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Abstract: Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico
tesla range and are currently the subject of intense research. Such sensors usually combine a
piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured
electrically. Scandium aluminium nitride gained a lot of attraction in the last few years due to its
enhanced piezoelectric properties. Its usage as resonantly driven microelectromechanical system
(MEMS) in such sensors is accompanied by a manifold of influences from crystal growth leading
to impacts on the electrical and mechanical parameters. Usual investigations via nanoindentation
allow a fast determination of mechanical properties with the disadvantage of lacking the access to
the anisotropy of specific properties. Such anisotropy effects are investigated in this work in terms
of the Young’s modulus and the strain on basis of a MEMS structures through a newly developed
fully automated procedure of eigenfrequency fitting based on a new non-Lorentzian fit function
and subsequent analysis using an extended Euler–Bernoulli theory. The introduced procedure is
able to increase the resolution of the derived parameters compared to the common nanoindentation
technique and hence allows detailed investigations of the behavior of magnetoelectric sensors,
especially of the magnetic field dependent Young‘s modulus of the magnetostrictive layer.

Keywords: MEMS; scandium aluminium nitride; magnetoelectric sensor; Young’s modulus;
automation; algorithm

1. Introduction

For many applications of miniaturized MEMS, aluminum nitride (AlN) has become a standard
material [1,2]. Only recently, scandium aluminum nitride has been proposed as an efficient expansion
of the nitride system providing an enormous increase in the piezoelectric constants [3,4]. Typical
microelectromechanical systems (MEMS) application can be found in the field of radio frequency (RF)
filters [5], micro actuators [6], and energy harvesting devices [7].

Especially in the field of MEMS-based magnetoelectric sensors, major advances have been made
recently, since, for the detection of magnetic fields in the pico tesla range at room temperature,
magnetoelectric sensors (MES) are a promising technology [8–10] with possible applications in
bio-medicine [11,12] and non-destructive testing [13]. Such a sensor correlates a magnetic input
to an electric output signal, and the quotient of in- and output is the magnetoelectric coefficient. A high
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magnetoelectric coefficient is achieved by designing a composite of magnetostrictive and piezoelectric
layer in one sensor [14] and driving the sensor at its mechanical resonance [15]. Thus, we will use
a typical multilayered beam structure as used in magnetoelectric MEMS-based sensor devices as
sample structure.

MES sensors are usually designed as a singly or doubly clamped beam in a wide range of
sizes between 100 µm [16] and several centimeters [17], while this work is focusing on smaller
(integratable) structures. On the one hand, in the presence of a magnetic field, the magnetostrictive
layer either expands or shrinks, depending on the specific magnetoelastic properties of the material.
As a consequence, the applied tension leads to a change of the eigenfrequency of the beam due to
bending or induced strains in singly and doubly clamped beams, respectively. On the other hand, the
magnetostrictive material decreases also its Young’s modulus by up to 30 %, depending on the intensity
of the magnetic field [18]. This behavior is called ∆E effect. As the induced stresses and the ∆E effect
act on the device performance at the same time, both influences have to be distinguished correctly
from each other. Hence, weak fields are challenging to detect. The eigenfrequency shift can be detected
via the voltage generated by the piezoelectric layer. Sensors based on a eigenfrequency-shift-principle
are known to have high sensitivity and are robust to intensity fluctuations [19,20]. Due to size and a
principle based on vibrations, such a sensor is categorized as a MEMS.

Since small eigenfrequency shifts are expected in the presence of weak magnetic fields, well suited
models to detect the shifts as well as for parameter extraction are required. We propose a model that
accommodates not only for eigenfrequencies but the vibrational behavior in a broader sense: a complex
fit to the FFT (fast Fourier transform) of the beam vibration. This way, all measured harmonics are
included as well as the shape of their peaks. The latter is interesting for future investigations regarding
damping. An adequate fit function is derived in Section 3.

The performance of a sensor is affected by many influences, such as: material constants, ambient
conditions, geometry of the beam and its layers and the magnetic flux density. Simulations have to
include the different fields of physics such as the mechanic, electric and magnetic domain as well
as the multiferroic character of their interactions [21,22]. On top of that, a multi parameter problem
arises due to many degrees of freedom in materials and geometric design. This creates potential for
optimization where two targets are important: high sensitivity to the magnetic field and big amplitude
of the output signal.

To optimize these targets, the choice of appropriate materials is important. Hence, for the
piezoelectric layer, materials with a high piezoelectric constant are of special interest, like scandium
aluminium nitride (ScAlN) [8,23]. It combines several advantages like easy deposition and CMOS
integration [24], high temperature stability [25] and is in contrast to PZT, lead free. Analogous,
for the magnetostrictive layer, materials with a high magnetostrictive constant are needed. Cobalt
iron (Co/Fe) multilayers or Co-Fe alloy films satisfy this condition [26]. To combine materials with
these characteristics is suggested by [10]. Since its material properties change with size and crystal
orientation, they have to be investigated for desired scale and orientation. This work deals with the
implementation of an automated process of the extraction of material properties from measurement
data to feed simulations and models in general. From the vibration behavior of cantilevers (clamped
on one side) and bridges (clamped on both sides), thus structures of the same material the Young’s
modulus can be determined [27] as shown in Section 6. The Euler–Bernoulli beam theory also known
as classical beam theory is used to design this process. The beam theory is modified for modal analysis
of slender beams exhibiting inner strain [28] as well as curvature [29] of the beam and is thus denoted
as extended Euler–Bernoulli Theory (EEBT). The EEBT is utilized to investigate the desired parameters,
namely the Young’s modulus and the strain dependent on the orientation. Using this analytical
method, we present a fast and precise algorithm with explicit equations and without the need of
time-consuming finite element calculations.
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2. Measuring Samples and Experimental Setup

The piezoelectric scandium aluminium nitride layer with a scandium amount of 8 at.-% was
grown using a co-sputter process at 300 ◦C on a Ti(111)/Pt(111)/Si(111) substrate. The thickness of
the titanium, platinum and the ScAlN is 20 nm, 80 nm and 1 µm, respectively. ScAlN exhibits a strict
c-axis orientation [30] with an in-plane rotation of the individual pillars according to X-Ray diffraction
measurements. The structuring of the sample was carried out using e-beam lithography and different
(an-)isotropic dry etching techniques, namely chlorine plasma for the ScAlN, argon plasma for Pt and
finally fluorine plasma for suspending. The structure design consists of differently oriented MEMS
in a star and harp layout (see Figure 1). In the following, harps and stars are referred to as h- and
s-structures. The structures shown in the figures a to c are without Ti/Pt between ScAlN and silicon to be
able to demonstrate the undercut regions that are needed for the latter analysis. All structures have the
same width (5.3 µm) and are varied in length. The s-bridges exhibit lengths between 50 and 200 µm and
the s-cantilevers between 25 and 100 µm. For a more accurate investigation of the length, the h-layout
consists of eleven beams with lengths between 20 and 220 µm for the h-bridges and between 20 and
120 µm for h-cantilevers, respectively. After the etching, different cross sections of the MEMS appear.
ScAlN shows a trapezoidal shape, whereas the ones made of Pt have a rectangular shape. This is shown
in Figure 1d. Titanium is etched in fluorine plasma and hence not considered in the latter analysis.

Figure 1. SEM images of ScAlN MEMS structures directly on silicon with well distinguishable undercut
regions. (a) doubly clamped bridges (50 ... 200 µm) and (b) singly clamped cantilevers (25 ... 100 µm) in
star configuration with an angle delta of 15◦; (c) cantilevers in harp configuration of different lengths
and constant orientation; (d) cross section of a cantilever consisting of Pt (80 nm)/ScAlN (1 µm) with
trapezoidal shape after etching.

A Polytec UHF-120 Laser Doppler Vibrometer (LDV) (Polytec GmbH, D-76337 Waldbronn,
Germany) is used to measure the mechanical vibration of the microbeams vs. time and conversion
to frequency domain (FFT spectrum). The FFT spectrum consists of 12,800 lines between 50 kHz and
4 MHz. The used laser power is 5 mW at 532 nm. To avoid thermal shifts due to the laser energy during
measurement, only single-point spectra are measured. A single-point spectrum observed at a vibration
node lacks the peak of the corresponding eigenfrequency, which is why the data are recorded close
to a clamping, where only nodes of high order eigenfrequencies are expected. Shortest bridges and
longest cantilevers could not be measured as their eigenfrequencies were outside the measurement
limits. Every beam length and orientation is represented multiple times, for measurement certainty.
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A sketch of the measurement setup is shown in Figure 2. The sample is placed on a cross table under
the LDV. Aided by the LDV’s microscope, the desired beam is positioned to the laser dot. The beams’
vibrations are induced via electrostatic excitation with a tungsten tip and a multi carrier continuous
wave signal. The signal is produced by a Rohde & Schwarz SMBV100A signal generator (Rohde &
Schwarz GmbH & Co. KG, D-81671 München, Germany) with a voltage of 1 V and is amplified with
a Ciprian US-TXP-3-C amplifier (CIPRIAN Sarl, FR-38330 Saint Ismier, France) by a gain of 200. The
tungsten tip has a diameter of about 10 µm and is placed about 100 µm above the sample. Because of
the tip, a certain error arises from the experimental setup, leading to an inhomogeneously distributed
electric field across the MEMS and thus to an unsteady load. As the total deflection of the structures is
always below 1 nm, we assume the influence and any other nonlinear effects on the vibrational behavior
to be negligible. In the following, the FFT data Λ obtained from the LDV is used for analyzing the
vibration behavior. Figure 3 shows an example of a raw spectrum from the LDV with the gray line. This
and further raw spectra are available as Supplementary Materials for this paper.
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Figure 2. Measuring setup. The x–y table moves the blue sample relative (x1, y1) to the stationary Laser
Doppler Vibrometer (LDV). The tungsten tip for excitation moves with the sample but can actuate
independently (x2, y2) to a desired structure.
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Figure 3. Frequency spectrum Λ obtained from a 75 µm long cantilever of a s-layout by the LDV (gray
line). The curve fit of the asymptotic part is colored magenta. The dashed cyan colored line represents
an exemplary fit to the data with the widely used Lorentzian function. The other colored lines show
the individual fits with the function derived in Section 3 of the n peaks and their fit range.
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Overall, 322 beams on the sample were measured. On average, a beam spectrum shows about
five eigenfrequencies. Manual parameter extraction takes for each sample approximately ten days.
To accelerate this process, an automation is reasonable. Core of the automation process is a curve fit on
the FFT spectrum.

3. Modeling the Spectrum

First, a model for the complex vibrational behavior is needed. Lorentzian functions derived
from the vibrational behavior of charged particles are often used to model a peak of the frequency
response [31,32]. However, this function is not able to represent the 1

x -like slope on both sides of the
maximum adequately, as shown in Figure 3 with the cyan colored dashed line. Using the Lorentzian
function instead of the subsequently proposed fit function leads to errors in the determined parameters.
According to the fit in Figure 3, the error of the eigenfrequency is negligible, but for amplitude and
full width half maximum respective errors of 13 % and 26 % can be calculated for this example. Even
higher deviations are observable for other structures. This is directly affecting derived values, like the
quality factor as a main characteristic for the description of MEMS. Hence, the model we introduce is
based on mechanical vibrations. The time dependent vibration g(t) of a damped mass point can be
represented by the following equation:

g(t) = anej 2π fnt · e−pnt, (1)

where an is the amplitude parameter, t the time, fn the eigenfrequency, pn the damping coefficient, and
j the imaginary unit.

A frequency peak is modeled by performing a Fourier transform of Equation (1)

G̃( f ) =
1√
2π

∫ ∞

−∞
g(t)e−j 2π f tdt, (2)

where f denotes the frequency. By calculating the absolute value Γ( f ) = |G̃( f )|, every peak can be
represented by the spectral function

Γ( f ) =
an√

p2
n + ( f − fn)2

+ θn. (3)

The parameter θn is added to include offsets of the fitted spectra. Thus, four parameters (an,pn, fn

and θn) have to be fitted for every peak n. In Equation (3), fn marks the middle of the peak with the
amplitude given by

Zn =
an

pn
+ θn. (4)

The full width half maximum (FWHM) ∆ fn can be found using Equation (4) by solving the
following equation

Γ(∆ fn) =
Zn

2
, (5)

which leads to
∆ fn = 2

√
3 pn. (6)

Even though the vibration is forced, no factor that considers the time dependent force is
implemented in Equation (1). Assuming the force would be sinusoidal, a phase shift as well as
a change in amplitude arises. Both effects can be omitted in our model. The amplitude is a parameter
for the fit, changing it has no effect on the desired target of the minimization procedure in Equation (7).
A phase shift could affect the relation between driving force and the vibration, while having no
influence on the shape of the peak.
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In total, this modelling function derived from the time dependent vibration of a mass point allows
to fit eigenfrequency peaks in all of their properties, namely peak position, amplitude, and FWHM.
Thus, this function is used throughout this paper.

4. Curve Fitting Algorithm

The applied algorithm is outlined in Figure 4 and realized with MATLAB [33]. In the first step,
the data is read from the LDV. Then a fit of the asymptotic part of the FFT close to the x-axis as shown
in Figure 3 is needed. For this fit, only the data close to the x-axis as well as the minima between the
peaks are used. A moving average filter is used to smooth the data. A deviation is calculated with the
squared distance of the spectral function (3) to the data points Λasym. Using MATLAB’s multi-variable
optimization function fminsearch, a curve fit is performed to minimize the deviation defined as

M

∑
i=1

(Λi
asym − Γi

asym)
2 −→ min, (7)

with M being the number of data points. Both Λasym and Γasym are obtained at the same frequencies
fasym. Appropriate initial values for the optimization, in the following marked with the index iv, were
derived from the data. The initial value of the offset θn,iv is chosen to be 0. By assuming that the
peak of Γasym is close to 0, fn,iv = 0 is set. Since Equation (6) connects the damping coefficient pn

with the FWHM ∆ fn, it can be calculated from the data. An interpolation to find the value of fh,n
where Λasym( fh,n) =

Zn
2 is done, assuming the maximum of Λasym being equivalent to amplitude Zn in

Equation (4). Doubling fh,n is set to be the initial value for the FWHM and, with (6), pn,iv is calculated.
Parameter an,iv is then calculated via Equation (4) with pn,iv and the Zn from Λasym( f ). Then, the
optimization process is executed and as a result we receive Γasym,opt.

In the next step, each peak will be fitted separately with Equation (3). To reduce noise, a FFT is
applied to an over-sampled version of the raw FFT data and the high frequency parts are subtracted,
which effectively implements a low pass filter. In Figure 4, this is called ’FFT-filter’. First, the peaks
height Zn, frequency fn and ∆ fn are extracted from the data using the MATLAB findpeaks function,
which also delivers the peak FWHM. Then, the range Λp,n around each peak n is defined. The ranges
do not overlap and the fit procedure is performed merely on Λp,n and its corresponding frequencies
fp,n as shown in Figure 3 by the colored lines. Initial values are again obtained from the data. The offset
θn,iv is the mean of the first and last point of Λp,n. The peak frequency fn,iv is directly passed from the
findpeaks function, pn,iv is calculated via Equation (6) by using the FWHM ∆ fn from the findpeaks
function. The initial value of an,iv depends on the amplitude from findpeaks as well as pn,iv and θn,iv;
see Equation (4). The optimization is then done for each peak with individual initial values. We obtain
Γp,n as shown in Figure 3 by the colored curves. A preliminary model for the spectrum is given by

Γpre = Γasym,opt +
N

∑
n=1

Γp,n, (8)

where N is the total number of peaks. It is shown in Figure 5 as disjoined fit. The goodness of fit (GoF)
is calculated for every peak using the normalized root mean square error (NRMSE). Since errors occur,
for example due to too noisy data or undetected small peaks, the GoF can be used as a simple indicator
for the usability of the generated model.

The last step of the curve fitting algorithm is to fit the full spectrum. This is done on raw FFT data
as obtained from the LDV. In (8), the separated fits with the offsets of every peak and the asymptote
are summed up. This leads to too high valleys between the peaks. In Figure 5, the red line should be
roughly in the middle of the noisy gray line. By performing a fit of the preliminary model (8) to the
raw data, with the already optimized parameters as initial values for this final fit, the blue curve in
Figure 5 is obtained. Now, not only four parameters are fitted but 4 + 4N. However, with good initial
values, convergence is reached fast.
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Figure 4. Flowchart for the fitting algorithm for one spectrum from the LDV raw data to the fitted
spectrum. The generated data is used for further processing (see Figure 6).
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Figure 5. Comparison between the joined and disjoined fit. The joined fit is more accurate with respect
to the raw FFT obtained from the LDV.

Initial values, optimized parameters, GoF as well as raw data and fitted model data are saved for
every spectrum in one line of a table within a MATLAB structure for further processing.
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5. Fit Result Discussion

On average, a single spectrum contains five to six peaks, and it takes about 23 s to perform
the fit outlined in Section 3, including an export of a figure similar to Figure 3 for debugging and
observation purposes. Fitting all 322 spectra of one sample takes about 1.2 h computing time without
human intervention.

The fit is of lesser accuracy, when the peaks are close to each other; this can be seen in Figure 5.
The blue line between the first and second peak is on the upper end of the raw FFT. Overlapping of
the fit functions of each peak causes this error. However, as shown in [31,34] and [35], measurements
under low air pressure lead to significantly better quality factors and smaller FWHMs. Because of
the high sensitivity to pressure, the authors of [36] suggest using such beam resonators for pressure
measurement. The peak overlapping would be reduced with higher quality factors.

The initial as well as the optimized values of the two-stage curve fit are shown in Table 1; they
belong to the fit of the first eigenfrequency of the spectrum shown in Figures 3 and 5. The parameters
an and pn get smaller in both steps; they seem to converge to a minimum. The eigenfrequency of the
peak fn stays almost constant over both optimizations; this is expected since a shift in frequency will
definitively increase the deviation value in Equation (7). The offset θn decreases in the first step, but is
increased in the final step. This behavior is probably due to the closeness of the first and second peak
as mentioned above. The disjoined fit uses merely the data close to the peak. The joined fit considers
the whole spectrum, thus close peaks affect the parameters of each other. In particular, their offset is
influenced because of the overlapping as previously remarked.

Table 1. Initial and optimized values for the two stage curve fit of the first eigenfrequency of the
spectrum shown in Figures 3 and 5.

Initial Values Initial Values for Joined Fit Optimized Values

an 1.3848× 10−7 Hz m−1 1.1761× 10−7 Hz m−1 1.0828× 10−7 Hz m−1

pn 2.2198 kHz 1.9044 kHz 1.7316 kHz
fn 0.3556 MHz 0.3558 MHz 0.3558 MHz
θn 1.7104 pm 0.7549 pm 0.8392 pm

To check the obtained parameters and the algorithm in general, the optimized pn value of Table 1
can be compared to the FWHM obtained from the joined fit. From Figure 5, we determine a FWHM of
6.0388 kHz for the first peak. Using Equation (6), the corresponding damping coefficient is calculated
to p1,join = 1.7433 kHz, which differs by 0.67 % from the value in Table 1. A small deviation is expected
because of the influence of the peaks’ parameters to each other in the joined fit. In view of the detection
of small eigenfrequency shifts due to the magnetostrictive sensor principle, a high accuracy of the
determined FWHMs and quality factors is essential.

With a GoF under 40 %, the fit is considered failed, which usually happens on very noisy data.
This occurs on about 7.2 % of the measured spectra. The GoF of the remaining data is on average
71.8 ± 11.5 %. Please note that, due to the noise, a GoF of 100 % is neither possible nor desired.

6. Modal Analysis

The EEBT is a special case of the Timoshenko beam theory [37] that allows an analytic approach
for the determination of the mechanical parameters. The preconditions for its application are small
deflections during excitation and string-like structure aspect ratios, which means width and height
of the beam are much smaller than its length [38]. Otherwise, the Kirchhoff–Love plate theory [39]
should be used to consider longitudinal and transversal bending-mode splitting. As stated in the
Introduction, the EEBT describes the vibrational behavior of curved cantilevers and strained bridges.
For each structure, the eigenfrequencies fn of mode number n can be determined using [40]
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fn,c =
κ2

n,c − α2

2πl2
c

√
(EI)tot

(ρA)tot
(9)

and

fn,b =
κ2

n,b

2πl2
b

√
(EI)tot

(ρA)tot

√
1 + γn

l2
b

h2 εb, (10)

where indices c and b denote cantilevers and bridges, respectively. The eigenvalue κn is depending on
the mode and the boundary condition [28,41]. The bending stiffness (EI)tot is given by the Young’s
modulus E and the moment of inertia I. The reduced mass (ρA)tot includes the density ρ and the cross
section A. Bridges loaded with the strain εb are described by the second mode dependent eigenvalue
γn. This eigenvalue is strain-dependent according to the numerical calculations presented in [42].
However, only the first eigenvalue is derived in this work and thus cannot be used solely on the
analyzed data set with included higher eigenmodes. As a consequence, γn is assumed to be constant
for the present analysis. Recent investigations of 3C-SiC (111) bridges [43] showed that γn tends to be
constant even for higher strains. As this finding is not directly applicable to ScAlN bridges, separate
studies for the present material system are needed. According to [42], the arising error is approximately
1 % for the highest determined strains and decreasing for decreasing strains. The parameter h stands
for the total thickness of the MEMS (Pt and ScAlN). The cantilever curvature α is neglected in our
structures as the out-of-plane stress gradient of the hetero-layer Pt/ScAlN is small compared to the
in-plane stresses. Since each layer of the hetero-structure has its own unique properties, Equations (9)
and (10) are extended by:

(EI)tot = ∑
i

Ei(Ii + ai Ai), ai = ys,i − ys, (11)

ys =
∑i (hi−1 + ys,i)AiEi

∑i AiEi
, (12)

(ρA)tot = ∑
i

ρi Ai. (13)

It should be noted that, due to the change in the neutral axis ys, Equations (9) and (10) become
quite complex when the layer count increases.

As MEMS with two different boundary conditions are used (singly or doubly clamped),
Equations (9) and (10) allow to uniquely determine two parameters. In the present case, these are the
Young’s modulus of the ScAlN layer and the strain of the bridges. Hence, the other properties have to
be measured beforehand. The Young’s moduli of the surrounding metallic layers have to be measured
for each layer separately.

The necessary steps for the analysis of the fitted eigenfrequencies using the EEBT are shown in
the flowchart in Figure 6. First, the table with the fit parameters for the whole sample discussed in
the previous section is imported. Afterwards, the sample information is retrieved that is stored in a
separate function file. The information consists of:

• Young’s moduli of the surrounding layers (e.g., Ni, Pt, none),
• densities of the used materials,
• structure count and respective boundary condition (c, b),
• geometrical aspects and orientation.

In the following step of “averaging equal structures”, the table is scanned for MEMS of the same
geometrical aspects and boundary conditions (up to four s- and six h-structures by design). The
found eigenfrequency vectors are then checked for consistency. Erroneous fitting results like diverged
peaks with unexpected FWHM (or quality factor), GoF or eigenfrequency are deleted, accordingly.
Depending on the boundary condition, the different eigenfrequencies have to be assigned to the
respective eigenmode. This is a critical task as it is unknown whether the first eigenfrequency is also
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the first eigenmode, for example in the case when the natural mode was below the measurement
limit or undetected during the spectrum fit. Furthermore, it is possible that some higher harmonics
are missing in the frequency vector due to measuring only the single point spectrum at a node.
Additionally, some structures could exhibit torsional modes in their spectrum that also have to be
considered. Therefore, a robust algorithm is needed for a proper mode classification. Otherwise, a
correct averaging is not possible.

Figure 6. Subsequent flowchart for the analysis and extraction of the mechanical parameters after
fitting the frequency spectrum. The critical step for averaging equal structures is shown in a more
detailed view.

Within a single structure, most of the parameters in Equations (9) and (10) are constant, except
fn and κn. Thus, a determination method that is only relying on the eigenfrequencies of the same
structure is a convenient way to exclude uncertainties (for example the undercut that is discussed later).
In consequence, the ratio of eigenfrequencies is used to determine the correlation between the ratio
of eigenvalues and finally to assign the eigenmode. In the case of unbent cantilevers, the difference
between both ratios has to be minimized:∣∣∣∣∣κ4

n,c

κ4
i,c
−

f 2
n,c

f 2
i,c

∣∣∣∣∣ −→ min, (14)

where i = {1, ..., n− 1}, i < n. The minimization problem leads to n − 1 matrices from whom
the positions of the minima are directly indicating the respective eigenmodes. For strained bridges,
it was found that an adjustment to the theoretical eigenvalue ratio has to be done for better mode
classification, namely ∣∣∣∣∣ (κn,b − kb)

4

(κi,b − kb)4 −
f 2
n,b

f 2
i,b

∣∣∣∣∣ −→ min, (15)
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where kb as an empiric constant presumably related to the deviations of real bridges from the EEBT
(e.g., complex strain distribution). Best minimization results were achieved for kb ≈ 0.14. However,
after such mode assignment, the full consistency is usually not reached. The reason is the mentioned
torsion modes and slight eigenfrequency shifts which can lead to a wrong classification. For example,
considering four equal structures of an exemplary 75 µm long s-cantilever, the following eigenfrequency
matrix was determined: 

0.2202 1.3744 0
0.2202 1.3703 0
0.2195 1.3711 0
0.2337 0 1.3702

× 106 Hz. (16)

It can be easily noted that the second eigenmode of the fourth structure is wrongly classified as
the mode three. Solving this issue is possible by binning the eigenfrequencies based on the histogram.
However, because the bin size is not constant, it has to be adjusted in accordance to Equations (9)
and (10). For cantilevers, the eigenfrequencies scale with κ2

n,c and so the bin size must too. For strained
bridges, the situation is a bit different. The eigenvalues κn and γn behave inversely proportional to
each other, i.e., depending on εb the scaling of the eigenmodes changes. It was found that a bin size
scaled by the power of 1.5 is able to cover the shifting eigenfrequencies very well. With the proposed
correction, the eigenfrequencies are finally well averaged over the redundant structures.

The correct mode classification allows in the next step the investigation of the undercut influence.
It is a consequence of the isotropic etching and not covered by the EEBT. The existence of the undercut
results in a red shift of the eigenfrequencies due to an effective increase of the cantilever length.
This increase is mainly driven by the tips that are formed under the beam support as can be seen in
the scanning electron microscopy (SEM) images in Figure 1b,c. These tips are usually smaller than
the absolute undercut length. This deviation from a string like cantilever leads to an error in the
determination of the true cantilever eigenfrequencies.

In theory, normalizing Equation (9) by the length and the eigenvalue should yield a constant
value. However, this effect is not observed in the experimental data. In Figure 7, a decrease of fn,c

is found when the cantilever length is reduced and thus a deviation from the expected constant is
observed comparing to the EEBT. It was found, that this dependency can be described by the empirical
fit function

sn = c1,n

(
1− |c2,n|

lc

)
, (17)

with the presumed accordance to SEM images where the undercut is angle-independent after the
isotropic etching in the fluorine plasma. In the limit lc −→ ∞, the active undercut uc can be derived from:

uc,n = (1− c1,n)lc, (18)

which results in −4.56 µm and −4.96 µm for the first and second eigenmode, respectively. The
estimated undercut is lower than the actual one (≈7.3 µm, determined by SEM), and it can be
interpreted as the deflection of the cantilevers damped within the undercut region. The length
of each cantilever is corrected by uc subsequently and further calculations are carried out with the
adjusted eigenfrequencies for s- and h-structures (see Figure 8). As uc is independent of orientation,
variations in the eigenfrequencies arising from the anisotropy of material properties are not changed.

The classified eigenfrequencies of the h-structures are shown in Figure 9 and 10 with a
strictly monotonic decrease for increasing lengths. The plots serve as verification whether any
averaging was successful or not. An eigenfrequency shift is observable in Figure 9 in relation to
the detected modes according to Section 3, which arises from the undercut correction. Figure 10
shows additional eigenfrequencies at 60 µm which have been omitted during the averaging procedure.
Additional diverging frequencies are out of scale. In total, 1057 of 1283 eigenfrequencies are used for
further analysis.
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Figure 7. Experimentally observed red shift of the cantilever eigenfrequencies after normalization by
length and eigenvalue. The fit function is used to extract the influencing undercut for l −→ ∞ during
resonant excitation.
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Figure 8. Undercut correction factor to apply on the cantilever eigenfrequencies for the first two
eigenmodes. Different structure lengths (see Figure 1b)) are charged with different factors.
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Figure 9. Classified and averaged eigenfrequencies of h-cantilevers in dependency on their length for
the first three eigenmodes. Detected eigenfrequencies according to Section 3 are marked as crosses
for comparison.

As a first computational result, the strain εb can be derived directly from Equations (9) and (10)
using the averaged eigenfrequencies [40] as

εb =

((
fn,b

fn,c

)2 (κn,clb
κn,blc

)4
− 1

)
h2

γn,bl2
b

. (19)

Because the strain within a bridge is assumed to be a constant, the calculated is the averaged value
of the respective structure. Actually, the strain exhibits a complex distribution along a bridge arising
from temperature-dependent stresses during growth which are released while suspending the bridges.
These stresses cannot be modeled within the EEBT, but the results of the gained strains can be used for
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comparison purposes with FEM simulations and their predictions. They are also a figure of merit of
the final magnetoelectric sensor, e.g., for the determination of coupling factors between the magnetic
field and the strain.
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Figure 10. Classified and averaged eigenfrequencies of h-bridges in dependency on their length for
the first four eigenmodes. Detected eigenfrequencies according to Section 3 are marked as crosses
for comparison.

The strain itself is not only influenced by thermal stresses or the magnetic field, but also by
the lattice mismatches and resulting dislocations at the ScAlN(0001)/Pt(111) and Pt(111)/Si(111)
interfaces [44]. Figure 11 shows the calculated bridge strain as a function of the orientation angle
where the structure lengths change with increasing angle in accordance to Figure 1a. Using Figure 12,
it can be stated that the strain is length-dependent and smaller lengths exhibit smaller strains. The
overlaying “oscillation” in Figure 11 is thus a pure effect of the structure orientation. The changing of
the rotational and translational lattice mismatch between the polycrystalline ScAlN and Pt layers might
be the possible explanation for this behavior. Nevertheless, the impact on the sensor performance
is self-evident.
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Figure 11. Average strain of the s-bridges in dependency on orientation angle and bridge length.

The determination of the strain as the first extracted parameter enables the calculation of the
elastic modulus for the s- and h-structures, respectively. To keep the computational effort low, the
eigenfrequencies are normalized by the constant parameters of Equation (10), which leads to

ςb =
fn,b√

1 + γn
l2
b

h2 εb

2π
√
(ρA)tot

κ2
n,b

=

√
(EI)tot

l2
b

. (20)

The trapezoidal shape of the ScAlN layer is considered in the cross section A and in the moment
of inertia estimation. The parameters used for finding the Young’s modulus are shown in Table 2. The
Young’s modulus of Pt is derived in a similar way. The angular variation of the Young’s modulus of
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Pt layer is about 1 ... 2 % due to its high polycrystallinity. In combination with the small thickness of
about 80 nm, the influence on the ScAlN Young’s modulus is negligible and the fit is carried out using
a constant value of 126.8 GPa.
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Figure 12. Average strain of the h-bridges in dependency on bridge length.

Table 2. Fit parameters used for the determination of the Young’s modulus. The density of scandium
aluminium nitride (ScAlN) is derived from hexagonal lattice constants given in the reference.

Parameter Platinum Layer ScAlN Layer

Density 21 450 kg m−3 3318 kg m−3 [25]
Young’s modulus 126.8 GPa
Etching angle 0◦ 25◦

The modal analysis is completed with the calculation of both parameters, strain and Young’s
modulus for the s- and h-structures. The calculation time of a single analysis is on average about 0.5 s,
which is a decisive advantage over manual analysis, which usually takes a few days for a comparable
set of data.

7. Results

The Young’s modulus for the h-structures is determined to 315.2 GPa according to the fit in
Figure 13. The accuracy of the fit is quite high, as fifteen eigenfrequencies for three (normalized)
eigenmodes are used to derive the single value. For comparison, the s-structures have only three
different lengths and thus fewer eigenfrequencies can be used in fitting, which leads in general to a
higher uncertainty and scattering of the determined moduli (see Figure 14). Two effects can be observed
by comparing the moduli for the different lengths of the structures. The first one is the angle-dependent
anisotropy. The sputtered material with typical grain sizes less than 100 nm exhibits twisted pillars [45]
with strong c-axis orientation, which can also be seen in their own X-ray diffraction (XRD) and atomic
force microscopy (AFM) measurements. Thus, an isotropic Young’s modulus is expected in contrast to
the calculated moduli. However, the achieved result is in agreement with theoretical investigations of
the anisotropy of wurtzite AlN [46]. Though there is no epitaxial relationship between ScAlN, Pt and
silicon, the use of (111) oriented Si leads to a weak preferential orientation of the (111) oriented Pt and
the subsequent hexagonal ScAlN layer. The second effect is related to the seemingly dependency of
the Young’s modulus on the structure length. The Young’s modulus appears to decrease for longer
beam lengths while keeping a similar dependency on the anisotropy. This effect cannot be related
to single deviating s-structures as all redundant beams exhibit the same eigenfrequencies within a
small statistical deviation. Thus, external reasons of the apparent softening of long beams caused
by cracks, particle load, or other local influences on the respective structures can be excluded. All
bridges have the same width which excludes a possible size effect here. Instead, the reason for the
seemingly higher Young’s modulus of shorter beams is assumed to be a visible effect of the deviation
between the idealized structure used for calculation and the real doubly clamped beam. Though
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the influence of the technologically-caused undercut was taken into account in terms of an effective
beam length, additional deviations at the clamping points cannot be considered in their full influence.
The strain for example is taken to be constant across the beam length. A deviation in the area of the
anchors due to a not fully relaxed region cannot be considered in the model presented here. These
influences are strongest around the anchored region and negligible across the beam in its full length.
Thus, they will increase the stiffness (hence the subsequently calculated Young’s modulus) of shorter
beams and lose influence for longer ones. In addition, a possible change in the moment of inertia due
to a partial relaxation and the formation of a weak rain-pipe-like cross section is not considered. Such
an increase of the moment of inertia would lead to a decrease of the calculated Young’s modulus at
a given eigenfrequency, especially considering the fact that the longest bridges exhibit the highest
strains. In order to estimate the error of neglecting the actual strain profile, initial FEM simulations
of 250 µm long bridges similar to the measured ones were carried out—one with fixed constraints to
model a bridge according to the EEBT and one with undercut to model the real strain distribution.
The results indicate that the error in the strain determination arising from thermal stresses during the
growth at 300 ◦C is about 1.3 % with decreasing tendency for decreasing strains.
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Figure 13. Eigenfrequencies of the h-bridges normalized by the constants of Equation (10) in
dependency of the length. The slope of the fit function is proportional to the square root of the
Young’s modulus.
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Figure 14. Calculated Young’s moduli for different orientation angles and lengths of the s-structures.
Though the ScAlN is polycrystalline, an anisotropy in the modulus is verifiable for the different lengths.
Decreasing Young’s modulus for increasing lengths indicates a size effect.

Table 3 summarizes the extracted Young’s moduli in comparison to literature values of ScAlN
layers with a scandium amount between 5 and 15 at.-%. All literature values were measured by
nanoindentation where anisotropy effects play a role but are apparently not considered [47]. This
leads to significant uncertainties in the given values for the bulk-like layers. Incorporating scandium
into the AlN lattice decreases the Young’s modulus as found by [25] and is also reproduced in the
table. The variation in the anisotropy from this study is found to be within the range of the error bar
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given in the measurements of the cited literature, i.e., the resolution of the proposed method is higher
than by nanoindentation unveiling an anisotropy effect hidden in the measurement uncertainty of the
literature. Given the approximately parabolic dependency of the ∆E effect in the low magnetic field
regime [18], an increased resolution in the determination of the Young’s modulus is highly beneficial for
the analysis of the sensor performance. As a consequence, the proposed method avoids, for example, a
false attribution of anisotropy related Young’s modulus shifts to changes in the magnetic field while
characterizing a sensor. Additionally, the increased resolution enables investigating anisotropy effects
in detail, especially when magnetostrictive layers are considered, where the material composition,
texture, and the orientation of the magnetic domains play an important role.

Table 3. Comparison of the determined Young’s modulus of ScAlN with literature values of similar
scandium concentrations including growth process and layer thickness. * Values are interpolated.

Material Growth Thickness Young’s Modulus Reference

Sc0.05Al0.95N co-sputtered (0.6–1) µm (250–275) GPa [48]
Sc0.08Al0.92N co-sputtered 1 µm (298–315) GPa this work
Sc0.1Al0.9N co-sputtered 0.45 µm (300–320) GPa [25]
Sc0.1Al0.9N co-sputtered 10 µm 290 * GPa [49]
Sc0.15Al0.85N co-sputtered 1 µm 200 GPa [50]

8. Conclusions

In this work, a new method for the fully automated and fast parameter extraction for resonantly
driven MEMS on the basis of a co-sputtered Pt/ScAlN layer system was proposed, which is applicable
to MEMS based devices in general and particularly to magnetoelectric sensors. In particular, the
latter ones demand high resolution of the measured parameters as several effects affect the frequency
behavior of such a device, namely the ∆E effect, induced stresses or geometrical changes. The
described method allows the determination of the Young’s modulus and the average strain of such
structures while benefitting from an increased resolution compared to commonly used nanoindentation
techniques. This was reached through the analysis of the eigenfrequency behavior depending on the
length and orientation of singly and doubly clamped beams in two steps. Firstly, a new fit function
was introduced as it could be shown that the often used Lorentzian function is not suitable for fitting
eigenfrequency spectra. While the error in determining the eigenfrequency itself is negligible, the
error of the extracted amplitude and FWHM can be up to 13 % and 26 % otherwise, respectively.
However, higher deviations could also be observed which apply accordingly to derived parameters,
e.g., the quality factor. To minimize fitting errors, a full fit of the eigenfrequency spectrum was
carried out subsequently and the extracted eigenfrequencies of the respective structures were used to
determine the Young’s modulus and the strain. This was realized in the second step using an extended
Euler–Bernoulli-theory in an automated way. Simplifications within the Euler–Bernoulli-theory in
terms of a constant strain-dependent eigenvalue γn and a neglected complex strain profile introduce
an error of about 1 % each. An innovative and robust algorithm for automated classification of bending
modes of cantilevers and bridges was developed. The extracted Young’s moduli were in the range
between 298–315GPa and thus comparable to values given in the literature, but more interestingly
exhibit an angle-dependent anisotropy effect. This anisotropy was not shown before and varies within
the uncertainty range of nanoindentation measurements. Accordingly, such measurements are lacking
accuracy in determining specific characteristics, like the ∆E effect when omitting the anisotropy or
other influences like geometry changes. Compared to the manual analysis of the measurement data
containing 322 structures, the proposed automation is able to reduce the needed time significantly
from approximately ten working days down to two hours.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/4/1001/
s1.
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Elastic modulus and coefficient of thermal expansion of piezoelectric Al1−xScxN (up to x = 0.41) thin films.
APL Mater. 2018, 6, 076105. [CrossRef]

46. Zagorac, D.; Zagorac, J.; Djukic, M.; Jordanov, D.; Matović, B. Theoretical study of AlN mechanical behaviour
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