can be of independent interest.
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1 Introduction

The Maximum-Cardinality Matching problem takes as input a graph G = (V,E)
and it asks for a subset F of pairwise disjoint edges of maximum cardinality. This is
a fundamental problem with a wide variety of applications. Hence, the computational

© Guillaume Ducoffe and Alexandru Popa;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 30; pp. 30:1–30:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.ducoffe@ici.ro
mailto:alexandru.popa@fmi.unibuc.ro
https://doi.org/10.4230/LIPIcs.ISAAC.2018.30
https://arxiv.org/abs/1804.09393
https://arxiv.org/abs/1804.09393
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


30:2 The b-Matching Problem in Distance-Hereditary Graphs and Beyond

complexity of Maximum-Cardinality Matching has been extensively studied in the
literature. For instance, this was the first problem shown to be solvable in polynomial-
time [11]. Currently, the best-known algorithms for this problem run in O(m

√
n)-time on

n-vertex m-edge graphs [22]. Such superlinear running times can be prohibitive for some
applications. Intriguingly, Maximum-Cardinality Matching is one of the few remaining
fundamental graph problems for which we neither have proved the existence of a quasi
linear-time algorithm, nor a superlinear time complexity (conditional) lower-bound. This
fact has renewed interest in understanding what kind of graph structure makes this problem
difficult. Our present work is at the crossroad of two successful approaches to answer this
above question, namely, the quest for improved graph algorithms on special graph classes
and the much more recent program of “FPT in P”. We start further motivating these two
approaches before we detail our contributions.

1.1 Related work
Algorithmic on special graph classes. One of our initial motivations for this paper was to
design a quasi linear-time algorithm for Maximum-Cardinality Matching on distance-
hereditary graphs [1]. – Recall that a graph G is called distance-hereditary if the distances
in any of its connected induced subgraphs are the same as in G. – Distance-hereditary
graphs have already been well studied in the literature [1, 8, 17]. In particular, we can
solve Diameter in linear-time on this class of graphs [8]. For the latter problem on general
graphs, a conditional quadratic lower-bound has been proved in [24]. This result suggests
that several hard graph problems in P may become easier on distance-hereditary graphs.
Our work takes a new step toward better understanding the algorithmic properties of this
class of graphs. We stress that there exist linear-time algorithms for computing a maximum
matching on several subclasses of distance-hereditary graphs, such as: trees, cographs [26]
and (tent,hexahedron)-free distance-hereditary graphs [7]. However, the techniques used for
these three above subclasses are quite different from each other. As a byproduct of our main
result, we obtain an O(m log n)-time algorithm for Maximum-Cardinality Matching on
distance-hereditary graphs. In doing so, we propose one interesting addition to the list of
efficiently solvable special cases for this problem.

Split Decomposition. In order to tackle with Maximum-Cardinality Matching on
distance-hereditary graphs, we consider the relationship between this class of graphs and split
decomposition. A split is a join that is also an edge-cut. By using pairwise non crossing splits,
termed “strong splits”, we can decompose any graph into degenerate and prime subgraphs,
that can be organized in a treelike manner. The latter is termed split decomposition [6],
and it is our main algorithmic tool for this paper. The split-width of a graph is the largest
order of a non degenerate subgraph in some canonical split decomposition. In particular,
distance-hereditary graphs are exactly the graphs with split-width at most two [23].

Many NP-hard problems can be solved in polynomial time on bounded split-width graphs
(e.g., Graph Coloring, see [23]). Recently, with Coudert, we designed FPT algorithms for
polynomial problems when parameterized by split-width [5]. It turns out that many “hard”
problems in P such as Diameter can be solved in O(kO(1) ·n+m)-time on graphs with split-
width at most k. However, we left this open for Maximum-Cardinality Matching. Indeed,
our main contribution in [5] was a Maximum-Cardinality Matching algorithm based on
the more restricted modular decomposition. Given this previous result, it was conceivable
that a Maximum-Cardinality Matching algorithm based on split decomposition could
also exist. However, we need to introduce quite different tools than in [5] in order to prove
in this work that it is indeed the case.
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Fully Polynomial Parameterized Algorithms. Our work with split-width fits in the recent
program of “FPT in P”. Specifically, given a graph invariant denoted π (in our case, split-
width), we address the question whether there exists a Maximum-Cardinality Matching
algorithm running in time O(kc · (n+m) · logO(1)(n)), for some constant c, on every graph G
such that π(G) ≤ k. Note that such an algorithm runs in quasi linear time for any constant
k, and that it is faster than the state-of-the art algorithm for Maximum-Cardinality
Matching whenever k = O(n 1

2c−ε), for some ε > 0. This kind of FPT algorithms for
polynomial problems have attracted recent attention [5, 16, 19, 20, 21]. We stress that
Maximum-Cardinality Matching has been proposed in [21] as the “drosophila” of the
study of these FPT algorithms in P. We continue advancing in this research direction.

Note that another far-reaching generalization of distance-hereditary graphs are the
graphs of bounded clique-width [17]. In [5], we initiated the complexity study of Maximum-
Cardinality Matching – and other graph problems in P – on bounded clique-width
graph classes. The latter research direction was also motivated by the recent O(k2 · n log n)-
time algorithm for Maximum-Cardinality Matching on graphs of treewidth at most
k, see [13, 19]. Turning our attention on denser graph classes of bounded clique-width, we
proved in [5] that Maximum-Cardinality Matching can be solved in O(k4 · n+m)-time
on graphs with modular-width at most k. We stress that distance-hereditary graphs have
unbounded treewidth and unbounded modular-width. Furthermore, clique-width is upper-
bounded by split-width [23], whereas split-width is upper-bounded by modular-width [5]. As
our main contribution in this paper, we present a quasi linear-time algorithm in order to
solve some generalization of Maximum-Cardinality Matching on bounded split-width
graphs – thereby answering positively to the open question from [5], while improving the
state-of-the-art. Our result shows interesting relationships between graph matchings and
splits, the latter being an important particular case of the join operation that is used in order
to define clique-width. The fine-grained complexity of Maximum-Cardinality Matching
parameterized by clique-width, however, remains open.

1.2 Our contributions
We consider a vertex-weighted generalization for Maximum-Cardinality Matching that
is known as the unit-cost b-Matching problem [12]. Roughly, every vertex v is assigned some
input capacity bv, and the goal is to compute edge-weights (xe)e∈E so that: for every v ∈ V
the sum of the weights of its incident edges does not exceed bv, and

∑
e∈E xe is maximized.

We prove a simple combinatorial lemma that essentially states that the cardinality of a
maximum b-matching in a graph grows as a piecewise linear function in the capacity bw

of any fixed vertex w. This nice result (apparently never noticed before) holds for any
graph. As such, we think that it could provide a nice tool for the further investigations on
b-Matching. Then, we derive from our combinatorial lemma a variant of some reduction
rule for Maximum-Cardinality Matching that we first introduced in the more restricted
case of modular decomposition [5]. Altogether combined, this allows us to reduce the solving
of b-Matching on the original graph G to solving b-Matching on supergraphs of every its
split components. We expect our approach to be useful in other matching and flow problems.

Overall, our main result is that b-Matching can be solved in O((k log2 k) · (m + n) ·
log ||b||1)-time on graphs with split-width at most k (Theorem 17). It implies that Maximum-
Cardinality Matching can be solved in O((k log2 k) · (m+ n) · log n)-time on graphs with
split-width at most k. Since distance-hereditary graphs have split-width at most two, we so
obtain the first known quasi linear-time algorithms for Maximum-Cardinality Matching
and b-Matching on distance-hereditary graphs.
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Figure 1 A graph and its split decomposition. Split marker vertices that correspond to a same
simple decomposition are identified by two rectangles with the same color.

We introduce the required terminology and basic results in Section 2, where we also
sketch the main ideas behind our algorithm (Section 2.3). Then, Section 3 is devoted to a
combinatorial lemma that is the key technical tool in our subsequent analysis. In Section 4,
we present our algorithm for b-Matching on bounded split-width graphs. We conclude
in Section 5 with some open questions. Due to space restrictions, some of the proofs are
omitted. Full proofs can be found in our technical report [9].

2 Preliminaries

We use standard graph terminology from [3]. Graphs in this study are finite, simple (hence
without loops or multiple edges), and connected – unless stated otherwise. Furthermore we
make the standard assumption that graphs are encoded as adjacency lists. Given a graph
G = (V,E) and a vertex v ∈ V , we denote its neighbourhood by NG(v) = {u ∈ V | {u, v} ∈
E} and the set of its incident edges by Ev(G) = {{u, v} | u ∈ NG(v)}. When G is clear from
the context we write N(v) and Ev instead of NG(v) and Ev(G). Similarly, we define the
neighbourhood of any vertex-subset S ⊆ V as NG(S) =

(⋃
v∈S NG(v)

)
\ S.

2.1 Split-width
Let a split in a graph G = (V,E) be a partition V = U∪W such that: min{|U |, |W |} ≥ 2; and
there is a complete join between the vertices of NG(U) and NG(W ). A simple decomposition
of G takes as input a split (U,W ), and it outputs two subgraphs GU = G[U ∪ {w}] and
GW = G[W ∪ {u}] where u,w /∈ V are fresh new vertices such that NGU

(w) = U and
NGW

(u) = W . The vertices u,w are termed split marker vertices. A split decomposition
of G is obtained by applying recursively some sequence of simple decompositions (e.g., see
Fig. 1). We name split components the subgraphs in a given split decomposition of G.

It is often desirable to apply simple decompositions until all the subgraphs obtained
cannot be further decomposed. In the literature there are two cases of “indecomposable”
graphs. Degenerate graphs are such that every bipartition of their vertex-set is a split. They
are exactly the complete graphs and the stars [6]. A graph is prime for split decomposition
if it has no split. We can define the following two types of split decomposition:

Canonical split decomposition. Every graph has a canonical split decomposition
where all the subgraphs obtained are either degenerate or prime and the number of
subgraphs is minimized. Furthermore, the canonical split decomposition of a given graph
can be computed in linear-time [4].
Minimal split decomposition. A split-decomposition is minimal if all the subgraphs
obtained are prime. A minimal split-decomposition can be computed from the canonical
split-decomposition in linear-time [6]. Doing so, we avoid handling with the particular
cases of stars and complete graphs in our algorithms. The set of prime graphs in any
minimal split decomposition is unique up to isomorphism [6].
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For instance, the split decomposition of Fig. 1 is both minimal and canonical.

I Definition 1. The split-width of G, denoted by sw(G), is the minimum k ≥ 2 such that
any prime subgraph in the canonical split decomposition of G has order at most k.

We refer to [23] for some algorithmic applications of split decomposition. In particular,
graphs with split-width at most two are exactly the distance-hereditary graphs, a.k.a
the graphs whose all connected induced subgraphs are distance-preserving [1]. Distance-
hereditary graphs contain many interesting subclasses of their own such as cographs (a.k.a.,
P4-free graphs) and 3-leaf powers. Furthermore, since every degenerate graph has a split
decomposition where all the components are either triangles or paths of length three, every
component in a minimal split decomposition of G has order at most max{3, sw(G)}.

Split decomposition tree. A split decomposition tree of G is a tree T where the nodes
are in bijective correspondance with the subgraphs of a given split decomposition of G,
and the edges of T are in bijective correspondance with the simple decompositions used
for their computation. More precisely, if the considered split decomposition is reduced
to G then T is reduced to a single node; Otherwise, let (U,W ) be a split of G and let
GU = (U ∪ {w}, EU ), GW = (W ∪ {u}, EW ) be the corresponding subgraphs of G. We
construct the split decomposition trees TU , TW for GU and GW , respectively. Furthermore,
the split marker vertices u and w are contained in a unique split component of GW and
GU , respectively. We obtain T from TU and TW by adding an edge between the two nodes
that correspond to these subgraphs. The split decomposition tree of the canonical split
decomposition, resp. of a minimal split decomposition, can be constructed in linear-time [23].

2.2 Matching problems
A matching in a graph is a set of edges with pairwise disjoint end vertices.

I Problem 2 (Maximum-Cardinality Matching).
Input: A graph G = (V,E).
Output: A matching of G with maximum cardinality.

The Maximum-Cardinality Matching problem can be solved in O(m
√
n)-time [22].

We do not use this result directly in our paper. However, we do use in our analysis the
notion of augmenting paths, that is a cornerstone of most matching algorithms. Namely,
let G = (V,E) be a graph and F ⊆ E be a matching of G. A vertex is termed matched
if it is incident to an edge of F , and exposed otherwise. An F -augmenting path is a path
where the two ends are exposed, all edges {v2i, v2i+1} are in F and all edges {v2j−1, v2j}
are not in F . We can observe that, given an F -augmenting path P = (v1, v2, . . . , v2`), the
matching E(P )∆F (obtained by replacing the edges {v2i, v2i+1} with the edges {v2j−1, v2j})
has larger cardinality than F .

I Lemma 3 (Berge, [2]). A matching F in G = (V,E) is maximum if and only if there is
no F -augmenting path.

It is folklore that the proof of Berge’s lemma also implies the existence of many vertex-
disjoint augmenting paths for small matchings. More precisely:

I Lemma 4 (Hopcroft-Karp, [18]). Let F1, F2 be matchings in G = (V,E). If |F1| = r, |F2| =
s and s > r, then there exist at least s− r vertex-disjoint F1-augmenting paths.
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b-Matching. More generally given a graph G = (V,E), let b : V → N assign a nonnegative
integer capacity bv for every vertex v ∈ V . A b-matching is an assignment of nonnegative
integer edge-weights (xe)e∈E such that, for every v ∈ V , we have

∑
e∈Ev

xe ≤ bv. We define
the x-degree of vertex v as degx(v) =

∑
e∈Ev

xe. Furthermore, the cardinality of a b-matching
is defined as ||x||1 =

∑
e∈E xe. We will consider the following graph problem:

I Problem 5 (b-Matching).
Input: A graph G = (V,E); an assignment function b : V → N.
Output: A b-matching of G with maximum cardinality.

For technical reasons, we will also use the following variant of b-Matching. Let c : E → N
assign a cost to every edge. The cost of a given b-matching x is defined as c · x =

∑
e∈E cexe.

I Problem 6 (Maximum-Cost b-Matching).
Input: A graph G = (V,E); assignment functions b : V → N and c : E → N.
Output: A maximum-cardinality b-matching of G where the cost is maximized.

I Lemma 7 ( [14, 15]). For every G = (V,E) and b : V → N, c : E → N, we can solve
Maximum-Cost b-Matching in O(nm log2 n)-time.

In particular, we can solve b-Matching in O(nm log2 n)-time.

There is a nonefficient (quasi polynomial) reduction from b-Matching to Maximum-
Cardinality Matching that we will use in our analysis (e.g., see [25]). More precisely,
let G, b be any instance of b-Matching. The “expanded graph” Gb is obtained from G and
b as follows. For every v ∈ V , we add the nonadjacent vertices v1, v2, . . . , vbv

in Gb. Then,
for every {u, v} ∈ E, we add the edges {ui, vj} in Gb, for every 1 ≤ i ≤ bu and for every
1 ≤ j ≤ bv. It is easy to transform any b-matching of G into an ordinary matching of Gb,
and vice-versa.

2.3 High-level presentation of the algorithm
In order to discuss the difficulties we had to face on, we start giving an overview of the FPT
algorithms that are based on split decomposition.

We first need to define a vertex-weighted variant of the problem that needs to be solved
for every component of the decomposition separately (possibly more than once). This
is because there are split marker vertices in every component that substitute the other
remaining components; intuitively, the weight of such a vertex encodes a partial solution
for the union of split components it has substituted.
Then, we take advantage of the treelike structure of split decomposition in order to solve
the weighted problem, for every split component sequentially, using dynamic programming.
Roughly, this part of the algorithm is based on a split decomposition tree. Starting from
the leaves of that tree (resp. from the root), we perform a tree traversal. For every split
component, we can precompute its vertex-weights from the partial solutions we obtained
for its children (resp., for its father) in the split decomposition tree.

Our approach. In our case, a natural vertex-weighted generalization for Maximum-Cardi-
nality Matching is the unit-cost b-Matching problem [12]. Independently from this
work1, the authors in [20] proposed a new Maximum-Cardinality Matching algorithm

1 Our preliminary version of this paper was released on arXiv one day before theirs.
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on graphs of bounded modular-width that is also based on a reduction to b-Matching.
Unlike this work, the algorithm of [20] cannot be applied to the more general case of bounded
split-width graphs. Indeed, the main technical difficulty for the latter graphs – not addressed
in [20] – is how to precompute efficiently, for every component of their split decomposition,
the specific instances of b-Matching that need to be solved. To see that, consider the
bipartition (U,W ) that results from the removal of a split. In order to compute the b-
Matching instances on side U , we should be able (after processing the other side W ) to
determine the number of edges of the split that are matched in a final solution. Guessing
such number looks computationally challenging. We avoid doing so by storing a partial
solution for every possible number of split edges that can be matched. However, this simple
approach suffers from several limitations. For instance, we need a very compact encoding for
partial solutions – otherwise we could not achieve a quasi linear-time complexity. Somehow,
we also need to consider the partial solutions for all the splits that are incident to the same
component all at once.

This is where we use a result from Section 3, namely, that for every fixed vertex w

in a graph, the maximum-cardinality of a b-matching is a piecewise-linear function in the
capacity bw of this vertex. Roughly, in any given split component Ci, we consider all the
vertices w substituting a union of other components. The latter vertices are in one-to-one
correspondence with the strong splits that are incident to the component. We expand
every such vertex w to a module that contains O(1) vertices for every straight-line section
of the corresponding piecewise-linear function. We want to stress that to the best of our
knowledge, the combination of dynamic programming over split decomposition with the
recursive computation of some piecewise-linear functions is an all new algorithmic technique.

3 Changing the capacity of one vertex

We first consider an auxiliary problem on b-matching that can be of independent interest. Let
G = (V,E) be a graph, w ∈ V and b : V \ w → N be a partial assignment. We denote µ(t)
the maximum cardinality of a b-matching of G provided we set to t the capacity of vertex
w. Clearly, µ is nondecreasing in t. Our main result in this section is that the function µ is
essentially piecewise linear (Proposition 11). We start by introducing some useful lemmata.

I Lemma 8. µ(t+ 1)− µ(t) ≤ 1.

I Lemma 9. If µ(t+ 2) = µ(t) then we have µ(t+ i) = µ(t) for every i ≥ 0.

I Lemma 10. If µ(t+ 1) = µ(t) then we have µ(t+ 3) = µ(t+ 2).

These above results are obtained by studying vertex-disjoint augmenting paths in some
“expanded graphs” Gb,t (cf. Lemmata 3 and 4).

I Proposition 11. There exist integers c1, c2 such that:

µ(t) =


µ(0) + t if t ≤ c1

µ(c1) +
⌊

t−c1
2
⌋

= µ(0) + c1 +
⌊

t−c1
2
⌋
if c1 < t ≤ c1 + 2c2

µ(c1 + 2c2) = µ(0) + c1 + c2 otherwise.

Furthermore, the triple (µ(0), c1, c2) can be computed in O(nm log2 n log ||b||1)-time.
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11
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Figure 2 An example with (µ(0), c1, c2) = (1, 1, 1). Vertices are labeled with their capacity. Thin
and bold edges have respective weights 0 and 1.

Proof. Let c1 be the maximum integer t such that µ(t) = µ(0) + t. This value is well-defined
since µ must stay constant whenever t ≥

∑
v∈NG(w) bv (saturation of all the neighbours).

Furthermore, by Lemma 8 we have µ(t) = µ(0) + t for every 0 ≤ t ≤ c1. Then, let tmax be
the least integer t such that, for every i ≥ 0 we have µ(tmax + i) = µ(tmax). Again, this value
is well-defined since we have the trivial upper-bound tmax ≤

∑
v∈NG(w) bv. Furthermore,

since µ is strictly increasing between 0 and c1, tmax ≥ c1. Let c′2 = tmax − c1. We claim
that c′2 = 2c2 is even. For that, we need to observe that µ(c1) = µ(c1 + 1) by maximality
of c1. Using Lemma 10, we prove by induction µ(c1 + 2i) = µ(c1 + 2i + 1) for every
i ≥ 0. The latter proves, as claimed, c′2 = 2c2 is even by minimality of c′2. Moreover,
for every 0 ≤ i < c2 we have by Lemma 9 µ(c1 + 2i) < µ(c1 + 2(i + 1)) (since otherwise
tmax ≤ c1 +2i). By Lemma 10 we have µ(c1 +2i) = µ(c1 +2i+1). Finally, by Lemma 8 we get
µ(c1 +2(i+1)) ≤ µ(c1 +2i+1)+1 = µ(c1 +2i)+1, therefore µ(c1 +2(i+1)) = µ(c1 +2i)+1.
Altogether combined, it implies that µ(c1 + 2i) = µ(c1 + 2i + 1) = µ(c1) + i for every
0 ≤ i ≤ c2, that proves the first part of our result.

We can compute µ(0) with any b-Matching algorithm after we set the capacity of w to 0.
The value of c1 can be computed within O(log c1) calls to a b-Matching algorithm, as follows.
Starting from c′1 = 1, we multiply the current value of c′1 by 2 until we reach a value c′1 > c1
such that µ(c′1) < µ(0) + c′1. Then, we perform a binary search between 0 and c′1 in order to
find the largest value c1 such that µ(c1) = µ(0) + c1. Once c1 is known, we can use a similar
approach in order to compute c2. Overall, since c1 + 2c2 = tmax ≤

∑
v∈NG(w) bv = O(||b||1),

we are left with O(log ||b||1) calls to any b-Matching algorithm. Therefore, by Lemma 7,
we can compute the triple (µ(0), c1, c2) in O(nm log2 n log ||b||1)-time. J

4 The algorithm

We present in this section a quasi linear-time algorithm for computing a maximum-cardinality
b-matching on any bounded split-width graph (Theorem 17). Given a graph G, our algorithm
takes as input the split decomposition tree T of any minimal split decomposition of G.
We root T in an arbitrary component C1. Then, starting from the leaves, we compute by
dynamic programming on T the cardinality of an optimal solution. This first part of the
algorithm is involved, and it uses the results of Section 3. It is based on a new reduction
rule that we introduce in Definition 12. Finally, starting from the root component C1, we
compute a maximum-cardinality b-matching of G, b by reverse dynamic programming on
T . This second part of the algorithm is simpler than the first one, but we need to carefully
upper-bound its time complexity. In particular, we also need to ensure that some additional
property holds for the b-matchings we compute at every component.
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Figure 3 The reduction of Definition 12.

4.1 Reduction rule
Recall that an edge between a rooted subtree and its parent in T corresponds to a split
(U,W ) of G. After we processed the side U (corresponding to this subtree) we account for all
the partial solutions found for GU by transforming the split marker vertex u into a module 2,
as follows:

I Definition 12. For any instance G = (V,E), b and any split (U,W ) of G let C = NG(W ) ⊆
U, D = NG(U) ⊆W . Let GU = (U ∪{w}, EU ), GW = (W ∪{u}, EW ) be the corresponding
subgraphs of G. We define the pairs GU , b

U and HW , bW as follows:
For every v ∈ U we set bU

v = bv; the capacity of the split marker vertex w is left unspecified.
Let (µU (0), cU

1 , c
U
2 ) be as defined in Proposition 11 w.r.t. GU , b

U and w.
The auxiliary graph HW is obtained from GW by replacing the split marker vertex u by
a module Mu = {u1, u2, u3}, NHW

(Mu) = NGW
(u) = D; we also add an edge between

u2, u3. For every v ∈W we set bW
v = bv; we set bW

u1
= cU

1 , b
W
u2

= bW
u3

= cU
2 .

See Fig. 3 for an illustration. We will show throughout this section that our gadget
somewhat encodes all the partial solutions for side U . Formally, the following relationship
holds between solutions for G, b and solutions for HW , bW :

I Proposition 13. Given a graph G = (V,E) and a capacity function b, let (U,W ) be a
split of G and let HW , bW be as in Definition 12. If x and xW are maximum-cardinality
b-matchings for the pairs G, b and HW , bW , respectively, then we have:

||x||1 = ||xW ||1 + µU (0)− cU
2

In what follows, we prove the first direction of Proposition 13 using classical flow techniques.
We postpone the proof of the other direction since, for that one, we need to prove intermediate
lemmata that will be also used in the proof of Theorem 17.

I Lemma 14. Let x be a b-matching for G, b. There exists a b-matching xW for HW , bW

such that ||xW ||1 ≥ ||x||1 + cU
2 − µU (0).

The following Sections 4.2 and 4.3 detail the intermediate results that we will use in order
to prove the other direction of Proposition 13 (as well as Theorem 17).

4.2 b-matchings with additional properties
We consider an intermediate modification problem on the b-matchings of some “auxiliary
graphs” that we define next. Let Ci be a split component in a given split decomposition
of G. The subgraph Ci is obtained from a sequence of simple decompositions. For a given
subsequence of the above simple decompositions (corresponding to the edges between Ci and

2 Recall that M is a module if for every x, y ∈ M we have N(x) \M = N(y) \M .
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its children in T ) we apply the reduction rule of Definition 12. Doing so, we obtain a pair
Hi, b

i with Hi being a supergraph of Ci obtained by replacing some split marker vertices
uit
, 1 ≤ t ≤ `, by the modules Mit

= {u1
it
, u2

it
, u3

it
}. By construction u2

it
, u3

it
are adjacent

and they have the same capacity.
We seek for a maximum-cardinality b-matching xi for the pair Hi, b

i such that the
following properties hold for every 1 ≤ t ≤ `:

(symmetry) degxi(u2
it

) = degxi(u3
it

).
(saturation) if degxi(u1

it
) < c1

it
then, degxi(u2

it
) = xi

{u2
it

,u3
it
}.

We prove next that for every fixed t, any xi can be processed in O(|Euit
(Ci)|)-time so that

both the saturation property and the symmetry property hold for Mit . However, ensuring
that these two above properties hold simultaneously for every t happens to be trickier. We
manage to do so by reducing to Maximum-Cost b-Matching (i.e., internal edges in the
modules are assigned a larger cost than the other edges).

I Lemma 15. In O(|V (Hi)| · |E(Hi)| · log2 |V (Hi)|)-time, we can compute a maximum-
cardinality b-matching xi for the pair Hi, b

i such that both the saturation property and the
symmetry property hold for every Mit , 1 ≤ t ≤ `.

4.3 Merging the partial solutions together
Finally, before we can describe our main algorithm (Theorem 17) we need to consider the
intermediate problem of merging two partial solutions. Let (U,W ) be a split of G and
let GU = (U ∪ {w}, EU ), GW = (W ∪ {u}, EW ) be the corresponding subgraphs of G.
Consider some partial solutions xU and xW obtained, respectively, for the pairs GU , b

U and
GW , bW (for some bU , bW to be defined later). Assuming an appropriate data-structure for
b-matchings, this merging stage can be solved with a greedy algorithm.

I Lemma 16. Suppose that bU (resp., bW ) satisfies bU
v ≤ bv for every v ∈ U (resp., bW

v ≤ bv

for every v ∈W ). Let xU , xW be b-matchings for, respectively, the pairs GU , b
U and GW , bW

such that degxU (w) = degxW (u) = d.
Furthermore, for any graph H let ϕ(H) = |E(H)|+ 4 · (sc(H)− 1), with sc(H) being the

number of split components in any minimal split decomposition of H 3.
Then, in at most O(ϕ(G)− ϕ(GU )− ϕ(GW ))-time, we can obtain a valid b-matching x

for the pair G, b such that ||x||1 = ||xU ||1 + ||xW ||1 − d.

Overall, since there are at most n− 2 components in any minimal split decomposition of
G [23], the merging stages take total time O(ϕ(G)) = O(n+m).

4.4 Main result
We are now ready to prove Proposition 13. This algorithmic proof is the cornerstone of our
main result.

Proof of Proposition 13. We have ||xW ||1 ≥ ||x||1 − µU (0) + cU
2 by Lemma 14. In order to

prove the converse inequality, we can assume w.l.o.g. that xW satisfies both the saturation
property and the symmetry property w.r.t. the module Mu (otherwise, by Lemma 15, we
can process xW so that it is the case). We partition ||xW ||1 as follows: µW =

∑
e∈E(W ) x

W
e ,

c′1 = degxW (u1) ≤ cU
1 and c′2 = degxW (u2)− xW

{u2,u3} = degxW (u3)− xW
{u2,u3} ≤ c

U
2 . Since we

3 We recall that the set of prime graphs in any minimal split decomposition is unique up to isomorphism [23].
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Figure 4 The construction of x′. Vertices with capacity greater than 1 are labeled with their
capacity. Thin and bold edges have respective weights 0 and 1.

assume that xW satisfies both the saturation property and the symmetry property w.r.t. Mu,
we have c′2 > 0 only if c′1 = cU

1 . Furthermore, we observe that u2 and u3 must be saturated
(otherwise, we could increase the cardinality of the b-matching by setting xW

{u2,u3} = cU
2 − c′2).

Therefore, we get:

||xW ||1 = µW + c′1 + 2c′2 + (cU
2 − c′2) = µW + c′1 + c′2 + cU

2 .

We define bW
u = bU

w = c′1 + 2c′2. Then, we proceed as follows (see Fig. 4 for an illustration).
We transform xW into a b-matching for the pair GW , bW by setting xW

{u,v′} = xW
{u1,v′} +

xW
{u2,v′} + xW

{u3,v′} for every v′ ∈ NGW
(u) = D. Note that we have degxW (u) = bW

u = c′1 +
2c′2. Furthermore, the cardinality of the b-matching has decreased by xW

{u2,u3} = cU
2 − c′2.

Let xU be a b-matching for the pair GU , b
U of maximum cardinality µU (c′1 + 2c′2). Since

c′1 ≤ cU
1 , c′2 > 0 only if c′1 = cU

1 , and c′2 ≤ cU
2 , the following can be deduced from

Proposition 11: ||xU ||1 = µU (c′1 + 2c′2) = µU (0) + c′1 + c′2; and the split marker vertex w
is saturated in xU , i.e., degxU (w) = bU

w = c′1 + 2c′2.
Since we have degxW (u) = degxU (w) = c′1 +2c′2, we can define a b-matching x′ for the pair G, b
by applying Lemma 16. Doing so, we get ||x||1 ≥ ||x′||1 = ||xU ||1 +

(
||xW ||1 − (cU

2 − c′2)
)
−

(c′1 + 2c′2) = µU (0) + c′1 + c′2 + ||xW ||1 − (cU
2 + c′1 + c′2) = ||xW ||1 + µU (0)− cU

2 . J

We finally prove (in a similar way as above) the main result in this paper.

I Theorem 17. For every pair G = (V,E), b with sw(G) ≤ k, we can solve b-Matching in
O((k log2 k) · (m+ n) · log ||b||1)-time.

Setting bv = 1 for every v ∈ V , we obtain the following implication of Theorem 17:

I Corollary 18. For every graph G = (V,E) with sw(G) ≤ k, we can solve Maximum-
Cardinality Matching in O((k log2 k) · (m+ n) · log n)-time.

5 Open questions

We presented an algorithm for solving b-Matching on distance-hereditary graphs, and more
generally on any graph with bounded split-width. In contrast to our result, we stress that as
already noticed in [20], Maximum-Weight Matching cannot be solved faster on complete
graphs, and so, on distance-hereditary graphs, than on general graphs. An interesting
open question would be to know whether b-Matching can be solved in linear time on
bounded split-width graphs. In a companion paper [10], we prove with a completely different
approach that Maximum-Cardinality Matching can be solved in O(n + m)-time on
distance-hereditary graphs. However, it is not clear to us whether similar techniques can be
used for bounded split-width graphs in general.
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Abstract

König-Egerváry graphs form an important graph class which has been studied extensively in
graph theory. Much attention has also been paid on König-Egerváry subgraphs and König-
Egerváry graph modification problems. In this paper, we focus on one König-Egerváry subgraph
problem, called the Maximum Edge Induced König Subgraph problem. By exploiting the
classical Gallai-Edmonds decomposition, we establish connections between minimum vertex cover,
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Egerváry subgraph structure. We obtain a new structural property of König-Egerváry subgraph:
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1 Introduction

Given a graph G, a matching M in G is a set of vertex-disjoint edges. Matching problem is
one of the fundamental problems in combinatorial optimization, and has wide applications
in many fields. For several decades, much attention has been paid on matching and related
problems.

The Vertex Cover problem is closely related to the matching problem, which is to
decide, for a given graph G = (V,E), whether there exists a subset V ′ ⊆ V of at most k
vertices such that each edge in G has at least one endpoint in V ′. The Vertex Cover
problem is one of the 21 NP-complete problems [19], and has been extensively studied in
the field of parameterized complexity [8, 15, 22, 32, 36]. The current best parameterized
algorithm for the Vertex Cover problem is of running time O∗(1.2738k) [8], where k is the
size of vertex cover in given graph. Matching methods can also be applied to deal with the
Vertex Cover problem. For the bipartite graphs, it is proved that the size of a minimum
vertex cover is equal to the size of a maximum matching [1]. Thus, the Vertex Cover
problem on bipartite graphs can be solved in polynomial time based on the algorithms of
getting a maximum matching. For general graphs, based on the maximum matching, an
approximation algorithm with ratio 2 can be obtained for the Vertex Cover problem,
which is still the current best approximation ratio for the problem. By using matching number
as a lower bound, a variant of the Vertex Cover problem, called Above-Guarantee
Vertex Cover problem (given a graph G and parameter k, decide whether G has a vertex
cover of size at most |M |+ k, where M is a maximum matching in G) was first studied in
[40]. Thereafter, several interesting results for the Above-Guarantee Vertex Cover
problem have been obtained [9, 15, 25, 36, 37, 34].

The classical Gallai-Edmonds decomposition method provides an elegant structure for
graphs based on matching. For any graph G, a Gallai-Edmonds decomposition of graph G can
be obtained in polynomial time [27], which is a tuple (X,Y, Z), where X is the set of vertices
in G which are not covered by at least one maximum matching of G, Y is N(X) (N(X)
is the set of neighbors of the vertices in X with N(X) ∩X = ∅), and Z = V (G)\(X ∪ Y ).
The application of Gallai-Edmonds decomposition has been paid lots of attention, and many
problems were studied by applying Gallai-Edmonds decomposition from approximation
algorithms and parameterized complexity points of view, such as approximation algorihtms
[14, 28, 35], kernelizations [13, 21, 33], parameterized algorithms [7, 11, 15], etc. Gallai-
Edmonds decomposition has also been applied to solve problems in many other fields
[2, 3, 18, 38].

A graph G is a König-Egerváry graph (in short, König graph) if the size of a minimum
vertex cover of G is equal to the size of a maximum matching of G. The structural properties
of König graphs have been studied for a long time. Deming [10] studied the characterizations
of König graphs through independence number of graphs, and proved that the König graphs
can be recognized in polynomial time. Stersoul [39] studied the characterizations of König
graphs through the structure of matchings in graphs. Lovász [26] studied König graphs with
perfect matching, and gave the excluded subgraphs characterizations through matching-
covered graphs. Bourjolly and Pulleyblank [5] studied the relation between König graphs
and 2-bicritical graphs, and showed that the characterizations of König graphs can be used
to obtain a structural characterization of 2-bicritical graphs. Korach, Nguyen, and Peis
[20] studied subgraph characterizations of Red/Blue-Split graphs and König graphs, where
Red/Blue-Split graphs are the generalizations of König graphs and Split graphs. Levit and
Mandrescu [23] studied the relation between critical independent sets and König graphs.
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Levit and Mandrescu [24] studied maximum matchings in König graphs, and gave a new
characterization through maximum matching. Bonomo et al. [4] presented a characterization
of König graphs by forbidden subgraphs. Jarden et al. [17] further studied the relation
between maximum independent sets, maximum matching, and König graphs, and gave two
characterizations of König graphs. Cardoso et al. [6] gave some combinatorial and spectral
properties of König graphs through Laplacian eigenvalues.

In this paper, we focus on the König-Egerváry subgraph problem, and study the problem
from approximation algorithm and parameterized complexity points of view. For a graph
G = (V,E) and a subset E′ ⊆ E, the subgraph induced by edges in E′, denoted by G[E′], is
the one that contains the endpoints of the edges in E′, and contains the edges in E′. If the
size of a minimum vertex cover is equal to the size of a maximum matching in G[E′], then
G[E′] is called a König subgraph. We now give the definitions of the related problems.

Maximum Edge Induced König Subgraph:
Given a graph G = (V,E), find a set E′ ⊆ E with maximum number of edges such
that the edges in E′ induce a König subgraph.

Edge Induced König Subgraph:
Given a graph G = (V,E) and non-negative integer k, find a set E′ of at least k edges
in E such that the edges in E′ induce a König subgraph, or report that no such set
exists.

The Edge Induced König Subgraph problem is closely related to a graph modification
problem, called König Edge Deletion problem, which is to delete at most k edges to turn
a given graph into a König graph. For the NP-completeness, the Edge Induced König
Subgraph problem and the König Edge Deletion problem are equivalent. However, the
approximability and parameterized complexity of those two problems are totally different.
For the Edge Induced König Subgraph problem, Mishra et al. [32] presented an
approximation algorithm with ratio 5/3, and gave a parameterized algorithm of running
time O∗(2k). For the König Edge Deletion problem, Mishra et al. [32] proved that this
problem does not admit any constant-factor approximation algorithm unless UGC fails. As
pointed out in [30, 31, 32], the parameterized complexity of the König Edge Deletion
problem is still open. On the other hand, many other König subgraph and König graph
problems have also been studied. Mishra et al. [30, 32] studied the Vertex Induced König
Subgraph problem (given a graph G and non-negative integer k, decide whether there
exists a set of at least k vertices that induces a König subgraph) and the König Vertex
Deletion problem (given a graph G and non-negative integer k, decide whether there exists
a set of at most k vertices whose deletion results in a König subgraph). For the Vertex
Induced König Subgraph problem, Mishra et al. [32] proved that it is W [1]-hard. For the
König Vertex Deletion problem, a series of parameterized algorithms have been proposed
[9, 25, 30, 32]. As the generalizations of König graphs and Split graphs, Red/Blue-Split
graph modification problems have also been studied [20, 29, 30].

In this paper, we study the Edge Induced König Subgraph problem from approxim-
aition and parameterized algorithms points of view. The main contribution of this paper
is that we present structural connections between minimum vertex cover, Gallai-Edmonds
decomposition, maximum bisection, and König subgraphs, get a new structural property for
the König subgraph of a given graph, and propose an improved approximation algorithm
for the Edge Induced König Subgraph problem. To the best of our knowledge, this
paper is the first one to establish connection between Gallai-Edmonds decomposition and
the structures of König graphs.
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We now point out the differences of our techniques and results in this paper with the
ones in [31, 32].
(1) The 5/3-approximation algorithm for the Maximum Edge Induced König Subgraph

problem in [31, 32] is based on an important property of König subgraph: every graph
G has an edge induced König subgraph of at least 3m/5 edges, where m is the number
of edges in G, which is obtained in [31, 32] based on the maximum matching in G. In
this paper, we exploit the connection between Gallai-Edmonds decomposition and König
subgraphs, and present a new structural property of König subgraphs: every G has
an edge induced König subgraph of at least 2m/3 edges, which results in an improved
approximation algorithm with ratio 10/7.

(2) For a Gallai-Edmonds decomposition (X,Y, Z) of given graph G, instead of directly
applying the matching structure in the decomposition, we study the roles of factor-critical
connected components of G[X] to derive a König subgraph of G. For the connected
components in G[X], we use the “matching switching” strategy to analyze the number of
edges from the connected components contained in the König subgraph, which is another
key point to get the improved approximation algorithm for the problem.

(3) In this paper, we exploit a connection between structures of the König subgraphs and the
properties of the Maximum Bisection above tight lower bound problem (given a
graph G = (V,E) and a parameter k, decide whether V can be divided into two parts
V1, V2 such that ||V1| − |V2|| ≤ 1, and the number of edges with one endpoint in V1
and the other endpoint in V2 is at least d|E|/2e+ k). The kernelization results of the
Maximum Bisection above tight lower bound problem are applied to analyze the
size of the König subgraphs.

(4) For the parameterized algorithm of the Edge Induced König Subgraph problem,
since we can get that every graph has an edge induced König subgraph of at leat 2m/3
edges, the parameter k in the given instance of the Edge Induced König Subgraph
problem is large. By using 2m/3 as a lower bound, we propose a variant of the Edge
Induced König Subgraph problem, called Edge Induced König Subgraph above
lower bound problem, and give a kernel of at most 30k edges for the problem.

2 Preliminaries

Given a graph G = (V,E), for two vertices u, v in G, the edge between u and v if exists
is denoted by uv. We say that edge uv is incident to u and v. For a vertex v in G, the
degree of v denoted by d(v) is the number of edges incident to v. For a subset X ⊆ V , G[X]
denotes the subgraph induced by the vertices in X. For a vertex v in X, dX(v) denotes the
degree of v in the induced subgraph G[X]. For a matching M in G, let V (M) be the set
of vertices contained in M . The vertices in V (M) are the vertices matched by M , and it is
also called that the vertices in V (M) are saturated by M . The vertices in V − V (M) are
called unmatched vertices, and the edges in M are called matched edges. A matching M in
G is a perfect matching if all the vertices in V are matched vertices. For a graph G with n
vertices, if every (vertex) induced subgraph with n− 1 vertices has a perfect matching, then
G is called a factor-critical graph. For a matching M in graph G = (V,E), if V (M) contains
|V | − 1 vertices, then M is called a near-perfect matching of G. A chord is an edge incident
to two nonadjacent vertices in a cycle. A chordless cycle with at least four vertices is called
a hole. For a subgraph C in G, let V (C) and E(C) denote the sets of vertices and edges
contained in C, respectively. For two subsets A,B ⊆ V , E(A,B) is the set of edges, each
of which has one endpoint in A and the other endpoint in B. For a vertex u and a subset
B ⊆ V , for simplicity, let E(u,B) = E({u}, B). For a partition (V1, V2) of V , (V1, V2) is
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called a cut in G, and an edge with one endpoint in V1 and the other endpoint in V2 is called
a cut edge of (V1, V2). The size of cut (V1, V2) is the number of cut edges in E(V1, V2). A cut
(V1, V2) is called a bisection of G if ||V1| − |V2|| ≤ 1. A bisection with maximum number of
cut edges is called a maximum bisection. A triangle is called a C3.

I Lemma 1 ([12, 27]). For a given graph G, the Gallai-Edmonds decomposition (X,Y, Z)
of G has the following properties:
1. the components of the subgraph induced by X are factor-critical,
2. the subgraph induced by Z has a perfect matching,
3. if M is any maximum matching of G, it contains a near-perfect matching of each

component of G[X], a perfect matching of each component of G[Z], and matches all
vertices of Y with vertices in distinct components of G[X],

4. the size of a maximum matching is 1
2 (|V | − δ(G[X]) + |Y |), where δ(G[X]) is the number

of connected components in G[X].

3 New algorithms for Edge Induced König Subgraph

In this section, we give new structural properties of König subgraphs, and present an improved
approximation algorithm for the Edge Induced König Subgraph problem. For a graph
G, whether G is a König graph or not can be decided by the following lemma.

I Lemma 2 ([30, 31, 32]). A graph G = (V,E) is a König graph if and only if there exists a
cut (V1, V2) of V such that: (1) V1 is a vertex cover of G; (2) there exists a matching across
(V1, V2) saturating each vertex in V1.

We now give the relation between graphs with perfect matching and König graphs.

I Lemma 3 ([31, 32]). Let G = (V,E) be a graph with a perfect matching M , where
|V | = n, |E| = m. Then a König subgraph G′ of G with at least 3m/4 + n/8 edges can be
found in O(mn) time such that |M ′| = |M |, where M ′ is a maximum matching in G′.

Given an instance (G, k) of the Edge Induced König Subgraph problem, let (X,Y, Z)
be a Gallai-Edmonds decomposition of G. By Lemma 3, we get the following result.

I Lemma 4. Let G1 be the subgraph induced by vertices in Z, and M be a maximum matching
in G. Then, there exists a König subgraph G′1 in G1 such that |M ′| = |E(G1) ∩M |, and
|E(G′1)| ≥ 3|E(G1)|/4, where M ′ is a maximum matching in G′1.

Since each connected component C of G[X] is factor-critical, C contains an odd number
of vertices. Based on the degrees of the vertices in X and a maximum matching M , we
divide the vertices in X into the following groups.

X1 = {v ∈ X | dX(v) = 0},
X2 = {v ∈ X | dX(v) ≥ 1, ∃u ∈ Y, uv ∈M},
X3 = {v ∈ X | dX(v) ≥ 1, v /∈ V (M)}.

Based on X1, X2, and X3, we divide the connected components of G[X] into the following
types.
(1) B1: each connected component of B1 is an isolated vertex from X1;
(2) B2: each connected component of B2 contains a vertex from X2;
(3) B3: each connected component of B3 contains a vertex from X3, and has exactly three

vertices;
(4) B5: each connected component of B5 contains a vertex from X3, and has at least five

vertices.
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For each Bi (i = 1, 2, 3, 5), let V (Bi) and E(Bi) be the sets of vertices and edges of Bi,
respectively. For each connected component C of B3, let a, b, and c be the three vertices
contained in C. By the definition of factor-critical, any two vertices from {a, b, c} are adjacent.
If E(C, Y ) is not empty, then arbitrarily choose any edge from E(Y,C) (without loss of
generality, assume that edge ua is chosen). Then, edge ua is called a special edge. Remark
that any edge in E(Y,C) can be viewed as special edge and only one edge from E(Y,C)
can be a special edge. For this case, if edge bc is in maximum matching M , then a is an
unmatched vertex in C. We apply the strategy, called “matching switching”, to deal with
the edges in M ∩ E(C), i.e., we delete bc from M and add edge ab or ac to M . It is easy
to see that the new M is still a maximum matching in G. After doing that, edge bc is not
an edge in M , which is called a candidate deleted edge. Let SE be the set of special edges
obtained by considering all connected components in B3.

Given a graph G, we first give the relation between bisections and matchings in G.

I Lemma 5. [16] Let G be a graph and M be a matching in G. Then G has a bisection
of size at least dm/2e+ b|M |/2c, which can be found in O(m+ n) time, where m,n are the
number of edges and vertices in G, respectively.

For simplicity, we assume that all the numbers in the following are divisible, without any
floor and ceiling notations.

We now analyze the relation between subgraph G[Y ∪V (B1)∪V (B2)] and König subgraphs.

I Lemma 6. Let G2 be the graph constructed by the subgraph G[Y ∪ V (B1) ∪ V (B2)] and
edges in E(Y,Z), E(Y, V (B3) ∪ V (B5))\SE. Then, there exists a König subgraph G′2 in G2
such that |M ′| = |M ∩E(G2)| = |Y |+ |M ∩E(B2)|, and |E(G′2)| ≥ 11|E(G2)|/15, where M ′
is a maximum matching in G′2.

Proof. Assume that B2 is not empty. Let B2 = {b2
1, . . . , b

2
h2
}. For each connected component

b2
i (1 ≤ i ≤ h2), there must exist two vertices u ∈ Y and v ∈ V (b2

i ) such that edge uv is in
M . Add u to a set U , which is initialized as an empty set. We need to consider the edges in
E(b2

i ), E(u, Z), E(u,X)\SE, and E(u, Y ). It is noted that for edges in E(u, Y ), there may
exist another vertex u′ in Y such that E(u, Y ) ∩ E(u′, Y ) 6= ∅. Therefore, in the process
of analyzing the relation between G[Y ∪ V (B1) ∪ V (B2)] and König subgraphs, we need to
guarantee that each edge in E(G[Y ]) can only be dealt with one time.

Since b2
i is factor-critical, subgraph G[V (b2

i )\{v}] has a perfect matching, and the number
of edges of G[V (b2

i )\{v}] contained in M is (|V (b2
i )| − 1)/2. After dealing with all the

connected components in B2, U contains h2 vertices. For each vertex u in U , there exists
a connected component b2

i (1 ≤ i ≤ h2) in B2 and a vertex v in b2
i such that uv is in

M . Let Q0
i = E(u, Z) ∪ E(u, Y \U) ∪ E(u,X\V (b2

i ))\SE, Q1
i = E(v, V (b2

i )\{v}), and
Q2

i = E(G[V (b2
i )\{v}])\M .

Based on the analysis of the edges in b2
i and by Lemma 5, a bisection (A1, A2) of size

at least m′/2 + (E(b2
i ) ∩M)/2 in graph G[V (b2

i )\{v}] can be found in O(m′ + |V (b2
i )\{v}|)

time, where m′ is the number of edges in G[V (b2
i )\{v}]. Since m′ = |E(b2

i ) ∩M |+ |Q2
i |, we

get that the number of cut edges of bisection (A1, A2) is at least |E(b2
i ) ∩M |+ |Q2

i |/2. It
is easy to get that |E(G[A1])|+ |E(G[A2])| ≤ |Q2

i |/2. Based on the sizes of Q0
i and Q1

i , we
now discuss how to delete edges to turn subgraph G[V (b2

i ) ∪ {u}] into a König subgraph.

Case 1. |Q0
i | ≥ 3|Q1

i |/8. For this case, we put u into the minimum vertex cover of G.
We will delete some edges in Q1

i and Q2
i to make G[V (b2

i ) ∪ {u}] be a König subgraph.
We compare |E(v,A1)| + |E(G[A1])| with |E(v,A2)| + |E(G[A2])|. Since |E(v,A1)| +
|E(G[A1])|+ |E(v,A2)|+ |E(G[A2])| ≤ |Q1

i |+ |Q2
i |/2, one value of |E(v,A1)|+ |E(G[A1])|
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and |E(v,A2)| + |E(G[A2])| is at most (|Q1
i | + |Q2

i |/2)/2. Without loss of generality,
assume that |E(v,A2)| + |E(G[A2])| ≤ (|Q1

i | + |Q2
i |/2)/2. We put the vertices in A1

into the minimum vertex cover of G, and delete the edges in E(v,A2) ∪ E(G[A2]) from
subgraph G[V (b2

i ) ∪ {u}], and let G′ be the resulted subgraph. Since uv ∈ M and
|M ∩ E(G[V (b2

i ) ∪ {u}])| = (V (b2
i )− 1)/2 + 1, in the subgraph G′, the size of minimum

vertex cover is |A1| + 1 = (V (b2
i ) − 1)/2 + 1. Thus, subgraph G′ is a König subgraph.

We now analyze the proportion of the deleted edges in Q0
i and G[V (b2

i ) ∪ {u}]. Because
vertex u is contained in the minimum vertex cover, all the edges incident to u are covered,
i.e., the edges in Q0

i are covered by u. We get that

|E(v,A2)|+ |E(G[A2])|
|Q0

i |+ |Q1
i |+ |Q2

i |+ |M ∩ E(b2
i )|+ 1

≤ (|Q1
i |+ |Q2

i |/2)/2
|Q0

i |+ |Q1
i |+ |Q2

i |+ |M ∩ E(b2
i )| (1)

Since b2
i is factor-critical, we have |M ∩ E(b2

i )| ≥ |Q1
i |/2. Therefore, for inequality 1, we

get that

(|Q1
i |+ |Q2

i |/2)/2
|Q0

i |+ |Q1
i |+ |Q2

i |+ |M ∩ E(b2
i )|

≤ (|Q1
i |+ |Q2

i |/2)/2
|Q0

i |+ |Q1
i |+ |Q2

i |+ |Q1
i |/2

(2)

≤ (|Q1
i |+ |Q2

i |/2)/2
3|Q1

i |/8 + |Q1
i |+ |Q2

i |+ |Q1
i |/2

(3)

≤ (|Q1
i |+ |Q2

i |/2)/2
15|Q1

i |/8 + |Q2
i |

= 4|Q1
i |+ 2|Q2

i |
15|Q1

i |+ 8|Q2
i |

≤ 4/15.

From inequality 2 to inequality 3, we use the fact that |Q0
i | ≥ 3|Q1

i |/8.
Case 2. |Q0

i | < 3|Q1
i |/8. For this case, we put v into the minimum vertex cover of G.

We will delete all edges in Q0
i and some edges in Q2

i to make G[V (b2
i ) ∪ {u})] be a

König subgraph. Since |E(G[A1])|+ |E(G[A2])| ≤ |Q2
i |/2, one value of |E(G[A1])| and

|E(G[A2])| is at most |Q2
i |/4. Without loss of generality, assume that |E(G[A1])| ≤ |Q2

i |/4.
We put the vertices in A2 into the minimum vertex cover of G, delete all the edges in
Q0

i , and delete the edges in E(G[A1]) from subgraph G[V (b2
i ) ∪ {u}]. Let G′ be the

new subgraph obtained. It is easy to see that the size of minimum vertex cover in G′ is
|A2|+1 = (V (b2

i )−1)/2+1. Since uv ∈M and |M∩E(G[V (b2
i )∪{u}])| = (V (b2

i )−1)/2+1,
subgraph G′ is a König subgraph. We now analyze the proportion of the deleted edges in
Q0

i and G[V (b2
i ) ∪ {u}].

|Q0
i |+ |E(G[A1])|

|Q0
i |+ |Q1

i |+ |Q2
i |+ |M ∩ E(b2

i )|+ 1

≤ |Q0
i |+ |Q2

i |/4
|Q0

i |+ |Q1
i |+ |Q2

i |+ |Q1
i |/2

(4)

<
3|Q1

i |/8 + |Q2
i |/4

3|Q1
i |/2 + |Q2

i |
(5)

= 1/4.
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From inequality 4 to inequality 5, we use the fact that |Q0
i | < 3|Q1

i |/8.
If Y \U is not an empty set, then for any vertex u′ in Y \U , an isolated vertex b1 in B1
can be found such that the edge formed by u′ and b1 is in maximum matching M . For
this case, we put the vertices in Y \U into the minimum vertex cover. It is easy to get
that the subgraph G[V (B1) ∪ (Y \U)] is a König subgraph.
For the case when B2 is an empty set, it is obvious to get that Y \U is not empty, which
can be handled as above.
Therefore, after dealing with all connected components of B2 and B1, a König subgraph
G′2 in G2 can be found such that |M ′| = |M ∩ E(G2)| = |Y | + |M ∩ E(B2)|, and
|E(G′2)| ≥ 11|E(G2)|/15. J

We now deal with the connected components of B3.

I Lemma 7. Let G3 be the graph constructed by the subgraph G[V (B3)] and edges in SE.
Then, a König subgraph G′3 can be obtained in G3 such that |M ′| = |E(G3) ∩ M |, and
|E(G′3)| ≥ 2|E(G3)|/3, where M ′ is a maximum matching in G′3. If graph G contains no C3
as connected component, then |E(G′3)| ≥ 3|E(G3)|/4.

Proof. For the case when B3 is an empty set, the correctness of the lemma is trivial. Assume
that B3 is not empty. Let B3 = {b3

1, . . . , b
3
h3
}. For each connected component b3

i (1 ≤ i ≤ h3)
in B3, if b3

i is a C3 and a connected component in graph G, then no vertex in b3
i is connected

to vertices in Y , and there exists a König subgraph in b3
i with 2|E(b3

i )|/3 number of edges.
On the other hand, if b3

i is a C3 in G[X] and not a connected component in graph G,
then there exists a special edge e in SE with one endpoint in b3

i , and a candidate deleted
edge is contained in b3

i . In the process of dealing with the connected components of B2,
all the edges in E(Y, b3

i ) except special edge e are handled, i.e., the edges in E(Y, b3
i )\{e}

are either covered by the vertices in Y , or not contained in the König subgraph. For this
case, we delete the candidate deleted edge in b3

i , and put the endpoint of special edge e
in b3

i into the minimum vertex cover. Let G3
i be the graph constructed by the subgraph

G[V (b3
i )] and special edge e. Thus, a König subgraph G′ of graph G3

i can be obtained. The
proportion of the deleted edges in G3

i to get the König subgraph G′ is 1/4. Thus, after
dealing with all connected components of B3, a König subgraph G′3 can be found in G3
such that |M ′| = |E(G3) ∩M |, and |E(G′3)| ≥ 2|E(G3)|/3. If graph G contains no C3 as
connected component, then |E(G′3)| ≥ 3|E(G3)|/4. J

For any connected component C of B3, assume that C is also a connected component in
G. Then, C is a triangle in G. It is easy to see that two edges of C can be in edge induced
König subgraph of C, and any edge of C can be deleted to get the edge induced König
subgraph. Therefore, for any given instance (G = (V,E), k) of the Edge Induced König
Subgraph problem, we can firstly deal with the C3s in graph G, without having any impact
on the approximation ratio of the problem. We now give a refined analysis for the results in
Lemma 7.

I Lemma 8. Let G3 be the graph constructed by the subgraph G[V (B3)] and edges in SE,
where no connected component in B3 is a connected component in G. Then, a König subgraph
G′3 can be obtained in G3 such that |M ′| = |E(G3) ∩M |, and |E(G′3)| ≥ 3|E(G3)|/4, where
M ′ is a maximum matching in G′3.

We now study the properties of the connected components of B5. Assume that B5 is not
empty, and let B5 = {b5

1, . . . , b
5
h5
}.

I Lemma 9. For any connected component b5
i (1 ≤ i ≤ h5) of B5, if b5

i is a hole, then a
König subgraph with at least 4|E(b5

i )|/5 edges can be obtained.
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Proof. Assume that b5
i is a hole. Since hole b5

i is factor-critical, it contains at least five edges.
By deleting any edge in b5

i , a König subgraph of b5
i can be obtained, and contains |E(b5

i )| − 1
edges. Thus, if b5

i is a hole, then a König subgraph with at least 4|E(b5
i )|/5 edges can be

obtained. J

I Lemma 10. For any subgraph C in G[X], if C is factor-critical, then each vertex in C

has degree at least two in C.

Proof. Assume that C is factor-critical. Then, for any vertex v in C, C\{v} has a perfect
matching. It is easy to see that C contains no isolated vertex. Assume that there exists a
vertex v with degree one, and u is the neighbor of v. If vertex u is deleted, then v becomes
an isolated vertex in C\{u}, contradicting with the fact that C\{u} has a perfect matching.
Thus, if C is factor-critical, then each vertex in C has degree at least two. J

For each connected component b5
i of B5, a vertex w with minimum degree in b5

i can be
found. Assume that M ′ ⊆M is a matching in b5

i . If w is a matched vertex, then we apply
“matching switching” strategy to deal with the edges in M ′. In other words, we find a perfect
matching M ′′ in G[V (b5

i )\{w}], and let M = (M −M ′) ∪M ′′. Let W 1
i = E(w, V (b5

i )\{w}),
and W 2

i = E(G[V (b5
i )\{w}]\M .

I Lemma 11. For each connected component b5
i (1 ≤ i ≤ h5) of B5, if b5

i is not a hole, then
|W 1

i | ≤ |W 2
i |.

I Lemma 12. Let G4 be the subgraph induced by vertices in B5. Then, there exists a König
subgraph G′4 such that |M ′| = |M ∩ E(G′4)|, and |E(G′4)| ≥ 7|E(G4)|/10, where M ′ is a
maximum matching in G′4.

Proof. For any connected component b5
i (1 ≤ i ≤ h5) of B5, if b5

i is a hole, then by
Lemma 9, there exists a König subgraph G′ in G[V (b5

i )] with |E(G′)| ≥ 4|E(b5
i )|/5. Now

assume that b5
i is not a hole. By Lemma 5, a bisection (A3, A4) of size at least m′′/2 +

|E(b5
i )∩M |/2 in subgraph G[V (b5

i )\{w}] can be found in O(m′′ + |V (b5
i )\{w}|) time, where

m′′ is the number of edges in G[V (b5
i )\{w}]. Since m′′ = |E(b5

i ) ∩ M | + |W 2
i |, we get

that the number of cut edges of bisection (A3, A4) is at least |E(b5
i ) ∩M | + |W 2

i |/2. It is
easy to get that |E(G[A3])| + |E(G[A4])| ≤ |W 2

i |/2. We have |E(w,A3)| + |E(G[A3])| +
|E(w,A4)| + |E(G[A4])| ≤ |W 1

i | + |W 2
i |/2, and one value of |E(w,A3)| + |E(G[A3])| and

|E(w,A4)|+ |E(G[A4])| is at most (|W 1
i |+ |W 2

i |/2)/2. Without loss of generality, assume that
|E(w,A4)|+ |E(G[A4])| ≤ (|W 1

i |+ |W 2
i |/2)/2. Delete the edges in E(w,A4)∪E(G[A4]) from

subgraph G[V (b5
i ) ∪ {w}], and let G′ be the resulted subgraph, which is a König subgraph

by Lemma 2. We now analyze the proportion of the deleted edges in b5
i .

|E(w,A4)|+ |E(G[A4])|
|E(b5

i )|

≤ (|W 1
i |+ |W 2

i |/2)/2
|W 1

i |+ |W 2
i |+ |M ∩ E(b5

i )| (6)

≤ (|W 1
i |+ |W 2

i |/2)/2
|W 1

i |+ |W 2
i |+ |W 1

i |/2
(7)

= |W 1
i |/2 + |W 2

i |/4
3|W 1

i |/2 + 3|W 2
i |/4 + |W 2

i |/6 + |W 2
i |/12 (8)

≤ |W 1
i |/2 + |W 2

i |/4
3|W 1

i |/2 + 3|W 2
i |/4 + |W 1

i |/6 + |W 2
i |/12 (9)

= 3/10.

ISAAC 2018



31:10 New Algorithms for Edge Induced König-Egerváry Subgraph

From inequality 6 to inequality 7, we use the fact that |M ∩E(b5
i )| ≥ |W 1

i |/2. Inequality 9 is
obtained from inequality 8 by Lemma 11. J

By Lemma 4, Lemma 6, Lemma 7, and Lemma 12, we get the following result.

I Theorem 13. For a given graph G = (V,E), there exists an edge induced König subgraph
G′ of G such that G′ contains at least 2|E|/3 edges.

By Lemma 4, Lemma 6, Lemma 12, and Lemma 8, we get the following result.

I Theorem 14. For the Edge Induced König Subgraph problem, an approximation
algorithm with ratio 10/7 can be obtained in polynomial time.

4 Kernelization for Edge Induced König Subgraph above Lower
Bound

For the Edge Induced König Subgraph problem, using the results in Theorem 13, it is
easy to get a kernel with at most 3k/2 edges for the problem. In other words, if 2m/3 > k,
then the given instance is a Yes-instance. Otherwise, we have m ≤ 3k/2. Under this
parameterization, k is not a small value. In this paper, we study the following problem.

Edge Induced König Subgraph above lower bound:
Given a graph G = (V,E) and non-negative integer k, find a set of at least d2m/3e+k

edges that induce a König subgraph, or report that no such set exists, where m is the
number of edges in G.

For a given instance (G, k) of the Edge Induced König Subgraph above lower
bound problem, we give the following two reduction rules.

Rule 1. For each connected component C of G, if C is a C3, then remove C from G.
Rule 2. For each connected component C of G, if C is a tree, then remove C, and

k = k − |E(C)|/3.

I Lemma 15. Rule 1 is correct and can be executed in polynomial time.

I Lemma 16. Rule 2 is correct and can be executed in polynomial time.

I Theorem 17. The Edge Induced König Subgraph above lower bound problem
admits a kernel of 30k edges.
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Abstract
Consider a geometric range space (X,A) where X is comprised of the union of a red set R and
blue set B. Let Φ(A) define the absolute difference between the fraction of red and fraction of blue
points which fall in the range A. The maximum discrepancy range A∗ = arg maxA∈(X,A) Φ(A).
Our goal is to find some Â ∈ (X,A) such that Φ(A∗)−Φ(Â) ≤ ε. We develop general algorithms
for this approximation problem for range spaces with bounded VC-dimension, as well as signific-
ant improvements for specific geometric range spaces defined by balls, halfspaces, and axis-aligned
rectangles. This problem has direct applications in discrepancy evaluation and classification, and
we also show an improved reduction to a class of problems in spatial scan statistics.
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1 Introduction

Let X be a set of m points in Rd for constant d. Let X = R ∪B be the union (possibly not
disjoint) of two sets R, the red set, and B, the blue set. Also consider an associated range
space (X,A); we are particularly interested in range spaces defined by geometric shapes such
as rectangles in Rd (X,Rd), disks in R2 (X,D), and d-dimensional halfspaces (X,Hd).

Let µR(A) = |R ∩A|/|R| and µB(A) = |B ∩A|/|B| be the fraction of red or blue points,
respectively, in the range A. We study the discrepancy function ΦX(A) = |µR(A)− µB(A)|,
when for brevity is typically write as just Φ(A). A typical goal is to compute the range
A∗ = arg maxA∈AΦ(A) and value Φ∗ = Φ(A∗) that maximizes the given function Φ. Our
goal is to find a range Âε that satisfies Φ(Âε) ≥ Φ(A∗)− ε.

The exact version of this problem arises in many scenarios, formally as the classic
discrepancy maximization problem [3, 7]. The rectangle version is a core subroutine in
algorithms ranging from computer graphics [8] to association rules in data mining [9]. Also,
for instance, in the world of discrepancy theory [20, 6], this is the task of evaluating how large
the discrepancy for a given coloring is. For the halfspace setting, this maps to the minimum
disagreement problem in machine learning (i.e., building a linear classifier) [16]. When Φ is
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replaced with a statistically motivated form [12, 13], then this task (typically focusing on
disks or rectangles) is the core subroutine in the GIScience goal of computing the spatial
scan statistic [11, 22, 2, 1] to identify spatial anomalies. Indeed this statistical problem can
be reduced the approximate variant with the simple discrepancy maximization form [2].

The approximate versions of these problems are often just as useful. Low-discrepancy
colorings [20, 6] are often used to create the associated ε-approximations of range spaces, so
an approximate evaluation is typically as good. It is common in machine learning to allow ε

classification error. In spatial scan statistics, the approximate versions are as statistically
powerful as the exact version and significantly more scalable [19].

While the exact versions take super-linear polynomial time in m, e.g., the rectangle
version with linear functions takes Ω(m2) time conditional on a result of Backurs et al. [3],
we show approximation algorithms with O(m + poly(1/ε)) runtime. This improvement is
imperative when considering massive spatial data, such as geotagged social media, road
networks, wildlife sightings, or population/census data. In each case the size m can reach
into the 100s of millions.

While most prior work has focused on improving the polynomials on the exact algorithms
for various shapes [14, 25] or on using heuristics to ignore regions [28, 22], little work exists
on approximate versions. These include [1] which introduced generic sampling bounds, [19]
which showed that a two-stage random sampling can provide some error guarantees, and
[27] which showed approximation guarantees under the Bernoulli model. In this paper, we
apply a variety of techniques from combinatorial geometry to produce significantly faster
algorithms; see Table 1.

Our results. Our work involves constructing a two-part coreset of the initial range space
(X,A); it approximates the ground set X and the set of ranges A. This needs to be done
in a way so that ranges can still be effectively enumerated and µR(A) and µB(A) values
tabulated. We develop fast coreset constructions, and then extend and adapt exact scanning
algorithms to the sparsified range space.

We develop notation and review known solutions in Section 2; also see Table 1. Then we
describe a general sampling result in Section 3 for ranges with bounded VC-dimension. In
particular, many of these results can be seen as formalizations and refinements (in theory
and practice) of the two-stage random sampling ideas introduced in [19].

In Section 3.1 we describe improvements for halfspaces and disks. The details, defer to
the full version [17], first improve upon the sampling analysis to approximate ranges H2. By
carefully annotating and traversing the dual arrangement from the approximate range space,
we improve further upon the general construction.

Then in Section 4 we describe our improved results for rectangles. We significantly extend
the exact algorithm of Barbay et al. [4] and obtain an algorithm that takes O(m+ 1

ε2 log 1
ε ).

This is improved to O(m+ 1
ε2 log log 1

ε ) with some more careful analysis in the full version
[17]. This nearly matches a new conditional lower bound of Ω(m+ 1

ε2 ), assuming current
algorithms for APSP are optimal [3].

In Section 5 we show how to approximate a statistical discrepancy function (sdf, defined
in Section 5) Φ, as well as any general function Φ. These require altered scanning approaches
and the sdf-approximation requires a reduction to a number of calls to the generic (“linear”)
Φ. We reduce the number of needed calls to generic Φ functions from O( 1

ε log 1
ε ) [2] to O( 1√

ε
).

Finally, in Section 6 we show on rectangles strong empirical improvement over state of
the art [19].
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Table 1 Algorithm times for (ε-approximately) maximizing different range spaces. Here dimension
d, VC-dimension ν, and probability of failure are all constants. For (X,R2) we show it takes
Ω(m+ 1/ε2) time, assuming hardness of APSP.

Known Exact Known Approx [19] New Runtime Bounds
General Range Space O(mν+1) – O

(
m+ 1

εν+2 logν 1
ε

)
Halfspaces Rd O(md) [8] – O

(
m+ 1

εd+1/3 log2/3 1
ε

)
Disks R2 O(m3) [8] O(m+ 1

ε4 log3 1
ε
) O

(
m+ 1

ε3+1/3 log2/3 1
ε

)
Rectangles R2 O(m2) [4] O(m+ 1

ε4 log 1
ε
) [2, 1] O(m+ 1

ε2 log log 1
ε
)

Rectangles (sdf) R2 O(m4) O(m+ 1
ε4 log4 1

ε
) O

(
m+ 1

ε2.5

)
Rectangles (General) R2 O(m4) O(m+ 1

ε4 log4 1
ε
)) O

(
m+ 1

ε4

)
Y

 D(Y )

A  D(A) A

 T(A)

Figure 1 First two panels show that (R2,D) has a conforming map ψD defined by the smallest
enclosing disk. The last panel shows a range space (X, T ) corresponding to triangles, and that a
mapping ψT defined by minimum area triangle is not conforming; it does not recover A.

2 Background on Geometric Range Spaces

To review, a range space (X,A) is composed of a ground set X (for instance a set of points
in Rd) and a family of subsets A of that set. In this paper we are interested in geometrically
defined range spaces (X,A), where X ⊂ Rd. We formalize the requirements of this geometry
via a conforming geometric mapping ψ; see Figure 1. Specifically, it maps from a subset
Y ⊂ X to subset of Rd. Typically, the result is a Lebesgue measureable subset of Rd, for
instance ψD(Y ), defined for disk range space (X,D), could map to the smallest enclosing
disk of Y .

We say this mapping ψA is conforming to A if for any N ⊂ X it has the properties:
for any subset A ∈ (N,A) then ψA(A) ∩N = A [the mapping recovers the same subset]
for any subset Y ⊂ X then ψA(Y ) ∩X ∈ (X,A) [the mapping is always in (X,A)]

2.1 Basic Combinatorial Properties of Geometric Range Spaces
We highlight two general combinatorial properties of geometric range spaces. These are
critical in sparsification of the data and ranges, and enumeration of the ranges.

Sparsification. An ε-sample S ⊂ X of a range space (X,A) preserves the density for all
ranges as maxA∈A | |X∩A||X| −

|S∩A|
|S| | ≤ ε. An ε-net N ⊂ X of a range space (X,A) hits large

ranges, specifically for all ranges A ∈ A such that |X∩A| ≥ ε|X| we guarantee that N∩A 6= ∅.
Consider range space (X,A) with VC-dimension ν. Then a random sample S ⊂ X of size
O( 1

ε2 (ν + log 1
δ ) is an ε-sample with probability at least 1− δ [26, 15]. Also a random sample

N ⊂ X of size O( νε log 1
εδ ) is an ε-net with probability at least 1 − δ. For our ranges of

interest, the VC-dimensions of (X,Hd), (X,D), and (X,Rd) are d, 3, and 2d.

Enumeration. For the ranges spaces we will consider that each range can be defined by a
basis B; where B is a point set. Given a geometric conforming map ψ and subset Y , a range
space’s basis B ⊂ Y is such that ψ(B) = ψ(Y ), but on a strict subset B′ ⊂ B, then ψ(B′)

ISAAC 2018
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Figure 2 First panel shows N ⊂ X. Second panel shows the set of disks {ψD(A) | A ∈ (N,D|N )}
induced by N . The third panel shows a range Y ⊂ X (defined by disk in blue). It has symmetric
difference over X (in orange) of size 4 with the one defined by the disk ψD(A) (in green) induced by
a subset A ⊂ (N,D|N ).

is different (and usually smaller under some measure) than ψ(B). We will use β to denote
the maximum size of the basis for any subset Y ⊂ X. For instance for ψD then β = 3, for
ψRd then β = 2d, and for ψHd then β = d. Recall, by Sauer’s Lemma [23], if a range space
(X,A) has VC-dimension ν, then β ≤ ν.

This implies that for m = |X| points, there are at most
(
m
β

)
= O(mβ) different ranges to

consider. We assume β is constant; then it is possible to construct ψ(Y ) in O(|Y |) time, and
to determine if ψ(Y ) contains a point x ∈ X in O(1) time. This means we can enumerate all
O(mβ) possible bases in O(mβ) time, construct their maps ψ(B) in as much time, and for all
of them count which points are inside, and evaluate each Φ(A) to find A∗, in O(mβ+1) time.

For the specific range spaces we study, the time to find A∗ ∈ A can be improved by
faster enumeration techniques. For Hd, Dobkin and Eppstein [7] reduced the runtime to
find A∗ from O(md+1) to O(md); this implies for D the runtime is reduced from O(m4) to
O(m3). For Rd, Barbay et al. [4] show how to find A∗ in O(md) time; this was recently
shown tight [3] in R2, assuming APSP takes cubic time.

2.2 Coverings
Our main approach towards efficient approximate range maximization, is to sparsify the range
space (X,A). This will have two parts. The first is simply replacing X with an ε-sample.
The second is sparsifying the ranges A, using a concept we refer to as an ε-covering.

Recall that the symmetric difference of two sets A4B is (A ∪B) \ (A ∩B). Define an
ε-covering (X,A4) of a range space (X,A) where (X,A4) ⊂ (X,A), so that for any A ∈ A
there exists a A′ ∈ A4 such that |A4A′| ≤ ε|X|. See Figure 2 for an illustration of this
concept. If a range space satisfies the above condition for any one specific range A, but not
necessarily all ranges A ∈ A simultaneously, then it is a weak ε-covering of (X,A).

We will use subsets of the ground set to define subsets of the ranges. For a subset N ⊂ X,
let A|N = {A∩N | A ∈ A} be the restriction of A to the points in N . We will define (X,A4)
using A|N or a subset thereof. However, as each A ∈ A|N is a subset of N , which itself is a
subset of X, we need a conforming map ψA to take a region A ∈ A4 and map it back to
some region in A, a subset of X. Given A′|N (which is A|N or a subset) we define (X,A4) as

(X,A4) = {X ∩ ψA(A) | A ∈ (N,A′|N )}.

A small sized ε-covering is implied by a result of Haussler [10]. For every range space
(X,A) of VC-dimension ν, with m = |X|, there always exist a maximal set of ranges A4
of size O(( m

k+ν )ν) where for every pair of ranges A,A′ ∈ A4 the symmetric difference
|A4A′| ≥ k. Setting k = mε then ( m

k+ν )ν = O( 1
εν ), so A4 is an ε-covering.
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Symmetric difference nets. We can construct an ε-net over the symmetric difference range
space of A and then use these points to define A4.

For a family of ranges A, let SA be the family of ranges made up of the symmetric
difference of ranges of A. Specifically SA = {A14A2 | A1, A2 ∈ A}. If range space (X,A)
has VC-dimension ν, then (X,SA) has VC-dimension at most O(ν log ν) [21]. Thus for
constant ν we can use asymptotically the same size random sample as before. Matheny et
al. [19] pointed out two important properties connecting nets over symmetric difference range
spaces and ε-coverings and then finding Âε.
(P1) An ε-net N for (X,SA) induces (N,A|N ) which is an ε-covering of (X,A) [19].
(P2) Given an ε

2 -covering (N,A4) and an ε
2 -sample S over (X,A) then for any range

A ∈ (X,A), there exists a range ψA(A′)∩X for A′ ∈ A|N so
∣∣∣ |A∩X||X| −

|ψA(A′)∩S|
|S|

∣∣∣ ≤ ε [19].
For an appropriate constant C, by constructing (ε/C)-nets NR and NB, of size n, on

the red (R,SA) and blue (B,SA) points, also constructing (ε/C)-samples of size s on (R,A)
and (B,A), and invoking (P2) on the results, Matheny et al. [19] observed we can maximize
Φ(ψA(A′) ∩ S) over A′ ∈ A|NR ∪ A|NB to find an ε-approximate Âε. They construct the
ε-nets and ε-samples using random sampling, and apply the results to scan disk D and
rectangle R2 range spaces towards finding Âε. Enumerating all ranges in A′ ∈ A|NR ∪ A|NB
and counting the intersections with the (ε/C)-samples, when C is a constant, is sufficient
to find an Âε in time O(m + |N |2|S| log n) = O(m + 1

ε4 log3 1
ε ) for disks (X,D) and time

O(m+ |N |4 + |S| log n) = O(m+ 1
ε4 log4 1

ε ) for rectangles (X,R2).
We can ignore the distinct red and blue points, and focus on three aspects of this problem

which can be further optimized: (1) More efficiently constructing a sparse set of ε-covering
ranges (X,A4). (2) More efficiently constructing a smaller ε-sample S of (X,A). (3) More
efficiently scanning the resulting (S,A4).

3 General Results via ε-Coverings

For general range spaces of contant VC-dimension ν we can directly apply the work of
Matheny et al. [19] to get a bound. A random sample N of size O( ν log ν

ε log ν
ε ) induces an

ε-covering (X,A|N ) with constant probability by (P1). A random sample S of size O( νε2 )
induces an ε-sample with constant probability. By (P2), scanning the ranges in (X,A|N ),
evaluating Φ(A) on each ranges A using S, and returning the maximum Âε induces the
ε-approximation of Φ(A∗) as we desire. Including the time to calculate N and S we obtain
the following result.

I Theorem 1. Consider a range space (X,A) with constant VC-dimension ν, with |X| = m,
and conforming map ψA. For A∗ = arg maxA∈A Φ(A), with probability at least 1− δ, in time
O(m+ 1

εν+2 logν 1
ε log 1

δ ), we can find a range Âε so that |Φ(A∗)− Φ(Âε)| ≤ ε.

Proof. First compute random samples N and S of size O( 1
ε log 1

ε ) and O( 1
ε2 ) respectively.

The algorithm naively considers all O(( 1
ε log 1

ε )ν) subsets B ⊂ N of size ν, and calculates
the quantity Φ(S ∩ ψA(B)). By (P2), this can be used to ε-approximate Φ(A) for any range
A ∈ A which has less than ε-symmetric difference with ψA(B). Moreover, since (X,A|N )
is an ε-cover, with constant probability any range A is within symmetric difference of at
most εm of one induced by some subset B. Thus, with constant probability we observe some
range Âε = X ∩ ψA(B) for which |Φ(A∗)− Φ(Âε)| ≤ ε (after adjusting constants in the size
of N and S). To amplify the probability of success to 1− δ, we repeat this process O(log 1

δ )
times, and return the Âε with median score. J
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3.1 Halfspaces
The above general result applied to halfspaces (X,Hd), would require O(m+ 1

εd+2 logd 1
ε log 1

δ )
time. We improve this runtime to O(m+ 1

εd+1 log 1
δ ). First, a recent paper [18] shows that

with constant probability an ε-sample S for (X,H2) of size s = O( 1
ε4/3 log2/3 1

ε ) can be
constructed in O(m+ 1

ε2 log( 1
ε )) time. Second we create a weak ε-covering of (X,Hd) using

(X,Hd|N ) for a random sample N . We show this only requires a random sample of size
O(d

2

ε log d) = O(1/ε). Then, we show how to enumerate these ranges (X,Hd|N ) while
maintaining the counts from S (an ε-sample of only (X,H2)) with less overhead than the
previous brute force approaches. Ultimately this requires time O(m+ 1

εd+1/3 log2/3 1
ε ), with

constant probability. For space, the details are in the full version [17].
Moreover, this can be applied to disks (X,D) in O(m+ 1

ε3+1/3 log2/3 1
ε ) time.

4 Rectangles

For the case of rectangles (X,Rd), we will describe two classes of algorithms. One simply
creates an ε-cover (X,Rd|N ) and evaluates each rectangle A in this cover on an ε-sample S as
before. The other takes specific advantage of the orthogonal structure of the rectangles and of
“linearity” of Φ; this algorithm can find the maximum in Φ among ranges in (X,Rd|N ) without
considering every possible range. Our techniques are inspired by several algorithms [4, 24, 8]
for the exact maximization problem, but requires new ideas to efficiently take advantage
of using both N and S. Common to all techniques will be an efficient way to compute an
ε-cover based on a grid.

Grid ε-covers for rectangles. We create a grid G defined as the cross-product of r = O(1/ε)
cells along each axis. Straightforward details of its construction and use are in the full version
[17]. We label the rectangular ranges of X restricted to this grid boundary as (X,Rd|G); it is
an ε-cover of (X,Rd). The main results of this ε-cover are in the next lemma and theorem.

I Lemma 2. For range space (X,Rd) where |X| = m, the construction of grid G takes
O(m logm+ 1

εd
) time, has O(1/ε) cells on each side, and induces an ε-cover (X,Rd|G) of

(X,Rd) for constant d > 1.

I Theorem 3. Consider a range space (X,Rd) with |X| = m and an Lipschitz-continuous
function Φ with maximum range A∗ = arg maxA∈Rd Φ(A). With probability at least 1−1/e1/ε,
in time O(m+ 1

ε2d ) we can find a range Âε so that |Φ(A∗)− Φ(Âε)| ≤ ε.

4.1 Algorithms for Decomposable Functions
Here we exploit a critical “linear” property of Φ that a rectangle A can be decomposed
into any two parts A1 and A2 and Φ(A) = Φ(A1) + Φ(A2). Technically, we solve both
Φ+(A) = µR(A) − µB(A) and Φ−(A) = µB(A) − µR(A) separately, and take their max.
In particular, this allows us (following exact algorithms [4]) to decompose the problem
along a separating line. The solution then either lies completely on one half, or spans
the line. In the exact case on s points, this ultimately leads to a run time recurrence of
T1(s) = 2T1(s/2) + T2(s) where T2(s) is the time to compute the problem spanning the line.
The line spanning problem can then be handled using a different recurrence that leads to
T2(s) = O(s2) and a total runtime for the problem of T1(s) = 2T1(s/2) +O(s2) = O(s2) [4].

First we show we can efficiently construct a special sample S of size s = O(1/(ε2 log 1
ε )),

but this still would requires runtime of roughly 1/ε4.
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Our approximate algorithm will significantly improve upon this be compressing the
representation at various points, but requiring some extra bookkeeping and a bit more
complicated recurrence to analyze. In short, we can map S to an r× r grid (using Lemma 2),
and then the recurrence only depends on the dyadic y-intervals of the grid. We can compress
each such interval to have only εs/ log r error, since each query only touches about log r
of these intervals. The challenge then falls to maintaining this compressed structure more
efficiently during the recurrence.

The dense exact case on an r×r grid is also well studied. There exists a practically efficient
O(r3) time method [5] based on Kadane’s algorithm (which performs best as gridScan_linear;
see Section 6), and a more complicated method taking O(r3( log log r

log r ) 1
2 ) time [24]. By allowing

an approximation, we ultimately reduce this runtime to O(r2 log r) = O( 1
ε2 log 1

ε ).
We will focus on the 2d case. This is where the advantage over the Theorem 3 bound of

O(m+1/ε4) is most notable. Generalization to high dimensions is straightforward: enumerate
over pairs of grid cells to define the first d − 2 dimensions, then apply the 2-dimensional
result on the remaining dimensions.

Tree and slab approximation. The algorithm builds a binary tree over the rows (the y
values) of G. We will assume that the number of cells in each axis r = O(1/ε) is a power of
2 (otherwise we can round up), so it is a perfectly balanced binary tree.

At the ith level of the tree, each node contains r/2i rows and there are 2i nodes. We
refer to the family of rows represented by a subtree as a slab. Any grid-aligned rectangle
A = [x1, x2] × [y1, y2] can be defined as the intersection of [x1, x2] with at most 2 log2 r

slabs in the y-coordinate – the classic dyadic decomposition. This implies we can tolerate
ηs = O(εs/ log r) additive error in each slab to have at most O(εs) additive error overall
(which implies the percentage of red and of blue points in each range has additive O(ε) error).

Since the rectangle will span the entire vertical extent (y direction) of each slab in this
decomposition, the additive error of a slab can be obtained along just the horizontal (x)
direction. Thus, we can scan cells from left to right within a slab, and only retain the
cumulative weight in a cell when it exceeds ηs. We refer to this operation as η-compression.
We denote each column (and x value) within a slab where it has retained a non-zero value as
active, all other columns are inactive. We store the active cells in a linked list.

Since there are Θ(s/r) points per row, it implies we can approximate each slab consisting
of 1 row (a leaf of the tree, level log2 r) with weights in only O(1/(rη)) = O(log r) cells (since
r = O( 1

ε )). And a slab at level i (originally with Θ(s/2i) points) can be approximated by
accumulating weight in O(min{r, 1/(η2i)}) cells. For level i > log 1/ηr, this compresses the
points in that slab.

I Lemma 4. In O(r2) time, we can compress all slabs in the tree, so a slab at level i contains
`i = O(min{r, 1/(η2i)}) active columns where η = O(ε/ log r).
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Interval Preprocessing and Merging. Now consider a subproblem, where we seek to find a
rectangle A = [x1, x2]× [y1, y2] to maximize the total weight, restricted to a given horizontal
extent [y1, y2] (e.g., within a slab). We reduce this to a 1d problem by summing the weights
for each x-coordinate to wx =

∑
y∈[y1,y2] wx,y. Then there is an often-used [4, 7, 2] way to

preprocess intervals [x′1, x′2] so they can be merged and updated. It maintains 3 maximal
weight subintervals: (1) the maximal weight subinterval in [x′1, x′2], (2) the maximal weight
interval including the left boundary x′1, and (3) the maximal weight interval including the
right boundary x′2. Given two preprocessed adjacent intervals [x′1, x′2] and [x′2 + 1, x′3], we
can update these subintervals to [x′1, x′3] in O(1) time [4]. Thus given a horizontal extent
with a active intervals, we can find the maximum weight subinterval in O(a) time.

Recursive construction. Now we can describe our recursive algorithm for finding the
maximal weight rectangle on the grid G. We find the maximum weight rectangle through
3 options: (1) completely in the top child’s subtree, (2) completely in the bottom child’s
subtree, (3) overlapping both the top and bottom child’s subtree. The total time can be
written as a recurrence as T1(r) = 2T1(r/2) + T2(r), where T2 is the time to solve case (3).

Case (3) requires another recurrence to understand, and it closely follows the “strip-
constrained” algorithm of Barbay et al. [4]; our version will account for the dense grid.

We consider the Strip-constrained grid search problem: First fix a strip M which
is a consecutive set of rows. Then consider two slabs T and B where T is directly above (on
top of) M and B is directly below M . A column of M is active if it is active in T or B.
Counts in active columns of M are maintained, and intervals of M described by consecutive
inactive columns have been merged. The goal is to find the maximum weight rectangle with
vertical span [y1, y2] where y2 is in T and y1 is in B (it must cross M).

We specifically want to solve this problem when M is empty, T is the top child and B
the bottom child of the root, and all columns are initially active. We call this the case of
size r since there are still r rows.

I Lemma 5. The Strip-constrained grid search problem of size r over an η-compressed binary
tree takes O(r/η) time.

Proof. Following Barbay et al. [4] we split the problem into 4 subcases, following the subtrees
of the slabs. Slab T has a top Tt and bottom Tb sub-slab, and similarly Bt and Bb for B. Then
we consider 4 recursive cases with new strip M ′: (1) slabs Tt and Bb with M ′ = Tb ∪M ∪Bt,
(2) slabs Tb and Bb with M ′ = M ∪Bt, (3) slabs Tt and Bt with M ′ = Tb ∪M , and (4) slabs
Tb and Bt with M ′ = M . The cost in a recursive step is the preprocessing of the new slab
M ′. We will describe the largest case (1); the others are similar.

Strip M already maintains preprocessed intervals of inactive columns. When Tb or Bt has
an active column which is inactive in Tt and Bb, we treat this as a new inactive interval that
needs to be maintained within M ′. The weights from Tb and Bt are added to that in the
column for M . If inactive intervals of M ′ are then adjacent to each other, they are merged,
in O(1) time each. This completes the recursive step for case (1).

In the base case when slabs T and B are single rows (at depth O(log r)), the range
maximum is restricted to use their active columns. We sum weights on active columns



M. Matheny and J.M. Phillips 32:9

in T , B, and M . Then also considering the inactive intervals on M , invoke the interval
merging procedure [4] to find the maximal range, in time proportional to the number of
active intervals, in O(1/(2log rη) = O(1/(rη)) time.

The cost of recursing in any case is also proportional to the number of active columns
since this bounds the number of potential merges, and the time it takes to scan the linked
lists of active columns to detect where the merging is needed. At level i this is bounded by
`i = min{r, 1/(η2i)} ≤ O(1/(η2i)).

At each level i there are 4i recursive sub instances and at most O(1/(2iη)) active columns,
and therefore merging takes Zi = 4iO(1/(2iη)) = 2iO(1/η) time. The cost is asymptotically
dominated by the last level, which takes time 2log2 rO(1/η) = O(r/η). J

Letting η = ε/(log r) = O(1/(r log r)) (since r = O(1/ε)) as it is in Lemma 4 we have a
bound of T2(r) = O(r2 log r). We can solve the first recurrence of T1(r) = 2T1(r/2) +T2(r) =
2T1(r/2) + O(r2 log r) = O(r2 log r). Using r = O(1/ε) this bounds the overall runtime of
finding maxR∈(S,Rd|G) Φ(R) as O( 1

ε2 log 1
ε ).

I Theorem 6. Consider (X,R2) with |X| = m and A∗ = arg maxA∈R2 Φ(A). With probabil-
ity at least 1−δ, in time O(m+ 1

ε2 log 1
ε log 1

δ ), we can find a range Âε so |Φ(A∗)−Φ(Âε)| ≤ ε.

In the full version [17], we reduce this time to O(m+ 1
ε2 log log 1

ε log 1
δ ).

For (X,Rd) and d constant, the runtime increases to O(m+ 1
ε2d−2 + 1

ε2 log log 1
ε log 1

δ ).

Conditional lower bound. Backurs et al. [3] recently showed Ω(m2) time is required to
solve for A∗ = arg maxA∈(X,R2) Φ(A), assuming that all pairs shortest path (APSP) requires
cubic time. We can show this implies that our algorithm is nearly tight. If we set ε = 1/4m
then if any algorithm could find an Âε such that Φ(Âε) ≥ Φ(A∗)− ε, then it would imply
that |µR(A∗)−µB(A∗)| − |µR(Â)−µB(Â)| ≤ ε. And hence the difference in counts of points
in each pair µR and µB is off by at most 2εm = 2(1/4m)m = 1/2. Thus it must be the
optimal solution. If this can run in o(m+ 1/ε2) time, it implies an o(m2) algorithm, which
implies a subcubic algorithm for APSP, which is believed impossible.

I Theorem 7. For (X,R2) with |X| = m, and A∗ = arg maxA∈R2 Φ(A). It takes Ω(m+ 1
ε2 )

time to find a range Âε so that |Φ(A∗)− Φ(Âε)| ≤ ε, assuming APSP takes Ω(n3) time.

5 Statistical Discrepancy Function Approximation

In this section we address approximating maxA∈(X,A) Φ(A) when it is a more general function
of µR(A), and µB(A). Rewrite Φ(A) = φ(µR(A), µB(A)), and in this section it will be more
convenient to discuss φ(r, b) where r = µR(A) and b = µB(A).

We say φ is (τ, γ)-linear if it can be represented with up to ε-error as the upper envelope
of γ functions of slope at most τ . We can then simply maximize each function individually,
and return the maximum overall score. When γ and τ are constant (as with φ(r, b) = |r− b|),
we simply say the function is linear.

First observe that Theorem 1, algorithms in Section 3.1 (see full version [17]), and
Theorem 3 simply evaluate Φ(A), so if this can be done in constant time, and the slope τ is
constant, then these results automatically hold. However, Theorem 6 requires the linearity
property.

For the spatial scan statistic application, the most common function [12] is defined
φK(r, b) = r ln r

b + (1 − r) ln 1−r
1−b , and is non-linear. We define a more general class of

statistical discrepancy functions (sdf), which includes φK . Such φ have domain r, b ∈ [0, 1],
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Figure 3 For Lemma 8.

φ(r, b) = 0 when r = b and this is its minimum, and φ(r, b) is convex on (0, 1)2. Moreover, for
these functions, it suffices too consider a range [ξ, 1− ξ]2 for small constant ξ (c.f. [2, 1, 19]),
and that in this range φ is τ -Lipschitz where τ is a constant depending only ξ.

Agarwal et al. [2] approximated such functions by considering O( 1
ε log 1

ε ) linear functions,
each tangent to φ, so their upper envelope φ̃ satisfied max(r,b)∈[ξ,1−ξ]2 |φ(r, b)− φ̃(r, b)| ≤ ε.

We will construct an approximation of φ with linear functions with a very different
approach. Unlike the previous approach which only considers the function φ, our approach
adapts the set of linear functions to the function φ and data (X,A). It uses O(1/

√
ε) linear

functions.

Function approximation. Consider the distinct ranges in (X,A); each range A corresponds
to a point pA = (µR(A), µB(A)). Let P = {pA | A ∈ (X,A)} be this set of points. Then pA∗ ,
must lie on CH(P ), the convex hull of P , where A∗ = arg maxA∈(X,A) Φ(A).

Moreover, each point p on CH(P ) maximizes some linear function, f(r, b) = αr + βb. If
p = arg maxp′∈P f(rp, bp), then it also maximizes fc(r, b) = (α/c)r+(β/c)b for any c > 0. We
can therefore restrict our attention (by implicit choice of c) to only functions with α2 +β2 = 1.
These functions correspond to a dot product 〈(α, β), (r, b)〉 and are maximized by points on
CH(P ) where (α, β) is between two adjacent normals on the boundary of CH(P ).

To further simplify, we now parameterize these functions by an angle θ = arccos(−α)
(where still α2 + β2 = 1). We focus on θ ∈ [0, π/2] as we can always repeat the procedure on
the other 3 quadrants.

Now let f∗θ be any linear function such that pA∗ = arg maxp∈P f∗θ (p) is maximized by the
point pA∗ corresponding to the optimal range A∗.

I Lemma 8. Consider p1 = arg maxp∈P fθ1(p) and p2 = arg maxp∈P fθ2(p) so that pA∗ =
arg maxp∈P f∗θ (p) and θ1 ≤ θ ≤ θ2. Then φ(pA∗) ≤ max{φ(pi), φ(pj)}+τ · ‖p1−p2‖

2 tan( θ2−θ1
2 ).

Proof. Define a triangle through points p1, p2, and a point p3. The point p3 is defined at
the intersections of the normals to fθ1 at p1 and to fθ2 at p2. We refer to “above” in the
normal direction of the edge between p1 and p2, and in the direction of p3.

First we show that pA∗ must be inside the triangle. If it is above the edge connecting p1
and p3, then it would be arg maxp∈P fθ1(p). Similarly it cannot be above the edge connecting
p2 and p3. Also, it must be above the edge connecting p1 and p2, since otherwise by convexity
max(φ(p1), φ(p2)) > φ(pA∗) and one of p1 or p2 would maximize f∗θ .

We say the height of the triangle h is defined as the distance from p3 to q3, where q3 is
the closest point on the edge through p1 and p2.

Let ∠1 be the internal triangle angle at p1, and ∠2 at p2. Then (θ2 − θ1) = ∠1 + ∠2.
Now h = ||p1 − q3|| tan(∠1) = ||p2 − q3|| tan(∠2) which, fixing ‖p1 − p2‖, is maximized when
∠1 = ∠2 = (θ2−θ1)

2 . Summing h ≤ ||p1−q3|| tan((θ2−θ1)/2) and h ≤ ||p2−q3|| tan((θ2−θ1)/2)
it can be seen that h ≤ 1

2 (||p1−q3||+||p2−q3||) tan((θ2−θ1)/2) = 1
2 (||p1−p2||) tan((θ2−θ1)/2).

Finally, we argue that min{φ(pA∗)− φ(p1), φ(pA∗)− φ(p2)} ≤ τ · h. Let γ be the iso-curve
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of φ at value φ(pA∗). It must pass above p1 and p2, otherwise they would be the maximum.
It also must pass within a distance of h from either p1 or p2 since γ is convex, it contains
pA∗ , and pA∗ is within h of the edge between p1 and p2. Then the lemma follows since φ is
τ -Lipschitz. J

To choose a set of linear functions we start with two linear functions f0 and fπ/2, whose
maximum in P are points p1 and p′1. These induce a triangle as in the proof of Lemma 8,
and pA∗ must be in this triangle. If its height h = ‖p1−p′1‖

2 tan(π4 ) > ε/τ , then we choose a
new function fπ/4 (at the midpoint of the two angles) whose maximum is point p2. Now
recurse on triangles defined by p1 and p2, and by p2 and p′1.

I Lemma 9. The recursive algorithm considers at most
√
τ/ε functions to maximize.

Proof. Index the points found by the algorithm {p1, p2, . . . , pk+1} in the order they appear on
the convex hull. Each consecutive pair pi and pi+1 defines a triangle with height at most ε/τ .
Let `i = ‖pi − pi+1‖ and γi = θi+1 − θi where the pi and pi+1 where chosen by maximizing
functions fθi and fθi+1 , respectively. It follows that

∑k
i=1 `i ≤ 2 and

∑k
i=1 γi = π/2. We also

have for each triangle that ε
τ ≤

`i
2 tan(γi2 ) ≤ `i

2 ·
2γi
π . Thus for each term we have `i ≥ επ

τ
1
γi
,

and summing over k terms
∑k
i=1

επ
τ

1
γi
≤
∑k
i=1 `i ≤ 2. Now in the inequality 2τ

επ ≥
∑k
i=1

1
γi

such that
∑k
i=1 γi = π/2, then k is the largest when all of the γi have the same value γi = π

2k .
In this case, then 2τ

επ ≥
∑k
i=1

1
γi

=
∑k
i=1

2k
π = k2 2

π . Solving for k reveals k ≤
√
ε/τ . J

Now we analyze the full algorithm for maximizing a statistical discrepancy function
over (X,Rd) with τ and d as constants. We first invoke Lemma 2 to construct the grid in
O(m+ 1

ε2 log 1
ε log 1

δ + 1
εd

) time. We then use Theorem 6 in F = O( 1
ε2d−2 log 1

ε ) time to find
the approximate maximum range for any linear function Φ′.

Then we run the above recursive triangle algorithm repeatedly on the constructed grid,
and each function maximization takes F time. By Lemma 9 we need to make O(

√
1/ε) calls.

And by Lemma 8 one of the function calls must find an approximately correct answer.

I Theorem 10. Consider a range space (X,Rd) with |X| = m and d constant. For a statisti-
cal discrepancy function Φ with τ constant and with maximum range A∗ = arg maxA∈Rd Φ(A),
then with probability at least 1− δ, in time O(m+ 1

ε2d−1.5 log 1
ε + 1

ε2 log 1
ε log 1

δ ), we can find
a range Âε so that |Φ(A∗)− Φ(Âε)| ≤ ε.

6 Experiments on Rectangles

We implemented 5 rectangle scanning algorithms. For baselines, we consider (1) Scanning
all rectangles without sampling (based on common software for disks [13]) (SatScan (no
sampling)), (2) Scanning all rectangles on one random sample [1] (SatScan), and (3) Scanning
all rectangles on two random samples N and S [19] (netScan). Then we compare our
algorithms which first round to a grid then (4) Efficiently enumerate the grid rectangles
(gridScan, Theorem 3), or (5) Evaluate the maximum grid rectangle in O(r3) time [5] for a
linear φ (gridScan_linear, Section 4.1) and using the linearization for non-linear φ (Section
5). This is the core operation within spatial scan statistics; it is typically run 1000 times
to detect a region and determine significance [12], therefore scalability of this operation is
paramount. Solutions with approximate φ within ε-error retain high statistical power [19],
so it will be useful to directly compare the runtime performance of these algorithms which
allow approximation.
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Table 2 Runtimes on 1000 points with 1% error, over 20 trials; roughly n = 19 and s = 350.

SatScan (no sampling) SatScan netScan gridScan gridScan_linear
Time (sec) 5287 7.44 .0279 .0194 .0082
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Figure 4 Trend of time versus error for on linear (left) and non-linear (right) functions.

First, fixing a tolerable error at 1% of φ(A∗), we run each algorithm on m = 1000
points, for a planted range with 5% of the data, and use φ as the Kuldorff scan statistic [12].
The results are in Table 2. All sampling methods drastically improve over the brute force
approach, and using two-level sampling significantly improves over one random sample. Our
method (gridScan_linear) improves over the previous best (netScan) by a factor of about 3.5.

We also compare the time-accuracy trade-off for sampling-based algorithms on m = 1
million points. SatScan without sampling is not tractable at this scale, so is not compared.
We again plant a random rectangle A overlapping 1% of the data. Within A, points are
made red (measured value 1) at rate 0.08, and outside at rate 0.01. The runtime includes
the time to construct the grid, but not time to generate the initial sample – common to all
algorithms. We calculate Φ(A∗)−Φ(Â) for the planted A∗ and found Â regions, using a linear
φ(m, b) = 1√

2 (m− b) function and the non-linear Kuldorff [12] φ function. Figure 4 shows a
kernel regression trend line (with 1 std-dev error bars) for 300 trials with various n, s values,
always maintaining n ≈

√
s as suggested the samping theorems. Again gridScan_linear is much

faster than gridScan, which is slightly faster than netScan, which is significantly faster than
SatScan. The improvement is more pronounced in the non-linear setting where φ is steeper;
this is perhaps surprisingly even true for gridScan_linear which has an extra

√
1/ε-factor in

runtime in that case due to the multiple linear functions considered.
Ultimately, these plots show that discrete geometric approaches providing asymptotically

efficient algorithms also give significant empirical improvements, even compared to the
ubiquitous and simple random sampling approaches.
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Abstract
Diversity maximization is an important geometric optimization problem with many applications
in recommender systems, machine learning or search engines among others. A typical diversifi-
cation problem is as follows: Given a finite metric space (X, d) and a parameter k ∈ N, find a
subset of k elements of X that has maximum diversity. There are many functions that measure
diversity. One of the most popular measures, called remote-clique, is the sum of the pairwise
distances of the chosen elements. In this paper, we present novel results on three widely used
diversity measures: Remote-clique, remote-star and remote-bipartition.

Our main result are polynomial time approximation schemes for these three diversification
problems under the assumption that the metric space is doubling. This setting has been discussed
in the recent literature. The existence of such a PTAS however was left open.

Our results also hold in the setting where the distances are raised to a fixed power q ≥ 1,
giving rise to more variants of diversity functions, similar in spirit to the variations of clustering
problems depending on the power applied to the pairwise distances. Finally, we provide a proof
of NP-hardness for remote-clique with squared distances in doubling metric spaces.
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While diversity maximization has been of interest in the algorithms and operations
research community for some time already, see e.g. [11, 5, 25, 20], the problem received
considerable attention in the recent literature regarding information retrieval, recommender
systems, machine learning and data mining, see e.g. [28, 29, 23, 24, 1].

Distances used in these applications may be metric or non-metric. However, most popular
distances either are metric or correspond to the q-th power of metric distances for some
q > 1. The cosine distance for a set X ⊆ Rd \ {0}, for example, is a popular non-metric
measure of dissimilarity for text documents [26], which can be interpreted as the squared
Euclidean distance of the input vectors, after scaling all vectors to unit length.

In this paper we focus on three popular diversity functions over metric spaces, see e.g.
[11, 5, 2, 21, 17, 7, 6, 4]. In particular, for a given n-point metric space (X, d), a constant
q ∈ R≥1 and a parameter k ∈ Z with 2 ≤ k ≤ n, we consider the family of problems

max
T⊆X,|T |=k

divq(T ),

where divq(T ) corresponds to one of the following three diversity functions:
Remote-clique: clq(T ) :=

∑
{u,v}∈(T

2)
dq(u, v) = 1

2
∑
u,v∈T

dq(u, v).

Remote-star : stq(T ) := min
z∈T

∑
u∈T\{z}

dq(z, u).

Remote-bipartition: bpq(T ) := min
L⊆T,|L|=b|T |/2c

∑
`∈L,r∈T\L

dq(`, r).

Here, dq(u, v) is the q-th power of the distance between u and v. In the literature, these
problems have been mainly considered for q = 1 to which we refer as standard remote-clique,
remote-star and remote-bipartition respectively.

In the present work, we present polynomial time approximation schemes for the generalized
versions (q ≥ 1) of the remote-clique, remote-star and remote-bipartition problems in the
case where the metric space is doubling. The latter is a general and robust class of metric
spaces that have low intrinsic dimension. We provide a proper definition in Section 2.

Contributions of this paper
Suppose that (X, d) is a metric space of bounded doubling dimension D and that the power
q ≥ 1 is fixed. In this setting, our main results are as follows:
i) We show that there exist polynomial time approximation schemes (PTAS) for the

remote-clique, remote-star and remote-bipartition problems. In other words, for each
ε > 0 and for each of the three diversity functions clq(T ), stq(T ) and bpq(T ), there
exists a polynomial time algorithm that computes a k-subset of X whose diversity is at
least (1− ε) times the diversity of the optimal set. We prove this result by means of a
single and very simple algorithm that identifies a cluster which is then rounded, while
all points outside of the cluster have to be in the optimal solution.

ii) For the standard (q = 1) remote-clique problem we refine our generic algorithm into a
fast PTAS that runs in time O(n(k + ε−D)) + (ε−1 log k)O(ε−D) · k.

iii) For the remote-bipartition problem, our algorithm assumes access to a polynomial time
oracle that, for any k-set T , returns the value of bpq(T ). For q = 1, this corresponds to
the metric min-bisection problem, known to be NP-hard and admitting a PTAS [16].
We generalize this last result and provide a PTAS for min-bisection over doubling metric
spaces for any constant q ≥ 1, thus validating our main result.
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Table 1 Current best approximation ratios and hardness results for remote-clique, remote-star
and remote-bipartition with a highlight on our results. The sign † indicated that the result assumes
hardness of the planted-clique problem.

Problem Distance
class

Unbounded dimension Fixed (doubling) dimension
Approx. Hardness Approx. Hardness

clique, q = 1 Metric 1/2 [20, 5] 1/2 + ε † [6] PTAS (Thm. 4) –

`1 and `2 PTAS [9, 10] NP-hard [9] PTAS [15, 9, 10] –

clique, q = 2 Euclidean PTAS [9, 10] NP-hard [9] PTAS [9, 10] NP-hard (Thm. 8)

star, q = 1 Metric 1/2 [11] 1/2 + ε † [8] PTAS (Thm. 4) –

bipartition, q = 1 Metric 1/3 [11] 1/2 + ε † [8] PTAS (Thm. 4) –

3 problems, any
const. q ≥ 1 Metric – 2−q + ε † [8] PTAS (Thm. 4) NP-hard (Thm. 8)

iv) We provide the first NP-hardness proof for remote-clique in fixed doubling dimension.
More precisely, we prove that the version of remote-clique with squared Euclidean
distances in R3 is NP-hard.

Related work
For the standard case q = 1 and for general metrics, Chandra and Halldórsson [11] provided
a thorough study of several diversity problems, including remote-clique, remote-star and
remote-bipartition. They observed that all three problems are NP-hard by reductions from
the CLIQUE-problem and provided a 1

2 -factor and a 1
3 -factor approximation algorithm for

remote-star and remote-bipartition respectively. Several approximation algorithms are known
for remote-clique as well [25, 20, 5] with the current best factor being 1

2 .

I Remark. Borodin et al. [6] proved that the approximation factor of 1
2 is best possible

for standard remote-clique over general metrics under the assumption that the planted-
clique problem [3] is hard. In the full version we prove that, under the same assumption
and for any q ≥ 1, neither remote-clique, remote-star nor remote-bipartition admits a
constant approximation factor higher than 2−q. Thus, none of the three problems nor their
generalizations for q ≥ 1 admits a PTAS over general metrics.

In terms of relevant special cases for standard remote-clique, Ravi et al. [25] provided
an efficient exact algorithm for instances over the real line, and a factor of 2

π over the
Euclidean plane. Later on, Fekete and Meijer [15] provided the first PTAS for this problem
for fixed-dimensional `1 distances, and an improved factor of

√
2

2 over the Euclidean plane.
Very recently, Cevallos et al. [9, 10] provided PTASs over `1 and `2 distances of unbounded
dimension as well as for distances of negative type, a class that contains some popular non-
metric distances including the cosine distance. We remark however that the running times of
all previously mentioned PTASs [15, 9, 10] have a dependence on n given by high-degree
polynomials (in the worst case) and thus are not suited for large data sets.

For remote-star and remote-bipartition, to the best of the authors’ knowledge there were
no previous results in the literature on improved approximability for any fixed-dimensional
setting, nor for other non-trivial special settings beyond general metrics. Moreover, there
was no proof of NP-hardness for any of the three problems in a fixed-dimensional setting. In
particular, showing NP-hardness of a fixed-dimensional geometric version of remote-clique
was left as an open problem in [15].

ISAAC 2018
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Further related results and implications
In applications of diversity maximization in the area of information retrieval, common
challenges come from the fact that the data sets are very large and/or are naturally embedded
in a high dimensional vector space. There is active research in dimensionality reduction
techniques, see [13] for a survey. It has also been remarked that in many scenarios such as
human motion data and face recognition, data points have a hidden intrinsic dimension that
is very low and independent from the ambient dimension, and there are ongoing efforts to
develop algorithms and data structures that exploit this fact, see [27, 22, 14, 18]. One of
the most common and theoretically robust notions of intrinsic dimension is precisely the
doubling dimension. We remark that our algorithm does not need to embed the input points
into a vector space (of low dimension or otherwise) and does not require knowledge of the
doubling dimension, as this parameter only plays a role in the run-time analysis.

A sensible approach when dealing with very large data sets is to perform a core-set
reduction of the input as a pre-processing step. This procedure quickly filters through the
input points and discards most of them, leaving only a small subset – the core-set – that is
guaranteed to contain a near-optimal solution. There are several recent results on core-set
reductions for standard (q = 1) dispersion problems, see [21, 2, 7]. In particular, Ceccarello
et al. [7] recently presented a PTAS-preserving reduction (resulting in an arbitrarily small
deterioration of the approximation factor) for all three problems in doubling metric spaces,
with the existence of a PTAS left open. Their construction allows for our algorithm to run
in a machine of restricted memory and adapts it to streaming and distributed models of
computation. Besides showing that a PTAS exists, we can also combine our results with
theirs. We refer the interested reader to the previously mentioned references and limit
ourselves to remark a direct consequence of Theorem 4 and [7, Theorems 3 and 9].

I Corollary 1. For q = 1 and any constant ε > 0, our three diversity problems over metric
spaces of constant doubling dimension D admit (1 − ε)-approximations that execute as
single-pass and 2-pass streaming algorithms, in space O(ε−Dk2) and O(ε−Dk) respectively.

Organization of the paper. In Section 2, we provide some needed notation and background
techniques. Section 3 presents our general algorithm (Theorem 4) and Section 4 is dedicated
to the NP-hardness result (Theorem 8). Due to space constraints, the description of the
faster PTAS for standard remote-clique and the PTAS for the generalized min-bisection
problem as well as the proofs of some lemmas have been deferred to the full version of this
paper [8].

2 Preliminaries

A (finite) metric space is a tuple (X, d), where X is a finite set and d : X ×X → R≥0 is a
symmetric distance function that satisfies the triangle inequality with d(u, u) = 0 for each
point u ∈ X. For a point u ∈ X and a parameter r ∈ R≥0, the ball centered at u of radius
r is defined as B(u, r) := {v ∈ X : d(u, v) ≤ r}. The doubling dimension of (X, d) is the
smallest D ∈ R≥0 such that any ball in X can be covered by at most 2D balls of half its
radius. In other words, for each u ∈ X and r > 0, there exist points v1, · · · , vt ∈ X with
t ≤ 2D such that B(u, r) ⊆ ∪ti=1B(vi, r/2). A family of metric spaces is doubling if their
doubling dimensions are bounded by a constant. It is well known that all metric spaces
induced by a normed vector space of bounded dimension are doubling.

We rely on the standard cell-decomposition technique and grid-rounding, see [19]. We
assume without loss of generality that the diameter of (X, d), i.e. the largest distance between
two points, is 1. For a parameter δ > 0, the following greedy procedure partitions X into
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cells of radius δ. Initially, define all points in X to be white. While there exist white points,
pick one that we call u, color it red and assign all white points v ∈ X with d(u, v) ≤ δ to u
and color them blue. A cell is now comprised of a red point, declared to be the cell center,
and all the blue points assigned to it. Grid rounding means to move or round each point to
its respective cell center. This incurs a location error of at most δ for each point.

How many cells and thus different points does this algorithm produce? If (X, d) is of
constant doubling dimension D, a direct consequence of the definition of D is that for any
parameters r and ρ in R>0, a ball of radius r can be covered by at most (2/ρ)D balls of radius
ρr. Since X is contained in a ball of radius 1, the number of cells produced is bounded by
(4/δ)D. Indeed, X can be covered by (4/δ)D balls of radius δ/2 and each such ball contains
at most one cell center since, by construction, the distance between any two cell centers is
strictly larger than δ. Notice that this procedure executes in time O((# cells) · |X|) and that
it requires no knowledge of the value of the doubling dimension D.

The following two lemmas correspond respectively to standard inequalities used for powers
of metric distances and to trivial relations among our three diversity functions, see also [12].
Their proofs are deferred to the full version.

I Lemma 2. Fix a constant q ≥ 1. For any three points u, v, w ∈ X one has

dq(u,w) ≤ 2q−1[dq(u, v) + dq(v, w)
]

or equivalently (1)

dq(u, v) ≥ 2−(q−1)dq(u,w)− dq(v, w). (2)

For any numbers x, y ∈ R≥0 and 0 ≤ ε ≤ 1,

(x+ εy)q ≤ xq + 2qε ·max{xq, yq}. (3)

I Lemma 3. Fix a constant q ≥ 1. For any k-set T ⊆ X,
k

2 · st
q(T ) ≤ clq(T ) ≤ 2q−1k · stq(T ) and (4)

2(k − 1)
k

· bpq(T ) ≤ clq(T ) ≤ (2q + 1) · bpq(T ) (assuming that k is even). (5)

Whenever we deal with remote-bipartition, we assume for simplicity that k is even – all
our results can easily be extended to the odd case, up to a change in constants by a factor
2O(q). Therefore, the diversity functions correspond to the sum of

(
k
2
)
, (k − 1) and k2/4

terms, respectively for remote-clique, remote-star and remote-bipartition. Consequently, for
each function divq and for a given instance, we fix an optimal k-set denoted by OPTdivq and
define its average optimal value ∆divq as follows:

∆clq := clq(OPTclq )/
(
k

2

)
,

∆stq := stq(OPTstq )/(k − 1),
∆bpq := bpq(OPTbpq )/(k2/4).

Whenever the diversity function divq is clear from context, or for general statements on
all three functions, we use OPT and ∆ as short-hands for OPTdivq and ∆divq respectively.
I Remark. It directly follows from Lemma 3 that for a common metric space and common
parameters q ≥ 1 and k, the average optimal values ∆clq , ∆stq and ∆bpq are all just a constant
away from each other (a constant 2O(q) that is independent of n and k). We heavily use this
property linking our three problems in the proof of our key structural result (Theorem 5).
A similar result does not extend to other common diversity maximization problems such
as remote-edge, remote-tree and remote-cycle, see [11] for definitions. This seems to be a
bottleneck for possibly adapting our approach to those problems.
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3 A PTAS for all three diversity problems

We now come to our main result which is the following theorem.

I Theorem 4. For any constant q ∈ R≥1, the q-th power versions of the remote-clique,
remote-star and remote-bipartion problems admit PTASs over doubling metric spaces.

Let us fix a constant error parameter ε > 0. Our algorithm is based on grid rounding.
However, if we think about the case q = 1, a direct implementation of this technique requires
a cell decomposition of radius O(ε ·∆), which is manageable only if ∆ is large enough with
respect to the diameter. Otherwise, the number of cells produced may be super-constant in
n. Hence, a difficult instance is one where ∆ is very small, which intuitively occurs only in
the degenerate case where most of the input points are densely clustered in a small region,
with very few points outside of it. The algorithmic idea is thus to partition the input points
into a main cluster and a collection of outliers, and treat these sets differently.

3.1 Key structural result
We identify in any instance a main cluster containing most of the input points. This cluster
corresponds to a ball with a radius that is bounded with respect to ∆1/q. Thanks to the
nature of the diversity functions, we can guarantee that all outliers are contained in OPT.

I Theorem 5. Fix a constant q ≥ 1. For each diversity function divq in {clq, stq, bpq} and
a fixed optimal k-set OPTdivq ⊆ X, there is a point z0 = z0(divq) in OPTdivq so that

X \B(z0, cdivq (∆divq )1/q) ⊆ OPTdivq ,

where cclq = 2, cstq = 4, and cbpq = 6.

Proof. For each function divq in {clq, stq, bpq}, let z0 = z0(divq) be the center of the
minimum weight spanning star in OPTdivq so that stq(OPTdivq ) =

∑
u∈OPTdivq

dq(z0, u).
Consider a point s = s(divq) outside of the ball B(z0, cdivq (∆divq )1/q), i.e.

dq(z0, s) > (cdivq )q ·∆divq . (6)

Assume that s is not in OPTdivq and define the k-set OPT′divq := OPTdivq ∪ {s} \ {z0}. We
will show for each diversity function that divq(OPT′divq ) > divq(OPTdivq ), thus contradicting
the optimality of OPTdivq . To simplify notation in the remainder of the proof, we make the
corresponding function clear from context and remove the subscripts divq.

For remote-clique, we have

clq(OPT′)− clq(OPT) =
∑

u∈OPT\{z0}

[
dq(s, u)− dq(z0, u)

]
≥

∑
u∈OPT\{z0}

[
2−(q−1)dq(z0, s)− 2dq(z0, u)

]
(by (2))

= k − 1
2q−1 d

q(z0, s)− 2 · stq(OPT) (by choice of z0)

>
k − 1
2q−1 (2q∆)− 2 · 2

k
· clq(OPT) (by (6) and (4))

= 2(k − 1)∆− 2(k − 1)∆ = 0 (by def. of ∆).
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For remote-star, let z be the center of the minimum weight spanning star in OPT′ so
that stq(OPT′) = dq(z, s) +

∑
u∈OPT\{z0} d

q(z, u). We claim that

dq(z0, z) ≤ 2q∆, (7)

as otherwise we obtain

stq(OPT) + stq(OPT′) = dq(z, s) +
∑

u∈OPT\{z0}

[
dq(z0, u) + dq(z, u)

]
≥ 2−(q−1)

∑
u∈OPT\{z0}

dq(z0, z) (by (1))

>
k − 1
2q−1 (2q∆) = 2(k − 1)∆ = 2 · stq(OPT) (negating (7)).

Inequality (7) implies in particular that z 6= s, hence z ∈ OPT. Notice by the minimality of
the remote-star function that stq(OPT) ≤

∑
u∈OPT d

q(z, u). By inequalities (2), (6) and (7),
we obtain

stq(OPT′)− stq(OPT) ≥
∑

u∈OPT′
dq(z, u)−

∑
u∈OPT

dq(z, u) = dq(z, s)− dq(z, z0)

≥ 2−(q−1)dq(z0, s)− 2dq(z0, z)

> 2−(q−1)(4q∆)− 2(2q∆) = 0.

For remote-bipartition, let OPT′ = L′ ∪R be the minimum weight bipartition of OPT′

so that bpq(OPT′) =
∑
`∈L′,r∈R d

q(`, r). Assume without loss of generality that s ∈ L′. We
claim that∑

r∈R
dq(z0, r) ≤

2q + 1
2 k∆, (8)

as otherwise we obtain

bpq(OPT) ≥ 1
2q + 1clq(OPT) ≥ k

2(2q + 1)stq(OPT) (by (5) and (4))

= k

2(2q + 1)
∑

u∈OPT
dq(z0, u) ≥ k

2(2q + 1)
∑
r∈R

dq(z0, r) (as R ⊆ OPT)

>
k

2(2q + 1) ·
2q + 1

2 k∆ = k2

4 ∆ = bpq(OPT) (negating (8)).

Define L := L′ ∪ {z0} \ {s} and notice that L ∪ R = OPT. By the minimality of the
remote-bipartition function, bpq(OPT) ≤

∑
`∈L

∑
r∈R d

q(`, r). Hence,

bpq(OPT′)− bpq(OPT) ≥
∑
`∈L′

∑
r∈R

dq(`, r)−
∑
`∈L

∑
r∈R

dq(`, r)

=
∑
r∈R

[
dq(s, r)− dq(z0, r)

]
≥
∑
r∈R

[
2−(q−1)dq(z0, s)− 2dq(z0, r)

]
(by (2))

>
|R|

2q−1 (6q∆)− 2
∑
r∈R

dq(z0, r) (by (6))

≥ 3qk ·∆− (2q + 1)k ·∆ ≥ 0. (by (8)).

This completes the proof of the theorem. J
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3.2 The algorithm
For any diversity function and a fixed optimal k-set, we refer to the ball B := B(z0, c∆1/q)
defined in Theorem 5 as the main cluster and to z0 as the instance center. Our algorithm
consists of two phases: Finding the main cluster B and performing grid rounding on B. We
remark that for a well-dispersed instance, B may well contain all input points. In that case,
our algorithm amounts to a direct application of the grid rounding procedure.

Finding the main cluster
There are several possible ways to (approximately) find B. For simplicity, we present a naive
approach based on exhaustive search. A smarter technique is described in the full version,
where we provide a more refined algorithm for standard remote-clique.

Assuming without loss of generality that the instance diameter is 1, we obtain for each
diversity function the bounds 1/k2 ≤ ∆1/q ≤ 1. Hence, by performing O(log k) trials, we
can “guess” the value of ∆1/q up to a constant factor arbitrarily close to one, which means
that for any constant λ > 0, we can find an estimate ∆′ so that (1− λ)∆1/q ≤ ∆′1/q ≤ ∆1/q.
Similarly, by trying out all n input points, we can “guess” the instance center z0. For each one
of these guesses, we perform the second phase (described in the next paragraph) and output
the best k-set found over all trials. To simplify our exposition, we assume in what follows
that we have found ∆1/q and z0 (and thus B) exactly. Our analysis can be adapted to any
constant-factor estimation of ∆1/q, as it is enough to find a slightly larger ball B′ containing
B and to slightly change the value of constant c. More precisely, if we have an estimate
∆′ so that (1 − λ)∆1/q ≤ ∆′1/q ≤ ∆1/q and we set c′ := c

1−λ , then B
′ := B(z0, c

′∆′1/q) is
guaranteed to contain B and hence all points outside of B′ are in OPT.

Rounding the cluster
We now assume that we have found the main cluster B (see the previous paragraph). For a
constant δ > 0 to be defined later, with 1/δ = Θ(2q/ε), we perform a cell decomposition of
radius δ∆1/q over B. As the radius of ball B is c∆1/q, this decomposition produces at most(
4 · c∆

1/q

δ∆1/q

)D = (4c/δ)D = O(2q/ε)D cells, i.e. constantly many cells. Let π : B → B be the
function that maps each point to its cell center. For notational convenience, we extend this
into a function π : X → X by applying the identity on X \ B =: B̄ (and thinking of each
point in B̄ as the center of its own cell). Finally, for any set T ⊆ X, we denote by π̂(T ) the
multiset over set π(T ) having multiplicities |π−1(u) ∩ T | for each u ∈ π(T ).

Next, we perform exhaustive search to find a k-set T in X with the property that

divq(π̂(T )) ≥ divq(π̂(OPT)). (9)

This can be done in polynomial time as follows: We try out all multisets in π̂(X) that a)
contain B̄ and b) have cardinality k counting multiplicities. Then, we keep the multiset with
largest diversity and return any k-set T that is a pre-image of this multiset. Clearly, this
search considers only kO(2q/ε)D multisets and is bound to consider π̂(OPT).

As mentioned in the introduction, our algorithm assumes access to a polynomial-time
oracle that, for any k-set T , returns the value of divq(T ) or a (1 + ε)-factor estimate of it
which is sufficient for our purposes. The use of this estimate produces a corresponding small
deterioration in our final approximation guarantee, but for simplicity we ignore this in the
remainder. No exact efficient algorithm is known to compute bpq(T ) for a given k-set T .
However, we provide a PTAS for this problem in the full version.
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3.3 Analysis
What is the approximation guarantee of our algorithm? By an application of inequality (3),
our cell decomposition gives the following guarantee for each pair of points.

I Lemma 6. Let π : X → X be a map such that d(u, π(u)) ≤ δ∆1/q for each u in X. Then,
for any pair of points u, v ∈ X,

|dq(u, v)− dq(π(u), π(v))| ≤ 2q+1δ ·
(
∆ + min{dq(u, v), dq(π(u), π(v))}

)
.

Proof. We consider two cases. If d(u, v) ≤ d(π(u), π(v)), we have by hypothesis

dq(π(u), π(v)) ≤ [d(π(u), u) + d(u, v) + d(v, π(v))]q ≤ [d(u, v) + 2δ∆1/q]q

≤ dq(u, v) + 2q+1δ ·max{∆, dq(u, v)} ≤ dq(u, v) + 2q+1δ ·
(
∆ + dq(u, v)

)
,

where we used inequality (3) in the second line. This proves the claim.
Similarly, if d(π(u), π(v)) < d(u, v), then

dq(u, v) ≤ dq(π(u), π(v)) + 2q+1δ ·
(
∆ + dq(π(u), π(v))

)
,

which again proves the claim. J

Lemma 6, together with the definition of ∆, implies the following result whose proof is
deferred to the full version.

I Lemma 7. Let π : X → X be a map such that d(u, π(u)) ≤ δ∆1/q for each u in X. Then,
for each one of our three diversity functions and for each k-set T ⊆ X,

|divq(T )− divq(π̂(T ))| ≤ 2q+1δ ·
[
divq(OPT) + divq(T )

]
≤ 2q+2δ · divq(OPT).

Applying the previous lemma twice as well as inequality (9) once, we conclude that

divq(T ) ≥ divq(π̂(T ))− 2q+2δ · divq(OPT) ≥ divq(π̂(OPT))− 2q+2δ · divq(OPT)
≥ divq(OPT)− 2q+3δ · divq(OPT) = (1− 2q+3δ) · divq(OPT).

Hence, in order to achieve an approximation factor of 1− ε, it suffices to select δ := ε/2q+3.
The number of cells produced by the cell decomposition is thus bounded by (2q+5c/ε)D =
O(2q/ε)D. This completes the analysis of our algorithm and the proof of Theorem 4.

4 Proof of NP-hardness

In this section, we present the first proof of NP-hardness for any of the three diversity
problems in fixed dimension (in fact, the only other diversity maximization problem known
to be NP-hard in a fixed-dimensional setting is remote-edge [30]). In particular, we prove
NP-hardness for the squared distances (q = 2) version of remote-clique in the case where all
input points are unit vectors in the Euclidean space R3, i.e. X ⊆ S2.

I Theorem 8. The squared distances version (q = 2) of the remote-clique problem is NP-hard
over the three-dimensional Euclidean space.

We remark that squared Euclidean distances over unit vectors correspond precisely to
the popular cosine distances, hence the case considered is highly relevant.

For a k-set T ⊆ S2 with Euclidean distances, the function cl2(T ) :=
∑
{u,v}∈(T

2) d
2(u, v)

has very particular geometric properties related to the concept of centroid. The centroid of a
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0
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−t − 1√
K

1√
K

Scale down

Figure 1 Reduction from K-SUM to remote-clique with q = 2, |X| = 2|M | and k = 2K.

k-set T is defined as zT := 1
k

∑
u∈T u. It represents the coordinate-wise average of the points

in T . The following result greatly simplifies the computation of function cl2(T ) in terms of
the centroid. We state it for a general dimension D even though we only use it for the case
D = 3. Its proof is deferred to the full version.

I Lemma 9. For a k-set T ⊆ SD−1 ⊆ RD with centroid zT := 1
k

∑
u∈T u,

cl2(T ) = k2 ·
(
1− ‖zT ‖2

)
.

We present a reduction from the K-SUM problem which is known to be NP-hard: Given
a set M of integer numbers in the range [−t, t] for some threshold t and a positive integer K,
determine whether there is a K-set S ⊆ M that sums to zero. Given such an instance of
K-SUM, we define the following instance X ⊆ S2 of remote-clique with q = 2, |X| = 2|M |
and k = 2K, see Figure 1. For each m ∈M , set m′ := m

t
√
K

and define

X :=
{
`m :=

(
−
√

1−m′2,m′, 0
)ᵀ : m ∈M

}
∪
{
rm :=

(√
1−m′2, 0,m′

)ᵀ : m ∈M
}
.

Due to the scaling down by a factor of 1
t
√
K
, the y- and z-components of all points in X

are upper bounded by 1√
K

in absolute value, while their x-components are lower bounded

by
√

1− 1
K in absolute value. The points are thus tightly clustered around one of the two

antipodal points ±(1, 0, 0), and X is partitioned into a left cluster and a right cluster.
From Lemma 9, it is clear that solving this instance of remote-clique is equivalent to

finding the k-set whose centroid is closest to the origin. Hence, the proof of Theorem 8 is
complete once we show the following claim.

I Lemma 10. If M has a K-set S with zero sum, then X has a k-set T with centroid zT = 0.
Otherwise, for every k-set T ⊆ X we have ‖zT ‖ ≥ 1

2tK3/2 .

Proof. Suppose that M has a K-set S with zero sum and define the k-set T := {`m, rm :
m ∈ S} ⊆ X. Recall that its centroid zT corresponds to the component-wise average of the
points in T , so we analyze these components separately. In z, all points of T on the left
cluster are zero and those on the right cluster have a zero sum, so (zT )z = 0. In y, all points
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of T on the right cluster are zero and those on the left cluster have a zero sum, so (zT )y = 0.
And in x, each point `m of T on the left cluster is canceled out by its paired point rm on the
right cluster, so (zT )x = 0. Therefore, zT = 0.

Finally, we prove the contrapositive of the second statement, i.e. we assume that there
is a k-set T ⊆ X with ‖zT ‖ < 1

2tK3/2 . The set T must contain exactly K points in the left
cluster and K points in the right cluster. Indeed, if T had at most K − 1 points in the left
cluster, then the x-component of its centroid would give

(zT )x ≥ (K − 1)(−1) + (K + 1)
√

1− 1
K
≥ −(K − 1) + (K + 1)

(
1− 1

K

)
= 1− 1

K
,

and hence ‖zT ‖ ≥ |(zT )x| ≥ 1− 1
K > 1

2tK3/2 for K ≥ 2 and t ≥ 1, leading to a contradiction.
Let T = L ∪ R be the corresponding (balanced) bipartition of T given by the left and

right clusters. Each of L and R must correspond to a K-set of M with zero sum. Otherwise,
without loss of generality L corresponds to a K-set S of M with sum at least 1, but then

(zT )y = 1
2K

∑
m∈S

m′ = 1
2tK3/2

∑
m∈S

m ≥ 1
2tK3/2

and thus ‖zT ‖ ≥ |(zT )y| ≥ 1
2tK3/2 , again a contradiction. This completes the proof. J
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Abstract
A decision tree T in Bm := {0, 1}m is a binary tree where each of its internal nodes is labeled
with an integer in [m] = {1, 2, . . . ,m}, each leaf is labeled with an assignment a ∈ Bm and
each internal node has two outgoing edges that are labeled with 0 and 1, respectively. Let
A ⊂ {0, 1}m. We say that T is a decision tree for A if (1) For every a ∈ A there is one leaf of
T that is labeled with a. (2) For every path from the root to a leaf with internal nodes labeled
with i1, i2, . . . , ik ∈ [m], a leaf labeled with a ∈ A and edges labeled with ξi1 , . . . , ξik ∈ {0, 1}, a
is the only element in A that satisfies aij = ξij for all j = 1, . . . , k.

Our goal is to write a polynomial time (in n := |A| and m) algorithm that for an input
A ⊆ Bm outputs a decision tree for A of minimum depth. This problem has many applications
that include, to name a few, computer vision, group testing, exact learning from membership
queries and game theory.

Arkin et al. and Moshkov [4, 15] gave a polynomial time (ln |A|)- approximation algorithm
(for the depth). The result of Dinur and Steurer [7] for set cover implies that this problem cannot
be approximated with ratio (1 − o(1)) · ln |A|, unless P=NP. Moshkov studied in [15, 13, 14]
the combinatorial measure of extended teaching dimension of A, ETD(A). He showed that
ETD(A) is a lower bound for the depth of the decision tree for A and then gave an exponential
time ETD(A)/ log(ETD(A))-approximation algorithm and a polynomial time 2(ln 2)ETD(A)-
approximation algorithm.

In this paper we further study the ETD(A) measure and a new combinatorial measure,
DEN(A), that we call the density of the set A. We show that DEN(A) ≤ ETD(A) + 1. We
then give two results. The first result is that the lower bound ETD(A) of Moshkov for the depth
of the decision tree for A is greater than the bounds that are obtained by the classical technique
used in the literature. The second result is a polynomial time (ln 2)DEN(A)-approximation (and
therefore (ln 2)ETD(A)-approximation) algorithm for the depth of the decision tree of A.

We then apply the above results to learning the class of disjunctions of predicates from
membership queries [5]. We show that the ETD of this class is bounded from above by the
degree d of its Hasse diagram. We then show that Moshkov algorithm can be run in polynomial
time and is (d/ log d)-approximation algorithm. This gives optimal algorithms when the degree
is constant. For example, learning axis parallel rays over constant dimension space.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases Decision Tree, Minimal Depth, Approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.34

Related Version A full version of the paper is available at [6], https://arxiv.org/abs/1802.
00233.

© Nader H. Bshouty and Waseem Makhoul;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 34; pp. 34:1–34:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bshouty@cs.technion.ac.il
mailto:waseemmakhoul@gmail.com
https://doi.org/10.4230/LIPIcs.ISAAC.2018.34
https://arxiv.org/abs/1802.00233
https://arxiv.org/abs/1802.00233
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


34:2 Minimal Height Decision Tree

1 Introduction

Consider the following problem: Given an n-element set A ⊆ Bm := {0, 1}m from some
class of sets A and a hidden element a ∈ A. Given an oracle that answers queries of the
type: “What is the value of ai?”. Find a polynomial time algorithm that with an input
A, asks minimum number of queries to the oracle and finds the hidden element a. This is
equivalent to constructing a minimum height decision tree for A. A decision tree is a binary
tree where each internal node is labeled with an index from [m] and each leaf is labeled
with an assignment a ∈ Bm. Each internal node has two outgoing edges one that is labeled
with 0 and the other is labeled with 1. A node that is labeled with i corresponds to the
query “Is ai = 0?”. An edge that is labeled with ξ corresponds to the answer ξ. This decision
tree is an algorithm in an obvious way and its height is the worst case complexity of the
number of queries. A decision tree T is said to be a decision tree for A if the algorithm that
corresponds to T predicts correctly the hidden assignment a ∈ A. Our goal is to construct a
small height decision tree for A ⊆ Bm in time polynomial in m and n := |A|. We will denote
by OPT(A) the minimum height decision tree for A.

This problem is related to the following problem in exact learning [1]: Given a class C
of boolean functions f : X → {0, 1}. Construct in poly(|C|, |X|) time an optimal adaptive
algorithm that learns C from membership queries. This learning problem is equivalent to
constructing a minimum height decision tree for the set A = {a(i)|a(i)

j = fi(xj)} where fi is
the ith function in C and xj is the jth instance in X. In computer vision the problem is
related to minimizing the number of “probes” (queries) needed to determine which one of
a finite set of geometric figures is present in an image [4]. In game theory the problem is
related to the minimum number of turns required in order to win a guessing game.

1.1 Previous and New Results
In [4], Arkin et al. showed that (AMMRS-algorithm) if at every node the decision tree chooses
i that partitions the current set (the set of assignments that are consistent to the answers
of the queries so far) as evenly as possible, then the height of the tree is within a factor
of log |A| from optimal. I.e., log |A|-approximation algorithm. Moshkov [15] analysis shows
that this algorithm is (ln |A|)-approximation algorithm. This algorithm runs in polynomial
time in m and |A|.

Hyafil and Rivest, [11], show that the problem of constructing a minimum depth decision
tree is NP-Hard. They actually consider the average depth but their technique can be
adopted to the minimum depth. The reduction of Laber and Nogueira, [12] to set cover with
the inapproximability result of Dinur and Steurer [7] for set cover implies that it cannot be
approximated to a factor of (1−o(1))·ln |A| unless P=NP. Therefore, no better approximation
ratio can be obtained if no constraint is added to the set A.

Moshkov, [13], studied the extended teaching dimension combinatorial measure, ETD(A),
of a set A ⊆ Bm. It is the maximum over all the possible assignments b ∈ Bm of the
minimum number of indices I ⊂ [m] in which b agrees with at most one a ∈ A. Moshkov
showed two results. The first is that ETD(A) is a lower bound for OPT(A). The second is an
exponential time algorithm that asks (2ETD(A)/ log ETD(A)) log n queries. This gives a (ln 2)
(ln |A|)/ log ETD(A) -approximation (exponential time) algorithm (since OPT(A) ≥ ETD(A))
and at the same time 2ETD (A)/ log ETD(A)-approximation algorithm (since OPT(A) ≥
log |A|). Since many interesting classes have small ETD dimension, the latter result gives
small approximation ratio but unfortunately Moshkov algorithm runs in exponential time.
In [14], Moshkov gave a polynomial time 2(ln 2)ETD(C)-approximation algorithm.



N.H. Bshouty and W. Makhoul 34:3

In this paper we further study the ETD measure. We show that the above AMMRS-
algorithm, [4], is polynomial time (ln 2)ETD(C)-approximation algorithm. This improves
the 2(ln 2)ETD(C)-approximation algorithm of Moshkov.

Another reason for studying the ETD of classes is the following: If you find the ETD of
the set A then you either get a lower bound that is better than the information theoretic
lower bound log |A| or you get an approximation algorithm with a better ratio than ln |A|.
This is because if ETD(A) < log |A| then the AMMRS-algorithm has a ratio (ln 2)ETD(A)
that is better than the ln |A| ratio and if ETD(A) > log |A| then Moshkov lower bound,
ETD(A), for OPT(A) is better than the information theoretic lower bound log |A|.

To get the above results, we define a new combinatorial measure called the density DEN(A)
of the set A. If Q = DEN(A) then there is a subset B ⊆ A such that an adversary can give
answers to the queries that eliminate at most 1/Q fraction of the number of elements in B.
This forces the learner to ask at least Q queries. We then show that ETD(A) ≥ DEN(A)− 1.
On the other hand, we show that if Q = DEN(A) then a query in the AMMRS-algorithm
eliminates at least (1− 1/Q) fraction of the assignments in A. This gives a polynomial time
(ln 2)DEN(A)-approximation algorithm which is also a (ln 2)(ETD(A) + 1)-approximation
algorithm.

In order to compare both algorithms we show that (ETD(A)− 1)/ ln |A| ≤ DEN(A) ≤
ETD(A)+1 and for random uniform A (and therefore for almost all A), with high probability
DEN(A) = Θ(ETD(A)/ ln |A|). Since |A| > ETD(A), this shows that AMMRS-algorithm
may get a better approximation ratio than Moshkov algorithm.

The inapproximability results follows from the reduction of Laber and Nogueira, [12]
to set cover with the inapproximability result of Dinur and Steurer [7] and the fact that
DEN(A) ≤ ETD(A) + 1 ≤ OPT(A) + 1.

We then apply the above results to learning the class of disjunctions of predicates from
a set of predicates F from membership queries [5]. We show that the ETD of this class is
bounded from above by the degree d of its Hasse diagram. We then show that Moshkov
algorithm, for this class, runs in polynomial time and is (d/ log d)-approximation algorithm.
Since |F| ≥ d (and in many applications, |F| � d), this improves the |F|-approximation
algorithm SPEX in [5] when the size of Hasse diagram is polynomial. This also gives optimal
algorithms when the degree d is constant. For example, learning axis parallel rays over
constant dimension space.

2 Definitions and Preliminary Results

In this section we give some definitions and preliminary results

2.1 Notation
Let Bm = {0, 1}m. Let A = {a(1), . . . , a(n)} ⊆ Bm be an n-element set. We will write |A|
for the number of elements in A. For h ∈ Bm we define A+ h = {a+ h|a ∈ A} where + (in
the square brackets) is the bitwise exclusive or of elements in Bm.

For integer q let [q] = {1, 2, . . . , q}. Throughout the paper, log x = log2 x.

2.2 Optimal Algorithm
We denote by OPT(A) the minimum depth of a decision tree for A. Our goal is to build a
decision tree for A with small depth. Obviously

log n ≤ OPT(A) ≤ n− 1 (1)

where n := |A|. The following result is easy to prove (see the full paper [6])
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I Lemma 1. We have OPT(A) = OPT(A+ h).

2.3 Extended Teaching Dimension
In this section we define the extended teaching dimension.

Let h ∈ Bm be any element. We say that a set S ⊆ [m] is a specifying set for h with
respect to A if |{a ∈ A | (∀i ∈ S)hi = ai}| ≤ 1. That is, there is at most one element in A
that is consistent with h on the entries of S. Denote by ETD(A, h) the minimum size of a
specifying set for h with respect to A. The extended teaching dimension of A is

ETD(A) = max
h∈Bm

ETD(A, h). (2)

We will write ETDz(A) for ETD(A, 0). It is easy to see that

ETD(A, h) = ETDz(A+ h) and ETD(A) = ETD(A+ h). (3)

We say that a set S ⊆ [m] is a strong specifying set for h with respect to A if either h ∈ A
and |{a ∈ A | (∀i ∈ S)hi = ai}| = 1, or |{a ∈ A | (∀i ∈ S)hi = ai}| = 0. That is, if h ∈ A
then there is exactly one element in A that is consistent with h on the entries of S. Otherwise,
no element in A is consistent with h on S. Denote SETD(A, h) the minimum size of a strong
specifying set for h with respect to A. The strong extended teaching dimension of A is

SETD(A) = max
h∈Bm

SETD(A, h). (4)

We will write SETDz(A) for SETD(A, 0). It is easy to see that

SETD(A, h) = SETDz(A+ h) and SETD(A) = SETD(A+ h). (5)

Obviously, ETD(A, h) ≤ min(m,n− 1) and ETD(A, h) ≤ SETD(A, h) ≤ min(m,n)
We now show

I Lemma 2. We have ETD(A, h) ≤ SETD(A, h) ≤ ETD(A, h) + 1 and therefore ETD(A) ≤
SETD(A) ≤ ETD(A) + 1.

Proof. The fact ETD(A, h) ≤ SETD(A, h) follows from the definitions. Let S ⊆ [m] be a
specifying set for h with respect to A. Then for T := {a ∈ A | (∀i ∈ S)hi = ai} we have
t := |T | ≤ 1. If t = 0 or h ∈ A then S is a strong specifying set for h with respect to A. If t = 1
and h 6∈ A then for the element a ∈ T there is j ∈ [m] such that aj 6= hj and then S∪{j} is a
strong specifying set for h with respect to A. This proves that SETD(A, h) ≤ ETD(A, h) + 1.

The other claims follows immediately. J

Obviously, for any B ⊆ A

ETD(B) ≤ ETD(A), SETD(B) ≤ SETD(A). (6)

2.4 Hitting Set
A hitting set for A is a set S ⊆ [m] such that for every non-zero element a ∈ A there is j ∈ S
such that aj = 1. That is, S hits every element in A except the zero element (if it exists).
The size of the minimum size hitting set for A is denoted by HS(A).

We now show

I Lemma 3. We have HS(A) = SETDz(A). In particular, SETD(A, h) = HS(A + h) and
SETD(A) = maxh∈Bm

HS(A+ h).
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Proof. If 0 ∈ A then SETDz(A) is the minimum size of a set S such that {a ∈ A | (∀i ∈
S)ai = 0} = {0} and if 0 6∈ A then it is the minimum size of a set S such that {a ∈ A | (∀i ∈
S)ai = 0} = ∅. Therefore the set S hits all the nonzero elements in A.

The other results follow from (5) and the definition of SETD. J

2.5 Density of a Set
In this section we define our new measure DEN of a set.

Let A = {a(1), . . . , a(n)} ⊆ Bm. We define MAJ(A) ∈ Bm such that MAJ(A)i = 1 if the
number of ones in (a(1)

i , · · · , a(n)
i ) is greater or equal the number of zeros and MAJ(A)i = 0

otherwise. We denote by MAX(A) the maximum number of ones in (a(1)
i , · · · , a(n)

i ) over all
i = 1, . . . ,m. Let

MAMI(A) = min
h∈Bm

MAX(A+ h) = MAX(A+ MAJ(A)). (7)

For j ∈ [m] and ξ ∈ {0, 1} let Aj,ξ = {a ∈ A | aj = ξ}. Then

MAMI(A) = max
j

min(|Aj,0|, |Aj,1|). (8)

We define the density of a set A ⊆ Bm by

DEN(A) = max
B⊆A

|B| − 1
MAMI(B) . (9)

Notice that since every j ∈ [m] can hit at most MAX(A) elements in A we have

HS(A) ≥ |A| − 1
MAX(A) . (10)

3 Bounds for OPT

In this section we give upper and lower bounds for OPT.

3.1 Lower Bound
Moshkov results in [13, 10] and the information theoretic bound in (1) give the following
lower bound. We give the proof in the full paper [6] for completeness.

I Lemma 4. [13, 10] Let A ⊆ Bm be any set. Then OPT(A) ≥ max(ETD(A), log |A|).

Many lower bounds in the literature for OPT(A) are based on finding a subset B ⊆ A
such that for each query there is an answer that eliminates at most small fraction E of B.
Then (|B| − 1)/E is a lower bound for OPT(A). The best possible bound that one can
get using this technique is exactly DEN(A) (Lemma 5), the density defined in Section 2.5.
Lemma 6 shows that the lower bound ETD(A) for OPT(A) exceeds any such bound.

In the full paper [6] we prove

I Lemma 5. We have OPT(A) ≥ DEN(A).

I Lemma 6. We have ETD(A) ≥ DEN(A)− 1.
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Proof. By (7) and (9) there is B ⊆ A such that

DEN(A) = |B| − 1
MAMI(B) = |B| − 1

MAX(B + h) (11)

where h = MAJ(B). Then

ETD(A)
(6)
≥ ETD(B)

(2)
≥ ETD(B, h)

L2
≥ SETD(B, h)− 1 L3= HS(B + h)− 1

(10)
≥ |B| − 1

MAX(B + h) − 1 (11)= DEN(A)− 1.

J

In the full paper [6] we also prove

I Lemma 7. We have ETD(A) ≤ ln |A| ·DEN(A) + 1.

It is also easy to see (by standard analysis using Chernoff Bound) that for a random uniform
A, with positive probability, DEN(A) = O(1) and ETD(A) = Θ(log |A|). See the proof
sketch in the full paper [6]. So the bound in Lemma 7 is asymptotically best possible.

3.2 Upper Bounds
Moshkov [13, 10] proved the following upper bound. We gave the proof in the full paper [6]
for completeness.

I Lemma 8. [13, 10] Let A ⊆ {0, 1}m of size n. Then

OPT(A) ≤ ETD(A) + ETD(A)
log ETD(A) log n ≤ 2 · ETD(A)

log ETD(A) log n.

In [13, 10], Moshkov gave an example of a n-set AE ⊆ {0, 1}m with ETD(AE) = E

and OPT(AE) = Ω((E/ logE) log n). So the upper bound in the above lemma is the best
possible.

4 Polynomial Time Approximation Algorithm

Given a a set A ⊆ Bm. Can one construct an algorithm that finds a hidden a ∈ A with
OPT(A) queries? Obviously, with unlimited computational power this can be done so the
question is: How close to OPT(A) can one get when polynomial time poly(m,n) is allowed
for the construction?

An exponential time algorithm follows from the following

OPT(A) = min
i∈[m]

max(OPT(Ai,0),OPT(Ai,1))

where Ai,ξ = {a ∈ A | ai = ξ}. This algorithm runs in time at least m! ≥ (m/e)m. See
also [8, 3].

Can one give a better exponential time algorithm? In what follows (Theorem 9) we
use Moshkov [13, 10] result (Lemma 8) to give a better exponential time approximation
algorithm. In in the full paper [6] we give another simple proof of the Moshkov [13, 10] result
that in practice uses less number of specifying sets. When the extended teaching dimension
is constant, the algorithm is O(1)-approximation algorithm and runs in polynomial time.
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I Theorem 9. Let A be a class of sets A ⊆ Bm of size n. If there is an algorithm that for
any h ∈ Bm and any A ∈ A gives a specifying set for h with respect to A of size at most E
in time T then there is an algorithm that for any A ∈ A constructs a decision tree for A of
depth at most

E + E

logE log n ≤ E + E

logEOPT(A)

queries and runs in time O(T log n+ nm).

Proof. Follows immediately from Moshkov algorithm [13, 10]. See the full paper [6]. J

The following result immediately follows from Theorem 9.

I Theorem 10. Let A ⊆ Bm be a n-set. There is an algorithm that finds the hidden column
in time(

m

ETD(A)

)
· ETD(A) · n log n

and asks at most

2 · ETD(A) · log n
log ETD(A) ≤ 2 ·min(ETD(A), log n)

log ETD(A) OPT(A)

queries.
In particular, if ETD(A) is constant then the algorithm is O(1)-approximation algorithm

that runs in polynomial time.

Proof. To find a specifying set for h with respect to A we exhaustively check each ETD(A)
row of A. Each check takes time n. Since the algorithm asks at most ETD(A) · log n queries,
the time complexity is as stated in the Theorem. J

Can one do it in poly(m,n) time? Hyafil and Rivest, [11], show that the problem of
finding OPT is NP-Complete. The reduction of Laber and Nogueira, [12], of set cover to
this problem with the inapproximability result of Dinur and Steurer [7] for set cover implies
that it cannot be approximated to (1− o(1)) · lnn unless P=NP.

In [4], Arkin et al. showed that (the AMMRS-algorithm) if at the ith query the algorithm
chooses an index j that partitions the current node set (the elements in A that are consistent
with the answers until this node) A as evenly as possible, that is, that maximizes min(|{a ∈
A|aj = 0}|, |{a ∈ A|aj = 1}|), then the query complexity is within a factor of dlog ne from
optimal. The AMMRS-algorithm, [4], runs in time poly(m,n). Moshkov [4, 15] analysis
shows that this algorithm is lnn-approximation algorithm and therefore is optimal. In this
section we will give a simple proof.

In [13, 10], Moshkov gave a simple ETD(A)-approximation algorithm (Algorithm MEMB-
HALVING-1 in [10]). He then gave another algorithm that achieves the query complexity in
Lemma 8 (Algorithm MEMB-HALVING-2 in [10]). This is within a factor of

2 ·min(ETD(A), log n)
log ETD(A)

from optimal. This is better than the ratio lnn, but, unfortunately, both algorithms require
finding a minimum size specifying set and the problem of finding a minimum size specifying
set for h is NP-Hard, [16, 2, 9]. Moshkov gave in [14] a polynomial time 2(ln 2)-approximation
algorithm.
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Can one achieve a better approximation ratio? In the following we give a surprising
result. We show that the AMMRS-algorithm asks DEN(A) ln |A| queries. Therefore, it is a
(ln 2)DEN(A)-approximation algorithm and therefore it is a (ln 2)ETD(A)-approximation
algorithm. This also prove that it is a ln |A|-approximation algorithm. We also show that no
algorithm with query complexity (1− ε)DEN(A) ln |A| is possible unless P=NP.

I Theorem 11. The AMMRS-algorithm runs in time O(mn) and finds the hidden element
a ∈ A with at most

DEN(A) · ln(n) ≤ min((ln 2)DEN(A), lnn) ·OPT(A)
≤ min((ln 2)(ETD(A) + 1), lnn) ·OPT(A)

queries.

Proof. Let B be any subset of A. Then,

DEN(B)
(9)
≥ |B| − 1

MAMI(B)

and therefore

MAMI(B) ≥ |B| − 1
DEN(B) ≥

|B| − 1
DEN(A) .

Since the AMMRS-algorithm chooses at each node in the decision tree the index j that
maximizes min(|Bj,0|, |Bj,1|) where Bj,ξ = {a ∈ B|aj = ξ} and B is the set of elements in A
that are consistent with the answers until this node, we have

max(|Bj,0|, |Bj,1|)− 1 = |B| − 1−min(|Bj,0|, |Bj,1|)
(8)= |B| − 1−MAMI(B) ≤ (|B| − 1)

(
1− 1

DEN(A)

)
.

Therefore, for a node v of depth h in the decision tree, the set B(v) of elements in A that
are consistent with the answers until this node contains at most

(|A| − 1)
(

1− 1
DEN(A)

)h

+ 1

elements. Therefore the depth of the tree is at most DEN(A) ln |A|. J

We now show that the query complexity of this algorithm is optimal unless P=NP.

I Theorem 12. Let ε be any constant. There is no polynomial time algorithm that finds the
hidden element with less than (1− ε)DEN(A) · ln |A| unless P=NP.

Proof. Suppose such an algorithm exists. Then (1−ε)DEN(A) ln |A|
L5
≤ (1−ε) ln |A|OPT(A).

That is, the algorithm is also (1− ε) ln |A|-approximation algorithm. Laber and Nogueira,
[12] gave a polynomial time algorithm reduction of minimum depth decision tree to set cover
and Dinur and Steurer [7] show that there is no polynomial time (1− o(1)) · ln |A| for set
cover unless P=NP. Therefore, such an algorithm implies P=NP. J
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5 Applications to Disjunction of Predicates

In this section we apply the above results to learning the class of disjunctions of predicates
from a set of predicates F from membership queries [5].

Let C = {f1, . . . , fn} be a set of boolean functions fi : X → {0, 1} where X =
{x1, . . . , xm}. Let AC = {(fi(x1), . . . , fi(xm)) | i = 1, . . . , n}. We will write OPT(AC),
ETD(AC), etc. as OPT(C),ETD(C), etc.

Let F be a set of boolean functions (predicates) over a domain X. We consider the class
of functions F∨ := {∨f∈Sf | S ⊆ F}.

5.1 An Equivalence Relation Over F∨

In this section, we present an equivalence relation over F∨ and define the representatives
of the equivalence classes. This enables us in later sections to focus on the representative
elements from F∨. Let F be a set of boolean functions over the domain X. The equivalence
relation = over F∨ is defined as follows: two disjunctions F1, F2 ∈ F∨ are equivalent (F1 = F2)
if F1 is logically equal to F2. In other words, they represent the same function (from X to
{0, 1}). We write F1 ≡ F2 to denote that F1 and F2 are identical; that is, they have the
same representation. For example, consider f1, f2 : {0, 1} → {0, 1} where f1(x) = 1 and
f2(x) = x. Then, f1 ∨ f2 = f1 but f1 ∨ f2 6≡ f1.

We denote by F∗∨ the set of equivalence classes of = and write each equivalence class as [F ],
where F ∈ F∨. Notice that if [F1] = [F2], then [F1∨F2] = [F1] = [F2]. Therefore, for every [F ],
we can choose the representative element to be GF := ∨F ′∈SF

′ where S ⊆ F is the maximum
size set that satisfies ∨S := ∨f∈Sf = F . We denote by G(F∨) the set of all representative
elements. Accordingly, G(F∨) = {GF | F ∈ F∨}. As an example, consider the set F
consisting of four functions f11, f12, f21, f22 : {1, 2}2 → {0, 1} where fij(x1, x2) = [xi ≥ j]
where [xi ≥ j] = 1 if xi ≥ j and 0 otherwise. There are 24 = 16 elements in Ray2

2 := F∨ and
five representative functions in G(F∨): G(F∨) = {f11 ∨ f12 ∨ f21 ∨ f22, f12 ∨ f22, f12, f22, 0}
(where 0 is the zero function).

5.2 A Partial Order Over F∨ and Hasse Diagram

In this section, we define a partial order over F∨ and present related definitions. The partial
order, denoted by ⇒, is defined as follows: F1⇒F2 if F1 logically implies F2. Consider the
Hasse diagram H(F∨) of G(F∨) for this partial order. The maximum (top) element in the
diagram is Gmax := ∨f∈Ff . The minimum (bottom) element is Gmin := ∨f∈∅f , i.e., the
zero function.

In a Hasse diagram, G1 is a descendant (resp., ascendent) of G2 if there is a (nonempty)
downward path from G2 to G1 (resp., from G1 to G2), i.e., G1⇒G2 (resp., G2⇒G1) and
G1 6= G2. G1 is an immediate descendant of G2 in H(F∨) if G1⇒G2, G1 6= G2 and there is
no G ∈ G(F∨) such that G 6= G1, G 6= G2 and G1⇒G⇒G2. G1 is an immediate ascendant
of G2 if G2 is an immediate descendant of G1.

We denote by De(G) and As(G) the sets of all the immediate descendants and immediate
ascendants of G, respectively. The neighbours set of G is Ne(G) = De(G)∪As(G). We further
denote by DE(G) and AS(G) the sets of all G’s descendants and ascendants, respectively.

I Definition 13. The degree of G is deg(G) = |Ne(G)| and the degree deg(F∨) of F∨ is
maxG∈G(F∨) deg(G).
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For G1 and G2, we define their lowest common ascendent (resp., greatest common
descendant) G = lca(G1, G2) (resp., G = gcd(G1, G2)) to be the minimum (resp., maximum)
element in AS(G1) ∩AS(G2) (resp., DE(G1) ∩DE(G2)).

The following result is from [5]

I Lemma 14. Let G1, G2 ∈ G(F∨). Then, lca(G1, G2) = G1 ∨G2.
In particular, if G1, G2 are two distinct immediate descendants of G, then G1 ∨G2 = G.

5.3 Witnesses
In this subsection we define the term witness. Let G1 and G2 be elements in G(F∨). An
element a ∈ X is a witness for G1 and G2 if G1(a) 6= G2(a).

For a class of boolean functions C over a domain X and a function G ∈ C we say that a
set of elements W ⊆ X is a witness set for G in C if for every G′ ∈ C and G′ 6= G there is a
witness in W for G and G′.

5.4 The Extended Teaching Dimension of F∨

In this section we prove

I Lemma 15. For every h : X → {0, 1} if h ; Gmax then ETD(F∨, h) = 1. Otherwise,
there is G ∈ G(F∨) such that

ETD(F∨, h) ≤ |De(G)|+ HS(As(G) ∧ Ḡ) ≤ |Ne(G)| = deg(G)

where As(G) ∧ Ḡ = {s ∧ Ḡ | s ∈ As(G)}. In particular,

ETD(F∨) ≤ max
G∈G(F∨)

(
|De(G)|+ HS(As(G) ∧ Ḡ)

)
≤ deg(F∨).

Proof. Let h : X → {0, 1} be any function. If h; Gmax then there is an assignment a that
satisfies h(a) = 1 and Gmax(a) = 0. Since for all G ∈ G(F∨), G⇒ Gmax we have G(a) = 0.
Therefore, the set {a} is a specifying set for h with respect to F∨ and ETD(F∨, h) = 1.

Let h ⇒ Gmax. Consider any G ∈ G(F∨) such that h⇒G and for every immediate
descendant G′ of G we have h; G′. Now for every immediate descendent G′ of G find an
assignment a such that G′(a) = 0 and h(a) = 1. Then a is a witness for h and G′. Therefore,
a is also a witness for h and every descendant of G′. Let A be the set of all such assignments,
i.e., for every descendant of G one witness. Then |A| ≤ |De(G)| and A is a witness set for
h and all the descendants of G. We note here that if h = 0 then G = Gmin which has no
immediate descendants and then A = ∅.

Consider a hitting set B for As(G) ∧ Ḡ of size HS(As(G) ∧ Ḡ). Now for every immediate
ascendant G′′ of G find an assignment b ∈ B such that G′′(b) ∧ Ḡ(b) = 1. Then G′′(b) = 1
and G(b) = 0. Since G(b) = 0 we have h(b) = 0 and then b is a witness for h and G′′.
Therefore, b is also a witness for h and every ascendant of G′′. Thus B is a witness set for h
in all the ascendants of G.

Let G0 be any element in G(F∨) (that is not a descendant or an ascendant). Consider
G1 = lca(G,G0). By Lemma 14, we have G1 = G ∨G0. Since G1 is an ascendent of G there
is a witness a ∈ B such that G1(a) = 1 and G(a) = 0. Then G0(a) = 1, h(a) = 0 and a is a
witness of h and G0. Therefore A ∪B is a specifying set for h with respect to G(F∨). Since
for every F ∈ F∨ we have F = GF ∈ G(F∨), A∪B is also a specifying set for h with respect
to F∨.



N.H. Bshouty and W. Makhoul 34:11

Since

ETD(F∨, h) ≤ |A|+ |B| ≤ |De(G)|+ HS(As(G) ∧ Ḡ)

the result follows. J

In in the full paper [6] we show that

ETD(F∨) = max
G∈G(F∨)

(
|De(G)|+ HS(As(G) ∧ Ḡ)

)
.

We could have replaced |De(G)| by HS(De(G) ∧G), but in the full paper [6] we show that
they are both equal.

The following result follows immediately from the proof of Lemma 15

I Lemma 16. For any h : X → {0, 1}, a specifying set for h with respect to F∨ of size
deg(F∨) can be found in time O(nm).

By Theorem 9 we have

I Theorem 17. There is an algorithm that learns F∨ in time O(nm) and asks at most

deg(F∨) + deg(F∨)
log deg(F∨) log n ≤

(
deg(F∨)

log deg(F∨) + 1
)

OPT(F∨)

membership queries.

5.5 Learning Other Classes

If a specifying set of small size cannot be found in polynomial time then from Theorem 10,
11 and Lemma 15, we have

I Theorem 18. For a class C we have
1. There is an algorithm that learns C in time(

m

deg(C)

)
· ETD(C) · n log n

and asks at most

2 · ETD(C) · log n
log ETD(C)) ≤ 2 ·min(ETD(C)), log n)

log ETD(C)) OPT(C)

membership queries.
In particular, when ETD(C) is constant the algorithm runs in polynomial time and its
query complexity is (asymptotically) optimal.

2. There is an algorithm that learns C in time O(nm) and asks at most
DEN(C) · ln(n) ≤ min((ln 2)DEN(C), lnn) ·OPT(C)

≤ min((ln 2)(ETD(C) + 1), lnn) ·OPT(C)
membership queries.
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Abstract
Ajtai, Kumar and Sivakumar [5] gave the first 2O(n) algorithm for solving the Shortest Vector
Problem (SVP) on n-dimensional Euclidean lattices. The algorithm starts with N ∈ 2O(n) ran-
domly chosen vectors in the lattice and employs a sieving procedure to iteratively obtain shorter
vectors in the lattice, and eventually obtaining the shortest non-zero vector. The running time
of the sieving procedure is quadratic in N . Subsequent works [7, 11] generalized the algorithm
to other norms.

We study this problem for the special but important case of the `∞ norm. We give a new
sieving procedure that runs in time linear in N , thereby improving the running time of the
algorithm for SVP in the `∞ norm. As in [6, 11], we also extend this algorithm to obtain
significantly faster algorithms for approximate versions of the shortest vector problem and the
closest vector problem (CVP) in the `∞ norm.

We also show that the heuristic sieving algorithms of Nguyen and Vidick [23] and Wang et
al. [27] can also be analyzed in the `∞ norm. The main technical contribution in this part is to
calculate the expected volume of intersection of a unit ball centred at origin and another ball of
a different radius centred at a uniformly random point on the boundary of the unit ball. This
might be of independent interest.
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1 Introduction

A lattice L is the set of all integer combinations of linearly independent vectors b1, . . . ,bn ∈
Rd, L = L(b1, . . . ,bn) := {

∑n
i=1 zibi : zi ∈ Z} .

We call n the rank of the lattice, and d the dimension of the lattice. The matrix
B = (b1, . . . ,bn) is called a basis of L, and we write L(B) for the lattice generated by B. A
lattice is said to be full-rank if n = d. In this work, we will only consider full-rank lattices
unless otherwise stated.

The two most important computational problems on lattices are the Shortest Vector
Problem (SVP) and the Closest Vector Problem (CVP). Given a basis for a lattice L ⊆ Rd,
SVP asks us to compute a non-zero vector in L of minimal length, and CVP asks us to compute
a lattice vector at a minimum distance to a target vector t. Typically the length/distance is
defined in terms of the `p norm for some p ∈ [1,∞], such that
‖x‖p := (|x1|p + |x2|p + · · ·+ |xd|p)1/p for 1 ≤ p <∞ , and ‖x‖∞ := max1≤i≤d |xi| .

The most popular of these, and the most well studied is the Euclidean norm, which
corresponds to p = 2. Starting with the seminal work of [18], algorithms for solving
these problems either exactly or approximately have been studied intensely. Some classic
applications of these algorithms are in factoring polynomials over rationals [18], integer
programming [19], cryptanalysis [22], checking the solvability by radicals [17], and solving
low-density subset-sum problems [12]. More recently, many powerful cryptographic primitives
have been constructed whose security is based on the worst-case hardness of these or related
lattice problems(see for example [24] and the references therein).

One recent application that is based on the hardness of SVP in the `∞ norm is a recent
signature scheme by Ducas et al. [13]. For the security of their signature scheme, the
authors choose parameters under the assumption that SVP in the `∞ norm for an appropriate
dimension is infeasible. Due to lack of sufficient work on the complexity analysis of SVP in
the `∞ norm, they choose parameters based on the best known algorithms for SVP in the
`2 norm (which are variants of the algorithm from [23]). The rationale for this is that SVP
in `∞ norm is likely harder than in the `2 norm. Our results in this paper show that this
assumption by Ducas et al. [13] is correct, and perhaps too generous. In particular, we show
that the space and time complexity of the `∞ version of [23] is at most (4/3)n and (4/3)2n

respectively, which is significantly larger than the best known algorithms for SVP in the `2
norm.

The closest vector problem in the `∞ norm is particularly important since it is equivalent
to the integer programming problem [14]. The focus of this work is to study the complexity
of the closest vector problem and the shortest vector problem in the `∞ norm.

1.1 Prior Work

1.1.1 Algorithms in the Euclidean Norm
The fastest known algorithms for solving these problems run in time 2cn, where n is the rank
of the lattice and c is some constant. The first algorithm to solve SVP in time exponential in
the dimension of the lattice was given by Ajtai, Kumar, and Sivakumar [5] who devised a
method based on “randomized sieving,” whereby exponentially many randomly generated
lattice vectors are iteratively combined to create shorter and shorter vectors, eventually
resulting in the shortest vector in the lattice. Subsequent work has resulted in improvement
of their sieving technique thereby improving the constant c in the exponent, and the current
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fastest provable algorithm for exact SVP runs in time 2n+o(n) [1, 4], and the fastest algorithm
that gives a constant approximation runs in time 20.802n+o(n) [20]. The fastest heuristic
algorithm that is conjectured to solve SVP in practice runs in time (3/2)n/2 [9].

The CVP is considered a harder problem than SVP since there is a simple dimension and
approximation-factor preserving reduction from SVP to CVP [15]. Based on a technique due
to Kannan [16], Ajtai, Kumar, and Sivakumar [6] gave a sieving based algorithm that gives a
1 + α approximation of CVP in time (2 + 1/α)O(n). Later exact exponential time algorithms
for CVP were discovered [21, 2]. The current fastest algorithm for CVP runs in time 2n+o(n)

and is due to [2].

1.1.2 Algorithms in Other `p Norms
Blomer and Naewe [11], and then Arvind and Joglekar [7] generalised the AKS algorithm
[5] to give exact algorithms for SVP that run in time 2O(n). Additionally, [11] gave a 1 + ε

approximation algorithm for CVP for all `p norms that runs in time (2 + 1/ε)O(n). For the
special case when p = ∞, Eisenbrand et al. [14] gave a 2O(n) · (log(1/ε))n algorithm for
(1 + ε)-approx CVP.

1.2 Our contribution
1.2.1 Provable Algorithms
We modify the sieving algorithm by [5, 6] for SVP and approximate CVP for the `∞ norm
that results in substantial improvement over prior results. Before describing our idea, we give
an informal description of the sieving procedure of [5, 6]. The algorithm starts by randomly
generating a set S of N ∈ 2O(n) lattice vectors of length at most R ∈ 2O(n). It then runs a
sieving procedure a polynomial number of times. In the ith iteration the algorithm starts
with a list S of lattice vectors of length at most Ri−1 ≈ γi−1R, for some parameter γ ∈ (0, 1).
The algorithm maintains and updates a list of “centres” C, which is initialised to be the
empty set. Then for each lattice vector y in the list, the algorithm checks whether there is a
centre c at distance at most γ ·Ri−1 from this vector. If there exists such a centre pair, then
the vector y is replaced in the list by y− c, and otherwise it is deleted from S and added
to C. This results in Ni−1 − |C| lattice vectors which are of length at most Ri ≈ γRi−1,
where Ni−1 is the number of lattice vectors at the end of i− 1 sieving iterations. We mention
here that this description hides many details and in particular, in order to show that this
algorithm eventually obtains the shortest vector, we need to add a little perturbation to the
lattice vectors to start with. The details can be found in Section 3.

A crucial step in this algorithm is to find a vector c from the list of centers that is close
to y. This problem is called the nearest neighbor search (NNS) problem and has been well
studied especially in the context of heuristic algorithms for SVP (see [9] and the references
therein). A trivial bound on the running time for this is |S| · |C|, but the aforementioned
heuristic algorithms have spent considerable effort trying to improve this bound under
reasonable heuristic assumptions. Since they require heuristic assumptions, such improved
algorithms for the NNS have not been used to improve the provable algorithms for SVP.

We make a simple but powerful observation that for the special case of the `∞ norm,
if we partition the ambient space [−R,R]n into ([−R,−R + γ · R), [−R + γ · R,−R + 2γ ·
R), . . . [−R + b 2

γ c · γ · R,R])n, then it is easy to see that each such partition will contain
at most one centre. Thus, to find a centre at `∞ distance γ · R from a given vector y, we
only need to find the partition in which y belongs, and then check whether this partition
contains a centre. This can be easily done by checking the interval in which each co-ordinate
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of y belongs. This drastically improves the running time for the sieving procedure in the
SVP algorithm from |S| · |C| to |S| · n. Notice that we cannot expect to improve the time
complexity beyond O(|S|).

This same idea can also be used to obtain significantly faster approximation algorithms
for both SVP and CVP. It must be noted here that the prior provable algorithms using
AKS sieve lacked an explicit value of the constant in the exponent for both space and time
complexity and they used a quadratic sieve. Our modified sieving procedure is linear in the
size of the input list and thus yields a faster algorithm compared to the prior algorithms.
In order to get the best possible running time, we optimize several steps specialized to the
case of `∞ norm in the analysis of the algorithms. See Theorems 15, 17, and 18 for explicit
running times and a detailed description.

Just to emphasise that our results are nearly the best possible using these techniques,
notice that for a large enough constant τ , we obtain a running time (and space) close to
3n for τ -approximate SVP. To put things in context, the best algorithm [28] for a constant
approximate SVP in the `2 norm runs in time 20.802n and space 20.401n. Their algorithm
crucially uses the fact that 20.401n is the best known upper bound for the kissing number
of the lattice (which is the number of shortest vectors in the lattice) in `2 norm. However,
for the `∞ norm, the kissing number is 3n for Zn. So, if we would analyze the algorithm
from [28] for the `∞ norm (without our improvement), we would obtain a space complexity
3n, but time complexity 9n.

1.2.2 Heuristic Algorithms
In each sieving step of the algorithm from [5], the length of the lattice vectors reduce by a
constant factor. It seems like if we continue to reduce the length of the lattice vectors until
we get vectors of length λ1 (where λ1 is the length of the shortest vector), we should obtain
the shortest vector during the sieving procedure. However, there is a risk that all vectors
output by this sieving procedure are copies of the zero vector and this is the reason that the
AKS algorithm [5] needs to start with much more vectors in order to provably argue that we
obtain the shortest vector.

Nguyen and Vidick [23] observed that this view is perhaps too pessimistic in practice,
and that the randomness in the initial set of vectors should ensure that the basic sieving
procedure should output the shortest vector for most lattices, and in particular if the lattice
is chosen randomly as is the case in cryptographic applications. The main ingredient to
analyze the space and time complexity of their algorithm is to compute the expected number
of centres necessary so that any point in S of length at most Ri−1 is at a distance of at most
γ ·Ri−1 from one of the centres. This number is roughly the reciprocal of the fraction of the
ball B of radius Ri−1 centred at the origin covered by a ball of radius γ · Ri−1 centred at
a uniformly random point in B. Here Ri−1 is the maximum length of a lattice vector in S
after i− 1 sieving iterations.

In this work, we show that the heuristic algorithm of [23] can also be analyzed for the
`∞ norm under similar assumptions. The main technical contribution in order to analyze
the time and space complexity of this algorithm is to compute the expected fraction of an
`∞ ball B(∞) of radius Ri−1 centered at the origin covered by an `∞ ball of radius γ ·Ri−1
centered at a uniformly random point in B(∞).

In order to improve the running time of the NV sieve [23], a modified two-level sieve was
introduced by Wang et al. [27]. Here they first partition the lattice into sets of vectors of
larger norm and then within each set they carry out a sieving procedure similar to [23]. We
have analyzed this in the `∞ norm and obtain algorithms much faster than the provable
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algorithms. In particular, our two-level sieve algorithm runs in time 20.62n. We would like to
mention here that our result does not contradict the near 2n lower bound for SVP obtained
by [10] under the strong exponential time hypothesis. The reason for this is that the lattice
obtained in the reduction in [10] is not a full-rank lattice, and has a dimension significantly
larger than the rank n of the lattice. Moreover, as mentioned earlier, the heuristic algorithm
is expected to work for a random looking lattice but might not work for all lattices.

Due to space constraints, we have deferred some descriptions and analysis to the full
version of this paper [3].

1.3 Open problems
It would be interesting to see if such partitioning technique can be done for other norms
or combined with heuristic algorithms like NNS, to yield better performance for sieving
algorithms. We do not know if other provable algorithms like those based on Discrete
Gaussian sampling [1, 2], Voronoi cells [21] or other heuristic algorithms can be analysed in
other non-Euclidean norms. Another direction would be to understand the change in time
and space complexity as the number of levels for multi-level sieve increases.

1.4 Organization of the paper
In Section 2 we give some basic definitions and results used in this paper. In Section 3 we
introduce our sieving procedure and apply it to provably solve exact SVP(∞). In Section 4
we describe approximate algorithms for SVP(∞) and CVP(∞) using our sieving technique. In
Section 5 we talk about heuristic sieving algorithms for SVP(∞).

2 Preliminaries

2.1 Notations
We write ln for natural logarithm and log for logarithm to the base 2.

I Fact 1. For x ∈ Rn ‖x‖p ≤ ‖x‖2 ≤
√
n‖x‖p for p ≥ 2 and 1√

n
‖x‖p ≤ ‖x‖2 ≤ ‖x‖p for

1 ≤ p < 2.

I Definition 2 (Ball). A (closed) ball of radius r and centre at x ∈ Rn, is the set of all points
whose distance (in `p norm) from x is at most r. B

(p)
n (x, r) = {y ∈ Rn : ‖y− x‖p ≤ r}.

The following result gives a bound on the size of intersection of two balls of a given radius
in the `∞ norm.

I Lemma 3. Let v = (v1, v2, . . . , vn) ∈ Rn, and let a > 0 be such that 2a ≥ ‖v‖∞. Let
D = B

(∞)
n (0, a) ∩B(∞)

n (v, a). Then, |D| =
∏n
i=1(2a− |vi|) .

Proof. It is easy to see that the intersection of two balls in the `∞ norm, i.e., hyperrectangles,
is also a hyperrectangle. For all i, the length of the i-th side of this hyperrectangle is 2a−|vi|.
The result follows. J

2.2 Lattice
I Definition 4. A lattice L is a discrete additive subgroup of Rn. Each lattice has a basis
B = [b1,b2, . . .bn], where bi ∈ Rn and L = L(B) =

{∑n
i=1 xibi : xi ∈ Z i = 1, . . . , n

}
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For algorithmic purposes we can assume that L ⊆ Qd.

I Definition 5. For any lattice basis B we define the fundamental parallelepiped as:
P(B) = {Bx : x ∈ [0, 1)n}

If y ∈ P(B) then ‖y‖p ≤ n‖B‖p as can be easily seen by triangle inequality. For any z ∈ Rn

there exists a unique y ∈ P(B) such that z − y ∈ L(B). This vector is denoted by y ≡ z
mod B and it can be computed in polynomial time given B and z.

I Definition 6. For i ∈ [n], the first successive minimum is defined as the length of the
shortest non-zero vector in the lattice: λ

(p)
1 (L) = min{‖v‖p : v ∈ L \ {0}}

We consider the following lattice problems. In all the problems defined below c ≥ 1 is
some arbitrary approximation factor. We drop the subscript for exact versions (i.e. c = 1).
1. Shortest Vector Problem (SVP(p)

c ) Given a lattice L, find a vector v ∈ L \ {0}
such that ‖v‖p ≤ c‖u‖p for any other u ∈ L \ {0}.

2. Closest Vector Problem (CVP(p)
c ) Given a lattice L with rank n and a target

vector t ∈ Rn, find v ∈ L such that ‖v− t‖p ≤ c‖w− t‖p for all other w ∈ L.

I Lemma 7. The LLL algorithm [18] can be used to solve SVP(p)
2n−1 in polynomial time.

The following result shows that in order to solve SVP(p)
1+ε, it is sufficient to consider the

case when 2 ≤ λ(p)
1 (L) < 3. This is done by appropriately scaling the lattice.

I Lemma 8 (Lemma 4.1 in [11]). For all `p norms, if there is an algorithm A that for
all lattices L with 2 ≤ λ

(p)
1 (L) < 3 solves SVP(p)

1+ε in time T = T (n, b, ε), then there is an
algorithm A′ that solves SVP(p)

1+ε for all lattices in time O(nT + n4b).

Thus henceforth we assume 2 ≤ λ(∞)
1 (L) < 3.

3 A faster algorithm for SVP(∞)

In this section we present an algorithm for SVP(∞) that uses the framework of AKS algorithm
[5] but uses a different sieving procedure that yields a faster running time. Using Lemma 7,
we can obtain an estimate λ∗ of λ(∞)

1 (L) such that λ(∞)
1 (L) ≤ λ∗ ≤ 2n · λ(∞)

1 (L). Thus, if
we try different values of λ = (1 + 1/n)−iλ∗, for 0 ≤ i ≤ 10n2, then for one of them, we have
λ

(∞)
1 (L) ≤ λ ≤ (1 + 1/n) · λ(∞)

1 (L) For the rest of this section, we assume that we know a
guess λ of the length of the shortest vector in L, which is correct upto a factor 1 + 1/n.

As in the AKS algorithm, we start by generating a set S of many vector pairs (e,y),
where the perturbation vectors e are uniformly sampled from B

(∞)
n (ξλ) (ξ > 1/2), and

y ∈ e mod P(B) which has length at most R, where
R ≤ nmaxi ‖bi‖ and y − e ∈ L. The desired situation is that after a polynomial number
of such sieving iterations (sieve) we are left with a set of vector pairs (e′,y′) such that
y′ − e′ ∈ L ∩B(∞)

n (O(λ(∞)
1 (L))). Finally we take pair-wise differences of the lattice vectors

corresponding to the remaining vector pairs and output the one with the smallest non-zero
norm. It was shown in [5] that with overwhelming probability, this algorithm outputs the
shortest vector in the lattice.

An iteration of the sieving procedure on the pairs of vectors S does the following. We
partition the interval [−R,R] into ` = 1 +

⌊
2
γ

⌋
intervals of length γR. The intervals are

[−R,−R + γR), [−R + γR,−R + 2γR), . . . [−R+ (`− 1)γR,R]. (Note that the last interval
may be smaller than the rest.) The ball [−R,R]n can thus be partitioned into

(
1 +

⌊
2
γ

⌋)n
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Algorithm 1: An exact algorithm for SVP(∞).
Input: (i) A basis B = [b1, . . .bn] of a lattice L, (ii) 0 < γ < 1, (iii) ξ > 1/2, (iv)

λ ≈ λ(∞)
1 (L) ,(v) N ∈ N

Output: A shortest vector of L
1 S ← ∅ ;
2 for i = 1 to N do
3 ei ←uniform B

(∞)
n (0, ξλ) ;

4 yi ← ei mod P(B) ;
5 S ← S ∪ {(ei,yi)} ;
6 end
7 R← nmaxi ‖bi‖∞ ;
8 for j = 1 to k =

⌈
logγ

(
ξ

nR(1−γ)

)⌉
do

9 S ← sieve(S, γ,R, ξ) ;
10 R← γR+ ξλ ;
11 end
12 Compute the non-zero vector v0 in {(yi − ei)− (yj − ej) : (ei,yi), (ej ,yj) ∈ S} with

the smallest `∞ norm ;
13 return v0 ;

regions, such that no two vectors in a region are at a distance greater than γR in the `∞
norm. The sieving procedure maintains an n-dimensional array with an entry corresponding
to each of these

(
1 +

⌊
2
γ

⌋)n
regions. Each position in the array contains the description of

one pair (e,y) ∈ S called a center, if y belongs to that region. For every other vector pair
(e,y) ∈ S that is not a center, we find the corresponding region and hence the corresponding
center (ec, c) such that ‖y− c‖∞ ≤ γR. We then add (e,y− c + ec) to the output list S′.
Finally we return S′. It is easy to see that the number of center pairs in each iteration is at
most |C| ≤ 2ccn where cc = log

(
1 +

⌊
2
γ

⌋)
.

I Claim 9. The following two invariants are maintained in Algorithm 1:
1. ∀(e,y) ∈ S, y− e ∈ L
2. ∀(e,y) ∈ S, ||y||∞ ≤ R

Since the length of the vectors decrease until R > γR+ ξλ, the following is easy to see.

I Lemma 10. At the end of k iterations in Algorithm 1 the length of lattice vectors
‖y− e‖∞ ≤ ξ(2−γ)λ

1−γ + γξ
n(1−γ) =: R′.

Assuming λ(∞)
1 ≤ λ ≤ λ

(∞)
1 (1 + 1/n) we get an upper bound on the number of lattice

vectors of length at most R′, i.e. |B(∞)
n (R′)∩L| ≤ 2cbn+o(n), where cb = log

(
1 +

⌊
2ξ(2−γ)

1−γ

⌋)
.

The above lemma along with the invariants imply that at the beginning of step 12 in
Algorithm 1 we have “short” lattice vectors with norm bounded by R′. Using the randomness
in the sampling of the initial set of vectors, we want to ensure that we do not end up with
all zero vectors at the end of the sieving iterations. For this we use the idea of perturbing
the vectors due to Ajtai, Kumar, Sivakumar, and the current formulation by Regev [26].

Let u ∈ L such that ‖u‖∞ = λ
(∞)
1 (L) ≈ λ (where 2 < λ

(∞)
1 (L) ≤ 3), D1 = B

(∞)
n (ξλ) ∩

B
(∞)
n (−u, ξλ) and D2 = B

(∞)
n (ξλ) ∩ B(∞)

n (u, ξλ). Define a bijection σ on B
(∞)
n (ξλ) that

maps D1 to D2, D2 \D1 to D1 \D2 and B(∞)
n (ξλ) \ (D1 ∪D2) to itself.
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For the analysis of the algorithm, we assume that for each perturbation vector e chosen
by our algorithm, we replace e by σ(e) with probability 1/2 and it remains unchanged with
probability 1/2. We call this procedure tossing the vector e. Further, we assume that this
replacement of the perturbation vectors happens at the step where for the first time this has
any effect on the algorithm. In particular, in the sieving algorithm, after we have identified a
centre (ec, c) we apply σ on ec with probability 1/2. Then at the beginning of step 12 in
Algorithm 1 we apply σ to e for all pairs (e,y) ∈ S. The distribution of y remains unchanged
by this procedure because y ≡ e mod P(B) and y − e ∈ L. A somewhat more detailed
explanation of this can be found in the following result of [11].

I Lemma 11 (Theorem 4.5 in [11] (re-stated)). The modification outlined above does not
change the output distribution of the actual procedure.

The following lemma will help us estimate the number of vector pairs to sample at the
beginning of the algorithm.

I Lemma 12 (Lemma 4.7 in [11]). Let N ∈ N and q denote the probability that a random
point in B(∞)

n (ξλ) is contained in D1 ∪D2. If N points x1, . . .xN are chosen uniformly at
random in B(∞)

n (ξλ), then with probability larger than 1− 4
qN , there are at least qN

2 points
xi ∈ {x1, . . .xN} with the property xi ∈ D1 ∪D2.

Using Lemma 3, it can be shown that q ≥ 2−csn where cs = − log
(

1− 1
2ξ

)
.

Thus with probability at least 1− 4
qN we have at least 2−csnN pairs (ei,yi) before the sieving

iterations such that ei ∈ D1 ∪D2.

I Lemma 13. If N ≥ 2
q (k|C| + 2cbn + 1), then with probability at least 1/2 Algorithm 1

outputs a shortest non-zero vector in L with respect to `∞ norm.

Proof. Of the N vector pairs (e,y) sampled in steps 2-6 of Algorithm 1, we consider those
such that e ∈ (D1 ∪ D2). We have already seen there are at least qN

2 such pairs with
probability at least 1− 4

qN . We remove |C| vector pairs in each of the k sieve iterations. So
at step 12 of Algorithm 1 we have N ′ ≥ 2cbn + 1 pairs (e,y) to process.

By Lemma 10 each of them is contained within a ball of radius R′ which can have at most
2cbn lattice vectors. So there exists at least one lattice vector w for which the perturbation
is in D1 ∪D2 and it appears twice in S at the beginning of step 12. With probability 1/2 it
remains w or with the same probability it becomes either w + u or w−u. Thus after taking
pair-wise difference at step 12 with probability at least 1/2 we find the shortest vector. J

Thus, the space complexity of our algorithm is N · poly(n), and the time complexity
for the sieving step is N · poly(n) and for computing the pairwise differences at the end is
22cbn · poly(n), thus giving the following result.

I Theorem 14. Let γ ∈ (0, 1), and let ξ > 1/2. Given a full rank lattice L ⊂ Qn there is
a randomized algorithm for SVP(∞) with success probability at least 1/2, space complexity
at most 2cspacen+o(n) and running time at most 2ctimen+o(n), where cspace = cs + max(cc, cb)
and ctime = max(cspace, 2cb), where cc = log

(
1 +

⌊
2
γ

⌋)
, cs = − log

(
1− 1

2ξ

)
and cb =

log
(

1 +
⌊

2ξ(2−γ)
1−γ

⌋)
.
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3.1 Improvement using the birthday paradox
The crucial step that ensures that Algorithm 1 outputs a shortest vector in the lattice is that
at step 12, we should have enough vectors to make sure that two vectors are equal (before
the tossing step). Pujol and Stehle [25] observed that by the birthday paradox, we only need
2cbn/2+o(n) independent and identically distributed vectors to ensure this. Though their idea
was described for the `2 norm, we show that the idea can be used to improve the time and
space complexity of our algorithm for the `∞ norm [3]. We thus obtain the following result.

I Theorem 15. Let γ ∈ (0, 1), and let ξ > 1/2. Given a full rank lattice L ⊂ Qn there is
a randomized algorithm for SVP(∞) with success probability at least 1/2, space complexity
at most 2cspacen+o(n) and running time at most 2ctimen+o(n), where cspace = cs + max(cc, cb

2 )
and ctime = max(cspace, cb), where cc = log

(
1 +

⌊
2
γ

⌋)
, cs = − log

(
1− 1

2ξ

)
and cb =

log
(

1 +
⌊

2ξ(2−γ)
1−γ

⌋)
.

In particular for γ = 0.67 and ξ = 0.868 the algorithm has time and space complexity
22.82n+o(n).

4 Faster Approximation Algorithms

4.1 Algorithm for Approximate SVP
Notice that Algorithm 1, at the end of the sieving procedure, obtains lattice vectors of length
at most R′ = ξ(2−γ)λ

1−γ +O(λ/n). So, as long as we can ensure that one of the vectors obtained
at the end of the sieving procedure is non-zero, we obtain a τ = ξ(2−γ)

1−γ + o(1)-approximation
of the shortest vector. Consider a new algorithm A that is identical to Algorithm 1, except
that Step 12 is replaced by the following:

Find a non-zero vector v0 in {(yi − ei) : (ei,yi) ∈ S}.

We now show that if we start with sufficiently many vectors, we must obtain a non-zero
vector.

I Lemma 16. If N ≥ 2
q (k|C|+ 1), then with probability at least 1/2 Algorithm A outputs a

non-zero vector in L of length at most ξ(2−γ)λ
1−γ +O(λ/n) with respect to `∞ norm.

Proof. Of the N vector pairs (e,y) sampled in steps 2-6 of Algorithm A, we consider those
such that e ∈ (D1 ∪ D2). We have already seen there are at least qN

2 such pairs with
probability at least 1− 4

qN . We remove |C| vector pairs in each of the k sieve iterations. So
at step 12 of Algorithm 1 we have N ′ ≥ 1 pairs (e,y) to process.

With probability 1/2, e, and hence w = y−e is replaced by either w + u or w−u. Thus,
the probability that this vector is the zero vector is at most 1/2. J

We thus obtain the following:

I Theorem 17. Let γ ∈ (0, 1) and ξ > 1/2. Given a full rank lattice L ⊂ Qn there is
a randomized algorithm that, for τ = ξ(2−γ)

1−γ + o(1), approximates SVP(∞) with success
probability at least 1/2, space and time complexity 2(cs+cc)n+o(n), where cc = log

(
1 +

⌊
2
γ

⌋)
,

and cs = − log
(

1− 1
2ξ

)
. In particular, for γ = 2/3 + o(1), ξ = τ/4, the algorithm runs in

time 3n ·
(

τ
τ−2

)n
.
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4.2 Algorithm for Approximate CVP
Given a lattice L and a target vector t, let d denote the distance of the closest vector in L
to t. Just as in Section 3, we assume that we know the value of d within a factor of 1 + 1/n.
We can get rid of this assumption by using Babai’s [8] algorithm to guess the value of d
within a factor of 2n, and then run our algorithm for polynomially many values of d each
within a factor 1 + 1/n of the previous one.

For τ > 0 define the following (n + 1)-dimensional lattice : L′ = L
(
{(v, 0) : v ∈

L} ∪ {(t, τd/2)}
)
. Let z∗ ∈ L be the lattice vector closest to t. Then u = (z∗ − t,−τd/2) ∈

L′ \ (L − kt, 0) for some k ∈ Z.
We sample N vector pairs (e,y) ∈ B

(∞)
n (ξd) × P(B′), like in steps 2-6 of Algorithm

1, where B′ = [(b1, 0), . . . , (bn, 0), (t, τd/2)] is a basis for L′. Next we run a polynomial
number of iterations of the sieving algorithm (sieve) to get a number of vector pairs such
that ‖y‖∞ ≤ R = ξd

1−γ + o(1).

From Lemma 10 we have seen that after dlogγ
(

ξ
nR0(1−γ)

)
e iterations (where R0 =

n · maxi ‖bi‖∞) R ≤ ξγ
n(1−γ) + ξd

1−γ

[
1 − ξ

nR0(1−γ)

]
. Thus after the sieving iterations the

set S′ consists of vector pairs such that the corresponding lattice vector v has ‖v‖∞ ≤
ξd

1−γ + ξd+ c = ξ(2−γ)d
1−γ + o(1).

In order to ensure that our sieving algorithm doesn’t return vectors from (L, 0)−(kt, kτd/2)
for some k such that |k| ≥ 2, we choose our parameter as : ξ < (1−γ)τ

2−γ − o(1).
Then every vector has ‖v‖∞ < τd and so either v = ±(z′ − t, 0) or v = ±(z− t,−τd/2)

for some lattice vector z, z′ ∈ L. We denote this set of vectors by S′′.
We need to argue that we must have at least some vectors in S′′ \ (L ± t, 0) after the

sieving iterations. To do so, we again use the tossing argument from Section 3. Let z∗ ∈ L
be the lattice vector closest to t. Then let u = (z∗ − t,−τd/2) ∈ S′′ \ (L ± t, 0). Let
D1 = B

(∞)
n (ξd) ∩B(∞)

n (−u, ξd) and D2 = B
(∞)
n (ξd) ∩B(∞)

n (u, ξd).
From Lemma 3, we have that the probability q that a random perturbation vector is in

D1 ∪D2 is at least 2−csn ·
(

1− τ
4ξ

)
where cs = − log

(
1− 1

2ξ

)
Thus, as long as ξ > max(1/2, τ/4) , we have at least 2−csn+o(n)N pairs (ei,yi) before

the sieving iterations such that ei ∈ D1 ∪D2.
Thus, using the same argument as in Section 4.1, we obtain the following:

I Theorem 18. Let γ ∈ (0, 1), and for any τ > 1 let ξ > max(1/2, τ/4). Given a full rank
lattice L ⊂ Qn there is a randomized algorithm that, for τ = ξ(2−γ)

1−γ + o(1), approximates
CVP(∞) with success probability at least 1/2, space and time complexity 2(cs+cc)n+o(n), where
cc = log

(
1 +

⌊
2
γ

⌋)
and cs = − log

(
1− 1

2ξ

)
. In particular, for γ = 1/2 + o(1) and ξ = τ/3,

the algorithm runs in time 4n ·
(

2τ
2τ−3

)n
.

5 Heuristic algorithm for SVP(∞)

Nguyen and Vidick [23] introduced a heuristic variant of the AKS sieving algorithm. We
have used it to solve SVP(∞). A brief outline of the algorithm is given in this section while a
more detailed description along with the analysis is deferred to the full version [3].

The basic framework is similar to AKS, except that here we do not work with perturbation
vectors. We start with a set S of uniformly sampled lattice vectors of norm 2O(n)λ

(∞)
1 (L).

These are iteratively fed into a sieving procedure which when provided with a list of lattice
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vectors of norm, say R, will return a list of lattice vectors of norm at most γR. In each
iteration of the sieve a number of vectors are identified as centres. If a vector is within
distance γR from a centre, we subtract it from the centre and add the resultant to the output
list. The iterations continue till the list S of vectors currently under consideration is empty.
After a linear number of iterations we expect to be left with a list of very short vectors and
then we output the one with the minimum norm. Here we have to ensure that we do not
end up with a list of all zero-vectors much before we get these short vectors.

So we make the following assumption about the distribution of vectors at any stage of
the algorithm.

I Heuristic 19. At any stage of the algorithm the vectors in S ∩B(∞)
n (γR,R) are uniformly

distributed in B(∞)
n (γR,R) = {x ∈ Rn : γR < ‖x‖∞ ≤ R}.

In the literature, such assumption has been made for `2 norm. We have extended the
same assumption to `∞ norm, because we could not find evidence that it does not hold here.

Now after each sieving iteration we get a zero vector if there is a “collision” of a vector
with a centre vector. With the above assumption we can have following estimate about the
expected number of collisions.

I Lemma 20 ([23]). Let p vectors are randomly chosen with replacement from a set of
cardinality N . Then the expected number of different vectors picked is N −N(1− 1

N )p.
So the expected number of vectors lost through collisions is p−N +N(1− 1

N )p.

This number is negligible for p <<
√
N . Since the expected number of lattice points inside a

ball of radius R/λ(∞)
1 is O(Rn), the effect of collisions remain negligible till R/λ(∞)

1 < |S|2/n.
It can be shown that it is sufficient to take |S| ≈ (4/3)n, which gives R/λ(∞)

1 ≈ 16/9. So
collisions are expected to become significant only when we already have a good estimate of
λ

(∞)
1 , and even then collisions will imply we had a good proportion of lattice vectors in the

previous iteration and thus with good probability we expect to get the shortest vector or a
constant approximation of it.

Choosing γ = 1− 1/n, our algorithm has space complexity
(

4
3

)n+o(n)
= 20.415n+o(n) and

time complexity
(

4
3

)2n+o(n)
= 20.83n+o(n).

In order to improve the running time, which is mostly dictated by the number of centres,
Wang et al. [27] introduced a two-level sieving procedure that improves upon the NV sieve
for large n. Here in the first level we identify a set of centres C1 and to each c ∈ C1 we
associate vectors within a distance γ1R from it. Now within each such γ1R radius “big ball”
we have another set of vectors Cc

2 , which we call the second-level centre. From each c′ ∈ Cc
2

we subtract those vectors which are in B(∞)
n (c′, γ2R) and add the resultant to the output

list.
We have analysed this two-level sieve in the `∞ norm and also found similar improvement

in the running time. For suitable choice of parameters we achieve a space and time complexity
of at most 20.415n+o(n) and 20.62n+o(n) respectively.
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36:2 An Adaptive Version of Brandes’ Algorithm for Betweenness Centrality

1 Introduction

One of the most important building blocks in network analysis is to determine a vertex’s
relative importance in the network. A key concept herein is betweenness centrality as
introduced in 1977 by Freeman [6]; it measures centrality based on shortest paths. Intuitively,
for each vertex, betweenness centrality counts the (relative) number of shortest paths that pass
through the vertex. A straightforward algorithm for computing the betweenness centrality on
undirected (unweighted) n-vertex graphs runs in Θ(n3) time, and improving this to O(n3−ε)
time for any ε > 0 would break the so-called APSP-conjecture [1]. In 2001, Brandes [3]
presented the to date theoretically fastest algorithm, improving the running time to O(nm)
for graphs with m edges. As many real-world networks are sparse, this is a far-reaching
improvement, having a huge impact also in practice. Newman [9] presented a high-level
description of an algorithm for a variant of betweenness centrality running in O(nm) time.

Our work is in line with numerous research efforts concerning the development of algo-
rithms for computing betweenness centrality. Formally, we study the following problem:

Betweenness Centrality
Input: An undirected graph G.
Task: Compute the betweenness centrality CB(v) :=

∑
s,t∈V (G)

σst(v)
σst

for each ver-
tex v ∈ V (G).

Herein, σst is the number of shortest paths in G from vertex s to vertex t, and σst(v) is the
number of shortest paths from s to t that additionally pass through v.2

Extending previous, more empirically oriented work of Baglioni et al. [2], Puzis et al. [12],
and Sariyüce et al. [13] (see Section 2 for a description of their approaches), our main result
is the mathematically rigorous analysis of an algorithm for Betweenness Centrality that
runs in O(kn) time, where k denotes the feedback edge number of the input graph G. The
feedback edge number of G is the minimum number of edges to be deleted from G in order
to make it a forest.3 Clearly, k = 0 holds on trees, and k ≤ m holds in general. Thus our
algorithm is adaptive, i.e., it interpolates between linear time for constant k and the running
time of the best unparameterized algorithm for k approaching m. Obviously, by depth-first
search one can compute k in linear time; however, k ≈ m− n, so we provide no asymptotic
improvement over Brandes’ algorithm for most graphs. When the input graph is very tree-like
(m = n+ o(n)), however, our new algorithm improves on Brandes’ algorithm. Real-world
networks showing the relation between PhD candidates and their supervisors [4, 8] or the
ownership relation between companies [11] typically have a feedback edge number that is
smaller than the number of vertices or edges by orders of magnitude [10]. For roughly half of
their networks, m− n is smaller than n by at least one order of magnitude.

Our algorithmic contribution is to complement the works of Baglioni et al. [2], Puzis et
al. [12], and Sariyüce et al. [13] by, roughly speaking, additionally dealing with degree-two
vertices. These vertices are much harder to cope with and to analyze since, other than degree-
one vertices, they may lie on shortest paths between two vertices. Recently, Vella et al. [14]
used a heuristic approach to process degree-two vertices for improving the performance of
their Betweenness Centrality algorithms on several real-world networks.

2 To simplify our matters, we set σst(v) = 0 if v = s or v = t. This is equivalent to Brandes [3] but differs
from Newman [9], where σst(s) = 1.

3 Notably, Betweenness Centrality computations have also been studied when the input graph is a
tree [15], hinting at the practical relevance of this special case.
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Our work is purely theoretical in spirit. Our most profound contribution is to analyze the
worst-case running time of the proposed betweenness centrality algorithm based on degree-
one-vertex processing [2], usage of cut vertices [12, 13], and our degree-two-vertex processing.
To the best of our knowledge, this provides the first proven worst-case “improvement” over
Brandes’ upper bound in a relevant special case.

Notation. We use mostly standard graph notation. Given a graph G, V (G) and E(G)
denote the vertex respectively edge set of G with n = |V (G)| and m = |E(G)|. We denote the
vertices of degree one, two, and at least three by V =1(G), V =2(G), and V ≥3(G), respectively.
A cut vertex or articulation vertex is a vertex whose removal disconnects the graph. A
connected component of a graph is biconnected if it does not contain any cut vertices, and
hence, no vertices of degree one. A path P = v0 . . . vq is a graph with V (P ) = {v0, . . . , vq}
and E(P ) = {{vi, vi+1} | 0 ≤ i < q}. The length of the path P is |E(P )|. Adding the
edge {vq, v0} to P gives a cycle C = v0 . . . vqv0. The distance dG(s, t) between vertices s, t ∈
V (G) is the length of the shortest path between s and t in G. The number of shortest
s-t–paths is denoted by σst. The number of shortest s-t–paths containing some vertex v is
denoted by σst(v). We set σst(v) = 0 if s = v or t = v (or both). Lastly, for j ≤ k we set
[j, k] := {j, j + 1, . . . , k}.

2 Algorithm overview

In this section, we review our algorithmic strategy to compute the betweenness centrality
of each vertex. Before doing so, since we build on the works of Brandes [3], Baglioni et
al. [2], Puzis et al. [12], and Sariyüce et al. [13], we first give the high-level ideas behind
their algorithmic approaches. Then, we describe the ideas behind our extension. We remark
that we assume throughout our paper that the input graph is connected. Otherwise, we can
process the connected components one after another.

Existing algorithmic approaches. Brandes [3] developed an O(nm)-time algorithm which
essentially runs modified breadth-first searches (BFS) from each vertex of the graph. In
each of these modified BFS, Brandes’ algorithm computes the “effect” that the starting
vertex s of the modified BFS has on the betweenness centrality values of all other vertices.
More formally, the modified BFS starting at vertex s computes

∑
t∈V (G) σst(v)/σst for each

vertex v ∈ V (G).
Reducing the number of performed modified BFS in Brandes’ algorithm is one way to

speed up Brandes’ algorithm. To this end, a popular approach is to remove in a preprocessing
step all degree-one vertices from the graph [2, 12, 13]. By repeatedly removing degree-one
vertices, whole “pending trees” can be deleted. Considering a degree-one vertex v, observe
that in each shortest path P starting at v, the second vertex in P is the single neighbor u
of v. Hence, after deleting v, one needs to store the information that u had a degree-one
neighbor. To this end, one uses for each vertex w a counter which we call Pen[w] that stores
the number of vertices in the subtree pending on w that where deleted before. In contrast
to e. g. Baglioni et al. [2], we initialize for each vertex w ∈ V the value Pen[w] with one
instead of zero (so we count w as well). This simplifies most of our formulas. See Figure 1
for an example of the Pen[·]-values of the vertices at different points in time. This yields the
following (weighted) problem variant.
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Figure 1 An initial graph where the Pen[·]-value of each vertex is 1 (top left) and the same graph
after deleting one (top right) or both (bottom left) pending trees using Reduction Rule 1. The labels
are the respective Pen[·]-values. Subfigure (4.) shows the graph of (3.) after applying Lemma 2 to
the only remaining cut vertex of the graph.

Weighted Betweenness Centrality
Input: An undirected graph G and vertex weights Pen: V (G)→ N.
Task: Compute for each vertex v ∈ V (G) the weighted betweenness centrality

CB(v) :=
∑

s,t∈V (G)

γ(s, t, v), (1)

where γ(s, t, v) := Pen[s] · Pen[t] · σst(v)/σst.

The effect of a degree-one vertex to the betweenness centrality value of its neighbor is
captured in the next data reduction rule.

I Reduction Rule 1 ([2, 12, 13]). Let G be a graph, let s ∈ V (G) be a degree-one vertex, and
let v ∈ V (G) be the neighbor of s. Then increase Pen[v] by Pen[s], increase the betweenness
centrality of v by Pen[s] ·

∑
t∈V (G)\{s,v} Pen[t], and remove s from the graph.

Hence, the influence of a degree-one vertex to the betweenness centrality of its neighbor can
be computed in constant time as

∑
w∈V (G) Pen[w] can be precomputed once in linear time.

A second approach to speed up Brandes’ algorithm is to split the input graph G into
smaller components and process them separately [12, 13]. This approach is a generalization
of the ideas behind removing degree-one vertices and works with cut vertices. The basic
observation for this approach is as follows: Consider a cut vertex v such that removing v
breaks the graph into exactly two connected components C1 and C2 (the idea generalizes
to more components). Obviously, every shortest path P in G that starts in C1 and ends
in C2 has to pass through v. For the betweenness centrality values of the vertices inside C1
(inside C2) it is not important where exactly P ends (starts). Hence, for computing the
betweenness centrality values of the vertices in C1, it is sufficient to know which vertices
in C1 are adjacent to v and how many vertices are contained in C2. Thus, in a preprocessing
step one can just add to C1 a copy of the cut vertex v with Pen[v] being increased by the
sum of Pen[·]-values of the vertices in C2 (see Figure 1 (bottom)). The same is done for C2.
Formally, this is done as follows.

I Lemma 2 ([12, 13]). Let G be a connected graph, let v be a cut vertex such that removing v
yields ` ≥ 2 connected components C1, . . . , C`, and let ξ := Pen[v]. Then remove v, add a
new vertex vi to each component Ci, make them adjacent to all vertices in the respective
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component that were adjacent to v, and set

Pen[vi] = ξ +
∑

j∈[1,`]\{i}

∑
w∈V (Cj)\{vj}

Pen[w].

Computing the betweenness centrality of each connected component independently, increasing
the betweenness centrality of v by

∑`
i=1
(
CCi

B (vi) + (Pen[vi]− ξ) ·
∑
s∈V (Ci)\{vi} Pen[s]

)
, and

ignoring all new vertices vi is the same as computing the betweenness centrality in G, that is,

CGB (u) =
{
CCi

B (u), if u ∈ V (Ci) \ {vi};∑`
i=1
(
CCi

B (vi) + (Pen[vi]− ξ) ·
∑
s∈V (Ci)\{vi} Pen[s]

)
, if u = v.

Applying the above procedure as preprocessing on all cut vertices and degree-one vertices
takes linear time [13] leaves us with biconnected components that we can solve independently.
Hence, we assume in the rest of the paper that we are given a vertex-weighted biconnected
component.

Our algorithmic approach. Starting with a vertex-weighted biconnected graph, our algo-
rithm focuses on degree-two vertices. In contrast to degree-one vertices, degree-two vertices
can lie on shortest paths between two other vertices. This difference makes degree-two
vertices harder to handle: Removing a degree-two vertex v in a similar way as done with
degree-one vertices (see Reduction Rule 1) affects many other shortest paths that neither
start nor end in v. Hence, we deal with degree-two vertices in a different manner. Instead of
removing vertices one-by-one, we process multiple degree-two vertices at once. To this end,
we use the following definition and exploit that adjacent degree-two vertices behave similarly.

I Definition 3. Let G be a graph. A path P = v0 . . . v` is a maximal induced path in G

if ` ≥ 2 and the inner vertices v1, . . . , v`−1 all have degree two in G, but the endpoints v0
and v` do not, that is, degG(v1) = . . . = degG(v`−1) = 2, degG(v0) 6= 2, and degG(v`) 6= 2.
Moreover, Pmax is the set of all maximal induced paths in G.

Note that if our biconnected graph is a cycle, then it does not contain any maximal
induced path. Our algorithm (see Algorithm 1 for the pseudocode) deals with this corner
case separately by using a linear-time dynamic programming algorithm for vertex-weighted
cycles. Note that the vertices in the cycle can have different betweenness centrality values as
they may have different Pen[·]-values.

I Proposition 4 (?4). Let C = x0 . . . xqx0 be a cycle. Then, the weighted betweenness
centrality of the vertices in C can be computed in O(q) time.

The remaining part of the algorithm deals with maximal induced paths. Note that if the
(biconnected) graph is not a cycle, then all degree-two vertices are contained in maximal
induced paths: If the graph is not a cycle and does not contain degree-one vertices, then
the endpoints of each chain of degree-two vertices are vertices of degree at least three. If
some degree-two vertex v was not contained in a maximal induced path, then v would be
contained on a cycle with exactly one vertex of degree at least three. This vertex would be a
cut vertex and the graph would not be biconnected; a contradiction.

Using standard arguments, we can show that the number of maximal induced paths is
upper-bounded by the minimum of the feedback edge number k of the input graph and
the number n of vertices. Moreover, one can easily compute all maximal induced paths in
linear-time (see Line 6 in Algorithm 1).

4 Proofs of results marked with (?) are deferred to the full version.
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Algorithm 1: Computation of betweenness centrality in a biconnected graph.
Input: An undirected biconnected graph G with vertex weights Pen: V (G)→ N.
Output: The betweenness centrality values of all vertices.

1 foreach v ∈ V (G) do BC[v]← 0 // BC will contain the betweenness centrality values
2 F ← feedback edge set of G // computable in O(n+m) time using BFS
3 if |F | = 1 then
4 update BC for the case that G is a cycle // computable in O(n) time, see Proposition 4
5 else
6 Pmax ← all maximal induced paths of G // takes O(n+m) time, see Lemma 6
7 foreach s ∈ V ≥3(G) do // some precomputations taking O(|F |n) time, see Lemma 10
8 compute dG(s, t) and σst for each t ∈ V (G) \ {s}
9 Inc[s, t]← 2 · Pen[s] · Pen[t]/σst for each t ∈ V =2(G)

10 Inc[s, t]← Pen[s] · Pen[t]/σst for each t ∈ V ≥3(G) \ {s}
11 foreach x0x1 . . . xq = Pmax ∈ Pmax do // initialize W left and W right, in O(n) time
12 W left[x0]← Pen[x0]; W right[xq]← Pen[xq]
13 for i = 1 to q do W left[xi]←W left[xi−1] + Pen[xi]
14 for i = q − 1 to 0 do W right[xi]←W right[xi+1] + Pen[xi]
15 foreach x0x1 . . . xq = Pmax

1 ∈ Pmax do // case s ∈ V =2(Pmax
1 ), see Section 3

/* deal with the case t ∈ V =2(Pmax
2 ), see Section 3.1 */

16 foreach y0y1 . . . yr = Pmax
2 ∈ Pmax \ {Pmax

1 } do
/* update BC for the case v ∈ V (Pmax

1 ) ∪ V (Pmax
2 ) */

17 foreach v ∈ V (Pmax
1 ) ∪ V (Pmax

2 ) do BC[v]← BC[v] + γ(s, t, v)
/* now deal with the case v /∈ V (Pmax

1 ) ∪ V (Pmax
2 ) */

18 update Inc[x0, y0], Inc[xq, y0], Inc[x0, yr], and Inc[xq, yr]
/* deal with the case that t ∈ V =2(Pmax

1 ), see Section 3.1 */
19 foreach v ∈ V (Pmax

1 ) do BC[v]← BC[v] + γ(s, t, v)
20 update Inc[x0, xq] // this deals with the case v /∈ V (Pmax

1 )
21 foreach s ∈ V ≥3(G) do // perform modified BFS from s, see Section 3.2
22 foreach t, v ∈ V (G) do BC[v]← BC[v] + Inc[s, t] · σst(v)

23 return BC.

I Lemma 5 (?). Let G be a graph with feedback edge number k containing no degree-one
vertices. Then the cardinalities |V ≥3(G)| and |Pmax| are upper-bounded by O(min{n, k}).

I Lemma 6 (?). The set Pmax of all maximal induced paths of a graph with n vertices and m
edges can be computed in O(n+m) time.

Our algorithm processes the maximal induced paths one by one (see Lines 7 to 22). This
part of the algorithm requires its own pre- and postprocessing (see Lines 7 to 14 and Lines 21
to 22 respectively). In the preprocessing, we initialize tables used frequently in the main
part (of Section 3). The postprocessing computes the final betweenness centrality values
of each vertex as this computation is too time-consuming to be executed for each maximal
induced path. When explaining our basic ideas, we will first present the postprocessing as
this explains why certain values will be computed during the algorithm.

Recall that we want to compute
∑
s,t∈V (G) γ(s, t, v) for each v ∈ V (G) (see Equation (1)).

Using the following observations, we split Equation (1) into different parts:

I Observation 7. For s, t, v ∈ V (G) it holds that γ(s, t, v) = γ(t, s, v).
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I Observation 8 (?). Let G be a biconnected graph with at least one vertex of degree three.
Let v ∈ V (G). Then,∑

s,t∈V (G)

γ(s, t, v) =
∑

s∈V ≥3(G), t∈V (G)

γ(s, t, v) +
∑

s∈V =2(G), t∈V ≥3(G)

γ(t, s, v)

+
∑

s∈V =2(Pmax
1 ), t∈V =2(Pmax

2 )
Pmax

1 6=Pmax
2 ∈Pmax

γ(s, t, v) +
∑

s,t∈V =2(Pmax)
Pmax∈Pmax

γ(s, t, v).

In the remaining graph, by Lemma 5, there are O(min{k, n}) vertices of degree at least
three and O(k) maximal induced paths. This implies that we can afford to run the modified
BFS (similar to Brandes’ algorithm) from each vertex s ∈ V ≥3(G) in O(min{k, n} · (n+k)) =
O(kn) time. This computes the first summand and, by Observation 7, also the second
summand in Observation 8. However, we cannot afford to run such a BFS from every vertex
of degree two. Thus we need to compute the third and fourth summand differently.

To this end, note that σst(v) is the only term in γ(s, t, v) that depends on v. Our goal
is then to precompute γ(s, t, v)/σst(v) = Pen[s] · Pen[t]/σst for as many vertices as possible.
Hence, we store precomputed values in a table Inc[·, ·] (see Lines 10, 18 and 20). Then, we
plug this factor into the next lemma which provides our postprocessing.

I Lemma 9 (?). Let s be a vertex and let f : V (G)2 7→ N be a function such that for
each u, v ∈ V (G) the value f(u, v) can be computed in O(τ) time. Then, one can com-
pute

∑
t∈V (G) f(s, t) · σst(v) for all v ∈ V overall in O(n · τ +m) time.

Our strategy is to start the algorithm behind Lemma 9 only from vertices in V ≥3(G) (see
Line 22). Since the term τ in the above lemma will be constant, we obtain a running time
of O(kn) for running this postprocessing for all vertices. The most intricate part will be to
precompute the factors in Inc[·, ·] (see Lines 18 and 20). We defer the details to Section 3.1.
In these parts, we need the tables W left and W right. These tables store values depending
on the maximal induced path a vertex is in. More precisely, for a vertex xi in a maximal
induced path Pmax = x0x1 . . . xq, we store inW left[xk] the sum of the Pen[·]-values of vertices
“left of” xk in Pmax; formally, W left[xk] =

∑k
i=1 Pen[xj ]. Similarly, we have W right[xk] =∑q−1

i=k Pen[xk]. The reason for having these tables is easy to see: Assume for the vertex xk ∈
Pmax that the shortest paths to t /∈ V (Pmax) leave Pmax through x0. Then, it is equivalent
to just consider the shortest path(s) starting in x0 and simulate the vertices between xk
and x0 in Pmax by “temporarily increasing” Pen[x0] by W left[xk]. This is also the idea
behind the argument that we only need to increase the values Inc[·, ·] for the endpoints of
the maximal induced paths in Line 18.

This leaves us with the remaining part of the preprocessing: the computation of the
distances dG(s, t), the number of shortest paths σst, and Inc[s, t] for s ∈ V ≥3(G), t ∈ V (G)
(see Lines 7 to 10 in Algorithm 1). This can be done in O(kn) time as well:

I Lemma 10 (?). The initialization in the for-loop in Lines 7 to 10 of Algorithm 1 can be
done in O(kn) time.

Putting all parts together, we arrive at our main theorem (see Section 3.2 for the proof).

I Theorem 11. Betweenness Centrality can be solved in O(kn) time, where k is the
feedback edge number of the input graph.
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3 Dealing with maximal induced paths

In this section, we focus on degree-two vertices contained in maximal induced paths. Recall
that the goal is to compute the betweenness centrality CB(v) (see Equation (1)) for all v ∈
V (G) in O(kn) time. In the end of this section, we finally prove Theorem 11.

Based on Observation 8 and Equation (1), we compute CB(v) in three steps. By starting
a modified BFS from vertices in V ≥3(G) similarly to Baglioni et al. [2] and Brandes [3], we
can compute the following term in O(kn) time:∑

s∈V ≥3(G), t∈V (G)

γ(t, s, v) +
∑

s∈V =2(G), t∈V ≥3(G)

γ(s, t, v).

3.1 Paths with endpoints in maximal induced paths
In this subsection, we show how to compute the remaining two summands given in Observa-
tion 8. In the next subsection, we prove Theorem 11.

Paths with endpoints in different maximal induced paths. We now focus on shortest paths
between pairs of maximal induced paths Pmax

1 and Pmax
2 , and how to efficiently determine

how these paths affect the betweenness centrality of each vertex.

I Proposition 12 (?). In O(kn) time the following values can be computed for all v ∈ V (G):∑
s∈V =2(Pmax

1 ), t∈V =2(Pmax
2 )

Pmax
1 6=Pmax

2 ∈Pmax

γ(s, t, v).

Recall that in the course of the algorithm, we first gather values in Inc[·, ·] and in the final
step we compute for each s, t ∈ V ≥3(G) the values Inc[s, t] · σst(v) in O(m) time (Lemma 9).
This postprocessing (see Lines 21 and 22 in Algorithm 1) takes O(kn) time.

In the proof of Proposition 12 (deferred to the full version), we consider two cases for
every pair Pmax

1 6= Pmax
2 ∈ Pmax of maximal induced paths: First, we look at how the

shortest paths between vertices in Pmax
1 and Pmax

2 affect the betweenness centrality of those
vertices that are not contained in the two maximal induced paths, and second, how they
affect the betweenness centrality of those vertices that are contained in the two maximal
induced paths.

Paths with endpoints in the same maximal induced paths. Subsequently, we look at
shortest paths starting and ending in a maximal induced path Pmax = x0 . . . xq and show
how to efficiently compute how these paths affect the betweenness centrality. Our goal is to
prove the following:

I Proposition 13. In O(kn) time the following values can be computed for all v ∈ V (G):∑
s,t∈V =2(Pmax)
Pmax∈Pmax

γ(s, t, v).

As in Section 3.1, we first gather all increments to Inc[·, ·] and in the final step, we compute for
each s, t ∈ V ≥3(G) the values Inc[s, t] ·σst(v). We start with the following simple observation.
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I Observation 14. Let Pmax = x0 . . . xq, where x0, xq ∈ V ≥3(G) and xi ∈ V =2(G) for 1 ≤
i ≤ q − 1. Then

∑
s,t∈V =2(Pmax)

γ(s, t, v) =
∑

i,j∈[1,q−1]

γ(xi, xj , v) = 2 ·
q−1∑
i=1

q−1∑
j=i+1

γ(xi, xj , v).

For the sake of readability we set [xp, xr] := {xp, xp+1, . . . , xr}, p < r. We will distinguish
between two different cases that we then treat separately: Either v ∈ [xi, xj ] or v ∈ V (G) \
[xi, xj ]. We will show that both cases can be solved in overall O(q) time for Pmax. Doing this
for all maximal induced paths results in a running time of O(

∑
Pmax∈Pmax V =2(Pmax)) ⊆ O(n).

We will distinguish between the two main cases in the calculations – all shortest xixj-paths
are fully contained in Pmax, or all shortest xixj-paths leave Pmax – and the corner case
that there are some shortest paths inside Pmax and some that partially leave it. Observe
that for any fixed pair i < j the distance between xi and xj is given by din = j − i if a
shortest path is contained in Pmax and by dout = i+ dG(x0, xq) + q − j if a shortest xixj-
path leaves Pmax. The corner case that there are shortest paths both inside and outside
of Pmax occurs when din = dout. In this case it holds that j − i = i + dG(x0, xq) + q − j
which is equivalent to

j = i+ dG(x0, xq) + q

2 , (2)

where j is an integer smaller than q. For convenience, we will use a notion of “mid-elements”
for a fixed starting vertex xi. We distinguish between the two cases that this mid-element has
a higher index in Pmax or a lower one. Formally, we say that i+mid = i+ (dG(x0, xq) + q)/2
and j−mid = j − (dG(x0, xq) + q)/2. We next analyze the factor σxixj

(v)/σxixj
. We also

distinguish between the cases v ∈ V (Pmax) and v /∈ V (Pmax). Observe that

σxixj (v)
σxixj

=



0, if dout < din ∧ v ∈ [xi, xj ] or din < dout ∧ v /∈ [xi, xj ];
1, if din < dout ∧ v ∈ [xi, xj ];
1, if dout < din ∧ v /∈ [xi, xj ] ∧ v ∈ V (Pmax);
σx0xq (v)
σx0xq

, if dout < din ∧ v /∈ V (Pmax);
1

σx0xq +1 , if din = dout ∧ v ∈ [xi, xj ];
σx0xq

σx0xq +1 , if din = dout ∧ v /∈ [xi, xj ] ∧ v ∈ V (Pmax);
σx0xq (v)
σx0xq +1 , if din = dout ∧ v /∈ V (Pmax).

(3)

The denominator σx0xq
+ 1 is correct since there are σx0xq

shortest paths from x0 to xq (and
therefore σx0xq shortest paths from xi to xj that leave Pmax) and one shortest path from xi
to xj within Pmax. Note that if there are shortest paths that are not contained in Pmax,
then dG(x0, xq) < q as we are in the case that 0 < i < j < q. Thus Pmax is not a shortest
path from x0 to xq.

We will now compute the value for all paths that only consist of vertices in Pmax, that is,
we will compute for each xk with i < k < j the term 2 ·

∑q−1
i=1

∑q−1
j=i+1 γ(xi, xj , xk) with a

dynamic program in O(q) time. Since i < k < j this can be simplified to

2 ·
∑

i∈[1,q−1]
i<k

∑
j∈[i+1,q−1]

k<j

γ(xi, xj , xk) = 2 ·
∑

i∈[1,k−1]

∑
j∈[k+1,q−1]

γ(xi, xj , xk).

I Lemma 15. For a fixed maximal induced path Pmax = x0x1 . . . xq, for all xk with 0 ≤ k ≤ q
we can compute 2 ·

∑
i∈[1,k−1]

∑
j∈[k+1,q−1] γ(xi, xj , xk) in O(q) time.
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Proof. For the sake of readability we define

αxk
= 2 ·

∑
i∈[1,k−1]

∑
j∈[k+1,q−1]

γ(xi, xj , xk).

Note that i ≥ 1 and k > i and thus for x0 we have αx0 = 2
∑
i∈∅
∑
j∈[1,q−1] γ(xi, xj , x0) = 0.

This will be the base case of the dynamic program.
For every vertex xk with 1 ≤ k < q it holds that

αxk
= 2 ·

∑
i∈[1,k−1]

j∈[k+1,q−1]

γ(xi, xj , xk) = 2 ·
∑

i∈[1,k−2]
j∈[k+1,q−1]

γ(xi, xj , xk)+2 ·
∑

j∈[k+1,q−1]

γ(xk−1, xj , xk).

Similarly, for xk with 1 < k ≤ q it holds that

αxk−1 = 2·
∑

i∈[1,k−2]
j∈[k,q−1]

γ(xi, xj , xk−1) = 2·
∑

i∈[1,k−2]
j∈[k+1,q−1]

γ(xi, xj , xk−1)+2·
∑

i∈[1,k−2]

γ(xi, xk, xk−1).

Next, observe that any path from xi to xj with i ≤ k − 2 and j ≥ k + 1 that contains xk
also contains xk−1 and vice versa. Substituting this into the equations above yields

αxk
= αxk−1 + 2 ·

∑
j∈[k+1,q−1]

γ(xk−1, xj , xk)− 2 ·
∑

i∈[1,k−2]

γ(xi, xk, xk−1).

Lastly, we prove that
∑
j∈[k+1,q−1] γ(xk−1, xj , xk) and 2 ·

∑
i∈[1,k−2] γ(xi, xk, xk−1) can

be computed in constant time once W left and W right are precomputed (see Lines 11 to 14 in
Algorithm 1). These tables can be computed in O(q) time as well. For convenience we say
that γ(xi, xj , xk) = 0 if i or j are not integral or are not in [1, q − 1] and define W [xi, xj ] =∑j
`=i Pen[x`] = W left[xj ]−W left[xi−1]. Then we can use Equations (2) and (3) to show that∑

j∈[k+1,q−1]

γ(xk−1, xj , xk) =
∑

j∈[k+1,q−1]

Pen[xk−1] · Pen[xj ] ·
σxk−1xj

(xk)
σxk−1xj

= γ(xk−1, x(k−1)+
mid
, xk) +

∑
j∈[k+1,min{d(k−1)+

mide−1,q−1}]

Pen[xk−1] · Pen[xj ]

=


Pen[xk−1] ·W [xk+1, xq−1], if (k − 1)+

mid ≥ q;
Pen[xk−1] ·W [xk+1, xd(k−1)+

mide−1], if (k − 1)+
mid < q ∧ (k − 1)+

mid /∈ Z;
Pen[xk−1] · (Pen[x(k−1)+

mid
] · 1

σx0,xq +1 +W [xk+1, x(k−1)+
mid−1]), otherwise.

Herein we use (k − 1)+
mid /∈ Z to say that (k − 1)+

mid is not integral. Analogously,∑
i∈[1,k−2]

γ(xi, xk, xk−1) =
∑

i∈[1,k−2]

Pen[xi] · Pen[xk] · σxixk
(xk−1)

σxixk

= γ(xk−1, xk−
mid
, xk−1) +

∑
i∈[max{1,b(k−1)−

midc+1},k−2]

Pen[xi] · Pen[xk]

=


Pen[xk] ·W [x1, xk−2], if k−mid < 1;
Pen[xk] ·W [xbk−

midc+1, xk−2], if k−mid ≥ 1 ∧ k−mid /∈ Z;
Pen[xk] · (Pen[xk−

mid
] · 1

σx0,xa +1 +W [x1, xk−
mid+1]), otherwise.

This completes the proof since (k − 1)+
mid, k

−
mid, every entry in W [·], and all other variables

in the equation above can be computed in constant time once W left[·] is computed. Thus,
computing αxi for each vertex xi in Pmax takes constant time. As there are q vertices
in Pmax, the computations for the whole maximal induced path Pmax take O(q) time. J
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We still need to compute the value for all paths that partially leave Pmax. Note
that Inc[s, t] · σst(v) will be computed in the postprocessing step (see Lines 21 and 22
in Algorithm 1).

I Lemma 16 (?). Let Pmax = x0x1 . . . xq ∈ Pmax. Then, assuming that Inc[s, t] · σst(v)
can be computed in constant time for some s, t ∈ V ≥3(G), for v ∈ V (G) \ [xi, xj ] one can
compute

∑
i∈[1,q−1]

∑
j∈[i+1,q−1] γ(xi, xj , v) in O(q) time.

3.2 Postprocessing and algorithm summary
We are now ready to combine all parts and prove our main theorem.

I Theorem 11 (Restated). Betweenness Centrality can be solved in O(kn) time, where k
is the feedback edge number of the input graph.

Proof. We show that in the Lines 7 to 22 Algorithm 1 computes the value

CB(v) =
∑

s,t∈V (G)

Pen[s] · Pen[t] · σst(v)
σst

=
∑

s,t∈V (G)

γ(s, t, v)

for all v ∈ V (G) in O(kn) time. We use Observation 8 to split the sum as follows:∑
s,t∈V (G)

γ(s, t, v) =
∑

s∈V ≥3(G), t∈V (G)

γ(s, t, v) +
∑

s∈V =2(G), t∈V ≥3(G)

γ(t, s, v)

+
∑

s∈V =2(Pmax
1 ), t∈V =2(Pmax

2 )
Pmax

1 6=Pmax
2 ∈Pmax

γ(s, t, v) +
∑

s,t∈V =2(Pmax)
Pmax∈Pmax

γ(s, t, v).

By Propositions 12 and 13, we can compute the third and fourth summand in O(kn)
time provided that Inc[s, t] · σst(v) is computed for every s, t ∈ V ≥3(G) and v ∈ V (G) in
a postprocessing step (see Lines 15 to 20). We incorporate this postprocessing into the
computation of the first two summands in the equation, that is, we next show that for
all v ∈ V (G) the following value can be computed in O(kn) time:∑

s∈V ≥3(G)
t∈V (G)

γ(s, t, v) +
∑

s∈V =2(G)
t∈V ≥3(G)

γ(s, t, v) +
∑

s∈V ≥3(G)
t∈V ≥3(G)

Inc[s, t] · σst(v).

To this end, observe that∑
s∈V ≥3(G)
t∈V (G)

γ(s, t, v) +
∑

s∈V =2(G)
t∈V ≥3(G)

γ(s, t, v) +
∑

s∈V ≥3(G)
t∈V ≥3(G)

Inc[s, t] · σst(v)

=
∑

s∈V ≥3(G)
t∈V (G)

Pen[s] · Pen[t] · σst(v)
σst

+
∑

s∈V ≥3(G)
t∈V =2(G)

Pen[s] · Pen[t] · σst(v)
σst

+
∑

s∈V ≥3(G)
t∈V ≥3(G)

Inc[s, t] · σst(v)

=
∑

s∈V ≥3(G)

(
(2 ·

∑
t∈V =2(G)

Pen[s] Pen[t]σst(v)
σst

) +
∑
t∈V ≥3

σst(v)(Pen[s] Pen[t]
σst

+ Inc[s, t])
)
.

Note that we initialize Inc[s, t] in Lines 10 and 9 in Algorithm 1 with 2 · Pen[s] Pen[t]/σst
and Pen[s] Pen[t]/σst respectively. Thus we can use the algorithm described in Lemma 9 for
each vertex s ∈ V ≥3(G) with f(s, t) = Inc[s, t].
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Since the values Pen[s], Pen[t], σst and Inc[s, t] can all be looked up in constant time,
the algorithm takes O(n+m) time to run a modified BFS from some vertex s (see Lines 21
and 22). By Lemma 5 there are O(min{k, n}) vertices of degree at least three. The algorithm
therefore take O(min{n, k} ·m) = O(min{n, k} · (n+ k)) = O(kn) time to run the modified
BFS from all vertices of degree at least three. J

4 Conclusion

Lifting the processing of degree-one vertices due to Baglioni et al. [2, 13] to a technically
much more demanding processing of degree-two vertices, we derived a new algorithm for
Betweenness Centrality running in O(kn) worst-case time (k is the feedback edge
number of the input graph). Our work focuses on algorithm theory and contributes to the
field of adaptive algorithm design [5] as well as to the recent “FPT in P” program [7]. It
would be of high interest to identify structural parameterizations “beyond” the feedback
edge number that might help to get more results in the spirit of our work. In particular,
extending our algorithmic approach with the treatment of twin vertices [12, 13] might help to
get a running time bound involving the vertex cover number of the graph. From a practical
viewpoint it remains to be investigated for which classes of real-world networks our (more
complicated) algorithmic approach yields faster algorithms in empirical studies.
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Figure 1 (a) An input graph G, (b) a recolorability graph R with four colors 1, 2, 3 and 4, and
(c) an (f0 → f7)-reconfiguration sequence.

1 Introduction

Combinatorial reconfiguration [10, 11, 13] has been studied intensively in the field of theoretical
computer science. In a typical reconfiguration problem, we are given two feasible solutions of a
search problem instance (e.g., graph colorings, independent sets, satisfying truth assignments),
and asked to check the existence of a step-by-step transformation between them such that all
intermediate results are also feasible and each step conforms to a fixed reconfiguration rule,
that is, an adjacency relation defined on feasible solutions of the original search problem
instance.

For example, the coloring reconfiguration problem is one of the most well-studied
reconfiguration problems, defined as follows [3, 7]. For an integer k ≥ 1, we are given two
k-colorings f0 and fr of the same graph G, and asked to determine whether there exists a
sequence 〈f0, f1, . . . , f`〉 of k-colorings of G such that f` = fr and fi is obtained from fi−1 by
recoloring a single vertex of G for each i ∈ {1, 2, . . . , `}. Figure 1(c) shows an example of a
desired sequence 〈f0, f1, . . . , f7〉 of 4-colorings, where G is a complete graph K3 as illustrated
in Figure 1(a).

The complexity of coloring reconfiguration has been clarified based on several
“standard” measures (e.g., the number of colors [3, 7, 12] and graph classes [1, 2, 5, 8, 9, 16])
which are used well also for analyzing the original search problem. On the other hand,
in [14], we have introduced a new concept, called the recolorability constraint on colors, to
analyze the complexity of coloring reconfiguration more precisely. This concept is
newly tailored for coloring reconfiguration, and forbids some pairs of colors to be
recolored directly.

1.1 Our problem
For an integer k ≥ 1, let C be the color set of k colors 1, 2, . . . , k. Let G be a graph with
vertex set V (G) and edge set E(G). Recall that a k-coloring of G is a mapping f : V (G)→ C

such that f(v) 6= f(w) holds for any edge vw ∈ E(G). The recolorability on C is given in
terms of an undirected graph R, called the recolorability graph on C, such that V (R) = C;
each edge ij ∈ E(R) represents a “recolorable” pair of colors i, j ∈ V (R) = C. Then, two
k-colorings f and f ′ of G are adjacent (under R) if the following two conditions hold:
(a)

∣∣{v ∈ V (G) : f(v) 6= f ′(v)}
∣∣ = 1, that is, f ′ can be obtained from f by recoloring a single

vertex v ∈ V (G); and
(b) if f(v) 6= f ′(v) for a vertex v ∈ V (G), then f(v)f ′(v) ∈ E(R), that is, the colors f(v)

and f ′(v) form a recolorable pair.
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(a) (b)

3 2
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Figure 2 (a) Recolorability graph R with three colors 1, 2 and 3, and (b) and (c) 3-colorings f0

and fr of a graph consisting of a single edge, respectively.

For each i ∈ {1, 2, . . . , 7}, two 4-colorings fi−1 and fi in Figure 1(c) are adjacent under the
recolorability graph R in Figure 1(b). Note that the known adjacency relation for coloring
reconfiguration requires only Condition (a) above, that is, we can recolor a vertex from
any color to any color directly. Observe that this corresponds to the case where R is a
complete graph of size k, and hence our adjacency relation generalizes the known one.

Given a graph G, two k-colorings f0 and fr of G, and a recolorability graph R on C, the
coloring reconfiguration problem under recolorability is the decision problem
of determining whether there exists a sequence 〈f0, f1, . . . , f`〉 of k-colorings of G such
that f` = fr and fi−1 and fi are adjacent under R for all i ∈ {1, 2, . . . , `}; such a desired
sequence is called an (f0 → fr)-reconfiguration sequence, and its length (i.e., the number of
recoloring steps) is defined as `. For example, the sequence 〈f0, f1, . . . , f7〉 in Figure 1(c) is
an (f0 → f7)-reconfiguration sequence whose length is seven.

We emphasize that the concept of recolorability constraints changes the reachability of
k-colorings drastically. For example, the (f0 → f7)-reconfiguration sequence in Figure 1(c) is
a shortest one between f0 and f7 under the recolorability graph R in Figure 1(b). However,
in coloring reconfiguration (in other words, if R would be K4 and would have the
edge joining colors 1 and 3), we can recolor the (top) vertex of G from 1 to 3 directly. As
another example, the instance illustrated in Figure 2 is a no-instance for our problem, but is
a yes-instance for coloring reconfiguration with k = 3.

1.2 Related and known results
As we mentioned, coloring reconfiguration has been studied intensively [1, 2, 3, 4, 5, 7,
8, 9, 12, 15, 16]. In particular, a sharp analysis has been obtained from the viewpoint of the
number k of colors: Bonsma and Cereceda [3] proved that coloring reconfiguration is
PSPACE-complete even for a fixed k ≥ 4. On the other hand, Cereceda et al. [7] proved that
coloring reconfiguration is solvable in polynomial time for any graph if k ∈ {1, 2, 3}.
Brewster et al. [6] generalized this sharp analysis to circular coloring reconfiguration.
We also note that Johnson et al. [12] gave a linear-time algorithm to solve coloring
reconfiguration for any graph and k ∈ {1, 2, 3}; indeed, their algorithm can determine in
linear time whether an (f0 → fr)-reconfiguration sequence exists or not, and can compute
its shortest length in linear time if it exists.

In [14], we introduced the concept of recolorability constraints, and showed the compu-
tational hardness of coloring reconfiguration under recolorability based on the
graph structure of recolorability graphs R. More specifically, we proved that the problem is
PSPACE-complete if (1) R is of maximum degree at least four, or (2) R contains a connected
component having at least two cycles. These results are strong in the sense that they show
the PSPACE-completeness for all recolorability graphs satisfying (1) or (2). Furthermore,
the latter result (2) implies that the problem is PSPACE-complete if R = K4. Therefore, the
results (1) and (2) generalize the known PSPACE-completeness for coloring reconfig-
uration with k ≥ 4. In this sense, the results in [14] gave a sharper analysis and a better
understanding of the computational hardness of coloring reconfiguration.
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1.3 Our contribution
Despite the concept of recolorability graphs R generalized and sharpened the known PSPACE-
completeness successfully, there is no algorithmic (positive) result for coloring recon-
figuration under recolorability except for the special case of R = K3 obtained from
coloring reconfiguration [7, 12]. In this paper, we thus study the polynomial-time
solvability of our problem, and generalize the known algorithmic results from the viewpoint
of the graph structure of recolorability graphs. Specifically, our main result can be stated as
the following theorem:

I Theorem 1. Suppose that a recolorability graph R is of maximum degree at most two, and
let k = |V (R)|. For any graph G with n vertices and m edges, coloring reconfiguration
under recolorability can be solved in O(k + n+m) time. Furthermore, if an (f0 → fr)-
reconfiguration sequence exists for two k-colorings f0 and fr of G, then

its shortest length can be computed in O(k + n+m) time; and
a shortest (f0 → fr)-reconfiguration sequence can be output in O(kn(n+m)) time.

We emphasize that Theorem 1 holds for any graph G, and only the structure of R is
restricted. Since K3 is of maximum degree two, Theorem 1 generalizes the known positive
results for coloring reconfiguration [7, 12]. Note that k is not always a constant (indeed,
can be larger than n).

In this paper, we prove Theorem 1 as follows. We start by giving an observation that a
recolorability graph R can be assumed to be connected without loss of generality (Section 2).
Then, since the maximum degree of R is two, R is either a path or a cycle. In Section 3, we
will prove Theorem 1 for the case where R is a path. Sections 4 and 5 are devoted to the
case where R is a cycle; the algorithm in Section 4 only checks whether a given instance is a
yes-instance or not, and the one in Section 5 computes the shortest length for a yes-instance.

Due to the page limitation, proofs of the claims marked with (*) are omitted from this
extended abstract.

2 Preliminaries

Since we deal with (vertex-)coloring, we may assume without loss of generality that an input
graph G is simple, connected and undirected. Let n = |V (G)| and m = |E(G)|. For a vertex
subset V ′ ⊆ V (G), we denote by G[V ′] the subgraph of G induced by V ′.

For a graph G and a recolorability graph R on C, we define the R-reconfiguration graph
on G, denoted by CR(G), as follows: CR(G) is an undirected graph such that each node of
CR(G) corresponds to a k-coloring of G, and two nodes in CR(G) are joined by an edge if their
corresponding k-colorings are adjacent under R. We sometimes call a node in CR(G) simply
a k-coloring if it is clear from the context. A path in CR(G) from a k-coloring f to another
one f ′ is called an (f → f ′)-reconfiguration sequence. Note that any (f → f ′)-reconfiguration
sequence is reversible, that is, the path in CR(G) forms an (f ′ → f)-reconfiguration sequence,
too. Then, the coloring reconfiguration problem under recolorability can be seen
as the decision problem of determining whether CR(G) contains an (f0 → fr)-reconfiguration
sequence for two given k-colorings f0 and fr of G. Note that the problem does not ask for an
actual (f0 → fr)-reconfiguration sequence as the output. We always denote by f0 and fr two
given k-colorings of G as an input of the problem. For two k-colorings of f and f ′ in CR(G),
we denote by dist(f, f ′) the shortest length (i.e., the minimum number of edges in CR(G)) of
an (f → f ′)-reconfiguration sequence if it exists; otherwise we let dist(f, f ′) = +∞.
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We note that a given recolorability graph R can be assumed to be connected without loss
of generality. To see this, first observe that no (f0 → fr)-reconfiguration sequence exists if
there is a vertex u ∈ V (G) such that the colors f0(u) and fr(u) belong to different connected
components of R. Next, consider any two vertices v, w ∈ V (G) such that the colors f0(v)
and f0(w) belong to different connected components R1 and R2 of R, respectively. Then,
since V (R1) ∩ V (R2) = ∅, we can independently recolor vertices v and w. In this way, we
can assume without loss of generality that R is connected.

To describe our algorithms, we sometimes use the notion of digraphs (i.e., directed graphs).
For an undirected graph G, we denote by −→G a digraph whose underlying graph is G, and
also denote by A(−→G) the arc set of −→G . We denote by vw an edge joining two vertices v and
w in an undirected graph, while by (v, w) an arc from v to w in a digraph. In this paper, we
say that a digraph −→G is connected if −→G is weakly connected, that is, the underlying graph G
is connected. A vertex v in a digraph −→G is called a source vertex if the in-degree of v is zero,
while it is called a sink vertex if the out-degree of v is zero. A sequence v0a1v1a2v2 . . . alvl

of vertices v0, v1, . . . , vl and arcs a1, a2, . . . , al in
−→
G is called a forward walk from v0 on −→G

if it forms a directed walk from v0 to vl (with repeated arcs and vertices allowed), that is,
ai is the arc from vi−1 to vi for all i ∈ {1, 2, . . . , l}; while it is called a backward walk to
v0 on −→G if it is a directed walk from vl to v0, that is, ai is the arc from vi to vi−1 for all
i ∈ {l, l − 1, . . . , 1}.

3 Algorithms for Path Recolorability

In this section, we consider the case where R is a path. We first prove that the existence of
an (f0 → fr)-reconfiguration sequence can be checked in linear time, as follows.

I Theorem 2. Coloring reconfiguration under recolorability for any graph G
can be solved in O(k + n+m) time if a recolorability graph R is a path.

We prove Theorem 2 by giving such an algorithm. We first rename the colors in R

so that the colors 1, 2, . . . , k appear in a numerical order along the path R, and modify
two k-colorings f0 and fr accordingly; this can be done in O(k + n) time. Then, the most
important property for the path recolorability is that any recoloring step preserves the “order”
of colors assigned to two adjacent vertices in G: If a k-coloring f of G assigns colors to
two adjacent vertices v, w ∈ V (G) such that f(v) < f(w), then f ′(v) < f ′(w) holds for any
k-coloring f ′ such that an (f → f ′)-reconfiguration sequence exists. Indeed, this property
yields the following necessary and sufficient condition, which can be checked in O(m) time;
and hence Theorem 2 holds.

I Lemma 3 (*). An (f0 → fr)-reconfiguration sequence exists on CR(G) if and only if
fr(v) < fr(w) holds for any vw ∈ E(G) such that f0(v) < f0(w).

We next give a linear-time algorithm to compute dist(f0, fr); together with Theorem 2,
this completes the proof of Theorem 1 for the path recolorability.

I Theorem 4. Suppose that a recolorability graph R is a path, and let f0 and fr be two
k-colorings of a graph G such that an (f0 → fr)-reconfiguration sequence exists on CR(G).
Then,
(a) dist(f0, fr) =

∑
v∈V (G) |fr(v)− f0(v)|;

(b) dist(f0, fr) can be computed in O(k + n+m) time; and
(c) a shortest (f0 → fr)-reconfiguration sequence can be output in O(kn(n+m)) time.
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By Theorem 2 we can check in O(k + n + m) time if an (f0 → fr)-reconfiguration
sequence exists on CR(G). Then, Theorem 4(b) immediately follows from Theorem 4(a).
Therefore, we will prove Theorem 4(a) and (c), as follows: Observe that dist(f0, fr) ≥∑

v∈V (G) |fr(v)− f0(v)| holds, because each recoloring step can change the current color of
a vertex v ∈ V (G) to its adjacent color in R, and hence each vertex v ∈ V (G) requires at
least |fr(v)− f0(v)| recoloring steps. Therefore, the following lemma completes the proof of
Theorem 4.

I Lemma 5 (*). There exists an (f0 → fr)-reconfiguration sequence on CR(G) of length∑
v∈V (G) |fr(v)− f0(v)|. Furthermore, it can be output in O(kn(n+m)) time.

4 Algorithm for Reachability on Cycle Recolorability

In this section, we consider the case where R is a cycle, and show that the existence of an
(f0 → fr)-reconfiguration sequence can be checked in linear time; the shortest length will be
discussed in the next section. We prove the following theorem in this section.

I Theorem 6. Coloring reconfiguration under recolorability for any graph G
can be solved in O(k + n+m) time if a recolorability graph R is a cycle.

Since K3 is a cycle, Theorem 6 immediately implies the following corollary.

I Corollary 7 ([12]). Coloring reconfiguration with k = 3 can be solved in linear time.

We will prove Theorem 6 by giving such an algorithm, as follows. In Section 4.1, we give
a simple necessary condition for a yes-instance based on the concept of “frozen” vertices;
the idea is simple, but we need a nice characterization of frozen vertices for checking the
condition in linear time. In Section 4.2, we then give a necessary and sufficient condition
for a yes-instance by defining a potential function which appropriately characterizes the
reconfigurability of k-colorings; however, this condition cannot be checked in linear time by
a naive way. In Section 4.3, we thus explain how to check the condition in linear time.

We rename the colors in R so that the colors 1, 2, . . . , k appear in a numerical order along
the cycle R, and modify two k-colorings f0 and fr accordingly; this can be done in O(k + n)
time. For notational convenience, we define the successor color c+ and the predecessor color
c− for a color c ∈ V (R), as follows:

c+ =
{
c+ 1 if c < k;
1 if c = k,

and c− =
{
c− 1 if c > 1;
k if c = 1.

We use this notation also for a color assigned by a k-coloring: For a k-coloring f of a graph
G and a vertex v in G, we denote by f(v)+ and f(v)− the successor and predecessor colors
for f(v), respectively. In this and later sections, we call a k-coloring of G simply a coloring.

4.1 Frozen vertices
We now define the concept of “frozen” vertices [7] from the viewpoint of recoloring, which
plays an important role in our algorithm. For a coloring f of a graph G and a recolorability
graph R on C, a vertex v ∈ V (G) is said to be frozen on f (under R) if f(v) = f ′(v) holds
for any coloring f ′ of G such that CR(G) has an (f → f ′)-reconfiguration sequence. For a
coloring f of G, we denote by Frozen(f) the set of all vertices in G that are frozen on f .
The following lemma gives a simple necessary condition, which immediately follows from the
definition of frozen vertices.
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Figure 3 Characterization of frozen vertices.

I Lemma 8. Suppose that there exists an (f → f ′)-reconfiguration sequence for two colorings
f and f ′ of a graph G. Then, Frozen(f) = Frozen(f ′), and f(v) = f ′(v) holds for every
vertex v in Frozen(f).

Note that it is not trivial to compute Frozen(f) for a coloring f in linear time. However,
we will give a characterization of frozen vertices (in Lemma 9), which enables us to compute
all of them in linear time (as proved in Lemma 10). We note that Lemma 9 generalizes the
characterization of frozen vertices on coloring reconfiguration with k = 3 given by
Cereceda et al. [7].

To characterize the frozen vertices, we introduce some notation and terms. For a graph
G and its coloring f , let −→H f be the digraph with vertex set V (−→H f ) = V (G) and arc set

A(−→H f ) = {(v, w) : vw ∈ E(G) and f(v)+ = f(w)}.

Notice that an arc (v, w) ∈ A(−→H f ) implies that f(v) = f(w)−, and represents that, if we
wish to recolor v from f(v) to f(v)+, we need to recolor w from f(w) (= f(v)+) to f(w)+

in advance. The forward blocking graph from v on a coloring f , denoted by −→B+(v, f), is
the subgraph of −→H f consisting of all forward walks from v on −→H f . Similarly, the backward
blocking graph to v on a coloring f , denoted by −→B−(v, f), is the subgraph of −→H f consisting
of all backward walks to v on −→H f . Then, we have the following lemma. (See also Figure 3.)

I Lemma 9 (*). A vertex v ∈ V (G) is frozen on f if and only if it satisfies the following
conditions (a) or (b):
(a) v is contained in a directed cycle in −→H f ; or
(b) −→H f has a forward walk from v to a vertex in a directed cycle, and also has a backward

walk from a vertex in a directed cycle to v.

Based on Lemma 9, we have the following lemma.

I Lemma 10 (*). Frozen(f) can be computed in O(m) time for any coloring f of a graph G.

4.2 Necessary and sufficient condition
In the remainder of this section, by Lemma 8 we assume that Frozen(f0) = Frozen(fr) and
f0(v) = fr(v) for each vertex v ∈ Frozen(f0); otherwise it is a no-instance. In this subsection,
we will give a necessary and sufficient condition for a yes-instance.

We define some notation to describe the condition. Let G be an undirected graph, and
let −→H be any digraph whose underlying graph is a subgraph of G. For a coloring f of G and
each arc (u, v) ∈ A(−→H ), we define the potential pf ((u, v)) of (u, v) on f , as follows:

pf ((u, v)) =
{
f(v)− f(u) if f(v) > f(u);
f(v)− f(u) + k if f(v) < f(u).
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Note that f(u) 6= f(v) holds since uv ∈ E(G). In addition, observe that

pf ((u, v)) + pf ((v, u)) = k (1)

holds for any pair of parallel arcs (u, v) and (v, u) if such a pair exists. The potential
pf (−→H ) of −→H on f is defined to be the sum of potentials of all arcs of −→H on f , that is,
pf (−→H ) =

∑
(u,v)∈A(−→H) pf ((u, v)).

Let C be a cycle in an undirected graph G. Then, there are only two possible orientations
of C such that they form directed cycles, that is, either the clockwise direction or the
anticlockwise direction; we always denote by −→C and ←−C such the two possible orientations of
C. The following lemma immediately follows from Eq. (1).

I Lemma 11. Let f be a coloring of an undirected graph G. Then, pf (−→C )+pf (←−C ) = k|E(C)|
for every cycle C in G.

For a coloring f of an undirected graph G, we define a supergraph Gf of G as follows4:
let V (Gf ) = V (G), and we arbitrarily add new edges between frozen vertices on G so that
Frozen(f) induces a connected subgraph in the resulting graph. Then, since there are at most
|V (G)| frozen vertices, Gf has |V (G)| vertices and at most |E(G)|+ |V (G)| − 1 edges. Note
that Gf = G if Frozen(f) = ∅. Recall that two given colorings f0 and fr of G are assumed
to satisfy Frozen(f0) = Frozen(fr) and f0(v) = fr(v) for every vertex v in Frozen(f0). We
can thus assume Gf0 = Gfr , and hence simply denote it by Gf . Furthermore, since newly
added edges join only frozen vertices, we have the following lemma.

I Lemma 12. There exists an (f0 → fr)-reconfiguration sequence on CR(G) if and only if
there exists an (f0 → fr)-reconfiguration sequence on CR(Gf).

We are now ready to claim our necessary and sufficient condition, as follows.

I Theorem 13. Let f0 and fr be two colorings of a graph G such that Frozen(f0) = Frozen(fr),
and f0(v) = fr(v) for all vertices v ∈ Frozen(f0). Then, an (f0 → fr)-reconfiguration sequence
exists on CR(G) if and only if pf0(−→C ) = pfr

(−→C ) holds for every cycle C in Gf .

Before proving the theorem, we note that Theorem 13 is independent from the choice of
the two orientations of a cycle C, because Lemma 11 implies that pf0(−→C ) = pfr (−→C ) holds if
and only if pf0(←−C ) = pfr

(←−C ) holds. We also note that Theorem 13 does not directly yield a
linear-time algorithm.

We first prove the only-if direction of Theorem 13. Suppose that there exists an (f0 → fr)-
reconfiguration sequence on CR(G). Then, Lemma 12 implies that CR(Gf) contains an
(f0 → fr)-reconfiguration sequence 〈f0, f1, . . . , f`〉, where f` = fr, and hence the only-if
direction of Theorem 13 can be obtained from the following lemma.

I Lemma 14 (*). Suppose that two colorings f and f ′ are adjacent on CR(Gf). Then,
pf (−→C ) = pf ′(−→C ) holds for every cycle C in Gf .

We then prove the if direction of Theorem 13: If pf0(−→C ) = pfr (−→C ) holds for every cycle C
in Gf , then an (f0 → fr)-reconfiguration sequence exists on CR(Gf); Lemma 12 then implies
that CR(G) contains an (f0 → fr)-reconfiguration sequence.

4 We note that our construction of Gf is different from that by Cereceda et al. [7] so that the running
time of our algorithm does not depend on k.
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Our proof is constructive, that is, we give an algorithm which indeed finds an (f0 → fr)-
reconfiguration sequence on CR(Gf). We say that a vertex v is fixed if it is colored with
fr(v) and our algorithm decides not to recolor v anymore. Thus, all frozen vertices are fixed.
Our algorithm maintains the set of fixed vertices, denoted by F . The following Algorithm 1
transforms f0 into a coloring f ′0 of Gf so that F 6= ∅, as the initialization.

Algorithm 1 Initialization for Algorithm 2.

1. If Frozen(f0) 6= ∅, then let F = Frozen(f0) and f ′0 = f0.
2. Otherwise let F = {v} for an arbitrarily chosen vertex v ∈ V (G). Let f = f0, and obtain

f ′0 such that f ′0(v) = fr(v), as follows:
2-1. If f(v) = fr(v), then let f ′0 = f and stop the algorithm.
2-2. Otherwise recolor a sink vertex w (possibly v itself) of −→B+(v, f) to f(w)+. Let f be

the resulting coloring, and go to Step 2-1.

Note that we can always find a sink vertex w in Step 2-2 of Algorithm 1, because otherwise−→
B+(v, f) contains a directed cycle; by Lemma 9 the vertices in the directed cycle are frozen,
and hence this contradicts the assumption that Frozen(f0) = ∅ holds in Step 2. We note the
following properties.

I Lemma 15. Let F ⊆ V (Gf) be the vertex subset obtained by Algorithm 1, and let f ′0 be
the coloring of Gf obtained by Algorithm 1. Then, the induced subgraph Gf [F ] is connected,
and pf ′

0
(−→C ) = pf0(−→C ) = pfr

(−→C ) for any cycle C in Gf .

Proof. Recall that Gf was obtained by adding new edges to G so that Gf [Frozen(f0)] is
connected. Thus, Gf [F ] = Gf [Frozen(f0)] is connected if Frozen(f0) 6= ∅. If Frozen(f0) = ∅,
then F consists of a single vertex v; and hence Gf [F ] is connected also in this case.

Notice that Algorithm 1 constructs an (f0 → f ′0)-reconfiguration sequence on CR(Gf).
Then, Lemma 14 implies that pf ′

0
(−→C ) = pf0(−→C ) = pfr

(−→C ) for any cycle C in Gf . J

We now give our main procedure, called Algorithm 2, which finds an (f ′0 → fr)-
reconfiguration sequence on CR(Gf). The algorithm attempts to extend the vertex set
F to V (Gf) so that each vertex v in F is fixed (and hence is colored with fr(v)); we eventu-
ally obtain the target coloring fr when F = V (Gf). Recall that our algorithm never recolors
any vertex v in F , and all frozen vertices are contained in F . Let f = f ′0, and apply the
following procedure.

Algorithm 2 Finding an (f ′0 → fr)-reconfiguration sequence on CR(Gf).

1. If F = V (Gf) holds, then stop the algorithm.
2. Otherwise pick an arbitrary vertex v ∈ V (Gf) \ F which is adjacent with at least one

vertex u ∈ F .
2-1. If f(v) = fr(v), then add v to F and go to Step 1.
2-2. Otherwise

if pf ((u, v)) < pfr
((u, v)), then recolor a sink vertex w (possibly v itself) of

−→
B+(v, f) to f(w)+; and
if pf ((u, v)) > pfr

((u, v)), then recolor a source vertex w (possibly v itself) of
−→
B−(v, f) to f(w)−.

Let f be the resulting coloring, and go to Step 2-1.
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To prove that Algorithm 2 correctly finds an (f ′0 → fr)-reconfiguration sequence on
CR(Gf), it suffices to show that there always exists a non-fixed sink/source vertex in Step 2-2
under the condition that pf ′

0
(−→C ) = pf0(−→C ) = pfr (−→C ) holds for any cycle C in Gf . Therefore,

the following lemma completes the proof of the if direction of Theorem 13.

I Lemma 16 (*). Every application of Step 2 of Algorithm 2 produces a set F of fixed
vertices and a coloring f of Gf satisfying the following (a) and (b): For each edge uv in Gf

such that u ∈ F and v /∈ F ,
(a) if pf ((u, v)) < pfr

((u, v)), then −→B+(v, f) is a directed acyclic graph such that no vertex
in −→B+(v, f) is contained in F ; and

(b) if pf ((u, v)) > pfr ((u, v)), then −→B−(v, f) is a directed acyclic graph such that no vertex
in −→B−(v, f) is contained in F .

4.3 Proof of Theorem 6
We finally prove Theorem 6 by giving such an algorithm. Our algorithm first checks the
simple necessary condition described in Lemma 8. By Lemma 10 this step can be done in
O(m) time. Note that we can obtain the vertex subsets Frozen(f0) and Frozen(fr) in this
running time. Then, we determine whether a given instance is a yes-instance or not, based
on the necessary and sufficient condition described in Theorem 13. However, recall that the
condition in Theorem 13 cannot be checked in linear time by a naive way. Below, we give a
linear-time algorithm to check the condition.

Let T be an arbitrary spanning tree of the graph Gf . For an edge e ∈ E(Gf) \E(T ), we
denote by CT,e the unique cycle obtained by adding the edge e to T . The following lemma
shows that it suffices to check the necessary and sufficient condition only for the number
|E(Gf) \ E(T )| of cycles.

I Lemma 17 (*). Let T be any spanning tree of Gf . Then, pf0(−→C ) = pfr
(−→C ) holds for every

cycle C of Gf if and only if pf0(−→C T,e) = pfr
(−→C T,e) holds for every edge e ∈ E(Gf) \ E(T ).

Lemma 17 and the following lemma imply that there is a linear-time algorithm to check
the necessary and sufficient condition described in Theorem 13. Therefore, the following
lemma completes the proof of Theorem 6.

I Lemma 18 (*). Let T be any spanning tree of Gf . Then, pf0(−→C T,e) and pfr (−→C T,e) for all
e ∈ E(Gf) \ E(T ) can be computed in O(n+m) time in total.

5 Algorithm for Shortest Sequence on Cycle Recolorability

In this section, we consider the case where R is a cycle, and explain how to compute the
length of a shortest reconfiguration sequence.

Let Pu,v be a path in an undirected graph G connecting vertices u and v. We denote
by −→P u,v the directed path from u to v. The following theorem characterizes the shortest
length of an (f0 → fr)-reconfiguration sequence, which generalizes the characterization for
coloring reconfiguration with k = 3 [7, 12].

I Theorem 19 (*). Suppose that a recolorability graph R is a cycle, and let f0 and fr be
two colorings of a graph G such that an (f0 → fr)-reconfiguration sequence exists on CR(G).
Then, the following (a) and (b) hold:
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(a) If Frozen(f0) 6= ∅, then it holds for an arbitrary chosen vertex u ∈ Frozen(f0) that

dist(f0, fr) =
∑

v∈V (G)

∣∣pfr (−→P u,v)− pf0(−→P u,v)
∣∣,

where Pu,v is an arbitrary chosen path in G connecting u and v.
(b) If Frozen(f0) = ∅, then there exist two integers ρu,1 and ρu,2 for an arbitrary chosen

vertex u ∈ V (G) such that

dist(f0, fr) = min
{ ∑

v∈V (G)

∣∣pfr
(−→P u,v)− pf0(−→P u,v) + ρu,1

∣∣,
∑

v∈V (G)

∣∣pfr
(−→P u,v)− pf0(−→P u,v) + ρu,2

∣∣},
where Pu,v is an arbitrary chosen path in G connecting u and v.

We finally claim that dist(f0, fr) can be computed in linear time, based on Theorem 19,
and that a shortest (f0 → fr)-reconfiguration sequence can be output in polynomial time.

I Lemma 20 (*). For any vertex u ∈ V (G), two integers ρu,1 and ρu,2 of Theorem 19(b)
can be obtained in O(n+m) time. Furthermore,
(a) dist(f0, fr) can be computed in O(n+m) time; and
(b) a shortest (f0 → fr)-reconfiguration sequence can be output in O(kn(n+m)) time.

6 Concluding Remarks

In this paper, we have generalized and sharpened the positive results [7, 12] obtained
for coloring reconfiguration, from the viewpoint of recolorability constraints. We
emphasize that our algorithms run in linear time to simply answer the decision problem
coloring reconfiguration under recolorability, or to compute the shortest length
of (f0 → fr)-reconfiguration sequences.

One may expect that a shortest (f0 → fr)-reconfiguration sequence can be output also
in linear time. However, Cereceda et al. [7] showed that there exists an infinite family
of yes-instances for coloring reconfiguration with k = 3 whose shortest (f0 → fr)-
reconfiguration sequence requires Ω(n2) length.

Together with our sister paper [14], we have clarified several tractable/intractable cases
of coloring reconfiguration under recolorability. Our analyses are summarized in
Table 1, and give a better understanding of the complexity of coloring reconfiguration.
However, the complexity status remains open for the case where a connected recolorability
graph R is of maximum degree three and has at most one cycle.

Table 1 Complexity of coloring reconfiguration under recolorability, where a recolor-
ability graph R is assumed to be connected without loss of generality.

Maximum degree of R R contains at most one cycle R contains at least two cycles
two Linear time [this paper] (no such R exists)
three ? PSPACE-complete [14]
at least four PSPACE-complete [14] PSPACE-complete [14]
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Abstract
Two vertices v and w of a graph G are called a pendant pair if the maximal number of edge-disjoint
paths in G between them is precisely min{d(v), d(w)}, where d denotes the degree function. The
importance of pendant pairs stems from the fact that they are the key ingredient in one of the
simplest and most widely used algorithms for the minimum cut problem today.

Mader showed 1974 that every simple graph with minimum degree δ contains Ω(δ2) pendant
pairs; this is the best bound known so far. We improve this result by showing that every simple
graph G with minimum degree δ ≥ 5 or with edge-connectivity λ ≥ 4 or with vertex-connectivity
κ ≥ 3 contains in fact Ω(δ|V |) pendant pairs. We prove that this bound is tight from several
perspectives, and that Ω(δ|V |) pendant pairs can be computed efficiently, namely in linear time
when a Gomory-Hu tree is given. Our method utilizes a new cut tree representation of graphs.
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1 Introduction

The study of pendant pairs is motivated by the well-known, simple and widely used minimum
cut algorithm of Nagamochi and Ibaraki [11], which refines the work of Mader [8, 7] in the
early 70s, and was simplified by Stoer and Wagner [12] and Frank [3]. The key approach
of this algorithm is to iteratively contract a pendant pair of the input graph in near-linear
time by using maximal adjacency orderings (also known as maximum cardinality search [13]).
Having done that n−1 times, one can obtain a minimum cut by just considering the minimum
degree of all intermediate graphs. In a break-through result, Kawarabayashi and Thorup [6]
succeeded to give a near-linear time deterministic minimum cut algorithm for simple graphs,
and this was later made faster by Henzinger et al. [4]. Hence, the algorithm of Nagamochi
and Ibaraki is not the most efficient, but its simplicity is unmatched so far.

This motivates the following question: How many (distinct) pendant pairs does a graph
with a given minimum degree possess? If there are many and, additionally, these could be
computed efficiently, this would lead immediately to an improvement of the running time of
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the Nagamochi-Ibaraki algorithm. Here, we aim for the fundamental and natural question
of finding a good lower bound on the number of distinct pendant pairs in graphs with a
given minimum degree. We will mainly consider simple graphs, as these allow us to prove
strong lower bounds (we give an example that shows that all bounds for multigraphs must
be considerably weaker).

As early as 1973, and originally motivated by the structure of minimally k-edge-connected
graphs, Mader proved that every graph with minimum degree δ ≥ 1 contains at least one
pendant pair [8]. This holds also for the vertex-connectivity variant of pendant pairs, which
nowadays is most easily proven by using maximal adjacency orderings. Later, Mader improved
his result by showing that every simple graph with minimum degree δ contains Ω(δ2) pendant
pairs [9].

Our main result in this paper sets the graph-theoretical prerequisite that the algorithmic
approach described above of finding many pendant pairs might actually work out. We
improve Mader’s result by showing that every simple graph that satisfies δ ≥ 5 or λ ≥ 4 or
κ ≥ 3 contains Ω(δn) pendant pairs; this exhibits a dependency on n := |V | instead of δ,
which is usually much larger. We prove that this result is tight with respect to the order of
the bound and with respect to every assumption.

We show how to compute Ω(δn) pendant pairs from a Gomory-Hu tree in linear time.
Clearly, computing a Gomory-Hu tree in advance does not match the best running time
O(m+ n), m := |E|, for finding one pendant pair; however, we conjecture that it is actually
possible to compute ω(1) pendant pairs in linear time. An affirmative answer to this would
already imply a speed-up for the Nagamochi-Ibaraki-algorithm.

Our results utilize a new cut tree representation of graphs named pendant tree.

2 A Note on the History of Maximal Adjacency Orderings

Mader’s proof for the existence of one pendant pair relies strongly on [7, Lemma 1], which
in turn uses special orderings on the vertices. Interestingly, these orderings are maximal
adjacency orderings and this fact exhibits an apparently forgotten variant of them, which
existed long before they got 1984 their first name (maximum cardinality search [13]).

We are only aware of one place in literature where this is (briefly) mentioned: [10, p. 443].
Mader’s existential proof can in fact be made algorithmic. A direct comparison between the
old and the modern variant however shows that the modern maximal adjacency orderings are
nicer to describe, as they work on the original graph, while Mader iteratively moves edges in
the graph in order to represent the essential connectivity information on the already visited
vertex set with a clique.

3 Preliminaries

All graphs considered in this paper are non-empty, finite, unweighted and undirected unless
specified otherwise. Let G := (V,E) be a graph. Contracting a vertex subset X ⊆ V

identifies all vertices in X and deletes occurring self-loops (we do not require that X induces
a connected graph in G).

For non-empty and disjoint vertex subsets X,Y ⊂ V , let EG(X,Y ) denote the set of all
edges in G that have one endvertex in X and one endvertex in Y . Let further X := V −X,
dG(X,Y ) := |EG(X,Y )| and dG(X) := |EG(X,X)|; if X = {v} for some vertex v ∈ V , we
simply write EG(v, Y ), dG(v, Y ) and dG(v). A subset ∅ 6= X ⊂ V of a graph G is called a
cut of G. Let a cut X of G be trivial if |X| = 1 or |X| = 1. Let the length and size of a
path be the number of its edges and vertices, respectively. Let δ(G) := minv∈V dG(v) be the
minimum degree of G. For a vertex v ∈ G, let NG(v) be the set of neighbors of v in G.
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For two vertices v, w ∈ V , let λG(v, w) be the maximal number of edge-disjoint paths
between v and w in G. A minimum v-w-cut is a cut X that separates v and w and satisfies
dG(X) = λG(v, w). Two vertices v, w ∈ V are called k-edge-connected if λG(v, w) ≥ k. The
edge-connectivity λ(G) of G is the greatest integer such that every two distinct vertices are
λ(G)-edge-connected. Let κ(G) be the vertex-connectivity of G, i.e. the minimum number of
vertices U such that G− U is disconnected. We omit parentheses for single elements (like
vertices or edges) in set subtractions.

We call a pair {v, w} of vertices pendant if λG(v, w) = min{dG(v), dG(w)}. In order to
increase readability, we will omit subscripts whenever the graph is clear from the context.

4 The Pendant Tree

We propose a new cut tree, which can be seen as a refinement of Gomory-Hu trees. The
idea is to partition the vertex set such that each part consists only of vertices that are
pairwise pendant, and impose a tree structure on these vertex subsets such that edges in this
tree correspond to cuts in the graph that separate some non-pendant pair. For the sake of
notational clarity, we will call the vertices of such trees blocks.

For a tree T whose vertex set partitions V and an edge AB ∈ E(T ), let CAB be the union
of the blocks that are contained in the component of T −AB containing A, and symmetrically,
CBA = V − CAB. We will consider T as a tree with edge weights as follows. For an edge
AB ∈ E(T ), let c(AB) := dG(CAB) be the size of its corresponding edge-cut in G.

I Definition 1. A non-pendant-pair covering tree, or simply pendant tree, T of a graph
G = (V,E) is a tree whose vertex set partitions V such that
(i) every two distinct vertices in a common block of this partition are pendant,
(ii) for every edge AB ∈ E(T ), there are vertices a ∈ A and b ∈ B such that {a, b} is

non-pendant, and
(iii) for every edge AB ∈ E(T ), there are vertices a∗ ∈ A and b∗ ∈ B such that c(AB) =

λG(a∗, b∗).

Note that T is an auxiliary tree which is not obtained from G by contracting vertex
subsets. The following lemma allows us to find a non-pendant pair for every two adjacent
blocks of a pendant tree very efficiently.

I Lemma 2. Let AB be an edge of a pendant tree T and let amax and bmax be vertices in A
and B of maximum degrees, respectively. Then {amax, bmax} is non-pendant.

Proof. By Condition (ii) of Definition 1, there are vertices a ∈ A and b ∈ B such that
λ(a, b) < min{d(a), d(b)}. Since {a, amax} and {b, bmax} are pendant, i.e.

λ(a, amax) = min{d(a), d(amax)} = d(a)

and λ(b, bmax) = d(b), a minimum a-b-cut of size less than min{d(a), d(b)} can neither
separate a from amax nor b from bmax. Hence,

λ(amax, bmax) ≤ λ(a, b)
< min{d(a), d(b)}
≤ min{d(amax), d(bmax)}. J

Condition (iii) of pendant trees gives the following lemma.
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I Lemma 3. Let AB be an edge of a pendant tree T and let amax be a vertex in A of
maximum degree. Then c(AB) < d(amax).

Proof. Let bmax be a vertex of maximum degree in B and let a∗ ∈ A and b∗ ∈ B be such
that c(AB) = λ(a∗, b∗) due to Condition (iii). By transitivity of the edge-connectivity λ, we
have

λ(amax, bmax) ≥ min{λ(amax, a∗), λ(a∗, b∗), λ(b∗, bmax)}
= min{d(a∗), λ(a∗, b∗), d(b∗)}
= λ(a∗, b∗)
= c(AB),

where the first equality follows from the fact that {amax, a∗} and {bmax, b∗} are pendant.
According to Lemma 2, λ(amax, bmax) < d(amax), which gives the claim. J

We will construct a pendant tree by contracting edges in a Gomory-Hu tree. We recall
that, given a graph G, a Gomory-Hu tree T of G is a tree on the vertex set V (G), such
that for every pair of vertices a 6= b in G, there is an edge e in the a-b-path in T with
that EG(VT (Ce), VT (Ce)) is a minimum a-b-cut in G, where Ce is a component obtained by
deleting e in T and we denote by VT (Ce) the set of vertices in G which are in the component
Ce. In particular, λG(a, b) = dG(VT (Ce)). Here we see a Gomory-Hu tree not a tree on the
vertex of G, but on the partition of V (G) in which every part is a singleton.

I Proposition 4. Given a Gomory-Hu tree of a graph G, a pendant tree of G can be computed
in linear time.

Proof. Let T be a Gomory-Hu tree of G. Throughout the algorithm we maintain that every
pair of distinct vertices in a block is pendant. We check iteratively for every edge AB in T ,
whether there is a non-pendant pair {a, b} with a ∈ A and b ∈ B. We contract AB in T and
set the new block as A ∪B if and only if there is no such non-pendant pair. We claim that
there is such a non-pendant pair if and only if min{dG(amax), dG(bmax)} > c(AB), where
amax and bmax are vertices in A and B with maximum degrees, respectively. The sufficiency
is clear (see also Lemma 2), and it suffices to show that if min{dG(amax), dG(bmax)} ≤ c(AB),
then {a, b} is pendant for all a ∈ A and b ∈ B.

Thus suppose min{dG(amax), dG(bmax)} ≤ c(AB). Without loss of generality, let
dG(amax) ≤ c(AB), which implies dG(a) ≤ c(AB) for all a ∈ A. Let a ∈ A and b ∈ B.
By the property of Gomory-Hu trees, there are vertices a∗ ∈ A and b∗ ∈ B such that
λG(a∗, b∗) = c(AB); in particular, dG(b∗) ≥ dG(a∗) = c(AB). Then {a, b} is pendant, since

λG(a, b) = min{λG(a, a∗), λG(a∗, b∗), λG(b∗, b)}
= min{dG(a), dG(a∗), c(AB), dG(b∗), dG(b)}
= min{dG(a), dG(b)}.

The first equality comes from the transitivity of local edge-connectivity, the second comes
from the fact that every vertex pair of a block is pendant, and the third holds, because
dG(b∗) ≥ dG(a∗) = c(AB) ≥ dG(a).

It is not hard to see that the algorithm has a linear running time. J

In particular, Proposition 4 implies that every graph has a pendant tree as it is known
that a Gomory-Hu tree always exists.
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The best known running time for a deterministic construction of a Gomory-Hu tree
is still based on the classical approach that applies n − 1 times the uncrossing technique
to find uncrossing cuts on the input graph, and hence in O(nθflow), where θflow is the
running time for a maximum flow subroutine (by Dinits’ algorithm [2, 5], θflow = O(n2/3m)).
Non-deterministically, Bhalgat et al. [1] showed that a Gomory-Hu tree of a simple un-
weighted graph can be constructed in expected running time Õ(nm), where the tilde hides
polylogarithmic factors.

Therefore, by our construction above, we conclude the following.

I Corollary 5. Given a simple graph G, a pendant tree of G can be computed deterministically
in running time O(n5/3m), and randomized in expected running time Õ(nm).

The next section gives several helpful lemmas that will be used in counting pendant pairs.

5 Large Blocks of Degree 1 and 2

For a tree T whose vertex set partitions V , let Vk be the set of blocks of T having degree k
in T and let V>k :=

⋃
k′>k Vk′ . We call the blocks in V1 leaf blocks. In T , the set V2 induces

a family of disjoint paths; we call each such path a 2-path. We will prove that the leaf blocks
of pendant trees as well as the blocks that are contained in 2-paths are large.

I Lemma 6. Let T be a pendant tree of a simple graph G. Then every leaf block A of T
satisfies |A| > δ(G).

Proof. Let p := |A| ≥ 1 and let B be the block adjacent to A in T . By Lemma 3, we have
maxv∈A d(v) > c(AB) ≥

∑
v∈A(d(v)− (p− 1)) ≥ maxv∈A d(v) + δ(p− 1)− p(p− 1), where

the last inequality singles out the maximum degree. Therefore, p > 1 and p > δ. J

Let amax be a vertex of maximal degree in a leaf block A with neighbor B. Since
c(AB) < d(amax), A must actually contain a vertex that has all its neighbors in A, as
otherwise each of the d(amax) incident edges of amax would contribute at least one edge to
the edge-cut, either directly or by an incident edge of the corresponding neighbor of amax.
This gives the following corollary of Lemma 6, which was first shown by Mader.

I Corollary 7 ([9]). Let T be a pendant tree of a simple graph G. Then every leaf block A
contains a vertex v with N(v) ⊆ A. Hence, every pair in {v} ∪N(v) is pendant.

This already implies that simple graphs contain
(
δ+1

2
)

= Ω(δ2) pendant pairs. Note that
Lemma 6 and Corollary 7 do not hold for graphs having parallel edges: for example, consider
a block A that consists of two vertices of degree δ, which are joined by δ − 1 parallel edges.
However, even if the graph is not simple, a leaf block A must always contain at least two
vertices due to Lemma 3.

I Corollary 8. Every leaf block of a pendant tree of a graph contains at least two vertices.

In simple graphs, we thus know that leaf blocks give us a large number of pendant pairs.
Since T is a tree, the number of leaf blocks is completely determined by the number of
blocks of degree at least 3, namely |V1| =

∑
A∈V>2

(dT (A)− 2) + 2. Thus, in order to prove
a better lower bound on the number of pendant pairs, we have to consider the case that
there are many small blocks of size o(δ) contained in 2-paths. The following two lemmas
prove that (i) for every two adjacent blocks A and B in a 2-path with |A|+ |B| > 2, we have
|A|+ |B| ≥ δ − 1 = Ω(δ) and (ii) if δ ≥ 5 and P is a subpath of a 2-path such that all blocks

ISAAC 2018
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of P are singletons, then P contains at most two blocks. This will be used later to show
that the bad situation of many small blocks of size o(δ) can actually not occur. We omit the
proofs in this extended abstract.

I Lemma 9. Let T be a pendant tree of a simple graph G. Let AB be an edge in T with
A,B ∈ V2. If |A|+ |B| > 2, |A|+ |B| ≥ δ(G)− 1.

I Lemma 10. Let T be a pendant tree of a simple graph G with |V (T )| > 1. Let A = {vA} be
a block in Vr with neighborhood B1, . . . , Br ∈ V2 in T such that |A| = |B1| = · · · = |Br| = 1.
Let B′i 6= A be the block that is adjacent to Bi in T . Then d(vA) ≤ r2 − 2γ, where γ :=∑

1≤i<j≤r d(CB′
i
Bi
, CB′

j
Bj

) is the number of cross-edges. In particular, we have δ(G) ≤ r2

and λ(G) < r2. Moreover, if r = 2, κ(G) ≤ 2.

Setting r = 2 in Lemma 10 gives the following corollary for adjacent blocks of 2-paths.
Note that the proof of Lemma 10 allows to weaken the conditions of this corollary further if
the number of cross-edges is large.

I Corollary 11. Let G be simple and let AB and BC be edges in a 2-path of T . If δ(G) ≥ 5
or λ(G) ≥ 4 or κ(G) ≥ 3, then |A|+ |B|+ |C| > 3.

For every block A ∈ V2, let A be in V in2 if all of its neighbors are also in V2; otherwise,
let A be in V out2 . The blocks in V out2 are exactly the endblocks of 2-paths.

I Lemma 12. Let T be a tree. If |V (T )| > 1, then |V>2| ≤ |V1| − 2 and |V out2 | ≤ 4|V1| − 6.

Now we are ready to show that the blocks of 2-paths contain many vertices if δ(G) ≥ 5
or λ(G) ≥ 4 or κ(G) ≥ 3.

I Lemma 13. Let T be a pendant tree of a simple graph G satisfying δ(G) ≥ 5 or λ(G) ≥ 4
or κ(G) ≥ 3. Let P be a 2-path of T . Then∑

S∈V (P )

|S| ≥ (|V (P )| − 2)max{4, δ(G)}
3 + 2.

We will use these lemmas to count pendant pairs in the next section.

6 Many Pendant Pairs

We will use the results on large blocks of the previous section to obtain our main theorems,
Theorems 15 and 16. While the latter shows the existence of Ω(δn) pendant pairs, as
mentioned in the introduction, the former gives the slightly weaker bound Ω(n), but in return
counts only pendant pairs of a special type.

I Definition 14. Let a set F of pendant pairs be dependent if V contains at least three distinct
vertices v1, . . . , vk such that {vi, vi+1} ∈ F for all i = 1, . . . , k, where we set vk+1 := v1;
otherwise, F is called independent.

Counting only independent pendant pairs allows us to deduce statements about the
number of vertices in the graph that is obtained from contracting these pairs (these are
not true for arbitrary sets of pendant pairs): Theorem 15 will prove for δ ≥ 5 that there
are at least δ

δ+12n ≥
5

17n = Ω(n) such independent pendant pairs. We will show that the
contractions imply not only an additive decrease of the number of vertices by at least 5

17n,
but also a multiplicative decrease by the factor δ (i.e. the number of vertices left is O(n/δ)).
We omit the proof in this extended abstract.
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I Theorem 15. Let G be a simple graph that satisfies δ(G) ≥ 5 or λ(G) ≥ 4 or κ(G) ≥ 3.
Let T be a pendant tree of G. Then G has at least δ

δ+12n = Ω(n) independent pendant pairs
each of which is in some block of T and whose pairwise contraction leaves O(n/δ) vertices in
the graph.

For arbitrary pendant pairs not requiring independence, we improve the lower bound Ω(n)
of Theorem 15 to Ω(δn) in the following theorem. This is done by grouping the blocks more
precisely. The main idea is that the blocks are of average size Ω(δ) and therefore contain
Ω(δ2) pendant pairs on average. As the number of blocks is O(n/δ), we thus expect that the
number of pendant pairs is Ω(nδ · δ

2) = Ω(δn).

I Theorem 16. Let G be a simple graph that satisfies δ(G) ≥ 5 or λ(G) ≥ 4 or κ(G) ≥ 3.
Then G contains at least 1

30δn = Ω(δn) pendant pairs.

Proof. Note that n > δ ≥ 3. If G does not contain a non-pendant pair, there are
(
n
2
)
≥ δn

30
pendant pairs in G. Otherwise, G contains a non-pendant pair. Let T be a pendant tree of
G; then |V (T )| ≥ 2.

For each 2-path P with |V (P )| ≥ 3, let P ∗ be a subpath obtained from P by deleting at
most two endblocks (i.e. blocks in P ∩ V out2 ) of P such that |V (P ∗)| is a multiple of 3. Then,
we split P ∗ into subpaths P ∗1 , . . . , P ∗|V (P∗)|/3, each of size 3. Now, let MP be a collection of
blocks that contains exactly one block Si ∈ V (P ∗i ) for every i = 1, . . . , |V (P∗)|

3 , such that Si
is of maximum size amongst other blocks in V (P ∗i ). By Corollary 11 and Lemma 9, every
block S ∈MP is of size at least max{2, (δ − 1)/2}.

Let V ∗2 := V2 −
⋃

2-path P,|V (P )|≥3 V (P ∗) ⊆ V out2 . For every leaf block S ∈ V1, let YS
be a collection of blocks that consists of S, at most four blocks from V ∗2 and at most one
block from V>2 such that the collections YS (S ∈ V1) form a partition of V1 ∪ V ∗2 ∪ V>2; such
allocation exists as |V ∗2 | ≤ |V out2 | ≤ 4|V1| and |V>2| ≤ |V1| (Lemma 12). For every S ∈ V1,
let DS be a block in YS of maximum size. Then, by Lemma 6, |DS | ≥ |S| > δ.

Now we can count the number of pendant pairs to obtain the desired lower bound, as the
blocks have average size Ω(δ). The number of pendant pairs in G is at least

∑
S∈V (T )

(
|S|
2

)

≥
∑
S∈V1

|DS |(|DS | − 1)
2 +

∑
2-path P, |V (P )|≥3

∑
S∈MP

|S|(|S| − 1)
2

≥ δ

2
∑
S∈V1

|DS |+
δ

10
∑

2-path P, |V (P )|≥3

∑
S∈MP

|S|

(as |DS | > δ, |S| ≥ max{2, δ−1
2 } and δ ≥ 3)

≥ δ

2 ·
1
6

∑
S∈V1∪V ∗2 ∪V>2

|S|+ δ

10 ·
1
3

∑
S∈V2−V ∗2

|S|

≥ 1
30δn = Ω(δn). J

We remark that the constants 1/12 and 1/30 in the proofs of the bounds of Theorems 15
and 16 can be improved for larger δ.
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. . .

Figure 1 The bone graph G, whose only pendant pairs are the ones contained in the two K5

(those form the only leaf blocks of the pendant pair tree). Hence, G has exactly 20 pendant pairs.

7 Tightness

Clearly, any graph G contains at most n− 1 independent pendant pairs, hence the order of
the lower bound in Theorem 15 is best possible. The order of the number of vertices left
after contraction in Theorem 15 and that of the number of pendant pairs in Theorem 16 are
also tight; consider the unions of n

δ+1 many disjoint cliques Kδ+1.
Each of the conditions δ ≥ 5, λ ≥ 4 and κ ≥ 3 in Theorems 15 and 16 is tight, as the

graph in Figure 1 can be arbitrarily large and satisfies δ = 4, λ = 3 and κ = 2 but has
only a constant number of pendant pairs. Also the simpleness condition in both results is
indispensable: Consider the path graph on n vertices whose two end edges have multiplicity
δ and all other edges have multiplicity δ/2. This graph has precisely 2 pendant pairs, each
at one of its ends.
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(a) (b)

Figure 1 (a) A topological graph G that requires at least 1 bend in any polyline drawing that
fully preserves its topology. (b) A straight-line drawing that partially preserves the topology of G.

1 Introduction

A fundamental result in graph drawing is the so-called “stretchability theorem” [12, 17, 18]:
Every planar simple topological graph admits a straight-line drawing that preserves its
topology. One may ask whether a similar theorem holds for non-planar simple topological
graphs. Motivated by the fact that a straight-line drawing may not be possible even for a
planar graph plus an edge [10], we allow bends along the edges and measure the quality of
the computed drawings in terms of their curve complexity, defined as the maximum number
of bends per edge.

Let G be a simple topological graph and let Γ be a polyline drawing of G. (Note that,
by definition of simple topological graph, G has neither multiple edges nor self-loops; see
also Section 2 for formal definitions.) Drawing Γ fully preserves the topology of G if the
planarization of G (i.e., the planar simple topological graph obtained from G by replacing
crossings with dummy vertices) and the planarization of Γ have the same planar embedding.
Eppstein et al. [11] prove the existence of a simple arrangement of n pseudolines that, when
drawn with polylines, it requires at least one pseudoline to have Ω(n) bends. It is not
hard to see that the result by Eppstein et al. implies the existence of an n-vertex simple
topological graph such that any polyline drawing that fully preserves its topology has curve
complexity Ω(n) (see Corollary 2 in Section 2). This lower bound naturally suggests two
research directions: (i) “Trade” curve complexity for accuracy in the preservation of the
topology and (ii) Describe families of simple topological graphs for which polyline drawings
that fully preserve their topologies and that have low curve complexity can be computed.

Concerning the first research direction, we consider the following relaxation of topology
preserving drawing. A polyline drawing of a simple topological graph G partially preserves
the topology of G if it has the same rotation system, the same external boundary, and the
same set of crossings as G, while it may not preserve the order of the crossings along an edge.
It may be worth recalling that some (weaker) notions of topological equivalence between
graphs have been already considered in the literature. For example, Kynčl [15, 16] and
Aichholzer et al. [1, 2] study weakly isomorphic simple topological graphs: Two simple
topological graphs are weakly isomorphic if they have the same set of vertices, the same set of
edges, and the same set of edge crossings. Note that a drawing Γ that partially preserves the
topology of a simple toplogical graph G is weakly isomorphic to G and, in addition, it has
the same rotation system and the same external boundary as G. Also, Kratochvíl, Lubiw,
and Nešetřil [14] define the notion of abstract topological graph as a pair (G,χ), where G is a
graph and χ is a set of pairs of crossing edges; a strong realization of G is a drawing Γ of G
such that two edges of Γ cross if and only if they belong to χ. The problem of computing a
drawing that partially preserves a topology may be rephrased as the problem of computing
a strong realization of an abstract topological graph for which a rotation system and an
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external boundary are given in input. A different relaxation of the topology preservation is
studied by Durocher and Mondal, who proved bounds on the curve complexity of drawings
that preserve the thickness of the input graph [9].

Concerning the second research direction, we investigate the curve complexity of polyline
drawings that fully preserve the topology of meaningful families of beyond-planar graphs,
that are families of non-planar graphs for which some crossing configurations are forbidden
(see, e.g., [4, 8] for surveys and special issues on beyond-planar graph drawing). In particular,
we focus on graphs with skewness k, i.e., non-planar graphs that can be made planar by
removing at most k edges, and on 2-plane graphs, i.e., non-planar graphs for which any edge
is crossed at most twice. Note that a characterization of those graphs with skewness one
having a straight-line drawing that fully preserves the topology is presented in [10]. Also, all
1-plane graphs (every edge can be crossed at most once) admit a polyline drawing with curve
complexity one that fully preserves the topology and such that any crossing angle is π

2 [6].
Our results can be listed as follows. Let G be a simple topological graph.
If the subgraph of G formed by the uncrossed edges and all vertices of G, called planar
skeleton, is connected, then G admits a polyline drawing with curve complexity three that
partially preserves its topology. If the planar skeleton is biconnected the curve complexity
can be reduced to one, which is worst-case optimal (Section 3).
For the case that the planar skeleton of G is not connected, we prove that the curve
complexity may be Ω(

√
n) (Section 3).

If G has skewness k, then G admits a polyline drawing with curve complexity 2k that
fully preserves its topology. When k = 1, the curve complexity can be reduced to one,
which is worst-case optimal (Section 4).
If G is optimal 2-plane (i.e., it is 2-plane and it has 5n − 10 edges), then G admits a
drawing that fully preserves its topology and with two bends in total, and a drawing that
fully preserves its topology, with at most two bends per edge, and with optimal crossing
angle resolution. The number of bends per edge can be reduced to one while maintaining
the crossing angles arbitrarily close to π

2 (Section 4).

We conclude the introduction with an example about the difference between a drawing
that fully preserves and one that partially preserves a given topology. Figure 1a shows a
simple topological graph for which every polyline drawing fully preserving its topology has
at least one bend on some edge. Figure 1b shows a drawing of the same graph that partially
preserve its topology and has no bends.

For space reasons some proofs have been omitted and the corresponding statements are
marked with an asterisk (*). Missing details can be found in [13].

2 Preliminaries

A simple topological graph is a drawing of a graph in the plane such that: (i) vertices are
distinct points, (ii) edges are Jordan arcs that connect their endvertices and do not pass
through other vertices, (iii) any two edges intersect at most once by either making a proper
crossing or by sharing a common endvertex, and (iv) no three edges pass through the same
crossing. A simple topological graph has neither multiple edges (otherwise there would be
two edges intersecting twice), nor self-loops (because the endpoints of a Jordan arc do not
coincide). A simple topological graph is planar if no two of its edges cross. A planar simple
topological graph G partitions the plane into topological connected regions, called faces of G.
The unbounded face is called the external face. The planar embedding of a simple planar
topological graph G fixes the rotation system of G, defined as the clockwise circular order of
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(a) (b)

Figure 2 (a) An arrangement of pseudolines L. (b) The graph GL associated with L.

the edges around each vertex, and the external face of G. The planar skeleton of a simple
topological graph G is the subgraph of G that contains all vertices and only the uncrossed
edges of G. A simple topological graph obtained from G by adding uncrossed edges (possibly
none) is called a planar augmentation of G.

Let L be an arrangement of n pseudolines; a polyline realization ΓL of L represents each
pseudoline as a polygonal chain while preserving the topology of L. The curve complexity of
ΓL is the maximum number of bends per pseudoline in ΓL. The curve complexity of L is the
minimum curve complexity over all polyline realizations of L. The graph associated with L is
a simple topological graph GL defined as follows. Let C be a circle of sufficiently large radius
such that all crossings of L are inside C and every pseudoline intersects the boundary of C
exactly twice. Replace each crossing between C and a pseudoline with a vertex, remove the
portions of each pseudoline that are outside C, add an apex vertex v outside C, and connect
v to the vertices of C with crossing-free edges. See Fig. 2 for an example.

I Lemma 1 (*). Let L be an arrangement of n pseudolines and let GL be the simple
topological graph associated with L. Every polyline drawing of GL that fully preserves its
topology has curve complexity Ω(f(n)) if and only if L has curve complexity Ω(f(n)).

Lemma 1 and the result of Eppstein et al. [11] proving the existence of an arrangement
of n pseudolines with curve complexity Ω(n) imply the following.

I Corollary 2. There exists a simple topological graph with n vertices such that any drawing
that fully preserves its topology has curve complexity Ω(n).

In the next section we study a relaxation of the concept of topology preservation by which
we derive constant upper bounds on the curve complexity.

3 Polyline Drawings that Partially Preserve the Topology

A polygon P is star-shaped if there exists a set of points, called the kernel of P , such that for
every point z in this set and for each point p of on the boundary of P , the segment zp lies
entirely within P . A simple topological graph is outer if all its vertices are on the external
boundary and all the edges of the external boundary are uncrossed. Let G be an outer simple
topological graph with n ≥ 3 vertices and let P be a star-shaped n-gon. A drawing Γ of G
that extends P is such that the n vertices of G are placed at the corners of P , and every
edge of G is drawn either as a side of P or inside P .

I Lemma 3. Let G be an outer simple topological graph with n ≥ 3 vertices and let P be a
star-shaped n-gon. There exists a polyline drawing of G with curve complexity at most one
that partially preserves the topology of G and that extends P .
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Figure 3 Illustration for the proof of Lemma 3. (a) The two polygons defined by the addition of
edge (vi, vj). (b) Case 1: (vh, vl) is contained in P2. (c) Case 2: (vh, vl) intersects (vi, vj).

Proof. We explain how to compute a drawing with the desired properties for the complete
graph Kn. Clearly a drawing of G can be obtained by removing the missing edges. Identify
each vertex of Kn with a distinct corner of P , and let {v0, v1, . . . , vn−1} be the n vertices of
Kn in the clockwise circular order they appear along the boundary of P . Note that every
edge (vi, vi+1), for i = 0, 1, . . . , n − 1 (indices taken modulo n), coincides with a side of P
and hence it is drawn as a straight-line segment. We now show how to draw all the edges
between vertices at distance greater than one. The distance between two vertices vi and vj
is the number of vertices encountered along P when walking clockwise from vi (excluded) to
vj (included). We orient each edge (vi, vj) from vi to vj if the distance between vi and vj is
smaller than or equal to the distance between vj and vi. The span of an oriented edge (vi, vj)
is equal to the distance between vi and vj . We add all oriented edges (vi, vj) by increasing
value of the span. Let c be an interior point of the kernel, for example its centroid. For any
pair of vertices vi and vj , let bi,j be the bisector of the angle swept by ri = cvi when rotated
clockwise around c until it overlaps with rj = cvj . We denote by Γk the drawing after the
addition of the first k ≥ 0 edges and maintain the following invariant for Γk.

For each oriented edge (vi, vj) not yet in Γk, there is a point pi,j on bi,j such that (vi, vj)
can be drawn with a bend at any point of the segment σi,j = cpi,j intersecting any edge
of Γk at most once (either at a crossing or at a common endpoint).

We will refer to the segment σi,j described in the invariant as the free segment of (vi, vj).
Since P is star-shaped, the invariant holds for Γ0; in particular the free segment of every
(vi, vj) is the intersection of bi,j with the kernel.

Let (vi, vj) be the k-th edge to be added and assume that the invariant holds for Γk−1.
We place the bend point of (vi, vj) at any point of the segment σi,j . By the invariant, the
resulting edge intersects any other existing edge at most once. We now prove that the
invariant is maintained. The drawing of the edge (vi, vj) divides the polygon P in two
sub-polygons (see Fig. 3a). We denote by P1 the one that contains the portion of the
boundary of P that is traversed when going clockwise from vi to vj , and by P2 the other
one. Notice that the point c is contained in P2. Let (vh, vl) be any oriented edge not in Γk.
Before the addition of (vi, vj), by the invariant there was a free segment σh,l for (vh, vl). By
construction, (vi, vj) intersects σh,l at most once. If (vi, vj) and σh,l intersect in a point p,
let p′ be any point between c and p on σh,l and let σ′h,l = cp′; if they do not intersect let
σ′h,l = σh,l. In both cases σ′h,l is completely contained in P2. We claim that σ′h,l is a free
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Figure 4 A simple topological graph with a triconnected planar skeleton that does not admit a
straight-line drawing that partially preserves its topology.

segment for (vh, vl). Because of the order used to add the edges, the span of (vh, vl) is at
least the span of (vi, vj). This implies that vh and vl cannot both belong to P1 (as otherwise
the span of (vh, vl) would be smaller than the span of (vi, vj)). We distinguish two cases.
Case 1: Both vh and vl belong to P2 (possibly coinciding with vi or vj). Refer to Fig. 3b.

For any point b of σ′h,l, the polyline π consisting of the two segments vhb and bvl is
completely contained in P2 and therefore does not intersects the edge (vi, vj) (except
possibly at a common end-vertex if vh or vl coincide with vi or vj). By the invariant, π
intersects any other existing edge at most once. Thus, σ′h,l is a free segment.

Case 2: One between vh and vl belongs to P1 and the other one belongs to P2. Refer to
Fig. 3c. For any point b of σ′h,l, the polyline π consisting of the two segments vhb and bvl
intersects the edge (vi, vj) exactly once. By the invariant, π intersects any other existing
edge at most once. Thus, σ′h,l is a free segment.

From the argument above we obtain that the final drawing of Kn has curve complexity
one and extends P . By removing the edges of Kn not in G, we obtain a polyline drawing Γ
of G with curve complexity one that extends P . Moreover, Γ partially preserves the topology
of G. Namely, the circular order of the edges around each vertex and the external boundary
are preserved by construction. Furthermore, since G is outer, any two of its edges cross if and
only if their four end-vertices appear interleaved when walking along its external boundary.
This property is preserved in Γ, because the order of the vertices along P is the same as the
order of the vertices along the external boundary of G, and because any two edges cross at
most once (either at a crossing or at a common endpoint). J

We use Lemma 3 to compute a polyline drawing Γ with constant curve complexity for
any simple topological graph G that has a biconnected planar skeleton σ(G). We triangulate
each face of σ(G) and compute a straight-line drawing of this triangulation, which contains a
drawing of σ(G) where each face is a star-shaped polygon. Then, since each edge of G \ σ(G)
is inside one face of σ(G), we draw these edges by using Lemma 3. Drawing Γ has curve
complexity one, which is worst-case optimal, even if the planar skeleton is triconnected (see,
e.g., Fig. 4).

I Theorem 4 (*). Let G be a simple topological graph that admits a planar augmentation
whose planar skeleton is biconnected. Then G has a polyline drawing with curve complexity
at most one that partially preserves its topology. The curve complexity is worst-case optimal.

If σ(G) is connected, we can draw G with three bends per edge.

I Theorem 5 (*). Let G be a simple topological graph that admits a planar augmentation
whose planar skeleton is connected. Then G has a polyline drawing with curve complexity at
most three that partially preserves its topology.
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(a) (b) (c)

Figure 5 (a) A simple topological graph G. The planar skeleton σ(G) of G is shown in black.
(b) Augmentation of σ(G) to make it biconnected. (c) Augmentation of G. Each edge of G \ σ(G)
(in gray) is crossed by the augmenting edges at most twice.

Proof sketch. LetG′ be a planar augmentation ofG whose planar skeleton σ(G′) is connected.
The idea is to add a set E∗ of edges to make σ(G′) biconnected and then use Theorem 4.
For each face f (possibly including the external one) whose boundary contains at least one
cutvertex we execute the following procedure. Walk clockwise along the boundary of f and
let v0, v1, v2, . . . , vk be the sequence of vertices in the order they are encountered during
this walk, where the vertices that are encountered more than once (i.e., the cutvertices)
appear in the sequence only when they are encountered for the first time. For each pair of
consecutive vertices vi−1 and vi (for i = 1, 2, . . . , k) in the above sequence, if vi−1 and vi are
not adjacent in σ(G′), add to E∗ the edge (vi−1, vi). See Fig. 5a and 5b for an example. If
we add the edges of E∗ to G′ (embedded in the same way with respect to σ(G′)), we obtain
a new topological graph such that the edges of E∗ cross the edges of G′ \ σ(G) (see Fig. 5c).
Replacing each of the crossings created by the addition of E∗ with dummy vertices, we
obtain a new topological graph G′′ whose planar skeleton is biconnected. By Theorem 4 G′′
admits a drawing that partially preserves its topology and such that each edge has at most
one bend. Replacing dummy vertices with bends, we obtain a drawing of G′ that partially
preserves its topology. An edge e is split in at most three “pieces” in G′′. The two “pieces”
that are incident to the original vertices are not crossed in G′′ and therefore they belong to
σ(G′′) and are drawn without bends. The third “piece” is not in σ(G′′) and is drawn with at
most one bend. Thus, e has at most three bends. J

Theorems 4 and 5 show that constant curve complexity is sufficient for drawings that
partially preserve the topology of graphs whose planar skeleton is connected. It is worth
remarking that a drawing that fully preserves the topology may require Ω(n) curve complexity
even if the planar skeleton is connected. Namely, the planar skeleton of the graphs associated
with arrangements of pseudolines is always biconnected and, by Corollary 2, there exists one
such graph that has Ω(n) curve complexity.

One may wonder whether the constant curve complexity bound of Theorems 4 and 5 can
be extended to the case on non-connected planar skeletons. This question is answered in the
negative by the next theorem.

I Theorem 6 (*). There exists a simple topological graph with n vertices such that any
drawing that partially preserves its topology has curve complexity Ω(

√
n).

Proof sketch. Let L be an arrangement of pseudolines and let GL be the graph associated
with L. By Lemma 1 any drawing that fully preserves the topology of GL cannot have a
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(a) (b)

Figure 6 (a) Straight-line drawing of the graph GL of Fig. 2b. (b) The graph GL for the
arrangement of Fig. 2a.

better curve complexity than L. On the other hand if we only want to partially preserve
the topology, GL can be realized without bends (see Fig. 6a for a straight-line drawing of
the graph of Fig. 2b). We now describe how to construct a supergraph GL of GL, such that
in any drawing of GL that partially preserves its topology, the topology of the subgraph
GL is fully preserved. Refer to Fig. 6b for an illustration concerning the graph of Fig. 2b.
The set E∗ of crossing edges of GL forms a set of cells inside the cycle C of GL (these cells
correspond to the internal faces of the planarization of GL). For each of these cells, we add a
vertex inside the cell and we connect two such vertices if the corresponding cells share a side.
For those cells that have as a side an edge e of C we add an edge between the vertex added
inside that cell and the two end-vertices of e. Let GL be the resulting topological graph and
let ΓL be a drawing that partially preserves the topology of GL. It can be proved that the
sub-drawing ΓL of ΓL representing GL fully preserves the topology of GL.

Denote by LN the arrangement of N pseudolines defined by Eppstein et al. [11]. By the
argument above, any polyline drawing that partially preserves the topology of the graph
GLN

contains a sub-drawing of GLN
that fully preserves its topology and that hence has

curve complexity Ω(N) by Lemma 1. The number of vertices of GLN
is 2N + 1 and the

number of cells is Θ(N2). This implies that the number of vertices of GLN
is n = Θ(N2).

Thus, any drawing that partially preserves the topology of GLN
has curve complexity

Ω(N) = Ω(
√
n). J

Based on Theorem 6 one may wonder whether O(
√
n) curve complexity is sufficient when

the skeleton is not connected. The following theorem states a preliminary result in this
direction, extending Theorem 5 to the case that the planar skeleton consists of at most c
connected components.

I Theorem 7 (*). Let G be a simple topological graph that admits a planar augmentation
whose planar skeleton has c connected components. Then G has a polyline drawing with curve
complexity at most 4c− 1 that partially preserves its topology.

4 Polyline Drawings that Fully Preserve the Topology

In this section we study polyline drawings of constant curve complexity for two meaningful
families of beyond-planar graphs. Namely, we consider k-skew graphs and 2-plane graphs. A
simple topological graph G = (V,E) is k-skew if there is a set F ⊆ E of k edges such that
G′ = (V,E \ F ) does not contain crossings. A simple topological graph is 2-plane if every
edge is crossed by at most two other edges. A 2-plane graph with n vertices can have at most
5n− 10 edges and it is called optimal 2-plane if it has exactly 5n− 10 edges. We prove that
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(a) (b) (c)

Figure 7 (a) A topological graph G with a set F of 2 edges (in green) whose deletion makes G
planar. (b) A topological graph G′′ formed from G by splitting the edges of F with a dummy vertex
and adding a sleeve around each portion of the split edges. (c) The graph obtained by deleting the
interior of each sleeve in G′′ and triangulating the graph except for the faces formed by the sleeves.

the graphs belonging to these two families admit a polyline drawing that fully preserves the
topology and has constant curve complexity. A tool that we are going to use is the algorithm
of Chiba et al. [7] that receives as input a 3-connected plane graph G whose external face
has k ≥ 3 vertices, and a convex polygon P with k corners. The algorithm computes a
straight-line drawing Γ of G that fully preserves the topology of G, it has polygon P as its
external face, and all internal faces are convex. Moreover, if three consecutive vertices belong
to a same face and are collinear in the computed drawing, we can slightly perturb one of
them without destroying the convexity of the other faces. Thus, we can assume that all faces
of Γ are strictly convex.

We first show that a k-skew topological graph admits a polyline drawing that fully
preserves the topology of G and has at most 2k bends per edge. The technique is based on
an approach that we call the sleeve method and that is illustrated in the following.

The sleeve method. Suppose that G is a topological graph such that the removal of the
edge (s, t) makes G without crossings. Let Eχ be the set of edges that cross (s, t) and suppose
that α is a crossing between edges (s, t) and (u, v) ∈ Eχ in G. If the clockwise order of the
vertices around α is 〈s, u, t, v〉, then u is a left vertex and v is a right vertex (with respect
to the ordered pair (s, t) and the crossing α). We add a “sleeve” around (s, t), as follows.
Number the edges of Eχ = {e1, e2, . . . , ep} in the order of their crossings α1, α2, . . . , αp along
(s, t), so that ei = (ui, vi) crosses (s, t) at αi, ui is left, and vi is right. We subdivide each edge
(ui, vi) with dummy vertices u′i and v′i so that the edge (ui, vi) becomes a path (ui, u′i, v′i, vi)
with the crossing point αi in between u′i and v′i. Note that after this subdivision, u′i is left
and v′i is right, and ui and vi are neither left nor right. Next we add a path pL that begins
at s and visits each of the left dummy vertices u′i in the order u1, u2, . . . , up, and ends at t.
Similarly we add a path pR that visits s, all the right vertices, and then t. We call the cycle
formed by pL and pR a sleeve. Note that the interior of the sleeve contains the edges (u′i, v′i)
and the edge (s, t), but no other vertices or edges. The next theorem explains how to draw
k-skew graphs with curve complexity 2k.

I Theorem 8. Every k-skew simple topological graph admits a polyline drawing with curve
complexity at most 2k that fully preserves its topology.

Proof. Suppose that G = (V,E) is a topological graph and there is a set F ⊆ E of k edges
such that deleting all the edges in F from G gives a planar topological graph. An example
with k = 2 is in Fig. 7a. Replace each crossing between a pair of edges in F with a dummy
vertex, and let G′ be the resulting graph. In G′ there is a set F ′ of edges such that no two
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Figure 8 (a) A 1-skew graph with an inconsistent vertex (larger and purple). (b) A 1-skew graph
with an internal inconsistent face (shaded), in which every vertex is consistent.

edges in F ′ cross, and deleting all the edges in F ′ from G′ gives a planar topological graph.
Here |F ′| ≤ k + 2c, where c is the number of crossings between edges in F . Also, note that
the number of such crossings on each edge in F is at most k − 1. Now add a sleeve around
each edge (s, t) ∈ F ′ using the sleeve method, and let G′′ be the resulting graph (see Fig. 7b).
Note that two such sleeves do not share any edge, and they share at most one vertex. Delete
the interior of each sleeve in G′′ to give a planar topological graph G′′′. Note that each sleeve
of G′′ gives a face of G′′′. Now triangulate G′′′ except for the faces of G′′′ formed by the
sleeves (see Fig. 7c).

The resulting graph Giv is triconnected by Barnette’s Theorem [3], since two faces share
at most one edge or at most one vertex. We can construct a planar drawing Γiv of Giv using
the convex drawing algorithm of Chiba et al. [7]. Each face of Γiv is convex, including each
face that comes from a sleeve. Drawing the edges of G′′ inside each sleeve as straight-line
segments gives a straight-line drawing of G′′. Deleting the dummy edges of the sleeves, and
replacing the dummy vertices of the sleeves by bends, we have a polyline drawing Γ of G that
fully preserves the embedding of G. The only bends are (1) at the crossing points between
edges of F , and (2) at the dummy vertices of the sleeves. Let e be an edge of G. If e ∈ E \F ,
then e crosses at most k edges (those in F ) and each of these crossings creates two dummy
vertices in a sleeve of G′′, thus resulting in 2k bends. If e ∈ F , then it has bends at the
crossings with other edges of F , which are at most k − 1. J

By Theorem 8 we can draw a 1-skew topological graph with two bends per edge. We now
prove that these graphs can be drawn using only one bend per edge. To this aim we first
recall some results from [10]. We say that a vertex is inconsistent with respect to the edge
(s, t) if it is both left and right with respect to (s, t), and consistent otherwise. For example,
the graph in Fig. 8a has an inconsistent vertex. Observe that in a straight-line drawing of a
topological graph, an inconsistent vertex would have to be both left and right of the straight
line through s and t. This gives the following necessary condition.

I Lemma 9 ([10]). A 1-skew simple topological graph with an inconsistent vertex has no
straight-line drawing that fully preserves its topology.

Without additional assumptions, the converse of Lemma 9 is false. For an example,
consider Fig. 8b; this graph has no straight-line drawing, even though all vertices are
consistent. The problem is that the internal face (s, u, t, v) has both left and right vertices;
as such, this face is inconsistent. To explore the converse of Lemma 9, we can assume that
the topological graph is maximal 1-skew (that is, no edge can be added while retaining the
property of being 1-skew). Namely, it has been proven that every 1-skew simple topological
graph G with no inconsistent vertices can be augmented with dummy edges so that the
resulting graph has no inconsistent vertices, it is maximal 1-skew, and it fully preserves the
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Figure 9 (a) A left half-sleeve is added to the graph G in Fig. 8(b) to form G∗L. (b) G∗LLR has an
internal inconsistent face. (c) A right half-sleeve is added to the graph G in Fig. 8(b) to form G∗R.
(d) G∗RLR has no internal inconsistent face.

topology of its subgraph G [10] . Note that both the simple topological graphs in Fig. 8 are
maximal 1-skew. We denote the set of left (resp. right) vertices of a 1-skew topological graph
G by VL (resp. VR), the subgraph of G induced by VL ∪ {s, t} (resp. VR ∪ {s, t}) by GL
(resp. GR), the union of GL and GR by GLR. Note that GL and GR are induced subgraphs,
but GLR is not necessarily induced as a subgraph of G. The following is proved in [10].

I Lemma 10 ([10]). Let G be a maximal 1-skew graph with all vertices consistent. Then:
(a) GLR has exactly one inconsistent face, and this face contains both s and t; and
(b) G has a straight-line drawing that fully preserves its topology if and only if the inconsistent

face of GLR is the external face (of GLR).

Let (s, t) be the edge of G whose removal makes G planar. It is clear that after adding a
sleeve around edge (s, t), the conditions of Lemma 10 are satisfied and thus, we can compute
a straight-line drawing, which after removing the dummy vertices of the sleeve, gives rise to
a drawing with at most two bends per edge. To prove that one bend per edge suffices, we
need a more subtle argument.

I Theorem 11 (*). Every 1-skew simple topological graph admits a polyline drawing with
curve complexity at most one that fully preserves its topology. The curve complexity is
worst-case optimal.

Proof sketch. Instead of placing a sleeve around the edge (s, t), we use a “half-sleeve”,
as follows. Again let Eχ be the set of edges that cross (s, t). We 1-subdivide each edge
(u, v) ∈ Eχ with a dummy vertex on the left side of the crossing between (u, v) and (s, t),
then add a path pL that begins at s and visits each of the left dummy vertices in the order
that their incident edges cross (s, t), and ends at t. Denote the graph obtained from G by
adding this “left half-sleeve” as above by G∗L. Similarly, we could add a “right half-sleeve”
to obtain a topological graph G∗R. It is clear that every vertex in both G∗L and G∗R is
consistent. Note also that we have only added one dummy vertex on each edge (u, v) ∈ Eχ;
we aim to draw each of these edges with only one bend per edge. However, it is not clear
that the internal faces of G∗LLR and G∗RLR are consistent. Consider, for example, the graph
G in Fig. 8(b). For this graph, Fig 9 shows G∗L, G∗R, G∗LLR and G∗RLR. Note that G∗LLR has
an internal inconsistent face, while G∗RLR does not. One can show that at most one of the
graphs G∗LLR and G∗RLR has an internal inconsistent face. Thus, by Lemma 10, one of these
two graphs admits a straight-line drawing which becomes a drawing with curve complexity
one after the removal of the dummy vertices used to construct the half-sleeve. J

We conclude this section with our results about optimal 2-plane graphs.
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I Theorem 12 (*). Every optimal 2-plane graph has a polyline drawing Γ that fully preserves
its topology and that has one of the following properties:
(a) Γ has two bends in total.
(b) Γ has curve complexity one and every crossing angle is at least π

2 − ε, for any ε > 0.
(c) Γ has curve complexity two and every crossing angle is exactly π

2 .

5 Open Problems

Theorem 6 proves a lower bound of Ω(
√
n) on the curve complexity of polyline drawings that

partially preserve the topology and that do not have a connected skeleton. It may be worth
understanding whether this bound is tight.

Theorem 12 proves that for optimal 2-plane graphs a crossing angle resolution arbitrarily
close to π

2 can be achieved with curve complexity one, while optimal crossing angle of π
2 is

achieved at the expenses of curve complexity two. Can optimal crossing angle resolution
and curve complexity one be simultaneously achieved? A positive answer to this question is
known if the planar skeleton of the graph is a dodecahedron [5].

Finally, a natural research direction suggested by the research in this paper is to extend
the study of the curve complexity of drawings that fully preserve the topology to other families
of beyond-planar topological graphs. For example, it would be interesting to understand
whether Theorem 12 can be extended to non-optimal 2-plane graphs.
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Abstract
We consider the problem of augmenting an n-vertex tree with one shortcut in order to minimize
the diameter of the resulting graph. The tree is embedded in an unknown space and we have
access to an oracle that, when queried on a pair of vertices u and v, reports the weight of
the shortcut (u, v) in constant time. Previously, the problem was solved in O(n2 log3 n) time
for general weights [Oh and Ahn, ISAAC 2016], in O(n2 log n) time for trees embedded in a
metric space [Große et al., arXiv:1607.05547], and in O(n log n) time for paths embedded in a
metric space [Wang, WADS 2017]. Furthermore, a (1 + ε)-approximation algorithm running in
O(n+ 1/ε3) has been designed for paths embedded in Rd, for constant values of d [Große et al.,
ICALP 2015].

The contribution of this paper is twofold: we address the problem for trees (not only paths)
and we also improve upon all known results. More precisely, we design a time-optimal O(n2)
time algorithm for general weights. Moreover, for trees embedded in a metric space, we design
(i) an exact O(n log n) time algorithm and (ii) a (1 + ε)-approximation algorithm that runs in
O
(
n+ ε−1 log ε−1) time.

2012 ACM Subject Classification Theory of computation→ Graph algorithms analysis, Theory
of computation → Approximation algorithms analysis

Keywords and phrases Graph diameter, augmentation problem, trees, time-efficient algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.40

Related Version A full version of this paper can be found at https://arxiv.org/abs/1809.
08822.

1 Introduction

Consider a tree T = (V (T ), E(T )) of n vertices, with a weight δ(u, v) > 0 associated with
each edge (u, v) ∈ E(T ), and let c : V (T )2 → R≥0 be an unknown function that assigns
a weight to each possible shortcut (u, v) we could add to T . For a given path P of an
edge-weighted graph G, the length of P is given by the overall sum of its edge weights. We
denote by dG(u, v) the distance between u and v in G, i.e., the length of a shortest path
between u and v in G.1 The diameter of G is the maximum distance between any two
vertices in G, that is maxu,v∈V (G) dG(u, v).

In this paper we consider the Diameter-Optimal Augmentation Problem (Doap for short).
More precisely, we are given an edge-weighted tree T and we want to find a shortcut (u, v)
whose addition to T minimizes the diameter of the resulting (multi)graph, that we denote

1 If u and v are in two different connected components of G, then dG(u, v) =∞.
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by T + (u, v). We assume to have (unlimited access to) an oracle that is able to report the
weight of a queried shortcut in O(1) time.

Doap has already been studied before and the best known results are the following:
an O(n2 log3 n) time and O(n) space algorithm and a lower bound of Ω(n2) on the time
complexity of any exact algorithm [16];
an O(n2 log n) time algorithm for trees embedded in a metric space [11];
an O(n log n) time algorithm for paths embedded in a metric space [18];2
a (1 + ε)-approximation algorithm that solves the problem in O(n + 1/ε3) for paths
embedded in the Euclidean (constant) k-dimensional space [10].

In this paper we improve upon (almost) all these results. More precisely:
we design an O(n2) time and space algorithm that solves Doap. We observe that the
time complexity of our algorithm is optimal;
we develop an O(n log n) time and O(n) space algorithm that solves Doap for trees
embedded in a metric space;
we provide a (1 + ε)-approximation algorithm, running in O

(
n+ 1

ε log 1
ε

)
time and using

O(n+ 1/ε) space, that solves Doap for trees embedded in a metric space.
Our approaches are similar in spirit to the ones already used in [10, 11, 18], but we need
many new key observations and novel algorithmic techniques to extend the results to trees.
Our results leave open the problem of solving Doap in O(n2) time and truly subquadratic
space for general instances, and in o(n log n) time for trees embedded in a metric space.

Other related work. The variant of Doap in which we want to minimize the continuous
diameter, i.e., the diameter measured with respect to all the points of a tree (not only its
vertices), has been also addressed. Oh and Ahn [16] designed an O(n2 log3 n) time and O(n)
space algorithm. De Carufel et al. [3] designed an O(n) time algorithm for paths embedded
in the Euclidead plane. Subsequently, De Carufel et al. [4] extended the results to trees
embedded in the Euclidean plane by designing an O(n log n) time algorithm.

Several generalizations of Doap in which the graph (not necessarily a tree) can be
augmented with the addition of k edges have also been studied. In the more general setting,
the problem is NP-hard [17], not approximable within logarithmic factors [2], and some of
its variants – parameterized w.r.t. the overall cost of added shortcuts and resulting diameter
– are even W[2]-hard [8, 9]. Therefore, several approximation algorithms have been developed
for all these variations [2, 5, 7, 8, 14]. Finally, upper and lower bounds on the values of the
diameters of the augmented graphs have also been investigated in [1, 6, 13].

Our approaches. Große et al. [10] were the first to attack Doap for paths embedded in a
metric space. They gave an O(n log n) time algorithm for the corresponding search version
of the problem:

For a given value λ > 0, either compute a shortcut whose addition to the path induces
a graph of diameter at most λ, or return ⊥ if such a shortcut does not exist.

Then, by implementing their algorithm also in a parallel fashion and applying Megiddo’s
parametric-search paradigm [15], they solved Doap for paths embedded in a metric space
in O(n log3 n) time. Lately, Wang [18] improved upon this result in two ways. First, he
solved the search version of the problem in linear time. Second, he developed an ad-hoc

2 More precisely, c is a metric function and δ(u, v) = c(u, v), for every (u, v) ∈ E(G).



D. Bilò 40:3

algorithm that, using the algorithm for the search version of the problem black-box together
with sorted-matrix searching techniques and range-minima data structure, is able to: (i)
reduce the size of the solution-search-space from

(
n
2
)
to n in O(n log n) and (ii) evaluate the

quality of all the leftover solutions in O(n) time.
Our approach for Doap instances embedded in a metric space is close in spirit to the

approach used by Wang. In fact, we develop an algorithm that solves the search version of
Doap in linear time and we use such an algorithm black-box to solve Doap in O(n log n) time
and linear space by first reducing the size of the solution-search-space from

(
n
2
)
to n and then

by evaluating the quality of the leftover solutions in O(n log n) time. However, differently
from Wang’s approach, we use Hershberger data structure for computing the upper envelope
of a set of linear functions [12] rather than a range-minima data structure. Furthermore,
there are several issues we have to deal with due to the much more complex topology of
trees. We solve some of these issues using a lemma proved in [11] about the existence of
an optimal shortcut whose endvertices both belong to a diametral path of the tree. This
allows us to reduce our Doap instance to a node-weighted path instance of a similar problem,
that we call WDoap, in which the distance between two vertices is measured by adding
the weights of the two considered vertices to the length of a shortest path between them,
and the diameter is defined accordingly. However, it is not possible to use the algorithms
presented in [10, 18] black-box to solve WDoap. Therefore we need to design an ad-hoc
algorithm whose correctness strongly relies on the structural properties of diametral paths
and properties satisfied by node weights. Furthermore, most of the easy observations that
can be done for paths become non-trivial lemmas that need formal proofs for trees.

Our time-optimal algorithm that solves Doap for instances with general weights is based
on the following important observations. We reduce, in O(n2) time, a Doap instance to
another Doap instance in which the function c is graph-metric, i.e., c is an almost metric
function that satisfies a weaker version of the triangle inequality. Since our O(n log n) time
algorithm for Doap instances embedded in a metric space also works for graph-metric spaces,
we can use this algorithm black-box to solve the reduced Doap instance in O(n log n) time,
thus solving the original Doap instance in O(n2) time.

Finally, the (1 + ε)-approximation algorithm for trees embedded in a metric space is
obtained by proving that the diameter of the tree is at most three times the diameter, say
D∗, of an optimal solution. This allows us to partition the vertices along a diametral path
into O(1/ε) sets such that the distance between any two vertices of the same set is at most
O(εD∗). We choose a suitable representative vertex for each of the O(1/ε) sets and use our
O(n log n) time algorithm to find an optimal shortcut in the corresponding WDoap instance
restricted to the set of representative vertices. Since the representative vertices are O(1/ε),
the optimal shortcut in the restricted WDoap instance can be found in O(ε−1 log ε−1) time.
Furthermore, because of the choice of the representative vertex, we can show that the shortcut
returned is a (1 + ε)-approximate solution for the (unrestricted) WDoap instance of our
problem, i.e., a (1 + ε)-approximate solution for our original Doap instance.

Due to the lack of space, in this paper we only describe the O(n log n) time algorithm
for the instances embedded in a metric space and we refer to https://arxiv.org/abs/
1809.08822 for the full version of the paper. The rest of the paper is organized as follows:
in Section 2 we present some preliminary results among which the reduction from general
instances to graph-metric instances; in Section 3 we describe the reduction from Doap to
WDoap together with further simplifications; in Section 4 we design an algorithm that solves
a search version of WDoap in linear time; in Section 5 we develop an algorithm that solves
Doap for trees embedded in a graph-metric space.
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3

1 1

2 2

Figure 1 An example of a graph-metric function. The graph (a path in this specific example)
is given by the two solid edges of weight 2 each. The shortcuts are dashed. The example shows a
graph-metric function that does not satisfy the triangle inequality.

2 Preliminaries

To simplify the notation, we drop the subscript from dT (·, ·) whenever T is clear from the
contest and we denote dT+(u,v)(·, ·) by du,v(·, ·). The diameter of a graph G is denoted by
diam(G). A diametral path of G is a shortest path in G of length equal to diam(G). We say
that c is a graph-metric w.r.t. G, or simply a graph-metric when G is clear from the contest,
if, for every three distinct vertices u, v, and z of G, we have that

c(u, v) ≤ c(u, z) + d(z, v). (graph-triangle inequality)

We observe that a metric cost function is also graph-metric, but the opposite does not hold
in general (see Figure 1). The graph-metric closure induced by c is a function c̄ such that, for
every two vertices u and v of G, c̄(u, v) = min

{
dG(u, u′)+c(u′, v′)+dG(v′, v) | u′, v′ ∈ V (G)

}
.

The following lemma shows that we can restrict Doap to input instances where c is graph-
metric. We observe that the reduction holds for any graph and not only for trees.

I Lemma 1. Solving the instance 〈G, δ, c〉 of Doap is equivalent to solving the instance
〈G, δ, c̄〉 of Doap, where c̄ is the graph-metric closure induced by c.

Next lemma shows the existence of an optimal shortcut whose endvertices are both on a
diametral path of T for the case in which c is a graph-metric.

I Lemma 2. Let 〈T, δ, c〉 be an instance of Doap, where c is a graph-metric, and let
P = (v1, . . . , vN ) be a diametral path of T . There always exists an optimal shortcut (u∗, v∗)
such that u∗, v∗ ∈ V (P ).

3 Reduction from trees to node-weighted paths

In this section we show that a Doap instance embedded in a graph-metric space can be
reduced in linear time to a node-weighted instance of a similar problem. The Node-Weighted-
Diameter-Optimal Augmentation Problem (WDoap for short) is defined as follows:
Input: A path P = (v1, . . . , vN ), with a weight δ(vi, vi+1) > 0 associated with each edge

(vi, vi+1) of P , a weight w(vi) associated with each vertex vi such that 0 ≤ w(vi) ≤
min{d(v1, vi), d(vi, vN )}, and an oracle that is able to report the weight c(vi, vj) of a
queried shortcut in O(1) time, where c is a graph-metric;

Output: Two indices i∗ and j∗, with 1 ≤ i∗ < j∗ ≤ N , that minimize the function

D(i, j) := max
1≤k<h≤N

{
w(vk) + dvi,vj

(vk, vh) + w(vh)
}
.

We observe that w(v1) = w(vN ) = 0. Let 〈T, δ, c〉 be a Doap instance, where c is a graph-
metric. Let P = (v1, . . . , vN ) be a diametral path of T , Ti the tree containing vi in the forest
obtained by removing the edges of P from T , and w(vi) := maxv∈V (Ti) d(vi, v). We say that
〈P, δ, w, c〉 is the WDoap instance induced by 〈T, δ, c〉 and P . The following lemma holds.
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I Lemma 3. The WDoap instance 〈P, δ, w, c〉 induced by 〈T, δ, c〉 and P can be computed
in O(n) time. Moreover, diam

(
T + (vi, vj)

)
= D(i, j), for every 1 ≤ i < j ≤ N .

3.1 Further simplifications
In the rest of the paper, we show how to solve WDoap in O(N logN) time and linear space.
To avoid heavy notation, from now on we denote a vertex vi by using its associated index i.
All the lemmas contained in this subsection are non-trivial generalizations of observations
made in [10] for paths. We start proving a useful lemma.

I Lemma 4. Let i, j be two indices such that 1 ≤ i < j ≤ N . Let I = {1} ∪ {k | i < k ≤ N}
and let J = {N} ∪ {h | 1 ≤ h < j}. We have that

D(i, j) = max
k∈I,h∈J,k<h

{
w(k) + di,j(k, h) + w(h)

}
.

As we will see in a short, Lemma 4 allows us to decompose the function D(i, j) into four
monotone parts. First of all, for every i = 1, . . . , N , we define

ω(i) := max
{
w(j)− d(i, j) | 1 ≤ j ≤ N

}
.

Observe that, for every 1 ≤ i ≤ j ≤ N ,

ω(i) ≤ ω(j) + d(i, j). (node-triangle inequality)

Furthermore, ω(i) ≥ w(i), for every 1 ≤ i ≤ N , which implies ω(1) = ω(N) = 0. The
following lemma establishes the time complexity needed to compute all the values ω(i).

I Lemma 5. All the values ω(i), with 1 ≤ i ≤ N , can be computed in O(N) time.

For the rest of this section, unless stated otherwise, i and j are such that 1 ≤ i < j ≤ N .
The four functions used to decompose D(i, j) are the following (see also Figure 2)

U(i, j) := d(1, i) + c(i, j) + d(j,N);

S(i, j) := max
i≤h<j

(
ω(h) + min

{
d(1, h), d(1, i) + c(i, j) + d(h, j)

})
;

E(i, j) := max
i<k≤j

(
ω(k) + min

{
d(k,N), d(j,N) + c(i, j) + d(i, k)

})
;

C(i, j) := max
i<k<h<j

(
ω(k) + min

{
d(k, h), d(i, k) + c(i, j) + d(h, j)

}
+ ω(h)

)
.

Using both the graph-triangle inequality and the node-triangle inequality, we can observe
that all the four functions are monotonic. More precisely:

U(i, j + 1) ≤ U(i, j) ≤ U(i+ 1, j);
S(i− 1, j) ≤ S(i, j) ≤ S(i, j + 1);
E(i, j + 1) ≤ E(i, j) ≤ E(i− 1, j);
C(i+ 1, j) ≤ C(i, j) ≤ C(i, j + 1).

Moreover, we can prove the following lemma.

I Lemma 6. D(i, j) = max
{
U(i, j), S(i, j), E(i, j), C(i, j)

}
.

The following lemma allows us to efficiently compute the values U(i, j), S(i, j), and E(i, j).

I Lemma 7. After a O(N)-time precomputation phase, for every 1 ≤ i < j ≤ N , U(i, j) can
be computed in O(1) time, while both S(i, j) and E(i, j) can be computed in O(logN) time.
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1 i j N

U(i, j)

1 i j Nh h′

S(i, j)

1 i j Nk h′

E(i, j)

1 i j Nk′ h′

C(i, j)

k h

Figure 2 The four functions used to decompose D(i, j). Node weights are omitted and shortest
paths are highlighted in bold. U(i, j) = d(1, i) + c(i, j) + d(j,N). S(i, j) is the maximum among all
the (node-weighed) distances between 1 and all the vertices of the cycle. In our example the distance
from 1 to h is d(1, h) + ω(h), while the distance from 1 to h′ is d(1, i) + c(i, j) + d(j, h′) + ω(h′).
E(i, j) is the maximum among all the distances between N and all the vertices of the cycle. In
our example the distance from N to k is d(k,N) + ω(k), while the distance from N to k′ is
d(j,N) + c(i, j) + d(i, k′) + ω(k′). Finally, C(i, j) is the maximum among all the distances between
pair of vertices in the cycle. In our example the distance from k to h is ω(k) + d(k, h) + ω(h), while
the distance from k′ to h′ is ω(k′) + d(i, k) + c(i, j) + d(j, h′) + ω(h′).

4 The linear time algorithm for the search version of WDoap

In this section we design an O(N) time algorithm for the following search version of WDoap:

For a given WDoap instance 〈P, δ, ω, c〉, where c is a graph-metric and ω satisfies the
node-triangle inequality, and a real value λ > 0, either find two indices 1 ≤ i < j ≤ N
such that D(i, j) ≤ λ, or return ⊥ if such two indices do not exist.

In the following we assume that d(1, N) > λ, as otherwise D(i, j) ≤ λ for any two indices
i and j. For the rest of this section, unless stated otherwise, i and j are two fixed indices
such that 1 ≤ i < j ≤ N . Let i < µi ≤ N be the minimum index, or N + 1 if such an index
does not exists, such that U(i, µi) ≤ λ. Our algorithm computes the index µi, for every
1 ≤ i < N . As U(i, j) ≥ U(i, j + 1) for every i < j < N , the following lemma holds.

I Lemma 8. U(i, j) ≤ λ iff µi ≤ j (see also Figure 3).

Moreover, as U(i, j) ≤ U(i + 1, j), we have that µi ≤ µi+1. Therefore, our algorithm can
compute all the indices µi in O(N) time by scanning all the vertices of P from 1 to N .

We introduce some new notation useful to describe our algorithm. We define ri as the
maximum index such that i < ri ≤ N and ω(i) + d(i, ri) + ω(ri) ≤ λ. If such an index
does not exist, we set ri = i. Similarly, we define `N as the minimum index such that
1 ≤ `N < N and ω(`N ) + d(`N , N) ≤ λ. If such an index does not exist, we set `N = N .
Observe that if j ≤ ri, then, using the node-triangle inequality, ω(i) + d(i, j) + ω(j) ≤
ω(i) + d(i, j) + d(j, ri) + ω(ri) = ω(i) + d(i, ri) + ω(ri) ≤ λ. Therefore,

ω(i) + d(i, j) + ω(j) ≤ λ iff j ≤ ri. (1)

Similarly, if `N ≤ i, then, using the node-triangle inequality, ω(i) + d(i,N) ≤ ω(`N ) +
d(`N , i) + d(i,N) = ω(`N ) + d(`N , N) ≤ λ. Therefore,

ω(i) + d(i,N) ≤ λ iff `N ≤ i. (2)
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1

1

1

N

N

N

i

i

i

µi

r1 σi

ρi

U(i, j) > λ U(i, j) ≤ λ

S(i, j) ≤ λ S(i, j) > λ

E(i, ρi) > λ E(i, ρi) ≤ λ

θρi `N

Figure 3 An example showing the properties satisfied by the functions U(i, j), S(i, j), and E(i, ρi).
The example shows a case in which ρi is defined. We observe that the search version of WDoap
admits a feasible solution consisting of a shortcut adjacent to i iff there exists an index j belonging
to the shaded area such that C(i, j) ≤ λ. Furthermore, among all the possible choices, ρi is the one
that minimizes the value C(i, j).

The algorithm computes all the indices ri, with 1 ≤ i < N , and the index `N . Since
ω(i) ≥ ω(i+ 1)− d(i, i+ 1), we have that ri ≤ ri+1. Therefore, all the ri’s can be computed
in O(N) time by scanning all the vertices of P in order from 1 to N . Clearly, also `N can
be computed in O(N) time by scanning all the vertices of P in order from N downto 1. As
d(1, N) > λ, we have that r1 < N and `N > 1. We define the following two functions

S̄(i, j) := d(1, i) + c(i, j) + d(r1 + 1, j
)

+ ω(r1 + 1)

and

Ē(i, j) := d(j,N) + c(i, j) + d(i, `N − 1) + ω(`N − 1).

Observe that both S̄(i, j) and Ē(i, j) can be computed in constant time. Moreover, using
the graph-triangle inequality, we have that

if r1 < j, then S̄(i, j) ≤ S̄(i, j + 1);
if i < `N , then Ē(i, j) ≤ Ē(i+ 1, j).

As the following lemma shows, the values S̄(i, j) and Ē(i, j) can be used to understand
whether S(i, j) ≤ λ and E(i, j) ≤ λ, respectively.

I Lemma 9. If U(i, j) ≤ λ, then:
S(i, j) ≤ λ iff i ≤ r1 and S̄(i, j) ≤ λ;
E(i, j) ≤ λ iff `N ≤ j and Ē(i, j) ≤ λ.

Let i < σi ≤ N be the maximum index, or i if such an index does not exist, such that
S̄(i, σi) ≤ λ. Analogously, let 1 ≤ θj < j be the minimum index, or j if such an index does
not exist, such that Ē(θj , j) ≤ λ. Our algorithm computes all the indices σi, with 1 ≤ i < N ,
and the indices θj , with 1 < j ≤ N . By the graph-triangle inequality, S̄(i, j) ≤ S̄(i+ 1, j) as
well as Ē(i, j) ≤ Ē(i, j − 1). As a consequence, σi+1 ≤ σi and θj−1 ≥ θj . Therefore, all the
σi’s can be computed in O(N) time by scanning all the vertices of P in order from 1 to N .
Similarly, all the θj ’s can be computed in O(N) time by scanning all the vertices of P in
order from N downto 1. The following lemma holds.

I Lemma 10. If U(i, j) ≤ λ, then:
S(i, j) ≤ λ iff i ≤ r1 and j ≤ σi (see also Figure 3);
E(i, j) ≤ λ iff `N ≤ j and θj ≤ i (see also Figure 3).
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Let ρi be the minimum index, or ⊥ if such an index does not exist, such that µi ≤ ρi ≤ σi
and i ≥ θρi

. The algorithm computes ρi, for every i = 1, . . . , N . Since µi ≤ µi+1, σi+1 ≤ σi,
and θj−1 ≥ θj , all the indices ρi can be computed in O(N) time. The following lemma holds.

I Lemma 11. Let 〈P, δ, ω, c〉 be an instance of WDoap, where c is a graph-metric and
ω satisfies the node-triangle inequality, and let λ > 0. There exists an index 1 ≤ i < N ,
such that ρi is defined and C(i, ρi) ≤ λ iff the search version of WDoap on input instance
〈P, δ, ω, c, λ〉 admits a feasible solution.

In the following we show how to check whether C(i, ρi) ≤ λ in constant time after an O(N)
time preprocessing. For every 1 ≤ i < N such that ri < N , the algorithm computes

∆(i) = λ− ω(i) + d(i, ri + 1)− ω(ri + 1).

Moreover, the algorithm computes ∆min = min1≤i<N ∆(i). Finally, for every i = 1, . . . , N
for which ρi is defined, our algorithm checks whether d(i, ρi) + c(i, ρi) ≤ ∆min. If there exists
i such that d(i, ρi) + c(i, ρi) ≤ ∆min, then our algorithm returns (i, ρi). If this is not the case,
then our algorithm returns ⊥ . The following lemma proves the correctness of our algorithm.

I Lemma 12. Let 〈P, δ, ω, c〉 be an instance of WDoap, where c is a graph-metric and ω
satisfies the node-triangle inequality, and let λ > 0. The search version of WDoap on input
instance 〈P, δ, ω, c, λ〉 admits a feasible solution iff there exists an index 1 ≤ i < N , such that
ρi is defined and d(i, ρi) + c(i, ρi) ≤ ∆min.

We can conclude this section with the following theorem.

I Theorem 13. Let 〈P, δ, ω, c〉 be an instance of WDoap, where c is a graph-metric and ω
satisfies the node-triangle inequality, and let λ > 0. The search version of WDoap on input
instance 〈P, δ, ω, c, λ〉 can be solved in O(N) time and space.

5 The algorithm for WDoap

In this section we design an efficient O(N logN) time and O(N) space algorithm that finds
an optimal solution for instances 〈P, δ, ω, c〉 of WDoap, where c is a graph-metric and ω

satisfies the node-triangle inequality. In the rest of the paper we denote by D∗ the diameter
of an optimal solution to the problem instance and, of course, we assume that D∗ is not
known by the algorithm. For the rest of this section, unless stated otherwise, i and j

are two fixed indices such that 1 ≤ i < j ≤ N . Similarly to the notation already used
in the previous section, we define ri as the maximum index such that i < ri ≤ N and
ω(i) + d(i, ri) + ω(ri) ≤ D∗. If such an index does not exist, then ri = i. Analogously, we
define `N as the minimum index such that 1 ≤ `N < N and ω(`N ) + d(`N , N) ≤ D∗. If such
an index does not exist, then `N = N . Our algorithm consists of the following three phases:
1. a precomputation phase in which the algorithm computes all the indices ri, with 1 ≤ i < N ,

and the index `N ;
2. a search-space reduction phase in which the algorithm reduces the size of the solution

search space from
(
N
2
)
to N − 1 candidates;

3. an optimal-solution selection phase in which the algorithm builds a data structure that is
used to evaluate the leftover N − 1 solutions in O(logN) time per solution.

Each of the three phases requires O(N logN) time and O(N) space; furthermore, they all
make use of the linear time algorithm for the search version of WDoap black-box. In the
following we assume that d(1, N) > D∗, as otherwise, any shorcut returned by our algorithm
would be an optimal solution.
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5.1 The precomputation phase
We perform a binary search over the indices from 1 to N and use the linear time algorithm
for the search version of WDoap to compute the maximum index `N in O(N logN) time
and O(N) space. Indeed, when our binary search considers the index k as a possible choice
of `N , it is enough to call the linear time algorithm for the search version of WDoap with
parameter λ = ω(k)+d(k,N) and see whether the algorithm returns either a feasible solution
or ⊥. Due to the node-triangle inequality, in the former case we know that `N ≤ k, while in
the latter case we know that `N > k.

Now we describe how to compute all the indices ri. Because of the node-triangle
inequality ri < N iff i < `N . Therefore, we only have to describe how to compute ri
for every i < `N , since if i ≥ `N , then ri = N . We use the linear time algorithm for
the search version of WDoap and perform a binary search over the set of sorted values{
ω(i) + d(i, i+ 1) + ω(i+ 1) | 1 ≤ i < `N

}
to compute the largest value of the set that is less

than or equal to D∗, if any. This allows us to compute, in O(N logN) time and O(N) space,
the set of all indices i < `N for which ri = i. Now, for every index i < `N for which ri > i,
we set ai = i + 1 and bi = N . Observe that ai ≤ ri ≤ bi. Next, using a two-round binary
search, we restrict all the intervals [ai, bi]’s by updating both ai and bi while maintaining
the invariant property ai ≤ ri ≤ bi at the same time.

Let X be the set of indices i, with 1 ≤ i < `N , for which bi ≥ ai+2. The first round of the
binary search ends exactly when X becomes empty. Each iteration of the first round works
as follows. For every i ∈ X, the algorithm computes the median index mi =

⌊
(ai + bi)/2

⌋
.

Next the algorithm computes the weighted median of the mi’s, say mτ , where the weight of
mi is equal to bi − ai. Let

X+
τ =

{
i ∈ X | ω(i) + d(i,mi) + ω(mi) ≥ ω(τ) + d(τ,mτ ) + ω(mτ )

}
and

X−τ =
{
i ∈ X | ω(i) + d(i,mi) + ω(mi) ≤ ω(τ) + d(τ,mτ ) + ω(mτ )

}
.

Observe that X = X+
τ ∪X−τ and τ ∈ X+, X−.

Now we call the linear time algorithm for the search version of WDoap with parameter
λ = ω(τ) + d(τ,mτ ) + ω(mτ ). If the algorithm finds two indices such that D(i, j) ≤ λ, then
we know that D∗ ≤ λ and therefore, for every i ∈ X+

τ , we update bi by setting it equal to mi.
If the algorithm outputs ⊥, then we know that D∗ > λ and therefore, for every i ∈ X−τ , we
update ai by setting it equal to mi. We observe that in either case, the invariant property
ai ≤ ri ≤ bi is kept because of (1). An iteration of the first round of the binary search ends
right after the removal of all the indices i such that bi = ai + 1 from X. Notice that, in the
worst case, the overall sum of the intervals widths at the end of a single iteration is (almost)
3/4 times the same value computed at the beginning of the iteration. This implies that
the first round of the binary search ends after O(logN) iterations. Furthermore, the time
complexity of each iteration is O(N). Therefore, the overall time needed for the first round
of the binary search is O(N logN).

The second round of the binary search works as follows. Because ai ≤ ri ≤ bi and
bi ≤ ai + 1 for every i < `N such that i < ri, we have that ri is equal to either ai or bi. To
understand whether either ri = ai or ri = bi, we sort the (at most) 2N values

Υ =
⋃

i<`N , i<ri

{
ω(i) + d(i, ai) + ω(ai), ω(i) + d(i, bi) + ω(bi)

}
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and use binary search, together with the linear time algorithm for the search version of
WDoap, to compute the two consecutive distinct values D+, D− ∈ Υ such that D− < D∗ ≤
D+ (if D− does not exist, then we assume it to be equal to 0). Finally, we use the two values
D+ and D− to select either ai or bi. More precisely, if ai = bi, then ri = ai. If ai 6= bi, then
by the choice of D− and D+, either D− < ω(i) + d(i, ai) + ω(ai) ≤ D+ (i.e., ri = ai) or
D− < ω(i) + d(i, bi) + ω(bi) ≤ D+ (i.e., ri = bi). The time and space complexities of the
second round of the binary search are O(N logN) and O(N), respectively. We have proved
the following lemma.

I Lemma 14. The precomputation phase takes O(N logN) time and O(N) space.

5.2 The search-space reduction phase
In the search-space reduction phase the algorithm computes a set of N − 1 candidates as
optimal shortcut in O(N logN) time and O(N) space. Let f(i, j) := max

{
U(i, j), Ē(i, j)

}
.

Since both U(i, j) and Ē(i, j) are monotonically non-increasing w.r.t. j,3 f(i, j) is monotonic-
ally non-increasing w.r.t. j. For every 1 ≤ i < N , our algorithm computes the minimum index
1 < ψi ≤ N , if any, such that f

(
i, ψi

)
≤ D∗. As both S(i, j) and C(i, j) are monotonically

non-decreasing w.r.t. j, it follows that the set
{(
i, ψi

)
| 1 ≤ i < N

}
contains an optimal

solution to the problem instance.
We compute all the indices ψi’s using a two-round binary search techique similar to the

one we already used in the precomputation phase. First, we set ai = i+ 1 and bi = N , for
every 1 ≤ i < N . Observe that ai ≤ ψi ≤ bi. In the two-round binary search, we restrict all
the intervals [ai, bi]’s by updating both ai and bi while maintaining the invariant property
ai ≤ ψi ≤ bi at the same time.

Let X be the set of indices i for which bi ≥ ai + 2. The first round of the binary search
ends exactly when X becomes empty. Each iteration of the first round works as follows.
For every i ∈ X, the algorithm computes the median index mi =

⌊
(ai + bi)/2

⌋
. Next the

algorithm computes the weighted median of the mi’s, say mτ , where the weight of mi is
equal to bi − ai. Let

X+
τ =

{
i ∈ X | f(i,mi) ≥ f(τ,mτ )

}
and X−τ =

{
i ∈ X | f(i,mi) ≤ f(τ,mτ )

}
.

Observe that X = X+
τ ∪X−τ ; moreover, τ ∈ X+, X−.

Now we call the linear time algorithm for the search version of WDoap with parameter
λ = f(τ,mτ ). If the algorithm finds two indices such that D(i, j) ≤ λ, then we know that
D∗ ≤ f(τ,mτ ) and therefore, since f(i, j) ≤ f(i, j + 1), for every i ∈ X+

τ , we update bi by
setting it equal to mi. If the algorithm outputs ⊥, then we know that D∗ > f(τ,mτ ) and
therefore, by monotonicity of f , for every i ∈ X−τ , we update ai by setting it equal to mi. We
observe that in either case, the invariant property ai ≤ ψi ≤ bi is maintained. An iteration of
the first round of the binary search ends right after the removal of all the indices i such that
bi = ai + 1 from X. Notice that, in the worst case, the overall sum of the intervals widths at
the end of a single iteration is (almost) 3/4 times the same value computed at the beginning
of the iteration. This implies that the first round of the binary search ends after O(logN)
iterations. Furthermore, both the time and space complexities of each iteration is O(N).
Therefore, the overall time needed for the first round of the binary search is O(N logN).

3 Observe that E(i, j) = max{Ē(i, j), ω(`N )+d(`N , N)} because of the node-triangle inequality. However,
since we know that ω(`N ) + d(`N , N) ≤ D∗ by definition, we can check whether E(i, j) ≤ D∗ by simply
evaluating Ē(i, j).
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The second round of the binary search works as follows. Because ai ≤ ψi ≤ bi and
bi ≤ ai + 1, ψi is either equal to ai or to bi. To understand whether either ψi = ai or
ψi = bi, we sort the (at most) 2N values Υ =

⋃
1≤i<N

{
f(i, ai), f(i, bi)

}
and use binary

search, together with the linear time algorithm for the search version of WDoap, to compute
the two consecutive distinct values D+, D− ∈ Υ such that D− < D∗ ≤ D+ (if D− does not
exist, then we assume it to be equal to 0). Finally, we use the two values D+ and D− to
select either ai or bi. More precisely, if ai = bi, then ψi = ai. If ai 6= bi, then by the choice of
D− and D+, either D− < f(i, ai) ≤ D+ (i.e., ψi = ai) or D− < f(i, bi) ≤ D+ (i.e., ψi = bi).
The time and space complexities of the second round of the binary search are O(N logN)
and O(N), respectively. We have proved the following lemma.

I Lemma 15. The search-space reduction phase takes O(N logN) time and O(N) space.
Furthermore, there exists a shortcut (i∗, ψi∗) such that D

(
i∗, ψi∗

)
= D∗.

5.3 The optimal-solution selection phase

In the optimal-solution selection phase, we build a data structure in O(N logN) time and
use it to evaluate the quality of the N − 1 candidates (1, ψ1), . . . , (N − 1, ψN−1) in O(logN)
time per candidate. For every k = 1, . . . , N , we define

φk(x) := ω(k) + max
{
d(k, rk) + ω(rk), x− d(k, rk + 1) + ω(rk + 1)

}
.

Let U(x) := max
{
φk(x) | 1 ≤ k < `N

}
be the upper envelope of all the functions φk(x).

Observe that each φk(x) is itself the upper envelope of two linear functions. Therefore, U(x)
is the upper envelope of at most 2N − 2 linear functions. In [12] it is shown how to compute
the upper envelope of a set of O(N) linear functions in O(N logN) time and O(N) space.
In the same paper it is also shown how the value U(x) can be computed in O(logN) time,
for any x ∈ R.

We denote by xi = d(i, ψi) + c(i, ψi) the overall weight of the edges of the unique cycle in
P + (i, ψi). For every 1 ≤ i < N , we compute the value

ηi = max
{
U
(
i, ψi

)
, S
(
i, ψi

)
, E
(
i, ψi

)
,U(xi)

}
. (3)

The algorithm computes the index α that minimizes ηα and returns the shortcut (α,ψα) .

I Lemma 16. For every i, with 1 ≤ i < N , C(i, ψi) ≤ U(xi).

Let i∗ be the index such that D(i∗, ψi∗) = D∗, whose existence is guaranteed by Lemma 15.
The following lemma holds.

I Lemma 17. U(xi∗) ≤ D∗.

We can finally conclude this section by stating the main results of this paper.

I Theorem 18. WDoap can be solved in O(N logN) time and O(N) space.

I Theorem 19. Doap on trees embedded in a (graph-)metric space can be solved in O(n log n)
time and O(n) space.
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Abstract
Consider the following combinatorial problem: Given a planar graph G and a set of simple
cycles C in G, find a planar embedding E of G such that the number of cycles in C that bound a
face in E is maximized. This problem, called Max Facial C-Cycles, was first studied by Mutzel
and Weiskircher [IPCO ’99] and then proved NP-hard by Woeginger [Oper. Res. Lett., 2002].

We establish a tight border of tractability for Max Facial C-Cycles in biconnected planar
graphs by giving conditions under which the problem is NP-hard and showing that strengthening
any of these conditions makes the problem polynomial-time solvable. Our main results are
approximation algorithms for Max Facial C-Cycles. Namely, we give a 2-approximation for
series-parallel graphs and a (4 + ε)-approximation for biconnected planar graphs. Remarkably,
this provides one of the first approximation algorithms for constrained embedding problems.
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1 Introduction

A planar graph is a graph that can be embedded into the plane, i.e., it can be drawn into
the plane without crossings. Such an embedding partitions the plane into topologically
connected regions, called faces. There is exactly one unbounded face, which is called outer
face. While there exist infinitely many such embeddings, the embeddings for connected
graphs can be grouped into finitely many equivalence classes of combinatorial embeddings,
where two embeddings are equivalent if the clockwise cyclic order of the edges around each
vertex is the same and their outer face is bounded by the same walk. Since a graph may
admit exponentially many different such embeddings, several drawing algorithms for planar
graphs simply assume that one embedding has been fixed beforehand and draw the graph
with this fixed embedding. Often, however, the quality of the resulting drawing depends
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strongly on this embedding; examples are the number of bends in orthogonal drawings [17]
or the area requirement of planar straight-line drawings [8].

Consequently, there is a long line of research that seeks to optimize quality measures
over all combinatorial embeddings. Not surprisingly, except for a few notable cases such as
minimizing the radius of the dual graph [2, 15], many of these problems have turned out
to be NP-complete. For example it is NP-complete to decide whether there exists a planar
embedding that allows for a planar orthogonal drawing without bends or for an upward
planar drawing [12]. While there has been quite a bit of work on solving these problems for
special cases, e.g., for the orthogonal bend minimization problem [4, 5], to the best of our
knowledge, approximation algorithms have rarely been considered.

Another way of describing a combinatorial embedding of a connected graph G is by
describing its facial walks, i.e., by listing the walks of G that bound a face. In the case of
biconnected planar graphs, the facial walks are simple, and we refer to them as facial cycles.
In this paper, we consider the problem of optimizing the set of facial cycles. Given a list C of
cycles in a biconnected graph G, the problem Max Facial C-Cycles asks for an embedding
E of G such that the number of cycles in C that are facial cycles of E is maximized. The
practical motivation for this problem comes from the need to visualize graphs in such a way
that particular substructures, in this case cycles, are clearly recognizable. These structures
may be either provided manually by the user or be the result of an automated analysis. We
note that, given a biconnected planar graph G and a set C of cycles of G, it can be efficiently
decided whether there exists a planar embedding of G in which all cycles of C are facial
cycles. For each cycle C ∈ C, we subdivide each edge of C once and connect the subdivision
vertex to a new vertex vC . If the resulting graph is planar, then the desired embedding of
G can be obtained by removing all vertices vC and their incident edges. However, from a
practical point of view, this approach is insufficient, as it does not produce a solution if it is
not possible to simultaneously have all the cycles in C as facial cycles. Instead, we would like
to compute an embedding that maximizes the number of cycles in C that are facial cycles.

The research on this problem was initiated by Mutzel and Weiskircher [16], who gave
an integer linear program (ILP) for a weighted version. Woeginger [19] showed that the
problem is NP-complete by showing that it is NP-complete to maximize the number of facial
cycles that have size at most 4. Da Lozzo et al. [6] consider the problem of deciding whether
there exists an embedding such that the maximum face size is k. They give polynomial-time
algorithms for k ≤ 4, show NP-hardness for k ≥ 5, and give a factor-6 approximation for
minimizing the size of the largest face. Dornheim [10] studies a decision problem subject
to so-called topological constraints, which specify for certain cycles of a planar graph two
subsets of edges of the graph that have to be embedded inside and outside the respective
cycle; note that a cycle is a facial cycle if its interior is empty. He proved NP-completeness
and reduced the connected case to the biconnected case. Another related problem, known as
Partially Embedded Planarity (for short PEP), has been studied by Angelini et al. [1].
Given a planar graph G and an embedding EH of a subgraph H of G, the PEP problem asks
for the existence of an embedding EG of G that extends EH, i.e., the restriction of EG to H
coincides with EH. As observed before, if H is biconnected, then its combinatorial embedding
is fully specified by the set of cycles of H (of G) that are faces in EH. Thus, the Max Facial
C-Cycles problem can be interpreted as an optimization counterpart of PEP in which one
tries to minimize the set of faces of H that are not faces in the final embedding of G.

Contribution and outline. We thoroughly study the complexity of Max Facial C-Cycles
for biconnected planar graphs. We start with preliminaries concerning connectivity and the
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SPQR-tree data structure in Section 2. In Section 3, we show that Max Facial C-Cycles
is NP-complete even if each cycle in C intersects any other cycle in C in at most two vertices
and intersects at most three other cycles of C. In Section 4, we complement these results with
efficient algorithms for series-parallel and general planar graphs when the cycles intersect
only few other cycles in more than one vertex. We note that, though these instances are
fairly restricted, this establishes a tight border of tractability for the problem in the sense
that dropping or strengthening any of the conditions for our algorithms yields an NP-hard
problem. Moreover, the techniques for obtaining these results are the basis for our main result
in Section 5, where we develop efficient approximation algorithms for the problem. More
specifically, we give a 2-approximation for series-parallel graphs and a (4 + ε)-approximation
for biconnected planar graphs, where ε > 0 is a constant. We remark that, to the best of
our knowledge, this work and our contribution in [6] provide one of the very few known
approximability results concerning constrained combinatorial embeddings.

A full version of the paper containing omitted or sketched proofs is available as [7].

2 Connectivity and SPQR-trees

A graph G is connected if there is a path between any two vertices. A cutvertex (separating
pair) is a vertex (a pair of vertices) whose removal disconnects the graph. A connected (bicon-
nected) graph is biconnected (triconnected) if it does not have a cutvertex (a separating pair).

We consider uv-graphs with two special pole vertices u and v, which can be recursively
defined as follows. An edge uv is an uv-graph with poles u and v. Now let Gi be an uv-graph
with poles ui and vi, for i = 1, . . . , k, and let H be a planar graph with two designated
vertices u and v and k + 1 edges uv, e1, . . . , ek. We call H the skeleton of the composition
and its edges are called virtual edges; the edge uv is the parent edge and u and v are the poles
of the skeleton H. To compose the Gi into an uv-graph with poles u and v, we remove the
edge uv and replace each ei by Gi, for i = 1, . . . , k, by removing ei and identifying the poles
of Gi with the endpoints of ei. In fact, we only allow three types of compositions: in a series
composition the skeleton H is a cycle of length k + 1, in a parallel composition H consists of
two vertices connected by k + 1 parallel edge, and in a rigid composition H is triconnected.

It is known that for every biconnected graph G with an edge uv the graph G − uv is
an uv-graph with poles u and v. The uv-graph G − uv gives rise to a (de-)composition
tree T describing how it can be obtained from single edges. Refer to Fig. 1. The nodes of T
corresponding to edges, series, parallel, and rigid compositions of the graph are Q-, S-, P-,
and R-nodes, respectively. To obtain a composition tree for G, we add an additional root
Q-node representing the edge uv. To fully describe the composition, we associate with each
node µ its skeleton denoted by skel(µ). For a node µ of T , the pertinent graph pert(µ) is
the subgraph represented by the subtree with root µ. Similarly, for a virtual edge ε of a
skeleton skel(µ), the expansion graph of ε, denoted by exp(ε), is the pertinent graph pert(µ′)
of the neighbour µ′ of µ corresponding to ε when considering T rooted at µ.

The SPQR-tree of G with respect to the edge uv, originally introduced by Di Battista
and Tamassia [9], is the (unique) smallest decomposition tree T for G. Using a different edge
u′v′ of G and a composition of G− u′v′ corresponds to rerooting T at the node representing
u′v′. It thus makes sense to say that T is the SPQR-tree of G. The SPQR-tree of G has size
linear in G and can be computed in linear time [13]. Planar embeddings of G correspond
bijectively to planar embeddings of all skeletons of T ; the choices are the orderings of the
parallel edges in P-nodes and the embeddings of the R-node skeletons, which are unique up
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Figure 1 (left) A biconnected planar graph G and (right) the SPQR-tree T of G rooted at
edge e = uv. The skeletons of all non-leaf nodes of T are depicted; virtual edges corresponding to
edges of G are thin, whereas virtual edges corresponding to S-, P-, and R-nodes are thick. Dashed
arrowed curves connect the (dotted) parent edge in the skeleton of a child node with the virtual
edge representing the child node in the skeleton of its parent.

to a flip. When considering rooted SPQR-trees, we assume that the embedding of G is such
that the root edge is incident to the outer face, which is equivalent to the parent edge being
incident to the outer face in each skeleton. We remark that in a planar embedding of G, the
poles of any node µ of T are incident to the outer face of pert(µ). Hence, in the following
we only consider such embeddings.

Let µ be a node of T with poles u and v. We assume that edge uv is part of skel(µ)
and pert(µ). Note that, due to this addition, pert(µ) may not be a subgraph of G anymore.
The outer face of a embedding of pert(µ) is the one obtained from such an embedding after
removing the edge (u, v) connecting its poles.

3 Complexity

In this section we study the computational complexity of the underlying decision problem
Facial C-Cycles of Max Facial C-Cycles, which given a biconnected planar graph G,
a set C of simple cycles of G, and a positive integer k ≤ |C|, asks whether there exists a
planar embedding E of G such that at least k cycles in C are facial cycles of E . Facial
C-Cycles is in NP, as we can guess a set C′ ⊆ C of k cycles and then check in polynomial
time (in |G|+ |C|) whether an embedding of G exists in which all cycles in C′ are facial. We
show NP-hardness for general graphs and for series-parallel graphs.

I Theorem 1. Facial C-Cycles is NP-complete, even if each cycle C ∈ C
intersects any other cycle in C in at most two vertices, and
intersects at most three other cycles of C in more than one vertex.

Proof sketch. We give a reduction from Maximum Independent Set in triconnected cubic
planar graphs, which is NP-complete [14]. Let H be a triconnected cubic planar graph.
Observe that H has a unique combinatorial embedding up to a flip [18]. We construct an
instance 〈G, C, k〉 of Facial C-Cycles as follows; see Fig. 2. Take the planar dual H? of H ,
which is a triangulation, and take C as the set of facial cycles of H?. The graph G is obtained
from H? by adding for each edge e = uv ∈ E(H?) an edge vertex ve with neighbors u and v.
It is not hard to see that H admits an independent set of size k if and only if G admits a
combinatorial embedding where k cycles in C are facial (see [7]). J
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Figure 2 Illustrations for the proof of Theorem 1. (a) Graph H (black) and its planar dual H∗

(red). Vertex v1 is the only vertex in the MIS of H. (b) An embedding of graph G in which cycle C1

(corresponding to the face of H∗ that is dual to the vertex v1 of H) bounds a face.
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Figure 3 Illustrations for the proof of Theorem 2. (a) Cubic graph H with a Hamiltonian circuit
Q (thick, colored edges). (b) Gadget Ga for a vertex a ∈ V (H). (c) Combinatorial embedding of G
corresponding to circuit Q (facial cycles have the same color as the corresponding edge in Q).

I Theorem 2. Facial C-Cycles is NP-complete for series-parallel graphs, even if any two
cycles in C share at most three vertices.

Proof sketch. We reduce from Hamiltonian Circuit, which is known to be NP-complete
even for cubic graphs [11]. Let H be any such a graph.

Each vertex a ∈ V (H) is represented by a gadget Ga consisting of
1. the graph K2,3, where the vertices in the partition of size 2 are denoted sa and va and

the other vertices are denoted ua1 , ua2 , ua3 , and of
2. an additional vertex ta adjacent to va; see Fig. 3b.

To define graph G, we merge the vertices sa into a single vertex s and the vertices ta
into a single vertex t. To define C, we number the incident edges of each vertex of H
from 1 to 3. If ab is the i-th edge for a and the j-th edge for b, we define Cab ∈ C as the
cycle (s, uai , va, t, vb, ubj , s); see Fig. 3a and 3c. We claim that G admits a combinatorial
embedding with |V (H)| facial cycles in C if and only if H is Hamiltonian.

If Q is a Hamiltonian circuit of H, we embed G such that the order of the gadgets Ga is
the same as the order of the vertices in Q. We then choose embeddings of the gadgets such
that, for each edge ab of Q, the cycle Cab bounds the face between Ga and Gb; this yields
the claimed number of facial cycles in C. Conversely, observe that if Cab is a facial cycle
of an embedding of G, then Ga and Gb, where ab is an edge of H, must be consecutive in
the circular order around s. If G has |V (H)| facial cycles in C, it follows that the vertices
corresponding to the gadgets form a Hamiltonian circuit in this order. J

4 Polynomial-time Solvable Cases

In this section we discuss special cases of Max Facial C-Cycles that admit a polynomial-
time solution. In particular, we show that strengthening any of the conditions in Theorem 1

ISAAC 2018
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Figure 4 (b) Skeleton of the R-node µ of the SPQR-tree T rooted at edge e = uv of the graph
depicted in (a); see Fig. 1 for an illustration of tree T . The green and red cycles in (a) are relevant
for µ as they project to the green and red cycle in (b), respectively. The red cycle is an interface
cycle. Dotted edges and dotted virtual edges are associated with the parent of µ. (c) Pertinent graph
of the P-node depicted in (d) with three virtual edges corresponding to children from left to right
realizing none, the green and the red, and only the red cycle, respectively. The red cycle bounds face
f in (c) since, in addition, the second and third child are adjacent in the embedding of the skeleton.

or Theorem 2 makes the problem tractable.

4.1 General Planar Graphs
We study Max Facial C-Cycles when each cycle in C intersects at most two other cycles
in C in more than one vertex. In this setting, we give in Theorem 9 a quadratic-time algorithm
for biconnected planar graphs. For series-parallel graphs we present in Theorem 10 an FPT
algorithm with respect to the maximum number of cycles in C sharing two or more vertices
with any cycle in C. We remark that our algorithms imply that strengthening any of the two
conditions of Theorem 1 results in a polynomial-time solvable problem. In particular, Max
Facial C-Cycles is polynomial-time solvable if any two cycles in C share at most one vertex.

We compute the optimal solution in these cases by a dynamic program that works
bottom-up in the SPQR-tree T of G. Let µ be a node of T . We call a cycle C ∈ C relevant
for µ (or for skel(µ)) if it projects to a cycle in skel(µ), that is, the vertices of C in skel(µ)
and the edges of skel(µ) that contain vertices or edges in C form a cycle C ′ in skel(µ) with
at least two edges. The cycle C ′ is the projection of the cycle C in skel(µ). Similarly, we
also define the projection of a cycle C ∈ C to pert(µ). The cycle C is an interface cycle
of µ if its projection C ′ contains the parent edge of skel(µ). Refer to Figs. 4a and 4b. We
denote the set of relevant cycles and of interface cycles of a node µ by R(µ) and by I(µ),
respectively. Clearly, I(µ) ⊆ R(µ). We denote I(µ) = {X ⊆ I(µ) | |X| ≤ 2} as the set of
possible interfaces. Let µ be a node of T . We have the following two important observations.

I Observation 3. If each cycle in C intersects at most two other cycles in C in more than
one vertex, then |I(µ)| ≤ 3.

I Observation 4. In any combinatorial embedding E of G at most two interface cycles of µ
can simultaneously bound a face in E.

Observation 3 holds since all interface cycles of a node µ share at least the poles of µ.
Observation 4 holds since each interface cycle can only bound one of the two faces incident
to the virtual edge representing the parent of µ in skel(µ).

Thus, to the rest of G, the only relevant information about a combinatorial embedding
Eµ of pert(µ) is
(a) the number of facial cycles in C that bound a face of Eµ and
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(b) the set of cycles in C that project to the facial cycles incident to the parent edge of
pert(µ).

The reason for (a) is that cycles of C that are facial cycles of Eµ not incident to the parent
edge will be facial cycles of any embedding of G where the embedding of pert(µ) is Eµ. So
it suffices to track their number rather than which cycles are facial. For (b) observe that
only those cycles that project to a face incident to Eµ can potentially be realized by any
embedding of G where the embedding of pert(µ) is Eµ. We thus have to keep track of them.
However, by Observation 4, at most two of them can eventually become facial cycles, and
hence it suffices to consider any combination of at most two cycles for this interface.

If E is a combinatorial embedding of pert(µ) and the elements of I ∈ I(µ) project to distinct
faces incident to the parent edge in pert(µ), we say that E realizes I; see Figs. 4c and 4d.

For any node µ and any set I ∈ I(µ), we denote by T [µ, I] the maximum number k
such that there exists a combinatorial embedding E of pert(µ) that realizes I and such that
k cycles in C bound a face of E that is not incident to the parent edge of pert(µ). If no
such embedding exists, we set T [µ, I] = −∞. Due to Observation 4, for convenience we
extend the definition of T to the case in which the size of I is larger than 2; in this case, we
define T [µ, I] = −∞.

We show how to compute the entries of T in a bottom-up fashion in the SPQR-tree T
of G. It is not hard to modify the dynamic program to additionally output a corresponding
combinatorial embedding of G. We root T at an arbitrary Q-node ρ. Let φ be the unique child
of ρ. Note that the maximum number of facial cycles in C for any combinatorial embedding
of G is maxI∈I(φ) |I|+ T [φ, I]. For any leaf Q-node µ, we have that T [µ, I] = 0 for each I ∈
I(µ). The following lemmata deal with the different types of inner nodes in an SPQR-tree.

I Lemma 5. Let µ be an S-node with children µi, i = 1, . . . , k. Then, T [µ, I] =
∑k
i=1 T [µi, I],

for I ∈ I(µ). Also, each entry T [µ, I] can be computed in O(k) time.

Proof. The lemma follows easily from the observation that a combinatorial embedding
of pert(µ) realizes I if and only if each of its children realizes I. J

I Lemma 6. Let µ be a P-node with children µ1, . . . , µk. Then

T [µ, I] = max
I⊆C⊆R(µ)

(
k∑
i=1

T [µi, Cµi
] + f(C)) ,

where (i) Cµi
= C ∩ I(µi) and (ii) f(C) = |C \ I| if skel(µ) admits a planar embedding

E such that (a) each two virtual edges ei and ej corresponding to children µi and µj of µ,
respectively, such that |Cµi

∩ Cµj
| = 1 are adjacent in E, and where (b) the virtual edges e′

and e′′ corresponding to the children µ′ and µ′′ of µ such that C ′µ ∩ I 6= ∅ and C ′′µ ∩ I 6= ∅,
respectively, are incident to the outer face of E, and f(C) = −∞ otherwise.

Proof. Consider an embedding of pert(µ) that embeds T [µ, I] cycles of C as facial cycles
and the corresponding embedding E of skel(µ). Let C ⊆ R(µ) denote the set of cycles in C
that are facial cycles in E or that are in I. Obviously, to make a cycle c ∈ C \ I a facial
cycle, each of the two children of µ that contain c in their interface (i) must be adjacent in
E and (ii) must both realize cycle c. Also, in order for the cycles in I to bound the outer
face of the embedding of pert(µ), the two children of µ containing such interface cycles (i)
must be incident to the outer face of E and (ii) must each realize one of these cycles in
their interface. Hence T [µ,C] is a lower bound on the number of facial cycles in C in the
embedding of pert(µ). On the other hand, it is not hard to see that by picking the maximum
over all subsets C ⊆ R(µ) this bound is attained. J
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We note that the existence of a corresponding embedding for a P-node µ with k children
can be tested in O(k) time for any set C ⊆ R(µ), thus allowing us to evaluate f(C) efficiently
as follows. Consider the auxiliary multigraph O that contains a vertex for each virtual edge
of skel(µ), except for the edge representing the parent of µ, and two such edges are adjacent
if and only if there is a cycle in C \ I that contains edges from both expansion graphs. Also,
if there exist two virtual edges in skel(µ) containing edges from cycles in I, multigraph O
contains an edge between them. A corresponding embedding exists if and only if O is either a
simple cycle or it is a collection of paths. In latter case, O can be augmented to a simple cycle
and the order of the virtual edges along this cycle defines a suitable embedding of skel(µ).

Generally, the size of R(µ) can be large. However, if every cycle C ∈ C shares two or
more vertices with at most r other cycles in C, the running time can be bounded as follows.

I Lemma 7. Let µ be a P-node with children µ1, . . . , µk such that any cycle of R(µ) shares
two or more vertices with at most r other cycles in R(µ). For each set I ∈ I(µ), table T [µ, I]
can be computed in O(r22r · k) time from T [µi, ·] with i = 1, . . . , k.

Proof. We employ Lemma 6. It is |R(µ)| ≤ r + 1, and |I(µ)| = O(r2). For each I ∈ I(µ) we
need to consider all the sets C ⊆ R(µ) such that I ⊆ C. There are O(2r) such sets C and
for each of them we evaluate f(C) in O(k) time. J

We now deal with R-nodes. Let µ be an R-node. Note that the instance in the hardness
of Theorem 1 is an R-node whose children are a parallel of an edge and a path of length 2.
If, however, any cycle in C shares two or more vertices with at most two other cycles from C,
then the subgraph of the dual of skel(µ) induced by the faces that are projections of cycles
in R(µ) consists of paths and cycles. We exploit the fact that these graphs have maximum
degree 2 to give an efficient algorithm via dynamic programming.

I Lemma 8. Let µ be an R-node with children µ1, . . . , µk. There is an O(k2)-time algorithm
for computing T [µ, ·] from T [µi, ·] for i = 1, . . . , k, provided that cycles in C share two or
more vertices with at most two other cycles from C.

Altogether, Lemmas 5, 7, and 8 imply the following theorem.

I Theorem 9. Max Facial C-Cycles can be solved in O(n2) time if every cycle in C
intersects at most two other cycles in more than one vertex.

4.2 Series-Parallel Graphs
In this section we consider Max Facial C-Cycles on series-parallel graphs. Combining the
results from Lemma 5 and Lemma 7 yields the following.

I Theorem 10. Max Facial C-Cycles is solvable in O(r22r · n) time for series-parallel
graphs if any cycle in C intersects at most r other cycles in two or more vertices.

I Corollary 11. Max Facial C-Cycles is solvable in O(n) time for series-parallel graphs
if any cycle in C intersects at most two other cycles.

In the following we show that Max Facial C-cycles can be solved in polynomial time
for series-parallel graphs if any two cycles in C share at most two vertices. The next lemma
shows the special structure of relevant cycles in P-nodes of the SPQR-tree in this case.

I Lemma 12. Let G be a series-parallel graph and C be a set of cycles in G such that any
two cycles share at most two vertices. For each P-node µ any two cycles in C that are relevant
for µ are either edge-disjoint in skel(µ) or they share the unique virtual edge of skel(µ) that
corresponds to a Q-node child of µ, if any.
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Proof. Let C and C ′ be two relevant cycles for some P-node µ with poles u and v. Clearly C
and C ′ share the two poles u and v. Now assume that C and C ′ additionally share a virtual
edge e of skel(µ). Consider the expansion graph Ge of e and observe that {u, v} cannot be
a separation pair of Ge, since µ is a P-node. Thus the corresponding child ν of µ must be
either a Q- or an S-node. If it is an S-node, however, then Ge contains a cutvertex c, which
is contained in both C and C ′, a contradiction. Further observe that a P-node may have at
most one child that is a Q-node. This concludes the proof. J

We again use a bottom-up traversal of the SPQR-tree of a series-parallel graph to obtain
the following theorem. The S-nodes are handled using Lemma 5 and the structural properties
guaranteed by Lemma 12 allow for a simple handling of the P-nodes.

I Theorem 13. Max Facial C-Cycles is solvable in O(n) for series-parallel graphs if any
two cycles in C share at most two vertices.

5 Approximation Algorithms

In this section we derive constant-factor approximations for Max Facial C-Cycles in series-
parallel graphs and in biconnected planar graphs. Again, we use dynamic programming on the
SPQR-tree. This time, however, instead of computing T [µ, I], we compute an approximate
version T̃ [µ, I] of it. A table T̃ [µ, ·] is a c-approximation of T [µ, ·] if 1/c · T [µ, I] ≤ T̃ [µ, I] ≤
T [µ, I], for all I ∈ I(µ). For P-nodes, we give an algorithm that approximates each entry
within a factor of 2, for R-nodes, we achieve an approximation ratio of (4 + ε) for any ε > 0.
In the following lemmas we deal separately with S-, P-, and R-nodes.

I Lemma 14. Let µ be an S-node with children µ1, . . . , µk and let T̃ [µi, I] be a c-approxi-
mation of T [µi, I] for i = 1, . . . , k. Then, T̃ [µ, I] =

∑k
i=1 T̃ [µi, I] is a c-approximation

of T [µ, I].

Proof. To see this, observe that by Lemma 5, it is 1/c · T [µ, I] = 1/c ·
∑k
i=1 T [µi, I] ≤∑k

i=1 T̃ [µi, I] and
∑k
i=1 T̃ [µi, I] ≤

∑k
i=1 T [µi, I] = T [µ, I]. J

Next we deal with a P-node µ with children µ1, . . . , µk. The algorithm works as follows.
Fix a set I ∈ I(µ). We construct an auxiliary graph H as follows. The vertices of H are the
children µ1, . . . , µk of µ. Two vertices µi and µj are adjacent in H if and only if there exists
a cycle C ∈ C that intersects µi and µj such that T̃ [µx, (I ∪{C})∩I(µx)] = T̃ [µx, I ∩I(µx)]
for x ∈ {i, j}, i.e., according to the approximate table T̃ additionally realizing C in the
interface of the children µi and µj does not decrease the number of facial cycles of pert(µi)
in C. If |I| = 2, assume that µ1 and µ2 are the two children intersected by the cycles in I.
Unless µ1 and µ2 are the only children of µ, we remove the edge µ1µ2 from H if it is there.
This reflects the fact that, due to the restrictions imposed by I, it is not possible to realize
a corresponding cycle. Now compute a maximum matching M in H. The matching M
corresponds to a set CM ⊆ R(µ) of relevant cycles of µ that are pairwise edge-disjoint. We
set T̃ [µ, I] =

∑k
i=1 T̃ [µi, (I∪CM )∩I(µi)]+ |M | =

∑k
i=1 T̃ [µi, I∩I(µi)]+ |M |. We claim that

this gives a max{2, c}-approximation of T [µ, ·] if the T̃ [µi, ·] are c-approximations of T [µi, ·].

I Lemma 15. Let µ be a P-node an let T̃ [µ, ·] be the table computed in the above fashion.
Then, T̃ [µ, ·] is a max{2, c}-approximation of T [µ, ·] if T̃ [µi, ·] is a c-approximation of T [µi, ·].

Proof. We first show that T̃ [µ, ·] ≤ T [µ, ·]. To this end, it suffices to show that, for
any I ∈ I(µ), there exists an embedding of pert(µ) that realizes I and has T̃ [µ, I] facial
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cycles in C. Consider the multigraph with vertex set {µ1, . . . , µk} and edge set CM ∪ I.
This graph has maximum degree 2 and, due to the special treatment of the edge µ1µ2,
unless k = 2, none of its connected components is a cycle. We can thus always complete
this graph into a cycle containing all µi, which defines a circular order of µ1, . . . , µk, and
hence an embedding of skel(µ). In this embedding, all the cycles in CM ∪ I project to facial
cycles. Realizing all these cycles yields T̃ [µ, I] =

∑k
i=1 T̃ [µi, (I ∪ CM ) ∩ I(µi)] + |M | ≤∑k

i=1 T [µi, (I ∪ CM ) ∩ I(µi)] + |M | realized cycles. By the definition of the T [µi, ·] we get
embeddings for the pert(µi) with a corresponding number of cycles in C. Combining them
according to the embedding of skel(µ) from above, yields an embedding of pert(µ) that
realizes I and has at least T̃ [µ, I] facial cycles in C. Hence T̃ [µ, I] ≤ T [µ, I].

Conversely, consider T [µ, I] and a corresponding embedding of skel(µ). Denote by Copt
the set of facial cycles in C in an optimal solution that project to facial cycles of skel(µ). We
consider two cycles in Copt as adjacent if they intersect the same child of µ. Clearly, each
child µi is intersected by at most two cycles in Copt and, moreover, the two faces of skel(µ)
incident to the parent edge are not realized. Hence the corresponding graph is a collection
of paths, and it can be edge-colored with two colors. Let C ′opt be the cycles in the larger
color class. We have |C ′opt| ≥ |Copt|/2 and no two distinct cycles in C ′opt intersect the same
child µi of µ, i.e., interpreting the cycles in C ′opt as edges on the vertex set {µ1, . . . , µk}
yields a matching M ′. We would like to argue that our matching M in the auxiliary graph H
is larger than M ′, and hence we realize at least half of the cycles of the optimum. However,
this argument is not valid, since M ′ may contain edges that are not present in H due to
approximation errors in the T̃ [µi, ·]. We will show that the contribution of these edges is
irrelevant and hence the intuition about comparing the matching sizes indeed applies.

Let M ′1 = M ′ \ E(H) and M ′2 = M ′ ∩ E(H). Let J = {1, . . . , k} and let J1 = {i ∈ J |
∃C ∈M ′1 that intersects µi} be the indices of children that are intersected by a cycle in M ′1.
The set J2 = J \ J1 contains the remaining indices.

Clearly, we have T [µ, I] =
∑k
i=1 T [µi, (I ∪ Copt) ∩ I(µi)] + |Copt| according to Lemma 6.

Realizing instead of Copt just the set of cycles CM ′ = C ′opt corresponding to M ′ drops at
most |Copt|/2 facial cycles in C, while imposing weaker interface constraints on the children.
We therefore have

T [µ, I] =
k∑
i=1

T [µi, (I ∪ Copt) ∩ I(µi)] + |Copt| ≤
k∑
i=1

T [µi, (I ∪ CM ′) ∩ I(µi)] + 2|M ′|

We now use the fact that the T̃ [µi, ·] are c-approximations of the T [µi, ·], and hence also
c′-approximations for c′ = max{c, 2}, and we also separate the sum by the index set J1
and J2 and consider the two matchings M ′1 and M ′2 separately.

k∑
i=1

T [µi, (I ∪ CM ′) ∩ I(µi)] + 2|M ′| ≤ c′ ·
∑
i∈J1

T̃ [µi, (CM ′
1
∪ I) ∩ I(µi)] + 2|M ′1|

+ c′ ·
∑
i∈J2

T̃ [µi, (CM ′
2
∪ I) ∩ I(µi)] + 2|M ′2|. (1)

Observe that the indices of the children intersected by cycles that form a matchingM2 inH are
all contained in J2. By the definition of H , we have T̃ [µi, (CM ′

2
∪I)∩I(µi)] = T̃ [µi, I∩I(µi)],

for i ∈ J2.
For the first term, observe that, for each edge µiµj ∈M ′1, we have T̃ [µx, (M ′1∪I)∩I(µx)] ≤

T̃ [µx, I ∩ I(µx)] − 1 for at least one x ∈ {i, j}. Otherwise the edge would be in H, and
hence in M ′2. Let J ′1 ⊆ J1 denote the set of indices where this happens and let J ′′1 = J1 \ J ′1.
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Observe that |J ′1| ≥ |M ′1|. We thus have

c′ ·
∑
i∈J1

T̃ [µi, (CM ′
1
∪ I) ∩ I(µi)] + 2|M ′1|

= c′ ·
∑
i∈J′

1

T̃ [µi, (CM ′
1
∪ I) ∩ I(µi)] + c′ ·

∑
i∈J′′

1

T̃ [µi, (CM ′
1
∪ I) ∩ I(µi)] + 2|M ′1|

≤ c′ ·
∑
i∈J′

1

(T̃ [µi, I ∩ I(µi)]− 1) + c′ ·
∑
i∈J′′

1

T̃ [µi, I ∩ I(µi)] + 2|M ′1|

≤ c′ ·

(∑
i∈J1

T̃ [µi, I ∩ I(µi)]− |J ′1|
)

+ 2|M ′1| ≤ c′ ·
∑
i∈J1

T̃ [µi, I ∩ I(µi)],

where the last step uses the fact that c′ ≥ 2. Plugging this information into Eq. 1, yields

c′ ·
∑
i∈J1

T̃ [µi, (CM ′
1
∪ I) ∩ I(µi)] + 2|M ′1|+ c′ ·

∑
i∈J2

T̃ [µi, (CM ′
2
∪ I) ∩ I(µi)] + 2|M ′2|

≤ c′ ·
k∑
i=1

T̃ [µi, I ∩ I(µi)] + 2|M ′2| ≤ c′ ·
k∑
i=1

T̃ [µi, I ∩ I(µi)] + 2|M |

≤ c′ ·

(
k∑
i=1

T̃ [µi, I ∩ I(µi)] + |M |
)

= c′

(
k∑
i=1

T̃ [µi, (I ∪ CM ) ∩ I(µi)] + |M |
)

The last three steps use the facts that M ⊆ E(H) is a maximum matching, and hence
larger than M ′2, that c′ ≥ 2, and that CM ⊆ E(H), respectively. J

We note that the bottleneck for computing T [µ, I] is finding a maximum matching in
a graph with O(| skel(µ)|) vertices and O(|C|) edges. Hence the running time for one step
is O(| skel(µ)|+

√
| skel(µ)| · |C|). Since |I(µ)| ≤ |C|2, the running time for processing a single

P-node µ is O(| skel(µ)||C|2 +
√
| skel(µ)| · |C|3). The total time for processing all P-nodes

is O(n|C|2 +
√
n|C|3).

I Theorem 16. There is a 2-approximation algorithm with running time O(n|C|2 +
√
n|C|3)

for Max Facial C-Cycles in series-parallel graphs.

Next we deal with R-nodes. Let µ be an R-node with children µ1, . . . , µk. For each face
f of skel(µ) let Jf denote the indices of the children µi whose corresponding virtual edge in
skel(µ) is incident to f .

Fix I ∈ I(µ). We propose the following algorithm for computing T̃ [µ, I]. Consider the
subgraph H of the dual of skel(µ) induced by those vertices v corresponding to a face f not
incident to the parent edge of skel(µ) and such that there exists a cycle Cv ∈ C that projects
to the boundary of f and such that T̃ [µi, ({Cv} ∪ I) ∩ I(µ)] = T̃ [µi, I ∩ I(µ)], i.e., requiring
that Cv is realized in µi does not change the approximate number of faces of pert(µi) in C.

Now we compute a (1 + ε/4)-approximation of a maximum independent set of H, which
can be done in time polynomial in | skel(µ)| (and exponential in (1/ε)) [3]. Let X denote
this independent set, and let CX = {Cv | v ∈ X} be a set of corresponding cycles in
C. We set T̃ [µ, I] =

∑k
i=1 T̃ [µi, (I ∪X) ∩ I(µi)] + |X| =

∑k
i=1 T̃ [µi, I ∩ I(µi)] + |X|, and

claim that in this fashion T̃ [µ, ·] is a max{c, (4 + ε)}-approximation provided that T̃ [µi, ·]
is a c-approximation of T [µi, ·]. The proof is similar to that of Lemma 15. It 4-colors the
facial cycles Copt ⊂ C of an optimal solution and considers the largest color class, which is
an independent set of faces that has size at least |Copt|/4.
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I Lemma 17. Let T̃ [µ, ·] be the table computed in the above fashion. Then, T̃ [µ, ·] is a
max{c, (4+ε)}-approximation of T [µ, ·] provided that T̃ [µi, . . . ] is a c-approximation of T [µi,·].

Overall, we obtain the following theorem.

I Theorem 18. Max Facial C-Cycles for biconnected planar graphs admits an efficient
(4 + ε)-approximation algorithm for any ε > 0.

6 Conclusions

In this paper, we explored the boundaries of the computational complexity of Max Facial
C-Cycles. In particular, we proved the problem NP-hard under restrictive conditions,
showed that slightly stronger conditions make the problem tractable, and gave constant-
factor approximations for series-parallel and biconnected planar graphs with approximation
guarantees of 2 and 4 + ε for any ε > 0, respectively. Our main open question is whether
these approximation guarantees may be improved.
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Abstract
An instance of the maximum weight strongly stable matching problem with incomplete lists and
ties is an undirected bipartite graph G = (A ∪ B,E), with an adjacency list being a linearly
ordered list of ties, which are vertices equally good for a given vertex. We are also given a weight
function w on the set E. An edge (x, y) ∈ E \M is a blocking edge for M if by getting matched
to each other neither of the vertices x and y would become worse off and at least one of them
would become better off. A matching is strongly stable if there is no blocking edge with respect
to it. The goal is to compute a strongly stable matching of maximum weight with respect to w.

We give a polyhedral characterisation of the problem and prove that the strongly stable
matching polytope is integral. This result implies that the maximum weight strongly stable
matching problem can be solved in polynomial time. Thereby answering an open question by
Gusfield and Irving [6]. The main result of this paper is an efficient O(nm log (Wn)) time
algorithm for computing a maximum weight strongly stable matching, where we denote n = |V |,
m = |E| and W is a maximum weight of an edge in G. For small edge weights we show that the
problem can be solved in O(nm) time. Note that the fastest known algorithm for the unweighted
version of the problem has O(nm) runtime [9]. Our algorithm is based on the rotation structure
which was constructed for strongly stable matchings in [12].
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1 Introduction

An instance of the Stable marriage problem with ties and incomplete lists (smti)
is an undirected bipartite graph G = (A ∪ B,E), with an adjacency list being a linearly
ordered list of ties, which are vertices equally good for a given vertex. Ties are disjoint and
may contain one vertex. Let b1 and b2 be two vertices incident to a in G. Depending on
the preference of a one of the following holds. (1) a (strictly) prefers b1 to b2 - denoted as
b1 �a b2, (2) a is indifferent between b1 and b2 - denoted as b1 =a b2, (3) a (strictly) prefers
b2 to b1 - denoted as b1 ≺a b2. If a prefers b1 to b2 or is indifferent between them then we
say that a weakly prefers b1 to b2 and denote it as b1 �a b2.

An edge (a, b) ∈ E \M is a blocking edge with respect to M if by getting matched with
each other neither of the vertices a and b would become worse off and at least one of them
would become better off than in M . Formally an edge (a, b) ∈ E \M is blocking if either
a �b M(b) and b �a M(a) or a �b M(b) and b �a M(a) hold.

By M(a) we denote a partner of a in the matching M . If a is unmatched in M we abuse
the notation and write b �a M(a) for each (a, b) ∈ E. We assume that every vertex prefers
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to be matched to its neightbour in G rather than to remain unmatched. We say that a
matching is strongly stable if there is no blocking edge with respect to it.

We study a version of the problem where besides the graph G and preference lists we
are also given a weight function w : E → N. We define the weight of a matching M to be
w(M) =

∑
e∈M w(e). The goal is to find a strongly stable matching M maximising w(M).

Motivation. The stable matching problem and its extensions have widespread application
to matching schemes [19]. One of the most known examples are the labor market for medical
interns and the college admissions market.

It is known that the deferred acceptance algorithm [5] calculates a stable matching optimal
for one side of the market. The extension to the weighted variant of the problem allows us to
define suitable objective functions and use them to obtain various optimal stable matchings.

The notion of strong stability allows us to prevent the following scenarios. Suppose that
agent a is matched to M(a) and a is indifferent between M(a) and b. Also assume that b
prefers a over M(b). The agent b to improve their situation may be inclined to use an action,
like bribery, to convince a to accept them. Since a would not get worse and b would get
better by getting matched to each other, they might undermine the current assignment.

Previous results. The variant of the problem with strict preferences known as the stable
marriage problem (smi) has been extensively studied in the literature. In their seminal paper
Gale and Shapley [5] showed that every instance of the problem admits a stable matching
and described an O(n+m) time algorithm for computing such a matching. Many structural
properties of the problem have been described over the years. In [6] Gusfield and Irving have
proven that the set of stable marriage solutions forms a distributive lattice. They also show
that even though the lattice can be of exponential size, it can be compactly represented as a
set of closed sets of a certain partial order on O(m) elements. The representation can be
built in O(m) time based on the notion of rotation.

Vande Vate [25] initiated the study of the stable marriage problem using the polyhedral
approach. He described a stable marriage polytope and showed its integrality. His description
has been extended by Rothblum [21] to the case of incomplete preference lists. In subsequent
papers several simpler proofs of the integrality of the stable marriage polytope have been
given [20], [24]. It has been also proven that any fractional solution in the stable marriage
polytope can be expressed as a convex combination of integral solutions [24]. These results
imply that the maximum weight stable marriage problem can be solved in polynomial time.

Several efficient algorithms for this problem have been developed over the years. Gusfield
and Irving [6] described an O(m2 log n) algorithm. The authors exploit the rotation structure
and reduce the problem to finding a maximum weight closed subset of a poset. This
classical problem can in turn be reduced to computing a maximum flow. The flow network
obtained from the reduction consists of O(m) nodes and O(m) edges. Gusfield and Irving
use O(nm log n) algorithm by Sleator and Tarjan [23] to solve the maximum flow problem
and obtain O(m2 log n) complexity. A faster maximum flow algorithm would lead to the
improvement in their algorithm. Feder [2] showed that if K = O((m/ log2 m)2) then the
weighted stable marriage problem can be solved in O(m

√
K) time and O(nm logK) for

arbitrary K where K is the weight of the solution. Note that algorithms by Gusfield and
Irving and by Feder assume a certain monotonicity condition on edge weights, however in
the case of bipartite graphs this condition can be dropped as we show later.
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The problem of computing a strongly stable matching in instances of smti has received a
significant attention in the literature. Irving [7] gave an O(n4) algorithm for the problem
under the assumption that the graph is complete and there is an equal number of men
and women. In [14] Manlove extended this algorithm to incomplete bipartite graphs. His
algorithm has O(m2) time complexity. Kavitha et al. [9] gave an O(nm) algorithm for the
problem. The structure of the set of solutions to the problem has been proven to be similar to
the structure of the case of no ties. In [15] Manlove has proven that the set of solutions forms
a distributive lattice. Recently, Kunysz et al. [12] gave an O(nm) algorithm for constructing
a compact representation of the lattice and generalized the notion of rotation to the strong
stability setting. To the best of our knowledge the weighted version of the strongly stable
matching problem has not been studied in the literature yet.

Our results. Gusfield and Irving [6] asked whether there is an LP representation of an
instance of smti under strong stability similar to the case of no ties. The problem was again
posed by Manlove [16] in his recent book. We solve this problem, adapting techniques used in
[24] to our setting. We prove that any fractional solution to the polytope can be expressed as
a convex combination of integral solutions. Thus the polytope is integral and the maximum
weight strongly stable matching problem can be solved in polynomial time.

A natural question is whether the rotation structure can be exploited to obtain a faster
algorithm. We answer this question affirmatively and give an O(nm log (Wn)) algorithm,
where W is the maximum weight of an edge. We also show that if W is sufficiently small then
the problem can be solved in O(nm) time. The technique of Gusfield and Irving cannot be
directly applied to our problem. In the setting without ties the authors base their algorithm
on the fact that there is a one-to-one correspondence between stable matchings and closed
sets of a certain poset of size O(m). In our problem a similar one-to-one correspondence exists
between equivalence classes of strongly stable matchings under a certain equivalence relation
and closed sets of a poset of size O(m). The correspondence allows us to represent exactly
one matching from each equivalence class based on a computation of so called maximal
sequence of strongly stable matchings. The main obstacle is that each equivalence class may
contain exponentially many matchings and there is a possibility that a represented matching
is not of maximum weight within its class. The primary novelty of this paper is an algorithm
for computing so called heavy maximal sequence of strongly stable matchings, which allows
us to represent a matching of maximum weight from each equivalence class. As a result
we reduce our problem to finding a maximum weight closed set of a poset, and solve this
problem using Feder algorithm [2].

Related work. Stable matchings have been extensively studied in non-bipartite instances
with strict preferences. Feder [1] has shown that in this setting the maximum weight stable
matching problem is NP -hard and he gave a 2-approximation algorithm for the problem.

In smti instances three different notions of stability can be defined depending on the
definition of a blocking edge. Namely weak, strong and super stability. Weakly stable
matchings can be of different sizes. Iwama et al. [8] have proven that the problem of finding
a maximum size weakly stable matching is NP -hard. Several approximation algorithms are
known for the problem [17], [10], [18]. It is also known that the weighted version of the
problem is NP -hard and it is not approximable within a factor n1−ε for any ε > 0 unless
P = NP [13]. The structure of stable matchings under the notion of super stability is well
understood. In [3] Fleiner et al. gave a reduction to the 2-SAT problem which results in fast
algorithms for a range of problems related to finding “optimal” super stable matchings.
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2 Preliminaries

Let I be an instance of smti. Denote the set of all strongly stable matchings in I byM(I).
Let V (I) and E(I) be respectively sets of vertices and edges of the underlying bipartite
graph G = (A ∪B,E(I)) of I. As is customary we call the vertices of A and B respectively
men and women. We say that an instance I is solvable if there is a strongly stable matching
in G. We define the rank of w in v’s preference list, denoted by rank(v, w), to be 1 plus the
number of ties which are preferred to w by v. A matching is man-optimal if every man gets
the best partner among all his possible partners in any strongly stable matching.

I Theorem 1 ([9]). There is an O(nm) algorithm to determine a man-optimal strongly
stable matching of the given instance or report that no strongly stable matching exists.

2.1 Lattice Structure
In this subsection we give a brief overview of results related to the lattice structure of M(I).
As we will see later the lattice can be of exponential size, however its representation of
polynomial size can be constructed. Such a representation is described in the next subsection.

I Theorem 2 (Rural Hospitals Theorem, [14]). In a given instance of smti, the same vertices
are matched in all strongly stable matchings.

We define an equivalence relation ∼ onM(I) as follows. For two strongly stable matchings
M and N , M ∼ N if and only if each man m is indifferent between M(m) and N(m). Denote
by [M ] the equivalence class containing M and denote by X the set of equivalence classes of
M(I) under ∼.

Strongly stable matchings belonging to the same equivalence class can be easily charac-
terised. For a given strongly stable matching M we define an auxiliary graph HM = (V ′, E′)
where V ′ is the set of vertices matched in M and E′ = {(a, b) ∈ E : a, b ∈ V ′ ∧ b =a

M(a) ∧ a =b M(b)}. The following lemma characterises the set [M ].

I Lemma 3 ([15]). Let M ∈ M(I). Then M ′ is a strongly stable matching such that
M ′ ∼M if and only if M ′ is a perfect matching in HM .

For two strongly stable matchings M and N we say that M dominates N and write
N �M if each man m weakly prefers M(m) to N(m). If M dominates N and there exists
a man m who strictly prefers M(m) to N(m) then we say that M strictly dominates N ,
denote it by N ≺M and we call N a successor of M . Next we define a partial order �∗ on
X . For any two equivalence classes [M ] and [N ], we define [M ] �∗ [N ] if and only if M � N .

Let M and N be two strongly stable matchings. Consider the symmetric difference
M ⊕N . Theorem 2 implies that this set contains only alternating cycles.

I Lemma 4 ([15]). Let M and N be two strongly stable matchings. Consider any alternating
cycle C of M ⊕ N . Let (m0, w0,m1, w1, ...,mk−1, wk−1) be the sequence of vertices of C
where mi are men and wi are women. Then there are only three possibilities:

(∀mi)wi =mi
wi+1 and (∀wi)mi =wi

mi−1

(∀mi)wi ≺mi
wi+1 and (∀wi)mi �wi

mi−1

(∀mi)wi �mi
wi+1 and (∀wi)mi ≺wi

mi−1

Subscripts are taken modulo k.
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Below we introduce two operations transforming pairs of strongly stable matchings into
other strongly stable matchings. Let M and N be two strongly stable matchings. Consider
any man m and his partners M(m) and N(m). By M ∧ N we denote the matching
such that if M(m) �m N(m) then (m,M(m)) ∈ M ∧ N and if M(m) ≺m N(m) then
(m,N(m)) ∈M∧N . Similarly byM∨N we denote the matching such that ifM(m) �m N(m)
then (m,N(m)) ∈M ∨N and if M(m) �m N(m) then (m,M(m)) ∈M ∨N .

It is proven in [15] that both M ∨ N and M ∧ N are strongly stable matchings, and
M,N �M ∨N and M,N �M ∧N . Operations ∨ and ∧ can be extended to the set X . For
[M ], [N ] ∈ X we simply define [M ] ∨ [N ] = [M ∨N ], [M ] ∧ [N ] = [M ∧N ].

A lattice is a partially ordered set in which every two elements a, b have a unique infimum
(denoted a ∨ b) and a unique supremum (denoted a ∧ b). A lattice L with operations
join ∨ and meet ∧ is distributive if for any three elements x, y, z of L the following holds:
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

I Theorem 5 ([15]). The partial order (X ,�∗) with operations meet ∨ and join ∧ defined
above forms a distributive lattice.

2.2 Rotations

In this subsection we review known theorems about rotations in instances of smti under
strong stability. These results were previously given in [12] and [11].

Let M and N be two strongly stable matchings such that N ≺ M . We say that N is
a strict successor of M if and only if there is no strongly stable matching M ′ such that
N ≺ M ′ ≺ M . Let M0 be a man-optimal strongly stable matching, and let Mz be a
woman optimal strongly stable matching. We call a sequence (M0,M1, . . . ,Mz) such that
M0 �M1 � . . . �Mz and Mi+1 is a strict successor of Mi, a maximal sequence of strongly
stable matchings.

I Theorem 6 ([12]). There is an O(nm) time algorithm to compute a maximal sequence of
strongly stable matchings.

Let M and N be two strongly stable matchings such that N is a strict successor of
M . Consider some matchings M ′ ∈ [M ], N ′ ∈ [N ]. Note that from the definition of ∼ it
follows that for every vertex v we have rank(v,M(v))− rank(v,N(v)) = rank(v,M ′(v))−
rank(v,N ′(v)). In other words when we transform a matching from [M ] into some matching
from [N ], the change of v’s rank does not depend on the choice of matchings from equivalence
classes. This observation motivates the definition of rotation.

Let M and N be two strongly stable matchings such that N is a strict successor of M .
For any vertex v denote rv = rank(v,M(v)) and r′v = rank(v,N(v)). We say that a set of
triples ρ([M ], [N ]) = {(v, rv, r′v) : v ∈ V (I), rv 6= r′v} is a rotation transforming [M ] into [N ].

Let ρ be a rotation and M,N be two strongly stable matchings such that N is a strict
successor of M . We say that the set of alternating cycles M ⊕ N realizes a rotation ρ if
ρ = ρ([M ], [N ]). There are potentially many sets of cycles realizing a given rotation. A
rotation ρ is exposed in [M ] if ρ = ρ([M ], [N ]) for some N which is a strict successor of M .
We say that ρ = ρ([M ], [N ]) transforms M ′ into N ′ if M ′ ∈ [M ] and N ′ ∈ [N ].

I Theorem 7 ([12]). Let S = (M0,M1, . . . ,Mz) be a maximal sequence of strongly stable
matchings. For i ∈ {0, 1, . . . , z − 1} denote ρi = ρ([Mi], [Mi+1]). Then the set D(I) =
{ρ0, ρ1, . . . , ρz−1} does not depend on the choice of S, and ρi 6= ρj for i 6= j.
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Note that given a maximal sequence of strongly stable matchings S = (M0,M1, . . . ,Mz)
we can easily compute rotations (ρ0, ρ1, . . . , ρz−1) where ρi = ρ([Mi], [Mi+1]). Moreover the
set CS(ρi) = Mi ⊕Mi+1 realizes ρi for each i.

I Definition 8. Let D(I) be the set of all rotations in I. We define the order ≺ on elements
of D(I) as follows. We say that a rotation ρ precedes rotation ρ′ and write ρ ≺ ρ′ if and
only if for every maximal sequence S = (M0,M1, . . . ,Mz) of strongly stable matchings we
have ρ = ρ([Mi], [Mi+1]) and ρ′ = ρ([Mj ], [Mj+1]) for some i, j such that i < j.

Let Z be a subset of D(I). We say that Z is a closed set if there is no ρ ∈ D(I) \Z such
that ρ ≺ ρ′ for some ρ′ ∈ Z. It turns out that each closed set corresponds to an equivalence
class of ∼. Given Z we can efficiently find an equivalence class corresponding to it.

Assume that we are given a maximal sequence S = (M0,M1, . . . ,Mz) of strongly stable
matchings, the set of rotations D(I), and for each rotation ρi = ρ([Mi], [Mi+1]) a set of cycles
CS(ρi) = Mi ⊕Mi+1 realizing it. Let Z = {ρa0 , ρa1 , . . . , ρak−1} be a closed set. We order its
elements so that there are no i, j such that i < j and ρai � ρaj . We define a sequence of
strongly stable matchings N0 = M0, Ni+1 = Ni ⊕ CS(ρai

). We denote fS(Z) = Nk. Note
that the sequence {Ni} depends on the ordering of elements of Z, however its last element
fS(Z) = M0 ⊕ CS(ρa0)⊕ CS(ρa1)⊕ . . .⊕ CS(ρak−1) is the same regardless of the ordering.

I Lemma 9. For each equivalence class [M ] there is a closed set X such that fS(X) ∈ [M ].
Let Z1 and Z2 be closed sets. Then Z1 6= Z2 implies that [fS(Z1)] 6= [fS(Z2)].

For each closed set Z we define gS(Z) = [fS(Z)]. It can be proven that gS does not
depend on the choice of S and that gS is a bijection between closed sets of D(I,≺) and the
set X . The above discussion is summarized in the following theorem.

I Theorem 10 ([12]). There is a one-to-one correspondence between the set X of equivalence
classes of ∼ and the closed sets of (D(I),≺).

It is important to note that given the function fS we can get one strongly stable matching
from each equivalence class and that depending on the choice of S these matchings may differ.
In other words if S 6= S ′ then it may happen that fS(Z) 6= fS′(Z) for some Z, however
regardless of the choice of S and S ′ we have [fS(Z)] = [fS′(Z)].

Note that from Definition 8 alone it is non-trivial how to efficiently construct the relation
≺ on D(I). Construction of an explicit representation of the relation ≺ would take Ω(m2)
time, because D(I) might have Ω(m) elements.

I Theorem 11 ([12]). There is a graph G′ = (D(I), E′) such that |E′| = O(m), and the
closed sets in G′ are exactly the same as the closed sets in the poset (D(I),≺). Such a graph
can be constructed in O(nm) time.

3 Strongly Stable Matching Polytope

Let us denote the set of men as A = {a1, a2, . . . , ap} and the set of women as B =
{b1, b2, . . . , bq}. Additionally by PSSM we denote a strongly stable matching polytope described
by the following set of inequalities.
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q∑
j=1

xi,j ≤ 1 ∀i(1 ≤ i ≤ p) (1)

p∑
i=1

xi,j ≤ 1 ∀j(1 ≤ j ≤ q) (2)

xi,j ≥ 0 ∀(i, j)(1 ≤ i ≤ p, 1 ≤ j ≤ q) (3)∑
k:bk�ai

bj

xi,k +
∑

k:ak�bj
ai

xk,j +
∑

k:bk=ai
bj

xi,k ≥ 1 ∀(i, j)(ai, bj) ∈ E (4)

∑
k:bk�ai

bj

xi,k +
∑

k:ak�bj
ai

xk,j +
∑

k:ak=bj
ai

xk,j ≥ 1 ∀(i, j)(ai, bj) ∈ E (5)

Inequalities (1), (2) and (3) are standard matching constraints. If x ∈ PSSM is an integral
solution, then constraints (4) and (5) for an edge (ai, bj) imply that (ai, bj) does not block
the matching associated with x. Thus integral solutions of PSSM are exactly strongly stable
matchings of G. We call such solutions strongly stable matching solutions.

Note that if there are no ties in the instance then the terms
∑
k:ak=bj

ai
xk,j and∑

k:bk=ai
bj
xi,k in (4) and (5) reduce to xi,j and the description of the polytope is identical

to the well known description of the stable marriage polytope (see [24]). The proof of the
next lemma is based on self-duality of the associated linear program and complementary
slackness conditions.

I Lemma 12. Let x ∈ PSSM be a feasible solution. Then for each 1 ≤ i ≤ p, 1 ≤ j ≤ q the
following hold:

xi,j > 0⇒
∑

k:bk�ai
bj

xi,k +
∑

k:ak�bj
ai

xk,j +
∑

k:bk=ai
bj

xi,k = 1

xi,j > 0⇒
∑

k:bk�ai
bj

xi,k +
∑

k:ak�bj
ai

xk,j +
∑

k:ak=bj
ai

xk,j = 1

xi,j > 0⇒
q∑

k=1
xi,k = 1

xi,j > 0⇒
p∑
k=1

xk,j = 1

It is important to note that for each feasible solution x if xi,j > 0 then
∑
k:ak=bj

ai
xk,j =∑

k:bk=ai
bj
xi,k. Lemma 12 allows us to prove Theorem 13 which shows that each fractional

solution to PSSM can be expressed as a convex combination of strongly stable matchings. The
proof is constructive and given a fractional solution one can obtain matchings constituting
such a convex combination. Theorem 13 also implies that PSSM is integral.

I Theorem 13. The polytope PSSM is the convex hull of the strongly stable matching
solutions.

Proof. Let x ∈ PSSM be a feasible solution. For each man ai such that xi,j > 0 for some
j we perform the following construction. From Lemma 12 it follows that

∑q
k=1 xi,k = 1.

For ai we arrange all the xi,k for k = 1, 2, . . . , q in order of decreasing preference for ai. If
there are any ties we pick an arbitrary order amongst tied variables. We cover the interval
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(0, 1] with smaller intervals (vi,k, vi,k + xi,k] where intervals are arranged in the same order
as variables xi,k. We slightly abuse the notation here and by xi,k we denote corresponding
interval (v, v + xi,k]. We denote such an arrangement as Xi. Similarly for each woman
bj such that xi,j > 0 for some i we construct an arrangement Yj . The difference is that
for women we order intervals in the increasing order of preference and we again order tied
variables arbitrarily. Let us by Ti(j) denote the interval spanned by all intervals xi,k such
that bk =ai

bj . Note that such intervals are next to each other in the arrangement. Similarly
by T ′j(i) we denote the interval spanned by xk,j such that ak =bj ai.

Let u be any real number belonging to (0, 1]. We first construct an auxiliary graph
Hu = (A′ ∪ B′, F ) as follows. Let A′ ⊆ A and B′ ⊆ B be sets of men and women for
which we created arrangements Xi, Yj , i.e., A′ = {ai : 1 ≤ i ≤ p ∧ ∃j(xi,j > 0)} and
B′ = {bj : 1 ≤ j ≤ q ∧ ∃i(xi,j > 0)}. For each man ai if u lies in the subinterval spanned by
xi,j , we add to F edges corresponding to variables in the tie Ti(j) in Xi. Obviously each man
is indifferent between all the edges incident to him. We now prove that this holds for women
as well. Note that from Lemma 12 it follows that if xi,j > 0 then intervals Ti(j) and T ′j(i)
coincide in arrangements Xi and Yj . Let us assume that there are two edges (ai, bj), (ak, bj)
in Hu. Then u lies in the subintervals spanned by Ti(j) and Tk(j). So in particular u lies in
the subintervals spanned by T ′j(i) and T ′j(k). This implies that T ′j(i) and T ′j(k) are identical
so we have ai =bj

ak. Hence each woman is indifferent between edges incident to her in Hu.
We are going to show that there exists a perfect matching in Hu. Let us first create a

variable y. For each i ∈ A′ we consider Xi, and assume that u lies in the subinterval spanned
by xi,j . For each k such that xi,k > 0 and bk =ai bj we set yi,k = xi,k

|Ti(j)| , where |Ti(j)| is
the length of Ti(j). From the definition we know that for each i we have

∑
j yi,j = 1 and

similarly for each j we have
∑
i yi,j = 1. Thus y is a fractional perfect matching in Hu and

there exists a perfect matching Mu in Hu (see [22] for the details of the construction).
We now show that Mu is strongly stable. Let ai ∈ A be a man matched in Mu to some

bj . Assume that bk �ai bj . In Xi the tie corresponding to xi,k lies to the left of the tie
corresponding to xi,j . Recall that the tie corresponding to xi,k coincides in Xi and Yk, thus
from the construction of Yk it follows that bk strictly prefers Mu(bk) to ai, hence (ai, bk)
does not block the matching. We can analogously prove that if there exists ak such that
ak �bj

ai then (ak, bj) does not block the matching. Thus Mu is strongly stable.
It remains to show how to express x as a convex combination of strongly stable matchings.

Note that as we move u from 0 to 1 graphs Hu change. We denote a sequence of graphs that
we can obtain in this way by H1, H2, . . . ,Hq and let (Ii, Ii+1] be an interval corresponding
to Hi for each i. From the discussion above we know that each of the graphs Hi admits
a perfect matching Mi. Let yi be the incidence vector of Mi. One can easily see that
x =

∑q−1
i=1 (Ii+1 − Ii)yi, thus the theorem holds. J

4 Maximum Weight Strongly Stable Matching

In this section we give an efficient algorithm for computing a maximum weight strongly
stable matching. We first show that given a matching M we can easily find a maximum
weight matching amongst the ones belonging to [M ].

I Definition 14. We say that a strongly stable matching M is heavy if for each strongly
stable matching M ′ such that M ′ ∈ [M ] we have w(M) ≥ w(M ′).

In order to characterise heavy matchings belonging to [M ] we first extend the definition
of HM (see Section 2) so that each edge is of the same weight as in G. The following lemma
is a direct consequence of Lemma 3 and allows us to find a heavy matching belonging to a
given equivalence class.
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I Lemma 15. Let M ∈ M(I). Then M ′ is a heavy strongly stable matching such that
M ′ ∼M if and only if M ′ is a maximum weight perfect matching in HM .

In order to solve the general problem we need the following definition.

I Definition 16. Let S = (M0,M1, . . . ,Mz) be a maximal sequence of strongly stable
matchings. We say that a sequence S is a heavy maximal sequence of strongly stable
matchings if Mi is heavy for each 0 ≤ i ≤ z.

It turns out that once a heavy maximal sequence of strongly stable matchings is computed,
we are able to efficiently find a heavy matching in each equivalence class.

I Theorem 17. Let S = (M0,M1, . . . ,Mz) be a heavy maximal sequence of strongly stable
matchings of I. Then for each closed subset of rotations X ⊆ D(I) the matching fS(X) is
heavy.

Before we prove Theorem 17 we need to introduce a few more definitions.
Let M and N be two strongly stable matchings such that N is a strict successor of

M . We denote by ρ = ρ([M ], [N ]) a rotation transforming [M ] into [N ] and by Vρ = {v :
∃(a, b)(v, a, b) ∈ ρ} we denote the set of all vertices that change their rank when ρ is applied.

Now we define two auxiliary graphs Kρ = (Vρ, Eρ) and Lρ = (Vρ, Fρ). The intuition
behind these two graphs is as follows. The graph Lρ contains all the edges of the original
graph that have both endpoints in Vρ and can potentially belong to matchings from [M ].
The graph Kρ fulfills a similar role for the class [N ]. The set Eρ is defined as Eρ =
{(a, b) ∈ E(I) : ∃(c, d)((a, c, rank(a, b)) ∈ ρ ∧ (b, d, rank(b, a)) ∈ ρ)}. Similarly we define
Fρ = {(a, b) ∈ E(I) : ∃(c, d)((a, rank(a, b), c) ∈ ρ ∧ (b, rank(b, a), d) ∈ ρ)}.

I Lemma 18. Let M , N be two strongly stable matchings such that N is a strict successor
of M . Assume that M is a heavy matching and ρ = ρ([M ], [N ]) is a rotation transforming
[M ] into [N ]. Additionally let X ∈ [N ].

Then X is a heavy matching if and only if the following hold:
1. Edges of the set X ∩ Eρ form a maximum weight perfect matching of Kρ.
2. w({(a, b) ∈M : a, b /∈ Vρ}) = w({(a, b) ∈ X : a, b /∈ Vρ}).

Note that given a heavy matching M we can obtain a heavy matching N ′ ∈ [N ]. In order
to do so we first compute a maximum weight perfect matching X in Kρ and then simply
take N ′ = M ∪X \ (M ∩ (Vρ × Vρ)). The above lemma implies that N ′ is heavy. We are
now ready to present the proof of Theorem 17.

Proof of Theorem 17. Let us assume by contradiction that there is a subset Y ∈ D(I) of
rotations such that fS(Y ) is not heavy. Let Y = {ρ1, ρ2, . . . , ρk}. We can assume without
the loss of generality that rotations of Y are ordered so that there are no i, j such that i < j

and ρi � ρj .
We first define a sequence N0, N1, . . . , Nk of strongly stable matchings. Let N0 = M0 and

Ni = Ni−1 ⊕ CS(ρi) for 0 < i ≤ k. From the initial assumptions we know that Nk = fS(Y ).
Moreover we can assume without the loss of generality that Nk is the first matching in the
sequence N0, N1, . . . , Nk which is not heavy. Let us denote ρ′ = ρ([Nk−1], [Nk]). From the
definition of S we know that there exists j such that ρ([Mj−1], [Mj ]) = ρ′.

From Lemma 18 we know that Mj ∩ Eρ′ is a maximum weight perfect matching in Kρ′ .
Additionally since Nk−1 is a heavy matching and Nk is not a heavy matching, we know that
at least one of conditions (1) and (2) of Lemma 18 does not hold for Nk−1 and Nk. We
are going to prove that (2) holds for Nk−1 and Nk, i.e., w({(a, b) ∈ Nk−1 : a, b /∈ Vρ}) =
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w({(a, b) ∈ Nk : a, b /∈ Vρ}). Recall that Nk−1 ⊕Nk = CS(ρ′) = Mj−1 ⊕Mj . Let C be any
cycle belonging to CS(ρ′) such that C ∩ (Vρ′ × Vρ′) = ∅ (Note Lemma 4 and the definition of
ρ′ imply that each cycle of CS(ρ′) is either contained in Vρ′ or disjoint with this set). Each
vertex of C is indifferent between edges of C since this cycle does not belong to ρ′. The
cycle C can be partitioned into two matchings C ∩Mj−1 and C ∩Mj . One can easily see
that we have w(C ∩Mj−1) = w(C ∩Mj) as otherwise either w(Mj−1 ⊕ C) > w(Mj−1) or
w(Mj ⊕ C) > w(Mj) would hold and this would contradict the assumption that Mj−1 and
Mj are both heavy matchings. This implies that w(Nk−1) = w(Nk−1 ⊕C) and the weight of
the matching does not change when cycles of CS(ρ′) which do not belong to the rotation are
applied, thus w({(a, b) ∈ Nk−1 : a, b /∈ Vρ}) = w({(a, b) ∈ Nk : a, b /∈ Vρ}) holds.

From Lemma 18 it follows that Nk ∩ Eρ′ is not a maximum weight perfect matching in
Kρ′ . Thus we have w(Mj ∩ Eρ′) > w(Nk ∩ Eρ′).

Let C be any cycle of CS(ρ′) belonging to the rotation ρ′. We will prove that C ∩Nk =
C ∩ Mj . To see this consider any man m belonging to C. Exactly two edges (m,w1),
(m,w2) of Nk−1 ⊕Nk are incident to m. Since m ∈ Vρ′ we can assume without the loss of
generality that w1 �m w2. From Nk−1 � Nk it follows that (m,w2) ∈ Nk. We can similarly
prove that (m,w2) ∈ Mj . This implies that C ∩Nk = C ∩Mj holds. Hence we also have
Mj ∩ Eρ′ = Nk ∩ Eρ′ - a contradiction with the fact that w(Mj ∩ Eρ′) > w(Nk ∩ Eρ′).

From the above discussion it follows that the lemma holds. J

Below we explain how a heavy maximum sequence of strongly stable matchings can be
exploited to solve the maximum weight strongly stable matching problem. It turns out that
given such a sequence, our problem can be reduced to computing a maximum weight closed
subset of a poset, similarly as in the case of no ties.

Let us consider the poset of rotations D(I,≺). We are going to assign a weight to each
element of D(I). Let S′ = (M ′0,M ′1, . . . ,M ′z) be a heavy maximal sequence of strongly stable
matchings. Assume that ρ′ ∈ D(I) is a rotation such that ρ′ = ρ([M ′i−1], [M ′i ]). Let us
denote wS′(ρ′) = w(M ′i)− w(M ′i−1). We first show that the weight of a rotation does not
depend on the choice of a maximal heavy sequence of strongly stable matchings.

I Lemma 19. Let S1, S2 be two heavy maximal sequences of strongly stable matchings and
let ρ ∈ D(I) be a rotation. Then wS1(ρ) = wS2(ρ).

From now on we are going to skip the subscript in the definition of w, i.e., we write
w(ρ) instead of wS′(ρ). We slightly abuse the notation here, but it should not cause any
confusion. From Theorem 10 each closed subset of rotations X ⊆ D(I) corresponds to a
certain equivalence class [M ] of ∼. It turns out that given weights of rotations belonging to
X we can determine the weight of a heavy strongly stable matching belonging to [M ].

I Lemma 20. Assume that M is a heavy matching and that M0 is a heavy man optimal
matching. Let XM ⊆ D(I) be a subset of rotations corresponding to [M ]. Then w(M) =
w(M0) +

∑
ρ∈XM

w(ρ).

The following theorem is a direct consequence of the above lemma.

I Theorem 21. Let M be a heavy matching and let XM ⊆ D(I) be a subset of rotations
corresponding to M . Then M is a maximum weight matching of I if and only if XM is a
maximum weight closed subset of D(I,≺) with respect to the weight function w.

A maximum weight closed subset of a poset is a classical problem. In [6] Gusfield and
Irving show a reduction to the minimum s-t cut in a graph with O(m) vertices and edges.
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Algorithm 1 For computing a heavy maximal sequence of strongly stable matchings.
Input: I - a solvable instance of smti

1: compute a maximal sequence of strongly stable matchings S = (M0,M1, . . . ,Mz)
2: compute a heavy matching M ′0 ∈ [M0]
3: for i = 1, 2, . . . , z do
4: let ρi = ρ([Mi−1], [Mi])
5: compute a maximum weight perfect matching Y in Kρi

6: let M ′i = M ′i−1 ∪ Y \ (M ′i−1 ∩ (Vρi
× Vρi

))
7: return (M ′0,M ′1, . . . ,M ′z)

This problem can be solved with a standard maximum flow computation, however in the
special case of posets obtained from instances of smti we can construct the minimum cut in
O(nm log (Wn)) time or in O(nm) time if W = O(min{n, m

log2 m
}).

To achieve these complexity bounds we use algorithms of Feder [2]. The author shows
that a maximum flow in an uncapacitated network with m edges and of explicit width
q can be found in O(qm log(K)) time. It can be shown that in our case we have q ≤ n

and log(K) ≤ log(Wn), thus the runtime is O(nm log (Wn)). Feder also shows that a
maximum flow of value K in an uncapacitated network with m edges can be found in
O(m

√
K +K log2(m)) time, implying an O(nm) algorithm if W = O(min{n, m

log2 m
}).

More details about algorithms of Feder, the reduction to the minimum cut problem and
missing proofs from this section are given in the full version of the paper.

It is important to note that none of the theorems in this section require any additional
assumptions about the weight function w.

5 Computing a Heavy Sequence

We first show a very simple O(mMWPM) algorithm for computing a heavy sequence where
MWPM is the time complexity of finding a maximum weight perfect matching. Then we
improve its time complexity to either O(nm log n) or O(nm +

√
nm log (Wn)) depending

on whether we use classical O(nm log n) algorithm [22] or O(
√
nm log (Wn)) algorithm by

Gabow and Tarjan [4] for finding a maximum weight perfect matching.
We first compute a maximal sequence of strongly stable matchings S = (M0,M1, . . . ,Mz).

Recall that from Lemma 15 given a strongly stable matching Mi we can find a heavy
matching M ′i ∈ [Mi] with a single maximum weight perfect matching computation. We
simply apply Lemma 15 to each of the matchings M0,M1, . . . ,Mz and obtain a heavy
maximal sequence of strongly stable matchings M ′0,M ′1, . . . ,M ′z. Such an algorithm obviously
works in O(mMWPM) time.

Let us now discuss Algorithm 1. We first compute a maximal sequence of strongly stable
matchings S = (M0,M1, . . . ,Mz). Then we find a heavy matching M ′0 ∈ [M0] using Lemma
15. In the next step we construct graphs Kρi

where ρi = ρ([Mi], [Mi+1]) for each 0 ≤ i < z.
Then for each i we compute a maximum weight perfect matching of Kρi

. It can be easily
proven that each edge of G may appear only in one of the graphs Kρi

, thus the following
holds: |E(Kρ0)|+ |E(Kρ1)|+ . . .+ |E(Kρz−1)| = O(m) and overall it takes either O(nm log n)
or O(nm+

√
nm log (Wn)) time to compute all maximum weight matchings.

With the aid of Lemma 18 we can construct a heavy maximal sequence of strongly stable
matchings (M ′0,M ′1, . . . ,M ′z). In order to do this we simply compute a heavy matching M ′i
based on previously computed M ′i−1 and a maximum weight matching of Kρi

.
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Abstract
We consider the vertex cover problem with multiple coverage constraints in hypergraphs. In this
problem, we are given a hypergraph G = (V,E) with a maximum edge size f , a cost function
w : V → Z+, and edge subsets P1, P2, . . . , Pr of E along with covering requirements k1, k2, . . . , kr
for each subset. The objective is to find a minimum cost subset S of V such that, for each edge
subset Pi, at least ki edges of it are covered by S. This problem is a basic yet general form of
classical vertex cover problem and a generalization of the edge-partitioned vertex cover problem
considered by Bera et al.

We present a primal-dual algorithm yielding an (f ·Hr +Hr)-approximation for this problem,
where Hr is the rth harmonic number. This improves over the previous ratio of (3cf log r),
where c is a large constant used to ensure a low failure probability for Monte-Carlo randomized
algorithms. Compared to previous result, our algorithm is deterministic and pure combinatorial,
meaning that no Ellipsoid solver is required for this basic problem. Our result can be seen as a
novel reinterpretation of a few classical tight results using the language of LP primal-duality.
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1 Introduction

The vertex cover problem is one of the most well-known and fundamental problem in graph
theory and approximation algorithms. Given an undirected hypergraph G = (V,E) and a
cost function w : V → Z+, the objective is to find a minimum cost subset S ⊆ V such that
any edge in E is incident to some vertex in S.

This problem is known to be NP-hard, and f -approximation algorithms based on simple
LP rounding and LP primal-duality are known for this problem [10], where f is the maximum
size of the hyperedges. Assuming the unique game conjecture, approximating this problem
to a ratio better than (f − ε) is NP-hard for any ε > 0 [8].

The partial vertex cover problem is a natural generalization of the vertex cover problem. In
this problem, we are given an additional parameter k which is called the covering requirement.
The objective of this problem is to find a minimum cost subset of V which covers at least k
edges in E, i.e., at least k edges of E are incident to at least one vertex in S.
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Various methods have been developed to obtain tight approximations for this problem.
Bshouty and Burroughs [3], who first proposed this problem, provided a 2-approximation
algorithm for graphs, i.e., the case for which f = 2, using LP-rounding. Their algorithm
generates |V | candidate covers each of which is constructed by guessing the most expensive
vertex used in the optimal solution. Gandhi et a. [6] used the same technique to develop a
primal-dual method which yields an f -approximation for hypergraphs. Mestre [9] used a
more clever way to guess the most expensive vertex and improved the time complexity of
the above algorithms.

Fujito [5] developed an f -approximation for hypergraphs, based on a primal-dual method
exploiting the property of minimal solutions. Bar-Yehuda [1] used the same property to obtain
the same result using a local-ratio method. Hochbaum [7] adopted Lagrangian relaxation to
get a 2-approximation on graphs.

Bera et al. [2] considered a generalization of the partial vertex cover problem for which
they called the partition vertex cover problem. In this problem, we are given a partition
E1, E2, . . . , Er of the edges along with covering requirements k1, k2, . . . , kr. The objective is
to find a minimum cost vertex subset that covers at least ki edges of Ei for each 1 ≤ i ≤ r.

They obtained a (6c log r)-approximation for normal graphs, where c is a large constant
used for Monte-Carlo randomized algorithms to ensure low error probability. They used
randomized iterative rounding on a strong LP which is derived by knapsack inequalities on
the natural LP. This approach generalizes to hypergraphs with an approximation guarantee
of (3cf log r). They also showed that, even for normal graph for which f = 2, it is NP-hard
to approximate this problem to a ratio better than Hr, which means O(f)-approximation for
this problem is unlikely to exist.

Wolsey [11] proposed the submodular set cover problem, which is a general formulation
to the above covering problems, and presented an H(maxS∈S g({S}))-approximation, where
g is the input submodular function and S is the ground set. Chuzhoy et al. [4] presented a
simpler analysis to obtain a similar result. Fujito [5] presented a primal-dual algorithm for
this problem which is useful for some special cases such as the partial vertex cover problem.

Our Focus and Contributions

In this paper, we consider the vertex cover problem with multiple covering constraints
(VC-MCC) in hypergraphs. In this problem, we are given a hypergraph G = (V,E), a cost
function w : V → Z+, and a number of covering constraints (P1, k1), (P2, k2), . . . , (Pr, kr),
where each Pi ⊆ E is a subset of E and ki ∈ Z+ is the covering requirement for Pi. The
objective is to find a minimum cost subset S ⊆ V such that, for each 1 ≤ i ≤ r, at least ki
edges of Pi are covered by S.

This problem is a basic yet general form of classical vertex cover and a further generaliza-
tion of the edge-partitioned vertex cover problem considered in [2].

In this paper, we present a primal-dual algorithm that yields an (f ·Hr+Hr)-approximation
for this problem, improving over the previous ratio of (cf log r) due to [2]. Our main
contribution is the following theorem.

I Theorem 1. There is a deterministic (f ·Hr +Hr)-approximation algorithm for VC-MCC
which runs in polynomial time, where Hr is the rth harmonic number.

Compared to the previous result of (cf log r), our algorithm is deterministic and pure
combinatorial, which means that our algorithm does not rely on heavy Ellipsoid LP solvers
for this basic problem. Considering the lower-bound of Hr on the approximation ratio due
to [2] and the well-known lower-bound of f for vertex cover, our result is much closer to the
tight extent possible.
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The novelty of this work lies in the way how we handle the dual variables. In contrast to
previously known primal-dual approaches for covering problems, in which the dual variables
can be handled freely, our approach manages the dual solutions carefully so that the following
two criteria are met.

1. During the process, the cost of any vertex to be opened in the future must only be paid
by the dual values possessed by the current unfulfilled covering constraints.

2. The overall dual value possessed by any unfulfilled covering constraint remains the same
all the time.

This makes the approximation guarantee of log r possible.
Our result can be seen as a novel combination of the classical tight approximations with

guarantees f and Hr for the covering problem, using the language of LP primal-duality.
Our ingredient includes the strong LP relaxation due to [2], which is derived by applying

Knapsack-cover inequalities to the natural LP. We would like to remark, however, that the
usage of strong LP relaxation in our result is not a necessity but rather a better and more
intuitive exposition of our ideas on how the dual variables can be managed, and obtaining
the same result using natural LP is possible.

Organization of this paper

The rest of this paper is organized as follows. In Section 2, we define the notations we will
be using throughout this paper and introduce the strong LP formulations. We present our
approximation algorithm in Section 3 and conclude with future directions in Section 4.

2 Preliminary

We use G = (V,E) to denote a hypergraph G with a vertex set V and an edge set E ⊆ 2V .
Note that, under this notion, any edge e ∈ E is a subset of V that consists the incident
vertices of the edge e. We use fG to denote the maximum cardinality of the edges in G, i.e.,
fG = maxe∈E |e|. The subscript G is omitted when no ambiguity is there in the context.

For any edge subset M ⊆ E and any vertex v ∈ V , we use M(v) to denote the set of
edges in M that are incident to v, i.e., M(v) := {e ∈ M : v ∈ e}. For any subset A ⊆ V ,
we use M(A) to denote the set of edges in M that are incident to the vertices in A, i.e.,
M(A) =

⋃
v∈AM(v).

Vertex Cover with Multiple Covering Constraints

In this problem, we are given a hypergraph G = (V,E), a cost function w : V → Z+, and
a number of covering constraints (P1, k1), (P2, k2), . . . , (Pr, kr), where for each 1 ≤ i ≤ r,
Pi ⊆ E is a subset of E and ki ∈ Z+ is the covering requirement for Pi to be fulfilled.1
The objective of this problem is to find a vertex subset S ⊆ V of minimum cost such that∣∣Pi(S)

∣∣ ≥ ki for each 1 ≤ i ≤ r.

Intuitively, this problem asks for a minimum cost subset such that in each Pi, at least ki
edges are covered. A natural LP relaxation for this problem is given in Figure 1.

We have two sets of indicator variables in this LP formulation: For each v ∈ V , xv denotes
the inclusion of v into the cover and ye for each e ∈ E indicates the coverage of e by the

1 Without loss of generality, we assume that ki ≤ |Pi| for all 1 ≤ i ≤ r.
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min
∑
v∈V

wvxv LP-(N)

s.t.
∑
v∈e

xv ≥ ye, ∀e ∈ E∑
e∈Pi

ye ≥ ki, ∀1 ≤ i ≤ r

xv ≥ 0, ∀v ∈ V
1 ≥ ye ≥ 0, ∀e ∈ E.

Figure 1 A natural LP relaxation for VC-MCC.

vertices chosen in the cover. The first inequality models the coverage of each edge e ∈ E and
the second inequality models the covering requirement for each (Pi, ki), 1 ≤ i ≤ r.

However, the integrality gap of the natural LP can be arbitrarily large. This is illustrated
by the following simple example. Consider a star with d+ 1 vertices. Suppose that the cost
of every vertex is 1 and we only have one constraint consisting of all edges with covering
requirement 1. The optimal integral cost for this example is 1 while its optimal fractional
cost is 1/d, resulting a gap of d which can be arbitrarily large.

A Strong LP Relaxation

Instead of using the natural LP relaxation, we use a strong LP relaxation due to [2], which
is derived by applying Knapsack-cover inequalities to the natural LP given above.
For any vertex subset A ⊆ V and any 1 ≤ i ≤ r, define

ki(A) := max
{
ki −

∣∣Pi(A)
∣∣ , 0

}
.

Intuitively, ki(A) denotes the residue covering requirement to be fulfilled for Pi, if the vertex
set A were already chosen as part of the cover.
For any vertex v ∈ V \A, define

βi(v,A) := min
{ ∣∣∣Pi(v) \ Pi(A)

∣∣∣ , ki(A)
}
.

Intuitively, βi(v,A) is the amount of covering requirement v can be fulfilled for Pi if A is
already chosen as part of the cover. Clearly, βi(v,A) will be either ki(A) or the number of
incident edges of v in Pi \ Pi(A), which is |Pi(v) \ Pi(A)|.

The strong LP relaxation we consider is as follows:

min
∑
v∈V

wv · xv LP-(S)

s.t.
∑

v∈V \A

βi(v,A) · xv ≥ ki(A), ∀1 ≤ i ≤ r, ∀A ⊆ V

xv ≥ 0, ∀v ∈ V.

To see that LP-(S) gives a valid relaxation for VC-MCC, consider any feasible integral
solution x̂. It suffices to show that x̂ is also contained in the feasible region of LP-(S).
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Consider an arbitrary subset A of V and any constraint 1 ≤ i ≤ r. Clearly, x̂ must remain
feasible even if the vertices of A were already chosen as part of the cover in advance for free.
Hence, the number of edges x̂ covers for Pi is at least ki(A), and the inequality∑

v∈V \A

βi(v,A) · xv ≥ ki(A)

must hold.

To see that LP-(S) is indeed a stronger relaxation than LP-(N), let us consider the simple
star example and the inequality with respect to A = ∅. Clearly, β1(v,A) = 1 for all vertices
v in this star. As a result, we have a constraint

∑
v∈V xv ≥ 1, and the optimal fractional

solution will also be 1.

The Dual LP for LP-(S)

In this paper we will be working around the dual LP of LP-(S), which is given as follows.

max
∑

1≤i≤r, A⊆V
ki(A) · zi,A LP-Dual-(S)

s.t.
∑

1≤i≤r, A⊆V \{v}

βi(v,A) · zi,A ≤ wv, ∀v ∈ V, (*)

zi,A ≥ 0, ∀1 ≤ i ≤ r, ∀A ⊆ V

3 Our Approximation Algorithm for VC-MCC

In this section, we present our approximation algorithm for VC-MCC. Given an instance

Π =
(
G = (V,E), w, (Pi, ki)

∣∣
1≤i≤r

)
of VC-MCC, the algorithm will compute a series of

feasible LP solutions of Π to LP-Dual-(S). During this process, a feasible cover for Π will
gradually be formed. The approximation guarantee is then established by comparing the
cost of the cover to the values of the dual solutions the algorithm computes.

In the following section we describe the algorithm in details. In §3.2 we establish the
approximation guarantee.

3.1 The Algorithm
The algorithm takes as input an instance Π of VC-MCC and outputs a feasible cover S for Π.

Initially, S is set to be an empty set. In addition, the algorithm will maintain a set K
which contains the set of covering constraints that have not been satisfied yet. The set K is
initialized to be {1, 2, . . . , r}.

In the following, we first describe our primal-dual process. Then we describe how this
primal-dual process can be transformed into a polynomial-time algorithm.

Our primal-dual process, denoted PD-VC-MCC, starts with a trivial dual solution for
which zi,A = 0 for all 1 ≤ i ≤ r and all A ⊆ V . In each iteration, it proceeds as follows:

1. It raises zi,S at the rate of 1/ki(S) for all i ∈ K
until the Inequality (*) of some vertex in LP-Dual-(S), say, v ∈ V \ S, becomes tight.
Then it adds the vertex v to the set S.
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Input An instance Π of VC-MCC
Output A feasible cover S

1. S ← ∅, K ← {1, . . . , r} and zi,A ← 0 for all 1 ≤ i ≤ r and all A ⊆ V .
2. Repeat until K becomes an empty set.

a. Raise zi,S for all i ∈ K simultaneously at the rate of 1/ki(S)
until the inequality (*) in LP-Dual-(S) for some v ∈ V \ S becomes tight.

b. Add the vertex v into S.
c. For every i ∈ K such that ki(S) = 0,

K ← K \ {i} and zi,A ← 0 for all A ⊆ V .
3. Return S

Figure 2 A formal description of our primal-dual process PD-VC-MCC.

2. For each constraint i ∈ K with ki(S) becoming zero after v is added to S,
our primal-dual process:
a. sets zi,A to be zero for all A ⊆ V and
b. removes i from K.

This process repeats until the set K becomes empty. Then S is returned as the approximate
solution. A high-level pseudo-code of this primal-dual process is given in Figure 2 for further
reference.

We remark that, the step 2.(a) above of resetting zi,A to zero for all A ⊆ V when i is to
be removed from K is very important and is the key to obtain a guarantee of Hr. The reason
is that it allows the overall contribution of the remaining covering constraints to remain
balanced.

Our approximation algorithm, denoted Approx-VC-MCC, mimics the operations of the
above primal-dual process. Instead of maintaining the dual variables, it keeps track of the
slack of the Inequality (*) in LP-Dual-(S) for each vertex, i.e., the amount before it becomes
tight.

For each v ∈ V , let ŵv denote the slack of the vertex constraint v before it becomes tight.
Initially, ŵv is set to be wv. We need a notion that reflects the raising process of the dual
variables. For each v ∈ V and A ⊆ V \ {v}, define

s(v,A) :=
∑
i∈K

βi(v,A)
ki(A) .

Intuitively, s(v,A) denotes the speed for which ŵv will decrease if we raised the dual variables
zi,A at the speed of 1/ki(A) for all i ∈ K.

Furthermore, in order for the update of ŵv for each v ∈ V to proceed, we use Φv,i to
denote the contribution of dual variables zi,A for all possible A towards ŵv. Φv,i is initialized
to be zero for all v ∈ V and 1 ≤ i ≤ r.

Now we formally describe our approximation algorithm. In each iteration, the algorithm
finds the among the vertices in V \ S the one with the smallest ratio of ŵv/s(v,A). Formally
speaking, it computes

v = arg min
u∈V \S

ŵu
s(u,A) and tv = ŵv

s(v,A) .



E. Hong and M.-J. Kao 43:7

Intuitively, v is the first vertex constraint to become tight in this iteration in the primal-dual
process and tv is the corresponding amount of time it takes.

Then the algorithm proceeds as follows:

1. For each u ∈ V \ S, the algorithm:
a. updates ŵu by setting ŵu ← ŵu − s(u, S) · tv.
b. update the contribution Φu,i for each i ∈ K by setting Φu,i ← Φu,i + βi(u,S)

ki(S) · tv.
2. Add v to the set S.
3. For each i ∈ K such that ki(S) is zero, the algorithm does the following:

a. Update ŵu for all u ∈ V \ S by setting ŵu ← ŵu + Φu,i.
b. Remove i from K.

The algorithm repeats until the set K becomes empty. Then S is returned as the
approximate solution.

3.2 Analysis
In this section, we provide the analysis of our approximation algorithm Approx-VC-MCC
and prove Theorem 1. First we show that our algorithm always terminates and returns a
feasible cover. Then we establish the approximation guarantee.

Feasibility of algorithm Approx-VC-MCC

We first establish the feasibility of our primal-dual process. Then we argue that algorithm
Approx-VC-MCC does mimic the execution of this process and runs in polynomial time.

I Lemma 2. The primal-dual process PD-VC-MCC always terminates and returns a feasible
cover.

Proof. Since PD-VC-MCC only terminates when the set K becomes empty and it finds a
feasible cover, it suffices to argue that PD-VC-MCC always terminates, provided that there
is a feasible cover for the input instance.

Assume for contradiction that the input instance has a feasible solution but PD-VC-MCC
does not terminate. Consider the set S the process currently has. The process runs eternally
since no vertex v ∈ V \ S becomes tight as zi,S is constantly raising for all i ∈ K. This
implies that βi(v, S) = |Pi(v) \ Pi(S)| = 0 for all v ∈ V \ S and all i ∈ K.

This means that all the edges have already been covered by S, a contradiction. J

To see that algorithm Approx-VC-MCC simulates the execution of PD-VC-MCC, it
suffices to observe that

ŵv records the slack wv −
∑

1≤i≤r, A⊆V \{v} βi(v,A) · zi,A of the constraint (*) for all
v ∈ V \ S during all iterations,
Φv,i keeps track of the value

∑
A⊆V \{v} βi(v,A) · zi,A so that it can be used to reflect the

operation of resetting zi,A to zero for i that is about to be removed from K.

We have the following lemma.

I Lemma 3. Algorithm Approx-VC-MCC mimics the execution of primal-dual process
PD-VC-MCC and runs in polynomial time.

Lemma 2 and Lemma 3 establish the feasibility of algorithm Approx-VC-MCC.
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Approximation Guarantee

To establish the approximation guarantee, we compare the cost of the solution our algorithm
returns to the values of the dual solutions our primal-dual process maintains, which will be
valid lower-bounds for the cost of optimal solutions by the weak LP duality.

Let S = {v1, v2, . . . , vm} denote the cover returned by the algorithm, where the indices of
the vertices denote the order for which they are added to the set S. For any 0 ≤ j ≤ m, we
use Aj to denote the set of the first j vertices that are added to S, i.e., Aj := {v1, v2, . . . , vj}.

Without loss of generality, we also assume that the covering constraints P1, P2, . . . , Pr
are fulfilled by the algorithm in this order.

For any 1 ≤ i ≤ r, let π(i) denote the index for which the inclusion of vπ(i) into S fulfills
Pi. Consider the moment when Pi is just fulfilled, i.e., when i was removed from K by the
algorithm, and zi,A has not yet been reset. Let ẑ(i) denote the dual solution the algorithm
maintains at this moment, and Val

(
ẑ(i)) denote the objective value of ẑ(i). It follows that

Val
(
ẑ(i)
)

:=
∑

1≤t≤r, A⊆V
kt(A) · ẑ(i)

t,A =
∑
i≤t≤r

∑
0≤j<π(i)

kt(Aj) · ẑ(i)
t,Aj

, (1)

where the second equality holds since our algorithm resets ẑ(i)
t,A to zero for all 1 ≤ t < i and

all A ⊆ V .

In the above equality we write Val
(
ẑ(i)) as the sum of dual values each unfulfilled covering

requirement possesses. The following lemma says that the dual value possessed by each
unfulfilled constraint is the same.

I Lemma 4. For any 1 ≤ i ≤ r and any t1, t2 with i ≤ t1 6= t2 ≤ r, we have∑
0≤j<π(i)

kt1(Aj) · ẑ(i)
t1,Aj

=
∑

0≤j<π(i)

kt2(Aj) · ẑ(i)
t2,Aj

.

Proof. This lemma follows directly from the way our primal-dual approach handles the dual
variables. Since ki(S) only changes when a new vertex becomes tight and since we always
raise zi,S for each i ∈ K at the rate of 1/ki(S), the total dual value possessed by any Pi with
i ∈ K will be the same. J

In the following we analyze the cost of S and relate it to the dual values of ẑ(i) the
algorithm maintains for all 1 ≤ i ≤ r.

Consider a vertex v ∈ S and the moment when v just becomes tight. Suppose that at that
time, the algorithm has already fulfilled t covering constraints. Then, from the Inequality (*)
of LP-Dual-(S), it follows that

wv =
∑

1≤i≤r, A⊆V \{v}

βi(v,A) · zi,A =
∑

t<i≤r, A⊆V \{v}

βi(v,A) · zi,A,

where the second equality holds since, by design, our algorithm has already reset zi,A to zero
for all 1 ≤ i ≤ t and all A ⊆ V before v becomes tight.

For each t < i ≤ r, define Φv,i :=
∑
A⊆V \{v} βi(v,A) · zi,A. Then we have

wv =
∑
t<i≤r

Φv,i.

Intuitively, Φv,i is the share for which the covering constraint i contributes towards the cost
of vertex v. We will charge the cost of v to the covering constraints Pi for all t < i ≤ r, each
of which gets a charge of Φv,i.
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For each 1 ≤ i ≤ r, let cost(Pi) denote the total charge Pi receives from the vertices in S.
We have the following lemma, which bounds cost(Pi) using the dual value it possesses in ẑ(i).

I Lemma 5. For any 1 ≤ i ≤ r, we have

cost(Pi) ≤ (f + 1) ·
∑

0≤j<π(i)

ki(Aj) · ẑ(i)
i,Aj

.

Proof. From the definition of cost(Pi), only v1, v2, . . . , vπ(i) will charge Pi, and it follows
that

cost(Pi) =
∑

1≤t≤π(i)

Φvt,i =
∑

1≤t≤π(i)

∑
A⊆V \{vt}

βi(vt, A) · ẑ(i)
i,A

=
∑

1≤t≤π(i)

∑
0≤j<t

βi(vt, Aj) · ẑ(i)
i,Aj

=
∑

0≤j<π(i)

∑
j<t≤π(i)

βi(vt, Aj) · ẑ(i)
i,Aj

.

Hence, to prove this lemma, it suffices to show that∑
0≤j<π(i)

∑
j<t≤π(i)

βi(vt, Aj) · ẑ(i)
i,Aj

≤ (f + 1) ·
∑

0≤j<π(i)

ki(Aj) · ẑ(i)
i,Aj

. (2)

To prove Ineq. (2), we first prove the following inequality:∑
0≤j<π(i)

∑
j<t<π(i)

βi(vt, Aj) · ẑ(i)
i,Aj

≤ f ·
∑

0≤j<π(i)

ki(Aj) · ẑ(i)
i,Aj

(3)

Compare the l.h.s. and the r.h.s. of (3), it suffices to argue that∑
j<t<π(i)

βi(vt, Aj) ≤ f · ki(Aj) for all 0 ≤ j < π(i).

Consider any fixed j with 0 ≤ j < π(i) and any t with j < t < π(i). Since vt is not the
vertex whose inclusion into S fulfills Pi, it follows that

∣∣Pi(vt) \ Pi(Aj)∣∣ < ki(Aj), and
hence βi(vt, Aj) =

∣∣Pi(vt) \ Pi(Aj)∣∣.
Furthermore, under the condition that Aj has already been chosen, the inclusion of
{vj+1, vj+2, . . . , vπ(i)−1} into S does not fulfill Pi.

This implies that
∣∣∣⋃j<t<π(i) (Pi(vt) \ Pi(Aj))

∣∣∣ < ki(Aj). Therefore, we have

∑
j<t<π(i)

βi(vt, Aj) =
∑

j<t<π(i)

∣∣∣Pi(vt) \ Pi(Aj)∣∣∣
≤ f ·

∣∣∣∣∣∣
⋃

j<t<π(i)

(Pi(vt) \ Pi(Aj))

∣∣∣∣∣∣ < f · ki(Aj),

where the second last inequality holds since the size of each hyperedge is at most f .
This proves Ineq. (3).
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Second, observe that the following inequality holds∑
0≤j<π(i)

βi(vπ(i), Aj) · ẑ
(i)
i,Aj

≤
∑

0≤j<π(i)

ki(Aj) · ẑ(i)
i,Aj

, (4)

since βi(vπ(i), Aj) ≤ ki(Aj) by the definition of βi(vπ(i), Aj).
From Ineq. (3) and Ineq. (4), the Inequality (2) is proved and this lemma holds. J

In the following we establish the approximation guarantee of our algorithm.

I Lemma 6.

cost(S) ≤ (f + 1) ·Hr ·OPT,

where Hr is the rth harmonic number and OPT is the cost of any optimal solution.

Proof. By Lemma 5 and the definition of cost(Pi), we have

cost(S) =
∑

1≤i≤r
cost(Pi) ≤ (f + 1) ·

∑
1≤i≤r

∑
0≤j<π(i)

ki(Aj) · ẑ(i)
i,Aj

.

By Lemma 4, for each 1 ≤ i ≤ r, we have∑
0≤j<π(i)

ki(Aj) · ẑ(i)
i,Aj

= 1
r − i+ 1 ·Val

(
ẑ(i)
)
.

Since each ẑ(i) is a feasible dual solution for LP-Dual-(S), we have Val
(
ẑ(i)) ≤ OPT for all

1 ≤ i ≤ r, and

cost(S) ≤ (f + 1) ·
∑

1≤i≤r

1
r − i+ 1 ·OPT ≤ (f + 1) ·Hr ·OPT

as claimed. J

4 Conclusion

We conclude with future directions and open problems. First, considering the lower-bounds
of Hr and f for this problem, our (f ·Hr +Hr)-approximation ratio has an extra Hr factor
in it. However, it seems unclear how this excess Hr factor can be dropped.

Although the approaches of [5, 6, 9] can be used to obtain tight f -approximation for the
partial vertex cover problem, it seems difficult to adopt their techniques to our problem.
The reason is that, when multiple covering constraints exist, it seems intricate how the key
properties of their approaches can be ensured simultaneously for each covering constraint.
We believe that this would be an interesting direction to explore.

Second, clarifying the exact lower bound of approximation ratio for this problem is also
interesting. For now, max(Hr, f) is what we only know.
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Abstract
We present new results for LambdaCC and MotifCC, two recently introduced variants of the well-
studied correlation clustering problem. Both variants are motivated by applications to network
analysis and community detection, and have non-trivial approximation algorithms.

We first show that the standard linear programming relaxation of LambdaCC has a Θ(log n)
integrality gap for a certain choice of the parameter λ. This sheds light on previous challenges
encountered in obtaining parameter-independent approximation results for LambdaCC. We gen-
eralize a previous constant-factor algorithm to provide the best results, from the LP-rounding
approach, for an extended range of λ.

MotifCC generalizes correlation clustering to the hypergraph setting. In the case of hy-
peredges of degree 3 with weights satisfying probability constraints, we improve the best approx-
imation factor from 9 to 8. We show that in general our algorithm gives a 4(k−1) approximation
when hyperedges have maximum degree k and probability weights. We additionally present ap-
proximation results for LambdaCC and MotifCC where we restrict to forming only two clusters.
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in some sense soft constraints. There is a variety of settings for Correlation Clustering,
including different objective functions, and special classes of edge weights, leading to a rich
and interesting family of approximation algorithms and hardness results.

In this document, we consider two recent variants of the problem, called Lambda
Correlation Clustering (LambdaCC) [22] and Motif Correlation Clustering
(MotifCC) [17]. Although introduced independently, both problems are motivated by
applications to community detection in unsigned graphs, and are interesting to study from a
theoretical perspective, each coming with non-trivial approximation guarantees. LambdaCC
is a generalization of the standard unweighted CC in which all positive edges have a
common weight, while all negative edges have another (possibly different) common weight. A
parameter λ determines these two weights and, implicitly, controls the size and structure of
clusters formed by optimizing the objective. MotifCC is a generalization of Correlation
Clustering to hypergraphs, designed to provide a framework for clustering graphs based
on higher-order subgraph patterns (i.e., motifs). We present new results for LambdaCC and
MotifCC, not only where the number of clusters formed is an outcome of minimizing the
objective, but also where we (additionally) restrict to forming only two clusters. In summary,
we make the following contributions:
1. We show that there exists some small λ such that the LambdaCC LP relaxation has

a Θ(log n) integrality gap. This hints at why constant-factor approximations have been
developed for λ ≥ 1/2, but no analogous result has been found for small λ. We also
extend the analysis of our previous algorithm for LambdaCC [22] to outline the range
of λ < 1/2 values, that admit an approximation factor in o(log n).

2. We show that when we restrict to two clusters, LambdaCC reduces to the Min Uncut
problem, which implies an O(

√
log n) approximation for this special case [1].

3. We generalize the 4-approximation of Charikar et al. for complete unweighted correlation
clustering to obtain a 4(k − 1) approximation for MotifCC on hypergraphs with edges
of degree k where edge weights satisfy probability constraints. We consider the same LP
relaxation as Li et al. [17], and apply a similar rounding technique. However, we provide
an approximation guarantee for arbitrary k that is linear in k, in addition improving the
factor for k = 3 from 9 to 8.

4. For Two-Cluster MotifCC, we design an algorithm that gives an asymptotic 1+k 2k−2

approximation by generalizing the 3-approximation of Bansal et al [3] for 2-CC (which
applies when k = 2). This is the first combinatorial result for 2-MotifCC, and is
a 7-approximation for k = 3.

2 Background and Previous Results

In the most general formulation of Correlation Clustering on (undirected) graphs –
excluding, for the moment, the generalization to hypergraphs – each pair of nodes (i, j) is
assigned a pair of nonnegative weights (w+

ij , w
−
ij), i.e., a similarity score and a dissimilarity

score. In many cases, only one of these weights is assumed to be nonzero, to indicate
strict similarity or strict dissimilarity between pairs of nodes. We focus on the objective of
minimizing disagreements, which can be formally expressed as an integer linear program:

minimize
∑

i<j w
+
ijxij + w−ij(1− xij)

subject to xij ≤ xik + xjk for all i, j, k
xij ∈ {0, 1} for all i < j

(1)

The variable xij is 1 if nodes i and j are in separate clusters, and is 0 otherwise. Thus, a
clustering that separates i, j incurs a penalty (also called a mistake, or a disagreement) of



D. F. Gleich, N. Veldt, and A. Wirth 44:3

weight w+
ij , while if i, j are together the penalty has weight w−ij . The objective of maximizing

agreements has also been extensively considered: it shares the same set of optimal clusterings
as minimizing disagreements, but is easier from the perspective of approximations. For the
general weighted case, correlation clustering is equivalent to Minimum Multicut [10], which
implies an O(log n) approximation, but also suggests that Correlation Clustering (with
general weights) is unlikely to be approximated to within a constant factor in polytime [6].
For weights satisfying probability constraints (i.e., w+

ij + w−ij = 1), Ailon et al. gave a 2.5
approximation [2]. The best approximation factor for the standard unweighted problem (i.e.,
(w+

ij , w
−
ij) ∈ {(0, 1), (1, 0)}) is slightly better than 2.06 [7].

Fixing the number of clusters

In general, Correlation Clustering does not require a user to specify number of clusters
to be formed; the number of clusters arises naturally by optimizing the objective. However,
restricting the output of Correlation Clustering to a fixed number of clusters has also
been studied extensively. In their seminal work, Bansal et al. showed a 3-approximation for
minimizing disagreements in the two-cluster unweighted case (2-Correlation Cluster-
ing) [3]. Later, Giotis and Guruswami showed a polynomial time approximation scheme
for maximizing agreements and for minimizing disagreements, when the number clusters
is a fixed constant [12]. For the maximization version, 2-Correlation Clustering is
equivalent to Max Cut; based on this Dasgutpta et al. showed a 0.878-approximation for
arbitrary weights [9]. Extending Bansal et al.’s approach, Coleman et al. introduced faster,
greedy 2-approximations for minimizing disagreements for unweighted 2-Correlation
Clustering [8], and gave a more extensive overview of the historical interest in this problem.
Given this recurring interest in correlation clustering with a fixed number of clusters, we
address several questions involving the two-cluster case in this manuscript.

2.1 Lambda Correlation Clustering

In previous work, we introduced the LambdaCC objective, which can be viewed as a special
case of weighted correlation clustering (1) in which (w+

ij , w
−
ij) ∈ {(1− λ, 0), (0, λ)} for some

user-chosen parameter λ ∈ (0, 1). This provides the following framework for partitioning
unsigned networks: given an unsigned graph G = (V,E), treat each edge, in E, as a positive
edge of weight (1− λ) in a signed graph, and treat each non-edge as a negative edge with
weight λ. When λ = 1/2, LambdaCC amounts to unweighted Correlation Clustering;
with small λ, LambdaCC amounts to Sparsest Cut; and when λ is large, LambdaCC
amounts to Cluster Deletion. We previously outlined another, similar, edge-weighting
scheme [22] that is equivalent to the Modularity objective [18]. We do not consider it here,
however, as this scheme does not appear to lead to new approximation results.

For λ > 1/2, we gave a 3-approximation based on the LP-rounding technique of van Zuylen
and Williamson [21], and a 2-approximation which holds specifically for λ > |E|/(1 + |E|),
hence, for Cluster Deletion. We also note that when λ > 1/2, LambdaCC can be viewed
as a specific case of the specially weighted correlation clustering variant considered by Puleo
and Milenkovic [19], for which they gave a 5-approximation based on a generalization of the
LP rounding scheme of Charikar et al. [5]. However, the proof strategies for all of these
algorithms fail when considering arbitrarily small λ.
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2.2 Motif Correlation Clustering

Li et al. introduced a higher-order generalization of Correlation Clustering, which they
call Motif Correlation Clustering (MotifCC), as a means for clustering networks
based on higher-order motif patterns shared among nodes [17]. This objective is motivated
by previous successful results for motif-based graph clustering (see e.g., [4]). Although a
similar higher-order correlation clustering objective was considered by Kim et al. for image
segmentation [16], Li et al. were the first to study the objective from a theoretical perspective.
In their approach, we let Ek denote the set of all k-tuples of nodes in G, and let each E ∈ Ek

have a positive weight, w+
E , and a negative weight, w−E . If a clustering separates at least one

pair of nodes in E , this gives a penalty of w+
E ; otherwise, there is a penalty of w−E . MotifCC

is formally expressed as the following ILP, a generalization of ILP (1):

minimize
∑
E∈Ek

w+
E xE + w−E (1− xE)

subject to xuv ≤ xuw + xvw for all u, v, w
xuv ∈ {0, 1} for all u < v

xuv ≤ xE for all u, v ∈ E
(k − 1)xE ≤

∑
u,v∈E xuv for all E ∈ Ek

xE ∈ {0, 1} for all E ∈ Ek.

(2)

The first two constraints above ensure the variables encode a clustering (xuv = 1 if u, v are
separated). Since xE is binary, constraint xE ≥ xuv ensures that if any two nodes u, v in
E are separated, then xE = 1 (i.e., the k-tuple is split). The fourth constraint guarantees
that xE = 0 if all pairs of nodes in E are together. Li et al. considered an even more general
objective, which they referred to as Mixed Motif Correlation Clustering (MMCC),
where motifs of multiple sizes are considered at once, and the objective is a positive linear
combination of objectives of the form (2) for different values of k. In their analysis they
restrict to hyperedges of size 2 and 3, in other words they optimize an objective like this:

minimize
∑

u<v w
+
uvxuv + w−uv(1− xuv) +

∑
E∈E3

w+
E xE + w−E (1− xE) .

For this setting, they show a 9-approximation for the problem when hyperedge weights
satisfy probability constraints (w+

E +w−E = 1, for every hyperedge E of size 2 or 3). Recently,
Fukunga gave an O(k log n) approximation for general weighted hypergraphs by rounding
the same LP [11].

3 New Results for LambdaCC

Given a signed graph, G, in which every pair of nodes is part of a negative edge set, E−, or
a positive edge set, E+, the linear program relaxation of LambdaCC is

minimize
∑

(i,j)∈E+(1− λ)xij +
∑

(i,j)∈E− λ(1− xij)
subject to xij ≤ xik + xjk for all i, j, k

0 ≤ xij ≤ 1 for all i < j

(3)

Although a constant-factor approximation for LambdaCC exists for λ ≥ 1/2, by rounding
LP (3), we show that there exists some small λ such that the integrality gap is O(log n).
We then give parameter-dependent approximation guarantees for small λ, and consider new
results for two-cluster LambdaCC.
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3.1 Integrality Gap for the LambdaCC Linear Program
Demaine et al. prove that the integrality gap for the general weighted Correlation
Clustering LP relaxation is O(log n) [10]. This does not immediately imply anything for
our specially weighted case, but adapting some of their ideas, and adding some non-trivial
steps, does reveal an O(log n) integrality gap for the LambdaCC linear program relaxation.
The proof takes the following steps.
1. Construct an instance of LambdaCC from an expander graph, G.
2. Prove that, because of the expander properties of G, the optimal LambdaCC clustering

must make Ω(n) mistakes.
3. Demonstrate the LP relaxation has a feasible solution with a score of O(n/log n).

In order to accomplish third step listed above, we do not (necessarily) produce a feasible
solution for the standard LP relaxation of LambdaCC: in particular, in our solution triangle
constraints are not guaranteed. Instead, we produce a feasible solution for a related linear
program considered by Wirth in his PhD thesis [23]. The fundamental construct of this LP is
the Negative Edge with Positive Path Cycle (NEPPC), where, NEPPC (i1, i2, . . . , im)
represents a sequence (a path) of (positive) edges, (i1, i2), (i2, i3), . . . , (im−1, im) ∈ E, with a
single (negative) non-edge completing the cycle: (i1, im) /∈ E. For LambdaCC, defined on a
graph G = (V,E), with parameter λ ∈ (0, 1), we have the linear program:

minimize
∑

(i,j)∈E(1− λ)xij +
∑

(i,j)/∈E λ(1− xij)
subject to xi1,im ≤

∑m−1
j=1 xij ,ij+1 for all NEPPC (i1, i2, . . . , im)

xij ≤ 1 for all (i, j) /∈ E
0 ≤ xij for all (i, j) .

(4)

Wirth [23] proved that the set of optimal solutions to the NEPPC linear program (4) is
exactly the same as the optimal solution set to the Correlation Clustering LP, the
relation of ILP (1).4 Since a feasible solution for the LambdaCC NEPPC linear program (4)
is an upper bound on the optimum for (4), which is the same as the optimum for the standard
LambdaCC LP, we can bound the optimum of the latter. We now prove our result:

I Theorem 1. There exists some λ such that the integrality gap of LP (3) is O(log n).

Proof. The expander graph

Let G = (V,E) be a (d, c)-expander graph, where both d and c are constants (Reingold et
al. proved that such expanders exist [20]). That is, G is d-regular, and for every S ⊂ V

with |S| ≤ n/2, we have

cut(S)
|S|

≥ c =⇒ cut(S)
|S|

+ cut(S)
|S̄|

≥ c =⇒ cut(S)
|S||S̄|

≥ c

n

where cut(S) denotes the number of edges between S and S̄ = V \S. Define the scaled
sparsest cut of a set S to be cut(S)/(|S||S̄|) and let λ∗ minimize this ratio over all possible
sets S ⊂ V . In previous work we showed that for any λ ≤ λ∗, the optimal LambdaCC
clustering places all nodes into one cluster, but there exists a range of λ values slightly larger
than λ∗ such that the optimum clustering coincides with a partitioning that produces the

4 Although the proof is shown for the unweighted case, we note that all aspects of the proof immediately
carry over to the weighted case.
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scaled sparsest cut score [22]. For the expander graph we consider, this λ∗ is at most the
scaled sparsest cut score obtained by setting S to be a single node, so we have these upper
and lower bounds on λ∗: c/n ≤ λ∗ ≤ d/(n− 1).

The LambdaCC construction

Let S∗ be a set inducing an optimal scaled sparsest cut partition: λ∗ = cut(S∗)/(|S∗||S̄∗|).
From Theorem 3.2 in our previous work [22], we know that there exists some λ′, slightly
larger than λ∗ whose optimum LambdaCC solution is the bipartition {S∗, S̄∗}; let the
LambdaCC score of this solution be OPT , and let ε = λ′ − λ∗. We can choose ε > 0 to be
arbitrarily small, so it suffices to assume λ′ < 2λ∗.

Bounding OPT from below

With our choice of λ′, by definition,

OPT = cut(S∗)− λ′|S∗||S̄∗|+ λ′
((

n

2

)
− |E|

)
= 0− ε|S∗||S̄∗|+ λ∗

((
n

2

)
− |E|

)
+ ε

((
n

2

)
− |E|

)
= λ∗

((
n

2

)
− |E|

)
+ ε

((
n

2

)
− |E| − |S∗||S̄∗|

)
≥ λ∗

(
n(n− 1)

2 − nd

2

)
+ ε

(
n(n− 1)

2 − nd

2 −
n2

4

)
≥ c

n

(
n(n− 1)

2 − nd

2

)
= Ω(n) ,

relying on the definition of λ∗, the fact that |E| = nd/2 in this expander graph, and the
bound |S∗||S̄∗| ≤ n2/4.

Upper Bounding the NEPPC LP

We now show that a carefully crafted feasible solution for the NEPPC LP (4) has score
O(n/ log n). Let dist(i, j) denote the minimum path length between nodes i and j in G,
based on unit-weight edges E. We are assuming the graph is connected, so each dist(i, j)
is a finite integer. (If the graph is not connected, we ought to solve LambdaCC on each
connected component separately.) Consider the following setting of values xij :

xij =


2/(logd n) if (i, j) ∈ E
1 if (i, j) /∈ E and dist(i, j) ≥ (logd n)/2
0 if (i, j) /∈ E and dist(i, j) < (logd n)/2 .

We show that this is feasible for the NEPPC LP (4). Since all (positive) edges are assigned
the same LP score, the NEPPC constraints are satisfied at a (negative) non-edge, (i, j), if
and only if xij ≤ dist(i, j) · 2/(logd n). When dist(i, j) is less than logd(n)/2, xij = 0, so this
inequality is trivially true. When dist(i, j) is at least logd(n)/2, the NEPPC inequality is
true because dist(i, j) · 2/(logd n) is at least 1, which is xij .

For constant d, the contribution from the (positive) edges to LP (4) is:

(1− λ′)|E|2/(logd n) = (1− λ′)(nd)/(logd n) = O(n/ log n) .
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From the (negative) non-edges, since the factor is 1−xij , we only have a non-zero contribution
from the set of (i, j) /∈ E such that dist(i, j) < (logd n)/2 = logd

√
n. For each node v ∈ V ,

there are at most dlogd

√
n =
√
n nodes within this distance; the total number of non-edges

that contribute to the LP cost is therefore in O(n
√
n). Each has a weight λ′ < 2λ∗, so

LP contribution of non-edges ≤ λ′n
√
n ≤ (2d/(n− 1))n

√
n = O(

√
n) ≤ O(n/ log n).

Therefore, the total LP cost corresponding to this feasible solution to NEPPC LP (4) is
O(n/ log n). Since the optimal LambdaCC solution has cost Ω(n), we have shown that there
exists some λ < 1/2 such that the LP relaxation (3) has an integrality gap of O(log n). J

3.2 Parameter-Dependent Approximation Guarantees
We now describe improved approximation guarantees for ranges of λ below 1/2, extending
the analysis of our previous 3-approximation for λ ≥ 1/2 [22]. This 3-approximation is
obtained by solving the LP relaxation, forming a new unweighted signed graph G′, and then
applying the pivoting procedure, which repeatedly selects a node and clusters it with its
positive neighbors. The approximation guarantee comes from applying a theorem of van
Zuylen and Williamson for deterministic pivoting algorithms for correlation clustering [21].
We give a full proof of the following result in the extended version of the paper [13]

I Theorem 2. Let (xij) be the variables from solving the LambdaCC LP relaxation, and
form a new unweighted Correlation Clustering input G′ by putting a positive edge
between i and j, if xij ≤ 1/3 and a negative edge otherwise. Applying a pivoting algorithm
to G′ yields a clustering that is a 3-approximation for λ > 1/2, and an α-approximation
otherwise, where α = max{ 1/λ, (6− 3λ)/(1 + λ)}.

This theorem implies an approximation better than 4.5 for all λ ∈ (0.2324, 0.5), but shows
that the algorithm performs worse and worse as λ decreases. However, for all λ in ω(1/ log n),
this outputs a better result than the standard, O(log n), rounding scheme.

3.3 Two-Cluster LambdaCC
Before moving on we note an approximation guarantee and a hardness result that holds for
the two-cluster variant of LambdaCC.

I Theorem 3. Two-cluster LambdaCC can be reduced to the weighted Min Uncut problem.
An instance of Min Uncut with non-zero optimum can be reduced to an instance of two-
cluster LambdaCC whose objective score for any clustering differs by at most a small
constant factor.

We give a full proof in the full version [13]. The first fact implies the O(
√

log n) approximation,
due to Agarwal et al. [1], extends to 2-LambdaCC. This has important ramifications even
without the restriction on the number of clusters; LambdaCC is guaranteed to form two
clusters for a certain parameter regime near λ∗ [22, Theorem 3.2]. The reduction from Min
Uncut to two-cluster LambdaCC implies the latter cannot be approximated to within any
constant factor [15, 14].

4 Motif Correlation Clustering

We now turn to improved approximations for MotifCC. We begin by presenting a 4(k − 1)
approximation algorithm for the problem for hyperedges of degree k with edge weights
satisfying probability constraints. We then consider a first step towards algorithms that do
not rely on solving an expensive LP relaxation, by showing how to obtain a combinatorial
approximation for two-cluster MotifCC (2-MotifCC) for complete, unweighted instances.
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Algorithm 1 Generalized CGW for Minimizing Hyper-Disagreements.
Input: Signed hypergraph G = (V,Ek), and threshold parameters γ and δ
Solve the LP-relaxation of ILP (2), obtaining distances (xij)
W ← V , C ← ∅
while W 6= ∅ do

5: Choose u ∈W arbitrarily, and define Tu ← {i ∈W\{u} : xui ≤ γ}
if
∑

i∈Tu
xui < γδ|Tu| then S := {u} ∪ Tu

else S := {u}
C ← C ∪ {S}, W ←W\S

4.1 The 4(k − 1) approximation
Our algorithm for MotifCC is closely related to the approach of Li et al. [17] and directly
generalizes the LP-rounding technique of Charikar et al. [5], which is itself an instantiation
of the more general rounding procedure given in Algorithm 1. The general algorithm forms
clusters based on threshold parameters γ and δ, which are part of the input. Charikar et
al. proved that for the k = 2 unweighted case of MotifCC, setting γ = δ = 1/2 leads to
a 4-approximation. Li et al. generalized this to obtain a 9-approximation for k = 3 in the
more general probability constrained case, by selecting γ = δ = 1/3 [17]. Although they did
not provide an analysis for motifs of size k > 3, it appears that their strategy of setting
γ = δ = 1/k would at best lead to a k2 approximation. In contrast, we analyze a choice of
parameters which leads to an approximation that is linear in k.

The result is somewhat detailed, and we begin with some notation. Let the family
of k-tuples be Ek, and let W ⊆ V be the subset of nodes in G that remain unclustered
after a certain number of rounds of Algorithm 1. When considering a vertex u ∈ W and
a specific k-tuple E , it will be convenient to define a to be the node in E closest to u, i.e.,
arg mini∈E xui, while z is the farthest, arg maxi∈E xui. We have Tu similar to Algorithm 1,
with γ = 1/(2(k− 1)), while T k

u are those k-tuples that include u, with all non-u nodes in Tu:

Tu =
{
i ∈W\{u} : xui ≤ 1

2(k−1)

}
and T k

u = {E ∈ Ek : u ∈ E and (E−{u}) ⊂ Tu} . (5)

For z /∈ Tu, we let Pz be those k-tuples in which z is the farthest element from u and
some a ∈ Tu is closest, viz.

Pz = {(a, j2, j3, . . . , jk−1, z) ∈ Ek : a ∈ T, xua ≤ xu,j2 ≤ xu,j3 ≤ · · · ≤ xuz} . (6)

Finally, LP(A) denotes the LP score associated with a subset A of the set of degree-k
hyperedges: A ⊆ Ek.

I Theorem 4. For constant k, let G = (V,Ek) be a hypergraph in which for all E ∈ Ek

the weights satisfy probability constraints, w+
E + w−E = 1. Applying Algorithm 1 with γ =

1/(2(k− 1)) and δ = 1/2 outputs a clustering that is a 4(k− 1)-approximation to MotifCC.

We start with a proof outline, establish three lemmata, and then give full details in Section 4.2.
At each step the algorithm forms a cluster Su around an arbitrary u ∈ W . This cluster is
associated with a set of hyperedges Au that have either been cut or placed inside of Su. If
for each Su individually we can show that mistakes made at Au are within a fixed factor of
the lower bound LP (Au), this will imply an overall bound for the entire clustering.
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In forming a cluster around u, the algorithm first identifies a set of nodes Tu whose LP
distance to u is at most a preliminary threshold γ = 1/(2(k − 1)). To verify if {u} ∪ Tu

will make a good cluster, the algorithm checks whether on average the distance from u to
Tu is below a tighter threshold γδ = 1/(4(k − 1)). If this doesn’t hold, we let {u} remain
a singleton cluster. In forming clusters, we only explicitly consider distance variables xij

for (i, j) ∈ V × V . However, the MotifCC objective and its LP relaxation both depend
on the hyperedge variables xE for E ∈ Ek. Therefore, in order to bound the weight of
hyperedge mistakes we must leverage the LP constraints to understand the relationships
between distance and hyperedge variables. Lemma 5 establishes several useful relationships
we will need later. Also, because our algorithm makes decisions based on the average distance
between u and Tu, we must interpret what this means for the average value of hyperedge
variables xE in certain sets of hyperedges that we are trying to account for (e.g. Pz and T k

u

in (5) and (6)). Lemmata 6 and 7 address this task. We give proofs for these lemmata in
the full version of the paper [13]. In the following, we adopt the convention that xii = 0 for
every node i ∈ V .

I Lemma 5. For all E ∈ Ek and any u ∈ V ,
1. xE ≤

∑
i∈E xui,

2. xE ≤ xua + (k − 1)xuz, and
3. xE ≥ xuz − xua.

I Lemma 6. For all u ∈W ⊆ V , if
∑

i∈Tu
xui ≥ β|Tu|, then

∑
E∈T k

u
xE ≥ β|T k

u |.

I Lemma 7. For all E ∈ Pz, let aE denote the node in E closest to u. If
∑

i∈Tu
xui < β|Tu|,

then
∑
E∈Pz

xuaE < β|Pz|.

4.2 Proof of Theorem 4

Proof. We must account for the weight of positive mistakes made at singleton clusters, {u},
and the weight of both positive and negative mistakes made at non-singleton clusters.

Singleton Clusters

Consider a cluster S = {u}. The algorithm incurs a penalty w+
E for each E such that u ∈ E .

If some node j ∈ E − {u} is not in Tu, then the contribution to the LP score is w+
E xE , which

is at least w+
E xuj , and therefore exceeds w+

E /(2(k − 1)). Thus the cost of the mistake at
most 2(k − 1) times the LP penalty.

It remains to account for all positive hyperedges in T k
u . Even if w+

E = 1 for all E ∈ T k
u ,

|T k
u | =

( |T |
k−1
)
is an upper bound on the total weight of mistakes made on hyperedges in T k

u .
By the first observation of Lemma 5, and because u ∈ E ,

xE ≤
∑

i∈E xui ≤ (k − 1) 1
2(k−1) = 1

2 , hence, (1− xE) ≥ xE .

Since w+
E + w−E = 1, we can lower bound the contribution of T k

u to the LP score:

LP(T k
u ) =

∑
E∈T k

u

w+
E xE + w−E (1− xE) ≥

∑
E∈T k

u

w+
E xE + w−E xE =

∑
E∈T k

u

xE ≥ |T k
u |

1
4(k − 1) ,

by Lemma 6, so we have paid for the mistakes within a factor 4(k − 1).
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Negative Mistakes at Non-Singletons

Next, we account for negative mistakes in clusters of the form S = {u} ∪ T . Charikar et
al. showed that, when k = 2, these are accounted for within a factor 4; we prove the same for
all k ≥ 3. For each E ∈ Ek such that E ⊂ S, the algorithm makes a mistake of weight w−E .
On the other hand, the LP pays w−E (1− xE). Applying the first observation in Lemma 5,

xE ≤
∑

i∈E xui ≤ k 1
2(k−1) ≤

3
4 , hence, w−E (1− xE) ≥

w−E
4 ,

and we have the desired result for k ≥ 3.

Positive Mistakes at Non-Singletons

A hyperedge E contained entirely within S = {u} ∪ T incurs no positive-weight error. So,
finally, we account for positive mistakes at hyperedges E where at least one node of E is in S
and at least one node in E is /∈ S. For each such hyperedge, we explicitly label the nodes
of E with indices a = j1 < j2 < · · · < jk = z, with xua = xu,j1 ≤ xu,j2 ≤ . . . ≤ xu,jk

= xuz

where a ∈ Tu and z /∈ Tu. By the second and third observation in Lemma 5 we know that

xuz − xua ≤ xE ≤ xua + (k − 1)xuz , (7)

First, if a = u, then we know w+
E xE ≥ w+

E (xuz − xuu) > w+
E /(2(k − 1)), and we have

individually accounted for each such positive mistake within a factor 2(k − 1). If a 6= u and
xuz ≥ 3/(4(k − 1)), we bound the mistake within factor 4(k − 1):

w+
E xE ≥ w

+
E (xuz − xua) ≥ w+

E (3/(4(k − 1))− 1/(2(k − 1)) = w+
E /(4(k − 1)) .

Finally, if a 6= u and xuz ∈
(

1
2(k−1) ,

3
4(k−1)

)
, we account for all positive weights associated

with edges in the following set, together:

Pz = {E ∈ Ek : E = (a, j2, . . . , z), a ∈ T, xua ≤ xu,j2 ≤ xu,j3 ≤ · · · ≤ xuz} .

The weight of mistakes made by the algorithm is W+
z =

∑
p∈Pz

w+
p , and we also define

W−z =
∑

p∈Pz
w−p . We start by observing that, since xua ≤ xE and W+

z +W−z = |Pz|, due to
probability constraints on weights, Lemma 7 tells us that

∑
E∈Pz

xua < (W+
z +W−z )/(4(k−1)).

LP (Pz) =
∑
E∈Pz

w+
E xE + w−E (1− xE)

≥
∑
E∈Pz

w+
E (xuz − xua) + w−E (1− xua − (k − 1)xuz) (by inequalities in (7))

=
∑
E∈Pz

w+
E xuz + w−E (1− (k − 1)xuz)−

∑
E∈Pz

xua

≥W+
z xuz +W−z (1− (k − 1)xuz)− W +

z +W−z
4(k−1) (by the starting observation)

≥W+
z

(
1

2(k−1) −
1

4(k−1)

)
+W−z

(
1− 1

4(k−1) − (k − 1) 3
4(k−1)

)
≥W+

z
1

4(k−1) ,

so the mistakes on all hyperedges in Pz are, collectively, accounted for within factor 1/(4(k−
1)), concluding the Proof of Theorem 4. J

We outline two immediate extensions of this theorem in the full version [13]. First we
note that the same approximation guarantees holds for the Mixed Motif Correlation
Clustering objective, considered by Li et al. We then consider a hybrid Lambda-MCC
objective in which positive hyperedges have weight (1− λ) and negative hyperedges have
weight λ, for which the algorithm is guaranteed to produce the same approximation factor
when λ ≥ 1/2.
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Algorithm 2 Pick-A-Pivot-Tuple.
Input: An instance of 2-MotifCC: G = (V,Ek) be a hypergraph where (w+

E , w
−
E ) ∈

{(0, 1), (1, 0)} for every k-tuple.
for (k − 1)-tuple K ⊆ V do
CK ← the clustering formed by placing K in a cluster with all u such that E = K∪{u}

is positive, and placing all remaining nodes in the other cluster.
Return the CK with fewest mistakes.

4.3 Two-Cluster MotifCC

The LP relaxation of MotifCC involves O(nk) variables and O(nk) constraints for all k > 2,
and is therefore very expensive to solve in practice. For standard Correlation Clustering,
only a few of the known approximation algorithms avoid solving an expensive convex
relaxation [2, 3]; it is natural to ask whether a similar, combinatorial, approach can be taken
for MotifCC. We give first steps in this direction, with a constant-factor combinatorial
approximation algorithm for MotifCC, when the output is restricted to two clusters,
generalizing the 3-approximation of Bansal et al. for 2-Correlation Clustering [3]. Our
method is shown in Algorithm 2. We call this algorithm Pick-a-Pivot-Tuple, and show it
satisfies the following result:

I Theorem 8. For a constant integer k > 1, Algorithm 2 returns a (1 + kc)-approximation
for 2-MotifCC, where c ≤ 2k−2 for k = 2, 3, while limn→∞ c = 2k−2 for k > 3.

We give a proof of the above result in the full version [13]. Although the exponential
dependence on k makes this a poor approximation for large motifs, at least in the case k = 3,
this is a 7-approximation for all n, not just for large n.

5 Discussion

We have demonstrated a Θ(log n) integrality gap for the LambdaCC LP relaxation, which
highlights why previous attempts to obtain a constant-factor approximation via LP rounding
have failed. It remains an open question whether better approximation factors exist for small
values of λ in O(1/ log n). For minimizing disagreements, there are relatively few techniques
that don’t rely on the LP relaxation that lead to approximations better than O(log n) for
different variants of correlation clustering. The next step is either to develop an entirely new
approach or prove further hardness results for approximating LambdaCC when λ is small.

For MotifCC, we have given an approximation algorithm for arbitrary (constant)
hyperedge size k that is linear in k, and provided a first combinatorial approximation result,
which avoids solving an LP relaxation, for to the two-cluster case. An interesting open
question is whether a pivoting algorithm à la Ailon et al. [2] could be developed for the
MotifCC objective. For maximizing agreements, the simple strategy of either placing all
nodes together or separating all nodes into singletons will still lead to a 1/2-approximation
for hypergraphs with arbitrary weights and any k. This leads to open questions about what
results for maximizing agreements can be generalized to the hypergraph setting. Another
open question is whether an approximation that is independent of k could be developed for
minimizing disagreements in hypergraphs.
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1 Introduction

Partitioning Vectors into Quadruples (PQ) is the problem of partitioning 4k given nonnegative
vectors v1, . . . , v4k, each consisting of n components, into k clusters, each containing exactly
four vectors. We refer to such a cluster of four vectors as a quadruple or a quad for short.
The cost of a quad Q = {vi1 , vi2 , vi3 , vi4} is the sum of the component-wise maxima of the
four vectors in the quad. The goal of the problem is to find a partition of the 4k vectors into
k quads such that the total cost of all quads is minimum.

We will analyze the following matching-based algorithm, called algorithm A, that finds a
solution to problem PQ by proceeding in two phases. In the first phase, algorithm A builds a
complete, edge-weighted graph G = (V,E) that has a node in V for each vector in the instance
(hence |V | = 4k). The weight of an edge equals the sum of the component-wise maxima of
the two vectors whose corresponding nodes span the edge. Now, algorithm A computes a
minimum-cost perfect matching M in the complete graph G, yielding 2k vector pairs. Let
p1, . . . , p2k be the 2k matched vector pairs corresponding to the computed matching M . In
the second phase, algorithm A builds a complete, edge-weighted graph G′ = (V ′, E′) that
has a node in V ′ for each vector pair pi found in the first phase (i = 1, . . . , 2k; |V ′| = 2k).
The weight of an edge equals the sum of the component-wise maxima of the two vector pairs
whose corresponding nodes span the edge. Now, algorithm A computes a minimum-cost
perfect matching M ′ in the complete graph G′. Each of the k edges of M ′ matches two
vector pairs, which naturally induces a quad. The k quads induced by the edges of M ′
constitute a solution to the problem. Clearly, A is a polynomial-time algorithm. A rigorous
description can be found in Section 2. It is not hard to see that algorithm A may fail to
find an optimum solution for an instance of the problem, i.e., A is not exact, and we are
interested in analyzing how far off algorithm A’s output can be from an optimum solution.

In this paper we show that A is a 3
2 -approximation algorithm for problem PQ, and that

this bound is tight. We also show that algorithm A has better approximation guarantees
for various special cases of problem PQ. In particular, consider an instance of PQ where
each vector has exactly two ones, while all other components are zero. In that case, each
vector can be seen as an edge in a graph where there is a node for each component. For the
case where this graph is a simple, connected graph, we prove that A is a 5

4 -approximation
algorithm. We give a precise overview of our results in Section 2.3.

The paper is organized as follows. The remainder of this section introduces some termi-
nology and discusses related work that motivates our research. Section 2 gives preliminaries
and states our results. In Section 3, we give the proof of the upper bound on the worst-case
ratio of algorithm A for the special case of problem PQ mentioned above; we also outline the
proofs for all other cases. Section 4 contains the lower bound result for the special case. We
conclude in Section 5. Detailed proofs of all our bounds on the worst-case ratio of algorithm
A for problem PQ and other generalizations of the special case can be found in [6].

1.1 Terminology and related literature
Worst-case analysis is a well-established tool to analyze the quality of solutions found
by heuristics. We refer to books by Vazirani [13] and Williamson and Shmoys [14] for a
thorough introduction to the field. We use the following, standard terminology that applies
to minimization problems. In the next definition, A(I) stands for the value of the solution to
instance I found by algorithm A, while OPT (I) stands for the value of an optimum solution
to instance I.
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I Definition 1. Algorithm A is an α-approximation algorithm for a minimization problem
P if for every instance I of problem P: (i) algorithm A runs in polynomial time, and (ii)
A(I) ≤ α ·OPT (I). We refer to α as an upper bound on the worst-case ratio of algorithm A.

Different problems in various fields are related to problem PQ, and share some of its
characteristics. In addition, algorithm A can often be adjusted to work in a particular setting.
We now review related literature and provide a number of such examples.

Onn and Schulman [10] consider a problem where a given set of vectors in n-dimensional
space needs to be partitioned into a given number of clusters. The number of vectors in a
cluster (its size) is not specified, and in addition, they assume that the objective function,
which is to be maximized, is convex in the sum of the vectors in the same cluster. Their
framework contains many different problems with diverse applications, and they show, for
their setting, strongly-polynomial time, exact algorithms. This is in contrast to our problem
which is NP-hard (cf. Section 2.1).

Another problem, distinct from, yet related to, our problem, comes from computational
biology, and is described in Figuero et al. [7]. Here, a component of a vector is a 0 or a 1
or an “N”. In this setting neither the size of a cluster, nor the number of clusters is fixed;
the goal is to find a partition of the set of vectors into a minimum number of clusters while
satisfying the condition that a pair of vectors that is in the same cluster can only differ at a
component where at least one of them has the value N. They prove hardness of this problem,
and analyze the approximation behavior of heuristics for this problem.

Hochbaum and Levin [8] describe a problem in the design of optical networks that is
related to our special case where each vector is a {0, 1}-vector containing two ones. In essence,
their problem is to cover the edges of a given bipartite graph by a minimum number of
4-cycles. They observe that this problem is a special case of unweighted 4-set cover; they
give a ( 13

10 + ε)-approximation algorithm (using local search), and analyze the performance
of a greedy algorithm for a more general version of the problem. Our problem differs from
theirs in the sense that we deal with a partitioning problem, where there is a weight for
each set; in addition, our problem does not necessarily have a bipartite structure, nor do our
quads need to correspond to 4-cycles.

Our problem is also intimately related to a problem occurring in wafer-to-wafer yield
optimization (see, e.g., Reda et al. [11] for a description). Central in this application is the
production of so-called waferstacks, which can be seen as a set of superimposed wafers. In
our context, a wafer can be represented by a vector. A wafer consists of many dies, each of
which can be in two states: either functioning, i.e., good (which corresponds to a component
in the vector with value ‘0’), or malfunctioning, i.e., bad (which corresponds to a component
in the vector with value ’1’). The quality of a waferstack is measured by simply counting the
number of components that have only 0’s in the wafers contained in the waferstack. The
goal is to partition the set of wafers into waferstacks (clusters) such that total quality is
as high as possible. In this application, however, there are different types of wafers, and
a waferstack needs to consist of one wafer of each type. This would correspond to an a
priori given partition of the vectors. In addition, a typical waferstack consists in practice of
many, i.e., more than 4, wafers. Dokka et al. [4] analyze the worst-case behavior of different
algorithms that have as a common feature solving assignment problems repeatedly. The
case where there are three types of wafers, and the problem is to find waferstacks that are
triples containing one wafer of each type, is investigated in Dokka et al. [3]; for a particular
objective function, they describe a 4

3 -approximation algorithm.
A restricted, yet very relevant special case of our problem is one where the edges of a

given graph need to be partitioned into subsets each containing four edges (see Section 2 for a
precise description). Indeed, from a graph-theoretical perspective, there is quite some interest
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and literature in partitioning the edge-set of a graph, i.e., to find an edge-decomposition. In
fact, edge-decompositions where each cluster has prescribed size have already been studied
in e.g. Jünger et al. [9]. Thomassen [12] studies the existence of edge-decompositions into
paths of length 4, and Barat and Gerbner [1] even study edge-decompositions where each
cluster is isomorphic to a tree consisting of 4 edges.

2 Preliminaries

2.1 About problem PQ: special cases and complexity
We first observe that, for the analysis of algorithm A, we can restrict ourselves to instances of
problem PQ where the 4k vectors are {0, 1}-vectors. Notice that we call a vector nonnegative
when each of its entries is nonnegative.

I Lemma 2. Each instance of problem PQ with arbitrary (rational) nonnegative vectors can
be reduced to an instance of problem PQ with {0, 1}-vectors.

The argument in the proof of Lemma 2 (see [6]) implies that any worst-case ratio of
algorithm A shown to hold for instances consisting of {0, 1}-vectors holds in fact for arbitrary
rational nonnegative vectors. Clearly, this does not mean that algorithm A is restricted to
work on instances consisting of binary vectors; it works directly on the original input vectors.

Thus, from hereon we restrict ourselves, without loss of generality, to the case of binary
vectors. There are various special cases of PQ that are of independent interest. We will
describe the particular special case in brackets following ‘PQ’; we distinguish the following
special cases.

Problem PQ(#1 ∈ {1, 2}). The case where each vector contains either one or two 1’s; all
other components have value 0. It will turn out that, at least in terms of the worst-case
behavior of algorithm A, this special case displays the same behavior as the general
problem PQ.
Problem PQ(#1 = 2). The case where each binary vector contains exactly two 1’s.
Instances of this type can be represented by a multi-graph F with n nodes, each node
corresponding to a component of a vector. Each vector is then represented by an edge
spanning the two nodes that correspond to components with value 1. Of course, now a
quad can be seen as a set of four edges, and its cost equals the number of nodes in the
subgraph induced by these four edges.
Problem PQ(#1 = 2, distinct). The case where the graph F is a simple graph. Equiva-
lently, this means that each vector contains exactly two 1’s and the vectors are pairwise
distinct.
Problem PQ(#1 = 2, distinct, connected). We distinguish a further special case by
demanding that the graph F is also connected.

Clearly, the special cases are ordered, in the sense that each next one is a special case of
its predecessor.

Although our interest is on the worst-case behavior of algorithm A, it is relevant to
establish the computational complexity of problem PQ. It turns out (see [6] for the proof)
that even its special case PQ(#1 = 2, distinct, connected) is NP-hard. This fact shows that
no polynomial-time algorithm for problem PQ can be exact, unless P=NP.

I Theorem 3. PQ(#1 = 2, distinct, connected) is NP-hard.
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2.2 About algorithm A: notation and properties
Recall that, in our analysis, we may assume that all vectors are {0, 1}-vectors. Let vi ∨ vj

denote the vector that is the component-wise maximum of the two vectors vi and vj , i.e.:

vi ∨ vj = (max(vi,1, vj,1),max(vi,2, vj,2), . . . ,max(vi,n, vj,n)).

Here, vi,` denotes the `-th component of vector vi (` = 1, . . . , n). We use |vi| to denote
the number of ones in vector vi (1 ≤ i ≤ 4k), i.e., |vi| =

∑n
`=1 vi,`. The cost of a quad

Q = {v1, v2, v3, v4} is then cost(Q) = |v1 ∨ v2 ∨ v3 ∨ v4|. For a pair p = {v1, v2} of vectors,
we set cost(p) = |v1 ∨ v2|.

For two vectors vi and vj , let sav(vi, vj) (the “savings” made by combining vi and vj)
denote the number of common ones in vi and vj , i.e.:

sav(vi, vj) =
n∑

`=1
min(vi,`, vj,`).

If p = {v1, v2} and p′ = {v3, v4} are pairs of vectors, we also write sav(p, p′) for sav(v1 ∨
v2, v3 ∨ v4).

The following observation concerning two {0, 1}-vectors u and v is immediate.

I Observation 4. |u|+ |v| = sav(u, v) + |u ∨ v|.

Let us revisit the description of Algorithm A. In the first phase, it computes a minimum-
cost perfect matching M in the complete graph G on the given 4k vectors, where the weight
of the edge between vectors vi and vj is set to |vi ∨ vj |. Let p1, . . . , p2k be the 2k matched
vector pairs corresponding to the computed matching M , and let cost(M) denote the cost of
the matching M . For 1 ≤ i ≤ 2k, let v1

i and v2
i be the two vectors in the vector pair pi, and

let v′i = v1
i ∨ v2

i .
In the second phase, Algorithm A computes a minimum-cost perfect matching M ′ in the

complete graph G′ on the 2k vector pairs, where the weight of the edge between pairs pi and
pj is set to |v′i ∨ v′j |. The quads corresponding to M ′ are output as a solution. Let cost(M ′)
be the cost of matching M ′.

I Observation 5. A(I) = cost(M ′) and cost(M ′) ≤ cost(M).

I Lemma 6. In the first phase of algorithm A, we can equivalently set the weight of the edge
between vi and vj to be −sav(vi, vj). Similarly, in the second phase of algorithm A, we can
set the weight of the edge between pi and pj to be −sav(v′i, v′j).

Let weight(M ′) denote the total savings of the perfect matching M ′, i.e., weight(M ′) =∑
(v′

i
,v′

j
)∈M ′ sav(v′i, v′j). Then, we have:

cost(M ′) = cost(M)−
∑

(v′
i
,v′

j
)∈M ′

sav(v′i, v′j) = cost(M)− weight(M ′). (1)

Observation 5 and Equation (1) imply:

I Corollary 7. A(I) = cost(M)− weight(M ′).

In view of this corollary, it follows that if we can show that cost(M) ≤ B and weight(M ′) ≥
S for some bounds B and S, we can conclude that A(I) ≤ B − S.

Two vectors u and v are identical when u = v, and a pair of identical vectors is called
an identical pair. In the following we show that among the set of minimum-cost perfect
matchings, there is one that contains a maximum number of identical pairs.
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Table 1 Overview of bounds on the worst-case ratio of algorithm A. Proofs of the bounds marked
with (*) are omitted due to space restrictions and can be found in [6].

Problem name Lower Bound Upper Bound
PQ 3

2
3
2 (*)

PQ(#1 ∈ {1, 2}) 3
2 (*) 3

2

PQ(#1 = 2) 4
3 (*) 4

3 (*)
PQ(#1 = 2, distinct) 5

4
13
10 (*)

PQ(#1 = 2, distinct, connected) 5
4 (Observation 16) 5

4 (Lemma 14)

I Lemma 8. There is a minimum-cost perfect matching in G, as well as in G′, that contains
a maximum number of identical pairs.

Thus, in the implementation of our algorithm A, we can first greedily match pairs of
identical vectors as long as they exist, and then use any standard minimum-cost perfect
matching algorithm to compute a perfect matching of the remaining vectors.

2.3 Our results
In this paper, we show the following bounds on the worst-case ratio of algorithm A (see
Table 1 for a summary).

I Theorem 9. Algorithm A is a 3
2 -approximation algorithm for problem PQ, and this bound

is tight.

I Theorem 10. Algorithm A is a 3
2 -approximation algorithm for problem PQ(#1 ∈ {1, 2}),

and this bound is tight.

I Theorem 11. Algorithm A is a 4
3 -approximation algorithm for problem PQ(#1 = 2), and

this bound is tight.

I Theorem 12. Algorithm A is a 13
10 -approximation algorithm for problem PQ(#1 =

2, distinct), and its worst-case ratio is at least 5
4 .

I Theorem 13. Algorithm A is a 5
4 -approximation algorithm for problem PQ(#1 = 2,

distinct, connected), and this bound is tight.

The proof of Theorem 13 is given in the next sections: the proof implying the upper
bound (Lemma 14) is in Section 3.1, and the instance leading to the lower bound result
(Observation 16) is in Section 4.1. In Section 3.2 we provide a high-level description of the
proofs leading to the other upper bound results. Full proofs of all upper and lower bounds
can be found in [6].

As an aside, we also give instances that show that the worst-case ratio of a natural
greedy algorithm is worse than the worst-case ratio of algorithm A, both for problem
PQ(#1 = 2, distinct, connected) (Section 4.2) and for problem PQ (see [6]).

3 Upper bound proofs

In this section, we prove that 5
4 is an upper bound for the worst-case ratio of algorithm A for

Problem PQ(#1 = 2, distinct, connected). The proofs for the upper bound 3
2 for the worst-

case ratio of Problem PQ, the upper bound 4
3 for the worst-case ratio of Problem PQ(#1 = 2),

and the upper bound 13
10 for the worst-case ratio of Problem PQ(#1 = 2, distinct) can be

found in [6]. An outline of our approach to derive these results is given in Section 3.2.
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3.1 Approximation analysis for PQ(#1 = 2, distinct, connected)
I Lemma 14. Algorithm A is a 5

4 -approximation algorithm for PQ(#1 = 2, distinct,
connected).

Proof. Recall that an instance of PQ(#1 = 2, distinct, connected) can be viewed as a simple,
connected graph F with 4k edges, and that the cost of a quad is the number of vertices
spanned by the edges in the quad. Note that the cost of every optimal quad is at least 4 since
4 edges in a simple graph touch at least 4 different vertices. Hence, OPT ≥ 4k. Furthermore,
if we can show that there are z quads in the optimal solution that have cost at least 5, we
get that OPT ≥ 4(k − z) + 5z = 4k + z.

I Observation 15. cost(M) = 6k.

Proof. The line graph of a connected graph with an even number of edges admits a perfect
matching (Jünger et al. [9], Dong et al. [5]). Thus, the minimum-cost perfect matching M
pairs adjacent edges of the graph. Hence, every pair in M has cost 3, and thus the cost of
M is 2k · 3 = 6k. J

Let p1, . . . , p2k be the pairs corresponding to M . Consider the auxiliary graph H with
vertex set V ′ = {p1, . . . , p2k} in which an edge is added between pi and pj if pi and pj

have at least one common vertex (implying that matching pi to pj in the matching M ′ that
A computes in the second phase would create a saving of at least one). Note that H is
connected as F is connected. Let µ be the size of a maximum matching in H, 1 ≤ µ ≤ k.
Note that the maximum matching of H can be extended to a perfect matching of V ′ that
makes savings at least µ. Therefore, we have

A(I) ≤ 6k − µ.

If H contains a perfect matching, we have µ = k and hence A(I) ≤ 5k, implying that
A(I)/OPT (I) ≤ 5k/(4k) = 5

4 . It remains to consider the case µ < k.
If a maximum matching in H has size µ < k, the number of unmatched vertices is 2k−2µ.

We will show that the optimal solution then contains at least k−µ quads with cost at least 5,
and hence we have OPT (I) ≥ 4k + (k − µ) = 5k − µ. Therefore,

A(I)
OPT (I) ≤

6k − µ
5k − µ ≤

5
4 ,

where the last inequality follows because (6k − µ)/(5k − µ) is maximized if µ takes its
maximum possible value, µ = k.

It remains to show that the optimal solution contains at least k − µ quads with cost at
least 5. Recall that a maximum matching in H leaves 2k − 2µ vertices unmatched. By the
Tutte-Berge formula [2], the number of unmatched vertices of a maximum matching in H is
equal to

max
X⊆V ′

(odd(H −X)− |X|),

where odd(H−X) is the number of connected components of H−X that have an odd number
of vertices (H−X is the graph that results when the nodes in X, and their incident edges, are
removed from H). Hence, there exists a set X ⊆ V ′ such that odd(H −X)− |X| = 2k − 2µ.
Let d = odd(H −X), and let O1, O2, . . . , Od denote the d odd components of H −X. We
have

2k − 2µ = d− |X|.
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Figure 1 Quads with cost(Q) = 4.

For a subgraph S of H, let EF (S) denote the set of edges of F that are contained in the
edge pairs that form the vertex set of S (recall that the vertices of H are pairs of edges from
F ). Note that |EF (Oi)| mod 4 = 2 for 1 ≤ i ≤ d as Oi contains an odd number of edge pairs.
Therefore, each EF (Oi) contains at least two edges that are contained in optimal quads that
do not only contain edges from EF (Oi). If such a quad contains three edges from EF (Oi),
note that there must be at least one other optimal quad that contains at most three edges
from EF (Oi) as (|EF (Oi)| − 3) mod 4 = 3.

For each optimal quad that contains one or two edges from EF (Oi), define these one or
two edges to be special edges. For each optimal quad that contains three edges from EF (Oi),
select one of these three edges arbitrarily and define it to be a special edge. There are at
least two special edges in each EF (Oi), 1 ≤ i ≤ d, and hence at least 2d special edges in
total. More precisely, we refer to these special edges as the edge-set SE, and partition it into
two subsets: those special edges occurring in a quad with cost 4 (the set SE4), and those
special edges occurring in a quad with cost at least 5 (the set SE5). Clearly:

2d ≤ |SE4|+ |SE5|. (2)

Consider a quad with cost 4 from the optimum solution. It consists of four edges of F .
Since F is a connected simple graph there are only two possible subgraphs induced by Q, as
depicted in Figure 1. These four edges can be in the sets EF (Oi) for some 1 ≤ i ≤ d, the
set EF (X), and the sets EF (C) for even components C of H −X. We now define types of
quads of cost 4 depending on how many edges are in which set.

Note that an edge from EF (Oi) cannot be incident to the same vertex as an edge from
EF (Oj) for j 6= i because otherwise H would contain an edge between Oi and Oj . Similarly,
an edge from EF (Oi) cannot be incident to the same vertex as an edge from EF (C) where
C is an even component of H −X. The only edges that can share endpoints with edges in
EF (Oi) are those in EF (X).

We tabulate the different types of quads with cost 4 in Table 2. Thus, a quad with cost 4
with a special edge must be of type 1, 2, 3, 4 or 5. For each of these types, the number of
edges from EF (X) is at least the number of special edges in the quad. Thus,

|EF (X)| ≥ |SE4|. (3)

Further, since |EF (X)| = 2|X|, it follows from (3) and (2) that |SE5| ≥ 2d− 2|X|. Thus,
the number of quads of cost at least 5 is at least 2d−2|X|

4 = 1
2 (d− |X|) = k − µ. J

3.2 Outline of approximation analysis for other variants of PQ
In this section we give a high-level description of the crucial arguments we need to prove
the three upper bound results for problems PQ, PQ(#1 = 2), and PQ(#1 = 2, distinct). As
mentioned before, the full proofs are omitted due to space restrictions and can be found
in [6].

To analyze algorithm A for PQ, we proceed along the following lines. By Corollary 7, we
have A(I) = cost(M)− weight(M ′). We fix an arbitrary optimal solution and define from
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Table 2 Overview of different types of quads with cost 4, containing at least 1 edge from EF (Oi).
The entry “1,1” for quad type 3 means that there is one edge from EF (Oi) and one edge from
EF (Oi′ ) for i 6= i′.

Type of Number of edges Cost Number of
quad in EF (Oi) in EF (X) in EF (C) special edges
1 3 1 4 1
2 2 2 4 2
3 1, 1 2 4 2
4 1 2 1 4 1
5 1 3 4 1

it a perfect matching M̂ in G and an amount of savings, written in the form S1 + 1
2S2 for

reasons explained below, that algorithm A can definitely achieve in the second phase. As
cost(M) ≤ cost(M̂) and weight(M ′) ≥ S1 + 1

2S2, we have A(I) ≤ cost(M̂)− (S1 + 1
2S2).

The existence of the savings S1 + 1
2S2 is shown by constructing a subgraph H of G′ that

is bipartite, has maximum degree 2, and in which each edge connects two vertices of the
same degree. H consists of even-length cycles and isolated edges. Let S2 be the total savings
of the edges on cycles and S1 the total savings of isolated edges in H. It follows that H
contains a matching with total savings at least S1 + 1

2S2, and thus G′ contains a perfect
matching with at least those savings.

The matching M̂ and the graph H are determined by considering each quad Q of the
optimal solution separately. For each quad Q = {v1, v2, v3, v4} we define two vector pairs of
M̂ (by partitioning Q into two vector pairs in one of the three possible ways) and add to
H either one edge (that becomes an isolated edge), or two edges (that will eventually be
part of a cycle). For example, if the algorithm has matched p = {v1, v2}, p1 = {v3, v

′
3} and

p2 = {v4, v
′
4} in M , where v′3 and v′4 are vectors not in Q, the edges added to H are (p, p1)

and (p, p2). As another example, if the algorithm has matched pi = {vi, v
′
i} for 1 ≤ i ≤ 4, we

can show that we can add two disjoint edges of the form (pi, pj) for i 6= j to H in such a way
that H remains bipartite, and that there are two different ways of selecting these two edges.

In this way, each quad Q contributes an amount φQ to cost(M̂)− (S1 + 1
2S2) that consists

of the weight of the two edges it adds to M̂ minus the savings of the edge it adds to H (if it
adds only one isolated edge), or minus the savings of the two edges that it adds to H divided
by two (otherwise). By selecting the edges added to M̂ and H carefully among the valid
possibilities, we can show that H has the desired properties and φQ ≤ 3

2 cost(Q) holds for
each quad Q of the optimal solution. Since cost(M̂) − (S1 + 1

2S2) =
∑

Q φQ, this implies
A(I) ≤ 3

2 OPT (I), showing that A is a 3
2 -approximation algorithm for problem PQ.

Now consider problem PQ(#1 = 2). Recall that the 4k input vectors can be viewed as
edges in a multi-graph. Denote that multi-graph by F . To analyze algorithm A for PQ(#1 =
2), we follow the same approach as for PQ, but obtain the better bound φQ ≤ 4

3 cost(Q)
for each optimal quad Q by making a case distinction regarding the value of cost(Q) and
considering for each value of cost(Q) all possible subgraphs of F that the edges of Q can
induce. For example, if cost(Q) = 3, one of the cases is that the subgraph induced by Q is
a 3-cycle with one duplicate edge. Assume that the four edges are e1 = (1, 2), e2 = (1, 2),
e3 = (1, 3) and e4 = (2, 3). By Lemma 8, we can assume that algorithm A has matched e1
with e2 in the first phase. We select p1 = {e1, e2} and p2 = {e3, e4} to be part of matching
M̂ , with total cost 2 + 3 = 5. Consider the case that p2 was not matched by A in the
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1 2

3 4 5

6 7

Figure 2 An instance of PQ(#1 = 2, distinct, connected).

first phase. (This is the more difficult case.) Assume that A has matched p3 = {e3, x} and
p4 = {e4, y}, where x and y are edges not in Q. We add (p1, p3) and (p1, p4) to H. Each
of these edges has savings at least 1, and thus they contribute 2 to S2, or 1 to 1

2S2. We
have φQ ≤ 5− 1 = 4 = 4

3 cost(Q). As φQ ≤ 4
3 cost(Q) can be shown to hold also for all other

cases of quads Q in the optimal solution, algorithm A is a 4
3 -approximation algorithm for

PQ(#1 = 2).
For problem PQ(#1 = 2, distinct), the 4k input vectors can be viewed as the edges

of a simple graph. We follow the same approach as in the previous paragraph, but since
a simple graph with four edges spans at least 4 nodes, we only need to consider cases
where cost(Q) ≥ 4. This allows us to show that φQ ≤ 13

10 cost(Q) in all cases, implying that
algorithm A is a 13

10 -approximation algorithm for this problem.

4 Bad instances

In Section 4.1 we provide an instance that, together with the result in the previous section,
yields the tight bound claimed for problem PQ(#1 = 2, distinct, connected) in Theorem 13.
We illustrate in Section 4.2 that a natural greedy algorithm (that can be seen as an alternative
for algorithm A) has a worst-case ratio worse than the worst-case ratio of algorithm A. The
instances that provide lower bound results for problem PQ and the other special cases, as
announced in Table 1, can be found in [6].

4.1 An instance of PQ(#1 = 2, distinct, connected)
Consider the instance I consisting of the following 8 vectors v1, . . . , v8.

1
1
0
0
0
0
0


,



1
0
1
0
0
0
0


,



0
1
0
1
0
0
0


,



0
0
1
1
0
0
0


,



0
0
0
1
1
0
0


,



0
0
0
1
0
1
0


,



0
0
0
0
1
0
1


,



0
0
0
0
0
1
1


.

Since each vector contains two 1’s, the vectors are pairwise distinct, and the induced graph
is connected, this is an instance of PQ(#1 = 2}, distinct, connected). The instance can be
represented by the graph shown in Figure 2.
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1 2 3 4

5

6 7 8 9

Figure 3 An instance of PQ(#1 = 2, distinct, connected).

The optimal solution for this instance has cost 8, with the two quads

{v1, v2, v3, v4} = {(1, 2), (1, 3), (2, 4), (3, 4)},

{v5, v6, v7, v8} = {(4, 5), (4, 6), (5, 7), (6, 7)}.

Algorithm A may, in the first phase, construct a matching with cost 12 consisting of the
following pairs:

{v1, v2} = {(1, 2), (1, 3)}, {v3, v5} = {(2, 4), (4, 5)},
{v4, v6} = {(3, 4), (4, 6)}, {v7, v8} = {(5, 7), (6, 7)}.

Any two pairs share at most 1 node. Hence, the total savings that can be made in the second
matching are at most 2, so by Corollary 7 we have A(I) ≥ 10. Hence, the worst-case ratio of
A is at least 10/8 = 5/4.

I Observation 16. For the instance depicted in Figure 2, cost(A) = 5
4OPT .

Theorem 13 now follows from Lemma 14 and Observation 16.

4.2 Bad instances for a natural greedy algorithm
In this section, we show that the worst-case ratio of a natural greedy algorithm is worse than
the worst-case ratio of algorithm A.

An informal description of the greedy algorithm for problem PQ (and its special cases) is
as follows: repeatedly select, among all possible quads, a quad with lowest cost, and remove
the vectors in the selected quad from the instance; stop when no more vectors remain.

Below we present an instance of problem PQ(#1 = 2, distinct, connected) showing that
the worst-case performance of this greedy algorithm is worse than the worst-case performance
of algorithm A. In [6] we present an instance of problem PQ with the same property.

An instance of PQ(#1 = 2, distinct, connected)

Consider the instance I of PQ(#1 = 2, distinct, connected) consisting of 8 vectors represented
in a graph shown in Figure 3 (recall that a vector in PQ(#1 = 2, distinct,connected)
corresponds to an edge in a simple graph).

An optimal solution for this instance has cost 10, with the two quads {(1, 2), (2, 5), (3, 5),
(3, 4)} and {(6, 7), (5, 7), (5, 8), (8, 9)}, each having cost 5. Since the instance features no
quad with cost 4, the greedy algorithm may first select the following quad with cost 5:
{(2, 5), (3, 5), (5, 7), (5, 8)}. Next, what remains is a quad of cost 8: {(1, 2), (3, 4), (6, 7), (8, 9)}.

Hence, the worst-case ratio of the greedy algorithm is at least 13/10, which is larger than
the 5/4 approximation guarantee for algorithm A.
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5 Conclusion

We have studied the worst-case behavior of a natural algorithm for partitioning a given set
of vectors into quadruples and shown the precise worst-case behavior of this algorithm for all
cases except PQ(#1 = 2, distinct), where a small gap remains. It is a natural question to
study an extension where we form clusters consisting of 2s vectors for some given integer
s ≥ 2. Indeed, if we form groups of size 2s by running s rounds of matching, the worst-case
ratio is easily seen to be bounded by 2s−1. To explain this, let M be the minimum-cost
matching of the first round. Then A(I) ≤ cost(M) and OPT (I) ≥ cost(M)/2s−1 as the cost
of the optimum (viewed as being constructed in s rounds) is at least cost(M) after the first
round and could then halve in each further round. Moreover, since we have shown that the
cost of the algorithm after two rounds is at most 3

2 times the optimal cost after two rounds,
we get a ratio of 3

2 × 2s−2 = 3× 2s−3. We leave the question of finding the worst-case ratio
for arbitrary s as an open problem.
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Abstract
The fuzzy K-means problem is a popular generalization of the well-known K-means problem to
soft clusterings. We present the first coresets for fuzzy K-means with size linear in the dimension,
polynomial in the number of clusters, and poly-logarithmic in the number of points. We show
that these coresets can be employed in the computation of a (1 + ε)-approximation for fuzzy
K-means, improving previously presented results. We further show that our coresets can be
maintained in an insertion-only streaming setting, where data points arrive one-by-one.
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1 Introduction

Clustering is a widely used technique in unsupervised machine learning. The goal is to divide
some set of objects into groups, the so-called clusters, such that objects in the same cluster
are more similar to each other than to objects in other clusters. Nowadays, clustering is
ubiquitous in many research areas, such as data mining, image and video analysis, information
retrieval, and bioinformatics. The most common approach are hard clusterings, where the
input is partitioned into a given number of clusters, i.e. each point belongs to exactly one
of the clusters. The K-means problem is the most well-known hard clustering problem. It
has been studied extensively from practical and theoretic points of view. However, in some
applications it is beneficial to be less decisive and allow points to belong to more than one
cluster. This idea leads to so-called soft clusterings. In the following, we study a popular
soft clustering problem, the fuzzy K-means problem.

The fuzzy K-means objective function goes back to work by Dunn and Bezdek et al. [4, 10].
Today, it has found numerous practical applications, for example in data mining [19], image
segmentation [27], and biological data analysis [9]. Practical applications generally use the
fuzzy K-means algorithm, an iterative relocation scheme similar to Lloyd’s algorithm [25] for

© Johannes Blömer, Sascha Brauer, and Kathrin Bujna;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 46; pp. 46:1–46:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bloemer@upb.de
mailto:sascha.brauer@upb.de
mailto:kathrin.bujna@upb.de
https://doi.org/10.4230/LIPIcs.ISAAC.2018.46
https://arxiv.org/abs/1612.07516
https://arxiv.org/abs/1612.07516
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


46:2 Coresets for Fuzzy K-Means with Applications

K-means, to tackle the problem. The fuzzy K-means algorithm has been proven to converge
to a local minimum or a saddle point of the objective function [4, 5]. Distinguishing whether
the fuzzy K-means algorithm has reached a local minimum or a saddle point is a problem
which got some attention on its own [20, 24]. Moreover, it is known that the algorithm
converges locally, i.e. started sufficiently close to a minimizer, the iteration sequence converges
to that particular minimizer [17]. However, from a theoretician’s point of view this algorithm
has the major downside that stationary points of the objective function can be arbitrarily
worse than a globally optimal solution [6]. Currently, the only paper on algorithms with
approximation guarantees for the fuzzy K-means problem is [6], where the authors present a
PTAS assuming a constant number of clusters.

Clustering is usually applied when huge amounts of data need to be processed. This has
sparked significant interest in researching clustering in a streaming model, where the data
does not fit into memory. A lot of research has been done on this setting for K-means. In
a single pass setting, where we are only allowed to read the data set once, the K-means
objective function can be approximated up to a constant factor, by choosing O(K log(K))
means, instead of K [1]. This has been improved to an algorithm computing exactly K

means but still maintaining a constant factor approximation [7, 28]. There, the authors
considered a streaming setting where points arrive one-by-one and they are allowed to use
O(K log(N)) memory, where N is the total number of points.

The goal of a coreset is to find a small representation of a large data set, retaining the
characteristics of the original data. Coresets have emerged as a key technique to tackle the
streaming model. The idea is to treat the computation of the coreset as an online problem
where points arrive in some kind of stream. If, after having read the whole stream, the
computed coreset is small enough to fit into memory, then standard algorithms can be used
to solve the problem almost optimally for the points in the stream. Usually, the algorithm
does not know the size of the stream beforehand and hence, always maintains a coreset of
the points seen so far.

The first coreset construction for K-means is due to Har-Peled and Mazumdar, and is of
size O(log(N)) [16]. They also showed how to maintain a coreset, with size poly-logarithmic
in N , of a data stream, by combining their notion of a coreset with the merge-and-reduce
technique by Bentley and Saxe [3]. This construction was improved to a coreset with size
independent of N [15]. Feldman and Langberg presented a general framework computing
coresets for a large class of hard clustering problems with size independent of N [12].
Later, Feldman et al. presented coresets with size independent of N and D by using a
construction based on low-rank approximation [14]. Furthermore, they generalize Har-Peled
and Mazumdar’s application of the merge-and-reduce technique, showing how coresets with
certain properties can be maintained in a streaming setting. The results of this paper are
based on Chen’s sampling based construction, which yields coresets with size poly-logarithmic
in N , K, and D [8]. Applying the merge-and-reduce technique, Chen’s coresets can also be
used to maintain a poly-logarithmic sized coreset of a data stream.

There has been some work on applying the fuzzy K-means algorithm to large data sets.
Hore et al. [21] presented a single pass variant of the algorithm, which processes the data
chunk-wise. This idea was refined and extended to a single pass and online kernel fuzzy
K-means algorithm [18]. However, these are still variants of the fuzzy K-means algorithm,
hence provide no guarantees for the quality of solutions. So far, no coreset constructions
have been presented for the fuzzy K-means problem, and the literature is not rich on coreset
constructions for soft clustering problems, in general. There is a construction for the problem
of estimating mixtures of semi-spherical Gaussians which yields coresets with size independent
of N [11]. This result was generalized to a large class of hard and soft clustering problems
based on µ-similar Bregman divergences [26].
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1.1 Our Result
We prove the existence of small coresets for the fuzzy K-means problem. In Section 3, we
show that, by adjusting some parameters of Chen’s construction [8], we obtain a coreset
for the fuzzy K-means problem with size still poly-logarithmic in N . Our proof technique
is a non-trivial combination of the notion of negligible fuzzy clusters [6] and weak coresets
[13]. This results in a general weak-to-strong lemma (cf. Lemma 7), which states that
weak coresets for the fuzzy K-means problem fulfilling certain conditions are already strong
coresets. Afterwards, we argue that our adaptation of Chen’s algorithm yields a weak
coreset satisfying all conditions of the weak-to-strong theorem (a comprehensive proof can
be found in the full version). In Section 4, we substantiate the usefulness of our result by
presenting two applications of coresets for fuzzy K-means. First, we improve the analysis
of a previously presented [6] PTAS for fuzzy K-means, removing the dependency on the
weights of the data points from the runtime. Running this algorithm on our coreset instead
of the original input improves upon the runtime of previously known (1 + ε)-approximation
schemes. The improvement lies in the exponential term, which we reduce from NO(poly(K,1/ε))

to log(N)O(poly(K,1/ε)), while maintaining non-exponential dependence on D. Second, we
argue that an application of the merge-and-reduce technique enables us to maintain a fuzzy
K-means coreset in a streaming model, where points arrive one-by-one.

2 Preliminaries

Let X ⊂ RD be a set of points in D-dimensional space and w : X → N be an integer weight
function on the points. Using integer weights eases the notation of our exposition. We later
argue how our results generalize to rational weights. Unweighted data sets are denoted by
using the weight function 1 mapping every input to 1. We call w(X) =

∑
x∈X w(x) the total

weight of X and denote the maximum and minimum weights by wmax(X) = maxx∈X w(x)
and wmin(X) = minx∈X w(x).

I Definition 1 (Fuzzy K-means). Let m ∈ R>1 and K ∈ N. The fuzzy K-means problem is
to find a set of means M = {µk}k∈[K] ⊂ RD and a membership function r : X × [K]→ [0, 1]
minimizing

φ(X,w,M, r) =
∑
x∈X

w(x)
∑
k∈[K]

r(x, k)m ‖x− µk‖2

subject to

∀x ∈ X :
∑
k∈[K]

r(x, k) = 1 .

The parameter m is called fuzzifier. It determines the softness of an optimal clustering
and is not subject to optimization, since the cost of any solution can always be decreased by
increasing m. In the case m = 1, the cost can not be decreased by assigning membership of a
point to any mean except its closest. Consequently, optimal solutions of the fuzzy K-means
problem for m = 1 coincide with optimal solutions for the K-means problem on the same
instance. Hence, in the following we always assume m to be some constant larger than 1.

Similar to the classic K-means problem, it is easy to optimize means or memberships
of fuzzy K-means, assuming the other part of the solution is fixed [4]. This means, given
some set of means M we call a respective optimal membership function r∗M induced by M
and set φ(X,w,M) := φ(X,w,M, r∗M ). Analogously, given some membership function r we
call a respective optimal set of means M∗r induced by r and set φ(X,w, r) := φ(X,w,M∗r , r).
Finally, given some optimal solution M∗, r∗ we denote φopt(X,w) := φ(X,w,M∗, r∗).
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2.1 Fuzzy Clusters
Recall that, in a soft-clustering, there is no partitioning of the input points. Instead, we
describe the kth cluster of a fuzzy clustering as a vector of the fractions of points assigned to
it by the membership function. We denote the size (or the total weight) of the kth cluster by
r(X,w, k) =

∑
x∈X w(x)r(x, k)m. Given a set of means M , we denote the cost of the kth

cluster by φk(X,w,M, r) =
∑
x∈X w(x)r(x, k)m ‖x− µk‖2.

2.2 K-Means Notation
We denote the distance of a point to a set of means M by d(x,M) = minµ∈M{‖x− µ‖}
and the K-means cost by km(X,w,M) =

∑
x∈X w(x)d(x,M)2. Let C ⊆ X be some cluster,

then km(C,w) =
∑
x∈C w(x) ‖x− µw(C)‖2, where µw(C) =

∑
x∈C w(x)x/w(C).

3 Coresets for Fuzzy K-Means

A coreset is a representation of a data set that preserves properties of the original data set
[16]. Formally, we require the cost of a set of means with respect to the coreset to be close
to the cost the same set of means incurs on the original data.

I Definition 2 (Coreset). Let ε ∈ (0, 1). A set S ⊂ RD together with a weight function
wS : S → N is called an ε-coreset of (X,w) for the fuzzy K-means problem if

∀M ⊂ RD, |M | ≤ K : φ(S,wS ,M) ∈ [1± ε]φ(X,w,M) , (1)

We sometimes refer to a coreset as a strong coreset.

In the following, we show how to construct coresets for the fuzzy K-means problem
with high probability. To this end, our proof consists of two independent steps. First, we
show that it is sufficient to construct a so-called weak coreset [13] for the fuzzy K-means
problem fulfilling certain properties. Second, we present an adaptation of Chen’s coreset
construction for K-means [8] which computes weaks coresets with the desired properties,
with high probability.

I Theorem 3. There is an algorithm that, given a set X ⊂ RD, K ∈ N, δ ∈ (0, 1), and
ε ∈ (0, 1), computes an ε-coreset (S,wS), with S ⊆ X and wS : S → N, of (X,1) for the
fuzzy K-means problem, with probability at least 1− δ, such that

|S| ∈ O
(
log(N) log(log(N))2ε−3DK4m−1 log(δ−1)

)
.

The algorithms’ runtime is O(NDK log(δ−1) + |S|).

This result trivially generalizes to integer weighted data sets, by treating each point
x ∈ X as w(x) copies of the same point. However, in that case we have to replace each
occurrence on N in the runtime of the algorithm and the size of the coreset by w(X). For
rational weights, we normalize the weight function. This incurs an additional multiplicative
factor of wmax(X)/wmin(X) to each occurrence of N .

3.1 From Weak to Strong Coresets
Weak coresets are a relaxation of the previously introduced (strong) coresets. Consider a set
of points together with a weight function and a set of solutions. This forms a weak coreset if
the set of solutions contains a solution close to the optimum and the coreset property (1) is
satisfied for all solutions from the solution set.
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I Definition 4 (Weak Coresets). A set S ⊂ RD together with a weight function wS : S → N
and a set of solutions Θ ⊆ {θ | θ ⊂ RD, |θ| ≤ K} is called a weak ε-coreset of (X,w) for the
fuzzy K-means problem if

∃M ∈ Θ : φ(S,wS ,M) ≤ (1 + ε) · φopt(X,w) and
∀M ∈ Θ : φ(S,wS ,M) ∈ [1± ε]φ(X,w,M) .

In contrast to the definition of weak coresets for the K-means problem [13], we consider
elements M of a given set of solutions Θ instead of subsets of a set of candidate means. This
is just a slight generalization which allows us to characterize solutions more precisely.

One difficulty when analysing the fuzzy K-means objective function is that, in optimal
solutions, clusters are never empty. Consider a set of means, where there exists a mean which
is far away from every point. In an optimal hard clustering, this mean’s cluster is empty
and we can safely ignore it in the analysis. For fuzzy K-means, this is not the case. In an
optimal solution, every point has a non-trivial membership to this mean, thus it cannot be
ignored (or removed from the solution) without increasing the cost. Bounding the cost of
means with small membership mass proves to be rather difficult. A central concept we use
to control the cost of such means are fuzzy clusters which are almost empty, or negligible.

I Definition 5 (negligible). Let M ⊂ RD with |M | ≤ K. We say the kth cluster of a
membership function r : X × [|M |]→ [0, 1] is (K, ε)-negligible if

∀x ∈ X : r(x, k) ≤ ε

4mK2 .

In the following, we omit the parameters (K, ε) if they are clear from context.

We cannot preclude the possibility that an optimal fuzzy K-means clustering contains a
negligible cluster. However, we can circumvent negligible clusters altogether, by observing that
we can remove a mean inducing a negligible cluster without increasing the cost significantly.

I Theorem 6 ([6]). Let M ⊂ RD with |M | ≤ K and ε ∈ (0, 1). There exists a set of means
M ′ ⊆M with

φ(X,w,M ′) ≤ (1 + ε)φ(X,w,M) ,

such that the optimal membership function with respect to M ′ contain no negligible clusters.

Given some set of means, the optimal memberships of a point depend only on the location
of the point relative to the means and not on its weight or any other points in the data set
[4]. This means that negligible clusters are, in some sense, transitive. That is: If a cluster
induced by some set of means is negligible, then it is also negligible with respect to any subset
of X and the same set of means. Using this observation we can prove our key weak-to-strong
result.

I Lemma 7 (weak-to-strong). Let ε ∈ (0, 1) and

Θ(K,ε)(X) :=
{
M ⊂ RD

∣∣∣∣ |M | ≤ K and M induces no negligible
cluster with respect to X

}
.

If S ⊆ X and wS : S → N, such that (S,wS ,Θ(K,ε)(X)) is weak ε-coreset of (X,w) for the
fuzzy K-means problem, then (S,wS) is a strong (3ε)-coreset of (X,w) for the fuzzy K-means
problem.
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Proof. We need to verify that the coreset property (1) holds for all solutions M ⊂ RD with
|M | ≤ K. Since (S,wS ,Θ(K,ε)(X)) is a weak ε-coreset we only have to show this for all
M 6∈ Θ(K,ε)(X). From Theorem 6, we know that there exists M ′ ∈ Θ(K,ε)(X), M ′ ⊆M with
φ(X,w,M ′) ≤ (1 + ε)φ(X,w,M).

We obtain the upper bound by observing that

φ(S,wS ,M) ≤ φ(S,wS ,M ′) (M ′ ⊆M)
≤ (1 + ε)φ(X,w,M ′) (weak coreset property)
≤ (1 + ε)2φ(X,w,M) (choice of M ′)
≤ (1 + 3ε)φ(X,w,M) . (ε ∈ (0, 1))

The lower bound is slightly more involved. Again, from Theorem 6, we obtain that there
exists M ′S ∈ Θ(K,ε)(S), M ′S ⊆M with φ(S,wS ,M ′S) ≤ (1 + ε)φ(S,wS ,M). Recall that, for
each point, the membership induced by some set of means only depends on the point itself
and the given set of means. In particular, this membership does not depend on the weight of
the point, nor on other data points. Hence, if there is no point in X such that the induced
membership with respect to some mean µk ∈M is larger than some constant, then there is
no point in S ⊆ X, such that the induced membership to µk ∈M is larger than this constant.
Since M ′ ∈ Θ(K,ε)(X), it holds that all means in M \M ′ induce negligible clusters on S and
thus M ′S ⊆M ′. We conclude

φ(S,wS ,M) ≥ 1
1 + ε

φ(S,wS ,M ′S) (choice of M ′S)

≥ 1
1 + ε

φ(S,wS ,M ′) (M ′S ⊆M ′)

≥ 1− ε
1 + ε

φ(X,w,M ′) (weak coreset property)

≥ 1− ε
1 + ε

φ(X,w,M) (M ′ ⊆M)

≥ (1− 3ε)φ(X,w,M) . (ε ≥ 0)

J

3.2 Weak Coresets for Solutions with Non-Negligible Clusters
In the following, we explain how to adapt Chen’s coreset construction for the K-means problem
[8] to construct a set S ⊆ X and weight function wS : S → N such that (S,wS ,Θ(K,ε)(X))
is a weak ε-coreset of (X,1) for the fuzzy K-means problem. Applying Lemma 7 to this
construction yields Theorem 3. We give a high-level description of Chen’s algorithm. In
the first step, we compute an (α, β)-bicriteria approximation of the K-means problem with
respect to X, i.e. a set M approximating an optimal K-means solution within factor α and
with |M | ≤ βK, such that α, β ∈ O(1).

In the second step, the input points are partitioned based on concentric balls around the
means of the bicriteria approximation with exponentially increasing radii. By Xi,j we denote
the intersection of X with the jth annulus around the ith mean. Then, we sample points
from each Xi,j uniformly and independently at random. Finally, each point sampled from
Xi,j is evenly weighted, such that the sum of these weights is equal to the number of original
data points in Xi,j . These sampled points together with the weights form the coreset.
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There is no natural adaptation of the first step to fuzzy K-means since, so far, there exists
no bicriteria approximation algorithm for the fuzzy K-means problem with constant α and β.
However, we know that the K-means cost of all sets of means M is no larger than |M |m−1

times the fuzzy K-means cost of M [6]. Hence, an (α, β)-bicriteria approximation for the
K-means problem is an (α · (βK)m−1, β)-bicriteria approximation for the fuzzy K-means
problem on the same instance. We can counteract this very coarse bound on the cost in the
second step by sampling roughly a factor of KO(m) more points than the original algorithm.

I Lemma 8. The algorithm described in the previous paragraph computes S ⊆ X and
wS : S → N such that (S,wS ,Θ(K,ε)(X)) is a weak ε-coreset of (X,1) for the fuzzy K-means
problem, with high probability.

Proof Sketch. Let M ∈ Θ(K,ε)(X) be a set of means inducing no negligible clusters. We
consider large balls around each mean of the bicriteria-approximation. As in Chen’s original
proof, we establish the coreset property for the case where at least one mean of a given
solution is outside of these balls and the case where all means are contained in the union of
these balls.

For the first case, assume thatM contains at least one mean, say µk, outside of (sufficiently
large) balls around the means of the bicriteria approximation. Since µk has a non negligible
portion of the membership of at least one point from which it is far away, we can bound the
cost of M from below. This lower bound is significantly larger than the distances of data
points to their respective representative in the coreset. Using this, we can easily verify the
coreset property with respect to M .

For the second case, assume that all means of M lie in the union of these balls. In this
case, we do not need to use that clusters induce non-negligible memberships. Instead, we
can basically follow the arguments of Chen’s original proof. However, the cost estimations
are more technically involved due to the difficult structure of the fuzzy K-means objective
function. A detailed exposition of our proof can be found in the full version.

The size of the coreset and the runtime of the algorithm are as claimed in Theorem 3. J

4 Applications

In the following, we present two applications of our coresets for fuzzy K-means. In general,
our coresets can be plugged in before any application of an algorithm that tries to solve
fuzzy K-means and can handle weighted data sets. If the applied algorithm’s runtime does
not depend on the actual weights, then this leads to a significant reduction in runtime. We
show that this yields a faster PTAS for fuzzy K-means than the ones presented before [6].
Furthermore, we argue that our coresets can be maintained in an insertion-only streaming
setting.

4.1 Speeding up Aproximation
We start by presenting an improved analysis of a simple sampling-based PTAS for the fuzzy
K-means problem. Our analysis exploits that the algorithm can ignore the weights of the
data points and still obtain an approximation guarantee of (1 + ε) for the weighted problem.
This means, that the algorithm’s runtime is independent of the weights, and thus can be
significantly reduced by applying it to a coreset instead of the original data. The first
ingredient is the following, previosuly presented, soft-to-hard lemma.

ISAAC 2018



46:8 Coresets for Fuzzy K-Means with Applications

Algorithm 1: Derandomized Sampling.
Input: X ⊂ RD, K ∈ N, ε ∈ (0, 1)

1 T ← {µ1(S) | S ⊆ X, |S| = 64K
ε }

/* S as multisets – Points can occur multiple times in each S and are
counted with multiplicity. */

2 M ← arg minT⊆T ,|T |=K{φ(X,w, T )}
3 return M

I Lemma 9 ([6]). Let ε ∈ (0, 1), r : X × [K]→ [0, 1] be a membership function and let M∗r
be a set of means induced by r.

If ∀k ∈ [K] : r(X,w, k) ≥ 16Kwmax(X)/ε, then there exist pairwise disjoint sets
C1, . . . , CK ⊆ X such that for all k ∈ [K]

w(Ck) ≥ r(X,w, k)
2 ,

‖µw(Ck)− µk‖2 ≤ ε

r(X,w, k)φk(X,w,M∗r , r), and

km(Ck) ≤ 4K · φk(X,w,M∗r , r) .

We combine this with a classic concentration bound by Inaba et al.

I Lemma 10 ([22]). Let P ⊂ RD, n ∈ N, δ ∈ (0, 1), and let S be a set of n points drawn
uniformly at random from P . Then we have

Pr
(
‖µ1(S)− µ1(P )‖2 ≤ 1

δn

km(P,1)
|P |

)
≥ 1− δ .

I Corollary 11. Let X ⊂ RD, w : X → N, K ∈ N, ε ∈ (0, 1), and let C1, . . . , CK ⊆ X be
non-empty subsets of X. There exist K multisets S1, . . . , SK ⊆ X, such that

∀k ∈ [K] : |Sk| =
2
ε
and ‖µ1(Sk)− µw(Ck)‖2 ≤ εkm(Ck, w)

w(Ck) .

We can find means of subsets obtained from applying the soft-to-hard lemma to the
clusters of an optimal fuzzy K-means solution by derandomizing Inaba’s sampling technique.

I Theorem 12. Algorithm 1 computes M ⊂ RD with |M | = K, such that

φ(X,w,M) ≤ (1 + ε)φopt(X,w)

in time DNO(K2/ε).

Proof. We analyse the result M of Algorithm 1. Let M∗, r∗ be an optimal solution to the
fuzzy K-means problem on X, w. Let Xc be a modified point set, which contains c copies of
every point x ∈ X, where

c =
⌈

γKwmax(X)
εmink∈[K] r∗(X,w, k)

⌉
,

for some large enough constant γ. For all sets of means M and all membership functions r,
we have φ(Xc, w,M, r) = c · φ(X,w,M, r). Thus, M∗ and r∗ (where r∗(y, k) = r∗(x, k) for
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all k ∈ [K] and x ∈ X, y ∈ Xc with x = y) are also optimal for the modified instance Xc.
Observe, that for all k ∈ [K] we have

r∗(Xc, w, k) ≥
∑
x∈X

γKwmax(X)
εmink∈[K] r∗(X,w, k)w(x)r∗(x, k)m ≥ γKwmax(X)

ε
≥ 64Kwmax(X)

ε
.

Observe, that M∗ is a set of means induced by r∗. Hence, by applying Lemma 9 with respect
to Xc, w, r∗, and ε/4 we obtain that there exist disjoint sets C1, . . . , CK ⊆ Xc such that for
all k ∈ [K] we have

w(Ck) ≥ r∗(Xc, w, k)
2 , (2)

‖µw(Ck)− µ∗k‖
2 ≤ ε

4r∗(Xc, w, k)φk(Xc, w,M
∗, r∗) , and (3)

km(Ck, w) ≤ 4K · φk(Xc, w,M
∗, r∗) . (4)

Next, we apply Corollary 11 to Xc, w, K, ε/(32K), and C1, . . . , CK . We obtain that there
exist S1, . . . , SK ⊆ Xc such that for all k ∈ [K] we have |Sk| = 64K/ε and

‖µ1(Sk)− µw(Ck)‖2 ≤ ε/(32K) km(Ck, w)/w(Ck) . (5)

Since Xc consists of copies of points from X, we conclude that S1, . . . , SK ⊆ X, if we treat
the Sk as multisets, i.e. allow the same point to appear multiple times in the same set. Hence,
by choice of M , as made by Algorithm 1, we have φ(X,w,M) ≤ φ(X,w, {µ1(Sk)}k∈[K]).
Plugging all this together, we can bound the cost of M as follows

φ(X,w,M) ≤ φ(X,w, {µ1(Sk)}k∈[K]) = 1
c
φ(Xc, w, {µ1(Sk)}k∈[K])

≤ 1
c
φ(Xc, w, {µ1(Sk)}k∈[K], r

∗) = 1
c

∑
x∈Xc

∑
k∈[K]

w(x)r∗(x, k)m ‖x− µ1(Sk)‖2

≤ φ(X,w, r∗) + 2
c

∑
x∈Xc

∑
k∈[K]

w(x)r∗(x, k)m ‖µ∗k − µw(Ck)‖2

+ 2
c

∑
x∈Xc

∑
k∈[K]

w(x)r∗(x, k)m ‖µw(Ck)− µ1(Sk)‖2

(by 2-approximate triangle inequality)

≤ φopt(X,w) + ε

2c
∑
k∈[K]

φk(Xc, w,M
∗, r∗) (by (3))

+ ε

c16K
∑
k∈[K]

km(Ck, w)
w(Ck)

∑
x∈Xc

w(x)r∗(x, k)m (by (5))

≤ (1 + ε/2)φopt(X,w) + ε

2c
∑
k∈[K]

φk(Xc, w,M
∗, r∗) (by (2) and (4))

= (1 + ε)φopt(X,w) .

Bounding the runtime of Algorithm 1 is straightforward. We have to evaluate the cost of
|T |K different fuzzy K-means solution, each evaluation costing O(NDK). Hence, the total
runtime is bounded by O(NDK |T |K) = O(NDK(N64K/ε)K) = DNO(K2/ε). J

Recall, that the runtime of Algorithm 1 is independent of point weights. Hence, we obtain
a more efficient algorithm by first computing a coreset using Theorem 3 and then applying
Algorithm 1 to this coreset instead of the original data set. In the following, we formally
only state an unweighted version of our result.
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I Corollary 13. There exists an algorithm which, given X ⊂ RD, K ∈ N, and ε ∈ (0, 1),
computes a set M ⊂ RD with |M | = K, such that with constant probability

φ(X,1,M) ≤ (1 + ε)φopt(X,1)

in time O(NDK) + (log(N)D)O(K2/ε log(K/ε)).

Proof. Given X, K, and ε, apply Theorem 3 (with ε/3) to obtain, with constant probability,
an ε/3-coreset (S,wS) of (X,1). Let M be the output of Algorithm 1 given S, wS , and ε/3
and let M∗X be an optimal set of means with respect to X. We obtain

φ(S,wS ,M) ≤ (1 + ε/3)φopt(S,wS) ≤ (1 + ε/3)φ(S,wS ,M∗X)
≤ (1 + ε/3)2φopt(X,1) ≤ (1 + ε)φopt(X,1) .

The overall runtime isO(NDK)+D(|S|)O(K2/ε) = O(NDK)+(log(N)D)O(K2/ε log(K/ε)). J

The algorithm from Corollary 13 can also be applied to weighted data sets. However, its
runtime is not independent of these weights. We argued that the runtime of the PTAS from
Theorem 12 is independent of any weights, but this is not true for the coreset construction.
Hence, weight functions have an impact on the runtime as discussed in Section 3 in regard
to the coreset construction.

Nonetheless, our algorithm has significant advantages over previously presented (1 + ε)-
approximation algorithms for fuzzy K-means. The runtimes of all algorithms presented in
[6] have an exponential dependency on the dimension D or contain a term NO(poly(K,1/ε)).
Our result constitutes the first algorithm with a non-exponential dependence on D whose
only exponential term is of the form log(N)O(poly(K,1/ε)).

Strictly speaking, applying Algorithm 1 directly to X is faster if D ∈ Ω(N). However,
in that case we can apply the lemma of Johnson and Lindenstrauss [23] to replace D by
log(N)/ε2

4.2 Streaming Model

We give a brief overview of the method to maintain coresets in a streaming model presented
in [14]. It is an improved version of the techniques previously used by [8] and [16]. The
central observation is that the union of coresets of two input data sets is a coreset of the
union of the data sets. Whenever a sufficient (depending on the coreset construction) number
of points has arrived in the stream, we compute a coreset of these points. After two coresets
have been computed, we merge them into a larger coreset of all points that have arrived,
so far. Following two of these merge operations, we merge the two larger coresets into one
even larger one. This continues in the fashion of a binary tree. Since our coresets for fuzzy
K-means fulfil all requirements to apply this approach, it can also be used to maintain fuzzy
K-means coresets in the streaming model.

I Theorem 14. Given N data points in a stream (one-by-one) and ε ∈ (0, 1) one can
maintain, with high probability, an ε-coreset for the fuzzy K-means problem, of the points
seen so far, using O(DK4m−1 · polylog(N/ε)) memory. Arriving data points cause an update
with an amortized runtime of O(DK · polylog(NDK/ε)).



J. Blömer, S. Brauer, and K. Bujna 46:11

5 Discussion and Outlook

We proved that a parameter tuned version of Chen’s construction yields the first coresets
for the fuzzy K-means problem. While there are a plethora of coreset constructions for
K-means, Chen’s construction is the best purely sampling based approach. More efficient
techniques, for example ε-nets [15] or subspace approaches like low-rank approximation [14],
heavily rely on the partitioning of the input set that a K-means solution induces. So far,
we have not found a way to apply these to the, already notoriously hard to analyse, fuzzy
K-means objective function. This is because the membership function essentially introduces
an unknown weighting on the points. Hence, when the data set is partitioned or projected
into some subspace without respecting this weighting, we introduce a factor KO(1) to the
cost estimation. It has proven difficult to control these additional factors. Partly for these
reasons, there is still a large number of open questions regarding fuzzy K-means.

In this paper, we almost match the asymptotic runtime of the fastest (1+ε)-approximation
algorithms for K-means. However, even assuming constant K, our algorithms lack practicality
due to the large constants hidden in the O. Hence, this raises interesting follow-up questions.
Is there an efficient approximation algorithm for fuzzyK-means with a constant approximation
factor? What can be done in terms of bicriteria algorithms, i.e. if we are allowed to chose
more than K means? In regard to the complexity of fuzzy K-means it is interesting to
examine whether one can show that there is no true PTAS (polynomial runtime in N , D,
and K) for fuzzy K-means, as it was shown for K-means [2]. Finally, can we relate the
hardness of fuzzy K-means directly to K-means?
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Abstract
Many classical algorithms are known for computing the convex hull of a set of n point in R2

using O(n) space. For large point sets, whose size exceeds the size of the working space, these
algorithms cannot be directly used. The current best streaming algorithm for computing the
convex hull is computationally expensive, because it needs to solve a set of linear programs.

In this paper, we propose simpler and faster streaming and W-stream algorithms for com-
puting the convex hull. Our streaming algorithm has small pass complexity, which is roughly a
square root of the current best bound, and it is simpler in the sense that our algorithm mainly re-
lies on computing the convex hulls of smaller point sets. Our W-stream algorithms, one of which
is deterministic and the other of which is randomized, have nearly-optimal tradeoff between the
pass complexity and space usage, as we established by a new unconditional lower bound.
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1 Introduction

The convex hull of a set P of points in R2 is the smallest convex set that contains P . We
denote the convex hull of P by conv(P ) and denote the set of extreme points in conv(P ) by
ext(P ). Let n = |P | and h = |ext(P )|. Note that h ≤ n because ext(P ) is a subset of P . By
computing the convex hull of P , we mean outputting the points in ext(P ) in clockwise order.

There is a long line of research on computing the convex hull using O(n) space. In the
RAM model, Graham [20] gave the first algorithm, called the Graham Scan, with running
time O(n log n). Subsequently, several algorithms were devised with the same running time,
but with different approaches [2, 6, 26, 34]. In the output-sensitive model, where the running
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running time O(nh). This algorithm was later improved by Kirkpatrick and Seidel [28] and
Chan [12], both of which achieve running time of O(n log h). In the online model, where input
points are given one by one and algorithms need to compute the convex hull of points seen
so far, Overmars and van Leeuween’s algorithm [33] can update the convex hull in O(log2 n)
time per incoming point. Brodal and Jacob [9] reduced the update time to O(log n).

Streaming Model. The algorithms mentioned above all require s = Ω(n) working space
(memory) in the worst case. Therefore, none of these can handle the case when s� n, that
is, when either n is very large (a massive data set) or s is very small (such as in embedded
systems). In order to explore the convex hull problem with such a memory restriction,
we consider the standard streaming models [5, 15, 16, 32, 36], where the n given points are
stored on a read-only or writable tape in an arbitrary order. If the tape is read-only, then
the model is simply called the streaming model [5, 32]. Otherwise the tape is writable,
and the model is called the W-stream model [15, 16, 36]. We refer to algorithms in the
streaming model as streaming algorithms and algorithms in the W-stream model as
W-stream algorithms. In both models, algorithms can manipulate the working space
while reading the points sequentially from the beginning of the tape to the end; however,
only algorithms in the W-stream model can modify the tape, detailed in Section 4. Hence,
algorithms in this model cannot access the input randomly, which is different from the model
for in-place algorithms [8,10]. The extreme points are written to a write-only stream. The
pass complexity of an algorithm refers to the number of times the algorithms scans the
tape from the beginning to the end. The goal is to devise streaming and W-stream algorithms
that have small pass and space complexities.

No single-pass streaming algorithm can compute the convex hull using o(n) space because
it is no easier than sorting n positive numbers in R. Since sorting n numbers using s spaces
requires Ω(n/s) passes [31], computing the convex hull in a single pass requires linear space.
However, Chan and Chen [13] showed that the space requirement can be significantly reduced
if multi-pass algorithms are allowed. Specifically, their streaming algorithm uses O(δ−2)
passes, O(δ−2hnδ) space, and O(δ−2n log n) time for any constant δ ∈ (0, 1). On the other
hand, to have small space complexity, one can appeal to a general scheme to convert PRAM
algorithms to W-stream algorithms established by Demetrescu et al. [15], summarized in
Section 4. Using this technique yields a W-stream algorithm that uses O((n/s) log h) passes
and O(s) space where s can be as small as constant.

Our Contribution. We devise a new O(n log h)-time RAM algorithm to compute the convex
hull (Section 2). Then, we adapt the RAM algorithm to both models.

In the streaming model, the pass complexity of our algorithm is roughly a square root of
that of Chan and Chen’s algorithm [13] if both have the same space usage. We have:

I Theorem 1. Given a set P of n points in R2 on a read-only tape where |ext(P )| = h, there
exists a deterministic streaming algorithm to compute the convex hull of P in O(δ−1) passes
using O(min{δ−1hnδ log n, n}) space and O(δ−2n log n) time for every constant δ ∈ (0, 1).

In the W-stream model, we adapt the RAM algorithm to two W-stream algorithms. One
uses O(s) space for any s = Ω(log n) and the other uses O(s) space for any s = Ω(1). The
pass complexity of our W-stream algorithms are O(dh/se log n) and O(h/s+ log n), which
are smaller than O((n/s) log h), the best pass complexity among those W-stream algorithms
that are converted from PRAM algorithms in algebraic decision tree model [15], when s ≤ h.
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The first W-stream algorithm is deterministic, and we get:

I Theorem 2. Given a set P of n points in R2 where |ext(P )| = h, there exists a deterministic
W-stream algorithm to compute the convex hull of P in O(dh/se log n) passes using O(s)
space and O(n log2 n) time for any s = Ω(log n).

Next, we randomize the above W-stream algorithm. A logarithmic factor can be shaved
off from the pass complexity with probability 1− 1/nΩ(1), abbreviated as w.h.p. We have:

I Theorem 3. Given a set P of n points in R2 where |ext(P )| = h, there exists a randomized
W-stream algorithm to compute the convex hull of P in p passes using O(s) space and
O(n log2 n) time for any s = Ω(1), where p = O(h/s+ log n) w.h.p.

We prove that our W-stream algorithms have nearly-optimal tradeoff between pass and
space complexities by showing Theorem 4, which generalizes Guha and McGregor’s lower
bound (Theorem 8 in [22]). We remark that this lower bound is sharp because it matches
the bounds of our randomized W-stream algorithm when h = Ω(s log n).

I Theorem 4. Given a set P of n points in R2 where |ext(P )| = h = Ω(1), any streaming
(or W-stream) algorithm that computes the convex hull of P with success rate ≥ 2/3, and
uses s bits requires Ω(dh/se) passes.

We note here that space is measured in terms of bits for lower bounds and in terms of
points for upper bounds. This asymmetry is a common issue for geometric problems because
most geometric problems are analyzed under the RealRAM model, where precision of points
(or other geometric objects) is unbounded.

Applications. Our W-stream algorithms can handle the case for s ≤ h because it outputs
extreme points on the fly. This output stream can be used as an input stream for another
streaming algorithm, such as for diameter [37] and minimum enclosing rectangle [38], both
of which rely on Shamos’ rotating caliper method [37]. Theorems 2 and 3 imply Corollary 5.

I Corollary 5. Given a set P of n points in R2 where |ext(P )| = h, there exists a deterministic
W-stream algorithm to compute the diameter and minimum enclosing rectangles of P in
O(dh/se log n) passes using O(s) space and O(n log2 n) time for every s = Ω(log n). Given
randomness, the pass complexity can be reduced to O(h/s+ log n) w.h.p.

Approximate Convex Hulls. Given the hardness result shown in Theorem 4, we know that
one cannot have a constant-pass streaming algorithm that uses o(h) space to compute the
convex hull. In view of this, to have constant-pass o(h)-space streaming algorithms, one may
consider computing an approximate convex hulls. There are several results studying on how
to efficiently find an approximate convex hull in the streaming model, based on a given error
measurement. The error criterion varies from the Euclidean distance [24], and Hausdorff
metric distance [29,30], to the relative area error [35]. These algorithms use a single pass,
O(s) space, and can bound the given error measurement by a function of s.

Paper Organization. In Section 2, we present a new O(n log h)-time RAM algorithm to
compute the convex hull. Then, in Section 3, we present a constant-pass streaming algorithm.
In Section 4, we present two W-stream algorithms, both of which use O(s) space where s can
be as small as O(log n). Finally, in Section 5, we generalize the previous lower bound result.

ISAAC 2018
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Table 1 Categorization of four O(n log h)-time algorithms for convex hull.

Find r hull edges, and recurse. Find r extreme points, and recurse.

r = 1 Kirkpatrick and Seidel 1986 [28] Chan 1995 [11]
any r ≥ 1 Chan and Chen 2007 [13] This paper

2 Yet another O(n log h)-time algorithm in the RAM model

Our streaming algorithm is based on a RAM algorithm, which we present in this section.
This RAM algorithm is a modification of Kirkpatrick and Seidel’s ultimate convex hull
algorithm in the RAM model [28]. Chan and Chen’s streaming algorithm [13] is also based on
Kirkpatrick and Seidel’s algorithm, and thus the structure of these two streaming algorithms
have some similarities. The changes are made so that our streaming algorithm does not have
to rely on solving linear programs, thus reducing the computation cost compared to Chan
and Chen’s algorithm.

In what follows, we only discuss how to compute the upper hull because the lower hull
can be computed analogously. Formally, computing the upper hull U(P ) of a point set P
means outputting that part of the extreme points v1, v2, . . . , vt ∈ ext(P ) in clockwise order
so that v1 is the leftmost point in P and vt is the rightmost point in P , tie-breaking by
picking the point with the largest y-coordinate, so that all points in P lie below or on the
line passing through vi, vi+1 for each 1 ≤ i < t. Note that each of v1, v2, . . . , vt has a unique
x-coordinate, and each line that passes through vi and vi+1 for 1 ≤ i < t has a finite slope.

Roughly speaking, Kirkpatrick and Seidel’s ultimate convex hull algorithm [28] evenly
divides the point set into two subsets by a vertical line ` : x = µ, finds the hull edge in the
upper hull that crosses `, and recurses on the two separated subsets. By appealing to the
point-line duality, finding the crossing hull edge is equivalent to solving a linear program.
Chan and Chen’s streaming algorithm is adapted from this implementation of the ultimate
convex hull algorithm. Their algorithm evenly divides the point set into r + 1 subsets for
r ≥ 1 by r vertical lines, finds the hull edges in the upper hull that cross these vertical lines,
and recurses on the r + 1 separated subsets. Finding these r crossing hull edges is equivalent
to solving r linear programs, where the constraint sets for each are the same but the objective
functions are different.

In [11, Section 2], Chan gives another version of Kirkpatrick and Seidel’s ultimate convex
hull algorithm, that finds a suitable (possibly random) extreme point, divides the point set
into two by x-coordinate, and recurses. The extreme point can be found by elementary
techniques. Our streaming algorithm is adapted from the latter algorithm. It finds r suitable
extreme points for r ≥ 1, divides the point set into r+1 subsets by x-coordinate, and recurses
on each subset. Though this generalization sounds straightforward, finding the r suitable
extreme points needs a different approach from that for finding a single suitable extreme
point. We reduce finding these r suitable extreme points to computing the upper hulls of
n/(r + 1) small point sets. This reduction is the key observation of our RAM algorithm and
is described in detail in the subsequent paragraphs. These four algorithms are categorized in
Table 1.

Given r, our algorithm partitions P arbitrarily into G1, G2, . . . , Gn/(r+1) so that each Gj
has size in [1, r + 1], and then computes the upper hull of each Gj . Let Q be the union of
the slopes of the hull edges in the upper hull of G1, G2, . . . , Gn/(r+1), which is a multiset.
Let σk be the slope of rank k|Q|/(r + 1) in Q, for k ∈ [1, r], in other words, σk is the kth
(r + 1)-quantile in Q. To simplify the presentation, let σ0 = −∞ and σr+1 =∞. Let sk be
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the extreme point in P that supports slope σk, for each k ∈ [0, r + 1]. That is, for every
point p ∈ P draw a line passing through p with slope σk, and pick sk as the point whose line
has the highest y-intercept. We define s0 = pL, the point with the smallest x-coordinate, and
sr+1 = pR, the point with the largest x-coordinate. If any sk has more than one candidates,
pick the point that has the largest y-coordinate. Let x(p) denotes the x-coordinate of point
p, and let σ(p, q) denote the slope of the line that passes through points p and q.

We use these s1, s2, . . . , sr as the r suitable extreme points with which to refine P
into P1, P2, . . . , Pr+1 where we say the si are suitable in that each Pk has size bounded
by O(|P |/(r + 1)). Initially, set Pk = ∅ for all k ∈ [1, r + 1]. The refinement applies the
cascade-pruning described in Lemma 7 on Gj for each j ∈ [1, n/(r + 1)], which uses the
known pruning technique stated in Lemma 6 as a building block, and works as follows:

Step 1. Compute the extreme points v1, v2, . . . , vt ∈ U(Gj) in clockwise order.
Step 2. Set Pk ← Pk ∪ {vi : i ∈ [α, β], x(sk−1) < x(vi) < x(sk)} for each k ∈ [1, r + 1],
where vα (resp. vβ) is the extreme point in Gj that supports σk−1 (resp. σk).

The pruning in Step 2 is two-fold. For any i < α, if x(vi) ≤ x(sk−1), then vi cannot be
placed in Pk. Otherwise x(vi) > x(sk−1), Case 2 of Lemma 7 applies. Again, vi cannot be
placed in Pk. Similarly, vi for any i > β cannot be placed in Pk either. Finally, remove the
points that lie below or on the line passing through sk−1, sk from Pk for each k ∈ [1, r + 1].

I Lemma 6 (Chan, [11]). Given a point set P ⊂ R2 and a slope σ, let s be the extreme point
in P that supports σ. Then, for any pair of points p, q ∈ P where x(p) < x(q),

Case 1. If σ(p, q) ≤ σ and x(q) ≤ x(s), then q /∈ U(P ).
Case 2. If σ(p, q) ≥ σ and x(p) ≥ x(s), then p /∈ U(P ).

I Lemma 7 (Cascade-pruning). Given a point set P ⊂ R2 and a slope σ, let s be the
extreme point in P that supports σ. Then, for any G ⊆ P whose U(G) = {v1, v2, . . . , vt},
x(v1) < x(v2) < · · · < x(vt), and where δ ∈ [1, t] is such that vδ is the extreme point in G

that supports σ, we have:
Case 1. If x(vi) ≤ x(s) for some i ∈ [δ + 1, t], then vδ+1, . . . , vi /∈ U(P ).
Case 2. If x(vi) ≥ x(s) for some i ∈ [1, δ − 1], then vi, . . . , vδ−1 /∈ U(P ).

Proof. Observe that σ(vj , vj+1) ≥ σ for all j ∈ [1, δ − 1] and σ(vj−1, vj) ≤ σ for all
j ∈ [δ + 1, t] because v1, v2, . . . , vt are extreme points in U(G) in clockwise order and vδ is
the extreme point in G that supports σ. Since there is an i ∈ [δ+ 1, t] such that x(vi) ≤ x(s),
we have x(vj) ≤ x(s) for each j ∈ [δ + 1, i]. The above are exactly the conditions of Case
1 in Lemma 6 for all point pairs (vj−1, vj) whose j ∈ [δ + 1, i]. Thus, vj /∈ U(P ) for all
j ∈ [δ + 1, i]. The other case can be proved analogously. J

We get the exact bound for each Pk in Lemma 8, noting that |Pk| ≤ 3
4 |P | for r = 1.

I Lemma 8. |Pk| ≤ ( 2
r+1 −

1
(r+1)2 )|P | ≤ 2|P |/(r + 1) for each k ∈ [1, r + 1].

Proof. To ensure that, for every k ∈ [1, r + 1], Pk is a small fraction of P , we use the
cascade-pruning procedure described in Lemma 7. Let {v1, v2, . . . , vt} be U(Gj) for some
j ∈ [n/(r + 1)] where x(v1) < x(v2) < · · · < x(vt). Let vαj

(resp. vβj
) be the extreme point

in Gj that supports σk−1 (resp. σk).
Let nj be the number of points in Pk ∩ Gj . Recall that Pk does not contain any vi

for any i /∈ [αj , βj ], and hence nj ≤ βj − αj + 1. Observe that point pair (vi, vi+1) has
slope in the open interval (σk−1, σk) for each i ∈ [αj , βj − 1]. Since σk−1 (resp. σk) is the
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RAM Algorithm: Compute the upper hull U(P ) of P .
1 Let G1, G2, . . . , Gn/(r+1) be any partition of P such that each Gj has size in [1, r+ 1];
2 Q← ∅;
3 foreach Gj in the partition do
4 Compute the upper hull v1, v2, . . . , vt of Gj ;
5 for i = 1 to t− 1 do
6 σ ← the slope of the line passing through vi, vi+1;
7 Q← Q ∪ {σ};
8 end
9 end

10 for k = 1 to r do
11 σk ← the k|Q|/(r + 1)-th smallest slope in Q;
12 sk ← the extreme point in P that supports σk;
13 end
14 (s0, σ0, sr+1, σr+1)← (pL,−∞, pR,∞);
15 for k = 1 to r + 1 do
16 Pk ← ∅;
17 foreach Gj in the partition do
18 Compute the upper hull v1, v2, . . . , vt of Gj ;
19 Find the extreme point vα (resp. vβ) in Gj that supports σk−1 (resp. σk);
20 Pk ← Pk ∪ {vα, vα+1, . . . , vβ};
21 end
22 Remove the points that lie below or on the line passing through sk−1, sk from Pk;
23 if Pk 6= ∅ then
24 Recurse on Pk ∪ {sk−1, sk};
25 end
26 end

(k − 1)|Q|/(r + 1)-th largest slope (resp. the k|Q|/(r + 1)-th largest slope) in Q, Q has at
most |Q|/(r + 1) slopes in the open interval (σk−1, σk). This yields that

n/(r+1)∑
j=1

nj − 1 ≤ |Q|
r + 1 ⇒

n/(r+1)∑
j=1

nj ≤
|Q|
r + 1 + n

r + 1 ≤
r|P |

(r + 1)2 + |P |
r + 1

The last inequality holds because |Q| ≤ r|P |/(r + 1), and it establishes that the number of
points from all Gj ’s that comprise Pk for each k ∈ [1, r + 1] is at most 2|P |/(r + 1). J

For each k ∈ [1, r + 1], if Pk 6= ∅, then our algorithm recurses on Pk ∪ {sk−1, sk}. This
ensures that every subproblem has an input that contains some intermediate extreme point(s),
i.e. not the leftmost and rightmost extreme points, and any two subproblems where one is
not an ancestor or a descendant of the other have an empty intersection in their intermediate
extreme point set. As a result,

I Lemma 9. Our algorithm has O(h) leaf subproblems.

Here we analyze the running time of the RAM algorithm for the case of r = O(1) and
defer the discussion for the case of r = ω(1) until the section on streaming algorithms. Let
TC be the recursive computation tree of the RAM algorithm. The root of TC represents
the initial problem of the recursive computation. Every node in TC has at most r + 1 child
nodes, each of which represents a recursive subproblem.
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For a computation node with the input point set P whose |P | < r, we use any O(|P | log r)-
time algorithm to compute the convex hull. Otherwise, we need to compute |P |/(r + 1)
convex hulls of point sets of size at most r+ 1, which runs in O(|P | log r) time (Lines 1-9). In
addition, the quantile selection in Q has the running time O(|Q| log r) = O(|P | log r) (Line
11). The r suitable extreme points can be found in O(|P | log r) time by Lemma 15 (Line 12).
The pruning procedure can be done in O(|P | log r) time by a simple merge (Lines 15-26).
Hence, each computation node needs O(|P | log r) time.

Since each child subproblem has an input set Pk∪{sk−1, sk} of size at most 2|P |/(r+1)+2
(Lemma 8), the running time of child subproblem is an (2/(r + 1))-fraction of its parent
subproblem. Hence, TC is an (2/(r + 1))-fading computation tree where Edelsbrunner and
Shi [17] define a recursive computation tree to be α-fading for some α < 1 if the running time
of a child subproblem is an α-fraction of its parent. In [11], Chan extends Edelsbrunner and
Shi’s results and obtains that, if an α-fading recursive computation tree has L leaf nodes and
the total running time of the nodes on each level is at most F , then the recursive computation
tree has total running time O(F logL). Our algorithm has O(h) leave nodes (Lemma 9) and
O(|P | log r) time for the computation nodes on each level because two subproblems on the
same level have their inputs only intersected at one of their extreme points. We get:

I Theorem 10. The RAM algorithm runs in O(n log h log r) time, and for r = O(1) it is
an O(n log h)-time algorithm.

3 A Simpler and Faster Streaming Algorithm

In this section, we show how to adapt our RAM algorithm to the streaming model. Our
streaming algorithm is the same as our RAM algorithm, but we execute the subproblems on
TC in BFS order. That is, starting from the root of TC , all subproblems on TC of the same
level are solved together in a round, then their invoked subproblems are solved together in
the next round, and so on. We will see in a moment that our algorithm needs to scan the
input O(1) times for each round. Therefore, to have an O(1)-pass streaming algorithm, our
approach requires r = nδ for some positive constant δ < 1. By setting r = nδ, we have:

I Lemma 11. By setting the parameter r to be nδ for any constant δ ∈ (0, 1), the recursive
computation tree TC has O

(
δ−1h

)
nodes.

Proof. This lemma holds because TC has depth O(logr n) = O(δ−1) by Lemma 8 and TC
has O(h) leaf nodes by Lemma 9. J

We assign a unique identifier z ∈ [1, |TC |] to each of |TC | = O(δ−1h) subproblems. Let
Sz be the subproblem on TC whose identifier is z. For each z ∈ [1, |TC |], Sz has input point
set Pz. Pz is a subsequence of P and is given to Sz as an input stream of |Pz| points. Our
algorithm will generate Pz more than once for Sz to access, for all z ∈ [1, |TC |]. The data
structures used in Sz also are suffixed with z. To compute Sz, naively we need O(|Pz|)
space. We will see in a moment that given Pz, how to solve Sz using O(r log r|Pz|) space
in O(r log |Pz| + |Pz| log r) time. We will also see how to generate the input for all the
subproblems on TC of depth d > 0 in O(1) passes. We now establish all these claims,
after which we will be ready to prove Theorem 1. We decompose Sz into the following
three subtasks and describe the algorithms for the subtasks in the subsequent subsections.
(1) Given Pz, obtain the r quantile slopes σ1, σ2, . . . , σr. (2) Given Pz and σ1, σ2, . . . , σr,
obtain the r suitable extreme points s1, s2, . . . , sr. (3) After the ancestor subproblems of Sz
(excluding Sz) are all solved, generate Pz.
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3.1 Obtaining the r quantile slopes
To find the r quantile slopes for Sz (Lines 1-11 in the RAM algorithm) using small space, we
use a Greenwald and Khanna [21] quantile summary structure, abbreviated as QSz. This
summary is a data structure that supports two operations: insert a slope (QSz.insert(σ))
and query for (an estimate of) the t-th smallest slope (QSz.query(t)) in Qz. Given access
to QSz, we do not have to store the entire Pz to obtain the r quantile slopes. Instead, we
invoke QSz.insert(σ) for each slope σ ∈ Qz. After updating all slopes in Qz, we obtain an
estimate of the (r + 1)-quantile of Qz by invoking QSz.query(k|Qz|/(r + 1)) for all k ∈ [1, r].

QSz.query(k|Qz|/(r + 1)) returns an estimate σ̂k that has an additive error c|Qz| in the
rank, where c is a parameter to be determined. We set c = ε/(r+ 1) for some constant ε > 0
so that the additive error cannot increase the depth of TC by more than a constant factor.
Precisely, because the obtained σ̂k has the rank in the range [(k−ε)|Qz|/(r+1), (k+ε)|Qz|/(r+
1)] for each k ∈ [1, r], we need to replace Lemma 8 with Corollary 12. Such a replacement
increases the depth of TC from O(logr n) = O(δ−1) to O(logr/(1+ε) n) = O(δ−1) + o(1).

I Corollary 12. |Pk| ≤ ( 2+2ε
r+1 −

1
(r+1)2 )|P | ≤ 2(1 + ε)|P |/(r + 1) for each k ∈ [1, r + 1].

The summary QSz needs O
( 1
c log(c|Qz|)

)
space, and therefore the space usage for each

subproblem is O((r/ε) log((ε/r)|Qz|)). In [39], it shows that Greenwald and Khanna’s
quantile summary needs O(log |Qz|) time for an update and O(log r + log log(|Qz|/r)) for a
query. Because Sz conducts O(r) updates and O(r) queries, we get:

I Lemma 13. Given Pz, some streaming algorithm can find the r approximate quantile
slopes in Qz to within any O(1) factor in O(r log(|Pz|+ r)) time using O(r log(|Pz|/r)) space.

3.2 Obtaining the r suitable extreme points
To find the r suitable extreme points in Pz (Line 12 in the RAM algorithm), a naive
implementation, which would update the supporting points of σ̂k for all k ∈ [1, r] once for
each point p ∈ Pz, needs O(r|Pz|) running time. To reduce the running time to the claimed
time complexity O(r log |Pz|+ |Pz| log r), we need the following observation.

I Observation 14. For any non-singleton set G whose extreme points in the upper hull U(G)
from left to right are v1, v2, . . . , vt, the point in G that supports a given slope σ is

s =


v1 if σ > σ(v1, v2)
vt if σ < σ(vt−1, vt)
vi if σ(vi−1, vi) ≥ σ ≥ σ(vi, vi+1) for some i ∈ [2, t− 2]

To find the extreme points in Pz that supports σ̂k for all k ∈ [1, r], we compute the
extreme points v1, v2, . . . , vt in Pz from left to right, generate a (sorted) list `A of slopes
σ(v1, v2), σ(v2, v3), . . . , σ(vt−1, vt), and merge `A with another (sorted) list `B of the approx-
imate (r + 1)-quantile slopes σ̂1, σ̂2, . . . , σ̂r. By Observation 14, the point ŝk in Pz that
supports σ̂k for each k ∈ [1, r] can be easily determined by the its predecessor and successor
in `A. Scanning the merged list suffices to get ŝ1, ŝ2, . . . , ŝk. Though the above reduces the
time complexity to O(r + |Pz| log |Pz|), the space complexity O(|Pz|) is much higher than
the claimed space complexity O(r log r|Pz|) for r � |Pz|. To remedy, again, we reduce this
problem to computing the upper hulls of |Pz|/(r + 1) smaller point sets. First, we partition
Pz arbitrarily into G1, G2, . . . , G|Pz|/(r+1) so that each group Gi has size |Gi| ∈ [1, r + 1]
points. Then, for each Gi we apply the above accordingly. We get:

I Lemma 15. Given Pz and sorted σ1, . . . , σr, some streaming algorithm can find the extreme
points in Pz that support σi for all i ∈ [1, r] in O(r + |Pz| log r) time using O(r) space.
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3.3 Generating the input point set Pz for each subproblem Sz

Recall that we execute the subproblems in TC in BFS order. Upon executing the subproblems
of depth d for any d > 0, all the subproblems of depth < d are done and the associated r
quantile slopes and r suitable extreme points are memoized in memory. For d = 0, we need
to generate the input for the initial problem So, i.e. P , so scanning over P suffices.

Given the associated r quantile slopes and r suitable extreme points for all the subproblems
of depth less than d, to generate the input point sets for all the subproblems of depth d, we
can directly execute Lines 15-26 in the RAM algorithm for all the subproblems of depth
less than d and ignore Lines 1-14 because the intermediate values, the quantile slopes and
suitable extreme points, are already computed and kept in memory. Initially, we allocate a
buffer Bz of size r+ 1 for each subproblem Sz of depth less than d so as to temporarily store
the incoming input points, i.e. points in Pz. Then, we scan P on the input tape once and
for each input point p in P , we place p in the buffer Bo of So. Once any buffer Bz gets full
or the input terminates, we let Bz be some Gi, a part in the partition of Pz, and apply the
pruning procedure stated in Lines 15-26 in the RAM algorithm. Those points that survive
the pruning are flushed, one by one, into the buffers of Sz’s child subproblems. We apply
the above iteratively until we reach the end of the input tape. The space usage counted on
each Sz is O(|Bz|) = O(r) and the overall running time to generate the input point set for
all the subproblems of depth d > 0 is O(dn log r) because all the subproblems of each depth
i ∈ [1, d− 1] computes the upper hull of points sets, disjoint subsets of P . Hence, we get:

I Lemma 16. Some streaming algorithm can generate the input for all depth-d subproblems
on TC for each d ∈ [0, depth(TC)] using O(1) passes, O(hr) space, and O(dn log r) time.

Proof of Theorem 1. For r = nδ, TC has O(δ−1h) nodes and depth O(δ−1) by Lemma 11, 8.
Hence, the space complexity of our streaming algorithm is the sum of O(δ−1h) times the space
complexity in Lemma 13, 15, and O(δ−1) times the space complexity in Lemma 16. The overall
space complexity is O(δ−1hnδ log n). One can obtain the space bound O(min{δ−1hnδ log n,
n}) by checking whether ~nδ log n > n before proceeding to the subproblems on the next
depth, where ~ is the number of subproblems executed so far and thus ~ = O(δ−1h). If so,
we compute the convex hull by a RAM algorithm. Analogously, we have that the pass (resp.
time) complexity of our streaming algorithm is O(δ−1) (resp. O(δ−2n log n)). J

4 A W-Stream Algorithm Of Nearly-Optimal Pass-Space Tradeoff

Demetrescu et al. [15] establish a general scheme to convert PRAM algorithms to W-stream
algorithms. Theorem 17 is an implication of their main result.

I Theorem 17 (Demetrescu et al. [15]). If there exists a PRAM algorithm that uses m
processors to compute the convex hull of n given points in t rounds, then there exists an
O(s)-space O(mt/s)-pass W-stream algorithm to compute the convex hull.

There is a long line of research that studies how to compute the convex hull of n given
points efficiently in parallel [1, 3, 4, 14,19,23]. In particular, Akl’s PRAM algorithm [1] uses
O(nε) processors and runs in O(n1−ε log h) time for any ε ∈ (0, 1). Converting Akl’s PRAM
algorithm to a W-stream algorithm by Theorem 17, we have:

I Corollary 18. There exists an O((n/s) log h)-pass W-stream algorithm that can compute
the convex hull of n given points using O(s) space.
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The optimal work, i.e. the total number of primitive operations that the processors
perform, for any parallel algorithm in the algebraic decision tree model to compute the
convex hull is O(n log h) [23,28]. Therefore the W-stream algorithm stated in Corollary 18 is
already the best possible among those W-stream algorithms that are converted from a PRAM
algorithm in the algebraic decision tree model by Theorem 17. However, in this Section, we
will show that such a tradeoff between pass complexity and space usage is suboptimal by
devising a W-stream algorithm that has a better pass-space tradeoff. Together with the
results shown in Section 5, we have that the pass-space tradeoff of our W-stream algorithm
is nearly optimal.

4.1 Deterministic W-stream Algorithm
Our deterministic W-stream algorithm is the same as our streaming algorithm, except for
the following differences:

We set r = 1 (rather than r = nδ) for our deterministic W-stream algorithm. Thus,
by Corollary 12 depth(TC) increases from O(δ−1) to O(log n), but the space usage of
subproblem Sz decreases from O(nδ log n) to O(log n) for each z ∈ [1, |TC |]. Moreover,
if the extreme point in the input P that supports the approximate median slope is the
leftmost point pL or the rightmost point pR, i.e. the degenerate case, we replace it with
the extreme point that supports σ(pL, pR). In this way, each subproblem on TC has a
unique extreme point and therefore the number of subproblems on TC is O(h).
Our streaming algorithm executes the subproblems on TC in BFS order, that is, all
subproblems of depth d are executed in a round for each d ∈ [0, depth(TC)]. In contrast,
our deterministic W-stream algorithm refines a single round into subrounds, in each of
which it takes care of O(s/ log n) subproblems, so as to bound the working space by O(s).
Note that algorithms in the W-stream model are capable of modifying the input tape.
Formally, while scanning the input tape in the i-th pass, algorithms can write something
on a write-only output stream; in the (i+ 1)-th pass, the input tape read by algorithms
is the output tape written in the i-th pass. Hence, our deterministic W-stream algorithm
is able to assign an attribute to each point p ∈ P to indicate that p is an input of a
certain subproblem. Moreover, our deterministic W-stream algorithm can write down the
parameters for every subproblem on the output tape. In each subround, our deterministic
W-stream algorithm needs to scan the input twice. The first pass is used to load the
parameters of subproblems to be solved in the current subround. The second pass is
used to scan the input tape and process the points that are the input points for the
subproblems to be solved in the current subround.

Proof of Theorem 2. Suppose there are hd subproblems of depth d on TC for each d ∈
[0, depth(TC)], then our deterministic W-stream algorithm has to execute

∑
d

⌈
hd

bs/Θ(logn)c

⌉
=

O (dh/se log n) subrounds for any s = Ω(log n). Because our deterministic W-stream al-
gorithm scans the input tape twice for each subround, the pass complexity is O(dh/se log n).

As shown in Section 3, subproblem Sz needs O(|Pz| log |Pz|) running time. Since the
input of subproblems of depth d on TC are disjoint subsets of P , for each d ∈ [0, |TC |]. We
get that the time complexity is O(n log2 n). J

4.2 Randomized W-stream Algorithm
Observe that for r = 1, finding the r approximate quantile slopes in Qz is exactly finding the
approximate median slope in Qz. Our algorithms mentioned previously all use Greenwald
and Khanna quantile summary structure, which needs O(log n) space. In our randomized
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W-stream algorithm, we replace the Greenwald and Khanna quantile summary with a random
slope in Qz, thereby reducing the space usage to O(1). As noted by Bhattacharya and Sen [7],
such a replacement cannot increase the depth of TC by more than a constant factor w.h.p.

Proof of Theorem 3. Similar to the arguments used in the proof of Theorem 2, the pass com-
plexity of our randomized W-stream algorithm is

∑
d∈[0,depth(TC)]

⌈
hd

bs/Θ(1)c

⌉
=

O (h/s+ log n) for any s = Ω(1) w.h.p. and the time complexity is O(n log2 n) w.h.p. J

5 Unconditional Lower Bound

In this section, we will show that any streaming (or W-stream) algorithm that can compute
the convex hull with success rate > 2/3 using O(s) space requires Ω(dh/se) passes (i.e.
Theorem 4). This establishes the near-optimality of our proposed algorithms. We note here
that the lower bound holds even if the output is |ext(P )|, rather than the set ext(P ).

We construct a point set U so that it is hard to compute the convex hull of point set
P = Q ∪ {(1, 0), (−1, 0)} for all Q ⊆ U . Let C1, C2 be concentric half circles. The radius
of C1 equals 1 and that of C2 is any value in (k, 1) for some k to be determined later. Let
a0, a1, . . . , an+1 be points distributed evenly on C1 so that a0 = (1, 0) and an+1 = (−1, 0).
Define b0, b1, . . . , bn+1 on C2 similarly. Let k be the distance between the origin O and the
line ←−−→aiai+2 for any i ∈ [0, n− 1]. Let U be the set {ai : i ∈ [1, n]} ∪ {bi : i ∈ [1, n]}.

We need the following geometric property of points in U for the hardness proof.

I Lemma 19. For every Q ⊆ U , let R = ext(Q ∪ {(1, 0), (−1, 0)}). We have that (1)
ai ∈ Q⇒ ai ∈ R, and (2) (bi ∈ Q⇒ bi ∈ R) iff ai /∈ Q.

Proof. Due to space constraints, we defer the proof to the full version of this paper [18]. J

Lemma 19 implies the fact that, for every Q ⊆ U , |ext(Q ∪ {(1, 0), (−1, 0)})| = |Q|+ 2 if
and only if ai and bi are not both contained in Q for each i. Given this fact, we are ready to
perform a reduction from the set disjointness problem (a two-party communication game)
to computing the convex hull in the streaming (and W-stream) model. Set disjointness is
defined as follows. Alice has a private (αn)-size subset A of [n], and Bob has another private
(αn)-size subset B of [n] for some constant α < 1/2. The goal is to answer whether A and
B have an non-empty intersection. Based on the hardness result of set-disjointness, due to
Kalyanasundaram and Schintger [27], we are ready to prove Theorem 4.

Proof of Theorem 4. Due to space constraints, we defer the proof to the full version of this
paper [18]. J
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Abstract
A mobile agent equipped with a compass and a measure of length has to find an inert treasure in
the Euclidean plane. Both the agent and the treasure are modeled as points. In the beginning,
the agent is at a distance at most D > 0 from the treasure, but knows neither the distance nor any
bound on it. Finding the treasure means getting at distance at most 1 from it. The agent makes
a series of moves. Each of them consists in moving straight in a chosen direction at a chosen
distance. In the beginning and after each move the agent gets a hint consisting of a positive
angle smaller than 2π whose vertex is at the current position of the agent and within which the
treasure is contained. We investigate the problem of how these hints permit the agent to lower
the cost of finding the treasure, using a deterministic algorithm, where the cost is the worst-case
total length of the agent’s trajectory. It is well known that without any hint the optimal (worst
case) cost is Θ(D2). We show that if all angles given as hints are at most π, then the cost can
be lowered to O(D), which is optimal. If all angles are at most β, where β < 2π is a constant
unknown to the agent, then the cost is at most O(D2−ε), for some ε > 0. For both these positive
results we present deterministic algorithms achieving the above costs. Finally, if angles given as
hints can be arbitrary, smaller than 2π, then we show that cost Θ(D2) cannot be beaten.
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48:2 Deterministic Treasure Hunt in the Plane with Angular Hints

1 Introduction

Motivation. A tourist visiting an unknown town wants to find her way to the train station
or a skier lost on a slope wants to get back to the hotel. Luckily, there are many people
that can help. However, often they are not sure of the exact direction: when asked about
it, they make a vague gesture with the arm swinging around the direction to the target,
accompanying the hint with the words “somewhere there”. In fact, they show an angle
containing the target. Can such vague hints help the lost traveller to find the way to the
target? The aim of the present paper is to answer this question.

The model and problem formulation. A mobile agent equipped with a compass and a
measure of length has to find an inert treasure in the Euclidean plane. Both the agent and
the treasure are modeled as points. In the beginning, the agent is at a distance at most
D > 0 from the treasure, but knows neither the distance nor any bound on it. Finding the
treasure means getting at distance at most 1 from it. In applications, from such a distance
the treasure can be seen. The agent makes a series of moves. Each of them consists in
moving straight in a chosen direction at a chosen distance. In the beginning and after each
move the agent gets a hint consisting of a positive angle smaller than 2π whose vertex is at
the current position of the agent and within which the treasure is contained. We investigate
the problem of how these hints permit the agent to lower the cost of finding the treasure,
using a deterministic algorithm, where the cost is the worst-case total length of the agent’s
trajectory. It is well known that the optimal cost of treasure hunt without hints is Θ(D2).
(The algorithm of cost O(D2) is to trace a spiral with jump 1 starting at the initial position
of the agent, and the lower bound Ω(D2) follows from Proposition 9 which establishes this
lower bound even assuming arbitrarily large angles smaller than 2π given as hints.)

Our results. We show that if all angles given as hints are at most π, then the cost of
treasure hunt can be lowered to O(D), which is optimal. Our real challenge here is in the
fact that hints can be angles of size exactly π, in which case the design of a trajectory always
leading to the treasure, while being cost-efficient in terms of traveled distance, is far from
obvious.

If all angles are at most β, where β < 2π is a constant unknown to the agent, then we
prove that the cost is at most O(D2−ε), for some ε > 0. Finally, we show that arbitrary
angles smaller than 2π given as hints cannot be of significant help: using such hints the cost
Θ(D2) cannot be beaten.

For both our positive results we present deterministic algorithms achieving the above
costs. Both algorithms work in phases “assuming” that the treasure is contained in increasing
squares centered at the initial position of the agent. The common principle behind both
algorithms is to move the agent to strategically chosen points in the current square, depending
on previously obtained hints, and sometimes perform exhaustive search of small rectangles
from these points, in order to guarantee that the treasure is not there. This is done in such
a way that, in a given phase, obtained hints together with small rectangles exhaustively
searched, eliminate a sufficient area of the square assumed in the phase to eventually permit
finding the treasure.

In both algorithms, the points to which the agent travels and where it gets hints are
chosen in a natural way, although very differently in each of the algorithms. The main
difficulty is to prove that the distance travelled by the agent is within the promised cost. In
the case of the first algorithm, it is possible to cheaply exclude large areas not containing the
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treasure, and thus find the treasure asymptotically optimally. For the second algorithm, the
agent eliminates smaller areas at each time, due to less precise hints, and thus finding the
treasure costs more.

Due to lack of space, the details of one of the algorithms and proofs of several results are
omitted and will appear in the journal version of the paper.

Related work. The problem of treasure hunt, i.e., searching for an inert target by one or
more mobile agents was investigated under many different scenarios. The environment where
the treasure is hidden may be a graph or a plane, and the search may be deterministic or
randomized. An early paper [4] showed that the best competitive ratio for deterministic
treasure hunt on a line is 9. In [8] the authors generalized this problem, considering a
model where, in addition to travel length, the cost includes a payment for every turn of the
agent. The book [2] surveys both the search for a fixed target and the related rendezvous
problem, where the target and the finder are both mobile and their role is symmetric: they
both cooperate to meet. This book is concerned mostly with randomized search strategies.
Randomized treasure hunt strategies for star search, where the target is on one of m rays, are
considered in [13]. In [17, 19] the authors study relations between the problems of treasure
hunt and rendezvous in graphs. The authors of [3] study the task of finding a fixed point
on the line and in the grid, and initiate the study of the task of searching for an unknown
line in the plane. This research is continued, e.g., in [12, 15]. In [18] the authors concentrate
on game-theoretic aspects of the situation where multiple selfish pursuers compete to find a
target, e.g., in a ring. The main result of [14] is an optimal algorithm to sweep a plane in
order to locate an unknown fixed target, where locating means to get the agent originating
at point O to a point P such that the target is in the segment OP . In [10] the authors
consider the generalization of the search problem in the plane to the case of several searchers.
Collective treasure hunt in the grid by several agents with bounded memory is investigated
in [9, 16]. In [5], treasure hunt with randomly faulty hints is considered in tree networks. By
contrast, the survey [7] and the book [6] consider pursuit-evasion games, mostly on graphs,
where pursuers try to catch a fugitive target trying to escape.

2 Preliminaries

Since for D ≤ 1 treasure hunt is solved immediately, in the sequel we assume D > 1. Since
the agent has a compass, it can establish an orthogonal coordinate system with point O
with coordinates (0, 0) at its starting position, the x-axis going East-West and the y-axis
going North-South. Lines parallel to the x-axis will be called horizontal, and lines parallel to
the y-axis will be called vertical. When the agent at a current point a decides to go to a
previously computed point b (using a straight line), we describe this move simply as “Go
to b”. A hint given to the agent currently located at point a is formally described as an
ordered pair (P1, P2) of half-lines originating at a such that the angle clockwise from P1 to
P2 (including P1 and P2) contains the treasure.

The line containing points A and B is denoted by (AB). A segment with extremities A
and B is denoted by [AB] and its length is denoted |AB|. Throughout the paper, a polygon
is defined as a closed polygon (i.e., together with the boundary). For a polygon S, we will
denote by B(S) (resp. I(S)) the boundary of S (resp. the interior of S, i.e., the set S \B(S)).
A rectangle is defined as a non-degenerate rectangle, i.e., with all sides of strictly positive
length. A rectangle with vertices A,B,C,D (in clockwise order) is denoted simply by ABCD.
A rectangle is straight if one of its sides is vertical.
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48:4 Deterministic Treasure Hunt in the Plane with Angular Hints

Algorithm 1 Procedure RectangleScan(R).
1: if k is odd then
2: for i = 0 to k − 1 step 2 do
3: Go to ai; Go to bi;
4: Go to bi+1; Go to ai+1
5: end for
6: Go to a
7: else
8: for i = 0 to k − 2 step 2 do
9: Go to ai; Go to bi;

10: Go to bi+1; Go to ai+1
11: end for
12: Go to ak; Go to bk
13: Go to a
14: end if

In our algorithms we use the following procedure RectangleScan(R) whose aim is to
traverse a closed rectangle R (composed of the boundary and interior) with known coordinates,
so that the agent initially situated at some point of R gets at distance at most 1 from every
point of it and returns to the starting point. We describe the procedure for a straight
rectangle whose vertical side is not shorter than the horizontal side. The modification of
the procedure for arbitrarily positioned rectangles is straightforward. Let the vertices of the
rectangle R be A, B, C and D, where A is the North-West vertex and the others are listed
clockwise. Let a be the point at which the agent starts the procedure.

The idea of the procedure is to go to vertex A, then make a snake-like movement in
which consecutive vertical segments are separated by a distance 1, and then go back to point
a. The agent ignores all hints gotten during the execution of the procedure. Suppose that
the horizontal side of R has length m and the vertical side has length n, with n ≥ m. Let
k = bmc. Let a0, a1, . . . , ak be points on the North horizontal side of the rectangle, such
that a0 = A and the distance between consecutive points is 1. Let b0, b1, . . . , bk be points
on the South horizontal side of the rectangle, such that b0 = D and the distance between
consecutive points is 1.

The pseudocode of procedure RectangleScan(R) is given in Algorithm 1.

I Proposition 1. For every point p of the rectangle R, the agent is at distance at most
1 from p at some time of the execution of Procedure RectangleScan(R). The cost of the
procedure is at most 5n ·max(m, 2), where n ≥ m are the lengths of the sides of the rectangle.

3 Angles at most π

In this section we consider the case when all angles given as hints are at most π. Without
loss of generality we can assume that they are all equal to π, completing any smaller angle to
π in an arbitrary way: this makes the situation even harder for the agent, as hints become
less precise. For such hints we show Algorithm TreasureHunt1 that finds the treasure at
cost O(D). This is of course optimal, as the treasure can be at any point at distance at most
D from the starting point of the agent.

For angles of size π, every hint is in fact a half-plane whose boundary line L contains the
current location of the agent. For simplicity, we will code such a hint as (L, right) or (L, left),
whenever the line L is not horizontal, depending on whether the indicated half-plane is to
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the right (i.e., East) or to the left (i.e., West) of L. For any non-horizontal line L this is
non-ambiguous. Likewise, when L is horizontal, we will code a hint as (L, up) or (L, down),
depending on whether the indicated half-plane is up (i.e., North) from L or down (i.e., South)
from L.

In view of the work on φ-self-approaching curves (cf. [1]) we first note that there is a big
difference of difficulty between obtaining our result in the case when angles given as hints are
strictly smaller than π and when they are at most π, as we assume. A φ-self-approaching
curve is a planar oriented curve such that, for each point B on the curve, the rest of the curve
lies inside a wedge of angle φ with apex in B. In [1], the authors prove the following property
of these curves: for every φ < π there exists a constant c(φ) such that the length of any
φ-self-approaching curve is at most c(φ) times the distance D between its endpoints. Hence,
for angles φ strictly smaller than π, our result could possibly be derived from the existing
literature: roughly speaking, the agent should follow a trajectory corresponding to any
φ-self-approaching curve to find the treasure at a cost linear in D. Even then, transforming
the continuous scenario of self-approaching curves to our discrete scenario presents some
difficulties. However, the crucial problem is this: the result of [1] holds only when φ < π

(the authors also emphasize that for each φ ≥ π, the property is false), and thus the above
derivation is no longer possible for our purpose when φ = π. Actually, this is the real difficulty
of our problem: handling angles equal to π, i.e., half-planes.

We further observe that a rather straightforward treasure hunt algorithm of cost
O(D logD), for hints being angles of size π, can be obtained using an immediate corol-
lary of a theorem proven in [11] by Grünbaum: each line passing through the centroid of a
convex polygon cuts the polygon into two convex polygons with areas differing by a factor of
at most 5

4 . Suppose for simplicity that D is known. Starting from the square of side length
2D, centered at the initial position of the agent, this permits to reduce the search area from
P to at most 5P

9 in a single move. Hence, after O(logD) moves, the search area is small
enough to be exhaustively searched by procedure RectangleScan at cost O(D). However,
the cost of each move during the reduction is not under control and can be only bounded
by a constant multiple of D, thus giving the total cost bound O(D logD). By contrast,
our algorithm controls both the remaining search area and the cost incurred in each move,
yielding the optimal cost O(D).

The high-level idea of our Algorithm TreasureHunt1 is the following. The agent acts in
phases j = 1, 2, 3, . . . where in each phase j the agent “supposes” that the treasure is in a
straight square Rj centered at the initial position of the agent, and of side length 2j . When
executing a phase j, the agent successively moves to distinct points with the aim of using
the hints at these points to narrow the search area that initially corresponds to Rj . In our
algorithm, this narrowing is made in such a way that the remaining search area is always
a straight rectangle. Often this straight rectangle is a strict superset of the intersection of
all hints that the agent was given previously. This would seem to be a waste, as we are
searching some areas that have been previously excluded. However, this loss is compensated
by the ease of searching description and subsequent analysis of the algorithm, due to the fact
that, at each stage, the search area is very regular.

During a phase, the agent proceeds to successive reductions of the search area by moving
to distinct locations, until it obtains a rectangular search area that is small enough to be
searched directly at low cost using procedure RectangleScan. In our algorithm, such a final
execution of RectangleScan in a phase is triggered as soon as the rectangle has a side smaller
than 4. If the treasure is not found by the end of this execution of procedure RectangleScan,
the agent learns that the treasure cannot be in the supposed straight square Rj and starts
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Figure 1 In Figure (a) the agent received a good hint (L1, right) at the point p of a rectangular
search area ABCD. In Figure (b) it received a bad hint (L1, right) at the point p and hence it
moved to point p′ and got a hint (L2, left). In both figures the excluded half-planes are shaded.

the next phase from scratch by forgetting all previously received hints. This forgetting again
simplifies subsequent analysis. The algorithm terminates at the latest by the end of phase
j0 = dlog2 De+ 1, in which the supposed straight square Rj0 is large enough to contain the
treasure. Hence, if the cost of a phase j is linear in 2j , then the cost of the overall solution is
linear in the distance D.

In order to give the reader deeper insights in the reasons why our solution is valid and
has linear cost, we need to give more precise explanations on how the search area is reduced
during a given phase j ≥ 2 (when j = 1, the agent makes no reduction and directly scans
the small search area using procedure RectangleScan). Suppose that in phase j ≥ 2 the
agent is at the center p of a search area corresponding to a straight rectangle R, every side of
which has length between 4 and 2j (note that this is the case at the beginning of the phase),
and denote by A,B,C and D the vertices of R starting from the top left corner and going
clockwise. In order to reduce rectangle R, the agent uses the hint at point p. The obtained
hint denoted by (L1, x1) can be of two types: either a good hint or a bad hint. A good hint
is a hint whose line L1 divides one of the sides of R into two segments such that the length y
of the smaller one is at least 1. A bad hint is a hint that is not good.

If the received hint (L1, x1) is good, then the agent narrows the search area to a rectangle
R′ ⊂ R having the following three properties:
1. R \R′ does not contain the treasure.
2. The difference between the perimeters of R and R′ is 2y ≥ 2.
3. The distance from p to the center of R′ is exactly y

2 .

and then moves to the center of R′.
An illustration of such a reduction is depicted in Figure 1(a). The reduced search area

R′ is the rectangle ABde.
If the agent receives a bad hint, say (L1, right), at the center of a rectangular search area

R, we cannot apply the same method as the one used for a good hint: this is the reason for
the distinction between good and bad hints. If we applied the same method as before, we
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could obtain a rectangular search area R′ such that the difference between the perimeters of
R and R′ is at least 2y. However, in the context of a bad hint, the difference 2y may be very
small (even null), and hence there is no significant reduction of the search area. In order to
tackle this problem, when getting a bad hint at the center p of R, the agent moves to another
point p′ which is situated in the half-plane (L1, right) at distance 2 from p, perpendicularly
to L1. This point p′ is chosen in such a way that, regardless of what is the second hint, we
can ensure that two important properties described below are satisfied.

The first property is that by combining the two hints, the agent can decrease the search
area to a rectangle R′ ⊂ R whose perimeter is smaller by 2 compared to the perimeter of R, as
it is the case for a good hint, and such that R\R′ does not contain the treasure. This decrease
follows either directly from the pair of hints, or indirectly after having scanned some relatively
small rectangles using procedure RectangleScan. In the example depicted in Fig. 1 (b),
after getting the second hint (L2, left), the agent executes procedure RectangleScan(ss′d′d)
followed by RectangleScan(gg′h′h) and moves to the center of the new search area R′ that
is the rectangle Agpm. Note that the part of R′ not excluded by the two hints and by
the procedure RectangleScan executed in rectangles ss′d′d and gg′h′h is only the small
quadrilateral bounded by line L2 and the segments [AB], [s′d′] and [gh]. However, in order
to preserve the homogeneity of the process, we consider the entire new search area R′ which
is a straight rectangle whose perimeter is smaller by at least 2, compared to that from R.
This follows from the fact that no side of R has length smaller than 4. The agent finally
moves to the center of R′.

The second property is that all of this (i.e., the move from p to p′, the possible scans
of small rectangles and finally the move to the center of R′) is done at a cost linear in the
difference of perimeters of R and R′. The two properties together ensure that, even with
bad hints, the agent manages to reduce the search area in a significant way and at a small
cost. So, regardless of whether hints are good or not, we can show that the cost of phase j
is in O(2j) and the treasure is found during this phase if the initial square is large enough.
The difficulty of the solution is in showing that the moves prescribed by our algorithm in the
case of bad hints guarantee the two above properties, and thus ensure the correctness of the
algorithm and the cost linear in D.

I Theorem 2. Consider an agent A and a treasure located at distance at most D from the
initial position of A. By executing Algorithm TreasureHunt1, agent A finds the treasure
after having traveled a distance O(D).

4 Angles bounded by β < 2π

In this section we consider the case when all hints are angles upper-bounded by some constant
β < 2π, unknown to the agent. The main result of this section is Algorithm TreasureHunt2
whose cost is at most O(D2−ε), for some ε > 0. For a hint (P1, P2) we denote by (P1, P2)
the complement of (P1, P2).

4.1 High level idea
In Algorithm TreasureHunt2, similarly as in the previous algorithm, the agent acts in phases
j = 1, 2, 3, . . ., where in each phase j the agent “supposes” that the treasure is in the straight
square centered at its initial position and of side length 2j . The intended goal is to search
each supposed square at relatively low cost, and to ensure the discovery of the treasure by
the time the agent finishes the first phase for which the initial supposed square contains the
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treasure. However, the similarity with the previous solution ends there: indeed, the hints
that may now be less precise do not allow us to use the same strategy within a given phase.
Hence we adopt a different approach that we outline below and that uses the following notion
of tiling. Given a square S with side of length x > 0, Tiling(i) of S, for any non-negative
integer i, is the partition of square S into 4i squares with side of length x

2i . Each of these
squares, called tiles, is closed, i.e., contains its border, and hence neighboring tiles overlap in
the common border.

Let us consider a simpler situation in which the angle of every hint (P1, P2) is always
equal to the bound β: the general case, when the angles may vary while being at most β,
adds a level of technical complexity that is unnecessary to understand the intuition. In the
considered situation, the angle of each excluded zone (P1, P2) is always the same as well. The
following property holds in this case: there exists an integer iβ such that for every square S
and every hint (P1, P2) given at the center of S, at least one tile of Tiling(iβ) of S belongs
to the excluded zone (P1, P2).

In phase j, the agent performs k steps: we will indicate later how the value of k should
be chosen. At the beginning of the phase, the entire square S is white. In the first step, the
agent gets a hint (P1, P2) at the center of S. By the above property, we know that (P1, P2)
contains at least one tile of Tiling(iβ) of S, and we have the guarantee that such a tile
cannot contain the treasure. All points of all tiles included in (P1, P2) are painted black in
the first step. This operation does not require any move, as painting is performed in the
memory of the agent. As a result, at the end of the first step, each tile of Tiling(iβ) of S is
either black or white, in the following precise sense: a black tile is a tile all of whose points
are black, and a white tile is a tile all of whose interior points are white.

In the second step, the agent repeats the painting procedure at a finer level. More
precisely, the agent moves to the center of each white tile t of Tiling(iβ) of S. When it gets
a hint at the center of a white tile t, there is at least one tile of Tiling(iβ) of t that can be
excluded. As in the first step, all points of these excluded tiles are painted black. Note that a
tile of Tiling(iβ) of t is actually a tile of Tiling(2iβ) of S. Moreover, each tile of Tiling(iβ)
of S is made of exactly 4iβ tiles of Tiling(2iβ) of S. Hence, as depicted in Figure 2, the
property we obtain at the end of the second step is as follows: each tile of Tiling(2iβ) of S
is either black or white.

In the next steps, the agent applies a similar process at increasingly finer levels of tiling.
More precisely, in step 2 < s ≤ k, the agent moves to the center of each white tile of
Tiling((s − 1)iβ) of S and gets a hint that allows it to paint black at least one tile of
Tiling(s · iβ) of S. At the end of step s, each tile of Tiling(s · iβ) of S is either black or
white. We can show that at each step s the agent paints black at least 1

4iβ
th of the area of S

that is white at the beginning of step s.
After step k, each tile of Tiling(k · iβ) of S is either black or white. These steps permit

the agent to exclude some area without having to search it directly, while keeping some
regularity of the shape of the black area. The agent paints black a smaller area than excluded
by the hints but a more regular one. This regularity enables in turn the next process in
the area remaining white. Indeed, the agent subsequently executes a brute-force searching
that consists in moving to each white tile of Tiling(k · iβ) of S in order to scan it using the
procedure RectangleScan. If, after having scanned all the remaining white tiles, it has not
found the treasure, the agent repaints white all the square S and enters the next phase. Thus
we have the guarantee that the agent finds the treasure by the end of phase dlog2 De+ 1, i.e.,
a phase in which the initial supposed square is large enough to contain the treasure. The
question is: how much do we have to pay for all of this? In fact, the cost depends on the
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(a) At the end of a first step
for a hint (P1, P2).

(b) At the end of a second step.

Figure 2 White and black tiles at the end of the first and the second step of a phase, for square
S = ABCD and iβ = 2.

value that is assigned to k in each phase j. The value of k must be large enough so that the
distance travelled by the agent during the brute-force searching is relatively small. At the
same time, this value must be small enough so that the the distance travelled during the k
steps is not too large. A good trade-off can be reached when k = dlog4iβ

√
2je. Indeed, as

highlighted in the proof of correctness, it is due to this carefully chosen value of k that we
can beat the cost Θ(D2) necessary without hints, and get a complexity of O(D2−ε), where ε
is a positive real depending on iβ , and hence depending on the angle β.

4.2 Algorithm and analysis
In this subsection we describe our algorithm in detail, prove its correctness and analyze
its complexity. We can prove there exists a function index : (0, 2π) −→ N+ that has the
following properties, for any angle 0 < α < 2π.

1. For every square S and for every hint (P1, P2) of size 2π − α obtained at the center of S,
there exists a tile of Tiling(index(α)) of S included in (P1, P2).

2. For every angle α′ < α, we have index(α) ≤ index(α′).

In the sequel, the integer index(α) is called the index of α. Algorithm 2 gives a pseudo-
code of the main algorithm of this section. It uses the function Mosaic described in Algorithm
3 that is the key technical tool permitting the agent to reduce its search area. The agent
interrupts the execution of Algorithm 2 as soon as it gets at distance 1 from the treasure, at
which point it can “see” it and thus treasure hunt stops.

In the following, a square is called black if all its points are black. A square is called
white if all points of its interior are white. (In a white square, some points of its border may
be black).

I Lemma 3. For any positive integers i and k, consider an agent executing function
Mosaic(i,k) from its initial position O. Let S be the straight square centered at O with side
of length 2i. For every positive integer j ≤ dlog4k

√
2ie, at the end of the j-th execution of the

first loop (lines 5 to 20) in Mosaic(i,k), each tile of Tiling(jk) of S is either black or white.
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Algorithm 2 TreasureHunt2.
1: IndexNew := 1
2: i := 1
3: loop
4: repeat
5: IndexOld := IndexNew

6: IndexNew := Mosaic(i, IndexOld)
7: until IndexNew = IndexOld

8: i := i+ 1
9: end loop

I Lemma 4. For every positive integers i and k, a call to function Mosaic(i,k) has cost at

most 2i
3+log4k (4k−1)

2 +2k+8.

Let ψ be the index of 2π − β. The next proposition follows from the aforementioned
properties of the function index.

I Proposition 5. Let (P1, P2) be any hint. The index of (P1, P2) is at most ψ.

Using Lemmas 3, 4 and Proposition 5 we prove the final result of this section.

I Theorem 6. Consider an agent A and a treasure located at distance at most D from the
initial position of A. By executing Algorithm TreasureHunt2, agent A finds the treasure
after having traveled a distance in O(D2−ε), for some ε > 0.

Proof. We will use the following two claims.

I Claim 7. Let i ≥ 1 be an integer. The number of executions of the repeat loop in the i-th
execution of the external loop in Algorithm 2 is bounded by ψ.

I Claim 8. The distance traveled by the agent before variable i becomes equal to dlog2 De+ 2
in the execution of Algorithm 2 is O(D2−ε), where ε = 1

2 (1− log4ψ (4ψ − 1)) > 0.

Proof of the claim. In view of the fact that the returned value of every call to function
Mosaic in the execution of Algorithm 2 is at most ψ, it follows that in each call to function
Mosaic(∗, k) the parameter k is always at most ψ. Hence, in view of Claim 7 and Lemma 4,
as long as variable i does not reach the value dlog2 De+ 2, the agent traveled a distance at
most

ψ ·
dlog2 De+1∑

i=1
2i

3+log4ψ (4ψ−1)
2 +2ψ+8 (1)

≤ ψ2(dlog2 De+1)
3+log4ψ (4ψ−1)

2 +2ψ+9 (2)

≤ ψ22ψ+12+log4ψ (4ψ−1)2(log2 D)
3+log4ψ (4ψ−1)

2 (3)

= ψ22ψ+12+log4ψ (4ψ−1)D2− 1
2 (1−log4ψ (4ψ−1)) (4)

By (4), the total distance traveled by the agent executing Algorithm 2 is O(D2−ε) where
ε = 1

2 (1− log4ψ (4ψ − 1)). Since ψ is a positive integer, we have 0 < log4ψ (4ψ − 1) < 1 and
hence ε > 0. This ends the proof of the claim. J
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Algorithm 3 Function Mosaic(i,k).
1: O:= the initial position of the agent
2: S:= the straight square centered at O with sides of length 2i
3: Paint white all points of S
4: IndexMax:=k
5: for j = 1 to dlog4k

√
2ie do

6: for all tiles t of Tiling((j − 1)k) of S do
7: if t is white then
8: Go to the center of t
9: Let (P1, P2) be the obtained hint

10: k′:= index of (P1, P2)
11: if k′ > IndexMax then
12: IndexMax:=k′
13: end if
14: if IndexMax = k then
15: for all tiles t′ of Tiling(k) of t such that t′ ⊂ (P1, P2) do
16: Paint black all points of t′
17: end for
18: end if
19: end if
20: end for
21: end for
22: if IndexMax = k then
23: for all tiles t of Tiling(k(dlog4k

√
2ie)) of S do

24: if t is white then
25: Go to the center of t
26: Execute RectangleScan(t)
27: end if
28: end for
29: end if
30: Go to O
31: return IndexMax

Assume that the theorem is false. As long as variable i does not reach dlog2 De + 2,
the agent cannot find the treasure, as this would contradict Claim 8. Thus, in view of
Claim 7, before the time τ when variable i reaches dlog2 De+ 2 the treasure is not found.
By Algorithm 2, this implies that during the last call to function Mosaic before time τ ,
the function returns a value that is equal to its second input parameter. This implies that
during this call, the agent has executed lines 23 to 28 of Algorithm 3: more precisely, there is
some integer x such that from each white tile t of Tiling(x) of the straight square S that is
centered at the initial position of the agent and that has sides of length 2dlog2 De+1, the agent
has executed function RectangleScan(t). Hence, at the end of the execution of lines 23
to 28, the agent has seen all points of each white tile of Tiling(x) of S. Moreover, in view
of Lemma 3, we know that the tiles that are not white, in Tiling(x) of S, are necessarily
black. Given a black tile σ of Tiling(x), each point of σ is black, which, in view of lines 15
to 17 of Algorithm 3, implies that σ cannot contain the treasure. Since square S necessarily
contains the treasure, it follows that the agent must find the treasure by the end of the last
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execution of function Mosaic before time τ . As a consequence, the agent stops the execution
of Algorithm 2 before assigning dlog2 De+ 2 to variable i and thus, we get a contradiction
with the definition of time τ , which proves the theorem. J

5 Arbitrary angles

We finally observe that if hints can be arbitrary angles smaller than 2π then the treasure
hunt cost Θ(D2) cannot be improved in the worst case.

I Proposition 9. If hints can be arbitrary angles smaller than 2π then the optimal cost of
treasure hunt for a treasure at distance at most D from the starting point of the agent is
Ω(D2).

6 Conclusion

For hints that are angles at most π we gave a treasure hunt algorithm with optimal cost
linear in D. For larger angles we showed a separation between the case where angles are
bounded away from 2π, when we designed an algorithm with cost strictly subquadratic in D,
and the case where angles have arbitrary values smaller than 2π, when we showed a quadratic
lower bound on the cost. The optimal cost of treasure hunt with large angles bounded away
from 2π remains open. In particular, the following questions seem intriguing. Is the optimal
cost linear in D in this case, or is it possible to prove a super-linear lower bound on it? Does
the order of magnitude of this optimal cost depend on the bound π < β < 2π on the angles
given as hints?
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Abstract
We discuss the problem of searching for an unknown line on a known or unknown line arrangement
by a searcher S, and show that a search strategy exists that finds the line competitively, that is,
with detour factor at most a constant when compared to the situation where S has all knowledge.
In the case where S knows all lines but not which one is sought, the strategy is 79-competitive.
We also show that it may be necessary to travel on Ω(n) lines to realize a constant competitive
ratio. In the case where initially, S does not know any line, but learns about the ones it encounters
during the search, we give a 414.2-competitive search strategy.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Competitive searching, line arrangement, detour factor, search strategy

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.49

Acknowledgements This work was started during the 2nd AGA Workshop, in Jan./Feb. 2017.
The authors thank two anonymous reviewers for their extensive and detailed comments.

1 Introduction

Given a set L of n lines `0, `1, . . . `n−1 in the plane, consider the arrangement A that they
form as a geometric graph. Technically, A is not a graph due to half-infinite edges, but in
our problem we can end each line at its extreme intersection points, and hence we can use
the term graph without complications. We consider paths on A. The cost of a path on A is
the Euclidean length of that path. The distance between two points on A is the cost (or
length) of the shortest path that stays on A between those points.
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Assume that a searcher S is located on some vertex or edge of the graph. Denote its initial
position by O. The searcher S can only travel on the arrangement and is hence restricted to
paths on A. Searcher S is looking for a target line `t ∈ L, but does not know which of the
lines in L corresponds with `t. The searcher S will recognize `t when it reaches any point
on `t (necessarily at an intersection point with another line). We call this special line the
target line, and assume that O does not lie on `t. If it would, the problem would be solved
immediately. We consider two versions of the problem: one where S knows the lines in L and
therefore A completely, and one where S only knows about the existence and parameters of
a line once it reaches some point on it.

We will show that a search strategy exists by which S can reach the target line competitively
in both versions. In other words, S can reach the target line with a detour factor bounded
by a constant, when compared to the shortest path on A to the target line. Competitive
analysis is commonly used to compare “the cost of not knowing” with “the cost of knowing”.
The maximum detour factor of a search strategy is known as its competitive ratio. The
competitive ratio of a search problem is the infimum of the competitive ratios of all search
strategies that solve that search problem.

The best known search problem is perhaps the one-dimensional problem of finding a
point on a line from a starting position. If we know the distance d, but not whether it is to
the left or to the right, the optimal strategy is to go left over a distance d and then right
over a distance 2d. We find the point with competitive ratio 3, which is optimal. If we don’t
know the distance but we do know some (very) small lower bound ε on the distance, it is
best to go ε to the left, then back and another 2ε to the right, then back and another 4ε to
the left, and so on. This doubling strategy gives a competitive ratio of 9, which is known to
be optimal as proved by Beck and Newman [4] in 1970, see also [2, 13].

The problem of searching for a line in the plane without obstacles was studied by Baeza-
Yates et al. [2] in various settings. The settings refer to the knowledge we have of the line,
which can be its slope, its distance, both, or neither. If the slope of the line is known, the
problem reduces to the one-dimensional problem just discussed. If only the distance is known,
the optimal competitive ratio is 6.39.... The problem of searching for a line a given distance
away was posed by Bellman [5] in 1956 and solved by Isbell [20] in 1957. It is a classic
in recreational mathematics and often posed as a swimmer in the fog, trying to reach the
(straight) shore which is a known unit distance away, while swimming the least in the worst
case. If the slope nor the distance of a line to be found is known, the best known competitive
ratio is 13.81..., which is realized by a logarithmic spiral search strategy.

Competitive analysis of algorithms was introduced by Sleator and Tarjan for analyzing
the list update problem [24]. Here the lack of knowledge is the next online requests. In
geometric situations, the lack of knowledge is often the environment itself or the location of
something to be found (by seeing or reaching it). The main motivation of such problems
comes from the navigation of robots in unknown environments. More generally, searching
for a target in environments where either the target or the environment is unknown is a
basic problem, and competitive analysis is a fundamental way to understand what is in
principle possible in such exploration problems. We list a few main results on searching
and competitive analysis in geometric and geometric-graph environments; for an extensive
overview see also [15]. We begin by noting that there is no c-competitive search strategy to
find an unknown target node in a known graph, for example when the graph is a star.

When searching for an unknown target on a line, but additional information on the
distance to the target is known, alternative results can be obtained [8, 17]. Demaine et
al. [13] show that searching for an unknown target on a line with cost depending on both
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Figure 1 Half-lines cannot be searched c-competitively.

search distance and turns can be done competitively with cost 9OPT + 2d, where d is the
cost of one turn. Searching on multiple rays is studied in various papers [8, 13, 16, 23]; Kao
et al. [22] give an optimal randomized algorithm. In yet other variants one can search with
multiple searchers [3, 16].

Kalyanasundaram and Pruhs [21] consider visibility-based searching for a recognizable
point in an unknown scene with convex obstacles. Their result on the competitive factor
is not constant, but depends on the number of obstacles and their aspect ratio. Blum et
al. [6] investigate similar problems for different classes of obstacles. Hoffmann et al. [18] show
that an unknown simple polygon can be discovered completely with a competitive ratio of
26.5. There are various other visibility-based search problems addressed with competitive
analysis (e.g.,[14, 19]).

A different setting where competitive strategies are investigated is routing in geometric
graphs. Here an unknown geometric graph is given along with a source and target with
known coordinates. We route a package from source to target over the nodes, but learn about
the existence and coordinates of a node when we are at a neighbor. For triangulations, no
c-competitive strategy exists, but for special triangulations like Delaunay and certain other
geometric graphs, a constant competitive strategy does exist [7, 9, 10, 11, 12]. Searching for
an unknown target on a planar straight line graph with discovery based on Pókemon Go was
investigated with competitive analysis recently [25].

Contributions. In Section 2 we give a preliminary result where we use only two lines and
obtain a competitive ratio depending on their angle. Moreover, we show that, if we want to
obtain a constant competitive ratio that does not depend on parameters of the arrangement,
then the search strategy must allow for traversing at least half the lines in an arrangement. In
Section 3 we describe and analyze such a strategy and show that this leads to a 79-competitive
strategy. This is an upper bound on the relative cost of not knowing which line is sought.
(Note that for slightly more complex objects like half-lines, no constant-competitive strategy
exists by mimicking a star graph, see Figure 1.) In Section 4 we generalize the problem to
the situation where the searcher does not know all lines beforehand. They learn about the
existence of a line and its parameters only when the line is reached. We show that in this
case a search strategy exists with competitive ratio 414.2. This is an upper bound on the
relative cost of not knowing the lines at all.

Although our search problems and competitive ratios are new, the existing literature
implies lower bounds for our versions. When all lines are known, we have a lower bound
of 9, because the problem is at least as hard as the one-dimensional problem of finding a
point on a line. Moreover, it is essentially also at least as hard as finding a fully unknown
line in the plane, because we could be given a very dense set of lines where all movement is
approximately possible and every line could be the target. The best known competitive ratio
is 13.81... to find an unknown line, but this is not known to be optimal so it does not provide
a true lower bound. In case we do not know the lines of the arrangement at all, we inherit the
lower bound of searching on four rays (half-lines) for a point, which is 19.96... [1, 13]. The
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`1
`t

`2

y α
x

O

u

Figure 2 Sketch of worst case.

line arrangement consists of two perpendicular lines, we start on their intersection, and we
must explore. If we do not follow the optimal strategy for four rays, the target line was just
out of reach at the place where we went less far, and perpendicular to that ray. With more
than four rays, lines will intersect more than one ray and the argument no longer works.

2 Competitive searching on an arrangement

As a warm-up, assume that S starts at the intersection of two lines `1 and `2 whose smaller
intersection angle is α ≤ π/2. Furthermore, S only traverses `1 and `2, disregarding all other
lines for traversal.

I Theorem 1. The target line can be found with competitive ratio at most 29/sin(α/2).

Proof. Denote the starting point by O and the target line by `t. As a lower bound for
reaching `t we use the Euclidean distance between O and `t, denoted by x, because a line `3
through O and normal to `t could exist.

Note that `t must intersect at least one of `1 and `2. Let y be the distance on `1 or
`2 to the closest intersection point u of `t with `1 and/or `2. Since α is the smaller angle,
the worst case occurs when the target line `t spans a triangle with the two initial lines `1
and `2 with an angle of π − α; the worst ratio between x and y occurs when this triangle is
equilateral with apex O. This is illustrated in Figure 2. By elementary geometry, we then
have y ≤ x/sin(α/2).

The strategy to find `t is as follows. Let d be the distance between O and the vertex v on
`1 or `2 closest to it. First, S travels to v and back to O. Then S travels the same distance
d in each of the other three directions on `1 and `2, and back to O each time. After that we
double d and repeat. S has achieved its goal when it reaches u, and therefore `t.

We can view the traversal of S on `1 and `2 as the traversal on four half-lines induced
by O. One of these half-lines crosses `t at distance y. This is, by definition, where u is. By
the doubling strategy, S will have traversed a total distance less than 5y on the half-line
with u. On each of the other half-lines, S has traversed at most a distance of 8y. Summing
up yields that the searcher travelled at most a distance of 29y; using y ≤ x/sin(α/2), we find
that the competitive ratio, bounded by 29y/x, gives the claimed bound of 29/sin(α/2). J

We note that a tighter analysis of the same strategy will give a slightly better competitive
ratio, and a different strategy where we traverse the half-lines over different distances will also
give a better competitive ratio. However the strategy is not c-competitive for any constant c,
since α can be arbitrarily small. Moreover, since this is a special case of the problem, we
explore this strategy no further.

Below, we show that for any constant c, any c-competitive strategy must traverse Ω(n)
lines. So the strategy of the proof of Theorem 1 cannot work, not even with the usage of
some carefully chosen additional lines besides `1 and `2.
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di+1di = di+1/(2c)0

`i+1

hi+1 pi+1

`i
pihi

h0
2cdi+1

O

Figure 3 Placement of `i and hi, given `i+1 and hi+1. Line `i is defined by the point with
x-coordinate di+1/(2c) on h0 and the point with x-coordinate 2cdi+1 on hi+1. Line hi is placed such
that dist(h0 ∩ `i+1, pi) < di+1/(2c).

I Theorem 2. For any constant c ≥ 1, there is an arrangement A of n lines such that any
c-competitive strategy must traverse at least n/2 = Ω(n) lines of A in the worst case.

Proof. We construct an arrangement A of n = 2m+ 1 lines. The line h0 is the x-axis, and
searcher S starts on h0 at the origin O. Let h1, . . . , hm be horizontal lines that together with
h0 have a bottom-to-top order h0, h1, . . . , hm. Let `1, . . . , `m be m lines with positive slope
≤ 1, such that the upper envelope of `1, . . . , `m is a convex increasing function that contains
all these lines in the same order. We ensure that these lines intersect h0 on the positive side
and in the order `1, . . . , `m. The construction will be such that the part of `i between its
intersection with hi and its intersection with `i−1 must be used by S to reach hi with detour
no more than c, because even the intersection of `i−1 with hi has an x-coordinate that is too
high.

In more detail, we construct the lines incrementally from m down to 1, in pairs `i and
then hi, see Figure 3. We start with `m : y = x − 2 and hm : y = 1. Assume `i+1 and
hi+1 are placed, and their intersection point pi+1 is such that di+1 = dist(O, h0 ∩ `i+1) >
dist(h0 ∩ `i+1, pi+1) (for `m and hm we made sure of this condition). Then we define `i by
constructing two points on it. One is the point (di+1/(2c), 0) on h0; the other is the point
on hi+1 with x-coordinate 2cdi+1. This defines `i. The line hi is chosen horizontal and
low enough so that dist(h0 ∩ `i, pi) < dist(O, h0 ∩ `i) = di+1/(2c). Note that dm = 2 and
di = 2/(2c)m−i.

To argue that this arrangement forces a searcher S to walk on every line `i (and also h0
where S starts), we observe that we can reach the line hi in distance at most di+1/c simply
by following h0 and `i only (we can do a little bit better but for the proof this is not needed).
To reach hi c-competitively we must thus travel less than di+1 along A.

We cannot use line `i+1 or any higher-indexed line, because all their vertices have x-
coordinates at least di+1 so it must take di+1 or more to even reach `i+1 or a later line.
Thus if we do not use `i, we must reach line hi on line `i−1 or a lower-indexed line. By
construction the intersection of `i−1 and hi has x-coordinate di+1. Thus reaching hi from
`i−1 is not c-competitive. Furthermore, any line `j with 1 ≤ j < i − 1 must intersect hi

right of the intersection with `i−1 and thus for the same reason reaching hi via `j cannot be
c-competitive.

In other words, we must use `i to get c-competitively to hi, and any of the m horizontal
lines h1, . . . , hm can be the target line. Hence, a c-competitive strategy must visit and walk
on each of `1, . . . , `m. As S starts on h0, it thus walks on at least m+ 1 ≥ n/2 lines. J
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Figure 4 (a) Explored paths of length D1 reaching the maximum (minimum) x- and y-coordinate.
(b) The paths of doubling lengths D1, . . . , D4 to the highest points p+y

1 , . . . , p+y
4 .

3 A c-competitive search strategy on a known arrangement

We continue with the general case where S may start anywhere on any line and we make no
assumptions on the angles between intersecting lines. For convenience we will assume the
starting point to be at the origin O and the line crossing through O to be `0. If multiple
lines cross the origin, we pick `0 to be the line that intersects any other line closest to O.
We will assume `0 is horizontal. As the problem is rotation and translation invariant these
assumptions do not change the problem. As before let d be the distance to the closest
intersection point on `0.

Consider the following search strategy for S. Searcher S iteratively explores the ar-
rangement starting from the origin. In iteration i four paths of length 2i · d are explored
starting at O. These paths are picked such that they maximize (minimize) the x- respect-
ively y-coordinate that S can achieve on the arrangement within distance 2i · d from O

(see Figure 4(a)). Specifically this results in the following strategy. First, S traverses `0
over a distance 2d in the direction +x and then returns back to O. Second, S traverses
`0 for a distance 2d in the direction −x and back. Third, S determines the point on A
with maximum y-coordinate it can reach when traversing over a distance 2d; S goes there
and back. Symmetrically, S also visits the point with lowest y-coordinate reachable within
distance 2d from O. Upon returning to the origin the allowed distance is doubled and the
process is repeated until S finds `t.

Let Di be the distance travelled in iteration i. Let the points where S ends when searching
over a distance Di with minimum and maximum x- and y-coordinate be denoted p−x

i , p+x
i ,

p−y
i , and p+y

i , respectively. Figure 4(b) shows the four paths to p+y
1 , . . . , p+y

4 . Notice that
the path for Di+1 does not necessarily follow the path for Di as a less steep line may be
followed to reach a steeper line sooner.

I Lemma 3. The y-coordinate of p+y
i is at least twice that of p+y

i−1. The symmetric statement
holds for p−y

i and p−y
i−1.

Proof. Observe that for any p+y
i−1, the last line traversed on the path to p+y

i−1 must have the
steepest absolute slope. If not, we could get higher by staying on the line with steepest
slope. When we traverse a distance Di instead of Di−1, we have the option of staying on
this steepest absolute slope line, and since Di = 2Di−1, we get at least twice as high just by
staying on the line that contains p+

i−1. J

Let Qi be the convex quadrilateral with the points p−x
i , p+x

i , p−y
i , and p+y

i as vertices
and let Ri be the axis-parallel rectangle with these four points on its boundary (see Figure 5).



Q. Bouts, T. Castermans, A. van Goethem, M. van Kreveld, and W. Meulemans 49:7

Q1 Q2

R1

R2

Figure 5 Illustration of the quadrilaterals Q1

and Q2 and the respective axis-parallel bounding
rectangles R1 and R2. Notice that consecutive quad-
rilaterals need not be contained in each other.

p−x
i+2

Qi+2

p+x
i+2

p+y
i+2

Ri

y

≥ 4y

3x x

r

4x

Figure 6 Even with the (impossible) worst-
case placement of p+y

i+2 rectangle Ri is still
contained in Qi+2.

Trivially Qi ⊂ Ri and from Lemma 3 it immediately follows that R1 ⊂ R2 ⊂ · · · ⊂ Rk.

I Lemma 4. Ri ⊂ Qi+2.

Proof. Without loss of generality only consider the half-plane above `0. We show that the
triangle p−x

i+2p
+y
i+2p

+x
i+2 contains the rectangle with bottom vertices p−x

i and p+x
i and top side

through p+y
i . We know that p−x

i+2p
+x
i+2 is exactly four times the length of p−x

i p+x
i as `0 is

horizontal. By Lemma 3 the y-coordinate of p+y
i+2 is at least four times that of p+y

i (see
Figure 6). By triangle inequality the x-coordinate of p+y

i+2 must be between p−x
i+2 and p+x

i+2.
Let x be the x-coordinate of p+x

i , and r = (−x, y) the vertex at the top-left corner of Ri.
Consider the side p−x

i+2p
+y
i+2 of the triangle and the line p−x

i+2r. The slope of p−x
i+2r is y/(3x).

The slope of p−x
i+2p

+y
i+2 depends on the exact location of p+y

i+2. In the (impossible) worst case
p+y

i+2 is located at (4x, 4y). Thus the slope of p−x
i+2p

+y
i+2 is at least y/(2x) and r is below

p−x
i+2p

+y
i+2. Containment of Ri in Qi+2 trivially follows. J

We observe that if the target line `t intersects Qi then `t will be found in iteration i

or before. Hence the distance travelled by the searcher is upper-bounded by the distance
travelled up to and including iteration i. Suppose the searcher S finds the target line `t in
iteration k. We will use the rectangle Rk−3 as a lower bound on the length of the shortest
path to `t to prove an upper bound on the competitive ratio.

I Lemma 5. The target line `t intersects Qk and does not intersect Rk−3.

Proof. If `t intersectsQk−1, then `t would have been found in phase k−1. SinceRk−3 ⊂ Qk−1,
the lemma follows. J

As `t does not intersect Rk−3 the closest point of `t to O must be outside of Rk−3. But
then the shortest path to `t must have length larger than Dk−3. Assume for contradiction
that the closest point pt on `t has distance less than Dk−3. As in iteration k − 3 we followed
the paths that maximize (minimize) the x- and y-coordinate, pt could be reached and must
thus be contained in Rk−3. Contradiction. Thus Dk−3 is a lower bound on the distance from
O to `t, and Dk−3 = Dk/8.

For an upper bound, we consider the distance we have travelled. Except for the last
iteration, we traversed four paths of length Di in two directions in each iteration. Thus in
previous iterations we traversed 8

∑k−1
i=1 Di. In the last iteration in the worst-case we discover

`t while traversing the fourth path all the way to its end. Hence we traverse three paths of
length Dk twice, and the last path of length Dk once. The total travel is thus at most:

8
k−1∑
i=1

Di + 7Dk

ISAAC 2018
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Using the summation
∑k−1

i=0 z
i = zk−1

z−1 and Di = 2id we can rewrite this to 15 ·2kd−16d <
15Dk. We thus upper-bound the competitive ratio by 120.

A more careful analysis shows that Lemma 4 is true even if we do not double Di but
enlarge by only a factor

√
3. Let D1 =

√
3d and Di =

√
3Di−1 for i ≥ 2, so Di =

√
3i · d,

and suppose S finds `t in iteration k. Then Dk−3 =
√

3k−3
d is a lower bound for reaching `t.

With the described strategy S travels at most

8
k−1∑
i=1

√
3

i
d+ 7

√
3

k
d < 8

√
3k
d√

3− 1
+ 7
√

3
k
d

The competitive ratio becomes

8
√

3kd√
3−1 + 7

√
3k
d

√
3k−3

d
= ( 8√

3− 1
+ 7)
√

3
3
< 94

Another improvement comes from organizing the four traversals in a phase conveniently
so that we do not have to go back to O at the end. In every even phase i we start with
going to p+x

i , then we do p+y
i and p−y

i in any order, and end with going to p−x
i . In every odd

phase j we go to p−x
j first and to p+x

j last. It is easy to see that we do not have to go back
at the end of any phase, because we go out over the exact same stretch in the next phase
anyway. Instead of traversing 8Di in a phase i, we now traverse (7− 1/

√
3) ·Di. This also

holds for the last phase Dk. With some basic calculation we obtain:

I Theorem 6. A 79-competitive search strategy exists to find an unknown target line in an
arrangement of lines.

Alternatively, we may also triple Di because then Ri ⊂ Qi+1; a lower constant factor
than 3 will not ensure that Ri ⊂ Qi+1 so that will not give improvements. The competitive
ratio we get is worse, however, than when using

√
3 and Ri ⊂ Qi+2.

We note that if we know the exact distance to the line, we can use some of the ideas just
given. By the observations above, we can find the unknown line by going three times as far
in each direction. For the last direction S does not need to go back, so in total we will find
the line with competitive ratio 21.

4 A c-competitive search strategy on an unknown arrangement

In this section we consider the situation where the searcher S does not know the arrangement
beforehand. In particular, we assume S learns the slope and intercept of a line, only when S
reaches it. The question arises whether we can adapt our competitive strategy to still realize
a constant competitive ratio. The exact same strategy cannot be used, because we can no
longer determine the points p+y and p−y before we start walking.

First of all, this problem suffers from a technicality that has been observed in similar
problems: as soon as we decide to walk any distance from the starting location in some
direction on the starting line, the target line could have been arbitrarily much closer in
the other direction [2]. So a constant competitive ratio cannot exist. This technicality is
commonly circumvented by assuming that the target line is at least some known – possibly
extremely small – distance away from the start. We will assume this as well.

Assume the starting location is at the origin O and lies on a horizontal line `0. We start
by finding the closest intersection to O. If it is at distance d, then we let D1 = 2d. Similar
to the strategy for known arrangements in iteration i we aim to find the leftmost, rightmost,
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O D tD−D−tD

h1L2

h2

L2

`0

lines in L1 intersect `0 here

Figure 7 The line sets L1 and L2, only some lines in L2 are shown. Two paths maximizing the
achieved height in the vertical slab [−D, D]: A path on L1 ∪ L2 of length D (blue) reaching height
h2 and a path on L1 of length 2tD + 2D (red) reaching height h1. We show h1 ≥ h2.

lowest, and highest point we can reach with distance Di. We, however, choose our movement
as to also discover a suitable set of “nearby” lines to which we must necessarily restrict our
movement as we do not know about the existence of other lines. We show that with this
smaller set of lines we can still achieve the height that we could have reached with knowledge
of all lines; however, we traverse a constant factor further to ensure this.

We start by walking left and right from O over a distance tD for some constant t ≥ 1 to
be specified later. In doing so, we discover a subset L1 of the lines. Let L2 = L \ L1, see
Figure 7. Let h2 be the height we could achieve within distance D if we had full knowledge
of the arrangement. Let the sequence of lines used to reach h2 be `0, `1, `2, . . . , `j . We know
that `j is the steepest line among these, by the proof of Lemma 3.

We want to reach the highest point in the vertical slab [−D,D] using lines from L1 only.
Clearly within a distance D we can get at most as high as h2. Instead we allow a traversal
of distance 2tD + 2D along the lines of L1. Let h1 be the maximum height we can achieve
while ending in the vertical slab [−D,D] and when travelling over distance at most 2tD+ 2D
along only lines of L1.

I Lemma 7. h2 ≤ h1 if t ≥ 2.

Proof. Assume for contradiction that h2 > h1. Let `0, `1, . . . `j be the lines on a path of
length D to height h2 on L = L1 ∪ L2. Either `j ∈ L1 or `j ∈ L2.

Assume first that `j ∈ L1. Specifically then there is a point p we can reach along `j

that lies in the slab [−D,D] at height h2. However, `j intersects `0 at most tD from the
origin. Thus we can follow `0 to the intersection with `j , and then follow `j to height h2. As
h2 ≤ D this takes at most tD+ (t+ 1)D horizontal movement and D vertical movement (see
Figure 8). The total distance traversed along lines from L1 is upper bounded by 2tD + 2D,
therefore h1 ≥ h2. Contradiction.

Next, assume that `j ∈ L2. The line `j must intersect the rectangle [−D,D] × [0, h2]
since the path of length D reaching h2 cannot leave this rectangle. The maximum slope of a
line `j ∈ L2 that intersects this rectangle is h2

(t−1)D as such a line must intersect `0 at least
tD from the origin.

We must have that `j has the steepest absolute slope. If a previously traversed line had
a steeper absolute slope we could follow it to get higher while staying in the slab [−D,D].
Thus the largest (absolute) slope of any line traversed to get to h2 is h2

(t−1)D . Take t ≥ 2,
then the largest slope is at most h2

D . In the (unachievable) best case we traverse this slope
for the full length of the path to height h2, however then we still reach a height less than h2.
Contradiction. J

Our constant competitive strategy, using t = 2, is therefore as follows: Go left over
2D, then right over 4D, then back to the starting point over 2D, and form the set L1.

ISAAC 2018
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O−D D

h2

h1

p

−tD tD

(t+ 1)D

tD

h2 ≤ D

`j

Figure 8 Assume for contradiction that h2 > h1. The last line traversed to get to height h2

within distance D on L1 ∪ L2 must then be from L2. If `j ∈ L1 then h1 ≥ h2 as we can traverse
only `0 and `j to reach the same height within distance 2tD + 2D.

O
Dk

Rk

hk
2

Uk+2 Qk+2

p+y
k

Qk

p+y
k+2

Dk

4Dk = Dk+24Dk = Dk+2

r+y
k+2

4hk
2 ≤ hk+2

1

Figure 9 Even with the worst-case placement of r+y
k+2, Rk is still contained in Uk+2.

Use these lines, using distance 6D to get as high as possible in the vertical slab [−D,D],
and the same distance to get as low as possible, and back. In total we traverse a distance
8D + 12D + 12D = 32D in one phase. Then double D and repeat.

We once again argue that the true minimum and maximum x and y coordinates reachable
in some phase i are covered completely by a quadrilateral on the discovered minima and
maxima in a later phase. Let Uk be the quadrilateral created by our exploration of four
paths on L1 in phase k.

I Lemma 8. Rk ⊂ Uk+2

Proof. The proof of the lemma is identical to the proof of Lemma 4, with the following
minor changes. See Figure 9 for an illustration of the proof.

Let r+y
i be the highest point reachable in the slab [−Di, Di] during phase i. Once again

let p+y
i be the highest point achievable in distance Di on the complete arrangement. From

Lemma 7 we conclude that the y-coordinate of p+y
k+2 is less or equal than that of r+y

k+2. We
also know that the x-coordinate of r+y

k+2 lies in the slab [−Dk+2, Dk+2] so we do not need
the triangle inequality of the proof. The proof follows directly. J

We can now use the same method of analysis as for the case of a fully known line
arrangement, except that we have to take into account that the searcher must move more in
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every phase. Once again we can scale the distance walked in an iteration by a factor of
√

3
instead of 2 to improve the bound. For a line found in iteration i we traverse at most:

32
k−1∑
i=1

Di + 36Dk < 32
√

3k
d√

3− 1
+ 36
√

3
k
d

A line found in iteration i is at least at a distance of Dk−3 =
√

3k−3
d. Thus we obtain the

following result.

I Theorem 9. A 414.2-competitive search strategy exists to find an unknown target line in
an unknown arrangement of lines, where a line becomes known once we reach it.

5 Conclusions

We have developed and analyzed search strategies for reaching an unknown target line in
an arrangements of lines. We did so by considering the competitive ratio: the worst-case
ratio between the distance travelled by the searcher and the length of the shortest path
from the searcher’s start location to the target line. We gave a search strategy for the case
of known arrangements that achieves a competitive ratio of 79. Then we generalized our
strategy so that it is competitive on line arrangements that are not known beforehand. The
parameters of a line become known only when the line is reached. In this case we gave a
414.2-competitive search strategy. There is a considerable gap between the known lower
bounds and upper bounds.

Future work. In our work we assumed that the speed on every line is the same. When we
drop this assumption we do not know whether searching for a line can be done competitively
even if we know all lines and all speeds. Certain properties still hold, for example, if we
search for the largest y-coordinate, then we can get twice as far if we double the travel
time. However, a diagonal with high speed may cause the furthest reachable point in both
horizontal and vertical direction to be along this diagonal, essentially preventing growth of
the explored region into other directions. When we search with a cost T from O, the relevant
points to visit seem to be the vertices of a convex polygon that is the convex hull of all
points reachable at cost T . This polygon can have more than constantly many vertices so we
cannot visit all in a phase. It is unclear how to choose a constant-size subset so that the
resulting, smaller convex hull at least contains the full convex hull from a previous iteration.

We note that searching (connected) arrangements of simple geometric objects like line
segments, circles, and half-lines cannot be done with a constant competitive strategy. But it
is possible that if we impose restrictions on the arrangement, constant-competitive search
strategies can be developed.
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1 Introduction

Let D be a set of n disks in the plane. If every three disks in D intersect, then Helly’s theorem
shows that the whole intersection

⋂
D of D is nonempty [9, 10, 11]. In other words, there is

a single point p that lies in all disks of D, i.e., p stabs D. More generally, when we know only
that every pair of disks in D intersect, there must be a point set P of constant size such that
each disk in D contains at least one point in P . It is fairly easy to give an upper bound on
the size of P , but for some time, the exact bound remained elusive. Eventually, in July 1956
at an Oberwolfach seminar, Danzer presented the answer: four points are always sufficient
and sometimes necessary to stab any finite set of pairwise intersecting disks in the plane
(see [5]). Danzer was not satisfied with his original argument, so he never formally published
it. In 1986, he presented a new proof [5]. Previously, in 1981, Stachó had already given
an alternative proof [15], building on a previous construction of five stabbing points [14].
This line of work was motivated by a result of Hadwiger and Debrunner, who showed that
three points suffice to stab any finite set of pairwise intersecting unit disks [8]. In later
work, these results were significantly generalized and extended, culminating in the celebrated
(p, q)-theorem that was proven by Alon and Kleitman in 1992 [1]. See also a recent paper by
Dumitrescu and Jiang that studies generalizations of the stabbing problem for translates
and homothets of a convex body [6].

Danzer’s published proof [5] is fairly involved and uses a compactness argument, and
part of it is based on an undetailed verification by computer. There seems to be no obvious
way to turn it into an efficient algorithm for finding a stabbing set of size four. The two
constructions of Stachó [15, 14] are simpler, but they start with three disks in D with empty
intersection and maximum inscribed circle. It is not clear to us how to find such a triple
quickly (in, say, near-linear time). Here, we present a new argument that yields five stabbing
points. Our proof is constructive, and it lets us find the stabbing set in deterministic linear
time.

As for lower bounds, Grünbaum gave an example of 21 pairwise intersecting disks that
cannot be stabbed by three points [7]. Later, Danzer reduced the number of disks to ten [5].
This example is close to optimal, because every set of eight disks can be stabbed by three
points [14]. It is hard to verify Danzer’s lower bound example – even with dynamic geometry
software, the positions of the disks cannot be visualized easily. Here, we present a simple
construction that needs 13 disks and can be verified by inspection.

2 The Geometry of Pairwise Intersecting Disks

Let D be a set of n pairwise intersecting disks in the plane. A disk Di ∈ D is given by its
center ci and its radius ri. To simplify the analysis, we make the following assumptions:
(i) the radii of the disks are pairwise distinct; (ii) the intersection of any two disks has a
nonempty interior; and (iii) the intersection of any three disks is either empty or has a
nonempty interior. A simple perturbation argument can then handle the degenerate cases.

https://arxiv.org/abs/1801.03158
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Figure 1 left: At least one lens angle is large. right: D1 and E have the same radii and lens
angle 2π/3. By Lemma 2.2, D2 is a subset of E. {c1, c, p, q} is the set P from Lemma 2.4.

The lens of two disks Di, Dj ∈ D is the set Li,j = Di ∩ Dj . Let u be any of the two
intersection points of ∂Di and ∂Dj . The angle ∠ciucj is called the lens angle of Di and Dj .
It is at most π. A finite set C of disks is Helly if their common intersection

⋂
C is nonempty.

Otherwise, C is non-Helly. We present some useful geometric lemmas.

I Lemma 2.1. Let {D1, D2, D3} be a set of three pairwise intersecting disks that is non-Helly.
Then, the set contains two disks with lens angle larger than 2π/3.

Proof. Since {D1, D2, D3} is non-Helly, the lenses L1,2, L1,3 and L2,3 are pairwise disjoint.
Let u be the vertex of L1,2 nearer to D3, and let v, w be the analogous vertices of L1,3
and L2,3 (see Figure 1, left). Consider the simple hexagon c1uc2wc3v, and write ∠u, ∠v,
and ∠w for its interior angles at u, v, and w. The sum of all interior angles is 4π. Thus,
∠u+∠v+∠w < 4π, so at least one angle is less than 4π/3. It follows that the corresponding
exterior angle at u, v, or w must be larger than 2π/3. J

I Lemma 2.2. Let D1 and D2 be two intersecting disks with r1 ≥ r2 and lens angle at least
2π/3. Let E be the unique disk with radius r1 and center c, such that (i) the centers c1, c2,
and c are collinear and c lies on the same side of c1 as c2; and (ii) the lens angle of D1 and
E is exactly 2π/3 (see Figure 1, right). Then, if c2 lies between c1 and c, we have D2 ⊆ E.

Proof. Let x ∈ D2. Since c2 lies between c1 and c, the triangle inequality gives

|xc| ≤ |xc2|+ |c2c| = |xc2|+ |c1c| − |c1c2|. (1)

Since x ∈ D2, we get |xc2| ≤ r2. Also, since D1 and E have radius r1 each and lens angle
2π/3, it follows that |c1c| =

√
3 r1. Finally, |c1c2| =

√
r2

1 + r2
2 − 2r1r2 cosα, by the law

of cosines, where α is the lens angle of D1 and D2. As α ≥ 2π/3 and r1 ≥ r2, we get
cosα ≤ −1/2 = (

√
3− 3/2)−

√
3 + 1 ≤ (

√
3− 3/2)r1/r2 −

√
3 + 1, As such, we have

|c1c2|2 = r2
1 + r2

2 − 2r1r2 cosα ≥ r2
1 + r2

2 − 2r1r2

((√
3− 3/2

)r1

r2
−
√

3 + 1
)

= r2
1 − 2

(√
3− 3/2

)
r2

1 + 2(−
√

3 + 1)r1r2 + r2
2

= (1− 2
√

3 + 3)r2
1 + 2(−

√
3 + 1)r1r2 + r2

2 =
(
r1(
√

3− 1) + r2
)2
.

Plugging this into Eq. (1) gives |xc| ≤ r2 +
√

3r1 − (r1
(√

3− 1) + r2
)

= r1, i.e., x ∈ E. J

I Lemma 2.3. Let D1 and D2 be two intersecting disks with equal radius r and lens angle
2π/3. There is a set P of four points so that any disk F of radius at least r that intersects
both D1 and D2 contains a point of P .
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k+ k−

c1
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c c2
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Figure 2 left: P = {c1, c2, p, q} is the stabbing set. The green arc γ = ∂(D2
1 ∩D2

2)∩Q is covered
by D2

1 ∩Dq. right: Situation (ii) in the proof of Lemma 2.4: D2 6⊆ E. x is an arbitrary point in
D2 ∩ F ∩ k+. The angle at c in the triangle ∆xcc2 is ≥ π/2.

Proof. Consider the two tangent lines of D1 and D2, and let p and q be the midpoints
on these lines between the respective two tangency points. We set P = {c1, c2, p, q} (see
Figure 2, left).

Given the disk F that intersects both D1 and D2, we shrink its radius, keeping its center
fixed, until either the radius becomes r or until F is tangent to D1 or D2. Suppose the
latter case holds and F is tangent to D1. We move the center of F continuously along the
line spanned by the center of F and c1 towards c1, decreasing the radius of F to maintain
the tangency. We stop when either the radius of F reaches r or F becomes tangent to D2.
We obtain a disk G ⊆ F with center c = (cx, cy) so that either: (i) radius(G) = r and G
intersects both D1 and D2; or (ii) radius(G) ≥ r and G is tangent to both D1 and D2. Since
G ⊆ F , it suffices to show that G ∩ P 6= ∅. We introduce a coordinate system, setting the
origin o midway between c1 and c2, so that the y-axis passes through p and q. Then, as in
Figure 2 (left), we have c1 = (−

√
3 r/2, 0), c2 = (

√
3 r/2, 0), q = (0, r), and p = (0,−r).

For case (i), let D2
1 be the disk of radius 2r centered at c1, and D2

2 the disk of radius
2r centered at c2. Since G has radius r and intersects both D1 and D2, its center c has
distance at most 2r from both c1 and c2, i.e., c ∈ D2

1 ∩D2
2. Let Dp and Dq be the two disks

of radius r centered at p and q. We will show that D2
1 ∩D2

2 ⊆ D1 ∪D2 ∪Dp ∪Dq. Then it is
immediate that G ∩ P 6= ∅. By symmetry, it is enough to focus on the upper-right quadrant
Q = {(x, y) | x ≥ 0, y ≥ 0}. We show that all points in D2

1 ∩ Q are covered by D2 ∪ Dq.
Without loss of generality, we assume that r = 1. Then, the two intersection points of
D2

1 and Dq are r1 = ( 5
√

3−2
√

87
28 , 38+3

√
29

28 ) ≈ (−0.36, 1.93) and r2 = ( 5
√

3+2
√

87
28 , 38−3

√
29

28 ) ≈
(0.98, 0.78), and the two intersection points of D2

1 and D2 are s1 = (
√

3
2 , 1) ≈ (0.87, 1) and

s2 = (
√

3
2 ,−1) ≈ (0.87,−1). Let γ be the boundary curve of D2

1 in Q. Since r1, s2 6∈ Q and
since r2 ∈ D2 and s1 ∈ Dq, it follows that γ does not intersect the boundary of D2 ∪Dq and
hence γ ⊂ D2 ∪Dq. Furthermore, the subsegment of the y-axis from o to the start point of γ
is contained in Dq, and the subsegment of the x-axis from o to the endpoint of γ is contained
in D2. Hence, the boundary of D2

1 ∩ Q lies completely in D2 ∪ Dq, and since D2 ∪ Dq is
simply connected, it follows that D2

1 ∩Q ⊆ D2 ∪Dq, as desired.
For case (ii), since G is tangent to D1 and D2, the center c of G is on the perpendicular

bisector of c1 and c2, so the points p, o, q and c are collinear. Suppose without loss of
generality that cy ≥ 0. Then, it is easily checked that c lies above q, and radius(G) + r =
|c1c| ≥ |oc| = r + |qc|, so q ∈ G. J

I Lemma 2.4. Consider two intersecting disks D1 and D2 with r1 ≥ r2 and lens angle at
least 2π/3. Then, there is a set P of four points such that any disk F of radius at least r1
that intersects both D1 and D2 contains a point of P .
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Proof. Let ` be the line through c1 and c2. Let E be the disk of radius r1 and center c ∈ `
that satisfies the conditions (i) and (ii) of Lemma 2.2. Let P = {c1, c, p, q} as in the proof of
Lemma 2.3, with respect to D1 and E (see Figure 1, right). We claim that

D1 ∩ F 6= ∅ ∧ D2 ∩ F 6= ∅ ⇒ E ∩ F 6= ∅. (*)

Once (*) is established, we are done by Lemma 2.3. If D2 ⊆ E, then (*) is immediate, so
assume that D2 6⊆ E. By Lemma 2.2, c lies between c1 and c2. Let k be the line through c
perpendicular to `, and let k+ be the open halfplane bounded by k with c1 ∈ k+ and k−
the open halfplane bounded by k with c1 6∈ k−. Since |c1c| =

√
3 r1 > r1, we have D1 ⊂ k+

(see Figure 2, right). Recall that F has radius at least r1 and intersects D1 and D2. We
distinguish two cases: (i) there is no intersection of F and D2 in k+, and (ii) there is an
intersection of F and D2 in k+.

For case (i), let x be any point in D1 ∩ F . Since we know that D1 ⊂ k+, we have x ∈ k+.
Moreover, let y be any point in D2 ∩ F . By assumption (i), y is not in k+, but it must be
in the infinite strip defined by the two tangents of D1 and E. Thus, the line segment xy
intersects the diameter segment k ∩E. Since F is convex, the intersection of xy and k ∩E is
in F , so E ∩ F 6= ∅.

For case (ii), fix x ∈ D2 ∩ F ∩ k+ arbitrarily. Consider the triangle ∆xcc2. Since x ∈ k+,
the angle at c is at least π/2 (Figure 2, right). Thus, |xc| ≤ |xc2|. Also, since x ∈ D2, we
know that |xc2| ≤ r2 ≤ r1. Hence, |xc| ≤ r1, so x ∈ E and (*) follows, as x ∈ E ∩ F . J

3 Existence of Five Stabbing Points

With the tools from Section 2, we can now show that there is a stabbing set with five points.

I Theorem 3.1. Let D be a set of n pairwise intersecting disks in the plane. There is a set
P of five points such that each disk in D contains at least one point from P .

Proof. If D is Helly, there is a single point that lies in all disks of D. Thus, assume that D
is non-Helly, and let D1, D2, . . . , Dn be the disks in D ordered by increasing radius. Let i∗
be the smallest index with

⋂
i≤i∗ Di = ∅. By Helly’s theorem [9, 10, 11], there are indices

j, k < i∗ such that {Di∗ , Dj , Dk} is non-Helly. By Lemma 2.1, two disks in {Di∗ , Dj , Dk}
have lens angle at least 2π/3. Applying Lemma 2.4 to these two disks, we obtain a set
P ′ of four points so that every disk Di with i ≥ i∗ contains at least one point from P ′.
Furthermore, by definition of i∗, we have

⋂
i<i∗ Di 6= ∅, so there is a point q that stabs every

disk Di with i < i∗. Thus, P = P ′ ∪ {q} is a set of five points that stabs every disk in D, as
desired. J

4 Algorithmic Considerations

Theorem 3.1 leads to a simple O(n log n) time deterministic algorithm for finding a stabbing
set of size 5: we sort the disks in D by radius, and we insert the disks one by one, while
maintaining their intersection. Once the intersection becomes empty, we can use the method
from Theorem 3.1 to find the stabbing set (otherwise, D is Helly, and we have a single
stabbing point). As we will see next, there is also a deterministic linear time algorithm, using
the LP-type framework by Sharir and Welzl [13, 3].

The LP-type framework. An LP-type problem (H, w,≤) is an abstract generalization of a
low-dimensional linear program. It consists of a finite set of constraints H, a weight function
w : 2H → W, and a total order (W,≤) on the weights. The weight function w assigns a
weight to each subset of constraints. It must fulfill the following three axioms:
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D2

D1

D3

D4

D∞

v

Figure 3 left: The disks D3 and D4 are destroyers of the set {D1, D2}. Moreover, D3 is the
smallest destroyer of the whole set {D1, D2, D3, D4}. right: The disks without D∞ form a Helly
set C. Adding D∞ leads to the non-Helly set C = C ∪ {D∞} with smallest destroyer D∞. The point
v is the extreme point for C and D∞, i.e., dist(C) = d(v,D∞).

Monotonicity: for any H′ ⊆ H and H ∈ H, we have w
(
H′ ∪ {H}

)
≤ w(H′);

Finite Basis: there is a constant d ∈ N such that for any H′ ⊆ H, there is a subset
B ⊆ H′ with |B| ≤ d and w(B) = w(H′); and
Locality: for any B ⊆ H′ ⊆ H with w(B) = w(H′) and for any H ∈ H, we have that if
w
(
B ∪ {H}

)
= w(B), then also w

(
H′ ∪ {H}

)
= w(H′).

Given a subset H′ ⊆ H, a basis for H′ is an inclusion-minimal set B ⊆ H′ with w(B) = w(H′).
The Finite-Basis-axiom states that any basis has at most d constraints. The goal in an
LP-type problem is to determine w(H) and a corresponding basis B for H.

A generalization of Seidel’s algorithm for low-dimensional linear programming [12] shows
that we can solve an LP-type problem in expected time O(|H|), provided that an O(1)-time
violation test is available: given a set B ⊆ H and a constraint H ∈ H, we say that H violates
B if and only if w

(
B ∪{H}

)
< w(B). In a violation test, we are given B and H , and we must

determine (i) whether B is a valid basis for some subset of constraints; and (ii) whether H
violates B.5 Here and below, the constant factor in the O-notation may depend on d.

Chazelle and Matoušek [4] showed that an LP-type problem can be solved in O(|H|)
deterministic time if (i) we have a constant-time violation test and (ii) the range space
(H, {vio(B) | B is a basis for some H′ ⊆ H}) has bounded VC-dimension [3]. Here, for a
basis B, the set vio(B) ⊂ H consists of all constraints that violate B. We will now show
that the problem of finding a non-Helly triple as in Theorem 3.1 is LP-type and fulfills the
requirements for the algorithm of Chazelle and Matoušek.

Geometric observations. The distance between two closed sets A,B ⊆ R2 is defined as
d(A,B) = min{d(a, b) | a ∈ A, b ∈ B}. From now on, we assume that all points in

⋃
D

have positive y-coordinates. This can be ensured with linear overhead by an appropriate
translation of the input. We denote by D∞ the closed halfplane below the x-axis. It is

5 Here, we follow the presentation of Chazelle [3]. Sharir and Welzl [13] do not require property (i) of
a violation test. Instead, they need an additional basis computation primitive: given a basis B and a
constraint H ∈ H, find a basis for B∪{H}. Given a violation test with property (i), a basis computation
primitive can easily be implemented by brute force enumeration.
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D2

D1

D4
D3

v

D2

D1

D4

D3

vw

Figure 4 left: The disk D4 is a destroyer for the Helly sets {D1, D2} and {D1, D2, D3}. The
extreme point v for {D1, D2} is also the extreme point for {D1, D2, D3}. right: The disk D4 is a
destroyer for the Helly sets {D1, D2} and {D1, D2, D3}. The extreme point v for {D1, D2} is not in
D3. The distance to D4 increases.

interpreted as a disk with radius ∞ and center at (0,−∞). For C ⊆ D we set C = C ∪ {D∞}.
Observe that for C1 ⊆ C2 ⊆ D, if C1 is non-Helly, then C2 is non-Helly. Furthermore, for
r ∈ R>0 ∪ {∞} and C ⊆ D, we define C≤r (resp., C<r) as the set of all disks in C with radius
at most (resp., smaller than) r. Let C ⊆ D be Helly. A disk D ∈ D is a destroyer of C if
C ∪ {D} is non-Helly. Observe that D∞ is a destroyer for every Helly subset of D. Now, let
C ⊆ D be an arbitrary subset of D (either Helly or non-Helly). We say D ∈ C is the smallest
destroyer of C if C<r is Helly and C≤r is non-Helly, where r is the radius of D. Note that
D is the unique largest disk in C≤r. Furthermore, D is the smallest disk in C that causes a
non-Helly triple. If C is Helly, then D = D∞. See Figure 3 for an example. We can make
the following two observations.

I Lemma 4.1. Let C ⊆ D be Helly and D ∈ D a destroyer of C. Then, the point v ∈
⋂
C

with minimum distance to D is unique.

Proof. Suppose there are two distinct points v 6= w ∈
⋂
C with d(v,D) = d

(⋂
C, D

)
=

d(w,D). Since
⋂
C is convex, the segment vw lies in

⋂
C. Now, if D 6= D∞, then every

point in the relative interior of vw is strictly closer to D than v and w. If D = D∞, then
all points in vw have the same distance to D, but since

⋂
C is strictly convex, the relative

interior of vw lies in the interior of
⋂
C, so there must be a point in

⋂
C that is closer to

D than v and w. In either case, we obtain a contradiction to the assumption v 6= w and
d(v,D) = d

(⋂
C, D

)
= d(w,D). The claim follows. J

The unique point v ∈
⋂
C with minimum distance to a destroyer D is called the extreme

point for C and D (see Figure 3).

I Lemma 4.2. Let C1 ⊆ C2 ⊆ D be two Helly sets and D ∈ D a destroyer of C1 (and thus of
C2). Let v ∈

⋂
C1 be the extreme point for C1 and D. We have d

(⋂
C1, D

)
≤ d

(⋂
C2, D

)
.

In particular, if v ∈
⋂
C2, then d

(⋂
C1, D

)
= d
(⋂
C2, D

)
and v is also the extreme point for

C2. If v 6∈
⋂
C2, then d

(⋂
C1, D

)
< d
(⋂
C2, D

)
.

Proof. The first claim holds trivially: let w ∈
⋂
C2 be the extreme point for C2 and D. Since

C1 ⊆ C2, it follows that w ∈
⋂
C1, so d

(⋂
C1, D

)
≤ d(w,D) = d

(⋂
C2, D

)
. If v ∈

⋂
C2, then

d
(⋂
C1, D

)
≤ d

(⋂
C2, D

)
≤ d(v,D) = d

(⋂
C1, D

)
, so v = w, by Lemma 4.1. If v /∈

⋂
C2,

then d
(⋂
C1, D

)
< d
(⋂
C2, D

)
, by Lemma 4.1 and the fact that C1 ⊆ C2. See Figure 4. J
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E

D3

D2

D1 D3

E

Figure 5 Monotonicity: In both cases, {D1, D2, D3} is non-Helly with smallest destroyer D3.
Adding a disk E either decreases the radius of the smallest destroyer (left) or increases the distance
to the smallest destroyer (right).

F
E

F
E

D

D∞

E

D∞

v
v

v

Figure 6 A basis can either be a non-Helly triple (left), a pair of intersecting disks E and F
where the point of minimum y-coordinate in E ∩ F is a vertex (middle), or a single disk.

Let C be a subset of D. The radius of the smallest destroyer D of C is denoted by rad(C).
Note that rad(C) ∈ R>0 ∪ {∞}. Moreover, let dist(C) be the distance between D and the set⋂
C<rad(C), i.e., dist(C) = d

(⋂
C<rad(C), D

)
. Then, C is Helly if and only if rad(C) =∞. In

this case, dist(C) is the distance between
⋂
C and the x-axis. We define the weight w(C) of

C as w(C) = (rad(C),− dist(C)), and we denote by ≤ the lexicographic order on R2. Chan
observed, in a slightly different context, that (D, w,≤) is LP-type [2]. However, Chan’s paper
does not contain a detailed proof for this fact. Thus, in the following lemmas, we show that
the three LP-type axioms hold.

I Lemma 4.3. For any C ⊆ D and E ∈ D, we have w
(
C ∪ {E}

)
≤ w(C).

Proof. Set C∗ = C ∪ {E}. Let D be the smallest destroyer of C, and let r = rad(C) be the
radius of D. Then, D is the largest disk in C≤r. The set C≤r is non-Helly. Adding E does
not change this, i.e., C∗≤r is also non-Helly. Thus, the smallest destroyer of C∗≤r is either D or
some smaller disk in C∗<r. In the latter case, we have rad(C∗) < rad(C). In the former case, we
have rad(C∗) = rad(C), and Lemma 4.2 gives − dist(C∗) = −d

(⋂
C∗<r, D

)
≤ −d(

⋂
C<r, D) =

− dist(C). In either case, w
(
C∗) ≤ w(C). See Figure 5 for an illustration. J

I Lemma 4.4. For any C ⊆ D, there is a set B ⊆ C with |B| ≤ 3 and w(B) = w(C).
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Proof. Let D be the smallest destroyer of C. Let r = rad(C) be the radius of D, and let
v ∈

⋂
C<r be the extreme point for C<r and D. By general position, there are at most two

disks E,F ∈ C<r with v ∈ ∂(E ∩ F ). Note that E and F may be the same disk.
Set B = {D,E, F} \ {D∞}. There are three possibilities. If C is non-Helly, then D 6= D∞

and B is a non-Helly triple (indeed, as the disks in D are pairwise intersecting, the extreme
point v must lie at the intersection of two disk boundaries). If C is Helly, then D = D∞ and
|B| ≤ 2. If |B| = 2, then v is the vertex of ∂(E ∩ F ) with minimum y-coordinate. If |B| = 1,
then v is the point on ∂E with minimum y-coordinate. In either case, dist(B) is the value of
the smallest y-coordinate of a point in

⋂
B. See Figure 6 for an illustration.

We claim that w(B) = w(C). Firstly, rad(B) = rad(C), because B and C have the same
smallest destroyer. Secondly, we show dist(B) = dist(C): since B<r ⊆ C<r, by Lemma 4.2, we
get dist(B) = d

(⋂
B<r, D) ≤ d

(⋂
C<r, D) = dist(C). Suppose that dist(B) < dist(C). Then,

there is a point w ∈ E ∩ F with d(w,D) < d(v,D). Furthermore, by general position and
since v is the intersection of two disk boundaries, there is a relatively open neighborhood
N around v in

⋂
C<r such that N is also relatively open in E ∩ F . Since E ∩ F is convex,

there is a point x ∈ N that also lies in the relative interior of the line segment wv. Then,
d(x,D) < d(v,D) and x ∈

⋂
C<r, which is impossible, as v is the extreme point.

The set B is actually a basis for C: if B is a non-Helly triple, then removing any disk from
B creates a Helly set and increases the radius of the smallest destroyer to ∞. If |B| ≤ 2, then
D∞ is the smallest destroyer of B and the minimality follows directly from the definition. J

I Lemma 4.5. Let B ⊆ C ⊆ D with w(B) = w(C) and let E ∈ D. Then, if w
(
B∪{E}

)
= w(B)

we also have w
(
C ∪ {E}

)
= w(C).

Proof. Set C∗ = C ∪ {E},B∗ = B ∪ {E}. Let r = rad(C) and D the smallest destroyer of C.
Since w(C) = w(B) = w(B∗), we have that D is also the smallest destroyer of B and of B∗. If
E has radius > r, then E cannot be the smallest destroyer of C∗, so w

(
C∗
)

= w(C). Assume
that E has radius < r. Let v be the extreme point of C<r and D. Since w(B∗) = w(B),
we know that d

(⋂
B<r, D

)
= d

(⋂
B∗<r, D

)
= d(v,D). Now, Lemma 4.2 implies v ∈ E,

since E ∈ B∗<r. Thus, the set C∗<r = C<r ∪ {E} is Helly. Furthermore, C∗≤r is non-Helly,
because the subset C≤r is non-Helly. Therefore, D is also the smallest destroyer of C∗, so
rad(C∗) = r = rad(C). Finally, since B∗<r ⊆ C∗<r we can use Lemma 4.2 to derive

d
(⋂

C<r, D
)

= d
(⋂

B∗<r, D
)
≤ d
(⋂

C∗<r, D
)
≤ d(v,D) = d

(⋂
C<r, D

)
. J

Next, we describe a violation test for (D, w,≤): given a set B ⊆ D and a disk E ∈ D
with radius r, determine (i) whether B is a basis for some subset of D, and (ii) whether E
violates B, i.e., whether w

(
B ∪ {E}

)
< w(B). This is done as follows:

If (i) |B| > 3; or (ii) |B| = 3 and B is Helly; or (iii) |B| = 2 and the y-minimum of
⋂
B is

also the y-minimum of a single disk of B, return “B is not a basis”.
If |B| = 1, then, if the y-minimum in E ∩

⋂
B differs from the y-minimum in

⋂
B, return

“E violates B” ; otherwise, return “E does not violate B”.
If B = {D1, D2}, find the y-minimum v of D1 ∩D2 and return “E violates B” if v 6∈ E,
and “E does not violate B”, otherwise.
Finally, if B = {D,D1, D2} is non-Helly with smallest destroyer D.6 Let r = rad(B) be
the radius of D and r′ be the radius of E:

6 Note that since B is a subset of D and since B is non-Helly, the smallest destroyer D of B cannot be the
disk D∞.
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If r′ > r, return “E does not violate B”.
If r′ < r, find the vertex v of D1 ∩D2 that minimizes the distance to E and return
“E violates B” if v 6∈ E, and “E does not violate B”, otherwise.

The violation test obviously needs constant time. Finally, to apply the algorithm of
Chazelle and Matoušek, we still need to check that the range space (D,R) with R = {vio(B) |
B is a basis of a subset in D} has bounded VC dimension.

I Lemma 4.6. The range space (D,R) has VC-dimension at most 3.

Proof. The discussion above shows that for any basis B, there is a point vB ∈ R2 such that
E ∈ D violates B if and only if vB 6∈ E. Thus, for any v ∈ R2, let R′v = {D ∈ D | v 6∈ D}
and let R′ = {R′v | v ∈ R2}. Since R ⊆ R′, it suffices to show that (D,R′) has bounded VC-
dimension. For this, consider the complement range space (D,R′′) with R′′ = {R′′v | v ∈ R2}
and R′′v = {D ∈ D | v ∈ D}, for v ∈ R2. It is well known that (D,R′) and (D,R′′) have the
same VC-dimension [3], and that (D,R′′) has VC-dimension 3 (e.g., this follows from the
classic homework exercise that there is no planar Venn-diagram for four sets). J

Finally, the following lemma summarizes discussion so far.

I Lemma 4.7. Given a set D of n pairwise intersecting disks in the plane, we can decide
in O(n) deterministic time whether D is Helly. If so, we can compute a point in

⋂
D in

O(n) deterministic time. If not, we can compute the smallest destroyer D of D and two
disks E,F ∈ D<r that form a non-Helly triple with D. Here, r is the radius of D.

Proof. Since (D, w,≤) is LP-type, the violation test needs O(1) time, and the VC-dimension
of (D,R) is bounded, we can apply the deterministic algorithm of Chazelle and Matoušek [4]
to compute w(D) = (rad(D),− dist(D)) and a corresponding basis B in O(n) time. Then, D
is Helly if and only if rad(D) =∞. If D is Helly, then |B| ≤ 2. We compute the unique point
v ∈

⋂
B with d(v,D∞) = d

(⋂
B, D∞

)
. Since B ⊆ D and d

(⋂
B, D∞

)
= d

(⋂
D, D∞

)
, we

have v ∈
⋂
D by Lemma 4.2. We output v. If D is non-Helly, we simply output B, because

B is a non-Helly triple with the smallest destroyer D of D and two disks E,F ∈ D<r, where
r is the radius of D. J

I Theorem 4.8. Given a set D of n pairwise intersecting disks in the plane, we can find in
O(n) time a set P of five points such that every disk of D contains at least one point of P .

Proof. Using the algorithm from Lemma 4.7, we decide whether D is Helly. If so, we return
the point computed by the algorithm. Otherwise, the algorithm gives us a non-Helly triple
{D,E, F}, where D is the smallest destroyer of D and E,F ∈ D<r, with r being the radius
of D. Since D<r is Helly, we can obtain in O(n) time a stabbing point q ∈

⋂
D<r by using

the algorithm from Lemma 4.7 again. Next, by Lemma 2.1, there are two disks in {D,E, F}
whose lens angle is at least 2π/3. Let P ′ be the set of four points from the proof of Lemma 2.4.
Then, P = P ′ ∪ {q} is a set of five points that stabs every disks in D. J

5 A Simple Lower Bound

We now exhibit a set of 13 pairwise intersecting disks in the plane such that no point set of
size three can pierce all of them. The construction begins with an inner disk A of radius 1
and three larger disks D1, D2, D3 of equal radius, so that A is tangent to all three disks and
so that each two disks are tangent to each other. For i = 1, 2, 3, we denote the contact point
of A and Di by ξi.
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A

D1

D3D2

Figure 7 Each common tangent ` between A and Di represents a very large disk, whose interior
is disjoint from A. The nine points of tangency are pairwise distinct.

We add six more disks as follows. For i = 1, 2, 3, we draw the two common outer tangents
to A and Di, and denote by T−i and T+

i the halfplanes that are bounded by these tangents
and are openly disjoint from A. The labels T−i and T+

i are chosen such that the points of
tangency between A and T−i , Di, and T+

i , appear along ∂A in this counterclockwise order.
One can show that the nine points of tangency between A and the other disks and tangents
are pairwise distinct (see Figure 7). We regard the six halfplanes T−i , T+

i , for i = 1, 2, 3,
as (very large) disks; in the end, we can apply a suitable inversion to turn the disks and
halfplanes into actual disks, if so desired.

Finally, we construct three additional disks A1, A2, A3. To construct Ai, we slightly
expand A into a disk A′i of radius 1 + ε1, while keeping the tangency with Di at ξi. We then
roll A′i clockwise along Di, by a tiny angle ε2 � ε1, to obtain Ai.

This gives a set of 13 disks. For sufficiently small ε1 and ε2, we can ensure the following
properties for each Ai: (i) Ai intersects all other 12 disks; (ii) the nine intersection regions
Ai ∩Dj , Ai ∩ T−j , Ai ∩ T+

j , for j = 1, 2, 3, are pairwise disjoint; and (iii) ξi /∈ Ai.

I Theorem 5.1. The construction yields a set of 13 disks that cannot be stabbed by 3 points.

Proof. Consider any set P of three points. Set A∗ = A ∪A1 ∪A2 ∪A3. If P ∩A∗ = ∅, we
have unstabbed disks, so suppose that P ∩ A∗ 6= ∅. For p ∈ P ∩ A∗, property (ii) implies
that p stabs at most one of the nine remaining disks Dj , T+

j and T−j , for j = 1, 2, 3. Thus, if
P ⊂ A∗, we would have unstabbed disks, so we may assume that |P ∩A∗| ∈ {1, 2}.

Suppose first that |P ∩A∗| = 2. As just argued, at most two of the remaining disks are
stabbed by P ∩A∗. The following cases can then arise.
(a) None ofD1, D2, D3 is stabbed by P∩A∗. Since {D1, D2, D3} is non-Helly and a non-Helly

set must be stabbed by at least two points, at least one disk remains unstabbed.
(b) Two disks among D1, D2, D3 are stabbed by P ∩A∗. Then the six unstabbed halfplanes

form many non-Helly triples, e.g., T−1 , T−2 , and T−3 , and again, a disk remains unstabbed.
(c) The set P ∩ A∗ stabs one disk in {D1, D2, D3} and one halfplane. Then, there is (at

least) one disk Di such that Di and its two tangent halfplanes T−i , T+
i are all unstabbed

by P ∩A∗. Then, {Di, T
−
i , T

+
i } is non-Helly, and at least two more points are needed to

stab it.
Suppose now that |P ∩ A∗| = 1, and let P ∩ A∗ = {p}. We may assume that p stabs all
three disks A1, A2, A3, since otherwise a disk would stay unstabbed. At most one of the
nine remaining disks is stabbed by p. Thus, p 6∈ {ξ1, ξ2, ξ3}, so the other disk that it stabs (if
any) must be a halfplane. That is, p does not stab any of D1, D2, D3. Since {D1, D2, D3} is
non-Helly, it requires two stabbing points. Moreover, since |P \{p}| = 2, we may assume that
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one point q of P \A∗ is the point of tangency of two of these disks, say q = D2 ∩D3. Then,
q stabs only two of the six halfplanes, say, T−1 and T+

1 . But then, {D1, T
+
2 , T

−
3 } is non-Helly

and does not contain any point from {p, q}. At least one disk remains unstabbed. J

6 Conclusion

We gave a simple linear-time algorithm to find five stabbing points for a set of pairwise
intersecting disks in the plane. It remains open how to use the proofs of Danzer or Stachó [15,
5] (or any other technique) for an efficient construction of four stabbing points. It is also not
known whether nine disks can be stabbed by three points or not (for eight disks, this is the
case [14]). Furthermore, it would be interesting to find a simpler construction, than the one
by Danzer, of ten pairwise intersecting disks that cannot be stabbed by three points.
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Abstract
We study the point location problem in incremental (possibly disconnected) planar subdivisions,
that is, dynamic subdivisions allowing insertions of edges and vertices only. Specifically, we
present an O(n log n)-space data structure for this problem that supports queries in O(log2 n)
time and updates in O(log n log log n) amortized time. This is the first result that achieves
polylogarithmic query and update times simultaneously in incremental planar subdivisions. Its
update time is significantly faster than the update time of the best known data structure for
fully-dynamic (possibly disconnected) planar subdivisions.
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1 Introduction

Given a planar subdivision, a point location query asks for finding the face of the subdivision
containing a given query point. The planar subdivisions for point location queries are induced
by planar embeddings of graphs. A planar subdivision consists of faces, edges and vertices
whose union coincides with the whole plane. An edge of a subdivision is considered to be
open, that is, it does not include its endpoints (vertices). A face of a subdivision is a maximal
connected subset of the plane that does not contain any point on an edge or a vertex. The
boundary of a face of a subdivision may consist of several connected components. Imagine
that we give a direction to each edge on the boundary of a face F so that F lies to the left of
it. (If an edge is incident to F only, we consider it as two edges with opposite directions.) We
call a boundary component of F the outer boundary of F if it is traversed in counterclockwise
order around F . Every bounded face has exactly one outer boundary. We call a connected
component other than the outer boundary an inner boundary of F .

We say a planar subdivision is dynamic if the subdivision changes dynamically by
insertions and deletions of edges and vertices. A dynamic planar subdivision is connected if
the underlying graph is connected at any time. In other words, the boundary of each face is
connected. We say a dynamic planar subdivision is general if it is not necessarily connected.
There are three versions of dynamic planar subdivisions with respect to the update operations
they support: incremental, decremental and fully-dynamic. An incremental subdivision allows
only insertions of edges and vertices, and a decremental subdivision allows only deletions of
edges and vertices. A fully-dynamic subdivision allows both of them.

The dynamic point location problem is closely related to the dynamic vertical ray shooting
problem in the case of connected subdivisions [6]. In this problem, we are asked to find
the edge of a dynamic planar subdivision that lies immediately above a query point. The
boundary of each face in a dynamic connected subdivision is connected, so one can maintain
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51:2 Point Location in Incremental Planar Subdivisions

the boundary of each face efficiently using a concatenable queue. Then one can answer
a point location query without increasing the space and time complexities using a data
structure for the dynamic vertical ray shooting problem [6].

However, it is not the case in general planar subdivisions. Although the dynamic vertical
ray shooting data structures presented in [1, 2, 4, 6] work for general subdivisions, it is
unclear how one can use them to support point location queries efficiently. As pointed out in
previous works [4, 6], a main issue concerns how to test for any two edges if they belong to
the boundary of the same face in the subdivision. This is because the boundary of a face
may consist of more than one connected component.

Previous work. There are several data structures for the point location problem in fully-
dynamic planar connected subdivisions [1, 2, 4, 6, 7, 8, 10, 14]. The latest result was given
by Chan and Nekrich [4]. The linear-size data structure by Chan and Nekrich [4] supports
O(log n(log log n)2) query time and O(log n log log n) update time in the pointer machine
model, where n is the number of the edges of the current subdivision. Some of them [1, 2, 4, 6]
including the result by Chan and Neckrich can be used for answering vertical ray shooting
queries without increasing the running time.

There are data structures for answering point location queries more efficiently in incre-
mental planar connected subdivisions in the pointer machine model [1, 10, 11]. The best
known data structure supports O(log n log∗ n) query time and O(log n) amortized update
time, and it has size of O(n) [1]. This data structure can be modified to support O(log n)
query time and O(log1+ε n) amortized update time for any ε > 0. In the case that every cell
is monotone at any time, there is a linear-size data structure supporting O(log n log log n)
query time and O(1) amortized update time [10].

On the other hand, little has been known about this problem in fully-dynamic planar
general subdivisions, which was recently mentioned by Snoeyink [15]. Very recently, Oh
and Ahn [13] presented a linear-size data structure for answering point location queries in
O(log n(log log n)2) time with O(

√
n log n(log log n)3/2) amortized update time. In fact, this

is the only data structure known for answering point location queries in general dynamic
planar subdivisions. In the same paper, the authors also considered the point location
problem in decremental general subdivisions. They presented a linear-size data structure
supporting O(log n) query time and O(α(n)) update time, where n is the number of edges in
the current subdivision and α(n) is the inverse Ackermann function.

Our result. In this paper, we present a data structure for answering point location queries
in incremental general planar subdivisions in the pointer machine model. The data structure
supports O(log2 n) query time and O(log n log log n) amortized update time. This is the first
result on the point location problem specialized in incremental general planar subdivisions.
The update time of this data structure is significantly faster than the update time of the
data structure in fully-dynamic general planar subdivisions in [13].

Comparison to the decremental case. In decremental general subdivisions, there is a simple
and efficient data structure for point location queries [13]. This data structure maintains the
decremental subdivision explicitly: for each face F of the subdivision, it maintains a number
of (concatenable) queues each of which stores the edges of each connected component of the
boundary of F . When an edge is removed, two faces might be merged into one face, but
no face is subdivided into two faces. Using this property, they maintain a disjoint-set data
structure for each face such that an element of the disjoint-set data structure is the name of
a queue representing a connected component of the boundary of this face.
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e

F1

F2

q

(a) (b)

q′

Figure 1 (a) The insertion of e makes the face subdivided into two subfaces F1 and F2. (b)
Given a query point q, we shoot the upward vertical ray from q which penetrates inner boundaries
not containing q until it hits the outer boundary of a face at q′.

In contrast to decremental subdivisions, it is unclear how to maintain incremental
subdivisions explicitly. Suppose that a face F is subdivided into F1 and F2 by the insertion
of an edge e. An inner boundary of F becomes an inner boundary of either F1 or F2 after e
is inserted. See Figure 1(a). It is unclear how to update the set of the inner boundaries of
Fi for i = 1, 2 without accessing every queue representing an inner boundary of F . If we
access all such queues, the total insertion time for n insertions is Ω(n2) in the worst case.
Therefore it does not seem that the approach in [13] works for incremental subdivisions.

2 Preliminaries

Consider an incremental planar subdivision Π. We use Π to denote the union of the edges
and vertices of Π. We require that every edge of Π be a straight line segment. For a set A
of elements (points or edges), we use |A| to denote the number of the elements in A. For a
planar subdivision Π′, we use |Π′| to denote the complexity of Π′, i.e., the number of the
edges of Π′. We use n to denote the number of the edges of Π at the moment. Also, for a
connected component γ of Π, we use Πγ to denote the subdivision induced by γ. Notice that
Πγ is connected. Due to lack of space, proofs and details are omitted. Missing proofs and
details can be found in the full version of this paper.

In this problem, we are to process a mixed sequence of n edge insertions and vertex
insertions so that given a query point q the face of the current subdivision containing q
can be computed efficiently. More specifically, each face in the subdivision is assigned a
distinct name, and given a query point the name of the face containing the point is to be
reported. For the insertion of an edge e, we require e to intersect no edge or vertex in the
current subdivision. Also, an endpoint of e is required to lie on a face or a vertex of the
subdivision. We insert the endpoints of e in the subdivision as vertices if they were not
vertices of the subdivision. For the insertion of a vertex v, it lies on an edge or a face of the
current subdivision. If it lies on an edge, the edge is split into two (sub)edges whose common
endpoint is v.

2.1 Tools

In this subsection, we introduce tools we use. A concatenable queue represents a sequence of N
elements, and allows five operations: insert an element, delete an element, search an element,
split a queue into two queues, and concatenate two queues into one. By implementing them
with 2-3 trees, we can support each operation in O(logN) time.
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The vertical decomposition of a (static) planar subdivision Πs is a finer subdivision of Πs

induced by vertical line segments. For each vertex v of Πs, consider two vertical extensions
from v, one going upwards and one going downwards. The extensions stop when they meet
an edge of Πs other than the edges incident to v. The vertical decomposition of Πs is the
subdivision induced by the vertical extensions contained in the bounded faces of Πs together
with the edges of Πs. Note that the unbounded face of Πs remains the same. In this paper, we
do not consider the unbounded face of Πs as a cell of the vertical decomposition. Therefore,
every cell is a trapezoid or a triangle (a degenerate trapezoid). There are O(|Πs|) trapezoids
in the vertical decomposition of Πs. We treat each trapezoid as a closed set. We can compute
the vertical decomposition in O(|Πs|) time [5] since we do not decompose the unbounded
face of Πs.

We use segment trees, interval trees and priority search trees as basic building blocks. In
the following, we briefly review those trees. But we use priority search trees and interval trees
of larger fan-out only in the part omitted in the main text, so we also omit their description.
Their description can be found in the full version of this paper. For more information, refer
to [9, Section 10].

We first introduce the segment tree and the interval tree on a set I of n intervals on the
x-axis. Let Ip be the set of the endpoints of the intervals of I. The base tree is a binary
search tree on Ip of height O(log n) such that each leaf node corresponds to exactly one point
of Ip. Each internal node v corresponds to a point `(v) on the x-axis and an interval region(v)
on the x-axis such that `(v) is the midpoint of Ip ∩ region(v). For the root v, region(v) is
defined as the x-axis. Suppose that `(v) and region(v) are defined for a node v. For its
two children v` and vr, region(v`) and region(vr) are the left and right regions of region(v),
respectively, in the subdivision of region(v) induced by `(v).

For the interval tree, each interval I ∈ I is stored in exactly one node: the node v of
maximum depth with region(v) ⊆ I, that is, the lowest common ancestor of two leaf nodes
corresponding to the endpoints of I. For the segment tree, each interval I is stored in O(log n)
nodes: the nodes v with region(v) ⊆ I, but region(u) 6⊆ I for the parent u of v. For any point
p ∈ R, let π(p) be the search path of p. The intervals of I containing p are stored in some
nodes of π(p) in both trees. However, not every interval stored in such nodes contains p in
the interval tree while every interval stored in such nodes contains p in the segment tree.

Similarly, the segment tree and the interval tree on a set S of n line segments in the plane
are defined as follows. Let Sx be the set of the projections of the line segments of S onto the
x-axis. The segment and interval trees of S are basically the segment and interval trees on
Sx, respectively. The only difference is that instead of storing the projections, we store a
line segment of S in the nodes where its projection is stored in the case of Sx. As a result,
`x(v) and regionx(v) for the trees of S are naturally defined as the vertical line containing
`(v) and the smallest vertical slab containing region(v) for the trees of Sx, respectively. If it
is clear in context, we use `(v) and region(v) to denote `x(v) and regionx(v), respectively.

2.2 Subproblem: Stabbing-Lowest Query Problem for Trapezoids
The trapezoids we consider have two sides parallel to the y-axis. We consider the stabbing-
lowest query problem for trapezoids as a subproblem. In this problem, we are given a set T
of trapezoids which is initially empty and changes dynamically by insertions of trapezoids.
Here, the trapezoids we are given satisfy that no two upper or lower sides of the trapezoids
cross each other. But it is possible that the upper (or lower) side of one trapezoid crosses a
vertical side of some other trapezoid. We process a sequence of updates so that given a query
point q, the trapezoid with lowest upper side can be found efficiently among all trapezoids
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of T containing q. Here, we say a trapezoid has the lowest upper side if its upper side is
intersected first by the vertical upward ray from q among all upper sides of the trapezoids of
T containing q. We call such a trapezoid the lowest trapezoid stabbed by q.

In Section 4, we present a data structure for this problem . The worst case query time is
O(log2 n), the amortized update time is O(log n log log n), and the size of the data structures
is O(n log n). We will use this data structure as a black box in Section 3.

3 Point Location in Incremental General Planar Subdivisions

Compared to connected subdivisions, a main difficulty for handling dynamic general planar
subdivisions lies in finding the faces incident to the edge e lying immediately above a query
point [6]. If e is contained in the outer boundary of a face, we can find such a face as the
algorithm in [6] for connected planar subdivisions does. However, this approach does not
work if e lies on an inner boundary of a face. To overcome this difficulty, instead of finding
the edge in Π lying immediately above a query point q, we find an outer boundary edge of
the face F of Π containing q. See Figure 1(b). To do this, we answer a point location query
in two steps.

First, we find the (maximal) connected component γ of Π containing the outer boundary
of the face F containing the query point q. We use FindCC(Π) to denote this data structure.
Observe that the boundary of the face of Πγ containing q coincides with the outer boundary
of F . We maintain the boundary of each face of Πγ using a concatenable queue. Thus given
an outer boundary edge of F , we can return the name of F by defining the name of each
face of Π as the name of the concatenable queue representing its outer boundary.

Second, we apply a point location query on Πγ . More specifically, we find the face Fγ in
Πγ containing q, find the concatenable queue representing the boundary of Fγ , and return its
name. Since Πγ is connected, we can maintain an efficient data structure for point location
queries on Πγ . We use LocateCC(γ) to denote this data structure. Each of Sections 3.1
and 3.2 describes each of the two data structures together with query and update algorithms.

In addition to them, we maintain the following data structures: one for checking if a
new edge is incident to Π, one for maintaining the connected components of Π, and one for
maintaining the concatenable queue for the outer boundary of each face of Π. Details can be
found in the full version.

3.1 FindCC(Π): Finding One Connected Component for a Query Point
We construct a data structure for finding the (maximal) connected component γq of Π
containing the outer boundary of the face of Π containing a query point q. To do this, we
compute a set T of O(n) trapezoids each of which belongs to exactly one edge of Π such that
the edge to which the lowest trapezoid stabbed by q belongs is contained in γq. Then we
construct the stabbing-lowest data structure on T described in Section 4.

Data structure and query algorithm. For each connected component γ of Π, consider the
subdivision Πγ induced by γ. Notice that Πγ is connected. Let U(γ) be the union of the
closures of all bounded faces of Πγ . Note that it might be disconnected. Imagine that we
have the cells (trapezoids) of the vertical decomposition of U(γ). Note that an edge of γ
might intersect a cell. We say that a cell of the decomposition belongs to the edge of γ
containing the upper side of the cell. Let Tγ be the set of such cells (trapezoids) for γ, and T
be the union of Tγ for every connected component γ of Π. See Figure 2. In the full version,
we show that the lowest trapezoid in T stabbed by a query point q belongs to an edge in γq.
If no trapezoid in T contains q, we conclude that q is contained in the unbounded face of Π.
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(a) (b)

q

γ

q

Figure 2 (a) The component γ contains the outer boundary of the face containing q. (b) Using
the vertical decomposition, we obtain O(n) (possibly intersecting) trapezoids. Their corners are
marked with disks. The lowest trapezoid stabbed by q is the dashed one, which comes from γ.

However, each edge insertion may induce Ω(n) changes on T in the worst case. For an
efficient update procedure, we define and construct the trapezoid set Tγ in a slightly different
way by allowing some edges lying inside U(γ) to define trapezoids in Tγ . For a connected
component γ of Π, we say a set of connected subdivisions induced by edges of γ covers γ if
an edge of γ is contained in at most two subdivisions, and one of the subdivisions contains
all edges of the boundary of U(γ). Let Fγ be a set of connected subdivisions covering γ. See
Figure 3. Notice that Fγ is not necessarily unique. For a technical reason, if the union of
some edges (including their endpoints) in a subdivision of Fγ forms a line segment, we treat
them as one edge. Then we let Tγ be the set of the cells of the vertical decompositions of the
subdivisions in Fγ . Note that a cell of Tγ might intersect another cell of Tγ . See Figure 3(b).
We say that a cell (trapezoid) of Tγ belongs to the edge of γ containing the upper side of the
cell. Let T be the union of all such sets Tγ .

Due to the following lemma, we can maintain T efficiently. In the update algorithm, we
insert trapezoids to T only.

I Lemma 1. The size of T is O(n), where n is the complexity of the current subdivision.

The following lemma shows that the lowest trapezoid in T stabbed by q belongs to an
edge of γq. Thus by constructing a stabbing-lowest data structure on T , we can find γq in
O(Q(n)) time, where Q(n) is the query time for answering a stabbing-lowest query. The
query time of the structure on n trapezoids described in Section 4 is O(log2 n).

I Lemma 2. The lowest trapezoid in T stabbed by a query point q belongs to an edge of the
connected component of Π containing the outer boundary of the face of Π containing q. If
the face of Π containing q is unbounded, no trapezoid in T contains q.

I Lemma 3. Given FindCC(Π) of size O(n), we can find the connected component of Π
containing the outer boundary of the face of Π containing a query point in O(log2 n) time.

Update algorithm. We maintain a stabbing-lowest data structure on T . Let Tγ be the set
of the trapezoids of T which belong to edges of γ. Notice that we do not maintain the sets Fγ
and Tγ for a connected component γ of Π. We use them only for description purpose. Here,
we describe the update algorithm for the insertion of an edge only. The update algorithm for
the insertion of a vertex can be found in the full version.

We process the insertion of an edge e by inserting a number of trapezoids to T . Here, we
use Π to denote the subdivision of complexity n before e is inserted. There are four cases: e is
not incident to Π, only one endpoint of e is contained in Π, the endpoints of e are contained
in distinct connected components of Π, and the endpoints of e are contained in the same
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(a) (b)

Π1

Π2

Figure 3 (a) A connected component γ. (b) A set of two subdivisions covering γ. The union
of the edge sets of the two subdivisions is γ. The set Tγ consists of the trapezoids in the vertical
decompositions of Π1 and Π2.

connected component of Π. We can check if e belongs to each case in O(log n) time using
the data structure described at the beginning of Section 3 in the full version. For the first
three cases, we do not need to update T . This is because no new face appears in the current
subdivision. Thus the conditions on the definition of Fγ are not violated in these cases. (We
will see this in more detail in the proof of Lemma 4.)

Now consider the remaining case: the endpoints of e are contained in the same connected
component, say γ, of Π. Recall that U(γ) is closed. If e is contained in the interior of U(γ),
we do nothing since Fγ covers γ ∪ e. We can check this in constant time. Details can be
found in the full version. If e is not contained in the interior of U(γ), we trace the edges
of the new face in time linear in the complexity of the new face using the data structures
presented at the beginning of Section 3 in the full version. Then we compute the vertical
decomposition of the face in the same time [5], and insert them to T . This takes time linear
in the number of the new trapezoids inserted to T , which is O(n) in total over all updates
by Lemmas 1 and 4, and the fact that no trapezoid is removed from T . As new trapezoids
are inserted to T , we update the stabbing-lowest data structure on T .

For the correctness, we have the following lemma. A proof can be found in the full
version.

I Lemma 4. For each connected component γ of Π, there is a set Fγ of connected subdivisions
covering γ such that Tγ consists of the cells of the vertical decompositions of the subdivisions
of Fγ at any moment.

Let S(n), Q(n) and U(n) be the size, the query time and the update time of an insertion-
only stabbing-lowest data structure for n trapezoids, respectively. In the case of the data
structure described in Section 4, we have S(n) = O(n log n), Q(n) = O(log2 n) and U(n) =
O(log n log log n). Recall that the total number of trapezoids inserted to T is O(n). We have
the following lemma.

I Lemma 5. We can construct a data structure of size O(S(n)) so that the connected
component of Π containing the outer boundary of the face containing q can be found in
O(Q(n)) worst case time for any point q in the plane, where n is the number of edges at the
moment. Each update takes O(U(n)) amortized time.

3.2 LocateCC(γ): Find the Face Containing a Query Point in Πγ

For each connected component γ of Π, we maintain a data structure, which is denoted by
LocateCC(γ), for finding the face of Πγ containing a query point. Here, we need two
update operations for LocateCC(·): inserting a new edge to LocateCC(·) and merging
two data structures LocateCC(γ1) and LocateCC(γ2) for two connected components γ1
and γ2 of Π. Notice that we do not need to support edge deletion since Π is incremental.
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No known point location data structure supports the merging operation explicitly. Instead,
one simple way is to make use of the edge insertion operation which is supported by most of
the known point location data structures. For merging two data structures, we simply insert
every edge in the connected component of smaller size to the data structure for the other
connected component. By using a simple charging argument, we can show that the amortized
update time (insertion and merging) is O(U ′(n) log n), where U ′(n) is the insertion time of
the dynamic point location data structure we use. If we use the data structure by Arge et
al. [1], the query time is O(log n log∗ n) and the amortized update time is O(log2 n).

In this section, we improve the update time at the expense of increasing the query time.
Because FindCC(Π) requires O(log2 n) query time, we are allowed to spend more time on a
point location query on γ. The data structure proposed in this section supports O(log2 n)
query time. The amortized update time is O(log n log log n).

Data structure and query algorithm. LocateCC(γ) allows us to find the face of Πγ

containing a query point. Since γ is connected and we maintain the outer boundary of each
face of Π, it suffices to construct a vertical ray shooting structure for the edges of γ. Recall
that the boundary of a face of Πγ coincides with the outer boundary of a face of Π. The
vertical ray shooting problem is decomposable in the sense that we can answer a query on
S1∪S2 in constant time once we have the answers to queries on S1 and S2 for any two sets S1
and S2 of line segments in the plane. Thus we can use an approach by Bentley and Saxe [3].

We decompose the edge set of γ into subsets of distinct sizes such that each subset consists
of exactly 2i edges for some index i ≤ dlog ne. Note that there are O(log n) subsets in the
decomposition. We use B(γ) to denote the set of such subsets, and B to denote the union of
B(γ) for all connected components γ of Π. LocateCC(γ) consists of O(log n) static vertical
ray shooting data structures, one for each subset in B(γ). To answer a query on γ, we apply
a vertical ray shooting query on each subset of B(γ), and choose the one lying immediately
above the query point. This takes O(Qs(n) log n) time, where Qs(n) denotes the query time
of the static vertical ray shooting data structure we use.

For a static vertical ray shooting data structure Ds(β) for β ∈ B, we present a variant of
the (dynamic) vertical ray shooting data structure of Arge et al. [1]. It supports O(log n)
query time, and an efficient merging operation. In the update procedure, we merge two
subsets β1 and β2 in B into one, and merge their static vertical ray shooting data structures.
If we construct Ds(β1 ∪ β2) from scratch, the total update time is Ω(n log2 n) because the
construction of a vertical ray shooting data structure on N segments takes Ω(N logN) time
for any data structure. To improve this update time, we maintain a set of sorted lists of
edges, which we call the backbone tree, so that we can merge two static ray shooting data
structures more efficiently. Notice that the edges of Π cannot be consistently sorted with
respect to the y-axis in advance. This happens if no vertical line crosses two edges of Π.
The y-order of the two edges depends on the edges to be inserted. In our case, we maintain
sets of edges which can be consistently sorted (i.e., edges intersecting a common vertical
line), and maintain their sorted lists. Details can be found in the full version. Proofs of the
following lemmas can also be found in the full version.

I Lemma 6. Given Ds(β) for every subset β ∈ B, we can find the edge lying immediately
above a query point among the edges of a connected component γ of Π in O(log2 n) time.

I Lemma 7. Given Ds(β1) and Ds(β2) for two subsets β1 and β2 of B, we can construct
Ds(β) in O(|β| log log n) time, where β = β1 ∪ β2.
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Update algorithm. We have two update operations, the insertion of edges and vertices. We
do not need to update LocateCC(·) in the case of a vertex insertion. Details can be found
in the full version. We use Π to denote the subdivision of complexity n before e is inserted.

Suppose that we are given an edge e and we are to update LocateCC(·). Specifically,
we update the static vertical ray shooting data structures for some subsets of B and the
backbone tree. We find the connected components of Π incident to e in O(log n) time. There
are three cases: there is no such connected component, there is only one such connected
component, or there are two such connected components. We show how to update the data
structure only for the last case. Details for the other cases can be found in the full version.

For the last case, let γ1 and γ2 be two connected components incident to e. They are
merged into one connected component together with e. If every subset in B(γ1) and B(γ2)
has distinct size, we just collect every static vertical ray shooting data structure constructed
on a subset in B(γ1) ∪ B(γ2), and insert e to the data structure. Then we are done. If not,
we first choose the largest subsets, one from B(γ1) and one from B(γ2), of the same size,
say 2i. Then we construct a new vertical ray shooting data structure on the union β′ of the
two subsets in O(2i+1 log log n) time. If there is a subset in B(γ1) or B(γ2) of size 2i+1 other
than β′, we again merge them together to form a subset of size 2i+2. We repeat this until
every subset in B(γ1) and B(γ2) of size at least 2i has distinct size. Then we consider the
largest subsets, one from B(γ1) and one from B(γ2), of the same size again. Note that the
size of the two subsets is less than 2i. We merge them, and repeat the merge procedure. We
do this for every pair of subsets in B(γ1) and B(γ2) of the same size. Finally, we have the
set B(γ1 ∪ γ2) of subsets of the edges of γ1 ∪ γ2 of distinct sizes, and the static vertical ray
shooting data structure for each subset in B(γ1 ∪ γ2). Then we insert e to the data structure.
Details can be found in the full version.

I Lemma 8. The total time for updating every vertical ray shooting data structure in the
course of n edge insertions is O(n log n log log n).

I Lemma 9. We can maintain a data structure of size O(n log log n) in an incremental
planar subdivision Π so that the edge of γ lying immediately above q can be found in O(log2 n)
time for any edge e and any connected component γ of Π. The amortized update time of this
data structure is O(log n log log n).

4 Incremental Stabbing-Lowest Data Structure for Trapezoids

In this section, we are given a set T of trapezoids which is initially empty. Then we are to
process the insertions of trapezoids to T so that the lowest trapezoid in T stabbed by a
query point can be found efficiently. Recall that the upper and lower sides of the trapezoids
we consider in this paper do not cross each other. To make the description easier, we
present a simplified version of our data structure supporting O(log2 n log log n) query time
and O(log n log log n) insertion time in the main text. By using an interval tree of fan-out
logε n, we can improve the query time by a factor of log log n. Details can be found in the
full version.

Data structure. The base tree is an interval tree of the upper and lower sides of the
trapezoids of T . Since the left and right sides of the trapezoids are parallel to the y-axis, a
node of the interval tree stores the upper side of a trapezoid of T if and only if it stores the
lower side of the trapezoid. Here, instead of storing the upper and lower sides of a trapezoid,
we store the trapezoid itself in such a node. In this way, a trapezoid � of T is stored in at
most one node of the interval tree. For details, refer to Section 2.
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q′

`(v)
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Figure 4 The segment tree constructed on the intersections of the trapezoids of S(v) with `(v).

We construct a secondary structure associated with a node v of the base tree as follows.
Let S(v) be the set of the trapezoids stored in v. Every trapezoid of S(v) intersects a common
vertical line `(v). Thus, their upper and lower sides can be sorted in their y-order. See
Figure 4. Let I(v) be the set of the intersections of the trapezoids of S(v) with `(v). Note
that it is a set of intervals of `(v). We construct a segment tree T (v) of I(v). A node u of
T (v) corresponds to an interval region(u) contained in `(v). Every interval of I(v) stored in
u contains region(u). An interval I ∈ I(v) has its corresponding trapezoid � in S(v) such
that � ∩ `(v) = I. We let I have the key which is the x-coordinate of the left side of �.

For each node u of T (v), we construct a tertiary data structure so that given a query
value x the interval with lowest upper endpoint can be found efficiently among the intervals
stored in u and having their keys less than x. Imagine that we sort the intervals of I(v)
stored in u with respect to their keys, and denote them by 〈I1, . . . , Ik〉. And we use �i ∈ T
to denote the trapezoid corresponding to the interval Ii (i.e., `(v) ∩�i = Ii) for i = 1, . . . , k.
The tertiary data structure is just a sublist of 〈I1, . . . , Ik〉. Specifically, suppose x is at least
the key of Ii and at most the key of Ii+1 for some i. Then every interval in 〈I1, I2, . . . , Ii〉
has its key at most x. Thus the answer to the query is the one with lowest upper endpoint
among 〈I1, I2, . . . , Ii〉. Using this observation, we construct a sublist of 〈I1, . . . , Ik〉 as follows.
We choose the interval, say Ii, if its upper endpoint is the lowest among the upper endpoints
of the intervals in 〈I1, . . . Ii〉. We maintain the sublist consisting of the chosen intervals.
Notice that the sublist has monotonicity with respect to their upper endpoints. That is, the
upper endpoint of Ii lies lower than the upper endpoint of Ii′ if Ii comes before Ii′ in the
sublist. This property makes the update procedure efficient.

By applying binary search on the sublist with respect to the keys, we can find the interval
with lowest endpoint among the intervals stored in u and having the keys less than x. For
each node of the base tree, we maintain a structure for dynamic fractional cascading [12] on
the segment tree so that the binary search on the sublist associated with each node of the
segment tree can be done in O(log n log log n) time in total. Then we also do this for the
right sides of the trapezoids of S(v).

A tricky problem here is that a query point q and the upper or lower side of a trapezoid
in S(v) cannot be ordered with respect to the y-axis in general. This happens if the left
side of the trapezoid lies to the right of q. See Figure 4. This makes it difficult to follow a
search path in the segment tree associated with v. To resolve this, we find the side e lying
immediately above q among the upper and lower sides of the trapezoids in S(v), and then
follow the search path of q′ = e ∩ `(v). To do this, we construct a vertical ray shooting data
structure on the upper and lower sides of the trapezoids in S(v). Details can be found in the
full version.
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Query algorithm. Using this data structure, we can find the lowest trapezoid in T stabbed
by a query point q as follows. We follow the base tree (interval tree) along the search
path π of q of length O(log n). For each node of π, we consider its associated secondary
structures, and we find the lowest trapezoid stabbed by q among the trapezoids stored in the
node. And we return the lowest one among all trapezoids we obtained from the nodes of π.
We spend O(log n log log n) time on each node in π, which leads to the total query time of
O(log2 n log log n).

We have a segment tree on the intersections of the trapezoids of S(v) with `(v) for a
node v in π. We first find the upper or lower side e of a trapezoid of S(v) immediately
lying above q among them in O(log n) time using the vertical ray shooting data structure
associated with v, and let q′ be the intersection point between e and `(v). See Figure 4. We
show that the lowest trapezoid stabbed by q is stored in a node in the search path of q′. A
proof can be found in the full version. Thus, it suffices to consider O(log n) nodes w in the
segment tree with q′ ∈ region(w). Then we find the successor of the x-coordinate of q on
the sublist associated with each such node. By construction, the trapezoid corresponding to
the successor is the lowest trapezoid stabbed by q among all trapezoids stored in w. Using
dynamic fractional cascading, we can find it in O(log log n) time for each node after spending
O(log n) time for the initial binary search of only one node in the segment tree. Thus we
can find all successors in O(log n log log n) time.

I Lemma 10. Using the data structure described in this section, we can find the lowest
trapezoid stabbed by a query point in O(log2 n log log n) time.

Update algorithm. We assume that the trapezoids to be inserted are known in advance
so that we can keep the base tree and all segment trees balanced. We can get rid of this
assumption with standard technique using weight-balanced B-trees. We show how to do this
in the full version. Let � be a trapezoid to be inserted to the data structure. We find the
node v of maximum depth in the base tree such that region(v) contains � in O(log n) time.
The trapezoid � is to be stored only in this node.

We update the secondary structure (segment tree) for S(v) by inserting �. We find the
set W of O(log n) nodes in the segment tree where � is to be inserted. Each node w ∈W is
associated with a sorted list L(w) of intervals stored in w. We decide if we store � ∩ `(v) in
L(w). To do this, we find the position for � in L(w) by applying binary search on L(w) with
respect to the key. Here we do this for every node in W , and thus we can apply fractional
cascading. The key of each interval in the sorted lists is in R. Thus we can apply (dynamic)
fractional cascading so that each binary search takes O(log log n) time after spending O(log n)
time on the initial binary search on a node of W [12].

Let 〈I1, . . . , Ik〉 be the sorted list of the intervals stored in w. The list L(w) is a sublist
of this list, say 〈Ii1 , . . . , Iit〉. Let Iij be the predecessor of � ∩ `(v). We determine if � is
inserted to the list in constant time: if the upper side of � lies below the upper side of the
trapezoid �ij+1 with �ij+1 = Iij+1 ∩ `(v), we insert � ∩ `(v) to the list. Otherwise, the list
stored in w remains the same. If we insert � ∩ `(v) to the list, we check if it violates the
monotonicity of L(w). To do this, we consider the trapezoid �′ whose corresponding interval
lies before � one by one from �ij . If the upper side of �′ lies above �, we remove �′ from
the list. Each insertion into and deletion from L(w) takes O(log log n) time [12]. We do this
until the upper side of �′ lies below the upper side of �. The total update time for the
insertion of � is O(log n+N log log n), where N is the number of the trapezoids deleted due
to �. We show that the sum of N over all n insertions is O(n log n) in the full version. Thus
the amortized update time is O(log n log log n) time.
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In the full version, we show how to improve the query time by a factor of O(log log n).
Therefore, we have the following lemma.

I Lemma 11. We can maintain an O(n log n)-size data structure on an incremental set of
n trapezoids supporting O(log n log log n) amortized update time so that given a query point
q, the lowest trapezoid stabbed by q can be computed in O(log2 n) time.
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(a) (b) (c)

Figure 1 (a) A set of 12 regions. (b, c) A convex partial transversal of size 10.
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1 Introduction

A set of points Q in the plane is said to be in convex position if for every point q ∈ Q there is
a halfplane containing Q that has q on its boundary. Now, let R be a set of n regions in the
plane. We say that Q is a partial transversal of R if there exists an injective map f : Q→ R
such that q ∈ f(q) for all q ∈ Q; if f is a bijection we call Q a full transversal. In this paper,
we are concerned with the question whether a given set of regions R admits a convex partial
transversal Q of a given cardinality |Q| = k. Figure 1 shows an example.

The study of convex transversals was initiated by Arik Tamir at the Fourth NYU
Computational Geometry Day in 1987, who asked “Given a collection of compact sets, can
one decide in polynomial time whether there exists a convex body whose boundary intersects
every set in the collection?” Note that this is equivalent to the question of whether a convex
full transversal of the sets exists: given the convex body, we can place a point of its boundary
in every intersected region; conversely, the convex hull of a convex transversal forms a convex
body whose boundary intersects every set. In 2010, Arkin et al. [2] answered Tamir’s original
question in the negative (assuming P 6= NP): they prove that the problem is NP-hard, even
when the regions are (potentially intersecting) line segments in the plane, regular polygons
in the plane, or balls in R3. On the other hand, they show that Tamir’s problem can be
solved in polynomial time when the regions are disjoint segments in the plane and the convex
body is restricted to be a polygon whose vertices are chosen from a given discrete set of
(polynomially many) candidate locations. Goodrich and Snoeyink [6] show that for a set of
parallel line segments, the existence of a convex transversal can be tested in O(n log n) time.
Schlipf [13] further proves that the problem of finding a convex stabber for a set of disjoint
bends (that is, shapes consisting of two segments joined at one endpoint) is also NP-hard.
She also studies the optimisation version of maximising the number of regions stabbed by a
convex shape; we may re-interpret this question as finding the largest k such that a convex
partial transversal of cardinality k exists. She shows that this problem is also NP-hard for a
set of (potentially intersecting) line segments in the plane.

Related work. Computing a partial transversal of maximum size arises in wire layout
applications [14]. When each region in R is a single point, our problem reduces to determining
whether a point set P has a subset of cardinality k in convex position. Eppstein et al. [4]
solve this in O(kn3) time and O(kn2) space using dynamic programming; the total number
of convex k-gons can also be tabulated in O(kn3) time [12, 10].

https://doi.org/10.4230/LIPIcs.ISAAC.2018.52
https://arxiv.org/abs/1809.10078
https://arxiv.org/abs/1809.10078
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Table 1 New and known results. The arrows indicate that one result is implied by another.

disjoint intersecting
line segments: parallel O(n6) (upper hull only: O(n2)) N/A

2-oriented ↓ open
3-oriented ↓ NP-hard
ρ-oriented polynomial ↑
arbitrary open NP-hard [2]

rectangles: squares ↓ open
rectangles polynomial NP-hard

other: bends NP-hard [13] ←

If we allow reusing elements, our problem becomes equivalent to so-called covering color
classes introduced by Arkin et al. [1]. Arkin et al. show that for a set of regions R where
each region is a set of two or three points, computing a convex partial transversal of R of
maximum cardinality is NP-hard. Conflict-free coloring has been studied extensively, and
has applications in, for instance, cellular networks [5, 7, 8].

Results. Despite the large body of work on convex transversals and natural extensions
of partial transversals that are often mentioned in the literature, surprisingly, no positive
results were known. We present the first positive results: in Section 2 we show how to test
whether a set of parallel line segments admits a convex transversal of size k in polynomial
time; we extend this result to disjoint segments of a fixed number of orientations and to
disjoint axis-aligned rectangles in Section 3. Although the hardness proofs of Arkin et al.
and Schlipf do extend to partial convex transversals, we strengthen these results by showing
that the problem is already hard when the regions are 3-oriented segments or axis-aligned
rectangles (Section 4). Our results are summarized in Table 1.

For ease of terminology, in the remainder of this paper, we will drop the qualifier “partial”
and simply use “convex transversal” to mean “partial convex transversal”. Also, for ease
of argument, in all our results we test for weakly convex transversals. This means that the
transversal may contain three or more colinear points. Missing proofs can be found in the
full version of this paper [9].

2 Parallel disjoint line segments

Let R be a set of n vertical line segments in R2. We assume that no three endpoints are
aligned. Let ⇑R and ⇓R denote the sets of upper and lower endpoints of the regions in R,
respectively, and let mR = ⇑R ∪ ⇓R. In Section 2.1 we focus on computing an upper convex
transversal –a convex transversal Q in which all points appear on the upper hull of Q– that
maximizes the number of regions visited. We show that there is an optimal transversal whose
strictly convex vertices lie only on bottom endpoints in ⇓R. This allows us to develop a
dynamic programming algorithm that computes such an optimal upper convex transversal in
O(n2) time. In Section 2.2 we prove that there exists an optimal convex transversal whose
strictly convex vertices are taken from the set of all endpoints mR, and whose leftmost and
rightmost vertices are taken from a discrete set of points. This leads to an O(n6) time
dynamic programming algorithm to compute such a transversal.

ISAAC 2018
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Λ(v, w)

Figure 2 (a) The definition of K[v, w]. The region Λ(v, w) is indicated in purple. The segments
counted in I[u, v] are shown in red. (b) The case that K[v, w] = K[v, u], where u corresponds to the
predecessor slope of slope(vw). (c) The case that K[v, w] = K[w, v] + I[w, v].

2.1 Computing an upper convex transversal
Let k∗ be the maximum number of regions visitable by an upper convex transversal of R.

I Lemma 1. Let U be an upper convex transversal of R that visits k regions. There exists
an upper convex transversal U ′ of R, that visits the same k regions as U , and such that the
leftmost vertex, the rightmost vertex, and all strictly convex vertices of U ′ lie on the bottom
endpoints of the regions in R.

Proof. Let U be the set of all upper convex transversals with k vertices. Let U ′ ∈ U be an
upper convex transversal such that the sum of the y-coordinates of its vertices is minimal.
Assume, by contradiction, that U ′ has a vertex v that is neither on the lower endpoint of its
respective segment nor aligned with its adjacent vertices. Then we can move v down without
making the upper hull non-convex. This is a contradiction. Therefore, all vertices in U ′ are
either aligned with their neighbors (and thus not strictly convex), or at the bottom endpoint
of a region. J

Let Λ(v, w) denote the set of bottom endpoints of regions in R that lie left of v and below
the line through v and w. See Fig. 2(a). Let slope(uv) denote the slope of the supporting
line of uv, and observe that slope(uv) = slope(vu).

By Lemma 1 there is an optimal upper convex transversal of R in which all strictly convex
vertices lie on bottom endpoints of the segments. Let K[v, w] be the maximum number of
regions visitable by an upper convex transversal that ends at a bottom endpoint v, and has
an incoming slope at v of at least slope(vw). Note that the second argument w is used only
to specify the slope, and w may be left or right of v. We have that

K[v, w] = max
u∈Λ(v,w)

max
s∈Λ(u,v)

K[u, s] + I[u, v],

where I[u, v] denotes the number of regions in R intersected by the segment uv (in which we
treat the endpoint at u as open, and the endpoint at v as closed). See Fig. 2(a).

I Observation 2. Let v, s, and t be bottom endpoints of segments in R with slope(sv) >
slope(tv). We have that K[v, t] ≥ K[v, s].

Fix a bottom endpoint v, and order the other bottom endpoints w ∈ ⇓R in decreasing
order of slope slope(wv). Let Sv denote the resulting order.
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slope(u∗) < slope(R∗) < slope(v∗)

R∗

v∗

u∗`∗uv

Figure 3 The strip R∗ with a slope in the range [ux, vx] containing `∗
uv contributes one to Tu∗(`∗

uv)
and zero to Tv∗(`∗

uv).

I Lemma 3. Let v and w be bottom endpoints of regions in R, and let u be the predecessor
of w in Sv, if it exists (otherwise let K[v, u] = −∞). We have that

K[v, w] =
{

max{1,K[v, u],K[w, v] + I[w, v]} if wx < vx ,

max{1,K[v, u]} otherwise.

Where vx denotes the x-coordinate of a point v. Lemma 3 now suggests a dynamic
programming approach to compute the K[v, w] values for all pairs of bottom endpoints v, w:
we process the endpoints v on increasing x-coordinate, and for each v, we compute all K[v, w]
values in the order of Sv. To this end, we need to compute (i) the (radial) orders Sv, for all
bottom endpoints v, and (ii) the number of regions intersected by a line segment uv, for all
pairs of bottom endpoints u, v. We show that we can solve both these problems in O(n2)
time. We then also obtain an O(n2) time algorithm to compute k∗ = maxv,wK[v, w].

Computing predecessor slopes. For each bottom endpoint v, we simply sort the other
bottom endpoints around v. This can be done in O(n2) time in total [11]8. We can obtain
Sv by splitting the resulting list into two lists, one with all endpoints left of v and one with
the endpoints right of v, and merging these lists appropriately. This takes O(n2) time.

Computing the number of intersections. We use the standard duality transform [3] to map
every point p = (px, py) to a line p∗ : y = pxx− py, and every non-vertical line ` : y = ax+ b

to a point `∗ = (a,−b). Consider the arrangement A formed by the lines p∗ dual to all
endpoints p (both top and bottom) of all regions in R. Observe that all our query segments
uv with ux < vx are defined by two bottom endpoints u and v, so the supporting line `uv of
such a segment corresponds to a vertex `∗uv of the arrangement A.

In the dual space, a vertical line segment R = pq ∈ R corresponds to a strip R∗ bounded
by two parallel lines p∗ and q∗. Let R∗ denote this set of strips corresponding to R. It
follows that if we want to count the number of regions of R intersected by a query segment
uv on line ` we have to count the number of strips in R∗ containing the point `∗ and whose
slope slope(R) lies in the range [ux, vx]. See Fig. 3 for an illustration.

I Observation 4. Let p∗ be a line, oriented from left to right, and let R∗ be a strip. The
line p∗ intersects the bottom boundary of R∗ before the top boundary of R∗ if and only if
slope(p∗) > slope(R∗).

8 Alternatively, we can dualize the points into lines and use the dual arrangement to obtain all radial
orders in O(n2) time.
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Consider traversing a line p∗ of A (from left to right), and let Tp∗(`∗) be the number of
strips that contain the point `∗ and that we enter through the top boundary of the strip.

I Lemma 5. Let `∗uv, with ux < vx, be a vertex of A. The number of strips from R∗
containing `∗uv with a slope in [ux, vx] is Tu∗(`∗uv)− Tv∗(`∗uv).

I Corollary 6. Let u, v ∈ ⇓R be bottom endpoints. The number of regions of R intersected
by uv is Tu∗(`∗uv)− Tv∗(`∗uv).

We can easily compute the counts Tu∗(`∗uv) for every vertex `∗uv on u∗ by traversing the
line u∗. Thus, we can compute the number of regions in R intersected by uv, for all bottom
endpoints u and v in a total of O(n2) time.

Together with our dynamic programming approach for computing k∗ we then get:

I Theorem 7. Given a set of n vertical line segments R, we can compute the maximum
number of regions k∗ visitable by an upper convex transversal Q in O(n2) time.

2.2 Computing a convex transversal
We now consider computing a convex transversal that maximizes the number of regions
visited. We first prove some properties of an optimal convex transversal. We then use these
properties to compute the maximum number of regions visitable by such a transversal using
dynamic programming.

Canonical Transversals. Like in the case of the upper hull, we first argue that we can
discretize the problem. Similar to Lemma 1 we can argue that the strictly convex vertices in
the upper and lower hulls must lie on endpoints of the segments in R. We can then show
that the leftmost and rightmost vertex must lie on the intersection point of a segment with a
line that goes through at least two endpoints. Next, we give a more precise characterization
of the type of transversals we have to consider.

A convex transversal Q′ of R is a lower canonical transversal if and only if

the strictly convex vertices on the upper hull of Q′ lie on bottom endpoints in R,
the strictly convex vertices on the lower hull of Q′ lie on bottom or top endpoints of
regions in R,
the leftmost vertex ` of Q′ lies on a line through w, where w is the leftmost strictly convex
vertex of the lower hull of Q′, and another endpoint.
the rightmost vertex r of Q′ lies on a line through z, where z is the rightmost strictly
convex vertex of the lower hull of Q′, and another endpoint.

Let Q = `urv be a quadrilateral whose leftmost vertex is `, whose top vertex is u, whose
rightmost vertex is r, and whose bottom vertex is v. A quadrilateral Q is a lower canonical
quadrilateral if and only if

u and v lie on endpoints in mR,
` lies on a line through v and another endpoint, and
r lies on a line through v and another endpoint.

We define an upper canonical transversal, and an upper canonical quadrilateral analogously.
In this case the points ` and r are defined by points on the upper hull.

Let ku2 be the maximal number of regions of R visitable by an upper convex transversal, let
ku4 be the maximal number of regions of R visitable by a canonical upper quadrilateral, and
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let ku denote the maximal number of regions of R visitable by a canonical upper transversal.
We define kb2, kb4, and kb, for the maximal number of regions of R, visitable by a lower convex
transversal, canonical lower quadrilateral, and canonical lower transversal, respectively.

I Lemma 8. Let k∗ be the maximal number of regions in R visitable by a convex transversal
of R. We have that k∗ = max{ku2 , ku4 , ku, kb2, kb4, kb}.

By Lemma 8 we can restrict our attention to upper and lower convex transversals,
canonical quadrilaterals, and canonical transversals. We can compute an optimal upper
(lower) convex transversal in O(n2) time using the algorithm from the previous section. We
now argue that we can compute an optimal canonical quadrilateral in O(n5) time, and an
optimal canonical transversal in O(n6) time. Arkin et al. [2] describe an algorithm that
given a discrete set of vertex locations can find a convex polygon (on these locations) that
maximizes the number of regions stabbed. Note, however, that since a region contains
multiple vertex locations – and we may use only one of them – we cannot directly apply
their algorithm.

Computing the maximal number of regions intersected by a canonical quadrilateral.
Consider a canonical lower quadrilateral Q = `urw with ux < wx. We explicitly compute
the regions intersected by u` ∪ `w and set these aside. Using a rotational sweep we then
compute how many of the remaining regions intersect ur ∪ wr, for all candidate points r,
and find the candidate point r that maximizes the total number of regions intersected by
Q. If ux > wx, we use a symmetric procedure in which we count all regions intersected by
ur ∪ rw first, and then the remaining regions intersected by u` ∪ `w.

Since there are O(n4) candidate triples u,w, `, naively computing the maximum as
sketched above requires O(n6) time. We argue that we do not have to do this rotational
sweep for every such triple. This reduces the running time to O(n5).

I Lemma 9. Given a set of n vertical line segments R, we can compute the maximum
number of regions k∗ visitable by a canonical quadrilateral Q in O(n5) time.

Computing the maximal number of regions intersected by a canonical transversal. We
describe an algorithm to compute the maximal number of regions visitable by a lower
canonical convex transversal. Our algorithm consists of three dynamic programming phases,
in which we consider (partial) convex hulls of a particular “shape”.

In the first phase we compute (and memorize) the maximal number of regions B[w, u, v, `]
visitable by a transversal that has w` as a segment in the lower hull, and a convex chain
`, . . . , u, v as upper hull. See Fig. 4(a).

In the second phase we compute the maximal number of regions K[u, v, w, z] visitable by
the canonical convex transversal whose rightmost top edge is uv and whose rightmost bottom
edge is wz. See Fig. 4(b) and (c). To make sure that we appropriately count segments that
intersect both the upper and lower hull we have to distinguish between two cases, depending
on whether ux ≤ wx or vice versa. Furthermore, we use that for all pairs of candidate edges
wz and uv we can precompute the number of segments I[w, z, u, v] intersected by wz that
are not intersected by uv.

In the third phase we compute the maximal number of regions visitable when we “close”
the transversal using the rightmost vertex r. To this end, we define R′[z, u, v, r] as the
number of regions visitable by the canonical transversal whose rightmost upper segment is
uv and whose rightmost lower segment is wz and r is defined by the strictly convex vertex z.
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Figure 4 (a) B[w, u, v, `] indicates the number of regions visited by a convex transversal that has
`w as lower hull and the upper hull from ` to uv. We can compute the B[w, u, v, `] values for all u, v
by explicitly setting aside the segments intersected by `w and then using the upper hull algorithm.
(b) The base case of the recurrence when ux < wx. The regions counted by I[w, z, u, v] are shown in
red, whereas the regions counted by B[w, u, v, `] are shown in black. (c) The inductive step when
ux < wx.

I Theorem 10. Given a set of n vertical line segments R, we can compute the maximum
number of regions k∗ visitable by a convex transversal Q in O(n6) time.

3 2-oriented disjoint line segments

In this section we consider the case when R consists of vertical and horizontal disjoint
segments. We will show how to apply similar ideas to those presented in the previous section
to compute an optimal convex transversal Q of R. As in the previous section, we will mostly
restrict our search to canonical transversals. However, we will have one special case to
consider when an optimal partial convex transversal has bends not necessarily belonging to a
discrete set of points. In this section we will provide an overview of the ideas behind our
approach; the reader is referred to the full version of this paper for the missing details [9].

We call the left-, right-, top- and bottommost vertices `, r, u and b of Q the extreme
vertices. They subdivide the transversal into four chains. Similarly to the 1-oriented case, we
can move the non-extreme convex vertices to be on the endpoints of the segments (Lemma
11). In the 1-oriented case, the extreme vertices were restricted to being on intersections of
lines through endpoints with segments in R, which we will call a 1st-order fixed point. For
the 2-oriented case, we need to extend this notion: when one extreme vertex is on a 1st-order
fixed point, the opposite extreme vertex might be on the intersection of a line through an
endpoint and the 1st-order fixed point with a segment in R (these are 2nd-order fixed points).
The proof is analogous to that of Lemma 1.

I Lemma 11. Let Q be a convex partial transversal of R with extreme vertices `, r, t, and
b. There exists a convex partial transversal Q′ of R such that

the two transversals have the same extreme vertices,
all segments that are intersected by the upper-left, upper-right, lower-right, and lower-left
hulls of Q are also intersected by the corresponding hulls of Q′,
all strictly convex vertices on the upper-left hull of Q′ lie on bottom endpoints of vertical
segments or on the right endpoints of horizontal segments of R, and
the convex vertices on the other hulls of Q′ lie on analogous endpoints.
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Figure 5 (a) The subdivision into cases for the canonical algorithm. (b) The construction in the
special case.

Let Q be the maximum convex transversal. There are three cases to consider. (1) There
exists a chain of the convex hull of Q containing at least two endpoints of segments, (2) there
exists a chain of the convex hull of Q containing no endpoints, or (3) all four convex chains
contain at most one endpoint. In case (1) we prove that one can move the endpoints around
such that all points of the transversal are on a discrete set of points, allowing us to search for
a canonical transversal (see below). In case (2) one can move the extreme points adjacent to
that chain in such a way that the chain encounters an endpoint. In case (3) we can either
move the points around such that one chain now contains two endpoints, putting us in case
(1), or we are in the “special case” that is solved separately.

3.1 Calculating the canonical transversal
We subdivide our problem into subproblems (shown in Figure 5(a)) that can be solved using
the algorithm for the 1-oriented case. We observe that if we fix the extreme vertices, we
have a partial ordering of segments on each chain, defining the order in which they can
be intersected. For each chain, we guess a point that will be a vertex. This gives us a
subproblem for each extreme point: we need to find an “upper” and “lower” chain that
links the extreme point to the guessed vertices. For this we can simply use the algorithm
for the parallel case, except in the case where there are segments in R that could intersect
two non-adjacent chains. We put such segments into a separate subproblem, of which there
can be only one. We then need to examine all possible combinations of extreme points and
guessed vertices, but as this is a constant number of points, and as we choose them out of a
polynomial number of points, this gives a polynomial time algorithm. This algorithm extends
to any constant number of orientations.

3.2 Special case
As mentioned above this case only occurs when the four hulls each contain exactly one
endpoint. The construction can be seen in Figure 5(b). Let eu`, eur, ebr and eb` be the
endpoints on the upper-left, upper-right, lower-right and lower-left hull. Let further su, sr,
sb and s` be the segments that contain the extreme points.

For two points a and b, let l(a, b) be the line through a and b. For a given position of u we
can place r on or below the line l(u, eur). Then we can place b on or left of the line l(r, ebr),
` on or above l(b, eb`) and then test if u is on or to the right of l(`, eu`). Placing r lower
decreases the area where b can be placed and the same holds for the other extreme points.

ISAAC 2018
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It follows that we place r on the intersection of l(u, eur) and sr, we set {b} = l(r, ebr) ∩ sb
and {`} = l(b, eb`) ∩ s`. Let then u′ be the intersection of the line l(`, e`u) and the upper
segment su. In order to make the test if u′ is left of u we first need the following lemma.

I Lemma 12. Given a line `, a point A, and a point X(τ) with coordinates
(
P1(τ)
Q(τ) ,

P2(τ)
Q(τ)

)
where P1(·), P2(·), and Q(·) are linear functions. The intersection Y of ` and the line through
the points X and A has coordinates

(
P ′1(τ)
Q′(τ) ,

P ′2(τ)
Q′(τ)

)
where P ′1(·), P ′2(·) and Q′(·) are linear

functions.

Let (τ, c) be the coordinates of the point u for τ ∈ I, where the constant c and the
interval I are determined by the segment su. Then by Lemma 12 we have that the points r,
b, `, u′ all have coordinates of the form specified in the lemma. First we have to check for
which values of τ the point u is between eu` and eur, r is between ebr and eur, b is between
eb` and ebr and ` is between eb` and eu`. This results in a system of linear equations whose
solution is an interval I ′.

We then determine the values of τ ∈ I ′ where u′ =
(
P1(τ)
Q(τ) ,

P2(τ)
Q(τ)

)
is left of u = (τ, c) by

considering the following quadratic inequality: P1(τ)
Q(τ) ≤ τ . If there exists a τ satisfying all

these constraints, then there exists a convex transversal such that the points u, r, b and `
are the top-, right-, bottom-, and leftmost points, and the points ejk (j, k = u, r, b, `) are the
only endpoints contained in the hulls.

Combining this with the algorithm in the previous section, we obtain the following result:

I Theorem 13. Given a set of 2-oriented line segments, we can compute the maximum
number of regions visited by a convex partial transversal in polynomial time.

Extensions. One should note that the concepts explained here generalize to more orienta-
tions. For each additional orientation there will be two more extreme points and therefore
two more chains. It follows that for ρ orientations there might be ρth-order fixed points. This
increases the running time, because more points need to be guessed and the pool of discrete
points to choose from is bigger, but for a fixed number of orientations it is still polynomial
in n. The special case generalizes as well, which means that the same case distinction can
be used. We further know that when R is a set of non-intersecting connected regions, any
transversal with size at least 2 intersects the boundary of each region containing a point
of the transversal. It follows that the algorithm extends to disjoint convex polygons with
limited edge orientations, e.g. disjoint axis-aligned rectangles.

4 3-oriented intersecting segments

We prove that the problem of finding a maximum convex partial transversal Q of a set of
3-oriented segments R is NP-hard using a reduction from Max-2-SAT.

I Theorem 14. Let R be a set of segments that have three different orientations. The
problem of finding a maximum convex partial transversal Q of R is NP-hard.

First, note that we can choose the three orientations without loss of generality: any
(non-degenerate) set of three orientations can be mapped to any other set using an affine
transformation, which preserves convexity of transversals. We choose the three orientations
in our construction to be vertical (|), the slope of 1 (�) and the slope of −1 (�).

Given an instance of Max-2-SAT we construct a set of segments R and then we prove
that from a maximum convex partial transversal Q of R one can deduce the maximum
number of clauses that can be made true in the instance.
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top side

bottom side

left side right side

Figure 6 Overview of our construction. Each of the colored segment chains represents a variable.
At each point where a chain bounces on the banana there is a fruit fly gadget. At each area marked
orange there is a clause gadget. Each chain is only pictured once, but in actuality each chain is
copied m + 1 times and placed at distance ε of each other. The distance between the different
variables is exaggerated for clarity.

(a) Unswatted fly. (b) Partially swatted fly.

Figure 7 Sketch of a fly gadget. Endpoints of chain segments are divided over two implicit
parabolic arcs together with some extra regions. To maximize our transversal, one of the two implicit
arcs must be picked. This choice propagates through the rest of the construction. In our actual
construction, the fly appears completely swatted: the aspect ratio of the fly approaches the local
curvature of the banana, making it almost completely flat. The outer chain segments are then at an
angle of 90◦.

4.1 Overview of the construction

Our constructed set R consists of several different substructures. The construction is built
inside a long and thin rectangle, referred to as the crate. The crate is not explicitly part of
R. Inside the crate, for each variable, there are several sets of segments that form chains.
These chains alternate � and � segments reflecting on the boundary of the crate. The idea
is that an optimal solution must always place a point at (or close to) one of the endpoints of
these segments, and furthermore, that two adjacent segments cannot both have their point
at the reflection point. For each clause, there are vertical | segments to transfer the state of
a variable to the opposite side of the crate. Figure 6 shows this idea. However, the segments
do not extend all the way to the boundary of the crate; instead they end on the boundary of
a slightly smaller convex shape inside the crate, which we call the banana. By having all of
the endpoints on the banana, the maximum partial transversal will be strictly convex. Aside
from the chains associated with variables, R also contains segments that form gadgets to
ensure that the variable chains have a consistent state, and gadgets to represent the clauses
of our Max-2-SAT instance. Due to their winged shape, we refer to these gadgets by the
name fruit flies. The idea is that an optimal solution must use one of two sequences of small
points above the wings of the flies, and depending on this choice, can use only the endpoints
of segments ending in one of the wings of the fly. See Figure 7 for a sketch of a fruit fly.
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Our construction makes it so that we can always find a transversal that includes all of
the chains, the maximum number of segments on the gadgets, and half of the | segments.
For each clause of our Max-2-SAT instance that can be satisfied, we can also include one
of the remaining | segments. For the full construction and proof of correctness, see the full
version of this paper [9].

Implications. Our construction strengthens the proof in [13] by showing that using only 3
orientations, the problem is already NP-hard. The machinery appears to be powerful: with a
slight adaptation, we can also show that the problem is NP-hard for axis-aligned rectangles.

I Theorem 15. Let R be a set of (potentially intersecting) axis-aligned rectangles. The
problem of finding a maximum convex partial transversal Q of R is NP-hard.

Proof. We build exactly the same construction, but afterwards we replace every vertical
segment by a 45◦ rotated square and all other segments by arbitrarily thin rectangles. The
points on the banana’s boundary are opposite corners of the square, and the body of the
square lies in the interior of the banana so placing points there is not helpful. J
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Abstract
The centerpoint theorem is a well-known and widely used result in discrete geometry. It states
that for any point set P of n points in Rd, there is a point c, not necessarily from P , such
that each halfspace containing c contains at least n

d+1 points of P . Such a point c is called a
centerpoint, and it can be viewed as a generalization of a median to higher dimensions. In other
words, a centerpoint can be interpreted as a good representative for the point set P . But what if
we allow more than one representative? For example in one-dimensional data sets, often certain
quantiles are chosen as representatives instead of the median.

We present a possible extension of the concept of quantiles to higher dimensions. The idea
is to find a set Q of (few) points such that every halfspace that contains one point of Q contains
a large fraction of the points of P and every halfspace that contains more of Q contains an even
larger fraction of P . This setting is comparable to the well-studied concepts of weak ε-nets and
weak ε-approximations, where it is stronger than the former but weaker than the latter. We show
that for any point set of size n in Rd and for any positive α1, . . . , αk where α1 ≤ α2 ≤ . . . ≤ αk
and for every i, j with i + j ≤ k + 1 we have that (d − 1)αk + αi + αj ≤ 1, we can find Q of
size k such that each halfspace containing j points of Q contains least αjn points of P . For
two-dimensional point sets we further show that for every α and β with α ≤ β and α+β ≤ 2

3 we
can find Q with |Q| = 3 such that each halfplane containing one point of Q contains at least αn
of the points of P and each halfplane containing all of Q contains at least βn points of P . All
these results generalize to the setting where P is any mass distribution. For the case where P is
a point set in R2 and |Q| = 2, we provide algorithms to find such points in time O(n log3 n).
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1 Introduction

Medians and quantiles are ubiquitous in the statistical analysis and visualization of data.
These notions allow for quantifying how deep some point lies within a one-dimensional data
set by measuring how many elements of the data set appear before the point and how many
appear after it. In comparison to the mean, medians and quantiles have the advantage that
they only depend on the order of the data points, and not their exact positions, making them
robust against outliers. However, in many applications, data sets are multidimensional, and
there is no clear order of the data set. For this reason, various generalizations of medians to
higher dimensions have been introduced and studied. Many of these generalized medians rely
on a notion of depth of a query point within a data set, a median then being a query point
with the highest depth among all possible query points. Several such depth measures have
been introduced over time, most famously Tukey depth [18] (also called halfspace depth),
simplicial depth, or convex hull peeling depth (see, e.g., [1]). All of these depth measures lead
to generalized medians that are invariant under affine transformations. As for quantiles, only
a few generalizations have been introduced (see, e.g., [6]). We propose such a generalization
by extending a depth measure to sets with a fixed number of query points and defining a
quantile as a set with maximal depth. The depth measure we extend is Tukey depth: the
Tukey depth of a point q with respect to a point set P ⊂ Rd is the minimal number of points
of P in any closed halfspace containing q. More formally, if H denotes the set of closed
halfspaces, then the Tukey depth tdP (q) of q with respect to P is

tdP (q) = min
q∈h∈H

{|h ∩ P |} .

Similarly, the Tukey depth can also be defined for a mass distribution µ:

tdµ(q) = min
q∈h∈H

{µ(h)} .

Here, a mass distribution µ on Rd is a measure on Rd such that all open subsets of Rd
are measurable, 0 < µ(Rd) <∞ and µ(S) = 0 for every lower-dimensional subset S of Rd.

The centerpoint theorem states that there is always a point of high depth, i.e., a point q
such that for every closed halfspace h containing q we have |h ∩ P | ≥ |P |

d+1 (or µ(h) ≥ µ(Rd)
d+1

for masses). Note that, for d = 1, such a centerpoint is a median: a median has the property
that every halfline containing it contains at least half of the underlying data set. Quantiles
can be interpreted similarly: the 1

3 -quantile and the 2
3 -quantile form a set of two points such

that every halfline that contains one of them contains at least 1
3 of the data set. Furthermore,

a halfline containing both of the points contains at least 2
3 of the underlying data set. In

particular, halflines containing more points contain more of the data set. This idea leads to
the following generalization of Tukey depth for a set Q of multiple points:

gtdP (Q) := min
h∈H : Q∩h 6=∅

{
|h ∩ P |
|h ∩Q|

}
.

Again, we can generalize this to mass distributions:

gtdµ(Q) := min
h∈H : Q∩h 6=∅

{
µ(h)
|h ∩Q|

}
.

We prove that there is always a set Q of k points that has generalized Tukey depth 1
kd+1 .

In fact, we prove the following, more general statement:
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I Theorem 1. Let µ be a mass distribution in Rd with µ(Rd) = 1. Let α1, . . . , αk be non-
negative real numbers such that α1 ≤ α2 ≤ . . . ≤ αk and for every i, j with i+ j ≤ k + 1 we
have that (d − 1)αk + αi + αj ≤ 1. Then there are k points p1, . . . , pk in Rd such that for
each closed halfspace h containing j of the points p1, . . . , pk we have µ(h) ≥ αj.

Note that, for d = 1 and k = 2, the points p1 and p2 correspond to the α1-quantile and
the (1− α1)-quantile; for αj = j

kd+1 we get our bound on the generalized Tukey depth, and
for α1 = . . . = αk, the result implies the centerpoint theorem.

Our second result is motivated by interpreting the 1
3 -quantile and the 2

3 -quantile not as
two points, but as a one-dimensional simplex. We then have that every halfline that contains
a part of the simplex contains at least 1

3 of the underlying data set and every halfline that
contains the whole simplex contains at least 2

3 of the underlying data set. Also for this
interpretation we give a generalization to two dimensions:

I Theorem 2. Let µ be a mass distribution in R2 with µ(R2) = 1. Let α and β be real
numbers such that 0 < α ≤ β and α+ β = 2

3 . Then there is a triangle ∆ in R2 such that
(1) for each closed halfplane h containing one of the vertices of ∆ we have µ(h) ≥ α and
(2) for each closed halfplane h fully containing ∆ we have µ(h) ≥ β.

Note that this again generalizes centerpoints for α = β. However, this result does not
give bounds on the generalized Tukey depth of these sets, as, e.g., a halfspace containing two
points may still only contain an α-fraction of the mass.

Finally, we give algorithms to compute two points satisfying the two-dimensional case of
Theorem 1 and three points satisfying Theorem 2 in time O(n log3 n).

Related work. Another way to view our setting is the following: given a multidimensional
data set, we want to find a fixed number of representatives. The idea of small point sets
representing a larger point set has been studied in many different settings. One of the most
famous of those is the concept of ε-nets, introduced by Haussler and Welzl [7]. For a range
space (X,R), consisting of a set X and a set R of subsets of X, an ε-net on P ⊂ X is a
subset N of P with the property that every r ∈ R with |r ∩ P | ≥ ε|P | intersects N . In
our setting, where we consider halfspaces, we would choose X = Rd and R as the set of all
halfspaces. It is known that for this range space, for any point set P there exists an ε-net of
size O(dε log d

ε ). In particular, this bound does not depend on the size of P . Note that we
require the ε-net to be a subset of P . If this condition is dropped, we arrive at the concept
of weak ε-nets. The fact that the points for the weak ε-net can be chosen anywhere in Rd
allows for very small weak ε-nets for many range spaces. There has been some work on weak
ε-nets of small size. For halfplanes in R2 for example, Aronov et al. [3] have shown that there
is always a weak 1

2 -net of two points. These two points both lie outside of the convex hull of
P . They also consider many other range spaces, such as convex sets, disks and rectangles.
Similarly, Babazadeh and Zarrabi-Zadeh [4] construct weak 1

2 -nets of size 3 for halfspaces in
R3. For two-dimensional convex sets, Mustafa and Ray [15] have shown that there is always
a weak 4

7 -net of two points; Shabbir [17] shows how to find two such points in O(n log4 n)
time.

Another related concept is the concept of ε-approximations: For a range space (X,R)
an ε-approximation on P ⊂ X is a subset N of P with the property that for every r ∈ R
we have

∣∣∣ |r∩P ||P | −
|r∩N |
|N |

∣∣∣ ≤ ε. Again, the restriction that N has to be a subset of P can be
dropped to get the notion of weak ε-approximations. Just as for ε-nets, there has been a
lot of work on ε-approximations and weak ε-approximations, see [14] for a recent survey. In
particular it was shown that for halfspaces in Rd, there always is an ε-approximation of size
O( 1

ε2−2/(d+1) ) [12, 13].
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While our setting can be considered to be related to weak ε-nets and weak ε-approxima-
tions for range spaces determined by halfspaces, the differences are significant. As we will
discuss here, a halfspace missing all the points of Q may still contain up to half of the points
of the initial set, and thus Q qualifies neither as a good weak ε-approximation nor ε-net.

Note that for |Q| = 2, the condition of Theorem 1 that any halfspace containing all of
the points of Q contains at least α2n points of P is equivalent to the statement that every
halfspace containing more than (1− α2)n of the points of P contains at least one point of Q.
So, Q is a weak (1− α2)-net of P . Furthermore, the condition that any halfspace containing
one of the points of Q contains at least α1n points of P translates to the statement that every
halfspace containing more than (1− α1)n of the points of P must contain all of Q. Thus, Q
is not only a weak (1−α2)-net of P but also has the additional property that all points of Q
are somewhat deep within P . (For two points in the plane, this comes at the cost of having
ε larger than 1

2 .) On the other hand, while we require halfspaces containing all points of Q
to also contain many points of P , we also allow halfspaces containing only one point of Q to
contain many points of P . This separates our concept from weak ε-approximations. Note
that when dealing with halfspaces and ε-nets of size 2, the weak 1

2 -net of Aronov et al. [3]
is actually also a weak 1

2 -approximation. Similarly, Theorem 1 gives us a weak (1 − α2)-
approximation of P , with the optimal value being reached when α1 tends to zero (which
actually corresponds to the result in [3]). Adding more points to Q does not give us a better
approximation. For d = 2, requiring that for i+ j ≤ k + 1 we have (d− 1)αi + αj + αk < 1
implies α1 + 2αk < 1, so a halfspace containing no points of Q may contain half of the points
of P ; we therefore cannot get anything better than a weak 1

2 -approximation. Also, we do
not get anything better than a weak 1

2 -net.
In fact, our setting is very much related to the concept of one-sided ε-approximants,

recently introduced by Bukh and Nivasch [5]: For a range space (X,R), a one-sided ε-
approximant on P ⊂ X is a subset N of P with the property that for every r ∈ R we have
|r∩P |
|P | −

|r∩N |
|N | ≤ ε. Once again, the restriction that N has to be a subset of P can be dropped

to get the notion of weak one-sided ε-approximations. Note that the only difference to the
definition of ε-approximations is that one does not take the absolute value of the difference.
In particular, if |r∩N ||N | > |r∩P |

|P | , i.e., if r contains many points of N despite containing only
few points of P , the difference is negative, and thus smaller than ε.

In their paper, Bukh and Nivasch [5] consider the range space of convex sets. They show
that any point set in Rd allows a one-sided ε-approximant for convex ranges of size g(ε, d),
where g(ε, d) only depends on ε and d, but not on the size of P .

In a similar reasoning, it makes sense to define an approximation by a set N such that
for every r ∈ R we have |r∩N ||N | −

|r∩P |
|P | ≤ ε. Intuitively, if a range r contains a large fraction

of the points of N , then it is guaranteed to contain a large fraction of the set P we want to
approximate. But here again, our approximation ratio is 1

2 at best.

2 Two points

We first consider the case where the underlying data is a point set. Motivated by the definition
of generalized Tukey depth, we consider α1 = 1

5 and α2 = 2
5 . Even though this result is

a special case of Theorem 1, we still show its proof for two reasons: first, the Algorithm
presented in Section 5 relies heavily on the presented proof and, secondly, the proof already
illustrates the main ideas for the proof of Theorem 1.
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I Theorem 3. Let P be a set of n points in general position in the plane. Then there are
two points p1 and p2 in R2 such that
(1) each closed halfplane containing one of the points p1 and p2 contains at least n

5 of the
points of P and

(2) each closed halfplane containing both p1 and p2 contains at least 2n
5 of the points of P .

Proof. Note that condition (1) is equivalent to the condition that every open halfplane
containing more than 4n

5 of the points of P must contain both p1 and p2. Similarly,
condition (2) is equivalent to the condition that every open halfplane containing more than
3n
5 of the points of P must contain one of p1 and p2. We will now construct two points p1
and p2 satisfying both these conditions.

Let C be the intersection of all open halfplanes containing more than 4n
5 of the points

of P . Clearly C is convex. Also, note that C is closed. The centerpoint region is a strict
subset of C and thus C has a non-empty interior. In order to satisfy condition (1), both p1
and p2 have to be placed in C.

Let now H be the set of all open halfplanes containing more than 3n
5 of the points of P .

For any hi in H let ci be the intersection of hi and C. In order to also satisfy condition (2),
we need to find two points p1 and p2 such that every ci contains at least one of them. To
this end, we partition H into two subsets L and R. The set L contains all halfplanes that lie
on the left side of their respective boundary lines. Analogously, R contains all halfplanes
that lie on the right side of their respective boundary lines. For a halfplane hi that has a
horizontal boundary line, we put hi in L if and only if it lies above its boundary line.

Note that any three halfplanes in L have a non-empty intersection: Consider the inclusion-
minimal halfplane h ∈ L with horizontal boundary line and its intersection r with the
boundary of the convex hull of P . As h is open, r is not in h. However, we claim that
any point r′ in h on the convex hull boundary of P in an ε-neighborhood of r is in any
halfplane of L. Indeed, if there was a halfplane in L not containing r′, it would contain a
strict subset of the intersection of the convex hull of P with h; however, this would contradict
the minimality of h. The analogous holds for R.

We will now show that for any two halfplanes h1 and h2 in L, their corresponding regions
c1 and c2 have a non-empty intersection. The same arguments hold for any two halfplanes in
R. Assume for the sake of contradiction that c1 and c2 do not intersect. As C and h1∩h2 are
convex, this means that there is an open halfplane g containing more than 4n

5 of the points
of P such that the intersection of the boundary lines of h1 and h2 lies in g, the complement
of g (see Figure 1). In particular, g ∩ h1 is a strict subset of h2. As g contains strictly fewer
than n

5 of the points of P and h1 contains strictly fewer than 2n
5 of the points of P , g ∩ h1

must contain strictly more than 2n
5 of the points of P . However, being a subset of h2, which

also contains strictly fewer than 2n
5 of the points of P , this is a contradiction. Thus, by

contradiction, c1 and c2 intersect.
As neither three halfplanes in L nor two halfplanes in L and C have an empty intersection,

Helly’s Theorem entails that there exists a point in both C and all halfplanes in L, i.e., all
cis associated to L have a non-empty intersection DL. Again, the same holds for R, with a
non-empty intersection DR. Placing p1 in DL and p2 in DR, we have thus constructed two
points such that the conditions (1) and (2) hold. J

This result is tight in the following sense: There is a point set for which it is not possible
to improve both conditions at the same time, that is, it is not possible to find two points
such that any halfplane containing one of them contains strictly more than n

5 of the points
and any halfplane containing both of them contains strictly more than 2n

5 of the points. For
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g

h2

h1

<n
5

<2n
5

<2n
5

>2n
5

h2
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g

Figure 1 Two cis associated to L must intersect (left). The intersection is non-empty in other
variants (right).

P1

P2

P3

P4P5

`
A1,3

B1,3

S1,3

Figure 2 A construction for which the bounds of Theorem 3 cannot be improved.

this consider a set of n = 5k point arranged in the following way. Partition the points into 5
sets P1, . . . , P5 of k points each. Place P1, . . . , P5 in such a way that the convex hull of each
Pi is disjoint from the convex hull of the union of the other four sets (see Figure 2).

Denote by Si,j the convex hull CH(Pi ∪ Pj) of Pi ∪ Pj . Let ` be a line through CH(Pi)
and CH(Pj). Note that any other set Pm is not separated by ` (i.e., lies entirely on one side).
Let Ai,j be the side of ` containing fewer of the other sets and let Bi,j be the other side. For
any point q in CH(P1 ∪ . . .∪P5) we say that q is above Si,j if it is not in Si,j but it is in Ai,j .
Similarly, for any point q in CH(P1 ∪ . . . ∪ P5) we say that q is below Si,j if it is not in Si,j
but it is in Bi,j . Suppose, for the sake of contradiction, that there exist two points p1 and p2
such that any halfplane containing one of them contains strictly more than k of the points
of P1 ∪ . . . ∪ P5 and any halfplane containing both of them contains strictly more than 2k
of the points of P1 ∪ . . . ∪ P5. Consider two sets Pi and Pj such that Ai,j contains exactly
one other set. First we note that neither p1 nor p2 can lie above Si,j as otherwise we can
find a halfplane containing that point and only one of the sets, i.e., only k points. Similarly,
we cannot place both p1 and p2 below Si.j , as otherwise we can find a halfplane containing
both points and only two of the sets, i.e., only 2k points. Also, we must clearly place both
p1 and p2 in CH(P1 ∪ . . . ∪ P5). Thus, for any two sets Pi and Pj such that Ai,j contains
exactly one other set, Si,j must contain at least one of p1 and p2. However, there are five
such Si,j and P1, . . . , P5 can be placed in such a way that no three of them have a common
intersection. So no matter how we place p1 and p2, one of the Si,j will be empty.

3 An arbitrary number of points

We now strengthen Theorem 3 in four ways: we allow for arbitrarily many query points, we
extend it to higher dimensions, we consider mass distributions instead of point sets, and we
give a range of possible bounds:
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I Theorem 1. Let µ be a mass distribution in Rd with µ(Rd) = 1. Let α1, . . . , αk be non-
negative real numbers such that α1 ≤ α2 ≤ . . . ≤ αk and for every i, j with i+ j ≤ k + 1 we
have that (d − 1)αk + αi + αj ≤ 1. Then there are k points p1, . . . , pk in Rd such that for
each closed halfspace h containing j of the points p1, . . . , pk we have µ(h) ≥ αj.

We use the following observation, which follows from the fact that for an empty intersection
of d+ 1 halfspaces, any point with non-zero mass is in at most d such halfspaces.

I Observation 4. Let µ be a mass distribution in Rd with µ(Rd) = 1. Let h1, . . . , hd+1 be
d+ 1 open halfspaces with h1 ∩ . . . ∩ hd+1 = ∅. Then µ(h1) + . . .+ µ(hd+1) ≤ d.

Proof of Theorem 1. The result is straightforward for d = 1, so assume d ≥ 2. Again the
condition that for each closed halfspace h′ containing j of the points p1, . . . , pk we have
µ(h′) ≥ αj is equivalent to the condition that every open halfspace h with µ(h) > 1 − αj
must contain at least k − j of the points p1, . . . , pk. Let α0 = 0. For 1 ≤ j ≤ k, we call an
open halfspace h a j-halfspace if 1− αk−j+1 < µ(h) ≤ 1− αk−j . Consider the x1-x2-plane,
denoted by X, and for each vector v = (v1, v2, . . . , vd) in Rd let π(v) = (v1, v2, 0, . . . , 0) be
the projection of v to X. Let v1, . . . , vk be k unit vectors in X with the property that the
angle between any vi and vi+1 is 2π

k . Note that this implies that also the angle between
vk and v1 is 2π

k . For each vi we construct a principal set Vi of halfspaces as follows: For
each j, consider all j-halfspaces. For any such halfspace h, let n(h) be the normal vector
to its bounding hyperplane that points into h. Let h be in Vi if the angle between π(n(h))
and vi is at most jπ

k . If π(n(h)) = 0, place h arbitrarily in j of the Vi’s. Note that with
this construction each j-halfspace is contained in exactly j principal sets. Thus, if, for each
principal set, we can pick a point in all its halfplanes, then each j-halfplane contains j points.

It remains to show that the halfspaces in each principal set have a common intersection.
Let h1, . . . , hd+1 be d + 1 halfspaces in Vi and assume for the sake of contradiction that
they have no common intersection. Then the positive hull (conical hull) of their projected
normal vectors must be X, and in particular there are three of them, w.l.o.g. h1, h2 and
h3, whose projected normal vectors already have X as their positive hull. Further, among
those three halfspaces, there are two of them, w.l.o.g. h1 and h2, such that the angles
between their projected normal vectors and vi sum up to more than π. If h1 is a j1-halfspace,
then by construction of Vi we have that the angle between π(n(h1)) and vi is at most j1π

k .
Analogously, if h2 is a j2-halfspace, the angle between π(n(h2)) and vi is at most j2π

k . By
the choice of h1 and h2 we thus have (j1+j2)π

k > π, which is equivalent to j1 + j2 > k, and to
j1 + j2 ≥ k + 1, as j1 and j2 are integers. By definition of a j-halfspace we have

µ(h1) + µ(h2) > 1− αk+1−j1 + 1− αk+1−j2 .

Furthermore we have µ(hi) > 1− αk for every i ∈ {1, . . . , d+ 1}, and thus

µ(h1) + µ(h2) + µ(h3) + . . .+ µ(hd+1) > 1− αk+1−j1 + 1− αk+1−j2 + (d− 1)(1− αk) ,

which is equivalent to

(d− 1)αk + αk+1−j1 + αk+1−j2 > d+ 1− (µ(h1) + . . .+ µ(hd+1)) .

As k+1−j1+k+1−j2 = 2k+2−(j1+j2) ≤ k+1, we have that (d−1)αk+αk+1−j1 +αk+1−j2 ≤ 1
and thus µ(h1) + . . .+ µ(hd+1) > d, which is a contradiction to Observation 4. J

Setting αj = j
kd+1 , we get a bound for the generalized Tukey depth:

I Corollary 5. Let µ be a mass distribution in Rd with µ(Rd) = 1. Then there exist k points
p1, . . . , pk in Rd with generalized Tukey depth gtdµ({p1, . . . , pk}) = 1

kd+1 .
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4 Triangles

As mentioned before, the 1
3 -quantile and the 2

3 -quantile can also be interpreted as a one-
dimensional simplex with the property that every halfline that contains a part of the simplex
contains at least 1

3 of the underlying data set and every halfline that contains the whole
simplex contains at least 2

3 of the underlying data set. For this interpretation, we give a
generalization to two dimensions. For ease of presentation, we only give a proof for point
sets instead of mass distributions and for fixed values of α and β.

I Theorem 6. Let P be a set of n points in general position in the plane. Then there are
three points p1, p2 and p3 in R2 such that
(1) each closed halfplane containing one of the points p1, p2 and p3 contains at least n

6 of
the points of P and

(2) each closed halfplane containing all of p1, p2 and p3 contains at least n
2 points of P .

Note that this can also be interpreted as an instance of Theorem 1 with α1 = α2 = 1
6

and α3 = 1
2 . However, as α3 + α3 + α1 > 1, the precondition of Theorem 1 does not apply.

As the proof of this result uses similar ideas as the above proofs, we only sketch the main
ideas and refer the interested reader to the full version.

Sketch of proof. Let C be the intersection of all open halfplanes containing more than 5n
6

of the points of P . Just as in the proof of Theorem 3, condition (1) is equivalent to p1, p2
and p3 lying in C. Similarly, condition (2) is equivalent to the following statement: for every
halfplane h containing more than n

2 of the points of P , h contains at least one of p1, p2 and
p3. For each such h, let ch be the intersection of h and C and let H be the set of all ch’s
that are minimal with respect to inclusion. It can be shown that among any three elements
of H, two of them intersect. Using this property, we can then place 3 points on the boundary
of C such that each element of H contains at least one of them: Place p1 at a topmost point
of the boundary of C. Let h1 be the first element of H in counterclockwise direction whose
defining halfplane does not contain p1. Place p2 at the intersection of the defining line of h1
with the boundary of C that is furthest in counterclockwise direction from p1. Since h1 is
minimal, any element of H intersecting h1 contains either p1 or p2. Further, all elements of
H that do not intersect h1 have a common intersection, in which we place p3. J

The general statement can be proved analogously:

I Theorem 2. Let µ be a mass distribution in R2 with µ(R2) = 1. Let α and β be real
numbers such that 0 < α ≤ β and α+ β = 2

3 . Then there is a triangle ∆ in R2 such that
(1) for each closed halfplane h containing one of the vertices of ∆ we have µ(h) ≥ α and
(2) for each closed halfplane h fully containing ∆ we have µ(h) ≥ β.

5 Construction in the plane

In this section, we describe algorithms for constructing the points described in Theorems 3
and 6. We first observe that the convex regions defined by the intersections of the half-
planes in sets like L and R in the proof of Theorem 3 correspond to levels in the dual line
arrangement. We use the duality p∗ = (y = kx + d) ⇐⇒ p = (k, d) that maps a point p
to a line p∗. The k-level of a line arrangement is the set of points with exactly k − 1 lines
below it and not more than n − k lines above it. (It thus consists of segments of the line
arrangement.) Suppose we are given α1 and α2, s.t. 0 < α1 ≤ α2 and α1 + 2α2 = 1. Let U
be the set of open halfplanes that are above their boundary lines and contain more than
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(1 − α2)n points of P , and let DU be their intersection. A point p is in DU if there is no
line through it having at least b(1− α2)n+ 1c points of P above it. If the dual line p∗ of p
contains a point `∗ below the dα2ne-level of the dual line arrangement of P , then p has a
supporting line ` with more than (1− α2)n points of P above it. Since a line has a point
below that level if and only if it intersects the interior of its convex hull, the interior of the
convex hull of the dα2ne-level thus excludes exactly those lines whose primal points are not
in DU . The supporting lines of the segments of the convex hull of the dα2ne-level give the
primal points that bound DU . Matoušek [10] describes an algorithm for constructing the
k-level of a line arrangement in O(n log4 n) time. The k-hull of a set P of n points in the
plane is the set of points p in R2 such that any closed halfplane defined by a line through p
contains at least k points of P . The set C in the proof of Theorem 3 is the intersection of all
open halfplanes containing more than 4n

5 points. C is thus the
⌈
n
5

⌉
-hull of P . The k-hull

of P is obtained by computing the convex hulls of the k-level and the (n− k)-level of the
dual line arrangement of P , which give the upper and lower envelope of the k-hull [10]. To
construct the points from Theorems 3 and 6 (without explicitly constructing the levels), we
use Matoušek’s algorithmic tools from [10]. (Alternatively, a general optimization technique
by Langerman and Steiger [9] can be used, as detailed in the full version.)

I Lemma 7 (Matoušek [10, Lemma 3.2]). In an arrangement of n lines, let γ be the boundary
of the convex hull of the lines on or below the k-level. Given the arrangement, k, and a
point p, one can find the tangent to γ passing through p and touching γ to the right of p (if
it exists) in time O(n log2 n).

I Lemma 8. Given an arrangement of n lines and two numbers k < l ≤ n, as well as a
halfplane h, a line separating the k-level from the intersection of h with the l-level can be
found in O(n log3 n) time, if it exists. The separating line is tangent to both level parts and,
from left to right, first intersects the k-level and then the relevant part of the l-level.

Proof. Let γ be the boundary of the convex hull of all points below the k-level, and let ν
be the intersection of h with the l-level. Note that ν might not be connected. Suppose we
want our line to be the counterclockwise bitangent of γ and ν (i.e., from left to right, it first
intersects γ, which has no point above it, and then ν). Our algorithm works by obtaining
tangents to ν through points on γ. Matoušek’s O(n log2 n) algorithm for determining the
tangent to a level through a given point that is to the right of that point [10, Lemma 3.2]
(our Lemma 7) also directly works for parts of a level such as ν: It requires a sub-algorithm
that decides in O(n log n) time whether a given line ` intersects the level (or, in our case, the
partial level ν). This can be done by sorting the intersection of the lines of the arrangements
along ` (see also [10, Lemma 3.1]) as well as along the line bounding h; ` either intersects
the relevant part of ν, or we can compare the intersection of h with ` to the intersections of
h with ν to determine whether there is a point of ν below `.

Suppose first we are given γ. (It requires O(n log4 n) time though to obtain it, so we
eventually get rid of this assumption.) The convex hull of a level is known to have at most n
vertices [10, Lemma 2.1]. For a point p on γ, we can find in O(n log2 n) time the point q on
ν such that the line pq has no point on ν below it. We can thus find, by binary search on
the O(n) vertices of γ, a vertex p with q on ν such that pq separates γ and ν. This gives an
O(n log4 n) time algorithm for obtaining the bitangent. To improve on that bound, we need
to get rid of the explicit construction of γ to find the tangents to ν.

To this end, we consider Matoušek’s algorithm for constructing the convex hull boundary γ
of a level and compute only the relevant part (see [10, Section 4]). In particular, the algorithm
works by finding, for a constant c and two vertical lines, (c− 1) further vertical lines between
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Figure 3 A counterclockwise bitangent (brown, dash-dotted) between the
⌈

2n
5

⌉
-level (blue) and

the
⌊

4n
5

⌋
-level (red) of an arrangement of seven lines (left). The primal point configuration is shown

to the right; there, the orange region corresponds to the
⌈

n
5

⌉
-hull C, and the hatched green region

corresponds to DU . Observe that there can be vertices of DU outside of C.

the given ones such that there are at most n2/c crossings of the arrangement between two
of these verticals. This can be done in O(n) time (as described in [11]). The tangents on γ
at the intersection points with the vertical lines can be computed in O(n log3 n) time [10,
Lemma 3.3]. It is shown in [10] that, when choosing c = 64, there are at most n/2 lines
of the arrangement relevant for the construction of γ between two such vertical lines, and
these lines can be found in O(n) time. The original algorithm proceeds recursively within
each interval defined by two neighboring vertical lines after removing the non-relevant lines.
In our adaption, however, we find the interval that contains the point p on γ such that a
tangent to γ through the vertex p with q on ν such that pq separates γ and ν. (We do this
by considering the tangent to γ at each of the constant number of intersection of a vertical
line with γ.) When we have found this interval, we can prune n/2 of the lines and recurse
inside this interval. Note, however, that we cannot prune the set of lines when looking for
a tangent to ν. Thus, in each recursive call, we need O(n log2 n) time for computing the
tangent. As the recursion depth is O(log n), this amounts to O(n log3 n) in total. Also, for
ni lines during the ith recursion, we need O(ni log3 ni) ⊆ O(ni log3 n) time for determining
the intervals. As ni decreases geometrically, this also amounts to O(n log3 n). This is the
total running time for finding the bitangent, as claimed. J

We call such a line the counterclockwise bitangent of the two subsets of the plane (i.e.,
the intersection with the region not above it has smaller x-coordinate than the intersection
with the region not below it). Note that by mirroring the plane horizontally or vertically,
the lemma also provides other types of bitangents. Figure 3 shows an example.

I Theorem 9. Given a set P of n points in the plane, two points satisfying the conditions
of Theorem 3 can be constructed in time O(n log3 n).

Proof. To find a point p1 in the intersection of C and DU , observe first that we can restrict
our attention in the dual to the convex hull of the points above the b(1− α1)nc-level of the
dual line arrangement. This is because any primal line with more than (1 − α1)n points
above it (which corresponds to a dual point below the dα1ne-level) also defines a halfplane
in U . A point in the intersection of DU and C thus corresponds to a line on or above the
dα2ne-level and on or below the b(1− α1)nc-level. We find a bitangent to these two levels in
O(n log3 n) time using Lemma 8 (with h = R2). The primal point of this line is p1; see the
point indicated by the brown box in Figure 3 (right). We obtain p2 analogously. J



A. Pilz and P. Schnider 53:11

Figure 4 An arrangement of seven lines with the
⌈

n
6

⌉
-level and

⌊
5n
6

⌋
-level (blue) and the clockwise

bitangent p∗
1 (red dashed) between them. The green boxes indicate the two points defining the

counterclockwise bitangent between the
⌈

n
6

⌉
-level and µ1 (brown).

I Theorem 10. Three points as described in Theorem 6 can be computed in time O(n log3 n).

Proof. Consider the dual line arrangement of the point set. The points p1, p2, p3 dualize to
three lines p∗1, p∗2, p∗3 that are between the

⌈
n
6

⌉
-level and the

⌊ 5n
6

⌋
-level of the arrangement

s.t. every point on the middle level has at least one of these lines above it and one of these
lines below it. (We assume for simplicity that n is odd and the middle level is the

⌊
n
2

⌋
-level

of the arrangement; if n is even, one has to consider the points between the n
2 -level and the

(n2 + 1)-level.) Theorem 6 asserts that such lines exist, and its proof tells us that we can
choose one of these lines to be an arbitrary tangent of one of the levels not intersecting the
interior of the other one. We denote by γb and γt the convex hull boundaries of the points
on or below the

⌈
n
6

⌉
-level and of the points on or above the

⌊ 5n
6

⌋
-level, respectively.

We let p∗1 be the clockwise bitangent of γb and γt, which we can obtain in O(n log3 n)
time using Lemma 8. For simplicity of explanation, we also compute the counterclockwise
bitangent `. (This step may be omitted in an actual implementation, but assuming it to be
given facilitates the explanation and does not change the asymptotic running time.)

The line p∗1 intersects the middle level of the arrangement. Let µ1 be the parts of the
middle level below p∗1, and µ2 be the part above it. Note that each of these parts may be
disconnected. Using Lemma 8, we search for the counterclockwise bitangent between γb
(or, equivalently, the

⌈
n
6

⌉
-level) and µ1 (which is the intersection of the middle level with a

halfspace defined by p∗1) in O(n log3 n) time. If it exists, and its intersection point with γb is
between the intersections of γb with p∗1 and `, we choose this line to be p∗2. Otherwise, we
continue our search on γt) in the same way (i.e., we look for the counterclockwise bitangent
between γt and µ1). The line p∗3 can be found in an analogous manner. J

6 Conclusion

We proposed a generalization of quantiles in higher dimensions based on a generalization of
Tukey depth to multiple points. Our bounds and algorithms seem merely being a first step
in this direction and we can identify several interesting open problems. Except for special
cases of Theorem 1, we do not believe that our bounds are tight and particularly expect
significantly better bounds in higher dimensions. Naturally, there are many other range
spaces for which this problem could be considered, e.g., convex sets, like in [5].
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From an algorithmic point of view, the bottleneck for the running time of our approach
is Lemma 8. The current methods result in O(n log3 n) time. While solutions to such kinds
of problems can usually only be verified in Θ(n log n) time (see, e.g., [2, 16]), a linear-time
algorithm, like for centerpoints [8], is conceivable. For arbitrarily many points, it seems
tedious but doable to apply similar approaches as in the proof of Theorem 9. Is there a good
bound on the running time independent of the size of |Q|?
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Abstract
Indexing of static and dynamic sets is fundamental to a large set of applications such as inform-
ation retrieval and caching. Denoting the characteristic vector of the set by B, we consider the
problem of encoding sets and multisets to support approximate versions of the operations rank(i)
(i.e., computing

∑
j≤iB[j]) and select(i) (i.e., finding min{p | rank(p) ≥ i}) queries. We study

multiple types of approximations (allowing an error in the query or the result) and present lower
bounds and succinct data structures for several variants of the problem. We also extend our model
to sliding windows, in which we process a stream of elements and compute suffix sums. This is a
generalization of the window summation problem that allows the user to specify the window size
at query time. Here, we provide an algorithm that supports updates and queries in constant time
while requiring just (1 + o(1)) factor more space than the fixed-window summation algorithms.
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rankb(i, B) : returns the number of b’s in B[1 . . . i].
selectb(i, B) : returns the position of the i-th b in B.

A bit vector supporting a subset of these operations is one of the basic building blocks in
the design of various succinct data structures. Supporting these operations in constant time,
with close to the optimal amount of space, both theoretically and practically, has received a
wide range of attention [13, 15, 16, 17, 19]. Some of these results also explore trade-offs that
allow more query time while reducing the space.

We also consider related problems in the streaming model, where a quasi-infinite sequence
of integers arrives, and our algorithms need to support the operation of appending a new item
to the end of the stream. For i ∈ {1, . . . , n}, let Si be the sum of the last i integers. Here, n
is the maximal suffix size we support queries for. For streaming, we consider processing a
stream of elements, and answering two types of queries, suffix sum (ss) and inverse suffix
sum (iss), defined as:

ss(i, n): returns Si for any 1 ≤ i ≤ n.
iss(i, n): returns the smallest j, 1 ≤ j ≤ n, such that ss(j, n) ≥ i.

In this paper, our goal is to obtain space efficient data structures for supporting a
few relaxations of these queries efficiently using an amount of space below the theoretical
minimum (for the unrelaxed versions), ideally. To this end, we define approximate versions
of rank and select queries, and propose data structures for answering approximate rank and
select queries on multisets and bit-strings. We consider the following approximate queries
with an additive error δ > 0.

rankAb(i, B, δ): returns any value r which satisfies rankb(i − δ,B) < r ≤ rankb(i, B). If
rankb(i− δ,B) = rankb(i, B), then rankAb(i, B, δ) = rankb(i, B).
drankAb(i, B, δ): returns any value r which satisfies rankb(i, B)− δ < r ≤ rankb(i, B).
selectAb(i, B, δ): returns any position p which satisfies selectb(i− δ,B) < p ≤ selectb(i, B).
dselectAb(i, B, δ): returns any position p which satisfies selectb(i, B)−δ < p ≤ selectb(i, B).
ssA(i, n, δ): returns any value r which satisfies ss(i, n)− δ < r ≤ ss(i, n).
issA(i, n, δ): returns any value r which satisfies iss(i− δ, n) < r ≤ iss(i, n).

We propose data structures for supporting approximate rank and select queries on bit-
strings efficiently. Our data structures uses less space than that is required to answer the
exact queries and most of data structures use optimal space. We also propose a data structure
for supporting ssA and issA queries on binary streams while supporting updates efficiently.
Finally, we extend some of these results to the case of larger alphabets. For all these results,
we assume the standard word-RAM model [14] with word size Θ(lg n) if it is not explicitly
mentioned.

1.1 Previous work
Rank and Select over bit-strings. Given a bit-string B of size n, it is clear that at least
n bits are necessary to support rank and select queries on B. Jacobson [12] proposed a
data structure for answering rank queries on B in constant time using n+ o(n) bits. Clark
and Munro [5] extended it to support both rank and select queries in constant time with
n+ o(n) bits. For the case when there are m 1’s in B, at least B(n,m) bits3 are necessary

3 B(n,m) = lg
⌈(

n
m

)⌉
bits is the information-theoretic lower bound on space for storing a subset of size

m ≤ n from the universe {1, 2, . . . n}.
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Table 1 Summary of results of upper and lower bounds for approximate rank and select queries
on bit-string of size n (m is the number of 1’s in B). The function t(n, u) is defined as t(n, u) =
O(min{lg lg n lg lg u/ lg lg lg u,

√
lgn/ lg lg n}).

Query Space (in bits) Query time Error
Lower bounds

drankA1 , selectA1 bn/δc

δ, additivedrankA1, selectA1 B(bn/δc , bm/δc)
rankA1, dselectA1 bn/2δc lg δ

dselectA1 O((n/δ) lgO(1) δ) Ω(lg lg n)
Upper bounds

drankA1, selectA1 n/δ + o(n/δ)
O(1)

δ, additivedrankA1 , selectA1 B(n/δ,m/δ) + o(n/δ)
rankA1 (n/δ) lg δ + o((n/δ) lg δ)

dselectA1 (n/δ) lg δ + o((n/δ) lg δ) t(n/δ, n)

to support rank and select on B. Raman et al. [19] proposed a data structure that supports
both operations in constant time while using B(n,m) + o(n) +O(lg lgm) bits. Golynski et
al. [10] gave an asymptotically optimal time-space trade-off for supporting rank and select
queries on B. A slightly related problem of approximate color counting has been considered
in El-Zein et al. [7].

Algorithms that Sum over Sliding Windows. Our ss queries for streaming are a general-
ization of the problem of summing over sliding windows. That is, window summation is a
special case of the suffix sum problem where the algorithm is always asked for the sum of the
last i ≤ n elements. Approximating the sum of the last n elements over a stream of integers
in {0, 1, . . . , `}, was first introduced by Datar et al. [6]. They proposed a (1+ε) multiplicative
approximation algorithm that uses O

(
ε−1 (lg2 n+ lg ` · (lg n+ lg lg `)

))
bits and operates

in amortized time O (lg `/lg n) or O(lg(` · n)) worst case. In [8], Gibbons and Tirthapura
presented a (1 + ε) multiplicative approximation algorithm that operates in constant worst
case time while using similar space for ` = nO(1). [3] studied the potential memory savings
one can get by replacing the (1 + ε) multiplicative guarantee with a δ additive approximation.
They showed that Θ (` · n/δ + lg n) bits are required and sufficient. Recently, [2] showed the
potential memory saving of a bi-criteria approximation, which allows error in both the sum
and the time axis, for sliding window summation. [4] looks at a generalization of the ssA
queries to general alphabet, where at query time we also receive an element x and return an
estimate for the frequency of x in the last i elements.

It is worth mentioning that these data structures do allow computing the sum of a window
whose size is given at the query time. Alas, the query time will be slower as they do not keep
aggregates that allow quick computation. Specifically, we can compute a (1+ε) multiplicative
approximation in O(ε−1 lg(`nε)) time using the data structures of [6] and [8]. We can also
use the data structure of [3] for an additive approximation of δ in O(n`/δ) time.

1.2 Our results
In this paper, we obtain the following results for the approximate rank, select, ss and iss
queries with additive error. Let B be a bit-string of size n.

1. rank and select queries with additive error δ. In this case, we first show that bn/δc bits
are necessary for answering drankA1 and selectA1 queries on B and propose a (dn/δe+o(n/δ))-
bit data structure that supports drankA1 and selectA1 queries on B in constant time. For the
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Table 2 Comparison of data structures for ss queries over stream of integers in {0, . . . , `}. All
works can answer fixed-size window queries (where i ≡ n) in O(1) time. Worst case times are specified.

Guarantee Space (in bits) Update Time Query time
DGIM02 [6] (1 + ε)-multiplicative O(ε−1 lg(`n) lg(n lg `)) O(lg (`n)) O(ε−1 lg (`nε))
GT02 [8] (1 + ε)-multiplicative O(ε−1 lg2(`n)) O(1) O(ε−1 lg (`nε))

BEFK16 [3] δ-additive, for δ = Ω (`) Θ (` · n/δ + lg n) O(1) O(` · n/δ)
BEFK16 [3] δ-additive, for δ = o (`) Θ (n lg (`/δ)) O(1) O(n)
This paper δ-additive Same as in [3] O(1) O(1)

case when there arem 1’s in B, we show that B(bn/δc , bm/δc) bits are necessary for answering
drankA1 and selectA1 queries on B, and obtain B(bn/δc , bm/δc) + o(n/δ)-bit data structure
that supports drankA1 and selectA1 queries on B in constant time. For rankA1 and dselectA1
queries on B, we show that bn/2δc lg δ bits are necessary for answering both queries, and ob-
tain an (n/δ) lg δ+ o((n/δ) lg δ)-bit data structure that supports rankA1 queries in O(1) time,
and dselectA1 queries in O(min{lg lg (n/δ) lg lg n/ lg lg lg n,

√
lg (n/δ)/ lg lg (n/δ)}) time. Fur-

thermore, we show that there exists an additive error δ such that any O((n/δ) lgO(1) δ)-bit
data structure requires at least Ω(lg lg n) time to answer dselectA1 queries on B.

Using the above data structures, we also obtain data structures for answering approximate
rank and select queries on a given multiset S from the universe U = {1, 2 . . . n} with additive
error δ, where rank(i, S) query returns the value |{j ∈ S|j ≤ i}|, and select(i, S) query
returns the i-th smallest element in S. We consider two different cases: (i) rankA, drankA
selectA, and dselectA queries when |S| = m, and (ii) drankA and selectA queries when the
frequency each elements in S is at most `. Furthermore for case (ii), we first show that at
least bn/ dδ/`ec lg (max (b`/δc , 1) + 1) bits are necessary for answering drankA queries, and
obtain an optimal space structure that supports drankA queries in constant time, and an
asymptotically optimal space structure that supports both drankA and selectA queries in
constant time when ` = O(δ).

We also consider the drankA and selectA queries on strings over large alphabets. Given a
string A of length n over the alphabet Σ = {1, 2, . . . , σ} of size σ, we obtain an
(2n/δ lg (σ + 1) + o((n/δ) lg (σ + 1))-bit data structure that supports drankA and selectA
on A in O(lg lg σ) time. We summarize our results for bit-strings in Table 1.

2. ss and iss queries with additive error δ. We first consider a data structure for answering
ss and iss queries on binary stream, i.e., all integers in the stream are 0 or 1. For exact ss
and iss queries on the stream, we propose an n+ o(n)-bit data structure for answering those
queries in constant time while supporting constant time updates whenever a new element
arrives from the stream. This data structure is obtained by modifying the data structure of
Clark and Munro [5] for answering rank and select queries on bit-strings. Using the above
structure, we obtain an (n/δ + o(n/δ) + O(lg n))-bit structure that supports ssA and issA
queries on the stream in constant time while supporting constant time updates. Since at least
bn/δc bits are necessary for answering drankA1 (or selectA1) queries on bit-strings, and blg nc
bits are necessary for answering ss(n, n) queries [3], the space usage of our data structure
is succinct (i.e., optimal upto lower-order terms) when n/δ = ω(lg n), and asymptotically
optimal otherwise.

We then consider the generalization that allows integers in the range {0, 1, . . . , `}, for some
` ∈ N. First, we present an algorithm that uses the optimal n lg (`+ 1) (1+o(1)) bits for exact
suffix sums. Then, we provide a second algorithm that uses bn/ dδ/`ec lg (max (b`/δc , 1) + 1)
(1 + o(1)) + O(lg n) bits for solving ssA. Specifically, our data structure is succinct when
n/δ = ω(lg n/`), and is asymptotically optimal otherwise, and improves the query time of [3]
while using the same space. Table 2 presents this comparison.
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2 Queries on bit-strings

In this section, we first consider the data structures for answering approximate rank and
select queries on bit-strings and multisets. We also show how to extend our data structures
on static bit-strings to the sliding windows on binary streams, for answering approximate ss
and iss queries.

2.1 Approximate rank and select queries on bit-strings
We now consider the approximate rank and select queries on bit-strings with additive error δ.
We only show how to support rankA1, drankA1, dselectA1, and selectA1 queries. To support
rankA0, drankA0, dselectA0, and selectA0 queries, one can construct the same data structures
on the bit-wise complement of the original bit-string. We first introduce a few previous
results which will be used in our structures. The following lemmas describe the optimal
structures for supporting rank and select queries on bit-strings.

I Lemma 1 ([5]). For a bit-string B of length n, there is a data structure of size n+ o(n)
bits that supports rank0, rank1, select0, and select1 queries in O(1) time.

I Lemma 2 ([19]). For bit-string B of length n with m 1’s, there is a data structure of size
(a) B(n,m) + o(m) bits that supports select1 query in O(1) time, and
(b) B(n,m) + o(n) bits that supports rank0, rank1, select0, and select1 queries in O(1) time.

We use results from [11] and [18], which describe efficient data structures for supporting
the following queries on integer arrays. For a standard word-RAM model with word size
O(lgU) bits, let A be an array of n non-negative integers. For 1 ≤ i ≤ n and any non-negative
integer x, (i) sum(i) returns the value

∑i
j=1A[j], and (ii) search(x) returns the smallest i

such that sum(i) > x. We use the following function to state the running time of some of the
(Searchable Partial Sum) queries in the lemma below, and in the rest of the paper.

SPS(n,U) =
{
O(1) if n = polylog(U)
O(min {lg lg n lg lgU/ lg lg lgU,

√
lg n/ lg lg n}) otherwise

I Lemma 3 ([11], [18]). An array of n non-negative integers, each of length at most α bits,
can be stored using αn + o(αn) bits, to support sum queries on A in constant time, and
search queries on A in SPS(n, n2α) time. Moreover, when α = O(lg lg n), we can answer
both queries in O(1) time.

Supporting drankA and selectA queries. We first consider the problem of supporting
drankA1 or selectA1 queries with additive error δ on a bit-string B of length n. We first prove
a lower bound on space used by any data structure that supports either of these two queries.

I Theorem 4. Any data structure that supports drankA1 or selectA1 queries with additive
error δ on a bit-string of length n requires at least bn/δc bits. Also if the bit-string has m 1’s
in it, then at least B(bn/δc , bm/δc) bits are necessary for answering the above queries.

Proof. Consider a bit-string B of length n divided into bn/δc blocks B1, B2, . . .Bbn/δc such
that for 1 ≤ i < bn/δc, Bi = B[δ(i− 1) + 1 . . . δi] and Bbn/δc = B[δ(bn/δc− 1) + 1 . . . n] (the
last block may contain more than δ bits). Let S be the set of all possible bit-strings satisfying
the condition that all the bits within a block are the same (i.e., either all zeros or all ones).
Then it is easy to see that |S| = 2bn/δc. We now show that any two distinct bit-strings in S
will have different answers for some drankA1 query (and also some selectA1 query). Consider
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two distinct bit-strings B and B′ in S, and let i be the index of the leftmost block such
that Bi 6= B′i. Then it is easy to show that there is no value which is the answer of both
drankA1(iδ, B, δ) and drankA1(iδ, B′, δ) queries and also there is no position of B which is the
answer of both selectA1(j, B, δ) and selectA1(j, B′, δ) queries, where j is the number of 1’s in
B[1 . . . iδ]. Thus any structure that supports either of these queries must distinguish between
every element in S, and hence bn/δc bits are necessary to answer drankA1 or selectA1 queries.

For the case when the number of 1’s in the bit-string is fixed to be m, we choose bm/δc
blocks from each bit-string and make all bits in the chosen blocks to be 1’s (and the rest of
the bits as 0’s). Since there are

(bn/δc
bm/δc

)
ways for select such bm/δc blocks in a bit-string of

length n, it implies that B(bn/δc , bm/δc) bits are necessary to answer drankA1 and selectA1
queries in this case. J

Now we describe a data structure for supporting drankA1 and selectA1 queries in constant
time, using optimal space.

I Theorem 5. For a bit-string B of length n, there is a data structure that uses n/δ+o(n/δ)
bits and supports drankA1 and selectA1 queries with additive error δ, in constant time. If
there are m 1’s in B, the data structure uses B(n/δ,m/δ) + o(n/δ) bits and supports the
queries in O(1) time.

Proof. We divide the B into dn/δe blocks B1, B2, . . .Bdn/δe such that for 1 ≤ i < dn/δe,
Bi = B[δ(i − 1) + 1 . . . δi] and Bdn/δe = B[δ(dn/δe − 1) + 1 . . . n]. Now we define a new
bit-string B′ of length dn/δe such that for 1 ≤ i ≤ dn/δe, B′[i] = 1 if Bi contains jδ-th
1 in B for any j ≤ i, and otherwise B′[i] = 0 (note that for any 1 ≤ j ≤ dn/δe, any
block of B has at most one position of jδ-th 1 in B). By Lemma 1, we can support rank1
and select1 queries on B′ in constant time, using n/δ + o(n/δ) bits. Now we claim that
C = δ · rank1(bi/δc) + (i mod δ)B′[di/δe] gives an answer of the drankA1(i, B, δ) query. Let
D = δ · rank1(bi/δc), and let d be the position of D-th 1 in B. From the definition of B′,
we can easily show that if B′[di/δe] = 0 or (i mod δ) = 0, the claim holds since there are
less than δ 1’s in B[d . . . i]. Now consider the case when B′[di/δe] = 1 and (i mod δ) 6= 0.
Then there are at most (δ+ (i mod δ)− 1) 1’s in B[d . . . i] when (δ bi/δc+ 1) is the position
of the (D + δ)-th 1 in B, and all the values in B[(δ bi/δc+ 2) . . . i] are 1. Also there are at
least δ − (δ − (i mod δ)) = (i mod δ) 1’s in B[d . . . i] when (δ di/δe) is the position of the
(D + δ)-th 1 in B and all the values in B[δ bi/δc+ (i mod δ) + 1 . . . δ di/δe] are 1. By the
similar argument, we can show that one can answer the selectA1(i, B, δ) query in O(1) time
by returning δ(select1(bi/δc , B′)− 1) + (i mod d).

Finally, in the case when there are m 1’s in B, there are at most bm/δc 1’s in B′.
Therefore by Lemma 2(b), we can support drankA1 and selectA1 queries (as before) in O(1)
time, using B(dn/δe , bm/δc) + o(n/δ) bits. J

Note that in the above proof, we can answer drankA1 (or selectA1) queries on B using
any data structure that supports rank1 (or select1) queries on B′. Thus, if B is very sparse,
i.e., when B(n/δ,m/δ)� o(n/δ) (in this case, the space usage of the structure of Theorem 5
is sub-optimal), one can use the structure of [17] that uses (m/δ) lg(n/m) + O(m/δ) bits
(asymptotically optimal space), to support drankA1 queries in O(min{lgm, lg (n/m)}) time,
and selectA1 queries in constant time.

Supporting rankA and dselectA queries. Now we consider the problem of supporting
rankA1 and dselectA1 queries with additive error δ on bit-strings of length n. The following
theorem describes a lower bound on space.
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I Theorem 6 (?4). Any data structures that supports rankA1 or dselectA1 queries with
additive error δ on a bit-string of length n requires at least bn/2δc lg δ bits.

We now show that for some values of δ, any data structure that uses up to a lgO(1) δ

factor more than the optimal space cannot support dselectA1 queries in constant time.

I Theorem 7 (?). Any ((n/δ) lgO(1) δ)-bit data structure that supports dselectA1 queries
with an additive error δ = O(nc), for some constant 0 < c ≤ 1 on a bit-string of length n
requires Ω(lg lg n) query time.

The following theorem describes a simple data structure for supporting dselectA1 queries.

I Theorem 8 (?). For a bit-string B of length n, there is a data structure of size (n/δ) lg δ+
o((n/δ) lg δ) bits, which supports rankA1 queries on B using O(1) time and dselectA1 queries
on B using SPS(n/δ, n) time.

2.2 Approximate rank and select queries on multisets
In this section, we describe data structures for answering approximate rank and select queries
on a multiset with additive error δ. Given a multiset S where each element is from the
universe U = {1, 2 . . . n}, the rank and select queries on S are defined as follows.

rank(i, S): returns the value |{j ∈ S|j ≤ i}|.
select(i, S): returns the i-th smallest element in S.

One can define approximate rank and select queries on multisets (also denoted as rankA,
drankA, selectA, dselectA) analogously to the queries on strings. Any multiset S of size m can
be represented as a characteristic vector BS of size m+n, such that BS = 1m101m20 . . . 1mn0
when the element k has multiplicity mk in the multiset S, for 1 ≤ k ≤ n. It is easy to show
that by answering rankb and selectb queries on BS , for b ∈ {0, 1}, one can answer rank and
select queries on S. We now describe efficient structures for the following two cases.

(1) rankA, drankA, selectA, and dselectA queries when |S| = m is fixed. We construct
a new string B′S of length bm/δc + n such that B′S only keeps every iδ-th 1 from BS , for
1 ≤ i ≤ bn/δc (and removes all other 1’s). To answer the query drankA(i, S, δ), we first
compute select0(i, B′S)− i = brank(i, S)/δc, and return δ(select0(i, B′S)− i) as the answer. It
is easy to see that δ brank(i, S)/δc is an answer to the drankA(i, S, δ) query. Similarly, we can
answer the selectA(i, S, δ) query by returning rank0(select1(bi/δc , B′S), B′S) + 1. We represent
B′S using the structure of Lemma 2(b), which uses B(n+ bm/δc , bm/δc) + o(n+ bm/δc) bits
and supports rank0, rank1, select0 and select1 queries on B′S in constant time. Thus, both
drankA and selectA queries on S can be supported in constant time.

For answering rankA and dselectA queries on S, we first construct the data structure
of Theorem 8 to support dselectA1 queries on BS . In addition, we maintain the data
structure of Lemma 3 to support sum and search queries on arrays D[1 . . . d(n+m)/δe]
and E[1 . . . d(n+m)/δe] which are defined as follows. For 1 ≤ i ≤ d(n+m)/δe, D[i] and
E[i] stores the number of 0’s and 1’s in the block BSi respectively (as defined in the proof
of Theorem 8). By Lemma 3 and Theorem 8, the total space for this data structure is
O((n′/δ) lg δ) bits. To answer rankA(i, S, δ), we first find the block BSj

of BS which contains
i-th 0 by answering search(i) query on D, and then return sum(j − 1) query on E. To

4 Proofs of the results marked (?) are omitted due to space limitation and appear in the full version [1].
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answer dselectA(i, S, δ), we first find the block BSj of BS which contains an answer of the
dselectA1(i, BS , δ) query, and then return sum(j − 1) as the answer for dselectA(i, S, δ). Note
that if j = 1, we return 0 for both queries. The total running time is SPS(n′/δ, n′) for
both rankA and dselectA queries on S, by Lemma 3 and Theorem 8. For special case when
min{(n + m)/δ, δ} = polylog(n + m), we can answer rankA and dselectA queries on S in
constant time.

(2) drankA and selectA queries when the frequency of each element in S is at most
`. We first show that at least bn/ dδ/`ec lg(max (b`/δc , 1) + 1) bits are are necessary for
supporting drankA queries on S.

I Theorem 9 (?). Given a multiset S where each element is from the universe U =
{1, 2, . . . , n} of size n, any data structure that supports drankA queries on S requires at least
bn/ dδ/`ec lg (max (b`/δc , 1) + 1) bits, where ` is a bound on the maximum frequency of each
element in S.

We describe a data structure which answers drankA and selectA queries on S in O(1)
time. For drankA queries, it uses the optimal space. The details are omitted due to space
limitation.

2.3 Approximate ss and iss queries on binary streams
In this section, we consider a data structure for answering ssA and issA queries on a binary
stream. We first show how to modify the data structure of the Lemma 1, for answering
ss(i, n) and iss(i, n) queries in constant time using n+ o(n) bits, while supporting updates
in constant time. We break the stream into frames, which is n-bit consecutive elements in
the stream. Since one can construct a data structure of Lemma 1 in online [5], it is easy
to show that we can answer ss and iss queries in constant time using 2n+ o(n) bits while
supporting constant-time updates by maintaining two data structure of Lemma 1 such as
one for the current frame and other for the previous frame of the stream. To make this data
structure using n+ o(n) bits, we construct a data structure of Lemma 1 on the new frame
while replacing the oldest part of the data structure constructed on the previous frame. The
details of the succinct data structure are omitted due to space limitation.

Next, we consider a data structure for answering ssA(i, n, δ) and issA(i, n, δ) queries on
the binary stream in constant time using dn/δe+O(lg n) + o(n/δ) bits. We first split each
frame f = f1 . . . fn into dn/δe chunks g1 . . . gdn/δe such that for 1 ≤ i ≤ dn/δe, gi = 1 if and
only if f(i−1)δ+1 . . . fmin (n,iδ) contains jδ-th 1 in f for any integer j ≤ i. Now consider a
(virtual) binary stream of gi’s. Then we can construct an dn/δe+o(n/δ)-bit data structure for
answering ss(i, n), iss(i, n) queries in constant time while supporting constant-time updates
on the such stream (In the rest of this section, all of ss and iss queries are answered on the
virtual stream). We also maintain c and tc, which stores the number of 1’s in the current
frame and chunk of the stream respectively. Finally, we maintain an value t which is an
index of the last-arrived element in the current frame. All these additional values can be
stored using O(lg n) bits.

When ft is arrived, We first increase c and tc by 1 if ft = 1. If (t mod δ) = 0 or t = n,
we send 1 to the virtual stream if there is an integer j ≤ t such that c − tc ≤ jδ ≤ c, and
send 0 to the virtual stream otherwise. After that, we update the data structure which
supports ss and iss queries on the virtual stream, and reset tc to zero (if t = n, we also reset
c to zero). Since we can update the data structure on the virtual stream in constant time,
the above procedure can be done in constant time. Now we describe how to answer ssA and
issA queries.
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ssA queries: To answer the ssA(i, S, δ) query, we return 0 if i ≤ δ. If not, let f ′i
be the (d(i− (t mod δ))/δe)-th last element in the virtual stream, Then we return
tc+ δss(b(i− (t mod δ))/δc , dn/δe) + (i− (t mod δ) mod δ)f ′i , which gives an answer
of the ssA(i, n, δ) query by the same argument as the proof of Theorem 5.
issA queries: To answer the issA(i, n, δ) query, we return n − (t − (t mod δ)) if i ≤ tc.
Otherwise, we return n − (δ(iss(b(i− tc)/δc , dn/δe) + ((i − tc) mod δ)) by the same
argument as the proof of Theorem 5.

Since ss and iss queries on the virtual stream take O(1) time, we can answer both ssA and
issA queries on the stream in O(1) time. Thus we obtain the following theorem.

I Theorem 10. For a binary stream, there exists a data structure that uses dn/δe+O(lg n)+
o(n/δ) bits and supports ssA and issA queries on the stream with additive error δ, in constant
time. Also, the structure supports updates in constant time.

Comparing to the lower bound of Theorem 4 for answering drankA and selectA queries on
bit-strings (this also gives a lower bound for answering ssA and issA queries), the above data
structure takes Ω(n/δ) bits when n/δ = o(lg n). However in the sliding window of size n, at
least blg nc bits are necessary [3] for answering ssA queries even the case when i is fixed to
n. Therefore the data structure of Theorem 10 supports ssA and issA queries with optimal
space when n/δ = ω(lg n), and asymptotically optimal otherwise.

3 Queries on strings over large alphabet

In this section, we consider non-binary inputs. First, we look at general alphabet and derive
results for approximate rank and select. Then we consider suffix sums over integer streams.

3.1 drankA and selectA queries on strings over general alphabet

Let A be a string of length n over the alphabet Σ = {1, 2, . . . , σ} of size σ. Then, for
1 ≤ j ≤ σ, the query rankj(i, A) returns the number of j’s in A[1 . . . i], and the query
selectj(i, A) returns the position of the i-th j in A (if it exists). Similarly, the queries
drankAj(i, A, δ) and selectAj(i, A, δ) are defined analogous to the queries drankA and selectA
on bit-strings. One can easily show that at least bn/δc lg σ bits are necessary to support
drankA and selectA queries on A, by extending the proof of Theorem 4 to strings over larger
alphabets. In this section, we describe a data structure that supports drankA and selectA
queries on A in O(lg lg σ) time, using twice the optimal space. We make use of the following
result from [9] for supporting rank and select queries on strings over large alphabets. We now
use the following lemma to prove our main result for the section.

I Lemma 11 ([9]). Given a string of length n over the alphabet Σ = {1, 2, . . . , σ}, one can
support rankj queries in O(lg lg σ) time and selectj queries in O(1) time, using n lg σ+o(n lg σ)
bits, for any 1 ≤ j ≤ σ.

The following theorem shows we can construct a simple data structure for supporting
drankAj and selectAj queries on A using the above lemma.

I Theorem 12 (?). Let A be a string of length n over the alphabet Σ = {1, 2, . . . , σ}. Then
for any 1 ≤ j ≤ σ, one can support drankAj and selectAj queries in O(lg lg σ) time using
2n/δ lg (σ + 1) + o((n/δ) lg (σ + 1)) bits.
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3.2 Supporting ssA queries over non-binary streams
In this section, we consider the problem of computing suffix sums over a stream of integers in
{1, 2, . . . , `}. This generalizes the result of the Theorem 10 for ssA. For such streams, one can
use ssA binary search to solve issA, while a constant time issA queries are left as future work.
Specifically, we show a data structure that requires bn/ dδ/`ec lg (max (b`/δc , 1) + 1)(1 +
o(1)) +O(lg n); i.e., it requires 1 + o(1) times as many bits as the static-case lower bound of
Theorem 9 when δ = o(` · n/ lg n).

We note that this model was studied in [3, 6, 8] for window-sum queries. That is, our
work generalizes this model to allow the user to specify the window size i ≤ n at query time
while previous works only considered the sum of the last n elements. In fact, all previous
data structure implicitly supports ssA queries but with slower run time. [8, 6] requires
O(ε−1 lg (`nε)) time to compute a (1 + ε) approximation for the sum of the last n elements
while [3] needs O (` · n/δ) for a δ-additive one. Here, we show how to compute a δ-additive
error for the sum of the last i ≤ n elements in constant time for both updates and queries.

Exact ss queries. En route to ssA, we first discuss how to compute an exact answer for
suffix sums queries. It is known, even for fixed window sizes, that one must use n lg (`+ 1)
bits for tracking the sum of a sliding window [3]. Here, we show how to compute exact ssA
using succinct space of n lg (`+ 1) (1 + o(1)) bits.

We start by discussing why the current approaches cannot work for a large ` value. If we
use sub-blocks of size Θ(lg n) as in [5, 12], then the lookup table will require (`+ 1)Θ(lgn) =
nΘ(lg(`+1)) bits, which is not even asymptotically optimal for non-constant ` values. While
one may think that this is solvable by further breaking the sub-blocks into sub-sub-blocks,
sub-sub-sub-blocks, etc., it is not the case. To see this, consider a lookup table for sequences
of length 2. Then its space requirement will be (`+ 1)2 bits. If ` is large (say, ` ≥ n) then
this becomes Ω (n`) = ω(n lg (`+ 1)), which is not even asymptotically optimal.

I Theorem 13 (?). There exists a data structure that requires n lg (`+ 1) (1 + o(1)) bits and
support constant time (exact) suffix sums queries and updates.

General ssA queries. Here, we consider the general problem of computing ssA (i.e., up to
an additive error of δ). Intuitively, we apply the exact solution from the previous section on
a compressed stream that we construct on the fly. A simple approach would be to divide
the streams into consecutive chunks of size max (bµc , 1) = max (bδ/`c , 1) and represent each
chunk’s sum as an input to an exact suffix sum algorithm. However, this fails to achieve
succinct space. For example, summing dδ/`e integers requires O(dδ/`e lg (`+ 1)) = Ω(lg `)
bits. However, lg ` bits may be asymptotically larger than the bn/ dµec lg (max (b1/µc , 1) + 1)
bits lower bound of Theorem 9.

We alleviate this problem by rounding the arriving elements. Namely, when adding an
input x ∈ {0, 1, . . . , `}, we first round its value to Roundb(x) , 2−b` ·

⌊
x2b

`

⌋
so it will require

b , dlg (n/µ) + lg lg ne bits. The rounding allows us to sum elements in a chunk (using a
variable denoted by r), but introduces a rounding error. To compensate for the error, we both
consider a smaller chunks; namely, we use chunks of size ν , max {bµ · (1− 1/ lg n)c , 1}.
We also consider δ̃ , bδ · (1− 1/ lg n)c that is slightly lower than δ to compensate for the
rounding error when µ ≤ 1. 5 We then employ the exact suffix sums construction from the

5 If δ̃ = 1, then we simply apply the exact algorithm from the previous subsection.
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Algorithm 1 Algorithm for ssA.
1: Initialization: r← 0, o← 0,A.init()
2: function Add(element x)
3: o← (o+ 1) mod ν

4: r← r +Roundb(x)
5: if o = 0 then . End of a chunk
6: ρ←

⌊
δ̃−1 · r

⌋
7: r← r− δ̃ · ρ
8: A.Add(ρ)
9: function Query(i)
10: if i ≤ o then . Queried within the current chunk
11: return r−

(
δ̃ − 1/2

)
12: else
13: numElems ←

⌈
i−o
ν

⌉
14: totalSum ← A.Query (numElems)
15: oldestρ ← totalSum − A.Query (numElems − 1)
16: out ← (ν − ((i− o) mod ν))
17: return r−

(
δ̃ − 1/2

)
+ δ̃ · totalSum − ` · oldestρ · out

previous section for window size of s , dn/ν + 1e (the number of chunks that can overlap
with the window) over a stream of integers in {1, . . . , z}, where z ,

⌊
µ−1ν

⌋
is a bound on

the resulting items. We use ρ to denote the input that respresents the current block.
The query procedure is also a bit tricky. Intuitively, we can estimate the sum of the last

i items by querying A for the sum of the last i/ν inserted values and multiplying the result
by δ̃; but there are a few things to keep in mind. First, i/ν may not be an integer. Next, the
values within the current chunk (that has not ended yet) are not recorded in A. Finally, we
are not allowed to overestimate, so r’s propagation may be an issue.

To address the first issue, we weigh the oldest chunk’s ρ value by the fraction of that
chunk that is still in the window. For the second, we add the value of r to the estimation,
where r is the sum of rounded elements. Notice that we do not reset the value of r but rather
propagate it between chunks. Finally, to assure that our algorithm never overestimates we
subtract δ̃ − 1/2 from the result. Our algorithm uses the following variables:

A - an exact suffix sum algorithm, as described in the previous section. It allows computing
suffix sums over the last s = dn/ν + 1e elements on a stream of integers in {1, . . . , z}.
r - tracks the sum of elements that is not yet recorded in A.
o - the offset within the chunk.

A pseudo code of our method appears in Algorithm 1. Next follows a memory analysis of
the algorithm.

I Lemma 14 (?). Algorithm 1 requires (1 + o(1)) · bn/max (bµc , 1)c · lg
(⌈
µ−1⌉+ 1

)
+

O (lg n) bits.

Thus, we conclude that our algorithm is succinct if the error satisfies δ = o (` · n/lg n).
We note that a blg nc bits lower bound for Basic-Summing with an additive error was
shown in [3], even when only fixed sized windows (where i ≡ n) are considered. Thus,
our algorithm always requires O(B`,n,δ) space, even if δ = Ω (` · n/lg n). Here, B`,n,δ =
bn/ dδ/`ec lg (max (b`/δc , 1) + 1) is the lower bound for static data shown in Theorem 9.

I Corollary 15. Let `, n, δ ∈ N+ such that µ , δ/` satisfies

(µ = o (n/lg n)) ∧
[
(µ = o(1)) ∨ (µ = ω(1)) ∨ (µ ∈ N) ∨ (µ−1 ∈ N)

]
,

then Algorithm 1 is succinct. For other parameters, it uses O(B`,n,δ) space.
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We now state the correctness of our algorithm.

I Theorem 16 (?). Algorithm 1 solves ssA while processing elements and answering queries
in constant time.
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Abstract
We study multi-finger binary search trees (BSTs), a far-reaching extension of the classical BST
model, with connections to the well-studied k-server problem. Finger search is a popular tech-
nique for speeding up BST operations when a query sequence has locality of reference. BSTs
with multiple fingers can exploit more general regularities in the input. In this paper we consider
the cost of serving a sequence of queries in an optimal (offline) BST with k fingers, a powerful
benchmark against which other algorithms can be measured.

We show that the k-finger optimum can be matched by a standard dynamic BST (having
a single root-finger) with an O(log k) factor overhead. This result is tight for all k, improving
the O(k) factor implicit in earlier work. Furthermore, we describe new online BSTs that match
this bound up to a (log k)O(1) factor. Previously only the “one-finger” special case was known to
hold for an online BST (Iacono, Langerman, 2016; Cole et al., 2000). Splay trees, assuming their
conjectured optimality (Sleator and Tarjan, 1983), would have to match our bounds for all k.

Our online algorithms are randomized and combine techniques developed for the k-server
problem with a multiplicative-weights scheme for learning tree metrics. To our knowledge, this is
the first time when tools developed for the k-server problem are used in BSTs. As an application
of our k-finger results, we show that BSTs can efficiently serve queries that are close to some
recently accessed item. This is a (restricted) form of the unified property (Iacono, 2001) that was
previously not known to hold for any BST algorithm, online or offline.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms,
Theory of computation → Data structures design and analysis

Keywords and phrases binary search trees, dynamic optimality, finger search, k-server

1 Parinya Chalermsook is supported by European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 759557) and by Academy of
Finland Research Fellows, under grant No. 310415.

2 László Kozma is supperted through ERC consolidator grant No. 617951.
3 Thatchaphol Saranurak is supported by European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme under grant agreement No 715672, and by the Swedish
Research Council (Reg. No. 2015-04659).

© Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 55; pp. 55:1–55:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:parinya.chalermsook@aalto.fi
mailto:mayank.goswami@qc.cuny.edu
mailto:lkozma@gmail.com
mailto:mehlhorn@mpi-inf.mpg.de
mailto:thasar@kth.se
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


55:2 Multi-Finger Binary Search Trees

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.55

Acknowledgements We thank Nikhil Bansal and Greg Koumoutsos for insightful discussions.

1 Introduction

The binary search tree (BST) is the canonical comparison-based implementation of the
dictionary data type for maintaining ordered sets. Dynamic BSTs can be re-arranged after
every access via rotations and pointer moves starting from the root. Various ingenious
techniques have been developed for dynamically maintaining balanced BSTs, supporting
search, insert, delete, and other operations in time O(log n), where n is the size of the
dictionary (see e.g. [31, § 6.2.2], [40, § 5]).

In several applications where the access sequence has strong locality of reference, the
worst-case bound is too pessimistic (e.g. in list merging, adaptive sorting, or in various
geometric problems). A classical technique for exploiting locality is finger search. In finger
search trees, the cost of an access is typically O(log d),4 where d is the difference in rank
between the accessed item and a finger (d may be much smaller than n). The finger indicates
the starting point of the search, and is either given by the user, or (more typically) it points
to the previously accessed item. Several special purpose tree-like data structures have been
designed to support finger search.5

In 1983, Sleator and Tarjan [49] introduced Splay trees, a particularly simple and elegant
“self-adjusting” BST algorithm. In 2000, Cole et al. [16, 15] showed that Splay matches
(asymptotically) the efficiency of finger search, called in this context the dynamic finger
property. This is remarkable, since Splay uses no explicit fingers; every search starts from
the root. The result shows the versatility of the BST model, and has been seen as a major
(and highly nontrivial) step towards “dynamic optimality”, the conjecture of Sleator and
Tarjan that Splay trees are constant-competitive.

BSTs can also adapt to other kinds of locality. The working set property [49] requires
the amortized cost of accessing x to be O(log t), where t is the number of distinct items
accessed since the last access of x. Whereas dynamic finger captures proximity in keyspace,
the working set property captures proximity in time. In 2001, Iacono [26] proposed a unified
property that generalizes both kinds of proximity. Informally, a data structure with the
unified property is efficient when accessing an item that is close to some recently accessed
item. It is not known whether any BST data structure has the unified property.

Recently, Iacono and Langerman [28] studied the lazy finger property (Bose et al. [8]),
and showed that an online algorithm called Greedy BST6 satisfies it. The lazy finger property
requires the amortized cost of accessing x to be O(d), where d is the distance (number of
edges) from the previously accessed item to x in the best static reference tree. This property
is stronger than the dynamic finger property [8], and it is not known to hold for Splay.

In this paper we study a generalization of the lazy finger property; instead of a single
finger stationed at the previously accessed item, we allow k fingers to be moved around
arbitrarily. An access is performed by moving any of the fingers to the requested item. Cost

4 To simplify notation, we let log (x) denote log2 (max{2, x}).
5 The initial 1977 design of Guibas et al. [23] was refined and simplified by Brown and Tarjan [10] and
by Huddleston and Mehlhorn [25]. Further solutions include [51, 50, 32, 30], see also the survey [9].
Randomized treaps [46] and skip lists [43] can also support finger search.

6 Greedy BST was discovered by Lucas in 1988 [37] and later independently by Munro [42]. Demaine et
al. [17] transformed it into an online algorithm.
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is proportional to the total distance traveled by the fingers. We assume that the fingers move
according to an optimal strategy, in an optimally chosen static tree, with a priori knowledge
of the entire access sequence. The cost of this optimal offline execution with k fingers is an
intrinsic measure of complexity of a query sequence, and at the same time a benchmark that
algorithms in the classical model can attempt to match. Parameter k describes the strength
of the bound: the case k = 1 is the lazy finger, at the other extreme, at k = n, each item
may have its own finger, and all accesses are essentially free.

Our main result is a family of new online7 dynamic BST algorithms (in the standard
model, where every access starts at the root), matching the k-finger optimum on sufficiently
long sequences, up to an overhead factor with moderate dependence on k and no dependence
on the dictionary size or on the number of accesses in the sequence.

Our online BST combines three distinct techniques: (1) an offline, one-finger BST simula-
tion of a multi-finger execution (the technique is a refinement of an earlier construction [18]),
(2) online k-server algorithms that can simulate the offline optimal multi-finger strategy, and
(3) a multiplicative-weights scheme for learning a tree metric in an online fashion.

The fact that “vanilla” BSTs can, with a low overhead, simulate a much more powerful
computational model further indicates the strength and versatility of the BST model. As an
application, we show that our online BST algorithms satisfy a restricted form of the unified
property; previously no (online or offline) BST was known to satisfy such a property.

If there is a constant-competitive BST algorithm, then it must match our k-finger bounds.
The two most promising candidates, Splay and Greedy BST (see e.g. [27]) were only shown
(with considerable difficulty) to satisfy variants of the one-finger, i.e. lazy finger property. To
obtain our online BSTs competitive for other values of k, we combine sophisticated tools
developed for other online problems, as well as our refinement of a previous (highly nontrivial)
construction for simulating multiple fingers. These facts together may hint at the formidable
difficulty (more pessimistically: the low likelihood) of attaining dynamic optimality by simple
and natural BST algorithms such as Splay or Greedy.

BST and finger models. Main results. Now, we introduce the formal statements of our
results. In the dynamic BST model a sequence of keys is accessed in a binary search
tree (BST), and after each access, the tree can be reconfigured via a sequence of rotations
and pointer moves starting from the root. (There exist several alternative but essentially
equivalent models, see [52, 17].) Denote the space of keys (or elements) by [n]. For a sequence
X = (x1, . . . , xm) ∈ [n]m, denote by OPT(X) the cost of the optimal offline BST for accessing
X.8 Arguably the most important question in the BST model is the dynamic optimality
conjecture, i.e. the existence of an online BST whose cost is O(OPT(X)) for every X.

A BST optimality property is an inequality between OPT(X) and some function f(X),
that holds in the BST model. (If OPT(X) ≤ f(X) for all X is a BST optimality property,
then every O(1)-competitive algorithm must cost at most O(f(X)).)

Several natural BST properties have been suggested over the last few decades. For instance,
the static finger property [49] states OPT(X) = O(SF(X)), for SF(X) =

∑
t log |xt−j|, where

j ∈ [n] is a fixed element (finger). The static optimality property [49] is OPT(X) = O(SO(X)),
where SO(X) = minR

∑
i dR(xi). Here R is a static BST, and dR(x) is the depth of x in R.

7 An online BST algorithm can base its decisions only on the current and past accesses. An offline
algorithm knowns the entire access sequence in advance.

8 To avoid technicalities, we only consider access (i.e. successful search) operations and assume m ≥ n.
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For the dynamic finger property [49], DF(X) =
∑
t log |xt−xt+1|, and for working set [49],

WS(X) =
∑
t log ρt(xt), where ρt(a) is the number of distinct keys accessed between time t

and the last time at which a was accessed (all keys assumed accessed at time zero).
In 2001, Iacono [26] initiated the study of a property that would “unify” the latter two

notions of efficiency and exhibited a data structure (not a BST) achieving this property. This
unified bound is defined as UB(X) =

∑
t mint′<t log(|xt − xt′ | + ρt(xt′)). Dynamic finger

and working set are in general, not comparable. On the other hand, UB(X) ≤ DF(X), and
UB(X) ≤WS(X) clearly hold, justifying the name of the unified bound.

Despite several attempts, the question whether the unified bound is a valid BST property
remains unclear; it was shown in [20] that OPT(X) = O(UB(X)+m log log n), and in [11, 26]
that the unified bound is valid in some other (non-BST) models9.

We show that a unified bound with “bounded time-window” holds in the BST model:

I Theorem 1. For every integer ` ≥ 1, every sequence X and some fixed function β(·),

OPT(X) ≤ β(`) · UB`, where UB` =
∑
t

min
t′∈[t−`,t)

log
(
|xt − xt′ |+ ρt(xt′)

)
.

Observe that UB(X) = UBm(X) ≤ · · · ≤ UB1(X) = DF(X). Prior to our work it was
not known whether the theorem holds when ` = 2, i.e. no known BST property subsumes
this property even when ` = 2. Thus, Theorem 1 establishes the first BST property that
combines the efficiencies of time- and keyspace-proximity without an additive term.10

Recently Bose et al. [8] introduced the lazy finger property, LF(X) = minR
∑
i dR(xi, xi+1).

Here distance is measured in a static reference BST R, optimally chosen for the entire sequence.
The lazy finger bound can be visualized as follows: accesses are performed in the reference
tree by moving a unique finger from the previously accessed item to the requested item. The
lazy finger property is rather strong: Bose et al. show that it implies the dynamic finger and
static optimality properties, which in turn imply static finger.

Our main tool in proving Theorem 1 is a generalization of the lazy finger property allowing
multiple fingers. The model is motivated by the famous k-server problem. For an input
sequence X ∈ [n]m and a static BST R with nodes associated with the keys in [n], we have k
servers located initially at arbitrary nodes in R. At time t = 1, . . . ,m, the request xt arrives,
and we move a server of our choice to the node of R that stores xt. The cost for serving a
sequence X is equal to the total movement in R to serve the sequence X.

Denote by FkR(X) the cost of the optimal (offline) strategy that serves sequence X in R
with k servers, minimized over all possible initial server locations. Let Fk(X) = minR FkR(X).
We call Fk(X) the k-finger cost of X. We remark that the value of FkR(X) is polynomial-
time computable for each R, k ∈ N, and X ∈ [n]m by dynamic programming. Clearly,
F1(X) ≥ F2(X) ≥ · · · ≥ Fn(X) holds for all X.

We first show that one can simulate any k-finger strategy in the BST model, in a
near-optimal manner. In particular, we prove the following tight result.

I Theorem 2. OPT(X) ≤ O(log k) · Fk(X).

The proof of Theorem 2 is a refinement of an earlier argument [18], improving the
overhead factor from O(k) to O(log k). The logarithmic dependence on k is, in general, the
best possible. To see this, consider a sequence S of lengthm, over k distinct items with average
cost Ω(log k) (e.g. a random sequence from [k]m does the job). While OPT(S) = Θ(m log k),
clearly Fk(X) = O(m), as each of the k items can be served with its own private finger.

9 Another attempt to study the bounds related to the unified bound was done in [24].
10The proof of Theorem 1 implies in fact a stronger, weighted form, which we omit for ease of presentation.
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In the definition of Fk(X) we assume a static reference tree R for the k-finger execution.
The offline BST simulation in the proof of Theorem 2 works in fact (with the same overhead)
even if R is dynamic, i.e. if the multi-finger adversary can perform rotations at any of the
fingers. In this case, however, the k-finger bound is too strong to be useful; already the
k = 1 case captures the dynamic BST optimum. Our next result is the online counterpart of
Theorem 2. In this case, the restriction that R is static is essential.

I Theorem 3. There exists an online randomized BST algorithm whose cost for serving
X ∈ [n]m, is O

(
(log k)7) · Fk(X) + ρ(n), for some fixed function ρ(·).

The result can be interpreted as follows. On sufficiently long access sequences, there is
an online BST algorithm (in fact, a family of them) competitive with the k-finger bound,
up to an overhead factor with moderate dependence on k. The randomized algorithm (as is
standard in the online setting) assumes an oblivious adversary that does not know in advance
the outcomes of the algorithm’s random coin-flips. The use of randomness seems essential to
our approach. We propose as intriguing open questions to find a deterministic online BST
with comparable guarantees and to narrow the gap between the online and offline results.

Due to its substantial amount of computation (outside the BST model), our online
algorithm is of theoretical interest only. Nonetheless, the connection with the k-server
problem allows us to “import” several techniques to the BST problem; some of these, such
as the double coverage heuristic for k-server [14] are remarkably simple and may find their
way to practical BST algorithms.

The strength of the k-finger model lies in the k-server abstraction. In order to establish a
BST property of the form OPT(X) ≤ β(`) ·O(g(X)), it is now sufficient to prove F`(X) ≤
(β(`)/ log `) ·O(g(X)). In other words, our technique reduces the task of bounding the cost
in the BST model to designing k-server strategies, which typically admits much cleaner
combinatorial arguments. We illustrate this approach by showing that the unified property
with a fixed time-window holds in the BST model.

I Theorem 4. For some fixed functions α(·), γ(·), we have: Fα(`)(X) ≤ γ(`) · UB`.

Theorems 4 and 2 together imply Theorem 1. Moreover, Theorem 3 implies that the
property holds for online BST algorithms (we later specify the involved functions).

The k-finger approach can be used to show further BST properties. For example, we
connect decomposability (refer to § 4 for definitions) and finger properties by showing that
even one finger is enough to obtain the traversal property in significantly generalized form.

I Theorem 5. Let X be a d-decomposable sequence. Then F1(X) = O(log d) · |X|.

As a corollary, using the recent result by Iacono and Langermann [28], we resolve an open
problem in [13], showing that Greedy costs at most O(log d) · |X| on every d-decomposable
sequence, matching the lower bound in [13].11

In another direction, we connect multiple fingers and generalized monotone sequences.
In [13], we showed that OPT(X) ≤ |X| · 2O(d2) on every d-monotone sequence X; a sequence
is d-monotone if it can be decomposed into d increasing or d decreasing sequences. Using the
k-finger technique, we show the stronger BST property OPT(X) ≤ O(d log d) · |X|.

Concerning simple and natural BST algorithms (Splay and Greedy), we give evidence that
the strongest results in the literature may still be far from settling the dynamic optimality
conjecture. To this end, we describe a class of sequences for which increasing the number of
fingers by one can create an Ω(log n) gap. More precisely, we show the following:

11 Independently of our work, Goyal and Gupta [22] showed the same result using a charging argument.
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55:6 Multi-Finger Binary Search Trees

I Theorem 6. For every integer k, there is a sequence Sk such that Fk−1(Sk) = Ω(nk log(n/k))
but Fk(Sk) = O(n).

Theorem 6 shows that the multi-finger bounds form a fine-grained hierarchy. For small
k, our online algorithm (Theorem 3) can match these bounds (up to a constant factor).
However, any online BST (such as Splay or Greedy) must also match the dependence of
O(log k) in the upper bound of O(log k) · F k(X), in order to be constant-competitive.

Techniques. The k-server problem. The k-server problem, introduced by Manasse,
McGeoch, and Sleator [38] in 1988 is a central problem in online algorithms: Is there
an online deterministic strategy for serving a sequence of requests by moving k servers
around, with a total movement cost at most k times the optimal offline strategy? The
question in its original form, for arbitrary metric spaces, remains open. Nonetheless, the
problem has inspired a wealth of results and a rich set of techniques, many of which have
found applications outside the k-server problem. A full survey is out of our scope, we refer
instead to some prominent results [21, 34, 47, 44, 3, 2], and the surveys [6, § 10, § 11], [33].
Most relevantly for us, Chrobak and Larmore [14] gave in 1991, an intuitive, deterministic,
k-competitive algorithm for tree metrics, and the very recently announced breakthrough
of Lee [35], building on Bubeck et al. [12], gives an O

(
(log k)6)-competitive randomized

algorithm for arbitrary metrics.
Our online BST algorithm relies on an online k-server in an almost black box fashion (the

metric space underlying the k-server instance is induced by a static reference BST). Thus,
improvements for k-server would directly yield improvements in our bounds. Despite the
depth and generality of k-server (e.g. it also models the caching/paging problem), to our
knowledge it has previously not been related to the BST problem.12

It is known that in an arbitrary metric space with at least k + 1 points, no deterministic
online algorithm may have a competitive ratio better than k. In the randomized case the
lower bound Ω(log k/ log log k) holds, see e.g. [33]. (The lower bounds thus apply for a metric
induced by a BST, for all k < n.) These results imply a remarkable separation between the
k-server and BST problems. Dynamic optimality would require, by Theorem 2, a BST cost
of O(log k) · Fk. To match this, an online BST may not implicitly perform a deterministic
k-server execution, since, in that case its overhead would have to be Ω(k). This indicates
that improving Theorem 3 will likely require tools significantly different from k-server, which
is surprising, given the similarity of the two formulations.

Our online BST learns the metric induced by the optimal reference tree using a multi-
plicative weights update (MWU) scheme. The technique has a rich history, and a recent
emergence as a powerful algorithmic tool (we refer to the survey of Arora, Hazan, and
Kale [1]). MWU or closely related techniques have been used previously in data structures
(including for BST-related questions), see e.g. [5, 4, 27, 29]. Specifically, Iacono [27] obtains,
using MWU, an online BST that is constant-competitive on sufficiently long sequences, if
any online BST is constant-competitive. As we relate online BSTs with an offline strategy,
the results are not directly comparable.

12 In his work on a generalized k-server problem, Sitters [48] asks whether the work-function (WF)
technique [34] for k-server may have relevance for BSTs. Indeed, we can use WF as an O(k)-competitive
component of our online BSTs, but for our special case of tree-metrics, the technique of [14] is much
simpler. Whether WF may be used (in different ways) to obtain competitive BSTs remains open.
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Further open questions and structure of the paper. The main open question raised by
our work is whether natural algorithms such as Splay or Greedy match the properties of
our new BST algorithms. (This must be the case, if Splay and Greedy are, as conjectured,
O(1)-competitive). We suggest the following easier questions. Do Splay or Greedy satisfy
the unified bound with a time-window of 2 steps? Does Splay satisfy the lazy finger or the
2-monotone bounds? Does Greedy satisfy the 2-finger bound?

Except for Theorems 2 and 5, the factors in our results are not known to be tight.
Improving them may reveal new insight about the power and limitations of the BST model.

In § 2 we describe our offline BST simulation. In § 3 we describe our new family of online
algorithms. In § 4 we prove the main applications and further observations.

2 Offline simulation of multi-finger BSTs (Theorem 2)

Let k ∈ N , let T be a BST on [n], and let X = (x1, . . . , xm) ∈ [n]m be an access sequence.
A k-finger strategy consists of a sequence ~f ∈ [k]m where ft ∈ [k] specifies the finger that
serves access xt. Let ~̀ ∈ [n]k be the initial vector, where `i ∈ [n] gives the initial location
of finger i. The cost of strategy (~f, ~̀) is Fk

T,~f,~̀
(X) =

∑m
t=1(1 + dT (xt, xσ(ft,t))) where

σ(i, t) = max{j < t | fj = i} is the location of finger i before time t, and σ(i, 1) = `i. Let
FkT (X) = min~f,~̀Fk

T,~f,~̀
(X). In other words, for a fixed BST T on keyset [n], FkT (X) is the

k-server optimum for serving X in the metric space of the tree T . (Note that the tree is
unweighted, and the distance dT (·, ·) counts the number of edges between two nodes in T .)
We define Fk(X) = minT FkT (X). It is clear form the definition that F1(X) ≥ F2(X) ≥ · · · ≥
Fn(X) = m for all X.

Observe that we implicitly assume that during every access at most one server moves.
In addition, we may assume that if some server is already placed at the requested node,
then no movement happens. Algorithms with these two restrictions are called lazy. As
argued in the k-server literature (see e.g. [33]), non-lazy server movements can always be
postponed to a later time, keeping track of the “virtual” locations of servers. In other words,
every k-server algorithm can be simulated by a lazy algorithm, without additional cost. We
therefore assume throughout the paper that k-server/k-finger executions are lazy.

Consider some (lazy) k-finger execution (~f, ~̀) in tree T , for access sequence X. We can
view ~f as an explicit sequence of elementary steps S = Sk

T,~f,~̀
, where in each step we move

one of the fingers to its parent or to one of its children in T . We further allow S to contain
rotations at a finger in T (although k-finger strategies as described above do not generate
rotations). The position of a finger is maintained during a rotation.

We show how S can be simulated in a standard dynamic BST. If in S a finger visits a node,
then the (single) pointer in the BST also visits the corresponding node, therefore all accesses
are correctly served in the BST. Every elementary step in S is mapped to (amortized)
O(log k) elementary steps (pointer moves and rotations) in the BST. This immediately
implies Theorem 2, since, if we can simulate an arbitrary k-finger execution, then indeed
we can simulate the optimal k-finger execution on the best static tree. Assuming that the
intial conditions T and ~̀ are known, the steps of S are simulated one-by-one, without any
lookahead. Thus, insofar as the k-finger execution is online, the BST execution is also online
(this fact is used in § 3).

Let us describe simulation by a standard BST T ′ of a k-finger execution S in a BST T .
The construction is a refinement of the one given by Demaine et al. [18], see also [19]. (We
improve the overhead factor from O(k) to O(log k).) The main ingredients are: (1) Making
sure that each item with a finger on it in T has depth at most O(log k) in T ′. (In [18], each
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55:8 Multi-Finger Binary Search Trees

finger may have depth up to O(k) in T ′.) (2) Implementing a deque data structure within
T ′ so that each finger in T can move to any of its neighbors, or perform a rotation, with cost
O(log k) amortized. (In [18], this cost is O(1) amortized.)

Given these ingredients, to move a finger f to its neighbor x in T , we can simply access
f from the root of T ′ in O(log k) steps, and then move f to x in T ′ in O(log k) amortized
steps, with a similar approach for a rotation at f . Hence, the overhead factor is O(log k).
We sketch the main technical ideas, postponing the details to Appendix A.

Consider the tree S induced by the current fingers and the paths connecting them in T .
The tree S consists of finger-nodes and non-finger nodes of degree 3 (both types of nodes are
called pseudo-fingers), and paths of non-finger nodes of degree 2 connecting pseudo-fingers
with each other, called tendons. Tendons can be compressed into a BST structure that allows
their traversal between the two endpoints in O(1) steps.

We maintain S as a root-containing subtree of our BST T ′, called the hand. Due to the
compression of the tendons, the relevant part of S has size O(k). The description so far,
including the terminology, is identical to the one in [18, § 2]. Our construction differs in the
fact that it maintains the hand, i.e. the compressed representation of S as a balanced BST.
This guarantees the reachability of fingers in O(log k) instead of O(k) steps, i.e. property (1).

When a finger in T moves or performs a rotation, the designation of some (pseudo)finger,
or tendon nodes may change. Such changes can be viewed as the insertion or deletion of
items in the tendons. As these operations happen only at certain places within the tendons,
they can be implemented efficiently. We implement tendons with the same BST-based
deque as [18]. The construction appears to be folklore, we describe it in Appendix A.1 for
completeness.

We depart again from [18], as the operation affecting the (pseudo)finger and tendon nodes
can trigger a re-balancing of the hand, which may again require O(log k) operations to fix,
i.e. property (2). Any efficient balancing strategy (e.g. red-black tree) may be used.

3 Online simulation of multi-finger BSTs (Theorem 3)

Consider the optimal (offline) k-finger execution ~f for access sequence X ∈ [n]m, with static
reference tree T and initial finger-placement ~̀. We wish to simulate it by a dynamic online
BST. The construction proceeds in two stages: (1) A simulation of ~f by a sequence S of
steps that describe finger-movements and rotations-at-fingers, starting from an arbitrary
BST T0 and arbitrary finger locations ~̀0. The sequence S is online, i.e. it is constructed
without knowledge of the optimal initial state T ,~̀, and it correctly serves the sequence X, as
its elements are revealed one-by-one. (2) A step-by-step simulation of S by a standard BST
algorithm using the result of § 2. Since S is online, the BST algorithm is also online.

As before, we denote by Fk(X) = Fk
T,~f,~̀

(X) the cost of the optimal offline execution.
Observe that this is exactly the k-server optimum with the tree metric defined by T and
initial configuration of servers ~̀. If T and ~̀ were known, we could conclude part (1) by
running an arbitrary online k-server algorithm defined on tree metrics.

To this end, we mention two online k-server algorithms, the deterministic “double coverage”
algorithm of Chrobak and Larmore [14] (Algorithm A) and the very recently announced
randomized algorithm of Lee [35, 12] (Algorithm B). It is known that the cost of Algorithms A,
resp. B is at most k-times, resp. O((log k)6) times Fk. We only describe Algorithm A, as
it is particularly intuitive. To obtain the claimed result, we need the much more complex
Algorithm B. (By using Algorithm A we get an overall factor O(k log k).)
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During the execution of Algorithm A, given a current access request xt, call those servers
(fingers) active, whose path to xt in T does not contain another server. If several servers
are in the same location, one of them is chosen arbitrarily to be active. Algorithm A serves
xt as follows: as long as there is no server on xt, move all active servers one step closer to
xt. Observe that as servers move, some of them may become inactive. Algorithm A (as
described) may need to move multiple servers during one access. It can, however, easily be
transformed into a lazy algorithm, as discussed in § 2.

Remains the issue that the optimal initial T and ~̀ are not known. Let B1, . . . , BN be
instances of an online k-server algorithm (in our case Algorithm B), one for each combination
of initial tree T and initial server-placement ~̀. Note that N = O(4n · nk). Let M be a
“meta-algorithm” that simulates all Bj ’s for j = 1, . . . , N , competitive on sufficiently long
input with the best Bj . AlgorithmM processes X in epochs of lengthM = n log n, executing
in the i-th epoch, for i = 1, . . . , dm/Me, some Bτ(i) according to a (randomized) choice τ(i).

Suppose that ~̀∗ and T ∗ describe the state of Bτ(i) chosen byM at the beginning of the
i-th epoch. To switch to the state ~̀∗, T ∗,M takes O(n log n) elementary steps: (1) rotate
the current tree to a balanced tree using any of the fingers (O(n) steps), (2) move all fingers
to their location in ~̀∗ (k times O(log n) steps), (3) use an arbitrary finger f to rotate the tree
to T ∗ (O(n) steps), (4) move f back to its location in ~̀∗ (O(n) steps). Since M = n log n,
the cost of switching can be amortized over the epoch.

The choice of Bτ(i) for epoch i is done according to the multiplicative-weights (MW)
technique [1], based on the past performance of the various algorithms. Our experts are the
online executions B1, . . . , BN , our i-th event is the portion of X revealed in the i-th epoch,
the loss of the j-th expert for the i-th event is the cost of Bj in the i-th epoch. Let Cmax
denote the maximum possible loss of an expert for an event (we may assume Cmax ≤ n ·M).

It follows from the standard MW-bounds [1, Thm. 2.1], that for an arbitrary ε ∈ (0, 1),
the cost ofM on X is at most minj(1 + ε)Cj + Cmax · lnN

ε
, where Cj is the cost of expert

Bj for the entire X; in particular, Bj may correspond to the optimal offline choice ~̀, T , in
which case Cj = O((log k)6) · Fk(X).

Thus, for e.g. ε = 1/2, we obtain that the cost of M on X is at most O((log k)6) ·
Fk(X) + O(n3 log2 n). The output ofM is an online sequence SM of rotations and finger
moves, starting from an arbitrary initial state T0 and ~̀0. Note that while M needs to
evaluate the costs and current states for all experts in all epochs (an extraordinary amount
of computation), only one of the experts interacts with the tree at any time. Thus, SM is a
standard sequence of steps which can be simulated by a standard BST algorithm according to
Theorem 2, at the cost of a further O(log k) factor. This concludes the proof of Theorem 3.

4 Applications of the multi-finger property

In this section we show that every BST algorithm that satisfies the k-finger property also
satisfies the unified bound with fixed time-window (Application 1), is efficient on decomposable
sequences (Application 2), and on generalized monotone sequences (Application 3).

Application 1. Combined space-time sensitivity (Theorem 4). Recall the definition of
UB` in Theorem 1 for a sequence X = (x1, . . . , xm) ∈ [n]m. We connect this quantity with
the k-finger cost, from which Theorem 4 immediately follows.

I Theorem 7. For every `, F (`!)(X) = O(`!) · UB`(X).
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Since we are only concerned with the case when ` is constant, we may drop the term ρt(xt′)
in the definition of UB` (whose value is always between 1 and `).

We prove Theorem 7 via another bound in which distances are measured in a static

reference BST: `-DistTreeT (X) =
m∑
i=1

min
i−`≤j<i

{dT (xi, xj) + 1}. 13

I Lemma 8. minT `-DistTreeT (X) = O(UB`(X)).

Proof. By [46, Thm. 4.7], there is a randomized BST T̃ such that the expected distance
between elements i and j is E[dT̃ (i, j)] = Θ(log |i− j|). Therefore,

min
T
`-DistTreeT (X) ≤ E[

m∑
i=1

min
i−`≤j<i

{dT̃ (xi, xj) + 1}] =
m∑
i=1

E[ min
i−`≤j<i

{dT̃ (xi, xj) + 1}]

≤
m∑
i=1

min
i−`≤j<i

{E[dT̃ (xi, xj) + 1]} =
m∑
i=1

min
i−`≤j<i

{O(log |xi − xj |)} = O(UB`(X)). J

It is now sufficient to show that F(`!)
T (X) = O(`!) · `-DistTreeT (X), for all X and T , i.e. to

describe an (`!)-finger strategy in T for serving X with the given cost.
At a high level, our strategy is the following: (1) Define a virtual tree T (X) whose nodes

are the requests xi for i = 1, . . . ,m. The virtual tree captures the proximities between the
requests, with each xi having as parent the nearest request xj within a fixed time-window
before time i. Edges in T (X) are given as weights the distances between requests in T . Note
that the virtual tree is not necessarily binary. (2) Define a recursive structural decomposition
of the tree T (X), with the property that certain blocks of this decomposition contain requests
in non-overlapping time-intervals. (3) Describe a multi-finger strategy on T (X) for serving
the requests, which induces a multi-finger strategy on T with the required cost. (The strategy
takes advantage of the decomposition in (2).)

We describe the steps more precisely, deferring some details to Appendix B.

The virtual tree. Given a number `, X ∈ [n]m, and a BST T over [n] with root r, the
virtual tree T = T (`, T,X) is a rooted tree with vertex-set {(i, xi) | i ∈ [m]} ∪ {(0, x0)},
where x0 = r is the root of T and (0, x0) is the root of T . The parent of a non-root vertex
(i, xi) in T is (j, xj) = arg minj∈[i−`,i){dT (xi, xj)}. In words, (j, xj) is the request at most `
steps before (i, xi), closest to xi (in T ).

For each edge e = ((j, xj), (i, xi)), we define the weight wT (e) = dT (xi, xj) + 1. For
each subtree H of T , let wT (H) be the total weight of its edges. Observe that wT (T ) =
`-DistTreeT (X).

Structure and decomposition of the virtual tree. We say that a vertex (i, xi) is before (or
earlier than) (j, xj) if i < j, otherwise it is after (or later than). For every subtree H of T
we denote the earliest vertex in H as start(H) and the latest vertex in H as end(H). The
time-span of H , denoted span(H), is (t1, t2] where (t1, xt1) = start(H) and (t2, xt2) = end(H),
and H is active at time t if t ∈ span(H).

We describe a procedure to decompose T (`, T,X) into directed paths (for the purpose of
analysis), defining the key notions of i-body and i-core. The procedure is called on a subtree
H of T , and the top-level call is decompose(T , `).

13We let x0 denote the root of T , and distances involving negative indices are defined to be +∞.
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procedure decompose(H, i):
1. If H has no edges, return.
2. Let C(H) be the path from start(H) to end(H).
3. Call C(H) an i-core of H, and call H the i-body of C(H).
4. For each connected component H ′ in H \ C(H) invoke decompose(H ′, i− 1).

Observe that T itself is an `-body. Each i-body H consists of its i-core C(H) and a set of
(i− 1)-bodies that are connected components in H \ C(H). For each of those (i− 1)-bodies
H ′, we say that H is a parent of H ′, defining a tree-structure over bodies. Observe that the
number of ancestor bodies of an i-body (excluding itself) is `− i. We make a sequence of
further structural observations about the virtual tree and its decomposition.

I Lemma 9 (B.1).
(i) At every time t, there are at most ` active edges in T (`, T,X).
(ii) The i-cores of the decomposition, for 1 ≤ i ≤ `, partition the vertices of T .
(iii) Let H be an i-body. At any time during the time-span of H, among the (i− 1)-bodies

with parent H at most i− 1 are active.
(iv) Let H be an i-body. The (i − 1)-bodies with parent H can be partitioned into (i − 1)

groups H1, . . . ,Hi−1 such that, for 1 ≤ j ≤ i− 1 and H ′, H ′′ ∈ Hj, the time-spans of
H ′ and H ′′ are disjoint.

The strategy for moving fingers. For two vertices (i, xi) and (j, xj) in the virtual tree
T = T (`, T, S), moving a finger f from (i, xi) to (j, xj) means the following: let P =
((i1, xi1), . . . , (ik, xik )) be the unique path from (i, xi) = (i1, xi1) to (j, xj) = (i`, xi`) in T .
For j = 1, . . . , k − 1, we iteratively move a finger f from xij to xij+1 using dT (xij , xij+1)
steps. Hence, the total number of steps is at most wT (P ).

By serving an access in an i-body H, we mean that, for each (j, xj) ∈ V (H), at time j
there is a finger move to xj in T . For each i ≤ `, let nf(i) be the number of fingers used for
serving accesses in an i-body. We define nf(1) = 1 and nf(i) = 1 + (i− 1) · nf(i− 1), thus, by
induction, nf(i) ≤ i! for all i ≤ `.

We now describe the strategy for moving fingers. Let F be a set of fingers where
|F | = nf(`). At the beginning all fingers are at (0, x0). (In the reference tree T , all fingers
are initially at the root x0.) For 1 ≤ j ≤ m, we call access(T , F, (j, xj)), defined below for
an i-body H, set of fingers F , and u ∈ V (H).

procedure access(H,F, u):
Let C = C(H) be the i-core of H, with C = {u1, . . . , uk′}, where uk is before uk+1 for

each k. For 1 ≤ j ≤ i − 1, let Hj be the j-th group of the (i − 1)-bodies with parent H
(Hj defined in Lemma 9(iv)). The i-bodies in Hj are ordered by their time-span. That is,
suppose Hj = {H ′1, . . . ,H ′`′}. For each `, if span(H ′`) = (a1, a2] and span(H ′`+1) = (b1, b2],
then a2 ≤ b1. Fingers in F are divided into i groups F1, . . . , Fi−1, {fi}, where |Fj | = nf(i−1),
for j ≤ i− 1, and fi is a single finger.
1. If u ∈ C, then move fi to u from the predecessor node of u in C. If u = end(H), then

move F from end(H) to start(H).
2. Else let u ∈ V (H ′)\V (C) where H ′ ∈ Hj . If u = start(H ′) and H ′ is the first (i−1)-body

in Hj , move Fj from start(H) to start(H ′). Perform access(H ′, Fj , u). If u = end(H ′) and
if H ′ is the last in Hj then move Fj from start(H ′) to end(H). Otherwise, if u = end(H ′)
and there is a next (i− 1)-body H ′′ in Hj , then move Fj from start(H ′) to start(H ′′).
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In order to give the reader more intution, we give an alternative description. A 1-body
H consists only of its 1-core C(H). We use one finger and move it through C(H). For i > 1,
an i-body H decomposes in its i-core C(H) and i− 1 groups H1 to Hi−1 of (i− 1)-bodies.
Initially, we have nf(i) fingers on start(H). We use one finger to move down the i-core. We
use a group Fj of nf(i− 1) fingers for the j-group Hj . Let H1, . . .Hp be the (i− 1)-cores in
Hj . We first move Fj to start(H1). Then we use the strategy recusively to move Fj through
H1. Once the group of fingers has reached end(H1), we move them to start(H2), and so on.
Once the fingers have reached end(Hp), we move them back to start(H). We coordinate (this
is not really necessary) the movement of the fingers by the order of the accesses in the access
sequence X.

From the description of access it is clear that all accesses in T are served and that nf(`)
fingers are sufficient. It remains to bound the total number of steps all fingers move. For an
i-body H , let cost(H) be the total cost of calling access(H,F, u) for all u ∈ H. Let H denote
the set of (i− 1)-bodies with parent H . Let C+(H) denote the i-core C(H) augmented with
the edges connecting C(H) to the (i− 1)-bodies in H. Then:

I Lemma 10 (B.2). cost(H) ≤ 2 · nf(i) · wT (C+(H)) +
∑
H′∈H cost(H ′).

By induction, we obtain cost(H) ≤ 2 · i! · wT (H). (For i = 1 we have H = C(H).)
Since nf(`) ≤ `!, we have that F(`!)

T (X) ≤ Fnf(`)
T (X) ≤ cost(T ). By the previous claim we

have cost(T ) ≤ 2 · (`!) · wT (T ) = 2 · (`!) · `-DistTreeT (X), concluding the proof.

Application 2. Decomposable sequences (Theorem 5). Let σ = (σ(1), . . . , σ(n)) be a
permutation. For a, b : 1 ≤ a < b ≤ n, we say that [a, b] is a block of σ if {σ(a), . . . , σ(b)} =
{c, . . . , d} for some integer c, d ∈ [n]. A block partition of σ is a partition of [n] into k

blocks [ai, bi] such that (
⋃
i[ai, bi]) ∩ N = [n]. For such a partition, for each i = 1, . . . , k,

consider a permutation σi ∈ Sbi−ai+1 obtained as an order-isomorphic permutation when
restricting σ on [ai, bi]. For each i, let qi ∈ [ai, bi] be a representative element of i. The
permutation σ̃ ∈ [k]k that is order-isomorphic to {σ(q1), . . . , σ(qk)} is called a skeleton of
the block partition. We may view σ as a deflation σ̃[σ1, . . . , σk].

A permutation σ is d-decomposable if σ = (1), or σ = σ̃[σ1, . . . , σd′ ] for some d′ ≤ d

and each permutation σi is d-decomposable (we refer to [13] for alternative definitions).
Permutations that are 2-decomposable are called separable [7], and this class includes
preorder traversal sequences [49] as a special case.

To show Theorem 5, it is sufficient to define a reference tree T and a one-finger strategy
for serving a d-decomposable sequence X in T with cost O(log d) · |X|. (Appendix C.)

Combined with the Iacono-Langerman result [28] that Greedy BST has the lazy finger
property, we conclude that the cost of Greedy on any d-decomposable sequence X is at most
O(log d) · |X|. The result is tight and strengthens our earlier bound [13] of |X| · 2O(d2).

Application 3. Generalized monotone sequences. A sequence X ∈ [n]m is k-monotone, if
it can be partitioned into k subsequences (not necessarily contiguous), all increasing or all
decreasing. This property has been studied in the context of adaptive sorting, and special-
purpose structures have been designed to exploit the k-monotonicity of input sequences (see
e.g. [41, 36]). Our results show that BSTs can also adapt to such structure.

I Theorem 11. Let X be a k-monotone sequence. Then Fk(X) = O(k) · |X|.
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It follows that OPT(X) ≤ O(k log k) · |X| for k-monotone sequences.14 The simulation is
straightforward. Let {X1, . . . , Xk} be a partitioning of X into increasing sequences (such a
partition can be found online). Let T be an arbitrary static BST over [n]. Consider k fingers
f1, . . . , fk, initially all on 1. For accessing xj ∈ Xi, move finger fi to xj . Observe that over
the entire sequence X, each finger does only an in-order traversal of T , taking O(n) steps.
Thus, FkT (X) = O(nk).

A lower bound of Ω(n log k) follows from enumerative results: for sufficiently large n,
the number of k-monotone permutations X ∈ [n]n is at least kΩ(n) (implied by e.g. [45]).
Therefore, by a standard information-theoretic argument (see e.g. [5, Thm. 4.1]), there exists
a k-monotone permutation X ∈ [n]n with OPT(X) = Ω(n log k).

Further results. We state our hierarchy result (Theorem 6), also implying a weak separation
between k-finger bounds and “monotone” bounds.

I Theorem 12 (Appendix E). For all k and infinitely many n, there is a k-monotone sequence
Sk of length n, such that:

F k−1(Sk) = Ω(nk log(n/k))
F k(Sk) = O(n) (independent of k).

In addition, we show a separation between the k-finger property and the working set
property, showing that for all k and infinitely many n, there are sequences S and S′ of length
n, such that WS(S) = o(Fk(S)), and Fk(S′) = o(WS(S)). (Appendix F.)
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geometry of binary search trees. In SODA 2009, pages 496–505, 2009. URL: http://dl.
acm.org/citation.cfm?id=1496770.1496825.

18 Erik D. Demaine, John Iacono, Stefan Langerman, and Özgür Özkan. Combining Binary
Search Trees. In Automata, Languages, and Programming - 40th International Colloquium,
ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pages 388–399, 2013.
doi:10.1007/978-3-642-39206-1_33.

19 Erik D. Demaine, Stefan Langerman, and Eric Price. Confluently Persistent Tries
for Efficient Version Control. Algorithmica, 57(3):462–483, 2010. doi:10.1007/
s00453-008-9274-z.

20 Jonathan Derryberry and Daniel Dominic Sleator. Skip-Splay: Toward Achieving the
Unified Bound in the BST Model. In WADS 2009, Banff, Canada, August 21-23, 2009.
Proceedings, pages 194–205, 2009.

21 Amos Fiat, Yuval Rabani, and Yiftach Ravid. Competitive k-Server Algorithms. J. Comput.
Syst. Sci., 48(3):410–428, 1994. doi:10.1016/S0022-0000(05)80060-1.

22 Navin Goyal and Manoj Gupta. On Dynamic Optimality for Binary Search Trees. CoRR,
abs/1102.4523, 2011. arXiv:1102.4523.

23 Leonidas J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts. A
New Representation for Linear Lists. In Proceedings of the 9th Annual ACM Symposium
on Theory of Computing, May 4-6, 1977, Boulder, Colorado, USA, pages 49–60, 1977.
doi:10.1145/800105.803395.

24 John Howat, John Iacono, and Pat Morin. The Fresh-Finger Property. CoRR,
abs/1302.6914, 2013. arXiv:1302.6914.

25 Scott Huddleston and Kurt Mehlhorn. A New Data Structure for Representing Sorted Lists.
Acta Inf., 17:157–184, 1982. doi:10.1007/BF00288968.

26 John Iacono. Alternatives to splay trees with O(log n) worst-case access times. In Pro-
ceedings of the Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001,
Washington, DC, USA., pages 516–522, 2001. URL: http://dl.acm.org/citation.cfm?
id=365411.365522.

http://dx.doi.org/10.1201/9781420035179.ch11
http://dx.doi.org/10.1137/0209045
http://dx.doi.org/10.1137/0220008
http://dx.doi.org/10.1137/S009753979732699X
http://dx.doi.org/10.1137/S0097539797326988
http://dl.acm.org/citation.cfm?id=1496770.1496825
http://dl.acm.org/citation.cfm?id=1496770.1496825
http://dx.doi.org/10.1007/978-3-642-39206-1_33
http://dx.doi.org/10.1007/s00453-008-9274-z
http://dx.doi.org/10.1007/s00453-008-9274-z
http://dx.doi.org/10.1016/S0022-0000(05)80060-1
http://arxiv.org/abs/1102.4523
http://dx.doi.org/10.1145/800105.803395
http://arxiv.org/abs/1302.6914
http://dx.doi.org/10.1007/BF00288968
http://dl.acm.org/citation.cfm?id=365411.365522
http://dl.acm.org/citation.cfm?id=365411.365522


P. Chalermsook, M. Goswami, L. Kozma, K. Mehlhorn, and T. Saranurak 55:15

27 John Iacono. In Pursuit of the Dynamic Optimality Conjecture. In Space-Efficient Data
Structures, Streams, and Algorithms, volume 8066 of Lecture Notes in Computer Science,
pages 236–250. Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-40273-9_16.

28 John Iacono and Stefan Langerman. Weighted dynamic finger in binary search trees. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 672–691, 2016.

29 Adam Tauman Kalai and Santosh Vempala. Efficient algorithms for online decision prob-
lems. J. Comput. Syst. Sci., 71(3):291–307, 2005. doi:10.1016/j.jcss.2004.10.016.

30 Haim Kaplan and Robert Endre Tarjan. Purely Functional Representations of Catenable
Sorted Lists. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory
of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 202–211, 1996.
doi:10.1145/237814.237865.

31 Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and
Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

32 S. Rao Kosaraju. Localized Search in Sorted Lists. In Proceedings of the 13th Annual ACM
Symposium on Theory of Computing, May 11-13, 1981, Milwaukee, Wisconsin, USA, pages
62–69, 1981. doi:10.1145/800076.802458.

33 Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118, 2009.
doi:10.1016/j.cosrev.2009.04.002.

34 Elias Koutsoupias and Christos H. Papadimitriou. On the k-Server Conjecture. J. ACM,
42(5):971–983, 1995. doi:10.1145/210118.210128.

35 James R. Lee. Fusible HSTs and the randomized k-server conjecture. CoRR,
abs/1711.01789, 2017. arXiv:1711.01789.

36 Christos Levcopoulos and Ola Petersson. Sorting Shuffled Monotone Sequences. Inf. Com-
put., 112(1):37–50, 1994. doi:10.1006/inco.1994.1050.

37 Joan M. Lucas. Canonical forms for competitive binary search tree algorithms. Tech. Rep.
DCS-TR-250, Rutgers University, 1988.

38 Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive Algorithms
for Server Problems. J. Algorithms, 11(2):208–230, 1990. doi:10.1016/0196-6774(90)
90003-W.

39 K. Mehlhorn and P. Sanders. Algorithms and Data Structures: The Basic Toolbox. Springer,
2008.

40 Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching, volume 1 of
EATCS Monographs on Theoretical Computer Science. Springer, 1984. doi:10.1007/
978-3-642-69672-5.

41 Alistair Moffat and Ola Petersson. An Overview of Adaptive Sorting. Australian Computer
Journal, 24(2):70–77, 1992.

42 J.Ian Munro. On the Competitiveness of Linear Search. In Mike S. Paterson, editor,
Algorithms - ESA 2000, volume 1879 of Lecture Notes in Computer Science, pages 338–345.
Springer Berlin Heidelberg, 2000. doi:10.1007/3-540-45253-2_31.

43 William Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. Commun. ACM,
33(6):668–676, 1990. doi:10.1145/78973.78977.

44 Prabhakar Raghavan and Marc Snir. Memory versus randomization in on-line algorithms.
IBM Journal of Research and Development, 38(6):683–708, 1994. doi:10.1147/rd.386.
0683.

45 Amitai Regev. Asymptotic values for degrees associated with strips of Young diagrams.
Advances in Mathematics, 41(2):115–136, 1981.

46 Raimund Seidel and Cecilia R. Aragon. Randomized Search Trees. Algorithmica,
16(4/5):464–497, 1996. doi:10.1007/BF01940876.

ISAAC 2018

http://dx.doi.org/10.1007/978-3-642-40273-9_16
http://dx.doi.org/10.1016/j.jcss.2004.10.016
http://dx.doi.org/10.1145/237814.237865
http://dx.doi.org/10.1145/800076.802458
http://dx.doi.org/10.1016/j.cosrev.2009.04.002
http://dx.doi.org/10.1145/210118.210128
http://arxiv.org/abs/1711.01789
http://dx.doi.org/10.1006/inco.1994.1050
http://dx.doi.org/10.1016/0196-6774(90)90003-W
http://dx.doi.org/10.1016/0196-6774(90)90003-W
http://dx.doi.org/10.1007/978-3-642-69672-5
http://dx.doi.org/10.1007/978-3-642-69672-5
http://dx.doi.org/10.1007/3-540-45253-2_31
http://dx.doi.org/10.1145/78973.78977
http://dx.doi.org/10.1147/rd.386.0683
http://dx.doi.org/10.1147/rd.386.0683
http://dx.doi.org/10.1007/BF01940876


55:16 Multi-Finger Binary Search Trees

47 Steven S. Seiden. A General Decomposition Theorem for the k-Server Problem. Inf. Com-
put., 174(2):193–202, 2002. doi:10.1006/inco.2002.3144.

48 René Sitters. The Generalized Work Function Algorithm Is Competitive for the Generalized
2-Server Problem. SIAM J. Comput., 43(1):96–125, 2014. doi:10.1137/120885309.

49 Daniel Dominic Sleator and Robert Endre Tarjan. Self-Adjusting Binary Search Trees. J.
ACM, 32(3):652–686, 1985. doi:10.1145/3828.3835.

50 Robert Endre Tarjan and Christopher J. Van Wyk. An O(n log log n)-Time Algorithm for
Triangulating a Simple Polygon. SIAM J. Comput., 17(1):143–178, 1988. doi:10.1137/
0217010.

51 Athanasios K. Tsakalidis. AVL-Trees for Localized Search. Information and Control, 67(1-
3):173–194, 1985. doi:10.1016/S0019-9958(85)80034-6.

52 R. Wilber. Lower Bounds for Accessing Binary Search Trees with Rotations. SIAM Journal
on Computing, 18(1):56–67, 1989. doi:10.1137/0218004.

A Offline BST simulation

A.1 BST simulation of a deque

I Lemma 13. The minimum and maximum element from a BST-based deque can be deleted
in O(1) amortized operations.

Proof. The simulation is inspired by the well-known simulation of a queue by two stacks
with constant amortized time per operation ([39, Exercise 3.19]). We split the deque at
some position (determined by history) and put the two parts into structures that allow us to
access the first and the last element of the deque. It is obvious how to simulate the deque
operations as long as the sequences are non-empty. When one of the sequences becomes
empty, we split the other sequence at the middle and continue with the two parts. A simple
potential function argument shows that the amortized cost of all deque operations is constant.
Let `1 and `2 be the length of the two sequences, and define the potential Φ = |`1 − `2|. As
long as neither of the two sequences are empty, for every insert and delete operation both
the cost and the change in potential are O(1). If one sequence becomes empty, we split the
remaining sequence into two equal parts. The decrease in potential is equal to the length of
the sequence before the splitting (the potential is zero after the split). The cost of splitting
is thus covered by the decrease of potential.

The simulation by a BST is easy. We realize both sequences by chains attached to the
root. The right chain contains the elements in the second stack with the top element as the
right child of the root, the next to top element as the left child of the top element, and so
on. J

A.2 Extended hand

To describe the simulation precisely, we borrow terminology from [18, 19]. Let T be a BST
with a set F of k fingers f1, . . . , fk. For convenience we assume the root of T to be one of
the fingers. Let S(T, F ) be the Steiner tree with terminals F . A knuckle is a connected
component of T after removing S(T, F ), i.e. a hanging subtree of T . Let P (T, F ) be the
union of fingers and the degree-3 nodes in S(T, F ). We call P (T, F ) the set of pseudofingers.
A tendon τx,y is the path connecting two pseudofingers x, y ∈ P (T, F ) (excluding x and y)
such that there is no other z ∈ P (T, F ) inside. We assume that x is an ancestor of y.
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Figure 1 The pseudofingers are b, d, and h. The half-tendons τ<
h,b and τ>

h,b are a and g, f . The
intervals in E(T, F ) are [a, a], [b, b], [c, c], [d, d], [f, g], and [h, h].

The next terms are new. For each tendon τx,y, there are two half tendons, τ<x,y, τ>x,y
containing all elements in τx,y which are less than y and greater than y respectively. Let
H(T, F ) = {τ<x,y, τ>x,y | τx,y is a tendon} be the set of all half tendons.

For each τ ∈ H(T, F ), we can treat τ as an interval [min(τ),max(τ)] where min(τ),max(τ)
are the minimum and maximum elements in τ respectively. For each f ∈ P (T, F ), we can
treat f as an trivial interval [f, f ].

Let E(T, F ) = P (T, F ) ∪ H(T, F ) be the set of intervals defined by all pseudofingers
P (T, F ) and half tendons H(T, F ). We call E(T, F ) an extended hand15. Note that when we
treat P (T, F ) ∪H(T, F ) as a set of elements, such a set is exactly S(T, F ). So E(T, F ) can
be viewed as a partition of S(T, F ) into pseudofingers and half-tendons. Figure 1 illustrates
these definitions.

We first state two facts about the extended hand.

I Lemma 14. Given any T and F where |F | = k, there are O(k) intervals in E(T, F ).

Proof. Note that |P (T, F )| ≤ 2k because there are k fingers and there can be at most k
nodes with degree 3 in S(T, F ). Consider the graph where pseudofingers are nodes and
tendons are edges. That graph is a tree. So |H(T, F )| = O(k) as well. J

I Lemma 15. Given any T and F , all the intervals in E(T, F ) are disjoint.

Proof. Suppose that there are two intervals τ, x ∈ E(T, F ) that intersect each other. One of
them, say τ , must be a half tendon. Because the intervals of pseudofingers are of length zero
and they are distinct, they cannot intersect. We write τ = {t1, . . . , tk} where t1 < · · · < tk.
Assume w.l.o.g. that ti is an ancestor of ti+1 for all i < k, and so tk is an ancestor of a
pseudofingers f where tk < f .

Suppose that x is a pseudofinger and tj < x < tj+1 for some j. Since tj is the first
left ancestor of tj+1, x cannot be an ancestor of tj+1 in T . So x is in the left subtree of
tj+1. But then tj+1 is a common ancestor of two pseudofingers x and f , and tj+1 must be a
pseudofinger which is a contradiction.

Suppose next that x = {x1, . . . , x`} is a half tendon where x1 < · · · < x`. We claim that
either [x1, x`] ⊂ [tj , tj+1] for some j or [t1, tk] ⊂ [xj′ , xj′+1] for some j′. Suppose not. Then
there exist two indices j and j′ where tj < xj′ < tj+1 < xj′+1. Again, xj′ cannot be an
ancestor of tj+1 in T , so xj′ is in the left subtree of tj+1. We know either xj′ is the first left

15 In [18], the hand is defined only over the pseudofingers.
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ancestor of xj′+1 or xj′+1 is the first right ancestor of xj′ . If xj′ is an ancestor of xj′+1, then
xj′+1 < tj+1 which is a contradiction. If xj′+1 is the first right ancestor of xj′ , then tj+1
is not the first right ancestor of xj′ and hence xj′+1 < tj+1 which is a contradiction again.
Now suppose w.l.o.g. [x1, x`] ⊂ [tj , tj+1]. Then there must be another pseudofinger f ′ in the
left subtree of tj+1, hence τ cannot be a half tendon, which is a contradiction. J

A.3 The structure of the simulating BST
In this section, we describe the structure of the BST T ′ that we maintain given a k-finger
BST T and the set of fingers F .

For each half tendon τ ∈ H(T, F ), let T ′τ be the tree with min(τ) as a root which has
max(τ) as a right child. max(τ)’s left child is a subtree containing the remaining elements
τ \ {min(τ),max(τ)}. We implement a BST simulation of a deque on this subtree as defined
in Appendix A.1. By Lemma 15, intervals in E(T, F ) are disjoint and hence they are totally
ordered. Since E(T, F ) is an ordered set, we can define T ′E0

to be a balanced BST such that
its elements correspond to elements in E(T, F ). Let T ′E be the BST obtained from T ′E0

by
replacing each node a in T ′E0

that corresponds to a half tendon τ ∈ H(T, F ) by T ′τ . That is,
suppose that the parent, left child, and right child are aup, al and ar respectively. Then the
parent in T ′E of the root of T ′τ which is min(τ) is aup. The left child in T ′E of min(τ) is al
and the right child in T ′E of max(τ) is ar.

The BST T ′ has T ′E as its top part and each knuckle of T hangs from T ′E in a determined
way.

I Lemma 16. Each element corresponding to pseudofinger f ∈ P (T, F ) has depth O(log k)
in T ′E, and hence in T ′.

Proof. By Lemma 14, |E(T, F )| = O(k). So the depth of T ′E0
is O(log k). For each node a

corresponding to a pseudofinger f ∈ P (T, F ), observe that the depth of a in T ′E is at most
twice the depth of a in T ′E0

by the construction of T ′E . J

A.4 The cost for simulating the k-finger BST
We finally prove the claim on the cost of our BST simulation, which immediately implies
Theorem 2. That is, we prove that whenever one of the fingers in a k-finger BST T moves
to its neighbor or rotates, we can update the maintained BST T ′ to have the structure as
described in the last section with cost O(log k).

We state two observations which follow from the structure of our maintained BST T ′

described in A.3. The first observation follows immediately from Lemma 13.

I Lemma 17. For any half tendon τ ∈ H(T, F ), we can insert or delete the minimum or
maximum element in T ′τ with cost O(1) amortized.

Next, it is convenient to define a set A, called active set, as a set of pseudofingers, the roots
of knuckles whose parents are pseudofingers, and the minimum or maximum of half tendons.

I Lemma 18. When a finger f in a k-finger BST T moves to its neighbor or rotates with
its parent, the extended hand E(T, F ) = P (T, F ) ∪H(T, F ) is changed as follows.
1. There are at most O(1) half tendons τ ∈ H(T, F ) whose elements are changed. Moreover,

for each changed half tendon τ , either the minimum or maximum is inserted or deleted.
The inserted or deleted element a was or will be in the active set A.

2. There are at most O(1) elements added or removed from P (T, F ). Moreover, the added
or removed elements were or will be in the active set A.
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I Lemma 19. Let a ∈ A be an element in the active set. We can move a to the root with
cost O(log k) amortized. Symmetrically, the cost for updating the root r to become some
element in the active set is O(log k) amortized.

Proof. There are two cases. If a is a pseudofinger or a root of a knuckle whose parent is
pseudofinger, we know that the depth of a was O(log k) by Lemma 16. So we can move a to
root with cost O(log k). Next, if a is the minimum or maximum of a half tendon τ , we know
that the depth of the root of the subtree T ′τ is O(log k). Moreover, by Lemma 17, we can
delete a from T ′τ (make a a parent of T ′τ ) with cost O(1) amortized. Then we move a to root
with cost O(log k) worst-case. The total cost is then O(log k) amortized. The proof for the
second statement is symmetric. J

I Lemma 20. When a finger f in a k-finger BST T moves to its neighbor or rotates with
its parent, the BST T ′ can be updated accordingly with cost O(log k) amortized.

Proof. According to Lemma 18, we separate our cost analysis into two parts.
For the fist part, let a ∈ A be the element to be inserted into a half tendon τ . By

Lemma 19, we move a to root with cost O(log k) and then insert a as a minimum or
maximum element in T ′τ with cost O(log k). Deleting a from some half tendon with cost
O(log k) is symmetric.

For the second part, let a ∈ A be the element to be inserted into a half tendon τ . By
Lemma 19 again, we move a to root and move back to the appropriate position in T ′E0

with
cost O(log k). We also need rebalance T ′E0

but this also takes cost O(log k). J

Finally, we describe the BST simulation of a k-finger execution with overhead O(log k).
Let A be an arbitrary k-finger execution in BST T . Whenever there is an update in T (i.e. a
finger moves to its neighbor or rotates), we update the BST T ′ according to Lemma 20 with
cost O(log k) amortized. The BST T ′ is maintained so that its structure is as described in
Appendix A.3. By Lemma 16, we can access any finger f of T from the root of T ′ with cost
O(log k). Therefore, the cost of the BST execution is at most O(log k) times the cost of A.
This concludes the proof.

B Missing proofs for Application 1

B.1 Proof of Lemma 9
Part (i).

Suppose that there is some time t when there are `′ > ` edges {(jk, xjk
), (ik, sik )}`′k=1

such that jk < t ≤ ik for all k ≤ `′. Since each node has a unique parent, i1, . . . , i`′−1, i`′

must be distinct and hence max1≤k≤`′ ik ≥ t + `′ − 1 ≥ t + `. Thus max1≤k≤`′ jk ≥ t, a
contradiction.

Part (ii).
By construction, the cores are edge-disjoint, and every vertex belongs to some core (the

recurrence ends on singleton vertices only). It remains to show that when decompose(H, 0)
is called during the execution of decompose(T , `), H has no edges, i.e. there is no i-core or
i-body with i ≤ 0.

To see this, define the sequence of graphs H0, . . . ,H` where H` = T (`, T,X), Hi−1 is a
connected component of Hi\C(Hi), and H0 = H . Recall that span(K) denotes the time-span
of K. By definition of C(Hi), we have span(Hi−1) ⊆ span(Hi).
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Suppose for contradiction that H0 has an edge. Denote span(H0) = (t1, t2], where t1 < t2.
For all 0 ≤ i ≤ `, it holds that span(Hi) ⊇ (t1, t2]. Let t ∈ (t1, t2]. We have that C(Hi)
contains an edge ((ai, xai

), (bi, xbi
)) where ai < t ≤ bi for all 0 ≤ i ≤ `. Since C(Hi) are

edge-disjoint, this contradicts part (i).

Part (iii).
Suppose there are i active (i − 1)-bodies H ′1, . . . ,H ′i of H at time t. Since H is

an i-body, there are ` − i ancestors A1, . . . , A`−i of H. For each of the cores C ∈
{C(H ′1), . . . , C(H ′i), C(H), C(A1), . . . , C(A`−i)} which is a set of size ` + 1, there is an
edge (a, sa), (b, sb) where a < t ≤ b. This contradicts part (i).

Part (iv).
We construct the decomposition greedily. Consider the (i − 1) bodies H ′ ordered by

start(H ′) and put H ′ into the group Hj for the smallest index j such that the time-span of
H ′ is disjoint from the time-spans of all members of the group. Assume that this process
opens up i′ > i− 1 groups. Then there are (i− 1)-bodies H ′1 to H ′i′ (one per group) such
that the time-span of the i-body H intersects the time-spans of H ′1 to H ′i′ , contradicting
part (iii).

B.2 Proof of Lemma 10
We analyze the total cost of calling access(H,F, u) for all u ∈ V (H). The total cost due to
recursive calls in Step 2 is accounted by the term

∑
H′∈H cost(H ′). The remaining operations

amount to moving nf(i) fingers from start(H) to end(H) and back, along the i-core C(H).
The cost of this is exactly 2 ·nf(i) ·wT (C(H)). In addition we need to traverse, using nf(i−1)
fingers, the edges connecting C(H) to start(H ′), twice for all H ′ ∈ H. The total cost thus
becomes at most 2 · nf(i) · wT (C+(H)) +

∑
H′∈H cost(H ′).

We argue now by induction that for an i-body H, we have cost(H) ≤ 2 · i! · wT (H). For
i = 1, H = C(H) = C+(H). Thus, by the inductive step:

cost(H) ≤ 2 · nf(1) · wT (C+(H)) ≤ 2 · wT (H).

For the general inductive step:

cost(H) ≤ 2 · nf(i) · wT (C+(H)) +
∑
H′∈H

cost(H ′)

≤ 2 · i! · wT (C+(H)) +
∑
H′∈H

2 · (i− 1)! · wT (H ′)

≤ 2 · i! ·
(
wT (C+(H)) +

∑
H′∈H

wT (H ′)
)

= 2 · i! · wT (H).

C Decomposable Sequences

I Lemma 21. Let X = (x1, . . . , xn) be a k-decomposable permutation of length n. Then
F1(X) ≤ 4(|X| − 1) dlog ke.

Proof. It is sufficient to define a reference tree T for which F1
T (X) achieves such bound. We

remark that the tree will have auxiliary elements. We construct T recursively. If X has
length one, then T has a single node and this node is labeled by the key in X. Clearly,
F1
T (X) = 0.
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Otherwise, let X = X̃[X1, . . . , Xj ] with j ∈ [k] be the outermost partition of X. Denote
by Ti the tree for Xi that has been inductively constructed. Let T0 be a BST of depth at
most dlog je and with j leaves. Identify the i-th leaf with the root of Ti and assign keys to
the internal nodes of T0 such that the resulting tree is a valid BST. Let ri be the root of Ti,
0 ≤ i ≤ j and let r = r0 be the root of T . Then

dT (r, x1) ≤ dlog ke+ dT1 (r1, x1)
dT (r, xn) ≤ dlog ke+ dTj (rj , xn)

dT (xt−1, xt) ≤

{
dT` (xt−1, xt) if xt−1, xt ∈ X`

2 dlog ke+ dT` (r`, xt−1) + dT`+1 (r`+1, xt) if xt−1 ∈ X` and xt ∈ X`+1,

and hence

F1
T (X) = dT (r, x0) +

∑
t≥2

dT (xt−1, xt) + dT (xn, r)

≤ 2j dlog ke+
∑

1≤`≤j
F1
T`

(X`) ≤ 2j dlog ke+
∑

1≤`≤j
4(|X`| − 1) dlog ke

≤ (2j − 4j + 4
∑

1≤`≤j
|X`|) dlog ke ≤ 4(|X| − 1) dlog ke ,

where the last inequality uses j ≥ 2. J

D Finger bounds with auxiliary elements

Recall that F(X) is defined as the minimum over all BSTs T on [n] of FT (X). It is convenient
to define a slightly stronger finger bound that also allows auxiliary elements. Define F̂(X) as
the minimum over all BSTs T that contain the keys [n] (but the size of T can be much larger
than n). We define F̂

k
(X) as the k-finger bound when the tree is allowed to have auxiliary

elements. We argue that the two definitions are equivalent.

I Theorem 22. For any integer k, Fk(X) = Θ(F̂
k
(X)) for all X.

Proof. It is clear that F̂
k
(X) ≤ Fk(X). We only need to show the converse.

Let T be a BST (with auxiliary elements) such that FkT (X) = F̂
k
(X). Denote by ~f

the optimal finger strategy on T . Let [n] ∪ Q be the elements of T where Q is the set of
auxiliary elements in T . For each a ∈ [n] ∪Q, let dT (a) be the depth of key a in T , and let
w(i) = 4−dT (i). For any two elements i and j and set Y ⊆ [n] ∪Q, let wY [i : j] be the sum∑
k∈Y ∩[i,j] w(k) of the weights of the elements in Y between i and j (inclusive). For any

i, j ∈ [n] ∪Q such that i ≤ j, we have

log
w[n]∪Q[i : j]

min(w(i), w(j)) = O(dT (i, j)),

where dT (i, j) is the distance from i to j in T . So, this same bound also holds when
considering only keys in [n]. That is, for i, j ∈ [n], we have

log
w[n][i : j]

min(w(i), w(j)) = O(dT (i, j)).
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Given the weight of {w(a)}a∈[n], the BST T ′ (without auxiliary elements) is constructed
by invoking Lemma 23. We bound the term FkT ′(X) (using strategy ~f) by

O(
∑
t

dT ′(xσ(ft,t), xt)) = O(
m−1∑
t=1

lg
w[n][xt : xσ(ft,t)]

min(w(xi), w(xσ(ft,t)))
)

= O(
m−1∑
t=1

dT (xσ(ft,t), xt)) = O(FkT (X))

where X = (x1, . . . , xm). Therefore, Fk(X) ≤ FkT ′(X) = O(FkT (X)) = O(F̂
k
(X)). J

I Lemma 23. Given a weight function w(·), and W =
∑
i∈[n] w(i), there is a deterministic

construction of a BST Tw such that the depth of every key i ∈ [n] is dTw
(i) = O(log W

w(i) ).

Proof. Let w1, . . .wn be a sequence of weights. We show how to construct a tree in which
the depth of element ` is O(logw[1 : `]/min(w1, w`)).

For i ≥ 1, let ji be minimal such that w[1 : ji] ≥ 2iw1. Then w[1 : ji − 1] < 2iw1 and
w[ji−1 + 1 : ji] ≤ 2i−1w1 + wji .

Let Ti be the following tree. The right child of the root is the element ji. The left subtree
is a tree in which element ` has depth O(log 2i−1w1/w`).

The entire tree has w1 in the root and then a long right spine. The trees Ti hang off the
spine to the left. In this way the depth of the root of Ti is O(i).

Consider now an element ` in Ti. Assume first that ` 6= ji. The depth is

O

(
i+ log 2i−1w1

w`

)
= O

(
i+ log 2i−1w1

min(w1, w`)

)
= O

(
log 2i−1w1

min(w1, w`)

)
= O

(
w[1 : `]

min(w1, w`)

)
.

For ` = ji, the depth is

O (i) = O

(
log 2iw1

w1

)
= O

(
log w[1 : ji]

min(w1, wji
)

)
. J

E Proof of Theorem 6

Let n be an integer multiple of k and ` = n/k. Consider the tilted k-by-` grid Sk. More
precisely, the access sequence is defined as: 1, ` + 1, . . . , ` · (k − 1) + 1, 2, ` + 2, . . . ,
(k − 1)`+ 2,. . . , (k − 1)`+ `. We denote the elements of Sk as si, for i = 1, . . . , n. To see
the geometry of this sequence, one may view it as a partitioning of the keys [n] into “blocks”
Bi : i = 1, . . . , k where Bi contains the keys in {`(i− 1) + 1, `(i− 1) + 2, . . . , `i}, so we have
|Bi| = ` and

⋃k
i=1 Bi = [n]. The sequence Sk consists of an interleaving of an increasing

traversal of each block.

I Lemma 24. Fk(Sk) = O(n).

Proof. The main idea is to use each finger to serve only the keys inside blocks and to use a
separate finger for each block. (recall that there are k blocks and k fingers.) We create a
reference tree T and argue that FkT (Sk) = O(n). Let T0 be a BST of height O(log k) and
with k leaves. Each leaf of T0 corresponds to the keys

{
` · (i− 1) + 1

2
}k
i=1. The non-leafs of

T0 are assigned arbitrary fractional keys that are consistent with the BST properties. For
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each i ∈ [k], path Pi is defined as a BST with key ` · (i− 1) + 1 (i.e. the smallest key in block
Bi) at the root, where for each j = 0, . . . , (`− 1), the key `(i− 1) + j has `(i− 1) + (j + 1) as
its only (right) child. The final tree T is obtained by hanging each path Pi as a left subtree
of a leaf ` · (i− 1) + 1

2 . The k-finger strategy is simple: The i-th finger only takes care of the
elements in block Bi. The cost for the first access in block Bi is O(log k), and afterwards,
the cost is only O(1) per access. So the total access cost is O(nk log k + n) = O(n). J

The rest of this section is devoted to proving the following:

I Theorem 25. Fk−1(Sk) = Ω(nk log(n/k))

Let T be an arbitrary reference tree. We argue that Fk−1
T (Sk) = Ω(nk log(n/k)).

A finger configuration ~f = (f(1), . . . , f(k− 1)) ∈ [n]k−1 specifies to which keys the fingers
are currently pointing. Any finger strategy can be described by a sequence ~f1, . . . , ~fn, where
~ft is the configuration after element st is accessed. As before, we assume w.l.o.g. the following
lazy update strategy:

I Lemma 26. For each time t, the configurations ~ft and ~ft+1 differ at exactly one position.
In other words, we only move the finger that is used to access st+1.

We view the input sequence Sk as having ` phases: The first phase contains the sub-
sequence 1, `+ 1, . . . , `(k − 1) + 1, and so on. Each phase is a subsequence of length k that
accesses keys starting in block bset1 and so on, until the block Bk.

I Lemma 27. For each phase p ∈ {1, . . . , `}, there is a time t ∈ [(p−1)k+1, p·k] such that st
is accessed by finger j such that ft−1(j) and ft(j) are in different blocks, and ft−1(j) < ft(j).
That is, this finger moves to the block Bb, b = t mod k, from some block Bb′ , where b′ < b,
in order to serve st.

Proof. Consider the accesses in blocks B1, . . . , Bk in order. After the access in B1, we have
a finger in B1 and hence at most k − 2 fingers in blocks B2, . . . , Bk. If the access to B2 is
served by a finger being in block B1 before the acces, we are done. Otherwise, it is server by
a finger being in blocks B≥2 before the access. Then we have two fingers in blocks B≤2 after
the access and at most k − 3 fingers in blocks B≥3. Continuing in this way, we will find the
desired access. J

For each phase p ∈ [`], let tp denote the time for which such a finger moves across
the blocks from left to right; if they move more than once, we choose tp arbitrarily. Let
J = {tp}`p=1. For each finger j ∈ [k − 1], each block i ∈ [k] and block i′ ∈ [k] : i < i′, let
J(j, i, i′) be the set containing the time t for which finger f(j) is moved from block Bi to
block Bi′ to access st. Let c(j, i, i′) = |J(j, i, i′)|. Notice that

∑
j,i,i′ c(j, i, i′) = n

k = `, due
to the lemma. Let P (j, i, i′) denote the phases p for which tp ∈ J(j, i, i′).

I Lemma 28.
∑
j,i,i′:c(j,i,i′)≥16 c(j, i, i′) ≥ n/2k if n = Ω(k4).

Proof. There are only at most k3 triples (j, i, i′), so the terms for which c(j, i, i′) < 16
contribute to the sum at most 16k3. This means that the sum of the remaining is at least
n/k − 16k3 ≥ n/2k if n satisfies n = Ω(k4). J

From now on, we consider the sets J ′ and J ′(j, i, i′) that only concern those c(j, i, i′) with
c(j, i, i′) ≥ 16 instead.

I Lemma 29. There is a constant η > 0 such that the total access cost during the phases
P (j, i, i′) is at least ηc(j, i, i′) log c(j, i, i′).
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Once we have this lemma, everything is done. Since the function g(x) = x log x is convex,
we apply Jensen’s inequality to obtain:

1
|J ′|

∑
j,i,i′

ηc(j, i, i′) log c(j, i, i′) ≥ η · n

2k|J ′| · log(n/2k|J ′|).

Note that the left side is the term E[g(x)], while the right side is g(E(x)). Therefore, the
total access cost is at least ηn

8k log(n/2k). We now prove the lemma.

Proof of Lemma 29. We recall that, in the phases P (j, i, i′), the finger-j moves from block
Bi to Bi′ to serve the request at corresponding time. For simplicity of notation, we use J̃ and
C to denote J(j, i, i′) and c(j, i, i′) respectively. Also, we use f̃ to denote the finger-j. For
each t ∈ J̃ , let at ∈ Bi be the key for which the finger f̃ moves from at to st when accessing
st ∈ Bi′ . Let J̃ = {t1, . . . , tC} such that at1 < at2 < . . . < atC . Let R be the lowest common
ancestor in T of keys in [atbC/2c+1, atC ].

I Lemma 30. For each r ∈ {1, . . . , bC/2c}, the access cost of str and stC−r
is together at

least min{dT (R, str ), dT (R, stC−r
)}.

Proof. Let ur be the lowest common ancestor between atr and str . Then the cost of accessing
str is at least dT (ur, str ). If str is in the subtree rooted at R, then ur must be an ancestor
of R (because atr < atbC/2c < atC < str) and hence dT (ur, str ) ≥ dT (R, str ). Thus the cost
it at least dT (R, str ). Otherwise, we know that str is outside of the subtree rooted at R, and
so is stC−r

. On the other hand, atC−r
is in such subtree, so moving the finger from atC−r

to
stC−r

must touch R, therefore costing at least dT (R, stC−r
). J

Lemma 30 implies that, for each r = 1, . . . , bC/2c, we pay the distance between some
element vr ∈

{
str , stC−r

}
to R. The total such costs would be

∑
r dT (R, vr). Applying the

fact that (i) vr’s are different and (ii) there are at most 3d vertices at distance d from a
vertex R, we conclude that this sum is at least

∑
r dT (R, vr) ≥ Ω(C logC). J

F Working set and k-finger bounds are incomparable

We show the following theorem.

I Theorem 31.
(1) There exists a sequence S such that WS(S) = o(Fk(S)), and
(2) There exists a sequence S′ such that Fk(S′) = o(WS(S′)).

The sequence S′ above is straightforward: For k = 1, just consider the sequential access
1, . . . , n repeated m/n times. For m large enough, the working set bound is Ω(m log n).
However, if we start with the finger on the root of the tree which is just a path, then the
lazy finger bound is O(m). The k-finger bound is always less than lazy finger bound, so this
sequence works for the second part of the theorem.

The existence of the sequence S is slightly more involved (the special case for k = 1 was
proved in [8]), and is guaranteed by the following theorem, the proof of which comprises the
remainder of this section.

I Theorem 32. For all k = O(n1/2−ε), there exists a sequence S of length m such that
WS(S) = O(m log k) whereas F k(S) = Ω(m log(n/k)).
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We construct a random sequence S and show that while WS(S) = O(m log k) with
probability one, the probability that there exists a tree T such that FkT (S) ≤ cm log3(n/k) is
less than 1/2 for some constant c < 1. This implies the existence of a sequence S such that
for all trees T , FkT (S) = Ω(m log(n/k)).

The sequence is as follows. We have Y phases. In each phase we select 2k elements
Ri = {rij}2kj=1 uniformly at random from [n]. We order them arbitrarily in a sequence Si,
and access [Si]X/2k (access Si X/2k times). The final sequence S is a concatenation of the
sequences [Si]X/2k for 1 ≤ i ≤ Y . Each phase has X accesses, for a total of m = XY accesses
overall. We will choose X and Y appropriately later.

Working set bound. One easily observes that WS(S) = O(Y (2k log n+ (X − 2k) log(2k))),
because after the first 2k accesses in a phase, the working set is always of size 2k. We choose
X such that the second term dominates the first, say X ≥ 5k logn

log 2k . We then have that the
working set bound is O(XY log k) = O(m log k), with probability one.

k-finger bound. Fix a BST T . We classify the selection of the set Ri as being d-good for
T if there exists a pair rij , ri` ∈ Ri such that their distance in T is less than d. The following
lemma bounds the probability of a random selection being d-good for T .

I Lemma 33. Let T be any BST. The probability that Ri is d-good for T is at most 8k23d/n.

Proof. We may assume 8k23d/n < 1 as the claim is void otherwise. We compute the
probability that a selection Ri is not d-good first. This happens if and only if the balls of
radius d around every element rij are disjoint. The volume of such a ball is at most 3d, so we
can bound this probability as

P [Ri is not d-good for T ] = Π2k−1
i=1

(
1− i3d

n

)
≥

(
1− 2k3d

n

)2k

⇒ P [Ri is d-good for T ] ≤ 1−
(

1− 2k3d

n

)2k

= 1− exp
(

2k ln
(

1− 2k3d

n

))
≤ 1− exp

(
−8k23d/n

)
≤ 8k23d/n,

where the last two inequalities follow from ln(1−x) > −2x for x ≤ 1/2 (note that 8k23d/n < 1
implies 2k3d/n ≤ 1/2) and ex > 1 + x, respectively. J

Observe that if Ri is not d-good, then the k-finger bound of the access sequence [Si]X/2k
is Ω(d(X − k)) = Ω(dX). This is because in every occurrence of Si, there will be some k
elements out of the 2k total that will be outside the d-radius balls centered at the current k
fingers.

We call the entire sequence S d-good for T if at least half of the sets Ri are d-good for T .
Thus if S is not d-good, then FkT (S) = Ω(XY d).

I Lemma 34. P [S is d-good for T ] ≤
(

32k23d

n

)Y/2
.
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Proof. By the previous lemma and by definition of goodness of S, we have that

P [S is d-good for T ] ≤
(
Y

Y/2

)(
8k23d

n

)Y/2
≤ 4Y/2

(
8k23d

n

)Y/2
=
(

32k23d

n

)Y/2
. J

The theorem now follows easily. Taking a union bound over all BSTs on [n], we have

P [S is d-good for some BST T ] ≤ 4n
(

32k23d

n

)Y/2
.

Now set Y = 2n. We have that

P [∃ a BST T : FkT (S) ≤ md/4] ≤ 4n
(

32k23d

n

)n
.

Putting d = log3
n

256k2 gives that for some constant c < 1,

P [∃ a BST T : FkT (S) ≤ c(m log(n/k))] ≤ 4n
(

32k23d

n

)n
= 1/2

which implies that with probability at least 1/2 one of the sequences in our random con-
struction will have k-finger bound that is Ω(m log(n/k)). The working set bound is always
O(m log k). This establishes the theorem.
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Abstract
We initiate the study of counting oracles for various path problems in graphs. Distance oracles
have gained a lot of attention in recent years, with studies of the underlying space and time
tradeoffs. For a given graph G, a distance oracle is a data structure which can be used to answer
distance queries for pairs of vertices s, t ∈ V (G). In this work, we extend the set up to answering
counting queries: for a pair of vertices s, t, the oracle needs to provide the number of (shortest
or all) paths from s to t. We present O(n1.5) preprocessing time, O(n1.5) space, and O(

√
n)

query time algorithms for oracles counting shortest paths in planar graphs and for counting all
paths in planar directed acyclic graphs. We extend our results to other graphs which admit small
balanced separators and present applications where our oracle improves the currently best known
running times.
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1 Introduction

Shortest path problems have been heavily studied for decades and the developed algorithms
are among the most important algorithmic building blocks. In the most traditional set up,
one is given a graph G and two vertices s, t and the goal is to find a shortest path from s

to t in G. Due to many applications querying for multiple s, t pairs, the design of so-called
distance oracles has gained a lot of attention in recent years [13, 9, 18, 6, 11, 8, 10, 3]. In
an oracle approach, for a given graph G, the goal is to pre-compute a not too large data
structure (an oracle) which can then be used to answer distance queries for pairs of vertices
s, t in as fast time as possible. Many previous works, which we discuss in more detail later,
have studied the tradeoffs between the required space and the query time for such distance
oracles for various graph classes. Among the prime applications of these oracle results is map
querying, where a user often prefers knowing not just one of the optimal routes, but they
would like to be shown a variety of options. Hence, we propose to amend distance oracles
with counting: in addition to the distance from s to t, a counting path oracle returns also
the number of all shortest paths from s to t. Such an oracle can then be used to generate the
paths or provide a random sample when the total number of paths is prohibitively large.
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We design counting oracles for the following two problems: #SHORTPATH-ORACLE,
where one is given a positively weighted graph and the goal is to construct an oracle which
answers queries of “how many shortest paths from s to t are there?”, and #PATH-DAG-
ORACLE, where one is given a directed acyclic graph (DAG) and the oracle answers queries
of “how many paths from s to t are there?”. We note that the second problem is #P-hard for
general graphs [20], but both problems can be solved in polynomial time within the specified
graph class. The second problem, which has applications of its own described below, helps us
build an oracle for the first problem. For both problems, when the input is a planar graph
with n vertices, we design oracles which take O(n1.5) time to construct, take O(n1.5) space,
and each query can be answered within O(

√
n) time1.

A straightforward approach to both problems yields an oracle which takes O(n2) space
and O(1) query time, by simply pre-computing all of the possible queries. In a DAG one can
compute the number of paths from one vertex to all other vertices in linear time, leading
to an O(n(n + m)) preprocessing time to compute the oracle for a graph with n vertices
and m edges. For planar graphs, this preprocessing time is O(n2) since m = O(n). For
several applications, the number of queries can be linear, leading to an O(n2) preprocessing
time and an overall O(n) time across all queries in the planar setting. With our results, we
speed up the running time for such applications to O(n1.5 + n

√
n) = O(n1.5). For arbitrary

positively weighted graphs, one can compute the number of shortest paths from one vertex
to all other vertices in polynomial time, typically within the same running time as finding
the distances to all other vertices. For example, one can extend the Dijkstra’s algorithm to
compute, in addition to the distances, also the respective path counts, and keep updating
them throughout the computation. Our results speed up these traditional approaches.

Our techniques employ balanced separators, which are a staple of planar graph algorithms
but to the best of our knowledge have not been used for any counting problems. The distance
oracle results are ingenious and faster than our results but as far as we see they do not
extend to counting. In an optimization problem, one can focus on a certain canonical type of
the wanted object, such as a left-most shortest path, or one can even assume that there is a
unique shortest path between any pair of vertices. (This can be obtained by small random
perturbations of the edge weights.) For a counting problem there appears to be the need
for more stored information or longer query time. In particular, we store, for each vertex
in the separator, certain path counts to all other vertices in the graph, proceeding in a
divide-and-conquer manner on the two parts of the graph. The main technical aspect of
our contribution lies in a case analysis that proves that each path has been accounted for
exactly once. We generalize our planar results to general graphs which admit small balanced
separators.

1.1 Related work and applications
Distance oracles have been studied for several decades, with several very recent exciting
results. The current state of the art exact distance oracle of Gawrychowski, Mozes, Weimann,
and Wulff-Nilsen [13] requires O(n1.5) space and can answer queries in O(log n) time. This
work improved on a recent result of Cohen-Addad, Dahlgaard, and Wulff-Nilsen [9] who

1 We note that the returned counts may be exponentially large, for example when the graph is a path
where every edge has been duplicated – if s and t are the end-points, the number of shortest s-t paths is
2n−1. Therefore, manipulating the counts can incur an additional O(n polylog n) factor in the running
time. To simplify our presentation throughout this paper, we will (slightly optimistically) assume that
each arithmetic operation (addition, multiplication of the counts) takes O(1) time.
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designed an oracle with O(n5/3) space and O(log n) query time. Furthermore, both works
obtained space/time tradeoffs: for a given S, they design an oracle which takes S space and
the query time is a function of S. In particular, [13] obtain a query time Õ(max{1, n1.5/S})
for S ∈ [n, n2], while [9] answer queries within time Õ(n5/2S3/2) for S ≥ n3/2 (where the Õ
notation hides logarithmic factors). Other previous works, on which the two mentioned results
build, also studied distance oracles and their space/time tradeoffs [18, 6, 11, 8, 10, 3]. As far
as we see, these results do not extend to counting without significant increase in the running
time (or space). Of note is also extensive study of approximate distance oracles, with either
relative or absolute error, which can achieve a near-linear space and near-constant query time,
see [1] and the references within. As for the counting variant in an approximate distance
setting, Mihalák, Šrámek, and Widmayer [17] showed that counting all s-t paths up to a
given length in a DAG is #P-complete. They also give a fully polynomial-time approximation
scheme (FPTAS) for the problem, yielding an approximate counting approximate distance
oracle in DAGs. However, the techniques heavily rely on the graph being acyclic. We also
note two other hardness results for counting: Yamamoto [21] proved that there is no fully
polynomial approximation scheme (FPRAS) for approximately counting all paths in a graph,
unless RP = NP. On the fixed-parameter tractable side, Flum and Grohe [12] showed that
the problem of counting paths of length k is #W[1]-complete.

Among applications of counting oracles for all paths in a DAG is the problem of counting
minimum (s, t)-cuts in planar and bounded genus graphs. The problem of counting minimum
(s, t)-cuts has been studied since the 1980’s due to its connection to the (s, t) network
reliability problem. Provan and Ball [19] proved that it is #P-complete for general graphs
and in [4] they gave a general outline that reduces the problem in planar graphs with both s
and t on the outerface to the problem of counting all paths in a planar DAG. Their technique
was subsequently generalized to any location of s and t by Bezáková and Friedlander [5] and
Chambers, Fox, and Nayyeri [7] further extended the approach to bounded genus graphs. In all
these scenarios, one needs to count all paths between d pairs of vertices in a planar or bounded
genus DAG. For planar graphs, this results in a running time of O(n log n + dn) = O(n2)
since d = O(n), which our result improves to O(n log n + n1.5) = O(n1.5) since instead of
counting the paths for each pair in O(n) time, we can make queries in O(

√
n) time per pair.

The running time encompasses also the oracle preprocessing time. It is worth noting that
our attempts to use more advanced decomposition techniques such as the r-divisions led to
these same running times, making us wonder if a faster than O(n1.5) algorithm exists.

The paper is organized as follows. In Section 2 we discuss preliminaries, including how
to extend existing single source shortest path (SSSP) algorithms to counting, incurring an
additional linear term in the running time. Section 3 presents counting oracles for all paths
in planar DAGs, then we discuss counting oracles for shortest paths in positively weighted
directed or undirected planar graphs in Section 4, and generalize the oracles beyond planar
graphs in Section 5.

2 Preliminaries

An undirected graph G = (V,E) is a set of vertices V and edges E ⊆ (V × V ) of unordered
pairs. In a directed graph G = (V,E), the edges are ordered pairs and we refer to them as
arcs, using the standard convention that (u, v) indicates an arc from vertex u to vertex v.
Unless specifically noted, our results apply to both directed and undirected graphs. (We
phrase all our results for graphs but they can be naturally extended to multigraphs which can
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have multiple edges between the same pair of vertices.) A positively weighted graph, denoted
by G = (V,E,w), assigns a positive weight w(e) to each edge e ∈ E (i. e., w : E → R+). For
an S ⊆ V , we use G[S] to denote the sub-graph of G induced by S. Throughout this text we
use n = |V | to denote the number of vertices and m = |E| the number of edges.

A path p in a graph G is a sequence of vertices v1, v2, . . . , vk, k ≥ 1, where (vi, vi+1) ∈ E
for each i ∈ {1, . . . , k − 1}. A path with no repeated vertices is called a simple path. For
convenience, we refer to a path starting at vertex v1 and ending at vertex vk as a v1-vk path.
We define the relation “is before on p = v1, . . . , vk” by u1 ≺p u2 where u1 = vi, u2 = vj ,
and i ≤ j. We say that vi, vi+1, . . . , vj , where i < j, is a sub-path of a path p = v1, . . . , vk.
The length of a path p = v1, . . . , vk is k − 1 in unweighted graphs, and

∑k−1
i=1 w(vi, vi+1) in

weighted graphs. A u1-u2 path is shortest if its length is the smallest possible across all
u1-u2 paths. The length of a shortest u1-u2 path is called the distance from u1 to u2. A
cycle v1, . . . , vk is a path where v1 = vk and k ≥ 2. A graph is acyclic if it does not contain
any cycles.

I Observation 1. Any path in an acyclic graph is simple. Any shortest path in a positively
weighted graph is simple. If p is a shortest path in a graph G, then any sub-path of p must
also be shortest.

We say that a class of graphs admits an (α, f(n))-balanced separator, where f(n) is
a function and α is a constant, if for every graph G with n vertices its vertices can be
partitioned into three sets A,B,C such that the size of A and B are each upper-bounded by
αn, the size of C is O(f(n)), and there are no edges connecting a vertex in A with a vertex
in B. We will refer to such a separator as an (A,B,C) separator.

A graph is planar if it has a planar embedding, that is, if it can be drawn in a plane
without any of its edges crossing one another (except for their end-points). A graph is said
to be of genus g if it has a crossing-free embedding into a surface of genus g. Planar and
bounded genus graphs are sparse, in particular m = O(n) and m = O(n+ g), respectively,
and they admit small balanced separators:

I Theorem 2 (Planar Separator Theorem, Lipton and Tarjan [16]). Every planar graph has a
(2/3,

√
n)-balanced separator, which can be found in time O(n).

I Theorem 3 (Bounded Genus Separator Theorem, Gilbert, Hutchinson, and Tarjan [14]). Every
graph of genus g has a (2/3,√gn)-balanced separator, which can be found in time O(n).

In a DAG G, for a vertex u we can compute the number of all paths from u to v for every
vertex v in time O(m+ n) via a simple application of topological sort: sum the number of
paths to v’s in-neighbors. We will refer to this algorithm as CountPaths(G, u). Next we
show how to extend known single source shortest path (SSSP) algorithms with counting:

Except for the SSSP call, this algorithm runs in linear time and computes the number of
shortest paths from s to every vertex in G. It does this by building a DAG of tight edges. By
Observation 1, since every edge has weight greater than 0, shortest paths are simple. Thus,
no cycles can be added into the DAG G′ while looping over the edges. For every shortest
path p between u and an arbitrary vertex v ∈ V (G), every edge of p will be added in the
direction of the path by Observation 1 (an edge is a two-vertex sub-path of the shortest path
p). This leads to the following lemma:

I Lemma 4. For any SSSP algorithm with running time T (n) there exist an SSSP counting
algorithm with running time T (n) +O(m).
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Algorithm 1 Compute #shortest paths from u to every vertex in G.
procedure CountShortestPaths(G, u)

SSSP(G, u) [Use an existing algorithm, assume d[v] stores the distance to vertex v.]
initialize unweighted DAG G′ = (V (G), ∅)
for edge e = (v, w) in G do

if d[w] = d[v] + w(e) then
insert arc (v, w) into G′

else if d[v] = d[w] + w(e) then
insert arc (w, v) into G′

CountPaths(G′, u)

Of special importance is the application of this approach to planar graphs where Henzinger
et al. [15] designed an O(n) SSSP algorithm. Hence, in planar graphs we can count single
source shortest paths in O(n) time. The approach of [15] extends to bounded genus graphs,
where it gives an O(h(g)n) running time for graphs of genus g (where h() is a function
dependent only on g).

3 Counting Oracle for All Paths in Planar DAGs

In this section, we prove the following theorem:

I Theorem 5. For any planar DAG G, there exists an oracle for #PATH-DAG-ORACLE
which takes O(n1.5) space, takes O(n1.5) time to construct, and for any pair of vertices
s, t ∈ V (G) the oracle can answer queries about the number of paths from s to t in O(

√
n)

time.

3.1 Building the Oracle
A naive algorithm for counting the number of paths between two vertices in an unweighted
DAG takes O(n2) time by running CountPaths from every possible source vertex. Instead,
we induce Theorem 2 to construct the oracle in a divide-and-conquer manner: We first
find a separator (A,B,C) for the given graph. Then we count the number of paths that
intersect the separating set C. Finally, we count the number of paths that lie entirely within
sub-graphs induced by A and B, respectively. For planar graphs this will lead to an O(n1.5)
construction time and O(n1.5) space. The tricky aspect comes from the fact that many of
the paths may cross the separator multiple times.

We start by defining a notion of paths intersecting sets and introduce two sets that are
closely related to the oracle algorithm. Then we state a structural relation between these
sets, the proof of which we defer to the full version of the paper.

I Definition 6. Let G = (V,E) be a graph. We say a path p intersects a set S ⊆ V if
p contains a vertex from S. A vertex v is a first S-intersecting vertex of p if and only if
v ∈ p ∩ S and there is no other u ∈ p ∩ C such that u ≺p v.

I Definition 7. Let (A,B,C) be a separator of G. For a pair of vertices u and v, define:
PG(u, v) as the set of simple u-v paths in G, and
P ′G,C(u, v, c) as the set of simple u-v paths in G with first C-intersecting vertex c ∈ C.

I Lemma 8. For a DAG G with separator (A,B,C) and c ∈ C,

|P ′G,C(s, t, c)| = |P ′G,C(s, c, c)× PG(c, t)|.
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Since there are O(n2) pairs of vertices, we cannot compute |P ′G,C(s, c, c)× PG(c, t)| for
every s, t pair in total O(n1.5) time. However, if we use the fact that |S × T | = |S||T |
for any two sets S and T , we can compute |P ′G,C(s, c, c)| and |PG(c, t)| upfront and leave
summing over all c ∈ C to the query time. Using the CountPaths algorithm from Section
2 we can determine |PG(c, t)| for all c ∈ C in O(|C|n) time for an unweighted DAG. Since
|C| = O(

√
n), we can compute all |PG(c, t)| in O(n1.5) time. It now remains to show that we

can compute |P ′G,C(s, c, c)| in O(n1.5) time.
Directly computing |P ′G,C(s, c, c)| will take O(|A ∪B|n) time. This already is O(n2) and

takes too long. To reduce the running time, we instead count paths from the separator. This
takes O(|C|n) = O(n1.5) time. By reversing the direction of all arcs in the DAG G, the
number of paths between a pair of vertices is preserved. By modifying G, we can guarantee
that only s-c paths with first C-intersecting vertex c remain. We define a new notation for a
specific modification of G that is necessary in computing |P ′G,C(s, c, c)| efficiently.

I Definition 9. Let G be a graph and let (A,B,C) be its separator. For vertex c ∈ C, define
G′c as the graph constructed from G as follows:

V (G′c) = (V (G) \ C) ∪ {c}, and
E(G′c) = {(u, v)|(v, u) ∈ E(G) ∧ u, v ∈ V (G′c)}.

Intuitively, we remove all vertices from the separator which are not the vertex we are
interested in for computing |P ′G,C(s, c, c)|. Since s-c paths with first C-intersecting vertex
c can only have one vertex in the separator, we remove all paths which could intersect
the separator at any other vertex. We also reverse all remaining arcs in the graph. The
relationship between G and G′c, which we prove in the full version of the paper, is as follows:

I Lemma 10. For a DAG G with separator (A,B,C) and c ∈ C, |P ′G,C(s, c, c)| = |PG′
c
(c, s)|.

Lemmas 8 and 10 suggest the following oracle construction algorithm:

Algorithm 2 Build a Path Counting Oracle for DAG G.
procedure ConstructAllPathsOracleDAG(G)

if |V (G)| = 0 then return
find a separator (A,B,C) in G (and store it)
for c ∈ C do

build G′c by removing C \ {c} from G and reversing arcs
call CountPaths(G, c) and store the results as PG[c, v] for every v ∈ V (G)
call CountPaths(G′c, c) and store the results as PG′

c
[c, v] for every v ∈ V (G)

ConstructAllPathsOracleDAG(G[A]), where G[A] is the A-induced subgraph
ConstructAllPathsOracleDAG(G[B])

To bound the running time of the construction of the oracle, let α be the constant from
the separator definition, used to bound the sizes of the sets A and B. By Theorem 2, α ≤ 2/3
for planar graphs. Then, we get the following recurrence for the running time:

T (n) =
{
T (|A|) + T (|B|) +O(n1.5) ≤ T (αn) + T ((1− α)n) +O(n1.5) if n ≥ 1
O(1) if n = 0

where the O(n1.5) term comes from doing O(
√
n) of the CountPaths computations, and

the inequality is a worst case bound which follows from T ’s convexity. This recurrence can
be evaluated using the Akra-Bazzi Method [2]. Trivially, the p value for which (

∑
i aib

p
i = 1)
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is 1, since a0 = a1 = 1, b0 = α, and b1 = 1− α. Since p = 1, the recurrence is evaluated as
follows:

T (n) = O

(
n1
(

1 +
∫ n

1

u1.5

u2 du

))
= O(n1.5).

We note that in many cases both the running time and the space requirements can be
significantly smaller, for example for graphs with O(1) size separators such as outerplanar
graphs.

At each recursive call of the oracle construction we store, for each c ∈ C, both PG[c, v] and
PG′

c
[c, v]. This results in O(|C|n) = O(n1.5) space per recursive call, yielding the following

recurrence for the total space needed by the oracle: S(n) = S(A) + S(B) +O(n1.5). This is
exactly the same recurrence as the one for the running time of building the oracle. Thus, the
amount of space needed to store the oracle is O(n1.5).

3.2 Querying the Oracle

To query the oracle, we essentially compute
∑

c∈C PG′
c
[c, s]PG[c, t] for each depth until (and

including) s and t become separated by the separator. This can be done using the following
algorithm:

Algorithm 3 Query the #PATH-DAG-ORACLE.
procedure QueryPaths(G, s, t)

numPaths = 0
while (s, t ∈ A) or (s, t ∈ B), where (A,B,C) is the stored separator of G do

for c ∈ C do
numPaths+ = PG′

c
[c, s]PG[c, t]

if s, t ∈ A then G = G[A]
else G = G[B]

for c ∈ C do
numPaths+ = PG′

c
[c, s]PG[c, t]

This algorithm relies on Lemmas 8 and 10. For any position of s and t, the paths from s

to t can be split into two groups: those that intersect C and those that do not. The paths
that intersect C contribute

∑
c∈C |PG′

c
(c, s)||PG(c, t)| =

∑
c∈C PG′

c
[s, c]PG[t, c]. Notice that

this computation holds also in the case when s ∈ C (in which case |PG′
c
(c, s)| = 1 for c = s

and |PG′
c
(c, s)| = 0 for every other c), or when t ∈ C (in which case |PG(c, t)| = 1 for c = t

and |PG(c, t)| = 0 for every other c). The paths that do not intersect C, which occur only
when s and t are either both in A or both in B, are entirely contained within G[A] or G[B].
Hence, it suffices to recurse on the respective side of the graph.

It remains to analyze the running time of the query algorithm. Since the oracle has
already been computed, the addition steps each take O(1) time. The running time of this
algorithm is bounded by the maximum depth before s and t are split by a separator and by
the number of vertices in a separator at each depth. Since the separator is balanced, we have
T (n) ≤ T (αn) + O(

√
n). With a simple application of the Master Theorem, the running

time of a query is O(
√
n). This concludes the proof of Theorem 5.
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4 Counting Oracle for Shortest Paths in Planar Graphs

We have shown that an oracle can be built for planar DAGs for counting the number of
paths between any pair of vertices. In this section, we prove the existence of a similar data
structure for shortest paths on any planar graph with positive edge weights. As noted in
Observation 1, if all edge weights are positive, then shortest paths must be simple. We first
prove shortest path versions of Lemmas 8 and 10. For notational convenience, we define two
relevant sets of shortest paths:

I Definition 11. For a positively weighted graph G = (V,E,w) with a separator (A,B,C)
and vertices u and v, define:

QG(u, v) as the set of shortest paths from u to v in G, and
Q′G,C(u, v, c) as the set of shortest paths from u to v in G with first C-intersecting vertex
c ∈ C.

Note that the paths in QG(u, v) are always simple by Observation 1. However, the paths
in Q′G,C(u, v, c) do not have to be simple since they are required to pass through a specific
vertex. Next we extend the notion of edge and path lengths to sets:

I Definition 12. Let S be a set of paths in G. We define w(S) as the length of the shortest
path in S. If S = ∅, w(S) =∞.

In particular, w(QG(u, v)) is the length of the shortest u-v path in G, and w(Q′G,C(u, v, c))
is the length of the shortest u-v path in G which has a first C-intersecting vertex c. We make
a note that for some vertices c ∈ C, it may be the case that w(Q′G,C(u, v, c)) > w(QG(u, v)).
However, if s ∈ A and t ∈ B, then there must be some c ∈ C such that w(Q′G,C(u, v, c)) =
w(QG(u, v)) as any shortest path p ∈ QG(u, v) must intersect separator C. There may be
multiple such c, but at least one must always exist.

With these definitions in place, we now give a similar set of lemmas to compute |QG(u, v)|
by computing |Q′G,C(u, v, c)| for all paths that intersect the separator C. For the cases where
s ∈ C or t ∈ C, we note that the s-s and the t-t paths consisting of only one vertex have a
weight of 0. As before, the remaining paths which lie entirely within A or B can be counted
with recursion.

I Lemma 13. For a graph G with separator (A,B,C) and a vertex c ∈ C, |Q′G,C(s, t, c)| =
|Q′G,C(s, c, c)×QG(c, t)| and w(Q′G,C(s, t, c)) = w(Q′G,C(s, c, c)) + w(QG(c, t)).

Proof. To prove the first part, we show a bijection between Q′G,C(s, t, c) and Q′G,C(s, c, c)×
QG(c, t). We map p ∈ Q′G,C(s, t, c) to a pair of paths p1 ∈ Q′G,C(s, c, c) and p2 ∈ QG(c, t) as
follows: let p1 be the s-c sub-path of p and p2 be the c-t sub-path of p. By Observation 1,
both p1 and p2 must be shortest paths. Since we split p at c, p1 only intersects the separator
at c and thus p1 ∈ Q′G,C(s, c, c). Since p2 is a shortest path, p2 ∈ QG(c, t). Also, the map
from p to (p1, p2) is injective by the same argument as in Lemma 8.

Conversely, let path p1 ∈ Q′G,C(s, c, c) and path p2 ∈ QG(c, t). Since both p1 and p2 are
shortest paths, it follows that the path p formed by concatenating p1 and p2 is a shortest
path with respect to all s-t paths with first C-intersecting c. If a shorter s-t path with
C-intersecting vertex c existed, then it either contains a shorter s-c or c-t sub-path than
p1 or p2 respectively2 which contradicts p1 and p2 being shortest paths. Thus for any pair

2 This is not true for all s-t paths. There may be a shorter s-t path with a different first C crossing
vertex. Such a case will be determined by a query by comparing path lengths across the vertices in the
separator.
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p1 ∈ Q′G,C(s, c, c) and p2 ∈ QG(c, t), there is a corresponding path p ∈ Q′G,C(s, t, c) which
maps to (p1, p2) by the above map. Thus the map is also surjective.

Since p was formed by concatenating p1 with p2, we have w(p) = w(p1) +w(p2). Because
all paths in each of Q and Q′ have the same weight, w(Q′G,C(s, t, c)) = w(Q′G,C(s, c, c)) +
w(QG(c, t)). J

We next show how to compute |Q′G,C(s, c, c)|. For a graph G with edge weights wG,
construct G′c according to Definition 9 and add weights wG′

c
as follows: for (u, v) ∈ E(G′c)

let wG′
c
(u, v) = wG(v, u). We get the following weighted version of Lemma 10:

I Lemma 14. In a graph G with separator (A,B,C) and a vertex c ∈ C, |Q′G,C(s, c, c)| =
|QG′

c
(c, s)| and w(Q′G,C(s, c, c)) = w(QG′

c
(c, s)).

The last piece we need in order to build an oracle for the number of shortest paths
in a planar graph is a way to compute |QG(u, v)| efficiently. As discussed in Section 2,
in planar graphs we can compute both |QG(u, v)| and w(QG(u, v)) in O(n) time for all
vertices v ∈ V (G) and a source vertex u ∈ V (G). Then, we can build an oracle for counting
shortest paths by mimicking Algorithm 2 where the CountPaths calls get replaced with
CountShortestPaths calls, see Algorithm 1. As before, both construction time for the
oracle and the space needed are O(n1.5) for planar graphs.

Algorithm 4 Build a Shortest Path Counting Oracle for graph G.
procedure ConstructShortestPathOracle(G)

if |V (G)| = 0 then return
find a separator (A,B,C) in G (and store it)
for c ∈ C do

construct graph G′c (see Definition 9, plus add weights)
call CountShortestPaths(G, c)
call CountShortestPaths(G′c, c)
store the respective counts as QG[c, v] and QG′

c
[c, v],

store also the corresponding path lengths as wG[c, v] and wG′
c
[c, v], respectively

ConstructOracle(G[A])
ConstructOracle(G[B])

Querying the oracle requires a few extra conditions, see Algorithm 5, but it can still be
done in time O(

√
n). As we noted before, for some c ∈ C, w(Q′G,C(s, t, c)) may be larger

than w(QG(s, t)). We can detect this by comparing w(Q′G,C(s, c, c))+w(Q′(c, t, G)). Since at
least one c ∈ C must have w(Q′G,C(s, t, c)) = w(QG(s, t)), we can have our query determine
which c satisfy minw(Q′G,C(s, c, c)) + w(QG(c, t) and only add counts from those c. We
assume that the distance results from the SSSP are stored along with the number of shortest
paths as before. We double the amount of space required, but this still falls within O(n1.5)
space.

This analysis leads to the following theorem:

I Theorem 15. For any planar graph G, there exists an oracle for #SHORTPATH-ORACLE
which takes O(n1.5) space, takes O(n1.5) time to construct, and for any pair of vertices
s, t ∈ V (G) the oracle can answer queries about the number of paths from s to t in O(

√
n)

time.
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Algorithm 5 Querying the #SHORTPATH-ORACLE.
procedure QueryPaths(G, s, t)

numPaths = 0
minDist =∞
while (s, t ∈ A) or (s, t ∈ B), where (A,B,C) is the stored separator of G do

for c ∈ C do
if wG′

c
[c, s] + wG[c, t] < minDist then

minDist = wG′
c
[c, s] + wG[c, t]

numPaths = QG′
c
[c, s]QG[c, t]

else if wG′
c
[c, s] + wG[c, t] = minDist then

numPaths+ = QG′
c
[c, s]QG[c, t]

if s, t ∈ A then G = G[A]
else G = G[B]

for c ∈ C do
if wG′

c
[c, s] + wG[c, t] < minDist then

minDist = wG′
c
[c, s] + wG[c, t]

numPaths = QG′
c
[c, s]QG[c, t]

else if wG′
c
[c, s] + wG[c, t] = minDist then

numPaths+ = QG′
c
[c, s]QG[c, t]

5 Generalizing the Oracle

In this section, we relax the constraints of the previous sections to generalize the oracle data
structure. The constraints we require are as follows:

G has positive edge weights, and
G has an (α, f(n))-balanced (A,B,C) separator which can be found in time O(g(n)).

Then, we can use Algorithms 1-5 (in fact, Algorithm 1 works for any graph and does
not require separators) as stated and the proofs of correctness still hold. However, we need
to rework the running time estimates and space bounds. The running time of the oracle
construction is given by the following recurrence, where TSSSP (n) denotes the running time
of SSSP:

T (n) ≤ T (αn) + T ((1− α)n) +O(TSSSP (n)f(n)) +O(g(n)).

For simplicity, let us express the additive term as f̂(n). As before, this recurrence can be
evaluated using the Akra-Bazzi Method. Again, the p value for which

∑
i aib

p
i = 1 is 1. (Take

a0 = a1 = 1, b0 = α, and b1 = 1− α.) With p = 1, the recurrence is evaluated as follows:

T (n) = Θ
(
x1
(

1 +
∫ x

1

f̂(u)
u2 du

))
.

This splits nicely into three cases.
1. If f̂(n) = o(n), then T (n) = Θ(n).
2. If f̂(n) = Θ(n loga n), then T (n) = Θ(n loga+1 n).
3. If for every a we have f̂(n) = ω(n loga n), then T (n) = Θ(f̂(n)).



I. Bezáková and A. Searns 56:11

Therefore, the running time of the oracle construction can be determined using f̂(n) =
O(TSSSP (n)f(n))+O(g(n)). The space requirement of this algorithm is f̂(n) = O(nf(n)+n)
(this can be done by only storing which side of the separator a vertex lies in (A, B, or C),
distances and numbers of paths to a vertex for each vertex in the separator.

In real applications of this oracle, case 1 will never occur as running SSSP takes Ω(n)
time in any graph. However, case 2 may occur. In fact, for outerplanar graphs, which have
m = O(n) (since they are planar) but which also have O(1) separators, case 2 applies, giving
a running time of O(n log n) to build this oracle and a running time of O(log n) to query it.

The time to query this oracle data structure is given by the following recurrence: T (n) =
T (αn) + 2f(n). As before, we only query A or B until the separator splits vertices s and t.
This recurrence can be evaluated with the Master Theorem giving a query time as follows:
1. If f(n) = o(log n), then T (n) = Θ(log n).
2. If f(n) = Ω(log n), then T (n) = Θ(f(n)).

Putting together all of this, we have the following theorem.

I Theorem 16. Let G be a graph with (α, f(n)) balanced separators which can be found in g(n)
time and let TSSSP (n) be the time needed to solve SSSP for G. Let f̂(n) = TSSSP (n)f(n) +
g(n). An oracle data structure for counting the number of shortest paths in G between any
pair of vertices can be computed in the following time bounds:

f̂(n) Construction Time
o(n) T (n) = Θ(n)
Θ(n loga n) T (n) = Θ(n loga+1 n)
ω(n loga n) for all a T (n) = Θ(f̂(n))

f(n) Query Time
f(n) = o(log n) T (n) = Θ(log n)
f(n) = Ω(log n) T (n) = Θ(f(n))

The space bounds required are O(nf(n) +m).

For classes of graphs with small separators and fast SSSP algorithms (e. g. planar graphs
and graphs of bounded genus) this oracle can improve the running time. We have seen that
for planar graphs, the running time is bounded by O(n1.5) and the query time for O(k)
pairs is given by O(

√
nk). In graphs of bounded genus, SSSP can be done in linear time,

in particular h(g)n for some function h of the genus g and it is possible to find a balanced
separator of size O(√gn). Thus these graphs have path counting oracles which can be found
in O(√gnh(g)n) = O(h(g)g0.5n1.5) time, take O(√gnn) = O(g0.5n1.5) space, and answer
queries in time O(√gn).

I Application. We conclude with mentioning how our oracle provides an improvement in
the running time of the algorithm of Chambers, Fox, and Nayyeri [7] counting minimum
(s, t)-cuts in graphs of bounded genus. Due to space constraints we do not reproduce their
algorithm here but only discuss the parts that are relevant to our improvement of their
original running time of 2O(g)n2. The main component contributing to this running time
(see Section 5.3 in [7]) is iterating through 2O(g) “crossing sequences,” which determine the
different “shapes” of the possible minimum (s, t)-cuts. For each such crossing sequence a
DAG embedded in a surface of the same genus is constructed, and in this DAG one needs
to compute the number of paths between O(n) pairs of vertices. Arithmetic operations
(addition, multiplication) on these numbers then yield the desired number of minimum
(s, t)-cuts. The original work simply bounded the running time needed for these cut-counts as
O(n2), yielding an overall 2O(g)n2 running time. Using our oracle approach, the running time
becomes O(√gn) per query with O(n) queries, totaling 2O(g)√gn1.5 time, which includes the
construction of the 2O(g) oracles. The overall improved running time, including a maximum
flow computation and a triangulation transformation of the input graph (both of which can
be bounded by O(n2)), is then 2O(g)√gn1.5 +O(n2).
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Abstract
A phylogenetic tree is a graphical representation of an evolutionary history in a set of taxa
in which the leaves correspond to taxa and the non-leaves correspond to speciations. One of
important problems in phylogenetic analysis is to assemble a global phylogenetic tree from smaller
pieces of phylogenetic trees, particularly, quartet trees. Quartet Compatibility is to decide
whether there is a phylogenetic tree inducing a given collection of quartet trees, and to construct
such a phylogenetic tree if it exists. It is known that Quartet Compatibility is NP-hard but
there are only a few results known for polynomial-time solvable subclasses.

In this paper, we introduce two novel classes of quartet systems, called complete multipartite
quartet system and full multipartite quartet system, and present polynomial time algorithms for
Quartet Compatibility for these systems. We also see that complete/full multipartite quartet
systems naturally arise from a limited situation of block-restricted measurement.
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1 Introduction

A phylogenetic tree for finite set [n] := {1, 2, . . . , n} is a tree T = (V,E) such that the set of
leaves of T coincides with [n] and each internal node V \ [n] has at least three neighbors.
A phylogenetic tree represents an evolutionary history in a set of taxa in which the leaves
correspond to taxa and the non-leaves correspond to speciations. One of important problems
in phylogenetic analysis is to assemble a global phylogenetic tree on [n] (called a supertree)
from smaller pieces of phylogenetic trees on possibly overlapping subsets of [n]; see [17,
Section 6].

A quartet tree (or quartet) is a smallest nontrivial phylogenetic tree, that is, it has four
leaves (as taxa) and it is not a star. There are three quartet trees in set {a, b, c, d}, which
are denoted by ab||cd, ac||bd, and ad||bc. Here ab||cd represents the phylogenetic tree such
that a and b (c and d) are adjacent to a common node; see Figure 1. Quartet trees are
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used for representing substructures of a (possibly large) phylogenetic tree. A fundamental
problem in phylogenetic analysis is to construct a phylogenetic tree having given quartets as
substructures. To introduce this problem formally, we need some notations and terminologies.
We say that a phylogenetic tree T displays a quartet ab||cd if the simple paths connecting
a, b and c, d in T , respectively, do not meet, i.e., ab||cd is the “restriction” of T to leaves
a, b, c, d; see Figure 2. By a quartet system on [n] we mean a collection of quartet trees whose
leaves are subsets of [n]. We say that T displays a quartet system Q if T displays all quartet
trees in Q. A quartet system Q is said to be compatible if there exists a phylogenetic tree
displaying Q. Now the problem is formulated as:

Quartet Compatibility
Given: A quartet system Q.
Problem: Determine whetherQ is compatible or not. If it is compatible, obtain a phylogenetic

tree T displaying Q.

Quartet Compatibility has been intensively studied in computational biology as well
as theoretical computer science, particularly, algorithm design and computational complexity.
After a fundamental result by Steel [18] on the NP-hardness of Quartet Compatibility,
there have been a large amount of algorithmic results, e.g., efficient heuristics [13, 19],
approximation algorithms [3, 4, 12], and parametrized algorithms [7, 10].

In contrast, there are only a few results known for polynomial-time solvable special
subclasses:

Colonius–Schulze [8] established a complete characterization to the abstract quaternary
relation N (neighbors relation) obtained from a phylogenetic tree T by: N(a, b, c, d) holds
if and only if T displays quartet tree ab||cd. By using this result, Bandelt–Dress [2]
showed that if, for every 4-element set {a, b, c, d} of [n], exactly one of ab||cd, ac||bd, and
ad||cd belongs to Q, then Quartet Compatibility for Q can be solved in polynomial
time.
Aho–Sagiv–Szymanski–Ullman [1] devised a polynomial time algorithm to find a rooted
phylogenetic tree displaying the input triple system. By using this result, Bryant–Steel [5]
showed that, if all quartets in Q have a common label, then Quartet Compatibility
for Q can be solved in polynomial time.

Such results are useful for designing experiments to obtain quartet information from taxa,
and also play key roles in developing supertree methods for (incompatible) phylogenetic trees
(e.g., [16]).

In this paper, we present two novel tractable classes of quartet systems. To describe
our result, we extend the notions of quartets and quartet systems. In addition to ab||cd,
we consider symbol ab|cd as a quartet, which represents the quartet tree ab||cd or the star
with leaves a, b, c, d; see Figure 1. This corresponds to the weak neighbors relation in [2, 8],
and enables us to capture a degenerate phylogenetic tree in which internal nodes may have
degree greater than 3. In a sense, ab|cd means a “possibly degenerate” quartet tree such that
the center edge can have zero length. We define that a phylogenetic tree T displays ab|cd
if the simple paths connecting a, b and c, d in T , respectively, meet at most one node, i.e.,
the restriction of T to a, b, c, d is ab||cd or star; see Figure 2. Then the concepts of quartet
systems, displaying, compatibility, and Quartet Compatibility are naturally extended.
A quartet system Q is said to be full on [n] if, for each distinct a, b, c, d ∈ [n], either one of
ab||cd, ac||bd, ad||bc belongs to Q or all ab|cd, ac|bd, ad|bc belong to Q. The latter situation
says that any phylogenetic tree displaying Q should induce a star on a, b, c, d. Actually the
above polynomial-time algorithm by Bandelt–Dress [2] works for full quartet systems.
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Figure 1 The quartets ab||cd, ac||bd, and ad||bc represent the first, second, and third phylogenetic
trees for a, b, c, d from the left, respectively. ad|bc, for example, represents one of the two phylogenetic
trees in the dotted curve, that is, ad||bc or the star graph with leaves a, b, c, d.
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<latexit sha1_base64="YetqFweLo/hSc5GdZlNUuielxC0="></latexit><latexit sha1_base64="YetqFweLo/hSc5GdZlNUuielxC0=">AAACfnichVFNLwNBGH6sr6qv4kJcNhriQL2rTYmTcHGsjyJBmt012Njubna3TarE3R9wcCJpRCT8CBd/wMFPEEcSFwfvbjcRBO9kZp555n3eeWZGc0zD84keG6TGpuaW1lhbvL2js6s70dO76tklVxd53TZtd11TPWEalsj7hm+KdccValEzxZq2Px/sr5WF6xm2teJXHLFVVHctY8fQVZ+pQmJAScuHciY7JisZBukAZAOQKSSSlKIw5J9AiUASUeTsxCU2sQ0bOkooQsCCz9iECo/bBhQQHOa2UGXOZWSE+wJHiLO2xFmCM1Rm93nc5dVGxFq8Dmp6oVrnU0zuLitlDNMDXdEL3dM1PdH7r7WqYY3AS4Vnra4VTqH7pH/57V9VkWcfe5+qPz372MF06NVg707IBLfQ6/rywenL8szScHWELuiZ/Z/TI93xDazyq15bFEtniPMHKN+f+ydYnUwplFIWM8nZuegrYhjEEEb5vacwiwXkkOdzj1HDDW4lSCPSuDRRT5UaIk0fvoQ0/QGV0I7Y</latexit><latexit sha1_base64="YetqFweLo/hSc5GdZlNUuielxC0=">AAACfnichVFNLwNBGH6sr6qv4kJcNhriQL2rTYmTcHGsjyJBmt012Njubna3TarE3R9wcCJpRCT8CBd/wMFPEEcSFwfvbjcRBO9kZp555n3eeWZGc0zD84keG6TGpuaW1lhbvL2js6s70dO76tklVxd53TZtd11TPWEalsj7hm+KdccValEzxZq2Px/sr5WF6xm2teJXHLFVVHctY8fQVZ+pQmJAScuHciY7JisZBukAZAOQKSSSlKIw5J9AiUASUeTsxCU2sQ0bOkooQsCCz9iECo/bBhQQHOa2UGXOZWSE+wJHiLO2xFmCM1Rm93nc5dVGxFq8Dmp6oVrnU0zuLitlDNMDXdEL3dM1PdH7r7WqYY3AS4Vnra4VTqH7pH/57V9VkWcfe5+qPz372MF06NVg707IBLfQ6/rywenL8szScHWELuiZ/Z/TI93xDazyq15bFEtniPMHKN+f+ydYnUwplFIWM8nZuegrYhjEEEb5vacwiwXkkOdzj1HDDW4lSCPSuDRRT5UaIk0fvoQ0/QGV0I7Y</latexit><latexit sha1_base64="YetqFweLo/hSc5GdZlNUuielxC0="></latexit>

…
…

Figure 2 An example of phylogenetic tree T for {1, 2, . . . , 9}. T displays, for example, 13||79, 13|79,
and 13|46, 14|36, 16|34.

Full quartet systems may be viewed as a counter part of complete graphs. We introduce
multipartite counterparts for quartet systems. A quartet system Q is said to be complete
bipartite relative to bipartition {A,B} of [n] with min{|A|, |B|} ≥ 2 if, for all distinct a, a′ ∈ A
and b, b′ ∈ B, Q has exactly one of

ab||a′b′, ab′||a′b, aa′|bb′, (1)

and every quartet in Q is of the above form (1). Note that every phylogenetic tree displays
exactly one of three quartets in (1). We next introduce a complete multipartite system. Let
A := {A1, A2, . . . , Ar} be a partition of [n] with |Ai| ≥ 2 for all i ∈ [r]. A quartet system Q
is said to be complete multipartite relative to A or complete A-partite if Q is represented
as
⋃

1≤i<j≤rQij for complete bipartite quartet systems Qij on Ai ∪ Aj with bipartition
{Ai, Aj}. A quartet system Q is said to be full multipartite relative to A or full A-partite if
Q is represented as Q0 ∪ Q1 ∪ · · · ∪ Qr, where Q0 is a complete A-partite quartet system
and Qi is a full quartet system on Ai for each i ∈ [r]. Our main result is:

I Theorem 1.1. If the input quartet system Q is complete A-partite or full A-partite, then
Quartet Compatibility can be solved in O(|A|n4) time.

The result for full A-partite quartet systems extends the above polynomial time solvability
for full quartet systems by [2]. Also this result has some insights on supertree construction
from phylogenetic trees on disjoint groups of taxa. In such a case, we have a full system on
each group. Another possible application is given as follows.
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Application: Inferring a phylogenetic tree from block-restricted measurements. Quartet-
based phylogenetic tree reconstruction methods may be viewed as qualitative approximations
of distance methods that construct a phylogenetic tree from (evolutionary) distance δ : [n]×
[n]→ R+ among a set [n] of taxa. Here R+ denotes the set of nonnegative real values. The
distance δ naturally gives rise to a full quartet system Q as follows. Let Q := ∅ at first. For all
distinct a, b, c, d ∈ [n], add ab||cd toQ if δ(a, b)+δ(c, d) < min{δ(a, c)+δ(b, d), δ(a, d)+δ(b, d)}.
See [9, 14]. Then Q becomes a full quartet system, after adding ab|cd, ac|bd, ac|bd if none of
ab||cd, ac||bd, ac||bd belong to Q. If δ coincides with the path-metric of an actual phylogenetic
tree T (with nonnegative edge-length), then δ obeys the famous four-point condition on all
four elements a, b, c, d [6]:
(4pt) the larger two of δ(a, b) + δ(c, d), δ(a, c) + δ(b, d), and δ(a, d) + δ(b, c) are equal.
In this case, the above definition of quartets matches the neighbors relation of T . Thus, from
the full quartet system Q, via the algorithm of [2], we can recover the original phylogenetic
tree T (without edge-length).

Next we consider the following limited situation in which complete/full A-partite quartet
systems naturally arise. The set [n] of taxa is divided into r groups A1, A2, . . . , Ar (with
|Ai| ≥ 2). By reasons of the cost and/or the difficulty of experiments, we are limited to
measure the distance between a ∈ Ai and b ∈ Aj via different methods/equipments depending
on i, j. Namely we have

(
r
2
)
distance functions δij : Ai ×Aj → R+ for 1 ≤ i < j ≤ r but it

is meaningless to compare numerical values of δij and δi′j′ for {i, j} 6= {i′, j′}. A complete
A-partite quartet system Q is obtained as follows. For distinct i, j, define complete bipartite
quartet system Qij by: for all distinct a, a′ ∈ Ai and b, b′ ∈ Aj it holds

ab||a′b′ ∈ Qij if δij(a, b) + δij(a′, b′) < δij(a, b′) + δij(a′, b),
ab′||a′b ∈ Qij if δij(a, b) + δij(a′, b′) > δij(a, b′) + δij(a′, b),
aa′|bb′ ∈ Qij if δij(a, b) + δij(a′, b′) = δij(a, b′) + δij(a′, b).

Then Q :=
⋃

1≤i<j≤rQij is a complete A-partite quartet system.
This construction of complete A-partite quartet system Q is justified as follows. Assume

a phylogenetic tree T on [n] with path-metric δ. Assume further that each δij is linear on δ,
i.e., δij is equal to αijδ for some unknown constant αij > 0. By (4pt), the situation δij(a, b)+
δij(a′, b′) < δij(a, b′)+δij(a′, b) implies δ(a, b)+δ(a′, b′) < δ(a, b′)+δ(a′, b) = δ(a, a′)+δ(a, b′),
and implies that T displays ab||a′b′. The situation δij(a, b) + δij(a′, b′) = δij(a, b′) + δij(a′, b)
implies δ(a, b) + δ(a′, b′) = δ(a, b′) + δ(a′, b) ≥ δ(a, a′) + δ(a, b′), and implies that T displays
aa′|bb′. Thus, by our algorithm, we can construct a phylogenetic tree T ′ “similar” to T in
the sense that T ′ and T produce the same result under our limited measurement.

Suppose now that we have additional r distance functions δi : Ai ×Ai → R+ for i ∈ [r].
In this case, we naturally obtain a full A-partite quartet system. Indeed, define full quartet
system Qi on Ai according to δi as in the first paragraph. Then Q :=

⋃
1≤i<j≤rQij ∪⋃

1≤i≤rQi is a full A-partite quartet system to which our algorithm is applicable.

Organization. Quartet Compatibility can be viewed as a problem of finding an appro-
priate laminar family. We first introduce a displaying concept for an arbitrary family of
subsets, and then divide Quartet Compatibility into two subproblems: The first is to
find a family displaying the input quartet system, and the second is to transform the family
into a desired laminar family. For the second, we utilize the laminarization algorithm de-
veloped by Hirai–Iwamasa–Murota–Živný [11] for a completely irrelevant problem in discrete
optimization. In Sections 2 and 3, we show the result for complete and full multipartite
quartet systems, respectively. The omitted proofs will be given in the full version of this
paper.
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Preliminaries. A family L ⊆ 2[n] is said to be laminar if X ⊆ Y , X ⊇ Y , or X ∩ Y = ∅
holds for all X,Y ∈ L. A phylogenetic tree can be encoded into a laminar family as follows.
Let T = (V,E) be a phylogenetic tree for [n]. By deleting internal edge e ∈ E, the tree
T is separated into two connected components, and so is [n]. We denote by {Xe, Ye} the
bipartition induced by e. By choosing either Xe or Ye appropriately for each internal edge
e ∈ E, we can construct a laminar family L on [n] with min{|X|, |[n] \X|} ≥ 2 for all X ∈ L.
Conversely, let L on [n] be a laminar family with min{|X|, |[n] \X|} ≥ 2 for all X ∈ L. Then
we construct the set L̂ := {{X, [n] \X} | X ∈ L} of bipartitions from L. It is known [6] that,
for such L̂, there uniquely exists a phylogenetic tree that induces L̂.

2 Complete multipartite quartet system

2.1 Displaying and Laminarization

In this subsection, we explain that Quartet Compatibility for complete multipartite
quartet systems can be divided into two subproblems named as Displaying and Laminar-
ization. Let A := {A1, A2, . . . , Ar} be a partition of [n] with |Ai| ≥ 2 for all i ∈ [r], and Q
be a complete A-partite quartet system. We say that a family F ⊆ 2[n] displays Q if, for all
distinct i, j ∈ [r], a, a′ ∈ Ai, and b, b′ ∈ Aj ,

ab||a′b′ ∈ Q ⇐⇒ there is X ∈ F satisfying a, b ∈ X 63 a′, b′ or a, b 6∈ X 3 a′, b′.

We can easily see that, if L is laminar, then L displays exactly one complete A-partite
quartet system Q. Furthermore, such Q is the same as the one displayed by the phylogenetic
tree corresponding to L. Thus Quartet Compatibility for a complete A-partite quartet
system Q can be viewed as the problem finding a laminar family L displaying Q if it exists.

It can happen that different families may display the same complete A-partite quartet
system. To cope with such complications, we define an equivalence relation ∼ on sets
X,Y ⊆ [n] by: X ∼ Y if {X} and {Y } display the same complete A-partite quartet system.
Let [X] := {Y ⊆ [n] | X ∼ Y } for X ⊆ [n]. A set X ⊆ [n] is called an A-cut if X 6∼ ∅, i.e.,
X 6∈ [∅]. For X ⊆ [n], define

〈X〉 :=
⋃
{Ai ∈ A | ∅ 6= X ∩Ai 6= Ai}. (2)

One can see that X is an A-cut if and only if ∅ 6= X ∩Ai 6= Ai holds for at least two i ∈ [r],
i.e., 〈X〉 ⊇ Ai ∪Aj for some distinct i, j ∈ [r]. We consider only A-cuts if the input quartet
system Q is complete A-partite. Indeed, let F be a family and F ′ the A-cut family in F .
Then both F and F ′ display the same complete A-partite quartet system.

One can see that, for A-cuts X,Y , it holds that X ∼ Y ⇔ {〈X〉 ∩ X, 〈X〉 \ X} =
{〈Y 〉 ∩ Y, 〈Y 〉 \ Y }. The equivalence relation is naturally extended to A-cut families F ,G
by: F ∼ G ⇔ F/∼ = G/∼, where F/∼ := {[X] | X ∈ F}. It is clear, by the definition of ∼,
that if F ∼ G then both F and G display the same complete A-partite quartet system. An
A-cut family F is said to be laminarizable if there is a laminar family L with F ∼ L.

By the above argument, Quartet Compatibility for a complete A-partite quartet
system Q can be divided into the following two subproblems: (i) if Q is compatible, then
find a laminarizable family F displaying Q, and (ii) if F is laminarizable, then find a laminar
family L with L ∼ F . (i) and (ii) can be formulated as Displaying and Laminarization,
respectively.

ISAAC 2018



57:6 Reconstructing Phylogenetic Tree From Multipartite Quartet System

Displaying
Given: A complete A-partite quartet system Q.
Problem: Either detect the incompatibility of Q, or obtain some A-cut family F displaying
Q. In addition, if Q is compatible, then F should be laminarizable.

Laminarization
Given: An A-cut family F .
Problem: Determine whether F is laminarizable or not. If F is laminarizable, obtain a

laminar A-cut family L with L ∼ F .
Here, in Laminarization, we assume that no distinct X,Y with X ∼ Y are contained in F ,
i.e., |F| = |F/∼|.

Quartet Compatibility for complete multipartite quartet systems can be solved as
follows.

Suppose that Q is compatible. First, by solving Displaying, we obtain a laminarizable
A-cut family F displaying Q. Then, by solving Laminarization for F , we obtain a
laminar A-cut family L with L ∼ F . Since L ∼ F , L also displays Q.
Suppose that Q is not compatible. By solving Displaying, we can detect the incom-
patibility of Q or we obtain some A-cut family F displaying Q. In the former case,
we are done. In the latter case, by solving Laminarization for F , we can detect the
non-laminarizability of F , which implies the incompatibility of Q.

In [11], the authors presented an O(n4)-time algorithm for Laminarization.

I Theorem 2.1 ([11]). Laminarization can be solved in O(n4) time.

In Section 2.3, we give an O(rn4)-time algorithm for Displaying (Theorem 2.8). Thus, by
Theorems 2.1 and 2.8, we obtain Theorem 1.1 for complete A-partite quartet systems.

2.2 Algorithm for complete bipartite quartet system
We first construct a polynomial time algorithm for Quartet Compatibility for complete
bipartite quartet systems. In the following, A is a bipartition of [n] represented as {A,B}
with min{|A|, |B|} ≥ 2. Note that X is an A-cut if and only if ∅ 6= X ∩ A 6= A and
∅ 6= X ∩B 6= B, and that X ∼ Y if and only if X = Y or X = [n] \ Y .

Choose an arbitrary a ∈ [n]. For a compatible bipartite quartet system Q, there is a
laminar A-cut family F displaying Q such that there is no X ∈ F with a ∈ X. The following
proposition implies that such F is unique.

I Proposition 2.2. Suppose that a bipartite quartet system Q is compatible. Then a lamin-
arizable A-cut family F displaying Q is uniquely determined up to ∼.

We introduce two notations used in Sections 2.2.1 and 2.2.2. For F ⊆ 2[n] and X ⊆ [n],
we denote {F ∪X | F ∈ F} by F tX. For C ⊆ A and D ⊆ B, we denote by Q|C,D the set
of quartet trees for c, c′, d, d′ (c, c′ ∈ C and d, d′ ∈ D) in Q.

2.2.1 Case of |A| = 2 or |B| = 2
We consider the case of |A| = 2 or |B| = 2. Without loss of generality, we assume A = {a0, a}
with a0 6= a.

We first explain the idea behind our algorithm (Algorithm 1). Assume that a complete
{{a0, a}, B}-partite quartet system Q is compatible. By Proposition 2.2, there uniquely
exists a laminar {{a0, a}, B}-cut family F displaying Q such that no X ∈ F contains a0.
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This implies that all X ∈ F contains a since F is an {{a0, a}, B}-cut family. Hence, by the
laminarity, F is a chain {B1, B2, . . . , Bm} t {a} with ∅ =: B0 ( B1 ( B2 ( · · · ( Bm (
Bm+1 := B.

Choose an arbitrary b ∈ B. Consider the index k ∈ [m + 1] such that b ∈ Bk and
b 6∈ Bk−1. Partition B into three sets B− := Bk−1, B= := Bk \ Bk−1, and B+ := B \ Bk.
The tripartition {B−, B=, B+} can be determined by checking quartets in Q having leaves
a0, a, b:

b′ ∈ B− ⇐⇒ a0b||ab′ ∈ Q, (3)
b′ ∈ B= ⇐⇒ b′ = b or a0a|bb′ ∈ Q, (4)
b′ ∈ B+ ⇐⇒ a0b

′||ab ∈ Q. (5)

Observe that Q|{a0,a},B− is displayed by F− := {B1, . . . , Bk−2}t{a} and that Q|{a0,a},B+ is
displayed by F+ := {Bk+1 \Bk, . . . , Bm \Bk}t {a}. After determining B−, B=, B+, we can
apply recursively the same procedure to Q|{a0,a},B− and Q|{a0,a},B+ , and obtain F− and F+.
Combining them with Bk = B=∪B− and Bk−1 = B−, we obtain F = {B1, B2, . . . , Bm}t{a}
as required.

The formal description of Algorithm 1 is the following:

Algorithm 1 (for complete {{a0, a}, B}-partite quartet system with pivot a).
Input: A complete {{a0, a}, B}-partite quartet system Q.
Output: Either detect the incompatibility of Q, or obtain the (unique) laminar {{a0, a}, B}-

cut family F displaying Q such that no X ∈ F contains a0.
Step 1: If Q = ∅, that is, |B| is at most one, then output the emptyset and stop.
Step 2: Choose an arbitrary b ∈ B. Define B−, B=, and B+ as (3), (4), and (5), respectively.
Step 3: If Algorithm 1 for Q|{a0,a},B+ with pivot a detects the incompatibility of Q|{a0,a},B+

or Algorithm 1 for Q|{a0,a},B− with pivot a detects the incompatibility of Q|{a0,a},B− ,
then output “Q is not compatible” and stop. Otherwise, let F+ and F− be the output
families of Algorithm 1 for Q|{a0,a},B+ and for Q|{a0,a},B− , respectively. Define

F := F− ∪
(
F+ t (B− ∪B=)

)
∪
((
{B−, B− ∪B=} \ {∅, B}

)
t {a}

)
.

Step 4: If F displays Q, then output F . Otherwise, output “Q is not compatible.”

I Proposition 2.3. Algorithm 1 solves Quartet Compatibility for a complete {{a0, a}, B}-
partite quartet system Q in O(|Q|) time.

2.2.2 General case
We consider general complete bipartite quartet systems; A is a bipartition {A,B} of [n]. As
in Section 2.2.1, we first explain the idea behind our algorithm (Algorithm 2). Assume that
a complete A-partite quartet system Q is compatible. By Proposition 2.2, there uniquely
exists a laminar A-cut family F displaying Q such that no X ∈ F contains a0.

Define Fa as the output of Algorithm 1 for Q|{a0,a},B with pivot a. Since Q|{a0,a},B is
displayed by {X ∩ B | a ∈ X ∈ F} t {a}, it holds that Fa = {X ∩ B | a ∈ X ∈ F} t {a}
by Propositions 2.2 and 2.3. Define F ∩ B := {X ∩ B | X ∈ F}. It can be easily seen
that F ∩ B =

⋃
a∈A\{a0}{X ∩ B | X ∈ F

a}. In the following, we consider to combine Fas
appropriately.
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Take any D ∈ F ∩B, and define AD := {a ∈ A\{a0} | {a}∪D ∈ Fa}. By the laminarity
of F , AD ∪ D is the unique maximal set X in F such that X ∩ B = D. Hence we can
construct the set G := {AD ∪D | D ∈ F ∩B} ⊆ F from Fa (a ∈ A \ {a0}). Note that G is
laminar.

All the left is to determine all nonmaximal sets X ∈ F with X ∩ B = D for each
D ∈ F ∩ B. Fix an arbitrary D ∈ F ∩ B. Observe that, by the laminarity of F , the set
{X ∈ F | X ∩ B = D} is a chain {X1, X2, . . . , Xm} with X1 ( X2 ( · · · ( Xm = AD ∪D.
We are going to identify this chain with the help of Algorithm 1. Let X− :=

⋃
{X ′ ∈ G |

X ′ ( Xm}, and choose an arbitrary b0 ∈ B \ D and b ∈ D. Note that X1 ⊇ X− by the
laminarity of F . We first consider the easier case X1 ∩A ) X− ∩A. Then apply Algorithm 1
to Q|AD\X−,{b0,b} and obtain {(X1 \X−) ∩A, (X2 \X−) ∩A, . . . , (Xm \X−) ∩A} t {b0, b}
(that displays Q|AD\X−,{b0,b}). From this we obtain {X1, X2, . . . , Xm}, as required.

Next consider the case X1 ∩ A = X− ∩ A. In this case, by applying Algorithm 1
to Q|AD\X−,{b0,b}, we only obtain {(X2 \ X−) ∩ A, . . . , (Xm \ X−) ∩ A} t {b0, b}, and
hence {X2, . . . , Xm}. Therefore we need to construct X1 individually as follows. Pick any
a ∈ X− ∩ A and retake b from D \ X ′ for maximal X ′ ∈ G with a ∈ X ′ ⊆ X−. For
a′ ∈ (Xm \X−) ∩ A, it cannot happen that ab0||a′b ∈ Q since all X ∈ F containing a′, b
also include a. Furthermore we can say that ab||a′b0 ∈ Q if and only if a′ 6∈ X1(3 a, b). This
implies that aa′|bb0 ∈ Q if and only if a′ belongs to X1. Hence it holds that X1 is the union
of X− ∪D and all elements a′ ∈ AD \X− with aa′|b0b ∈ Q.

The formal description of Algorithm 2 is the following; note that, if F is laminar, then
|F| is at most 2n (see e.g., [15, Theorem 3.5]).

I Proposition 2.4. Algorithm 2 solves Quartet Compatibility for a complete bipartite
quartet system Q in O(|Q|) time.

2.3 Algorithm for complete multipartite quartet system
In this subsection, we present a polynomial time algorithm for complete multipartite quartet
systems. First we introduce some notations before giving the outline of our proposed algorithm
(Algorithm 4). Let A := {A1, A2, . . . , Ar} be a partition of [n] with |Ai| ≥ 2 for all i ∈ [r].
For the analysis of the running-time of Algorithm 4, we assume |A1| ≥ |A2| ≥ · · · ≥ |Ar|.
For R ⊆ [r] with |R| ≥ 2, let AR := {Ai}i∈R and AR :=

⋃
i∈R Ai. For complete A-

partite quartet system Q =
⋃

1≤i<j≤rQij , define QR :=
⋃

i,j∈R,i<j Qij . That is, QR

is the complete AR-partite quartet system included in Q. For A-cut family F , define
FR := {X ∩ AR | X ∈ F such that X ∩ AR is an AR-cut}. Note that FR is an AR-cut
family. Then we can easily see the following lemma, which says that partial information FR

of F can be obtained from QR.

I Lemma 2.5. Suppose R ⊆ [r] with |R| ≥ 2. If Q is displayed by F , then QR is displayed
by FR. Furthermore, if Q is compatible, then so is QR.

Our algorithm for Displaying is to construct an A[t]-cut family Ft displaying Q[t] for
t = 2, 3, . . . , r in turn as follows.

First we obtain an A{1,2}-cut family F2 displaying Q12 by Algorithm 2.
For t ≥ 2, we can extend an A[t−1]-cut family Ft−1 displaying Q[t−1] to an A[t]-cut family
Ft displaying Q[t] by Algorithm 3. In order to construct Ft in Algorithm 3, we use
an A{i,t}-cut family Gi displaying Qit for all i ∈ [t − 1]. These Gi can be obtained by
Algorithm 2.
We perform the above extension step for t = 3 to t = r, and then obtain a desired A-cut
family F := Fr. This is described in Algorithm 4.
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Algorithm 2 (for complete bipartite quartet system).
Input: A complete bipartite quartet system Q.
Output: Either detect the incompatibility of Q, or obtain a laminar A-cut family F displaying
Q.

Step 1: Fix an arbitrary a0 ∈ A. For each a ∈ A \ {a0}, we execute Algorithm 1 for
Q|{a0,a},B with pivot a. If Algorithm 1 outputs “Q|{a0,a},B is not compatible” for some a,
then output “Q is not compatible” and stop. Otherwise, obtain the output Fa for each a.

Step 2: Let G := ∅. For each a ∈ A \ {a0}, update G as

G ← {X ∈ Fa | @Y ∈ G such that X ∩B = Y ∩B}
∪ {Y ∈ G | @X ∈ Fa such that X ∩B = Y ∩B}
∪ ({Y ∈ G | ∃X ∈ Fa such that X ∩B = Y ∩B} t {a}) .

If |G| > 2n for some a, then output “Q is not compatible” and stop.
Step 3: If G is not laminar, then output “Q is not compatible” and stop. Otherwise, define
F := G. For each X ∈ G, do the following:
3-1: Let X− :=

⋃
{X ′ ∈ G | X ′ ( X}, and choose an arbitrary b0 ∈ B \X and b ∈ X ∩B.

3-2: Execute Algorithm 1 for Q|(X\X−)∩A,{b0,b} with pivot b. If Algorithm 1 outputs
“Q|(X\X−)∩A,{b0,b} is not compatible,” then output “Q is not compatible” and stop.
Otherwise, define

H := the output family of Algorithm 1 t (X− ∪ (X ∩B)).

If X− 6= ∅, then go to Step 3-3. Otherwise, go to Step 3-4
3-3: Choose an arbitrary a ∈ X−∩A and retake b from (X \X ′)∩B for maximal X ′ ∈ G

with a ∈ X ′ ⊆ X−. Define X1 := X− ∪ (X ∩B) ∪ {a′ ∈ (X \X−) ∩A | aa′|b0b ∈ Q}.
If X1 is not included in the minimal element in H, then output “Q is not compatible”
and stop. Otherwise, update H ← H∪ {X1}.

3-4: F ← F ∪H.
Step 4: If F displays Q, then output F . Otherwise, output “Q is not compatible.”

As a compatible complete bipartite quartet system (Proposition 2.2), a compatible
complete multipartite quartet system Q induces some kind of uniqueness of a laminarizable
family displaying Q, which ensures the validity of our proposed algorithm.

I Proposition 2.6. Suppose that a complete A-partite quartet system Q is compatible. Then
a minimal laminarizable A-cut family F displaying Q is uniquely determined up to ∼.

Algorithm 3 constructs a minimal laminarizable family Ft displaying Q[t] from a minimal
laminarizable family Ft−1 displaying Q[t−1]. We define a partial order relation ≺ in A-cuts
by: X ≺ Y if 〈X〉 ( 〈Y 〉 and {〈X〉 ∩X, 〈X〉 \X} = {〈X〉 ∩ Y, 〈X〉 \ Y }. Define X � Y by
X ≺ Y or X = Y . For nonempty R ⊆ [r], we define ∼R for A-cuts by:

X ∼R Y ⇐⇒ {〈X〉R ∩X, 〈X〉R \X} = {〈Y 〉R ∩ Y, 〈Y 〉R \ Y },

where 〈X〉R := 〈X〉 ∩ AR and 〈Y 〉R := 〈Y 〉 ∩ AR; recall (2) for the notation 〈X〉. We
abbreviate {i1, i2, . . . , ik} as i1i2 · · · ik for distinct i1, i2, . . . , ik. It is noted that, if F is
laminarizable and X 6∼ Y for all distinct X,Y ∈ F , then |F| is at most 2n = 2|A[r]|.

The following proposition shows that Algorithm 3 actually works.
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Algorithm 3 (for extending F ′ to F).
Input: An A-cut family F ′ with |F ′| ≤ 2|A[r−1]| displaying Q[r−1].
Output: Either detect the incompatibility of Q, or obtain A-cut family F with |F| ≤ 2n =

2|A[r]| displaying Q.
Step 1: For each i ∈ [r− 1], execute Algorithm 2 for Qir. If Algorithm 2 returns “Qir is not

compatible” for some i ∈ [r− 1], then output “Q is not compatible” and stop. Otherwise,
obtain Gi for all i ∈ [r − 1]. Let F := ∅.

Step 2: If F ′ = ∅, update as F ← F ∪
⋃

i∈[r−1] Gi, and go to Step 3. Otherwise, do the
following: Take any X ′ ∈ F ′. Let {i1, i2, . . . , ik} be the set of indices i ∈ [r − 1] with
〈X ′〉 = Ai1i2...ik

. Let FX′ be the set of maximal A-cuts Y with respect to ≺ such that
there is R ⊆ {i1, i2, . . . , ik} with 〈Y 〉 = AR∪{r} and Y ∼R X ′, and
there are Xi ∈ Gi with Y ∼ir Xi for all i ∈ R.

Then update as F ← F ∪ {X ′} ∪ FX′ and F ′ ← F ′ \ {X ′}, and go to Step 2.
Step 3: Update as

F ← the set of maximal elements in F with respect to ≺.

If |F| ≤ 2n, then output F . Otherwise, output “Q is not compatible.”

I Proposition 2.7. If Algorithm 3 outputs F , then F displays Q. In addition, if Q is
compatible and F ′ is a minimal laminarizable A[r−1]-cut family displaying Q[r−1], then F is
a minimal laminarizable A-cut family.

Our proposed algorithm for Displaying is the following.

Algorithm 4 (for Displaying).
Step 1: Execute Algorithm 2 for Q12. If Algorithm 2 returns “Q12 is not compatible,” then

output “Q is not compatible” and stop. Otherwise, obtain F2.
Step 2: For t = 3, . . . , r, execute Algorithm 3 for Ft−1. If Algorithm 3 returns “Q[t] is not

compatible,” then output “Q is not compatible” and stop. Otherwise, obtain Ft.
Step 3: Output F := Fr.

I Theorem 2.8. Algorithm 4 solves Displaying in O(rn4) time. Furthermore, if the input
is compatible, then the output is a minimal laminarizable A-cut family.

3 Full multipartite quartet system

3.1 Full Displaying and Full Laminarization
As in Section 2.1, we see that Quartet Compatibility for full multipartite quartet systems
can be divided into two subproblems named as Full Displaying and Full Laminarization.
The outline of the argument is the same as the case of complete multipartite quartet systems
in Section 2.1. We say that a family F ⊆ 2[n] displays a full quartet system Q on finite set
A ⊆ [n] if for all distinct a, b, c, d ∈ A,

ab||cd ∈ Q ⇐⇒ there is X ∈ F satisfying a, b ∈ X 63 c, d or a, b 6∈ X 3 c, d.

Let A := {A1, A2, . . . , Ar} be a partition of [n] with |Ai| ≥ 2 for all i ∈ [r]. We also say that
F displays a full A-partite quartet system Q = Q0 ∪ Q1 ∪ · · · ∪ Qr, where Q0 is complete



H. Hirai and Y. Iwamasa 57:11

A-partite and Qi is full on Ai for each i ∈ [r], if F displays all Q0,Q1, . . . ,Qr. Thus
Quartet Compatibility for full A-partite quartet system Q can also be viewed as the
problem of finding a laminar family L displaying Q if it exists.

We also introduce an equivalent relation ≈ on sets X,Y ⊆ [n] by: X ≈ Y if the families
{X} and {Y } display the same full A-partite quartet system. A set X ⊆ [n] is called a
weak A-cut if X 6≈ ∅. One can see that X is a weak A-cut if and only if X is an A-cut, or
〈X〉 = Ai for some i ∈ [r] and min{|X|, |Ai \X|} ≥ 2. One can see that, for weak A-cuts
X,Y , it holds that X ≈ Y ⇔ {〈X〉 ∩X, 〈X〉 \X} = {〈Y 〉 ∩ Y, 〈Y 〉 \ Y }. The equivalence
relation is extended to weak A-cut families F ,G by: F ≈ G ⇔ F/≈ = G/≈, where F/≈ is
defined as in Section 2.1. A weak A-cut family F is said to be laminarizable if there is a
laminar family L with F ≈ L. Note that an A-cut is a weak A-cut, and for A-cuts or A-cut
families, the equivalence relations ∼ and ≈ are the same.

By the same argument as in Section 2.1, Quartet Compatibility for a full A-partite
quartet system Q can be divided into the following two subproblems.

Full Displaying
Given: A full A-partite quartet system Q.
Problem: Either detect the incompatibility of Q, or obtain some weak A-cut family F

displaying Q. In addition, if Q is compatible, then F should be laminarizable.

Full Laminarization
Given: A weak A-cut family F .
Problem: Determine whether F is laminarizable or not. If F is laminarizable, obtain a

laminar weak A-cut family L with L ≈ F .
Here, in Full Laminarization, we assume that no distinct X,Y with X ≈ Y are contained
in F , i.e., |F| = |F/≈|.

Full Laminarization can be solved in O(n4) time by reducing to Laminarization.

I Theorem 3.1. Full Laminarization can be solved in O(n4) time.

In Section 3.2, we give an O(rn4)-time algorithm for Full Displaying (Theorem 3.3). Thus,
by Theorems 3.1 and 3.3, we obtain Theorem 1.1 for full A-partite quartet systems.

3.2 Algorithm for full multipartite quartet system
Our proposed algorithm for full multipartite quartet systems is devised by combining
Algorithm 4 for complete multipartite quartet systems and an algorithm for full quartet
systems. For full quartet system Q, it is known [2] that Quartet Compatibility can be
solved in linear time of |Q|, and that a phylogenetic tree displaying Q is uniquely determined.
By summarizing these facts with notations introduced in this paper, we obtain the following.

I Theorem 3.2 ([2, 8]). Suppose that Q is full on [n]. Then Quartet Compatibility can
be solved in O(|Q|) time. Furthermore, if Q is compatible, then a weak {[n]}-cut family F
displaying Q is uniquely determined up to ≈.

Let A := {A1, A2, . . . , Ar} be a partition of [n] with |Ai| ≥ 2 for all i ∈ [r]. Suppose
that a full A-partite quartet system Q = Q0 ∪ Q1 ∪ · · · ∪ Qr is compatible. Then we can
obtain a minimal laminarizable A-cut family F0 displaying Q0 and laminar weak A-cut
families Li ⊆ 2Ai displaying Qi for i ∈ [r]. By combining F0,L1, . . . ,Lr appropriately, we
can construct a minimal laminarizable weak A-cut family displaying Q as follows.
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Algorithm 5 (for Full Displaying).
Input: A full A-partite quartet system Q = Q0 ∪Q1 ∪ · · · ∪ Qr.
Output: Either detect the incompatibility of Q, or obtain weak A-cut family F displaying
Q.

Step 1: Solve Displaying for Q0 by Algorithm 4 and Quartet Compatibility for Qi for
i ∈ [r]. If algorithms detect the incompatibility of Qi for some i, then output “Q is not
compatible” and stop. Otherwise, obtain an A-cut family F0 displaying Q0 and laminar
weak A-cut families Li ⊆ 2Ai displaying Qi for all i ∈ [r].

Step 2: Let Fi := {X ∩Ai | X ∈ F0 such that 〈X〉 ⊇ Ai} for i ∈ [r]. If Fi/≈ 6⊆ Li/≈, then
output “Q is not compatible” and stop.

Step 3: Define F := F0 ∪
⋃

i∈[r]{Y ∈ Li | Y 6≈ X for all X ∈ Fi}. If |F| ≤ 2n, then output
F . Otherwise, output “Q is not compatible.”

I Theorem 3.3. Algorithm 5 solves Full Displaying in O(rn4) time. Furthermore, if the
input is compatible, then the output is a minimal laminarizable weak A-cut family.

By the proof of Theorem 3.3, the following corollary holds.

I Corollary 3.4. Suppose that a full A-partite quartet system Q is compatible. Then a
minimal laminarizable weak A-cut family F displaying Q is uniquely determined up to ≈.
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diameter and the radius in O(min(nω, n2 + nh log h + χ2)) time, where ω < 2.373 denotes the
matrix multiplication exponent and χ ∈ Ω(n) ∩ O(n2) is the number of edges of the graph of
oriented distances. We also provide an alternative algorithm for computing the diameter that
runs in O(n2 log n) time.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Rectilinear link distance, polygonal domain, diameter, radius

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.58

Related Version A full version is available at https://arxiv.org/abs/1712.05538.

1 Introduction

Diameters and radii are popular characteristics of metric spaces. For a compact set S with a
metric d : S × S → R+, its diameter is defined as diam(S) := maxp∈S maxq∈S d(p, q), and its
radius is defined as rad(S) := minp∈S maxq∈S d(p, q). The pair (p, q) and the point p that
realize these distances are called the diametral pair and center, respectively. These terms are
the natural extension of the same concepts in a disk and give some interesting properties of
the environment, such as the worst-case response time or ideal location of a serving facility.

Much research has been devoted towards finding efficient algorithms to compute the
diameter and radius for various types of sets and metrics. In computational geometry, one
of the most well-studied and natural metric spaces is a polygon in the plane. This paper
focuses on the computation of the diameter and the radius of a rectilinear polygon, possibly
with holes (i.e., a rectilinear polygonal domain) under the rectilinear link distance. Intuitively,
this metric measures the minimum number of links (segments) required in any rectilinear
path connecting two points in the domain, where rectilinear indicates that we are restricted
to horizontal and vertical segments only.

1.1 Previous Work
The ordinary link distance is a very natural metric and simple to describe. Initially, the
interest was motivated by the potential robotics applications (i.e., having some kind of robot
with wheels for which moving in a straight line is easy, but making turns is costly in time or
energy). Since then, it has attracted a lot of attention from a theoretical point of view.

Indeed, many problems that are easy under the L1 or Euclidean metric turn out to
be more challenging under the link distance. For example, the shortest path between two
points in a polygonal domain can be found in O(n log n) time for both Euclidean [9] and
L1 metrics [11, 12]. However, even approximating the shortest path within a factor of
(2− ε) under the link distance is 3-SUM hard [13], and thus it is unlikely that a significantly
subquadratic-time algorithm is possible.

The problem of computing the diameter and radius is no exception to this rule: when
polygons are simple (i.e., they do not have holes) and have n vertices, the diameter and
center can be found in linear time for both Euclidean [1, 8] and L1 metrics [4]. However,
the best known algorithms for the link distance run in O(n log n) time [6, 17]. Lowering the
running times or proving the impossibility of this is a longstanding open problem in the field.
The only partial answer to this question was given by Nilsson and Schuierer [15, 16]; they
showed that the diameter and center can be found in linear time under the rectilinear link
distance (i.e., when we are only allowed to use rectilinear paths).

https://doi.org/10.4230/LIPIcs.ISAAC.2018.58
https://arxiv.org/abs/1712.05538
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Table 1 Summary of the best known results for computing the diameter and radius of a polygonal
domain of n vertices and h holes under different metrics. In the table, ω < 2.373 is the matrix
multiplication exponent.

Metric Simple polygon Polygonal domain
Diameter Radius Diameter Radius

Euclidean O(n) [8] O(n) [1] O(n7.73) [3] O(n11 log n) [18]
L1 O(n) [4] O(n) [4] O(n2 + h4) [2] Õ(n4 + n2h4) [2]

Ordinary link O(n log n) [17] O(n log n) [6] open open
Rectilinear link O(n) [15] O(n) [16] O(n2 log n) (Thm. 10) O(nω) (Thm. 12)

Figure 1 An example showing no diametral
pair lies on the boundary of the polygonal do-
main. The points in the dashed blue regions will
have distance 6 from each other (out of the 4
shortest paths connecting them two are shown)
whereas other pairs will have distance 5 or less.

Figure 2 Example with diameter 8 (crossed
points) and radius 7 (dotted point). By increas-
ing the number of bends in the holes the diameter
and radius become arbitrarily close. Note that
any point in the domain is either a center or
belongs to a diametral pair.

We focus on polygons with holes. The addition of holes to the domain introduces
significant difficulties to the problem. For example, the diameter and radius under the
rectilinear link distance can be uniquely realized by points in the interior of a polygonal
domain (see Figure 1). Hence, it does not suffice to determine the distance only between
every pair of vertices of the domain. Other strange situations can happen, such as the
diameter and radius being arbitrarily close (see e.g. Figure 2).

These difficulties have a clear impact in the runtime of the algorithms. In most metrics,
the runtime changes from linear or slightly superlinear to large polynomial terms. The
difference between the link distance and other metrics becomes even more significant: no
algorithm for computing the diameter and radius under the link distance is known, not even
one that runs in exponential time (or one that works for particular cases such as rectilinear
polygons). A summary of the best running time for computing the diameter and center
under different metrics can be found in Table 1.

In this paper we provide the first step towards understanding such a difficult metric.
Similarly to the simple polygon case [15, 16], we start by considering the computation of
both the diameter and radius under the rectilinear link distance. We hope that the ideas of
this paper will motivate future research in solving the more difficult problem of computing
the diameter and radius under the (ordinary) link distance.
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1.2 Results
Several of the difficulties of the link distance disappear when restricting the problem to a
rectilinear setting. For example, one can easily partition the domain into rectangular cells
such that all points in a cell have the same distance to all points in another cell. With
this partition, brute-force algorithms that find the diameter and radius in O(n3 log n) time
immediately follow. Alternatively, you can use a slightly coarser method to approximate
either value: in O(n2 + nh log h) or O(n2 log log n) time we can compute an estimate of the
diameter (details of these methods are given in Section 2). This estimate will either be the
exact diameter or will be the diameter plus one (i.e., the path computed may contain an
additional link that is not needed).

In our work we improve this second approach. By using some geometric observations,
we characterize exactly when the estimate is off by one unit. Thus, we can transform the
approximation algorithm into an exact one by adding a verification step that checks whether
or not the one additive error has actually happened.

We provide three different algorithms for making the above additional verification step.
In Section 3 we characterize what we should look for to determine what the exact diameter is.
This characterization then leads to a brute-force algorithm that runs in O(n2 +nh log h+χ2)
time, where χ is a parameter of the input that ranges from Θ(n) to Θ(n2). To reduce
running times when χ is large we present another algorithm to compute the diameter in
Section 4. This algorithm, which runs in O(n2 log n) time, exploits properties of the diameter.
Specifically, we heavily use that this value is a maximum over a maximum of distances, hence
it can only be used for the diameter (recall that we have a minimum-maximum alternation
in the definition of the radius). For the radius we then present a third algorithm that uses
matrix multiplication to speed up computation. This solution runs in time O(nω), where
ω < 2.373 is the matrix multiplication exponent (Le Gall [10] provided the best known bound
on ω). This last solution can also be adapted to compute the diameter, but our second
algorithm results in a faster method.

Another interesting benefit of our approach is that we may be able to obtain a certificate.
In previous algorithms for computing the diameter or center in polygonal domains, the
diameter is found via exhaustive search. Thus, even if somehow the points that realize the
diameter or center are given, the only way to verify that the answer is correct is to run the
whole algorithm. In our algorithm, knowing the diameter can reduce the time needed for
verification. Although the reduction in computation time is not large (from O(n2 log n) for
computing to O(n2 log log n) for verifying the diameter, for example), we find it to be of
theoretical interest.

Further note that, when comparing with the algorithms for other metrics, the running
time for simple and polygonal domains differs by at least a cubic factor. In our case, running
times only increase by a slightly superlinear factor when compared to the case of simple
polygons [15, 16]. This is partially due to the fact that rectilinear link distance is much easier
than the ordinary link distance, but also because we use this new verification approach. We
believe this to be our main contribution and hope that it motivates a similar approach in
other metrics.

1.3 Preliminaries
A rectilinear simple polygon (also called an orthogonal polygon) is a simple polygon that has
horizontal and vertical edges only. A rectilinear polygonal domain P with h pairwise disjoint
holes and n vertices is a connected and compact subset of R2 with h pairwise disjoint holes,
in which the boundary of each hole is a simple closed rectilinear curve. Thus, the boundary
∂P of P consists of n line segments.
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Each of the holes as well as the outer boundary of P is regarded as an obstacle that paths
in P are not allowed to cross. A rectilinear path π from p ∈ P to q ∈ P is a path from p to q
that consists of vertical and horizontal segments, each contained in P , and such that along π
each vertical segment is followed by a horizontal one and vice versa. Recall that P is a closed
set, so π can traverse the boundary of P (along the outer face and any of the h obstacles).

We define the link length of such a path to be the number of segments composing it. The
rectilinear link distance between points p, q ∈ P is defined as the minimum link length of a
rectilinear path from p to q in P , and denoted by `P (p, q). It is well known that in rectilinear
polygonal domains there always exists a rectilinear polygonal path between any two points
p, q ∈ P , and thus the distance is well defined. Once the distance is defined, the definitions
of rectilinear link diameter diam(P ) and rectilinear link radius rad(P ) directly follow.

For simplicity in the description, we assume that a pair of vertices do not share the same
x- or y-coordinate unless they are connected by an edge. This general position assumption
can be removed with classic symbolic perturbation techniques. Also notice that, since we
are considering rectilinear polygons, no edge has length 0. However, for simplicity in the
analysis we will allow edges in a rectilinear path to have length 0. These edges of length 0
are considered as edges and thus potentially contribute to the link distance (naturally, no
shortest path will ever have such an edge). The reason for considering these is that we will
consider oriented paths, where the first and last edge are forced to be horizontal or vertical,
this enforcement may require edges of length 0. From now on, for ease of reading, we will
refer to rectilinear simple polygons and rectilinear polygonal domains as “simple polygons”
and “domains.” Similarly, we will use the term “distance” to refer to the rectilinear link
distance.

2 Graph of Oriented Distances

In this section we introduce the graph of oriented distances and show how it can be used to
encode the rectilinear link distance between points of the domain. We note that, although
we have not been able to find a reference to this graph in the literature, some properties
are already known. For example, the horizontal and vertical decompositions (defined below)
were used by Mitchell et al. [14] to compute minimum-link rectilinear paths.

For any domain P , we extend any horizontal segment of the domain to the left and right
until it hits another segment of P , partitioning it into rectangles. We call this partition the
horizontal decomposition. Let H(P ) be the set containing those rectangles. Similarly, if we
extend all the vertical segments up and down, we get the vertical decomposition. Let V(P )
be the set of rectangles in this second decomposition. Observe that both decompositions
have linear size and can be computed in O(n log n) time with a plane sweep.

The overlay of both subdivisions creates a finer subdivision that has the well-known
property that pairwise cell distance is constant (that is, the distance between any pair of
points in two fixed cells of this subdivision will remain constant). Thus, by computing the
distance between all pairs of cells we can find both the diameter and center. The major
problem of this approach is that the finer subdivision may have Ω(n2) cells, and thus it is
hard to obtain an algorithm that runs in subcubic time. Instead, we avoid the overlay and
use both subdivisions separately to obtain the diameter.

Given two rectangles i, j ∈ H(P ) ∪ V(P ), we use i u j to denote the boolean operation
which returns true if and only if the rectangles i and j properly intersect (i.e. their intersection
has non-zero area). This implies that one of i, j belongs to H(P ), and the other to V(P ).
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I Definition 1 (Graph of Oriented Distances). Given a rectilinear polygonal domain P ,
let G(P ) be the unweighted undirected graph defined as G(P ) = (H(P ) ∪ V(P ), { (h, v) ∈
H(P )× V(P ) : h u v }).

In other words, vertices of G(P ) correspond to rectangles of the horizontal and the vertical
decompositions of P . We add an edge between two vertices if and only if the corresponding
rectangles properly intersect. Note that this graph is bipartite, and has O(n) vertices. From
now on, we make a slight abuse of notation and identify a rectangle with its corresponding
vertex (thus, we talk about the neighbors of a rectangle i ∈ H(P ) in G(P ), for example).

The name Graph of Oriented Distances is explained as follows (see also the paragraph
after Lemma 4). Consider a rectilinear path π between two points in P . Each horizontal edge
of π is contained in a rectangle of H(P ) and each vertical edge is contained in a rectangle of
V(P ). A bend in the path takes place in the intersection of the rectangles containing the
two adjacent edges and corresponds to an edge of G(P ). So every rectilinear path π has a
corresponding walk π′ in G(P ) (and vice versa). Moreover, each bend of π is associated with
an edge of π′.

I Definition 2 (Oriented distance). Given a rectilinear polygonal domain P , let i and j be
two vertices of G(P ), let ∆(i, j) to be the length of the shortest path between i and j in
graph G(P ) plus one. We also define ∆(i, i) = 1.

The reason why we add the extra unit is to make sure that the link distance and the oriented
distance match (see Lemma 4 below). We first list some useful properties of the oriented
distance, which directly follow from the definition. Then we show the relationship between
the oriented distance ∆(·, ·) in G(P ) and the link distance `P (·, ·) in P .

I Lemma 3. Let i, j, i′, j′ be any (not necessarily distinct) rectangles in H(P ) ∪ V(P ) such
that i u i′, and j u j′. Then, the following hold.
(a) ∆(i, j) = ∆(j, i).
(b) ∆(i′, j) ∈ {∆(i, j)− 1,∆(i, j) + 1 }.
(c) ∆(i′, j′) ∈ {∆(i, j)− 2,∆(i, j),∆(i, j) + 2 }.

I Lemma 4. Let p and q be two points of the rectilinear polygonal domain P . The rectilinear
link distance `P (p, q) between p and q can be characterized as follows. If p and q lie in
the same vertical or horizontal rectangle of V(P ) or H(P ) then `P (p, q) = 1 (if p and q

share a coordinate) or `P (p, q) = 2 (if both x- and y-coordinates of p and q are distinct).
Otherwise, let i ∈ H(P ), i′ ∈ V(P ), j ∈ H(P ) and j′ ∈ V(P ) be vertices of the graph of
oriented distances such that p ∈ i ∩ i′ and q ∈ j ∩ j′. Then

`P (p, q) = min{∆(i, j),∆(i, j′),∆(i′, j),∆(i′, j′) }.

Intuitively speaking, if we are given two disjoint rectangles i, j ∈ H(P ), then ∆(i, j)
denotes the minimum number of links needed to connect any two points p ∈ i and q ∈ j under
the constraint that the first and the last segments of the path are horizontal. If we looked
for rectangles in V(P ), we would instead require that the path starts (or ends) with vertical
segments. It follows that the link distance is the minimum of the four possible options.

In our algorithms we will often look for oriented distances between rectangles, so we
compute it and store them in a preprocessing phase. Fortunately, a similar decomposition was
used by Mitchell et al. [14]. Specifically, they show how to compute the distance from a single
rectangle to all other rectangles in O(n+ h log h) time with an O(n)-size data structure.8

8 As a subproblem towards obtaining their main result, Mitchell et al. [14] show how to compute the
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I Lemma 5 ([14]). Given the horizontal and vertical decompositions H(P ) and V(P ) we
can compute for a single rectangle i in either decomposition the oriented distance ∆(i, j) to
every other rectangle j in O(n+ h log h) time.

We construct this data structure for each of the O(n) rectangles. This allows us to compute
(and store) the O(n2) oriented distances in O(n2 + nh log h) time. Alternatively, we can use
a recent result by Chan and Skrepetos [5] to compute the same distances in O(n2 log log n)
time.

3 Characterization via Boolean Formulas

Let d̂ = maxi,j∈H(P )∪V(P ) ∆(i, j) be the largest distance between vertices of G(P ). Similarly,
we define r̂ = mini∈H(P )∪V(P ) maxj∈H(P )∪V(P ) ∆(i, j). Note that these two values are the
diameter and the radius of G(P ) plus one (recall that we add one unit to the graph distance
when defining ∆). We use d̂ and r̂ to approximate the diameter diam(P ) and radius rad(P )
of a domain P under the rectilinear link distance. First, we relate the distance between
two points p, q ∈ P to the oriented distances between the rectangles that contain p and q.
Specifically, from Lemma 4, we know that `P (p, q) = min{∆(i, j),∆(i, j′),∆(i′, j),∆(i′, j′) },
where i, j ∈ H(P ) are the horizontal rectangles containing p and q, respectively, and
i′, j′ ∈ V(P ) are the vertical rectangles containing p and q. Similarly, we define ˆ̀(p, q) =
max{∆(i, j),∆(i, j′),∆(i′, j),∆(i′, j′) }. It then follows from Lemma 3 that these two values
differ by at most 2.

I Lemma 6. For any two points p, q ∈ P , let i, j ∈ H(P ) and i′, j′ ∈ V(P ) be the rectangles
containing p and q, i.e., p ∈ i ∩ i′ and q ∈ j ∩ j′. Then, it holds that ˆ̀(p, q)− 2 ≤ `P (p, q) ≤
ˆ̀(p, q)− 1.

This relation allows us to express the rectilinear link diameter of a domain in terms of d̂.

I Theorem 7. The rectilinear link diameter diam(P ) of a rectilinear polygonal domain P
satisfies diam(P ) = d̂− 1 if and only if there exist i, i′, j, j′ ∈ H(P ) ∪ V(P ) with i u i′ and
j u j′, such that ∆(i, j) = d̂ and ∆(i′, j′) = d̂. Otherwise, diam(P ) = d̂− 2.

Proof. Before giving our proof, we emphasize that the fact that diam(P ) ∈ {d̂− 1, d̂− 2} is
folklore (although we have found no reference, several researchers mentioned that they were
aware of it). Our major contribution is the characterization of which of the two cases it is.

Now observe that for any pair of points p, q ∈ P we have `P (p, q) ≤ ˆ̀(p, q)− 1 ≤ d̂− 1
by Lemma 6. Hence, the diameter of P is at most d̂− 1. Similarly, by the definitions of d̂
and ˆ̀(·, ·), there must be a pair of points p, q ∈ P so that ˆ̀(p, q) = d̂. Again by Lemma 6 it
follows that diam(P ) ≥ `P (p, q) ≥ ˆ̀(p, q)− 2 = d̂− 2.

Next we show that the diameter is d̂ − 1 if and only if the above condition holds. If
∆(i, j) = d̂ and ∆(i′, j′) = d̂, then by Lemma 3 and the fact that neither ∆(i, j′) nor ∆(i′, j)
can be larger than d̂, we know that ∆(i, j′) = ∆(i′, j) = d̂− 1. It follows from Lemma 4 that
a pair of points p ∈ i ∩ i′ and q ∈ j ∩ j′ has `P (p, q) = d̂− 1. Thus, the diameter is d̂− 1.

distance from a single point to any other location in the domain with paths of fixed orientation.
They call these the h-h-map, v-v-map, v-h-map and h-v-map and they correspond to our rectangular
decompositions. Although their method considers a single starting point, it can be adapted to compute
the distance from a rectangle as all points inside each rectangle we consider will have the same resulting
distances to the other rectangles.
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Now consider any pair p, q and the set of rectangles i, j ∈ H(P ) and i′, j′ ∈ V(P ) with
p ∈ i ∩ i′ and q ∈ j ∩ j′. Recall that `P (p, q) = min{∆(i, j),∆(i, j′),∆(j′, i),∆(i′, j′)}. By
Lemma 3, ∆(i, j) and ∆(i′, j′) must differ by exactly one from ∆(i′, j) and ∆(i, j′). That
implies that two distances may be d̂− 1, but if the condition in the lemma is not satisfied, at
most one can be d̂ and the fourth must be d̂− 2 or less. Therefore, if the condition is not
satisfied for i, i′, j, j′, then the diameter is indeed d̂− 2. J

For the radius we can make a similar argument.

I Theorem 8. The rectilinear link radius rad(P ) of a rectilinear polygonal domain P satisfies
rad(P ) = r̂−1 if and only if for all i, i′ ∈ H(P )∪V(P ) with iui′ there exist j, j′ ∈ H(P )∪V(P )
with j u j′ such that ∆(i, j) ≥ r̂ and ∆(i′, j′) ≥ r̂. Otherwise, rad(P ) = r̂ − 2.

Proof. We first show by contradiction that the real radius satisfies rad(P ) ≤ r̂ − 1. Suppose
the radius is greater than or equal to r̂. Then, for all p ∈ P there exists a point q ∈ P such
that `P (p, q) ≥ r̂. Now consider a rectangle i ∈ H(P ) ∪ V(P ), a point p ∈ i and a point q at
distance r̂ from p. Consider the two rectangles j ∈ H(P ) and j′ ∈ V(P ) so that q ∈ j ∩ j′.
By Lemma 4 we know that ∆(i, j) ≥ `P (p, q) ≥ r̂ and ∆(i, j′) ≥ `P (p, q) ≥ r̂. By Lemma 3b
∆(i, j) and ∆(i, j′) differ by one, and thus one of them must be at least r̂ + 1. That is, for
any rectangle i we can find a second rectangle at oriented distance r̂ + 1. This implies that
r̂ = mini∈H(P )∪V(P ) maxj∈H(P )∪V(P ) ∆(i, j) ≥ r̂+ 1, which is a contradiction. Therefore, our
initial assumption that rad(P ) ≥ r̂ is false and we conclude that rad(P ) ≤ r̂ − 1.

Next we show that rad(P ) ≥ r̂ − 2. Consider any point p and a rectangle i ∈ H(P ) that
contains it. By definition of r̂ there is a rectangle j ∈ H(P ) ∪ V(P ) so that ∆(i, j) ≥ r̂. Let
q be any point in j. From Lemma 6 we get that `P (p, q) ≥ ˆ̀(p, q)− 2 ≥ ∆(i, j)− 2 ≥ r̂ − 2.
Hence for any point p, there is a point q that is at distance at least r̂ − 2, which implies
rad(P ) ≥ r̂ − 2.

Now we show that if the above condition is satisfied, then it must hold that rad(P ) = r̂−1.
Assume the condition holds and consider any point p and two rectangles i, i′ ∈ H(P ) ∪ V(P )
so that i u i′ and p ∈ i ∩ i′. There exist j, j′ ∈ H(P ) ∪ V(P ) so that j u j′, ∆(i, j) ≥ r̂, and
∆(i′, j′) ≥ r̂. By Lemma 3 we know that ∆(i, j′) and ∆(i′, j) must be at least r̂−1. Therefore
`P (p, q) ≥ r̂ − 1 for any point q ∈ j ∩ j′. This shows that for any point p there is a point q
whose link distance to p is at least r̂ − 1, giving a lower bound on the radius. Combining
this with the upper bound shown above, we obtain that rad(P ) = r̂ − 1 as claimed.

If the condition is not true, then we know there exist rectangles i, i′ ∈ H(P ) ∪ V(P ) so
that i u i′, and for every j, j′ ∈ H(P ) ∪ V(P ) with j u j′ the above statement is not true.
Now consider a point p ∈ i ∩ i′. We argue that p has distance at most r̂ − 2 to any other
point q ∈ P . Consider any point q and let j, j′ ∈ H(P )∪V(P ) be the rectangles containing q.
We perform a case analysis on the value of ∆(i, j). First consider the case ∆(i, j) ≥ r̂ + 1.
In this case ∆(i′, j) ≥ r̂ and ∆(i, j′) ≥ r̂ which contradicts our assumption that the above
statement is not true for every (j, j′). If ∆(i, j) = r̂, then by Lemma 3 and the assumption
that not both ∆(i, j) ≥ r̂ and ∆(i′, j′) ≥ r̂ we find that ∆(i′, j′) = r̂ − 2 which implies that
`P (p, q) ≤ r̂ − 2. If ∆(i, j) = r̂ − 1, then by Lemma 3, both ∆(i, j′) and ∆(i′, j) differ from
∆(i, j) by 1, but by our assumption that not both ∆(i, j′) ≥ r̂ and ∆(i′, j) ≥ r̂, one of them
must be r̂− 2. Lastly, if ∆(i, j) ≤ r̂− 2, we can already conclude that `P (p, q) ≤ r̂− 2. This
shows that from p any other point q is at most distance r̂ − 2 away, hence the radius is at
most r̂ − 2. Combining this with the lower bound of r̂ − 2 (shown above), we conclude that
the radius must be r̂ − 2. J

With the above characterization, we can naively compute the diameter and the radius
by checking all O(n4) quadruples (i, i′, j, j′) ∈ H(P )× V(P )×H(P )× V(P ). However, the
approach can be improved by using G(P ).
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I Corollary 9. The rectilinear link diameter diam(P ) and radius rad(P ) of a rectilinear
polygonal domain P consisting of n vertices and h holes can be computed in O(n2 +nh log h+
χ2) time, where χ is the number of edges of G(P ) (i.e., the number of pairs of intersecting
rectangles of H(P ) and V(P )).

As we discuss later, this method is only useful when χ is very small, i.e. almost linear
size or smaller.

Remark on the interior realization of the diameter/radius

Theorems 7 and 8 together with Lemma 3b imply that a necessary condition for the diameter
to be uniquely realized by pairs of interior points is that diam(P ) = d̂− 1. Similarly, for all
centers to be determined by points in the interior we must have rad(P ) = r̂ − 1. However,
neither condition is sufficient. This transformation of the problem into a search of quadruples
of rectangles allows us to handle the interior cases in the same way as the boundary cases.

4 Computing the Diameter Faster

We present a faster method for computing the diameter. This method uses the fact that the
diameter is defined as a maximum over maxima which allows us to reduce the running time
to O(n2 log n). Recall that the radius is a minimum over maxima, thus the algorithm of this
section does not trivially extend to the computation of the radius. The rest of this section is
the proof of the following statement.

I Theorem 10. The rectilinear link diameter diam(P ) of a rectilinear polygonal domain P
of n vertices can be computed in O(n2 log n) time.

By Theorem 7, after we compute the oriented diameter d̂, we only need to consider d̂− 1
or d̂− 2 as candidates to be diam(P ). The following corollary of Theorem 7 can be obtained
by applying Lemma 3c.

I Corollary 11. The diameter diam(P ) equals d̂− 2 if and only if for all rectangles i and j
with ∆(i, j) = d̂, and for all rectangles i′ and j′ with iu i′ and juj′, we have ∆(i′, j′) = d̂−2.
Otherwise, diam(P ) = d̂− 1.

This condition can be checked in O(n4) time in a brute-force manner as follows. We iterate
over every pair (i, j) with ∆(i, j) = d̂. For each such pair we find the sets cover(i) = {i′ : iui′}
and cover(j) = {j′ : j u j′}. Then for each pair (i′, j′) ∈ cover(i) × cover(j) we check if
∆(i′, j′) = d̂− 2. If there is a pair for which this is not the case, then by the above corollary
the diameter is d̂ − 1. Since each of the covers may have linear size, the running time is
Ω(n4).

The key observation that allows us to reduce this to O(n2 log n) time is that in the end
there are only O(n2) unique pairs to test. Indeed, what we are checking is the distance of
every pair (i′, j′) in the set

T = {(i′, j′) : ∃i, j such that (i′ u i, j u j′,∆(i, j) = d̂)}

which clearly has only quadratic size. Next we show that this set has more structure than
just being an arbitrary set of rectangles, which allows us to compute it more quickly.

First, instead of iterating over every pair (i, j) with ∆(i, j) = d̂ and computing all pairs in
cover(i)× cover(j), we iterate over i and compute all pairs in cover(i)×

⋃
j : ∆(i,j)=d̂ cover(j).
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For a rectangle i ∈ H(P ) ∪ V(P ), let Si denote the set of rectangles at oriented distance d̂
from i. Now let

T =
⋃

i

Ti =
⋃

i

{(i′, j′) : ∃j such that (i′ u i, j′ u j, j ∈ Si)}.

Note that the rectangles fulfilling the role of i′ are easily found (i.e., they must intersect
i and must have different orientation), but naively computing the ones that fulfill the role
of j′ leads to a quadratic runtime. That is, if we were to compute for each j ∈ Si its cover,
then this may take Ω(n2) time. However, there are only O(n) rectangles that can fulfill the
role of j′ and we show how to find them in O(n log n) time.

For this purpose we use an orthogonal segment intersection reporting data structure,
derived from a known dynamic ray shooting data structure [7]. The data structure we
use stores horizontal line segments. It allows to add or remove horizontal line segments in
O(log n) time per segment. The structure reports the first segment hit by a query ray in
O(log n) time. By repeatedly using the structure, we can find all z horizontal line segments
intersected by a vertical line segment in O((z+1) log n) time. While performing the query, we
also remove all the reported segments from the data structure in the same time complexity.

For a rectangle k, we define the middle segment `k of k. If k is a horizontal rectangle, `k

is the line segment connecting the midpoints of its left and right boundary; if k is a vertical
rectangle, `k is the segment connecting the midpoints of its top and bottom boundary.

We fix a rectangle i, and assume without loss of generality that the rectangles in Si are
vertical. Insert the middle segments of all horizontal rectangles in H(P ) into the intersection
reporting data structure. Then, for each rectangle j ∈ Si, we query its corresponding middle
segment. By the definition of middle segments, each reported horizontal segment corresponds
to a rectangle j′ intersecting j. Since we remove each segment as we find it, no rectangle
is reported twice. Repeating this for all j ∈ Si finds the set Ci = { j′ : j′ u j, j ∈ Si } of all
horizontal rectangles that intersect at least one rectangle in Si. Each query can be charged
either to the horizontal segment that is deleted from the data structure or, in case z = 0, to
the rectangle j ∈ Si that we are querying. Hence, the total query time sums to O(n log n).

For each rectangle in the set Ci, we should check the distance to every rectangle i′ such
that i′ u i. Doing this explicitly takes O(n2) time. Thus, summing over all rectangles i, we
get the total running time of O(n3).

To bring the running time down to O(n2 log n), we create a reverse map of the map
i 7→ Ci. For each rectangle k, we build a collection Lk that contains i if and only if k belongs
to Ci. Given a rectangle j′, we need to check the distance between j′ and i′ for any (i, i′)
with i ∈ Lj′ and i u i′. Using the intersection reporting data structure, we compute for each
rectangle j′ the set Dj′ , which is the set of all rectangles intersecting those in Lj′ . For each
rectangle i′ ∈ Dj′ , we test if ∆(i′, j′) = d̂− 2. Again recall that if we find a pair with d̂, then
the diameter must be d̂− 1 (otherwise, the diameter is d̂− 2). This proves Theorem 10.

5 Computation via Matrix Multiplication

In this section we provide an alternative method to compute the radius. This method also
uses the condition in Theorem 8, but instead exploits the behavior of matrix multiplication
on (0,1)-matrices. Recall that, given two (0,1)-matrices A and B, their product is (AB)i,j =∑

k(Ai,k ·Bk,j) = |{ k : Ai,k = 1 ∧Bk,j = 1 }|.
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We define a (0,1)-matrix I, which is used to compute both the diameter and radius:

Ii,j =
{

1 if i u j,
0 otherwise.

In other words, for each pair i, j of rectangles in H(P )∪V(P ), the matrix I indicates whether
i and j intersect and have different orientations (one horizontal, one vertical). Note that,
for ease of explanation, we have slightly abused the notation and identified rectangles of
H(P ) ∪ V(P ) with indices in the matrix.

5.1 Computing the Radius
We use Theorem 8 to compute the radius. Thus, we need to determine if there exist four
rectangles in H(P ) ∪ V(P ) that satisfy the condition of Theorem 8. If so, the radius will be
r̂ − 1; otherwise, r̂ − 2. In order to do so, we define the (0,1)-matrix R that which indicates
whether a pair of rectangles is at oriented distance at least r̂ from each other:

Ri,j =
{

1 if ∆(i, j) ≥ r̂,
0 otherwise.

By multiplying I and R, we obtain

(IR)i,j′ = |{ i′ : (i u i′) ∧ (∆(i′, j′) ≥ r̂) }|.

In other words, the entry at (i, j′) of the product IR counts the number of rectangles in
H(P ) ∪ V(P ) that intersect rectangle i and are oriented differently from it, and at the same
time are at oriented distance at least r̂ from rectangle j′.

We construct the (0,1)-matrix N that indicates whether the corresponding entry of IR is
non-zero, as follows:

Ni,j =
{

1 if (IR)i,j > 0,
0 otherwise.

We now look at the product RN . Note that (RN)i,i′ > 0 if and only if there are two
rectangles j and j′ with j u j′ such that ∆(i, j) ≥ r̂ and ∆(i′, j′) ≥ r̂

The quantifier on j′ and the condition on its intersection with j can be moved just to the
right of the quantifier on j without altering the meaning of the formula, since both of them
are existential quantifiers.

Therefore, the condition on Theorem 8 is satisfied if and only if for each 1-entry in I the
corresponding entry in RN is non-zero. This condition can be checked by iterating over the
entries of the matrices in quadratic time once the matrix RN has been computed.

Note that the time taken by the computation of the various matrix products dominates
the time taken by the other loops and operations. Each matrix has O(n) rows and columns,
and the product of two O(n)× O(n) matrices can be computed in O(nω) time. A similar
method can be applied using Theorem 7 to compute the diameter instead. We summarize
the results of this section in the following theorem.

I Theorem 12. The rectilinear link radius rad(P ) or diameter diam(P ) of a rectilinear
polygonal domain P consisting of n vertices can be computed in O(nω) time.
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Abstract
In this paper, we consider the quickest pair-visibility problem in polygonal domains. Given two
points in a polygonal domain with h holes of total complexity n, we want to minimize the
maximum distance that the two points travel in order to see each other in the polygonal domain.
We present an O(n log2 n+h2 log4 h)-time algorithm for this problem. We show that this running
time is almost optimal unless the 3sum problem can be solved in O(n2−ε) time for some ε > 0.
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1 Introduction

Consider two mobile robots under the line-of-sight communication model [8, 15]. In this model,
the two robots are required to be visible to each other in order to establish communication.
In the case that they are not visible to each other, we can move one of them to see the other.
Motivated by this model, the quickest visibility problem was introduced. In this problem,
we are given a starting point s and a target point t amidst polygonal obstacles in the plane,
and the objective is to find a shortest collision-free path for s to move along to see t. This
problem can be solved in O(n log n) time, where n is the total complexity of the polygonal
obstacles, by applying the continuous Dijkstra paradigm [10] as mentioned in [2].

Arkin et al. [2] studied the query variant of this problem. More precisely, given h polygonal
obstacles (holes) of total complexity n and a target point, they presented a data structure
of size O(n22α(n) log n) so that the length of a shortest path for a query starting point to
move along to see the target point can be computed in O(K log2 n) time, where K is the size
of the visibility polygon from the target point and α(n) is the inverse Ackermann function.
Recently, it is improved by Wang [14]. His data structure has size of O(n log h + h2) and
supports O(h log h log n) query time.

In this paper, we study the quickest pair-visibility problem in polygonal domains. In
this problem, both starting and target points move to see each other. Precisely, given h

polygonal obstacles of total complexity n and two points disjoint from the obstacles, we want
to compute the minimum distance that the two points travel in order to see each other. Here,
there are two variants of the problem, one for minimizing the maximum of the two travel
distances and one for minimizing the sum of the two travel distances.

Wynters and Mitchell studied this problem [15] for both variants. For the min-max
variant, they gave an O(n3 log n)-time algorithm using O(n2) space. For the min-sum variant,
they gave an O(nm)-time algorithm using O(m) space, where m is the number of edges in
the visibility graph of the polygonal obstacles. Note that m is Θ(n2) in the worst case. Very
recently, Ahn et al. [1] considered a simpler version of the quickest pair-visibility problem
in which two points are given in a simple polygon with no holes, and presented linear-time
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Figure 1 The quickest paths for s and t to see each other are ss′ and tt′. Here, s′ and t′ are on a
non-vertical line containing three input points.

algorithms for both the min-max and the min-sum variants of the problem. They also
considered a query version of the problem for the min-max variant and presented a data
structure supporting O(log2 n) query time. Both the construction time and the space of the
data structure are linear in the input size.

Our results. In this paper, we study the min-max variant of the quickest pair-visibility
problem in a polygonal domain with h holes of total complexity n. We present an algorithm
for this problem which takes O(n log2 n + h2 log4 h) time using O(n log n) space. This
substantially improves the algorithm by Wynters and Mitchell, which takes O(n3 log n) time
using O(n2) space. Moreover, the running time of our algorithm is almost optimal unless the
3sum problem can be solved in strongly subquadratic time. More specifically, the following
lemma holds.

I Lemma 1. Any algorithm for the min-max variant of the quickest pair-visibility problem
in a polygonal domain with h holes of total complexity n takes Ω(n + h2−ε) time for any
ε > 0 unless the 3sum problem can be solved in O(N2−ε), where N is the size of input for
the 3sum problem.

Proof. We prove the lemma by introducing a reduction from a geometric version of the 3sum
problem. Given a set of n points with integer coordinates on three vertical lines x = 0, x = 1
and x = 2, the goal of the geometric version of the 3sum problem is to determine whether
there exists a non-vertical line containing three of the points. This problem is a 3sum-hard
problem in the sense that there is an O(n)-time reduction from the 3sum problem to the
geometric version of the 3sum problem [7].

Given an instance of the geometric version of the 3sum problem, we construct a polygonal
domain as follows. Let Si be the set of input points contained in the vertical line `i : x = i for
i = 0, 1, 2. See Figure 1. Then `i \ Si consists of O(n) connected components (line segments
or rays) in the plane. We consider each connected component as a hole of the polygonal
domain. Let g be the line containing the topmost point of S0 and the bottommost point
of S2. Similarly, let g′ be the line containing the topmost point of S2 and the bottommost
point of S0. We put s and t lying to the left of `0 and to the right of `2, respectively,
so that max{dE(s, g), dE(s, g′), dE(t, g), dE(t, g′)} ≤ min{dE(s, `0), dE(t, `2)}, where dE(p, `)
denotes the minimum Euclidean distance between a point p and a point in a line `. Given g
and g′, such two points can be found in constant time.

Now consider the minimum of the maximum distance for s and t to travel in order to
see each other. It is less than the minimum of d(s, `0) and d(t, `2) if and only if there is
a non-vertical line containing three points of S0 ∪ S1 ∪ S2. Therefore, if we can solve the
quickest pair-visibility problem in O(n+ h2−ε) for some ε > 0, we can solve the geometric
version of the 3sum problem in O(N2−ε) time, which proves the lemma. J
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2 Preliminaries

Consider h disjoint simple polygons in the plane of total complexity n. Each polygon is
considered as an open set. We let P be the set of the points in the plane not contained in
any of the h polygons. Here we call P a polygonal domain and each polygon a hole of P . We
say that two points a and b in P are visible to each other if the line segment ab connecting a
and b is contained in P. For a set A ⊆ R2, we use ∂A and int(A) to denote the boundary
and interior of A, respectively. We say a curve γ is convex if the Euclidean convex hull of γ
contains γ on its boundary.

2.1 Geodesic Distance and Geodesic Disks
For two points a and b in P , there might be more than one shortest path connecting a and b
in P. We use d(a, b) to denote the length of a shortest path between a and b contained in
P, which we call the geodesic distance between a and b. The shortest path map of a point
x, denoted by spm(x), is the decomposition of P into cells such that for all points p within
a cell the shortest paths between x and p have the same combinatorial structure. It has
complexity of O(n), and it can be constructed in O(n log n) time using O(n log n) space [10].

Given a point x ∈ P and a value r ≥ 0, the geodesic disk of radius r centered at x, denoted
by Dx(r), is defined as the set of all points in P whose geodesic distances from x are at most
r. While Dx(r) is connected, its boundary is not necessarily connected. The boundary of
Dx(r) consists of line segments and circular arcs. We call the endpoints of each maximal line
segment and circular arc vertices of Dx(r). Consider the boundary of Dx(r) excluding the
boundaries of all holes of P and the reflex vertices of Dx(r). Each connected component is
the union of circular arcs of Dx(r). We call each connected component a geodesic spiral of
Dx(r). Given spm(x), we can construct Dx(r) for a fixed r ≥ 0 in O(n) time by considering
all cells of spm(x) one by one.

2.2 Extended Corridor Structure
Our algorithm uses the extended corridor structure of a domain [3, 4, 11]. A hole in the
domain we will consider in this paper is either a simple polygon (a hole of P) or a splinegon
which is a part of Ds(r) and Dt(r) for two input points s and t in P and a fixed value r ≥ 0.
Each hole is considered as an open set. A splinegon is defined as a set obtained from a simple
polygon P by replacing each edge e of P with a curved edge e′ joining the endpoints of e
such that the region bounded by e and e′ is convex [6]. Thus a simple polygon itself is also a
splinegon. A splinegon is said to be simple if an edge intersects another edge only at their
common endpoint. A domain having splinegons as its holes is called a splinegon domain.

Chen and Wang [3] studied a decomposition of a splinegon domain Q which is called
the extended corridor structure. They first considered a bounded degree decomposition of
Q, which is a subdivision of Q into cells each with at most four sides and with at most
three neighboring cells. They presented an O(n+ h log1+ε h)-time algorithm for computing
a bounded degree decomposition of Q into O(n) cells for any ε > 0, where h is the number
of the splinegons in the domain and n is the total complexity of the splinegons. Such a
subdivision is achieved by adding O(n) nonintersecting diagonals. See Figure 2(a).

In our case, the boundary of a hole might overlap with the boundary of another hole
while the holes are pairwise interior-disjoint. The algorithm by Chen and Wang still works
for this case. In this case, an edge of the common boundary of two holes is considered as a
(degenerate) cell. In this way, Q coincides with the union of the closures of the cells of the
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(a) (b) (c)

a b

cd

a b

cd

Figure 2 (a) A bounded degree decomposition. The gray regions are junction regions with
non-empty interiors. (b) An hourglass and four bays. (c) Two funnels, two canals and two bays.

bounded degree decomposition. The dual graph of the bounded degree decomposition is a
planar graph such that the degree of each node is at most three. The cell corresponding to a
node of degree 3 in the dual graph is called a junction region. It is known that the number
of the junction regions in Q is O(h) [3, 11].

Imagine that we remove the closures of all junction regions from Q, which partitions Q
into a number of connected regions. Each connected region is called a corridor. If a corridor
has an empty interior, it lies on the common boundary of two holes. A corridor C with
non-empty interior is a simple splinegon and has two boundary edges, say ab and cd, each
incident to a junction region. We call them the gates of C. The boundary of C other than
the gates consists of two chains connecting the gates such that each chain is a part of the
boundary of a hole incident to C. See Figure 2(b–c).

Since a corridor is a simple splinegon, the shortest path connecting two points in C is
unique. Let πC(x, y) denote the shortest path connecting two points x and y in C. For the
gates ab and cd such that a, b, c, d appear on the boundary of C in the order, let HC be the
region bounded by ab, cd and πC(a, d) and πC(b, c). If πC(a, d) and πC(b, c) are disjoint, HC

is called an hourglass of C. See Figure 2(b). Otherwise, the interior of HC consists of two
connected components, each of which is called a funnel of C. See Figure 2(c). For both
cases, we call a connected component R of C \HC a bay if it is incident to exactly one edge
of πC(a, d) ∪ πC(b, c). Otherwise, we call it a canal. We call an edge of πC(a, d) ∪ πC(b, c)
incident to R (a bay or a canal) a gate of R. Also, we call πC(a, d) and πC(b, c) the corridor
paths.

The union of the closures of the junction regions, hourglasses and funnels is called the
ocean of Q. It consists of O(h) convex chains with a total of O(n) vertices. Notice that
the ocean is not necessarily connected. In this way, the interior of Q is subdivided into the
ocean, bays and canals. We call this subdivision the extended corridor structure of Q. Given
a bounded degree decomposition of Q, one can compute the extended corridor structure in
O(n) time [3]. This structure has been used as a tool for various types of visibility problems
due to the following property.

I Lemma 2 ([4, The Opaque Property]). For any canal, suppose a line segment pq is in Q
such that neither p nor q is in the canal. Then pq does not contain any point of the canal
that is not on its two gates.

Since the part of a corridor path incident to a canal is convex, we have the following
lemma.

I Lemma 3. For a canal, consider a line segment pq ⊂ Q intersecting a gate of the canal.
Then pq intersects the part of a corridor path incident to the canal only at points on its gates.
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2.3 Sketch of the Algorithm
In this paper, we consider the min-max variant of the quickest pair-visibility problem. Given
a polygonal domain P with h holes of complexity n and two points s and t in P , the objective
is to compute two paths in P, one for s and one for t, to travel in order to see each other
such that the maximum of the path lengths is minimized. Let r∗ be the optimal solution,
that is, the minimum of max{d(s, s′), d(t, t′)} among all pairs (s′, t′) such that ss′ and tt′
are contained in P. We first consider the decision problem that decides, given a real value
r ≥ 0, if there are two points s′ and t′ such that d(s, s′) ≤ r, d(t, t′) ≤ r, and s′ and t′ are
visible to each other. Then to obtain r∗, we apply the parametric search technique by using
the decision algorithm as a subprocedure.

For the decision problem, we assume that we have spm(s) and spm(t). Notice that they
are independent of an input distance r. Also, we further assume that r is less than d(s, t)/2,
that is, Ds(r) and Dt(r) are disjoint. Note that there is a point at distance d(s, t)/2 from
each of s and t if r ≥ d(s, t)/2. In this case, s and t can see each other by moving to this
point. Therefore the answer is positive for any r ≥ d(s, t)/2.

3 Decision Problem

For a fixed r > 0, the decision problem asks if there are two points s′ and t′ in P such that
d(s, s′) ≤ r, d(t, t′) ≤ r, and s′ and t′ are visible to each other. If so, we say r is feasible.
Such a segment s′t′ always intersects geodesic spirals of Ds(r) and Dt(r). Thus there always
exists a segment s′t′ ⊆ P intersecting Ds(r) only at s′ and intersecting Dt(r) only at t′ if r is
feasible. We call such a segment for a feasible value r a witness segment for r. Notice that
one endpoint of a witness segment lies on a geodesic spiral of Ds, and the other endpoint lies
on a geodesic spiral of Dt. In this section, we present an O(n + h2 log2 h)-time algorithm
for deciding if a given value r is feasible. Since r is fixed, we simply let Ds = Ds(r) and
Dt = Dt(r). Recall that Ds and Dt are disjoint by the assumption that r < d(s, t)/2.

3.1 Finding O(h) Geodesic Spirals from Each Geodesic Disk
We want to construct the extended corridor structure of P \ (int(Ds) ∪ int(Dt)), but Ds and
Dt are not necessarily splinegons because their boundaries are not necessarily connected.
Moreover, it is possible that they have Θ(n) geodesic spirals even if h = 1. To decide if r
is feasible efficiently, we choose a subset D̄s (and D̄t) of Ds (and Dt) which is a splinegon
containing O(h) geodesic spirals of Ds (and Dt) on its boundary, and consider the extended
corridor structure of P \ (int(D̄s) ∪ int(D̄t)).

Consider P \ Ds, which consists of O(n) connected subregions. Since Ds and Dt are
disjoint, Dt is contained in exactly one of such subregions. Moreover, no witness segment
intersects subregions of P \ Ds other than the one containing Dt. See Figure 3. Therefore, it
suffices to consider the subregion containing Dt only. We can find the subregion containing
Dt in O(n) time as follows. Using spm(s), we compute a shortest path connecting s and t,
and find the point in the path whose distance from s is r. This point is contained in the
boundary of the subregion. Starting from this point, we walk along the boundary of the
subregion until we reach this point again in time linear in its complexity, which is O(n).

Consider the common boundary of Ds and the subregion of P \ Ds containing Dt. It is
contained in a connected component, say η, of the boundary of Ds. Moreover, it consists
of geodesic spirals of Ds appearing on η consecutively. Let a and b be the most clockwise
and counterclockwise points on such geodesic spirals. Let D̄s denote the region bounded by
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Figure 3 Every witness segment has its endpoints on D̄s and D̄t. Moreover, it does not intersect
any other points of Ds and Dt.

a shortest path between s and a, a shortest path between s and b, and the part of η lying
between a and b and containing the geodesic spirals on the common boundary. See Figure 3.
We choose an arbitrary shortest path between s and a (or b) if it is not unique. Here, D̄s
might contain a hole of P. In this case, we ignore such holes. In the following, we assume
that no hole of P intersects the interior of D̄s. We define D̄t in the same way by changing the
roles of s and t. Then a witness segment intersects Ds only at a point on D̄s and intersects
Dt only at a point on D̄t. Also, we have the following lemma.

I Lemma 4. D̄s and D̄t contain O(h) geodesic spirals of Ds and Dt, respectively, on their
boundaries.

Proof. We prove the lemma for D̄s only. The case of D̄t can be proved analogously.
An endpoint of a geodesic spiral of D̄s is a point on the boundary of a hole of P or a

reflex vertex of Ds. We claim that for each hole H of P, at most two geodesic spirals of D̄s
have their endpoints on the boundary of H . We also claim that there are O(h) reflex vertices
of Ds lying on the boundary of D̄s. These two claims imply the lemma.

For the first claim, consider a hole H of P . Assume to the contrary that there are three
geodesic spirals, say γ1, γ2 and γ3, having their endpoints on the boundary of H . Recall that
the geodesic spirals of D̄s are incident to the same connected component of P \ Ds, say R.
Therefore, the boundary of H appears on the boundary of R at least twice. Notice that H
is a simple polygon, which is connected. This means that Ds is disconnected, which is a
contradiction.

For the second claim, let v be a reflex vertex of Ds lying on the boundary of D̄s. Let
β1 and β2 be the circular arcs of Ds incident to v. Consider a shortest path πi connecting
the center of βi and s for i = 1, 2. If there are more than one shortest path, we choose the
one so that the region bounded by π1, π2, and the two line segments connecting v and the
centers of βi is minimized. Such a region contains a hole of P by construction. Moreover,
such regions for all reflex vertices of Ds lying on the boundary of D̄s are pairwise interior
disjoint by the choice of πi. Since each such region contains a hole of P , there are at most h
reflex vertices of Ds lying on the boundary of D̄s. Therefore, the lemma holds. J

3.2 Extended Corridor Structure of the Splinegon Domain
We construct the extended corridor structure of Q = P\(int(D̄s)∪int(D̄t)) in O(n+h log1+ε h)
time for any ε > 0 [3]. Notice that we consider the interiors of D̄s and D̄t as holes of Q. The
boundary of the ocean of Q consists of O(h) convex curves each of which consists of a part
of a single hole of Q or a part of a corridor path.

Recall that an (straight or circular) arc of the ocean is a part of the boundary of the
holes of Q or a gate of a bay or a canal. Consider the arcs of the ocean which are gates
of the bays and canals defined by D̄s and D̄t. By construction, the boundary of each such
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bay or canal consists of its gates and geodesic spirals of D̄s or D̄t only. Therefore, there are
O(h) such arcs of the ocean by Lemma 4 and the fact that a geodesic spiral contains a reflex
vertex of Ds or Dt only at its endpoints. Imagine that we remove the gates of the bays and
canals defined by D̄s and D̄t from the boundary of the ocean. The remaining part of the
boundary still consists of O(h) convex curves. Let Γ be the set of such convex curves and
the gates of the bays and canals defined by D̄s and D̄t. Note that the union of all curves and
gates in Γ is the boundary of the ocean. A curve of Γ is defined by D̄s (or D̄t) if it lies on
the boundary of D̄s (or D̄t) or it is a gate of a bay or a canal defined by D̄s (or D̄t).

The following lemmas are keys of our decision algorithm. Due to them, it suffices to
consider the curves of Γ only.

I Lemma 5. If a witness segment does not intersect the closure of the ocean, it is contained
in the interior of a corridor defined by D̄s and D̄t. Moreover, if such a corridor exists, r is
feasible.

Proof. If a witness segment ` does not intersect the closure of the ocean, it is contained in
a corridor, say C. By construction, the boundary of C consists of parts of the boundaries
of two holes and two gates. Since the endpoints of ` are on geodesic spirals of D̄s and D̄t,
the holes defining C are D̄s and D̄t. Now assume that a corridor defined by D̄s and D̄t
exists. Then a gate of the corridor connects a point of a geodesic spiral of D̄s and a point
of a geodesic spiral of D̄t. In other words, such a gate is a witness segment, and thus r is
feasible. J

I Lemma 6. If a witness segment ` intersects the closure of the ocean, the intersection
between ` and the ocean is a line segment whose endpoints are on curves of Γ defined by D̄s
and D̄t.

Proof. Let `′ be the intersection between ` and the ocean. By construction, a connected
component of ` \ `′ is contained in a bay or a canal by the opaque property. Thus ` \ `′
consists of at most two connected components, and `′ is a line segment. Let p be an endpoint
of `′. If p is an endpoint of `, it lies on a convex curve of Γ contained on a geodesic spiral of
D̄s or D̄t, and the lemma holds. Thus we assume that p is not an endpoint of `. Then the
connected component of ` \ `′ incident to p is contained in a bay or a canal defined by D̄s or
D̄t. This means that p lies on a gate of the bay or canal, and therefore, it lies on the curve
of Γ defined by D̄s or D̄t. J

I Lemma 7. If r is feasible and no corridor is defined by D̄s and D̄t, there is a witness
segment ` such that the intersection between ` and the ocean is tangent to a curve of Γ or
connects an endpoint of a curve of Γ defined by D̄s and an endpoint of a curve of Γ defined
by D̄t.

Proof. Let `′ be the intersection between ` and the ocean. Its endpoints are contained in
curves γs and γt of Γ defined by D̄s and D̄t, respectively, by Lemma 6. We move one endpoint
of `′ in clockwise direction along the curve γs of Γ containing it until (1) `′ (excluding its
endpoints) contains a vertex of the ocean, (2) `′ intersects γs (or γt) at a point other than
the endpoints of `′, or (3) the endpoint reaches an endpoint of γs. For Case (1), `′ is tangent
to a curve of Γ, and thus we are done. For Case (2), `′ is tangent to γs (or γt), and thus we
are done. For Case (3), we move the other endpoint of `′ in the same way. Then the lemma
holds. J

We call the intersection between a witness segment satisfying Lemma 7 and the ocean an
ocean-restricted witness segment.
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3.3 Finding a Witness Segment: Rotating Lines around Convex Curves

We assume that no corridor is defined by D̄s and D̄t. Otherwise, we return the positive
answer immediately by Lemma 5. Our goal in this subsection is to find an ocean-restricted
witness segment if r is feasible. By definition (and by Lemma 7), an ocean-restricted witness
segment is tangent to a convex curve of Γ or contains an endpoint of a curve of Γ. We check
for each convex curve γ of Γ if there is an ocean-restricted witness segment tangent to γ. In
a similar way, we check for each endpoint of the curves of Γ if it contains an ocean-restricted
witness segment.

Imagine that we rotate a line tangent to γ along γ. More specifically, let 〈e1, . . . , ek〉 be
the sequence of the (circular or straight) arcs of γ in order. For an integer i, let vi and vi+1
be the endpoints of ei. The process will be initialized with the line tangent to e1 at v1. It
rotates along e1 until it hits v2. Then it rotates around v2 (while remaining tangent to γ at
v2) until it is tangent to e2. In general, the current line is rotated around vi in a way so that
it remains tangent to γ at vi until it is tangent to ei, and then it rotates along ei until it hits
vi+1. The process is iterated with vi+1 as the new rotation center. The process terminates
as soon as the line is tangent to γ at vk+1. If an ocean-restricted witness segment is tangent
to γ, we encounter the line containing it during the process.

In the following, for each line ` we encounter during the process, we let `+ and `− be the
connected components (rays) of ` \ γ such that `+ goes towards vk+1 and `− goes towards
v1. See Figure 4. An ocean-restricted witness segment is contained in ` if and only if the
first curve of Γ hit by `+ is defined by one of Ds and Dt, and the first curve of Γ hit by `− is
defined by the other geodesic disk. We show how to maintain the first curve of Γ hit by `+

only. We can do this for `− analogously.
More generally, we maintain the sequence S of the curves of Γ hit by `+ in order. Since

every curve of Γ is convex, it appears on S at most twice. During the sweep, for each convex
curve γ′ of Γ, there are at most four events where the number of appearances of γ′ on S
changes. See Figure 4. Moreover, such events (rays) are on common tangents of γ and γ′
or lines tangent to γ which pass through an endpoint of γ′. We can compute the common
tangents of γ and γ′ O(log h) time if the arcs of each convex curve are stored in a balanced
binary search tree [13]. Similarly, we can compute the lines tangent to γ and passing through
a specific point in O(log h) time [13]. We can construct the balanced binary search trees of
the curves of Γ in time linear in their complexities after computing Γ. Since no convex curve
of Γ crosses another convex curve of Γ, the sequence S changes only at these events. Thus
there are O(h) events in total, and we can obtain and sort all events in O(h log h) time. We
can handle each event in O(log2 n) time as follows.
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When we encounter a new event `+, the convex curve γ′ defining `+ disappears from
S or appears on S. For the case that it disappears from S, we update S accordingly in
O(log n) time. For the other case, we apply binary search on the elements of S to find the
position of the new appearance of γ on S. In each iteration of the binary search, we want to
compute the order of the points (at most four points) in `+ ∩ γ′ and `+ ∩ γ′′ along `+ for
some curve γ′′ appearing on the current sequence S. We can compute the points in O(log n)
time by a straightforward binary search on the arcs of γ′ (and γ′′), and then sort them in
O(1) time. This gives the position of the new appearance of γ′ with respect to γ′′. After
O(log n) iterations, we can find the position of the new appearance of γ′ on S. Then we
update S accordingly. In this way, we can handle each event in O(log2 n) time.

After rotating a line along γ, we can check if an ocean-restricted witness segment is
contained in a line we encountered so far. Since we have O(h) curves of Γ, the total time for
checking if an ocean-restricted witness segment is tangent to a curve of Γ is O(h2 log2 h).

Also, we check for each endpoint of the curves of Γ if it contains an ocean-restricted
witness segment. We can do this in a similar way: rotate a line around this endpoint.
Therefore, we have the following lemma.

I Lemma 8. Given a value r > 0, we can check if there are two points s′ and t′ such that
d(s, s′) ≤ r, d(t, t′) ≤ r, and s′ and t′ are visible to each other in O(n + h2 log2 h) time
assuming that spm(s) and spm(t) are given.

4 Optimization Problem

Let (s∗, t∗) be a pair of points in P that minimizes the maximum of d(s, s∗) and d(t, t∗) such
that s∗ and t∗ are visible to each other. Let r∗ be the maximum of d(s, s∗) and d(t, t∗). In
this section, we compute (s∗, t∗) and r∗ by applying parametric search technique [12].

Basically, we apply the decision algorithm with input r∗ without explicitly computing
r∗. In the decision algorithm, we maintain a number of structures including geodesic disks,
the splinegon domain Q and the sequence Γ which depend on an input distance r. In this
section, we consider such structures as functions of r. For example, we use Γ(r) to denote
the sequence Γ for an input distance r. While the algorithm described in this section is
executed, we maintain an interval [r1, r2) containing r∗ so that the combinatorial structures
of structures we have computed so far remain the same for every r ∈ [r1, r2). Then we will
see that r1 becomes r∗ for the interval we have at the end.

4.1 Combinatorial Structures of D̄s and D̄t

The first step of the decision algorithm is to compute Ds(r), Dt(r), D̄s(r) and D̄t(r). Here,
we compute their combinatorial structures for r = r∗ instead of computing them explicitly.

We first compute the combinatorial structures of Ds(r∗) and Dt(r∗). Notice that the
endpoints of the circular arcs of Ds(r∗) and Dt(r∗) lie on edges of spm(s) and spm(t),
respectively. Also, the boundary of Ds(r∗) is not necessarily connected. For a radius r > 0,
the combinatorial structure of Ds(r) is defined as a set of the sequences of edges of spm(s)
such that each sequence consists of the edges of spm(s) intersecting a connected component
of the boundary of Ds(r) in the clockwise order along the component.

For each vertex of spm(s), we compute the geodesic distance between the vertex and
s. Also for each edge of P, we compute the smallest geodesic distance between a point
on the edge and s. We can compute them in O(n) time by considering all cells of spm(s)
one by one. Then we sort all distances in increasing order in O(n log n) time. We find

ISAAC 2018



59:10 Minimizing Distance-to-Sight in Polygonal Domains

the smallest interval [r1, r2) containing r∗ for two distances r1 and r2 we obtained by
applying binary search on all such distances with the decision algorithm. Since the decision
algorithm takes O(n+h2 log2 h) time assuming that we have spm(s) and spm(t), we can find
[r1, r2) in O(n log n+ h2 log2 h log n) = O(n log n+ h2 log3 h) time in total. For any radius
r ∈ [r1, r2), the combinatorial structure of Ds(r) remains the same. We also compute the
combinatorial structure of Dt(r), and update [r1, r2) containing r∗ so that for any r ∈ [r1, r2),
the combinatorial structure of Dt(r) (and Ds(r)) remains the same.

Also, we define the combinatorial structure of D̄s(r) to be the sequence of the edges
of spm(s) intersecting the boundary of D̄s(r) in clockwise order. For any r ∈ [r1, r2), the
combinatorial structure of D̄s(r) remains the same by the definition of D̄s(r). The same
holds for D̄t(r).

By construction, an endpoint of a circular arc of D̄s(r) is represented as an algebraic
function of constant complexity for a value r ∈ [r1, r2). We obtain the splinegon domain
Q(r) defined by int(D̄s(r)), int(D̄t(r)) and the holes of P for r ∈ [r1, r2). Here, a vertex of
Q is represented as an algebraic function with respect to r.

4.2 Combinatorial Structure of the Extended Corridor Structure
To construct the extended corridor structure of a splinegon domain, the algorithm by Chen
and Wang [3] computes a bounded degree decomposition of the splinegon domain. Then
based on this, they compute the extended corridor structure. In the following, we split each
arc of Q(r) into at most four pieces so that it is monotone with respect to the x-axis and
y-axis. In other words, we add at most three vertices to each arc. Here each of the new
vertices is also represented as an algebraic function with respect to r.

Bounded degree decomposition. The algorithm by Chen and Wang [3] first decomposes
the domain with respect to the horizontal extensions obtained from each hole vertex of P
going in both directions until they hit the boundary of the domain. Then each cell has at
most four sides, but it might have more than three neighboring cells. In such a case, the
algorithm splits each such cell further with respect to vertical extensions from vertices of
the cell. Then it splits each of the resulting cells further with respect to its diagonal if it
still has more than three neighboring cells. In our case, we want to represent the vertices
of the bounded degree decomposition of Q(r) as algebraic functions with respect to r for
r ∈ [r′1, r′2) for some interval [r′1, r′2) ⊆ [r1, r2) containing r∗.

Suppose that the order of the vertices of Q(r) with respect to the y-axis is the same for
any r ∈ [r′1, r′2) for some interval [r′1, r′2) ⊆ [r1, r2) containing r∗. Moreover, the order of
the vertices of Q(r) with respect to the x-axis is the same for any r ∈ [r′1, r′2). Then the
combinatorial structure of the bounded degree decomposition of Q(r) remains the same for
any r ∈ [r′1, r′2). In other words, a vertex of the bounded degree decomposition of Q(r) is
represented as an algebraic function of r for r ∈ [r′1, r′2). Thus in the following, we show how
to sort the vertices of Q(r) with respect to the x-axis.

To do this, we use Cole’s sorting algorithm which sorts m elements in O(logm) iterations
each consisting of O(m) comparisons [5]. Here, the comparisons in each iteration is inde-
pendent to one another. In our case, we are to sort all vertices of Q(r) with respect to the
x-axis. Here, m = O(n). For each iteration, we complete O(n) comparisons of vertices of
Q(r) as follows. Suppose that we are to compare two vertices v1(r) and v2(r) represented
by algebraic functions of r ∈ [r1, r2). The result of the comparison changes only at O(1)
times as r changes from r1 to r2. We obtain O(1) such values in O(1) time. We do this
for all of the O(n) comparisons, and then we have O(n) values. Then we apply binary
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search on the values so that we find an interval [r′1, r′2) ⊆ [r1, r2) containing r∗ and the
result of each comparison remains the same for any r ∈ [r′1, r′2). We can find the interval
in O(Tp log n) = O(n log n+ h2 log3 h) time, where Tp is the running time for the decision
algorithm. We update the interval [r1, r2) that we maintain to [r′1, r′2). After completing
O(log n) iterations, we obtain the interval [r1, r2) containing r∗ such that the sorted list of
the vertices of Q(r) remains the same for every r ∈ [r1, r2). Thus we can sort all vertices
with respect to the x-axis (and the y-axis) in O(n log2 n+ h2 log4 h) time in total, and we
can obtain the combinatorial structure of the bounded degree decomposition of Q(r∗) in the
same time.

Extended corridor structure. The next step for computing the extended corridor structure
is to compute the shortest paths for each corridor. We can make this procedure parallelized
using the algorithm [9]. More precisely, this algorithm computes the shortest path between
two points in O(logN) iterations each consisting of O(N) comparisons. As we did for the
bounded degree decomposition, we can reduce the interval [r1, r2) containing r∗ so that
the combinatorial structure of the extended corridor structure remains the same for any
r ∈ [r1, r2). Since this can be done in O(log n) iterations each consisting of O(n) steps
for all corridors of Q(r∗), we can compute the combinatorial structure of the extended
corridor structure in O(n log2 n+h2 log4 h) time as we did for computing the bounded degree
decomposition.

I Lemma 9. We can obtain the combinatorial structure of the extended corridor structure
of Q(r∗) in O(n log2 n+ h2 log4 h) time.

Since we have the combinatorial structure of Q(r∗), we can obtain Γ(r∗) in the same time.
Again, an endpoint of each convex curve of Γ(r) is represented as an algebraic function of r.

4.3 Finding a Witness Segment
The last step of the decision algorithm is to rotate a line along each curve of Γ(r∗). We have
O(h2) events in total each of which is either a common tangent between two curves of Γ(r∗)
or the line tangent to a curve of Γ(r∗) and passing through an endpoint of another curve
of Γ(r∗). A common tangent between two curves of Γ(r) is defined by a pair of arcs from
two curves. More precisely, it is a common tangent of two arcs of the two curves or a line
passing through endpoints of the two curves. Instead of computing the common tangents,
we compute the pairs defining them. Since we can compute a common tangent between two
convex curves in O(log n) time and we have O(h2) pairs of convex curves, we can compute
all events in O(log n) iterations each consisting of O(h2) steps. As we did before, we can
complete each iteration in O(Tp log(h2) +h2) = O(n log n+h2 log3 h) time, where Tp denotes
the running time of the decision algorithm. Therefore, we can obtain [r1, r2) such that
the set of the pairs of arcs defining the events remains the same for every r ∈ [r1, r2) in
O(n log2 n+ h2 log4 h) time. Similarly, we can do this for the events of the other type.

This means that for any r ∈ [r1, r2), the first curve of Γ(r) hit by `+ remains the same for
any line ` tangent to a curve of Γ(r). Therefore, the answer of the decision problem remains
the same for any r ∈ [r1, r2). Since r∗ is contained in [r1, r2), the answer is positive for every
r ∈ [r1, r2). By definition, we have r∗ = r1. Thus we have the following theorem.

I Theorem 10. Given a polygonal domain P with h holes of total complexity n, we can
compute two points s′ and t′ minimizing max{d(s, s′), d(t, t′)} such that s′ and t′ are visible
to each other in O(n log2 n+ h2 log4 h) time.
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Abstract
Deciding two-guard walkability of an n-sided polygon is a well-understood problem. We study the
following more general question: How far can two guards reach from a given source vertex while
staying mutually visible, in the (more realistic) case that the polygon is not entirely walkable?
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1 Introduction

We address the following structural question on polygons: How many adjacent ear triangles
can be cut off from a polygon W , starting from a given vertex s? This question was originally
motivated by optimizing so-called triangulation axes, a recently introduced skeletal structure
for simple polygons [1]. An equivalent formulation of the problem, which is of interest in its
own right, reads as follows: How far can two guards reach when they are to walk on W ’s
boundary, starting from s in different directions and staying mutually visible?

Visibility problems of this kind have been studied already in the 1990s, where Icking
and Klein [6] gave an O(n log n) time algorithm for deciding two-guard walkability of an
n-sided polygon W , from a source vertex s to a target vertex t. A few years later, Tseng
et al. [7] showed that one can find, within the same runtime, all vertex pairs (s, t) such
that W is two-guard walkable from s to t. Their result was improved to optimal O(n) time
by Bhattacharya et al. [3]. The algorithm in [6] actually provides a walk for W in case of its
existence but, on the other hand, only a negative message is returned in the (quite likely)
case that the polygon is not entirely walkable.

The present paper elaborates on ‘how far’ in the latter case a polygon W is two-guard
walkable – a natural question that has not been considered in the literature to the best of
our knowledge. Such maximal walks are not unique, in general, which complicates matters.
We present a strategy that finds, in O(n log n) time, all possible maximal walks that initiate
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at a given source vertex s of W . A preliminary version of this paper appeared in [2]. For an
account of related visibility questions on polygons, we refer to the survey article by Urrutia [8]
on art gallery problems.

2 Preliminaries

We start with introducing the concepts and notations needed later in our considerations.
Throughout, we let W denote a simple polygon in the plane with n vertices, one of them
being tagged as a source vertex, s. For two points x and y on the boundary, ∂W , of W , we
write x < y if x is reached before y when walking on ∂W from s in clockwise (CW) direction.
For a vertex p of W , p+ denotes the CW successor vertex of p on ∂W . Similarly, p− denotes
the CW predecessor vertex of p on ∂W . When p is a reflex vertex (that is, a vertex where
the interior angle in W is greater than π), then the two ‘ray shooting points’ for p in W
can be defined, namely, For(p) as the first intersection point with ∂W of the ray from p−

through p, and Back(p) as the first intersection point with ∂W of the ray from p+ through p;
consult Figure 1.

According to the aforementioned relation between walks and triangulations, we are only
interested in discrete and straight walks. That is, the guards when moving on ∂W directly
‘jump’ from a vertex to the respective neighboring vertex (only one guard is allowed to
move at a time), and they never backtrack. A walk in W is now defined as a diagonal (l, r)
of W , l < r, such that the first guard can move CW from s to l, and the second guard
can move CCW from s to r, while staying visible to each other at each step. An obvious
condition for W to be walkable till (l, r) is that the two boundary chains from s to l and to r,
respectively (call them L and R), are co-visible in W . That is, each vertex on L is visible
from some vertex on R, and each vertex on R is visible from some vertex on L.

To characterize walkability, we will need a few more concepts, first introduced in [6]. We
say that W forms a forward deadlock at a pair (p, q) of its reflex vertices if we have

Back(q) < p < q < For(p).

Similarly, W forms a backward deadlock at (p, q) if

p < (For(q),Back(p)) < q.

Finally, W forms a CW wedge at (p, q), if p < q and there exists no vertex x of W with

q < For(q) < x < Back(p).

(A CCW wedge is defined in a symmetric way.) See Figure 1 where these geometric concepts
are illustrated.

It is not hard to see that the two guards cannot pass beyond deadlocks and wedges
without losing visibility. This will be made specific in Section 4. Moreover, in the work [6] it
has been shown that these obstacles to walkability are indeed the only ones. By adapting
their result to our setting we get:

I Theorem 1. Let (l, r), l < r, be a diagonal of W , and denote with Q the polygon bounded
by (l, r) and the two chains L and R defined above. Then (l, r) is a walk in W iff the following
three conditions are satisfied:
(1) L and R are co-visible in Q,
(2) Q neither forms a forward deadlock nor a backward deadlock (p, q) with p ∈ L and q ∈ R,

unless p or q is in {l, r},
(3) Q forms no CW wedge on L, and no CCW wedge on R.
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Figure 2 The line segment lr enables a CW wedge (p, q) in the shaded polygon Q.

3 Extremal walks and obstacles

Given a polygon W , our intention is to explore how far W is walkable from the source
vertex s. That is, we want to find extremal positions for a diagonal (l, r) in W such that
(l, r) is still a valid walk. A necessary (but not sufficient) condition is that (l, r) cannot be
extended by a single guard move. More adequately, a walk (l, r) in W is termed maximal if
there is no other walk (l′, r′) in W such that l′ ≥ l and r′ ≤ r. For finding maximal walks,
we will apply Theorem 1, but we have to do so with care since conditions (1) to (3) refer to
a (yet unknown) polygon Q, rather than to the input polygon W as in [6].

To this end, for (1) we observe that the chains L and R are co-visible in Q iff they are
co-visible in W : The line segment lr lies entirely within W , so the part of ∂W different
from ∂Q does not obstruct the view within Q.

Concerning (2), we notice that forward deadlocks formed by Q do not depend on the
shape of ∂W \ ∂Q, and thus trivially are also forward deadlocks formed by W . By contrast,
for a backward deadlock (p, q) formed by Q, the points For(q) and Back(p) in Q may not be
the same as in W . (Namely, if at least one of them lies on lr). But since these points are
larger than p and smaller than q, (p, q) is also a backward deadlock in W .

No such property holds for the wedges in (3), however. A wedge (p, q) formed by Q is
not necessarily also formed by W : The segment lr can obstruct the view to vertices x on
∂W \ ∂Q that prevent (p, q) from being a wedge in W . Figure 2 illustrates this situation.

Fortunately though, such ‘induced’ wedges cannot occur as long as the co-visibility
condition is satisfied:
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I Observation 2. Assume that the diagonal lr of W induces a wedge in the polygon Q

bounded by lr and the chains L and R. Then L and R are not co-visible.

Proof. Without loss of generality, let the induced wedge, (p, q), be a CW wedge; see Figure 2
again. Then for the reflex vertex p we have p < Back(p), and because (p, q) is induced by lr
we also have r > Back(p). But this implies that the vertex p+ (which belongs to the chain L)
is not visible from any point on the CCW chain from p to r. In particular, p+ is not visible
from any vertex on the chain R, which ranges from s to r. J

In summary, we can conclude that it suffices to consider the obstacles formed by the
input polygon W , rather than the obstacles formed by Q.

For maximal walks, obstacles with extremal positions are relevant (in case of the presence
of obstacles at all, which we will assume in the sequel). A minimal CW wedge on the chain L
is a wedge (p, q) on L where the vertex q is smallest possible. For a minimal CCW wedge
(p, q) on R, in turn, the vertex p has to be largest possible. Such extremal wedges need not
be unique. A representative can be found in O(n log n) time, by a simple adaption of an
algorithm given in [7], which finds all non-redundant wedges of a polygon. (We therefore do
not elaborate on the details here.)

A deadlock (p, q) (either forward or backward) is called minimal if there is no other such
deadlock (p′, q′) with p′ ≤ p and q′ ≥ q. The minimal backward deadlock is unique, by the
following property:

I Observation 3. If (p, q) and (p′, q′) are two backward deadlocks with p < p′ and q < q′,
then (p, q′) is a backward deadlock as well.

To find this minimal deadlock, we simply let p and q run through the reflex vertices of W ,
starting from s in CW and CCW direction, respectively, until the deadlock inequalities for p
as well as for q are fulfilled at the same time. This can be done in O(n) time, if W has been
preprocessed accordingly in O(n log n) time using ray shooting; see Chazelle et al. [4].

Minimal forward deadlocks, on the other hand, are not unique in general. This is one of
the reasons why maximal walks need not be unique. In fact, W can contain Θ(n) minimal
forward deadlocks (pi, qi); see the figure below for i = 1, 2, 3. The following algorithm reports
all of them. The points on ∂W relevant for this task are the reflex vertices p of W plus their
ray shooting points For(p). We assume their availability in cyclic order around W .

Algorithm MFD
for all relevant points x in CCW order from s do

if x = For(p) and p < x then
Insert p into a CW sorted list F

else if x is a reflex vertex q then
Search F for the smallest p with Back(q) < p

if p exists and is unmarked then
Mark p
Report the forward deadlock (p, q)

end if
end if
x = next relevant point
Delete from F all vertices p with p ≥ x

q

q

q

1

1

3

2

3

2

s

p

p

p
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In a nutshell, the algorithm scans the boundary of W in counterclockwise direction,
maintaining reflex vertices with forward rayshots on the scanned part of the boundary in a
CW sorted list. When a reflex vertex is encountered, this list is used to search for forward
deadlocks formed by the current vertex and vertices in the list.

I Lemma 4. Algorithm MFD reports all minimal forward deadlocks (p, q) in W , and no
other pair.

Proof. Let (p, q) be a minimal forward deadlock. Then q is reflex and q < For(p) holds.
So the list F contains p when q is processed, by the CCW order of processing. Moreover,
because (p, q) is minimal, p is the smallest vertex in F with Back(q) < q, and p is unmarked.
Therefore, the algorithm will report (p, q). Conversely, assume that (p, q) gets reported.
Then we know Back(q) < p, and because p is in F we know q < For(p). Also, p < q

holds by the deletion criterion in the last line. Therefore (p, q) is a forward deadlock.
Concerning minimality, observe first that there cannot be a forward deadlock (p′, q′) with
p′ < p and q′ ≥ q. Otherwise, F contains p′ when (p, q) is reported, because we have
q ≤ q′ < For(q′). Because of p′ < p, the algorithm would have reported (p′, q) rather than
(p, q), or nothing at all if p′ is marked. There also is no forward deadlock (p′, q′) with
p′ = p and q′ > q. Otherwise, because of q′ > q, (p′, q′) has been reported already. So p′ = p

is marked, and (p, q) does not get reported. J

The algorithm can be implemented to run in O(n log n) time. It scans O(n) relevant
points, each being processed in constant time apart from the actions on F , which take
O(n log n) time in total when a balanced search tree for F is used.

4 Constraints from obstacles

Minimal wedges and deadlocks, and also the required co-visibility, give rise to constraints
on the vertices l and r for a maximal walk (l, r) in the polygon W . We will discuss the
constraints on l in some detail. The situation for r is symmetric.

We have to distinguish between absolute and conditional constraints. Among the former
is the list below. The first two constraints stem from the co-visibility of L and R, and have
been taken from [6]. For the last two constraints, compare Figure 1.
(1) For each reflex vertex p with p > For(p): l ≤ p.
(2) For each reflex vertex p with p < Back(p): l ≤ Back(p).
(3) For the minimal CW wedge (p, q) on L: l ≤ q.
(4) For the minimal backward deadlock (p, q): l ≤ p.
The conditional constraints read as follows:

(I) For each p in (1): If r > p then l < p−.
(II) For each p in (2): If r > Back(p) then l ≤ p.
(III) For (p, q) in (3): If r > q then l < q.

For convenience, we subsume the absolute constraints (1) - (4) into a single one, l ≤ x
(where x is the smallest right-hand side value), and turn it into a conditional constraint:

(IV) If r ≥ s then l ≤ x.

Finally, the minimal forward deadlocks lead to absolute constraints which deserve special
attention. Whereas in the case of a backward deadlock (p, q), neither guard can walk beyond
these vertices, we have the following observation for the avoidance of a forward deadlock:

I Observation 5. To avoid the forward deadlock (p, q), only one of the bounds l ≤ p and
r ≥ q needs to hold.

ISAAC 2018
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Assume now that k minimal forward deadlocks (p1, q1), . . . , (pk, qk) exist, and let the
vertices pi be sorted in CW order.

I Lemma 6. Each of the following k+ 1 pairs of bounds for (l, r) avoids all minimal forward
deadlocks: (p1, s), (p2, q1), . . . , (pk, qk−1), (s−, qk).

Proof. By minimality of the considered deadlocks, we know that the vertices qi will be
sorted in CW order as well. So, for each index i ≥ 2, Observation 5 tells us that the
constraint l ≤ pi avoids the deadlocks (pi, qi), . . . , (pk, qk), and the constraint r ≥ qi−1 avoids
the remaining deadlocks (p1, q1), . . . , (pi−1, qi−1). Moreover, the constraint l ≤ p1 suffices to
avoid all k deadlocks, and r ≥ s is trivially fulfilled. The same is true for r ≥ qk and l ≤ s−,
respectively. J

In summary, there are O(n) constraints in total, which can be identified in O(n log n)
time by the results in Section 3.

5 Computing all maximal walks

Section 4 tells us that the goal is to fulfill the constraints in (I) - (IV) simultaneously, though
for each of the bounding pairs in Lemma 6 separately. This gives all possible maximal walks
– granted the visibility of the reported vertex pairs. But let us come back to the issue of
visibility later in this section.

For a fixed bounding pair (a, b), the constraint satisfaction problem can be transformed
into the following standard form: For two variables l and r, with absolute bounds a and
b, respectively, we have two sets of conditional constraints: Namely, a set CL containing
constraints for l, of the form

r ≥ yi =⇒ l ≤ xi

and a set CR containing constraints for r, of the form

l ≤ xj =⇒ r ≥ yj .

We may assume that all x-values and y-values are in {0, 1, . . . , n}. That is, the vertices
w0, w1, . . . , wn of W , w0 = wn = s, are identified with their indices. This is no loss of
generality, because only their relative positions (rather than the geometric positions) on ∂W
matter. We want to compute the (unique) maximal pair (l, r) such that

l ≤ a, r ≥ b, and all constraints c ∈ CL ∪ CR are fulfilled.

We say that a constraint ci ∈ CL is active at a value r if r ≥ yi holds. Similarly, a
constraint cj ∈ CR is active at l if we have l ≤ xj . The constraint fulfilling algorithm, CFF,
now simply alternates in scanning through the sorted sets CL and CR (in ascending order
of yi-values, and in descending order of xj-values, respectively), and adjusts the values of l
and r according to the constraints that become active. In the figure below, active/inactive
constraints are indicated with full/dashed arrows.
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Algorithm CFF(a, b, CL, CR)
l = a, r = b

repeat
x = min{xi | ci ∈ CL is active at r}
l = min{l, x}
y = max{yj | cj ∈ CR is active at l}
r = max{r, y}

until r = y or r = b

Return the pair (l, r)

a

n

n

b

0

1

0

l

r

Suppose that a function VIS(l, r) is available which returns the smallest vertex r′ ≥ r

such that (l, r′) is visible in the polygon W . (That is, lr′ is the first possible diagonal of W
that emanates from vertex l. If r′ does not exist then n+ 1 is returned.) We now present an
algorithm that uses CFF and VIS as subroutines, and is capable of computing, in O(n log n)
time, all maximal walks that exist in W . Let P = {(a1, b1), . . . , (am, bm)} be the given set of
bounding pairs. We assume that a1, . . . , am (and thus b1, . . . , bm) are in increasing order. In
the polygon below, (l, r) and (l′, r′) are the two possible maximal walks.

Algorithm MAXWALKS(P,CL, CR)
l = am, r = b1
rrep = n+ 1
while l ≥ 0 and r < rrep do

(l, r) = CFF(l, r, CL, CR)
i = min{λ | aλ ≥ l}
rcand = max{bi, r}
rvis = VIS(l, rcand)
y = max{% | all c ∈ CL active at % admit l}
if rvis ≤ min{n, y} and rvis < rrep then

Report (l, rvis)
rrep = rvis

end if
l = l − 1

end while s

l

l’

r
r’

v

x

Before providing a proof of correctness, we give a short explanation of this algorithm. All
the bounding pairs (ai, bi) need to fulfill the constraints that are active there, so the algorithm
starts by fulfilling the constraints for the vertex pair (am, b1), as these constraints have to be
fulfilled in any case. Then the boundary chain of W from am ‘down to’ s is scanned in CCW
direction, while fulfilling all constraints on both chains. After each constraint fulfillment it
is checked whether a candidate vertex pair lies ‘below’ a bounding pair (ai, bi), while also
ensuring visibility within W and maximality among walks.

I Lemma 7. Algorithm MAXWALKS is correct.

ISAAC 2018



60:8 Partially Walking a Polygon

Proof. The value of r changes only when Algorithm CFF is called, and thus r cannot
decrease. The first call of CFF is with the bounding pair (am, b1), and the subsequent calls
are with (l, r) for l < am. As soon as we have r > b1, some constraint in CR is responsible for
this. So putting the bound r for the next call means no additional restriction. This implies
that, for all l, we have the equality CFF(l, r, CL, CR) = CFF(l, b1, CL, CR).

We now look at one iteration of the while loop, under the assumption that Algorithm
MAXWALKS worked correctly so far. That is, all maximal walks (l′, r′) with l′ ≥ l have been
reported, and no other walks. Let lold be the value of l before the iteration. Then (l, r) =
CFF(lold−1, b1, CL, CR) holds by the former equality. So we have (l, r) = CFF(l′, b1, CL, CR)
for lold > l′ > l, implying that there is no walk (l′, r′) for these l′-values.

There also is no walk (l, r′) with r′ < rcand, because the bounding pair (ai, bi) as well as
the constraints in CR need to be respected. Concerning rvis, if rvis > n then no pair (l, r′)
with r′ ≥ rcand is visible, and thus no such pair can be a walk. Further, if rvis > y then some
constraint in CL is active at rvis but does not admit l, so (l, rvis) is not a walk either. On
the other hand, if rvis ≤ min{n, y} then (l, rvis) is a walk, because the pair is visible and
fulfills all the constraints. The pair gets reported unless rvis ≥ rrep, in which case (l, rvis) is
not maximal because a larger pair has been reported already. J

Turning to runtime considerations now, we can make the following observations. CFF
can be implemented such that the bounding pair of the last call is remembered. This way
each constraint in CL ∪ CR is handled only once: If a call has been with (l, r), the next call
will be with (l′, r′) where l′ < l (and thus r′ ≥ r). Thus only O(n) time is spent in total for
all calls to CFF from Algorithm MAXWALKS.

Computing the thresholds y in MAXWALKS can also be done in total O(n) time. We
remember the previous value of y, and scan down from this value as long as all active
constraints of CL are fulfilled by l. The first violating constraint then gives the new value
for y.

The function VIS can be performed in logarithmic time using the techniques in Guibas
and Hershberger [5], in a way similar as already done in Icking and Klein [6]: Basically,
finding the desired vertex rvis can be reduced to finding the first vertex on a shortest path
between two polygon vertices. Clearly, the while loop is executed only O(n) times (because
the value of l is decremented in each iteration), which gives a runtime of O(n log n) for this
part, and thus for Algorithm MAXWALKS overall.

We now can conclude the main result of this paper:

I Theorem 8. Let W be a simple polygon with n vertices. For a given vertex s of W , there
can be Θ(n) maximal two-guard walks in W starting from s, and these walks can be computed
in O(n log n) time.

6 Concluding remarks

A few comments related to the results in this paper are in order.
The polygon example in Algorithm MAXWALKS shows that maximal walks may differ

in (combinatorial) length. The walk (l, r) involves 6 steps by the left guard and 3 steps by
the right guard, so 9 steps in total, whereas the walk (l′, r′) involves 8 steps by the left guard
and 2 steps by the right guard, and thus allows one more step in total.

The same example also reveals that minimum forward deadlocks are not the only reason
why maximal walks are not unique: The reason why there are two walks for the shown
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polygon is the vertex v, which can be ‘approached’ by the (mutually visible) guards in two
different ways.

In Section 3 we have seen that minimum forward deadlocks can lead to Ω(n) different
maximal walks. On the other hand, the number of maximal walks trivially cannot exceed n,
because no two of them can have the same l-vertex, or the same r-vertex, by maximality.

Algorithm MAXWALKS provides each maximal walk in the form of a target pair (l, r),
but the algorithm does not specify the way the two guards actually move on ∂W . Such a
movement can be computed in O(n) additional time: Since we know that the subpolygon Q
of W defined by s and (l, r) is entirely walkable, we can simply apply the algorithm in [6]
to the polygon Q (which has already been preprocessed with W ).

Notice, however, that a fixed target pair (l, r) may still leave the guards different ways to
perform the walk. Different ways to triangulate W from s to (l, r) then result. For example,
in the polygon example in Algorithm MAXWALKS, it would be possible to include one more
diagonal with endpoint r into the solid-line trianguation, namely, the diagonal rx. The dual
of any such triangulation has to be a path, though, as the triangulation is constructed by
repeatedly cutting off adjacent ear triangles, one triangle per guard step.
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Abstract
We initiate the study of the following natural geometric optimization problem. The input is
a set of axis-aligned rectangles in the plane. The objective is to find a set of horizontal line
segments of minimum total length so that every rectangle is stabbed by some line segment. A
line segment stabs a rectangle if it intersects its left and its right boundary. The problem, which
we call Stabbing, can be motivated by a resource allocation problem and has applications in
geometric network design. To the best of our knowledge, only special cases of this problem have
been considered so far.

Stabbing is a weighted geometric set cover problem, which we show to be NP-hard. While for
general set cover the best possible approximation ratio is Θ(log n), it is an important field in geo-
metric approximation algorithms to obtain better ratios for geometric set cover problems. Chan
et al. [SODA’12] generalize earlier results by Varadarajan [STOC’10] to obtain sub-logarithmic
performances for a broad class of weighted geometric set cover instances that are characterized by
having low shallow-cell complexity. The shallow-cell complexity of Stabbing instances, however,
can be high so that a direct application of the framework of Chan et al. gives only logarithmic
bounds. We still achieve a constant-factor approximation by decomposing general instances into
what we call laminar instances that have low enough complexity.

Our decomposition technique yields constant-factor approximations also for the variant where
rectangles can be stabbed by horizontal and vertical segments and for two further geometric set
cover problems.
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Figure 1 An instance of Stabbing (rectangles) with an optimal solution (gray line segments).
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1 Introduction

In this paper, we study the following geometric optimization problem, which we call Stabbing.
The input is a set R of n axis-aligned rectangles in the plane. The objective is to find a set S
of horizontal line segments of minimum total length ‖S‖, where ‖S‖ =

∑
s∈S ‖s‖, such that

each rectangle r ∈ R is stabbed by some line segment s ∈ S. Here, we say that s stabs r
if s intersects the left and the right edge of r (see Fig. 1). The length of a line segment s
is denoted by ‖s‖. Throughout this paper, rectangles are assumed to be axis-aligned and
segments are horizontal line segments (unless explicitly stated otherwise).

Our problem can be viewed as a resource allocation problem. Consider a server that
receives a number of communication requests. Each request r is specified by a time win-
dow [t1, t2] and a frequency band [f1, f2]. In order to satisfy the request r, the server has
to open a communication channel that is available in the time interval [t1, t2] and operates
at a fixed frequency within the frequency band [f1, f2]. Therefore, the server has to open
several channels over time so that each request can be fulfilled. Requests may share the same
channel if their frequency bands and time windows overlap. Each open channel incurs a fixed
cost per time unit and the goal is to minimize the total cost. Consider a t–f coordinate
system. A request r can be identified with a rectangle [t1, t2]× [f1, f2]. An open channel
corresponds to horizontal line segments and the operation cost equals its length. Satisfying a
request is equivalent to stabbing the corresponding rectangle.

To the best of our knowledge, general Stabbing has not been studied, although it is a
natural problem. Finke et al. [10] consider the special case of the problem where the left
sides of all input rectangles lie on the y-axis. They derive the problem from a practical
application in the area of batch processing and give a polynomial time algorithm that
solves this special case of Stabbing to optimality. Das et al. [6] describe an application of
Stabbing in geometric network design. They obtain a constant-factor approximation for a
slight generalization of the special case of Finke et al. in which rectangles are only constrained
to intersect the y-axis. This result constitutes the key step for an O(log n)-approximation
algorithm to the Generalized Minimum Manhattan Network problem.

We also consider the following variant of our problem, which we call Constrained
Stabbing. Here, the input additionally consists of a set F of horizontal line segments of
which any solution S must be a subset.

https://doi.org/10.4230/LIPIcs.ISAAC.2018.61
https://arxiv.org/abs/1806.02851
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Related Work. Stabbing can be interpreted as a weighted geometric set cover problem
where the rectangles play the role of the elements, the potential line segments correspond to
the sets and a segment s “contains” a rectangle r if s stabs r. The weight of a segment s equals
its length ‖s‖. Set Cover is one of the classical NP-hard problems. The greedy algorithm
yields a lnn-approximation (where n is the number of elements) and this is known to be the
best possible approximation ratio for the problem unless P = NP [9, 7]. It is an important
research direction of computational geometry to surpass the lower bound known for general
Set Cover in geometric settings. In their seminal work, Brönniman and Goodrich [3] gave
an O(log OPT)-approximation algorithm for unweighted Set Cover, where OPT is the size
of an optimum solution, for the case when the underlying VC-dimension is constant. This
holds in many geometric settings. Numerous subsequent works have improved upon this result
in specific geometric settings. For example, Aronov et al. [1] obtained an O(log log OPT)-
approximation algorithm for the problem of piercing a set of axis-aligned rectangles with
the minimum number of points (Hitting Set for axis-aligned rectangles) by means of
so-called ε-nets. Mustafa and Ray [17] obtained a PTAS for the case of piercing pseudo-disks
by points. A limitation of these algorithms is that they only apply to unweighted geometric
Set Cover; hence, we cannot apply them directly to our problem. In a break-through,
Varadarajan [18] developed a new technique, called quasi-uniform sampling, that gives sub-
logarithmic approximation algorithms for a number of weighted geometric set cover problems
(such as covering points with weighted fat triangles or weighted disks). Subsequently, Chan
et al. [5] generalized Varadarajan’s idea. They showed that quasi-uniform sampling yields a
sub-logarithmic performance if the underlying instances have low shallow-cell complexity.
Bansal and Pruhs [2] presented an interesting application of Varadarajan’s technique. They
reduced a large class of scheduling problems to a particular geometric set cover problem
for anchored rectangles and obtained a constant-factor approximation via quasi-uniform
sampling. Recently, Chan and Grant [4] and Mustafa et al. [16] settled the APX-hardness
status of all natural weighted geometric Set Cover problems where the elements to be
covered are points in the plane or space.

Gaur et al. [12] considered the problem of stabbing a set of axis-aligned rectangles by a
minimum number of axis-aligned lines. They obtain an elegant 2-approximation algorithm for
this NP-hard problem by rounding the standard LP-relaxation. Kovaleva and Spieksma [14]
considered a generalization of this problem involving weights and demands. They obtained
a constant-factor approximation for the problem. Even et al. [8] considered a capacitated
variant of the problem in arbitrary dimension. They obtained approximation ratios that
depend linearly on the dimension and extended these results to approximate certain lot-sizing
inventory problems. Giannopoulos et al. [13] investigated the fixed-parameter tractability
of the problem where given translated copies of an object are to be stabbed by a minimum
number of lines (which is also the parameter). Among others, they showed that the problem
is W[1]-hard for unit-squares but becomes FPT if the squares are disjoint.

Our Contribution. We are the first to investigate Stabbing in this general form: horizontal
line segments stabbing axis-aligned rectangles without further restrictions. We examine the
complexity and the approximability of this problem.

We rule out the possibility of efficient exact algorithms by showing that Stabbing is
NP-hard; see Section 4. Another negative result is that Stabbing instances can have high
shallow-cell complexity so that a direct application of the quasi-uniform sampling method
yields only the same logarithmic bound as for arbitrary set cover instances; see Section 2.2.
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Our main result is a constant-factor approximation algorithm for Stabbing; see Section 2.
Our algorithm is based on the following three ideas. First, we show a simple decomposition
lemma that implies a constant-factor approximation for (general) set cover instances whose
set family can be decomposed into two disjoint sub-families each of which admits a constant-
factor approximation. Second, we show that Stabbing instances whose segments have a
special laminar structure have low enough shallow-cell complexity so that they admit a
constant-factor approximation by quasi-uniform sampling. Third, we show that an arbitrary
instance can be transformed in such a way that it can be decomposed into two disjoint
laminar families. Together with the decomposition lemma, this establishes the constant-factor
approximation.

Another (this time more obvious) application of the decomposition lemma gives also
a constant-factor approximation for the variant of Stabbing where we allow horizontal
and vertical stabbing segments. Also in this case, a direct application of quasi-uniform
sampling gives only a logarithmic bound as there are laminar families of horizontal and
vertical segments that have high shallow-cell complexity. This and two further applications
of the decomposition lemma are sketched in Section 3.

The above results provide two natural examples for the fact that the property of having
low shallow-cell complexity is not closed under the union of the set families. In spite
of this, constant-factor approximations are still possible. Our results also show that the
representation as a union of low-complexity families may not be obvious at first glance. We
therefore hope that our approach helps to extend the reach of quasi-uniform sampling beyond
the concept of low shallow-cell complexity also in other settings. Our results for Stabbing
may also lead to new insights for other related geometric problems such as the Generalized
Minimum Manhattan Network problem [6].

Due to space constraints, we refer the reader for further results such as the APX-hardness
of Constrained Stabbing and the relationship of Stabbing to well-studied geometric set
cover (or equivalently hitting set) problems to the full version of our paper (see page 2).

2 A Constant-Factor Approximation Algorithm for Stabbing

In this section, we present a constant-factor approximation algorithm for Stabbing. First,
we model Stabbing as a set cover problem, and we revisit the standard linear programming
relaxation for set cover and the concept of shallow-cell complexity; see Sections 2.1 and 2.2.
Then, we observe that there are Stabbing instances with high shallow-cell complexity.
This limiting fact prevents us from obtaining any constant approximation factor if applying
the generalization of Chan et al. [5] in a direct way; see Section 2.2. In order to bypass
this limitation, we decompose any Stabbing instance into two disjoint families of low
shallow-cell complexity. Before describing the decomposition in Section 2.5, we show how
to merge solutions to these two disjoint families in an approximation-factor preserving way;
see Section 2.3. Then, in Section 2.4, we observe that these families have sufficiently small
shallow-cell complexity to admit a constant-factor approximation.

2.1 Set Cover and Linear Programming
An instance (U,F , c) of weighted Set Cover is given by a finite universe U of n elements, a
family F of subsets of U that covers U , and a cost function c : F → Q+. The objective is to
find a sub-family S of F that also covers U and minimizes the total cost c(S) =

∑
S∈S c(S).

An instance (R,F ) of Constrained Stabbing, given by a set R of rectangles and a
set F of line segments, can be seen as a special case of weighted Set Cover where the
rectangles in R are the universe U , the line segments in F form the sets in F , and a line
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segment s ∈ F “covers” a rectangle r if and only if s stabs r. Unconstrained Stabbing can
be modeled by Set Cover as follows. We can, without loss of generality, consider only
feasible solutions where the end points of any line segment lie on the left or right boundaries
of rectangles and where each line segment touches the top boundary of some rectangle. Thus,
we can restrict ourselves to feasible solutions that are subsets of a set F of O(n3) candidate
line segments. This shows that Stabbing is a special case of Constrained Stabbing and,
hence, of Set Cover.

The standard LP relaxation LP(U,F , c) for a Set Cover instance (U,F , c) is as follows:

Minimize
∑
S∈F

c(S)zS

subject to
∑

S∈F ,S3e

zS ≥ 1 for all e ∈ U,

zS ≥ 0 for all S ∈ F .

The optimum solution to this LP provides a lower bound on OPT. An algorithm is called
LP-relative α-approximation algorithm for a class Π of set cover instances if it rounds any
feasible solution z = (zS)S∈F to the above standard LP relaxation for some instance (U,S, c)
in this class to a feasible integral solution S ⊆ F of cost c(S) ≤ α

∑
S∈F c(S)zs.

2.2 Shallow-Cell Complexity
We define the shallow-cell complexity for classes that consist of instances of weighted Set
Cover. Informally, the shallow-cell complexity is a bound on the number of equivalent
classes of elements that are contained in a small number of sets. Here is the formal definition.

I Definition 1 (Chan et al. [5]). Let f(m, k) be a function non-decreasing in m and k. An
instance (U,F , c) of weighted Set Cover has shallow-cell complexity f if the following
holds for every k and m with 1 ≤ k ≤ m ≤ |F|, and every sub-family S ⊆ F of m sets: All
elements that are contained in at most k sets of S form at most f(m, k) equivalence classes
(called cells), where two elements are equivalent if they are contained in precisely the same
sets of S. A class of instances of weighted Set Cover has shallow-cell complexity f if all its
instances have shallow-cell complexity f .

Chan et al. proved that if a set cover problem has low shallow-cell complexity then quasi-
uniform sampling yields an LP-relative approximation algorithm with good performance.

I Theorem 2 (Chan et al. [5]). Let ϕ(m) be a non-decreasing function, and let Π be a
class of instances of weighted Set Cover. If Π has shallow-cell complexity mϕ(m)kO(1),
then Π admits an LP-relative approximation algorithm (based on quasi-uniform sampling)
with approximation ratio O(max{1, logϕ(m)}).

Unfortunately, there are instances of Stabbing (and its constrained variants) that have
high shallow-cell complexity, so we cannot directly obtain a sub-logarithmic performance
via Theorem 2. These instances can be constructed as follows; see Fig. 2a. Let m be
an even positive integer. For i = 1, . . . ,m, define the point pi = (i, i). For each pair i, j
with 1 ≤ i ≤ m/2 < j ≤ m, let rij be the rectangle with corners pi and pj . Now, consider
the following set S of m line segments. For i = 1, . . . ,m/2, the set S contains the segment si

with endpoints pi and (m, i). For i = m/2 + 1, . . . ,m, the set S contains the segment si with
endpoints (1, i) and pi. We want to count the number of rectangles that are stabbed by at
most two segments in S. Consider any i and j satisfying 1 ≤ i ≤ m/2 < j ≤ m. Observe that
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Figure 2 Instances with high shallow-cell complexity.

the rectangle rij is stabbed precisely by the segments si and sj in S. Hence, according to
Definition 1, our instance consists of at least m2/4 equivalence classes for k = 2. Thus, if our
instance has shallow cell-complexity f for some suitable function f , we have f(m, 2) = Ω(m2).
Since f is non-decreasing, we also have f(m, k) = Ω(m2) for k ≥ 2. Hence, Theorem 2 implies
only an O(log n)-approximation algorithm for Stabbing (and its constrained variants) where
we use the above-mentioned fact (see Section 2.1) that we can restrict ourselves to m = O(n3)
many candidate segments.

2.3 Decomposition Lemma for Set Cover
Our trick is to decompose general instances of Stabbing (which may have high shallow-cell
complexity) into partial instances of low complexity with a special, laminar structure. We
use the following simple decomposition lemma, which holds for arbitrary set cover instances.

I Lemma 3. Let Π, Π1, Π2 be classes of Set Cover where Π1 and Π2 admit LP-relative α1-
and α2-approximation algorithms, respectively. The class Π admits an LP-relative (α1 + α2)-
approximation algorithm if, for every instance (U,F , c) ∈ Π, the family F can be partitioned
into F1,F2 such that, for any partition of U into U1, U2 where U1 is covered by F1 and U2
by F2, the instances (U1,F1, c) and (U2,F2, c) are instances of Π1 and Π2, respectively.

Proof. Let z = (zS)S∈F be a feasible solution to LP(U,F , c). Let U1, U2 = ∅ initially.
Consider an element e ∈ U . Because of the constraint

∑
S∈F ,S3e zS ≥ 1 in the LP relaxation

and because of F = F1 ∪ F2, at least one of the two cases
∑

S∈F1,S3e zS ≥ α1/(α1 + α2)
and

∑
S∈F2,S3e zS ≥ α2/(α1 + α2) occurs. If the first case holds, we add e to U1. Otherwise,

the second case holds and we add e to U2. We execute this step for each element e ∈ U .
Now, consider the instance (U1,F1, c). For each S ∈ F1, set z1

S := min{zS(α1 + α2)/α1, 1}.
Since

∑
S∈F1,S3e zS ≥ α1/(α1 + α2) for all e ∈ U1, we have that z1 = (z1

S)S∈F1 forms
a feasible solution to LP(U1,F1, c). Next, we apply the LP-relative α1-approximation
algorithm to this instance to obtain a solution S1 ⊆ F1 that covers U1 and whose cost
is at most α1

∑
S∈F1

c(S)z1
S ≤ (α1 + α2)

∑
S∈F1

c(S)zS . Analogously, we can compute a
solution S2 ⊆ F2 to (U2,F2, c) of cost at most (α1 + α2)

∑
S∈F2

c(S)zS .
To complete the proof, note that S1 ∪ S2 is a feasible solution to (U,F , c) of cost

at most (α1 + α2)
∑

S∈F1∪F2
c(S)zS . Hence, our algorithm is an LP-relative (α1 + α2)-

approximation algorithm. J

2.4 x-Laminar Instances
I Definition 4. An instance of Constrained Stabbing is called x-laminar if the projection
of the segments in this instance onto the x-axis forms a laminar family of intervals. That is,
any two of these intervals are either interior-disjoint or one is contained in the other.



T.M. Chan, T. C. van Dijk, K. Fleszar, J. Spoerhase, and A. Wolff 61:7

We remark that for an x-laminar instance of Constrained Stabbing the corresponding
instance (U,F , c) of Set Cover does not necessarily have a laminar set family F .

I Lemma 5. The shallow-cell complexity of an x-laminar instance of Constrained
Stabbing can be upper bounded by f(m, k) = mk2. Hence, such instances admit a constant-
factor LP-relative approximation algorithm.

Proof. To prove the bound on the shallow-cell complexity, consider a set S of m segments.
Let 1 ≤ k ≤ m be an integer. Consider an arbitrary rectangle r that is stabbed by at most
k segments in S. Let Sr be the set of these segments. Consider a shortest segment s ∈ Sr.
By laminarity, the projection of any segment in Sr onto the x-axis contains the projection
of s onto the x-axis. Let Cs = (s1, . . . , s`) be the sequence of all segments in S whose
projection contains the projection of s, ordered from top to bottom. The crucial point is that
the set Sr forms a contiguous sub-sequence si, . . . , si+|Sr|−1 of Cs that contains s = sj for
some i ≤ j ≤ i+ |Sr| − 1. Hence, Sr is uniquely determined by the choice of s ∈ S (for which
there are m possibilities), the choice of si with i ∈ {j − k, . . . , j} within the sequence Cs (for
which there are at most k possibilities), and the cardinality of Sr (for which there are at
most k possibilities). This implies that Sr is one of mk2 many sets that define a cell. This
completes our proof since r was picked arbitrarily. J

2.5 Decomposing General Instances into Laminar Instances
I Lemma 6. Given an instance I of (unconstrained) Stabbing with rectangle set R, we can
compute an instance I ′ = (R,F ) of Constrained Stabbing with the following properties.
The set F of segments in I ′ has cardinality O(n3), it can be decomposed into two disjoint
x-laminar sets F1 and F2, and OPTI′ ≤ 6 ·OPTI .

Proof. Let F ′ be the set of O(n3) candidate segments as defined in Sec. 2.1: For every
segment s of F ′, the left endpoint of s lies on the left boundary of some rectangle, the right
endpoint of s lies on the right boundary of some rectangle, and s contains the top boundary
of some rectangle. Recall that F ′ contains the optimum solution.

Below, we stretch each of the segments in F ′ by a factor of at most 6 to arrive at a set F
of segments having the claimed properties. By scaling the instance we may assume that the
longest segment in F ′ has length 1/3.

For any i, j ∈ Z with i ≥ 0, let Iij be the interval [j/2i, (j + 1)/2i]. Let I1 be the family
of all such intervals Iij . We say that Iij has level i. Note that I1 is an x-laminar family of
intervals (segments). Let I2 be the family of intervals that arises if each interval in I1 is
shifted to the right by the amount of 1/3. That is, I2 is the family of all intervals of the
form Iij + 1/3 := [j/2i + 1/3, (j + 1)/2i + 1/3] (for any i, j ∈ Z with i ≥ 0). Clearly, I2
is x-laminar, too.

We claim that any arbitrary interval J = [a, b] of length at most 1/3 is contained in an
interval I that is at most 6 times longer than J and that is contained in I1 or in I2. This
completes the proof of the lemma since then any segment in F ′ can be stretched by a factor
of at most 6 so that its projection on the x-axis lies in I1 (giving rise to the segment set F1)
or in I2 (giving rise to the segment set F2). Setting F = F1 ∪ F2 completes the construction
of the instance I ′ = (R,F ).

To show the above claim, let s be the largest non-negative integer with b− a ≤ 1/(3 · 2s).
If J is contained in the interval Isj for some integer j, we are done because b− a > 1/(6 · 2s)
by the choice of s. If J is not contained in any interval Isj , then there exists some integer j such
that j/2s ∈ J = [a, b] and thus a ∈ Is,j−1. Since b−a ≤ 1/(3·2s), we have that J is completely
contained in the interval I ′ := Is,j−1 + 1/(3 · 2s) and in the interval I ′′ := Is,j − 1/(3 · 2s).
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We complete the proof by showing that one of the intervals I ′, I ′′ is actually contained
in I2. To this end, note that 1/3 =

∑∞
`=1(−1)`−1/2`. Hence, if s is even, the interval I ′−1/3

lies in I1, and if s is odd, the interval I ′′ − 1/3 lies in I1. J

Applying the decomposition lemma to Lemmas 5 and 6 yields our main result. We do
not give an explicit approximation factor due to our reliance on the result by Chan et al. [5].
We also cannot apply a decomposition technique similar to Constrained Stabbing since
Lemma 6 requires a free choice of the set F of stabbing line segments.

I Theorem 7. Stabbing admits a constant-factor LP-relative approximation algorithm.

Complementing Lemmas 5 and 6, Fig. 2a shows that the union of two x-laminar families
of segments may have shallow-cell complexity with quadratic dependence on m. Hence, the
property of having low shallow-cell complexity is not closed under taking unions.

3 Further Applications of the Decomposition Lemma

Here we show that our decomposition technique can be applied in other settings, too.

Horizontal–Vertical Stabbing. In this new variant of Stabbing, a rectangle may be stabbed
by a horizontal or by a vertical line segment (or by both). Using the results of Section 2.5
and the decomposition lemma where we decompose into horizontal and vertical segments, we
immediately obtain the following result.

I Corollary 8. Horizontal–Vertical Stabbing admits an LP-relative constant-factor
approximation algorithm.

Figure 2b shows that a laminar family of horizontal segments and vertical segments may
have a shallow-cell complexity with quadratic dependence on m. Thus, Corollary 8 is another
natural example where low shallow-cell complexity is not closed under union and where
the decomposition lemma gives a constant-factor approximation although the shallow-cell
complexity is high.

Stabbing 3D-Boxes by Squares. In the 3D-variant of Stabbing, we want to stab 3D-boxes
with axis-aligned squares, minimizing the sum of the areas or the sum of the perimeters of
the squares. Here, “stabbing” means “completely cutting across”. By combining the same
idea with shifted quadtrees – the 2D-equivalent of laminar families of intervals – we obtain a
constant-factor approximation for this problem. It is an interesting question if our approach
can be extended to handle also arbitrary rectangles but this seems to require further ideas.

Covering Points by Anchored Squares. Given a set P of points that need to be covered
and a set A of anchor points, we want to find a set of axis-aligned squares such that each
square contains at least one anchor point, the union of the squares covers P , and the total
area or the total perimeter of the squares is minimized. Again, with the help of shifted
quadtrees, we can apply the decomposition lemma. In this case, we do not even need to
apply the machinery of quasi-uniform sampling; instead, we can use dynamic programming
on the decomposed instances. This yields a deterministic algorithm with a concrete constant
approximation ratio (4 · 62, without polishing).
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Figure 3 Obtaining a visibility representation from a Planar Vertex Cover instance.
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(a) All rectangles of Rv are intersected
by the (dashed) vertex segment of v.

(b) Rv stabbed by Sv
act (c) Rv stabbed by Sv

ina

Figure 4 The vertex gadget Rv of vertex v.

4 NP-Hardness of Stabbing

To show that Stabbing is NP-hard, we reduce from Planar Vertex Cover: Given a
planar graph G and an integer k, decide whether G has a vertex cover of size at most k. This
problem is NP-hard [11]. Omitted proofs can be found in the full version of the paper.

I Theorem 9. Stabbing is NP-hard, even for interior-disjoint rectangles.

Let G = (V,E) be a planar graph with n vertices, and let k be a positive integer. Our
reduction will map G to a set R of rectangles and k to another integer k? such that (G, k)
is a yes-instance of Planar Vertex Cover if and only if (R, k?) is a yes-instance of
Stabbing. Consider a visibility representation of G, which represents the vertices of G
by non-overlapping vertical line segments (called vertex segments), and each edge of G by
a horizontal line segment (called edge segment) that touches the vertex segments of its
endpoints; see Figs. 3a and 3b. Any planar graph admits a visibility representation on a
grid of size O(n)×O(n), which can be found in polynomial time [15]. We compute such a
visibility representation for G. Then we stretch the vertex segments and vertically shift the
edge segments so that no two edge segments coincide (on a vertex segment); see Fig. 3c. The
height of the visibility representation remains linear in n.

In the next step, we create a Stabbing instance based on this visibility representation,
using the edge segments and vertex segments as indication for where to put our rectangles.
All rectangles will be interior-disjoint, have positive area and lie on an integer grid that we
obtain by scaling the visibility representation by a sufficiently large factor (linear in n). A
vertex segment will intersect O(n) rectangles (lying above each other since they are disjoint),
and each rectangle will have width O(n). The precise number of rectangles and their sizes
will depend on the constraints formulated below. Our construction will be polynomial in n.

For each edge e in G, we introduce an edge gadget re, which is a rectangle that we place
such that it is stabbed by the edge segment of e in the visibility representation.
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︸︷︷︸
n+ 3

Figure 5 The Stabbing instance that encodes the Planar Vertex Cover instance of Fig. 3;
edge gadgets are shaded gray.

For each vertex v in G, we introduce a vertex gadget Rv as shown in Fig. 4a. It consists
of an odd number of rectangles that are (vertically) stabbed by the vertex segment of v in
the visibility representation. Any two neighboring rectangles share a horizontal line segment.
Its length is exactly n+ 3 if neither of the rectangles is the top-most rectangle rtop or the
bottom-most rectangle rbot. Otherwise, the intersection length equals the width of the
respective rectangle rtop or rbot. We set the widths of rtop and rbot to 1 and 2, respectively.
A vertex gadget Rv is called incident to an edge gadget re if v is incident to e.

Before we describe the gadgets and their relation to each other in more detail, we construct,
in two steps, a set Sv of line segments for each vertex gadget Rv. First, let Sv be the set of
line segments that correspond to the top and bottom edges of the rectangles in Rv. Second,
replace each pair of overlapping line segments in Sv by its union. Then number the line
segments in Sv from top to bottom starting with 1. Let Sv

ina be the set of the odd-numbered
line segments, and let Sv

act be the set of the even-numbered ones; see Figs. 4b and 4c. By
construction, Sv

act and Sv
ina are feasible stabbings for Rv. Furthermore, |Sv

ina| = |Sv
act| as |Rv|

is odd and, hence, |Sv| is even. Given the difference in the widths of rtop and rbot, we have
that ‖Sv

act‖ = ‖Sv
ina‖ + 1. Note that this equation holds regardless of the widths of the

rectangles in Rv \ {rtop, rbot}.
The rectangles of all gadgets together form a Stabbing instance R. They meet two

further constraints: First, no two rectangles of different vertex gadgets intersect. We can
achieve this by scaling the visibility representation by an appropriate factor linear in n.
Second, each edge gadget re intersects exactly two rectangles, one of its incident left vertex
gadgets, Rv, and one of its incident right vertex gadgets, Ru. The top edge of re touches a
segment of Sv

act and the bottom edge of re touches a segment of Su
act. The length of each of

the two intersections is exactly n+ 3; see Fig. 5. Thus, we have |Rv| = O(deg(v)) = O(n).
Let S be a feasible solution to the instance R. We call a vertex gadget Rv active in S

if {s ∩
⋃
Rv | s ∈ S} = Sv

act, and inactive in S if {s ∩
⋃
Rv | s ∈ S} = Sv

ina. We will see that
in any optimum solution each vertex gadget is either active or inactive. Furthermore, we will
establish a direct correspondence between the Planar Vertex Cover instance G and the
Stabbing instance R: Every optimum solution to R covers each edge gadget by an active
vertex gadget while minimizing the number of active vertex gadgets.

Let OPTG denote the size of a minimum vertex cover for G, let OPTR denote the length
of an optimum solution to R, let width(r) denote the width of a rectangle r, and finally
let c =

∑
e∈E (width(re)− n− 3) +

∑
v∈V ‖Sv

ina‖. To show NP-hardness of Stabbing, we
prove that OPTG ≤ k if and only if OPTR ≤ c+ k. We show the two directions separately.

I Lemma 10. OPTG ≤ k implies that OPTR ≤ c+ k.

Proof sketch. Set each vertex gadget to active if it corresponds to a vertex in the given
vertex cover, otherwise to inactive. Stab each edge gadget by prolonging one of the line
segments that it touches. Using ‖Sv

act‖ = ‖Sv
ina‖+ 1, the bound follows. J
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Next we show the other, more challenging direction. Consider an optimum solution SOPT
to R and choose k ≤ n such that OPTR ≤ c+ k is satisfied. Let Rv be any vertex gadget,
let rtop and rbot be its top- and bottom-most rectangles, respectively, and let Sv

OPT =
{s ∩

⋃
Rv | s ∈ SOPT}. In the following, we prove that Sv

OPT equals either Sv
ina or Sv

act.

I Lemma 11. If Sv
ina 6⊆ Sv

OPT and Sv
act 6⊆ Sv

OPT, then ‖Sv
OPT‖ > ‖Sv

act‖+ n.

Proof sketch. Consider all pairs of neighboring rectangles in Rv that are stabbed by the
same line segment of Sv

OPT. Let P be a maximum-cardinality subset of these pairs such that
every rectangle appears at most once. Thus,

∑
r∈Rv

width(r)−
∑

(r1,r2)∈P width(r1 ∩ r2) is
a lower bound of ‖Sv

OPT‖. Observe that the lower bound is minimized if the total intersection
length of the rectangles in P is maximized. This happens (even with tightness) if and
only if Sv

OPT = Sv
ina. Given that |Rv| is odd, there is at least one rectangle not in P .

If Sv
ina 6⊆ Sv

OPT and Sv
act 6⊆ Sv

OPT, there is a rectangle r not in P that is neither rtop, rbot nor
a neighbor of those. Thus, r contributes n+ 3 to the total intersection length in Sv

ina but
nothing in Sv

OPT. The difference of the total intersection lengths implies the lemma. J

I Lemma 12. Exactly one of the following three statements holds:
(i) Sv

OPT = Sv
ina, or

(ii) Sv
OPT = Sv

act, or
(iii) ‖Sv

OPT‖ > ‖Sv
ina‖+ n.

Proof sketch. If Sv
ina ( Sv

OPT, there is a line segment s ∈ Sv
OPT \ Sv

ina that stabs a rectangle
in Rv \ {rtop, rbot}. By construction, its length is at least n+3. Hence, ‖Sv

OPT‖ > ‖Sv
ina‖+ n.

The same holds if Sv
act ( Sv

OPT. J

Now, we show that SOPT forces each vertex gadget to be either active or inactive.

I Lemma 13. In SOPT, each vertex gadget is either active or inactive.

Proof. Suppose that there is a vertex gadget Ru that is neither active nor inactive in SOPT.
This implies OPTR > c+ n and contradicts our previous assumption OPTR ≤ c+ k ≤ c+ n.

To this end, we give a lower bound on OPTR. Since Ru is neither active nor inact-
ive, Su

OPT > ‖Su
ina‖+ n by Lemma 12. Thus,

∑
v∈V ‖Sv

OPT‖ >
∑

v∈V ‖Sv
ina‖+ n . Let Sout

OPT
be the set of all segment fragments of SOPT lying outside of

⋃
v∈V S

v
OPT. Each edge gad-

get rv contains a segment fragment from Sout
OPT of length at least width(rv)− n− 3 since, by

construction, it can share a line segment with only one of its incident vertex gadgets. Since
all edge gadgets are interior-disjoint, we have ‖Sout

OPT‖ ≥
∑

e∈E width(rv)− n− 3. Hence,

OPTR ≥
∥∥Sout

OPT
∥∥+

∑
v∈V

‖Sv
OPT‖ >

∑
e∈E

(width(re)− n− 3) +
∑
v∈V

‖Sv
ina‖+n = c+n .J

I Lemma 14. For each edge gadget, one of its incident vertex gadgets is active in SOPT.

Proof. Suppose that for an edge gadget re both vertex gadgets are not active in SOPT. By
Lemma 13, they are inactive. Without loss of generality, the line segment s stabbing re

lies on the top or bottom edge of re. Then s intersects a vertex gadget to the left or right,
say Rv, and hence Sv

OPT 6= Sv
ina and Sv

OPT 6= Sv
act. A contradiction to Lemma 13. J

I Lemma 15. OPTR = c+ k′, where k′ is the number of active vertex gadgets in SOPT.

Proof sketch. Every edge gadget re is stabbed by a line segment s that also stabs a rect-
angle r of an incident active vertex gadget Rv. Hence, ‖s‖ = width(r) + width(re)− n− 3.
By ‖Sv

act‖ = ‖Sv
ina‖+ 1, OPTR =

∑
e∈E

(width(re)− n− 3) +
∑

v∈V

‖Sv
ina‖+ k′ = c+ k′. J
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Given SOPT, we put exactly those vertices in the vertex cover whose vertex gadgets are
active. By Lemma 14, this yields a vertex cover of G. By Lemma 15, the size of the vertex
cover is exactly OPTR − c, which is bounded from above by k given that OPTR ≤ c+ k.

I Lemma 16. OPTR ≤ c+ k implies that OPTG ≤ k.

By our construction, we represent R on a grid of size polynomial in n, hence, all numerical
values are upperbounded by a polynomial in n. Our construction is polynomial. With
Lemmas 10 and 16, we conclude that Stabbing is NP-hard.
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Abstract
We investigate the problem of Min-cost Perfect Matching with Delays (MPMD) in which requests
are pairwise matched in an online fashion with the objective to minimize the sum of space cost
and time cost. Though linear-MPMD (i.e., time cost is linear in delay) has been thoroughly
studied in the literature, it does not well model impatient requests that are common in practice.
Thus, we propose convex-MPMD where time cost functions are convex, capturing the situation
where time cost increases faster and faster. Since the existing algorithms for linear-MPMD are
not competitive any more, we devise a new deterministic algorithm for convex-MPMD problems.
For a large class of convex time cost functions, our algorithm achieves a competitive ratio of O(k)
on any k-point uniform metric space. Moreover, our deterministic algorithm is asymptotically
optimal, which uncover a substantial difference between convex-MPMD and linear-MPMD which
allows a deterministic algorithm with constant competitive ratio on any uniform metric space.
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1 Introduction

Online matching has been studied frantically in the last years. Emek et al. [10] started the
renaissance by introducing delays and optimizing the trade-off between timeliness and quality
of the matching. This new paradigm leads to the problem of Min-cost Perfect Matching with
Delays (MPMD for short), where requests arrive in an online fashion and need to be matched
with one another up to delays. Any solution experiences two kinds of costs or penalty. One
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is for quality: Matching two requests of different types incurs cost as such do not match
well, while requests of the same type should be matched for free. The other is for timeliness:
Delay in matching a request causes a cost that is an increasing function, called the time cost
function, of the waiting time. The overall objective is to minimize the sum of the two kinds
of costs.

Tractable in theory and fascinating in practice, the MPMD problem has attracted more
and more attention and inspired an increasing volume of literature [10, 11, 4, 3, 2]. However,
these existing work in this line only studied linear time cost function, meaning that penalty
grows at a constant rate no matter how long the delay is. This sharply contrasts to much of
our real-life experience. Just imagine a dinner guest: waiting a short time is no problem – but
eventually, every additional minute becomes more annoying than ever. The discontentment
is experiencing convex growth, an omnipresent concept in biology, physics, engineering, or
economics.

Actually, such convex growth of discontentment appears in various real-life scenarios of
online matching. For instance, online game platforms often have to match pairs of players
before starting a game (consider chess as an example). Players at the same, or at least
similar, level of skills should be paired up so as to make a balanced game possible. Then
it would be better to delay matching a player in case of no ideal candidate of opponents.
Usually it is acceptable that a player waits for a short time, but a long delay may be more
and more frustrating and even make players reluctant to join the platform again. Another
example appears in organ transplantation: An organ transplantation recipient may be able
to wait a bit, but waiting an extended time will heavily affect its health. One may think that
organ transplantation would be better modeled by bipartite matching rather than regular
matching as considered in this paper; however, organ-recipients and -donors usually come in
incompatible pairs that will be matched with other pairs, e.g., two-way kidney exchange1.
More real-life examples include ride sharing (match two customers), joint lease (match two
roommates), just mention a few.

On this ground, we study the convex-MPMD problem, i.e., the MPMD problem with
convex time cost functions. To the best of our knowledge, this is the first work on online
matching with non-linear time cost.

Convexity of the time cost poses special challenges to the MPMD problem. An important
technique in solving linear-MPMD, namely, MPMD with linear time cost function, is to
minimize the total costs while sacrifice some requests by possibly delaying them for a long
period (see, e.g., the algorithms in [4, 11, 2]). Because the time cost increases at a constant
rate, it is the total waiting time, rather than waiting time of individual requests, that is of
interest. Hence, keeping a request waiting is not too harmful. The case of convex time costs
is completely different, since we cannot afford anymore to delay old unmatched requests, as
their time costs grow faster and faster. Instead, early requests must be matched early. For
this reason, existing algorithms for the linear-MPMD problem do not work any more for
convex-MPMD, as confirmed by examples in Section 4.

In this paper, we devise a novel algorithm A for the convex-MPMD problem which is
deterministic and solves the problem optimally. More importantly, our results disclose a
separation: the convex-MPMD problem, even when the cost function is just a little different
from linear, is strictly harder than its linear counterpart. Specifically, our main results are as
follows, where f -MPMD stands for the MPMD problem with time cost function f :

1 https://www.hopkinsmedicine.org/transplant/programs/kidney/incompatible/paired_kidney_
exchange.html
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I Theorem 1. For any f(t) = tα with constant α > 1, the competitive ratio of A for
f -MPMD on k-point uniform metric space is O(k).

One may wonder whether the result in Theorem 1 can be further improved because of
the known result:

I Theorem 2 ([4, 2]). There exists a deterministic online algorithm that solves linear-MPMD
on uniform metrics and reaches an O(1) competitive ratio.

However, we can show that for a large family of functions f : R+ → R+, the f -MPMD
problem has no deterministic algorithms of competitive ratio o(k).

I Theorem 3. Suppose that the time cost function f is nondecreasing, unbounded, continuous
and satisfies f(0) = f ′(0) = 0. Then any deterministic algorithm for f-MPMD on k-point
uniform metric space has competitive ratio Ω(k).

Numerous natural convex functions over the domain of nonnegative real numbers satisfy
the conditions of Theorem 3. Examples include monomial f(t) = tα with α > 1, f(t) =
eαt−αt−1 with α > 1, and so on. This, together with Theorem 1, establishes the optimality
of our deterministic algorithm. Note that family of functions satisfying the conditions of
Theorem 3 is closed under multiplication and linear combination where the coefficients are
positive. Hence, Theorem 3 is of general significance.

2 Related Work

Matching has became one of the most extensively studied problems in graph theory and
computer science since the seminal work of Edmonds [9, 8]. Karp et al. [15] studied the
matching problem in the context of online computation which inspired a number of different
versions of online matching, e.g., [13, 16, 18, 19, 6, 12, 1, 7, 17, 20, 21]. In these online
matching problems, underlying graphs are assumed bipartite and requests of one side are
given in advance.

A matching problem where all requests arrive in an online manner was introduced by
[10]. This paper also introduced the idea that requests are allowed to be matched with delays
that need to be paid as well, so the problem is called Min-cost Perfect Matching with Delays
(MPMD). They presented a randomized algorithm with competitive ratio O(log2 k + log ∆)
where k is the size of the underlying metric space known before the execution and ∆ is
the aspect ratio. Later, Azar et al. [4] proposed an almost-deterministic algorithm with
competitive ratio O(log k). Ashlagi et al. [2] analyzed Emek et al.’s algorithm in a simplified
way, and improved its competitive ratio to O(log k). They also extended these algorithms
to bipartite matching with delays (MBPMD). The best known lower bound for MPMD is
Ω(log k/ log log k) and MBPMD Ω(

√
log k/ log log k) [2]. In contrast to our work, all these

papers assume that the time cost of a request is linear in its waiting time.
In contrast to this previous work, we focus on the uniform metric, i.e., the distance

between any two points is the same. While this is only a special case, it is an important one.
In the existing linear-MPMD algorithms, a common step is to first embed a general metric to
a probabilistic hierarchical separated tree (HST), which is actually an offline approach, and
then design an online algorithm on the HST metric. The online algorithms on HST metrics
are essentially based on algorithms on uniform metrics (or aspect-ratio-bounded metrics
which can also be handled by our results) because every level of an HST can be considered
as a uniform metric. Uniform metrics are known to be tricky, e.g., Emek et al. [11] study
linear-MPMD with only two points. Uniform metrics also play an important role in the field
of online computation [14]. For example, the k-server problem restricted to uniform metrics
is the well-known paging problem.
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The idea of delaying decisions has been around for a long time in the form of rent-or-buy
problems (most prominently: ski rental), but [10] showed how to use delays in the context
of combinatorial problems such as matching. In the classical ski rental problem [14], one
can also consider the variation that the renting cost rate (to simplify our discussion, let’s
consider the continuous case) may change over time. If the purchase price is a constant, the
renting cost rate function does not change the competitive ratio since a good deterministic
online algorithm is always to buy it when the renting fee is equal to the purchase price.

Azar et al. [5] considered online service with delay, which generalizes the k-server problem.
As mentioned in their paper, delay penalty functions are not restricted to be linear and
even different requests can have different penalty functions. However, different delay penalty
functions there do not make the service with delay problem much different, and there is
a universal way to deal with these different penalty functions, unlike the online matching
problems we consider now.

3 Preliminaries

In this section, we formulate the problem and introduce notations.

3.1 Problem Statement
Let R+ stands for the set of nonnegative real numbers.

A metric space S = (V, µ) is a set V , whose members are called points, equipped with a
distance function µ : V 2 → R+ which satisfies the following conditions
Positive definite: µ(x, y) ≥ 0 for any x, y ∈ V , and “=” holds if and only if x = y;
Symmetric: µ(x, y) = µ(y, x) for any x, y ∈ V ;
Subadditive or triangle inequality : µ(x, y) + µ(y, z) ≥ µ(x, z) for any x, y, z ∈ V .

Given a function f : R+ → R+, the problem f -MPMD is defined as follows, and f is
called the time cost function.

For any finite metric space S = (V, µ), an online input instance over S is a set R of
requests, with any ρ ∈ R characterized by its location `(ρ) ∈ V and arrival time t(ρ) ∈ R+.
Each request ρ is revealed exactly at time t(ρ). Assume that |R| is an even number. The
goal is to construct a perfect matching, i.e. a partition into pairs, of the requests in real time
without preemption.

Suppose an algorithm A matches ρ, ρ′ ∈ R at time T . It pays the space cost µ(`(ρ), `(ρ′))
and the time cost f(T − t(ρ)) + f(T − t(ρ′)). The space cost of A on input R, denoted by
costsA(R), is the total space cost caused by all the matched pairs, and the time cost costtA(R)
is defined likewise. The objective of the f -MPMD is to find an online algorithm A such that
costA(R) = costsA(R) + costtA(R) is minimized for all R.

As usual, the online algorithm A is evaluated through competitive analysis. Let A∗ be
an optimum offline algorithm2. For any finite metric space S, if there are a, b ∈ R+ such
that costA(R) ≤ costA∗(R)a+ b for any online input instance R over S, then A is said to be
a-competitive on S. The minimum such a is called the competitive ratio of A on S. Note
that both a and b can depend on S.

This paper will focus on monomial time cost functions f(t) = tα, α > 1 and uniform
metric spaces. A metric space (V, µ) is called δ-uniform if µ(u, v) = δ for any u, v ∈ V .

2 An offline algorithm knows the whole input instance at the beginning and outputs any pair ρ, ρ′ ∈ R at
time max{t(ρ), t(ρ′)}.
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Figure 1 The input instance of Example 4. A blue dot stands for a request, and a thick line or
curve for a match. (a) is the matching produced by Strategy I, while (b) is an offline solution.

3.2 Notations and Terminologies
Any pair of requests ρ, ρ′ in the perfect matching is called a match between ρ and ρ′

and denoted by 〈ρ, ρ′〉 or 〈ρ′, ρ〉 interchangeably. A match 〈ρ, ρ′〉 is said to be external
if `(ρ) 6= `(ρ′), and internal otherwise. For any request ρ, let T (ρ) be the time when ρ

is matched; ρ is said to be pending at any time t ∈ (t(ρ), T (ρ)) and active at any time
t ∈ [t(ρ), T (ρ)]. At any moment t, a point v ∈ V is called aligned if the number of pending
requests at v under A and that under A∗ have the same parity, and misaligned otherwise.
The derivative of any differentiable function f : R+ → R+ is denoted by f ′.

4 Algorithm and Analysis

4.1 Basic Ideas
A natural idea to solve f -MPMD on uniform metrics is to prioritize internal matches and to
create an external match only if both requests have waited long enough (say, as long as θ).
However, for any monomial time cost function f(t) = tα, α > 1, the strategy (called Strategy
I) is not competitive, as illustrated in Example 4.

I Example 4. For any positive integer n and small real number ε > 0, construct an online
instance as follows. A request ρ2i arrives at u at time i · θ for any 0 ≤ i ≤ n, while a request
ρ2i−1 arrives at u at time i · θ − ε for any 1 ≤ i ≤ n. Point v gets a request ρ′ at time 0.
By Strategy I, as in Figure 1(a), each ρ2i is matched with ρ2i+1 for any 0 ≤ i < n, and ρ′
and ρ2n are matched, causing cost at least n · f(θ − ε) + f(nθ) + δ. Consider the offline
solution consisting of 〈ρ′, ρ0〉 and 〈ρ2i−1, ρ2i〉 for 1 ≤ i ≤ n, , as in Figure 1(b), which has cost
δ+n·f(ε). When n approaches infinity and ε approaches 0, n·f(θ−ε)+f(nθ)+δ � δ+n·f(ε),
meaning that Strategy I is not competitive.

A plausible way to improve Strategy I is to accumulate the time costs of all the co-located
requests which arrive after the last external match involving the point, and to enable an
external match if both points have accumulated enough costs (say, as large as θ). Though
applicable to the scenario in Example 4, this improvement (called Strategy II) remains not
competitive for any time cost function f(t) = tα, α > 1, as shown in the next example.

I Example 5. Again, consider two points u, v of distance δ. Arbitrarily fix an even integer
n > 0 and a small real number ε > 0. Arbitrarily choose τ ∈ R+ such that θ− ε < n

2 f(τ) < θ.
Suppose that a request ρ′ arrives at v at time 0, while a request ρi arrives at u at time iτ for
any 0 ≤ i ≤ n. Hence there are totally n+ 2 requests. As illustrated in Figure 2(a), applying
Strategy II results in the matches 〈ρ′, ρn〉 and 〈ρi, ρi+1〉 for any even number 0 ≤ i < n,
causing cost at least n

2 f(τ) + f(nτ) + δ. On the other hand, consider the offline solution
〈ρ′, ρ0〉 and 〈ρi, ρi+1〉 for any odd number 0 < i < n, as shown in Figure 2(b). It has cost

ISAAC 2018
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Figure 2 The input instance of Example 5. A blue dot stands for a request, and a thick line or
curve for a match. (a) is the matching produced by Strategy II, while (b) is an offline solution.

Figure 3 The input instance of Example 6. A blue dot stands for a request, an area surrounded
by dash lines stands for a part of the instance, and a thick line or curve for a match. (a) is the
matching produced by Strategy III, while (b) is an offline solution.

n
2 f(τ) + δ. Thus the cost of A∗ is at most n

2 f(τ) + δ. When n approaches infinity and ε
approaches 0, we have n

2 f(τ) + f(nτ) + δ � n
2 f(τ) + δ, implying that Strategy II is not

competitive.

Since the trouble may be rooted at the double-counter-enabling mechanism which enables
an external match when two counters both reach some threshold, we further improve the
strategy by enabling an external match if one of the two points has high accumulated cost
(say, as high as θ). This improvement (called Strategy III) defeats both Examples 4 and 5,
but the following example shows that it remains not competitive for any monomial time cost
function f(t) = tα, α > 1.

I Example 6. Choose τ ∈ R+ and odd integer n > 0 such that f(nτ) = θ. Arbitrarily
choose real number T0 > f−1(θ). Consider a uniform metric space S = ({u, v, w}, δ). Let
m > 0 be an arbitrary integer. Construct an online input instance R which is the union of
m+ 1 parts R0, · · · , Rm, as illustrated in Figure 3.

The part R0 has 5n+ 3 requests. Specifically, u receives a request ρu0,−1 at time 0, ρu0,0 at
time T0, and ρu0,i at time T0 + (n+ i)τ for any 1 ≤ i ≤ 2n. v receives a request ρv0,i at time
T0 + iτ for any 1 ≤ i ≤ 2n. w receives a request ρw0,−1 at time 0 and a request ρw0,n+i at time
T0 + iτ for any 1 ≤ i ≤ n. Let T1 = T0 + (2n+ 1)τ, Tj = Tj−1 + 3nτ for any 2 ≤ j ≤ m.

For any 1 ≤ j ≤ m, the part Rj has 6n requests as follows: ρuj,i arrives at u at time
Tj + (2n+ i− 1)τ , ρvj,i arrives at v at time Tj + (n+ i− 1)τ , and ρwj,i arrives at w at time
Tj + (i− 1)τ , for every 1 ≤ i ≤ 2n.
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Actually, we can very slightly perturb the arrival time of some requests so that Strategy III
results in exactly the following external matches: 〈ρu0,−1, ρ

w
0,−1〉, 〈ρu0,0, ρv0,n〉, 〈ρuj,n, ρwj,2n〉 for

1 ≤ j ≤ m, 〈ρui,2n, ρvi+1,n〉 and 〈ρvi,2n, ρwi+1,n〉 for 1 ≤ i < m, and 〈ρum,2n, ρvm,2n〉, as illustrated
in Figure 3(a). The cost of Strategy III is at least 3m(δ+ θ). On the other hand, consider the
offline solution SOL which has no external matches, as indicated in Figure 3(b). It has cost
at most 2f(T0 + τ) + 6mn+5n−1

2 f(τ). When τ approaches zero and m approaches infinity, we
have 3m(δ+ θ)� 2f(T0 + τ) + 6mn+5n−1

2 f(τ), implying that Strategy III is not competitive.

Let’s look closer at the example. Consider an arbitrary (except the first) external match
〈ρ, ρ′〉 of Strategy III. It is of misaligned-aligned pattern in the sense that `(ρ) and `(ρ′)
have opposite alignment status when the match occurs. Suppose `(ρ) is misaligned. Then
it has accumulated high cost, mainly due to the long delay of ρ. On the contrary, SOL
has accumulated little cost at `(ρ), because SOL has no pending request there while ρ is
pending. Hence, a match of misaligned-aligned pattern can significantly enlarge the gap
between online/offline costs. To be worse, such a match does not change the number of
aligned/misaligned points, making it possible that this pattern appears again and again,
enlarging the gap infinitely. As a result, we establish a set which consists of points that are
likely to be misaligned, and prioritize matching those requests that are located outside the
set. The algorithm is described in detail as follows.

4.2 Algorithm Description

Our algorithm maintains a subset Ψ ⊆ V and a counter zv ∈ R+, which is initially set to 0,
for every point v ∈ V . The algorithm proceeds round by round, and Ψ is reset to be the
empty set ∅ at the beginning of each round. The first round begins when the algorithm starts.
Let k = |V |. Whenever 2k external matches are output, the present round ends immediately
and the next one begins. At any time t, the following operations are performed exhaustively,
i.e., until there is no possible matching according to the following rules.
1. Every zv increases at rate f ′(t− t0) if there is an active request ρ at v with t(ρ) = t0.
2. Match any pair of active requests ρ and ρ′ if `(ρ) = `(ρ′).
3. For any pair of active requests ρ, ρ′ with u , `(ρ) 6= v , `(ρ′), match them and reset

zu = zv = 0 if there is x ∈ {u, v} satisfying
a. zx ≥ 2δ, or
b. δ ≤ zx < 2δ and {u, v}

⋂
Ψ = ∅.

Arbitrarily choose such an x ∈ {u, v}, and we say that x initiates this match. Reset Ψ to
be (Ψ \ {u, v})

⋃
{x} if either u /∈ Ψ or v /∈ Ψ.

Priority rule: in applying Operation 3, the requests located outside Ψ are prioritized.

4.3 Competitive Analysis

Throughout this subsection, arbitrarily fix a time cost function f(t) = tα with α > 1, a
uniform metric space S = (V, δ) of k points, and an arbitrary online input instance R over
S. For ease of presentation, we assume that the arrival times of the requests are pairwise
different. This assumption does not lose generality since the arrival times can be arbitrarily
perturbed and timing in practice is up to errors. Let A stand for our algorithm and A∗ for
an optimum offline algorithm solving f -MPMD. We start competitive analysis by introducing
notation.

ISAAC 2018
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4.3.1 Notations
For any request ρ ∈ R and subset I ⊆ R+ of time, the time cost of A∗ incurred by ρ during
I is defined to be

Ctime(ρ, I,A∗) =
∫

(t(ρ),T∗(ρ)]
⋂
I

f ′(t− t(ρ))dt,

where T ∗(ρ) is the time when ρ gets matched by A∗. For any v ∈ V , define

Ctime(v, I,A∗) =
∑

ρ∈R,`(ρ)=v

Ctime(ρ, I,A∗).

Let Cspace(v, I,A∗) be δ
2 times the number of requests at v that are externally matched by

A∗ during I.
Define Γ = {t ∈ R+ : at time t,A has a pending request ρ with z`(ρ) > 2δ}. We will

analyze time cost of A∗ inside and outside Γ separately.
Our algorithm A runs round by round. Specifically, the round starting at time t0 and

ending at time t1 is referred to as the time period (t0, t1]. Let Π be the set of rounds of A.
For any π ∈ Π, define round_costtime(π,A∗) =

∑
v∈V Ctime(v, π \ Γ,A∗) which stands

for the time cost of A∗ during π \ Γ, and round_costspace(π,A∗) =
∑
v∈V Cspace(v, π,A∗)

which is the space cost of A∗ during π.
For any v ∈ V , we divide time into phases based on A’s behavior as follows. The first

phase begins at time t = 0. Whenever an external match involving v occurs, the current
phase of v ends and the next phase of v begins. Specifically, the phase of v starting at
time t0 and ending at time t1 is referred to as the period (t0, t1] spent by v. For any
v ∈ V , let Φv be the set of phases of v, and Φ =

⋃
v∈V Φv. For any φ ∈ Φv, define

the value of φ, denoted by σ(φ), to be the value of zv at the end of φ. For an external
match m of A initiated by v, the phase of v ending with m is called the phase of m,
denoted by φm. For any round π ∈ Π, let Φπ be the set of phases ending in π. For any
round π ∈ Π, define phase_costtime(π,A∗) =

∑
v∈V

∑
φ∈Φπ

⋂
Φv Ctime(v, φ \ Γ,A∗), and

phase_costspace(π,A∗) =
∑
v∈V

∑
φ∈Φπ

⋂
Φv Cspace(v, φ,A

∗).
We say that a phase of v is good, if the alignment status of v does not change during the

phase. Furthermore, a round π is good if all the phases in Φπ are good. A phase or a round
is said to be bad if it is not good.

A phase is called complete if it ends with an external match of A, while a round is
complete if A outputs 2k external matches during it. Obviously, any round other than the
final one is complete.

4.3.2 Competitive Ratio of Our Algorithm
Basically, we show that in every round, the incremental cost of A and that of A∗ do not
differ too much. This is reduced to two tasks. First, if all the counters are always small (say,
no more than 4δ), the incremental cost of A in every round is O(kd), so it suffices to show
that the cost of A∗ increases by Ω(d). This is the main task of this subsection and presented
in Lemma 8. Second, to deal with the case that some counter zv is large, we have to show
that the accumulated cost of A∗ in the phase increases nearly proportionately with zv, as
claimed in Lemma 9.

The following is a key lemma, stating that in every good complete round of A, the cost
of the optimum offline algorithm A∗ is not small.
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I Lemma 7. In every good complete round π, we have either round_costtime(π,A∗) ≥
f(f−1(2δ)− f−1(δ)), or round_costspace(π,A∗) ≥ δ, or phase_costtime(π,A∗) ≥ δ.

Up to now, we have focused on good rounds. The next lemma indicates that the cost of
A∗ in bad rounds can be ignored in some sense.

I Lemma 8. The number of bad rounds of A is at most twice the number of external matches
of A∗.

For any phase φ ∈ Φ, define its truncated value to be

σ′(φ) =
{

0 if σ(φ) ≤ 2δ
f(f−1(σ(φ))− f−1(2δ)) otherwise

.

We will use truncated phase values to give a lower bound of the time cost of A∗.

I Lemma 9. costtA∗(R) ≥
∑
π∈Π phase_costtime(π,A∗) +

∑
φ∈Φ σ

′(φ).

The following technical lemmas will be needed.

I Lemma 10. For any c1, · · · , cn ≥ c0 > c > 0 and α > 1, we have∑n
j=1(cj − c)∑n

j=1( α
√
cj − α

√
c)α
≤ c0 − c

( α
√
c0 − α

√
c)α

.

I Lemma 11. If A has only one round on the instance R, costA(R)/costA∗(R) = O(k).

Now we are ready to prove the main result.

I Theorem 1. For any f(t) = tα with constant α > 1, the competitive ratio of A for
f -MPMD on k-point uniform metric space is O(k).

Proof. Suppose that A has m rounds on the online input instance R, namely |Π| = m. By
Lemma 11, we assume that m > 1.

In every round, there are at most 2k external matches and each of them ends two complete
phases. So, there are altogether at most 4km complete phases. Considering that there are
totally at most k incomplete phases, |Φ| ≤ (4m+1)k ≤ 5mk. Let Φ′ = {φ ∈ Φ : σ(φ) ≥ 4δ}. It
holds that costA(R) = costsA(R)+costtA(R) ≤ 2kmδ+

∑
φ∈Φ σ(φ) ≤ 22kmδ+

∑
φ∈Φ′(σ(φ)−

4δ) ≤ 22kmδ +
∑
φ∈Φ′(σ(φ)− 2δ).

On the other hand, as to the cost of A∗, we have costA∗(R) = costsA∗(R) + costtA∗(R) ≥
costsA∗(R) +

∑
π∈Π phase_costtime(π,A∗) +

∑
φ∈Φ σ

′(φ) by Lemma 9. Trivially we also have
costA∗(R) ≥

∑
π∈Π[round_costtime(π,A∗) + round_costspace(π,A∗)]. Let Π′ be the set

of good complete rounds and m′ = |Π′|. Let m′′ be the number of bad rounds. An easy
observation is that m′ +m′′ ≥ m− 1. By Lemma 8, A∗ has at least m′′

2 external matches:

2costA∗(R) ≥ costsA∗(R) +
∑
π∈Π phase_costtime(π,A∗) +

∑
φ∈Φ σ

′(φ)
+

∑
π∈Π[round_costtime(π,A∗) + round_costspace(π,A∗)]

≥ m′′

2 δ +
∑
φ∈Φ σ

′(φ) +
∑
π∈Π′ [phase_costtime(π,A∗)

+round_costtime(π,A∗) + round_costspace(π,A∗)]
≥ m′′

2 δ +
∑
φ∈Φ σ

′(φ) + f(f−1(2δ)− f−1(δ))m′
≥ m−1

2 ( α
√

2− 1)αδ +
∑
φ∈Φ′ σ

′(φ)

where the third equality is due to Lemma 7.

Altogether, costA(R)
costA∗ (R) ≤

22kmδ+
∑

φ∈Φ′
(σ(φ)−2δ)

m−1
4 ( α
√

2−1)αδ+ 1
2

∑
φ∈Φ′

σ′(φ)
, which is O(k) by Lemma 10. J
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5 Lower Bound for Deterministic Algorithms

This section is devoted to showing that any deterministic algorithm for the convex-MPMD
problem on k-point uniform metric space must have competitive ratio Ω(k), meaning that our
algorithm is optimum, up to a constant factor. Let’s begin with a convention of notation. Let
f : R+ 7→ R+ be a nondecreasing, unbounded, continuous function satisfying f(0) = f ′(0) = 0.
Let S = (V, δ) be a uniform metric space with V = {v0, v1, ...vk}. Suppose that A is an
arbitrary deterministic online algorithm for the f -MPMD problem. Let T ∈ R+ be such that
f(T ) = kδ. Arbitrarily choose a real number τ > 0 such that n = T

τ is an even number.
We construct an instance R of online input to A and show that the competitive ratio of

A is at least Ω(k). The instance R is determined in an online fashion: Roughly speaking,
based on the up-to-now behavior of A, we choose when and where to input next requests so
as to force A to have many external matches.

Specifically, R is determined in m rounds, where m is an arbitrary positive integer. The
first round begins at time T1 = 0. Some requests arrive in the manner as described in the
next four paragraphs. At arbitrary time T2 after these requests are all matched, finish the
first round and start the second round. Repeat this process until we have finished m rounds.
All the requests form the instance R.

Now we describe the requests that arrive during the rth round, namely in the interval
[Tr, Tr+1), for any 1 ≤ r ≤ m. Basically, at v0 there is just one request, denoted by ρ00,
which arrives at time Tr, while a request ρij arrives at every point vi at time Tr + jτ , for any
integers 1 ≤ i ≤ k and j ≥ 1. We will iteratively specify when requests should stop arriving
at the points other than v0.

Define G0 = (V, ∅) to be the graph on V with no edges. Let C0 = {v0}. Starting with
h = 1, iterate the following process until no more requests will arrive. At time Tr + hT ,
construct an undirected graph Gh on V . It has an edge between any pair of vertices vi 6= vi′

if and only if by time Tr + hT , A has matched one request at vi and another at vi′ both
of which arrived during the period [Tr, Tr + hT ]. Let Ch be the set of the vertices in the
connected component of Gh containing v0. We proceed case by case:
Case 1: Ch−1 6= Ch = V . Then no more requests except ρi,hn+1 will arrive, where i is

arbitrarily chosen such that vi ∈ Ch \ Ch−1. Denote this h by hr.
Case 2: Ch−1 = Ch. Then no more requests except ρi,hn+1 will arrive, where i is arbitrarily

chosen such that vi ∈ V \ Ch. Denote this h by hr.
Case 3: otherwise. Then no more requests will arrive at any vi ∈ Ch, while requests continue

arriving at points in V \ Ch. Increase h by 1 and iterate.

Arbitrarily fix 1 ≤ r ≤ m in the rest of this section. Let Rr be the set of requests that
arrive in the first r rounds, and Nr be the number of requests in Rr \Rr−1, where R0 = ∅.
Let R = Rm. It is easy to see four facts:
Fact 1: Nr ≤ k2n+ 2.
Fact 2: Rr \Rr−1 has exactly one request at v0, and has an odd number of requests at the

point where the last request arrives, respectively.
Fact 3: Rr \Rr−1 has an even number of requests at any other point.
Fact 4: No match occurs between requests of different rounds.

Some lemmas are needed for proving the main result.

I Lemma 12. costA∗(Rr) ≤ (δ + k2n
2 f(τ) + f(τ))r.

I Lemma 13. costA(Rr) ≥ kδr.
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I Theorem 3. Suppose that the time cost function f is nondecreasing, unbounded, continuous
and satisfies f(0) = f ′(0) = 0. Then any deterministic algorithm for f-MPMD on k-point
uniform metric space has competitive ratio Ω(k).

Proof. Suppose there are a = a(k, δ) and b = b(k, δ) such that for any m ≥ 1, costA(R) ≤
a · costA∗(R) + b. Fix k and δ. Dividing both sides of inequality by m and letting m approach
infinity, by Lemmas 12 and 13, we get f(nτ) ≤ (δ + k2n

2 f(τ) + f(τ))a, which means that
a ≥ f(nτ)

δ+ k2n
2 f(τ)+f(τ)

=
kδ
2 + 1

2 f(nτ)
δ+ k2n

2 f(τ)+f(τ)
.

Let τ approach zero. One has limτ→0 f(τ) = 0, and

lim
τ→0

f(nτ)
k2nf(τ) = lim

τ→0

1
k2
f(nτ)
nτ

τ

f(τ) = lim
τ→0

1
k2
f(T )
T

τ

f(τ) = +∞ since f ′(0) = 0

This means limτ→0 k
2nf(τ) = 0, since f(nτ) = kδ is a constant when k and δ are fixed. As

a result, a = limτ→0 a ≥ limτ→0
kδ
2 + 1

2 f(nτ)
δ+ k2n

2 f(τ)+f(τ)
= kδ

δ = k. J

6 Conclusion

We have designed an optimum deterministic online algorithm that solves f -MPMD for any
monomial function f(t) = tα with α > 1. It is remarkable that the algorithm remains
optimum if only f : R+ 7→ R+ is an increasing and convex polynomial function with f(0) = 0.
Actually, following Subsection 4.3.2, one can easily see that the competitive ratio is at most
max

{
120kδ

f(f−1(2δ)−f−1(δ)) , supc≥4δ
c−2δ

f(f−1(c)−f−1(2δ))

}
, which is O(k) by elementary calculus,

when f is fixed.
An interesting future direction is to design a randomized algorithm for convex-MPMD. A

randomized algorithm is usually more competitive than a deterministic one when considering
oblivious adversaries. We conjecture that there is a randomized algorithm for convex-MPMD
with competitive ratio O(log k) but no such algorithm with competitive ratio O(1). If this
turns out true, there is still a clear separation between linear-MPMD and convex-MPMD in
the context of randomized algorithms.

In contrast to convex functions, concave functions may model the fact that in some
applications the delay cost grows slower and slower, which encourages matching two new
requests instead of matching old requests. It seems not difficult to design an algorithm with
bounded competitive ratio for these concave cost functions, but to design a good one, i.e.,
with a very small competitive ratio, seems still challenging.
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Abstract
Ailon et al. (SICOMP 2011) proposed a self-improving sorter that tunes its performance to
the unknown input distribution in a training phase. The distribution of the input numbers
x1, x2, . . . , xn must be of the product type, that is, each xi is drawn independently from an
arbitrary distribution Di, and the Di’s are independent of each other. We study two extensions
that relax this requirement. The first extension models hidden classes in the input. We consider
the case that numbers in the same class are governed by linear functions of the same hidden
random parameter. The second extension considers a hidden mixture of product distributions.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases sorting, self-improving algorithms, entropy

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.63

1 Introduction

Self-improving algorithms proposed by Ailon et al. [1] can tune their computational per-
formance to the input distribution. There is a training phase in which the algorithm learns
certain input features and computes some auxiliary structures. After the training phase, the
algorithm uses these auxiliary structures in the operation phase to obtain an expected time
complexity that is no worse and possibly better than the best worst-case complexity known.
The expected time complexity in the operation phase is called the limiting complexity.

This computational model addresses two issues. First, the worst-case scenario may
not happen, and so the worst-case optimal performance may not be the best possible.
Second, previous efforts for mitigating the worst-case scenarios often consider average-case
complexities, and the input distributions are assumed to be simple distributions like Gaussian,
uniform, Poisson, etc. whose parameters are given beforehand. In contrast, Ailon et al. only
assume that individual input items are independently distributed, while the distribution of
an input item can be arbitrary. No other information is needed.

The problems of sorting and two-dimensional Delaunay triangulation are studied by
Ailon et al. [1]. The sorting problem input I has n numbers. The i-th number is drawn
from a hidden distribution Di, and the Di’s are independent from each other. The joint
distribution

∏n
i=1Di is called a product distribution. Let π(I) denote the sequence of the

ranks of the xi’s, which is a permutation of [n]. It is shown that for any ε ∈ (0, 1), there
is a self-improving algorithm with limiting complexity O(ε−1(n + Hπ)), where Hπ is the
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entropy of the distribution of π(I). By Shannon’s theory [3], any comparison-based sorting
algorithm takes Ω(n+Hπ) expected time. The self-improving sorter requires O(n1+ε) space.
The training phase processes O(nε) input instances in O(n1+ε) time, and it succeeds with
probability at least 1− 1/n, i.e., the probabiliy of achieving the desired limiting complexity
is at least 1− 1/n. For two-dimensional Delaunay triangulation, Ailon et al. also obtained
an optimal limiting complexity for product distributions.

Subsequently, Clarkson et al. [2] developed self-improving algorithms for two-dimensional
coordinatewise maxima and convex hull, assuming that the input comes from a product
distribution. The limiting complexities for the maxima and the convex hull problems are
O(OptM + n) and O(OptC + n log log n), where OptM and OptC are the expected depths of
optimal linear decision trees for the maxima and convex hull problems, respectively.

On one hand, the product distribution requirement is very strong; on the other hand,
Ailon et al. showed that Ω(2n logn) bits of storage are necessary for optimal sorting if the n
numbers are drawn from an arbitrary distribution. We study two extensions of the input
model that are natural and yet possess enough structure for efficient self-improving algorithms
to be designed.

The first extension models the situations in which some input elements depend on each
other. We consider a hidden partition of the input I = (x1, · · · , xn) into classes Sk’s such
that all xi’s in a class Sk are distinct linear functions of the same hidden random parameter
zk, and the distributions of the zk’s are arbitrary and independent of each other.3 We call
this model a product distribution with hidden linear classes. Choose any ε ∈ (0, 1). Our
self-improving sorter has an O(n/ε + Hπ/ε) limiting complexity, uses O(n2) space, and
requires a training phase that processes O(nε) input instances in O(n2 log3 n) time with a
success probability at least 1− 1/n.

In the second extension, the distribution of I is a mixture
∑κ
q=1 λqDq, where κ and the

λq’s are hidden, and every Dq is a hidden product distribution of n real numbers. In other
words, over a large collection of input instances, for all q ∈ [1, κ], a fraction λq of them
are expected to be drawn from Dq. We assume that an upper bound m ≥ κ is given. We
call this model a hidden mixture of product distributions. For any ε ∈ (0, 1), our sorter
has an O(n log log(mn) + (n/ε) log κ+Hπ/ε) limiting complexity4, uses O(mn+mεn1+ε)
space, and requires a training phase that processes O(m(logm+ log n) + nε) instances in
O(mn(logm+ log n)2 +mεn1+ε) time with a success probability at least 1− 1/n.

2 Hidden linear classes

There is a hidden partition of [n] into classes. For every i ∈ [1, n], the distribution of xi is
degenerate if xi is equal to a fixed value. Each such xi will be recognized in the training
phase and i will be put in a class by itself. For the remaining i’s, the distributions of xi’s
are non-degenerate, and we use S1, · · · , Sg to denote the hidden classes formed by them.
Numbers in the same class Sk are generated by linear functions of the same hidden random
parameter zk. Different classes are governed by different random parameters. We know that
the functions are linear, but no other information is given to us.

Let Dk denote the distribution of zk. There is a technical condition that is required of
the Dk’s: there exists a constant ρ ∈ (0, 1) such that for every k ∈ [1, g] and every c ∈ R,
Pr [zk = c] ≤ 1 − ρ. This condition says that Dk does not over-concentrate on any single
value, which is quite a natural phenonmeon. Our algorithm does not need to know ρ.

3 There is a technical condition required of the input distribution to be explained in Section 2.
4 A less sophisticated method replaces n log log(mn) by mn which is beneficial for m = o(log log n).



S.-W. Cheng and L. Yan 63:3

2.1 Training phase

2.1.1 Learn the linear classes
We learn the classes and the linear functions using the first 3 ln2 n input instances. Denote
these instances by I1, I2, · · · , I3 ln2 n. Let x

(a)
i denote the i-th input number in Ia. We first

recognize the degenerate distributions by checking which x(a)
i is fixed for a ∈ [1, 3 ln2 n].

I Lemma 1. Assume that n ≥ e2/(3ρ). It holds with probability at least 1− 1/n that for all
i ∈ [1, n], if x(a)

i is the same for all a ∈ [1, 3 ln2 n], the distribution of x(a)
i is degenerate.

Proof. Let ci be the observed value of x(a)
i for a ∈ [1, 3 ln2 n]. If the distribution of x(a)

i is
not degenerate, the probability of x(a)

i = ci for all a ∈ [1, 3 ln2 n] is at most (1− ρ)3 ln2 n ≤
e−3ρ ln2 n ≤ e−2 lnn = n−2. Applying the union bound establishes the lemma. J

Assume that the degenerate distributions are taken out of the consideration. If i and j
belong to the same class Sk, then x(a)

i and x(a)
j are linearly related as a varies. Conversely,

if i and j belong to different classes, it is highly unlikely that x(a)
i and x(a)

j remain linearly
related as a varies because they are governed by independent random parameters. We check
if the triples of points (x(a−2)

i , x
(a−2)
j ), (x(a−1)

i , x
(a−1)
j ), and (x(a)

i , x
(a)
j ) are collinear for each

Ia, a ∈ [3, 3 ln2 n], and every distinct pair of i and j from [1, n]. We quantify this intuition in
the following result.

I Lemma 2. Let i and j be two distinct indices in [1, n] that belong to different classes. For
every a ∈ [3, 3 ln2 n], let E(a)

ij denote the event that the points (x(a−2)
i , x

(a−2)
j ), (x(a−1)

i , x
(a−1)
j ),

and (x(a)
i , x

(a)
j ) are not collinear. For any n ≥ e3/ρ2 , Pr

[⋃3 ln2 n
a=3 E

(a)
ij

]
≥ 1− n−3.

Proof. We first prove a lower bound for E(3a)
ij for a ∈ [1, ln2 n]. It is well known [4] that the

points (x(3a−2)
i , x

(3a−2)
j ), (x(3a−1)

i , x
(3a−1)
j ), and (x(3a)

i , x
(3a)
j ) are collinear if and only if∣∣∣∣∣∣∣

x
(3a−2)
i x

(3a−2)
j 1

x
(3a−1)
i x

(3a−1)
j 1

x
(3a)
i x

(3a)
j 1

∣∣∣∣∣∣∣ = 0. (1)

Assume that x(3a−2)
i = c1 and x(3a−1)

i = c2 for two fixed values c1 and c2. Since i and j are
in different classes, x(b)

i and x(b′)
j are independent for all b and b′. Second, xj in one instance

Ib does not influence xj in a different instance Ib′ . So there is no dependence among x(3a)
i ,

x
(3a−2)
j , x(3a−1)

j , and x(3a)
j .

Suppose that c1 6= c2. If E(3a)
ij does not occur, then by (1), we can express x(3a)

j as a
function f(c1, c2, x

(3a)
i , x

(3a−2)
j , x

(3a−1)
j ). Hence,

Pr
[
E

(3a)
ij |x

(3a−2)
i = c1 ∧ x(3a−1)

i = c2 ∧ c1 6= c2

]
=

∑
c3,c′

1,c
′
2

Pr
[
x

(3a)
i = c3 ∧ x(3a−2)

j = c′1 ∧ x
(3a−1)
j = c′2

]
· Pr

[
x

(3a)
j 6= f(c1, c2, c3, c

′
1, c
′
2)
]

≥
∑

c3,c′
1,c

′
2

Pr
[
x

(3a)
i = c3 ∧ x(3a−2)

j = c′1 ∧ x
(3a−1)
j = c′2

]
· ρ

= ρ.
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If c1 = c2, then (1) becomes (x(3a)
i − x(3a−1)

i )(x(3a−1)
j − x(3a−2)

j ) = 0. Thus,

Pr
[
E

(3a)
ij |x

(3a−2)
i = c1 ∧ x(3a−1)

i = c2 ∧ c1 = c2

]
= Pr

[
x

(3a−2)
j 6= x

(3a−1)
j

]
· Pr

[
x

(3a)
i 6= c1

]
≥

(
1− Pr

[
x

(3a−2)
j = x

(3a−1)
j

])
· ρ

= ρ ·

(
1−

∑
c

Pr
[
x

(3a−2)
j = c

]
· Pr

[
x

(3a−1)
j = c

])

≥ ρ ·

(
1− (1− ρ)

∑
c

Pr
[
x

(3a−2)
j = c

])
= ρ2.

The above shows that the probability of E(3a)
ij conditioned on some fixed values of x(3a−2)

i and
x

(3a−1)
i is at least ρ2. Hence, Pr

[
E

(3a)
ij

]
≥ ρ2 ·

∑
c1,c2

Pr
[
x

(3a−2)
i = c1 ∧ x(3a−1)

i = c2

]
= ρ2.

The events in
⋃lnn
a=1 E

(3a)
ij are independent of each other. Therefore,

Pr

3 ln2 n⋃
a=3

E
(a)
ij

 ≥ Pr

ln2 n⋃
a=1

E
(3a)
ij

 = 1−
ln2 n∏
a=1

Pr
[
E

(3a)
ij

]
≥ 1− (1− ρ2)ln2 n.

Since n ≥ e3/ρ2 , we get (1−ρ2)ln2 n ≤ e−ρ2 ln2 n ≤ e−3 lnn = n−3, establishing the lemma. J

By Lemma 2, we keep a dictionary that stores (i, j, bij) for all i 6= j and i, j ∈ [1, n] such
that the distributions of xi and xj are non-degenerate. Initially, bij = 1 for all (i, j). For
each Ia where a ∈ [3, 3 ln2 n], we perform the following. For every (i, j), we check the event
E

(a)
ij in O(1) time, set a bit variable β = 0 if E(a)

ij occurs and β = 1 otherwise, and then
update bij := bij ∧ β. After going through all 3 ln2 n input instances, we put xi and xj in the
same class if and only if bij = 1. By Lemmas 1 and 2 and the union bound, the classification
is correct with probability at least 1− 1/n. The processing time needed is O(n2 log3 n).

2.1.2 Structures for the operation phase
After we obtain the classes, for each class Sk, we fix an arbitrary index sk ∈ Sk. Then, we
compute the equation of the line `i that expresses xi as a linear function in xsk for each
i ∈ Sk \ {sk}. This can be done by picking any two input instances Ia and Ib, and then
computing the equation of the support line through (x(a)

sk , x
(a)
i ) and (x(b)

sk , x
(b)
i ) in O(1) time.

The processing time needed over all classes is O(n).
Take another lnn input instances. Sort all numbers in these instances into one sorted list

L. Form the V -list (v0, v1, · · · , vn, vn+1), where v0 = −∞, vn+1 =∞, and vi has rank i lnn
in the list L. The V -list requires O(n) space and can be computed in O(n log2 n) time. Note
that if the distribution of xi is degenerate, the same xi appears lnn times in the sorted list
L, which implies that xi must be selected to be an element of the V -list.

The V -list induces n horizontal lines at y-coordinates v1, v2, · · · , vn. Let Ak denote the
arrangement of the lines `i computed for i ∈ Sk \ {sk}. We overlay these horizontal lines
on top of Ak. We draw vertical lines through the intersections between these horizontal
lines and the lines in Ak. We also draw vertical lines through the vertices of Ak. The plane
is divided into a set W of vertical slabs, where |W | = O(n|Sk|). Within each slab in W ,
each line `i in Ak lies strictly between two consecutive values vr and vr+1, i.e., vr is the
predecessor of `i in the V -list.
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By a plane sweep over Ak and the n horizontal lines, we can figure out the predecessor of
`i within each slab inW . For each slab inW , we store a list of the `i’s in bottom-to-top order,
and each line in the list stores its predecessor in the V -list. The lists for two consecutive
slabs differ by either swapping two lines in Ak or changing the predecessor of a line in Ak.
Therefore, the |W | lists can be stored in O(|W |+ |Sk|) = O(n|Sk|) space using a persistent
lists data structure [5]. These persistent lists can be generated by a plane sweep over Ak
and the n horizontal lines in O(n|Sk| log n) time.

We need to provide fast access to a particular slab in W after specifying xsk . Take another
nε input instances for any choice of ε ∈ (0, 1). Record the frequencies of xsk falling into the
slabs in W among these nε instances. We build a binary search tree on these slabs whose
expected search time is asymptotically optimal with respect to the recorded frequencies. Let
Tk denote this asymptotically optimal binary search tree. There are O(n|Sk|) nodes in Tk.
At each node of Tk, we store the persistent list of lines in Ak in bottom-to-top order within
the slab corresponding to that node. The size of Tk is O(n|Sk|), and it can be constructed
in O(n|Sk|) time [6, 8]. Very low frequencies cannot give good estimate of the probability
distribution of xsk , so navigating down Tk to a node of very low frequency may be too
time-consuming. Thus, if a search of Tk reaches a node at depth below ε

3 log2 n, we abort
and perform a binary search among the slabs in W , which takes O(log |W |) = O(log n) time.

The last ingredient is to allow the predecessor of xsk in the V -list to be quickly located
for all k ∈ [1, g]. We record the frequencies of xsk falling to the intervals [vr, vr+1) among the
nε instances. Then, we build an asymptotically optimal binary search tree T̂k with respect to
these frequencies. The tree T̂k uses O(n) space, and it can be constructed in O(n) time [6, 8].
As in the case of Tk, if a search of T̂k reaches a node at depth below ε

3 log2 n, we abort and
perform a binary search in the V -list, which takes O(log n) time.

2.2 Operation phase

Given an input instance I = (x1, · · · , xn), for each class Sk, we query Tk with xsk to retrieve
the sorted list σk of numbers belonging to the class Sk. Precisely, Tk gives fast access to the
sorted sequence σk \ {xsk}, and then we spend O(|σk|) time to insert xsk into σk \ {xsk}.
The numbers in σk \ {xsk} are already stored with their predecessors in the V -list. We query
T̂k to obtain the predecessor of xsk in the V -list.

Initialize an empty set Zr of lists for each interval [vr, vr+1). For each xi that is
degenerately distributed, add xi to Zr where vr = xi. For each k ∈ [1, g], if σk ∩ [vr, vr+1) is
non-empty, add σk ∩ [vr, vr+1) to Zr. Distributing σk to the Zr’s takes O(|σk|) = O(|Sk|)
time. Merge all lists in Zr into one sorted list. The merging is facilitated by a min-heap that
stores the next element from each list in Zr to be considered for the next output number
for the merged list. Thus, each step of the merging takes O(log |Zr|) time. Finally, we
concatenate in O(n) time the merged lists for all Zr’s to form the output sorted list.

Correctness is obvious. The limiting complexity has two main components. First, the sum
of expected query times of Tk and T̂k for k ∈ [1, g]. Second, the total time spent on merging
the lists in Zr for r ∈ [0, n]. The remaining processing time is O(n +

∑g
k=1 |Sk|) = O(n).

We give the analysis in the next section to show that the first two components sum to
O(n/ε+Hπ/ε). Recall that π(I) is the sequence of the ranks of numbers in I, which is a
permutation of [n], and Hπ is the entropy of the distribution of π(I).
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2.3 Analysis
Assign labels 0 to n+ 1 to v0, v1, · · · , vn, vn+1 in this order. Similarly, assign labels n+ 2 to
2n+ 1 to the input numbers x1, · · · , xn in this order.

Define the random variable BV to be the permutation of the labels that appear from left
to right after sorting {v0, · · · , vn+1} ∪ {x1, · · · , xn} in increasing order.

For each k ∈ [1, g], define a random variable BVk to be the permutation of the labels that
appear from left to right after performing the following operations: (1) sort {v0, · · · , vn+1} ∪
{xi : i ∈ Sk \ {sk}} in increasing order, and (2) remove all vr’s that do not immediately
precede some xi’s in the sorted list. Let HV

k denote the entropy of the distribution of BVk .
Determining the sorted order σk \ {xsk} and these numbers’ predecessors in the V -list takes
at least HV

k expectd time.
For each k ∈ [1, g], define a random variable B̂Vk to be the label of the predecessor of

xsk in the V -list. Let ĤV
k denote the entropy of the distribution of B̂Vk . Determining the

predecessor of xsk in the V -list takes at least ĤV
k expected time.

Our algorithm queries Tk and T̂k for k ∈ [1, g], constructs σk for k ∈ [1, g] in O(
∑g
k=1 |σk|)

time, and then perform mergings in O(n+
∑n
r=0

∑g
k=1 |σk ∩ [vr, vr+1)| log |Zr|) time. The

additive O(n) term takes care of every interval that contains only one xi that is degenerately
distributed. Recall that |Zr| is the number of classes that have numbers falling into [vr, vr+1).
If Tk and T̂k were the ideal binary search trees, querying them would take HV

k and ĤV
k

expected time, respectively. The total expected running time would then be

O

(
n+

g∑
k=1

HV
k +

g∑
k=1

ĤV
k

)
+O

(
E
[

n∑
r=0

g∑
k=1
|σk ∩ [vr, vr+1)| log |Zr|

])
. (2)

We prove in the rest of this section that both
∑g
k=1 H

V
k and

∑g
k=1 Ĥ

V
k are O(n+Hπ), and

that E [
∑n
r=0

∑g
k=1 |σk ∩ [vr, vr+1)| log |Zr|] = O(n). Moreover, although Tk and T̂k are not

ideal binary search trees, their expected query complexities are O(HV
k /ε) and O(ĤV

k /ε),
respectively, as shown in [1, Lemma 3.4]. Therefore, the total expected running time is
O(n/ε+Hπ/ε).

We need two technical results.

I Lemma 3 ([3, Theorem 2.5.1]). Let H(X1, · · · , Xn) be the joint entropy of independent
random variables X1, · · · , Xn. Then H(X1, · · · , Xn) =

∑n
i=1 H(Xi).

I Lemma 4 ([1, Lemma 2.3]). Let X : U → X and Y : U → Y be two random variables
obtained with respect to the same arbitrary distribution over the universe U . Suppose that
the function f : (I,X(I)) 7→ Y (I), I ∈ U , can be computed by a comparison-based algorithm
with C expected comparisons, where the expectation is over the distribution on U . Then,
H(Y ) ≤ C +O(H(X)).

We show that both
∑g
k=1 H

V
k and

∑g
k=1 Ĥ

V
k are O(n+Hπ).

I Lemma 5.
(a)

∑g
k=1 H

V
k = O

(
n+H(BV )

)
= O (n+Hπ),

(b)
∑g
k=1 Ĥ

V
k = O(n+Hπ).

Proof. Consider (a). Suppose that we are given a setting of BV , i.e., the permutation of
labels from left to right in the sorted order of {v0, · · · , vn+1} ∪ {x1, · · · , xn}. We scan the
sorted list from left to right. We maintain the most recently scanned vr. Suppose that we
see a number xi. Let Sk be the class to which xi belongs. If this is the first time that we
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encounter an index in Sk, we initialize an output list for BVk that contains the label of vr
followed by the label of xi. If this is not the first time that we encounter an index in Sk, we
append the label of xi to the output list for BVk . There is an exception that when i = sk; we
do not output the label of xsk . Clearly, we obtain the settings of all BVk ’s correctly from
BV . The number of comparisons needed is O(n). Therefore, Lemmas 3 and 4 imply that∑g
k=1 H

V
k = H(BV1 , · · · , BVg ) = O(n+H(BV )).

Given (I, π(I)), we use π(I) to sort I and then merge the sorted order with (v0, · · · , vn+1).
Afterwards, we scan the sorted list to output the labels of the numbers. This gives the setting
of BV . Clearly, O(n) comparisons suffice, and so Lemma 4 implies that H(BV ) = O(n+Hπ).
This completes the proof of (a).

The settings of B̂V1 , · · · , B̂Vg can be derived similarly by using π(I) to sort I, merging
the sorted sequence with (v0, · · · , vn+1), and then scanning the merged sequence. Then,
Lemmas 3 and 4 imply that

∑g
k=1 Ĥ

V
k = H(B̂V1 , · · · , B̂Vg ) = O(n+Hπ), establishing (b). J

We will show that it holds with high probability that E[|Zr|] = O(1) for all r ∈ [0, n]
simultaneously. It implies that E

[
maxr∈[0,n] |Zr|

]
= O(1) with high probability. Then,

E
[
n∑
r=0
|σk ∩ [vr, vr+1)| log |Zr|

]
≤ E

[
max
r∈[0,n]

|Zr| ·
n∑
r=0
|σk ∩ [vr, vr+1)|

]

= |σk| · E
[

max
r∈[0,n]

|Zr|
]

= O(|σk|).

Hence,

E
[
n∑
r=0

g∑
k=1
|σk ∩ [vr, vr+1)| log |Zr|

]
=

g∑
k=1

E
[

n∑
r=0
|σk ∩ [vr, vr+1)| log |Zr|

]

≤ O

(
g∑
k=1
|σk|

)
= O(n).

The second term in (2) can thus be replaced by O(n).
Our proof of E[|Zr|] = O(1) for all r ∈ [0, n] with high probability is modeled after the

proof of a similar result in [1]. There is a small twist due to the handling of the classification.

I Lemma 6. It holds with probability at least 1−O(1/n) that for all r ∈ [0, n], E[|Zr|] = O(1).

Proof. Let I1, · · · , Ilnn denote the input instances used in the training phase for building
the V -list. Let y1, y2, · · · , yn lnn denote the sequence formed by concatenating I1, · · · , Ilnn
in this order. We adopt the notation that for each α ∈ [1, n lnn], yα belongs to the class Skα
and the input instance Iaα .

Fix any distinct index pairs α, β ∈ [1, n lnn] such that yα ≤ yβ . Let J βα be the set of
index pairs {(a, k) : a ∈ [1, lnn], k ∈ [1, g]} \ {(aα, kα), (aβ , kβ)}. For any (a, k) ∈ J βα , let
Y βα (a, k) be an indicator random variable such that if some element of the input instance Ia,
a ∈ [1, lnn], belongs to Sk and falls into [yα, yβ), then Y βα (a, k) = 1; otherwise, Y βα (a, k) = 0.
Define Y βα =

∑
(a,k)∈J βα Y

β
α (a, k).

Among the (a, k)’s in J βα , the random variables Y βα (a, k) are independent from each other.
By Chernoff’s bound, for any µ ∈ [0, 1],

Pr
[
Y βα ≤ (1− µ)E[Y βα ]

]
≤ e−µ

2E[Y βα ]/2.
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Setting µ =
√

35 − 5 ≈ 0.9161 shows that if E[Y βα ] > 1
6−
√

35 lnn, then Y βα > lnn with
probability at least 1− n−5. Since the above statement holds for any fixed choices of α and
β such that yα ≤ yβ , we can apply the union bound to the O(n2 log2 n) possible choices of α
and β and conclude that:

It holds with probability at least 1−O(n−2) that for any distinct index pairs α, β ∈
[1, n lnn] such that yα ≤ yβ , if E[Y βα ] > 1

6−
√

35 lnn, then Y βα > lnn.

For every r ∈ [0, n + 1], let yαr denote vr, where yα0 = −∞ and yαn+1 = ∞. Fix a
particular r ∈ [0, n+ 1]. By construction, there are lnn numbers among I1, · · · , Ilnn that fall
in [vr, vr+1), which guarantees the event of Y αr+1

αr ≤ lnn. Our previous conclusion implies
that E[Y αr+1

αr ] ≤ 1
6−
√

35 lnn with probability at least 1−O(n−2).
We relate E[Y αr+1

αr ] to E[|Zr|] as follows. Let Xkr be the indicator random variable
such that if some element of the input instance belongs to Sk and falls into [vr, vr+1), then
Xkr = 1; otherwise, Xkr = 0. Then

∑g
k=1 Xkr = |Zr|, implying that

∑g
k=1 E[Xkr] = E[|Zr|].

The random process that generates the input instances is oblivious of the training phase. It
follows that E[Y αr+1

αr ] should be the same as
∑lnn
a=1

∑g
k=1 E[Xkr], except that the index pairs

(aαr , kαr ) and (aαr+1 , kαr+1) are excluded from J αr+1
αr but these two cases are considered in∑lnn

a=1
∑g
k=1 E[Xkr]. Therefore,

E[Y αr+1
αr ] ≥

( lnn∑
a=1

g∑
k=1

E[Xkr]
)
− 2 = lnn · E[|Zr|]− 2. (3)

We have shown previously that E[Y αr+1
αr ] ≤ 1

6−
√

35 lnn with probability at least 1−O(n−2).
It follows that E[|Zr|] = O(1) with probability at least 1−O(n−2). Since the above statement
holds for every fixed r ∈ [0, n], by the union bound, it holds with probability at least
1−O(1/n) that E[|Zr|] = O(1) for all r ∈ [0, n]. J

It remains to show that the expected query complexities of Tk and T̂k are O(HV
k /ε) and

O(ĤV
k /ε), respectively. The argument is based on Chernoff’s bound and the fact that if a

search in Tk or T̂k reaches a pruned node, it means that the search requires Ω(ε log n) time.
The exact same arguments have been made by Ailon et al. [1, Lemma 3.4].

I Theorem 7. For any ε ∈ (0, 1), there exists a self-improving sorter of O(n/ε + Hπ/ε)
limiting complexity for any product distribution with hidden linear classes. The storage needed
is O(n2). The training phase processes O(nε) input instances in O(n2 log3 n) time, and it
succeeds with probability at least 1− 1/n.

3 Mixture of product distributions

Let κ be the number of product distributions in the mixture. Although κ is hidden, we are
given an upper bound m ≥ κ. Let Dq, q ∈ [1, κ], be the hidden product distributions in the
mixture. In each Dq, the i-th input number is drawn from Dq,i, i.e., Dq =

∏n
i=1Dq,i. The

input distribution is
∑κ
q=1 λqDq for some hidden positive λq’s such that

∑κ
q=1 λq = 1.

3.1 Training phase
Take m (lnm+ lnn) input instances and sort all of these numbers in increasing order. Select
the numbers in the sorted list of ranks lnm+ ln, 2 (lnm+ lnn), · · · , mn (lnm+ lnn). The
selected numbers induce a doubly linked list V of intervals: (−∞, v1), [v1, v2), · · · , [vmn,∞).
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We denote these intervals as [vr, vr+1) for r ∈ [0,mn], where v0 = −∞, vmn+1 =∞, and we
abuse the notation slightly to take [v0, v1) to mean (−∞, v1).

We organize a balanced binary search tree TV whose nodes correspond to intervals in V .
Use another O(mεnε) input instances to record the frequency fir that xi falls into

[vr, vr+1). Then, for every i ∈ [1, n], build an asymptotically optimal binary search tree
Ti with respect to the fir’s on the intervals with positive frequencies. This can be done
in O(mεnε) time [6, 8]. The size of Ti is O(mεnε). If a search of Ti reaches a node at
depth below ε

3 log2(mn) or is unsuccessful, we answer the query by searching TV which takes
O(log(mn)) time

We also need a fast dictionary data structure that can be built in O(mn) time and space.
But we defer its description until we explain the need for it in the operation phase.

The total space required is O(mn+mεn1+ε). The total time spent in the training phase
is O(mn(logm+ log n)2 +mεn1+ε).

3.2 Operation phase
We first give a naive method that is slow to illustrate the overall strategy. Given an input
instance I = (x1, · · · , xn), for each i ∈ [1, n], we search Ti to place xi in the interval [vr, vr+1)
that contains it. For each r ∈ [0,mn], the entry [vr, vr+1) in V keeps a list Nr of xi’s that
fall into it. We sort each Nr in O(|Nr| log |Nr|) time. Then, we concatenate the sorted Nr’s
in increasing order of r to form the output sorted list.

Let ti denote the expected time to query Ti with xi. Assume that we can prove as in [1]
that E[|Nr|2] = O(1). Then, sorting each Nr takes only O(1) expected time. Therefore, the
total time for processing I is O(mn+

∑n
i=1 ti). This is too slow unless m = o(log n). The

O(mn) term arises from scanning the list V in order to concatenate the sorted Nr’s in the
right order.. However, at most n of these mn+ 1 intervals are “useful” because there are
only n input numbers. We describe an improvement below.

We maintain a dictionary U that is initially empty. For each i ∈ [1, n], Ti leads us to the
interval [vr, vr+1) that contains xi. We find vr in U . If vr is present in U , we simply add xi
to Nr. Otherwise, we insert vr to U and initialize Nr to contain xi alone. After seeing all
n input numbers, we find the minimum element in U and then find successors iteratively.
This allows us to visit the non-empty Nr’s in increasing order of r. So we can concatenate
the sorted Nr’s in O(n) time. At the end, we delete all elements from U in preparation for
sorting the next input instance.

The van Emde Boas tree [9] supports dictionary operations in O(log logN) worst-case
time each, where N is the size of the universe. It means O(log log(mn)) time in our case. In
the training phase, we construct a van Emde Boas tree with universe V . It uses O(mn) space
and can be built in O(mn) time.5 The asymptotical storage and processing time required by
the training phase is unaffected.

In all, the running time is reduced to O(n log log(mn) +
∑n
i=1 ti).

3.3 Analysis
We first show that sorting all Nr’s takes O(n) expected time.

I Lemma 8. It holds with probability at least 1− 1/n that E [
∑mn
r=0 |Nr| log |Nr|] = O(n).

5 The space usage according to the description in [9] is O(mn log log(mn)), but it can be improved to
O(mn) as mentioned in [7].
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Proof. We first prove that E[|Nr|] = O(1) for all r ∈ [0,mn] are satisfied simultaneously
with probability at least 1− 1/n.

As a shorthand, let γ = lnm+ lnn. Let I1, · · · , Imγ denote the input instances used in
the training phase for building the list V . Let y1, y2, · · · , ymnγ denote the sequence formed
by concatenating I1, · · · , Imγ in this order. We adopt the notation that for each α ∈ [1,mnγ],
yα belongs to Iaα , and yα is drawn from Dqα,iα .

Fix any distinct index pairs α, β ∈ [1,mnγ] such that yα ≤ yβ . For every q ∈ [1, κ], let
J βα (q) be the set of index triples {(a, q, i) : a ∈ [1,mγ], i ∈ [1, n]} \ {(aα, qα, iα), (aβ , qβ , iβ)}.
For any (a, q, i) ∈ J βα (q), let Y βα (a, q, i) be the indicator random variable such that if Ia ∼ Dq
and xi in Ia falls into [yα, yβ), then Y βα (a, q, i) = 1; otherwise, Y βα (a, q, i) = 0. Define
Y βα (q) =

∑
(a,q,i)∈J βα (q) Y

β
α (a, q, i).

Among the (a, q, i)’s in J βα (q), the random variables Y βα (a, q, i)’s are independent from
each other. By Chernoff’s bound, for any µ ∈ [0, 1], Pr

[
Y βα (q) ≤ (1− µ)E[Y βα (q)]

]
≤

e−µ
2E[Y βα (q)]/2. Setting µ =

√
35 − 5 ≈ 0.9161 shows that if E[Y βα (q)] > 1

6−
√

35γ, then
Y βα (q) > γ with probability at least 1 − m−5n−5. Since the above statement holds for
any fixed choices of q, α and β such that yα ≤ yβ , we can apply the union bound to the
O(κm2n2(logm+ log n)2) possible choices of q, α and β and conclude that:

It holds with probability at least 1 − O(m−1n−2) that for any q ∈ [1, κ] and any
α, β ∈ [1,mnγ] such that yα ≤ yβ , if E[Y βα (q)] > 1

6−
√

35γ, then Y
β
α (q) > γ.

For every r ∈ [0,mn+ 1], let yαr denote vr, where yα0 = −∞ and yαmn+1 = ∞. Fix a
particular r ∈ [0,mn]. By construction, there are γ numbers among I1, · · · , Imγ that fall
in [vr, vr+1), which guarantees the event of Y αr+1

αr (q) ≤ γ for all q ∈ [1, κ]. By our previous
conclusion, it holds with probability at least 1−O(m−1n−2) that E[Y αr+1

αr (q)] ≤ 1
6−
√

35γ for
all q ∈ [1, κ]. Let Y αr+1

αr =
∑κ
q=1 Y

αr+1
αr (q). It follows that:

E[Y αr+1
αr ] = O(κγ) holds with probability at least 1−O(m−1n−2). (4)

Let Xir be the indicator random variable such that if xi falls into the interval [vr, vr+1),
then Xir = 1; otherwise, Xir = 0. Then

∑n
i=1 Xir = |Nr|. Note that Y αr+1

αr counts every xi’s
in Ia that falls into [vr, vr+1), except for the two cases of (a, i) = (aαr , iαr ) ∧ Ia ∼ Dqαr and
(a, i) = (aαr+1 , iαr+1)∧Ia ∼ Dqαr+1

. The random process that generates the input is oblivious
of the training phase. Therefore, E[Y αr+1

αr ] is expected to be the same as
∑mγ
a=1

∑n
i=1 E[Xir],

except that the cases of (a, i) = (aαr , iαr )∧Ia ∼ Dqαr and (a, i) = (aαr+1 , iαr+1)∧Ia ∼ Dqαr+1

are excluded from J αr+1
αr , but these two cases are considered in

∑mγ
a=1

∑n
i=1 E[Xir]. Hence,

E[Y αr+1
αr ] ≥

(
mγ ·

n∑
i=1

E[Xir]
)
− 2 = (mγ · E[|Nr|])− 2.

Substituting (4) into the above inequality shows that E[|Nr|] = O(1). The O(1) bounds on
E[|Nr|] hold for a fixed r with probability at least 1−O(m−1n−2). Applying the union bound
over r ∈ [0,mn] establishes the claim that E [|Nr|] = O(1) for all r ∈ [0,mn] are satisfied
simultaneously with probability at least 1− 1/n. It follows that E

[
maxr∈[0,mn] |Nr|

]
= O(1)

with probability at least 1− 1/n.
The expected total time to sort the Nr’s is

E
[
mn∑
r=0
|Nr| log |Nr|

]
= E

[
mn∑
r=0

n∑
i=1

Xir log |Nr|
]
≤

n∑
i=1

E
[

max
r∈[0,mn]

|Nr| ·
mn∑
r=0

Xir

]
.

Observe that
∑mn
r=0 Xir = 1 because xi falls into exactly one of the mn+ 1 intervals. As a

result, it holds with probability at least 1− 1/n that E [
∑mn
r=0 |Nr| log |Nr|] = O(n). J



S.-W. Cheng and L. Yan 63:11

Next, we bound
∑n
i=1 ti. Let µiqr denote the probability of xi ∈ [vr, vr+1) conditioned

on xi ∼ Dq,i. Define µir to be the the probability of xi ∈ [vr, vr+1), and therefore, µir =∑κ
q=1 λqµiqr.
Let HV

i be the entropy of the distribution of the predecessor of xi in V . So HV
i =∑mn

r=0 µir log(1/µir). As shown in [1, Lemma 3.4], Ti has an expected search time of

O

(
HV
i

ε

)
= O

(
1
ε

mn∑
r=0

µir log(1/µir)
)

= O

(
1
ε

mn∑
r=0

(
κ∑
q=1

λqµiqr

)
log
(

1∑κ
q=1 λqµiqr

))
.

Observe that log
(

1/
∑κ
q=1 λqµiqr

)
≤ log 1

λqµiqr
for any q. Therefore,

HV
i ≤

κ∑
q=1

(
mn∑
r=0

λqµiqr log 1
λqµiqr

)

=
κ∑
q=1

mn∑
r=0

λqµiqr log 1
λq

+
κ∑
q=1

mn∑
r=0

λqµiqr log 1
µiqr

.

Note that
∑mn
r=0 λqµiqr = λq as

∑mn
r=0 µiqr = 1. Then,

∑κ
q=1

∑mn
r=0 λqµiqr log(1/λq) =∑κ

q=1 λq log(1/λq), which is at most log κ. Then,

n∑
i=1

ti = O

(
1
ε

n∑
i=1

HV
i

)

= O
(n
ε

log κ
)

+O

(
1
ε

n∑
i=1

κ∑
q=1

mn∑
r=0

λqµiqr log 1
µiqr

)

= O
(n
ε

log κ
)

+O

(
1
ε

κ∑
q=1

λq

(
n∑
i=1

mn∑
r=0

µiqr log 1
µiqr

))
.

Let HV
q,i =

∑mn
r=0 µiqr log(1/µiqr), the entropy of the distribution of the predecessor

of xi in V conditioned on xi ∼ Dq,i. Then,
∑n
i=1
∑mn
r=0 µiqr log(1/µiqr) =

∑n
i=1 H

V
q,i. By

Lemma 5(b) and setting g = n, we obtain
∑n
i=1 H

V
q,i = O(n+Hπ,q), where Hπ,q is the entropy

of π(I) conditioned on I ∼ Dq. It is well-known that an unconditional entropy is greater than
or equal to its conditioned counterpart, so Hπ ≥ Hπ,q. Therefore,

∑n
i=1 H

V
q,i = O(n+Hπ).

Thus,
∑n
i=1 ti = O

(
n
ε log κ+ 1

ε

∑κ
q=1 λq(n+Hπ)

)
= O ((n/ε) log κ+Hπ/ε).

I Theorem 9. For any constant ε > 0, there exists a self-improving sorter of limiting
complexity O (n log log(mn) + (n/ε) log κ+Hπ/ε) for any hidden mixture of κ product distri-
bution. The parameter κ is hidden, but an upper bound m ≥ κ is given. The storage needed is
O(mn+mεn1+ε). The training phase processes O(m(logm+ log n) +mεnε) input instances
in O(mn(logm+ log n)2 +mεn1+ε) time, and it succeeds with probability at least 1− 1/n.

4 Conclusion

There are several possible directions for future research. One is to extend the hidden
classification to allow the xi’s in the same class Sk to be some fixed-degree polynomial in
the random parameter zk. Linear functions in zk have the nice property that any xi and
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xj in the same class are linearly related. This helps us to learn the hidden classes. We lose
this property in the case of fixed-degree polynomials. Another direction is to improve the
limiting complexity in the case of a hidden mixture of product distributions. Can the term
O(n log log(mn) + (n/ε) log κ) be reduced? If the upper bound m of κ is not too far off, then
n log log(mn) ≈ n log log κ+ n log log n, which means that our limiting complexity becomes
O(n log log n + (n/ε) log κ + Hπ/ε). Although n log log n is o(n log n), it would be nice to
eliminate it or reduce it further. It is also unclear whether the factor log κ is necessary.

It would also be interesting to design self-improving algorithms for other problems and
possibly other input settings as well.
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Abstract

We study an on-line scheduling problem that is motivated by applications such as car-sharing,
in which users submit ride requests, and the scheduler aims to accept requests of maximum
total profit using k servers (cars). Each ride request specifies the pick-up time and the pick-up
location (among two locations, with the other location being the destination). The scheduler
has to decide whether or not to accept a request immediately at the time when the request is
submitted (booking time). We consider two variants of the problem with respect to constraints
on the booking time: In the fixed booking time variant, a request must be submitted a fixed
amount of time before the pick-up time. In the variable booking time variant, a request can be
submitted at any time during a certain time interval (called the booking horizon) that precedes
the pick-up time. We present lower bounds on the competitive ratio for both variants and propose
a balanced greedy algorithm (BGA) that achieves the best possible competitive ratio. We prove
that, for the fixed booking time variant, BGA is 1.5-competitive if k = 3i (i ∈ N) and the fixed
booking length is not less than the travel time between the two locations; for the variable booking
time variant, BGA is 1.5-competitive if k = 3i (i ∈ N) and the length of the booking horizon is
less than the travel time between the two locations, and BGA is 5/3-competitive if k = 5i (i ∈ N)
and the length of the booking horizon is not less than the travel time between the two locations.
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1 Introduction

In a car-sharing system, a company offers cars to customers for a period of time. Customers
can pick up a car in one location, drive it to another location, and return it there. Car
booking requests arrive on-line, and the goal is to maximize the profit obtained from satisfied
requests. We refer to this problem as the car-sharing problem.

In a real setting, customer requests for car bookings arrive over time, and the decision
about each request must be made immediately, without knowledge of future requests. This
gives rise to an on-line problem that bears some resemblance to interval scheduling, but in
which additionally the pick-up and drop-off locations play an important role: The server that
serves a request must be at the pick-up location at the start time of the request and will be
located at the drop-off location at the end time of the request. We consider a setting where
all driving routes go between two fixed locations, but can be in either direction. For example,
the two locations could be a residential area and a nearby shopping mall or central business
district. Other applications that provide motivation for the problems we study include car
rental, taxi dispatching and boat rental for river crossings. A server can serve two consecutive
requests only if the drop-off location of the first request is the same as the pick-up location of
the second request, or if there is enough time to travel between the two locations otherwise.
We allow empty movements, i.e., a server can be moved from one location to another while
not serving a request. Such empty movements could be implemented by having company
staff drive a car from one location to another, or in the future by self-driving cars.

With respect to constraints on the booking time, one can consider the fixed booking
time variant and the variable booking time variant of the car-sharing problem [7]. The fixed
booking time variant requires users to submit requests in such a way that the amount of
time between the booking time of a request and its start time is a fixed value, independent
of the request. This simplifies the scheduling task because the order of the start times of the
requests is the same as the order of their release times (booking times). It is, however, less
convenient for users because they have to book a request at a specific time. In the variable
booking time variant, the booking time of a request must lie in a certain time interval (called
the booking horizon) before the start time of the request. Users can book a request at any
time in this interval.

1.1 Related Work
In [7], the authors studied the car-sharing problem for the special case of two locations
and a single server, considering both fixed booking times and variable booking times, and
presented tight results for the competitive ratio. The optimal competitive ratio was shown
to be 2 for fixed booking times and 3 for variable booking times. In [8], the authors dealt
with the car-sharing problem with two locations and two servers, considering only the case
of fixed booking times, and presented tight results for the competitive ratio. The optimal
competitive ratio was shown to be 2. In contrast to the previous work on car-sharing between
two locations, in this paper we consider the car-sharing problem for both fixed booking times
and variable booking times in the setting with k servers where k can be arbitrarily large. As
a larger number of servers provides more flexibility to the algorithm, different lower bound
constructions and different techniques for analyzing the competitive ratio of an algorithm are
required. It seems natural to expect that a large number of servers can help an algorithm to
achieve better competitive ratio, but our results show that, surprisingly, 3 servers (in one
case) and 5 servers (in another case) already allow us to get the best competitive ratio, and
no improvement is possible with more servers.
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Böhmová et al. [3] showed that if all customer requests for car bookings are known in
advance, the problem of maximizing the number of accepted requests is solvable in polynomial
time. Furthermore, they considered the problem variant with two locations where each
customer requests two rides (in opposite directions) and the scheduler must accept either
both or neither of the two. They proved that this variant is NP-hard and APX-hard. In
contrast to their work, we consider the on-line version of the problem with k servers.

Amongst other related work, the problem that is closest to our setting is the on-line
dial-a-ride problem (OLDARP). In OLDARP, transportation requests between locations
in a metric space arrive over time, but typically it is assumed that requests want to be
served “as soon as possible” rather than at a specific time as in our problem. Versions of
OLDARP with the objective of serving all requests while minimizing the makespan [1, 2]
or the maximum flow time [6] have been widely studied in the literature. The versions
of OLDARP where not all requests need to be served includes competitive algorithms for
requests with deadlines where each request must be served before its deadline or rejected [9],
and for settings with a given time limit where the goal is to maximize the revenue from
requests served before the time limit [5]. In contrast to existing work on OLDARP, in this
paper we consider requests that need to be served at a specific time that is specified by the
request when it is released. Another related problem is the k-server problem [4, Ch. 10], but
in that problem all requests must be served and requests are served at a specific location.

1.2 Problem Description and Preliminaries
We consider a setting with only two locations (denoted by 0 and 1) and k servers (denoted
by s1, s2, . . . , sk). The k servers are initially located at location 0. The travel time from 0 to
1 is the same as the travel time from 1 to 0 and is denoted by t.

Let R denote a sequence of requests that are released over time. The i-th request is
denoted by ri = (t̃ri

, tri
, pri

) and is specified by the booking time or release time t̃ri
, the

start time (or pick-up time) tri , and the pick-up location pri ∈ {0, 1}. If ri is accepted, a
server must pick up the customer at pri

at time tri
and drop off the customer at location

ṗri
= 1 − pri

, the drop-off location of the request, at time ṫri
= tri

+ t, the end time (or
drop-off time) of the request. We assume that for all ri ∈ R, tri is an integer multiple of the
travel time between location 0 and location 1, i.e., tri

= νt for some ν ∈ N.
Each server can only serve one request at a time. Serving a request yields profit r > 0.

An empty movement between the two locations takes time t, but has no cost. If two requests
are such that they cannot both be served by the same server, we say that the requests are in
conflict. We denote the set of requests accepted by an algorithm by R′, and the i-th request
in R′, in order of request start times, is denoted by r′i. We denote the profit of serving the
requests in R′ by PR′ = r · |R′|. The goal of the car-sharing problem is to accept a set of
requests R′ that maximizes the profit PR′ .

The problem for k servers and two locations for the fixed booking time variant in which
tri − t̃ri = a for all requests ri, where a ≥ t is a constant, is called the kS2L-F problem.
For the variable booking time variant, the booking time t̃ri

of any request ri must satisfy
tri − bu ≤ t̃ri ≤ tri − bl, where bl and bu are constants, with t ≤ bl < bu, that specify the
minimum and maximum length, respectively, of the time interval between booking time and
start time. The problem for k servers and two locations for the variable booking time variant
is called the kS2L-V problem. We do not require that the algorithm assigns an accepted
request to a server immediately, provided that it ensures that one of the k servers will serve
the request. In our setting, however, it is not necessary for an algorithm to use this flexibility.
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Table 1 Lower and upper bounds on the competitive ratio for the car sharing problem.

Problem Booking constraint Lower bound Upper bound

kS2L-F a ≥ t 1.5 1.5 (k = 3i, i ∈ N)
kS2L-V bl ≥ t, bu − bl < t 1.5 1.5 (k = 3i, i ∈ N)
kS2L-V bl ≥ t, bu − bl ≥ t 5/3 5/3 (k = 5i, i ∈ N)

The performance of an algorithm for kS2L-F or kS2L-V is measured using competitive
analysis (see [4]). For any request sequence R, let PRA denote the objective value produced
by an on-line algorithm A, and PR∗ that obtained by an optimal scheduler OPT that has full
information about the request sequence in advance. The competitive ratio of A is defined as
ρA = supR

PR∗
PRA

. We say that A is ρ-competitive if PR∗ ≤ ρ ·PRA
for all request sequences R.

Let ON be the set of all on-line algorithms for a problem. We only consider deterministic
algorithms. A value β is a lower bound on the best possible competitive ratio if ρA ≥ β for
all A in ON . We say that an algorithm A is optimal if there is a lower bound β with ρA = β.

1.3 Paper Outline
An overview of our results is shown in Table 1. In Section 2, we prove the lower bounds. In
Section 3, we propose a balanced greedy algorithm that achieves the best possible competitive
ratio. Although variable booking times provide much greater flexibility to customers, we
show that our balanced greedy algorithm (only with a different choice of a parameter in the
algorithm) is still optimal. When k 6= 3i (resp. k 6= 5i), i ∈ N, the upper bounds for kS2L-V
when bl ≥ t and bu − bl < t (resp. bu − bl ≥ t) are only slightly worse. The proofs for the
latter cases are omitted due to space restrictions.

2 Lower Bounds

In this section, we present lower bounds for kS2L-F and kS2L-V. We use ALG to denote any
deterministic on-line algorithm and OPT to denote an optimal scheduler. The set of requests
accepted by ALG is referred to as R′, and the set of requests accepted by OPT as R∗.

I Theorem 1. For a ≥ t (resp. bl ≥ t, bu − bl < t), no deterministic on-line algorithm for
kS2L-F (resp. kS2L-V) can achieve competitive ratio smaller than 1.5.

Proof. Initially, the adversary releases the 1st request sequence r1, r2, . . . , rk with r1 = r2 =
· · · = rk = (ν · t − a, ν · t, 1), where ν ∈ N and ν · t − a ≥ 0 (resp. r1 = r2 = · · · = rk =
(ν · t − bl, ν · t, 1) where ν ∈ N and ν · t − bl ≥ 0). Suppose ALG accepts k1 (1 ≤ k1 ≤ k)
requests in the 1st request sequence. There are two options that the adversary can adopt:
Option 1: The adversary releases the 2nd request sequence rk+1, rk+2, . . . , r2k with rk+1 =

rk+2 = · · · = r2k = (t̃r1 , tr1 , 0), and the 3rd request sequence r2k+1, r2k+2, . . . , r3k with
r2k+1 = r2k+2 = · · · = r3k = (t̃r1 + t, tr1 + t, 1). Note that the requests in the 2nd and the
3rd request sequences must be assigned to different servers from the k1 servers that have
accepted requests of the 1st request sequence as they are in conflict. From this it follows
that ALG cannot accept more than 2(k − k1) requests of the 2nd and the 3rd request
sequences. OPT accepts all the requests in the 2nd and the 3rd request sequences. We
have PR∗ = 2kr and PR′ ≤ k1r + 2(k − k1)r = (2k − k1)r, and hence PR∗

PR′
≥ 2k

2k−k1
.

Option 2: The adversary does not release any more requests. OPT accepts all requests in
the 1st request sequence. We have PR∗ = k · r and PR′ = k1 · r, and hence PR∗

PR′
≥ k

k1
.
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Algorithm 1 Balanced Greedy Algorithm (BGA).
Input: k servers (2θk specified servers and (1− 2θ)k unspecified servers), requests arrive
over time.
Step: When request ri arrives, if it is acceptable to a specified server, assign it to that
server; otherwise, if ri is acceptable to an unspecified server, assign ri to that server;
otherwise, reject it.

If k1 ≥ 2k
3 , 2k

2k−k1
≥ 1.5; if k1 ≤ 2k

3 , k
k1
≥ 1.5. As the adversary can choose the option

that maximizes PR∗
PR′

, the claimed lower bound of 1.5 follows. J

I Theorem 2. For bl ≥ t and bu − bl ≥ t, no deterministic on-line algorithm for kS2L-V
can achieve competitive ratio smaller than 5/3.

Proof. Initially, the adversary releases the 1st request sequence r1, r2, . . . , rk with r1 = r2 =
· · · = rk = (ν · t − bu, ν · t, 0) (where ν ∈ N with ν · t − bu ≥ 0). Suppose ALG accepts
k1 (1 ≤ k1 ≤ k) requests in the 1st request sequence. There are now two options that the
adversary can adopt.

Option 1: The adversary releases the 2nd request sequence rk+1, rk+2, . . . , r2k with rk+1 =
rk+2 = · · · = r2k = (t̃r1 , tr1 − t, 0) (note that tr1 − t − t̃r1 = ν · t − t − (ν · t − bu) =
bu − t ≥ bl), and the 3rd request sequence r2k+1, r2k+2, . . . , r3k with r2k+1 = r2k+2 =
· · · = r3k = (t̃r2k

+ t, tr2k
+ t, 1), and the 4th request sequence r3k+1, r3k+2, . . . , r4k with

r3k+1 = r3k+2 = · · · = r4k = (t̃r2k
+ 2t, tr2k

+ 2t, 0).
Note that the requests in the 2nd, the 3rd and the 4th request sequences must be
assigned to different servers from the k1 servers that have accepted requests of the 1st
request sequence as they are in conflict. From this it follows that ALG cannot accept
more than 3(k − k1) requests in the 2nd, 3rd and 4th request sequences. OPT accepts
all the requests in the 2nd, 3rd and 4th request sequences. We have PR∗ = 3kr and
PR′ ≤ k1r + 3(k − k1)r = (3k − 2k1)r, and hence PR∗

PR′
≥ 3k

3k−2k1
.

Option 2: The adversary does not release any more requests. OPT accepts all requests in
the 1st request sequence. We have PR∗ = k · r and PR′ = k1 · r, and hence PR∗

PR′
≥ k

k1
.

If k1 ≥ 3
5k,

3k
3k−2k1

≥ 5
3 ; if k1 ≤ 3

5k,
k
k1
≥ 5

3 . As the adversary can choose the option that
maximizes PR∗

PR′
, the claimed lower bound of 5/3 follows. J

3 Upper Bounds

We propose a Balanced Greedy Algorithm (BGA) for the kS2L-F/V problem, shown in
Algorithm 1. The k servers are divided into two groups: a set Sf of 2θk specified servers and
a set Su of (1− 2θ)k unspecified servers, where θ is a parameter satisfying 0 ≤ θ ≤ 1

2 and
chosen in such a way that θk is an integer. The set Sf is further partitioned into sets Sof
and Sef of θk servers each. The θk specified servers in Sof serve only requests that start at
location 0 at time νt where ν is even and requests that start at location 1 at time νt where ν
is odd. The θk specified servers in Sef serve the other request types, i.e., requests that start
at location 0 (resp. 1) at time νt where ν is odd (resp. even).

When the algorithm receives request ri, let R′(ri) denote the set of requests that BGA
has already accepted, and let R′j(ri) denote the set of requests that BGA has accepted and
that are assigned to sj , for any j. Request ri is acceptable to a specified server if and only if
the number of requests in R′(ri) that start at tri

and have pick-up location pri
is less than
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θk. Furthermore, ri is acceptable to an unspecified server sj (sj ∈ Su) if and only if ri is
not in conflict with the requests in R′j(ri), i.e., for all r′q ∈ R′j(ri) we have |tri

− tr′q | ≥ 2t if
pri

= pr′q and |tri
− tr′q | ≥ t if pri

6= pr′q .
Denote the requests accepted by OPT by R∗ = {r∗1 , r∗2 , . . . , r∗|R∗|} and the requests

accepted by BGA by R′ = {r′1, r′2, . . . , r′|R′|} indexed in order of non-decreasing start times.
The requests with equal start time are ordered in the order in which they arrive. Let R∗(d)
denote the set of requests in R∗ which start at time d, and let R∗(d, e) denote the set of
requests in R∗ which start at time d and have pick-up location e. Observe that for all d, e, we
have |R∗(d)| ≤ k and |R∗(d, e)| ≤ k. Let R′(d) denote the set of requests in R′ which start
at time d, and let R′(d, e) denote the set of requests in R′ which start at time d and have
pick-up location e. Observe that for all d, e, we have |R′(d)| ≤ k and |R′(d, e)| ≤ (1− θ)k.

For simplification of the analysis, we suppose that the specified servers in each of the sets
Sof and Sef are ordered and if a request ri is acceptable to some specified server, BGA assigns
ri to the available specified server that comes first in that order.

I Observation 3. If θk > 0, then ∀r∗i ∈ R∗: tr′1 ≤ tr∗i ≤ tr′|R′| .

I Observation 4. For every r∗i ∈ R∗, BGA accepts min{|R∗(tr∗
i
, pr∗

i
)|, θk} requests that

start at tr∗
i
and have pick-up location pr∗

i
with specified servers, and hence |R′(tr∗

i
, pr∗

i
)| ≥

min{|R∗(tr∗
i
, pr∗

i
)|, θk}.

I Observation 5. If k0 servers of OPT , where 0 ≤ k0 ≤ k, each accept y (y ≥ 1) requests
that start during period [x, x+ yt) (where x = νt for some ν ∈ N), then at least min{θk, k0}
specified servers of BGA each accept y requests that start during this period.

To illustrate the idea of our analysis of BGA, we first give a simple proof of an upper
bound of 2 on the competitive ratio of BGA.

I Theorem 6. With θ = 1
2 , BGA is 2-competitive for kS2L-F and kS2L-V if k is even.

Proof. Since BGA with θ = 1
2 accepts a request ri ∈ R if the number of requests in

R′(ri) that start at tri
and have pick-up location pri

is less than k
2 , BGA can always accept

min{k2 , |R
∗(tr∗

i
, pr∗

i
)|} requests that start at the same time and have the same pick-up location.

As OPT accepts at most k requests that start at the same time and have the same pick-up
location, i.e., |R∗(tr∗

i
, pr∗

i
)| ≤ k, it follows that |R′| ≥ 1

2 |R
∗|. J

I Definition 7 (Common and uncommon request). For each r∗i ∈ R∗, if the number of requests
in R∗ that start at tr∗

i
and have pick-up location pr∗

i
is no more than the number of requests

in R′ which start at tr∗
i
and have pick-up location pr∗

i
, i.e., |R∗(tr∗

i
, pr∗

i
)| ≤ |R′(tr∗

i
, pr∗

i
)|, we

say that the requests in R∗(tr∗
i
, pr∗

i
) are common; if the number of requests in R∗ which start

at tr∗
i
and have pick-up location pr∗

i
is greater than the number of requests in R′ which start

at tr∗
i
and have pick-up location pr∗

i
, i.e., |R∗(tr∗

i
, pr∗

i
)| > |R′(tr∗

i
, pr∗

i
)|, we say that the first

|R′(tr∗
i
, pr∗

i
)| requests in R∗(tr∗

i
, pr∗

i
) are common, and the remaining requests in R∗(tr∗

i
, pr∗

i
)

are uncommon.

I Observation 8. If r∗i ∈ R∗ is uncommon, |R′(tr∗
i
, pr∗

i
)| ≥ θk.

I Definition 9 (Sufficient and insufficient interval). We say that an interval [x, x+ t) (x is an
integer multiple of t) is sufficient if |R′(x)| ≥ (1− θ)|R∗(x)|; otherwise it is insufficient.
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3.1 Upper Bounds for kS2L-F
I Observation 10. For kS2L-F, if interval [x, x+t) (x is an integer multiple of t) is insufficient,
then x ≥ tr1 + t.

With the following two lemmas, we show that if an interval I is insufficient, the interval
I ′ preceding it must be sufficient and the competitive ratio of BGA with respect to requests
starting in I and I ′ is at most 1.5 (for θ = 1

3 ).

I Lemma 11. For 1
3 ≤ θ ≤ 1

2 , if r∗i ∈ R∗ is uncommon and interval [tr∗
i
, tr∗

i
+ t) is

insufficient, then |R′(tr∗
i
− t, pr∗

i
)| = k − |R′(tr∗

i
, pr∗

i
)|

Proof. As r∗i is uncommon, |R′(tr∗
i
, pr∗

i
)| ≥ θk (by Observation 8) and every unspecified

server has accepted a request that is in conflict with r∗i , i.e., for all sj ∈ Su, there is
r′q ∈ R′j(r∗i ) (recall that R′j(r∗i ) is the set of requests that are accepted and assigned to sj by
BGA at the time when r∗i is released) such that tr∗

i
= tr′q and pr∗

i
= pr′q , or tr∗i − tr′q = t and

pr∗
i

= pr′q , or tr∗i = tr′q and pr∗
i
6= pr′q .

Observe that |R′(tr∗
i
)| < (1 − θ)k because interval [tr∗

i
, tr∗

i
+ t) is insufficient. Since

|R′(tr∗
i
, pr∗

i
)| ≥ θk, |R′(tr∗

i
, ṗr∗

i
)| < (1 − θ)k − θk ≤ θk (as 1

3 ≤ θ). This implies that
BGA does not use unspecified servers to serve requests in R′(tr∗

i
, ṗr∗

i
) because BGA does

not use unspecified servers when specified servers are available. From this it follows that
each of the unspecified servers either accepts a request that starts at tr∗

i
with pick-up

location pr∗
i
, or accepts a request that starts at tr∗

i
− t with pick-up location pr∗

i
. As

|R′(tr∗
i
, pr∗

i
)| < (1− θ)k = θk + (1− 2θ)k, at least one unspecified server accepts a request

that starts at tr∗
i
− t with pick-up location pr∗

i
. This implies that |R′(tr∗

i
− t, pr∗

i
)| ≥ θk. Since

|R′(tr∗
i
, pr∗

i
)| ≥ θk, each of the specified servers either accepts a request that starts at tr∗

i
at

pr∗
i
or a request that starts at tr∗

i
−t at pr∗

i
. Therefore |R′(tr∗

i
−t, pr∗

i
)| = k−|R′(tr∗

i
, pr∗

i
)|. J

I Lemma 12. For θ = 1
3 , if r

∗
i ∈ R∗ is uncommon and interval [tr∗

i
, tr∗

i
+ t) is insufficient,

then |R′(tr∗
i
−t)|+|R′(tr∗

i
)| ≥ 2

3 (|R∗(tr∗
i
−t)|+|R∗(tr∗

i
)|) and also |R′(tr∗

i
−t)| > 2

3 |R
∗(tr∗

i
−t)|.

Proof. According to Lemma 11, |R′(tr∗
i
− t, pr∗

i
)| = k − |R′(tr∗

i
, pr∗

i
)|. From this it follows

that each server of BGA accepts at least one request that starts during period [tr∗
i
− t, tr∗

i
],

i.e., |R′(tr∗
i
− t)|+ |R′(tr∗

i
)| ≥ k. Suppose k0 servers of OPT each accept two requests that

start during period [tr∗
i
− t, tr∗

i
]. We distinguish two cases.

Case 1: k0 ≥ k
3 . By Observation 5 (with y = 2), at least θk servers of BGA accept two

requests that start during period [tr∗
i
− t, tr∗

i
]. Since each server accepts at least one

request that starts during period [tr∗
i
−t, tr∗

i
], |R′(tr∗

i
−t)|+|R′(tr∗

i
)| ≥ 2θk+(1−θ)k = 4

3k.
Since |R∗(tr∗

i
− t)|+ |R∗(tr∗

i
)| ≤ 2k (each server of OPT accepts at most two requests

that start during period [tr∗
i
− t, tr∗

i
]), we have

|R∗(tr∗
i
−t)|+|R∗(tr∗

i
)|

|R′(tr∗
i
−t)|+|R′(tr∗

i
)| ≤

2k
4
3k

= 3
2 .

Case 2: k0 <
k
3 . Note that each server of OPT accepts at most two requests that start

during period [tr∗
i
− t, tr∗

i
], so |R∗(tr∗

i
− t)| + |R∗(tr∗

i
)| < 2k

3 + (k − k
3 ) = 4

3k. Since

|R′(tr∗
i
− t)|+ |R′(tr∗

i
)| ≥ k, we have

|R∗(tr∗
i
−t)|+|R∗(tr∗

i
)|

|R′(tr∗
i
−t)|+|R′(tr∗

i
)| ≤

4
3k

k < 3
2 .

Because |R′(tr∗
i
)| < 2

3 |R
∗(tr∗

i
)| and |R′(tr∗

i
− t)|+ |R′(tr∗

i
)| ≥ 2

3 (|R∗(tr∗
i
− t)|+ |R∗(tr∗

i
)|),

we have |R′(tr∗
i
− t)| > 2

3 |R
∗(tr∗

i
− t)|. J

I Corollary 13. If interval [x, x + t) (x is an integer multiple of t) is insufficient, then
interval [x− t, x) and interval [x+ t, x+ 2t) are sufficient.
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Algorithm 2 Partition Rule (for kS2L-F).

Initialization: γ =
tr′
|R′|
−tr′1
t , j = 2, lj = 0, i = 0.

while i ≤ γ do
if interval i and i+ 1 are sufficient then

j = j + 1, i = i+ 1, lj = i;
else if interval i is sufficient and interval i+ 1 is insufficient then

j = j + 1, i = i+ 2, lj = i;
γ′ = j.

I Theorem 14. With θ = 1
3 , BGA is 3

2 -competitive for kS2L-F if k = 3ν (ν ∈ N).

Proof. We partition the time horizon [0,∞) into γ′ (γ′ ≤ γ + 3, where γ =
tr′
|R′|
−tr′1
t )

periods that can be analyzed independently. Let interval i (0 ≤ i ≤ γ) denote interval
[tr′1 +it, tr′1 +(i+1)t). We partition the time horizon based on the Partition rule (Algorithm 2)
and let period j (1 < j < γ′) denote [tr′1 + lj · t, tr′1 + lj+1 · t), in such a way that BGA and
OPT do not accept any requests in the first period [0, tr′1) and the last period [tr′1 + lγ′ · t,∞),
and the length of each period j (1 < j < γ′), i.e., (lj+1− lj)t, is either t or 2t. By Corollary 13
and the Partition rule (Algorithm 2), we have the following properties: if the length of period
j is t, i.e., lj+1− lj = 1, period j is sufficient; if the length of period j is 2t, i.e., lj+1− lj = 2,
the first half of period j, i.e., [tr′1 + lj · t, tr′1 + (lj + 1) · t), is sufficient and the second half
of period j, i.e., [tr′1 + (lj + 1) · t, tr′1 + (lj + 2) · t), is insufficient. Recall that interval 0 is
always sufficient by Observation 10.

Let R∗(j) denote the set of requests accepted by OPT that start in period j, for 1 ≤ j ≤ γ′.
Let R′(j) denote the set of requests accepted by BGA that start in period j, for 1 ≤ j ≤ γ′. We
bound the competitive ratio of BGA by analyzing each period independently. As R′ =

⋃
j R
′
(j)

and R∗ =
⋃
j R
∗
(j), it is clear for any α ≥ 1 that PR∗/PR′ ≤ α follows if we can show that

PR∗(j)
/PR′(j)

≤ α for all j, 1 ≤ j ≤ γ′.
According to Lemma 12, when lj+1− lj = 2, PR∗(j)

/PR′(j)
≤ 3

2 . Based on the partition rule,
when lj+1− lj = 1, period j is sufficient, i.e., |R′(j)| ≥ (1−θ)|R∗(j)| and hence PR∗(j)

/PR′(j)
≤ 3

2 .
Since PR∗(j)

= PR′(j)
= 0 for j = 1 and j = γ′ (recall that by Observation 3, all requests

accepted by BGA and OPT do not start earlier than tr′1 and do not start later than tr′
|R′|

),
the theorem follows. J

3.2 Upper Bounds for kS2L-V
If bl ≥ t and bu − bl < t for the kS2L-V problem, let θ = 1

3 . Since each request starts at time
νt for some ν ∈ N, all requests start in order of their release times, and therefore the upper
bound for the kS2L-V problem is equal to the upper bound for the kS2L-F problem (with
a ≥ t). From now on consider the kS2L-V problem with bl ≥ t and bu− bl ≥ t, and let θ = 2

5 .

I Lemma 15. For θ = 2
5 , if r

∗
i ∈ R∗ is uncommon and interval [tr∗

i
, tr∗

i
+ t) is insufficient,

then one of the following holds:
(i) |R′(tr∗

i
− t, pr∗

i
)| = k − |R′(tr∗

i
, pr∗

i
)| (> 2

5k) and |R′(tr∗
i

+ t, pr∗
i
)| ≤ θk, or

(ii) |R′(tr∗
i

+ t, pr∗
i
)| = k − |R′(tr∗

i
, pr∗

i
)| (> 2

5k) and |R′(tr∗
i
− t, pr∗

i
)| ≤ θk, or

(iii) |R′(tr∗
i
− t, pr∗

i
)| − θk + |R′(tr∗

i
+ t, pr∗

i
)| − θk + |R′(tr∗

i
, pr∗

i
)| − θk ≥ (1 − 2θ)k and

|R′(tr∗
i
− t, pr∗

i
)| > θk and |R′(tr∗

i
+ t, pr∗

i
)| > θk.
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Proof. As r∗i is uncommon, |R′(tr∗
i
, pr∗

i
)| ≥ θk (by Observation 8) and every unspecified

server has accepted a request that is in conflict with r∗i , i.e., for every sj ∈ Su there exists
r′q ∈ R′j(r∗i ) (recall that R′j(r∗i ) is the set of requests that are accepted and assigned to sj by
BGA at the time when r∗i arrives) such that tr′q = tr∗

i
and pr∗

i
= pr′q , or tr′q = tr∗

i
− t and

pr∗
i

= pr′q , or tr′q = tr∗
i

+ t and pr∗
i

= pr′q , or tr′q = tr∗
i
and pr∗

i
6= pr′q .

Observe that |R′(tr∗
i
)| < (1 − θ)k because interval [tr∗

i
, tr∗

i
+ t) is insufficient. Since

|R′(tr∗
i
, pr∗

i
)| ≥ θk, |R′(tr∗

i
, ṗr∗

i
)| < (1 − θ)k − θk ≤ θk (as θ = 2

5 ). This implies that BGA
does not use unspecified servers to serve requests in R′(tr∗

i
, ṗr∗

i
) because BGA does not use

unspecified servers when specified servers are available. From this it follows that each of the
unspecified servers either accepts a request that starts at tr∗

i
with pick-up location pr∗

i
, or

accepts a request that starts at tr∗
i
− t with pick-up location pr∗

i
, or accepts a request that

starts at tr∗
i

+ t with pick-up location pr∗
i
. As |R′(tr∗

i
, pr∗

i
)| < (1− θ)k = θk + (1− 2θ)k, at

least one unspecified server accepts a request that starts at tr∗
i
− t at pr∗

i
, or a request that

starts at tr∗
i

+ t at pr∗
i
. We distinguish three cases.

Case 1: No unspecified server accepts a request that starts at tr∗
i

+ t at pr∗
i
. Then at least

one unspecified server accepts a request that starts at tr∗
i
− t at pr∗

i
. This implies that

|R′(tr∗
i
−t, pr∗

i
)| ≥ θk. Since |R′(tr∗

i
, pr∗

i
)| ≥ θk, each of the specified servers either accepts

a request that starts at tr∗
i
at pr∗

i
or a request that starts at tr∗

i
− t at pr∗

i
. Each of the

unspecified servers either accepts a request that starts at tr∗
i
at pr∗

i
, or a request that

starts at tr∗
i
− t at pr∗

i
. Therefore, |R′(tr∗

i
− t, pr∗

i
)| = k − |R′(tr∗

i
, pr∗

i
)|, and (i) holds.

Case 2: No unspecified server accepts a request that starts at tr∗
i
− t at pr∗

i
. By symmetric

arguments to Case 1, we get |R′(tr∗
i

+ t, pr∗
i
)| = k − |R′(tr∗

i
, pr∗

i
)|, and (ii) holds.

Case 3: At least one unspecified server accepts a request that starts at tr∗
i

+ t at pr∗
i
, and at

least one unspecified server accepts a request that starts at tr∗
i
− t at pr∗

i
. This implies

that |R′(tr∗
i
− t, pr∗

i
)| ≥ θk and |R′(tr∗

i
+ t, pr∗

i
)| ≥ θk. Since each of the unspecified

servers either accepts a request that starts at tr∗
i
at pr∗

i
, or a request that starts at tr∗

i
− t

at pr∗
i
, or a request that starts at tr∗

i
+ t at pr∗

i
, we have that |R′(tr∗

i
− t, pr∗

i
)| − θk +

|R′(tr∗
i

+ t, pr∗
i
)| − θk + |R′(tr∗

i
, pr∗

i
)| − θk ≥ (1− 2θ)k, and (iii) holds. J

I Definition 16 (l-full and r-full, l-large and r-large, l-small and r-small). If r∗i is an uncommon
request such that the interval I = [tr∗

i
, tr∗

i
+ t) is insufficient, we say that the interval

[tr∗
i
− t, tr∗

i
) (resp. [tr∗

i
+ t, tr∗

i
+ 2t)) is l-full (resp. r-full) with respect to I if |R′(tr∗

i
−

t, pr∗
i
)| = k − |R′(tr∗

i
, pr∗

i
)| (resp. if |R′(tr∗

i
+ t, pr∗

i
)| = k − |R′(tr∗

i
, pr∗

i
)|); we say that the

interval [tr∗
i
− t, tr∗

i
) (resp. [tr∗

i
+ t, tr∗

i
+ 2t)) is l-large (resp. r-large) with respect to I if

2
5k < |R

′(tr∗
i
− t, pr∗

i
)| < k − |R′(tr∗

i
, pr∗

i
)| (resp. 2

5k < |R
′(tr∗

i
+ t, pr∗

i
)| < k − |R′(tr∗

i
, pr∗

i
)|);

and we say that the interval [tr∗
i
− t, tr∗

i
) (resp. [tr∗

i
+ t, tr∗

i
+ 2t)) is l-small (resp. r-small)

with respect to I if |R′(tr∗
i
− t, pr∗

i
)| ≤ 2

5k (resp. |R′(tr∗
i

+ t, pr∗
i
)| ≤ 2

5k).

Note that the properties l-full, l-large and l-small refer to the interval directly to the left
of an insufficient interval, and the properties r-full, r-large and r-small to the interval directly
to the right of an insufficient interval.

I Observation 17 (Uniqueness). If r∗i is uncommon and interval [tr∗
i
, tr∗

i
+ t) is insufficient,

then interval [tr∗
i
− t, tr∗

i
) is either l-full, l-large, or l-small, and interval [tr∗

i
+ t, tr∗

i
+ 2t) is

either r-full, r-large, or r-small.

By Lemma 15, we obtain:

I Observation 18. If r∗i is uncommon, interval [tr∗
i
, tr∗

i
+ t) is insufficient, and interval

[tr∗
i

+ t, tr∗
i

+ 2t) is r-small, then interval [tr∗
i
− t, tr∗

i
) is l-full. Similarly, if r∗i is uncommon,

interval [tr∗
i
, tr∗

i
+t) is insufficient, and interval [tr∗

i
−t, tr∗

i
) is l-small, then interval [tr∗

i
+t, tr∗

i
)

is r-full.
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I Lemma 19. For θ = 2
5k, if r

∗
i ∈ R∗ is uncommon, interval [tr∗

i
, tr∗

i
+ t) is insufficient

and |R′(tr∗
i
− t, pr∗

i
)| > 2

5k (i.e., interval [tr∗
i
− t, tr∗

i
) is l-large or l-full), then |R′(tr∗

i
− t)|+

|R′(tr∗
i
)| ≥ 3

5 (|R∗(tr∗
i
− t)|+ |R∗(tr∗

i
)|) and interval [tr∗

i
− t, tr∗

i
) is sufficient. Similarly, if r∗i

is uncommon, interval [tr∗
i
, tr∗

i
+ t) is insufficient and |R′(tr∗

i
+ t, pr∗

i
)| > 2

5k (i.e., interval
[tr∗

i
+ t, tr∗

i
+ 2t) is r-large or r-full), then |R′(tr∗

i
+ t)|+ |R′(tr∗

i
)| ≥ 3

5 (|R∗(tr∗
i

+ t)|+ |R∗(tr∗
i
)|

and interval [tr∗
i

+ t, tr∗
i

+ 2t) is sufficient.

Proof. Observe that |R′(tr∗
i
, pr∗

i
)| ≥ 2

5k because r∗i is uncommon. Since |R′(tr∗
i
−t, pr∗

i
)| ≥ 2

5k

(resp. |R′(tr∗
i

+ t, pr∗
i
)| ≥ 2

5k), each specified server of BGA accepts at least one request that
starts during period [tr∗

i
− t, tr∗

i
] (resp. [tr∗

i
, tr∗

i
+ t]). Suppose k0 servers of OPT each accept

two requests that start during period [tr∗
i
− t, tr∗

i
] (resp. [tr∗

i
, tr∗

i
+ t]). We distinguish two

cases.
Case 1: k0 ≥ 2

5k. By Observation 5 (with y = 2), at least 2
5k servers of BGA each accept

two requests that start during period [tr∗
i
− t, tr∗

i
] (resp. [tr∗

i
, tr∗

i
+ t]). Since each specified

server of BGA accepts at least one request that starts during period [tr∗
i
− t, tr∗

i
] (resp.

[tr∗
i
, tr∗

i
+t]), |R′(tr∗

i
−t)|+|R′(tr∗

i
)| ≥ 2· 25k+ 2

5k ≥
6
5k (resp. |R′(tr∗

i
+t)|+|R′(tr∗

i
)| ≥ 6

5k).
Since |R∗(tr∗

i
− t)|+ |R∗(tr∗

i
)| ≤ 2k and |R∗(tr∗

i
+ t)|+ |R∗(tr∗

i
)| ≤ 2k (each server of OPT

accepts at most two requests that start during period [tr∗
i
− t, tr∗

i
] or period [tr∗

i
+ t, tr∗

i
]),

we have
|R∗(tr∗

i
−t)|+|R∗(tr∗

i
)|

|R′(tr∗
i
−t)|+|R′(tr∗

i
)| ≤

2k
6
5k

= 5
3 (resp.

|R∗(tr∗
i

+t)|+|R∗(tr∗
i

)|
|R′(tr∗

i
+t)|+|R′(tr∗

i
)| ≤

5
3 ).

Case 2: k0 <
2
5k. According to the use of specified servers by BGA, at least k0 servers of

BGA each accept two requests that start during period [tr∗
i
− t, tr∗

i
] (resp. [tr∗

i
, tr∗

i
+ t]).

Since each specified server of BGA accepts at least one request that starts during period
[tr∗

i
− t, tr∗

i
] (resp. [tr∗

i
, tr∗

i
+ t]), |R′(tr∗

i
− t)|+ |R′(tr∗

i
)| ≥ 2k0 + 4

5k− k0 ≥ 4
5k + k0 (resp.

|R′(tr∗
i

+ t)|+ |R′(tr∗
i
)| ≥ 4

5k+ k0). Since |R∗(tr∗
i
− t)|+ |R∗(tr∗

i
)| ≤ 2k0 + k− k0 = k+ k0

and |R∗(tr∗
i

+ t)| + |R∗(tr∗
i
)| ≤ k + k0, we have

|R∗(tr∗
i
−t)|+|R∗(tr∗

i
)|

|R′(tr∗
i
−t)|+|R′(tr∗

i
)| ≤

k+k0
4
5k+k0

≤ 5
4 < 5

3

(resp.
|R∗(tr∗

i
+t)|+|R∗(tr∗

i
)|

|R′(tr∗
i

+t)|+|R′(tr∗
i

)| <
5
3 ).

Observe that |R′(tr∗
i
)| < 3

5 |R
∗(tr∗

i
)| because interval [tr∗

i
, tr∗

i
+ t) is insufficient. If

|R′(tr∗
i
− t, pr∗

i
)| > 2

5k, then |R
′(tr∗

i
− t)| + |R′(tr∗

i
)| ≥ 3

5 (|R∗(tr∗
i
− t)| + |R∗(tr∗

i
)|) implies

|R′(tr∗
i
− t)| ≥ 3

5 |R
∗(tr∗

i
− t)|. Similarly, if |R′(tr∗

i
+ t, pr∗

i
)| > 2

5k, then |R
′(tr∗

i
+ t)| ≥

3
5 |R
∗(tr∗

i
+ t)|. J

I Lemma 20. For θ = 2
5k, consider any r∗i , r∗j ∈ R∗ where tr∗

j
= tr∗

i
+ 2t, r∗i and r∗j are

uncommon, intervals [tr∗
i
, tr∗

i
+ t) and [tr∗

j
, tr∗

j
+ t) are insufficient, and interval [tr∗

i
+ t, tr∗

j
)

is r-full (|R′(tr∗
i

+ t, pr∗
i
)| = k−|R′(tr∗

i
, pr∗

i
)|). Then |R′(tr∗

i
)|+ |R′(tr∗

i
+ t)|+ |R′(tr∗

i
+ 2t)| ≥

3
5 (|R∗(tr∗

i
)|+ |R∗(tr∗

i
+ t)|+ |R∗(tr∗

i
+ 2t)|).

Proof. Observe that |R′(tr∗
i
, pr∗

i
)| ≥ 2

5k (as r∗i is uncommon), |R′(tr∗
i

+ t, pr∗
i
)| ≥ 2

5k (as
interval [tr∗

i
+ t, tr∗

i
) is r-full) and |R′(tr∗

j
, pr∗

j
)| ≥ 2

5k (as r∗j is uncommon). From this it
follows that at least 2

5k specified servers of BGA each at least accept two requests that start
during period [tr∗

i
, tr∗

j
]. Since |R′(tr∗

i
+ t, pr∗

i
)| = 1 − |R′(tr∗

i
, pr∗

i
)|, each server of BGA at

least accepts one request that starts during period [tr∗
i
, tr∗

j
]. Suppose k0 servers of OPT each

accept three requests that start during period [tr∗
i
, tr∗

j
]. We distinguish two cases.

Case 1: k0 ≥ 2
5k. By Observation 5 (with y = 3), at least 2

5k servers of BGA each accept
three requests that start during period [tr∗

i
, tr∗

j
]. Since each server of BGA accepts at

least one request that starts during period [tr∗
i
, tr∗

j
], |R′(tr∗

i
)|+ |R′(tr∗

i
+ t)|+ |R′(tr∗

i
+

2t)| ≥ 3 · 2
5k + 3

5k ≥
9
5k. Since |R∗(tr∗

i
)| + |R∗(tr∗

i
+ t)| + |R∗(tr∗

i
+ 2t)| ≤ 3k, we have

|R′(tr∗
i
)|+ |R′(tr∗

i
+ t)|+ |R′(tr∗

i
+ 2t)| ≥ 3

5 (|R∗(tr∗
i
)|+ |R∗(tr∗

i
+ t)|+ |R∗(tr∗

i
+ 2t)|).



K. Luo, T. Erlebach, and Y. Xu 64:11

Algorithm 3 Partition Rule (for kS2L-V).

Initialization: γ =
tr′
|R′|
−tr′1
t , j = 2, lj = 0, i = 0.

while i ≤ γ do
if interval i and interval i+ 1 are Suf, then
j = j + 1, i = i+ 1, lj = i;

else if interval i is Suf and l-small, and interval i+ 1 is InSuf, then
j = j + 1, i = i+ 1, lj = i;

else if interval i is Suf and not l-small, and interval i+ 1 is InSuf, then
j = j + 1, i = i+ 2, lj = i;

else if interval i is InSuf, interval i+ 1 is r-full and interval i+ 2 is InSuf, then
j = j + 1, i = i+ 3, lj = i;

else if interval i is InSuf, interval i+ 1 is r-full and interval i+ 2 is Suf, then
j = j + 1, i = i+ 2, lj = i;

γ′ = j.

Case 2: k0 <
2
5k. By Observation 5 (with y = 3), at least k0 servers of BGA each accept

three requests that start during period [tr∗
i
, tr∗

j
]. Since each server of BGA accepts at least

one request that starts during period [tr∗
i
, tr∗

j
] and at least 2

5k specified servers of BGA
each accept at least two requests that start during period [tr∗

i
, tr∗

j
], |R′(tr∗

i
)|+ |R′(tr∗

i
+

t)|+ |R′(tr∗
i

+ 2t)| ≥ 3k0 + 2 · ( 2
5k − k0) + 3

5k ≥
7
5k + k0. Since |R∗(tr∗

i
)|+ |R∗(tr∗

i
+ t)|+

|R∗(tr∗
i

+ 2t)| ≤ 3k0 + 2(k − k0) = 2k + k0, we have
|R∗(tr∗

i
)|+|R∗(tr∗

i
+t)|+|R∗(tr∗

i
+2t)|

|R′(tr∗
i

)|+|R′(tr∗
i

+t)|+|R′(tr∗
i

+2t)| ≤
2k+k0
7
5k+k0

≤ 10
7 < 5

3 . J

I Theorem 21. With θ = 2
5 , BGA is 5

3 -competitive for kS2L-V if k = 5ν (ν ∈ N).

Proof. We partition the time horizon [0,∞) into γ′ (γ′ ≤ γ + 3, γ =
tr′
|R′|
−tr′1
t ) periods that

can be analyzed independently. Let interval i (0 ≤ i ≤ γ) denote the interval [tr′1 + it, tr′1 +
(i+ 1)t). We partition the time horizon using the partition rule shown in Algorithm 3, where
we use InSuf as an abbreviation for insufficient and Suf as an abbreviation for sufficient. We
let period j (1 < j < γ′) denote [tr′1 + lj · t, tr′1 + lj+1 · t).

Observe that BGA and OPT do not accept any requests in the first period [0, tr′1) and
in the last period [tr′1 + lγ′t,∞), and that the length of each period j (1 < j < γ′), i.e.,
(lj+1 − lj)t, is either t, 2t or 3t. By the partition rule (Algorithm 3), we have the following
properties: if the length of period j is t, i.e., lj+1 − lj = 1, period j is sufficient; if the length
of period j is 2t, i.e., lj+1 − lj = 2, either interval i is l-large or l-full and interval i+ 1 is
insufficient, or interval i is insufficient and interval i+ 1 is r-full; if the length of period j is
3t, i.e., lj+1 − lj = 3, interval i and interval i+ 2 are insufficient and interval i+ 1 is r-full.

Let R∗(j) denote the set of requests accepted by OPT that start in period j, for 1 ≤ j ≤ γ′.
Let R′(j) denote the set of requests accepted by BGA that start in period j, for 1 ≤ j ≤ γ′.
By Observation 18, if interval i is insufficient and interval i − 1 is l-small, then interval
i+ 1 is r-full. By Lemma 15 and Lemma 19, if interval i is insufficient and interval i+ 1 is
insufficient, then interval i− 1 is l-full and interval i+ 2 is r-full. From this it follows that an
invariant of Algorithm 3 is that at the start of each iteration of the while-loop, either interval
i is sufficient, or interval i is insufficient and interval i+ 1 is r-full. Hence, the partition rule
(Algorithm 3) is complete, i.e., in each iteration of the while-loop one of the if-cases applies.
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We bound the competitive ratio of BGA by analyzing each period independently. As
R′ =

⋃
j R
′
(j) and R∗ =

⋃
j R
∗
(j), it is clear that for any α ≥ 1, PR∗/PR′ ≤ α follows if we

can show that PR∗(j)
/PR′(j)

≤ α for all j, 1 ≤ j ≤ γ′.
According to Lemma 19, when lj+1 − lj = 2, PR∗(j)

/PR′(j)
≤ 5

3 . According to Lemma 20,
when lj+1 − lj = 3, PR∗(j)

/PR′(j)
≤ 5

3 . By the partition rule, if lj+1 − lj = 1, then period j is
sufficient, i.e., |R′(j)| ≥

3
5 |R
∗
(j)|, and hence PR∗(j)

/PR′(j)
≤ 5

3 . Since PR∗(j)
= PR′(j)

= 0 when
j = 1 and j = γ′ (recall that by Observation 3, all requests accepted by BGA and OPT do
not start earlier than tr′1 and do not start later than tr′

|R′|
), the theorem follows. J

4 Conclusion

We have studied an on-line problem with k servers and two locations that is motivated by
applications such as car sharing and taxi dispatching. In particular, we have analyzed the
effects that different constraints on the booking time of requests have on the competitive ratio
that can be achieved. For all variants of booking time constraints we have given matching
lower and upper bounds on the competitive ratio. The upper bounds are all achieved by the
same balanced greedy algorithm (BGA) with different choices for the number of specified
servers (2θk). Interestingly, k = 3 servers suffice to achieve competitive ratio 1.5 (in the case
of kS2L-F with a ≥ t and kS2L-V with bl ≥ t and bu − bl < t), and k = 5 servers suffice to
achieve competitive ratio 5

3 (in the case of kS2L-V with bl ≥ t and bu − bl ≥ t), and a larger
number of servers does not lead to better competitive ratios.

In future work, it would be interesting to determine how the number of servers, the
number of locations, and the constraints on the booking time affect the competitive ratio for
the general car-sharing problem with k servers and m locations.
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Abstract
We study online secretary problems with returns in combinatorial packing domains with n candi-
dates that arrive sequentially over time in random order. The goal is to accept a feasible packing
of candidates of maximum total value. In the first variant, each candidate arrives exactly twice.
All 2n arrivals occur in random order. We propose a simple 0.5-competitive algorithm that can be
combined with arbitrary approximation algorithms for the packing domain, even when the total
value of candidates is a subadditive function. For bipartite matching, we obtain an algorithm
with competitive ratio at least 0.5721− o(1) for growing n, and an algorithm with ratio at least
0.5459 for all n ≥ 1. We extend all algorithms and ratios to k ≥ 2 arrivals per candidate.

In the second variant, there is a pool of undecided candidates. In each round, a random
candidate from the pool arrives. Upon arrival a candidate can be either decided (accept/reject)
or postponed (returned into the pool). We mainly focus on minimizing the expected number of
postponements when computing an optimal solution. An expected number of Θ(n log n) is always
sufficient. For matroids, we show that the expected number can be reduced to O(r log(n/r)),
where r ≤ n/2 is the minimum of the ranks of matroid and dual matroid. For bipartite matching,
we show a bound of O(r log n), where r is the size of the optimum matching. For general packing,
we show a lower bound of Ω(n log log n), even when the size of the optimum is r = Θ(log n).
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1 Introduction

The secretary problem is a classic approach to study optimal stopping problems: A sequence
of n candidates are arriving in uniform random order. Each candidate reveals its value only
upon arrival and must be decided (accept/reject) before seeing any further candidate(s).
Every decision is final – once a candidate gets accepted, the game is over. Moreover, no
rejected candidate can be accepted later on. The goal is to find the best candidate. An
optimal solution is to discard the first (roughly) n/e candidates. From the subsequent ones
we accept the first that is the best one among the ones seen so far. The probability to hire
the best candidate approaches 1/e ≈ 0.37 when n tends to infinity.
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The secretary problem and its variants have been popular since the 1960s. Significant
interest in computer science emerged about a decade ago due to new applications in e-
commerce and online advertising markets [2, 14]. For example, the classic secretary problem
can be used to model a seller that wants to give away a single item, buyers arrive sequentially
over time, and the goal is to assign the item to the buyer with highest value. More generally,
online budgeted matching problems arise when search queries arrive over time, and the goal
is to show the most profitable ads on the search result pages. The goal here is to design
algorithms with good competitive ratio.

More recently, progress has been made towards a general understanding of online packing
problems with random-order arrival, including matching [3, 20, 16], integer packing pro-
grams [22, 17], or independent set problems [13]. Most prominently, the matroid secretary
problem has attracted a large amount of interest [2, 6]. Here the elements of a matroid arrive
in uniform random order, and the goal is to construct an independent set with as high a
value as possible. A central open problem in the area is the matroid secretary conjecture
– is there a constant-competitive algorithm for every matroid in the random order model?
The conjecture has been proved for a variety of subclasses of matroids [6]. Currently, the
best-known algorithms for the general problem are 1/O(log log rank)-competitive [21, 8].

A strong assumption in the secretary problem is that every decision about a candidate
must be made immediately without seeing any of the future candidates. Instead, in many
natural admission scenarios candidates appear more than once, or they arrive and stay in
the system for some time, during which a decision can be made. An interesting variant that
captures this idea is the returning secretary problem [25]. Here each candidate is assigned
two random time points from a bounded time interval. The earlier becomes the arrival time,
the later the departure time. Hence, we can assume that each candidate arrives exactly twice,
and all 2n arrivals occur in random order. The decision about acceptance of a candidate can
be made between the first and the second arrival. More generally, for k ≥ 2 each candidate
chooses k random points, arrives at the earliest and leaves at the latest point. In this case,
there are kn arrivals in random order. Vardi [25] showed an optimal algorithm for the
returning secretary problem with k = 2, for which the probability of accepting the best
candidate is about 0.768. For matroid secretary with k = 2 arrivals, a competitive ratio of
0.5, and for matching secretary a ratio 0.5625− o(1) (with asymptotics in n) were shown.

In this paper, we significantly broaden and extend the results on the returning secretary
problem towards general packing domains. We provide a simple algorithm that can be
combined with arbitrary α-approximation algorithms and yields competitive ratios of 0.5 · α
for all subadditive packing problems, including matroids, matching, knapsack, independent
set, etc. Moreover, we improve the guarantees for matching secretary and provide bounds
that hold in expectation for all n. We extend all our bounds to arbitrary k ≥ 2. In addition,
we study a complementary variant in which the decision maker is allowed to postpone the
decision about a candidate. In this case, the goal is to minimize the number of postponements
to guarantee an optimal or near-optimal solution in the end. These problems can be cast
as a set of novel coupon collector problems, and we provide guarantees and trade-offs for
matroid, matching and knapsack postponement.

Results and Contribution
In the secretary problem with k arrivals in Section 3, each candidiate arrives exactly k times.
We propose a simple approach for general subadditive packing problems with returns, which
can be combined with arbitrary α-approximation algorithms. It yields a competitive ratio of
0.5 · α for k = 2, and α · (1− 2−(k−1)) for k ≥ 2.
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For additive bipartite matching, we obtain a new algorithm that provides an improved
competitive ratio of 0.5721− o(1) for k = 2 with asymptotics in n. Moreover, we derive an
algorithm with ratio 0.5459 for k = 2 for every n. Both algorithms rely on exact solution of
partial matching problems. The algorithms can be combined with faster α-approximations
for partial matchings, by spending at most an additional factor α in the competitive ratio.
For the previous algorithm in [25], the algorithm description and proof of the ratio in the full
version is slightly ambiguous.1 Our algorithm clarifies and slightly improves upon this by
including the twice-arrived and rejected candidates during a sample phase when computing
partial matchings. Their removal yields free nodes in the offline partition for matching in
later rounds.

In the postponing secretary problem in Section 4, there is a pool of n undecided candidates.
In each round, a random candidate from the pool arrives. Upon arrival a candidate can be
either decided (accept/reject) or postponed and returned into the pool. We strive to minimize
the expected number of postponements to compute an optimal or near-optimal solution.
Postponing everyone until all candidates are observed at least once is the coupon collector
problem. Hence, with an expected number of O(n log n) postponements we reduce the problem
to offline optimization. For general subadditive packing and an α-approximation algorithm,
a simple trade-off shows an (1− ε) · α-approximation using O(n ln 1/ε) postponements.

Based on a property we term exclusion-monotonicity, we show significantly improved
results when the desired solution has small cardinality. A bound of O(r log n) for the expected
number of postponements holds when obtaining optimal solutions of size at most r in additive
matroids and bipartite matching, and greedy 2-approximations for knapsack. For matroids,
we can further improve the bound to O(r′ ln n/r′), where r′ = min(r, n−r). This upper bound
is at most n, and the worst-case is attained for uniform matroids. We fully characterize the
expected number of postponements of every candidate in uniform matroids when the optimal
solution is to be obtained. Finally, we conclude the paper with a lower bound that in general
we might need Ω(n log log n) postponements even with an optimal solution of cardinality
O(log n). Due to space constraints, all missing proofs are deferred to the full version of this
paper.

Further Related Work

The literature on secretary online variants of packing problems and online stochastic opti-
mization has grown significantly over the last decade. We restrict the review to the most
directly related results. For a survey of classic variants of the secretary problem, see [10].

The bipartite secretary matching problem was first studied in the context of transversal
matroids [3], where a decision about accepting an arriving vertex into the matching needs
to be taken directly, but matching edges can be decided in the end. Later works required
that the edges must also be decided upon arrival [20]. The best algorithm for both variants
obtains a competitive ratio of 1/e [16]. Most work in computer science has been devoted to
the matroid secretary problem. Currently, the best algorithms obtain a competitive ratio
1/O(log log rank) [21, 8]. It is an open problem if a constant competitive ratio can be shown.
For a survey of work on classes of matroids and further developments see [6].

1 For example, the pseudo-code on page 12 does not become the algorithm for a single secretary when
there is a single node in the offline partition. One would always accept the best secretary that arrived
once in the sample phase. A better one arriving in later rounds is always rejected inside the for-loop.
Also, the proof of Claim 5.6 seems to require both sides of the bipartite graph must have size n.
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While above results are all for maximizing additive objective functions, recent work has
started to consider submodular ones. For cardinality and matching constraints, constant-
competitive algorithms exist for submodular secretary variants [18]. For matroids, there is a
general technique to extend algorithms for additive objectives to submodular ones, which
preserves constant competitive ratios [9].

Beyond matroids and matching, there are constant-competitive algorithms for knapsack
secretary [1]. Prominent graph classes in networking applications allow good secretary
algorithms for independent set [13]. The techniques for bipartite matching have been
extended to secretary variants of combinatorial auctions and integer packing programs [22, 17].
Moreover, there are 1/O(log n)-competitive algorithms even in a general packing domain [23].

Additional model variants that have found interest are, for example, local secretary [5]
(several decision makers try to simultaneously hire candidates based on local feedback),
temp secretary [11] (candidates are hired only for a bounded period of time), or ordinal
secretary [15, 24] (information available to the decision maker is only the total order of the
candidates but not their numerical values).

Secretary postponement can be seen as a combinatorial extension of the coupon collector
problem, a classic problem in applied probability. The elementary problem and its analysis
are standard and discussed in many textbooks. The problem has many applications, and
there is a plethora of variants that have been studied (see, e.g., [4, 12, 19]). To the best of
our knowledge, however, the results for combinatorial packing problems derived in this paper
have not been obtained in the literature before.

2 Packing Problems

We consider a packing problem, in which there is a set N of n candidates, and a set S ⊆ 2N

of feasible solutions. S is downward-closed, i.e. S ∈ S and T ⊆ S implies T ∈ S. For
most parts, we assume that the objective function w : 2N → R≥0 is additive, i.e., there
is a non-negative value w : N → R≥0 for each candidate, and w(S) =

∑
e∈S w(e) for all

S ⊆ N . More generally, we will sometimes assume the objective function w is monotone and
subadditive. If a packing problem has an α-approximation algorithm, then for any N ′ ⊆ N
the algorithm guarantees an approximation ratio α ≤ 1 for maximizing w over S ∩ 2N ′ .

In a secretary variant, we know the number n upfront, and the candidates arrive in
random order. Suppose a set Ni of candidates has arrived in rounds 1, . . . , i and candidate
e ∈ N \Ni arrives in round i+ 1. Then e reveals all new feasible solutions with previously
arrived candidates (S ∩ 2Ni∪{e}) \ (S ∩ 2Ni) and their corresponding weight. In the additive
case, this simply reduces to revealing the solutions and the weight w(e).

We consider several specific variants. In matroid secretary, the set of candidates and the
set of feasible solutions form a matroid. Upon arrival, a candidate reveals the new feasible
solutions and their weights. In the additive variant with known matroid, all candidates and
feasible solutions are known upfront. Candidates only reveal their weight upon arrival.

In (bipartite) matching secretary, there is a bipartite undirected graph (N ∪ V,E). The
nodes in the offline partition V are present upfront. The candidates in the online partition
arrive sequentially. The feasible solutions are the matchings in the arrived subgraph. Upon
arrival, a candidate reveals its incident edges and weights of the new feasible solutions. In
the additive version, the arriving candidate reveals a weight per edge, and the weight w(M)
of a matching M is the sum of edge weights. Upon accepting a candidate, the algorithm also
has to decide which matching edge to include into M (since otherwise it is matroid secretary
with transversal matroid).
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For (additive) knapsack secretary, an arriving candidate e reveals its weight w(e) and a
size b(e) ≥ 0. The size B of the knapsack is known upfront. The feasible solutions are all
subsets of candidates such that their total size does not exceed B.

3 Secretaries with k Arrivals

Suppose that each candidate arrives exactly k times, and all these kn arrivals are presented
in uniformly random order. Consider any subadditive secretary packing problem and the
following simple algorithm. In the beginning, flip kn fair coins. The number of heads is the
length of an initial sample phase. During the sample phase reject all candidates. Consider
the set T of candidates that has appeared at least once and at most k− 1 times in the sample
phase. Apply the α-approximation algorithm to the instance based on S ∩ 2T to choose a
feasible solution. Accept each candidate in the solution by the time of its k-th arrival.

I Proposition 1. For any subadditive packing problem with an α-approximation algorithm,
the secretary problem with k arrivals allows an algorithm with approximation ratio

β = α ·
(

1− 1
2k−1

)
.

Proof. Due to random order of arrival, we can simulate generation of T by attaching each of
the kn coins to one arrival of one candidate. The arrival is in the sample phase if and only if
the coin turns up heads. Then, the probability is 1/2k for each of the following events: (1) a
given candidate never appears in the sample phase, and (2) a given candidate appears k times
in the sample phase. T is distributed as if we would include each candidate independently
with probability 1−

( 1
2
)k−1.

Once T is created, we apply the α-approximation algorithm to the instance based on S∩2T

to choose a feasible solution. Note that every candidate in T will appear at least once after
the sample phase and therefore is available for acceptance by our algorithm. Each element
in T is sampled independently from N . Hence, as a simple consequence of subadditivity
(see, e.g., [7, Proposition 2]), the value of the best feasible solution S∗T ⊆ T has value
w(S∗T ) ≥ w(T ∩ S∗) ≥

(
1−

( 1
2
)k−1

)
·w(S∗). By applying the α-approximation algorithm to

T , we obtain a feasible solution S of value w(S) ≥ α ·w(S∗T ) ≥ α ·
(

1−
( 1

2
)k−1

)
·w(S∗). J

For secretary matching, we improve upon this by using a slightly more elaborate approach.
The algorithm again samples and rejects a number of candidates that is determined by kn
independent coin flips with a suitable probability p < 1 (determined below). Hence, the
length of the sample phase is distributed according to Binom(kn, p). At the end of the
sample phase it computes a matching Ms using an α-approximation algorithm for all known
candidates and offline vertices V . It accepts into M the edges incident to candidates with
at most k − 1 arrivals in the sample. Each of them can be accepted upon their last arrival
after the sample phase. The algorithm drops the edges from Ms incident to candidates that
arrived k times in the sample. Let Vs ⊆ V be the unmatched offline nodes.

In the second phase, the algorithm follows ideas from [16, 25]. Upon arrival of a new
candidate e, the algorithm computes an α-approximate matching Me among Vs and all
candidates with first arrival after the sample phase. If Me contains an edge (e, v) incident to
e, this edge is added into M if v is still unmatched. Otherwise the edge is discarded.

Since the algorithm can be combined with arbitrary α-approximation algorithms for
matching, it also applies to, e.g., the k-arrival variant of ordinal secretary matching [15].
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I Theorem 2. For secretary matching with 2 arrivals and any α-approximation algorithm for
offline matching with α ≤ 1, there is an algorithm with approximation ratio of 0.5721 ·α−o(1).
For k arrivals, the ratio becomes at least α ·

(
1− 1

2k−1 + 1
22k − 1

22k·(2k−1)2

)
− o(1).

Proof. By similar arguments as above, for each arrival of a secretary we can assume to flip
a coin independently with probability p < 1 that determines if the arrival happens in the
sample phase. Hence, each candidate has probability pk to arrive exactly k times in the
sample phase and (1 − p)k to never arrive in the sample phase. Let M be the matching
computed by the algorithm, M1 the matching obtained right after the sample phase and M2
the matching composed in the second phase. It holds E [w(M)] = E [w(M1)] + E [w(M2)].

For M1 we interpret the random coin flips as a two-step process. First, for each candidate
in N we flip a coin independently with probability (1−(1−p)k) whether the candidate arrives
at least once in the sample phase. Then, we flip another independent coin with probability
pk/(1− (1− p)k) whether the candidate arrives k times in the sample phase. The first set
of coin flips determines the matching Ms that evolves when we apply the α-approximation
algorithm right after the sample phase. Since every candidate is included independently
we have E [w(Ms)] ≥ (1 − (1 − p)k) · α · w(M∗). Afterwards, the second set of coin flips
determines the candidates that are dropped from Ms. They are determined independently, so
E [w(M1)] =

(
1− pk

1−(1−p)k

)
·α·E [w(Ms)]. In total, E [w(M1)] ≥ (1−(1−p)k−pk)·α·w(M∗).

We denote by X the random number of candidates that arrived at least once during the
sample phase. In the acceptance phase of the algorithm, we consider all n−X candidates
that have not arrived during the sample phase. Standard arguments [16, 25, 18] show that
each of these newly arriving candidates contributes in expectation a value of (α · (w(S∗))/n.
For the `-th first arrival of a new candidate, the probability that the edge (e, v) suggested by
the algorithm survives is the probability that the offline node v ∈ V was not matched earlier,
which is lower bounded by

pk

1− (1− p)k
·

`−1∏
r=X

r − 1
r

= pk

1− (1− p)k
· X − 1
`− 1 .

Hence, the expected value for M2 is at least

E [w(M2) | X] ≥ α · w(M∗) ·
n∑

`=X

pk

1− (1− p)k
· X − 1
`− 1 ·

1
n

≥ α · w(M∗) · pk

1− (1− p)k
· X − 1

n
· ln n

X
.

For constants p and k, standard Hoeffding bounds imply that X = n(1− (1− p)k)± o(n)
with probability at least 1− 1/nc for suitable constant c (see, e.g., [25]). Hence,

E [w(M)] /w(M∗) ≥ α

(
(1− (1− p)k − pk) + pk · ln

(
1

1− (1− p)k

))
− o(1) , (1)

where the asymptotics are in n. Numerical optimization shows that for k = 2 and p ≈ 0.49085,
the ratio becomes at least 0.57212 · α− o(1). See Table 1 for more numerical results.

Intuitively, the algorithm benefits from the unseen candidates after the sample phase and
has a tendency to reduce the sample size. On the other hand, the candidates that come k
times within the sample phase create the set of free nodes in V available for matching to later
candidates. Overall, this leads to a small reduction in the sample size. For larger k this effect
vanishes since the number of candidates that appear never or k times during the sample
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Table 1 Near-optimal parameters p for the sample phase and resulting bounds for the competitive
ratio (assuming α = 1) derived by numerical optimization of function (1).

k 2 3 4 5 6 7

p 0.49085 0.498901 0.499826 0.499968 0.499994 0.499999

ratio 0.57212 0.766694 0.879033 0.938491 0.968995 0.984435

phase both become exponentially small. The optimal sampling parameter quickly approaches
p → 0.5. This maximizes the profit from candidates that are available for optimization
immediately after the end of the sample phase. Thereby, the improvement over the simple
procedure in Proposition 1 becomes smaller.

More formally, we use ln(1 + x) ≥ x− x2 in (1) and obtain

E [w(M)] /w(M∗) ≥ α
(

(1− (1− p)k − pk) + pk · (1− p)k

1− (1− p)k
− pk(1− p)2k

(1− (1− p)k)2

)
− o(1) .

Note that ln(1 + x) ≤ x, so we deteriorate the expression only by the last negative term. For
growing k, the optimal value of p approaches 0.5 very quickly, and we bound

E [w(M)] /w(M∗) ≥ α
((

1− 1
2k
− 1

2k

)
+

1
2k · 1

2k

1− 1
2k

−
1

2k · 1
22k

(1− 1
2k )2

)
− o(1)

= α

(
1− 1

2k−1 + 1
22k
− 1

22k · (22k − 2k+1 + 1)

)
− o(1) . J

In contrast to [25], our algorithm computes an optimal (or α-approximate) matching
after the sampling phase for the set of all candidates that arrived during that phase (instead
of the ones that arrived only once). All candidates that arrived k times are dropped. This
creates free nodes of V to be matched to subsequently arriving candidates. The ratios depend
asymptotically on n, since the guarantee in the second phase relies on concentration bounds
for X, the number of candidates that arrive at least once in the sampling phase.

Alternatively, one can replace the second phase by recursively applying the sampling
phase. More formally, after the sampling phase is done and matching M1 is added to M , we
apply the same sampling phase to Vs and the candidates that have not arrived so far. In this
way, we can iterate the sampling step and re-apply it to the unseen candidates and left-over
nodes of the offline partition. The resulting ratios do not require concentration bounds.

I Corollary 3. For secretary matching with 2 arrivals and any α-approximation algorithm
for offline matching with α ≤ 1, there is an algorithm with approximation ratio of 0.5459 · α
for every n ≥ 1. For k arrivals, the ratio becomes at least (1− 1

2k−1 + 1
22k − 2k−1

22k·(22k−2k−1) ) ·α
for every n ≥ 1.

4 Postponing Secretaries

Now suppose that for each arriving candidate the algorithm can decide (accept/reject) or
postpone it. The goal is to compute an optimal or near-optimal solution with a small expected
number of postponements. Consider any algorithm for the postponement problem. We
cluster the execution into rounds. Round i are the arrivals from and including the i-th unique
arrival (i.e., the i-th time a candidate arrives for the first time) and before the (i + 1)-th
unique arrival. Clearly, there are always n − 1 rounds in the execution of any algorithm.
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If we simply postpone every candidate until we have seen all n candidates, we have full
information to make accept/reject decisions for all candidates. Then the problem reduces to
the classic coupon collector problem, and the expected number of returns is Θ(n log n). Our
goal is to examine how we can improve upon this baseline.

We first consider a general result for subadditive packing. To reduce the expected number
of returns to Θ(n), it is sufficient to sacrifice a constant factor in the approximation ratio.
We obtain the following FPTAS-style trade-off between postponements and solution quality.

I Proposition 4. For any2 ε>2/n and any subadditive packing problem with α-approximation
algorithm, there is an α · (1 − ε)-approximation algorithm with an expected number of
postponements of E [R] < n · ln(2/ε).

Proof. We postpone every candidate until round dn(1− ε)e. Then, we run the α-approxima-
tion algorithm on the subset of arrived candidates. By the same arguments as in Proposition 1,
this yields an α(1− ε)-approximation.

Let Ri be the number of postponements in round i. Clearly, by linearity of expectation,
E [R] =

∑n−1
i=1 E

[
Ri
]
. In each round, the number of postponements is the number of rounds

until we see the next unique arrival, and, hence, distributed according to a negative binomial
distribution. Therefore, their expected number is

E [R] ≤
dn(1−ε)e∑

i=1

(
n

n− i
− 1
)

= n ·
dn(1−ε)e∑

i=1

1
n− i

− dn(1− ε)e

≤ n · (ln(n)− ln(nε− 1)− 1 + ε) ≤ n · (− ln(ε− 1/n)) < n ln
(

2
ε

)
. J

4.1 Exclusion-Monotone Algorithms

We obtain significantly better guarantees for packing problems and algorithms with a
monotonicity property. Consider a packing problem and any algorithm A. We denote by
A(T ) the solution computed by A when applied to T ⊆ N .

I Definition 5. A sequence of subsets (Ni)i∈N with Ni ⊆ N is called inclusion-monotone if
Ni ⊆ Nj for all i ≤ j. An algorithm A is called r-exclusion-monotone if for every inclusion
monotone sequence there is a sequence of subsets (Di)i∈N with A(Ni) ⊆ Di ⊆ Ni, |Di| ≤ r
and Ni \Di ⊆ Nj \Dj for all i ≤ j.

Intuitively, to determine its solution for any subset of available elements Ni, an r-exclusion-
monotone algorithm A can restrict attention to a set Di of at most r elements. Moreover,
A is such that any element e ∈ Ni \Di that is discarded must never be reconsidered when
more elements become available.

This property is exhibited in a variety of important packing domains. For these problems
we can obtain more fine-grained, significantly improved guarantees based on solution size.

2 For ε ≤ 2/n, the bound remains Θ(n log n) by simply observing all applicants and computing an
α-approximation.
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I Proposition 6. The following algorithms are r-exclusion-monotone.
Optimal algorithm Opt for matroids. r is the rank of the matroid.
Optimal algorithm Opt for bipartite matching. r is the maximum cardinality of any
matching3.
Greedy 0.5-approximation algorithm for knapsack. Here r = |S|+ 1 with S a feasible
packing of the knapsack with maximum cardinality.

Now consider candidates arriving in random order with postponements. Obviously, the set
of arrived candidates forms an inclusion-monotone sequence. In our algorithm Maintain-A,
we apply the r-exclusion-monotone algorithm A in the beginning of round i to the set Ni

of arrived candidates. Maintain-A immediately rejects any candidate as soon as it is not
contained in Di. It keeps postponing the candidates in Di. Finally, Maintain-A accepts the
candidates in A(N) after the last round. Note that for the following result, Maintain-A does
not have to know n, r or any properties of the unseen candidates. The following guarantee
significantly improves over the simple bound given in Proposition 4 when the solution is
drawn from a small subset of elements.

I Theorem 7. Consider a packing problem with an r-exclusion-monotone α-approximation
algorithm A. The corresponding algorithm Maintain-A computes an α-approximation with
an expected number of postponements E [R] = Θ(r lnn/r′), where r′ = min(r, n− r).

Proof. Consider the execution of the algorithm in rounds as discussed above. In each round,
let Ui denote the number of candidates that are still undecided (i.e., either have not arrived
or have been left undecided in earlier rounds). In round i we have seen exactly i candidates.
Thus, given Ui undecided candidates, the expected number of postponements Ri in round i
is given by a negative binomial distribution and amounts to

E
[
Ri | Ui

]
=
(

Ui

n− i
− 1
)

.

To bound Ui we note that, trivially, Ui ≤ n. Moreover, the number of candidates that have
arrived and are undecided is Ui − (n− i). Since Maintain-A postpones only candidates in
the set Di, we have that Ui − (n− i) ≤ r. This implies Ui ≤ min(n, n− i+ r) and yields

E [R] ≤
r−1∑
i=1

(
n

n− i
− 1
)

+
n−1∑
i=r

(
n− i+ r

n− i
− 1
)

= n
r−1∑
i=1

1
n− i

− r + r
n−1∑
i=r

1
n− i

≤ n
(

1
n− r + 1 + ln

(
n− 1

n− r + 1

))
+ r

(
1
r
− 1 + ln

(
n− 1
r

))
=
(

2 + r − 1
n− r + 1 − r

)
+ n ln

(
n− 1

n− r + 1

)
+ r ln

(
n− 1
r

)
.

Clearly, the first term in the bracket is at most 1. For r ≥ n− r + 1, the second term is
larger than the third term and amounts to O(r ln n/r′). For r ≤ n− r + 1, we upper bound

n ln
(

n− 1
n− r + 1

)
= n ln

(
1 + r − 2

n− r + 1

)
≤ (r − 2) + (r − 2)(r − 1)

n− r + 1 < 2r − 4 .

3 Recall that vertices in one partition arrive and get postponed, along with their incident edges. If single
edges arrive and must be postponed individually, the property might not hold (c.f. Example 10 below).
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Figure 1 Number of postponements of MaintainOPT in a uniform matroid with n = 10 and
r = 3 (left), n = 100 and r = 30 (middle), and n = 1000 and r = 300 (right). The x-axis is the
index of the candidate in the sorted order. The y-axis shows the average number of postponements
over 5000 runs. The O(1)-terms in Theorem 9 turn out to be small. They appear to be maximal for
candidates r and r + 1, but seem to vanish for growing n.

Thus, the asymptotics are dominated by the third term, and E [R] = O(r ln n/r′). A similar
calculation using elementary lower bounds shows that E [R] = Ω(r ln n/r′). J

4.2 Matroids
We adjust MaintainOPT for known matroids, i.e. when the structure of the matroid is
known upfront (only the weights of the elements are revealed). In this case, we can assume
r ≤ n/2, since for r ≥ n/2 we can consider finding a minimum-weight basis in the dual
matroid. We adjust algorithm MaintainOPT in the following way. Instead of postponing
all elements in the current optimum until the end, we can accept some elements earlier. In
particular, we can directly accept an element e as soon as there is no unseen element that
can force e to leave the optimum solution. This allows to significantly improve the number
of returns to below n for any rank of the matroid.

I Theorem 8. For the class of all matroids with rank r, the expected number of postponements
R in MaintainOPT with known matroid is maximized for the uniform matroid. It is bounded
by E [R] = Θ(r′ ln n/r′), where r′ = min(r, n− r). For every matroid it holds that E [R] < n.

Note that for any postponement problem, a simple calculation shows that the expected
number of postponements of any single candidate can always be upper bounded by lnn+1. In
contrast, the previous theorem shows that, on average, we need less than one postponement
per candidate to compute even an optimal solution in matroids. However, they can be quite
unbalanced over the candidates. We fully characterize the expected number of postponements
in the uniform matroid with r ≤ n/2. The worst candidate in the optimal solution (i.e., the
r-th best candidate) asymptotically gets the largest expected number of postponements. The
expected number is decreasing quickly for better and worse candidates.

I Theorem 9. For MaintainOPT with known uniform matroid of rank r ≤ n/2, the
expected number of postponements Rj of the j-th best candidate is bounded by

E [Rj ] ≤


ln
(

n− j
r − j + 1

)
+O(1) , for j = 1, . . . , r,

ln
(
j − 1
j − r

)
+O(1) , for j = r + 1, . . . , n.

Based on our experiments in Figure 1 the O(1) terms are small and even seem to vanish
for large n. The logarithmic function captures the number of postponements rather precisely.
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For matroids, the number of postponements of MaintainOPT with known matroid
is always at most n. Instead, for bipartite matching the number of postponements of
MaintainOPT must grow to Θ(n log n) when r becomes large, even if the graph is known.

I Example 10. Consider a simple cycle of length 2n and number the vertices consecutively
around the cycle. Suppose the r = n even vertices form the offline partition V , and the n
odd vertices arrive in random order. The edge weights can be arbitrary, but an adversary
chooses them to be in [1, 1 + ε]. Then, unless we see all vertices, we cannot decide which of
the two perfect matchings will be the optimal one. MaintainOPT needs to see all vertices
to be able to decide the matching edges. We recover the coupon collector problem.

The example also applies when the edges of the bipartite graph are candidates that arrive
in random order (rather than the vertices). In order to guarantee that an optimal solution
is returned with probability 1 in the end, all 2n candidate edges need to remain undecided
until the last unique arrival. This shows, in particular, that the bound of O(r′ ln n/r′) for
MaintainOPT for known matroids cannot be extended to known intersections of matroids.

4.3 Exclusion-Monotonicity and Solution Size
For r-exclusion-monotone algorithms A the algorithm Maintain-A needs at most O(r lnn)
postponements. One might hope that for any r-exclusion-monotone algorithm the parameter
r is tied closely to the solution size of the algorithm. Then a large number of returns in
Maintain-A would be caused by A returning a solution with many elements. This, however,
is not the case – even if we are guaranteed that the size of the optimal solution is Θ(log n),
an expected number of Ω(n log log n) postponements for MaintainOPT can be required.

I Theorem 11. There is a class of instances of the independent set problem with every
optimal solution of size |I∗| = 3 lnn, for which the expected number of postponements R in
MaintainOPT is E [R] = Ω(n ln lnn).
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Abstract
A c-color choice dictionary of size n ∈ IN is a fundamental data structure in the development
of space-efficient algorithms that stores the colors of n elements and that supports operations to
get and change the color of an element as well as an operation choice that returns an arbitrary
element of that color. For an integer f > 0 and a constant c = 2f , we present a word-RAM
algorithm for a c-color choice dictionary of size n that supports all operations above in constant
time and uses only nf + 1 bits, which is optimal if all operations have to run in o(n/w) time
where w is the word size.

In addition, we extend our choice dictionary by an operation union without using more space.
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1 Introduction

Data is already an important factor for many companies and is likely to become even more
decisive in the future. The most successful business enterprises today are often those that
have figured out, better than their competitors, how to collect and use data. Therefore, it is
no surprise that the number of companies that store petabytes of data in warehouses grows
quickly. E.g., Walmart stored over 40 petabytes of data already in 2017.

In order to provide better support for structured access, data is often stored in highly
redundant forms. In a data warehouse, a data item is usually considered as a point in a
multidimensional space. A typical operation is to intersect a data cloud with a hyperplane
obtained by fixing a single attribute to a specific value – the so-called slicing operation.
If space is of no concern, it is easy to support slicing by storing for each possible such
hyperplane the data points that it contains. But space matters, and we need dictionaries –
data structures for storing and retrieving information – with low redundancy. More generally,
we need algorithms that are fast but also treat memory as a scarce resource. Therefore,
such algorithms (see, e.g., [1, 2, 4, 5, 6, 7, 8, 11, 12, 13]) become increasingly relevant. An
implementation of several space-efficient algorithms can be found on GitHub [14].
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In this paper, we focus on the improvement of a (c-color) choice dictionary, which is a
fundamental data structure that is used in many of the algorithms listed above. A choice
dictionary [3, 11] manages the membership for n elements. The main characteristic of the
dictionary is that it can retrieve an arbitrary member if one exists. If the dictionary can
manage more than two states (member or not), it is called a c-color choice dictionary.

I Definition 1. A c-color choice dictionary is a data type that can be initialized with an
arbitrary integer n ∈ IN . Subsequently, it stores for each element e ∈ U = {1, . . . , n} a color
q ∈ Q = [0, c− 1], that is initially q = 0 and supports the following standard operations:

setColorq(e) Sets the color of element e to q.
color(e) Returns the color q ∈ Q of element e.
choiceq Returns an (arbitrary) element of U that has the color q.

Another useful feature is an iterator that allows iterating over members of the dictionary
and that can easily be used to support the slicing operation.

iterator.initq Returns an iterator for an iteration over the q-colored elements.
iterator.hasNextq Checks if the iterator can return a next element colored with color q.

iterator.nextq Returns the next element of the iterator over the q-colored elements.

If we talk about an iteratorq operation, then we mean the three operations itera-
tor.initq, iterator.hasNextq and iterator.nextq. The iterator needs Θ(log n) bits.
We call n the size of the choice dictionary. We assume that n is given to the data structure
with each call of an operation. In this paper, we extend our choice dictionary by another
operation unionq,q′ that recolors all q and q′-colored elements with one color.

Our model of computation is the word RAM, where we assume to have the standard
operations to read, write, and modify a word of size w = Ω(max{log n, log c}) bits in
constant time. The first c-color choice dictionary was defined by Hagerup and Kammer [11,
Theorem 7.6]. Their choice dictionary supports initialization in constant time, all other
operations in O(t) time for t ∈ IN and requires n+ O(n( tw )t + log n) bits of memory. For
the special case of a 2-color choice dictionary, Hagerup [9] presented a choice dictionary that
runs with n+ 1 bits of memory, (i.e., only one bit of redundancy) and that supports color,
setColorq, choice1, and iterator1 in constant time. He also showed that n + 1 bits
are necessary unless the operations are allowed to run in Ω(n/w) time. He raised the open
question how to support choice0 or iterate0 and how to support several colors.

We answer the questions by introducing a c-color choice dictionary with c being a power of
2 that also uses only n+ 1 bits of memory, and additionally supports choice and iterator
for all colors in O(c3 log c) time, which is constant for many applications since they use only a
constant number of colors, i.e., c = O(1). Since choiceq can be easily implemented by using
iteratorq, we describe only the realization of the iterator operation. We extend our
choice dictionary with a union operation that, given two colors q and q′, recolors all elements
of one color to the other such that all operations run in amortized O(1) time for c = O(1).

The outline of the paper is as follows. In the next section, we describe known techniques
and sketch their usage in the paper. In Section 3, we describe an extension of Hagerup’s
2-color choice dictionary [9] to support choice and iterator for both colors. Afterwards,
we extend some word RAM tricks for parallel computations within one word described by
Hagerup and Kammer [11] for our usage with several colors. In Section 5, we generalize our
choice dictionary to 2f colors. We finally extend our choice dictionary by a union operation.
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Figure 1 D shows the external view of the array and D represent the internal data structure.
The variables i and j represent block numbers, α, β, γ and δ represent user defined words. The
barrier b separates the array of blocks into a left and right area.

2 Previous Techniques

In this section we summarize the ideas introduced by Katoh and Goto [15] and Hagerup [9]
to implement our c-color choice dictionary.

2.1 Initializable Array
Katoh and Goto use a two level approach to support constant time initialization of an
array consisting of n bits. They divided the array into O(n/w) blocks of O(w) bits each,
number the blocks from left to right with 1, 2, 3, . . ., and distinguish between two block
states. A block can be either initialized (with user defined values) or uninitialized (containing
arbitrary values). The initialization of one block is done in O(1) time by setting its binary
representation to zero. To implement the initialized array of n bits they determine if a block
is initialized or uninitialized as follows – also sketched in Figure 1.

Partition the blocks using a barrier into a left area and a right area. All blocks in the left
area are either initialized or have a so-called chain with an initialized block of the right area.
A chain between an uninitialized block of the left area and an initialized block of the right
area is created by writing the block number of each other in their first word. Because the
initialized block contains values, but its first word is used to create the chain, they relocate
the first word by storing it inside the second word of the chained uninitialized block. All
blocks in the right area are uninitialized if they have no chain with a block of the left area.

To read a word of the array, determine to which block the word belongs to. Then
determine if the block is inside the left or right area. If it is in the left area and has no chain,
it is initialized and can be read and returned without further computations. If it has a chain,
the block is uninitialized and zero can be returned. A block in the right area is uninitialized
if it has no chain, so in this case a zero can be returned directly. If it has a chain, then the
second word of the block can be read and returned directly, but for reading the first word,
the chain must be followed to the block inside the left area and its second word must be
returned.

Initially, the barrier is set before the first block and thus, the left area is empty and the
array consists of only uninitialized blocks. If a block B of the left area is written, we must
take care that no unintended chains are built, i.e., if the value in the first word points to an
unchained block in the right area, then initialize that block with zeros. If a block B of the
right area is written, it must be chained with an uninitialized block of the left area. Since we
use the chain and unchain operations in the next sections, we describe them in detail.

The chain operation takes a block B of the left area and a block B′ of the right area,
relocates the first word of B′ into the last word of B and writes the block number of B′
in the first word of B and the block number of B in the first word of B′. The unchain
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operation takes a block B and returns an unchained block that needs to be chained. If B is
not chained, initialize B with zeros and return it. If B is chained and in the left area, follow
the chain pointer to a block B′ of the right area, relocate the second word of B back to the
first word of B′ and initialize the block B with zeros. Finally, return B′ to the caller. If B is
in right area and B′ chained to B, call this operation again and return unchain(B′).

We say that a block B is connected to the left area exactly if it is either inside the left
area and unchained or inside the right area, but chained. Otherwise, it is called disconnected.

The connect(B) operation works as follows. We assume that B is not connected.
Increase the barrier by one. This increases the left area and moves a block B∗ from the right
area into the left area. We differ two cases. In a first case B is in the right area before the
increase of the barrier. If B = B∗, then B is now connected, initialize all words of B with
zeros and we are done. Otherwise, B∗ is a candidate to create a chain with B. However, it
can be already chained. No matter if it is chained or not, call B′ := unchain(B∗); note that
the operation always returns an unchained block, possibly B∗. Chain it with B by calling
chain(B′, B). In a second case B is in the left area. Then by definition it must have a chain
with a block B′. To connect the block to the left area, the chain must be removed from
B, but B′ still requires a chain. Thus, call B′ = unchain(B), B′′ := unchain(B∗) and
chain(B′′, B′).

Writing blocks will cause blocks to connect to the left area and the left area to expand to
the end of the array until every block belongs to it. Hagerup [9] introduced a technique how
to disconnect blocks, i.e, moving the barrier from right to left such that blocks can become
uninitialized again. This technique was also shown in the second version of [15].

The disconnect(B) operation works exactly the other way around. We assume that B
is connected. Decrease the barrier by one. This decreases the left area and moves a block
B∗ from the left area into the right area. If B is in the right area, call B′ := unchain(B),
B′′ := unchain(B∗) and chain(B′, B′′). If B is in the left area, then it needs a chain to be
disconnected, call B′ = unchain(B∗) and chain(B,B′).

To use the approach above we need to store the barrier. That requires O(w) extra bits of
memory. To reduce the extra space needed to only 1 bit Katoh and Goto store the barrier
inside the array as long not all blocks are initialized. If the array is fully initialized, i.e., all
blocks are initialized, there is no need to chain blocks and the array is a normal array that
can be read directly. One possible way to store the barrier in the array is to increase the
block size to at least 3 words. Then the data of two chained blocks can be relocated such
that the last word of every block inside the right area is always unused. (Either a block of
the right area is uninitialized, i.e., all its word are unused, or is chained and therefore has one
unused word left.) Since the left area expand to the right until the array is fully initialized,
store the barrier inside the last unused word. Now an extra bit is used and set to 1 if the
array is fully initialized and is a normal array and set to 0 if the array still has a right area
of a barrier and therefore has to operate with blocks and chains.

2.2 Choice Dictionary with CHOICE1 and ITERATE1

Hagerup implemented choice1 and iterate1 on an input consisting of n bits by using the
techniques of Katoh and Goto. Choice1 runs on O(w) bits in constant time using word RAM
operations. Let us call a block non-empty if it has at least one element (one bit) that is 1.
Hagerup showed that all elements of uninitialized blocks of Katoh and Goto’s initialized array
can be seen as zero bits and also that by uninitializing blocks that contain only zeros, the left
area contains only non-empty blocks or have a chain with a non-empty block. To support
choice1 one can pick an arbitrary block connected to the left area and to support iterate1
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one can move from the first block until the barrier and output the elements of the blocks
connected to the left area. To output the elements of a block, again word RAM tricks can be
used. Very recently, Hagerup [10] published a c-color choice dictionary for all c ∈ IN .

3 2-Color Choice Dictionary with CHOICE0 and ITERATE0

Hagerup supports choice1 and iterate1 by managing the left area such that it only contains
blocks that either have the color 1 or have a chain to a block with color 1. To support
choice and iterate on several colors the general idea is to manage such an area for each
color, including color 0. In this section we assume to have only two colors {0, 1}, but since
we want to support several colors later, we first give some definitions for an arbitrary number
of colors before focusing on two colors.

We call a block that contains at least an element of color q a q-block, a block that has no
such element a q-free block, a block that contains only the color q a q-full block and a block
that contains all colors a full block. Moreover, we define two blocks as q-chained if their qth
word contains the block number of each other and both blocks are separated by the barrier
of color q. Keep in mind for the following algorithms that, if two blocks have a q-chain, the
block in the left area of color q must be a q-free block. Moreover, each q-block is connected
to the left area of color q, and each q-free block is disconnected from this area.

To support several areas we change the data structure as follows: We store a barrier bq
for each color q ∈ {0, . . . , c − 1} and initially let them point before the first block of the
array, except for the barrier of color 0. The barrier of color 0 points after the last block of
the array. The reason for this is to support constant-time initialization even if we have an
uninitialized memory. We define that a block B is uninitialized and is therefore defined as a
block containing only the color 0 if B fulfills the following condition. B is in the right area for
all colors q ∈ {1, . . . , c− 1} and in the left area for color 0 (i.e., max{b1, . . . , bc−1} < B ≤ b0)
as well as B has no q-chain for any color q. With this definition, initially all blocks are
uninitialized and thus are 0-full blocks.

For the rest of the section, we focus on two colors. We assume now to have a block size
of 3 words. Based on the ideas of Section 2.1, we next describe our invariant used to store
the data in the blocks, which is also sketched in Figure 2. A block that has no chains simply
stores its data unchanged – possibly, it is not initialized. A chained block uses its qth word
(q ∈ {0, 1}) for a chain pointer of color q. Whenever a word of a chained block B in the right
area is used for any q-chain to a block B′ of the left area, then the user-data originally stored
in the qth word of B is stored in the last word of the block B′. Assume now that the q-chain
points to a block of the right area. Then we know from the chain that B is a (1 − q)-full
block, and we do not need to store any user-data of the block.

It remains to show that no block has two chains to the right area since, otherwise, both
chains wants to store information in the last word of the block. Since we have only two
colors, a block with a q-chain to the right must be a (1− q)-full block. Since no block can be
0-full and 1-full simultaneous, no block can have two chains to the right.

Iterating over elements of a color q can be done by iterating over the left area of color q
and by determining the block type of each block B. Either B is a q-block or it is a q-free
block chained with a q-block. Therefore, by using word RAM operations, we can output all
elements of a color q in linear time.

We now describe how to change colors of the dictionary such that the properties described
above are maintained. If we change the color of an element of a block B to a color q, we have
to determine the block type first and then check if changing the color leads to a change of
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b0b1

0 B β B 1 α B′ B∗ γ
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1-chain 0-chain

B∗ (0-full) B′ (1-full) B (full)
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0 B′ 1 B∗ B 0 B′ 0 0

0 . . . 0 1 . . .1 0 0 0

D:
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0-chain1-chain

B∗ (0-full) B′ (1-full) B (0-full)

Figure 2 This figure shows the different situations of the internal data structure and external
view that can occur with two barriers. The entries B, B′, and B∗ in the array D are block numbers.

the block type. Writing into a block changes its type only if we overwrite the last appearance
of a color q′ or introduce a new color q.

Similar to Section 2 we use the operations connect and disconnect to change the
block type, but redefine it that it works on a specific color q: chain and unchain consider
chains and barrier (thus, areas and block types) with respect to color q. Whenever a color
q is written to a q-free block B, we connect the block B to the left area of q. If the last
appearance of a color q′ has been overwritten after writing a color q, we disconnect the block
from the left area of color q′.

Note that the chains and barriers of each color can be defined independently, and they
do not interfere with the chains and barriers of other colors. Moreover, a block can change
its type only if a color was introduced to it or has disappeared from it. After correcting the
block type, write the color by modifying one word according to the new block type.

4 Word RAM Tricks

As long as we want to support only two colors, each element can be stored with only one bit.
If the elements can have c = 2f colors for some integer f > 1, we have to use f bits to store
the color, which we combine into a field. Thus, a word can store w/f colors, each in one
field, and f is the size of the field. For simplicity, we assume that w is a multiple of f . If
this is not the case, we may have to split the f bits of a color over two words, which does
not change the asymptotic running time.

In the next section we want to modify several elements ai in parallel that are located
in fields part of one word in constant time. We next show some operations to realize the
modifications.

The following lemma computes a bit mask consisting of 1 in the fields that have a value
smaller than or equal to k. Let m and f be given integers with 1 ≤ m, f < 2w and suppose
that a sequence A = (a1, . . . , am) with ai ∈ {0, . . . , 2f − 1} for all i ∈ {1, . . . ,m} is given
in form of the (mf)-bit binary representation of the integer x =

∑m−1
i=0 2ifai+1. Then the

following holds:

I Lemma 2 ([11, Lemma 3.2c]). Given a parameter k ∈ {0, . . . , 2f − 1} in addition to x we
can compute the integer z =

∑m−1
i=0 2ifbi+1 in O(1 +mf/w) time, where bi = 1 if k ≥ ai and

bi = 0 otherwise for i = 1, . . . ,m.
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We next use the lemma above to recolor all elements in a word of one color into another
color quickly.
I Lemma 3. Given two colors q and q′ in addition to x, we can compute the integer
z =

∑m−1
i=0 2ifbi+1, where bi = ai if ai 6= q and bi = q′ otherwise for i = 1, . . . ,m.

Proof. Apply the previous lemma twice on x, first with parameter k = q, then with k=q− 1,
and subtract the second result from the first. We so get a vector v where the fields have a
1 exactly if the corresponding field in x has a q. If q′ < q, then multiply v with q − q′ and
subtract the result from x. Otherwise, q′ > q and multiply v with q′ − q and add the result
to x. J

By applying the last lemma to all words in a block, we also get the following.
I Corollary 4. Given the binary representation of a block consisting of the words x1, . . . , xj
(j ∈ IN) and two colors q and q′, we can recolor all q-colored elements in the block with color
q′ in O(j) time.

In the next section, a block has to store pointers for chains even if only one color is
missing in the block. This means that we need a word to store the pointer, but the elements
of every word in the block can have several colors. As already described in [11], the idea is
to “pack” the information in the words of the block, which is possible since a color is missing.
We again start with an auxiliary lemma.
I Lemma 5 ([11, Part of the proof of Lemma 7.1]). If all elements in x are different to a
color q, then we can pack c subsequent elements into cf − 1 bits (instead of cf bits). We so
get a packed word, i.e., a word where every (cf)th bit is not used to store the colors of the
elements and therefore can be used to store other information. Both transformations (pack
and unpack) run in O(c) time, but the unpack operation needs to know the color q.

We now show how to store extra words within a block if one color is missing in the block.
In the next section, the words are used to store pointers for chains.
I Lemma 6. Let B be a block consisting of kc log2 c words and whose elements have a color
in {1, . . . , c}. If all elements in the block have a color different to q ∈ {1, . . . , c}, then one
can pack B in kc2 log2 c time such that we can additionally store kw bits within the block.
We combine the kw bits to k extra words. In a packed block, c log2 c time suffices to read
and write an extra word, and given the color q, to unpack a word of the block. Thus, we can
unpack the whole block in kc2 log2 c time.
Proof. To pack B, run the algorithm from Lemma 5 on each word of the block. Note that
the field size is f = log2 c. We so get kw bits that are not used to store the colors of the
elements. Similarly, if q is given, we can unpack the words.

If B is packed, every cf bit is free. To read and write a word x that is stored within the
free bits, we first need to compute a vector v of w/(cf) fields of size cf with a 1 in all fields.
We get v by using Lemma 2 with parameter k = 2cf − 1 since all elements are ≤ k.

To read an extra word, first run bitwise-and operation with v to zero the bits between
the free bits. Then combine the free bits part of several words with bitwise-or operations
and bit-shifts. We so combine the free bits of several words into one word, which then can
be returned as an extra word. See also Figure 3.

To write an extra word, we first apply v suitable shifted on the extra word to split the
given word into cf words such that each field is either 0 or 1. After clearing the free bits
in the block using again the bitwise-and operation with v, we can use the bitwise-or to
distribute the bits of the extra word to c log2 c words. J
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. . .

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

cf words

one extra word

Figure 3 The construction of one extra word from bits distributed over c log2 c words.

5 c-Color Choice Dictionary with CHOICEq and ITERATEq

In Section 3, we focused on two colors. Now we increase the number of colors to c = 2f ,
for an integer f > 1. We keep the concept of relocating words to create space for pointers.
Again we exploit the fact that a block of the left area needs a chain if the block misses
a color q ∈ {0, . . . , c − 1}. However, we need another idea to create space to store chain
pointers because we can not determine the original content of a block by knowing the missing
color. (With more than two colors, a q-free block is not automatically q′-full.)

The idea is to pack a block that misses a color by using Lemma 6 such that a q-free block
has extra space to store information. With a block size of (2c+ 1)c log2 c words, a packed
block contains all its color information and has 2c+ 1 extra words to store extra information.
For the time being, we assume in the following that a packed block contains the 2c+ 1 extra
words at the beginning and then its packed color information. We use the first c words to
store up to c chain pointers, the next c words to store relocated words of a chained full block,
and the last extra word to store the missed color that was used to pack the block. The rest
of the block contains the packed color information.

We are not able to pack a full block since it has no redundancy. A full block located
in the left area of all colors does not need to be chained. However, a full block B in the
right area of a color q requires a chain with a block B′ that misses the color q. Thus, B′ is
packed and has 2c+ 1 extra words. We use the qth word of B′ to store a chain pointer to B,
relocate the qth word of B into the (c+ q)th word of B′ and store the chain pointer to B′ in
the qth word of B. In contrast to the previous section, we only relocate words of a full block
of the right area that requires a q-chain for some color q. If a block B̃ is a q-block in the
right area of a color q and misses some other color q′ 6= q, B̃ is packed and can store all its
colors and all its pointers.

To read a block we need to check if the block is packed (i.e., not full) and needs to be
unpacked first. We know that a block B is full exactly if, for each color q, either block B
is in the left area of the color q and has no q-chain, or in the right area of color q for that
B has a q-chain. To make this check we need to read chain pointers first. For each color
q ∈ {1, . . . , c− 1}, we neither know if (1) a block is packed nor if (2) the qth word of a block
stores colors or (3) a q-chain pointer. To find it out we have to check all q-chains. This is
possible, since in all three cases (1) – (3), the qth chain is stored in the qth word. Thus, we
only have to check if the qth word points to a block that points with its qth word back. Then
B is q-chained. After checking it for all colors, we know if we are in case (1), (2) or (3).

The rest of the read operation is simple. Either we can read the words in the block
directly or we have to unpack a word of a block, i.e., we first read the (2c+ 1)th extra word
of the block where the color that was used to pack the block is located and use it to unpack
the word such that the colors can be read.
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Before we focus on the write operation, we start to discuss two problems and how we
deal with them. We first describe how to handle the uninitialized area between the barrier of
color 0 and the maximum barrier of all other colors, and second, how to avoid unintended
chains. The uninitialized area may contain arbitrary values and only chained blocks are
initialized in this area. These arbitrary values can be read as a pointer to a block that stores
color information and these color information can be interpreted as a back pointer. In this
situation the two blocks can have a chain that is unintended, and thus their block type
changes without intention. In general, an unintended chain may be created whenever a block
of the left area has been written with color information at a position where we also store
pointers for chains. The solution of the problem extends the ideas from Katoh and Goto.
We destroy unintended chains by checking if the word, where a chain pointer for a color q
may be stored, creates a chain with another block. If it does, we destroy such a chain by
writing n as an invalid chain pointer into the qth word of the unintended chained block in
the uninitialized area. We also store n inside every of the first c extra words of a packed
block that are not used to create chains. Since we use block numbers to create chains, the
value n can not point to a block and thus can never create a chain. From now on we ignore
the problems with uninitialized blocks and unintended chains.

We next describe the color change of an element e in a block B to color q. Recall from
Section 3 that whenever we introduce a color q to a q-free block we connect the block to
the left area of color q and whenever a color q′ disappears from a q′-block we disconnect the
block from the left area of color q′.

To color e in B with q, first determine if B is located in the left area of color q, the block
type of B, and if B is packed. Then, run the corresponding case.

B is in the left area:
B is a q-free block: Unpack the block B. Read the color q′ of element e, overwrite
it with color q and connect B with the left area of color q. Moreover, if B misses the
color q′, disconnect B from the left area of color q′. We now differ two cases.
(1) The block becomes a full block. Note that B, as a full block, can not have chains
to the right area. For all q̃-chains to the left, with q̃ ∈ {0, . . . , c− 1}, relocate the q̃th
word of the unpacked block B to the (c+ q̃)th word of the q̃-chained block.
(2) B misses some color q∗, possibly q∗ = q′. Pack the block using color q∗.
B is a q-block, but not full: Unpack the block B. Read the color q′ of element e
and overwrite it with color q. If B contains no more q′-color elements, disconnect B
from the left area of color q′. Finally, use the color that was previously used to pack
the block and pack it again.
B is a full: Thus, B is already unpacked. Read the color q′ of element e and overwrite
it with color q. If B misses no color, then we are done. Otherwise, let q′ be the missing
color. Disconnect B from the left area of color q′. We next want to pack B. Before,
we have to relocate back B’s first c words for all chains of B (all chains are to the left),
i.e, for all q̃-chains, with q̃ ∈ {0, . . . , c− 1}, move the (c+ q̃)th word in the q̃-chained
block of B to q̃th word in B. Then, pack B using color q′.

B is in the right area:
B is a q-free block: Unpack block B. Read the color q′ of element e and overwrite
it with color q. Connect B to the left area of color q and if B misses the color q′,
disconnect B from the left area of color q′. We differ two cases.
(1) B misses a color q∗, possibly q∗ = q′. Pack the block using color q∗.
(2) Otherwise, B becomes a full block. Relocate B’s first c words into the chained
blocks, i.e, for all q̃-chains, with q̃ ∈ {0, . . . , c− 1} the q̃th word in B to the (c+ q̃)th
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word of the block q̃-chained with B.
B is a q-block, but not full: Unpack block B. Read the color q′ of element e and
overwrite it with color q. If color q′ is not present in B anymore, disconnect it from
the left area of color q′, and use the color that was previously used to pack the block.
B is a full and unpacked: Read the color q′ of element e and overwrite it with color
q. If B misses color q′, we want to pack B again. Thus, copy the (c + q̃)th word of
every q̃-chained block B̃ into the q̃th word of B, for q̃ ∈ {0, . . . , c− 1}. Pack B using
color q′ and disconnect B from the left area of color q′.

Since we want to use Lemma 6, the extra words of a packed block are not a sequence of
consecutive bits. They are distributed inside the block over every (c log2 c)th bit. Therefore,
we can not store the pointers in a full block simply at the beginning and relocate one
continuous word. Instead, we store our pointers in the same distributed way and the
relocation saves the distributed bits.

To relocate the bits, we can simply use the read operation of Lemma 6 to get the
distributed bits in compact words, which then can be relocated. Analogously, to read and
write the pointer of a chain, we can use the read and write operation, respectively, of the
lemma. Note that the read and write operation also works even if the words are not packed.

We now describe how we store the barriers in the dictionary as long as not every block
contains all colors such that the dictionary requires only 1 extra bit. We increase the block
size to (3c + 1)c log2 c words, and increase so the number of extra words in a block by c,
which allows us to store the c barriers of all colors within one pair of chained blocks. Since
all the barriers moves to the right, the rightmost block is always packed or has a chain to a
packed block unless all blocks have all colors. Then, we do not require to store the barriers.
The only information that we have to store is a one bit that is set to 1 exactly if every block
contains all colors and the whole dictionary is a normal array that can be read by accessing
the data directly.

The size n of our 2f -color choice dictionary is necessary to decide if the barriers reached
the end of the array or not. As long as we have chains, we can store the size n in the first
word and move the original content from there into some extra word. However, if all blocks
are full – i.e., we have maximal entropy – we need fn bits to store the colors. Thus, if we
reintroduce the barriers again (a color disappears from a block), we need to know the size n
from the user. So, we assume that the user provides the size whenever an operation is called.

I Theorem 7. For integers f ≥ 1 and c = 2f , there is a c-color choice dictionary that
occupies nf + 1 bits of memory and supports all standard operations in O(c3 log c) time.

6 Operation UNION

The union operation takes two colors q and q′, iterates over all elements of one of these
colors and recolors them with the other color. After recoloring the elements, it returns the
color that was chosen. It is not user controlled which color is chosen as the new color.

To implement union(q, q′) in amortized constant time we select the color that appears
in fewer (or the same number of) blocks, say q. We know this by comparing the size of the
left areas of q and q′, i.e, by comparing the barriers of the two colors. If the extra bit of the
choice dictionary is 1, the left areas are of equal size. Then, iterate over all blocks that are
connected to the left area of q and recolor all q in q′ in that block in constant time per word
(Corollary 4).
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I Theorem 8. For integers f ≥ 1 and c = 2f , there is a c-color choice dictionary that
occupies nf + 1 bits of memory and supports setColorq for q ∈ {0, . . . , c− 1} in O(c4 log c)
amortized time, all remaining standard operations in O(c3 log c) amortized time as well as a
union operation in amortized constant time.

Proof. To define a potential function, let kq be number of blocks that have a q-colored element,
and let σ : {0, . . . , c − 1} → {0, . . . , c − 1} be a permutation so that kσ(0) ≥ · · · ≥ kσ(c−1).
We now take Φ = C

∑c−1
q=0 kσ(q)q as the potential function for our amortized running time

analysis where C > 0 is some integer defined below. In other words, each block with a
q-colored element gives us a contribution of Cσ−1(q) to our potential function. Note that
a necessary change of σ can be always done in such a way that Φ does not change: Before
kσ(q) ≥ kσ(q′) becomes wrong due to an increase of kσ(q′) or a decrease of kσ(q) for some
colors q, q′ ∈ {0, . . . , c− 1} with σ(q) = σ(q′) + 1, we have kσ(q) = kσ(q′). Consequently, we
can interchange the values of σ(q) and σ(q′) without a change of Φ.

It is easy to see that the operations color and iterator do not change Φ. Let us now
consider a call of operation union on colors q and q′. Assume that kq ≥ kq′ and thus σ(q) <
σ(q′). union iterates through all blocks with color q′ and recolors the q′-colored elements in
the blocks. This can be done in O(kq′c3 log c) = Ckq′ total time by choosing C = C ′c3 log c
for some constant C ′ > 0. Since σ(q) < σ(q′), Φ shrinks with each recoloring of all q′-colored
elements in a block by C(σ(q′)− σ(q)) ≥ C since kq′ decreases by one and kq increases by at
most one. In total, Φ shrinks by at least Ckq′ so that the amortized costs are 0.

Finally, note that the operation setColorq increases Φ by at most C(c− 1) so that its
amortized running time is O(Cc+ c3 log c) = O(c4 log c). J

We finally show that our amortized analysis of the last proof is tight, i.e., if we want to
support an amortized constant-time union operation, the amortized time to color an element
increases by a factor Ω(c) to pay for the recoloring that are done by the union operations.
We show this by constructing an instance where at least half of the elements are moved c− 2
times, i.e, the union operation recolors the elements c− 2 times. It suffices to consider only
one fixed instance since we can easily scale the instance size by any factor z; simply replace
each word below by z copies having the same colors.

Let us assume that every word has one ball in each color that occurs in the word, and let
us assign the balls to c − 1 columns of a table as follows. A ball having color i is part of
column i for each i ∈ {1, . . . , c− 1}. Initially, we have only zero words. Those words have
no balls at all. We next construct an instance by filling first column 1, then column 2, etc.
and show by induction the following property: the fraction of balls in column i ≥ 1 that are
moved by i− 1 steps is at least 1− i/2c. Moreover, let ki be the number of balls in the ith
column of our instance constructed.

The induction clearly holds for i = 1 by adding one ball to the 1st column (color one
element with color 1) and we can take k1 = 1. We next show how to obtain the property for
the ith column (i > 1) and assume that the property holds for i− 1. Add ki−1 + 1 new balls
to the ith column (i.e., color one element in ki−1 + 1 many zero words with color i) – these
balls are moved 0 steps in the table. Use induction and build column i− 1 with ki−1 balls
such that the induction property holds for that column, move the balls to the ith column
(run a union operation on i− 1 and i) and repeat the steps in this sentence x− 1 times. We
so get a fraction of (x− 1/x)(1− (i− 1)/2c) balls that are moved i− 1 steps, i.e., the balls
have visited columns 1, . . . , i. Clearly, ki = xki−1 + 1. By choosing x large enough we get
(x− 1/x)(1− (i− 1)/2c) ≥ (1− i/2c) since (1− (i− 1)/2c) ≥ (1− i/2c) and (x− 1/x)→ 1
for x→∞. This shows the property for column i.
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Abstract
We study the problem of approximate shortest path queries in chordal graphs and give a n log n+
o(n log n) bit data structure to answer the approximate distance query to within an additive
constant of 1 in O(1) time.

We study the problem of succinctly storing a static chordal graph to answer adjacency, degree,
neighbourhood and shortest path queries. Let G be a chordal graph with n vertices. We design
a data structure using the information theoretic minimal n2/4 + o(n2) bits of space to support
the queries:

whether two vertices u, v are adjacent in time f(n) for any f(n) ∈ ω(1).
the degree of a vertex in O(1) time.
the vertices adjacent to u in (f(n))2 time per neighbour
the length of the shortest path from u to v in O(nf(n)) time
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1 Introduction

Chordal graphs have a rich history of study. There were encountered in the study of Gaussian
elimination of sparse matrices [15]. Chordal graphs have many equivalent characterizations
including the absence of chordless cycles of length greater than 3, the existence of an perfect
elimination order[16], the existence of a clique tree [4], and as the intersection graph of
subtrees of a tree [18]. Tarjan et. al [16] gave a linear O(n+m) algorithm for recognizing
chordal graphs with n vertices and m edges by computing a perfect elimination order. The
structure of chordal graphs allows the computation of many otherwise NP-Hard problems
to be solved in polynomial time. These include finding the largest clique or computing
the chromatic number. Chordal graphs have found applications in many fields, including
compiler construction [14] and databases [6].

We consider the problem of creating a data structure for a chordal graph through the
lens of succinct data structures. The goal of succinct data structures is to store a set X of
objects in the information theoretic minimal log(|X|) + o(log(|X|)) bits of space while still
being able to efficiently support the relevant queries. Jacobson [10] is the first to consider
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space efficient data structures in this sense and he gave representations of bit vectors, trees
and planar graphs. Further work in this area gave space minimal representations of dynamic
trees [11], arbitrary graphs [8] and partial k-trees [7].

1.1 Related Work
Graphs are a fundamental combinatorical structure and it is no surprise that there are a lot
of work in constructing space efficient data structure for different classes of graphs. Many
classes of graphs have been considered, such as arbitrary graphs [8], partial k-trees [7], planar
graphs [10] and separable graphs [2]. For chordal graphs, there has been work in the dynamic
setting, focusing mainly on whether certain edge insertions/deletions preserve chordality
[1, 9]. Banerjee et. al showed that insertions/deletions can be done in O(deg(u) + deg(v))
time where (u, v) is the edge that is inserted/deleted. They also show a lower bound that
O(log n) amortized time is required.

Singh et. al [17] gave an O(n log n) bit data structure for the problem of approximate
distance queries in chordal graphs. Their result is a 2d+ 8 approximation, that is, the result
of the query is anywhere between d the actual distance and 2d+ 8.

1.2 Our Results
Our representation of a chordal graph is based on the clique tree [4]. We store a slight
variation of the clique tree in the information theoretic minimal n2/4 + o(n2) bits of space.
We then augment this structure to support degree in O(1), adjacency and neighbourhood
in O(f(n)), O(f(n)2) respectively for any f ∈ ω(1)) and distance queries in O(nf(n)). We
then consider the problem of approximating the distance query and identify the necessary
portions of the previous data structure required to answer this approximation to obtain a
n log n+ o(n log n) bit data structure with O(1) query time. The approximation is within 1
of the actual distance.

Finally we explore the close relationship between the distance query and the set intersection
oracle problem, and show that heuristically, it is difficult to construct a data structure in the
exact distance scenario.

2 Preliminaries

2.1 Graph Terminology
We will assume basic terminology from graph theory such as vertex, edge, tree, undirected
graph, etc. We will denote an undirected graph as G = (V,E) with vertex set V and edge
set E. We will denote an edge between vertices u, v by (u, v). The number of vertices as
n = |V | and the number of edges as m = |E|. As we will be dealing with multiple graph-like
structures at the same time, we will use V to denote the vertex set when the underlying
graph is clear and V (G) to denote the vertex set of graph G. To avoid confusion in discussing
mapping a graph onto a tree, we will refer to vertices of trees as nodes. A clique of G is a
complete subgraph of G. Unless otherwise stated, our log are base 2.

2.2 Chordal Graph Structure
A graph G is chordal if it does not contain any Ck, a cycle on k vertices as an induced
subgraph for any k ≥ 4. We will assume that all our chordal graphs are connected, or if
not we could treat each component separately. The well known result of Rose et al. [16]
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Figure 1 A chordal graph and a PEO of it labelled. A clique tree and the tree decomposition.

states that this is equivalent to the existence of a perfect elimination order (PEO) of the
vertices of G. A PEO of a chordal graph G is an ordering v1, v2, . . . , vn of V such that the
predecessor set pred(vi) = {vj ; j < i, (vi, vj) ∈ E} is a clique for every vertex vi ∈ V . For
simplicity, we will denote vi simply as i. Furthermore, one can construct a clique tree of G
using the maximal cliques of G. Here every node of the tree is assigned a maximal clique
and the tree has the property that for every pair of cliques K,K ′, K ∩K ′ is contained in
every clique along the path between the nodes corresponding to K,K ′. This is equivalent to
for every vertex v ∈ V , the set of cliques v belongs to forms a contiguous subtree.

We will use a variant of the clique tree that has n nodes constructed from the PEO,
which we will denote as a tree decomposition of G. Let T be a tree and X : V (T )→ 2V a
function that assigns to each node of T a subset of the vertices of G such that:

For every v ∈ V , the set of nodes X−1(v) is non-empty and is contiguous. We will call
this the contiguous subtree property.
For every pair of vertices u, v ∈ V , (u, v) is an edge if and only if there is a tree node Tw
such that u, v ∈ X(Tw).

Note clique trees satisfies these properties.
Define B(i) = pred(i) ∪ {i} which we will call the bag of i. Define the functions

s(i) = min(pred(i)) and l(i) = max(pred(i)). It is easily seen that pred(i) ⊆ B(l(i)) since
l(i) ∈ pred(i) so it is adjacent to every element of pred(i).

We will construct a tree decomposition T from a PEO of G inductively. The initial node
is T1 with X(T1) = {1} = pred(1) ∪ {1} = B(1). Given a tree decomposition of 1, . . . , i,
construct a tree decomposition of 1, . . . , i+ 1 by creating a node Ti+1 with X(Ti+1) = B(i)
and connect Ti+1 to Tl(i+1).

I Lemma 1. This construction is a tree decomposition of G.

Proof. The second condition is easily seen as for every edge (i, j) with i < j is in bag
X(Tj) = B(j). Conversely, every bag is a clique. For the first condition, each Ti ∈ X−1(i),
so it is non-empty. Furthermore, since pred(i) ⊆ B(l(i)), it follows by induction that the set
X−1(i) is contiguous for every i. J
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We will abuse notation and refer to both the tree node Ti and the vertex i as i when the
context is clear. We will naturally refer to l(i) as the parent of i and denote the tree
decomposition constructed by Tl. We will build a second tree (not a tree decomposition) by
setting the parent of i as s(i) and call this tree Ts.

2.3 Chordal Graph Enumeration
Wormald [19] showed that the number of connected labelled chordal graphs on n vertices
is asymptotic to

∑
r

(
n
r

)
2r(n−r) >

(
n
n/2
)
2n2/4. To bound the number of unlabelled chordal

graphs, we take into account the number of automorphisms and obtain a lower bound of(
n
n/2
)
2n2/4/n! unlabelled chordal graphs. Thus the information theoretic lower bound gives

log(
(
n
n/2
)
2n2/4/n!) = n2/4−Θ(n log n) bits.

2.4 Succinct Structures Used
In this paper we will use both succinct trees and succinct bit vectors. While there have been
work on further compressing bit vectors to zeroth order entropy [13], we only require the
most basic form of bit vectors.

I Lemma 2. There is a succinct data structure for a bit vector B of length n using n+ o(n)
bits of space that supports following operations in O(1) time. [10]

B[i]: returns the bit at position i of B.
rank(i) =

∑i
k=1 B[i] the number of 1s at or before position i

select(i) = j such that B[j] = 1 and rank(j) = i, is the position of the i-th 1.

I Lemma 3. There is a succinct data structure for a tree T on n nodes using 2n+ o(n) bits
of space that supports the following operations in O(1) time. [11]

parent, k-th child
depth(i), the depth of node i
level-ancestor(i,d), the ancestor of node i at depth d in the tree
LCA(i,j), the lowest common ancestor of nodes i, j

3 Representation, Adjacency and Neighbourhood

We will store the chordal graph as follows: for each vertex i, store a bit vector W (i) of
length |B(l(i))| indicating which subset pred(i) is of B(l(i)) equipped with rank and select
operations. We also store 1 bit indicating whether this bit vector is the all 1s vector, and if
so, store the length in log |B(l(i))| bits instead. We also store the trees Tl, Ts. We identify
each vertex with the corresponding node in these trees. Unless otherwise stated, the tree
relations such as parent, are in Tl.

I Theorem 4. This representation uses at most n2/4 + o(n2) bits.

Proof. The main fact we will use is that pred(i) ⊆ B(l(i)) so that |B(i)| ≤ |B(l(i))| + 1
and equality occurs only when pred(i) = B(l(i)). In this equality case, we need only
log |B(l(i))| ≤ log n bits.

Consider the index i such that bag size |B(i)| = b is maximized. Since at each vertex,
the bag size can only increase by 1 from its parent l(i), there must be at least b indices
such that the above inequality is an equality, and we only need log n bits each in these
indices, for a total of b log n ≤ n log n bits. In all other vertices j, we need to store at most
|B(l(j))| ≤ |B(l(i))| = b bits (+o(b) for the rank and select structures). Thus in total we
need to store (b+ o(b))(n− b) + n log n+O(n) ≤ n2/4 + o(n2) bits. J
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1 *

1,2 1

1,2,3 11

1,2,3,4 111

3,4,5 0011 4,6 0001

5,7 001 6,8 01

6,8,9 11

Figure 2 The label on each node is the bit vector W (i). The ones that are all 1s are identified
and only their lengths are stored, but for clarity, they are drawn out explicitly.

3.1 Adjacency Queries

This structure is enough to answer the following queries in O(n) time:
Given a vertex i and an integer k, find the k-th smallest predecessor of i. We will call
this decode(i, k).
Given two vertices j < i, determine whether (i, j) ∈ E or equivalently, j ∈ pred(i). We
will call this adj(i, j)

Proof. We will handle these queries recursively up the tree.
First find the index of the k-th predecessor in the parent l(i) be k′ = select(W (i), k).
The vertex we are looking for is thus the k′-th predecessor of l(i). Note that l(i) is a
predecessor of i and it will be at index |B(l(i))|. This is the only predecessor that we
know exactly, all others are relative. Hence if k′ = |B(l(i))| we report the answer being
l(i), otherwise we recursively call decode(l(i), k′). In the worst case, this will recurse
depth(i) times with O(1) work per recursion, which could be as bad as Θ(n).
First note that every predecessor j of i, their tree node must be an ancestor of the tree
node corresponding to i (in Tl). This is because predecessor set are taken as subsets of
our ancestor’s predecessor sets. Thus it is necessary that j is an ancestor of i in Tl and
we can do this by LCA(Tl, j, i) = j, which if fails, we return false.
Next consider the path from j to i, j = p0, p1, . . . , ph = i. We wish to calculate the
index kh−1 of j in B(l(i)) = B(ph−1) if it exists, at which point, we may determine
whether it survived in the subset pred(i) by checking the value of W (i)[kh−1]. To do
this, we know that the index of j in B(p0) is simply k0 = |B(p0)|. Thus j exists in B(p1)
if W (p1)[k0] = 1, and its index in B(p1) is simply k1 = rank(W (p1), k0). We return
false if W (p1)[k0] = 0. Thus we create the helper query adj(i, j, k) which determines
whether the k-th predecessor of j is adjacent to i, with adj(i, j) = adj(i, j, |B(j)|) and
in the recursive case above, call adj(i, p1, k1). We determine p1 in O(1) time by calling
level-ancestor(i, depth(j) + 1). This is O(1) per recursive call and the number of calls is
at most depth(i) which could be as bad as Θ(n). J
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To speed up the query times, we would need to store some additional information. For certain
nodes, rather than storing its predecessors relative to its parents, we store them explicitly
with a bit vector using n bits (that is we store the corresponding row of the adjacency matrix)
along with a rank and select structure on this. To use o(n2) bits, we can only store this
information in o(n) of these nodes. Furthermore, we would like to select these nodes in an
uniform manner, such that for the paths above, we will encounter these shortcut nodes with
regularity. Formally, we would like to find a set of (o(n)) nodes such that every path of
length k in Tl intersects one of these nodes. This is exactly the problem of k-path vertex
cover. Bresar et al. [3] showed that while in general it is NP-hard, it is solvable on trees in
linear time.

I Lemma 5. There is an algorithm that computes an optimal k-path vertex cover of a tree
T , of size at most |V (T )|

k in linear time.

Let f = ω(1) be any non-constant increasing function, for example, the inverse Ackermann
function. Then by Lemma 5, we can find a set of at most n

f(n) = o(n) shortcut nodes such
that every path in Tl contains one of these nodes. We may thus modify the above queries to
cap the recursion depth.

If i is a shortcut node, then the k-th predecessor of i is select(W (i), k). Thus the recursion
depth is at most f(n). The time is thus O(f(n)).
We follow the path to the root from i until we hit either j or a shortcut node. If it
hit j first, then we continue as above, but with the recursion depth guaranteed to be
less than f(n). If we hit a shortcut node p0 first, check that j is a predecessor of p0 by
W (p0)[j] = 1. If not, return false, otherwise call adj(i, p0, rank(W (p0), j)) since j is the
rank(W (p0), j)-th predecessor of p0. Again the recursion depth is at most f(n) so the
time is O(f(n)).

Thus we have the following result:

I Theorem 6. There is a data structure for chordal graphs on n vertices that can answer
adjacency queries in f(n) time using n2/4 + n2/f(n) + o(n2) bits of space.

3.2 Degree, Neighbourhood queries

Degree queries are simple, since we may write the down the degree of every vertex in n log n
bits of space. For neighbourhood queries at vertex i, we split it into two parts, those
neighbours that are smaller than i and those that are greater.

For the smaller neighbours, we simply query: at vertex i, find the k-th predecessor of i
for 1 ≤ k ≤ |pred(i)| - in other words, applying decode(i, k). This takes f(n) time per
neighbour.
For the larger neighbours at vertex i, we store a bit vector of length (n− i)/f(n), with
entry j being a 1 if there is a neighbour in range of vertices [i+ (j − 1)f(n), i+ jf(n)].
Total space is n2/f(n) = o(n2). We select each 1 from this bit vector and check adjacency
for every vertex in the given range. Therefore, each neighbour will need at most f(n)
adjacency queries, and thus we need f(n)2 time per neighbour.

Thus we have the following:

I Theorem 7. There is a data structure for chordal graphs on n vertices that can answer
adjacency queries in f(n) time and neighbourhood queries in (f(n))2 time per neighbour
using n2/4 +O(n2/f(n)) + o(n2) bits of space.
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4 Shortest Paths

Let d(i, j) denote the distance between vertices i, j.
We would like to answer queries of the form:
sp(i, j) = i = p0, p1, . . . , pk = j a path from i to j of minimal length
dist(i, j) = k the length of the shortest path

We will show that these queries are difficult to answer, since they are a superset of adjacency
queries. Thus we will look at approximate forms of these queries. We will use d(i, j) to
denote the actual distance and dist(i, j) to denote the result of our query. We would like
dist(i, j) = d(i, j) but in general this is difficult. Define the approximate forms of these
queries as asp, adist.

4.1 Ancestor Case
We will first study the easy case, where j < i is an ancestor of i.

I Lemma 8. The following algorithm:
repeatedly apply s(.) to i to obtain the sequence i = p0, p1, . . . , pk. This is equivalent to
traverse the node to root path from i in Ts.
stop when pk > j but pk+1 = s(pk) ≤ j.
if adj(pk, j) then dist(i, j) = k+ 1 and the path is i = p0, p1, . . . , pk, pk+1 = j. Otherwise,
dist(i, j) = k + 2 and the path is i = p0, p1, . . . , pk, pk+1, j

correctly computes the distance (that is dist(i, j) = d(i, j)) and a shortest path between i and
j given that j is an ancestor of i.

Proof. We induct on the distance between i and j.
If d(i, j) = 1, then i and j are adjacent. Furthermore, since j ∈ pred(i), s(i) ≤ j. Thus

i = p0 = pk and algorithm correctly gives dist(i, j) = 1.
Suppose that d(i, j) = 2, and let i, h, j be a path from i to j with minimal h. Note

that if h > i then both i, j ∈ pred(h) so they are adjacent, contradicts d(i, j) = 2. In all
other cases, the algorithm will return the path i, s(i), j. We need to show that s(i) and j
are adjacent. First note that h > s(i) and they are adjacent by definition of s(.). Thus the
ordering must be either i > h > s(i) > j or i > h > j > s(i) or i > j > h > s(i). In the first
two orderings, s(i), j ∈ pred(h). In the third ordering, since s(i) ∈ pred(i), by the contiguous
subtree property, it must exist in the bag along the entire path between s(i), i which contains
j. Thus s(i) ∈ pred(j). In all these cases s(i) is adjacent to j.

Now suppose that our algorithm is correct for distances < k. Let d(i, j) = k and a
shortest path be i = p0, p1, . . . , pk = j. We will show that there is a shortest path that begins
with the step i, s(i). Thus, d(s(i), j) = k − 1 and a path for it can be found using the above
algorithm. But the step i, s(i) is the first step in the algorithm for distances > 2, so the
combination of the two is exactly the output of the algorithm.

Essentially, we will replace p1 by s(i) and argue that the resulting sequence is still a
path. Let pα be the node such that pα < i. We claim that α = 1 since otherwise, pα−1 is a
descendant of i and by the contiguous subtree property, i is adjacent to pα. Thus we may
replace the entire path i, . . . , pα by i, pα, contradicting minimality. Thus at each step of the
shortest path, we must go to an ancestor. Let pβ be the first node in the path such that
pβ < s(i). Note that pβ−1 > s(i) > pβ is a path on the tree, and thus by the contiguous
subtree property, s(i) is adjacent to pβ hence we may replace the path i = p0, p1, . . . , pβ with
i, s(i), pβ . J
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1

2 3 4

5 6

7 8 9

Figure 3 The tree Ts.

To answer sp(i, j), we simply follow the algorithm, and traverse Ts, so we can output the
path in O(1) per vertex in the path. To answer dist(i, j) we would like to compute k efficiently.
Denote i′ = pk in the algorithm. That is, pk is the ancestor such that pk > j but s(pk) ≤ j.
The only candidates are level-ancestorTs

(i, depth(j)) and level-ancestorTs
(i, depth(j) + 1).

Thus we may find i′ in constant time. In both queries, we require 1 adjacency check in the
final step. Finally, if we do not perform this check, we are able to answer the queries within
1. Thus we obtain:

I Lemma 9. Using the data structure as before, and suppose that j is an ancestor of
i in Tl, then we can answer sp(i, j) in O(d(i, j) + f(n)) time and dist(i, j) in O(f(n))
time. We can answer asp(i, j) in O(d(i, j)) time and adist(i, j) in O(1) time such that
d(i, j) ≤ |asp(i, j)| = adist(i, j) ≤ d(i, j) + 1.

Furthermore, since we only need to traverse through Tl, Ts in the approximate queries,
the space required is the two trees plus a table to identify the nodes that correspond to the
same vertex. Thus the space required is ndlog ne+ 4n+ o(n) bits.

We note that Θ(n log n) bits is best possible for our idea of representing these two trees
and the mapping between them. The mapping between them is equivalent to computing
the function s(.). Since the order of the children in the trees does not matter, they are free
trees. Consider the split graph with a size n/2 clique {v1, . . . , vn/2}, size n/4 independent
set {u1, . . . , un/4} together with one child of each of the n/4 vertices in the independent set
{w1, . . . , wn/4}. Furthermore, we have the freedom to allow s(ui) to be any permutation
of {v1, . . . , vn/4} and also s(wi) to be any permutation of {vn/4+1, . . . , vn/2}. Thus for any
ordering of the children in the tree, we would have to store a permutation on n/4 elements.
This requires Θ(n log n) bits.

4.2 General Case
Now we study the general case when i, j do not have the ancestor relation. We will reduce
to the ancestor case by the following lemma:

I Lemma 10. Consider the shortest node-path PT in Tl Ti, . . . , Th, . . . , Tj . For every shortest
path PG from i to j in G, and every node Tw in PT , B(Tw) contains a vertex of PG.

Proof. Note that if (u, v) ∈ E then X−1(u) ∩X−1(v) 6= ∅ since there must be a bag that
both u, v belong to. Thus the set

⋃
v∈PG

X−1(v) is a contiguous subtree of Tl that contains
both Ti and Tj . So in particular it contains the path PT . J

Let h = LCATl
(i, j). Then B(h) contains a vertex x on a shortest path between i, j. Thus,

d(i, j) = d(i, x) + d(x, j). Furthermore, x is an ancestor of both i and j.

I Lemma 11. The algorithm dist(i, j) (sp(i, j)):
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i’ j’

s(i’) s(j’)

h

x

i j

Figure 4 Green is the optimal path between i′ and j′. Red is the naive path returned by adist

and yellow is the fix from an error of 2 to an error of 1.

For each vertex x ∈ B(h) compute dist(x, i) + dist(x, j) (or sp(x, i) ∪ sp(x, j)).
return the minimum sum (resp. path) among those calculated above.

Computes the distance (resp. a shortest path) between i, j. The time cost for d(i, j) is
O(|B(h)| · f(n)) = O(n · f(n)) and the time cost for sp(i, j) is O (|B(h)| · (d(i, j) + f(n))) =
O(n · (d(i, j) + f(n))

The time cost is dominated by the term |B(h)| which is as bad as O(n). It seems difficult to
avoid performing the entire loop, so we will turn to approximation again.

I Lemma 12. The algorithm adist(i, j) (asp(i, j)):
Compute dist(h, i) + dist(h, j) (or sp(h, i) ∪ sp(h, j))

Gives an error of at most 2 in the distance between i, j. That is d(i, j) ≤ dist(i, j) ≤ d(i, j)+2.

Proof. Let x ∈ B(h) be the vertex that is in a shortest path between i, j. Consider the paths
h, sp(x, i) and h, sp(x, j). These are paths between h and i, j. Thus d(h, i) ≤ 1 + d(x, i) and
d(h, j) ≤ 1 + d(x, j). Finally, we have adist(i, j) = d(h, i) + d(h, j) ≤ 2 + d(x, i) + d(x, j) =
2 + d(i, j). J

4.3 Improved Bounds
We would like to improve the approximate distance algorithm in two ways: first, reduce the
error to 1 and second, to use adist as the subroutine rather than dist as the subroutine.
To do this, we would need to compare the computation steps that are done by both the
approximate and the exact versions.

Let x ∈ B(h) be the optimal vertex. We consider the computation of dist(x, i) and
dist(h, i). In dist(h, i), we compute i′h and depending on (i′h, h) ∈ E we return depth(i)−
depth(i′h) + 1 or +2. In adist(h, i) we always return +2 skipping the adjacency check. Now
consider dist(x, i). We compute i′x which is either i′h or an ancestor of i′h. In the case that
i′x = i′h, the worst case is that (i′x, x) ∈ E, thus adist(h, i)−dist(x, i) = 1. If i′x is an ancestor
of i′h then depth(i′x) < depth(i′h) and adist(h, i)− dist(x, i) ≤ 0 and we occur no error at all.

Therefore, we may replace dist(h, i) by adist(h, i) and obtain the same guarantees.
Next consider the case that both (i′, h), (j′, h) /∈ E. This is exactly when the algorithm

can potentially give an error of 2, since we may obtain an error of 1 in both branches. In this
case, both s(i′), s(j′) ∈ B(h) so they are adjacent. Therefore, instead of returning the path
i, . . . , i′, s(i′), h, s(j′), j′, . . . , j, we may return the path i, . . . , i′, s(i′), s(j′), j′, . . . , j, and cut
the error down to 1. Note that in adist(i, h) we do not perform the adjacency check, so we
will always contract the path. Thus we obtain the result:
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I Theorem 13. The algorithm adist(i,j):
return adist(h, i) + adist(h, j)− 1

approximates d(i, j) within 1 in O(1) time using ndlog ne+ 4n+ o(n) bits of space.

5 Relation to Set Intersection Oracle

We now consider the conditions in which our approximation algorithm is exact and when it
incurs an error of 1. We argued above that we incur an error of 1 on both branches when
there is x ∈ B(h) such that (x, i′), (x, j′) ∈ E. Equivalently, (x, i′) ∈ E ⇔ x ∈ B(i′). Thus
x ∈ B(i′) ∩B(j′). Conversely, if no such x exists, we only incur an error of 1 on exactly one
branch, and due to the adjustment our algorithm is exact.

I Lemma 14. adist(i, j) incurs an error of 1 if and only if B(i′) ∩B(j′) 6= ∅.

5.1 Set Intersection Oracle Problem
The set intersection oracle (SIO) problem is the following:

Given n sets Si ⊆ U , such that
∑
|Si| = N , preprocess the sets to answer queries of

Si ∩ Sj = ∅? It is known that it can be done in O(N) space and O(
√
N) time [5]. We may

also view this as storing the intersection graph of the sets, where the vertex set is each set,
and two sets are adjacent if they intersect. However, if we disregard N and focus on |U |, we
see that the intersection graph can be any graph if |U | = n2/4. Thus, Ω(n2) space is required
to answer these queries. Conversely, given a graph, we may ask, what is the minimum |U |
such that a set intersection representation exists. This is known as the intersection number
of the graph. It is equivalent to the number of cliques required to cover the edges of the
graph and is NP-hard to compute.

Now consider the case that |U | = n. Since every chordal graph can be covered by n

maximal cliques, the number of graphs that can be represented by such a set intersection
representation is at least

(
n
n/2
)
2n2/4/n!. Therefore, again we require Ω(n2) space for the data

structure.
Furthermore it can be shown that O(n|U |) bits of space is necessary and sufficient to

answer these queries.

I Theorem 15. Let |U | = k and |U | = ω(log n) and |U | = O(n). Then O(n|U |) bits is
necessary and sufficient to answer set intersection queries.

Proof. One direction is trivial. We may always represent a set with a length |U | bit vector,
with position i = 1 if i is in the set. To answer the queries, with compute the bit-wise-and of
the bit vectors and check if it is the 0 vector. Therefore n|U | bits is sufficient to answer the
query.

Conversely, consider the split graphs where we have a size n − k clique and a size k
independent set. The neighbourhood of each of the vertices in the independent set is one
of 2n−k − 2 subsets of the clique (we omit the empty set and the entire set). Since there
are k such vertices in the independent set, there are 2k(n−k) such graphs. Divide by n! to
account for isomorphisms and we obtain a lower bound of k(n− k)−O(n log n) bits required
to represent these sets. Note that all of these split graphs have intersection number k + 1.
For k = o(n) and k ∈ ω(log n), k(n − k) − O(n log n) = nk − o(nk). For k = cn for some
constant c, we require (1− c)nk = O(nk) bits. J
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The above does not try to optimize the query time of the data structure. To obtain an query
time of O(1), it is not known whether there is any non-naive data structure (storing the
entire incidence matrix using n2/2 bits) to solve the problem, even when |U | = O(logc(n))
(see conjecture 3 in [12]).

Next we show the close relationship between SIO and an exact distance oracle for chordal
graphs. As shown above, it seems very difficult to construct an exact distance oracle that
has query time O(1) succinctly, using n2/4 bits of space.

I Theorem 16. Consider the SIO problem, with n sets Si ⊆ U and |U | = n. Any solution
using B bits of space and has query time t will yield an exact distance oracle for chordal
graphs occupying B+ o(B) bits of space with query time O(t). Conversely, any exact distance
oracle for chordal graphs on n nodes using B(n) bits of space with query time t(n) will yield
a solution to the SIO problem on n sets using B(2n) bits of space and query time t(2n).

Proof. WLOG assume U = [n] and Si 6= ∅ Since if Si = ∅ then Si ∩ Sj = ∅ for every j.
The lower bound implies that B = Ω(n2). Suppose we have a SIO, then we simply store

B(i) for every vertex i. By lemma 14, we can detect when adist(i, j) is wrong by applying
the query B(i′) ∩B(j′). Thus we have a chordal graph distance oracle using B + o(B) bits
of space with query time t+O(1).

Conversely, consider the split graph on 2n vertices. Let the vertex set be [n]∪{v1, . . . , vn}
where [n] is a clique and {v1, . . . , vn} is an independent set. It is easy to see that this graph
is chordal. Let N(vi) = Si. Then d(vi, vj) = 2 or 3 and d(vi, vj) = 2⇔ Si ∩Sj 6= ∅. Thus we
have reduced the SIO query to a exact distance query in chordal graphs on 2n vertices. J
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Abstract
We present the first solution to τ -majorities on tree paths. Given a tree of n nodes, each with a
label from [1..σ], and a fixed threshold 0 < τ < 1, such a query gives two nodes u and v and asks
for all the labels that appear more than τ · |Puv| times in the path Puv from u to v, where |Puv|
denotes the number of nodes in Puv. Note that the answer to any query is of size up to 1/τ . On a
w-bit RAM, we obtain a linear-space data structure with O((1/τ) lg∗ n lg lgw σ) query time. For
any κ > 1, we can also build a structure that uses O(n lg[κ] n) space, where lg[κ] n denotes the
function that applies logarithm κ times to n, and answers queries in time O((1/τ) lg lgw σ). The
construction time of both structures is O(n lg n). We also describe two succinct-space solutions
with the same query time of the linear-space structure. One uses 2nH + 4n+ o(n)(H + 1) bits,
where H ≤ lg σ is the entropy of the label distribution, and can be built in O(n lg n) time. The
other uses nH +O(n) + o(nH) bits and is built in O(n lg n) time w.h.p.
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structures for finding the mode (i.e., the most frequent element) in a range require time
O(

√
n/ lg n), and it is unlikely that this can be done much better within reasonable extra

space [8]. Instead, listing all the elements whose relative frequency in a range is over some
fraction τ (called the τ -majorities of the range) is feasible within linear space and O(1/τ)
time, which is worst-case optimal [1]. Mode and τ -majority queries on higher-dimensional
arrays have also been studied [13, 8].

In this paper we focus on finding frequent elements when the subsets that can be queried
are the labels on paths from one given node to another in a labeled tree. For example, given a
minimum spanning tree of a graph, we might be interested in frequent node types on the path
between two nodes. Path mode or τ -majority queries on multi-labeled trees could be useful
when handling the tree of versions of a document or a piece of software, or a phylogenetic
tree (which is essentially a tree of versions of a genome). If each node stores a list of the
sections (i.e., chapters, modules, genes) on which its version differs from its parent’s, then we
can efficiently query which sections are changed most frequently between two given versions.

There has been little work previously on finding frequent elements on tree paths. Krizanc et
al. [15] considered path mode queries, obtaining O(

√
n lg n) query time. This was recently

improved by Durocher et al. [11], who obtained O(
√
n/w lg lg n) time on a RAM machine

of w = Ω(lg n) bits. Like on the more special case of sequences, these times are not likely
to improve much. No previous work has considered the problem of finding path τ -majority
queries, which is more tractable than finding the path mode. This is our focus.

We present the first data structures to support path τ -majority queries on trees of n nodes,
with labels in [1..σ], on a RAM machine. We first obtain a data structure using O(n lg n) space
and O((1/τ) lg lgw σ) time (Theorem 3). Building on this result, we reduce the space to O(n)
at the price of a very slight increase in the query time, O((1/τ) lg∗ n lg lgw σ) (Theorem 6).
We then show that the original query time can be obtained within very slightly superlinear
space, O(n lg[κ] n) for any desired κ > 1, where lg[κ] n denotes the function that applies
logarithm κ times to n (Theorem 7). Finally, we show that our linear-space data structure
can be further compressed, to either 2nH + 4n+ o(n)(H + 1) bits or nH +O(n) + o(nH)
bits, where H ≤ lg σ is the entropy of the distribution of the labels in T , while retaining the
same query times of the linear-space data structure (Theorems 8 and 9). All our structures
can be built in O(n lg n) deterministic time; only the latter one requires that time only w.h.p.
We close with a brief discussion of directions for future research. In particular, we describe
how to adapt our results to multi-labeled trees.

Durocher et al. [11] also considered queries that look for the least frequent elements and
τ -minorities on paths. In our extended version (https://arxiv.org/abs/1806.01804), we
compress their data structure for τ -minorities with only a very slight increase in query time.

2 Preliminaries

2.1 Definitions
We deal with rooted ordinal trees (or just trees) T . Further, our trees are labeled, that is,
each node u of T has an integer label label(u) ∈ [1..σ]. We assume that, if our main tree
has n nodes, then σ = O(n) (we can always remap the labels to a range of size at most n
without altering the semantics of the queries of interest in this paper).

The path between nodes u and v in a tree T is the (only) sequence of nodes Puv = 〈u =
z1, z2, . . . , zk−1, zk = v〉 such that there is an edge in T between each pair zi and zi+1, for
1 ≤ i < k. The length of the path is |Puv| = k, for example the length of the path Puu is 1.
Any path from u to v goes from u to the lowest common ancestor of u and v, and then from

https://arxiv.org/abs/1806.01804
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there it goes to v (if u is an ancestor of v or vice versa, one of the two subpaths is empty).
Given a real number 0 < τ < 1, a τ -majority of the path Puv is any label that appears

(strictly) more than τ · |Puv| times among the labels of the nodes in Puv. The path τ -majority
problem is, given u and v, list all the τ -majorities in the path Puv. Note that there can be
up to b1/τc such τ -majorities.

Our results hold in the RAM model of computation, assuming a computer word of
w = Ω(lg n) bits, supporting the standard operations.

Our logarithms are to the base 2 by default. By lg[k] n we mean the function that applies
logarithm k times to n, i.e., lg[0] n = n and lg[k] n = lg(lg[k−1] n). By lg∗ n we denote the
iterated logarithm, i.e., the minimum k such that lg[k] n ≤ 1.

2.2 Sequence representations
A bitvector B[1..n] can be represented within n+ o(n) bits so that the following operations
take constant time: access(B, i) returns B[i], rankb(B, i) returns the number of times bit b
appears in B[1..i], and selectb(B, j) returns the position of the jth occurrence of b in B [9].
If B has m 1s, then it can be represented within m lg(n/m) +O(m) bits while retaining the
same operation times [18]. Those structures can be built in linear time. Note the space is
o(n) bits if m = o(n).

Analogous operations are defined on sequences S[1..n] over alphabets [1..σ]. For example,
one can represent S within nH + o(n)(H + 1) bits, where H ≤ lg σ is the entropy of the
distribution of symbols in S, so that rank takes time O(lg lgw σ), access takes time O(1), and
select takes any time in ω(1) [4, Thm. 8]. The construction takes linear time. While this rank
time is optimal, we can answer partial rank queries in O(1) time, prank(S, i) = rankS[i](S, i),
by adding O(n(1 + lgH)) bits on top of a representation giving constant-time access [3,
Sec. 3]. This construction requires linear randomized time.

2.3 Range τ -majorities on sequences
A special version of the path τ -majority queries on trees is range τ -majority queries on
sequences S[1..n], which are much better studied. Given i and j, the problem is to return all
the distinct symbols that appear more than τ · (j − i+ 1) times in S[i..j]. The most recent
result on this problem [2, 1] is a linear-space data structure, built in O(n lg n) time, that
answers queries in the worst-case optimal time, O(1/τ).

For our succinct representations, we also use a data structure [1, Thm. 6] that requires
nH + o(n)(H + 1) bits, and can answer range τ -majority queries in any time in (1/τ) · ω(1).
The structure is built on the sequence representation mentioned above [4, Thm. 8], and thus
it includes its support for access, rank, and select queries on the sequence. To obtain
the given times for τ -majorities, the structure includes the support for partial rank queries
[3, Sec. 3], and therefore its construction time is randomized. In this paper, however, it
will be sufficient to obtain O((1/τ) lg lgw σ) time, and therefore we can replace their prank
queries by general rank operations. These take time O(lg lgw σ) instead of O(1), but can be
built in linear time.4 Therefore, this slightly slower structure can also be built in O(n lg n)
deterministic time.

4 In fact, their structure [1] can be considerably simplified if one can spend the time of a general rank
query per returned majority.
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When a set has no structure, we can find its τ -majorities in linear time. Misra and
Gries [16] proposed an optimal solution that computes all τ -majorities using O(n lg(1/τ))
comparisons. When implemented on a word RAM over an integer alphabet of size σ, the
running time becomes O(n) [10].

2.4 Tree operations

For tree nodes u and v, we define the operations root (the tree root), parent(u) (the parent
of node u), depth(u) (the depth of node u, 0 being the depth of the root), preorder(u) (the
rank of u in a preorder traversal of T ), postorder(u) (the rank of u in a postorder traversal
of T ), subtreesize(u) (the number of nodes descending from u, including u), anc(u, d)
(the ancestor of u at depth d), and lca(u, v) (the lowest common ancestor of u and v). All
those operations can be supported in constant time and linear space on a static tree after a
linear-time preprocessing, trivially with the exceptions of anc [6] and lca [7].

A less classical query is labelanc(u, `), which returns the nearest ancestor of u (possibly
u itself) labeled ` (note that the label of u needs not be `). If u has no ancestor labeled `,
labelanc(u, `) returns null. This operation can be solved in time O(lg lgw σ) using linear
space and preprocessing time [14, 21, 11].

2.5 Succinct tree representations

A tree T of n nodes can be represented as a sequence P [1..2n] of parentheses (i.e., a bit
sequence). In particular, we consider the balanced parentheses representation, where we
traverse T in depth-first order, writing an opening parenthesis when reaching a node and a
closing one when leaving its subtree. A node is identified with the position P [i] of its opening
parenthesis. By using 2n+ o(n) bits, all the tree operations defined in Section 2.4 (except
those on labels) can be supported in constant time [17].

This representation also supports access, rank and select on the bitvector of parentheses,
and the operations close(P, i) (the position of the parenthesis closing the one that opens
at P [i]), open(P, i) (the position of the parenthesis opening the one that closes at P [i]),
and enclose(P, i) (the position of the rightmost opening parenthesis whose corresponding
parenthesis pair encloses P [i]; when P represents a tree, this parenthesis represents the
parent of the node that P [i] corresponds to).

Labeled trees can be represented within nH + 2n + o(n)(H + 1) bits by adding the
sequence S[1..n] of the node labels in preorder, so that label(i) = access(S, preorder(i)).

3 An O(n lgn)-Space Solution

In this section we design a data structure answering path τ -majority queries on a tree of n
nodes using O(n lg n) space and O((1/τ) lg lgw σ) time. This is the basis to obtain our final
results.

We start by marking O(τn) tree nodes, in a way that any node has a marked ancestor at
distance O(1/τ). A simple way to obtain these bounds is to mark every node whose height
is ≥ d1/τe and whose depth is a multiple of d1/τe. Therefore, every marked node is the
nearest marked ancestor of at least d1/τe − 1 distinct non-marked nodes, which guarantees
that there are ≤ τn marked nodes. On the other hand, any node is at distance at most
2d1/τe − 1 from its nearest marked ancestor.
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For each marked node x, we will consider prefixes Pi(x) of the labels in the path from x

to the root, of length 1 + 2i, that is,

Pi(x) = 〈label(x), label(parent(x)), label(parent2(x)), . . . , label(parent2i

(x))〉

(terminating the sequence at the root if we reach it). For each 0 ≤ i ≤ dlg depth(x)e, we
store Ci(x), the set of (τ/2)-majorities in Pi(x). Note that |Ci(x)| ≤ 2/τ for any x and i.

By successive applications of the next lemma we have that, to find all the τ -majorities in
the path from u to v, we can partition the path into several subpaths and then consider just
the τ -majorities in each subpath.

I Lemma 1. Let u and v be two tree nodes, and let z be an intermediate node in the path.
Then, a τ -majority in the path from u to v is a τ -majority in the path from u to z (including
z) or a τ -majority in the path from z to v (excluding z), or in both.

Proof. Let duz be the distance from u to z (counting z) and dzv be the distance from z to v
(not counting z). Then the path from u to v is of length d = duz + dzv. If a label ` occurs at
most τ · duz times in the path from u to z and at most τ · dzv times in the path from z to v,
then it occurs at most τ(duz + dzv) = τ · d times in the path from u to v. J

Let us now show that the candidates we record for marked nodes are sufficient to find
path τ -majorities towards their ancestors.

I Lemma 2. Let x be a marked node. All the τ -majorities in the path from x to a proper
ancestor z are included in Ci(x) for some suitable i.

Proof. Let dxz = depth(x)− depth(z) be the distance from x to z (i.e., the length of the
path from x to z minus 1). Let i = dlg dxze. The path Pi(x) contains all the nodes in an
upward path of length 1 + 2i starting at x, where dxz ≤ 2i < 2dxz. Therefore, Pi(x) contains
node z, but its length is |Pi(x)| < 1 + 2dxz. Therefore, any τ -majority in the path from x to
z appears more than τ · (1 + dxz) > (τ/2) · (1 + 2dxz) > (τ/2) · |Pi(x)| times, and thus it is a
(τ/2)-majority recorded in Ci(x). J

3.1 Queries
With the properties above, we can find a candidate set of size O(1/τ) for the path τ -majority
between arbitrary tree nodes u and v. Let z = lca(u, v). If v 6= z, let us also define
z′ = anc(v, depth(z) + 1), that is, the child of z in the path to v. The path is then split into
at most four subpaths, each of which can be empty:
1. The nodes from u to its nearest marked ancestor, x, not including x. If x does not exist or

is a proper ancestor of z, then this subpath contains the nodes from u to z. The length of
this path is less than 2d1/τe by the definition of marked nodes, and it is empty if u = x.

2. The nodes from v to its nearest marked ancestor, y, not including y. If y does not exist
or is an ancestor of z, then this subpath contains the nodes from v to z′. The length of
this path is again less than 2d1/τe, and it is empty if v = y or v = z.

3. The nodes from x to z. This path exists only if x exists and descends from z.
4. The nodes from y to z′. This path exists only if y exists and descends from z′.

By Lemma 1, any τ -majority in the path from u to v must be a τ -majority in some of
these four paths. For the paths 1 and 2, we consider all their up to 2d1/τe − 1 nodes as
candidates. For the paths 3 and 4, we use Lemma 2 to find suitable values i and j so that
Ci(x) and Cj(y), both of size at most 2/τ , contain all the possible τ -majorities in those paths.
In total, we obtain a set of at most 8/τ +O(1) candidates that contain all the τ -majorities
in the path from u to v.
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To verify whether a candidate is indeed a τ -majority, we follow the technique of Durocher
et al. [11]. Every tree node u will store count(u), the number of times its label occurs in
the path from u to the root. We also make use of operation labelanc(u, `). If u has no
ancestor labeled `, this operation returns null, and we define count(null) = 0. Therefore,
the number of times label ` occurs in the path from u to an ancestor z of u (including z)
can be computed as count(labelanc(u, `))− count(labelanc(parent(z), `)). Each of our
candidates can then be checked by counting their occurrences in the path from u to v using

(count(labelanc(u, `))− count(labelanc(parent(z), `)))
+ (count(labelanc(v, `))− count(labelanc(z, `))).

The time to perform query labelanc is O(lg lgw σ) using a linear-space data structure on
the tree [14, 21, 11], and therefore we find all the path τ -majorities in time O((1/τ) lg lgw σ).

The space of our data structure is dominated by the O(lg n) candidate sets Ci(x) we
store for the marked nodes x. These amount to O((1/τ) lg n) space per marked node, of
which there are O(τn). Thus, we spend O(n lg n) space in total.

I Theorem 3. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1. On a RAM
machine of w-bit words, we can build an O(n lg n) space data structure that answers path
τ -majority queries in time O((1/τ) lg lgw σ).

3.2 Construction
The construction of the data structure is easily carried out in linear time (including the fields
count and the data structure to support labelanc [11]), except for the candidate sets Ci(x)
of the marked nodes x. We can compute the sets Ci(x) for all i in total time O(depth(x))
using the linear-time algorithm of Misra and Gries [16] because we compute (τ/2)-majorities
of doubling-length prefixes Pi(x). This amounts to time O(mt) on a tree of t nodes and m
marked nodes. In our case, where t = n and m ≤ τn, this is O(τn2).

To reduce this time, we proceed as follows. First we build all the data structure components
except the sets Ci(x). We then decompose the tree into heavy paths [20] in linear time,
and collect the labels along the heavy paths to form a set of sequences. On the sequences,
we build in O(t lg t) time the range τ -majority data structure [2, 1] that answers queries in
time O(1/τ). The prefix Pi(x) for any marked node x then spans O(lg t) sequence ranges,
corresponding to the heavy paths intersected by Pi(x). We can then compute Ci(x) by
collecting and checking the O(1/τ) (τ/2)-majorities from each of those O(lg t) ranges.

Let the path from x to the root be formed by O(lg t) heavy path segments π1, . . . , πk
We first compute the O(1/τ) (τ/2)-majority in the sequences corresponding to each prefix
π1, . . . , πk: For each πj , we (1) compute its 2/τ majorities on the corresponding sequence in
time O(1/τ), (2) add them to the set of 2/τ majorities already computed for π1, . . . , πj−1,
and (3) check the exact frequencies of all the 4/τ candidates in the path π1, . . . , πj in time
O((1/τ) lg lgw σ), using the structures already computed on the tree. All the (τ/2)-majorities
for π1, . . . , πj are then found.

Each path Pi(x) is formed by some prefix π1, . . . , πj plus a prefix of πj+1. We can then
carry out a process similar to the one to compute the majorities of π1, . . . , πj+1, but using
only the proper prefix of πj+1. The O(lg t) sets Ci(x) are then computed in total time
O((1/τ) lg t lg lgw σ). Added over the m marked nodes, we obtain O((1/τ)m lg t lg lgw σ)
construction time.

I Lemma 4. On a tree of t nodes, m of which are marked, all the candidate sets Ci(x) can
be built in time O((1/τ)m lg t lg lgw σ).
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The construction time in our case, where t = n and m ≤ τn, is the following.

I Corollary 5. The data structure of Theorem 3 can be built in time O(n lg n lg lgw σ).

4 A Linear-Space (and a Near-Linear-Space) Solution

We can reduce the space of our data structure by stratifying our tree. First, let us create a
separate structure to handle unary paths, that is, formed by nodes with only one child. The
labels of upward maximal unary paths are laid out in a sequence, and the sequences of the
labels of all the unary paths in T are concatenated into a single sequence, S, of length at most
n. On this sequence we build the linear-space data structure that solves range τ -majority
queries in time O(1/τ) [2, 1]. Each node in a unary path of T points to its position in S.
Each node also stores a pointer to its nearest branching ancestor (i.e., ancestor with more
than one child).

The stratification then proceeds as follows. We say that a tree node is large if it has more
than (1/τ) lg n descendant nodes; other nodes are small. Then the subset of the large nodes,
which is closed by parent, induces a subtree T ′ of T with the same root and containing
at most τn/ lg n leaves, because for each leaf in T ′ there are at least (1/τ) lg n− 1 distinct
nodes of T not in T ′. Further, T − T ′ is a forest of trees {Fi}, each of size at most (1/τ) lg n.

We will use for T ′ a structure similar to the one of Section 3, with some changes to ensure
linear space. Note that T ′ may have Θ(n) nodes, but since it has at most τn/ lg n leaves,
T ′ has only O(τn/ lg n) branching nodes. We modify the marking scheme, so that we mark
exactly the branching nodes in T ′. Spending O((1/τ) lg n) space of the candidate sets Ci(x)
over all branching nodes of T ′ adds up to O(n) space.

The procedure to solve path τ -majority queries on T ′ is then as follows. We split the
path from u to v into four subpaths, exactly as in Section 3. The subpaths of type 1 and 2
can now be of arbitrary length, but they are unary, thus we obtain their 1/τ candidates in
time O(1/τ) from the corresponding range of S. Finally, we check all the O(1/τ) candidates
in time O((1/τ) lg lgw σ) as in Section 3.

The nodes u and v may, however, belong to some small tree Fi, which is of size
O((1/τ) lg n). We preprocess all those Fi in a way analogous to T . From each Fi we
define F ′i as the subtree of Fi induced by the (parent-closed) set of the nodes with more than
(1/τ) lg lg n descendants; thus F ′i has O(|Fi|τ/ lg lg n) branching nodes, which are marked.
We store the candidate sets Ci(x) of their marked nodes x, considering only the nodes in F ′i .

If the candidates were stored as in Section 3, they would require O((1/τ) lg σ) bits
per marked node. Instead of storing the candidate labels ` directly, however, we will
store depth(y), where y is the nearest ancestor of x with label `. We can then recover
` = label(anc(x, depth(y))) in constant time. Since the depths in Fi are also O((1/τ) lg n),
we need only O(lg((1/τ) lg n)) bits per candidate. Further, by sorting the candidates by their
depth(y) value, we can encode only the differences between consecutive depths using γ-codes
[5]. Encoding k increasing numbers in [1..m] with this method requires O(k lg(m/k)) bits;
therefore we can encode our O(1/τ) candidates using O((1/τ) lg lg n) bits in total. Added
over all the O(lg n) values of i,5 the candidates Ci(x) require O((1/τ) lg lg n) words per
marked (i.e., branching) node. Added over all the branching nodes of F ′i , this amounts to
O(|F ′i |) space. The other pointers of Fi, as well as node labels, can be represented normally,
as they are O(n) in total.

5 The values of i are also bounded by O(lg((1/τ) lgn)), but the bound O(lgn) = O(w) is more useful
this time.
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The small nodes left out from the trees Fi form a forest of subtrees of size O((1/τ) lg lg n)
each. We can iterate this process κ times, so that the smallest trees are of size O((1/τ) lg[κ] n).
We build no candidates sets on the smallest trees. We say that T ′ is a subtree of level 1, our
F ′i are subtrees of level 2, and so on, until the smallest subtrees, which are of level κ. Every
node in T has a pointer to the root of the subtree where it belongs in the stratification.

The general process to solve a path τ -majority query from u to v is then as follows. We
compute z = lca(u, v) and split the path from u to z into k − k′ + 1 subpaths, where k′ and
k (note k′ ≤ k ≤ κ) are the levels of the subtree where z and u belong, respectively. Let ui
be the root of the subtree of level i that is an ancestor of u, except that we set uk′ = z.
1. If k = κ, then u belongs to one of the smallest subtrees. We then collect the O((1/τ) lg[κ] n)

node weights in the path from u to uκ one by one and include them in the set of candidates.
Then we move to the parent of that root, setting u← parent(uκ) and k ← κ− 1.

2. At levels k′ ≤ k < κ, if u is a branching node, we collect the 2/τ candidates from the
corresponding set Ci(u), where i is sufficient to cover uk (Ci(u) will not store candidates
beyond the subtree root). We then set u← parent(uk) and k ← k − 1.

3. At levels k′ ≤ k < κ, if u is not a branching node, let x be lowest between parent(z) and
the nearest branching ancestor of u. Let also p be the position of u in S. Then we find the
1/τ τ -majorities in S[p..p+ depth(u)− depth(x)− 1] in time O(1/τ). We then continue
from u← x and k ← k(x), where k(x) is the level of the subtree where x belongs. Note
that k(x) can be equal to k, but it can also be any other level k′ ≤ k(x) < k.

4. We stop when u = parent(z).

A similar procedure is followed to collect the candidates from v to z′. In total, since each
path has at most one case 2 and one case 3 per level k, we collect at most 4κ candidate sets
of size O(1/τ), plus two of size O((1/τ) lg[κ] n). The total cost to verify all the candidates is
then O((1/τ)(κ+ lg[κ] n) lg lgw σ). The data structure uses linear space for any choice of κ,
whereas the optimal time is obtained by setting κ = lg∗ n.

The construction time, using the technique of Lemma 4 in level 1, is O(n lg lgw σ), since
T ′ has t = O(n) nodes and m = O(τn/ lg n) marked nodes. For higher levels, we use the
basic quadratic method described in the first lines of Section 3.2: a subtree F of level k
has t = O((1/τ) lg[k−1] n) nodes and m = O(τt/ lg[k] n) marked nodes, so it is built in time
O(mt). There are O(τn/ lg[k−1] n) trees of level k, which gives a total construction time of
O(n lg[k−1] n/ lg[k] n) for all the nodes in level k. Added over all the levels k > 1, this yields
O(n lg n/ lg lg n). Both times, for k = 1 and k > 1, are however dominated by the O(n lg n)
time to build the range majority data structure on S.

I Theorem 6. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1. On a RAM
machine of w-bit words, we can build in O(n lg n) time an O(n) space data structure that
answers path τ -majority queries in time O((1/τ) lg∗ n lg lgw σ).

On the other hand, we can use any constant number κ of levels, and build the data
structure of Section 3 on the last one, so as to ensure query time O(1/τ) in this level as well.
We use, however, the compressed storage of the candidates used in this section. With this
storage format, a candidate set Ci(x) takes O((1/τ) lg[κ] n) bits. Multiplying by lg n (the
crude upper bound on the number of i values), this becomes O((1/τ) lg[κ] n) words. Since the
trees are of size O((1/τ) lg[κ−1] n) and the sampling rate used in Section 3 is τ , this amounts
to O((1/τ) lg[κ−1] n lg[κ] n) space per tree. Multiplied by the O(τn/ lg[κ−1] n) trees of level κ,
the total space is O(n lg[κ] n).
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The construction time of the candidate sets in the last level, using the basic quadratic
construction, is O(mt) = O((1/τ)(lg[κ−1] n)2), because t = O((1/τ) lg[κ−1] n) and m = τt

according to the sampling used in Section 3. Multiplying by the O(τn/ lg[κ−1] n) trees of
level κ, the total construction time for this last level is O(n lg[κ−1] n), again dominated by
the time to build the range majority data structures if κ > 1. This yields the next result.

I Theorem 7. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1. On a RAM
machine of w-bit words, for any constant κ > 1, we can build in O(n lg n) time an O(n lg[κ] n)
space data structure that answers path τ -majority queries in time O((1/τ) lg lgw σ).

5 A Succinct Space Solution

The way to obtain a succinct space structure from Theorem 6 is to increase the thresholds
that define the large nodes in Section 4. In level 1, we now define the large nodes as those
whose subtree size is larger than (1/τ)(lg n)3; in level 2, larger than (1/τ)(lg lg n)3; and in
general in level k as those with subtree size larger than (1/τ)(lg[k] n)3. This makes the space
of all the Ci(x) structures to be o(n) bits. The price is that the traversal of the smallest trees
now produces O((1/τ)(lg[κ] n)3) candidates, but this is easily sorted out by using κ+ 1 levels,
since (lg[κ+1] n)3 = o(lg[κ] n). To obtain succinct space, we will need that there are o(n)
subtrees of the smallest size, but that we find only O((1/τ) lg∗ n) candidates in total. Thus
we set κ = lg∗ n− lg∗∗ n, so that there are O(κ) = O(lg∗ n) levels, and the last-level subtrees
are of size O((1/τ)(lg[κ+1] n)3) = o((1/τ) lg[lg∗ n−lg∗∗ n] n) = o((1/τ) lg∗ n). Still, there are
O(τn/(lg[κ+1] n)3) = O(τn/(lg[lg∗ n−lg∗∗ n+1] n)3) = O(τn/(lg lg∗ n)3) = o(n) subtrees in the
last level.

The topology of the whole tree T can be represented using balanced parentheses in
2n + o(n) bits, supporting in constant time all the standard tree traversal operations we
use [17]. We assume that opening and closing parentheses are represented with 1s and 0s in
P , respectively. Let us now focus on the less standard operations needed.

5.1 Counting labels in paths

In Section 3, we count the number of times a label ` occurs in the path from u to the root
by means of a query labelanc and by storing count fields in the nodes. In Section 4, we
use in addition a string S to support range majority queries on the unary paths.

To solve labelanc queries, we use the representation of Durocher et al. [11, Lem. 7],
which uses nH + 2n+ o(n)(H + 1) bits in addition to the 2n+ o(n) bits of the tree topology.
This representation includes a string S[1..n] where all the labels of T are written in preorder;
any implementation of S supporting access, rank, and select in time O(lg lgw σ) can be
used (e.g., [4]). This string can also play the role of the one we call S in Section 4: the labels
of unary paths are contiguous in S, and any node v can access its label from S[preorder(v)].

On top of this string we must also answer range τ -majority queries in time O((1/τ) lg lgw σ).
We can use the slow variant of the succinct structure described in Section 2.3, which requires
only o(n)(H+1) additional bits and also supports access in O(1) time and rank and select
in time O(lg lgw σ). This variant of the structure is built in O(n lg n) time.

In addition to supporting operation labelanc, we need to store or compute the count
fields. Durocher et al. [11] also require this field, but find no succinct way to represent it.
We now show a way to obtain this value within succinct space.
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The sequence S lists the labels of T in preorder, that is, aligned with the opening
parentheses of P . Assume we have another sequence S′[1..n] where the labels of T are listed
in postorder (i.e., aligned with the closing parentheses of P ). Since the opened parentheses
not yet closed in P [1..i] are precisely node i and its ancestors, we can compute the number
of times a label ` appears in the path from P [i] to the root as rank`(S, rank1(P, i)) −
rank`(S′, rank0(P, i)).

Therefore, we can support this operation with nH + o(n)(H + 1) additional bits. Note
that, with this representation, we do not need the operation labelanc, since we do not need
that P [i] itself is labeled `.

If we do use operation labelanc, however, we can ensure that P [i] is labeled `, and
another solution is possible based on partial rank queries. Let o = rank`(S, rank1(P, i)) and
c = rank`(S′, rank0(P, i)) be the numbers of opening and closing parentheses up to P [i], so
that we want to compute o− c. Since P [i] is labeled `, it holds that S[rank1(P, i))] = `, and
thus o = prank(S, rank1(P, i)). To compute c, we do not store S′, but rather S′′[1..2n], so
that S′′[i] is the label of the node whose opening or closing parenthesis is at P [i] (i.e., S′′ is
formed by interleaving S and S′). Then, prank(S′′, i) = o+ c; therefore the answer we seek
is o− c = 2 · prank(S, rank1(P, i))− prank(S′′, i).

We use the structure for constant-time partial rank queries [3, Sec. 3] that requires
O(n) + o(nH) bits on top of a sequence that can be accessed in O(1) time. We can build it
on S and also on S′′, though we do not explicitly represent S′′: any access to S′′ is simulated
in constant time with S′′[i] = S[rank1(P, i)] if P [i] = 1, and S′′[i] = S[rank1(P, open(P, i))]
otherwise. This partial rank structure is built in O(n) randomized time and in O(n lg n)
time w.h.p.6

5.2 Other data structures
The other fields stored at tree nodes, which we must now compute within succinct space, are
the following:

Pointers to candidate sets Ci(x). All the branching nodes in all subtrees except those
of level κ+ 1 are marked, and there are O(n/(lg[κ+1] n)3) = o(n) such nodes. We can then
mark their preorder ranks with 1s in a bitvector M [1..n]. Since M has o(n) 1s, it can be
represented within o(n) bits [18] while supporting constant-time rank and select operations.
We can then find out when a node i is marked (iff M [preorder(i)] = 1), and if it is, its
rank among all the marked nodes, r = rank1(M, preorder(i)). The Ci(x) sets of all the
marked nodes x of any level can be written down in a contiguous memory area of total size
o(n) bits, sorted by the preorder rank of x. A bitvector C of length o(n) marks the starting
position of each new node x in this memory area. Then the area for marked node i starts
at p = select1(C, r). A second bitvector D can mark the starting position of each Cj(x)
in the memory area of each node x, and thus we access the specific set Cj(x) from position
select1(D, rank1(D, p− 1) + j).

Pointers to subtree roots. We store an additional bitvector B[1..2n], parallel to the
parentheses bitvector P [1..2n]. In B, we mark with 1s the positions of the opening and closing
parentheses that are roots of subtrees of any level. As there are O(n/(lg[κ+1] n)3) = o(n)
such nodes, B can be represented within o(n) bits while supporting constant-time rank and

6 It involves building perfect hash functions, which succeeds with constant probability p in time O(n).
Repeating c lgn times, the failure probability is 1 −O(1/nc/ lg(1/p)).
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select operations. We also store the sequence of o(n) parentheses P ′ corresponding to those
in P marked with a 1 in B. Then the nearest subtree root containing node P [i] is obtained by
finding the nearest position to the left marked in B, r = rank1(B, i) and j = select1(B, r),
and then considering the corresponding node P ′[r]. If it is an opening parenthesis, then the
nearest subtree root is the node whose parenthesis opens in P [j]. Otherwise, it is the one
opening at P [j′], where j′ = select1(B, enclose(P ′, open(P ′, r))) (see [19, Sec. 4.1]).

Finding the nearest branching ancestor. A unary path looks like a sequence of open-
ing parentheses followed by a sequence of closing parentheses. The nearest branching
ancestor of P [i] can then be obtained in constant time by finding the nearest closing
parenthesis to the left, l = select0(rank0(P, i)), and the nearest opening parenthesis to
the right, r = select1(rank1(close(P, i)) + 1). Then the answer is the larger between
enclose(P, open(P, l)) and enclose(P, r).

Determining the subtree level of a node. Since we can compute s = subtreesize(i) of a
node P [i] in constant time, we can determine the corresponding level: if s > (1/τ) lg3 n, it is
level 1. Otherwise, we look up τ · s in a precomputed table of size O(lg3 n) that stores the
level corresponding to each possible size.

Therefore, depending on whether we represent both S and S′ or use partial rank structures,
we obtain two results within succinct space.

I Theorem 8. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1. On
a RAM machine of w-bit words, we can build in O(n lg n) time a data structure using
2nH + 4n+ o(n)(H + 1) bits, where H ≤ lg σ is the entropy of the distribution of the node
labels, that answers path τ -majority queries in time O((1/τ) lg∗ n lg lgw σ).

I Theorem 9. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1. On a RAM
machine of w-bit words, we can build in O(n lg n) time (w.h.p.) a data structure using
nH +O(n) + o(nH) bits, where H ≤ lg σ is the entropy of the distribution of the node labels,
that answers path τ -majority queries in time O((1/τ) lg∗ n lg lgw σ).

We note that, within this space, all the typical tree navigation functionality, as well as
access to labels, is supported.

6 Conclusions

We have presented the first data structures that can efficiently find the τ -majorities on the
path between any two given nodes in a tree. Our data structures use linear or near-linear
space, and even succinct space, whereas our query times are close to optimal, by a factor
near log-logarithmic.

As mentioned in the Introduction, many applications of these results require that the
trees are multi-labeled, that is, each node holds several labels. We can easily accommodate
multi-labeled trees T in our data structure, by building a new tree T ′ where each node u
of T with m(u) labels `1, . . . , `m(u) is replaced by an upward path of nodes u1, . . . , um(u),
each ui holding the label `i and being the only child of ui+1 (and um(u) being a child of v1,
where v is the parent of u in T ). Path queries from u to v in T are then transformed into
path queries from u1 to v1 in T ′, except when u (v) is an ancestor of v (u), in which case we
replace u (v) by uu(m) (vm(v)) in the query. All our complexities then hold on T ′, which is
of size n = |T ′| =

∑
u∈T m(u).
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Our query time for path τ -majorities in linear space, O((1/τ) lg∗ n lg lgw σ), is over the
optimal time O(1/τ) that can be obtained for range τ -majorities on sequences [1]. It is
open whether we can obtain optimal time on trees within linear or near-linear space. Other
interesting research problems are solving τ ′-majority queries for any τ ′ ≥ τ given at query
time, in time proportional to 1/τ ′ instead of 1/τ , and to support insertions and deletions of
nodes in T . Similar questions can be posed for τ -minorities, where the O((1/τ) lg lgw σ) query
time of our linear-space solutions is also over the time O(1/τ) achievable on sequences [1].
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Abstract
We consider the problem of encoding two-dimensional arrays, whose elements come from a total
order, for answering Top-k queries. The aim is to obtain encodings that use space close to
the information-theoretic lower bound, which can be constructed efficiently. For 2 × n ar-
rays, we first give upper and lower bounds on space for answering sorted and unsorted 3-
sided Top-k queries. For m × n arrays, with m ≤ n and k ≤ mn, we obtain (m lg

((k+1)n
n

)
+

4nm(m − 1) + o(n))-bit encoding for answering sorted 4-sided Top-k queries. This improves
the min (O(mn lg n),m2 lg

((k+1)n
n

)
+m lgm+ o(n))-bit encoding of Jo et al. [CPM, 2016] when

m = o(lg n). This is a consequence of a new encoding that encodes a 2 × n array to support
sorted 4-sided Top-k queries on it using an additional 4n bits, in addition to the encodings to
support the Top-k queries on individual rows. This new encoding is a non-trivial generalization
of the encoding of Jo et al. [CPM, 2016] that supports sorted 4-sided Top-2 queries on it using
an additional 3n bits. We also give almost optimal space encodings for 3-sided Top-k queries,
and show lower bounds on encodings for 3-sided and 4-sided Top-k queries.
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1 Introduction

Given a one-dimensional (1D) array A[1 . . . n] of n elements from a total order, the range
Top-k query on A (Top-k(i, j, A), 1 ≤ i, j ≤ n) returns the positions of k largest values in
A[i . . . j]. In this paper, we refer to these queries as 2-sided Top-k queries; and the special case
where the query range is [1 . . . i], for 1 ≤ i ≤ n, as the 1-sided Top-k queries. We can extend
the definition to the two-dimensional (2D) case – given an m× n 2D array A[1 . . .m][1 . . . n]
of mn elements from a total order and a k ∈ {1, . . . ,mn}, the range Top-k query on A

(Top-k(i, j, a, b, A), 1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n) returns the positions of k largest values in
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A[i . . . j][a . . . b]. Without loss of generality, we assume that all elements in A are distinct
(by ordering equal elements based on the lexicographic order of their positions). Also, we
assume that m ≤ n. In this paper, we consider the following types of Top-k queries.

Based on the order in which the answers are reported
Sorted query: the k positions are reported in sorted order of their corresponding values.
Unsorted query: the k positions are reported in an arbitrary order.

Based on the query range
3-sided query: the query range is A[i . . . j][1 . . . b], for i, j ∈ {1,m}, and b ∈ {1, n}.
4-sided query: the query range is A[i . . . j][a . . . b], for i, j ∈ {1,m}, and a, b ∈ {1, n}.

We consider how to support these range Top-k queries on A in the encoding model. In
this model, one needs to construct a data structure (an encoding) so that queries can be
answered without accessing the original input array A. The minimum size of an encoding is
also referred to as the effective entropy of the input data [8]. Our aim is to obtain encodings
that use space close to the effective entropy, which can be constructed efficiently. In the rest
of the paper, we use Top-k(i, j, a, b) to denote Top-k(i, j, a, b, A) if A is clear from the context.
Also, unless otherwise mentioned, we assume that all Top-k queries are sorted 4-sided Top-k
queries. Finally, we assume the standard word-RAM model [14] with word size Θ(lg n).

1.1 Previous work
The problem of encoding 1D and 2D arrays to support Top-k queries has been widely studied
in the recent years. Especially, the case when k = 1, which is commonly known as the Range
maximum query (RMQ) problem, has been studied extensively, and has a wide range of
applications [1]. Optimal encodings for answering RMQ queries on 1D and 2D arrays are
well-studied. Fischer and Heun [5] proposed a 2n+ o(n)-bit data structure which answers
RMQ queries on 1D array of size n in constant time. For a 2D array A of size m × n, a
trivial way to encode A for answering RMQ queries is to store the rank of all elements
in A, using O(nm lg n) bits. Golin et al. [8] show that when m = 2 and RMQ encodings
on each row are given, one can support RMQ queries on A using n − O(lg n) extra bits
by encoding joint Cartesian tree on both rows. By extending the above encoding, they
obtained nm(m+ 3)/2-bit encoding for answering RMQ queries on A, which takes less space
than the trivial O(nm lg n)-bit encoding when m = o(lg n). Brodal et al. [3] proposed an
O(min (nm lg n,m2n))-bit data structure which supports RMQ queries on A in constant time.
Finally, Brodal et al. [2] obtained an optimal O(nm lgm)-bit encoding for answering RMQ
queries on A (although the queries are not supported efficiently).

For the case when k = 2, Davoodi et al. [4] proposed a 3.272n+ o(n)-bit data structure
to encode a 1D array of size n, which supports Top-2 queries in constant time. The space
was later improved by Gawrychowski and Nicholson [7] to the optimal 2.755n+ o(n) bits,
although it does not support queries efficiently. For Top-2 queries on 2× n array A, Jo et
al. [11] showed that 3n+ o(n)-bit extra space is enough for answering 4-sided Top-2 queries
on A, when encodings of 2-sided Top-2 queries for each row are given.

For general k, on a 1D array of size n, Grossi et al. [10] proposed an O(n lg k)-bit2 encoding
which supports sorted Top-k queries in O(k) time, and showed that at least n lg k−O(n) bits
are necessary for answering 1-sided Top-k queries; Gawrychowski and Nicholson [7] proposed
a (k + 1)nH(1/(k + 1)) + o(n)-bit3 encoding for Top-k queries (although the queries are not

2 We use lg n to denote log2 n.
3 H(x) = x lg (1/x) + (1− x) lg (1/(1− x)), i.e., an entropy of the binary string whose density of zero is x
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Table 1 Summary of the results of upper and lower bounds for Top-k encodings on 2D arrays.
The lower bound results marked (*) (of Theorem 12 and 13) are for the additional space (in bits)
necessary, assuming that encodings of Top-k queries for both rows are given.

Dimension Query type Space (in bits) Reference
Upper bounds

2× n

3-sided, unsorted 2 lg
((k+1)n

n

)
+ d(n− bk/2c) lg 3e+ o(n) Theorem 2

3-sided, sorted 2 lg
(3n

n

)
+ 2n + o(n) Theorem 3, k = 2

2 lg
((k+1)n

n

)
+ d2n lg 3e+ o(n) Theorem 4

4-sided, sorted
5n−O(lg n) [8], k = 1

2 lg
(3n

n

)
+ 3n + o(n) [11], k = 2

2 lg
((k+1)n

n

)
+ 4n + o(n) Theorem 8

m× n 4-sided, sorted

O(min (nm lg n, m2n)) [8], k = 1
O(nm lg m) [2], k = 1

m2 lg
((k+1)n

n

)
+ m lg m + o(n) [11]

m lg
((k+1)n

n

)
+ 2nm(m− 1) + o(n) Theorem 9

Lower bounds

2× n

4-sided 5n−O(lg n) [8], k = 1
3-sided, unsorted 1.27(n− k/2)− o(n) (*) Theorem 12

3 or 4-sided, sorted 2n−O(lg n) (*) Theorem 13
m× n 4-sided, sorted Ω(nm lg (max (m, k))) [3, 10]

supported efficiently), and showed that at least (k+1)nH(1/(k+1))(1−o(1)) bits are required
to encode Top-k queries. They also proposed a (k + 1.5)nH(1.5/(k + 1.5)) + o(n lg k)-bit
data structure for answering Top-k queries in O(k6 lg2 nf(n)) time, for any strictly increasing
function f . For a 2D array A of size m× n, one can answer Top-k queries using O(nm lg n)
bits, by storing the rank of all elements in A. Jo et al. [11] recently developed the first non-
trivial Top-k encodings on 2D arrays. They proposed an (m2 lg

((k+1)n
n

)
+m lgm+ o(n))-bit

encoding for sorted 4-sided Top-k queries, which takes less space than trivial O(nm lg n)-bit
encoding when n = Ω(km). They also proposed an O(nm lg n)-bit data structure which
supports Top-k queries in O(k) time.

1.2 Our results
For any 2 × n array A, we first show, in Section 2, that given the sorted 1-sided Top-k
encodings of the two individual rows, we can support the 3-sided sorted (resp., unsorted)
Top-k queries on A using an additional d(n− bk/2c) lg 3e+ o(n) (resp., d2n lg 3e+ o(n)) bits.
For unsorted queries, our encoding can answer the queries in 2T (n, k) + O(1) time, when
one can answer the 1-sided sorted Top-k queries for each row in T (n, k) time.

For 4-sided Top-k queries on A, we show that 4n bits are sufficient for answering sorted
4-sided Top-k queries on 2 × n array, when encodings for answering sorted 2-sided Top-k
queries for each row are given. This encoding is obtained by extending a DAG for answering
Top-2 queries on 2×n array which is proposed by Jo et al. [11], but we use a different approach
from their encoding to encode the DAG. Our result generalizes the (5n−O(lg n))-bit encoding
of RMQ query on 2×n array proposed by Golin et al. [8] to general k, and shows that we can
encode a joint Cartesian tree for general k (which corresponds to the DAG in our paper) using
4n bits. Note that the additional space is independent of k. We also obtain a data structure
for answering Top-k queries in O(k2 + kT (n, k)) time using 2S(n, k) + (4k+ 7)n+ ko(n) bits,
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if there exists an S(n, k)-bit encoding to answer sorted 2-sided Top-k queries on a 1D array
of size n in T (n, k) time. Comparing to the 2S(n, k) + 4n + o(n)-bit encoding, this data
structure uses more space but supports Top-k queries efficiently (the 2S(n, k) + 4n+ o(n)-bit
encoding takes O(k2n2 + nkT (n, k)) time for answering Top-k queries).

By extending the 2S(n, k)+4n+o(n)-bit encoding on 2×n array, we obtain (m lg
((k+1)n

n

)
+

2nm(m− 1) + o(n))-bit encoding for answering 4-sided Top-k queries on m× n arrays. This
improves upon the trivial O(mn lg n)-bit encoding when m = o(lg n), and also generalizes
the nm(m+ 3)/2-bit encoding [8] for answering RMQ queries. Comparing with Jo et al.’s [11]
(m2 lg

((k+1)n
n

)
+m lgm+ o(n))-bit encoding, our encoding takes less space in all cases (for

k > 1) since m2 lg
((k+1)n

n

)
= m lg

((k+1)n
n

)
+ m(m − 1) lg

((k+1)n
n

)
. The trivial encoding

of the input array takes O(nm lg n) bits, whereas one can easily show a lower bound of
Ω(nm lg (max (m, k))) bits for any encoding of an m× n array that supports Top-k queries
since at least O(nm lgm) bits are necessary for answering RMQ queries [3], and at least n lg k
bits are necessary for answering Top-k queries for each row [10]. Thus, there is only a small
range of parameters where a strict improvement over the trivial encoding is possible. Our
result closes this gap partially, achieving a strict improvement when m = o(lg n).

Finally in Section 4, given a 2× n array A, we consider the lower bound on additional
space required to answer unsorted (or sorted) Top-k on A when encodings of Top-k query for
each row are given. We show that at least 1.27(n− k/2)− o(n) (or 2n−O(lg n)) additional
bits are necessary for answering unsorted (or sorted) 3-sided Top-k queries on A, when
encodings of unsorted (or sorted) 1-sided Top-k query for each row are given. We also show
that 2n−O(lg n) additional bits are necessary for answering sorted 4-sided Top-k queries on
A, when encodings of unsorted (or sorted) 2-sided Top-k query for each row are given. These
lower bound results imply that our encodings in Sections 2 and 3 are close to optimal (i.e.,
within O(n) bits of the lower bound), since any Top-k encoding for the array A also needs
to support the Top-k queries on the individual rows. All these results are summarized in
Table 1.

2 Encoding 3-sided range Top-k queries on 2 × n array

In this section, we consider the upper bounds on space for encoding unsorted and sorted
3-sided Top-k queries on 2× n array A[1, 2][1 . . . n], given the encodings of Top-k on the two
individual rows. For the case of k = 1 (i.e., the RMQ problem), there exists an optimal
(5n−O(lg n))-bit encoding of a 2×n array, which stores two Cartesian trees for the individual
rows, and encodes the additional information (to answer the queries involving both rows)
using a joint Cartesian tree [8]. In the rest of this section, we assume that k > 1. We first
consider answering unsorted and sorted 3-sided Top-k queries. If sorted 1-sided Top-k queries
on each row can be answered using S(n, k) space4, we can support unsorted and sorted 3-sided
Top-k queries on A using (2S(n, k) + d(n−bk/2c) lg 3e) and (2S(n, k) + d2n lg 3e+ o(n)) bits
respectively. For i ∈ {1, 2}, let Ai = [ai1, . . . , ain] be an array of size n constituting the i-th
row of A and let (i, j) denote the position in the i-th row and j-th column in A. We first
introduce a lemma from Grossi et al. [9], to support queries efficiently.

4 here and in the rest of the paper, we assume that S(n, k) = S(n, n) for k > n
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I Lemma 1 ([9]). Let A be an array of size n over an alphabet of size 3. Then one can
encode A using at most nH0(A) + o(n) ≤ dn lg 3e+ o(n) bits, while supporting the following
queries in O(1) time (H0(A) denotes the zeroth-order entropy of A).

rankA(x, i) : returns the number of occurrence of the symbol x in A[1 . . . i]
selectA(x, i) : returns the position of the i-th occurrence of the symbol x in A.

Also, we define rankA(x, 0) = selectA(x, 0) = 0

Encoding unsorted 3-sided Top-k queries on 2 × n array. We now show how to support
(unsorted and sorted) 3-sided Top-k queries on a 2 × n array A, given the sorted 1-sided
Top-k encodings on the two rows A1 and A2. (Note that in 1D, the space used by the sorted
and unsorted 1-sided Top-k encodings differ by O(k lg k) bits.) For 1 ≤ i ≤ n, let fi and
si = k − fi be the number of answers to the (sorted or unsorted) Top-k(1, 2, 1, i) query that
belong to the first row and the second row, respectively. We first consider the unsorted case.
Since the encodings for answering unsorted 1-sided Top-k queries on A1 and A2 are given, it
is enough to show how to answer 1-sided Top-k queries on A (to support all possible unsorted
3-sided Top-k queries).

I Theorem 2. (∗)5 Let A be a 2× n array. For 1 < k ≤ 2n, if we have S(n, k)-bit encoding
which can answer the sorted 1-sided Top-k queries for each row in T (n, k) time, then we can
answer unsorted 3-sided Top-k queries on A using (2S(n, k) + d(n− bk/2c) lg 3e+ o(n)) bits
with 2T (n, k) +O(1) query time.

Encoding sorted 3-sided Top-k queries on 2 × n array. We now consider the encoding
for answering sorted 3-sided Top-k queries on 2 × n array A, when sorted 1-sided Top-k
encodings for the two rows A1 and A2 are given. Similar to the unsorted case, it is enough to
show how to support the sorted 1-sided Top-k queries on A. We first give an encoding that
uses less space for small values of k, and later give another encoding that is space-efficient
for large values of k

I Theorem 3. (∗) Let A be a 2× n array. For 1 < k ≤ n, if we have S(n, k)-bit encoding
which can answer the sorted 1-sided Top-k queries for each row in T (n, k) time, then we can
encode A using 2S(n, k) + kn bits to support sorted 3-sided Top-k queries in 2T (n, k) time.

The additional space used in Theorem 3 is close to the optimal for k = 1, 2 or 3, but
increases with k. Using similar ideas, one can obtain another encoding that uses 2n lg(k + 1)
bits, in addition to the individual row encodings. In the following, we give an alternative
encoding whose additional space is independent of k.

I Theorem 4. (∗) Let A be a 2 × n array. For 1 < k ≤ 2n, suppose we have S(n, k)-bit
encoding which can answer the sorted 1-sided Top-k queries. Then we can answer sorted
3-sided Top-k queries on A using (2S(n, k) + d2n lg 3e+ o(n)) bits.

If we use the (n lg k +O(n))-bit Top-k encoding of a 1D array by Grossi et al. [10] that
can answer sorted 1-sided Top-k query on 1D array of size n in O(k lg k) time, then we obtain
3-sided unsorted (or sorted) Top-k encodings on A using 2n lg k +O(n) bits. Furthermore
for unsorted queries, we can answer the query in O(k lg k) time. Also if one can construct
an encoding for answering 1-sided unsorted (or sorted) Top-k queries on individual rows

5 Proofs of the results marked with (∗) is omitted due to space limitation, and can be found in the
extended version [12].
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in C(n, k) time, we can construct an encoding for answering 3-sided unsorted (or sorted)
Top-k queries in O(C(n, k) + n lg k) time as follows. Since it is enough to know the answers
of unsorted (or sorted) Top-k(1, 2, 1, i) queries for 1 ≤ i ≤ n to construct, we maintain a
min-heap and insert the first k values (in column-major order) to the heap and sort them
using O(k lg k) time. After that, whenever we insert a next value in A in column-major
order, we delete the smallest value in the heap, using O((n− k) lg k) time in total. The data
structure of Lemma 1 can be constructed in O(n) time [9].

3 Encoding 4-sided Top-k queries on 2 × n array

In this section, we describe the encoding of sorted 4-sided Top-k on 2× n array A, assuming
that sorted 2-sided Top-k encodings on A1 and A2 are given. We show that we can encode
sorted 4-sided Top-k queries on A using at most 2S(n, k) + 4n bits if sorted 2-sided Top-k
queries on each row can be answered in T (n, k) time using S(n, k) bits. By extending
this encoding to an n × m array, we obtain an mS(n, k) + 2nm(m − 1)-bit encoding for
answering the 4-sided Top-k query on m× n array. Note that if we use Gawrychowski and
Nicholson’s (lg

((k+1)n
n

)
+ o(n))-bit optimal encoding for sorted 2-sided Top-k queries on a

1D array [7], we obtain an encoding that takes (m lg
((k+1)n

n

)
+ 2nm(m− 1) + o(n)) bits for

answering 4-sided Top-k queries. This improves upon the trivial O(mn lg n)-bit encoding
when m = o(lg n), and comparing with Jo et al.’s [11] (m2 lg

((k+1)n
n

)
+ m lgm + o(n))-bit

encoding, our encoding takes less space than in all cases when k > 1. Finally for 2× n array,
we describe a data structure for answering Top-k queries in O(k2 + kT (n, k)) time using
2S(n, k) + (4k + 7)n + ko(n) bits, which supports Top-k queries in efficient time, and for
small constant k (2 ≤ k < 160), this data structure takes less space than constructing a
data structure of Grossi et al. [10] on the array of size 2n which stores the values in A in
column-major order.

We first define a binary DAG Dk
A on A, which generalizes the binary DAG defined by

Jo et al. to answer Top-2 queries on A [11]. Then we show how to encode Dk
A using 4n

bits, to answer the sorted 4-sided Top-k queries on A. Every node p in Dk
A is labeled with

some closed interval p = [a, b], where 1 ≤ a, b ≤ n. We use Top-k(p) to refer to the sorted
Top-k(1, 2, a, b, A) query. For a node p = [a, b] in Dk

A and 1 ≤ i ≤ k, let (pi
r, p

i
c) be the

position of the i-th largest element in A[1, 2][a . . . b]. Now we define Dk
A as follows (see

Figure 1 for an example.).

1. The root of Dk
A is labeled with the range [1, n].

2. A node [a, b] does not have any child node (i.e leaf node) if 2(b− a+ 1) ≤ k.
3. Suppose there exists a non-leaf node p = [a, b] in Dk

A, and let a′ and b′, where a ≤ a′ ≤
b′ ≤ b, be the leftmost and rightmost column indices among the answers of Top-k(p),
respectively. If a < b′, then the node p has a node [a, b′ − 1] as a left child. Similarly, if
a′ < b, the node p has a node [a′ + 1, b] as a right child.

The following lemma states some useful properties of Dk
A. All the statements in the

lemma can be proved by simply extending the proofs of the lemmas in [11].

I Lemma 5 ([11]). Let A be a 2 × n array. For any two distinct nodes p = [ap, bp] and
q = [aq, bq] in Dk

A, following statements hold.
(i) Top-k(p) 6= Top-k(q) (i.e., any two distinct nodes have different Top-k answers).
(ii) p ⊂ q if and only if p is descendant of q.
(iii) For any interval [a, b] with 1 ≤ a ≤ b ≤ n, there exists a unique node p[a,b] in Dk

A such
that [a, b] ⊂ p[a,b], and any descendant of p[a,b] does not contain [a, b]. Furthermore, for
such a node p[a,b], Top-k([a, b]) = Top-k(p[a,b]).
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A1 1 21 17 12 20 3 15 11 10
A2 6 5 16 14 19 2 18 4 7

[1,9]

[1,4] [3,9]

[1,2] [3,4] [3,6] [6,9]

[1,1] [2,2] [3,3] [4,4] [4,6] [6,7] [8,9]

[7,7] [8,8] [9,9]

[5,6]

[5,5] [6,6]

Figure 1 2× n array A and the DAG D3
A.

By Lemma 5(iii), if the DAG Dk
A and the answers for each sorted 2-sided Top-k queries cor-

responding to all the nodes in Dk
A are given, then we can answer any sorted Top-k(1, 2, a, b, A)

query by finding the corresponding node in p[a,b] in Dk
A.

Now we describe how to encode Dk
A to answer the Top-k(p) query for each node p ∈ Dk

A.
Our encoding of Dk

A uses a different approach from the encoding of Jo et al. [11], which
encodes by traversing D2

A in level order. We say that a node p = [a, b] picks the position
(x, y) if we store the information that (x, y) is the position of the i-th largest element in
A[1, 2][a . . . b], for some i ≤ k. To encode the DAG Dk

A, we traverse its nodes in a modified
level order, which we describe later. While traversing the nodes of Dk

A in the modified
level order, we classify the nodes as visited, half-visited, or unvisited. All the nodes are
initially unvisited, and the traversal continues until all the nodes in DA

k are visited. During
the traversal of unvisited or half-visited node, we may pick a position whose column index
is contained in that node (under some conditions, described later). Whenever we pick a
position, we store one bit of information to resolve some of the queries. We bound the overall
additional space to 4n bits by showing that each position in A is picked at most twice. For
two nodes pi = [ai, bi] and pj = [aj , bj ] with pi 6⊂ pj and pj 6⊂ pi, we say the node pi preceeds
the node pj if ai < aj .

When the traversal starts at the root node [1, n], we pick all positions which are answers to
the Top-k(1, n,A) query. Since we know the answers to the Top-k(1, n,A1) and Top-k(1, n,A2)
queries, the positions that are picked at the root can be encoded using a k-bit sequence
a1 . . . ak where ai represents the row index of the i-th largest element in A[1, 2][1 . . . n], for
1 ≤ i ≤ k. From the definition of Dk

A, if the label of a node p and the answers of the Top-k(p)
query are given, then it is easy to compute the labels of the children of p.

Since it is trivial to answer the Top-k query at a leaf node, we only focus on the
non-leaf nodes. Suppose that we traverse to a non-leaf node p = [a, b], and let q be one
of its parent nodes (note that a node can have multiple parents in a DAG). Note that
1 ≤ |Top-k(q)−Top-k(p)| ≤ 2, since p contains all the Top-k answers of q except one or both
positions from the column a− 1 or from the column b+ 1. We first consider the case when
|Top-k(q)− Top-k(p)| = 1 (this also includes the case when there exists another parent node
q′ of p such that |Top-k(q) − Top-k(p)| = 1 and |Top-k(q′) − Top-k(p)| = 2). In this case,
traversal visits the node p only once in modified level order, and picks at most one position
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at node p. Let Top-k(q) − Top-k(p) = {(qk′

r , q
k′

c )} for some k′ ≤ k. From the construction
of Dk

A and Lemma 5(ii), it is clear that (p`
r, p

`
c) = (q`

r, q
`
c) if ` < k′; (p`

r, p
`
c) = (q`+1

r , q`+1
c )

if k′ ≤ ` < k; and Top-k(p) − Top-k(q) = {(pk
r , p

k
c )}. Therefore, if the answers of the

Top-(k − 1)(p) query are composed of fp positions from the first row and sp = (k − 1− fp)
positions from the second row, then we can find (pk

r , p
k
c ) by comparing (fp + 1)-th largest

element in A1 and (sp + 1)-th largest element in A2 using Top-k(a, b, A1) and Top-k(a, b, A2)
queries, (we define the position of these elements as the first-candidates of node p), and
choosing the position with larger element. Note that if the answers of the Top-(k − 1)(p)
query contains all positions in A[1][a . . . b] or A[2][a . . . b], there is no first-candidate of node
p at the first or second row respectively. In this case we do not pick any positions at node
p. Now suppose that (1, x) and (2, y) are the first-candidates of node p, and without loss
of generality suppose A[1][x] > A[2][y], and hence (pk

r , p
k
c ) = (1, x). Then we consider the

following cases.

1. If both (1, x) and (2, y) is not picked in the former nodes in Dk
A in modified level order,

we pick (1, x).
2. Suppose (1, x) or (2, y) is already picked by a visited or half-visited node p′ = [a′, b′].

Then we pick (1, x) at node p if and only if for all such p′ does not contain both x and y.

Suppose that Top-(k − 1)(p) is given and one of the first-candidates is picked at node
p. Then we can store its information using one bit, by representing the row index of the
first-candidate picked at p.

Now consider the case |Top-k(q) − Top-k(p)| = 2, and let Top-k(q) − Top-k(p) =
{(qk′

r , q
k′

c ), (qk′′

r , qk′′

c )} for some k′ < k′′ ≤ k. In this case, the traversal visits the node
p twice in modified level order, and picks at most two positions at node p. From the construc-
tion of Dk

A and Lemma 5(ii), it is clear that (p`
r, p

`
c) = (q`

r, q
`
c) if ` < k′; (p`

r, p
`
c) = (q`+1

r , q`+1
c )

if k′ ≤ ` < k′′; (p`
r, p

`
c) = (q`+2

r , q`+2
c ) if k′′ ≤ ` < k − 1; and Top-k(p) − Top-k(q) =

{(pk−1
r , pk−1

c ), (pk
r , p

k
c )}. Therefore, if the answers of Top-(k − 2)(p) query are composed of

fp and sp = (k − 2 − fp) positions in the first and the second row respectively, we can
find (pk−1

r , pk−1
c ) by comparing (fp + 1)-th largest element in A1 and (sp + 1) in A2 using

Top-k(a, b, A1) and Top-k(a, b, A2) query (we again define the position of these elements as
the first-candidates of node p), Suppose that (1, x) and (2, y) are first-candidates of node p,
and without loss of generality suppose A[1][x] > A[2][y], and hence (pk−1

r , pk−1
c ) = (1, x). In

this case, we first pick (1, x) or do not pick anything at node p by the procedure described
above, when we first traverse p in modified level order. When we visit p for the second time,
we can find (pk

r , p
k
c ) by comparing A2[y] with the (fp + 2)-th largest element in A1 (we define

the positions of these elements as the second-candidates of node p), and choose the position
with the larger element. Note that if the answers of the Top-(k − 1)(p) query contains all
positions in A[1][a . . . b] or A[2][a . . . b], there is no second-candidate of node p at the first
or second row respectively. In this case we do not pick any positions at node p during the
second visit of p. Again, suppose that (1, x′) and (2, y) are the second-candidates of node p
and without loss of generality suppose A[1][x′] < A[2][y], and hence(pk

r , p
k
c ) = (2, y). Then

we consider the following cases.

1. If both (1, x′) and (2, y) is not picked in the former nodes in Dk
A in the modified level

order, we pick (2, y).
2. Suppose (1, x′) or (2, y) is already picked by the visited or half-visited p′′ = [a′′, b′′]. Then

we pick (2, y) at node p if and only if for all such p′′ does not contain both x′ and y.
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Note that if Top-(k − 2)(p) is given and (1, x) is picked at node p, we can store its
information using one bit, by representing a row index of first-candidate picked at p. Similarly,
if Top-(k − 1)(p) is given and (2, y) is picked at node p, we can store its information using
one more bit.

Now we describe the algorithm to traverse the nodes in Dk
A in the modified level order.

In modified level order, for any two nodes p = [i, j] and p′ = [i′, j′], we traverse p prior
to p′ if and only if all column indices of p′’s first or second candidates are contained in p.
Furthermore by the procedure described above, we do not pick any position at p′ in this case
if there exists a position which is the first or second candidate of both p and p′. In the DAG,
the level of the node p, denoted by l(p), is defined as the number of edges in the longest path
from root to p.

1. Mark the root of Dk
A as visited, and add its children into visit-list, which is an ordered

list such that for two nodes p and q in visit-list, p comes before q in visit-list if and only
if l(p) < l(q) or l(p) = l(q) and p precedes q in the DAG.

2. Find the leftmost unvisited or half-visited node p from visit-list which satisfies one of the
following conditions (without loss of generality, assume that x ≤ y).

Number of first or second candidates of p is less than 2.
First or second candidates of p are (1, x) and (2, y), and there exists no node p′ in
visit-list such that (a) p ⊂ p′, or (b) p′ precedes p and x ∈ p′, or (c) p precedes p′ and
y ∈ p′.

Then we continue the traversal from p.
3. Let q be a parent of p. If (i) |Top-k(q)− Top-k(p)| = 1, or (ii) |Top-k(q)− Top-k(p)| = 2

and p is half-visited, or (iii) the number of first or second candidates of p is less than
2, then mark p as visited, delete p from the visit-list, and insert p’s children (if any) to
visit-list. If none of these three conditions hold, then mark p as half-visited.

4. Repeat Steps 2 and 3 until all the nodes in Dk
A are marked as visited.

For example we traverse the nodes of D3
A in Figure 1 as: [1, 9]→ [1, 4]→ [1, 4]→ [3, 9]→

[1, 2] → [1, 2] → [3, 6] → [6, 9] → [6, 9] → [1, 1] → [2, 2] → [3, 4] → [4, 6] → [6, 7] → [8, 9] →
[8, 9] → [3, 3] → [4, 4] → [5, 6] → [8, 8] → [9, 9] → [5, 5] → [6, 6]. During the traversal (in
the above order), the position(s) picked at each node are: {(1, 2), (1, 5), (2, 5)} → (1, 3)→
(2, 3) → (2, 7) → (1, 1) → (1, 2) → ε → (1, 7) → (1, 8) → ε → ε → (2, 4) → ε → (1, 6) →
(1, 9)→ (2, 9)→ ε→ ε→ ε→ ε→ ε→ ε→ ε, respectively (ε indicates that no position is
picked). Now we bound the total number of picked positions during the traversal of Dk

A.

I Lemma 6. (∗) Given 2×n array A[1, 2][1 . . . n] and DAG Dk
A, any position in A is picked

at most twice while we traverse all nodes in Dk
A in the modified level order.

Now we prove our main theorem. To obtain a construction time of our encoding, we first
introduce a lemma which states a maximum number of nodes in Dk

A.

I Lemma 7. (∗) Given 2× n array A and DAG Dk
A, there are at most 6kn nodes in Dk

A.

I Theorem 8. (∗) Given a 2× n array A, if there exists an S(n, k)-bit encoding to answer
sorted 2-sided Top-k queries on a 1D array of size n in T (n, k) time and such encoding
can be constructed in C(n, k) time, then we can encode A in 2S(n, k) + 4n bits using
O(C(n, k) + k2n2 + knT (n, k)) time.

We can obtain an encoding for answering sorted 4-sided Top-k queries on an m× n array
by extending the encoding of a 2× n array described in Theorem 8 as stated below.
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I Theorem 9. (∗) Given an m × n array A, if there exists an S(n, k)-bit encoding to
answer sorted 2-sided Top-k queries on a 1D array of size n, then we can encode A in
mS(n, k) + 2nm(m− 1) bits, to support sorted 4-sided Top-k queries on A.

Data structure for answering 4-sided Top-k queries on 2 × n array. The encoding of
Theorem 8 shows that 4n bits are sufficient for answering Top-k queries whose range spans
both rows, when encodings for answering sorted 2-sided Top-k queries for each row are
given. However, this encoding does not support queries efficiently (takes O(k2n2 +knT (n, k))
time) since we need to reconstruct all the nodes in DA to answer a query (in the worst
case). We now show that the query time can be improved to O(k2 + kT (n, k)) time if we
use (4k + 7)n + ko(n) additional bits. Note that if we simply use the data structure of
Grossi et al. [10] (which takes 44n lg k + O(n lg lg k) bits to encode a 1D array of length
n to support Top-k queries in O(k) time) on the 1D array of size 2n obtained by writing
the values of A in column-major order, we can answer Top-k queries on A in O(k) time
using 88n lg k +O(n lg lg k) additional bits. Although our data structure takes more query
time and takes asymptotically more space, it uses less space for small values of k (note that
4k + 7 < 88 lg k for all integers 2 ≤ k < 160) when n is sufficiently large. We now describe
our data structure.

We first define a graph G12 = (V (G12), E(G12)) on A as follows. The set of vertices
V (G12) = {1, 2, . . . n}, and there exists a edge (i, j) ∈ E(G12) if and only if (i) i < j and
A[1][i] < A[2][j], (ii) there are at most k − 1 positions in A[1, 2][i . . . j] whose corresponding
values are larger than both A[1][i] and A[2][j], and (iii) there is no vertex j′ > i that satisfies
the condition (ii) such that A[1][j] < A[2][j′] < A[2][j]. We also define a graph G21 on A
which is analogous to G12. Each of the graphs G12 and G21 have n vertices and at most n
edges. Also for any vertex v ∈ V (G12) (resp., V (G21)), there exists at most one vertex v′ in
G12 (resp., G21) such that v is incident to v′ and v < v′. We now show that G12 (thus, also
G21) is a k-page graph, i.e. there exist no k + 1 edges (i1, j1) . . . (ik+1, jk+1) ∈ E(G12) such
that i1 < i2 · · · < ik+1 < j1 < j2 · · · < jk+1.

I Lemma 10. Given 2× n array A, a graph G12 on A is k-page graph.

Proof. Suppose that there are k + 1 edges (i1, j1) . . . (ik+1, jk+1) ∈ E(G12) such that i1 <
i2 · · · < ik+1 < j1 < j2 · · · < jk+1, and for 1 ≤ t ≤ k + 1, let it be a position of the minimum
element in A1[i1 . . . ik+1]. Then by the definition fo G12, there are at least k positions
(1, it+1), . . . , (1, ik+1), (2, j1), . . . , (2, jt−1) in A[1, 2][it . . . jt] whose corresponding values in A
are larger than both A[1][it] and A[2][jt], which contradicts the definition of G12. J

From the above lemma and the succinct representation of k-page graphs of Munro and
Raman [15] (with minor modification as described in [6]), we can encode G12 and G21 using
(4k + 4)n + ko(n) bits in total, and for any vertex v in V (G12) ∪ V (G21), we can find a
vertex with the largest index which incident to v in O(k) time. Also to compare the elements
in the same column, we maintain a bit string PA[1 . . . n] of size n such that for 1 ≤ i ≤ n,
PA[i] = 0 if and only if A[1][i] > A[2][i]. Finally, for G12 (resp., G21), we maintain another
bit string Q12[1 . . . n−1] (resp., Q21[1 . . . n−1]) such that for 1 ≤ i ≤ n−1, Q21[i] = 1 (resp.,
Q21[i] = 1) if and only if all elements in A2[i+ 1 . . . n] (resp., A1[i+ 1 . . . n]) are smaller than
A[1][i] (resp., A[2][i]). We now show that if there is an encoding which can answer the sorted
Top-k queries on each row, then the encoding of G12, G21, and the additional arrays defined
above are enough to answer 4-sided Top-k queries on A.



S. Jo and S. R. Satti 69:11

I Theorem 11. (∗) Given a 2 × n array A, if there exists an S(n, k)-bit encoding to
answer sorted 2-sided Top-k queries on a 1D array of size n in T (n, k) time, then there is
a 2S(n, k) + (4k + 7)n+ ko(n)-bit data structure which can answer Top-k queries on A in
O(k2 + kT (n, k)) time.

4 Lower bounds for encoding range Top-k queries on 2 × n array

In this section, we consider the lower bound on space for encoding a 2×n array A to support
Top-k queries, when k > 1. Specifically for 1 ≤ i ≤ j ≤ n, we consider to lower bound on
extra space for answering i) unsorted and sorted 3-sided Top-k(1, 2, 1, i) queries, assuming
that we have access to the encodings of the individual rows of A that can answer unsorted or
sorted 1-sided Top-k queries and ii) sorted 4-sided Top-k(1, 2, i, j) queries, assuming that we
have access to the encodings of the individual rows of A that can answer sorted 2-sided Top-k
queries. We show that for answering unsorted (or sorted) 3-sided Top-k(1, 2, 1, i) queries on
A, at least 1.27n−o(n) (or 2n−O(lg n)) extra bits are necessary, and for answering unsorted
or sorted 4-sided Top-k(1, 2, i, j) queries on A, at least 2n−O(lg n) extra bits are necessary.

For simplicity (to avoid writing floors and ceilings, and to avoid considering some boundary
cases), we assume that k is even. (Also, if k is odd we can consider the lower bound on extra
space for answering 3-sided Top-k queries as the lower bound of extra space for answering
3-sided Top-(k − 1) queries – it is clear that former one requires more space.) For both
unsorted and sorted query cases, we assume that all elements in A are distinct, and come
from the set {1, 2, . . . 2n}; and also that each row in A is sorted in the ascending order.
Finally, for 1 ≤ ` ≤ 2n, we define the mapping A−1(`) = (i, j) if and only if A[i][j] = `.

Unsorted 3-sided Top-k query. If n ≤ k/2 we do not need any extra space since all
positions are answers of unsorted Top-k(1, 2, 1, i, A) queries for i ≤ n. If not (n > k/2), for
1 ≤ i ≤ n − k/2, let Ui be a set of arrays of size 2 × n such that i) for any B ∈ Ui, all of
{1, 2 . . . 2i} are in B[1, 2][1 . . . i] and each row in B is sorted in the ascending order, and ii) for
any two distinct arrays B,C ∈ Ui, there exists 1 ≤ j ≤ i such that {B−1(2j−1), B−1(2j)} 6=
{C−1(2j − 1), C−1(2j)}. By the definition of Ui, it is easy to show that for any two
distinct arrays B,C ∈ Ui, unsorted Top-k(1, 2, 1, k/2 + j, B) 6= Top-k(1, 2, 1, k/2 + j, C) if
{B−1(2j − 1), B−1(2j)} 6= {C−1(2j − 1), C−1(2j)} for some j ≤ i. We compute the size of
Ui as follows. |U1| = 1 since there exists only one case as {B−1(1), B−1(2)} = {(1, 1), (2, 1)}.
For i = 2, we can consider three cases as (1, 2, 3, 4), (1, 3, 2, 4), or (1, 4, 2, 3) if we write the
elements of B[1, 2][1, 2] in U2 in row-major order (note that each row is sorted in ascending
order). By computing the size of Ui for 2 < i ≤ n− k/2, we obtain a following theorem.

I Theorem 12. Given a 2× n array A and encodings for answering unsorted (or sorted)
1-sided Top-k queries on both rows in A, at least d(n− k/2) lg (1 +

√
2)e − o(n) = 1.27(n−

k/2)− o(n) additional bits are necessary for answering unsorted 3-sided Top-k queries on A.

Proof. (Sketch) Since we need at least lg |Un−k/2| bits of extra space for answering unsorted
Top-k queries which span both rows, we only need to compute the size of Un−k/2. To compute
this, for 2 < i ≤ n− k/2, we construct the arrays in Ui from the arrays in Ui−1, and obtain
the recurrence relation: |Ui| = 3|Ui−2|+ 2(|Ui−1| − |Ui−2|). Solving this gives us the stated
bound. Details of the proof are omitted due to space limitation. J

Sorted 3-sided and 4-sided Top-k query. In this case we divide a 2 × n array A into
2n/k blocks A1 . . . A2n/k of size 2 × k/2 as for 1 ≤ ` ≤ k/2, A`[i][j] = A[i][2(` − 1) +
j] and all values of A` are in {k(` − 1) + 1 . . . k`}. Then for any 2 × n array A and
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A′, sorted Top-k(1, 2, k(i − 1)/2 + 1, ki/2, A) 6= Top-k(1, 2, k(i − 1)/2 + 1, ki/2, A′), and
Top-k(1, 2, 1, ki/2, A) 6= Top-k(1, 2, 1, ki/2, A′) if Ai 6= A′i for 1 ≤ i ≤ 2n/k. Let Si be the set
of arrays of size 2× i such that for any B ∈ Si, all values of B are in {1, 2i} and both rows of
B are sorted in ascending order. Since the size of Si is same as central binomial number,

(2i
i

)
,

which is well-known as at least 4i/
√

4i [13]. Therefore, at least d2n lg |Sk/2|/ke ≥ 2n−O(lg n)
bits are necessary for answering sorted Top-k queries that span both the rows, when encodings
for answering sorted (or unsorted) on both rows are given.

I Theorem 13. Given a 2× n array A, at least 2n−O(lg n) additional bits are necessary
for answering sorted 3-sided (resp., 4-sided) Top-k queries on A if encodings for answering
unsorted (or sorted) 1-sided (resp., 2-sided) Top-k queries on both rows in A are given.

5 Conclusion

In this paper, we proposed encodings for answering Top-k queries on 2D arrays. For 2× n
arrays, we proposed upper and lower bounds on space for answering 3-sided sorted and
unsorted Top-k queries. Finally, we obtained an (m lg

((k+1)n
n

)
+ 2nm(m − 1) + o(n))-bit

encoding for answering 4-sided sorted Top-k queries on m × n arrays. We end with the
following open problems: (a) can we support 4-sided sorted Top-k queries with efficient query
time on m × n arrays using less than O(nm lg n) bits when m = o(lg n)? (b) is there any
improved lower or upper bound for answering 4-sided sorted Top-k queries on 2× n arrays?
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Abstract
A border u of a word w is a proper factor of w occurring both as a prefix and as a suffix. The
maximal unbordered factor of w is the longest factor of w which does not have a border. Here
an O(n log n)-time with high probability (or O(n log n log2 log n)-time deterministic) algorithm
to compute the Longest Unbordered Factor Array of w for general alphabets is presented, where
n is the length of w. This array specifies the length of the maximal unbordered factor starting
at each position of w. This is a major improvement on the running time of the currently best
worst-case algorithm working in O(n1.5) time for integer alphabets [Gawrychowski et al., 2015].
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1 Introduction

There are two central properties characterising repetitions in a word –period and border–
which play direct or indirect roles in several diverse applications ranging over pattern
matching, text compression, assembly of genomic sequences and so on (see [3, 6]). A period
of a non-empty word w of length n is an integer p such that 1 ≤ p ≤ n, if w[i] = w[i+ p], for
all 1 ≤ i ≤ n−p. For instance, 3, 6, 7, and 8 are periods of the word aabaabaa. On the other
hand, a border u of w is a (possibly empty) proper factor of w occurring both as a prefix
and as a suffix of w. For example, ε, a, aa, and aabaa are the borders of w = aabaabaa.

In fact, the notions of border and period are dual: the length of each border of w is equal
to the length of w minus the length of some period of w. For example, aa is a border of the
word aabaabaa; it corresponds to period 6 = |aabaabaa|− |aa|. Consequently, the basic data
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structure of periodicity on words is the border array which stores the length of the longest
border for each prefix of w. The computation of the border array of w was the fundamental
concept behind the first linear-time pattern matching algorithm – given a word w (pattern),
find all its occurrences in a longer word y (text). The border array of w is better known as
the “failure function” introduced by Knuth, Morris, and Pratt [12]. It is well-known that the
border array of w can be computed in O(n) time, where n is the length of w, by a variant of
the Knuth-Morris-Pratt algorithm [12].

Another notable aspect of the inter-dependency of these dual notions is the relationship
between the length of the maximal unbordered factor of w and the periodicity of w. A maximal
unbordered factor is the longest factor of w which does not have a non-empty border; its
length is usually represented by µ(w), e.g. the maximal unbordered factor is aabab and
µ(w) = 5 for the word w = baabab. This dependency has been a subject of interest in the
literature for a long time, starting from the 1979 paper of Ehrenfeucht and Silberger [9] in
which they raised the question – at what length of w, µ(w) is maximal (i.e., equal to the
minimal period of the word as it is well-known that it cannot be longer than that). This
line of questioning, after being explored for more than three decades, culminated in 2012
with the work by Holub and Nowotka [11] where an asymptotically optimal upper bound
(µ(w) ≤ 3

7n) was presented; the historic overview of the related research can be found in [11].
Somewhat surprisingly, the symmetric computational problem – given a word w, compute

the longest factor of w that does not have a border – had not been studied until very recently.
In 2015, Kucherov et al. [15] considered this arguably natural problem and presented the
first sub-quadratic-time solution. A naïve way to solve this problem is to compute the border
array starting at each position of w and locating the rightmost zero, which results in an
algorithm with O(n2) worst-case running time. On the other hand, the computation of the
maximal unbordered factor can be done in linear time for the cases when µ(w) or its minimal
period is small (i.e., at most half the length of w) using the linear-time computation of
unbordered conjugates [8]. However, as has been illustrated in [15] and [2], most of the words
do not fall in this category owing to the fact that they have large µ(w) and consequently
large minimal period. In [15], an adaptation of the basic algorithm has been provided with
average-case running time O(n2/σ4), where σ is the alphabet’s size; it has also been shown
to work better, both in practice and asymptotically, than another straightforward approach
that employs data structures from [14, 13] to query all relevant factors.

The currently fastest worst-case algorithm to compute the maximal unbordered factor
of a given word takes O(n1.5) time; it was presented by Gawrychowski et al. [10] and it
works for integer alphabets (alphabets of polynomial size in n). This algorithm works by
categorising bordered factors into short borders and long borders depending on a threshold,
and exploiting the fact that, for each position, the short borders are bounded by the threshold
and the long borders are small in number. The resulting algorithm runs in O(n log n) time on
average. More recently, an O(n)-time average-case algorithm was presented using a refined
bound on the expected length of the maximal unbordered factor [2].

Our Contribution. In this paper, we show how to efficiently answer the Longest Unbordered
Factor question using combinatorial insight. Specifically, we present an algorithm that
computes the Longest Unbordered Factor Array in O(n log n) time with high probability. The
algorithm can also be implemented deterministically in O(n log n log2 log n) time. This array
specifies the length of the maximal unbordered factor at each position in w. We thus improve
on the running time of the currently fastest algorithm, which reports only the maximal
unbordered factor of w and works only for integer alphabets, taking O(n1.5) time.
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Structure of the Paper. In Section 2, we present the preliminaries, some useful properties
of unbordered words, the algorithmic toolbox, and a formal definition of the problem. We lay
down the combinatorial foundation of the algorithm in Section 3 and expound the algorithm
in Section 4; its analysis is explicated in Section 5. We conclude this paper with a final
remark in Section 6.

2 Background

Definitions and Notation. We consider a finite alphabet Σ of letters. Let Σ∗ be the set of
all finite words over Σ. The empty word is denoted by ε. The length of a word w is denoted
by |w|. For a word w = w[1]w[2] . . w[n], w[i . . j] denotes the factor w[i]w[i+ 1] . . w[j], where
1 ≤ i ≤ j ≤ n. The concatenation of two words u and v is the word composed of the letters of
u followed by the letters of v. It is denoted by uv or also by u · v to show the decomposition
of the resulting word. Suppose w = uv, then u is a prefix and v is a suffix of w; if u 6= w

then u is a proper prefix of w; similarly, if v 6= w then v is a proper suffix of w. Throughout
the paper we consider a non-empty word w of length n over a general alphabet Σ; in this
case, we replace each letter by its rank such that the resulting word consists of integers in
the range {1, . . . , n}. This can be done in O(n log n) time after sorting the letters of Σ.

An integer 1 ≤ p ≤ n is a period of w if and only if w[i] = w[i+ p] for all 1 ≤ i ≤ n− p.
The smallest period of w is called the minimum period (or the period) of w, denoted by λ(w).
A word u (u 6= w) is a border of w, if w = uv = v′u for some non-empty words v and v′; note
that u is both a proper prefix and a suffix of w. It should be clear that if w has a border of
length |w| − p then it has a period p. Thus, the minimum period of w corresponds to the
length of the longest border (or the border) of w. Observe that the empty word ε is a border
of any word w. If u is the shortest border then u is the shortest non-empty border of w.

The word w is called bordered if it has a non-empty border, otherwise it is unbordered.
Equivalently, the minimum period p = |w| for an unbordered word w. Note that every
bordered word w has a shortest border u such that w = uvu, where u is unbordered. By
µ(w) we denote the maximum length among all the unbordered factors of w.

Useful Properties of Unbordered Words. Recall that a word u is a border of a word w if
and only if u is both a proper prefix and a suffix of w. A border of a border of w is also a
border of w. A word w is unbordered if and only if it has no non-empty border; equivalently
ε is the only border of w. The following properties related to unbordered words form the
basis of our algorithm and were presented and proved in [7].

I Proposition 1 ([7]). Let w be a bordered word and u be the shortest non-empty border of
w. The following propositions hold:
1. u is an unbordered word;
2. u is the unique unbordered prefix and suffix of w;
3. w has the form w = uvu.

I Proposition 2 ([7]). For any word w, there exists a unique sequence (u1, · · · , uk) of
unbordered prefixes of w such that w = uk · · ·u1. Furthermore, the following properties hold:
1. u1 is the shortest border of w;
2. uk is the longest unbordered prefix of w;
3. for all i, 1 ≤ i ≤ k, ui is an unbordered prefix of uk.
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The computation of the unique sequence described in Proposition 2 provides a unique
unbordered-decomposition of a word. For instance, for w = baababbabab the unique
unbordered-decomposition of w is baa · ba · b · ba · ba · b.

Longest Successor Factor (Length and Reference) Arrays. Here, we present the arrays
that will act as a toolbox for our algorithm. The longest successor factor of w (denoted by
lsf) starting at position i, is the longest factor of w that occurs at i and has at least one
other occurrence in the suffix w[i+ 1 . . n]. The longest successor factor array gives for each
position i in w, the length of the longest factor starting both at position i and at another
position j > i. Formally, the longest successor factor array (LSF`) is defined as follows.

LSF`[i] =
{

0 if i = n,

max{k | w[i . . i+ k − 1] = w[j . . j + k − 1}, for i < j ≤ n.
Additionally, we define the LSF-Reference Array, denoted by LSFr. This array specifies,

for each position i of w, the reference of the longest successor factor at i. The reference of
i is defined as the position j of the last occurrence of w[i . . i + LSF`[i] − 1] in w; we say i
refers to j. Formally, LSF-Reference Array (LSFr) is defined as follows.

LSFr[i] =
{
nil if LSF`[i] = 0,
max{j | w[j . . j + LSF`[i]− 1] = w[i . . i+ LSF`[i]− 1]} for i < j ≤ n.

Computation: Note that the longest successor factor array is a mirror image of the
well-studied longest previous factor array which can be computed in O(n) time for integer
alphabets [4, 5]. Moreover, in [4], an additional array that keeps a position of some previous
occurrence of the longest previous factor was presented; such position may not be the
leftmost. Arrays LSF` and LSFr can be computed using simple modifications (pertaining to
the symmetry between the longest previous and successor factors) of this algorithm1 within
O(n) time for integer alphabets.

I Example 3. Let w = aabbabaabbaababbabab. The associated arrays are as follows.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
w[i] a a b b a b a a b b a a b a b b a b a b

LSF`[i] 5 6 5 4 3 4 3 4 3 2 1 4 3 2 1 3 2 1 0 0
LSFr[i] 7 14 15 16 17 10 11 14 15 18 19 17 18 19 20 18 19 20 nil nil

I Remark. For brevity, we will use lsf and luf to represent the longest successor factor and
the longest unbordered factor, respectively.

Problem Definition. The Longest Unbordered Factor Array problem can be defined
formally as follows.

Longest Unbordered Factor Array
Input: A word w of length n.
Output: An array LUF[1 . . n] such that LUF[i] is the length of the maximal unbordered
factor starting at position i in w, for all 1 ≤ i ≤ n.

1 The modified algorithm also computes some starting position j > i for each factor w[i . . i + |LSF`[i]|− 1],
1 ≤ i ≤ n. Each such factor corresponds to the lowest common ancestor of the two terminal nodes
in the suffix tree of w representing the suffixes w[i . . n] and w[j . . n]; this ancestor can be located in
constant time after linear-time preprocessing [1]. A linear-time preprocessing of the suffix tree also
allows for constant-time computation of the rightmost starting position of each such factor.
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I Example 4. Consider w = aabbabaabbaababbabab, then the longest unbordered factor
array is as follows. (Observe that w is unbordered thus µ(w) = |w| = 20.)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
w[i] a a b b a b a a b b a a b a b b a b a b

LUF[i] 20 3 12 9 12 3 14 3 11 3 10 5 2 3 5 2 2 2 2 1

3 Combinatorial Tools

The core of our algorithm exploits the unique unbordered-decomposition of all suffixes
of w in order to compute the length of the maximal (longest) unbordered prefix of each
such suffix. Let the unbordered-decomposition of w[i . . n] be uk · · ·u1 as in Proposition 2.
Then LUF[i] = |uk|. In order to compute the unbordered-decomposition for all the suffixes
efficiently, the algorithm uses the repetitive structure of w characterised by the longest
successor factor arrays.

Basis of the algorithm. Abstractly, it is easy to observe that for a given position, if the
length of the longest successor factor is zero (no factor starting at this position repeats
afterwards) then the suffix starting at that position is necessarily unbordered. On the other
hand, if the length of the longest successor factor is smaller than the length of the unbordered
factor at the reference (the position of the the last occurrence of the longest successor factor)
then the ending positions of the longest unbordered factors at this position and that at
its reference will coincide; these two cases are formalised in Lemmas 5 and 6 below. The
remaining case is not straightforward and its handling accounts for the bulk of the algorithm.

I Lemma 5. If LSF`[i] = 0 then LUF[i] = n− i+ 1, for 1 ≤ i ≤ n.

I Lemma 6. If LSFr[i] = j and LSF`[i] < LUF[j] then LUF[i] = j+LUF[j]− i, for 1 ≤ i ≤ n.

Proof. Let k = j+LUF[j]−1. We first show that w[i . . k] is unbordered. Assume that w[i . . k]
is bordered and let β be the length of one of its borders (β < LSF`[i] as LSFr[i] = j). This
implies that w[i . . i+β−1] = w[k−β+1 . . k]. Since w[i . . i+LSF`[i]−1] = w[j . . j+LSF`[i]−1],
we get w[j . . j + β − 1] = w[k− β + 1 . . k] (i.e., w[j . . k] is bordered) which is a contradiction.
Moreover, w[k + 1 . . n] can be factorised into prefixes of w[j . . k] (by definition of LUF);
every such prefix is also a proper prefix of w[i . . i+ LSF`[i]− 1] which will make every factor
w[i . . k′], k < k′ ≤ n, to be bordered. This completes the proof. J

We introduce the notion of a hook to handle finding the unbordered-decomposition of
suffixes w[i . . n] for the remaining case (i.e., when LSF`[i] ≥ LUF[LSFr[i]]).

I Definition 7 (Hook). Consider a position j in a length-n word w. Its hook Hj is the smallest
position q such that w[q . . j − 1] can be decomposed into unbordered prefixes of w[j . . n].

The following observation provides a greedy construction of this decomposition.

I Observation 8. The decomposition of a word v into unbordered prefixes of another word u
is unique. This decomposition can be constructed by iteratively trimming the shortest prefix
of u which occurs as a suffix of the decomposed word.

Moreover, the decomposability into unbordered prefixes of u is hereditary in a certain sense:
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i q j

v v
uu

i q j

u1u2ur−1
· · ·

ur

LSF`[i] = |v|
LSFr[i] = j

LUF[j] = |u|

Hj = q

Figure 1 Case a (i < q): The unbordered-decomposition of w[i . . n] consists of w[i . . q− 1] as the
longest unbordered prefix, followed by a sequence of unbordered prefixes of u, including u itself at
position j. Therefore, LUF[i] = q − i.

I Observation 9. If a word v can be decomposed into unbordered prefixes of u, then every
prefix of v also admits such a decomposition. Formally, if v = ur · ur−1 · . . · u2 · u1 such
that each ui, r ≥ i ≥ 1, is an unbordered prefix of u then any prefix v[1 . . k] can be uniquely
decomposed as v[1 . . k] = ur · ur−1 · . . · ui−1 · u′p · u′p−1 · . . · u′1, where k falls in ui and each
u′i, p ≥ i ≥ 1, is an unbordered prefix of u; simply, the decomposition preceding ui will be
retained by the prefix.

I Example 10. Consider w = aabbabaabbaababbabab as in Example 4. Observe that
H18 = 13: the factor w[13 . . 17] = ba · b · ba can be decomposed into unbordered prefixes of
w[18 . . 20] = bab. Moreover, no prefix of w[18 . . 20] matches a suffix of w[1 . . 12] = · · · aa.

The hook Hj has its utility when j is a reference as shown in the following lemma.

I Lemma 11. Consider a position i such that LSF`[i] ≥ LUF[j], where j = LSFr[i]. Then

LUF[i] =
{
Hj − i if i < Hj ,
LUF[j] otherwise.

Proof. Let u = w[j . . j + LUF[j]− 1], v = w[i . . i+ LSF`[i]− 1], and q = Hj . Observe that u
occurs at position i and that w[q . . n] can be decomposed into unbordered prefixes of u.
Case a: i < q. We shall prove that w[i . . q − 1] is the longest unbordered prefix of w[i . . n];

see Figure 1. By Observation 9, any longer factor w[i . . k], q ≤ k ≤ n has a suffix w[q . . k]
composed of unbordered prefixes of u. Thus, w[i . . k] must be bordered, because u is its
prefix. To conclude, for a proof by contradiction suppose that w[i . . q − 1] has a border
v′. Note that |v′| ≤ LSF`[i], so v′ is a prefix of v. Hence, it occurs both as a suffix of
w[1 . . q − 1] and a prefix of w[j . . n], which contradicts the greedy construction of q = Hj
(Observation 8).

Case b: i ≥ q. The decomposition of w[q . . n] into unbordered prefixes of u yields a decom-
position of w[i . . n] into unbordered prefixes of u, starting with u. This is the unbordered-
decomposition of w[i . . n] (see Proposition 2), which yields LUF[i] = |u| = LUF[j]. J

4 Algorithm

The algorithm operates in two phases: a preprocessing phase followed by the main computa-
tion phase. The preprocessing phase accomplishes the following: Firstly, compute the longest
successor factor array LSF` together with LSFr array. If LSFr[i] = j then we say i refers to j
and mark j in a boolean array (IsReference) as a reference.

In the main phase, the algorithm computes the lengths of the longest unbordered factors
for all positions in w. Moreover, it determines HOOK[j] = Hj for each potential reference,
i.e., each position j such that j = LSFr[i] and LSF`[i] ≥ LUF[j] for some i < j; see Lemma 11.
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q j

uu1

i1

u2

i2

ur

ikip

ukup

ip−1

· · ·· · ·· · ·

Figure 2 A chain of consecutive shortest prefixes of w[j . . n] starting at positions i1 > i2 > · · · >
ir = q. No prefix of w[j . . n] is a suffix of w[1 . . q − 1], so the hook value of position j is Hj = q.
Meanwhile, HOOK[ik] is set to ip−1 in order to avoid iterating through ik+1, . . . , ip−1 again.

Positions are processed from right to left (in decreasing order) so that if i refers to j,
then LUF[j] (and HOOK[j], if necessary) has already been computed before i is considered.
For each position i, the value of LUF[i] is determined as follows:
1. If LSF`[i] = 0, then LUF[i] = n− i+ 1.
2. Otherwise

a. If LSF`[i] < LUF[j], then LUF[i] = j + LUF[j]− i.
b. If LSF`[i] ≥ LUF[j] and i ≥ HOOK[j], then LUF[i] = LUF[j].
c. If LSF`|[i] ≥ LUF[j] and i < HOOK[j], then LUF[i] = HOOK[j]− i.

If i is a potential reference, then HOOK[i] is also computed, as described in Section 4.1. It is
evident that the computational phase of the algorithm fundamentally reduces to finding the
hooks for potential references; for brevity, the term reference will mean a potential reference
hereafter.

4.1 Finding Hook (FindHook Function)
Main idea. When FindHook is called on a reference j, it must return Hj . A simple
greedy approach follows directly from Observation 8; see also Figure 2. Initially, the factor
w[1 . . j − 1] is considered and the shortest suffix of w[1 . . j − 1] which is a prefix of w[j . . n]
is computed. Then this suffix, denoted u1 = w[i1 . . j − 1], is truncated (chopped) from the
considered factor w[1 . . j − 1]; the next factor considered will be w[1 . . i1 − 1]. In general,
we iteratively compute and truncate the shortest prefixes of w[j . . n] from the right end
of the considered factor; shortening the length of the considered factor in each iteration
and terminating as soon as no prefix of w[j . . n] can be found. If the considered factor at
termination is w[1 . . q − 1], position q is returned by the function as Hj .

The factors w[q . . j−1] considered by successive calls of FindHook function may overlap.
Moreover, the same chains of consecutive unbordered prefixes may be computed several
times throughout the algorithm. To expedite the chain computation in the subsequent calls
of FindHook on another reference j′ (j′ < j), we can recycle some of the computations
done for j by shifting the value HOOK[·] of each such index (at which a prefix was cut for j)
leftwards (towards its final value). Consider the starting position ik at which uk was cut (i.e.,
uk = w[ik . . ik−1 − 1] is the shortest unbordered prefix of w[j . . n] computed at ik−1). Let
ip be the first position considered after ik such that |up| > |uk|. In this case, every factor
uk+1, . . . , up−1 is a prefix of uk; see Figure 2. Therefore, w[ip−1 . . ik − 1] can be decomposed
into prefixes of uk (and of w[ik . . n]). Consequently, we set HOOK[ik] = ip−1 so that the next
time a prefix of length greater than or equal to |uk| is cut at ik, we do not have to repeat
truncating the prefixes uk+1, . . . , up−1 and we may start directly from position ip−1.

In order to express the intermediate values in the HOOK table, we generalize the notion
of Hj : for a position j and a length `, we define H`j as the smallest position q such that
w[q . . j − 1] can be decomposed into unbordered prefixes of w[j . . n] whose lengths do not
exceed `. Observe that H0

j = j and H`j = Hj if ` ≥ LUF[j].
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Implementation. For each position ik, we set HOOK[ik] = H|uk|
ik

, equal to ip−1 in the case
considered above. Computing these values for all indices ik can be efficiently realised using a
stack. Every starting position ip, at which up is cut, is pushed onto the stack as a (length,
position) pair (|up|, ip). Before pushing, every element (|uk|, ik) such that |uk| < |up| is
popped and the hook value of index ik is updated (HOOK[ik] = H|uk|

ik
= ip−1 = ip + |up|).

Analysis. Throughout the algorithm, each unbordered prefix up at position ip is computed
just once by the FindHook function. Nevertheless, a longer2 unbordered prefix u′p may be
computed at ip again when FindHook is called on reference j′ (where q < j′ < j).

In what follows, we introduce certain characteristics of the computed unbordered prefixes
which aids in establishing the relationship between the stacks of various references. Let Sj
be the set of positions pushed onto the stack during a call of FindHook on reference j.

I Definition 12 (Twin Set). A twin set of reference j for length `, denoted by T `j , is the set
of all the positions i ∈ Sj which were pushed onto the stack paired with length ` in the call
of FindHook on reference j (i.e., T `j = {i | (`, i) was pushed onto the stack of j}).

Note that a unique shortest unbordered prefix of w[j . . LUF[j]− 1] occurs at each i belonging
to the same twin set. However, as and when a longer prefix at i is cut (say `′) for another
reference j′ < j, i will be added to T `′j′ .

I Remark. Sj =
LUF[j]⋃
`=1
T `j .

Hereafter, a twin set will essentially imply a non-empty twin set.

I Lemma 13. If j′ and j are references such that j′ ∈ Sj, then Hj ≤ Hj′ .

Proof. Since j′ ∈ Sj , the suffix w[j′ . . n] (and, by Observation 9, its every prefix w[j′ . . k])
can be decomposed into unbordered prefixes of w[j . . n]. Consequently, any decomposition
into unbordered prefixes of w[j′ . . n] yields a decomposition into unbordered prefixes of
w[j . . n]. In particular, w[Hj′ . . n] admits such a decomposition, which implies Hj ≤ Hj′ . J

If the stack Sj is the most recent stack containing a reference j′, we say that j′ is the
parent of j. More formally, the parent of j′ is defined as min{j | j′ ∈ Sj}. If j′ does not
belong to any stack (and thus has no parent), we will call it a base reference.

I Lemma 14. If j and j′ are two references such that j is the parent of j′ and j′ ∈ T `j , then
each position i ∈ Sj′ satisfies the following properties:
1. i ∈ T `j ;
2. there exists k ∈ T `′j , with `′ > `, such that (k + `′ − i, i) is pushed onto the stack of j′.

Proof. Let p be the value of HOOK[j′] prior to the execution of FindHook(j′). Since
j′ ∈ T `j , the earlier call FindHook(j) has set HOOK[j′] = H`j′ . As j is the parent of j′, no
further call has updated HOOK[j′]. Thus, we conclude that p = H`j′ .

Consequently, the first pair pushed onto the stack of j′ is (|z|, i), where z = w[i . . p− 1]
is the shortest suffix of w[1 . . p− 1] which also occurs as a prefix of w[j′ . . n] (see Figure 3).
Moreover, observe that |z| > ` by the greedy construction of H`j′ .

2 It will be easy to deduce after Lemma 14 that the length of the prefix cut (the next time) at the same
position will be at least twice the length of the current prefix cut at it.
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Hj j

z z

j′pki

vv′v
· · ·· · ·· · ·

Figure 3 The pair (|z|, i) is the first to be pushed onto the stack of j′. The factor z is unbordered,
has v as a proper prefix and some v′ as a proper suffix, where both v and v′ are unbordered prefixes
of w[j . . n] whose lengths ` and `′, respectively, satisfy ` < `′.

q j

u

z1
z2 u′′

u′

j′′p ki j′

vv1v vr vv
· · ·· · ·· · ·· · ·

xr

Figure 4 The pair (|z1|, i) and (|z2|, i) are pushed onto the stack of j′ and j′′ where i is a position
common to both Sj′ and Sj′′ .

Recall that j′ ∈ T `j implies that w[j′ . . n] can be decomposed into unbordered prefixes of
w[j . . n], with the first prefix of length `, denoted v = w[j′ . . j′ + `− 1]. With an occurrence
at position j′, the factor z also admits such a decomposition, still with the first prefix v (due
to |z| > |v|). Additionally, note that w[p . . j′−1] can be decomposed into unbordered prefixes
of v. Concatenating the decompositions of z = w[i . . p− 1], w[p . . j′ − 1], and w[j′ . . n], we
conclude that w[i . . n] can be decomposed into unbordered prefixes of w[j . . n] with the first
prefix (in this unique decomposition) equal to v. Hence, i ∈ Sj′ belongs to the same twin set
as j′; i.e., it satisfies the first claim of the lemma.

Additionally, in the aforementioned decomposition of w[i . . n] consider the factor v′ =
w[k . . p− 1] which ends at position p− 1. By the greedy construction of H`j′ , its length |v′| is
strictly larger than `, so k ∈ T `′j for `′ = |v′| > `. Moreover, recall that (|z|, i) = (k+ `′− i, i)
is pushed onto the stack of j′. Consequently, i also satisfies the second claim of the lemma.

A similar reasoning is valid for each i that will appear in Sj′ . J

I Lemma 15. If j is the parent of two references j′′ < j′, both of which belong to T `j , then
Sj′ ∩ Sj′′ = ∅.

Proof. The proof is trivial if ` = LUF[j]. Let ` < LUF[j], u = w[j . . j+LUF[j]−1] and v be the
shortest unbordered prefix of u cut at j′ and j′′ (i.e., |v| = `). Let u′ = w[j′ . . j′+LUF[j′]−1]
and u′′ = w[j′′ . . j′′ + LUF[j′′] − 1]. Here, the current call to the FindHook function has
been made on the reference j′′. Consider the largest position i such that it is common to the
stacks of j′ and j′′ i.e. i ∈ Sj′ and i ∈ Sj′′ . Let the prefixes cut at i be z1 = w[i . . p] and
z2 = w[i . . k]. Observe that i being the largest position and j′ 6= j′′ ensure that |z1| 6= |z2|.
Without loss of generality, let |z1| < |z2| (examine Figure 4).

1. j′ cuts z2 and j′′ cuts z1: We proceed with the proof below by showing that there is
a reference between j′ and j that pushes j′ onto its stack, thus contradicting the fact
that j is the parent of j′.
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Following Observation 9, w[i . . k] can be decomposed into unbordered prefixes of u′′ with
the first prefix being z1 i.e. z2 = z1 · x1 · x2 · . . · xr. Here, |xr| > |z1| otherwise z2 is
bordered. Moreover, each xi larger than v has corresponding position in Sj′′ and others
(i.e. |xi| ≤ |v|) are skipped because of HOOK[·]. Let xs be the first of these xi, 1 ≤ i ≤ r
such that |xs| > |z1|; the prefix z̃2 = z1 · . . · xs is unbordered. In the occurrence of z2 at
j′, let j0 be the position corresponding to xs i.e. j0 = j′ + |z1 · · ·xs−1|.
Note that xs, like every xi and z1, has v as proper prefix and some vi as a proper
suffix where vi is an unbordered prefix of u longer than v (from Lemma 14). Therefore,
j0 < j (xs cannot start at j otherwise it would be bordered and xs starting after j would
contradict the assumption that j is the parent of j′ as w[j′ . . j0] can be factorised into
prefixes of xs).
Now, we prove that j0 is a (potential) reference. The fact that j′ is a potential reference
ensures that ũ = w[j0 . . j

′ + |u′| − 1] is a repeated factor. Moreover, ũ contains the luf at
j0, say u0, because u0 is a factor (or suffix) of u′ (since w[j′ . . j0 − 1] can be decomposed
into prefixes of xs); an implication is that |ũ| ≥ |u0|. Thus, j0 is a reference if the
last occurrence of ũ is at j0. For contradiction, assume that the factor ũ has another
occurrence at some position larger than j0. This implies that there is another occurrence
of u as u0 contains u (the luf at any position which is in the stack of j, ends at or after
j + |u| − 1). It is not possible as the last of the occurrences of u after j would cause j, j′,
j′′ etc. to go in its stack and j would no longer be the parent of j′ or j′′.
Summing up, j0 < j is a reference with xs as a prefix of u0. If j is the parent of j0 then
j0 would have pushed j′ onto its stack, otherwise another reference j−1, j0 < j−1 < j

that pushed j0 onto its stack would have pushed j′ as well. In either case, j is not the
parent of j′ which is a contradiction.

2. j′ cuts z1 and j′′ cuts z2: Using the similar argument as in Case 1, we can prove
that this case would lead to the conclusion that there is another reference between j′′

and j that would push j′′ onto its stack and hence contradicting that j is the parent of
j′′. J

4.2 Finding Shortest Border (FindBeta Function)
Given a reference j and a position q, function FindBeta returns the length β of the shortest
prefix of w[j . . n] that is a suffix of w[1 . . q − 1], or β = 0 if there is no such prefix; note that
the sought shortest prefix is necessarily unbordered.

To find this length, we use ‘prefix-suffix queries’ of [14, 13]. Such a query, given a positive
integer d and two factors x and y of w, reports all prefixes of x of length between d and 2d
that occur as suffixes of y. The lengths of sought prefixes are represented as an arithmetic
progression, which makes it trivial to extract the smallest one. A single prefix-suffix query
can be implemented in O(1) time after randomized preprocessing of w which takes O(n) time
in expectation [14], or O(n log n) time with high probability [13]. Additionally, replacing hash
tables with deterministic dictionaries [16], yields an O(n log n log2 log n)-time deterministic
preprocessing.

To implement FindBeta, we set x = [j . . n], y = [1 . . q − 1] and we ask prefix-suffix
queries for subsequent values d = 1, 3, . . . , 2k − 1, . . . until d exceeds min(|x|, |y|). Note that
we can terminate the search as soon as a query reports a non-empty answer. Hence, the
running time is O(1 + log β) if the query is successful (i.e., β 6= 0) and O(log n) otherwise.

Furthermore, we can expedite the successful calls to FindBeta if we already know that
β /∈ {1, . . . , `}. In this case, we can start the search with d = ` + 1. Specifically, if j is
not a base reference and belongs to T `j′ for some j′, we can start from d = 2`+ 1 because
Lemma 14.2 guarantees that β ≥ `+ `′ > 2`.
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5 Analysis

Our algorithm computes the longest unbordered factor at each position i; position i is a
start-reference or it refers to some other position. The correctness of the computed LUF[i]
follows directly from Lemmas 5, 6 and 11.

The analysis of the algorithm running time necessitates probing of the total time consumed
by FindHook and the time spent by FindBeta function which, in turn, can be measured
in terms of the total size of the stacks of various references.

I Lemma 16. The total size of all the stacks used throughout the algorithm is O(n log n).
Moreover, the total running time of the FindBeta function is O(n log n).

Proof. First, we shall prove that any position p belongs to O(log n) stacks.
By Lemma 14.1, the stack of any reference is a subset of the stack of its parent. Moreover,

by Lemmas 14.1 and 15, the stacks of references sharing the same parent are disjoint. A
similar argument shows that the stacks of base references are disjoint.

Consequently, the references j1 > . . . > js whose stacks Sji
contain p form a chain with

respect to the parent relation: j1 is a base reference, and the parent of any subsequent ji is
ji−1. Let us define `1, . . . , `s so that p ∈ T `i

ji
. By Lemma 14.2, for each 1 ≤ i < s, there exist

ki and `′i > `i such that ki ∈ T
`′i
ji

and `i+1 = ki − p+ `′i ≥ `i + `′i > 2`i. Due to 1 ≤ `i ≤ n,
this yields s ≤ 1 + log n = O(log n), as claimed.

Next, let us analyse the successful calls β = FindBeta(q, j) with p = q − β. Observe
that after each such call, p is inserted to the stack Sj and to the twin set T βj , i.e, j = ji

and β = `i for some 1 ≤ i ≤ s. Moreover, if i > 1, then ji ∈ T `i−1
ji−1

, which we are aware
of while calling FindBeta. Hence, we can make use of the fact that `i /∈ {1, . . . , 2`i−1}
to find β = `i in time O(log `i

`i−1
). For i = 1, the running time is O(1 + log `1). Hence,

the overall running time of successful queries β = FindBeta(q, j) with p = q − β is
O(1 + log `1 +

∑s
i=2 log `i

`i−1
) = O(1 + log `s) = O(log n), which sums up to O(n log n) across

all positions p.
As far as the unsuccessful calls 0 = FindBeta(q, j) are concerned, we observe that each

such call terminates the enclosing execution of FindHook. Hence, the number of such calls
is bounded by n and their overall running time is clearly O(n log n). J

I Theorem 17. Given a word w of length n, our algorithm solves the Longest Unbordered
Factor Array problem in O(n log n) time with high probability. It can also be implemented
deterministically in O(n log n log2 log n) time.

Proof. Assuming an integer alphabet, the computation of LSF` and LSFr arrays along with
the constant time per position initialisation of the other arrays sum up the preprocessing stage
to O(n) time. The running time required for the assignment of the luf for all positions is O(n).
The time spent in construction of the data structure to answer prefix-suffix queries used in
FindBeta function is O(n log n) with high probability or O(n log n log2 log n) deterministic.

Additionally, the total running time of the FindHook function for all the references,
being proportional to the aggregate size of all the stacks, can be deduced from Lemma 16.
This has been shown to be O(n log n) in the worst case, same as the total running time of
FindBeta. The claimed bound on the overall running time follows. J

We can also show that the upper bound shown in Lemma 16 is in the worst case tight
by designing an infinite family of words that exhibit the worst-case behaviour. We plan to
include this construction in the full version of the paper.
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6 Final Remark

Computing the longest unbordered factor in o(n log n) time for integer alphabets remains an
open question.
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1 Introduction

The sporadic task model has been widely adopted to model recurring executions of tasks in
real-time systems [28]. A sporadic real-time task τi is defined with a minimum inter-arrival
time Ti, its timing constraint or relative deadline Di, and its (worst-case) execution time
Ci. A sporadic task represents an infinite sequence of task instances, also called jobs, that
arrive with the minimum inter-arrival time constraint. That is, any two consecutive jobs of
task τi should be temporally separated by at least Ti. When a job of task τi arrives at time
t, the job must finish no later than its absolute deadline t+Di. According to the Liu and
Layland task model [27], the minimum inter-arrival time of a task can also be interpreted as
the period of the task.

To schedule real-time tasks on multiprocessor platforms, there have been three widely
adopted paradigms: partitioned, global, and semi-partitioned scheduling. A comprehensive
survey of multiprocessor scheduling in real-time systems can be found in [15]. In this paper,
we consider partitioned scheduling, in which tasks are statically partitioned onto processors.
This means that all the jobs of a task are executed on a specific processor, which reduces the
online scheduling overhead since each processor can schedule the sporadic tasks assigned on
it without considering the tasks on the other processors. Moreover, we consider preemptive
scheduling on each processor, i.e, a job may be preempted by another job on the processor.
For scheduling sporadic tasks on one processor, the (preemptive) earliest-deadline-first (EDF)
policy is optimal [27] in terms of meeting timing constraints, in the sense that if the task set
is schedulable then it will also be schedulable under EDF. In EDF, the job (in the ready
queue) with the earliest absolute deadline has the highest priority for execution. Alternatively,
another widely adopted scheduling paradigm is (preemptive) fixed-priority (FP) scheduling,
where all jobs released by a sporadic task have the same priority level.

The complexity of testing whether a task set can be feasibly scheduled on a uniprocessor
depends on the relations between the relative deadlines and the minimum inter-arrival times
of tasks. An input task set is said to have (1) implicit deadlines if the relative deadlines of
sporadic tasks are equal to their minimum inter-arrival times, (2) constrained deadlines if
the minimum inter-arrival times are no less than their relative deadlines, and (3) arbitrary
deadlines, otherwise.

On a uniprocessor, checking the feasibility for an implicit-deadline task set is simple
and well-known: the timing constraints are met by EDF if and only if the total utilization∑
τi∈T

Ci

Ti
is at most 100% [27]. Moreover, if every task τi on the processor is with Di ≥ Ti, it

is not difficult to see that testing whether the total utilization is less than or equal to 100% is
also a necessary and sufficient schedulability test. This can be achieved by considering a more
stringent case which sets Di to Ti for every τi. Hence, this special case of arbitrary-deadline
task sets can be reformulated to task sets with implicit deadlines without any loss of precision.
However, determining the schedulability for task sets with constrained or arbitrary deadlines
in general is much harder, due to the complex interactions between the deadlines and the
periods, and in particular is known to be coNP -hard or coNP -complete [17, 19, 18].

In this paper, we consider partitioned scheduling in homogeneous multiprocessor systems.
Deciding if an implicit-deadline task set is schedulable on multiple processors is already NP-
complete in the strong sense under partitioned scheduling. To cope with these NP-hardness
issues, one natural approach is to focus on approximation algorithms, i.e., polynomial time
algorithms that produce an approximate solution instead of an exact one. In our setting,
this translates to designing algorithms that can find a feasible schedule using either (i) faster
or (ii) additional processors. The goal, of course, is to design an algorithm that uses the
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least speeding up or as few additional processors as possible. In general, this approach
is referred to as resource augmentation and is used extensively to analyze and compare
scheduling algorithms. See for example [29] for a survey and motivation on why this is a
useful measure for evaluating the quality of scheduling algorithms in practice. However,
such a measure also has its potential pitfalls as recently studied and reported by Chen et al.
[12]. Interestingly, it turns out that there is a huge difference regarding the approximation
factors depending on whether it is possible to increase the processor speed or the number
of processors. As already discussed in [11], approximation by speeding up is known as the
multiprocessor partitioned scheduling problem, and by allocating more processors is known as
the multiprocessor partitioned packing problem. We study the latter one in this paper.

Formally, an algorithm A for the multiprocessor partitioned packing problem is said to
have an approximation factor ρ, if given any task set T, it can find a feasible partition of T
on ρM∗ processors, where M∗ is the minimum (optimal) number of processors required to
schedule T. However, it turns out that the approximation factor is not the best measure
in our setting (it is not fine-grained enough). For example, it is NP-complete to decide
if an implicit-deadline task set is schedulable on 2 processors or whether 3 processors are
necessary. Assuming P 6= NP, this rules out the possibility of any efficient algorithm with
approximation factor better than 3/2, as shown in [11]. (This lower bound is further lifted
to 2 for sporadic tasks in Section 5.) The problem with this example is that it does not
rule out the possibility of an algorithm that only needs M∗ + 1 processors. Clearly, such an
algorithm is almost as good as optimum when M∗ is large and would be very desirable.1
To get around this issue, a more refined measure is the so-called asymptotic approximation
factor. An algorithm A has an asymptotic approximation factor ρ if we can find a schedule
using at most ρM∗ + α processors, where α is a constant that does not depend on M∗. An
algorithm is called an asymptotic polynomial-time approximation scheme (APTAS) if, given
an arbitrary accuracy parameter ε > 0 as input, it finds a schedule using (1 + ε)M∗ +O(1)
processors and its running time is polynomial assuming ε is a fixed constant.

For implicit-deadline task sets, the multiprocessor partitioned scheduling problem, by
speeding up, is equivalent to the Makespan problem [21], and the multiprocessor partitioned
packing problem, by allocating more processors, is equivalent to the bin packing problem
[20]. The Makespan problem admits polynomial-time approximation schemes (PTASes), by
Hochbaum and Shmoys [22], and the bin packing problem admits asymptotic polynomial-time
approximation schemes (APTASes), by de la Vega and Lueker [16, 25].

When considering sporadic task sets with constrained or arbitrary deadlines, the problem
becomes more complicated. When adopting speeding-up for resource augmentation, the
deadline-monotonic partitioning proposed by Baruah and Fisher [3, 4] has been shown to
have a 3− 1

M speed-up factor in [10], where M is the given number of identical processors.
The studies in [2, 11, 1] provide polynomial-time approximation schemes for some special
cases when speeding-up is possible. The PTAS by Baruah [2] requires that Dmax

Dmin
, Cmax
Cmin

, Tmax
Tmin

are constants, where Dmax (Cmax and Tmax, respectively) is the maximum relative deadline
(worst-case execution time and period, respectively) in the task set and Dmin (Cmin and
Tmin, respectively) is the minimum relative deadline (worst-case execution time and period,
respectively) in the task set. It was later shown in [11, 1] that the complexity only depends
on Dmax

Dmin
. If Dmax

Dmin
is a constant, there exists a PTAS developed by Chen and Chakraborty [11],

which admits feasible task partitioning by speeding up the processors by (1 + ε). The

1 Indeed, there are (very ingenious) algorithms known for the implicit-deadline partitioning problem that
use only M∗ +O(log2 M∗) processors [25], based on the connection to the bin-packing problem.
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Table 1 Summary of the multiprocessor partitioned scheduling and packing problems, unless
P = NP, where γ = maxτi∈T

Ci
min{Ti,Di}

, λ = maxτi∈T max{ Ti
Di
, 1}, and Dmax (Dmin) is the task

set’s maximum (minimum) relative deadline. A ] marks results from this paper.

implicit deadlines constrained deadlines arbitrary deadlines arbitrary deadlines (dependent on
Dmax
Dmin

)
partitioned EDF PTAS [22] 2.6322-speed up [10] 3-speed up [10] PTAS [11] for constant Dmax

Dmin

scheduling qPTAS [1] for polynomial Dmax
Dmin

partitioned FP 7
4 [6], 1.5 [26] 2.84306 speed-up [8] 3-speed up[8]

scheduling (extended from packing)

partitioned packing APTAS [16]
non-existence of APTAS] non-existence of APTAS [11]

2λ-approximation], asymptotic 2
1−γ -approximation], non-existence of (2− ε)-approximation]

approach in [11] deals with the multiprocessor partitioned scheduling problem as a vector
scheduling problem [7] by constructing (roughly) (1/ε) log Dmax

Dmin
dimensions and then applies

the PTAS of the vector scheduling problem developed by Chekuri and Khanna [7] in a
black-box manner. Bansal et al. [1] exploit the special structure of the vectors and give a
faster vector scheduling algorithm that is a quasi-polynomial-time approximation scheme
(qPTAS) even if Dmax

Dmin
is polynomially bounded.

However, augmentation by allocating additional processors, i.e., the multiprocessor
partitioned packing problem, has not been explored until recently in real-time systems.
Our previous work in [11] has initiated the study for minimizing the number of processors
for real-time tasks. While [11] mostly focuses on approximation algorithms for resource
augmentation via speeding up, it also showed that for the multiprocessor partitioned packing
problem there does not exist any APTAS for arbitrary-deadline task sets, unless P = NP.
However, the proof in [11] for the non-existence of APTAS only works when the input task
set T has exactly two types of tasks in which one type consists of tasks with relative deadline
less than or equal to its period (i.e., Di ≤ Ti for some τi in T) and another type consists of
tasks with relative deadline larger than its period (i.e., Dj > Tj for some τj in T). Therefore,
it cannot be directly applied for constrained-deadline task sets.

For the results, from the literature and also this paper, related to the multiprocessor
partitioned scheduling and packing problems, Table 1 provides a short summary.

Our Contributions. This paper studies the multiprocessor partitioned packing problem in
much more detail. On the positive side, when the ratio of the period of a constrained-deadline
task to the relative deadline of the task is at most λ = maxτi∈T max{ Ti

Di
, 1}, in Section 3, we

provide a simple polynomial-time algorithm with a 2λ-approximation factor. In Section 4,
we show that the deadline-monotonic partitioning algorithm in [3, 4] has an asymptotic

2
1−γ -approximation factor for the packing problem, where γ = maxτi∈T

Ci

min{Ti,Di} . In
particular, when γ and λ are not constant, adopting the worst-fit or best-fit strategy in the
deadline-monotonic partitioning algorithm is shown to have an Ω(N) approximation factor,
where N is the number of tasks. In contrast, from [10], it is known that both strategies have
a speed-up factor 3, when the resource augmentation is to speed up processors. We also show
that speeding up processors can be much more powerful than allocating more processors.
Specifically, in Section 5, we provide input instances, in which the only feasible schedule is to
run each task on an individual processor but the system requires only one processor with a
speed-up factor of (1 + ε), where 0 < ε < 1.

On the negative side, in Section 6, we show that there does not exist any asymptotic
polynomial-time approximation scheme (APTAS) for the multiprocessor partitioned packing
problem for task sets with constrained deadlines, unless P = NP. As there is already an
APTAS for the implicit deadline case, this together with the result in [11] gives a complete
picture of the approximability of multiprocessor partitioned packing for different types of
task sets, as shown in Table 1.
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2 System Model

2.1 Task and Platform Model
We consider a set T = {τ1, τ2, . . . , τN} of N independent sporadic real-time tasks. Each of
these tasks releases an infinite number of task instances, called jobs. A task τi is defined by
(Ci, Ti, Di), where Di is its relative deadline, Ti is its minimum inter-arrival time (period),
and Ci is its (worst-case) execution time. For a job released at time t, the next job must
be released no earlier than t+ Ti and it must finish (up to) Ci amount of execution before
the jobs absolute deadline at t+Di. The utilization of task τi is denoted by ui = Ci

Ti
. We

consider platforms with identical processors, i.e., the execution and timing property remains
no matter which processor a task is assigned to. According to the relations of the relative
deadlines and the minimum inter-arrival times of the tasks in T, the task set can be identified
to be with (1) implicit deadlines, i.e., Di = Ti ∀τi, (2) constrained deadlines, i.e., Di ≤ Ti ∀τi,
or (3) arbitrary deadlines, otherwise. The cardinality of a set X is denoted by |X|.

In this paper we focus on partitioned scheduling, i.e., each task is statically assigned
to a fixed processor and all jobs of the task is executed on the assigned processor. On
each processor, the jobs related to the tasks allocated to that processor are scheduled using
preemptive earliest deadline first (EDF) scheduling. This means that at each point the job
with the shortest absolute deadline is executed, and if a new job with a shorter absolute
deadline arrives the currently executed job is preempted and the new arriving job starts
executing. A task set can be feasibly scheduled by EDF (or EDF is a feasible schedule) on a
processor if the timing constraints can be fulfilled by using EDF.

2.2 Problem Definition
Given a task set T, a feasible task partition on M identical processors is a collection of M
subsets, denoted T1,T2, . . . ,TM , such that

Tj ∩Tj′ = ∅ for all j 6= j′,
∪Mj=1Tj is equal to the input task set T, and
set Tj can meet the timing constraints by EDF scheduling on a processor j.

I Definition 1. The multiprocessor partitioned packing problem: The objective is to find a
feasible task partition on M identical processors with the minimum M .

We assume that ui ≤ 100% and Ci

Di
≤ 100% for any task τi since otherwise there cannot

be a feasible partition.

2.3 Demand Bound Function
This paper focuses on the case where the arrival times of the sporadic tasks are not specified,
i.e., they arrive according to their interarrival constraint and not according to a pre-defined
pattern. Baruah et al. [5] have shown that in this case the worst-case pattern is to release
the first job of tasks synchronously (say, at time 0 for notational brevity), and all subsequent
jobs as early as possible. Therefore, as shown in [5], the demand bound function dbf(τi, t) of
a task τi that specifies the maximum demand of task τi to be released and finished within
any time interval with length t is defined as

dbf(τi, t) = max
{

0,
⌊
t−Di

Ti

⌋
+ 1
}
× Ci. (1)
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The exact schedulability test of EDF, to verify whether EDF can feasibly schedule the given
task set on a processor, is to check whether the summation of the demand bound functions
of all the tasks is always less than t for all t ≥ 0 [5].

3 Reduction to Bin Packing

When considering tasks with implicit deadlines, the multiprocessor partitioned packing
problem is equivalent to the bin packing problem [20]. Therefore, even though the packing
becomes more complicated when considering tasks with arbitrary or constrained deadlines,
it is pretty straightforward to handle the problem by using existing algorithms for the bin
packing problem if the maximum ratio λ of the period to the relative deadline among the
tasks, i.e., λ = maxτi∈T max{ Ti

Di
, 1}, is not too large.

For a given task set T, we can basically transform the input instance to a related task
instance T† by creating task τ †i based on task τi in T such that

T †i is Di, C†i is Ci, and D†i is Di when Ti ≥ Di for τi, and
D†i is T †i , C

†
i is Ci and T †i is Ti when Ti < Di for τi.

Now, we can adopt any greedy fitting algorithms (i.e., a task is assigned to “one” allocated
processor that is feasible; otherwise, a new processor is allocated and the task is assigned to
the newly allocated processor) for the bin packing problem by considering only the utilization
of transformed tasks in T† for the multiprocessor partitioned packing problem, as presented
in [30, Chapter 8]. The construction of T† has a time complexity of O(N), and the greedy
fitting algorithm has a time complexity of O(NM).

I Theorem 2. Any greedy fitting algorithm by considering T† for task assignment is a
2λ-approximation algorithm for the multiprocessor partitioned packing problem.

Proof. Clearly, as we only reduce the relative deadline and the periods, the timing parameters
in T† are more stringent than in T. Hence, a feasible task partition for T† on M processors
also yields a corresponding feasible task partition for T on M processors. As T† has implicit
deadlines, we know that any task subset in T† with total utilization no more than 100% can
be feasibly scheduled by EDF on a processor, and therefore the original tasks in that subset
as well. For any greedy fitting algorithms that use M processors, using the same proof as in
[30, Chapter 8], we get

∑
τi∈T†

C†
i

T †
i

> M
2 .

By definition, we know that
∑
τi∈T

Ci

Ti
≥
∑
τ†

i
∈T†

C†
i

λT †
i

> M
2λ . Therefore, any feasible

solution for T uses at least M
2λ processors and the approximation factor is hence proved. J

4 Deadline-Monotonic Partitioning under EDF Scheduling

This section presents the worst-case analysis of the deadline-monotonic partitioning strategy,
proposed by Baruah and Fisher [4, 3], for the multiprocessor partitioned packing problem.
Note that the underlying scheduling algorithm is EDF but the tasks are considered in the
deadline-monotonic (DM) order. Hence, in this section, we index the tasks accordingly from
the shortest relative deadline to the longest, i.e., Di ≤ Dj if i < j. Specifically, in the DM
partitioning, the approximate demand bound function dbf∗(τi, t) is used to approximate
Eq. (1), where

dbf∗(τi, t) =
{

0 if t < Di(
t−Di

Ti
+ 1
)
Ci otherwise. (2)
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Algorithm 1 Deadline-Monotonic Partitioning.
Input: set T of N tasks;

1: re-index (sort) tasks such that Di ≤ Dj for i < j;
2: M ← 1, T1 ← {τ1};
3: for i = 2 to N do
4: if ∃m ∈ {1, 2, . . . ,M} such that both (3) and (4) hold then
5: choose m ∈ {1, 2, . . . ,M} by preference such that both (3) and (4) hold;
6: assign τi to processor m with Tm ← Tm ∪ {τi};
7: else
8: M ←M + 1; TM ← {τi};
9: end if

10: end for
11: return feasible task partition T1,T2, . . . ,TM ;

Even though the DM partitioning algorithm in [4, 3] is designed for the multiprocessor
partitioned scheduling problem, it can be easily adapted to deal with the multiprocessor
partitioned packing problem. For completeness, we revise the algorithm in [4, 3] for the
multiprocessor partitioned packing problem and present the pseudo-code in Algorithm 1. As
discussed in [4, 3], when a task τi is considered, a processor m among the allocated processors
where both the following conditions hold

Ci +
∑

τj∈Tm

dbf∗(τj , Di) ≤ Di (3)

ui +
∑

τj∈Tm

uj ≤ 1 (4)

is selected to assign task τi, where Tm is the set of the tasks (as a subset of {τ1, τ2, . . . , τi−1}),
which have been assigned to processor m before considering τi. If there is no m where both
Eq. (3) and Eq. (4) hold, a new processor is allocated and task τi is assigned to the new
processor. The order in which the already allocated processors are considered depends on
the fitting strategy:

first-fit (FF) strategy: choosing the feasible m with the minimum index;
best-fit (BF) strategy: choosing, among the feasible processors, m with the maximum
approximate demand bound at time Di;
worst-fit (WF) strategy: choosing m with the minimum approximate demand bound at
time Di.

For a given number of processors, it has been proved in [10] that the speed-up factor of the
DM partitioning is at most 3, independent from the fitting strategy. However, if the objective
is to minimize the number of allocated processors, we will show that DM partitioning has an
approximation factor of at least N

4 (in the worst case) when the best-fit or worst-fit strategy
is adopted. We will prove this by explicitly constructing two concrete task sets with this
property. Afterwards, we show that the asymptotic approximation factor of DM partitioning
is at most 2

1−γ for packing, where γ = maxτi∈T
Ci

min{Ti,Di} .

I Theorem 3. The approximation factor of the deadline-monotonic partitioning algorithm
with the best-fit strategy is at least N

4 when N ≥ 8 and the schedulability test is based on
Eq. (3) and Eq. (4).
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Proof. The theorem is proven by providing a task set that can be scheduled on two processors
but where Algorithm 1 when applying the best-fit strategy uses N

2 processors. Under the
assumption that K ≥ 4 is an integer, N is 2K, and H is sufficiently large, i.e., H � KK ,
such a task set can be constructed as:

Let D1 = 1, C1 = 1/K, and T1 = H.
For i = 2, 4, . . . , 2K, let Di = K

i
2−1, Ci = K

i
2−2, and Ti = Di.

For i = 3, 5, . . . , 2K − 1, let Di = K
i−1

2 , Ci = K
i−1

2 −K i−1
2 −1, and Ti = H.

The task set can be scheduled on two processors under EDF if all tasks with an odd index
are assigned to processor 1 and all tasks with an even index are assigned to processor 2. On
the other hand, the best-fit strategy assigns τi to processor

⌈
i
2
⌉
. The resulting solution uses

K processors. Details are in the Appendix in [9]. J

I Theorem 4. The approximation factor of the deadline-monotonic partitioning algo-
rithm with the worst-fit strategy is at least N

4 when the schedulability test is based on
Eq. (3) and Eq. (4).

Proof. The proof is very similar to the proof of Theorem 3, considering the task set:
Let D1 = 1, C1 = 1, and T1 = H.
For i = 2, 4, . . . , 2K, let Di = K

i
2 , Ci = K

i
2−1, and Ti = Di.

For i = 3, 5, . . . , 2K − 1, let Di = K
i−1

2 , Ci = K
i−1

2 −K i−1
2 −1, and Ti = H.

Odd tasks are assigned to processor 1 and even tasks to processor 2 the task set is schedulable
while τi is assigned to processor

⌈
i
2
⌉
using the worst-fit strategy. Details are in the Appendix

in [9]. J

I Theorem 5. The DM partitioning algorithm is an asymptotic 2
1−γ -approximation algorithm

for the multiprocessor partitioned packing problem, when γ = maxτi∈T
Ci

min{Ti,Di} and γ < 1.

Proof. We consider the task τl which is the task that is responsible for the last processor
that is allocated by Algorithm 1. The other processors are categorized into two disjoint sets
M1 and M2, depending on whether Eq. (3) or Eq. (4) is violated when Algorithm 1 tries to
assign τl (if both conditions are violated, the processor is in M1). The two sets are considered
individually and the maximum number of processors in both sets is determined based on
the minimum utilization for each of the processors. Afterwards, a necessary condition for
the amount of processors that is at least needed for a feasible solution is provided and the
relation between the two values proves the theorem. Details can be found in the Appendix
in [9]. J

5 Hardness of Approximations

It has been shown in [11, 2] that a PTAS exists for augmenting the resources by speeding up.
A straightforward question is to see whether such PTASes will be helpful for bounding the
lower or upper bounds for multiprocessor partitioned packing. Unfortunately, the following
theorem shows that using speeding up to get a lower bound for the number of required
processors is not useful.

I Theorem 6. There exists a set of input instances, in which the number of allocated
processors is up to N , while the task set can be feasibly scheduled by EDF with a speed-up
factor (1 + ε) on a processor, where 0 < ε < 1.

Proof. We provide a set of input instances, with the property described in the statement:
Let D1 = 1, C1 = 1, and T1 = (1+ε)N−2

εN−1 .
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For any i = 2, 3, . . . , N , let Di = (1+ε)i−2

εi−1 , Ci = Di, and Ti = (1+ε)N−2

εN−1 .
Since Ci = Di for any task τi, assigning any two tasks on the same processor is infeasible
without speeding up. Therefore, the only feasible processor allocation is N processors and to
assign each task individually on one processor. However, by speeding up the system by a
factor 1 + ε, the tasks can be feasibly scheduled on one processor due to

∑N
i=1

dbf(τi,t)
1+ε ≤ t

for any t > 0. A proof is in the Appendix in [9]. Hence, the gap between these two types of
resource augmentation is up to N . J

Moreover, the following theorem shows the inapproximability for a factor 2 without
adopting asymptotic approximation.

I Theorem 7. For any ε > 0, there is no polynomial-time approximation algorithm with
an approximation factor of 2− ε for the multiprocessor partitioned packing problem, unless
P = NP.

Proof. Suppose that there exists such a polynomial-time algorithm A with approximation
factor 2− ε. A can be used to decide if a task set T is schedulable on a uniprocessor, which
would contradict the coNP-hardness [17] of this problem. Indeed, we simply run A on
the input instance. If A returns a feasible schedule using one processor, we already have a
uniprocessor schedule. On the other hand, if A requires at least two processors, then we
know that any optimum solution needs ≥

⌈
2

2−ε

⌉
= 2 processors, implying that the task set

T is not schedulable on a uniprocessor. J

6 Non-Existence of APTAS for Constrained Deadlines

We now show that there is no APTAS when considering constrained-deadline task sets, unless
P = NP. The proof is based on an L-reduction (informally an approximation preserving
reduction) from a special case of the vector packing problem, i.e., the 2D dominated vector
packing problem.

6.1 The 2D Dominated Vector Packing Problem
The vector packing problem is defined as follows:

I Definition 8. The vector packing problem: Given a set V of vectors [v1, v2, . . . , vN ] with
d dimensions, in which 1 ≥ vi,j ≥ 0 is the value for vector vi in the j-th dimension, the
problem is to partition V into M parts V1, . . . ,VM such that M is minimized and each
part Vm is feasible in the sense that

∑
vi∈Vm

vi,j ≤ 1 for all 1 ≤ j ≤ d. That is, for each
dimension j, the sum of the j-th coordinates of the vectors in Vm is at most 1.

We say that a subset V′ of V can be feasibly packed in a bin if
∑
vi∈V′ vi,j ≤ 1 for all

j-th dimensions. Note that for d = 1 this is precisely the bin-packing problem. The vector
packing problem does not admit any polynomial-time asymptotic approximation scheme
even in the case of d = 2 dimensions, unless P = NP [31].

Specifically, the proof in [11] for the non-existence of APTAS for task sets with arbitrary
deadlines comes from an L-reduction from the 2-dimensional vector packing problem as
follows: For a vector vi in V, a task τi is created with Di = 1, Ci = vi,2, and Ti = vi,2

vi,1
.

However, a trivial extension from [11] to constrained deadlines does not work, since for the
transformation of the task set we need to assume that vi,1 ≤ vi,2 for any vi ∈ V so that
Ti ≥ 1 = Di for every reduced task τi. This becomes problematic, as one dimension in
the vectors in such input instances for the two-dimensional vector packing problem can be
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totally ignored, and the input instance becomes a special case equivalent to the traditional
bin-packing problem, which admits an APTAS. We will show that the hardness is equivalent
to a special case of the two-dimensional vector packing problem, called the two-dimensional
dominated vector packing (2D-DVP) problem, in Section 6.2.

I Definition 9. The two-dimensional dominated vector packing (2D-DVP) problem is a
special case of the two-dimensional vector packing problem with following conditions for each
vector vi ∈ V:

vi,1 > 0, and
if vi,2 6= 0, then vi,1 is dominated by vi,2, i.e., vi,2 > vi,1.

Moreover, we further assume that vi,1 and vi,2 are rational numbers for every vi ∈ V.

Here, some tasks are created with implicit deadlines (based on vector vi if vi,2 is 0) and
some tasks with strictly constrained deadlines (based on vector vi if vi,2 is not 0). However,
the 2D-DVP problem is a special case of the two-dimensional vector packing problem, and
the implication for vi,2 > vi,1 when vi,2 6= 0 does not hold in the proof in [31]. We note, that
the proof for the non-existence of an APTAS for the two-dimensional vector packing problem
in [31] is erroneous. However, the result still holds. Details are in the Appendix in [9].
Therefore, we will provide a proper L-reduction in Section 6.3 to show the non-existence
of APTAS for the multiprocessor partitioned packing problem for tasks with constrained
deadlines.

6.2 2D-DVP Problem and Packing Problem

We now show that the packing problem is at least as hard as the 2D-DVP problem from a
complexity point of view. For vector vi with vi,2 > vi,1, we create a corresponding task τi
with

Di = 1, Ci = vi,2, Ti = vi,2
vi,1

.

Clearly, Di < Ti for such tasks. Let H be a common multiple, not necessary the least, of
the periods Ti of the tasks constructed above. By the assumption that all the values in the
2D-DVP problem are rational numbers and vi,1 > 0 for every vector vi, we know that H
exists and can be calculated in O(N). For vector vi with vi,2 = 0, we create a corresponding
implicit-deadline task τi with

Ti = Di = H, Ci = vi,1Ti.

The following lemma shows the related schedulability condition.

I Lemma 10. Suppose that the set Tm of tasks assigned on a processor consists of (1)
strictly constrained-deadline tasks, denoted by T<

m, with a common relative deadline 1 = D

and (2) implicit-deadline tasks, i.e., Tm \ T<
m, in which the period is a common integer

multiple H of the periods of the strictly constrained-deadline tasks. EDF schedule is feasible
for the set Tm of tasks on a processor if and only if∑

τi∈T<
m

Ci ≤ 1 and
∑
τi∈Tm

ui ≤ 1.
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Proof.
Only If. This is straightforward as the task set cannot meet the timing constraint when∑

τi∈T<
m

Ci

D > 1 or
∑
τi∈Tm

ui > 1.
If. If

∑
τi∈T<

m

Ci

D ≤ 1 and
∑
τi∈Tm

ui ≤ 1, we know that when t < D, then
∑
τi∈Tm

dbf(τi, t)
= 0. When D ≤ t < H, we have∑

τi∈Tm

dbf(τi, t) =
∑

τi∈T<
m

(⌊
t−D
Ti

⌋
+ 1
)
× Ci ≤

∑
τi∈T<

m

(
t−D
Ti

+ 1
)
× Ci

≤
∑

τi∈T<
m

Ci + (t−D)ui ≤ D + (t−D) = t. (5)

Moreover, with
∑
τi∈Tm

ui ≤ 1, we know that when t = H∑
τi∈Tm

dbf(τi, H) =
∑

τi∈T<
m

(⌊
H −D
Ti

⌋
+ 1
)
× Ci +

∑
τi∈Tm\T<

m

H

Ti
Ci

=1
∑

τi∈T<
m

H

Ti
Ci +

∑
τi∈Tm\T<

m

H

Ti
Ci = H

( ∑
τi∈Tm

ui

)
≤ H,

where =1 comes from the fact that H
Ti

is an integer for any τi in T<
m and Ti > D > 0 so

that
⌊
H−D
Ti

⌋
+ 1 is equal to H

Ti
.

For any value t > H, the value of
∑
τi∈Tm

dbf(τi, t) is equal to∑
τi∈Tm

dbf(τi, t−H) +
∑
τi∈Tm

dbf(τi, H). Therefore, we know that if
∑
τi∈T<

m

Ci

D ≤
1 and

∑
τi∈Tm

ui ≤ 1, the task set Tm can be feasibly scheduled by EDF. J

I Theorem 11. If there does not exist any APTAS for the 2D-DVP problem, unless P = NP,
there also does not exist any APTAS for the multiprocessor partitioned packing problem with
constrained-deadline task sets.

Proof. Clearly, the reduction in this section from the 2D-DVP problem to the multiprocessor
partitioned packing problem with constrained deadlines is in polynomial time.

For a task subset T′ of T, suppose that V(T′) is the set of the corresponding vectors that
are used to create the task subset T′. By Lemma 10, the subset Tm of the constructed tasks
can be feasibly scheduled by EDF on a processor if and only if

∑
τi∈T<

m
Ci =

∑
τi∈V(Tm) vi,2 ≤

1 and
∑
τi∈Tm

ui =
∑
τi∈V(Tm) vi,1 ≤ 1.

Therefore, it is clear that the above reduction is a perfect approximation preserving
reduction. That is, an algorithm with a ρ (asymptotic) approximation factor for the
multiprocessor partitioned packing problem can easily lead to a ρ (asymptotic) approximation
factor for the 2D-DVP problem. J

6.3 Hardness of the 2D-DVP problem
Based on Theorem 11, we are going to show that there does not exist APTAS for the 2D-DVP
problem, which also proves the non-existence of APTAS for the multiprocessor partitioned
packing problem with constrained deadlines.

I Theorem 12. There does not exist any APTAS for the 2D-DVP problem, unless P = NP.

Proof. This is proved by an L-reduction, following a similar strategy in [31] by constructing
an L-reduction from the Maximum Bounded 3-Dimensional Matching (MAX-3-DM), which
is MAX SNP-complete [24]. Details are in the Appendix in [9], where a short comment
regarding an erroneous observation in [31] is also provided. J
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The following theorem results from Theorems 11 and 12.

I Theorem 13. There does not exist any APTAS for the multiprocessor partitioned packing
problem for constrained-deadline task sets, unless P = NP.

7 Concluding Remarks

This paper studies the partitioned multiprocessor packing problem to minimize the number
of processors needed for multiprocessor partitioned scheduling. Interestingly, there turns out
to be a huge difference (technically) in whether one is allowed faster processors or additional
processors. Our results are summarized in Table 1. For general cases, the upper bound
and lower bound for the first-fit strategy in the deadline-monotonic partitioning algorithm
are both open. The focus of this paper is the multiprocessor partitioned packing problem.
If global scheduling is allowed, in which a job can be executed on different processors, the
problem of minimizing the number of processors has been also recently studied in a more
general setting by Chen et al. [14, 13] and Im et al. [23]. They do not explore any periodicity
of the job arrival patterns. Among them, the state-of-the-art online competitive algorithm
has an approximation factor (more precisely, competitive factor) of O(log logM) by Im et
al. [23]. These results are unfortunately not applicable for the multiprocessor partitioned
packing problem since the jobs of a sporadic task may be executed on different processors.
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Abstract
The stochastic knapsack problem is a stochastic version of the well known deterministic knapsack
problem, in which some of the input values are random variables. There are several variants of
the stochastic problem. In this paper we concentrate on the chance-constrained variant, where
item values are deterministic and item sizes are stochastic. The goal is to find a maximum
value allocation subject to the constraint that the overflow probability is at most a given value.
Previous work showed a PTAS for the problem for various distributions (Poisson, Exponential,
Bernoulli and Normal). Some strictly respect the constraint and some relax the constraint by a
factor of (1 + ε). All algorithms use Ω(n1/ε) time. A very recent work showed a “almost FPTAS”
algorithm for Bernoulli distributions with O(poly(n) · quasipoly(1/ε)) time.

In this paper we present a FPTAS for normal distributions with a solution that satisfies the
chance constraint in a relaxed sense. The normal distribution is particularly important, because
by the Berry-Esseen theorem, an algorithm solving the normal distribution also solves, under
mild conditions, arbitrary independent distributions. To the best of our knowledge, this is the
first (relaxed or non-relaxed) FPTAS for the problem. In fact, our algorithm runs in poly(nε ) time.
We achieve the FPTAS by a delicate combination of previous techniques plus a new alternative
solution to the non-heavy elements that is based on a non-convex program with a simple structure
and an O(n2 log n

ε ) running time. We believe this part is also interesting on its own right.
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1 Introduction

Stochastic optimization has been studied by a large community since the 1950s. In a
stochastic problem the input contains information about distributions rather than concrete
values, and the goal is to provide a solution that works well on instances drawn according
to the input distributions. For example, one might want to optimize the expected value of
certain objective function for inputs drawn from the given input distributions.
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An important special case of stochastic optimization is chance-constrained optimization
where we want to optimize a target function under the restriction that the probability
we violate the constraints is at most some given threshold p. For example, Kleinberg,
Rabani and Tardos [6], who were among the first to study approximation algorithms for
stochastic problems, studied a chance-constrained version of the stochastic knapsack problem,
CCKnapsack, in the context of bursty connections. In their case the input is information
about n items. Item i has value vali and its size is Bernoulli distributed, i.e., with probability
qi it has size si and with probability 1− qi it has size 0. The distributions of the n items are
independent. The input also includes a value p and the knapsack capacity c. The goal is
to choose a subset of the n items that maximizes the total value subject to the constraint
that the overflow probability is at most p. Kleinberg et. al. provide a close to linear time
O(log 1

p )-approximation algorithm, by showing a simple reduction to the deterministic case.
Goel and Indyk [4] studied CCKnapsack for several other distributions: Poisson, Expo-

nential and Bernoulli.
For Poisson they gave a PTAS (Polynomial Time Approximation Scheme). More precisely,
given ε > 0 the algorithm runs in time nO(1/ε) time and outputs a feasible solution (i.e., a
solution where the overflow probability is at most p) with value at least (1− ε)P ∗, where
P ∗ is the optimal feasible value.
For the Exponential distributions they obtained a relaxed PTAS, namely, they output an
objective value that is no worse than the optimum, but the solution violates the knapsack
size and the overflow probability by a factor of (1 + ε).
For Bernoulli distribution the situation is even worse and they obtain a relaxed QPTAS
(Quasi-Polynomial Time Approximation Scheme) algorithm which relaxes the constrains
by a factor of (1 + ε), and for a given constant ε runs in quasi-polynomial time in n.

Goyal and Ravi [5] present a PTAS for CCKnapsack when item sizes are normally distributed.
Their algorithm does not relax the overflow probability constraint nor the capacity constraint.
However, it does not give a FPTAS, as the running time of the algorithm is Ω(n1/ε). Later,
Bhalgat, Goel and Khanna [1] obtained a PTAS which relaxes both the overflow probability
constraint and the capacity constraint and works for any random variable. In a recent work,
De [3] showed a “(nearly) FPTAS” for the CCKnapsack with Bernoulli distributions and
quasi-FPTAS for k-supported random variables, i.e. when all item sizes are supported on
a common set of constant size. De [3] also showed a PTAS for hypercontractive random
variables, i.e. random variables whose second and fourth moments are within constant factors
of each other. Poisson, Gaussian and Exponential random variables are hypercontractive
random variables. All three algorithms presented by De [3] relax the overflow probability by
an additive ε. Table 1 summarizes the above mentioned previous work results.

Goyal and Ravi [5] study the normal distribution case. The normal distribution is partic-
ularly interesting since by the central limit theorem the sum of n independent distributions
converges to a normal distribution and the Berry Essen theorem gives a concrete bound on
the rate of convergence as a function of the first three moments. It is shown in [9] and [8],
in a slightly different setting, that an algorithm that solves a chance constrained stochastic
problem also works for any n independent distributions, as long as the input distributions
respect some mild conditions (e.g., their third moments are reasonable), and this is also true
for CCKnapsack.

The special case where there are no heavy items, i.e., items whose value is more than ε
fraction of the optimal value P ∗, is particularly interesting, because this is the usual setting
for many cloud problems, where there are many services and no single service alone dominates
resource demand. In this special case Goyal and Ravi’s algorithm is much faster and runs in
poly(n) time (with no dependence on ε).
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Table 1 Known Results for CCKnapsack.

Relaxed Relaxed
Reference Distribution Overflow Knapsack Approximation

Probability Capacity Scheme

O(log 1
p

)P ∗
Kleinberg et al [6] Bernoulli no no polynomial time

Poisson no no PTAS

Goel and Indyk [4] Exponential yes yes PTAS

Bernoulli yes yes QPTAS

Goyal and Ravi [5] Normal no no PTAS

Bhalgat et al [1] any yes yes PTAS

Bernoulli yes no (nearly) FPTAS

k-supported yes no quasi-FPTAS
De [3] hypercontractive

(Poisson,Gaussian, yes no PTAS
Exponential, ...)

Current work Normal no yes FPTAS

We mention that other variants of the problem were studied, e.g., the dynamic knapsack
problem [7, 2] where decisions are adaptive and each size is revealed (or realized) only after
the decision maker attempts to insert it.

1.1 Previous techniques

Kleinberg et al. [6] show a simple reduction to the deterministic case, by calculating an
effective bandwidth value for each item, and then running a greedy algorithm on these
deterministic values.

Goel and Indyk [4] proceeded by separating the items to big and small based on whether
their value is “large” (which should be appropriately defined) or “small”. On small variables a
greedy fractional algorithm is used, and it is easy to see that it has at most one non-integral
value. This value is then dropped, and the loss in value is small, because the dropped item is
“small”. For “large” items, all candidate sets of large items (and there are at least 21/ε such
candidate sets) are checked.

Goyal and Ravi [5] replaced the greedy algorithm with a parametric LP program and
showed that the resulting fractional solution has at most two non-integral values. They exploit
that for a rounding algorithm that essentially solves correctly (with a small approximation
error) the non-heavy elements. For the heavy elements, Goyal and Ravi again try all n1/ε

subsets of heavy elements (as there are at most 1/ε elements with value εP ∗).
Of course, there are more technical issues to be handled. For example, to do the partition

to large and small items correctly one needs to know (approximately) the optimal value P ∗.
The solution is to try all approximations to P ∗ from the set

{
Pmin, , . . . , Pmin(1 + ε)i, . . .

}
.

There must be one Pi in the set such that Pi ≈ P ∗, and the number of such Pi is linear in
the input length.

ISAAC 2018
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1.2 Our contribution
The results in this paper are two-fold:

First, we simplify the solution of the light elements (items whose value is at most ε
fraction of the optimal value P ∗) and show a simple non-convex program that has an
efficient almost integral solution, and,
Second, we use it to give a relaxed FPTAS (i.e., an algorithm with running time poly(nε )
rather than n1/ε). We note that this is the first FPTAS algorithm for CCKnapsack, relaxed
or not.

We now explain more about these two contributions. First, using a technique from
Nikolova [8] we translate the problem on the light elements, to a concrete non-linear (and
non-convex) program on R2. The program is, in fact, a quasi-concave minimization problem,
and is minimized on one of the vertices of the polygon of possible solutions. We study this
polygon and prove that:

The polygon has at most n2 vertices,
These vertices can be easily enumerated, and,
Each vertex represents an almost integral solution, with at most one non-integral item.

While the base approach is taken from Nikolova [8] the situation here is very different. In
[8] the polygon has many (super polynomial) vertices and also it is NP hard to enumerate
all the vertices of the polygon. Accordingly, we deviate from the approach taken in [8] and
in this paper we use geometric intuition that completely unravel the nature of the polygon
in our case. We use the above three properties to construct an efficient algorithm solving
CCKnapsack when all the items are not heavy. Specifically, we show:

I Theorem 1. There exists an algorithm for CCKnapsack over normal distributions such
that if the value of each element is at most εP ∗, where P ∗ is the optimal feasible value, then
the algorithm outputs a feasible integral solution with value at least (1− ε)P ∗. The running
time of the algorithm is O(n2 log n

ε ).

We remark that Goyal and Ravi’s algorithm [5] also gives a poly(n) algorithm for the
case in which all items are not ε-heavy, but our solution is simpler and faster, and we hope
that it can also be used in practice .

We now move to our second contribution. As explained above, Goel and Indyk [4] showed
a relaxed PTAS for CCKnapsack over several distributions and Goyal and Ravi [5] showed a
strict PTAS for the normal distribution. The above algorithms have running time Ω(n1/ε)
which indeed allows a PTAS, but is prohibitively large. It is a natural intriguing problem
to improve this situation and find a FPTAS whose running time is poly(n, f(ε)) for some
function f . We show such a result with running time poly(nε ). We prove:

I Theorem 2. There exists an algorithm solving CCKnapsack over normal distributions that
ε approximates the optimum in the relaxed sense, i.e., given an input, it finds a solution such
that the overflow probability with a slightly larger capacity (1 + ε)C is at most the specified
overflow probability. The running time of the algorithm is poly(nε ).

The idea is quite natural. We have two basic algorithms for CCKnapsack:
The algorithm of Theorem 1 that approximates the optimal integral solution for non-heavy
elements.
An exact dynamic programming algorithm that finds an integral solution for Knapsack
in time polynomial in the number of partial sums. This algorithm can be easily extended
to CCKnapsack.
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Suppose we know the optimal integral value P . If we divide all items to light and heavy
according to whether their value is smaller than εP or higher than it, and if we want an ε
approximation of the optimal value, we are allowed to lose any constant number of light
items, but we are not allowed to lose any heavy item. This leads to the following strategy:
On the light items we run the algorithm of Theorem 1. On the Heavy items we cannot miss
any single item but we do not mind taking an ε multiplicative approximation. Hence, we
round the input values of the heavy items, and run the exact algorithm (that does not lose
even a single item) on the rounded heavy items. As there are only few possibilities, the
number of partial sums is small, and that part can be efficiently implemented.

There are many technical challenges in implementing the above idea, and our solution
is a delicate combination of previous techniques: the multiplicative incremental guessing of
parameters, truncation of heavy elements, the dynamic programming for Knapsack and its
extension to CCKnapsack and our new reduction to the non-convex problem and its simple
structure.

The paper is organized as follows. In Section 2 we show a simple fractional solution
to CCKnapsack. In Section 3 we study the non-convex program and the polygon of pos-
sible solutions. In [10] we generalize the dynamic programming algorithm of Knapsack to
CCKnapsack, and In Section 4 we present our FPTAS with relaxed constraints.

2 The Fractional Chance Constrained Knapsack Problem

The Chance Constrained Knapsack Problem for Normal distributions is defined as follows:

CCKnapsack: Chance Constrained Knapsack

Input: The input to the problem consists of:
C specifying the knapsack capacity,
n specifying the number of items available for inclusion in the knapsack,
ζ specifying a bound on overflow probability,
ε - accuracy parameter.
The size of item i, denoted by X(i), is normally distributed with mean µ(i), and
variance V (i) that are given as input. Set Q(i) = (µ(i), V (i)). The distributions X(i)

are independent.
Also, for each item i we are given the value p(i) > 0 of that item.

A solution α = (αi, . . . , αn) ∈ {0, 1}n is feasible if Pr[
∑n
i=1 αiX

(i) > C] ≤ ζ.

Output: The output is a vector αout = (αi, . . . , αn) such that:
Integrality constraint: αi ∈ {0, 1}, αi = 1 if item i is selected to be included in the
knapsack and αi = 0 otherwise.
The solution is feasible, and
Let Pout =

∑
i αip

(i), POPT = max
{∑n

i=1 αip
(i) | αi ∈ {0, 1}, α is feasible

}
. We

require that |Pout − POPT | ≤ ε.

CCKnapsack is not linear as the overflow probability is not linear. Moreover, the exact
problem is clearly NP-hard since its deterministic version, in which each item X(i) takes
a single value with probability 1, is the knapsack problem. Therefore, we only ask for an
efficient approximation to the problem.

A fractional solution is a feasible vector α = (α1, . . . , αn) with αi ∈ [0, 1], dropping the
integrality constraint.

ISAAC 2018
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I Theorem 3. There exists an algorithm that ε-approximates the CCKnapsack problem with
running time O(n2 log n

ε ), where n is the number of elements. Furthermore, in the fractional
solution found, there is at most one fractional item.

We now explain our approach for solving the problem. In the CCKnapsack problem the
item sizes are independent and normally distributed. Suppose α is a fractional solution.
The size of the solution α is a random variable Xα =

∑
αiX

(i) and is normally distributed
with mean µα =

∑n
i=1 αiµ

(i) and variance Vα =
∑n
i=1 αiV

(i). Also, µα and Vα determine
the overflow probability (because the distribution is Normal and is determined by the
mean and variance). Hence, we can represent each fractional solution α by the point
(µα, Vα) ∈ R2 and define the following polygon Λ ⊆ R2 of fractional solutions: Λ ={
Q =

∑n
i=1 αiQ

(i) ∈ R2 | 0 ≤ αi ≤ 1
}
. The algorithm performs a binary search to find an

approximate maximum value with overflow probability at most ζ. Each step in the binary
search determines whether there exists a feasible solution with a given value P . This translates
to the question whether the polygon

ΛP =
{
Q =

n∑
i=1

αiQ
(i) ∈ R2 | 0 ≤ αi ≤ 1,

n∑
i=1

αip
(i) = P

}
. (1)

contains a point with overflow probability at most ζ. Equivalently, the problem is whether
the minimal overflow probability over the points in the polygon ΛP is at most ζ.

We will see (in Section 3) that the problem of minimizing the overflow probability over
the polygon is a quasi-concave minimization problem over a convex body and is seemingly
hard. The novelty of the algorithm lies in efficiently solving this problem. This is done by
showing (in Section 3) that:

I Lemma 4. Fix P and look at the polygon ΛP .
1. The minimum overflow probability over points in ΛP is obtained at a vertex of ΛP .
2. The polygon ΛP has at most n2 − n vertices.
3. There exists an algorithm FPBoundary that outputs all vertices in time O(n2 log n).

Having that, a simple binary search (over the possible values of P ) gives Theorem 3 and
we give it (along with the correctness proof) in [10].

3 The boundary of the polygon ΛP .

The overflow probability of a solution α = (α1, . . . , αn), denoted OFP (α), is,

OFP (α) = Pr[
n∑
i=1

αiX
(i) > C] = 1√

2πVα

∫ ∞
C

e−
(x−µα)2

2Vα dx = 1− Φ(C − µα√
Vα

),

where Φ is the cumulative distribution function of the standard Normal distribution. Nikolova
shows in [8] that when C − µα > 0, OFP is a quasi-concave function (on an n dimensional
space (α1, . . . , αn)). Also, Nikoova noticed that as OFP depends only on the total mean and
variance, when we project the problem to two dimensions (as we did in the previous section)
OFP remains quasi-concave. Hence, OFP gets a minimum value over ΛP on a vertex of ΛP .

In [10] we prove:

I Theorem 5. For every I1 =
∑n
i=1 αiQ

(i) and I2 =
∑n
i=1 βiQ

(i) that are adjacent vertices
of the polygon ΛP , the tuples α = (α1, . . . , αn) and β = (β1, . . . , βn) differ in exactly two
elements. Let k and ` be the indices of these two elements. We call the items k, ` the active
items in vertex I1.
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Figure 1 I1, I2 and I3 are vertices of the polygon. The angle the edge (I2, I3) has with (I1, I2) is
the smallest among all edges (I2, X) for X in the polygon.

3.1 Enumerating the polygon vertices
In this section we first show an algorithm PBoundary running in O(n4) time, and then we
introduce a faster algorithm FPBoundary solving the problem in (n2 log n) time.

Algorithm PBoundary

1. The algorithm first calculates the leftmost vertex, I1, of the polygon ΛP on the
mean-variance plane. The point I1 has the minimum mean value among all points in
ΛP and therefore it is the leftmost point.
To find I1, sort the input in increasing order of mean to value ratio and re-index it,
such that µ(1)

p(1) ≤ . . . ≤ µ(n)

p(n) . Denote I1 =
∑n
i=1 αiQ

(i). Find the smallest k such that∑k
i=1 p

(i) ≥ P and set αi = 1 for all i < k and αi = 0 for all i > k. Set αk such that∑n
i=1 αip

(i) = P . Also, set E1 = (0,−1).
2. Suppose we have calculated all points I1, I2, . . . , It and all vectors E1, E2, . . . , Et. We

now calculate the point It+1 and the vector Et+1. Denote It =
∑n
i=1 αiQ

(i) and
It+1 =

∑n
i=1 βiQ

(i).
a. Find direction: Find a pair of items (k, `) ∈ [n]× [n], k 6= `, such that swapping

items k and ` creates the smallest angle with Et. Namely, αk > 0, α` < 1 (meaning
that we can take more of item ` and less of item k) and the angle between Et and
Q(`) −Q(k) is smallest. Also, set Et+1 = Q(`) −Q(k).

b. Edge length: Set βi = αi, ∀i /∈ {k, `}. If αkp(k) ≤ (1 − α`)p(`), let βk = 0 and
set β` such that (β` − α`)p(`) = αkp

(k). Otherwise, let β` = 1 and set βk such that
(αk − βk)p(k) = (1− α`)p(`).

The algorithm stops when It+1 = I1.

I Claim 6. The list of points I1, I2, . . . found by PBoundary is the list of all polygon vertices.

Proof. Step (1) finds the leftmost point I1 in ΛP which, in particular, is a vertex of ΛP . We
now want to find the next adjacent vertex, going counterclockwise. According to Theorem
5 two adjacent vertices differ in exactly two items. Among all possible pairs of different
items, Step (2a) chooses the pair of indices (k, `) ∈ [n]× [n] such that inserting item ` and
removing item k creates the smallest angle with the vector E1 = (0,−1) which is parallel
to the variance axis. This sets a direction that equals the direction of the edge leaving I1
in ΛP . Step (2b) sets (β1, . . . , βn) ∈ [0, 1]n such that we go in this direction as far as we
can while staying in ΛP : it either sets βk to 0 or β` to 1, which ensure that we go on the
chosen direction as far as we can. We therefore stop on the next vertex I2. We then set
E2 = I2 − I1. Notice that E2 is the direction of the edge (I1, I2). See Figure 1.

ISAAC 2018



72:8 Stochastic CC Knapsack

Figure 2 The angle between (I5, I6) and (I1, I2) is larger than angle between (I4, I5) and (I1, I2).

Similarly, suppose we have found the first t vertices I1, . . . , It for t > 1, and (It−1, It)
is the last edge found on the boundary so far with direction Et = It − It−1. Again, by
Theorem 5 two adjacent vertices differ in exactly two items. Step (2a) chooses a pair of
items (k, `) ∈ [n]× [n] such that inserting ` and removing k creates the smallest angle with
Et. This sets a direction that equals the direction of the edge leaving It in ΛP . Again, step
(2b) sets (β1, . . . , βn) ∈ [0, 1]n such that we go on the chosen direction as far as we can while
staying in ΛP and therefore stops on a vertex. See Figure 1. The algorithm stops when it
reaches back to the initial vertex I1. J

I Corollary 7. The polygon ΛP has at most n(n− 1) vertices.

Proof. Let I1, . . . , Im be the vertices in the order found by algorithm PBoundary. Notice
that the direction of (Ij , Ij+1) is Q(`) −Q(k) where (k, `) are the active items at vertex Ij ,
and does not depend on the edge length. Thus, there are at most n(n − 1) possible edge
directions. As all edges of a convex body in R2 must have different (directed) directions, we
see that the number of vertices is at most n(n− 1). J

Algorithm PBoundary takes O(n4) time, because we have seen that the number of vertices
of ΛP is at most n2 and if we have found It, to find the next vertex we go over n2 possible
directions. Altogether, the running time is O(n4). Algorithm PBoundary goes over all n2

possible directions at each step t. However, in a convex body that is contained in R2 the
edges have a natural ordering. Suppose the polygon ΛP ⊆ R2 has m vertices. Make any
vertex a distinguished one and call it I1. Suppose the other vertices of the polygon are ordered
by I2, . . . , Im, i.e., (Ij , Ij+1 mod m) is an edge of the ΛP . Let anglet be the angle between
the vectors It+1 mod m − It and I2 − I1. Then, the angles are monotonically increasing in t
until we complete a whole circle and get the zero angle again. Notice that the orientation of
a vector is important and the angle between a vector v and −v is π. See Figure 2.

With that it becomes clear that we do not need to consider all the n2 directions at
each time step t. Instead we first do a pre-processing step in which we calculate all the n2

directions and sort them by the angle they make with the vector (0,−1) in increasing order.
Then, at step t we never look at a direction that we already passed (because the angles are
monotonically increasing) and we start the search right after the last entry we have reached
in the table. Altogether, our total running time is the table size, reducing the running time
from n4 to about n2. We give algorithm FPBoundary and its analysis in [10].

3.2 The vertices of polygon ΛP are almost integral
I Theorem 8. Let I be a vertex of ΛP . Then there is a way to write I =

∑
αiQ

(i) with
α = (α1, . . . , αn) ∈ [0, 1]n such that there is at most one element k ∈ [n] in which αk 6∈ {0, 1}.
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Proof. Assume that there are at least two elements, k and l, in which αk, αl 6∈ {0, 1}. Let
δk = 1

2min{αk, 1− αk} and δl = 1
2min{αl, 1− αl}. If δkp(k) < δlp

(`), decrease δl to get
δkp

(k) = δlp
(`), otherwise, decrease δk to reach this equality. It is easy to see that both points

I − δkQ(k) + δlQ
(`) and I + δkQ

(k) − δlQ(`) are in ΛP , and that the point I is the mid point
of the line connecting them. This contradicts the fact the that I is a vertex. Hence, there is
at most one element k ∈ [n] in which αk 6∈ {0, 1}. J

I Corollary 9. There exists an algorithm for CCKnapsack such that if the value of each
element is at most εP ∗, where P ∗ is the optimal feasible value, then the algorithm outputs a
feasible integral solution I ′ with p(I ′) ≥ (1− ε)P ∗. The running time is O(n2 log n

ε ).

Proof. Run the algorithm of Theorem 3 to find the optimal fractional solution. We know
that the optimal fractional value is obtained on a vertex of the corresponding polygon, and
that the solution contains at most one non-integral element. Drop that element. Clearly, the
new solution is feasible, and its value is smaller than the optimal value by at most εP ∗. J

3.3 Every fractional point in the polygon is dominated by some
integral point with almost the same value

The partial lexicographic order on R2 is (a, b) ≤ (a′, b′) iff a ≤ a′ and b ≤ b′. We claim:

I Lemma 10. For every point X ∈ ΛP there exists a vertex I of ΛP and an integral point
A 6∈ ΛP , such that A ≤ X, A ≤ I and I −A = γQ(i) + δQ(j) where i, j ∈ [n] are the active
items at vertex I and 0 ≤ γ, δ ≤ 1. I.e., for every point X in the polygon ΛP there exists an
integral point A such that A ≤ X in the lexicographic partial order, and A is almost a vertex
of the polygon differing from some vertex in at most two elements.

Proof. We start at the point X, and vertically go down till we reach the boundary of ΛP at
some point Y . Obviously, µ(Y ) = µ(X) and V (Y ) ≤ V (X), and hence Y ≤ X. Let I and J
be the two vertices of ΛP to the left and right of Y , respectively (if Y is a vertex I = Y ).
Notice that µ(I) ≤ µ(Y ) = µ(X) and at least one of V (I) ≤ V (Y ) or V (J) ≤ V (Y ) holds.

According to Theorem (8), I has a representation I =
∑
αiQ

(i) that has at most one
element k ∈ [n] in which αk 6∈ {0, 1}. Let i and j be the active items at vertex I.

I Claim 11. k ∈ {i, j}.

Proof. Suppose not, i.e. αk 6∈ {0, 1} and yet we do a replacement (i, j) in which k does not
participate. Since I is a vertex we must have αj = 0 and αi = 1. Now we notice that:

αk < 1 and αi = 1, hence k could have replaced i, and,
αk > 0 and αj = 0, hence j could have replaced k.

The direction of k replacing i is Ek,i = Q(k) − Q(i). The direction of j replacing k is
Ej,k = Q(j) −Q(k). Notice that Ej,i = Ej,k + Ek,i. Hence, Ej,i is inside the parallelogram
defined by Ek,i and Ej,k, and therefore the algorithm cannot choose the replacement (i, j)
since it doesn’t give the smallest angle with the vector (0,−1). A contradiction. J

Let A be the integral point that is received by throwing elements i and j from the vertex I
(if they participate in I), i.e. A =

∑
`6=i,j α`Q

(`). Therefore, A ≤ I. Also, since vertex J is
received from vertex I by decreasing element i and increasing element j, J ≥

∑
`6=i α`Q

(`).
Hence A ≤ J . Thus A ≤ I and A ≤ J . In particular, µ(A) ≤ µ(I) ≤ µ(Y ) and also
V (A) ≤ V (I) and V (A) ≤ V (J). Therefore, V (A) ≤ V (Y ) and hence A ≤ Y ≤ X. J

ISAAC 2018
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4 The Relaxed FPTAS for CCKnapsack

In this section we present algorithm IntegralRelaxed, which is a relaxed FPTAS for
CCKnapsack. The input to IntegralRelaxed is the same as that of CCKnapsack, defined
in Section 2. Suppose the optimal solution outputs a set of items I∗ with total value P ∗ such
that the probability the total size of the items in I∗ exceeds C is at most ζ (C and ζ are
inputs to the problem). The output of IntegralRelaxed is a set of items I ′ with total value at
least (1− 5ε)P ∗ and the probability the total size of items in I ′ exceeds (1 + ε)C is at most
ζ. Before we explain the algorithm we need a few pre-requisites:

The algorithm uses as a subroutine a dynamic programming algorithm (described in
tails in [10]) that does the following. The input to the algorithm is a set of triplets{

(a(i), b(i), c(i)) | i ∈ S
}
. Define the set of partial sums in each coordinate by PSa ={∑

i∈I a
(i) | I ⊆ S

}
, and similarly for PSb and PSc. The algorithm finds all triplets{∑

i∈I(a(i), b(i), c(i)) | I ⊆ S
}
, i.e., triplets in PSa × PSb × PSc that can be obtained

as the partial sum of the same set I ⊆ S. The algorithm does that by keeping a table
whose k’th row records all combinations that can be obtained by the first k triplets in
S. The procedure OUT ((s1, s2, s3), |S|) of the algorithm checks whether (s1, s2, s3) is a
feasible triplet, and if so returns a subset I ⊆ S that obtains it. The running time of the
algorithm is polynomial in the number of partial sums.
We need a truncation operator to truncate heavy elements so that the dynamic program-
ming algorithm runs in polynomial time. We define bxcS = b xS c · S. If x ∈ [0,KS), then
bxcS also belongs to [0,KS) but may belong only to a set of K points which are the first
points in consecutive intervals of length S partitioning [0,KS).
Define OFPC(µ, V ) = 1−Φ(C−µ√

V
), and also for I = (µ, v) write OFPC(I) = OFPC(µ, v).

We use the following fact, when proving that we get a relaxed constraint: For every
B > 0, OFPB·C(Bµ,B2V ) = 1− Φ(BC−Bµ√

B2V
) = 1− Φ(C−µ√

V
) = OFPC(µ, V ).

Finally, when we have a sequence
{
p(i)}n

i=1, we think of it as a function p(i) = p(i) and
extend it to sets A ⊆ [n] by letting p(A) =

∑
a∈A p(a). We do the same for µ, V, p, etc.

With that IntegralRelaxed does the following. First it guesses four values:
p̂: the guessed total value of the optimal solution.
p̂h: the guessed value of the heavy elements in the optimal solution.
µ̂h: the guessed mean value of the heavy elements in the optimal solution.
V̂h: the guessed variance of the heavy elements in the optimal solution.

For each such guessed quadruplets, IntegralRelaxed splits the input elements to heavy and
light, such that the value of an heavy item is at least εp̂. Then, it truncates the value, the mean
and the variance of each heavy element, i.e., p(i) = bp(i)c

p̂h/T1
, µ(i) = bµ(i)c

µ̂h/T2
, V

(i) =
bV (i)c

V̂h/T2
, where T1 = 1

ε2 and T2 = 1+ε
ε n. The truncated values of the heavy elements are

passed as an input to the dynamic programming algorithm, the light elements are solved
using Algorithm FPBoundry. More specifically, the algorithm does the following:

IntegralRelaxed(ε)
• Go over all (p̂, p̂h, µ̂h, V̂h) tuples with p̂h ≤ p̂ that are in:

p̂ ∈
{
Pmin(1 + ε)i| i ≥ 0 , Pmin(1 + ε)i ≤ (1 + ε)Ptotal

}
,

p̂h ∈
{
Pmin(1 + ε)i| i ≥ 0 , Pmin(1 + ε)i ≤ (1 + ε)Ptotal

}
,

µ̂h ∈
{
µmin(1 + ε)i | i ≥ 0 , µmin(1 + ε)i ≤ (1 + ε)µtotal

}
,

V̂h ∈
{
Vmin(1 + ε)i | i ≥ 0 , Vmin(1 + ε)i ≤ (1 + ε)Vtotal

}
,

where Pmin = min
{
p(i)|i ∈ [n]

}
and Ptotal =

∑
i∈[n] P

(i). Similarly for µmin, µtotal,
Vmin, Vtotal.
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• For each such (p̂, p̂h, µ̂h, V̂h) divide [n] to heavy and light items, H ={
i | p(i) ≥ εp̂

}
and L =

{
i | p(i) < εp̂

}
.

• Fix T1 = 1
ε2 and T2 = 1+ε

ε n. Run the dynamic programming algorithm presented
in [10] on the input

{
(p(i) = bp(i)c

p̂h/T1
, µ(i) = bµ(i)c

µ̂h/T2
, V

(i) = bV (i)c
V̂h/T2

)
}
i∈H

and
compute all partial sums. Now we do the following two checks:
1. (Check that (p̂h, µ̂h, V̂h) is heavy-feasible). Check that there exists some partial sum

(p, µ, V ) such that (1−2ε)p̂h ≤ p ≤ p̂h, µ ≤ µ̂h, V ≤ V̂h. If there is no such (p, µ, V ) the
test for (p̂, p̂h, µ̂h, V̂h) failed. If there is any such (p, µ, V ) let H ′ = OUT ((p, µ, V ), |H|)

2. (Check that the light elements can complete a good solution): Let Λ 1
1+ε p̂−p̂h

be
the polygon defined in Equation (1) using the light items, L, and the target value

1
1+ε p̂ − p̂h. Use Algorithm FPBoundry to enumerate the (at most) n2 vertices of
Λ 1

1+ε p̂−p̂h
. For each vertex I, throw away the two active elements, i and j, to get a

set L′ ⊆ L of integral light items (if the polygon is empty, L′ = ∅). This step passes if

OFPC(µ(L′) + µ(H ′)
1 + ε

, V (L′) + V (H ′)
1 + ε

) ≤ ζ.

• Let p̂ be the largest value for which steps 1 and 2 passed for some (p̂h, µ̂h, V̂h). Suppose
we used (p, µ, V ) and H ′ in step 1 and L′ in step 2 when accepting (p̂, p̂h, µ̂h, V̂h). Return
H ′ ∪ L′.

I Lemma 12. Let ε, T1, T2 be as defined before. Let I∗ be an optimal feasible integral
solution with value P ∗, mean µ∗ and variance V ∗. Let p̂ be such that P ∗ ≤ p̂ ≤ (1 + ε)P ∗.
Define H =

{
i | p(i) ≥ εp̂

}
and L =

{
i | p(i) < εp̂

}
. Denote H∗ = I∗ ∩H and L∗ = I∗ ∩ L.

Let p̂h, µ̂h, V̂h be such that p(H∗) ≤ p̂h ≤ (1 + ε)p(H∗), µ(H∗) ≤ µ̂h ≤ (1 + ε)µ(H∗) and
V (H∗) ≤ V̂h ≤ (1+ε)V (H∗). Then, IntegralRelaxed(ε) accepts (p̂, p̂h, µ̂h, V̂h) and the value
of the associated set is at least (1− 5ε)P ∗.

Proof. One of the solutions the dynamic programming algorithm generates is (p = p(H∗), µ =
µ(H∗), V = V (H∗)). It is clear that p = p(H∗) ≤ p(H∗) ≤ p̂h. Similarly, µ ≤ µ̂h and V ≤ V̂h.
Also, we first notice that for every i ∈ H we have

p(i) = bp(i)c
p̂h/T1

≥ p(i) − p̂h
T1

= p(i) − ε2p̂h ≥ p(i) − ε2 p
(i)

ε
= (1− ε)p(i),

because p(i) ≥ εp̂ ≥ εp̂h (as i ∈ H). Therefore, p = p(H∗) ≥ (1 − ε)p(H∗) ≥ 1−ε
1+ε p̂h ≥

(1− 2ε)p̂h. Hence the check at step 1 passes. Let H ′ = OUT ((p, µ, V ), |H|).
Next the algorithm does the check at step 2. We first notice that L∗ has value p(L∗) =

p(I∗) − p(H∗) ≥ P ∗ − p̂h ≥ 1
1+ε p̂ − p̂h, and therefore the polygon Λ 1

1+ε p̂−p̂h
is not empty

and there exists some X in the polygon that is supported over elements from L∗, i.e.,
X =

∑
i∈L∗ αiQ

(i) ≤ L∗. By Lemma (10) there exists a vertex I and an integral point L′
such that L′ ≤ X, and I − L′ = γQ(i) + δQ(j) for i and j that are the active items in vertex
I and 0 ≤ γ, δ ≤ 0.

When the algorithm goes over all the vertices in Λ 1
1+ε p̂−p̂h

it also checks I, and it
computes the integral solution L′ (which is the vertex I with the active items removed),
and when checking L′ we have µ(L′) ≤ µ(X) ≤ µ(L∗) and V (L′) ≤ V (X) ≤ V (L∗).
Notice that µ(H ′) ≤ µ(H ′) + n µ̂hT2

≤ µ(H∗) + n (1+ε)µ(H∗)
T2

≤ (1 + ε)µ(H∗). Similarly,
V (H ′) ≤ (1 + ε)V (H∗). Together,

OFPC(µ(L′) + µ(H ′)
1 + ε

, V (L′) + v(H ′)
1 + ε

) ≤ OFPC(µ(L∗) + µ(H∗), V (L∗) + V (H∗))

= OFPC(µ(I∗), V (I∗)) ≤ ζ.
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Thus, when the algorithm gets to check vertex I (and the algorithm checks all vertices I)
the algorithm accepts and returns the solution H ′ ∪ L′. Finally, notice that

p(H ′ ∪ L′) = p(H ′) + p(L′) ≥ p(H ′) + 1
1 + ε

p̂− p̂h − 2εp̂ ≥ p+ (1− ε)p̂− p̂h − 2εp̂

≥ (1− 2ε)p̂h + (1− 3ε)p̂− p̂h = (1− 3ε)p̂− 2εp̂h ≥ (1− 5ε)p̂ ≥ (1− 5ε)P ∗

J

I Lemma 13. If algorithm IntegralRelaxed(ε) returns the set I ′, then OFP(1+ε)C(I ′) ≤ ζ.

Proof. Suppose the algorithm accepts and returns the integral set I ′ = H ′ ∪ L′. As the
algorithm passed both checks, we know that OFPC(µ(L′)+ µ(H′)

1+ε , V (L′)+ v(H′)
1+ε ) ≤ ζ. Hence,

OFP(1+ε)C(µ(I ′), V (I ′)) = OFP(1+ε)C(µ(L′) + µ(H ′), V (L′) + V (H ′))

≤ OFP(1+ε)C((1 + ε)(µ(L′) + µ(H ′)
1 + ε

), (1 + ε)2(V (L′) + V (H ′)
1 + ε

))

= OFPC(µ(L′) + µ(H ′)
1 + ε

, V (L′) + V (H ′)
1 + ε

) ≤ ζ.

J

In [10] we prove:

I Lemma 14. IntegralRelaxed(ε) takes Õ( len
4n6

ε8 ) time, where len is the input length.
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Abstract
In this paper, we consider a variant of the facility location problem. Imagine the scenario where
facilities are categorized into multiple types such as schools, hospitals, post offices, etc. and the
cost of connecting a client to a facility is realized by the distance between them. Each client has a
total budget on the distance she/he is willing to travel. The goal is to open the minimum number
of facilities such that the aggregate distance of each client to multiple types is within her/his
budget. This problem closely resembles to the set cover and r-domination problems. Here,
we study this problem in different settings. Specifically, we present some positive and negative
results in the general setting, where no assumption is made on the distance values. Then we
show that better results can be achieved when clients and facilities lie in a metric space.
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1 Introduction

Consider the problem of opening a set of facilities, such as public service centres, in a city
such that all clients (people living in the city) are within a pre-specified distance of some
facility. The objective here is to open the minimum number of facilities. This problem closely
resembles the r-dominating set problem where given a metric space (V, d) and a distance
threshold r, the goal is to find a minimum-size set M of points such that every point in V is
within distance r to some point in M . This is a special case of the classical set cover problem
and can be approximated within a factor of 1 + ln |V |. In the Euclidean plane, however,
a polynomial time approximation scheme follows from the results on geometric covering
problems of Hochbaum and Maass [17].

In this paper, we study the generalization of the r-dominating set problem with different
types of covering points. Consider the setting where facilities can be categorized into multiple
types, such as schools, hospitals, post offices, etc., and the cost of connecting a client to a
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facility can be realized by the distance between them. Each client has a total budget on
the distance he/she is willing travel. As in set cover and r-dominating set problems,
the goal is to open the minimum number of facilities so that the aggregate distance of each
client to the nearest facilities of all types is within his/her budget. Intuitively, each client is
willing to accept tradeoffs among his/her distance to different facility types. Facility location
with multiple types has been previously studied in [15, 3]. Hajiaghayi et al. [15] considered a
variant of k-median problem with two facility sets (red and blue), where we can open at
most kr red and kb blue facilities. As opposed to our problem, each client is assigned to
a single nearest facility that can be either red or blue. The goal is to minimize the total
distance of the clients to their facility.

Problem Definition. We are given a set F of m facilities that are partitioned into L types
F1, F2, . . . , FL, and a set C of n clients, each with a budget Bj for j ∈ {1, . . . , n}. We assume
that L is a constant and that m = O(nc), for some fixed constant c. Moreover, we are given
a distance matrix D of size |F| × |C|, where each element dij represents the distance between
facility i and client j. We say that a client j is served or covered by a type-` facility i, if
i is the nearest open facility of type-` to j. Furthermore, we say that j has a service cost
or covering cost of dij for facilities of type-`. The total service (or covering) cost of j is
the sum of j’s service costs over all types. Our goal is to compute a set S of facilities of
minimum cardinality such that each client j is served by one open facility of each type in S
and the total service cost of j is at most Bj . We refer to this problem as flt that is, Facility
Location with Types.

In this paper, we present bi-criteria approximations of flt problem in different settings.
Let OPT denote the number of facilities opened by a fixed optimal solution. We say that
a solution S′ ⊆ F is (α, β)-approximate iff the number of facilities opened in S′ is at most
αOPT and the total service cost of each client j with respect to S′ is at most βBj . As usual,
an algorithm A is (α, β)-approximate if it outputs an (α, β)-approximate solution for every
instance.

Related Work. The flt problem with L = 1 corresponds to the set cover problem,
where given a set of elements U and a collection S of subsets of U , the aim is to choose a
minimum number of sets in S such that every element in U is covered. The analogy with flt
is straightforward: U and S correspond to the set of clients C and the set of the facilities F ,
respectively such that a client j is contained in the set corresponding to facility i if dij ≤ Bj .
It is known that the set cover problem admits Hn and f approximation algorithms where
Hn = 1 + 1

2 + · · ·+ 1
n ≤ (1 + lnn) and f is the maximum frequency of any element in U .

Dinur and Steurer [9] proved that it is NP-hard to approximate the set cover problem
within a ratio of (1− ε) lnn, for any ε > 0. Another problem equivalent to the set cover
problem is the hitting-set problem, where given a set of element U and a collection S of
subsets of U , the aim is to choose the minimal set of elements P in U such that P ∩ S 6= ∅,
for all S ∈ S. In a general setting, all results for the set cover problem extend to the
hitting-set problem.

Surprisingly, the hitting-set problem admits a better approximation ratio in R2 (also
called geometric hitting-set or ghs). Mustafa and Ray [20] showed that a simple local
search algorithm is a PTAS for the problem where elements in U and subsets in S correspond
to points and pseudo-disks, respectively, in R2. As such, there are no fully polynomial
approximation scheme for this problem unless NP = P [14]. The flt problem in R2 is
closely related to the problem of covering a set of points with ellipses. For a special case of
this problem where the ellipses are axis-parallel, Efrat et al. [11] presented an O(n∗ log n∗)
approximation, where n∗ is the size of an optimal cover.
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Another problem related to flt problem is the red-blue set cover problem [8]. Here,
elements in U are partitioned into two sets: red set R = {r1, r2, . . . , rk} and blue set
B = {b1, b2, . . . , bl}. The objective is to find a collection of subsets in S such that all blue
elements are covered and the number of red elements covered is minimized. Carr et al. [8]
showed that red-blue set cover problem cannot be approximated within a factor of
O(2log1−ε n′) for any ε > 0, where n′ = |S|4 (also see [12] for a similar inapproximability result).
Further, Carr et al. [8] showed that red-blue set cover admits an O((cρ)1−1/c log ρ)-
approximation, where ρ = |S| and c ≥ |S ∩R| for all S ∈ S.

flt requires that every client is covered by L facilities, which is reminiscent of the
set multi-cover problem [4] and the fault-tolerant facility location problem (ft-fl in
short) [18, 21]. Every element (resp. client) has a demand which is a lower bound on the
number of sets where the element must appear (resp. a lower bound on the number of
facilities to which the client is assigned). However, unlike flt, the sets (resp. facilities)
are not categorized and a coverage with one set (resp. facility) of each category is not
imposed. flt also bears some remote resemblance to multilevel facility location problems,
where facilities are partitioned into k levels and each client must travel to a facility at level k
through a path that goes through one facility at each level 1, . . . , k (see e.g., [1, 6] and the
references therein). Unlike flt, in multilevel facility location, the clients move from lower to
higher levels and there is no budget on the total length of the path.

The literature contains various aggregate functions for capturing the distance between a
client and its L covering facilities: maximum distance, sum of the distances, or more generally
with the use of an ordered weighted average [22]. In this article we consider the sum, like for
ft-fl. However, the clients’ total covering costs are part of the objective function in ft-fl,
whereas they are treated as constraints in flt, i.e. client j’s total service cost should not
exceed a prescribed budget Bj .

1.1 Our Contribution
To the best of our knowledge, the approximability of covering problems with multiple types
and a constraint on the combined “quality” of each client’s covering has not been studied
before. In this work, we give an almost complete picture of the approximability of flt for
both general and metric instances. For general instances, no specific assumption is made on
the distance values in D. For metric instances, we assume that the values in D satisfy the
triangle inequality. We obtain stronger results for Euclidean instances, where the clients and
the facilities lie in either R or R2 and the Euclidean distance is used. Many of our results
(especially those for general instances) can be extended to non-uniform facility opening costs.

General Instances. For general instances, we almost match the approximability of set
cover, by slightly violating the budget constraint. If we insist on satisfying the budget
constraint, flt becomes difficult to approximate even for L = 2. More specifically, in
Section 2, we obtain the following results:

1. A greedy algorithm achieves an approximation ratio of n( L
√
Hn/n). This matches the

classical result for set cover when L = 1. We also present an example showing that our
analysis is almost tight.

2. By extending the greedy algorithm for set cover, we obtain bi-criteria approximation
algorithms with approximation guarantees of (Hn, L) and (2Hn, L− 1 + 1/L) for flt.

3. By generalizing the randomized rounding algorithm for the set cover problem, we obtain
a bi-criteria approximation of (O(log n/ε), 1 + ε). So, we can achieve an asymptotically
best possible logarithmic approximation, if we violate the budget constraint by a small
constant factor. This result holds for non-uniform facility costs as well.
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4. We propose a nontrivial generalization of the frequency parameter used for set cover.
Formally, for L = 2, we introduce a parameter ψ, which is always bounded from above
by the maximum number of facility pairs that can serve a client. Then, we obtain an
LP-based ψ-approximation algorithm for L = 2 which satisfies the budget constraint.

5. If we insist on satisfying the budget constraint, one should not expect much better
approximation guarantees. Using a transformation from symmetric label cover [10],
we show that flt cannot be approximated within a ratio of O(2log1/2−ε τ ), for any ε > 0,
unless NP is in quasipolynomial time. Here, τ is no less than the maximum number of
facility pairs that can cover any client.

Metric Instances. flt becomes significantly easier to approximate in metric instances.
This is especially true for Euclidean instances. More formally, in Section 3, we obtain the
following results:

1. We show that a natural greedy algorithm achieves a bi-criteria guarantee of (1, 3L), if
the distance matrix D satisfies the triangle inequality.

2. By extending the dynamic programming algorithm for k-median on the real line, we show
that flt can be solved optimally in polynomial time for linear instances. This result can
be extended to non-uniform facility costs (with a slightly different recursion though).

3. By extending the techniques of Mustafa and Ray [20], we obtain bi-criteria approximation
algorithms with guarantees of (1 + ε, L) and (2 + ε, L− 1 + 1/L) for instances on R2.

4. Our main result is that flt on the Euclidean plane admits a bi-criteria polynomial-time
approximation scheme, with an approximation guarantee of (1 + ε, 1 + ε), if all clients
have a uniform budget B.

2 General Instances

Recall that for general instances of the flt problem no specific assumptions are made on the
distances in D. The following lemma presented in [8] can be adapted to the flt problem.

I Lemma 1. red-blue set cover has a O((cρ)1−1/c log ρ)-approximation algorithm when
∀S ∈ S, |S ∩R| ≤ c where ρ = |S| [8].

If we restrict the type of facilities to 2 that is, L = 2 the Lemma 1 implies that there exists
an O((

√
2n) log n)-approximation algorithm. Below, we present a simple greedy algorithm

that achieves an approximation ratio of
√
nHn for 2 types of facilities.

2.1 Deterministic Algorithm
In Algorithm 1, we say that a client c is covered by a tuple (i1, . . . , iL) ∈ F1 × · · · × FL if∑L
`=1 dc i` ≤ Bc. Note that when considering (i1, . . . , iL), the algorithm does not take into

account the clients of U that are covered by a tuple consisting of some facilities in (i1, . . . , iL)
and some facilities that are already present in S and had been selected in previous rounds.

I Theorem 2. Algorithm 1 is an (n
(Hn
n

)1/L)-approximation algorithm for the flt problem.

Proof. Fix an instance and its optimal solution Y . Suppose |Y ∩ F`| = a`, ∀` ∈ [L]. Then,
|Y | =

∑L
`=1 a`. For each tuple of L facilities (i1, · · · , iL) ∈ (Y ∩ F1) × · · · × (Y ∩ FL),

create a bag B(i1, · · · , iL). Each client c is put in exactly one bag B(i1, · · · , iL) such that∑L
`=1 dci` ≤ Bc. Break ties arbitrarily for the clients who can be placed in several bags. The∏L
`=1 a` bags form a partition of C.
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Algorithm 1:
1 Initialize S ← ∅ and U ← C
2 while U 6= ∅ do
3 Choose (i1, . . . , iL) ∈ F1 × · · · × FL such that the number of clients in U covered

by (i1, . . . , iL) is maximized
4 Add {i1, . . . , iL} to S and remove from U the clients covered by (i1, . . . , iL)
5 return S

We repeatedly use the arithmetic-geometric means inequality:
∑L
`=1 a` ≥ L(

∏L
`=1 a`)1/L.

Let X denote the solution output by Algorithm 1. We claim that

|X| ≤ L(
L∏
`=1

a`)Hn. (1)

To see this, observe the choices made by Algorithm 1 on the bags defined above. The first
greedy choice is at least as good as covering the largest bag (i.e. selecting its corresponding
facilities). Afterwards, update the bags by removing the clients currently covered by the
partial greedy solution. The next choice is again, at least as good as covering the largest
bag, and so on. Because there are

∏L
`=1 a` bags, the optimal solution uses at most

∏L
`=1 a`

sets to cover the n clients. As for set cover, Algorithm 1 needs at most
∏L
`=1 a`Hn rounds

to cover all the clients, each round requiring at most L new facilities.
Suppose

∏L
`=1 a` ≤

n
Hn . It follows from |Y | =

∑L
`=1 a` and (1) that the approximation

ratio is at most L(
∏L

`=1
a`)Hn∑L

`=1
a`

. Combining this with the arithmetic-geometric means inequality,

we obtain that L(
∏L

`=1
a`)Hn∑L

`=1
a`

≤ (
∏L
`=1 a`)1−1/LHn. Using the fact that

∏L
`=1 a` ≤

n
Hn , we get

that (
∏L
`=1 a`)1−1/LHn ≤ ( n

Hn )1−1/LHn = n1−1/L(Hn)1/L.
Now suppose

∏L
`=1 a` >

n
Hn . We have |X| ≤ Ln because in the worst case, each client

requires its own tuple of L facilities. The approximation ratio is at most Ln∑L

`=1
a`
. Using the

arithmetic-geometric means inequality, we get that Ln∑L

`=1
a`
≤ n

(
∏L

`=1
a`)1/L

= n1−1/Ln1/L

(
∏L

`=1
a`)1/L

and
∏L
`=1 a` >

n
Hn raised to the power of 1/L to get that n1−1/Ln1/L

(
∏L

`=1
a`)1/L

≤ n1−1/L(Hn)1/L. J

An almost tight instance: Take a positive integer t and create a set of n = tL clients
{1, · · · , t}L. Each client is associated with a vector ~c ∈ {1, · · · , t}L. The client with vector ~c
can be covered by two separate sets of facilities: (f~c1 , . . . , f~cL) and (g~c1, . . . g~cL). The optimum
takes the “f” facilities (there are Lt such facilities) whereas the greedy algorithm can pick the
“g” facilities (there are LtL such facilities). For the described family of instances, Algorithm
1 returns a tL−1 = n1−1/L-approximate solution.

2.2 Bi-criteria Approximations

Theorem 2 gives a bi-criteria
(
n
(Hn
n

)1/L
, 1
)
-approximation result for flt problem. The

simple strategy of solving L separate instances of set cover provides a bi-criteria (Hn, L)-
approximation algorithm. The exact proposition and proof is omitted due to space constraints.
Next, we present another incomparable bi-criteria approximation algorithm.
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I Proposition 3. flt admits a (2Hn, L− 1 + 1/L)-approximate algorithm.

Proof. From the instance of flt, create an instance I0 of set cover as follows. Each
facility i corresponds to a set that covers client j iff dij ≤ Bj/L. The facilities’ types are
ignored. A Hn-approximate solution S0 is computed for I0 (greedy algorithm).

Let C` be the clients assigned to a facility of type-` in S0. For every ` ∈ [L], create an
instance I` of set cover as follows. Each facility i of type ` corresponds to a set that covers
client j iff dij ≤ Bj and j ∈ C \ C`. A Hn-approximate solution S` is computed for I`. Let
T be an optimal solution to flt. Let T0 be a subset of T satisfying: ∀j ∈ C, T0 contains
at least one facility i ∈ T such that dij ≤ Bj/L. Note that i must exist. As T0 is a feasible
solution to I0, we get that

|S0| ≤ Hn|T0| ≤ Hn|T | (2)

For every ` ∈ [L], let T` be the restriction of T to its facilities of type-`. Since T` is a
feasible solution to I`, we get for every ` ∈ [L] that |S`| ≤ Hn|T`|. It follows that

|
L⋃
`=1

S`| =
L∑
`=1
|S`| ≤ Hn

L∑
`=1
|T`| = Hn|T |. (3)

Combine (2) and (3) to get that |
⋃L
`=0 S`| ≤ |S0|+ |

⋃L
`=1 S`| ≤ 2Hn|T |. Since every client

j ∈ C` is at distance at most Bj/L from its assigned facility in S0, and at distance at most
Bj from its assigned facility in the L− 1 instances of {It : t ∈ [L] \ {`}}, client j is at total
distance at most (L− 1 + 1/L)Bj from its assigned facilities in

⋃L
`=0 S`. Thus,

⋃L
`=0 S` is

(2Hn, L− 1 + 1/L)-approximate. J

2.3 LP-Based Approximations
Consider the flt problem where L = 2. For each facility i ∈ F , define a variable yi such
that yi = 1, if the facility i is open and otherwise 0. For each client j ∈ C, define Tj as the
subset of F1 × F2 such that (i, i′) ∈ Tj if and only if dij + di′j ≤ Bj . Let T =

⋃
j∈C Tj . An

LP formulation of our problem is as follows:

(LP-A) minimize
∑
i∈F

yi

subject to: yi ≥ xii′ , ∀(i, i′) ∈ T (4)∑
(i,i′)∈Tj

xii′ ≥ 1, ∀j ∈ C (5)

xii′ , yi ∈ {0, 1} (6)

where xii′ = 1 means that the pair of facilities (i, i′) is opened.
Let φj := |Tj | and φ := maxj∈C φj . Since φ is the maximum number of facility pairs

which can serve a client, it is an adapted notion of frequency. If one solves the relaxation
of LP-A and open every facility i such that yi ≥ φ−1, then the solution is feasible and
φ-approximate. We are going to define a new parameter ψ such that ψ ≤ φ and present an
approximation algorithm with performance guarantee ψ.

Fix a client j and consider the bipartite graph Gj with vertex set Vj ⊆ F and edge set Ej .
There is an edge (i, i′) ∈ Ej if and only if i ∈ F1, i′ ∈ F2, and dij + di′j ≤ Bj . Equivalently,
(i, i′) ∈ Ej if and only if (i, i′) ∈ Tj . Furthermore, we impose that every vertex of Fj must
have a positive degree.
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I Lemma 4. S is a feasible solution to flt where L = 2 if, ∀j ∈ C, ∀ vertex cover Q of Gj ,
S ∩Q 6= ∅.

Proof. Let S be a feasible solution. Fix a client j ∈ C for which S contains two facilities
i1 ∈ F1 and i2 ∈ F2 such that dij + di′j ≤ Bj . In other words, Gj has an edge (i1, i2). Since
every vertex cover Q of Gj must contain either i1 or i2, we have that S ∩Q 6= ∅.

Now, let S′ be a subset of F which intersects every vertex cover Q of every graph Gj .
Suppose by contradiction that S′ is not a feasible solution. At least one client, say j′, is not
covered. Thus Sj′ := S′ ∩ Vj′ is an independent set of Gj . A contradiction is reached because
Vj′ \ S′ is a vertex cover of Gj that S′ does not intersect. J

Lemma 4 provides a new formulation of flt problem inspired from [8]. Let Qj denote
the set of all vertex covers of Gj , and Q :=

⋃
j∈C Qj .

(LP-B) minimize
∑
i∈F

yi (7)

subject to:
∑
i∈Q

yi ≥ 1, ∀Q ∈ Q (8)

yi ∈ {0, 1}, ∀i ∈ F

The relaxation of LP-B can be solved in polynomial time (the proof is omitted due to space
constraints).

Let Q̃j denote the set of all vertex covers of Gj that are exclusion-wise minimal, and
Q̃ :=

⋃
j∈C Q̃j . That is, Q̃ is obtained from Q by discarding every member Q such that

another member Q̃ satisfies Q̃ ( Q. Note that a solution to LP-B satisfies ∀Q̃ ∈ Q̃,∑
i∈Q̃ yi ≥ 1, which is (8) where Q is substituted for Q̃. Let ψ denote the size of the

largest member of Q̃. Interestingly, ψ ≤ φ always holds (the proof is omitted due to space
constraints).

I Theorem 5. flt admits a polynomial time ψ-approximation algorithm when L = 2.

Proof. Solve the relaxation of LP-B and denote by y the solution. Guess ψ (with binary
search) and open every facility i such that yi ≥ ψ−1. The solution is feasible (Lemma 4)
and ψ-approximate. For every Q̃ ∈ Q̃, at least one facility i ∈ Q̃ satisfies yi ≥ |Q̃|−1 ≥ ψ−1.
Thus, at least one facility of every Q̃ ∈ Q̃ is open, and the same goes for Q. J

2.4 Inapproximability
The symmetric label cover problem (slc) is a variant of label cover introduced
in [10] and defined as follows. We are given a complete bipartite graph where V1 and V2
are the two parts of the bipartition, and |V1| = |V2| = q. Two sets of labels L1 and L2
are given. For each (v1, v2) ∈ V1 × V2, a relation R(v1, v2) ⊆ L1 × L2 is given. A feasible
solution is a pair of mappings µ1 : V1 → 2L1 and µ2 : V2 → 2L2 such that each edge (v1, v2) is
consistent, that is there exists a pair (`1, `2) ∈ µ1(v1)× µ2(v2) such that (`1, `2) ∈ R(v1, v2).
The objective is to minimize

∑
v∈V1

|µ1(v)| +
∑
v∈V2

|µ2(v)|. An instance of slc has size
Θ(σ) where σ :=

∑
(v1,v2)∈V1×V2

|R(v1, v2)| [7]. Unless NP ⊆ QP (quasi-polynomial time),
slc cannot be approximated within a factor O(2log1/2−ε σ) for any ε > 0 [7].

Following the notation of Section 2.3, Tj is the set of pairs of facilities that cover client j
and let τ := |

⋃
j∈C Tj |. Thus, the size of an instance of flt with L = 2 is Θ(τ).
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I Theorem 6. Unless NP ⊆ QP, flt with L = 2 cannot be approximated within a factor
O(2log1/2−ε τ ) for any ε > 0.

Proof. Take an instance of slc and build an instance of flt with L = 2 as follows. Each
edge (x, y) ∈ V1 × V2 corresponds to a client jxy. For each pair (`1, `2) ∈ R(x, y), for
some edge (x, y), create facilities (x, `1) and (y, `2) of types 1 and 2, respectively. We have
(`1, `2) ∈ R(x, y) iff the facilities (x, `1), (y, `2) cover jxy, i.e. ((x, `1), (y, `2)) ∈ Tjxy .

From a feasible solution to slc, build a solution with no greater cost: for each edge (x, y),
take `1 ∈ µ1(x) and `2 ∈ µ2(y) such that (`1, `2) ∈ R(x, y), and open facilities (x, `1) and
(y, `2). Note that such a pair (`1, `2) exists since (µ1, µ2) form a feasible solution to the slc
instance. From a feasible solution to flt, build a solution to slc having the same cost. At
the beginning, µi(v) is empty for every v ∈ Vi and i ∈ {1, 2}. Then, for each open facility
(v, `) ∈ Vi × Li, add ` to µi(v). In this reduction, σ is equal to τ . J

2.5 Randomized Algorithm

Consider a natural LP formulation of the flt problem. For each facility i ∈ F , we define
a variable yi. For each pair of a client j and a facility i, we define a variable xij such that
xij = 1 if i serves j. Then the flt problem can be formulated as:

(LP1) min
∑
i∈F

yi

subject to yi ≥ xij , ∀i, j ∈ F × C (9)∑
i∈F`

xij ≥ 1, ∀`, j ∈ [L]× C (10)

∑
i∈F

xijdij ≤ Bj , ∀j ∈ C (11)

xij ∈ {0, 1}, ∀i, j ∈ F × C (12)
yi ∈ {0, 1} ∀i ∈ F (13)

The relaxation of LP1 is obtained by letting the variables xij and yi attain fractional
values between 0 and 1. Note that the objective value of an optimal solution to the relaxed LP
is a lower bound on the objective value of an optimal integral solution. A simple and natural
idea for rounding an optimal fractional solution is to consider the fractions as probabilities.
Below, we show that this idea leads to a O(log n/ε)-approximation algorithm where the
service constraint (11) is relaxed by a factor of at most (1 + ε). The proof of Theorem 7 is
omitted due to space constraints.

I Theorem 7. There exists a randomized algorithm with the performance guarantee of
(O(log(n)/ε), (1 + ε)) where ε ∈ (0, 1) for the flt problem.

3 Metric Instances

In this section, we assume that facilities and clients are placed in a metric space where the
distances satisfy the triangle inequality. We next show the following:

I Theorem 8. For the flt problem, there exists a (1, 3L)-approximation algorithm when
values in the distance matrix D follow triangle inequality.
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Algorithm 2: Greedy algorithm in metric space.
Data: C, ` ∈ [L], F`, (B1, . . . , Bn)

1 Initialize S` ← ∅, U ← C and q ← 1
2 while U 6= ∅ do
3 Find jq ∈ U with smallest budget Bjq
4 Let pq` be a facility of F` such that djqpq

`
≤ Bjq

5 S` ← S` ∪ {pq`}
6 Let Cq` = {j ∈ U | djpq

`
≤ 3Bj}

7 The clients of Cq` are assigned to pq` , and jq ∈ C
q
` is the representative of pq`

8 U ← U \ Cq`
9 q ← q + 1

10 return S`

Proof. Consider the algorithm 2. The algorithm 2 run for different values of ` ∈ [L]. For
a fix ` ∈ L, it identifies a set of facilities S` and |S`| representatives. By construction, the
representatives j, j′ of two different facilities in S` must be at distance strictly larger than
2 max(Bj , Bj′) from one another: take the representative jq of pq` ; we have djqpq` ≤ Bjq . Take
a representative jg of pg` such that g > q. Thus Bjg ≥ Bjq and 3Bjg < djgpq

`
. By the triangle

inequality djgpq
`
≤ djgjq + djqpq

`
. We get that djgjq > 3Bjg −Bjq ≥ 2Bjg = 2 max(Bjg , Bjq ).

Because djj′ > 2 max(Bj , Bj′), two representatives j, j′ cannot share an `-facility in the
optimum. Therefore there are at least |S`| facilities of type ` in an optimal solution. It
follows that

⋃L
`=1 S` is a 1-approximation of the optimum concerning the number of open

facilities. Since every client j is at distance at most 3Bj from its assigned facility of type `,
for every ` ∈ [L], the approximation ratio on the distance is 3L. J

3.1 Euclidean Instances

In this section, we consider instances where the clients and the facilities lie in either R or R2

and the Euclidean distance is used. We show that:

I Proposition 9. There is an O(nmL(n+mL))-time optimal dynamic programming algorithm
for linear instances of flt, where all clients and facilities lie in R.

The proof is omitted due to space constraints. Next, we present the result of Mustafa
and Ray [20] for the geometric hitting set problem. The algorithm presented in [20] is a
simple local search which starts with any feasible solution (for example open all facilities)
and iteratively reduces the size of this set as long as there does not exist a set of k facilities
which can be replaced by k − 1 facilities, where k is some integer given as an input. This
algorithm is known as a k-level local search algorithm. Their main result is the following:

I Lemma 10. There exists a constant c such that (c/ε)2-level local search algorithm returns a
hitting set of size at most (1 + ε) times the size of an optimal hitting set where ε ∈ (0, 1) [20].

If the same reasoning as for propositions 3 (replace the greedy algorithm with the PTAS
of [20]), then in R2, flt admits approximation algorithms with guarantees (1 + ε, L) and
(2 + ε, L− 1 + 1/L).
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3.1.1 A Local Search Algorithm in R2

Recall that L is a constant. We say that S is ε-feasible if each client j is served by a type-`
facility and the total service cost for j is at most (1 +O(ε))Bj for 0 < ε < 1. Let S and S′
denote two ε-feasible solutions. Then S ⊕ S′ denotes the symmetric difference between S
and S′, that is S ⊕ S′ := (S′ − S) ∪ (S − S′).

Local Search Algorithm. Start with any ε-feasible solution S. While possible, replace S
with an ε-feasible set of facilities S′ such that |S′| < |S| and |S ⊕ S′| ≤ O(1/ε4).

Observe that the local search algorithm is similar to the k-level local search algorithm
mentioned in [20]. The only difference is in the definition of feasibility. That is, a solution in
the k-level local search algorithm is considered feasible if the budget for each client j is at
most Bj (the budget corresponds to the radius of disks), whereas our local search algorithm
relaxes the budget for each client by a factor of 1 +O(ε).

I Lemma 11. The running time of the local search algorithm is polynomial in the size of
the input.

Proof. An initial ε-feasible solution is to open, for each client j, the closest facility of each
type ` ∈ [L]. Hence the initial solution opens at most nL facilities. Since in each iteration
the local search algorithm reduces the number of facilities by at least one, the total number
of iterations is at most nL. In each iteration, the number of possible different combinations
to check is at most

(
m

O(1/ε4)
)
. Hence the total running time of the algorithm is nLmO( 1

ε4 ).
The lemma follows since L is a constant. J

I Theorem 12. Assume that clients have uniform upper bound on the service cost, that is,
∀j ∈ C, Bj = B. Then, the local search algorithm achieves a (1+O(ε), 1+O(ε))-approximation
ratio for the flt problem in R2 where ε ∈ (0, 1).

Proof. We assume w.l.o.g. that 1
ε is an integer, and that the set of clients C and the set

of facilities F are enclosed in an area A. Let R, R2B and R4B denote squares centered at
a given point p of width 2B

ε ,
( 2B
ε + 2B

)
, and

( 2B
ε + 4B

)
, respectively. Let ALG and OPT

denote the set of facilities opened by the local search algorithm and in some fixed optimal
solution, respectively. Further, let ALG(R′) and OPT (R′) represent the restrictions of ALG
and OPT to the square R′, respectively.

Next, we grid the entire region A such that the internode distance is εB. Let K denote
the set of small squares of width εB. Let OPT ′ be a solution such that for each tiny square
k ∈ K and each type ` ∈ [L], one type-` facility is opened if and only if OPT has at least one
open type-` facility in k. Thus, we have |OPT ′| ≤ |OPT |. Let OPT ′(R′) represent the set
of facilities open inside the region R′ in OPT ′. Also, we have |OPT ′(R4B)| ≤ |OPT (R4B)|.

Consider the intermediate solution M formed by removing all the facilities opened by
the local search algorithm in the square R from ALG and adding all the facilities opened in
OPT ′ inside the square R4B that is,

M = (ALG \ALG(R)) ∪OPT ′(R4B)

I Claim 13. M forms an ε-feasible solution to the flt problem.

Proof. Observe that the facilities opened inside the square R can serve clients in the square
R2B . Therefore, closing the facilities inside R can lead to infeasible solution for clients in the
square R2B . Let j be some client enclosed in square R2B . Let F oj denote the set of facilities
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in OPT that serve j. Observe that j can only be served by facilities in the square R4B.
Hence F oj ⊆ OPT (R4B). Consider the grid formed with the internode distances εB in R4B .
Recall that OPT ′, for each tiny square with width εB and each type `, opens a facility of
type-` if and only if OPT has at least an open facility type-` in the same square. Thus for
each type ` facility in F oj , there exists a facility a type ` facility in OPT ′(R4B) such that the
service cost of j to a type-` facility is at most the service cost of j to type-` in OPT plus√

2εB. Summing over all types, the claim follows. J

Observe that |M ⊕ALG| can be much larger than O( 1
ε4 ) if ALG(R) is huge. However,

M can be realized after few steps of the local search algorithm wherein each iteration, the
local search algorithm closes O( 1

ε4 ) facilities from ALG(R) \ OPT ′(R4B). Thus, the local
exchange argument states that

|ALG| ≤ |M | = |(ALG \ALG(R)) ∪OPT ′(R4B)|
|ALG \ALG(R)|+ |ALG(R)| ≤ |(ALG \ALG(R))|+ |OPT ′(R4B)|

|ALG(R)| ≤ |OPT ′(R)|+ |OPT ′(R4B −R)|

Let RP denote the set of all regions in A according to some partitioning scheme P . For each
region R ∈ Rp, the above local exchange argument holds. Summing over all regions, we have∑

R∈Rp
|ALG(R)| ≤

∑
R∈Rp

(|OPT ′(R)|+ |OPT ′(R4B −R)|)

≤ |OPT ′|+
∑
R∈Rp

|OPT ′(R4B −R)|

I Claim 14. There exists a partition Q such that
∑

R∈RQ
|OPT ′(R4B −R)| = O(ε)|OPT ′|.

Proof. In this proof, we use the idea of the “grid shifting strategy” mentioned in [16]. Due
to space constraints, the proof is omitted. J

From above claim it follows that |ALG| ≤ (1 +O(ε))|OPT ′| ≤ (1 +O(ε))|OPT |. J

4 Conclusion and Directions for Further Research

We introduce and study the approximability of covering problems with multiple types and a
hard constraint on the combined “quality” of each client’s covering. Our work leaves many
promising directions for future research. A natural question is whether we could obtain
strong approximation guarantees for metric instances of constant doubling dimension.

Given that it is very difficult, if even possible, to achieve good approximation guarantees
without violating the budget constraint (for both general and metric instances), it would be
very interesting to investigate the approximability of flt with penalties (see e.g., [19, 5] for
the approximability of other covering problems with penalties). In flt with penalties, there
is a covering penalty, which is a non-decreasing function of each client’s total covering cost.
In the simplest case, the covering penalty is 0, if the budget constraint is satisfied, and some
pj > 0, if the budget constraint is not satisfied for client j. The cost of the solution is the
sum of the facility opening costs and the covering penalties for all clients.

Another natural research direction is to determine the competitive ratio of online flt,
where the clients arrive one-by-one and must be covered by a facility of each type upon
arrival. A promising starting point is the ideas and techniques applied to online set cover
[2] for general instances and to online facility location problems (see e.g., [13] and the
references therein) for metric instances.
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