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Abstract

The development of new materials, as well as the increasing standards for quality and
safety, require high-resolution, nondestructive evaluation methods for manufacturing and
maintenance. In a novel method, referred to as Lorentz force evaluation, a permanent
magnet is moved relative to a conducting specimen. Owing to this movement, eddy
currents are induced inside the conductor. The interaction of the eddy currents with
the magnetic field leads to the Lorentz force acting on the conductor. A force of the
same magnitude but in opposite direction acts on the permanent magnet, where it is
measured. In the presence of a defect, the eddy currents are perturbed. Consequently,
the Lorentz force components are also perturbed. The defect properties are determined
from the measured Lorentz force components by solving an ill-posed inverse problem.

The thesis aims to develop a novel forward solution, compare different forward so-
lutions, develop new inverse calculation methods and create a method for improving
defect depth estimation for Lorentz force evaluation. Further, a qualitative comparison
to classical eddy current evaluation was realized.

The existing forward solutions in Lorentz force evaluation: approximate forward so-
lution and the computational more demanding extended area approach were compared
regarding their defect reconstruction performance. A goal function scanning method was
used as inverse method in order to directly compare the influence of both forward solu-
tions on the defect reconstruction result avoiding the bias of tuning parameters of the
inverse methods. The use of the extended area approach as forward solution yielded more
accurate defect depth and extensions estimations compared to the approximate forward
solution. However, both forward solutions are limited to defects of regular geometry.
Thus, a novel forward solution referred to as single voxel approach was developed. It
is based on the superposition of force perturbation signals of small elementary defects.
For numerical simulations of various defect sizes, depths and shapes, the novel forward
solution showed the smallest deviation in comparison to the other two existing forward
solutions.

To reconstruct the defect properties, a minimum norm estimation with elastic net reg-
ularization was applied to Lorentz force measurement data of an aluminum specimen.
The rationale of using the elastic net regularization is given by the a priori knowl-

edge of a non-conducting defect surrounded by a conductor with constant conductivity.
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The widely used Tikhonov-Phillips-regularization was applied for comparison purposes.
With both regularization methods reproducible and correct depth and adequate size
estimations were obtained. The same inverse methods have been applied for defect re-
construction of eddy current evaluation measurements of an aluminum specimen. The
reconstructed defects where blurred and less stable for deep lying defects in compari-
son to the Lorentz force evaluation. Conversely, with the eddy current evaluation, the
reconstruction of more complex shaped defects was possible.

As another inverse method, the adapted Landweber iteration was introduced for
Lorentz force evaluation. The Landweber iteration has been selected due to promising
imaging results in the field of electrical capacitance tomography. An adapted Landweber
iteration yielded adequate defect size estimations. The positions of deep lying defects
were estimated above the correct ones.

The Lorentz force evaluation is characterized by the difficulty that a small defect close
to the specimen surface and a larger and deeper defect generate similar force perturbation
signals. This aggravates the estimation of the correct defect depth. A novel principle,
referred to as velocity dependent Lorentz force evaluation, was introduced to support
the defect depth estimation. The Lorentz force perturbation signals are evaluated at
a high velocity (10m/s) relative to a low velocity (0.1m/s). Amplitude changes and
signal shifts are used to determine the defect depth incorporating the motion-evoked
skin effect. The general feasibility of this novel method has been shown for simulated

data.
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Zusammenfassung

Die Entwicklung neuer Materialien sowie die ansteigenden Anforderungen an Qualitit
und Sicherheit erfordern die Entwicklung hochauflésender, zerstorungsfreier Werkstof-
fevaluierungsverfahren fiir die Produktion und Wartung. Im neuen Lorentzkraftevaluie-
rungsverfahren wird ein Permanentmagnet relativ zu einem elektrisch leitenden Priifkor-
per bewegt. Aufgrund der Bewegung werden Wirbelstrome im Priifkérper induziert. Die
Wechselwirkung der Wirbelstréme mit dem Magnetfeld fiihrt zur Lorentzkraft, welche
auf den Priifkorper wirkt. Eine Kraft derselben Grofe aber in entgegengesetzte Richtung
wirkt auf den Permanentmagneten, wo sie gemessen wird. Bei Vorliegen eines Defekts
sind die Wirbelstromverteilung und entsprechend die Lorentzkraft verindert. Die Defek-
teigenschaften werden aus den gemessenen Lorentzkraftkomponenten mittels der Lésung
eines schlecht gestellten inversen Problems bestimmt.

Die Ziele der Dissertation umfassen die Entwicklung einer neuen Vorwéirtslosung,
den Vergleich verschiedener Vorwértslosungen, die Entwicklung neuer inverser Verfah-
ren sowie die Erarbeitung einer Methode zur verbesserten Defekttiefenbestimmung fiir
die Lorentzkraftevaluierung. Des Weiteren wurde ein qualitativer Vergleich mit der klas-
sischen Wirbelstromevaluierung umgesetzt.

Die existierenden Vorwértslosungen fiir die Lorentzkraftevaluierung: “Approximate
Forward Solution” und “Extended Area Approach” wurden hinsichtlich der Defektrekon-
struktionsgiite verglichen. Es wurde ein Zielfunktionsscanningverfahren angewandt um
den Einfluss der beiden Vorwirtslosungen direkt zu vergleichen. Damit wurde eine Ver-
zerrung durch die sonst notwendige Parameterwahl bei inversen Methoden vermieden.
Die Verwendung der Vorwirtslosung “Extended Area Approach” erzielte genauere Schit-
zungen der Defekttiefe und -abmessungen im Vergleich zur “Approximate Forward Solu-
tion”. Die beiden Vorwirtslosungen sind jedoch auf Defekte mit gleichméfiger Geometrie
beschrinkt. Aus diesem Grund wurde die neue Vorwértslosung “Single Voxel Approach”
entwickelt. Sie basiert auf der Superposition von Kraftverdnderungssignalen von kleinen
elementaren Defekten. Bei numerischen Simulationen mit Defekten verschiedener Gro-
fsen, Tiefen und Formen zeigte der “Single Voxel Approach” die geringste Abweichung
im Vergleich zu den beiden existierenden Vorwértslosungen.

Eine Minimum-Norm-Schétzung mit Elastic-Net-Regularisierung wurde auf die Lor-

entzkraftmessdaten eines Aluminiumpriifkdrpers zur Rekonstruktion der Defekteigen-
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schaften angewandt. Die Motivation zur Nutzung der Elastic-Net-Regularisierung stammt
aus dem a priori Wissen, dass ein nicht-leitender Defekt von einem Priifstiick mit kon-
stanter Leitfdhigkeit umgeben ist. Die weit verbreitete Tikhonov-Phillips-Regularisierung
wurde zu Vergleichszwecken angewandt. Mit beiden Regularisierungsmethoden konnte
reproduzierbar eine korrekte Defekttiefenschitzung und eine adéquate Gréfenschétzung
erzielt werden. Dasselbe inverse Verfahren wurde fiir die Defektrekonstruktion aus Wir-
belstromevaluierungsmessdaten eines Aluminiumpriifkérpers angewandt. Die Defektre-
konstruktionsergebnisse stellten sich fiir tiefer liegende Defekte verschwommen und we-
niger stabil im Vergleich zur Lorentzkraftevaluierung dar. Im Gegensatz war mit der
Wirbelstromevaluierung die Rekonstruktion komplexerer Defektgeometrien moglich.
Als weitere inverse Methode, wurde die adaptierte Landweber-Iteration fiir die Lor-
entzkraftevaluierung eingefiihrt. Die Landweber-Iteration wurde ausgewihlt, da sich im
Bereich der elektrischen Kapazitdtstomographie vielversprechende Rekonstruktionser-
gebnisse gezeigt haben. Die adaptierte Landweber-Iteration erzielte addquate Defektgro-
flenschétzungen. Die Position von tief liegenden Defekten wurde zu hoch rekonstruiert.
Die Lorentzkraftevaluierung ist gekennzeichnet durch die Schwierigkeit, dass ein klei-
ner Defekt nahe der Priifkérperoberfliche und ein groferer tiefer liegender Defekt dhnli-
che Kraftverdnderungssignale zeigen. Das erschwert die Bestimmung der korrekten De-
fekttiefe. Das neue Prinzip der geschwindigkeitsabhingigen Lorentzkraftevaluierung wur-
de eingefiihrt um die Defekttiefenbestimmung zu unterstiitzen. Die Lorentzkraftveran-
derungssignale werden bei einer hohen Geschwindigkeit (10 m/s) relativ zu den Signalen
bei einer niedrigen Geschwindigkeit (0.1m/s) ausgewertet. Amplitudenverdnderungen
und Signalverschiebungen werden genutzt um die Defekttiefe zu bestimmen. Dabei wird
der bewegungsinduzierte Skineffekt ausgenutzt. Die Plausibilitdt dieser neuen Methode

wurde fiir Simulationsdaten gezeigt.
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1 Introduction

1.1 Motivation

On July 19, 1989 the aircraft McDonnell Douglas DC-10 crashed on the way from Den-
ver to Chicago at the Sioux Gateway Airport [1]. The reason for this crash was a sand
grain sized hollow below the titanium surface of the fan disk that lead to a fatigue crack,
which has been overlooked during maintenance. The fan disk broke apart and the flying
debris destroyed the hydraulic lines thus, leading to a disabled aircraft and subsequently
to the crash. This example illustrates the importance of high-resolution, nondestructive
evaluation (NDE) methods during manufacturing and maintenance. Further, the de-
velopment of new materials as well as the increasing standards for quality and safety

require high-resolution [NDEI methods.

[NDEl aims to characterize a material defect by its location, shape and size in contrast
to the nondestructive testing, which offers information about the presence or absence of
a defect. In the field of conducting materials are often evaluated by ultrasonics [2],
radiography [3], thermography [4], magnetic induction thermography [5], magnetic flux
leakage [6] and eddy current evaluation [7]-

In the frequently used [ECEL a coil is excited with a time-changing current leading
to a time-varying magnetic field that induces eddy currents in a conducting material
under test according to Faraday’s induction law [§]. The induced eddy currents generate
a secondary magnetic field that is quantified by a magnetic field sensor, e.g. a pick-up
coil. In presence of a defect, the eddy currents are perturbed and in consequence the
secondary magnetic field is also perturbed. The is limited by the skin effect. An
increasing excitation frequency f, increases the eddy current amplitudes as well as the
corresponding magnetic field response, but it decreases the penetration depth at the
same time. In consequence, the is preferably used to characterize defects that are

located close to the upper surface of a specimen [9].

To reduce this limitation, the Lorentz force evaluation (LEE]) has been introduced in
2013 [10]. In[LFEl a permanent magnet is moved relative to a conducting specimen under
test. Owing to this movement, eddy currents are induced inside the conductor. The

interaction of the eddy currents with the magnetic field leads to the Lorentz force. A force
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of the same magnitude but in opposite direction acts on the permanent magnet, where it
is measured. In presence of a defect, the eddy currents are perturbed. Consequently, the
Lorentz force components are also perturbed. The force perturbation signal, referred to
as defect response signal (DRS]), acts as input signal for defect reconstruction algorithms.
The belongs to the motion-induced eddy current evaluation methods. Instead of
measuring the Lorentz force, another research group uses the secondary magnetic field
from the induced eddy currents to detect defects in conducting specimen [11-14].

In order to determine defect properties in (Fig. from a measured variable,
an inverse problem has to be solved. For that purpose a forward solution that projects
the setup with the defect onto the measurement data is needed. One class of inverse
methods starts with an initial guess of the defect. The variable corresponding to the
measured one is forward calculated and the deviation is determined. The new parameters
of the defect are estimated by the inverse method. Then, a new forward calculation is
performed and the deviation to the measured variable is computed again. This process
is repeated until defect parameters are found that give a minimal deviation between the

forward calculated and the measured variable.

Inverse method

L adjust the defect parameters |
Forward solution [—¥ forward calculated —» Deviation
variable T
I
Measured
variable

Figure 1.1: Principle of an inverse problem in [NDEF An inverse method adjusts the
defect parameters such that they minimize the deviation between the measured variable
and the forward calculated one. For [LFE] the measured variable is the Lorentz force
[DRSL

In 2013, the approximate forward solution (AES) [10] was introduced for [LFEl where
the permanent magnet was modeled by a single magnetic dipole. In this study [10], the
inverse problem was solved by reconstruction of a conductivity distribution using the
truncated singular value decomposition (TSVD]). The defect parameters where derived
from the reconstructed conductivity distribution. For the first time, the feasibility of
was shown. An aluminum specimen with cuboidal defects at the defect depth of
2mm were investigated. The difficulty of depth estimation in [LFE] was pointed out, as
it could not be estimated accurately.

Spherical permanent magnets are difficult to align in the desired direction. Thus,
cuboidal and cylindrical permanent magnets are used in the experimental setups |15].

The single magnetic dipole model is only appropriate for spherical permanent magnets.




1.1. Motivation

In 2015, the multiple dipoles method (MDM]) was introduced as novel permanent mag-
net model [16]. Contrary to analytical models for these types of permanent magnets, the
[MDMI can be integrated easily into the forward solution [ATSl Also in 2015, the differen-
tial evolution algorithm [17] was used to reconstruct the conductivity distribution from
the measured Lorentz force signals of an ALUCUBOND® specimen. ALUCUBOND
is made of two aluminum alloy layers with an isolating interface layer of polyethylene.
A cylindrical shaped defect was located at the bottom aluminum layer at the depth of
3.5mm. The evolutionary algorithm achieved an appropriate defect size and position
estimation and a correct depth estimation.

Up until then, the was the only used forward solution for [LEEL but it only works
optimal for uniformly shaped defects with equal extensions, like defects with circular or
quadratic cross-sections. The calculation by the is based only on the defect.
The extended area approach (EAA]) 18], introduced in 2015, also takes the area around
the defect into account. It leads to more accurate estimations of the especially
for uniformly shaped defects with non-equal extensions, like defects with ellipsoidal or
rectangular cross-sections [18|. The is computational more demanding than the
[ATSI The defect reconstruction performance of both forward solutions has not been
compared up to now. Both forward solutions are defined for a setup with a single defect
with high compactness of shape located far away from the specimen edges.

In 2016, the current density reconstruction |19] was introduced as inverse method
for LEEL It assumes that the defect depth is known beforehand by another method.
The size and position estimation errors were in a good range but worse compared to the
differential evolution method [15,17]. In the same year, a glass-fiber reinforced aluminum
laminate (GLARE]) specimen, containing a cuboidal defect in the second aluminum layer
at depth of 0.75mm was investigated by [LEEI [15]. The defect could be detected. The
evaluation of the specimen by a length-width-depth scanning method that used the[EAA]
as forward solution, did not yield the correct defect extensions and depth.

To summarize the open challenges of the [LEE]l the first point that needs to be ad-
dressed is the reconstruction of defects located deeper than 4 mm from the top layer of
the conducting specimen, as previous work only investigated defects of depths between 0
and 4mm. The second important topic deals with the defect depth estimation. In [[EFE]
a small defect close to the surface and a deeper and larger one generate similar [DRSl
That aggravates the estimation of the correct defect depth. Novel inverse methods and
novel principles need to be developed that achieve more accurate and stable defect depth
estimation results. It should be investigated, whether the use of the computational more
demanding forward solution is justified by an improved defect reconstruction per-
formance in comparison to the use of Further, a novel forward solution should
be developed that overcomes the limits of and [EAAlin terms of defect shape and

location. Moreover, up to now it has not been investigated, whether the [LFEl shows




Chapter 1. Introduction

reproducibility of defect reconstruction results for repeated measurements. Addition-
ally, only the defect detection limits have been compared for Lorentz force eddy current
testing and classical eddy current testing [20]. Thus, the defect evaluation should be
compared qualitatively between [LEE] and [ECE]

Thus, the aims of the thesis are:

1. Development of novel inverse methods that incorporate a priori knowledge by
regularization methods and are also able to reconstruct deep lying defects using
the forward solution [AFS]

2. Investigation of the reproducibility of defect reconstruction results in [LEE]
3. Qualitative comparison of [LFEl and [ECEL

4. Comparison of the forward solutions and of regarding the defect

reconstruction performance.

5. Development a novel forward solution that overcomes the limitations of and

regarding defect shape and location.

6. Development of a novel principle that supports the defect depth estimation.

1.2 Structure and Contribution of the Thesis

Chapter [2| contains the fundamentals of (section and (section 2.2)). The
principle, the numerical simulations, the measurement setup and the used forward so-
lutions are described for both methods. The inverse problem is examined in sec-
tion regarding its properties. Further, an overview over selected inverse calculation
methods is given.

Chapter [3] is divided into four sections. It addresses the aim of the thesis. The
principle idea is to use a regularization method to incorporate the a priori knowledge
that a non-conducting defect is surrounded by a conductor with constant conductivity.
For that purpose, the first section introduces the elastic net regularization (ENRI)
as regularization technique for inverse problems. In section [3.2] the minimum norm
estimation (MNE]) with in comparison to the commonly used Tikhonov-Phillips-
regularization (TPRI) is applied for the defect reconstruction in [LEEl This section con-
tains methods and results that have been presented in [21] and are published in [22]. The
following sections [3.3] and address the aim of the thesis. Section [3.3] contains
the MNEl with [ENR] in comparison to [TPR] applied to defect reconstruction in [ECEL A
qualitative comparison between the and the is drawn in section

Chapter 4| also addresses the aim of the thesis. It introduces an adapted Landwe-

ber algorithm for the determination of defect properties from Lorentz force data. The

4



1.2. Structure and Contribution of the Thesis

Landweber iteration has been selected due to promising imaging results in the field of
electrical capacitance tomography which showed a comparable situation of the inverse
problem. Parameter studies based on simulation data are performed in order to obtain
the crucial parameters of the Landweber algorithm, e.g. the number of iterations. The
results are also presented for measurement data. This Chapter contains methods and
results that were presented in [23].

Chapter [p| contains the approach of the aim. A comparison between two for-
ward solutions of the and the [EAA]l is implemented regarding the defect
reconstruction performance. For this purpose, data sets from simulations and mea-
surements with varying defect shapes and depths are investigated. Goal function scans
are applied to determine the defect properties directly. With the goal function scan
a comparison between and regarding the defect reconstruction performance
is possible without a bias from parameter selection for the inverse calculation method.
Parts of the methods and results of this Chapter have been published in [24] and pre-
sented at [25-27].

Chapters additionally address the aim as defect depths up to 8 mm are
investigated within aluminum specimens. Further, the thesis aim is addressed
by these Chapters as repeated Lorentz force measurements are investigated.

A novel forward solution for [LEE] referred to as single voxel approach (SVA)), is
introduced in Chapter [6] It addresses the thesis aim. This novel approach is based
on the idea to calculate the defect response signal for a small cuboidal defect at varying
positions using methods of numerical simulations. The of an arbitrary shaped
defect is then calculated as a superposition of single from the small cuboidal
defects that belong to this defect. The are calculated for various defect shapes
at different depths and compared to obtained by finite element method (FEMI)
simulations. The results are compared to the previous forward solutions and [EAAL
This Chapter contains methods and results that have been presented at |28] and are
published in [29).

Chapter [7] addresses the difficulty in [LEE] to determine the defect depth from the
2D Lorentz force measurement and with that the thesis aim. A novel principle is
derived that uses a low (0.1 m/s) and a high (10 m/s) velocity for the relative movement
between the permanent magnet and the specimen under test. Due to the motion-evoked
skin effect, the at the high velocity in relation to the at the low velocity
change for varying defect depths such that parameters for the depth estimation can be
extracted. A simulation study is performed for defects of varying sizes and depths to
determine the depth estimation parameters. This Chapter contains methods and results

that have been presented at [30] and are published in [31].
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2 Fundamentals

2.1 Lorentz Force Evaluation

2.1.1 Principle

In the [LFE]l a conducting specimen under investigation is moved relative to a fixed per-
manent magnet with a velocity ¢ (Fig. [2.1). Due to this movement eddy currents are
induced inside the specimen that counteract with the magnetic field B. This counterac-

tion leads to the Lorentz force Fy,. The Lorentz force acts on the conducting specimen as

Permanent F
magnet *

Yy
X

<

<l

0-05 IUO

Conducting specimen

Figure 2.1: Principle of Lorentz force evaluation: A conducting specimen is moved
relative to a fixed permanent magnet. The induced eddy currents counteract with the
magnetic field and thus lead to Lorentz forces. In presence of a defect the eddy currents
are perturbed and so are the Lorentz force components.

a braking force. Due to Newton’s third axiom, a force F = —F} with the same magni-

tude but in opposite direction acts on the permanent magnet, where it can be measured.

The force F that acts on the permanent magnet at the position 7y = [x¢ yo 20" is
defined as
Fy
F=| F, :/—j’xédv, (2.1)
1%

z

where ; denotes the eddy current density within the conducting specimen of volume

V. In the framework of this thesis, this force F is also referred to as Lorentz force
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Chapter 2. Fundamentals

for simplification. The magnetic flux density B = Ep + b consists of the magnetic
flux density B'p of the permanent magnet and the secondary magnetic flux density ES
originating from the induced eddy currents j In presence of a defect, the eddy currents
are perturbed. In consequence, the Lorentz force components are perturbed as well.
For the estimation of defect properties, the Lorentz force components have to be
measured at several positions. The movement of the conducting specimen relative to
the fixed permanent magnet can be viewed just as the permanent magnet moves over the
fixed conducting specimen under test. From that point of view, the permanent magnet
moves in parallel scanning lines (Fig. above the specimen with the velocity v. The

force acting on the permanent magnet during the scanning process is measured.

Conducting specimen

Scanning line
Permanent magnet

Figure 2.2: Principle of Lorentz force evaluation scanning: The movement of the speci-
men relative to the fixed permanent magnet can be viewed just as the permanent magnet
moves above a fixed specimen. The permanent magnet “scans” the specimen in multiple
parallel scanning lines.

Fig. c shows exemplary force components Fp, and Fp. along one scanning line
(y = 0) for a specimen without a defect obtained by [FEM| simulations. The signal
deflections at the beginning and end of the signal occur due to the edges of the specimen.
The force components F, and F, for the same specimen but containing a subsurface
defect are shown in Fig. b. The force components Fy, and Fy, for the specimen with
and without a defect vanish at this scanning line (y = 0) due to symmetry.

The information about the defect is encoded in the perturbation of the force signal
(Fig. b, arrows). To extract this perturbation, the at one permanent magnet
position 7y (Fig. is defined as

AF,
AF=| AF, | =F - 0:/—jx§dV—/—jox§dv, (2.2)
\%4 \%
AF,

describing the difference of the force F acting on the permanent magnet with the spec-




2.1. Lorentz Force Evaluation

imen containing a defect and the force F, for the same specimen without a defect. The
eddy current densities ; and jo describe the defect and the defect free case, respectively.
Fig. a shows the [DRS| components AF,, and AF, along one scanning line (y = 0) for
the given example. The obtained along multiple parallel scanning lines (Fig.
acts as input signal for the reconstruction of defect properties. Fig. shows an exam-
ple of the components. In order to determine the defect properties from the

components like shown in Fig. 2.4] an inverse problem has to be solved.

(a) (b) (©)
200
4 4
0
Z e Z
_ — g2 =2
£ 200 — = — g
E ~ 0 < 0
-400
—AF, —F, —Fy.
—AF, Y —F, By —Fo.s|
600 2 2 0
-50 0 50 -100 0 100 -100 0 100
T in mm T in mm z in mm

Figure 2.3: Principle of components AF, and AF, (a) are determined by
the difference of force components F, and F, from a specimen containing a defect (b)
and Fp, and Fp . of the same specimen without a defect (c). The force components
are shown along the symmetry line (y = 0), where the y-component vanishes. Note the
different scale for AF, and AF, in (a).

AF, AF, AF,
0 200
50
g 20 100
= 10 200
5 0 0 0
>-10 -400 -100
-20 50
-200
-20-10 0 10 20 -20-10 0 10 20 -20-10 0 10 20
T In mm T In mm T In mm

Figure 2.4: DRS components AF,, AF, and AF, in uN obtained by [FEM]| simulations.

2.1.2 Numerical Simulations

2.1.2.1 Overview

Numerical simulations in [LFEl provide noise-free benchmark signals to develop new for-

ward solutions, investigate novel inverse methods, examine new principles or conduct
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parameter studies. Thus, the general properties of a novel method can be assessed be-
fore the application to measurement data. The data sets obtained by [FEM] simulations
act as reference data sets in this thesis.
The selected principle of a numerical simulation depends on the relative velocity
U = vé, between the permanent magnet and the specimen as well as the conductivity og
and the magnetic permeability p of the material. The selection is based on the magnetic
Reynolds number
Ry = poolev, (2.3)

where [, denotes the characteristic length of the problem. In the framework of [LFE]
the magnetic permeability of the investigated non-magnetic conducting materials equal
the vacuum permeability p = po. The magnetic Reynolds number Ry, is a measure to
decide, if the secondary magnetic field bs of the induced eddy currents and the skin effect
are negligible. In consequence, also the numerical simulation method can be selected
according to the magnetic Reynolds number Ry,. According to [32], the type of numerical

simulation method can be roughly chosen by

Ry, <1 — Weak Reaction Approach
Rn=41< R, <10— Quasi-stationary Approach (2.4)

Ry, > 10 — Transient Approaches

In[LEE] the characteristic length . can be chosen as half of the height H of the specimen
[33], thus I. = H/2. According to [33], for an aluminum specimen with H < 50 mm and
a conductivity of o9 = 30.61 MS/m, the weak reaction approach can be applied for
velocities v < 0.5m/s. In this thesis, specimens with two different o(- H-configurations
are investigated. The approximate velocity boundaries for the selection of the numerical

simulation methods are derived from the described rule of [33| and are shown in Table

2.1l

Table 2.1: Investigated configurations of conductivity oy and specimen height H and
the consequence for selection of the numerical simulation method.

00 H Weak

in in Reaction Quasi-stationary Transient
Config. MS/m mm Approach Approach Approaches
A 30.61 100 v<025m/s 0.25m/s <v<25m/s v>25m/s
B 21 50 v <0.7m/s 0.7m/s <v <T7m/s v>7m/s

In order to determine the components AF according to 1) the numerical
simulations have to be done for the specimen with the defect to calculate F and for

the same specimen without a defect in order to obtain Fy. For the calculation of a

10



2.1. Lorentz Force Evaluation

whole scan, like shown in Fig. the underlying problem of the numerical simulation
method has to be solved for each relative permanent magnet position separately. If the
specimen has large extensions in z- and y-direction such that force plateaus are present
as shown in Fig. 2.3] the components can be obtained more easily. The influences
of the specimen edges (Fig. are cut away and the offsets of the scanning lines are
subtracted in order to obtain AF,, AF, and AF,.

2.1.2.2 Weak Reaction Approach

In general, the [LEFEl uses small velocities, e.g. v =0.1m/s, to reduce the skin effect [34]
and mechanical oscillations |[17]. The secondary magnetic field b, and the motion-evoked
skin effect are negligible as the magnetic Reynolds number Ry, < 1. Thus, according to
the weak reaction approach [33], the eddy current density within the conductor can be

calculated directly by Ohm’s law for moving conductors as
j=lool (~ve+5x By), (2.5)

where Ep denotes the magnetic flux density of the permanent magnet and ¢ the electric
scalar potential. The conductivity is expressed as a tensor o] = diag (0zz, Oyy, 022)
which allows the definition of anisotropic and isotropic materials. The drawback of the
weak reaction approach is that the calculation of the unperturbed part F, o of the force
component F, equals zero due to the neglection of the secondary magnetic field which
imposes a symmetry in the eddy current density distribution [33]. This symmetry is
suppressed in presence of a defect such that the component AF, is determined

correctly.

Finite Element Method The continuity’s equation is used to derive the Laplace

equation for the electric scalar potential ¢:

. . P .
V.-7=0withi-j=0 —>v2¢:0witha£:ﬁ-(5x3p)
mn

2.6
TcUlg ( )

Ul

where 71 is the unit vector normal to the conductor (I'c) and the defect surfaces (I'g)
[32]. For ensuring the solution’s uniqueness of with Neumann boundary condition
- ; = 0, a grounding condition has to be added. The potential ¢ is set to zero at one
of the upper corners of the specimen. In the case of a defect inside the specimen, Ohm’s
law for moving conductors also takes into account the conductivity’s jump at the
internal boundary between the conductor and the defect including both contributions
to 7 based on the electric scalar potential o and the product ¥ x ép. The problem 1)
is implemented in COMSOL Multiphysics® Version 5.2a (COMSOL Inc., Burlington,
USA). Ounly the specimen and the defect are discretized by tetrahedral elements. The

11
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magnetic flux density Ep is imported from previous calculations, which depend on the
used permanent magnet. If a spherical permanent magnet is used, it is modeled by a
single magnetic dipole (see also section and ép is calculated analytically as shown
in [8]. In case of a cylindrical permanent magnet, the magnetic flux density is calculated
by the analytic current model [35]. The corresponding elliptic integrals are approximated

by the mid-point rule [36] and the arithmetic geometric mean method [32,37].
After solving (2.6) by [FEM| the eddy current density values are determined by (2.5

with the obtained values for ¢ and ép. The Lorentz force components for one permanent
magnet position are calculated according to (2.1)). For the calculation of a whole scan,
problem ({2.6)) has to be solved for each relative permanent magnet position separately.

Boundary Element Source Method The boundary element source method (BESM])
[38] is a variant of the boundary element method. In order to calculate the Lorentz force
components according to using the weak reaction approach, the electrical scalar
potential ¢ has to be determined for the calculation of the eddy current density dis-
tribution according to . The key concept of the is the presence of surface
charges, which occur at the interfaces that separate mediums of different conductivity,

i.e. the specimen surface and the defect surface, like illustrated in Fig. 2.5

The electric scalar potential ¢ within the conducting specimen can be calculated by

a superposition of the unknown surface charges. The surface charges are determined

Figure 2.5: Principle of BESMt Surface charges occur at the interfaces that separate
mediums of different conductivity, i.e. specimen and defect surfaces (small cuboid). The
surface charges are assumed to be constant at each boundary element (squares) and
placed at the centroids of the elements (dots in each square) in order to calculate the
electric scalar potential ¢ by fulfilling the boundary conditions at the interfaces.

12
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by fulfilling the boundary condition j - @ = 0 at the surfaces. Ohm’s law for moving

conductors (2.5)) is inserted into the boundary condition that leads to
(—Vgoi—i—ﬁ’x éi) iy =0, (2.7)

which has to be fulfilled at the i-th surface charge element (Fig. [2.5). The gradient of
the electric scalar potential V; at the i-th surface charge element is calculated as a
superposition of the surface charges ¢; by Coulomb’s potential [38]. The contribution
from the surface charge ¢; itself is added as described in [38]. As a consequence, a system
of linear equations is built from as

—

[A](s4D)x(5+D) * As+D)x1 = E(s+D)x1

1 .
— s 7 =
252'[:‘0 J
with a; ; = (7 7) 7
= ) T ) )
%a i £
47‘(60 ‘7’1' - Tj|
and C; = — (17 X EZ) ﬁl (2.8)

where S and D denote the numbers of surface charge elements at the specimen and defect
surfaces, respectively. A diagonal element a;; of the matrix [A] depends on the size S;
of the i-th surface charge element. The vectors 7; and 7; belong to the centers of the
observed surface charge element ¢ and the source surface charge element j, respectively.
Eqn. (2.8)) is valid for normal vectors 7i; pointing in positive directions of the coordinate
system (Fig. . In case of normal vectors 7; in negative direction, the signs of a;; and
¢; are flipped. The calculation of the magnetic flux density B; at the center of the i-th
surface charge element depends on the used permanent magnet. A spherical permanent
magnet is modeled by a single magnetic dipole (Fig. see also section and B;
is calculated analytically as shown in [8]. It is also possible to import the magnetic flux
density distribution calculated by another numerical simulation method. The system of

linear equations ([2.8) is solved to determine the unknown charges g; of ¢.

In order to calculate the Lorentz force components according to , the specimen is
discretized into M volume elements of volume Vg and the eddy current density
jm in the center 7, = [T Ym Zm]T of the m-th is calculated by Ohm’s law of
moving conductors . The electric scalar potential ¢y, is calculated by

S0
J

- , 2.9

o 4w50;|f*mij (29)

In order to determine the components according to (2.2), the Lorentz force

13
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components ﬁ() have to be calculated for the defect free specimen. For that purpose,
the system of linear equations is reformulated containing only the S surface charge
elements on the specimen surface. The calculation of ¢,, changes accordingly.

If the scans of the Lorentz force components for the specimen with a defect should
be calculated, the surface charge distribution ¢ has to be calculated for each relative
position of the permanent magnet. However, the change of the magnet position only
influences the right-hand side ¢ of the system of linear equations . The matrix
[A] does not change and its inversion has to be done only once. The determination of
the charges requires just a multiplication of the inverted matrix [A]~! and a right-hand
side ¢ of a system of linear equations. This procedure has to be repeated for the defect
free specimen in order to obtain the component scans. The methodology
is implemented in MATLAB® R2018a (The MathWorks, Inc., Natick, Massachusetts,
USA).

2.1.2.3 Quasi-stationary Approach

In case of the [LFE] the quasi-stationary approach (QSA) is used roughly for magnetic
Reynolds numbers Ry, between 1 and 10 |32]|. The takes the stationary part of the
secondary magnetic field bs into account but neglects any time-dependency of the total

magnetic field B = ép + l_);. The governing equations are

1 - o =
v X <v><A—M> = [o] (—V(p—l—ﬁXVxA)
Ho

v - ([a] (—V<p+17><v><[f)) =0 with -5 =0

2.10

iy (210)
where A denotes the magnetic vector potential with B = vxAand M the magnetization
of the permanent magnet, respectively. The stationary part of the secondary magnetic
field l;s is incorporated in the term ¥/ X V X A. The problem described in 1) is solved
by implemented in COMSOL Multiphysics® Version 5.2a. The determined ¢ and

A are used to calculate the eddy current density within the specimen by
7=lo] (—V<,0+17><v xA’) (2.11)

and further the Lorentz force according to (2.1). For the determination of a scan, a new
finite element mesh has to be generated and has to be solved for each relative
permanent magnet position individually. One advantage of the [QSA]is that due to the
neglection of the time dependence each solution is treated individually. In consequence,
the numbers of finite elements and degrees of freedoms are reduced in comparison to
transient approaches. The[QSA]is flexible in positioning of a defect and able to model the

defect geometry in detail, especially for defects with curvatures, like spheres, ellipsoids
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or cylinders [32].

2.1.2.4 Transient Approaches: Moving Defect and Moving Magnet Approach

The two methods of transient numerical simulation of the Lorentz force in [LFE] are the
moving defect approach (MDA]) and the moving magnet approach (MMA]). They differ
in terms of the frames of reference where the calculations are performed and for which

part of the system the movement is implemented. Both methods are implemented in
COMSOL Multiphysics® Version 5.2a using [32].

Moving defect approach In the the electromagnetic fields are calculated
in the laboratory frame of reference [32]|. It means that the observer is located in the
fixed permanent magnet and looks at the movement of the conducting specimen below.
Instead of moving the specimen together with the defect, which would lead to time con-
suming re-meshing, the realizes a moving of the defect within the conductor. For
that purpose, a volume in movement direction is defined within the specimen, referred
to as defect-domain 4. This volume is discretized into hexahedral elements. The move-
ment of the defect within Q4 is realized by a time-dependent conductivity distribution

using logical expressions as
[o(7,1)] = (1 = LE(7,t)) [o0] + LE(7t) [0d] (2.12)

where 7 denotes the position vector within the conductor. The logical expressions LE(-)
realize the modeling of the spatial coordinates of moving parts on a fixed computational
grid by application of Boolean algebra [39]. The conductivity tensors of the specimen
and the defect are denoted by [0¢] and [o4], respectively. The movement of the defect or
an assemble of multiple defects is realized by redefining the logical expression at every

time step [32].

At each time step, the following governing equations have to be solved
1 . OA* q
Vx| —VxA*"—M|=[o] |- +T XV x A

o ot

V- ([a] (—851 +z7><v></f*>> =0 with -5 =0

where A* denotes the modified magnetic vector potential A* = A + fot Ve dt [40] that

2.13
- (213)

is used to solve the field more effectively as the degrees of freedom are reduced. The
problem (2.13)) is solved by using fixed time steps to avoid time consuming re-meshing.

The determined A* is used to calculate the eddy current density within the specimen by
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- A* q
j =o] <_88t + T XV x A*) (2.14)

and in consequence the Lorentz force according to (2.1)).

The advantage of [MDAlis that complicated magnet geometries such as Halbach arrays
combined with ferromagnetic materials can be considered, due to the used frame of
reference [32]. The drawbacks of [MDA] are that the defect has to be located far away
from the front and the rear end of the specimen. Thus, not the whole Lorentz force
profile including the specimen edges can be calculated. Additionally for complex defect

shapes, a very fine discretization and sophisticated logical expressions are necessary [32].

Moving magnet approach In the [ MMA] the electromagnetic field problem is solved
in the rest frame of reference [32|. It means that the observer is located in the fixed
specimen and looks at the movement of the magnet system in negative direction. For that
purpose, a volume in negative movement direction is defined around the magnet system,
referred to as magnet-domain Q. This volume is discretized into hexahedral elements.
The movement of the magnet system within €2y, is realized by a time-dependent magnetic

remanence distribution using logical expressions as
B(F,t) = [LE,(F,t), LEy(F,t), LE.(7,t)| " B,. (2.15)

The parts of the magnet system are assumed to be made of the same material with a
nominal magnetic remanence B,. At each time step, the following governing equations

have to be solved

(2.16)

A* .
o () o5

The velocity term is omitted in the MMAl The determined A* is used to calculate the

eddy current density within the specimen by

j=lo] (-%‘f) (2.17)

and in consequence the Lorentz force according to (2.1)). The is able to model

the complete force signal including the specimen edges, but is currently restricted to

relatively simple magnet geometries without ferromagnetic materials [32].
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2.1.3 Measurement Setup

The BASALT-C MMP-15 (TETRA GmbH, Ilmenau, Germany, 2015) with a mechanical
system and a control cabinet builds the measurement setup for the [LEFEL The specimen,
a set of stacked aluminum alloy (EN AW-5754) sheets (Fig. [2.6), is mounted on the
direct drive of the mechanical system. One of the aluminum sheets contains a defect.
The direct drive accelerates the specimen to the desired velocity. It is moved relative
to the permanent magnet in z-direction. A desired constant velocity up to 4m/s can
be achieved with a negligible standard deviation of 2.19 - 107! mm/s. The direct drive

provides an acceleration up to 50 m/s* [20].

A granite positioning portal is installed above the direct drive. It carries spindle
drives in y- and z-direction to position the mount that carries the 3D force sensor and
the cylindrical permanent magnet (Fig. above the top surface of the specimen [20].
The NdFeB permanent magnet of material grade N52 is characterized by a diameter
of Dy, = 22.5mm and height of Hy, = 17.6 mm with the homogeneous magnetization
M = Bi/ug €, By = 1.43T, where B, denotes the remanence. This permanent magnet
configuration is optimized for the detection of deep lying defects [41]. The force acting
on the permanent magnet is measured by the strain gauge force sensor K3D40 (ME-
Mefsysteme GmbH, Hennigsdorf, Germany, 2014). The nominal force in z-, y- and 2z-
direction of the force sensor equals +2 N. The mechanical system is set on a granite block

in to reduce external mechanical oscillations acting on the 3D force sensor (Fig. [20].

A scan of the specimen under test is done by moving it relative to the permanent
magnet in x-direction with a constant velocity along several parallel scanning lines in
y-direction. The y-position of the specimen is changed by changing the y-position of the
direct drive. The PC of the control cabinet records the signal from the force sensor and
positional data from the drives with a sampling rate of fs = 1000s~!. The measurement

setup is controlled by a panel PC in the control cabinet.

3D force |
sensor |
|

~ Aluminum
sheets

Figure 2.6: Measurement setup of Lorentz force evaluation.
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2.1.4 Forward Solutions

2.1.4.1 Permanent Magnet Modeling

Spherical permanent magnet  The spherical permanent magnet acts as a simple
reference magnet shape for simulation setups. It is used to generate reference setups for
the testing of new forward solutions or inverse methods.

A spherical permanent magnet can be modeled by a single magnetic dipole located

in the center of the sphere. The magnetic flux density By at a point 7, = [zg yr 2x]"
with the magnetic dipole located at 7y = [zo 4o 20| is defined as
— Mo 77_7: . ’l?k» — 170 5 - m
By = T <3H (7% —70) — w) ) (2.18)
4 7% — 70l 7% — 70

where 7 = VM denotes the equivalent magnetic dipole moment of the spherical per-
manent magnet with the magnetization M and the volume Vp,. The spherical permanent
magnet is homogeneously magnetized in z-direction. Thus, the magnetization can be

written as M = Br/u, €., where B, describes the remanence.

Cylindrical permanent magnet The measurement setup uses a cylindrical perma-
nent magnet as a spherical permanent magnet can not be mounted easily such that the
magnetization is aligned to the z-direction of the setup.

A cylindrical permanent magnet could be modeled e.g. by the analytic current model
that represents the permanent magnet by an infinite thin cylindrical solenoid (Fig.[2.7|a).
The axially magnetized cylindrical permanent magnet is replaced by an equivalent sur-
face current flowing in azimuthal direction on the lateral cylinder surface. The magnetic
flux density is calculated using the Biot-Savart law [35].

Another possible method is a semi-analytical one [35,42|, where the magnet is rep-
resented by a set of elementary circular current loops (Fig. b). The magnetic flux
density is determined as a linear superposition of the magnetic flux densities of the single
current loops [35,42].

Alternatively, the magnetic field of a cylindrical permanent magnet can be calculated
with the help of artificial magnetic surface charges also referred to as monopoles. Pos-
itive and negative magnetic charges are placed at the upper and lower surface of the
cylindrical permanent magnet (Fig. c¢). The magnetic flux density is calculated as
a superposition of the magnetic fields produced by the charges using Dirac’s equations
for magnetic monopoles [43].

However, these described methods are not capable for direct integration into the
forward solutions used in[LEEl For that reason, the multiple dipoles method (MDM]) [16]

is used to model the cylindrical permanent magnet. The general idea is to represent a
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‘ Y
Js=Mxe, = Me,

T

(a) Surface Current Model (b) Semi-Analytic Model (c) Surface Magnetic Charge Model

Figure 2.7: Models of a cylindrical permanent magnet ,. Figure adapted from .

permanent magnet of arbitrary shape by a superposition of magnetic dipoles that are

optimized in number and position.

For that purpose, the cylindrical permanent magnet is divided into layers (Fig. [2.8).
Each slice is divided into rings and each ring is divided into [voxels] The central
are of cylindrical shape (Fig. , left). The surrounding ring are hollow cylinder
segments (Fig. right). Each [voxell contains a magnetic dipole.

The number of layers IV, the number of rings N, and the corresponding number
of magnetic dipoles Ny are optimized by testing different Ny-N;-combinations. For
each combination, the z-position, represented by parameter «, and the radial position,
represented by parameter 3, of the magnetic dipole within a[voxellare optimized globally
for all using the simplex search method . For the central the position
of the magnetic dipole is fixed to the central line in z-direction, and only « is varied. The

optimization procedure uses the normalized root mean square error (NRMSE]) between

Pr
Al
A\,&’)\
Central voxels = : r>r,,,
(cvlinder) i, z,
-m i | 4m
Ah > 3
_____ g
z =aAh / y  Ring voxels
% (hollow cylinder segment)

Figure 2.8: Principle of magnetic dipoles model of a cylindrical permanent magnet: The
cylinder is divided into central and ring [voxels, a magnetic dipole is placed within each

ol [16).
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the magnetic flux density calculated by the and magnetic flux density calculated
by the reference analytical surface current model. The parameter configurations that
offer the minimal are used for the modeling of the cylindrical permanent magnet
[16].

The measurement setup uses a cylindrical permanent magnet with diameter of
Dy =22.5mm and height of Hy = 17.6mm with the homogeneous magnetization
M = Bi/uy &, (B = 1.43T), where B, denotes the remanence. The optimization pro-
cedure leads to a discretization of the magnet in Ny = 23 layers with N, = 7 rings.
The parameters « and 8 are determined as o = 0.5075 and 8 = 0.5003 describing the
z-position and the radial position of each single magnetic dipole within the Ngq = 3335
The magnetic flux density at the center 7 outside of the permanent magnet is

calculated as a superposition of the magnetic flux densities of the Ny single magnetic

dipoles by
ék:*‘of 3[mp'(Fk_Fp)](fk—f)—7mp (2.19)
dm |7 — 7| s =P

The magnetic moment m, of a single magnetic dipole is calculated as 11, = Vi/Ng M )
where Vi, denotes the volume of the permanent magnet. This calculation is validated
by the fact that all of the permanent magnet are of equal volume. One single

magnetic dipole is located at 7, = [z, yp 2p] .

2.1.4.2 Approximate Forward Solution

The approximate forward solution (AES) [10] is a linear method for modeling the [DRS
It is based on the weak reaction approach (section and assumes a single defect
located far away from the specimen edges. The shape of the defect is assumed to be
uniform, e.g. of cylindrical or cuboidal shape with low extension in z-direction, where
the cuboid has equal edge lengths in z- and y-direction. The defect is characterized by
a conductivity of o4 = 0. Thus, the of for one permanent magnet position 7

changes to

AF = —ix BdV —/ —jox BdV (2.20)
V-4 v

as no eddy currents flow through the defect volume V3. This can be reformulated to

Aﬁ:/ —jxédv—(/ —j‘gxédv+/ —joxédv> (2.21)
V—-Vy V—-Vy Va

=/ (ffo)xﬁd‘// —jo x B dV. (2.22)
V—-V4 Vi

d

The neglects the first term of (2.22). As a result, only the defect volume Vg
contributes to the AFATS If a region of interest at which the defect is expected
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is discretized into K of volume Vg, each gets a defect identification value
0. If the [voxell belongs to the defect and contributes to AﬁAFS, then 6, = 1; otherwise

0, = 0. As a result, AFAFS for one observation point 7 is defined as

AFAFS K
T
AFAFS _ AFyAFS = Vi Zek (j‘w X §k> . (2.23)
AFAFS k=1
z

The eddy current density joyk is calculated from Ohm’s law for moving conductors ac-

cording to ([2.5)) as
Jok = 00 (—V% + U X gk:) , (2.24)

where ¢, and By, describe the electric scalar potential and the magnetic flux density at
the center of the k-th oxell respectively. The magnetic flux density By, is calculated us-
ing a single magnetic dipole (2.18) or the (2.19) depending on the used permanent

magnet.

The eddy currents of the defect-free specimen flow perpendicular to the magnetic
flux, e.g. circulate in x-y-planes. Thus, the eddy current density component joy . is
negligible for points far away from the specimen edges. Further, the laminated structure
of the specimen (section [2.1.3]) with insulating layers between the aluminum sheets leads
to the same assumption that joj . is negligible, i.e. jor. = 0. In consequence, the
partial differential equation 9¢x/9z = vBy, is derived from and can be solved by
direct integration [10].

If a single magnetic dipole is used to model a spherical permanent magnet , the
electric scalar potential ¢y within the center 7 = [z3 yx 2&]" of the k-th for one
T

permanent magnet position 7y = [z yo 20|  is then derived as according to [10]

or = _omMo Yk — Yo

2.95
AT [(2r — 20)2 + (yk — Y0)% + (21 — 20)?] (229)

3/27

where v denotes the magnitude of the velocity. The magnetic moment amplitude m of
the permanent magnet is defined as m = Viu M, where Vi, describes the volume of the

permanent magnet and M = Br/u, the amplitude of the magnetization.

If the permanent magnet, e.g. of cylindrical shape, is modeled by the superposition
of Ngq magnetic dipoles according to the [MDM] (section [2.1.4.1)), the calculation of ¢y

for one permanent magnet position changes to

Ny
o = —vm—o > Yk — Up — |, (2.26)
2 2 913/2
p=1 {(ﬂ?k —xp)” + (Y — yp) + (2 — 2p) ]

where 7, = [z}, yp 2p]" describes the position of the p-th magnetic dipole.
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Chapter 2. Fundamentals

In order to consider the multiple observation points in [LFE]l a vector-matrix-form is
build from ([2.23). The subscript ‘0" of ]H'O’k will be omitted in the following paragraphs.
The superscript {AFS] is left out for better readability. The vector-matrix-form of

is defined as

[AF!] ;i Jk Bk
AF} —it.Bi. —Jica Bl -
AF} NaBly =diyBle -~ JkaBiky = JkyBka|
. . o,
AFn i, Br. Jie y B . :
AFp | =Ve | —jiBp. . ~Jfe B O |- (227
AF? IteBTy —ityBle - JkaBky —IkyPre
. o
AFN i BY, N, BY. 5
AFY — i B, —j B .
[AFN ] By — ity Bl JR.BRy — IR yBR
AFAFS (L]

The superscript n denotes the n-th out of N observation points. The subscripts char-
acterize the Cartesian direction and the index of the related voxell respectively. The
resulting AFAFS ig g vector that covers the x-, - and zIDRS| components at the obser-
vation points. It is calculated as a product of the lead field matrix [L] and the defect

identification vector .

2.1.4.3 Extended Area Approach

The extended area approach (EAA)) [18] is an extension of the[AFSl It assumes a single
defect far away from the specimen edges. In order to model the more accurately,
the first term of is taken into consideration. For that purpose, an extended area
around the defect is discretized into F of volume Vg.

Anisotropic conductor In case of an anisotropic conducting specimen, the eddy
currents in z-direction are neglected. The extension is performed in z- and y-direction

only (Fig.[2.9).
The in is approximated by

AFEAA 5
T
AP | A | = 3 (R B) AR, as)
AFEAA e=1
z

where B, denotes the magnetic flux density at the center of the e-th Foxellof the extended
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2.1. Lorentz Force Evaluation

z L. ‘
. = T ==l =

[] defect voxel [ voxel of extended area

Figure 2.9: Principle of extended area approach for an anisotropic conducting specimen,
represented by three metal layers: The defect (black circle), discretized by the green
and an extended area, discretized by the gray are considered for the
calculation of the [DRSL

area. It is calculated using a single magnetic dipole (2.18)) or the[MDM] (2.19)), depending
on the used permanent magnet. The distortion eddy current density je = j — jo (see
(2.22))) 18] at the the center of the e-th of the extended area is determined by

Ve s [, —dog - (7o — i) —Ji
jo & Cyg—r p L LYY (A pup—L L 2.29
Je om Az ; 7 — Fk|4 (Te ) 7, — Fk|2 ( )

where Az denotes the height of the e-th [voxell within the extended area. The distortion

eddy current density fe is calculated from the eddy current density values j(],k of the K

of the defect according to (2.24). The position vectors of the [voxeld centroids in

the defect and the extended region are denoted by 7, = [z Yk 2x]T and 7 = [2e e 2e] 7,
respectively. The dipolar correction factor Cy is defined as
1+ % for elliptical shaped defects
Cq = v, (2.30)
14+ == for rectangular shaped defects
Cy

where the shape is described by the cross-section of the defect in the z-y-plane. The
parameters ¢, and c, describe the axes lengths of the ellipse in z- and y-direction and
the length and width in z- and y-direction of the rectangular shaped defect, respectively.
The defect is assumed to have the height of the metal layer.

The selection of an appropriate extension is an important aspect of the [EAAL In
order to find a sufficient size of the extended region for the particular analyzed setup,
the components are calculated by [FEM| simulations (section for a reference
case that contains a defect with elliptical or rectangular shape at a reasonable depth.

The components are calculated by [EAAIl for increasing extension factors € and the
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Chapter 2. Fundamentals

[NRMSEI between the by [FEM] and by [EAAlis calculated by

2
\/ A FEAA A FFEM)
N n 1 n,i
REAA RFEM]

NRMSE =
min |
l m7y?

with RFAY = max (AF;EAA) — min (AF}EAA)

and R'™M = max (AEFEM> — min (AFIFEM> , (2.31)

where n indicates the current position of the permanent magnet. An extension factor
of ¢ = 0 means that no extension is applied and the is calculated by only. If

€ > 1 the area used for the calculation equals [18§]
Acst = Lexi X Lot = (1 +¢) - max (cg, ¢))?. (2.32)

That means, if for example a cuboidal defect with ¢, = 12mm and ¢, = 2mm with the
height of the metal plate and and extension factor of € = 2 is considered, an area of

Aext = 36 mm x 36 mm is taken into account for [EAAIL

The extension factor € should be chosen such that the [NRMSEl does not decrease
further. Additionally, it should be taken into account that the numbers of E

within the extended area increase according to
E = (max (Cas cy)2> €2 + 2 -max (¢z, ¢y)° € + max (cz, ¢,)? — K, (2.33)

where K denotes the number of within the defect. The number of E in the
extended area depends quadratic on the defect extension and the extension factor €. The
computational time increases according to the number of E without considering
methods of parallel computing. This is the reason why the smallest possible extension

factor € should be chosen in order to avoid a huge increase in computational time while
only gathering a small further decrease of the

Isotropic conductor For an isotropic conducting specimen, the extension is applied
in z-, y- and z-direction as the distortion eddy currents fe flow not only in z-y-planes but
around the entire defect [18]. The components are calculated according to (2.28).
The calculation of the part AFAFS remains the same as the eddy current density values
in the defect jo,k are similar for anisotropic and isotropic conducting specimens
as jo k. = 0 holds for both [18].
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2.2. Eddy Current Evaluation

The calculation of j, changes according to [18] as

Vi [ & Jok - (Fe — 7) Jok
- E —Jog - (Te — L —Jo,
]E_Cd47T<Z[3 ° (re—rk)—]

k=1 |Te — Fk‘S |7e — Fk’?)
K 2 — - -
—IMk - (Te —TMLE) /o N —JIM,k
—|—Z 3 . ( i = ) (7“6 — TM,k) I —T . (2.34)
P |Te — M k| |Te — MMk

The first sum of 1’ is calculated from the K eddy current densities jo,k within the
defect [voxelsl The centroids of the defect are denoted by 7. In order to fulfill
the boundary condition fe -1 = 0 at the top surface of the specimen, the eddy current
densities jo,k; are mirrored against the plane z = 0mm [18]. The "mirrored" eddy current
densities are taken into account as ij in the second sum of , with ij = jo,k-
The influences of the other specimen boundaries, which are more far away from the
defect, are neglected.

The dipolar correction factor Cy for the isotropic conductor is defined as [1§|

Cd:1+1<c””+02>. (2.35)

4 \cy ¢y

The choice of the extension factor € is done in the same way as described for the

anisotropic conductor. The size of the extended volume equals
Vext = Lext X Lext X Lext = (1 +¢) - max (cz, ¢y, ¢5))?, (2.36)

where now also the extension c, of the defect in z-direction is taken into account. Also
the number E of in the extended area changes to

E = (max (¢, ¢y, cz))3 e3+3- (max (cg, ¢y, cz))?’ g2

+ 3 (max (¢z, ¢y, ¢2))° € + - (Max (cg, ¢y, ¢2))° — K. (2.37)

2.2 Eddy Current Evaluation

2.2.1 Principle

The [ECE] in this study uses a planar coil that is excited with a sinusoidal current. The
corresponding primary time-dependent magnetic field Ep (t) induces eddy currents jin
the conducting specimen under test (Fig. according to Faraday’s law. The induced
eddy currents generate a secondary magnetic field l;s (t) as stated by Ampere’s law. In
the presence of a defect, the eddy currents and the corresponding secondary magnetic
field are perturbed. The magnetic field variations can be measured by magnetic sensors

[45] such as pick-up coils, fluxgate sensors [46], superconducting quantum interference
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Defect

|

Conducting specimen

Figure 2.10: Principle of eddy current evaluation: An excitation coil is excited with an
alternating current (AC) that generates a time-dependent magnetic field ép(t). This
leads to induced eddy currents ; in the conducting specimen under test that create
a secondary magnetic field I;s(t). In presence of a defect the eddy currents and the
corresponding secondary magnetic field are perturbed. The magnetic field variations are
measured by a magnetic field sensor.

devices (SQUIDE) [47], Hall sensors and magnetoresistive sensors [48,/49].

If the specimen is scanned by the probe (planar excitation coil + magnetic field sen-
sor), the excitation field remains invariant in the scanning region. This is the case if
the scanned region is smaller than the central region of the coil. If no defect is present,
the induced currents flow in lines parallel to the excitation current in a region below the

center of the coil.

The magnetic field sensor measures the flux density in z-direction. The time de-

pendent magnetic flux density component B, (t) at the magnetic field sensor consists of

B, (t) = Bpx(t) + bs (1), (2.38)

Similarly to [LEEl only the magnetic field perturbation Ab,(t) is of interest for

the reconstruction of the defect properties. It is defined as

Abx(t) = B:v(t) - Bw,O(t) = (Bp,:r(t) + bS,m(t)) - (Bp,:r(t> + bs,m,O(t))
= bs,m (t) - bs,:r,O(t)a (239)

where B, (t) and By o(t) denote the total magnetic flux density component in z-direction
for a specimen with and without a defect, respectively. As the primary magnetic flux
density is similar for the defect and the defect free case, the [MED] only depends on the

secondary magnetic flux density components by ,(t) and bs 5 o(¢). Due to the sinusoidal
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Re{Ab,} in pT Im{Ab,} in pT
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Figure 2.11: Real (left) and imaginary (right) part of [MEFP] Ab, obtained by [FEM
simulations in the vicinity of a cylindrical shaped defect.

excitation current, the [MED] can be described by complex numbers as
Abg (iwt) = | Aby (iwt)| =) = Re { Aby (iwt) } + ilm { Ab (iwt) } (2.40)

where i denotes the imaginary unit. The angular frequency w = 27 fe contains the
excitation frequency fe. The variable ® denotes the phase shift of the MFPl Fig. 2.11]
shows an example of a[MED] with Re { Ab, } and Im {% } for different probe positions.
In order to determine the defect properties from the [MEFP] an inverse problem has to be

solved.

The difficulty that occurs is that defects located parallel to the induced eddy currents
do not generate a disturbed eddy current flow (Fig.[2.12[a). The disturbance is maximal
if the defect is perpendicular to the induced eddy currents (Fig. b). This is the
reason why the[MED]has to be obtained for at least two perpendicular uniform excitation
directions as the defect orientation is not known in advance. According to ,, the
inverse problem is solved separately for each [MED] of the varying excitation directions.

The obtained current density norm maps are combined afterwards.

(a) (b)

AAAAAAAAAAAAALS

Figure 2.12: Representation of the eddy current flow with: (a) a defect (gray) parallel
to the current flow and (b) perpendicular to the current flow.
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2.2.2 Numerical Simulations

Numerical simulations in provide noise-free benchmark signals to investigate the
properties of inverse methods before the application to measurement data. In order to

calculate the [MFP| the governing equations represented in complex numbers are

iwo A+ v x <1v ></_f> =J withv-A=0
Ho -
v. (a (—iwg+£>) =0 with7#-] =0 . and i x A= 0l,. (2.41)
The external eddy current density from the excitation coil is represented by J .- The
electrical conductivity is denoted by o. The gauge is selected such that the electric scalar
potential ¢ vanishes and only the magnetic vector potential A has to be considered [52].
In this study, the investigated specimens are made of the aluminum and the used excita-
tion frequencies are maximal at 2kHz. Thus, the displacement current density 95/5% is
neglected in . The problem described in is solved by implemented in
COMSOL Multiphysics® Version 4.3b. For that purpose, the conducting specimen with
the defect, the excitation coil and a surrounding air box are discretized by hexahedral
elements. The boundary conditions have to be fulfilled at the conductor and the air
box surface ' and T'y, respectively. The total magnetic flux density at the observation
points is determined from the obtained magnetic vector potential A by B =V X A The
complex z-component B, is extracted.

In order to get the Ab,, an observation point is chosen where no influence of
the defect is visible (e.g. z = y = 10mm, Fig. . This point contains the magnetic
flux density of the specimen without a defect By in complex form. Due to the
uniform excitation, the calculated magnetic flux densities at the observation points just

have to subtracted by the extracted B .

2.2.3 Measurement Setup

The principle of the measurement setup [50}/53| is shown in Fig. . It is controlled by
a MATLAB program running on a PC connected via R232 interface to the PXI Chassis.
The desired current amplitude and excitation frequency of the sinusoidal current are set
at the PC and sent to the current generator controlled by a General Purpose Interface
Bus (GPIB). The current generator consists of a function generator (AFG3102 from
Tektronix) and transadmittance amplifiers to generate the desired current wave form.
The excitation current is monitored and the voltage output is adjusted to the limits of
the data aquistion unit by the signal conditioning unit. The scanning process is
implemented at the PC and sent to an XY-Positioning system via R232. The voltage

signal from the magnetic field sensor is converted back into T units at the PC. Two
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2.2. Eddy Current Evaluation

different probes have been used in this thesis where both use giant magnetoresistive

(GMR)) sensors to measure the magnetic field.

Giant magnetoresistive sensor sensors are based on the giant magnetoresis-
tivity phenomenon. A giant magnetoresistor is made of several layers of ferromagnetic
metal separated by non-magnetic metal layers. The ferromagnetic layers are magnetized
in alternating direction, such that electrons cannot pass easily through. If an external
magnetic field is present, all ferromagnetic parts are magnetized in the direction of the
external field. In consequence, electrons can pass more easily as the resistance of the
is reduced. A sensor (A002-02, Non-Volatile Electronics) is used in this
thesis. It consists of four giant magnetoresistors that are arranged in a Wheatstone
bridge with two sensing elements and two shielded resistors. The A002-02 is powered by
a £ 12 V power supply. If the sensor is located in the vicinity of a magnetic field,
the resistance ratios of both potential dividers are not equal any more due to the giant
magnetoresistivity phenomenon resulting in a voltage difference in the bridge output. A
small magnet is placed close to the sensor to obtain a linear behavior of the sensor [51].
The sensor has a sensitivity of 3.6 V/mT per V of the power supply [53]. The [GMRIsen-
sor is used because of the high sensitivity and large frequency range (DC - 1 MHz) [51].

Single coil planar probe Fig. shows the scheme (a) and a photo (b) of the
planar probe with a single coil [53]. The coil with 50 turns is built on a printed circuit
board (PCBI) with the sensor A002-02. The sensor is characterized by a
sensitivity axis in z-direction perpendicular to the direction of the uniform excitation
currents. A sinusoidal excitation current with an amplitude up to 2.4 A is applied to
the coil. The planar probe keeps a constant distance to the plate reducing variations
in the sensed magnetic field due to lift-off variations [53]. In order to achieve different

excitation directions, the probe has to be rotated.

J XY- Posmomng system

PXI Chassis
R232 > probe
> Current
GPIB generator crack
DAQ [ 2
Conducting
specimen

Signal conditioning I J

Figure 2.13: Measurement setup for eddy current evaluation.
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Double coil planar probe  The second probe, introduced in , consists of two
perpendicular arranged planar excitation coils (Fig. a) and two sensors with
sensitive axes in z- and y-direction (Fig. b). The sensors are located 2mm
above the top surface of the specimen. At each scanning point, two synchronized sinu-
soidal excitation currents are applied to the two planar coils. The coils have a distance
of Imm. In order to compensate for this distance, a calibration procedure obtained
that the top coil has to be excited with a 1.36 larger current amplitude than the bottom
one [50]. The excitation modes (Fig. ¢) lead to uniform excitation currents at angles
of 0°, 45°, 90° and 135° without the need of rotating the probe. The currents of the
top and the bottom coil are in phase for 45°-excitation and have a phase shift of 180°
for 135°-excitation. The double coil planar probe is more complicated to operate than
the single coil planar probe. It also enables a constant lift-off distance to the specimen

under investigation.

2.2.4 Forward Solution

In order to calculate the Ab, according to , a closer look is taken on the
underlying induced eddy current density distributions (Fig. . It is assumed that
the eddy current component in z-direction is negligible. Further, it is assumed that
the investigated specimen is thin such that the eddy currents circulate only in one x-
y-plane and can be viewed as two-dimensional. Fig. [2.16] shows a representation of the
eddy current flow for a specimen with a defect (Fig. center) that generates the
secondary magnetic field with the z-component bs .. The uniform eddy current flow for
the same specimen without a defect (Fig. right) generates the secondary magnetic
field with the x-component bg ;0. Due to the superposition principle, the [MEFP| Ab, can
be generated by the perturbation eddy current density Af = ; — fo.

The perturbation eddy current density distribution A;’ can be represented by discretizing
the area into a set of unitary square current loops (Fig. according to . Thus,

(a) (b)

planar coil

uniform z
current zone ¥

Figure 2.14: Single coil planar probe with [GMRI sensor: (a) scheme || and (b) photo.
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(2)

Uniform Region
(30 mm x 30 mm)

PCB Bottom View

1T Excitation current orientation

—» Sensitive axis of the GMRs

PCB Top View

Cross sectional view
GMR1 -
-C0|Iz
) ﬁé GMR2 (-
1 mm Lift-off I‘ Coill

between coils

Excitation modes

(b)

0° 45° 90° 135° ,
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Figure 2.15: Double coil planar probe with two [GMRI sensors: (a) Scheme: Two coils
are arranged perpendicular on a[PCB] (b) photo of the probe and the [GMR] sensors and
(c) excitation modes. Figure rearranged from .

y in mm

y in mm

-
J

1]
|
L\

il
AT
W

|
\
\ 1A
|1

)
«TIMW‘

0
r in mm

Il
Ll

-10

Jo

10
:
g 0
D

-10

-10 0 10
T In mm

Figure 2.16: Representation of the perturbation eddy current density distribution Af of
a linear defect of 10 mm length by the difference of the eddy current density distribution
j for the specimen with a defect minus the eddy current density distribution j for the
same specimen without a defect.

the degrees of freedom of the forward and corresponding inverse problem are reduced by

factor 2. Each square current loop is characterized by a current I4(7, 7). A square loop
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(a) Discretization of the perturbation eddy cur-
rent density into square current loops [51].

Ab; in uT
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T in mm

(b) Perturbation magnetic flux den-
sity component Ab, in pT of one uni-

tary square current loop located at
x=y=0with Ig =1A.

Figure 2.17: Forward solution principle of [ECEL

generates a part of the [MEFP| according to the Biot-Savart law at one observation point

r=lzy 2"
Aby L
7=
Ab, | =12 %Id(z,])dl x—— (2.42)
. 4m |7 — 7|
Ab,
where 7' = [z" y' 2'|T denotes the location of the current flow at the infinitesimal short

part dl. As only the z-component Ab, is of interest in this work 1} reduces to
(Fig. B17 a)
3 ' 1
~ . dl(z — 2
Ab, = 214 (i.j) [/ ez —/
™ 2 |F—T 4

Fig.[2.17 blshows an exemplary [Al;;] ~nxM for N x M observation points for one unitary

current loop with Iy = 1 A located at x = y = 0. The z-distance dz to the observation

(2.43)

- —13

|7 =7

di(z — z/)]

points is chosen exemplary as 6z = 2.5mm. This mirrors the z-distance of the
sensor to the center of a 1mm thick conducting plate under investigation. The total
MFEP] [Ab, RS Nxa 1s the superposition of all [Al;;] ~nxn of the different square current
loops weighted by the corresponding I4(4, j) what can be formulated as a convolution or

in vector-matrix-form.

Convolution formulation It is easily comprehensible that the perturbation magnetic
flux density component [Al;;] Nxum from a square current loop with Iy = 1 A outside of
the position = y = 0 is similar to the one shown in Fig. [2.I7 B just shifted to the

center of the current loop. In consequence, the total MEPI[Ab,]8S ,, viewed as a matrix
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with N x M observation points can be calculated as a convolution by

[Aby] R ar = [Abe]nonr = [a]nwas (2.44)

where [AbA;C]NxM is referred to as the kernel (Fig. [2.17 b). The square current loops
centers (Fig. [2.17 al) have the same z- and y-distances as the observation points of the
[MEPI The 2D-discrete Fourier transform (DET]) changes the convolution into a simple

point-wise multiplication as:

A~

[AbL ]R3 s = [Aba] s o L] vxr- (2.45)

An inverse algorithm would operate in this frequency domain and the obtained

[Iq]nxar would be transformed back by the inverse [DETL

Vector-matrix-formulation Alternatively, the forward problem can be formulated
in a vector-matrix-form in the spatial domain. The [MFP| that should be calculated for
N x M observation points is arranged into a vector Ab,. The current amplitudes of
the square current loops are also arranged in a vector IE with A x B elements. The

vector-matrix-formulation is defined as

~LAB 9 1 4 1

N N S\ Il
A | =1 an™ A" oan™ | ], (2.46)
A an MM ag M ]
~——
AB,®S ] I

where [L] € RV"MXAB denotes the lead field matrix. One lead field matrix element
AI;;n’k denotes the contribution of the k-th square current loop to the [MEP| at the n-
th observation point according to . The number of elements in the perturbation
current vector fd do not have to be the same as in A_l;xBS. The vector-matrix-formulation
enables further inverse methods as described in section . The determined Iy will be
reshaped into a A X B matrix.

Both, the kernel and the lead field matrix are calculated for one setup assuming
the defect at a z-distance d + dz away from the magnetic field sensor, where d de-
notes the defect depth and §z the lift-off distance of the sensor. If other possible
distances/defect depths should be investigated, they have to be re-calculated. Both for-
ward formulations are valid for the complex valued [Aby|nxar with corresponding

[Ia]nxar- The kernel and the lead field matrix stay the same. The description with real

numbers was chosen for better comprehensibility.
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Post-processing of Iy If a distribution of current square loops [I4]axp has been
determined by solving an inverse problem for a given [MFP| some post-processing steps
are necessary to investigate the defect characteristics. First, the distribution of current
square loops is converted into the eddy current density components Aj, and Aj,. Due
to the 2D characteristic of the problem, the corresponding unit is A/m. The conversion

is defined according to [51] as

o Ly 1) —Ig(i, — 1
Ajy(i,j) = ( )QA:C ( ) (2.47)

The indexing is visualized in Fig. . The central value of Aj (eg. x =y =201in
Fig. , left) is extracted as uniform signal part. At all observation points the corre-
sponding A] is subtracted by this uniform value. That leads to a qualitative representa-
tion of the total eddy current density distribution j (like in Fig. [2.16] center) that allows
the estimation of the defect shape and alternative visualizations for the investigation of
defect characteristics.
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>
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Figure 2.18: Indexing scheme for conversion of determined current square loops Iq into
Ajy and Ajy [51] according to (2.47).

A\

2.3 Inverse Problem

2.3.1 Characterization of Inverse Problems

In order to determine the defect properties from measurements of an electromagnetic
[NDE] method like [LFEl or [ECEl an inverse problem has to be solved as visualized in
Fig. [2.19]

The inverse problem can be defined as a minimization problem

arg min (§ — gj’forward) = argmin (¢ — (7)) . (2.48)

x x
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Inverse method

l+— adjust the source parameters x" —‘
Forwardg ?9)1111:101’1 |, clectromagnetic o poiogon
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[

electromagnetic
field components y

from simulations
or measurements

Figure 2.19: Principle of an inverse problem in electromagnetic[NDEF An inverse method
adjusts the source parameters such that they minimize the deviation between electro-
magnetic field components from simulations or measurements and the forward calculated
one. The source parameters represent the defect properties directly or indirectly.

It is the aim to find a source parameter vector Z such that it minimizes the deviation
between the electromagnetic components ¢ obtained from measurements or simulations
and the forward calculated one ¢ ™4 The forward calculation is described by the
operator G(¥) that projects the source parameter vector onto the measurement data. The
inverse method adjusts the source parameter vector such that § — G(Z) is minimized.
The source parameter vector Z in could contain the defect properties directly like
defect extensions and location. More often measures are used for the source parameter
vector & that represent the defect properties indirectly. Previous work in [LFE] used
the conductivity distribution [10,{17] or the eddy current density distribution [19]. In
this thesis the defect identification vector (sections is used as source
parameter vector Z in [LEFEL The used forward solution for [ECEl in this thesis also uses
an indirect measure with the square current loops as parameter source vector (section
2.2.4)).

Inverse problems can be classified according to the used forward solution into linear
and non-linear inverse problems. The inverse problem is linear, if the operator G(Z)
can be written in a vector-matrix-form G(Z) = [L]Z, where the lead field matrix [L]
itself is independent from Z. A non-linear inverse problem is characterized by a more
complicated expression of the operator G(Z). In [LFE] the leads to a linear inverse
problem. The cannot be written in vector-matrix-form. Thus, the corresponding
inverse problem is non-linear. In Chapter [6] a novel forward solution is introduced for
referred to as that also leads to a linear inverse problem. The forward solution
used for [ECEl also leads to a linear inverse problem. Thus, this thesis mainly deals with
linear inverse problems.

An inverse problem is usually characterized as ill-posed. According to Hadamard [54]

a problem can be classified as well-posed if:

1. A solution exists.
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2. The solution is unique.
3. The solution is stable.

If at least one of the criteria is violated, the problem is characterized as ill-posed. Usually,
the forward problem can be classified as well-posed. Based on Hadamard’s uniqueness
criterion inverse problems can be further classified into underdetermined and overdeter-
mined problems, where for both no unique solution of the problem might exists. An
undetermined problem is characterized by a larger number of source parameters in &
than measured electromagnetic field components in . For an overdetermined problem
it is the other way round. A typical example for both situations can be found in medical
engineering, where the sources in the brain are determined from electroencephalograms
and magnetoencephalograms. For sources that are known to be focal, the number of
sensors is larger than the sources (e.g. only one) to be determined, characterizing it as
an overdetermined problem. If the sources are known to be distributed in the brain, the
number of unknown source parameters in & is much larger than the number of sensors,

characterizing an underdetermined problem.

The stability criterion of Hadamard states that a continuous change in the input
data leads to a continuous change in the solution. Often inverse problems are sensitive
to noise, where small changes in the measurement data have a large impact on the
estimated source parameter vector. In that case, the inverse problem is characterized as
ill-conditioned. The degree of ill-condition of linear inverse problems can be determined
by calculation of a condition number of the lead field matrix. The condition number with
respect to the L2-norm of the lead field matrix (CN) [55], the Skeel condition number [56]
and the figure of merit o [57] are calculated exemplary for a lead field matrix in [LEE]
[L] € R7803x2601 and for a lead field matrix in [L] € R8100x8100 (Taple [2.2). The
different condition numbers are characterized by advantages and disadvantages, where

an overview can be found in [58|. However, all revealed values larger than 1, indicating
the and the as ill-conditioned problems.

Table 2.2: Exemplary condition numbers with respect to the L2-norm, the Skeel condi-
tion number and the figure of merit o for and [ECE]

Condition number

NDE method CN Skeel 0
LFE 9.15-102% 2.10!2 46.25
ECE 1.19-10% 8.96-1012 15241
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Figure 2.20: Overview of selected inverse methods continued from [15]: Used source
parameters are shown in rhombuses. Inverse Methods that have been applied for [LFE]
in previous studies [10,[15H17,19] are marked with light gray, the methods used in this
thesis with orange. References to the respective chapters are given at the arrows.

2.3.2 Inverse Calculation Methods

An overview of selected inverse methods is shown in Fig. [2:20] The inverse methods
used in previous studies for [LFEl (Fig. gray) and in this thesis for [LFE] and [ECEI

(Fig. orange) are highlighted.
The applicable inverse methods for [LFE] depend on the used forward solution. If

the[AFSis used, the forward problem can be written in vector-matrix-form according to
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. This enables the use of scanning methods, [MNE] and deterministic and stochastic
optimization algorithms to solve the inverse problem. The [EAAlis an iterative forward
solution that cannot be written into a vector-matrix-form. Thus, for [EAA] scanning
methods and stochastic optimization algorithms are applicable. Deterministic optimiza-
tion algorithms, which often need to evaluate the gradient of the deviation function
(2.48]), are not applicable as the estimation of the gradient of the deviation function is
not straight forward. For the [ECE] the forward solution according to leads to a
linear inverse problem. This allows the use of scanning methods, [MNE] deterministic

and stochastic optimization algorithms in order to solve the inverse problem.

Scanning methods The goal function scanning represents the simplest scanning
methods. It is optimal for source vectors & with very few elements, e.g. the direct defect
properties like the defect diameter or length and width. The forward problem is calcu-
lated for different source vector element combinations and the deviation to the measured
signal is determined. The source vector element combination that belongs to the lowest
deviation indicates the estimated source parameters. Previous work applied a length-
width-depth scan for the estimation of the defect parameters of a cuboidal defect located
in a conducting layer of a specimen [15]. Goal function scanning methods are
beneficial for cases where already many properties of the defect are known in advance or
for proof-of-concept studies to test novel forward solutions. In Chapter [ radius-depth
scans and length-width-depth scans are applied for cylindrical and cuboidal defects in
aluminum specimens in order to compare the defect reconstruction performance using
the two different forward solutions and [EAAl Other inverse methods that belong
to the scanning methods are e.g. the multiple signal classification (MUSIC]) method or
beamforming. is a method from information theory [59] that is based on the
goal function scan, where the goal function is divided into subspaces. In each
subspace, a scan is performed with a single source, leading to the estimation of multiple
sources. Beamforming origins from the field of sound wave localization [60]. The prin-
ciple idea is to determine the contribution of a source region to the measured signal by
spatial filtering [61] and thus, reconstructing multiple sources that contributed to the

measured field.

Minimum Norm Estimation In contrast to the scanning methods, the MNE] usually
solves an undetermined problem with many more unknown sources than measurement

points that can be reformulated from (2.48)) to

1 2
arg min— Hg’— [L] fH , (2.49)
z 2 2

where the lead field matrix [L] € RY*M contains the forward solution that projects
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the source vector & to the measured data ¢. Using the Moore-Penrose inverse a closed

solution of this problem can be obtained by

i=[L"ty (2.50)

However, as this inverse problem is underdetermined and often ill-conditioned (section
, a form of regularization has to be applied to obtain a sufficient solution of Z. One
possible method is the truncated singular value decomposition (TSVDI) [62]. The Moore-
Penrose inverse [L]"

[L] by

can be calculated using the singular value decomposition (SVD)) of

LT = [VI[EIT U], (2.51)

where [U], [X] and [V] denote the matrices of the[SVDI[L] = [U] [X] [V]". The superscript
“*? denotes the adjoint matrix. The omits small singular values of [¥] leading to
a [X]pgyp- The source parameter vector Z by [[SVD|is then determined by

T = ([V] [E]$SVD [U]*) ¥, (2.52)

which enables a more stable estimation of the source vector Z. In the the crucial
parameter is the truncation parameter k that decides at which point the singular values
are omitted. The has been used previously in for the reconstruction of
the conductivity distribution [10]. The [ISVDIis also used in other fields of [NDE] e.g.
in dual-energy computed tomography for ceramics and composite materials [63]. The
[TSVDlis also widely applied in other fields of inverse problems [64], e.g. for the detection
of buried ferromagnetic objects based on geomagnetic measurements [65], for source
reconstruction in the human brain from magnetoencephalographic measurements [66| or

for microwave inverse scattering for breast imaging [67].

Another method to solve the problem depicted in , is the Landweber
iteration. It iteratively solves using the gradient descent for updating the solution
vector Z. Crucial parameters of the Landweber iteration are the step size or the number
of iterations. The Landweber iteration is e.g. used for image processing [68,69| and is
widely applied in various fields of tomography [70H81]. In this thesis, the Landweber iter-
ation is used to estimate the defect properties by reconstructing the defect identification

vector from the components of aluminum specimens (Chapter [4)).

Another possibility to regularize the problem is by adding a regularization term R (&)

to
arg min <; ng_ L] sz + AR(:E)) , (2.53)

x
where A denotes the regularization parameter, which is the crucial parameter. It weights

between the data term and the regularization and therefore specifies how much the
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determined source vector ¥ depends on both terms. Automatic methods to determine A
are e.g. the discrepancy principle [82], the L-curve method [83] or the generalized cross
validation [84].

The probably best-known regularization method is the [TPRI [85,86] with the L.2-
norm term R(%) = || [W]Z —7]|3. The a priori knowledge is encoded in 7 and [W]. The
L2-norm leads to a smooth source parameter vector Z [87]. Using the the source

vector & can be determined as a closed solution by
—1
7= (1" L+ A" W) (L g+ A7) (2.54)

In the field of NDE], the has been applied e.g. in [53,188|, for the defect
reconstruction from magnetic flux leakage measurement data [89] or magnetic induction
tomography [5]. In fields beyond NDE] the [TPRlis widely used in biomedical engineering
for the reconstruction of current source distributions in the human brain [90] and heart
[91] or for magnetic nanoparticle imaging [92].

Beside the L2-norm, the L1-norm can be used as regularization term R(Z) = ||Z||:.
The corresponding problem is referred to as least absolute shrinkage and selection op-
erator (LASSQO)) problem [87], which is solved by a coordinate descent method. The
reconstructed source vector & tends to be sparse [87]. Thus, the L1-norm regularization
is a sufficient choice if the source vector & can be assumed to contain many zeros. The
L1-norm regularization is used in [NDE] for reconstruction of defects in pipelines based
on magnetic flux leakage measurements [89]. In biomedical engineering, it is used for
the reconstruction of electromagnetic brain activity [90493].

Beside these two norms, p-norms with 1 < p < 2 can be also applied for regularization
R(Z) = ||Z|[p. In previous work of [19], an iteratively re-weighted least square
algorithm has been used to determine the perturbation eddy current density distribution

to characterize the defect, where the p = 1.5-norm yielded the best results.

In order to combine the properties of the L1- and the L2-norm, a weighted sum

—1
2l . |1Z]|3 + fy]|:i"|1>, referred to as which origins from

statistical regression [87]. Regarding inverse problems, the [ENRI] has been applied e.g.

can be applied R(Z) =

for the reconstruction of the electric activity of the heart [94] or the reconstruction of
missing sensor traffic data [95]. In Chapter [3| a defect identification vector (section
is reconstructed using with in comparison to [TPRI for aluminum
specimens under investigation from measurements. Further, the with
in comparison to[TPRIis applied to [ECElin order to reconstruct the square current loop
vector (section for the estimation of defect properties in aluminum specimens.
Another possible regularization is the total variation [96]. The of a signal
is defined as the sum of the absolute gradient of the signal. The idea origins from image

denoising [96]. It is based on the fact that an image e.g. with Gaussian noise shows a
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high total variation. By minimizing the total variation additionally to minimizing the
data term (2.49), unwanted details like noise are suppressed and edges are kept. Beside
the denoising of signals, regularization was already applied in [51,88].

Deterministic Optimization Algorithms Further, deterministic optimization al-
gorithms can be used to solve the minimization problem iteratively. Thus, they
require an initial solution source vector Zipjtial. Methods like the Newton’s [97] or the
Levenberg-Marquardt methods [98] require the differentiability of the minimization prob-
lem as they are based on the principle of gradient descent. Another deterministic method
is the simplex method. Deterministic methods often further assume continuousness and
convexity of the problem to be minimized. The quality of the solution vector Z depends
on the initial solution. Due to the local search, deterministic methods tend to drop into
local minima. But reproducible solutions of & are achieved if the initial solution, the
search area and the termination criterion remain unchanged. In the framework of [LEE]

the simplex method was used for the optimization of the multiple dipoles model (section

2.1.4.1) [16].

Stochastic Optimization Algorithms In contrast to deterministic optimization
algorithms, most stochastic optimization algorithms do not require differentiability, con-
tinuousness or convexity of the problem. The ability to stuck at local minimal is smaller,
e.g. due to multiple initial solutions or due to the ability of accepting a worsening of
the solution during the optimization procedure. In consequence, stochastic optimization
algorithms require an increased number of evaluations of the goal function com-
pared to deterministic algorithms. The obtained solution is not reproducible. Stochastic
optimization methods contain intrinsic control parameters that are crucial to adjust.
Stochastic optimization methods can be divided into physical algorithms, swarm intel-
ligence algorithms and evolutionary algorithms.

One example for physical algorithms is the simulated annealing that has already been
applied for [ECE][99-101]. In the field of [NDE] the particle swarm optimization [102H104]
and the ant colony optimization [105] have been applied for defect reconstruction in
Evolutionary algorithms are based on Darwin’s theory. Different solutions form
an initial population that evolves by genetic mutation and recombination. The selection
of the solution is based on the survival-of-the-fittest principle. Evolutionary algorithms
can be subdivided into genetic algorithms, evolutionary programming and evolutionary
strategies. In the field of [NDE] genetic algorithms and evolutionary programming have
been applied for [106]. For [LFEL previous work used the Differential Evolution to
reconstruct a conductivity distribution from components to determine the defect

properties [17].
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3 Elastic Net Regularization in Lorentz Force

and Eddy Current Evaluation

3.1 Introduction

The described inverse problems in [LEE] and [ECE] are unstable as the solutions are sensi-
tive to small changes in the noisy measurement data (section. Thus, regularization
is required that represents a prior: knowledge about the problem.

For that purpose the elastic net regularization (ENR]) is used. emerges from
statistical regression [87,107] suited for correlated predictors. It is applied for regression
problems e.g. in mining [108], food industry [109,{110|, pharmacology [111,112], medicine
[113H115], chemistry [116], or engineering [117]. Further, applications of [ENR] can be
found in image processing [118-120], model order reduction [121,122], neuroinformatics
[123H125], or the regularization of a Markov model [126]. The is also used within
fault diagnosis of rolling bearings [127] and machinery [79]. Regarding inverse problems,
the [ENRl has been applied for the reconstruction of the electric activity of the heart [94]
or the reconstruction of missing sensor traffic data [95].

Considering the widespread application of [ENR] it is considered for the inverse prob-
lem of and [ECEl The minimum norm estimation (MNE]) with is defined
as [107]

T—7 02 S
a1+ vl ) | (5.1)

. 1
argmin | —

7 — [L] 2%+
arg i | 1 17 - (212143

Data term

Regularization term

where 77 € RV*! describes the electromagnetic field components from measurements of N
observation points that act as input for the defect reconstruction. The unknown source
parameter vector Z is obtained by minimizing the sum of the data and the regularization

term. The data term contains the deviation between ¢ and [L]#, where the lead field

c RNX]W

matrix [L] contains the forward solution, see sections [2.1.4.2] and [2.2.4l The

norm weight parameter v weights between the L1- and the L2-norm. For v = 1 the
problem is referred to as the [LASSOI problem which leads to a sparse solution & [87].
If v — 0 the problem converges towards the Tikhonov-Phillips-regularization (TPR)),
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which prefers the solution Z to be more smooth [87]. The regularization parameter A
controls how much the obtained solution depends on the regularization term.

In the unknown vector ¥ equals the defect identification vector g (section
. It is known a priori that the defect identification vector § should contain
ones for elements that belong to the defect and zeros otherwise, where the defect
are assumed to be spatially connected. The L2-norm of the term enables a
spatially smooth solution 7 [87], which implicitly leads to a spatial connection of the
The L1-norm privileges zero-values in 6.

In [ECE]l the unknown vector ¥ equals the square current loop vector I;d . It is char-
acterized by smooth continuous values with surrounding zeros. This a priori knowledge
should be mirrored by [ENRL

In the remaining chapter the application of to and in comparison to
the widely applied is described in the sections and respectively. The sub-
sections include the description of the analyzed setup, the methodical description of [TPRI
and including the parameter studies for determination of the control parameters,
the defect reconstruction results for simulated and measured data, as well as a discussion
and conclusion of the results. In section 3.4 the obtained results from [LFEl and [ECEI are
compared, discussed and summarized. Section contains methods and results that

have been presented in |21] and are published in [22].

3.2 Lorentz Force Evaluation

3.2.1 Setup

Problem description A conducting specimen is moved relative to a fixed perma-

nent magnet with a velocity ¢ = 0.1m/seé, (Fig. along multiple parallel scanning

F.p
Permanent magnet :
remanence B,=1.43 T =/l D,
/] A 0z =1 mm Aoen
/" / Defect, g,= 0 S/m 2 z=2mm
// Dd:5mmfi'®. d R

v=0.1 m/s
H , w
/ »

Ve L

Aluminum sheets, g,=21 MS/m

Figure 3.1: Problem setup: A package of aluminum sheets with a cylindrical defect is
moved relative to a permanent magnet. The interaction of the induced eddy currents
(orange lines) with the magnetic field leads to Lorentz forces.
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lines. The permanent magnet is located at a lift-off distance 6z = 1 mm above the top
surface of the specimen. The homogeneous magnetization M = B, /o €x (By = 1.43T)
characterizes the magnet, where B; describes the remanence. The specimen consists
of stacked aluminum sheets, each with a thickness Az = 2mm and a conductivity of
oo = 21 MS/m. The sheets are separated by thin insulating interfaces. A single cylin-
drical defect is located at the z-y-center of the specimen at depth d. Three different
defect depths d = 2, 4 and 8 mm are analyzed. The defect with a conductivity og = 0
is characterized by a diameter Dq = 5mm and a height Hy = 2mm. The area of the

defect cross section is Aq = 19.63 mm?.

Simulations The numerical simulations use the setup shown in Fig. B.I]with specimen

dimension L x W x H = 400 mm x 400 mm x 100 mm and a spherical permanent magnet

d = 2 mm (2" layer) d = 4 mm (3" layer) d = 8 mm (5" layer)
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. m 1o
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Figure 3.2: Defect response signal components obtained from [FEM| simulations with
AFFEM (top), AFEEM (middle), AFFFM (bottom) at the observation points for defect
depths d = 2 (left), 4 (middle) and 8 mm (right). Note the different scaling of the color
bars.
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with a diameter of Dy, = 15mm. The components are computed by simula-
tions using the weak reaction approach as described in section [2.1.2.2] The observation
points are equally distributed within |z| < 25mm and |y| < 25mm at z = 8.5mm.
The z-position corresponds to the center of the spherical permanent magnet. The dis-
tances between these points in x- and y-direction are d, = d, = 1mm. The obtained
components (Fig. act as noise free benchmark signals. Consequently, the
general properties of novel inverse methods can be assessed before the application to the

measurement data.

Measurements A specimen with dimensions L x W x H = 250 mm x 50 mm x 50 mm
and a cylindrical permanent magnet with a diameter of Dy, = 22.5mm and a height of

Hy = 17.6mm are used for the measurements (Fig. [2.6). The specimen consists of
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Figure 3.3: Measured raw data of the Lorentz force components F, (top), F, (middle),
F, (bottom) for defect depth d = 2mm and trial no. 1 with enlargement of the areas,
representing the defect influence (arrows). Note the different scaling of the color bars.

46



3.2. Lorentz Force Evaluation

stacked aluminum sheets and is moved by a linear direct drive relative to the fixed perma-
nent magnet with a 3D strain gauge force sensor. The forces have been measured along
51 y-lines that are uniformly distributed in the range of —25mm <y < 25mm. The
force components are derived at each y-line in the range —208.5mm < z < 208.6 mm.
The distances between the observation points are d, = 0.1mm and d, = 1mm. The
measurements were repeated for every y-line 25 times resulting in 25 measurement trials
per defect depth. Exemplary measured Lorentz force components F, (Fig. top), Fy
(Fig. [3.3] middle) and F. (Fig. bottom) are shown for the defect depth d = 2 mm.
The defect shows noticeable effects in F, (Fig. [3.3] top, black arrow) and F. (Fig. 3.3
bottom, white arrow) and small effects are visible in F, (Fig. 3.3} middle, white arrow).

In order to extract the from the measured forces, the following preprocessing

steps are carried out:

1. The force profiles F,, F, and F, (Fig. are cut from z = [—80,70] mm to
remove the influence of left and right specimen edges. This asymmetric cut-out

roughly centers the force profiles according to the visible influences of the defect
(Fig. [3.3).

2. A principal component analysis is applied separately to the force profiles I, F,

and F,, where the distorted components are removed.

3. A finite impulse response low pass filter with an order of 400 is applied. The
force signals have a resolution of 10000 samples/m in scanning direction, which
corresponds to the sampling rate of 1000 Hz at the velocity v = 0.1m/s. The
filter is applied for each scanning line at the spatial cut-off frequencies of 100 m ™!
(£10Hz) for F, and F, and 75m~! (=7.5Hz) for F,. The same spatial cut-
off frequencies could be chosen for slightly lower or higher velocities as the main

spatial frequencies in m ! of the[DRScomponents do not change considerably [19].

4. A detrending is applied along the scanning lines. A linear detrending is used for
F, and F,. A combination of linear and quadratic detrending is applied for Fj.
The detrending removes the effects of front and back edges of the specimen as well

as trends from distortions.

5. An average filter is applied line-wise perpendicular to the scanning direction to

remove further distortions.

6. The coordinate origin is realigned to the minimum of AF, to ensure that the

center of the defect lies directly below the coordinate origin.

7. A down-sampling from d, = 0.lmm to d, = 1mm is applied to reduce the
computational cost for following defect reconstruction algorithms. The corre-

sponding observation points are equally distributed within |z| < 25mm and
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ly| < 19mm (Fig. [3.4). The distances between these points in z- and y-direction

are d; = dy, = 1 mm.

The resulting [DRS|signal components AFReas AF" and AF;"** after preprocess-
ing and for the defect depths 2, 4 and 8 mm are shown in Fig. [3.4] for measurement trial
no. 1.

In order to evaluate the signal quality, the signal-to-noise-ratio (SNRJ) in dB of the
preprocessed is calculated as the ratio of the power in the region of observation
points Psignal+Noise (Fig. a, black rectangle) and the power Pyojge 0f the surrounding
region (Fig. a, red rectangles) of equal size according to:

SN AF?

N
Zn:l AFT%

Psign i
SNR = 10 - log (%) dB = 10 - log, (
01se

) B (32)

where AF; and AF,, denote the signal components in the region of observation points
(Fig. a, black rectangle) and the surrounding region (Fig. a, red rectangles), re-
spectively. The squared sum in both regions is calculated from N data points. The SNR]

d = 2 mm (2" layer) d = 4 mm (3" layer) d = 8 mm (5" layer)
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Figure 3.4: Defect response signal components obtained from measurement trial no. 1
with AF% (top), AFS (middle), AF;"°* (bottom) for the defect depths d = 2
(left), 4 (middle) and 8 mm (right) after preprocessing. Note the different scaling of the
color bars.
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d =2 mm d =4 mm d =8 mm
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Figure 3.5: of components: (a) Regions for calculation of from
components (here: AF,) according to (3.2)), (b) SNRlin dB of [DRSIcomponents: AF1¢3
(solid blue), AF;"* (solid magenta) and AF"** (solid green) for different trials and
defect depths. BNRI values of corresponding averaged components are shown by
dashed lines.

is calculated for AF;"%* AF % and AF"*, separately. The data points of the sur-
rounding region are extracted from two rectangular regions with 25 mm < |z| < 50 mm
and |y| < 19mm (Fig. a, red rectangles). Fig. b shows the values of
AFeS AR and AF® for the 25 trials.

Averaging the components of the 25 trials results in AFes AFmess and
AF™eas for the defect depths d = 2mm, 4mm and 8mm. The values are also
calculated for the averaged components (Fig. b, dashed lines). It can be ob-
served that the increase of due to averaging is largest for AF,. AF, and AF, show
the highest values. The decrease of with increasing defect depth is minimal

for AF,.

3.2.2 Minimum Norm Estimation

It is the aim to reconstruct defect properties from the [DRS| components obtained from

simulations (Fig. and measurements (Fig. [3.4). For that purpose, the [DRS] com-

ponents AFEEM/meas’ AF;‘EM/meas and AFZFEM/meas

arranged in a vector AFFEM/meas o R3Nx1

The inverse problem can be formulated as a [MNE| problem

with N observation points are

2
1 = .
arg min= || AFTEM/meas _ gl (3.3)
PeRM x1 ~~
AFAFS 2

where a defect identification vector 6 (section [2.1.4.2) has to be found that minimizes
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the deviation between AFFEM/meas anq the forward calculated AFAFS, The lead field
matrix [L] € RV*M contains the (section [2.1.4.2)).

In order to determine the defect depth and the defect shape, problem has to
be solved for separate layers. The metal layers 1 (d = Omm) to 11 (d = 20mm) are
selected as possible layers for a defect location. These sheets are discretized in x-, y-
and z-direction by 1mm x 1 mm X 2mm at a region where the possible defect is

expected.

Corresponding to the definition of the (section [2.1.4.2), the estimated vector
should contain ones at the elements that correspond to the defect and zeros at
defect-free For that purpose, a thresholding is introduced to the elements of the
continuous @ determined by the

0if 6, <t,- (max (é) + min (5))
ethm == 5 5 . (34)
1if 6, >ty - (max (9) + min (9))

The thresholding factor ¢, has to be chosen in a range of [0.01,0.99]. As the defect
reconstruction is carried out layer-wise, a solution gth is computed with an error measure

for each layer individually.

Error measures The error measure for the application of the including thresh-
olding is defined as [NRMSE]

N FEM /meas 2
n=1 (AFQFS - AFn,z " >

min [RAFS’ RFEM/meaS]

1
| \/NZ
NRMSE = 3¢—§z

(3.5)
with RAFS = max (AF’ZAFS> — min (AF;AFS)

and RYEM/meas _ oo (AF’;FEM/meas> — min (AF,ZFEM/meas)

It describes the deviation between the forward calculated AFAFS — [L]é;h and
the obtained from simulations or measurements AFFEM/meas  The is the
mean of the errors of z-, y- and z-components. The layer with the smallest
indicates the defect depth.

Measures to quantify the defect reconstruction error are the Euclidean distance dy to

2

the center of the true defect, the size difference aq in mm= as well as the extensions of

the reconstructed defect in z- and y-direction, x, and ye, in mm.

The inverse problem (3.3) is unstable, as the solutions are highly sensitive to small

changes in the noisy measured data. Thus, regularization methods have to be applied.
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3.2. Lorentz Force Evaluation

3.2.3 Tikhonov-Phillips-Regularization

Principle The [TPRI [85[86] is a widely applied regularization method and therefore
used for comparison with [ENRl The problem (3.3) with can be defined as

follows

1 o 2 2
argmin | = HAFFEM/meaS - [L]é” A |- [W]éH . (3.6)
PeRM x1 2 2 2

Data term Regularization term

In this study the [TPRI of zero order [128] with # = 0 and [W] = [I] is used, where
[I] denotes the identity matrix. After some derivations and pre-whitening, g can be
obtained by

0= [L)T [[L)[L)T + A[1]] " AFFEM/meas, (3.7)

The regularization parameter A controls how much the solution ] depends on the regular-
ization term. The obtained vector @ is smooth with continuous values, where elements
of zero are unlikely. The optimal regularization parameter A has to be determined.

Additionally, a suitable thresholding factor ¢, is needed to obtain 9_;11-

Parameter Studies The specific case of including the thresholding necessitates
for searching the optimal parameters with the help of a known reference case. For that
purpose, the simulated data set AFFEM with a cylindrical defect at d = 2mm (Fig.
left) is used. It is assumed that the defect depth is known. Various A-t;, combinations

are tested according to the scheme:

1. Determination of continuous 6 by 1} for one A;
2. Determination of gth by 1} for one ty;
3. Calculation of AFATS by 1' with Gp;

4. Calculation of by (3.5) between AFAFS and AFFEM,

The scheme is applied separately to the single aluminum layers. The parameters A and
ty are selected according to the minimal [NRMSE]

First, the regularization parameters \ are tested with 500 logarithmically spaced
values in the range of A = [10_20, 108] with a fixed thresholding factor ¢, = 0.5. For
that purpose, the above described scheme is applied only for metal layer 2, where the
defect is located. The resulting[NRMSEE for different A are shown in Fig. [3.6 bl A region
with a stable minimum is found for A between 2.52-107® and 1.99 - 10~7. This optimal
region of A cannot be found by using the L-curve method [83] as the corresponding curve
(Fig. is not L-shaped.

The stable region is shifted to lower A-values in the range of 2 orders of magnitude for

d = 4mm and 5 orders of magnitude for d = 8 mm, respectively. The value of A\ with
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(a) Curve of solution norm in dependence (b) A minimum of NRMSEE 4.83% can be
of the residual norm for the investigated obtained for the interval A = [2.52-107%,1.99-
A-values. The minimal residual norm (red  10~7] (vertical bar).

arrow) corresponds to minimal of

Fig.

Figure 3.6: Determination of the optimal regularization parameter A with a fixed thresh-
olding factor t, = 0.5 for [TPRl

minimal [NRMSE] also changes during the layer-wise calculation. These changes do not
follow a specific pattern and are in the range of 2 orders of magnitude. It should be
added that also the shape of the NRMSEF\-curve changes. The described behavior leads
to the decision to keep the broad range of A = [1072°,10%] and to obtain the minimal
from 500 logarithmically spaced A-values within that range.

Second, different thresholding factors ¢, = [0.125,0.25,...,0.875] are tested. For
the determination of the optimal thresholding factor ¢,, the metal layers 1 to 11 are
considered. Further, the simulated data sets with defect depths d = 4 and 8 mm are
analyzed. The minimal at the correct depth is found for ¢, between 0.25 and
0.75 for d = 2mm (Fig. [3.7]a), for ¢, between 0.375 and 0.875 for d = 4mm (Fig. 3.7]b)
and for ¢, between 0.625 and 0.875 for d = 8 mm (Fig. c). It is concluded that the
optimal ¢;, depends on the defect depth. A compromise for the three defect depths would
be t, = 0.625 or 0.75. But it should be also taken into account that regularization with
L2-norm leads to smooth vectors 5, where a fixed thresholding factor limits the ability
of [TPRI to reconstruct defects of different sizes. Consequently, the thresholding factor
ty is considered as an own regularization parameter of for
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Figure 3.7: Determination of the optimal thresholding factor ¢, in [I'PRF INRMSE at
different metal layer depths are shown for the defect depths d = 2 (a), 4 (b) and 8 mm (c).
The optimal ¢y, indicated by minimal NRMSE] at the correct depth (arrows), depends

on the depth of the defect.
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Reconstruction Scheme The defect reconstruction scheme, described in Algorithm [I]
is derived from the parameter studies results. The minimal mm‘,th is obtained
from this reconstruction scheme. The related layer m indicates the defect depth and the
corresponding defect identification vector é)th’mﬂ;,th contains information about location,

size and shape of the reconstructed defect.

Algorithm 1: Defect reconstruction scheme for Tikhonov-Phillips-

regularization in Lorentz force evaluation in pseudo-code.

for m =1to 11 do
Analyze layer m:

for : =1 to 500 do
Determination of continuous ; by 1) with A

for ¢, = 0.01 : 0.01 : 0.99 do
Determination of:

gthvm;i:tll by " Wlth th
AFnégysth by " Wlth 0th7m:i)th

NEMSEh, i s, by (3.5) with AFALS

end

end

end

3.2.4 Elastic Net Regularization

Principle It is known a prior: that the defect identification vector g should contain
ones for elements belonging to the defect and zeros otherwise (see section . The
L2-norm term enables a spatially smooth solution ] [87], which implicitly leads to a
spatial connection of the of fy,. To privilege zero-values in 6, the Ll-norm term
is added to the previously described [TPRl This principle is referred to as and
emerges from statistical regression [87,[107]. The [MNEl with [ENRI] [107] can be

formulated as

ar%min(z(;N) HAFFEM/me“ - [LWHE +A (1;7 HH'HE +y H0'H1> ) , (3.8)

feRM x1

~~

Data term Regularization term

where N denotes the number of observation points. The norm weight parameter ~
weights between the L1- and L2-norm. For v = 1 the problem is equal to the [LASSO
problem, which leads to a sparse solution [87]. If v — 0 the problem converges towards

the [TPR] which prefers solutions to be more smooth [87].
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3.2. Lorentz Force Evaluation

Parameter Studies In order to determine the optimal values of A, v and t;,, the same
approach as described for [TPRI (section is used. Various v-A-ty-combinations are
tested. The optimal parameters are chosen according to a minimal NRMSEl First, the
norm weight parameter ~ is tested for 46 decadal spaced values of
v = [1 -107%,2-107°%,...,1-1074, ..., 1]. For every single v, 100 values of A are equally
distributed between Apjn and Apax- The maximal value A\yax that permits non-zero co-
efficients of 6 is calculated by

max () [L]TAF'FEM/meas
3N~

Amax = > . (3.9)
The minimal value of X\ is defined by Amin = Amax - 10~%. The optima of the two
parameters A and 7 are searched using the fixed thresholding factor ¢, = 0.5. The
optimal value of A cannot be found by using the L-curve method as the corresponding

curve is not L-shaped in our application (Fig. [3.8 a)). Fig.[3.8 blshows the distribution of
[NRMSEl in dependence of v and X for the reference case at the fixed thresholding factor
th = 0.5. The minimal of 4.83% (Fig. [3.8 b white markers) can be found for
v < 0.4 (Fig. below orange dashed line). As a first consequence, v should be

smaller than 0.4.

NRMSE in %
12 — 9 256
0 A=8.11-10
_C\l ?‘
= 8 5 100
ISy kst
- g
g 6 s 50
= <
= o
g 4 i 25
5 =
[@) D
A » = 10
1=3.8510"
' W83
0.01 0.02 _ 0.03 0.040.05 10712 1078 1074
Residual norm ||AFYEM — [L]0y o Regularization parameter \

(a) Curve of solution norm in dependence (b) Colors indicate values for different

of the residual norm for the investigated ~-A-combinations. The minimal (white

A-values for v =6-1075. markers) can be found for v < 0.4 (below or-
ange dashed line). Suitable minima for defect
reconstruction are located within the ellipse for
v < 6-1072 (arrow). The orange circle indicates
an additional stable region of minimal [NRMSE]
values. The diagonal shape origins from the defi-
nition of Ayayx, see eqn. (3.9).

Figure 3.8: Determination of optimal v and A with a fixed thresholding factor ¢, = 0.5
for [ENRI
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In the upper - and lower A\-range a stable region of minimal (Fig. B.8°1]
orange circle with white curved rectangles) can be observed. The white curved rectangles
show neighboring minima of the same . This stable region is shifted towards smaller
regularization parameter values A with increasing defect depth and disappears for deeper
defect depths, e.g. d = 8 mm. It follows that this region is not an appropriate basis for
the decision of optimal v and A values.

Up to v = 6- 102 (Fig. , orange arrow) minimal values are reliably
obtained close t0 Amax (Fig. [3.8 ] region within orange ellipse). Within the interval of
v =[1-1075,6-1072] there is no difference regarding the defect reconstruction quality.
Therefore, any of the analyzed v-values of that range can be chosen. The calculation
time using a small v of the order 1075 is 2.7 times smaller than using one of the order
1072, As a result, a small v is preferred. In this study, v is selected with v = 6-1075.

The analyzed A-range cannot be fixed as Apax depends on the AFFEM/meas oy 4
on the lead field matrix [L], see (3.9). Additionally, the optimal A depends on the defect
size.

Second, the optimal thresholding factor ¢y, is determined while testing different values
of t, = [0.125,0.25,...,0.875]. For the determination of optimal ¢, all metal layers are
taken into account. Further, the simulated data sets with defect depths d = 4 and 8 mm
are analyzed. For all analyzed thresholding factors the minimal can be found
at the correct depths (Fig. a-c, arrows).

From that point of view, any of the analyzed thresholding factors could be applied.
With respect to the measurement data, the for the defect depth d = 8 mm show
the lowest values (Fig. [3.5)). Assuming that data with lower values are more
sensitive to parameter selections, the choice of ¢, is also based on the results shown in
Fig. c. We choose the thresholding factor with minimal at the correct defect
depth and with significantly higher values in the neighboring metal layers. For
d = 8mm, this is fulfilled best by ¢, = 0.125 (Fig. ¢, symbol plus). As a result, the
thresholding factor t is selected with ¢, = 0.125.

Reconstruction Scheme The parameter studies resulted in a choice for the weighting
factor of v = 6 - 107° and for the thresholding factor of #, = 0.125. No fixed optimal
value can be set for A as its value depends on Apax and on the defect size. The
derived reconstruction scheme is separated in a depth and a shape estimation step, see
Algorithm If the minimal values of two neighboring layers obtained from
step 1 (Algorithm [2)) are close, i.e. the absolute difference is smaller than 1%, step 2
of the defect reconstruction regime (Algorithm [2) is applied for both layers in order to

improve the depth reconstruction accuracy.
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Figure 3.9: Determination of optimal thresholding factor ¢, for ENRE [NRMSE] at differ-
ent metal layers are shown for defect depths d = 2 (a), 4 (b) and 8 mm (c). The minimal
NRMSEE of each case and for each thresholding factor are located at the correct defect

layers (arrows).
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Algorithm 2: Defect reconstruction scheme for Elastic Net Regularization in

Lorentz force evaluation in pseudo-code.

1. Defect depth estimation:

for m =1to 11 do
Analyze layer m:

for : =1 to 100 do
Determination of:

Continuous 9_;,“ by with Ay and y = 6-107°
Gim,i by (3:4) with #, = 0.125

AFRES by @ with fip,m,i

[NEMSEL,; by (3.5) with AFATS

end

Determine minimal NRMSE],, of the current layer.
end

coarse A-range: Ay 1 = Appmin and Ay 100 = Apmax

Minimal [NRMSE},, with related \,,; indicates the defect depth by the

corresponding layer m.

2. Defect shape estimation at determined defect layer m:

for j =1 to 100 do
Determination of:

Continuous 9—; by with A\j and v =6-107°
Oin by (3.4) with t, = 0.125

AFATS by (2.27) with Gy,

[NEMSE}; by (3.5) with AFATS

end

ﬁne )\—range: )\1 = )\m7i—1 and /\100 = /\m,i+1

Minimal NRMSE]; with related 9_;}17]- contains information about location, size

and shape of the reconstructed defect.

3.2.5 Reconstruction Results

Simulations The with and [TPR] applied to the simulated data sets
yields correct defect depth detection for the depths of 2, 4 and 8 mm (Table and
Fig.[3.10). Table shows that the defect reconstruction error measures (section
are identical for [ENR] and [TPR] except for d = 8mm. The four additional for
at d = 8 mm are located at the left and right edges of the reconstruction region.
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3.2. Lorentz Force Evaluation

All centers of the defects are correctly reconstructed at * = y = 0. The extension z,
in z-direction is correct. The defect extension gy, in y-direction is two too large
(Table , which relates to 3 additionalin each positive and negative y-direction.
These additional and the mismatch of a round defect and the [voxell approximation

lead to a size error aq of 11.37 mm?.

The regularization parameters A of (Table decrease with increasing defect
depth. The determined A for [TPR] also decrease with increasing defect depth. While
[ENRI uses the fixed thresholding factor ¢, = 0.125, the found thresholding factors in
are different for the three defect depths (Table[3.1). The values for d = 2,
4 and 8mm increase from 4.83%, 5.25% to 6.32% for both [ENR] and [TPR] but the
defect reconstruction quality reflected by the error measures remains the same for defect
depths d = 2, 4 and 8 mm, except for [TPRl and d = 8 mm (Table .

The reconstructed defects of each layer, color-coded according to their NRMSE] are
shown in Fig. [3.10] The values of the correct layer and the neighboring layers

are close to each other.

Measurements The defect reconstruction results by and [TPR] of 25 trials are
shown in Table B.2l The visualizations of reconstructed defects show how often one
is reconstructed, where a frequency value of 25 represents a reconstruction in all

25 trials.

[ENRlyields correct depth detection for the defect depths 2, 4 and 8 mm (Table and
Fig. [3.11)). Whereas [TPR] shows correct depth estimation for 2 and 4mm and in 17/25
cases for d = 8 mm. The centers of the reconstructed defect are slightly shifted. This
shift in mainly negative y-direction is below 1 mm for both [ENR] and [TPRI reflected by
the Euclidean distance dy. The mean defect extensions z, (Table top) obtained by
in x-direction are slightly too small, and slightly too large for (Table . For
both, [ENRl and [TPR], the defect extensions ye are a bit too large (Table[3.2). This leads
to mean size errors aq between 7.41 mm? and 14.01 mm? for and [TPRl For one
trial with d = 8 mm [TPRlreconstructs a larger defect (blue Table compared
to the other trials.

The found optimal regularization parameters \ of [ENR] decrease with increasing
defect depth as observed for the simulated data sets (Table . The corresponding
standard deviations are small (Table B.2). In contrast, the standard deviations of the
regularization parameters A found for [TPRI are relatively large. This reflects the re-
sults of the parameter studies (section that no optimal region of A can be found.
The found mean thresholding factors are equal for different defect depths at ¢, = 0.99.
In accordance to simulation data, see Table the mean values increase for
increasing defect depth for both and
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Table 3.1: Results of defect reconstruction of simulated data with elastic net regu-
larization and Tikhonov-Phillips-regularization: The correct depth estimation was ob-
tained with both regularization methods, where for d = 8 mm and Tikhonov-Phillips-
regularization four additional defect are reconstructed. The circle indicates the
shape of the true defect. The color-coding corresponds to Fig. [3.10]

Elastic net regularization

Defect depth d in mm 2 4 8
g 2 £ g
g g g g
Reconstruction at the layer R= k= =
of the defect > -2 > >
2 0 2 2 0 2 2 0 2
T in mm T in mm T in mm
Regularization 3.03-10-5 6.44 10~ 4971077
parameter A\
Reconstructed
depth in mm 2 4 8
Fuclidean distance do 0 0 0
from [0, 0] in mm
Size in mm? 31 31 31
Size difference in mm? 11.37 11.37 11.37
r-extension re in mm 5 5 5
y-extension ye in mm 7 7 7
NRMSE in % 4.83 5.25 6.35
Tikhonov-Phillips-regularization
Defect depth d in mm 2 4 8
g 2 = g5
g 4 g g, -
Reconstruction at the layer & = =
of the defect -2 = = -5
2 0 2 2 0 2 =20 -10 . 0 10 20
. . I 1 1mm
T 1n mm T 1n mm
Thresholding factor ¢ 0.29 0.51 0.89
Regularization 1.13-107° 1.86- 10710 1.59- 10711
parameter A
Reconstructed
depth in mm 2 4 8
Euclidean distance dg 0 0 0
from [0, 0] in mm
Size in mm? 31 31 35
Size difference in mm? 11.37 11.37 15.37
z-extension xe in mm 5 5 5
y-extension ye in mm 7 7 7
NRMSE in % 4.83 5.25 6.32
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Figure 3.10: Defect reconstruction results color-coded by [NRMSE] of the analyzed layers
for simulated data sets with defects at d = 2, 4 and 8 mm depth achieved by elastic
net regularization (left column) and Tikhonov-Phillips-regularization (right column).

The gray cylinder indicates the position and shape of the true defect.

The correct

depth can be detected for both regularization methods and all three defect depths.
The region around the minimal NRMSE] (red hotspot) is represented by similar colors,
which illustrates the ill-posed character of the problem. For d = 8 mm additional outer
are reconstructed with Tikhonov-Phillips-regularization (right column, bottom)
for the metal layers 5 and 6. The top views of defect reconstruction results are shown

in Table
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Table 3.2: Results of defect reconstruction of measured data with elastic net regulariza-
tion and Tikhonov-Phillips-regularization: The reconstructed defect and corresponding
defect reconstruction error parameters are shown as mean =+ standard deviation for the
correct defect depth. The circle indicates the shape of the true defect. Elastic net reg-
ularization detected correct depth for d = 2, 4 and 8 mm, whereas Tikhonov-Phillips
achieves correct detection for d = 2 and 4 mm and for 17/25 cases for d = 8 mm. Wrong
reconstructed depths and the corresponding [NRMSE] are indicated by asterisks.

Defect depth d in mm

Elastic net regularization
2 4

Reconstruction at the layer
of the defect

y in mm

Y in mm

2 0 2

T in mm z in mm

Frequency of reconstructed [voxels|

y in mm

 in mm

_ s
5 10 15 20 25

Regularization parameter A  7.08-1074£4.48.10-%  2.38.1074£1.69-10-° 2.86-107°4+3.21-10"7

Reconstructed depth in mm  2.00 £ 0.00 4.00 £ 0.00 8.00 £ 0.00

Buclidean distance do 0.76 4 0.08 0.64 % 0.09 0.62 4 0.23
from [0, 0] in mm

Size in mm? 27.76 + 0.52 28.36 £ 0.70 27.04 £ 0.61

Size difference in mm? 8.13 £0.52 8.73 £0.70 7.41 £0.61

r-extension xe in mm 4.56 +0.51 4.80 +£0.41 4.40 + 0.50

y-extension ye in mm 7.88 £0.33 8.00 £ 0.00 7.88 £0.33

NRMSE in % 10.27 £0.14 11.33+£0.14 14.34 £0.23

Tikhonov-Phillips-regularization
Defect depth d in mm 2 4 8

Reconstruction at the layer
of the defect

Thresholding factor ¢
Regularization parameter A
Reconstructed depth in mm
Euclidean distance dg
from [0, 0] in mm
Size in mm?
Size difference in mm
z-extension xe in mm
y-extension ye in mm
NRMSE in %

2

z in mm

z in mm

Frequency of reconstructed [voxels|

0.99 4+ 0.01 0.99 + 0.01

1.92-108 +£5.47-10%  8.51-10° £2.05- 107
2.00 £ 0.00 4.00 4 0.00

0.88 +0.16 0.434+0.28

27.68 + 0.56 28.68 £+ 1.25

8.05 4 0.56 9.05+1.25

5.08 & 0.40 5.16 & 0.37
7.1240.33 7.00 £ 0.00

10.37 £ 0.15 11.50 4 0.20

y in mm
(=]

'
)

!
B

2 0 2
z in mm

[ |
5 10 15 20 25

0.99 + 0.00

1.87-108 £+ 3.34 - 106

8.72 4 1.14*

0.64 +0.36

33.64 £ 10.22
14.01 + 10.22

5.40 £ 0.87

7.64 £ 0.99

16.63 £ 4.56 (14.88 + 0.85)*
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Figure 3.11: Defect reconstruction results color-coded by [NRMSE] of the analyzed layers
for measured data sets (trial no. 1) with defects at d = 2, 4 and 8 mm depth achieved
by elastic net regularization (left column) and Tikhonov-Phillips-regularization (right
column). The gray cylinder indicates the position and shape of the true defect. Addi-
tional outer are reconstructed for all three defect depths with Tikhonov-Phillips-
regularization. The top views of defect reconstruction results are shown in Table F)ZZ}

The reconstructed defects of each layer for trial 1 are shown in Fig. color-
coded according to their The (Fig. [B.11] left column) shows connected
structures comparable to the results of simulated data sets (Fig. left column). In
contrast, [[PRI (Fig. right column) shows the reconstruction of additional
outside the expected region of the defect as well as the reconstruction of spread single
in upper metal layers for defect depths 4 and 8 mm.

In order to investigate the influence of an improved (Fig. , the defect
reconstructions by [ENR]and [TPR] were applied for the averaged [DRSk with defect depths
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d=2,4 and 8 mm for 25 trials.
[ENRI detected the correct defect depths for three defect depths. The defect error
measures are in accordance with reconstruction results from single trials (Table [3.2).
also detects the correct defect depth for all three depths using the averaged
[DRSk. The reconstruction results for the defect depths d = 2mm and 4mm are in
accordance with the single reconstruction results (Table [3.2). For d = 8mm the size
error aq = 7.37mm? and the NRMSEE 13.94 % are reduced (compared to Table [3.2).

3.2.6 Discussion

The with achieves correct depth and adequate size estimations of cylindrical
shaped defects at depths of d = 2, 4 and 8 mm for simulations and measurements. The
reproducibility of is indicated by stable reconstruction results from single trials
(Table |3.2]).

The with achieves comparable results with the exception for d = 8 mm,
where the defect depth is detected correctly only for 17 of 25 trials (Table . Addi-
tionally, partly reconstructs spurious outside the expected region (Fig.
and [3.11)).

Both inverse methods use the as forward solution, which is a simplified model
of the This simplification might partly explain that the defect sizes are estimated
slightly too large. However, this forward solution allows the application of the fast
with [ENR] which achieved reproducible reconstruction results and correct depth
estimations. The use of the weak reaction approach, i.e. the neglection of the secondary
magnetic field, is not expected to influence the defect reconstruction results considerably.
The of the calculated by [FEMl with the weak reaction approach compared
to the calculated by with the transient moving magnet approach [32]| equals
0.69 % for the simulation setup described in section [3.2.1]

In terms of computational time, the calculation of a single vector of gth, see ,
is between 0.5 and 3 s for [TPR] and [ENRI Calculations have been performed using
MATLAB® R2015b with an Intel® Core™ i7-4790K processor and 32 GB of RAM. The
performance of and [TPRI could be improved further by algorithmic enhancements.

In contrast to previous work [10,/17,/19], a correct depth estimation could be achieved
for all investigated cases. In this study, [LEE] was able to reconstruct deep defects at
d = 8mm.

In comparison, deep defects in eddy current testing can be detected using a low-
frequency setup with highly sensitive magnetic field sensors such as fluxgate [46],
[47], anisotropic magnetoresistive (AMR) [48] or [GMRI [49] sensors. These setups might
be also capable for estimating the size, shape and location of the defect.

In other setups of motion induced eddy current testing [11-14], the secondary mag-
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netic field from the induced eddy currents is used to detect surface and sub-surface

defects in conducting specimen.

3.2.7 Summary and Conclusions

The with shows correct depth and adequate size estimation of a cylindrical
shaped defect for simulation and measurements. The reproducibility of [LEE] has been
shown by the investigation of single measurement trials. shows comparable defect
reconstruction results. [ENRI slightly outperforms [TPR]in reconstruction of deep defects
from single trials.

The derived control parameters as well as the defect reconstruction schemes in
and [ENR] are considered as generalizable for further [LFE]l measurements. Nevertheless,
in future work the principles of the sensitivity [129] and the uncertainty analysis [130)

could be considered to assess the sensitivity of the selected optimal parameters.

3.3 Eddy Current Evaluation

3.3.1 Setup

Problem description A planar coil (Fig. is excited with a sinusoidal current
I of frequency f.. The related magnetic field induces eddy currents in the aluminum
specimen under test. The induced eddy currents j lead to a secondary magnetic field I;s.
In presence of a defect, the eddy currents and the corresponding secondary magnetic field
are perturbed. The excitation coil is located dz above the top surface of the specimen.

The total magnetic field in z-direction B, is measured by a sensor. The probe

GMR sensor
Planar excitation coil

e

>

oz bﬁf/ﬁyx f

Defect o,= 0 S/m

e /

. ! L
Aluminum, g,

Figure 3.12: Problem setup: A planar coil excited with a sinusoidal current lead to in-
duced eddy currents (orange lines) in the aluminum specimen, generating the secondary
magnetic field bs. The total magnetic field is sensed by a [GMRI sensor.
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is placed at several observation points in xz- and y-direction above the specimen. The
amplitude and the phase shift of the sinusoidal B, at each position are determined by a
sine fitting algorithm. The obtained magnetic flux density can be represented as complex
number B;. In order to get the magnetic field perturbation Ab, from B, the
uniform offset is subtracted, determined from an area where no perturbation from the
defect is visible (section [2.2.1)).

Simulations The simulations are carried out by as described in section [2.2.2]
The simulated data sets act as noise free benchmark signals to asses the general prop-
erties of the applied inverse methods before the application to measurement data.

In a first setup, a planar coil is located 6z = 0.5mm above an aluminum plate
with dimensions L x W x Az = 180mm x 150mm x 1mm. The central region of
the coil (Fig. [3.13] blue) is excited with a uniform current density of 270 A/m. The
surrounding regions (Fig. [3.13] orange) are imposed with 500 A/m such that the current

loop closes. The used sinusoidal excitation frequency is fo = 5kHz. A star-shaped defect

Coil parts Defect

| ="

i
I ]
i i

===

1.5 cm 32em  15c

Ocentral region
[Jsurrounding regions

X

81

Figure 3.13: Excitation coil parts and star-shaped defect.

(Fig. is located in the center region of the aluminum plate, characterized by a defect
height of hq = 1mm. Two excitation directions are applied, where the excitation in z-
direction is referred to as 0°-excitation, the excitation in y-direction as 90°-excitation.
The observation points are located at z = 1.7 mm above the top surface of the specimen
with |z| < 14.4mm and |y| < 14.4mm around the center of the defect. The distances
between these points in x- and y-direction are d, = d, = 0.4mm. Fig. shows the
real and the imaginary components of the obtained [MEDP] Ab, for 0°- and 90°-excitation.

The second simulation setup is used for qualitative comparison to [LEE] (section [3.2)).
A cylindrical shaped defect is located at a depth of d = 1 mm, where d describes the
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Figure 3.14: Real and imaginary part of the perturbation magnetic flux density compo-
nent Ab, in pn'T in the vicinity of the star-shaped defect obtained by [FEMI simulations
for 0°- and 90°-excitation.
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Figure 3.15: Real and imaginary part of the perturbation magnetic flux density com-
ponent Ab, in pT in the vicinity of the cylindrical shaped defect obtained by [FEM]
simulations for 0°- and 90°-excitation.

z-distance of the top surface of the specimen to the top surface of the crack. The defect
is characterized by a diameter Dy = 5mm and a height Hy = 1mm. The aluminum
specimen has dimensions of L x W x H = 360mm x 300mm x 5mm. A planar coil
is located §z = 0.5mm above the top surface of the specimen. The coil is imposed
with an excitation current of I, = 2.4 A. The used excitation frequency is fo = 2kHz.
Consecutive observation points have a distance of d, = dy, = 0.5mm and are located
at z = 2mm above the top surface of the specimen with |z| < 18 mm and |y| < 18 mm.

Fig. shows the real and the imaginary components of Ab,, for 0°- and 90°-excitation.

Measurements In a first setup (Fig. a), a conducting specimen is scanned
with steps of d; = d, = 0.5mm over a region of 45mm X 45mm around the position
of the star-shaped crack (Fig. a). The specimen with dimension L x W x H =
250 mm x 250 mm x 4mm consists of four stacked aluminum sheets, each of thickness
Az = 1mm. One aluminum sheet contains a star-shaped defect (Fig. a), similar to
the one used in simulations (Fig. . Four different defect depths are analyzed
by changing the position of the plate with the defect from layer 1 (top layer) to layer
2, 3 and layer 4 (bottom layer). The double coil planar probe (section is used
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Figure 3.16: Measurement setups: (a) First setup: A scan with the double coil planar
[ECEl probe is performed to evaluate the stack of aluminum sheets with one containing a
star-shaped defect [50|, (b) Second setup: A scan with the single coil planar probe
is performed to evaluate the stack of aluminum sheets with one containing a cylindrical
shaped defect.

for inducing eddy current in the specimen. For every probe position 100 periods of
the excitation current and the measured output sensor voltages are acquired for each
of the four excitation modes 0°, 45°, 90° and 135°. The amplitude and phase are
determined by a sine-fitting algorithm. The amplitudes are converted from voltage into
Tesla units. Maps of complex numbers are generated using the amplitudes and the phase
shift between [GMR]and excitation signals. In order to obtain the MEP| Ab,, the uniform
complex offset is subtracted using an observation point where no influence of the defect
is visible. Fig. shows the real and the imaginary part of Ab, for the excitation
angles with the defect located at the top aluminum layer. These signals act as input for

the defect reconstruction schemes described in sections 3.3.9] and 3.3.4

In the second setup (Fig. b), that acts for qualitative comparison with the [LFE
(section , a specimen of five stacked aluminum sheets, each of thickness Az = 1 mm,
is investigated. Each aluminum plate is characterized by a size of L x W = 200 mm x
200 mm. Onmne plate contains a hole, representing the cylindrical shaped defect of diameter
D4 = 5mm and height Hy = 1 mm. By changing the position of the plate containing the
hole, defect depths of d = 1, 2 and 4 mm are investigated. The coil of the single planar
probe is located §z = 1 mm above the top surface of the specimen. The [GMR] sensor is
located 1 mm above. It senses the magnetic field component B, at several observation
points between |z| < 18 mm and |y| < 18 mm. Consecutive measurement points have a
distance of d; = dy = 0.5 mm. Two measurement scans are carried out by the excitation

coil oriented for 0°- and 90°-excitation, while the [GMR] sensor sensitivity axis is kept in
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Figure 3.17: Real and imaginary part of the perturbation magnetic flux density compo-
nent Ab, in puT obtained from measurements in the vicinity of the star-shaped defect
located in the top aluminum layer for 0°-, 45°-, 90°- and 135°-excitation.

x-direction. It is assumed that the defect depth is known, e.g. determined in advance
by a multi-frequency or pulsed eddy current evaluation method. According
to [51], the used forward solution in [ECE] (section is not capable for estimating the
defect depth by solving an inverse problem. As the defect depth is assumed to be known,
the used excitation frequency f, is chosen based on the standard depth of penetration

§ =~ _ — for #, (3.10)

VT fenog 027 puorg
where p & 19 denotes the magnetic permeability and op = 35 MS/m the conductivity of
the aluminum plates. The distance from the top surface of the aluminum specimen to
the bottom of the defect is considered as penetration depth ¢ that should be achieved
for getting an appropriate [MEP] Ab,. For the analyzed defect depths d = 1, 2 and
4mm, the desired penetration depths are equal § = 2mm, 3mm and 5mm. According
to , the related excitation frequencies are 1809 Hz, 804 Hz and 289 Hz. For the
measurement setup, the smooth values of 2 Hz, 800 Hz and 400 Hz have been used for
excitation. The excitation frequency at the defect depth d = 4mm, was increased to
400 Hz as for 300 Hz no usable [MEP] signal Ab, could be extracted anymore. Fig.
shows the real and the imaginary component of the [MEP] Ab, for the excitation angles
° and 90° for the cylindrical defect located at d =1, 2 and 4 mm.
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Figure 3.18: Real and imaginary part of the MEP|] Ab, in puT obtained from measure-
ments in the vicinity of the cylindrical shaped defect at the depths d = 1, 2 and 4mm
for 0°- and 90°-excitation.

3.3.2 Minimum Norm Estimation

The defect properties should be reconstructed from the [MED] Ab,TEM/meas ohtained

from simulations (Fig. and Fig. [3.15) and measurements (Fig. [3.17 and Fig. [3.18).

~ FEM/meas
with N observation points is arranged in a vector Ab,

AbmFEM/meas c CNx1,

It is assumed that the defect depth is known, e.g. obtained by another method in
advance ,. The corresponding metal layer is discretized in x- and y-direction
within a region of interest (ROI) into M square eddy current loops with center points
[(i,7),y(i,7)]. The neighboring currents loops are Az and Ay apart from each other.
The inverse problem in [ECEl can be formulated as a problem

2
1 -~ FEM R
arg min = || Ab, fmeas _ (L4 (3.11)
I_;de(CMxl \,E/
b,

where a square eddy current loop vector Q (section has to be found that minimizes
the deviation between Ab FEM/meas and the forward calculated A_@CBS. The lead field
matrix [L] € RV*M contains the Biot-Savart law (section . The obtained vector
é is post-processed as described in section such that a qualitative estimation of
the total 2D eddy current density distribution with i(z,j) = [Ja(i,7) 3y, 5)]T at the
points of the can be used to investigate the defect shape and locatgn. In order to
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combine the reconstruction results from measurements of different excitation angles and
to increase the comprehensibility, the absolute value ‘z(z, ])‘ at each point of the [ROI]is

calculated by

3 )] = [\fanlis )2 + 4y (5,372 (3.12)
For improved qualitative interpretation, the obtained current density norm map is nor-
malized between 0 and 1. Regions with 0, i.e. without current flow, indicate defect
regions. All normalized current density norm maps obtained from several measurements
out of different excitation angles are averaged.

Fig. illustrates the described post-processing (section for real valued vari-
ables due to visualization purposes. A square current loop amplitude map I4 leads to
the planar perturbation eddy current density distribution Aj according to 1' A uni-
form eddy current density j'o is determined from the center between the two vortices and
subtracted from the whole distribution. The obtained eddy current density distribution

j gives a first qualitative impression of the eddy current flow. With the calculation of the
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Figure 3.19: Principle of post-processing of a determined square current loop map Iq4
with the conversion into perturbation eddy current density map Aj according to 1}
the estimation of the total eddy current density distribution j and the determination of

the normalized map H;Hz to evaluate the defect shape.
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norm map according to (3.12) and the normalization between 0 and 1, the underlying
defect shape becomes visible. White areas belong to the defect where no current flows.

Black areas illustrate the high current density close to defect edges.

3.3.3 Tikhonov-Phillips-Regularization

In comparison to [LEE] (section [3.2.3)), the [MNE] with [TPR] of zeroth order [128] is used
for the application in [ECEl It is defined as

1 - S (12 )12
argmin | = [a8."" -l x| (3.13)
TecMx1 2 2 2
o Data term Regularization term
This leads to the closed solution for I;.} with
R —1 .- FEM
I = [L)T [[L)T + Al Al e, (3.14)

The regularization parameter A\ controls how much the solution I;(; depends on the regu-
larization term. The obtained vector I;; is smooth with continuous values, where elements

with zero are unlikely. The optimal regularization parameter A has to be determined.
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(a) Curves of solution norm in dependence of the  (b) Corresponding normalized
residual norm for the investigated A-values for  current density norm map ob-
0°- (blue) and 90°-excitation (red) for the sim- tained from the two excitation di-
ulation setup with the star-shaped crack. The rections using the A-values indi-

curve of 0°-excitation shows a L-shape. cated in (a). The red contour in-
dicates the star-shaped crack.

Figure 3.20: Determination of the optimal regularization parameter \ for [MNE] with
PRI in [ECEI for (3.14).
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For that purpose, the L-curve criterion is intended to be used. The simulation
setup with the star-shaped crack is chosen as reference setup. Fig. shows the
corresponding curves for the two excitation directions 0° and 90° for regularization pa-
rameters A between 10720 to 1000. It can be observed that the curve for 0°-excitation
(Fig. blue) shows a L-curved shape, but the one for 90° does not (Fig. [3.20 al
red). In consequence, the choice of the optimal regularization parameter A can not be
determined by choosing the point with the maximal curvature, i.e. the corner of the
L-curve, according to L-curve criterion. Fig. [3:20 D] shows the corresponding derived
normalized current density norm map if the L-curve criterion is applied anyway. The
star-shaped character of the defect is not clearly visible (Fig. .

Auxiliary formulation of the [MFP| In order to solve this problem, the idea is to

reduce the degrees of freedom. For that purpose, instead of the complex valued [MEDP]

- FEM
vector Ab, /meas, a novel modified [MEFPI vector is created by
ABFEM/meas _ R {AEzFEM/ meas’} +Im {AExFEM/ meas} . (3.15)

This leads to a real valued input for the [MNE] with [TPRl In consequence, the estimated

square current loop vector I:l contains real valued amplitudes. This means, that the
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(a) Curves of solution norm in dependence of the  (b) Corresponding normalized
residual norm for the investigated A-values for  current density norm map ob-
0°- (blue) and 90°-excitation (red) for the sim-  tained from the two excitation di-
ulation setup with the star-shaped crack. Both  rections using the A-values indi-
curves show a L-shape. cated in (a). The red contour in-
dicates the star-shaped crack.

Figure 3.21: Determination of the optimal regularization parameter A for [MNE] with
[TPRI in [ECE] for the auxiliary formulation (3.16]).
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degrees of freedom are reduced with the formulation in and only one amplitude for
each point in the[ROI has to be estimated for I:l. In contrast, with the formulation ,
a real and an imaginary part have to be estimated for each point of I;L Additionally,
the auxiliary Z;EEM/ % g beneficial for the following with (section
that requires real valued input. The closed solution of is modified to the auxiliary

formulation

Iy = [T (L[] + AT~ ApEEM/meas, (3.16)

Fig. shows the solution norm in dependence of the residual norm for the two
excitation directions 0° and 90° obtained from . Now, for both excitation directions
a L-shaped curve is observable. The determined optimal positions with corresponding
A are marked with arrows. The derived normalized current density norm map is shown
in Fig. [3.2I bl It shows the advantage of the auxiliary formulation in comparison to
, where the corresponding normalized current density norm map shows a worse
representation of the star-shaped crack (Fig. . In conclusion, the auxiliary
AEEEM/ S according to is chosen for this study.

3.3.4 Elastic Net Regularization

Principle It is known a priori that the current square loops vector I, contains
several zeros (Fig. . The regularization with the L2-norm term enables a spatially
smooth solution I; [87]. To privilege zero-values in Iy, the L1-norm term is added.
This regularization method is referred to as The [MNE] with [ENRI is solved by
a coordinate descent algorithm that requires real valued input. Thus, the auxiliary
formulation of the [MED] ApFEM/meas is used. In comsequence, the [MNE]
with [107] in can be formulated as

-

1

1)) e

Regularization term

: 1 FEM/m
— [|Ab fmeas _
arg min ( 5N H - [L]14

" (1 - HI}HQ +9
I eRMx1 2 2 2

Data term

where N is the number of measurement points. Similarly to [MNEl with [ENR] in [LFE]
(section , the optimal values for the norm-weighting parameter v and the regu-

larization parameter A have to be estimated. The maximal regularization parameter
Amax [107] is defined as

max ([L]TABFEM/meas>
Amax =
a N~y

(3.18)

For larger regularization parameters A, the obtained square current loop vector fd will

contain only zeros. The regularization parameter \ is represented using the regulariza-
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tion factor Ag by
A = Aac Amax, (3.19)

where Age can be chosen between 0 and 1. If A\ = 0, no regularization is applied.
If Afac = 1, the regularization parameter equals A = Apax- The optimal regularization
parameter A is searched indirectly by means of the regularization factor Age. This
ensures the possibility to choose a similar degree of regularization for varying Amax.
Fig. shows the solution norm in dependence of the residual norm exemplary for
v = 0.5 and Agye varying between 0 and 1 for the simulation setup with the star-shaped

crack. The L-curve method [83| is not applicable as the corresponding curves are not
L-shaped.

> :
10 - ‘ : 9.6
i 9.55
f \ F 95
0 L I
10 £ 945
i £ o4
= £
=~ %935
= 107 ¢ 3
z
o 9.3
9 [
- 0.6 0.8 1 12 14 16 .6
o . —FEM/meas - %10
g Residual norm ||Ab — [L]I4]]2
2 10% ¢ ]
= 9.6
=
o
w0 9.5
-6 = .
10 ;94
Excitation £93
—0° :
—90° 292
10" == : 2,
-6 -4 :
10 10
. - FEM/meas = g
Residual norm ||Ab — [L]14]l2 2425 26 27 28 45
Residual norm HAE Mmens [L]I]Hz

Figure 3.22: Curves of solution norm in dependence of the residual norm for Ag.-values
between 0 and 1. The 0°- (blue) and 90°-excitation (red) for the simulation setup with
the star-shaped crack are investigated. Both curves do not show a L-shape. Areas with
regularization factors Age close to zero are shown enlarged (right).

Parameter studies for simulated data  Parameter studies have been conducted
to select an appropriate v-Agc-combination. The simulation setup with the star-shaped
crack acts as reference case. The auxiliary obtained from the corresponding
[FEMI simulations act as input. The with [ENR] is performed for the combinations
v =[10719,1072, - , 1] with Agae = [10710,1079, ... | 107}] for the two excitation angles
0° and 90°. The obtained f:i are post-processed as described in section m to get
normalized current density norm maps Jovs = [[ill [Fallz - Wl - [urlla]
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Figure 3.23: Parameter studies for choosing v and M. for [ENR] in [ECE] based on
simulated data sets of two excitation angles 0° and 90°: The color-coded
(a) between the correct normalized current density norm map (b) and the reconstructed
ones for the different y-Ag,.-combinations, shows a minimum (dark blue) for v = 107!
and Aac = 107 The corresponding reconstructed normalized current density norm
map is shown in (c¢). The black square indicates the parameter combination subset that
is analyzed for measurement data.

where m indicates the observation point. The [NRMSE] (Fig. a) is calculated for

each v-Agc-combination between the obtained normalized current density norm map jabs
. . . 5 . T
(Fig. [3.23)¢) and the correct one Jig7 = [IF I 1705 -+ 17al5™ - I7arl5>]

(Fig. [3.23|b) originating from [FEM] simulations. The NRMSE]is defined as

1 M . . 2
V2 S8 Gielom) = i)
NRMSE = _ _ :
(max (Figr) — min () )
where M denotes the number of observation points in the [ROIl Minimal errors (Fig.
a, dark blue) can be found for norm weighting factors between v = 107 and
v = 107! and the regularization factors A between Agae = 1071 and Agpe = 1076,
The normalized current density norm map obtained by [MNE] with [ENR] with minimal
[NRMSE] (v = 107! and Agae = 1079) is shown in Fig. c. Thus, for simulation data

the parameter combination of v = 107! and Age = 1070 is chosen.

(3.20)

Parameter studies for measurement data  For the application to measurement

data, the occurrence of noise is taken into account. Thus, the regularization factor A,
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needs to be increased. A square of 3 x 3 parameter combinations (Fig. black square)
including the found minimum from simulation data is considered. The with
is applied for these 9 parameter combinations to the measurement data with the star-
shaped crack at the first layer and excitation angle of 0°. Finally, the combination of
v = 1073 and Agac = 1072 is chosen for measurement data in this study, because it

showed the steepest gradient in the obtained normalized current density norm map.

3.3.5 Results and Discussion

Simulations  The estimation of the normalized current density norm map for the

star-shaped crack by [MNEl with [TPR] (Fig. [3.24 a]) and [ENRI (Fig. [3.24 b)) shows that
the defect shape is visible with both methods. The length of the three branches of the
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curve criterion. lected parameters v = 10! and

Aae = 1076,

Figure 3.24: Reconstructed normalized current density norm maps from [FEM] simula-
tions for the star-shaped defect. The red contour indicates the defect.
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Figure 3.25: Reconstructed normalized current density norm maps from [FEM] simula-
tions for the cylindrical shaped defect. The red circle indicates the defect.
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star is correctly estimated as 5mm by and [TPRl It can be observed that both
methods determine the width of the branches too large, roughly between 0.8-1.2 mm.
Both regularization methods show comparable reconstruction results.

Fig. shows the normalized current density norm maps for the simulation setup
with the cylindrical shaped crack obtained from the two excitation directions 0° and 90°.
The circle indicates the diameter of the true defect. Both with [TPRI (Fig. [3.25 al)
and with (Fig. estimated the defect diameter of 5mm correctly.

Measurements Fig. [3:20] shows the reconstructed normalized current density norm
maps as mean of the four excitation directions for the star-shaped crack positioned at
the aluminum layers 1 to 4. At layer 1, the L-curve method for [TPRI] selected too small
regularization parameters A leading to a noisy normalized current density norm map.
The star shape of the crack is slightly better observable with compared to [TPRI
Although the shape of the defect is visible, the width of the three branches can not be
reliably determined due to a blurring in the determined normalized current density norm

maps.

Layer 1 (0 mm) Layer 2 (1 mm) Layer 3 (2 mm) Layer 4 (3 mm)

Hl

—
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T in mm T in mm T in mm T in mm

Figure 3.26: Reconstructed normalized current density norm maps for the star-shaped

defect from measurements for different defect depths comparing the two regularization
methods [I'PR] and [ENR]

The with [TPR] presented in this thesis shows a worse reconstruction result
in the first layer compared to the results presented in [50], where the inverse problem
was solved in Fourier domain with [TPRl But the star-shape of the crack is better to
recognize in the with [TPRI] for layers 3 and 4 compared to [50]. The with
shows slightly improved visibility of the star shape in comparison to [50].

Fig. [3:27 shows the determined normalized current density norm maps for the cylin-

drical defect by [MNE] with [TPRI (Fig. top) and with [ENRI (Fig. bottom) as
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3.3. Eddy Current Evaluation

Defect depth 1 mm 2 mm 4 mm
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Figure 3.27: Reconstructed normalized current density norm maps for the cylindrical
shaped defect from measurements for different defect depths comparing the two regu-
larization methods [TPR] and [ENRlL The red circle indicates the defect.

mean value from the two excitation directions 0° and 90°. It can be observed that for
both regularization methods the defect dimensions are estimated too large. No differ-
ences of the reconstruction results using the regularization methods [TPR]in comparison
to [ENR] are observable.

3.3.6 Summary and Conclusions

The [MNE] with [ENR] in comparison to [TPR] shows that for the investigation of the
star-shaped crack, the slightly outperforms the [TPRI regarding the visibility of
the defect shape. For the analysis of the cylindrical shaped defect, no advantage of
one of the two regularization methods can be observed. Future work could focus on
optimizing the measurement setup for deeper penetration with increased signal-to-noise
ratio, while keeping the uniform excitation as it simplifies the inverse reconstruction
scheme and allows for reconstruction of arbitrary shaped defects. Another possible
option would be the consideration of a more complex forward solution. The current one
(section [2.2.4) assumes a single infinite thin metal plate, which might partly explain the

worse reconstruction results with increasing defect depth.
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3.4 Discussion and Summary

The [MNE] in [LFE] showed repeatable reconstruction results of a cylindrical defect with
correct estimation of the defect depth. The results are stable for changing defect depths.
The used forward solution is optimized for defects of regular shape with uniform
extensions, like a circular or quadratic shape in x- and y-extension. Thus, no complex
shaped defects can be reconstructed with this forward solution. In the investigated
examples, defects up to 8 mm could be reconstructed.

In contrast, the in is capable to reconstruct arbitrary shaped defects (like
the shown star-shape), especially when they are located close to the specimen surface.
For no evaluable measurement signals could be derived for the deeper defects. The
corresponding planar excitation coil is not optimized for the evaluation of deep defects.
Thus, the [ECEl setup was different from the [LFE]L using aluminum plates of thickness
1 mm, with the cylindrical defect located at the layers 2 (1 mm), 3 (2mm) and 5 (4 mm)
for qualitative comparison. Defects could be reconstructed evaluable up to 4 mm with
this [ECEIl setup.

Thus, the [LEE] shows the capability to reconstruct defect characteristics of deeper
defects compared to the [ECE] used in this study.
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4 Lorentz Force Evaluation using an Adapted

Landweber Algorithm

4.1 Introduction

In the field of inverse problems, the Landweber algorithm [133| is a method that it-
eratively solves linear inverse problems. It uses the negative gradient of the current
residual as search direction. The Landweber iteration has also been extended for solving
non-linear problems that involve constraints [134] and is applicable for time dependent

inverse problems [135].

The Landweber iteration has been used for image restoration [68] and recovery [69].
Further, it has been applied within the scopes of elastography |[71,/136|, earth sci-
ence [137], optics [138] and mathematics [139}/140]. The Landweber iteration is widely
applied in various fields of tomography such as magnet resonance imaging [70,71], elec-
trical resistance tomography [72], electrical impedance tomography [73,/74], electrical
capacitance tomography [75-78|, absorption tomography methods [141}/142] and further
tomography methods [79-81].

In the electrical capacitance tomography, the aim is to reconstruct the permittivity
distribution from capacitance measurements within a cross-section or volume. The result
is a gray scale image as an estimation of the distribution of dielectric materials. In
[75], the Landweber iteration is used together with a fuzzy thresholding operator to
suppress low gray-level artifacts. The thresholding acts as regularization. This principle
is transferable to the inverse problem. The general Landweber iteration [133] is
defined as

B =0, — n[L]" ([L]6; — AFTEM/meas) (4.1)

where 9_;+1 depends on the step size n and the current defect identification vector 0;. The
lead field matrix [L] contains the approximate forward solution [(AFS]) (section [2.1.4.2]).
This formulation leads to a continuous 9_;-“, but it is known a priori that the defect

identification vector 0241 should contain ones for elements that belong to the defect and
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Chapter 4. Lorentz Force Evaluation using an Adapted Landweber Algorithm

zeros otherwise. The resulting idea applies a thresholding factor ¢, to 9:-“ such that

- _Joif 01 (k) < tn (max <5i+1> — min (9:+1>>
I G > o (e (1) i (7))

where k refers to the elements of §i+1. The thresholded 9_;-+17t act as new input for the
next iteration step of .

The aim of this Chapter is to analyze, whether the adapted Landweber iteration
can give benefits in terms of reconstruction of the defect depth, size and location. The
next section contains the description of the simulation and measurement setup.
Section describes the adapted Landweber algorithm and the determination of the
optimal number of iterations, step size n and thresholding factor ¢, based on simulated
data sets. The defect reconstruction results obtained from simulated and measured
data sets are described in section Section discusses the results and compares
them to the previous section about minimum norm estimation (MNE) with elastic net
regularization (ENR]) and Tikhonov-Phillips-regularization (TPR]) (section [3.2)). This

Chapter contains methods and results that were presented in [23].

4.2 Materials and Methods

4.2.1 Setup

Simulation A conducting specimen of size L x W x H = 400mm x 400mm X
100 mm is moved in z-direction relative to a spherical permanent magnet with a veloc-

ity v =0.1m/s. The specimen consists of stacked aluminum sheets with conductivity

F.
Permanent magnet : F .
Remanence B,=1.43 T ‘
— F\' Dm = 15 mm
M
éy 0z=1mm
Defect, g, = 1 S/m > %5 Az=2mm
g D,= 5mm f 7@ ****** &
= v=0.1 m/s
o
S
T » W =400 mm
st/ 2
L =400 mm

Aluminum sheets, g, =21 MS/m

Figure 4.1: Simulation setup: A specimen of stacked aluminum sheets containing a
defect is moved relative to a spherical permanent magnet.
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4.2. Materials and Methods

0o = 21 MS/m, each of thickness Az = 2mm. The spherical permanent magnet is lo-
cated at the lift-off distance 6z = 1 mm above the top surface of the specimen. The
permanent magnet of diameter Dy, = 15 mm is characterized by a homogeneous magne-

tization M = B./uo €, (By =1.43T), where B, describes the remanence.

A cylindrical shaped defect with diameter Dy = 5mm is located at the z-y-origin.
Different defect depths of d = 2,4 and 8 mm are investigated. The components
AFFEM. AF; EM and AFFEM are calculated using the weak reaction approach solved by
[FEM] (section at the observation points between |z| < 25mm and |y| < 25 mm.
The simulation setup is similar to the one described in section [3.2}

Measurement  The specimen under test (Fig. consists of stacked aluminum
sheets, each of thickness Az = 2mm. The total size of the specimen compromises
LxW x H = 250mm x 50 mm X 50 mm. It is moved relative to the cylindrical permanent
magnet with a velocity v = 0.1m/s. The permanent magnet is described by a diameter
of Dy = 22.5mm and a height of Hy, = 17.6 mm and homogeneously magnetized by

M = B./upé, (By = 1.437T). It is located dz = 1mm above the top surface of the

specimen.

A cylindrical shaped defect of diameter Dg = 5 mm and height Hqy = 2mm is located
at the x-y-origin (Fig. . The defect depths d = 2,4 and 8 mm are analyzed.

D, =22.5mm Va

Permanent magnet —, F . H,=17.6 mm

Remanence B,=1.43 T M

R 0z=1mm

Defect, 0,= 0 S/m > % Az=2mm

D,= 5mm /7 7@ ******* &
g - >
= v=0.1 m/s
o
T 7 W =150 mm
s i/ 2

L =250 mm

Aluminium sheets, g, =21 MS/m

Figure 4.2: Measurement setup: A specimen of stacked aluminum sheets containing a
defect is moved relative to a cylindrical permanent magnet.

This measurement setup is similar to the one described in section [3.2.1l Hence the
preprocessing steps and the resulting [DRSl components of the 25 repeated measurements

are identical.
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Chapter 4. Lorentz Force Evaluation using an Adapted Landweber Algorithm

4.2.2 Adapted Landweber Algorithm

In order to develop a Landweber algorithm adapted for the application in [LFEl a refer-
ence case is needed for parameter studies. The simulated data set with the cylindrical
defect at depth d = 2mm is selected. It is assumed that the defect depth is known.
Thus, only the second aluminum layer is discretized into 1mm X 1mm X 2mm
within a region of interest (ROI) [—25,—24,...,25]mm in 2- and y-direction around
the minimum of AFI*M, The oxell positions correspond to the elements of the defect
identification vector 6 that should be determined.
The Landweber algorithm including a thresholding is defined as

—

Ot = B, — (L] (L]0, — AFFEM/mens) (4.3)

where 9_;+1 depends on the step size n and the current thresholded defect identification
vector (9:'%. The lead field matrix [L] contains the (section . The step size n
should be chosen between 0 < 1 < 2/s2, where S denotes the the largest singular value
of [L] [133]. This formulation leads to a continuous valued ;4. In consequence, ;1 is
thresholded according to and inserted into as the new current gi,t,]-

The Landweber iteration needs an initial solution 50. It is chosen as a vector with
zeros and one ‘1’ at the element that belongs to the voxel at + = y = 0. The 2D
visualization of 6y within the region of interest is shown in Fig. bottom left.

In order to find the optimal values for the number of iterations I, step size n and
thresholding factor t,, parameter studies are applied. For that purpose n = 1/s2 and
tn = 0.5 are chosen initially and the number of iterations I = [1,10, 100, 1000, 10000]
should be tested. In order to find the optimal thresholding factor ty, the varying
tn = [0.125,0.25,...,0.875] should be investigated using the chosen I and the fixed step
size n = 1/s2. Finally, the optimal n should be chosen with obtained I and ¢y in the
range 0 < 7 < 2/s2. The measure for choosing the optimal parameters is the NRMSE]

2
\/N n ) ( FAFS _ AFFEM/meaS)
NRMSE = min [ RAFS RFEM/meas]
/L z7y’
with RAMS = max (AFAFS) — min (AF;AFS)

and RFEM/meas ma (AFFEM/meas) _ min (AF—';FEM/meaS) , (4.4)

where n indicates the current position of the permanent magnet. The describes
the deviation between the obtained from simulations or measurements and
the forward calculated from the reconstructed defect.
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4.2. Materials and Methods

Number of iterations Fig. shows 6, after the first iteration according to .
The thresholding factor ¢, = 0.5 has been adapted to the fixed value of ¢, = 0.02 as
the side minima of 6; are very small (Fig. logarithmic color scale). Otherwise
the thresholded solution gl,th would have been the same as the initial 50. Fig.
further shows that 01th acts as input for the second iteration. The resulting continuous
52 is thresholded and the corresponding 527th act as input for the third iteration and
so on. It can be observed that the same continuous 6; is determined by 1} from
the second iteration onwards (Fig. top). That means that the same thresholded
é’i’th is determined after first iteration (Fig. E, bottom), i.e. the same defect would
be reconstructed. Thus, has to be applied only once and I = 1 is used in the

remaining parts of this chapter.

Amplitude of 0_;
1 2 20
g
0.01 p 0
00()01 > -20
20 0 20 20 0 20 20 0 20 20 0 20
\00 wmmm \00 l‘l mm wmmm 0 xlnmm
6‘ K {b‘ Q}
N x\@ ﬁ)\'@' >
911 ,th 94f
= 20
g
= 0 [ | [ | [ | |
= -20
20 0 20 20 0 20 20 0 20 20 0 20 20 0 20
T in mm T in mm T in mm T In mm T In mm

Figure 4.3: Principle of adapted Landweber iteration in [LFE} The initial solution
leads to a continuous 6, the thresholded 614, acts as input for the next iteration etc.
Continuous values < 0 of 0; are indicated together by dark blue due to the logarithmic
scaling.

Thresholding factor and step size  Using the fixed step size n = 1/s2, it turned
out that the optimal ¢, depends on the size of the defect. Fig. [£.4] left shows that a
small #, leads to a large reconstructed defect and vice versa. In consequence, none of
the envisaged thresholding factors t, = [0.125,0.25,...,0.875] could be selected as fixed
thresholding factor if a fixed step size is used at the same time. On the other hand, if
the fixed thresholding factor ¢ty = 0.02 is used and the step size n is changed, a small
defect is reconstructed if 7 is small and a larger one if 7 is increased (Fig. , right). In

consequence, one of the two parameters has to be fixed. Here, the step size is fixed to

n=1/st.
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fixed step size 1) = 1/s? fixed thresholding factor £, = 0.02

20 20
é ,=0.01 S
= 0 . n= 0.1/5f = 0
> >

20 B § 20
. 20 k= 20
g = g
ER n=1ys;ag 0
= >

220 -20

2200 0 20 20 -10 0 10 20 20 0 20
T in mm T in mm T in mm

Figure 4.4: Influence of thresholding factor t;, and step size 1 on the defect identification
vector él,th: If the step size 7 is fixed (left), the reconstructed defect identification vector
517th depends on the used thresholding factor ty,. If ¢, is small (top left) a large defect
is reconstructed and vice versa. A fixed thresholding factor ¢, (right) with a changing
step size 1 leads to a small reconstructed defect identification vector gl,th if n is small
(top right) and vice versa.

Defect reconstruction scheme The derived defect reconstruction scheme is applied
layer-wise. It uses a fixed step size n = 1/52 and searches the minimal NRMSE] by testing
different thresholding factors ¢y. The singular value Sj is calculated from the lead field
matrix [L] (section 2.1.4.2). The minimal NRMSE] is obtained in a four-step approach
that reduces the thresholding factor range in every step by searching first for minimal
[NRMSE] by testing t, values in the range of [0,0.01,...,0.2] and then adapting the
new finer ty-range by searching in the surrounding region of the ¢, value that belongs
to the current minimal INRMSElL This step is repeated three times and the distance
between consecutive tp-values of the current ty-range is reduced in every step from 0.01,
0.001, to 0.0001 and 0.00001. The layer with the minimal [NRMSE]|indicates the defect
depth. The determined corresponding defect identification vector 9;}1 represents the

reconstructed defect.

4.3 Results

Simulations The defect reconstruction results are shown in Table .1 and Fig. 4.5 for
the three different defect depths d = 2,4 and 8 mm. The corresponding values
of 4.83%, 5.30% and 6.35% are minimal at the correct defect depths. Fig. [4.5] shows
the reconstructed defects for each of the investigated layers, color-coded according to
the corresponding [NRMSEl The minimal becomes less distinct with increasing
defect depth (Fig. a-c). The defect reconstruction error parameters introduced in

section [3.2] show that all centers of the defects are correctly reconstructed at z =y = 0.
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4.3. Results

Table 4.1: Results of defect reconstruction of simulated data using the adapted Landwe-
ber algorithm: The correct defect depth was estimated for d = 2,4 and 8 mm. The circle
indicates the shape of the true defect. The color-coding corresponds to Fig. [{.5 The
gray hatching indicates the number of that the y-extensions are estimated too
large. The gray dashed ellipses indicate the additional

Defect depth d in mm 2 4 8

Reconstruction at the layer
of the defect

Thresholding factor ty

Reconstructed depth in mm 2 4 8
Euclidean distance dj 0 0 0
from [0,0] in mm
Size in mm? 31 33 31
Size difference in mm? 11.37 13.37 11.37
T-extension T, in mm 5 5 5
y-extension Ye in mm 7 9 7
NRMSE in % 4.83 5.30 6.35

depth d in mm
depth d in mm

(c) NRMSE in %
0 500

100

depth d in mm

5

Figure 4.5: Defect reconstruction results from simulated data for the defect depths
d = 2,4 and 8mm (a-c): Reconstructed defects for the investigated aluminum layers
are color-coded according to the corresponding The minimal (red)
indicates the estimated defect depth. The correct defect is shown as black cylinder.

87



Chapter 4. Lorentz Force Evaluation using an Adapted Landweber Algorithm

The extension x, in z-direction is correct. The defect extension y, in y-direction is two
too large (Table , gray hatching) for the defects at the depths d = 2 and 8 mm.
That relates to 3 additional in each positive and negative y-direction (Table ,
gray dashed ellipses). For d = 4mm, the extension in y, in y-direction is 4 too
large (Table [£.1] gray hatching). The additional and the mismatch of a round
defect and the [voxell approximation lead to a size errors of 11.37mm? for the defects
at d = 2 and 8mm and of 13.37mm? for the defect at d = 4mm, respectively. The
thresholding factors ¢, decrease with increasing defect depth (Table .

Measurements The defect reconstruction results of 25 measurement trials are shown
in Table 4.2l The visualizations of the reconstructed defects show how often one [voxellis

recoustructed, where a frequency value of 25 represents a reconstruction in all 25 trials.

The adapted Landweber iteration yielded correct depth detection for d = 2mm. For
d = 4mm, the estimated depth is 2mm (Table . The depth of the defect at d = 8 mm
is estimated at 4mm in 23 /25 cases and at 6 mm in 2/25 cases. Table[t.2)shows the defect
reconstruction error measures for the correct depth in order to assess the properties like
defect shape and location in z-y-plane. The centers of the reconstructed defects are
slightly shifted. This shift in mainly negative y-direction is below 1mm, reflected by

the Euclidean distance dg. The mean defect extensions in z-direction z, are slightly too

Table 4.2: Results of defect reconstruction of measurement data using the adapted
Landweber algorithm: The reconstructed defect and the corresponding defect recon-
struction error parameters are shown as mean + standard deviation for the correct depth.
The circle indicates the shape of the true defect. Wrong reconstructed depths and the
corresponding are indicated by asterisks.

Defect depth d in mm 2 4 8
5 5
g g
g 0 = 0
Reconstruction at the layer R K=
of the defect > >
- -5
20 2 420 2 4
T in mm T in mm r in mm
Frequency of reconstructed voxels ‘ ‘ .
5 10 15 20 25
Thresholding factor t, 2.01-10734+8.59-107% 6.9-1073+3.97-1075 6.9-1073+3.97-107°
Reconstructed depth in mm 2 2% 4.24 +0.66*
Euclidean distance do 0.82 + 0.08 0.64 + 0.08 0.67 4+ 0.24
from [0, 0] in mm
Size in mm? 27.40 +0.50 28.64 +0.49 27.04 £ 0.73
Size difference in mm? 7.77 £ 0.50 9.01 £0.49 7.41+£0.74
r-extension xe in mm 4.48 +0.51 4.80 +0.41 4.60 + 0.50
y-extension ye in mm 7.68 £0.48 8.00+0 7.84 £0.37
. 11.33£0.14 14.37 £0.24
NRMSE in % 10.27+0.14 (10.68 £ 0.13)* (13.54 & 0.24)*
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NRMSE in %
500

100

Figure 4.6: Defect reconstruction results from measurement trial no. 1 for the defect
depths d = 2,4 and 8 mm (a-c): Reconstructed defects for the investigated aluminum
layers are color-coded according to the corresponding The minimal NRMSEI
(red) indicates the defect depth. The correct defect is shown as black cylinder.

small whereas the mean y, are a bit too large (Table . This leads to mean size errors
aq between 7.41mm? and 9.01 mm?. In accordance to the simulated data (Table ,
the mean [NRMSE] values increase for increasing defect depth. The reconstructed defects
of each layer for trial 1 are shown in Fig. [£.6] color-coded according to their NRMSEL
The correct defect depth is found for d = 2mm. For the defect depths d = 4 and 8 mm
the "hot spots" (e.g. minimal NRMSE]) are located above. The corresponding depths
are estimated at 2mm and 4 mm.

In order to investigate the influence of an improved SNRI (Fig. b, section, the
defect reconstruction by the adapted Landweber algorithm was applied for the averaged
with the defect depths d = 2,4 and 8mm. The defect error measures are in

accordance with the reconstruction results from the single trials.

4.4 Discussion

The adapted Landweber iteration achieves correct depth and adequate size estimation
of cylindrical shaped defects at the depths d = 2,4 and 8 mm for the simulated data
sets.

For the obtained from measurements, adequate size estimations are achieved,

but the correct defect depth could be obtained only for d = 2mm. For d = 4 and 8 mm
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the depth has been estimated above. It is known that defects close to the specimen
upper surface show smaller values. This behavior might occur as the forward
solution does not take the eddy current perturbations into account that occur in
the metal layers above the defect. Thus, if less metal layers are located above the defect,
the NRMSE] must be smaller. In consequence, a reconstruction of the defect above the
correct one (Table might be partly explained by this phenomenon.

The with and described in the previous chapter showed a correct
defect depth estimation. That indicates the sensitivity of the depth estimation to the
used inverse method if the forward solution is used. Further, the assumes
an infinitely extended conductor in z- and y-direction (Chapter 2.1.4.2). That might
explain why the reconstructed depth is correct for the simulated data sets, where the
extensions of the specimen are larger (Fig. in comparison to the measurement setup.

The advantage of the presented adapted Landweber algorithm is the calculation time.
Calculations have been performed using MATLAB® 2018b with an Intel® Core " i7-
4790K processor an 32 GB of RAM. The calculation of one single defect identification
vector 6y, needs ~ 0.35s in contrast to MNE] with [TPRl or [ENR] that need between 0.5
and 3s (section . For one metal layer under investigation, defect identification
vectors 0, are calculated and investigated for 65 different thresholding factors ¢, by the
adapted Landweber algorithm. In contrast, in [MNE] with [TPR] (Algorithm [1)), defect
identification vectors are calculated for 500 different regularization parameters A and for
each of them different thresholding factors ¢, between 0.01 and 0.99 are evaluated. In
with (Algorithm [2), the defect identification vectors are calculated for 200
different regularization parameters A and a fixed thresholding factor t;,. To summarize,
the adapted Landweber iteration needs less function calls per investigated metal layer
in comparison to with and [ENRl However, in order to use the adapted
Landweber algorithm for further work, the defect depth has to be estimated with another

method or a more accurate forward solution has to be used.

90



5 Lorentz Force Evaluation with an Extended

Area Approach

5.1 Introduction

The defect reconstruction quality depends on the accuracy of the used forward solution.
Previous studies [10,/17,22] in [LEEl used the approximate forward solution (AES). It is
known from comparisons to [FEM]simulations 18] that the [AFS|shows the best accuracy
in forward calculation for defects of uniform shape, e.g. of cylindrical or cuboidal shape,
where the edges of the cuboid in z- and y-direction are of equal length. In the fast
and simple only the defect is discretized and used for forward calculation of the
(section 2.1.4.2). The extended area approach (EAA) represents an extension of
the [AFS] where an extended area surrounding the defect is discretized and used for
the calculation of the (section [2.1.4.3). The shows improved accuracy for
the forward calculation of cuboidal defects with non-equal edge lengths or ellipsoidal
defects [18]. The is computationally more expensive than the

The aim of the current study is to compare the defect reconstruction performance
of both forward solutions. It should be investigated whether an improved diameter
and depth estimation of cylindrical shaped defects is possible with For that
purpose simulated and measured data sets with cylindrical defects at different depths are
investigated. Further, it is investigated whether a more accurate length-width estimation
of a cuboidal defect is possible with based on a simulated data set.

The remaining chapter contains the description of the simulation setup with cylin-
drical defects and a cuboidal defect as well as the description of the measurement setup
in The subsections and contain the descriptions of the diameter-depth
scan and the length-width-depth scan. Both scanning methods aim to avoid that the
comparison of the defect reconstruction performance is biased by the properties (e.g.
parameter selection) of an inverse method. Subsection contains the results and dis-
cussion of the scanning methods applied to the investigated simulated and measured
data sets. A conclusion is drawn in 5.4l Parts of the methods and results have been

published in [24] and presented at [25H27].
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5.2 Materials and Methods

5.2.1 Setup

Simulation A conducting specimen of size L x W x H = 400mm x 400 mm X
100 mm is moved in z-direction relative to a spherical permanent magnet with a velocity
v = 0.01m/s. The specimen consists of stacked aluminum sheets with conductivity
oo = 30.61 MS/m, each of thickness Az = 2mm. The spherical permanent magnet
is located at the lift-off distance dz = 1mm above the top surface of the specimen.
The permanent magnet of diameter Dy, = 15mm is characterized by a homogeneous

magnetization M= B /o€, (By = 1.17T), where B, describes the remanence.

Ao F,
Permanent magnet «, :
remanence B, = 1.17 T - [ D,
/] %K 0z=1mm /| Ase
/ / Defect, ,=0 S/m : z=2mm
// D,=5 mmf b‘ L UL S - i d
v=10.01 m/s
H=100 mm|, W =400 mm
41/1'. = 4
' L =400 mm "

Aluminum sheets, g, = 30.61 MS/m

Figure 5.1: Simulation setup: A specimen of stacked aluminum sheets containing a
defect is moved relative to a spherical permanent magnet.

Two different defect configurations are investigated. First, a cylindrical shaped defect
with diameter Dy = 5mim is located at the z-y-origin. Different defect depths of d = 2,4
and 8 mm are investigated. Second, a cuboidal defect of dimensions Lg x W3 x Hq =
12mm X 2mm X 2mm, also located at the z-y-origin, at the depth d = 2mm is analyzed.

The components AFYEM AFyFEM and AFFEM are calculated using the weak
reaction approach solved by (section at the observation points between
|z] < 25mm and |y| < 25mm for the cylindrical defect and || < 30 mm and |y| < 30 mm
for the cuboidal defect. The region of observation points is larger for the cuboidal defect

as the components, especially the side minima and maxima, are more extended

(Fig. b.2).

Measurement The specimen under test (Fig. consists of stacked aluminum
sheets, each of thickness Az = 2mm. The total size of the specimen compromises
LxW x H = 250mm x 50 mm x 50 mm. It is moved relative to the cylindrical permanent

magnet with a velocity v = 0.1 m/s. The permanent magnet is described by a diameter
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Figure 5.2: [DRS components AFSEM AFyFEM and AFFEM for the cylindrical shaped
defect (a) and the cuboidal shaped defect (b), both at depth d = 2mm. The side maxima
and minima of the [DRS| components are more extended in (b).

of Dy, = 22.5mm and a height of H, = 17.6 mm and homogeneously magnetized by
M = Bi/poé. (B, = 1.437T). Tt is located 6z = 1mm above the top surface of the
specimen. A cylindrical shaped defect of diameter Dq = 5mm and height Hy = 2mm is
located at the z-y-origin (Fig. |5.3). The defect depths d = 2,4 and 8 mm are analyzed.

This measurement setup is similar to the one described in section [3:2.1] Hence the

F. E
Dm=22.5mmJ:_—_—_—- Yo
Permanent magnet — F_ |H=17.6mm

Remanence B,=1.43 T ME&F_

A2y 0z =1mm

Defect, g,= 0 S/m >< 1y Az=2mm

Dd=5mmf_ 7" >
é — v=0.1 m/s
=
T2 W =50 mm
i o

L =250 mm

Aluminium sheets, g, =21 MS/m

Figure 5.3: Measurement setup: A specimen of stacked aluminum sheets containing a
defect is moved relative to a cylindrical permanent magnet.
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Chapter 5. Lorentz Force Evaluation with an Extended Area Approach

preprocessing steps and the resulting [DRSl components of the 25 repeated measurements

are identical.

5.2.2 Diameter-Depth Scan (cylindrical defect)

It is assumed that the defect height Hy = 2mm is known and equal to the aluminum
sheet thickness Az. Further, it is assumed that the defect shape is cylindrical. The
is calculated by (section and by [EAA] (section [2.1.4.3). For the [EAAl that
considers an extended area around the defect for the calculation of the (section
, an appropriate size of the extended area has to be chosen. The size of the
extended area is represented by the extension factor e . For that purpose, the
components for the cylindrical shaped defect at depth d = 2mm are calculated for
e=1[0,1,2,...,10] and compared to the components obtained by [FEM] (Fig. a)
using the (2.31)). Fig. shows the NRMSE] for the different extension factors

E.

S

W

/

2 4 6 8 10
Extension factor e

—_

NRMSE in %
\]

S
S

Figure 5.4: Parameter studies of an appropriate extension in[EAAlfor a cylindrical defect:
A stable saturation of [NRMSEI] without noticeable further improvement is reached at
e~ 6 (arrow).

The extension factor is chosen as ¢ = 6, as the starts to saturate at this point
(Fig. [5.4] arrow). A further increasing of the extension factor ¢ only leads to a small fur-
ther decrease of the NRMSE], but the computational time increases according to .
The cylindrical defect shows a cross-sectional shape in z-y-direction of a circle. In con-
sequence, the main axes lengths ¢, and ¢, are equal to the defect diameter Dy = 5mm.
Thus, the area Aeyt that is taken into account for equals Agxt = 30mm x 30 mm
in - and y-direction around the center of the defect according to . This area
increases according to for cylindrical defects of larger diameters.

For the diameter-depth scan, different possible defect diameters Dg = 1,3,5,...,50
mm are used for the calculations. The calculations are performed from metal layer 1
(depth d = O0mm) to metal layer 11 (depth d = 20mm). For each calculation, the
between the calculated by or and the obtained from
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simulations or measurements is determined as

n,t

\/ AFS/EAA N FFEl\/[/meas)2
N n 1 ;

NRMSE = - min [ RAFS/EAA RFEM/meas]
Z ac7y7
with RAFS/BAA _ o (AFAFS/EAA> (AFAFS/EAA)
with RFM/meas — jpax (AF’Z-FEM/meaS) — min (AF;FEM/meaS) . (5.1)

The is the mean of the errors of z-, y- and z-components for N observation
points. At each layer, the diameter, that results in the lowest NRMSE], is determined.
The layer with the lowest gives the result for the depth and the diameter of the
defect determined by the diameter-depth-scan.

5.2.3 Length-Width-Depth Scan (cuboidal defect)

The length-width-depth scan also assumes that the defect height Hy = 2mm is known.
The defect shape is assumed to be cuboidal. The is calculated for different length-
width-combinations Lq = 1,2,...50mm and Wy = 1,2,...50mm by (section
and by (section . Similarly to the diameter-depth scan an appro-
priate extension factor € has to be chosen for the [EAAl For that purpose, the [DRS
components are calculated by [EAA]l for varying extension factors e = [0,1,2,...,7] for
the cuboidal defect of 12mm x 2mm x 2mm and compared to the components
computed by [FEM] (Fig. b) using the ([2.31). Fig. shows the
for the different extension factors e.

The extension factor is chosen as € = 5, as no further decreasing of the INRMSTY can
be observed (Fig. 5.5 arrow). Thus, for the 12mm x 2mm x 2mm defect the extended

area equals Aegxy = 84mm X 84 mm in z- and y-direction around the center of the

.34
X fe32
g g
= ! . 3
2! wn
= S 28
~ ~
Z Z 2.6
| 24 I
1 2 3 4 5 6 7 2 3 4 5 6 7
Extension factor e Extension ¢

Figure 5.5: Parameter studies of an appropriate extension in [EAA]for a cuboidal defect:
A stable saturation of NRMSE] without noticeable further improvement is reached at
e~ 5 (arrow).
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Chapter 5. Lorentz Force Evaluation with an Extended Area Approach

defect according to . This area changes according to for other length-width
combinations of cuboidal defects.

For the length-width-depth scan, the calculations are applied from 15 to 11*" metal
layer. The NRMSElis calculated similarly to (5.1)), but only the z- and the z-component
are used, since including the y-component yielded partly instable reconstruction results.
At each layer, the length-width-combination, that results in the lowest NRMSEL is de-
termined. The layer with the lowest gives the result for the depth, the length
and the width of the defect determined by the length-width-depth-scan.

5.3 Results and Discussion

Simulations Fig. shows the cylindrical defects obtained by diameter-depth scan
for each of the investigated aluminum layers. The reconstructed defects are color-coded
according to the corresponding values. The lowest values correspond
to the color red, indicating a possible defect position as a hot spot. The diameter-depth
scan using the yields correct depth estimation for all three investigated defect
depths d = 2,4 and 8mm as the minimal values can be found at the correct
depths (Fig. right column, arrows). The diameter-depth-scan with (Fig. [5.6}
left column) yields correct depth estimation for d = 2,4 and 8 mm. The diameter-depth
scan with [EAA] determined the correct defect diameter Dy = 5mm (Fig. , right
column, bold circles). A too large defect diameter of Dy = 7mm is determined by the
diameter-depth scan with (Fig. [5.6] left column). The diameter-depth scans with
both forward solutions show that the minimal increase with increasing defect
depth. Additionally, the minimal values become less distinct. However, the
diameter-depth scan with [EAA] still yields more distinct minimal values than
the diameter-depth scan with (Fig. [.6)).

The results of the length-width-depth scan based on the are shown in Fig.
for the aluminum layers 1 to 4. It shows the color-coded, where the minimal
[NRMSEl of 6.1 % at the correct depth d = 2mm corresponds to the defect size Lq x Wy =
7mm x 10mm (Fig. 5.7 asterisk). The layer-wise minimum (Fig. [5.7] asterisk) further
moves from the left bottom corner to the top center for the layers 5 to 11, which are not
depicted here.

The results using the forward solution are shown in Fig. [5.8] The lowest
can be found in layer 2, too. Thus, the correct defect depth is detected. The
of 1.7% is smaller compared to and corresponds to a length and width
of the defect of Ly x Wy = 11 mm x 2mm, which is closer to the correct extensions of
Lg x Wy = 12mm x 2mm than achieved by [AFSl A larger defect is estimated for deeper
metal layers as the layer-wise minimum (Fig. asterisk) moves from the bottom left

corner to the right center for layers 5 to 11, which are not depicted here.
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Defect Approximate Forward Solution Extended Area Approach
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Figure 5.6: Results of diameter-depth scan using (left) and [EAAI (right) for
obtained from [FEM] simulations investigating cylindrical defects at the depths d = 2,4
and 8 mm: Determined cylindrical defects for each of the investigated aluminum layers
are color-coded according to the corresponding values. The defects with the
lowest INRMSE] values indicate the estimated defect depths. The correct defect depths
and diameters are indicated by arrows and bold circles, respectively.

In order to show the direct comparison of and [EAAl regarding the defect recon-
struction performance, the minimal [NRMSEI values of each metal layer (Fig. and
Fig. asterisks) are visualized in Fig. m with the corresponding defect extensions.
It can be observed that the NRMSE] values are larger for compared to [EAAl The
length-width-depth scan based on [EAA] shows a steady increase of the estimated defect
extensions for deeper metal layers (Fig. b). In contrast, the length-width-depth
scan based on shows the estimation of much larger defects than expected for the
metal layers 6 to 9 (Fig. a, side views). This behavior occurs as the corresponding
length-width{NRMSE] functions show a structure with two minima within the observed
parameter range. Fig. [5.10] a shows this behavior exemplary for metal layer 6. In con-
trast, the length-width{NRMSE] functions based on [EAA] show a structure with only

one minimum that is present for all 11 observed metal layers and explains the steady
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Figure 5.7: Detailed view on length-width-depth scan based on [AFS|for metal layers 1-4
(a)-(d). [NRMSEI values for different length-width-combinations of the possible defect
are color-coded. The limits of the color bar indicate the minimal and maximal
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Figure 5.8: Detailed view on length-width-depth scan based on [EAAlfor metal layers 1-4
(a)-(d). [NRMSEI values for different length-width-combinations of the possible defect
are color-coded. The limits of the color bar indicate the minimal and maximal NRMSE]
of each layer. The white asterisks indicate the length-width combination of each layer
with minimal
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Figure 5.9: Results of length-width-depth scan using (a) and [EAA] (b) for
obtained from [FEMlsimulations at the depth d = 2mm: Determined cuboidal defects for
each of the investigated aluminum layers are color-coded according to the corresponding
values. The defects with the lowest [NRMSE] values indicate the estimated
defect depths. The correct defect depth is indicated by an arrow. The correct cuboidal
defect is shown by bold black lines.

increase of the defect extensions. Fig. [5.I0] b shows the structure with one minimum

exemplary for metal layer 6.
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Figure 5.10: Detailed view on the length-width-depth scan for metal layer 6 with two
minimum regions (dashed lines) for[AFS]| (a) and one (dashed line) for EAAI (b).
values for different length-width-combinations of the possible defect are color-coded. The
asterisks mark the minima.

Measurements  Fig. shows the determined defect diameters for each of the
investigated aluminum layers color-coded according to the for measurement
trial no. 1. The correct defect depth is determined by the diameter-depth scan based
on the indicated by the minimal values at the correct depths (Fig. [p.11]
arrows). The diameter-depth scan based on shows that the depth is estimated
correctly only for defect at d = 2mm. For d = 4 and 8 mm the depth has been estimated
at 0 and 4 mm respectively.

Table shows the mean defect depth + standard deviation estimated by diameter-
depth scan based on and and the corresponding values from 25
measurement trials. Additionally, the determined defect diameter at the correct depth
is shown as mean value £ standard deviation. The defect depth and the defect diameter
have been determined correctly by the diameter-depth scan based on [EAAlin all cases
for the investigated defect depths d = 2,4 and 8 mm. The diameter-depth scan based on
[AFSyielded correct defect diameters of Dq = 5 mm for the investigated defects at depth
d =2 and 8mm. For d = 4mm, in 4/25 cases the correct diameter has been determined.
The correct depth has been estimated for d = 2mm for all 25 measurement trials. For
the investigated defect depths d = 4 and 8 mm, the defect depths have been estimated
at 0.72 £ 0.98mm and 4 £ Omm, respectively. For the investigated depth d = 4mm,
depths of 0mm in 16/25 cases and 2mm in 9/25 cases have been determined.

The shows lower values for defects closer to the upper surface of the
specimen, what might partially explain the estimation of the defect depth above the
correct ones (Table [5.1)).
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Figure 5.11: Results of diameter-depth scan using [AFS (left) and [EAA] (right) for [DRSk
obtained from measurement trial no.l investigating cylindrical defects at the depths
d = 2,4 and 8 mm: Determined cylindrical defects for each of the investigated aluminum
layers are color-coded according to the corresponding values. The defects with
the lowest NRMSE] values indicate the estimated defect depths. The correct defect depth
and diameter are indicated by arrows and bold circles, respectively.

Table 5.1: Results of diameter-depth scan based on on [AFS| and [EAA] of 25 measure-
ment trials: Determined defect depth d, corresponding [NRMSE] and determined defect
diameter Dy at the correct depth are shown as mean + standard deviation.

Defect depth d=2mm

d =4mm

d = 8mm

Forward

solution AFS

EAA

AFS

EAA

AFS

EAA

Determined
defect depth
d in mm

2+0

2+0

0.72£0.98

440

440

8+0

NRMSE in % 12.30 £0.22

6.38 £0.19

12.47 £0.17

7.00 £0.21

13.62 £ 0.26

10.27 £0.35

Determined
defect diameter
Dq in mm

5+0

5£0

6.68 £0.75

5£0

5+£0

5+0
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5.4 Conclusion

In terms of defect reconstruction performance, the correct defect depths were determined
for simulated data sets with cylindrical and cuboidal defects for both forward solutions
and For the analyzed measurement data, the deeper cylindrical defects
(depths of 4 and 8 mm) where reconstructed above the correct depths if the forward
solution was used. In contrast, the correct depths were estimated with [EAAlL The
assumes an infinitely extended conductor in z- and y-direction (section .
That might partly explain why the reconstructed depths are correct for the simulated
data sets, where the extensions of the specimen are larger (Fig. in comparison to
the measurement setup (Fig. . A similar behavior was observable for the adapted
Landweber algorithm that also used the as forward solution (Chapter . In con-
trast, the minimum norm estimation with Tikhonov-Phillips-regularization and elastic
net regularization determined the correct defect depths for both simulated and measured
data (Chapter [3)). It also used the as forward solution.

For both simulated and measured data, the diameter-depth scans for cylindrical de-
fects and the length-width-depth scan for the cuboidal defect revealed more accurate
diameter and length-width estimations of the defect with compared to [AFSL

The more accurate is more expensive than regarding the computational
cost. The computation time of one single point ranges [1.1 ms, 232.9 ms] for
and [3.1ms, 7.4s| for The computations have been performed with the software
MATLAB® R2017a with an Intel® Xeon E5-2697v3 processor and 384 GB of RAM,
which is used for the expensive [FEM]| calculations, where the calculation of one single
point is in the order of minutes.

However, the [EAAl is optimized for the symmetry line of the system (y = 0) and
designed for defects of uniform shape [18|. Additionally, the iterative calculation scheme
(section requires non-linear inverse methods for defect reconstruction.

In consequence, a novel forward solution is needed that shows no restrictions regarding

the defect shape and allows the application of fast linear inverse methods.
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6 Single Voxel Approach

6.1 Introduction

The quality of the defect reconstruction depends on various factors such as the forward
solution, the inverse method, the measurement data, et cetera. Previous studies used
the approximate forward solution (AFS]) [10],17,/19,22| and the extended area approach
(EAA) [18[24] to model the

The is a simple and fast forward solution, but restricted to defects of uniform
shape, like a square or a circle. The is more accurate than the [18] but is also
limited to regular shaped defects, e.g. of rectangular or elliptical shape. Both methods

assume a single defect far away from the specimen edges.

The direct application of field computation methods, like [F'EEM] is not considered for
forward calculation, as the computation time of the for one observation point is
in the order of minutes. Additionally, a new calculation is necessary for every change
in the relative position between the permanent magnet and the specimen to implement
the relative motion. For the reconstruction of defect properties, several observation
points are necessary. Previous work used observation points in the range of 2,000-
4,000 [17,/19,122,24]. This would lead to an impractically high calculation time for the
components.

The current study aims to find a more accurate forward solution that overcomes
the limitations of and but is also fast and easy to include in a linear defect
reconstruction scheme. For that purpose, the novel single voxel approach (SVA]) is
introduced. It models the as a superposition of [DRSk from 1mm x 1mm x 1mm
defects. The single defect are calculated in advance using the boundary element
source method (BESM)) (section [38]. The is compared to the [FEM] using
the NRMSE] for a setup with an isotropic conducting specimen with defects of different
shapes and depths. Additionally, the values are compared to those of the
forward solutions and [EAA]

This chapter contains methods and results that have been presented at [28] and are
published in [29).
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Defect shapes
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Figure 6.1: Simulation setup and investigated defect shapes.

6.2 Materials and Methods

6.2.1 Setup

The setup (Fig. consists of an aluminum specimen of size L x W x H = 250 mm X
50mm x 50 mm with an isotropic conductivity of o9 = 20.41 MS/m. A spherical per-
manent magnet is located dz = 1mm above the top surface of the specimen. It is
characterized by a homogeneous magnetization of M =9.28-10° A/mé,. The diameter
of the magnet is Dy, = 15mm. The specimen is moved relative to the permanent magnet
in a-direction with a velocity of ¥ = 0.01m/s €. Defects of conductivity o4 = 0, with
the shapes depicted in Fig. [6.1] are investigated. All defects have a height Hq of 2mm,
except the L-shaped defect with a height Hq of 1 mm. The defects are placed centrally in
the z-y-plane. The two different defect depths d = 2mm and d = 10 mm are considered.

The components [AFFEM] 4 p. [AFyFEM]AxB and [AFIEM] 4. g are computed
at equally distributed permanent magnet positions within |z| < 30mm and |y| < 25mm

at z = 8.5mm. The z-position corresponds to the center of the spherical permanent

[AFEEM]AXB [AFFEM A><B AFFEM A><B
4
-20 )
g 20
g
= 0 0
> -20
20 -120 40
-20 0 20
T in mm T In mm T In mm

Ax B’ [AF;EM]AXB and

[AFZF EM] axp 1 BN: obtained by [FEM]| simulations for the rectangular defect in z-
direction (Fig. at depth d = 2mm.

Figure 6.2: Defect response signal components [AFwF EM]
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magnet. The distances between the observation points are d; = d, = 1mm in z- and
y-direction. The weak reaction approach is applied [33] and solved by [FEM]as described
in section Fig. shows the components [AFYEM] 4. g, [AF;EM]AxB
and [AF zF EM] 1B with A = 61 and B = 51 for the rectangular defect in z-direction at
d =2mm. The obtained by [FEM] serve as reference in this study.

In order to evaluate and compare the accuracy of (section , (section
and the novel against [FEM], the between reference compo-
nents obtained by [FEM| and each of the investigated forward solutions is determined
by

\/N S ( AFM—AFFEM)z
min [R, RFEM]

NRMSE =

i= z,yz
with R = max (Aﬁ,) — min (AF’Z)

with R = max <AF;FEM> — min <AF;FEM> . (6.1)

The NRMSE] is the mean of the errors of x-, y- and z-components for N = A x B

observation points.

6.2.2 Single Voxel Approach

The fixed setup given in Fig. is considered. Within this setup, a region of interest
(ROI)) is defined, where a possible defect is expected. This is discretized into K
[voxels] in this study of size 1 mm x 1mm x 1 mm. In advance, every single of this
is considered as a 1 mm x 1 mm x 1 mm single defect and the components are
calculated for the previously described observation points (section . The main idea
is that the components of a defect [AFSYA] 445, [AFySVA]AXg and [AFSVA]4uB
can be determined by the superposition of the from the single [voxell defects as

K
(AP 4y =D 0k ([AFiilap) with i € {a,y, 2} (6.2)
k=1

The variable 6, depicts whether a single contributes to the components
(0 = 1) or not (0 = 0). Considering the forward problem, only single voxell [DRS
components from belonging to the defect contribute to the components.
Regarding a defect reconstruction, the[DRS|components obtained from measurements
or simulations [AFEEM/meaS]Axg, [AFyFEM/meaS]AxB and [AFzFEM/meas}Axg can
be arranged in a vector AFFEM/meas ¢ R3(A-B)x1, Additionally, the sums of 1D can
be arranged in a matrix [L](3(4.p)x i) and a defect identification vector 6 € REX! with

entries 6, is built. With the vector-matrix-form AFFEM/meas — 1719 linear inverse
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methods are applicable. If the single voxel[DRS| components are calculated for the
once in advance by any forward computation method, various defect shapes at different
locations can be reconstructed with linear inverse methods. The [38] is chosen as
relatively fast and easy method to compute the single components in advance.

The superposition of single represents a linearization. The
obtained from the superposition of two neighboring in z-direction is smaller than
the obtained by of a corresponding 2mm X 1mm x 1mm defect. For the
neighboring of two in y-direction, it is the other way round. The reason is that
the calculated eddy current density distributions vary for the neighboring single
and the equivalent defect. The deviation is enhanced if more are neighbored.
Consequently, a linearization adjustment is applied as a second step in the [SVAl method.
The adjustment is applied directly to the single voxel[DRSk components. The neigh-
borhoods of single defect in z- and y-direction are considered. components
are calculated for defects with the dimensions a x 1mm x 1 mm by and by
for a = 2,4, and 6 mm. Therefore, the linearization adjustment for neighborhood in

z-direction is calculated by point-wise division

[AFEESM(CL)} {AFBESM(a)}
[ag]ch — C'><D7 [aa] — Y CXD’
{AFEVA(a)} Yy1COxD [AFEVA(a)}
CXD[AFEESM(G)} CxD
[a? OxD (6.3)

loxp = [AFZSVA(Q)}
CxD
The linearization adjustments are calculated for the depths d = 2mm and 10 mm sep-
arately. A 2D median filter of the neighboring values treats the cases where a division
by 0 would be present. The defects are placed centrally in the z-y-plane and the adjust-
ment functions are calculated for the area of C x D points that is larger than the area of
the observation points A x B. Equivalently for neighborhood in y-direction, [Bg} OxD’
[BZ] COxD’ [BIZ’] ox p are calculated for defects with the dimensions 1 mm X bx 1 mm, where

b=2,4, and 6 mm.

The linearization adjustment is applied oxellwise (Fig. [6.3). The dominant neigh-
borhood for the k-th single of a rectangular defect in z-direction (Fig. c,
green) is in z-direction, where ¢ = 6 mm (Fig. ¢, orange rectangle) is used. The pre-
calculated adjustment functions with C' x D elements (Fig. b) are shifted such that
the position fits the position of the neighborhood (orange rectangle) and cut into A x B
elements (Fig. d). In the case where the neighboring are longer than the best
fitting neighborhood, the neighborhood is shifted like a moving window (Fig.|6.3|c). The
adjustment functions are multiplied point-wise to the single components.
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Figure 6.3: Principle of linearization adjustment exemplary for the rectangular defect
in z-direction: For the k-th [voxell (green, ¢), the neighborhood in z-direction (6 mm,
orange rectangle) is used. The adjustment function components [ag]CX D [ag] OxD

and [ ]C p are shifted such that the position fits to the position of the neighborhood
(orange rectangle). The cut adjustment functions (d) are multiplied point-wise with the
k-th single voxel[DRS| components (b), where the color scales are in uN.

6.3 Results

The calculation of the by [AFS] [EAA] and for different defect shapes leads to
the NRMSE] values in comparison to [EEM] simulations shown in the Table for
the defect depths d = 2mm and 10mm. Fig. shows exemplary components
for the rectangular defect in x-direction. The values are the smallest for
in all investigated cases. The improvement is more pronounced for the deep defects at
d = 10 mm. For[AFSland [EAA] the[NRMSE] values have a larger increase from d = 2 mm
to d = 10mm compared to the

6.4 Discussion

The[A'S shows the lowest errors for the cylindrical and the L-shaped defects (Table,
where the relatively low error for the L-shaped defect might be explained by error com-
pensation as the defect consists of two parts, one with extension in z-direction and one
with extension in y-direction. The values increase for deeper defects, which
is in line with previous work [22]. Despite these NRMSEE, appropriate size and depth
estimation of cylindrically shaped defects were conducted in ,,. A correct depth
estimation is possible with even if the estimated defect size is not correct .
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10 mm

d=

20 0 20 -20 0 20 -20 0 20
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AF investigated forward model AF_FEM
== AF_ investigated forward model — AF_FEM

Figure 6.4 components AF, (gray) and AF, (black) modeled by (left),
(middle) and (right) in dashed lines compared to (solid lines) for the
rectangular defect in z-direction at the depths d = 2mm (top) and d = 10 mm (bottom).
components are shown for the symmetry line (y = 0mm) where AF), vanishes.

Table 6.1: in % comparing the calculated by [AFS and in
comparison to [FEM] for different defect shapes at the depths d = 2 and 10 mm.

Defect depth d 2mm 10 mm
Forward solution | ypg | gaa | svA | AFS | EAA | SVA
Defect
Rectangular (z-direction) 6.65 | 3.60 | 1.93 || 7.89 | 7.86 | 1.98
Rectangular (y-direction) 6.81 | 2.81 | 1.14 || 11.86 | 6.90 | 1.43
Cylindrical 4.13 | 142 | 0.52 || 892 | 6.38 | 1.27
L-shape 4.64 | 1.57 | 1.52 || 7.42 4.46 | 2.31

The [EAA] for isotropic conductors shows lower values compared to
(Table [6.1). Previous work showed this improvement in terms of length and width
estimation of a rectangular defect [24]. The increase of the values for deeper
defects might be partly explained by the fact that the [EAA] for isotropic conductors
is optimized for defects relatively close to the surface [18]. The study shows that for
the T-shaped defect at depth d = 2mm low [NRMSE] values are achieved by [EAAl For
the example of the rectangular defect (z-direction), Fig. visualizes that the [EAA]
(Fig.[6.4] middle column) is optimized for the symmetry line as the difference from
(Fig. [6.4] right column) is relatively small. However, the values are calculated

from all N = A x B observation points that are necessary for a defect reconstruction.

The novel shows the lowest values for all investigated cases. The major
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advantage is observed for the deep defects where the values are smaller than
2.5%. 1If the would be used without the linearization adjustment functions, the
values could increase up to 9% in the worst case. The uses the
for the calculation of the single in advance. The is chosen in this
particular study because it is relatively fast and easy to compute [38]. Other simulation
methods are also conceivable such as or the method of fundamental solutions |143].

The calculations have been performed on an Intel® CoreTM i7-4790K processor and
32 GB of RAM using MATLAB® R2018a. The calculations of the components
AF,, AF, and AF, for the analyzed observation points e.g. for the rectangular defect
in z-direction require 0.23s, 165s and 0.12s for [ATS] and [SVA] respectively.

The can be formulated in a vector-matrix form due to the superposition princi-
ple. This allows the application of linear inverse methods in future work. The current
implementation is defined for defects with low extension in z-direction. The [SVA| can
be expanded easily for defects with high extension in z-direction by introducing a lin-

earization adjustment for consideration of the neighborhood of in z-direction.

6.5 Conclusion

The novel forward solution yields smaller than and [EAAlfor different
defect shapes and depths in the calculation of the in The next step would be
the formulation of the in a vector-matrix form and the application of linear inverse

methods for defect reconstruction.
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7 Velocity Dependent Lorentz Force Evalu-
ation: A Simulation Study

7.1 Introduction

In [LFE]l the defect properties such as location and shape of the defect are determined
by solving an ill-posed inverse problem [10,/17,19,[22] as also described in section .

The depth estimation is realized by performing the defect reconstruction separately
for each conducting layer of the specimen under investigation. The analysis yields a
possible defect with a corresponding error for every single layer. This error is defined
as the between the obtained from measurements or simulations and the
forward calculated [DRSl The conducting layer with the lowest error indicates the defect
depth. In [LFE] the of a small defect near the top surface of the specimen and a
larger and deeper defect can be similar. This leads to similar NRMSEE, aggravating the
depth estimation. The problem is illustrated in Chapters [3] [ and 5] This characterizes
the [LFEl as an ill-posed inverse problem and the defect depth estimation as a challenging
task.

Thus, the aim of the current study is, to introduce a novel principle, referred to as
velocity dependent [LEE]L to estimate the defect depth. In [LEE] the amplitude
increases with rising velocity. But due to the motion-evoked skin effect, the of
deep defects is at the same time decreased. This effect is comparable to the skin effect
appearing in classical [ECEl where the response signal increases with rising frequency,
while the penetration depth decreases. The velocity dependent uses the defect
depth dependent change in signals by applying different velocities.

The remaining chapter shows the investigations how the motion-evoked skin effect
can be used to determine the defect depth. For that purpose, simulated data sets of
a specimen consisting of stacked aluminum sheets and a cylindrical permanent magnet
with different defect shapes and depths at varying velocities are investigated. From the
observed behavior of the simulated [DRSk, parameters for the defect depth estimation
are derived.

This chapter contains methods and results that have been presented at [30] and are
published in [31].
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7.2 Materials and Methods

7.2.1 Setup

A specimen of stacked aluminum sheets is moved relative to a cylindrical permanent
magnet (Fig. [7.1)). The specimen is characterized by a size of L x W x H = 250 mm X
50mm X 50mm with each aluminum sheet of thickness Az = 2mm. The aluminum

sheets are specified by a conductivity of o9 = 21 MS/m.

F.p
D, =22.5 mm ¥ !
Permanent magnet . /“ H =17.6 mm
Remanence B,=1.43T )f

/] A dz=1mm /|

/" Defect g
/ ,=0 SN‘ LY - - - i .

v
» W =50 mm
|/ »

V L =250 mm -
Aluminum sheets, g, =21 MS/m

50 mm

H

Figure 7.1: Setup: A package of stacked aluminum sheets containing a defect is moved
relative to the cylindrical permanent magnet. The interaction of the induced eddy
currents (orange lines) with the magnetic field leads to the Lorentz force.

The cylindrical permanent magnet is described by a diameter of D, = 22.5mm and a
height of Hy, = 17.6 mm with homogeneous magnetization M = By /po €y (By =1.43T),
where B, describes the remanence. The permanent magnet is located at dz = 1 mm
above the top-surface of the specimen.

Defects with the shapes depicted in Fig. with a height of hy = 2mm are in-
vestigated at different depths d = 0,2,4,6,8,10mm. The defects are located at the
z-y-origin. They are characterized by the conductivity oq = 0. The behavior of the
is analyzed for the relative velocities ¥ = [0.1,0.25,0.5,1,2.5, 5,10, 25| m/s €.

The Lorentz force components F, and F, are calculated along the symmetry line
(y = O0mm) of the setup, where Fj, vanishes. Calculations are performed with the
transient moving defect approach (section using the [FEMl The consecutive
observation points for x between —30mm and 30 mm have a distance of d, = 1mm.
Constant offsets are subtracted from the determined force components. These offsets are
related to the force components for the same specimen without a defect. The resulting
AF, and AF, are referred to as components. Fig. shows examples of AF, (a)
and AF, (b) for the long rectangular defect in x-direction.
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Figure 7.2: Investigated defect shapes.

7.2.2 Defect Depth Estimation Parameters

In [LFE] the amplitude increases with rising velocity according to and Ohm’s
law for moving conductors . An increasing velocity can be considered analogously
to an increasing excitation frequency like in classical An equivalent depth of
penetration for [LEFElL which is called motion-evoked skin depth can be approximated
by [20]

2Dy,

=4 — 7.1
3mvpgog’ (7.1)

In consequence, the motion-evoked skin effect reduces the penetration depth of the
induced eddy currents. Due to the decreasing penetration depth, the amplitudes
are additionally decreased with increasing velocity. The component AF, for the
long rectangular defect in z-direction shows that the amplitudes (Fig. a, red ranges)
increase for the high velocity of 10m/s (Fig. a, right) compared to the low velocity
of 0.1m/s a, left). This increase is reflected by the amplitude ratio a, orange
boxes). Due to the motion-evoked skin effect, this increase is smaller at the defect depth
d = 10mm (Fig. a, bottom) compared to d = 2mm (Fig. a, top). A similar
behavior can be observed for the component AF, (Fig. b).

Comparing the components at the velocities v = 0.1m/s and v = 10m/s, a
second effect is observable (Fig. [7.3)). The increasing velocity leads to a slurring of the
eddy current density distributions. In consequence, the components are shifted in
z-direction. This shift is for example represented by the position change of the main
peaks of AF, and AF; (Fig. [7.3] red arrows). The position shift (Fig. green boxes)
is increased for the defect depth 10mm (Fig. [7.3] bottom) compared to 2mm (Fig. [7.3]

top).
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Figure 7.3: Defect response signal components AF, (a) and AF, (b) obtained by
[FEMI simulations for the long rectangular defect in z-direction along the symmetry line
(y = 0mm) of the system: The component amplitudes (ranges indicated in red)
increase with increasing velocity (v = 0.1m/s (left) vs. v = 10m/s (right)), reflected
by the amplitude ratio. Due to the motion-evoked skin effect, these ratios are smaller
for deeper defect depth 10 mm (bottom) compared to the defect depth 2mm (top). The
increasing velocity also shifts the main peaks (red arrows) of the [DRS| components.

Based on these observations, the amplitude ratios r, and r, are defined as defect

depth dependent parameters by

[maX(AFaz) - min(AFx)}”high
[max(AF,) — min(AF,)|w ’

(7.2)

Te =

[max(AF.,) — min(AF, )] bish

[max(AF,) — min(AF,)]Vew ' (7.3)

Ty =

Additionally, the shifts s, and s, of the x-position of min(AF,) and max(AF), respec-
tively are derived as defect depth dependent parameters by

__,.Vhigh _ .Vlow
Sz = min(AF,) xmin(AFz)’ (74)

Sz = szﬁl(an) T AR (7.5)
7.2.3 Parameter Studies

The velocity vy is chosen as vy = 0.1m/s. At this velocity, the secondary magnetic

field from the induced eddy currents can be neglected. As a result, the DRS|components
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Figure 7.4: [DRS| amplitude ratios r, and r, and position shifts s, and s, for the long
rectangular defect in z-direction depending on the defect depth d and the velocities vyjgp .
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Figure 7.5: Motion-evoked skin depth (7.1)) for Lorentz force evaluation depending on
the relative velocity v for the setup shown in Fig. .

(Fig. a and b, left) are not shifted relative to the defect location. In consequence,

this velocity can be used as reference velocity vigy-

The other investigated velocities, see section @, act as possible velocities vpjgh.
Fig. @ shows the amplitude ratios 7, and 7, as well as the position shifts s, and s, for
the long rectangular defect in x-direction in dependence of the defect depth d and the
varying velocities vpigh-

It can be observed that for the velocities between 0.25 and 1 m /s no strong dependence
from the defect depth is visible (Fig. [7.4]). This corresponds to the motion-evoked skin
depth (Fig. , which is d > 10mm for these velocities. For the investigated setup, the
motion-evoked skin effect becomes more dominant for velocities vpignh > 2.5m/s, where
the dependence of the derived parameters from the defect depth becomes more clearly
visible (Fig. |7.4). The strongest dependence is observed for the velocity vhigh = 25m/s
(Fig. [7.4). These observations are similar for the other investigated defect shapes
(Fig. [7.6)). However, the detectability of the main peaks in the components is
aggravated at v = 25m/s (Fig. [7.7)), especially for AF,.
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Further, it has to be considered that a measurement setup with higher velocities is

more complicated to construct, as mechanical oscillations have to be taken into account

20].

simulation study.

In consequence, the velocity vpien = 10m/s is chosen as a compromise in this

(a)

.2 Tz T, g Sz Sz
"a’ E () I P
- =)
] &8
rglOO %_10
= o
2 g g
g ooy | Z -20
< 0246810 0246810 &~ 0246810 02462810
d in mm d in mm d in mm d in mm
(b)
.9 Tl‘ 'rz E 51' 82
3 g0
= g
° e
5 100 £ .10
= o
- £
g =g g -20
< 0246810 02462810 & 0246810 0246810
d in mm d in mm d in mm d in mm
(c)
.9 Ir.'L' T‘Z E S(L‘ SZ
200 CE
= g
2 &
= 100 < -10
= =
2 £
= () == 'g -20
< 0246810 02462810 ~ 0246810 0246810
d in mm d in mm d in mm d in mm
(d
9 Tz Ty g Sy Sy
"5 E () A
[} &
EIO‘)E E Z
= g
2 £
g () oo o— Z -20
<X 0246810 0246810 = 0246810 0246810
d in mm d in mm d in mm d in mm
Vnigh in m/s
-0-0.25-0-0.5-0-1-0=2.5-0-5-0-10-0=25

Figure 7.6: amplitude ratios r, and r, and position shifts s, and s, depending on
the defect depth d and the velocities vpign: (a) long rectangular defect in y-direction,
(b) short rectangular defect in x-direction, (c) short rectangular defect in y-direction,
(d) cylindrical shaped defect.
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Figure 7.7: [DRS components AF, and AF, at velocity v = 25m/s for the long rect-
angular defect in z-direction at depth d = 8 mm: The detection of the main peak (red
arrow) of AF, (left) is aggravated.

7.3 Results

Fig. shows 1y, 15, s; and s, in dependence of the defect depths d and defect shapes.
A parameter range (Fig. gray tubes) is built from minimal and maximal values at
each depth. This parameter range can be used for the depth estimation. For example,
a defect with 12mm x 2mm X 2mm at d = 6 mm leads to r, = 29.61, r, = 29.96,
Sy = —bmm and s, = —8mm (Fig. stars). From the amplitude ratio r, a defect
depth between 6 — 10mm (Fig. , double arrows) is derived. Equivalently, defect
depths between 6 — 8 mm, 0 — 6 mm and 6 — 8mm are determined from r,, s, and s,,
respectively (Fig. double arrows). Thus, based on the combined information, the
depth d = 6 mm can be estimated.

Ty T

2 g
= g
= g
g e
Ly
Z 2
%: 7%
< ' ‘ = -2 : ——
0246 810 0246 810 s 02462810 0246 810
d in mm d in mm A d in mm d in mm
Defect shape:
-~ rectangular in x-direction (long) rectangular in x-direction (short) -~ cylindrical

-~ rectangular in y-direction (long) - rectangular in y-direction (short)
Example:
* 1,7, 5,5, of exemplary defect H determined defect depth ranges

Figure 7.8: IDRS| amplitude ratios r, and r, and position shifts s, and s, depending on
the defect depth d and the depth shapes with vjoy = 0.1m/s and Vhigh = 10 m/s. The
Grey tubes indicate the derived parameter ranges.
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7.4 Discussion

The results of this simulation study indicate some of the requirements for a measure-
ment setup realizing the velocity dependent The minimal sampling rate of the
measurement system is

(7.6)

depending on the relative velocity v and the distance d, of consecutive measurement
points along one scanning line. In order to further improve the accuracy of the introduced
defect depth estimation parameters, a smaller d,, e.g. d, = 0.1 mm is conceivable.

In consequence, for the velocity viow = 0.1m/s, fs should be f; > 1kHz and f; >
100kHz for vjoy = 10m/s, respectively. This high sampling rate might be challenging
to realize. Using a small d,, the defect dependent behavior might be also observable at
lower velocities vhign. Thus, lower sampling rates are conceivable. Further, it should be
considered that the absolute force increases with rising velocity. The use of two different
force sensors is conceivable.

A prospective measurement procedure would first locate the central position of the
by a [LFEl scan of the specimen under test. After that, a relative movement along
one scanning line that crosses this center point is realized with the velocities vy and
Unhigh. The described parameters are calculated to determine the defect depth.

The general idea of using a high velocity relative to a low velocity for the determi-
nation of the defect depth is expected to be applicable to other movement patterns of
and also other forms of motion-induced eddy current testing.

The principle of the velocity dependent [LEL] can be related to the multi-frequency
eddy current testing [144]. In eddy current testing, the eddy currents are induced by a
time changing magnetic field. The sensed secondary magnetic field increases with rising
frequency but at the same time the penetration depth decreases due to the skin effect.
The depth estimation is based on the idea that a defect close to the surface will give a
strong response for a low and a high excitation frequency. In contrast, a deep defect will
give an additionally reduced or absent response signal at a high excitation frequency. In
the velocity dependent [LFE]l a low and high velocity are used instead of a low and high

excitation frequency.

7.5 Conclusion

The simulation study shows that with the use of two different velocities in a defect
depth detection is conceivable. Thus, the depth estimation can be realized before the
defect reconstruction procedure using the motion-evoked skin effect and a combined

decision based on the extracted parameters.
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8 Summary and Outlook

8.1 Summary

The aim of this thesis was to introduce novel inverse methods for the defect reconstruc-
tion in Lorentz force evaluation (LEFE]) and to compare it to the defect reconstruction
in eddy current evaluation (ECE]). Another objective was to investigate the influence
of varying forward solutions in on the reconstructed defect properties. Further,
a novel forward solution should be developed that overcomes the limitations from the
previous ones regarding defect shape and location. Moreover, a method to improve the

depth estimation of defects should be developed.

In this thesis, a minimum norm estimation with elastic net regularization in com-
parison to Tikhonov-Phillips-regularization was applied in order to determine the defect
properties from measurements. For that purpose, defect reconstruction schemes
have been developed based on parameter studies of simulated data sets. The concept of
the defect identification vector as source parameter has been introduced in this frame-
work, which gives a direct binary information which volume elements belong
to the reconstructed defect. The experimental analysis by [LEE] of an aluminum spec-
imen with a cylindrical defect showed comparable results for elastic net regularization
and Tikhonov-Phillips-regularization. Varying defect depths have been analyzed. Both
methods showed correct defect depth estimation and an appropriate size estimation of
the defect. The reproducibility of the reconstruction results within could be shown
from repeated measurements. The elastic net regularization slightly outperformed the

Tikhonov-Phillips-regularization in this point.

In [ECEl for comparison purposes also specimens of stacked aluminum sheets where
analyzed with one sheet containing the defect. Various defect depths have been analyzed.
Two shapes of defects where analyzed, a star-shaped one and a cylindrical one, where
the cylindrical one acts as qualitative comparison to the problem setup of [LFEl The
minimum norm estimation with elastic net regularization in comparison to Tikhonov-
Phillips-regularization applied to [ECElshowed that the elastic net regularization slightly
outperforms the Tikhonov-Phillips-regularization as the reconstructed shape of a star-

shaped crack was slightly better visible for deeper defects. For the cylindrical defect
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the diameter was estimated too large with both methods, which became worse with
increasing defect depth. For both defect shapes and both regularization methods, a
blurring of the reconstructed normalized current density norm maps was observable for
increasing defect depth.

The qualitative comparison of and showed that the quality of the defect
reconstruction with increasing defect depth is more stable in [LEE] compared to [ECEL
Additionally, the was able to reconstruct defects up to a depth of 8 mm, whereas
the [ECE]l up to 4 mm. However, it should be noted that the planar uniform excitation
coil used in this thesis, brings the advantage of the linearization of the inverse problem
but is not optimized for the analysis of deep defects. The is able to reconstruct
complex defect shapes, like the shown star, whereas the [LFE] with the used approximate
forward solution is optimized for regular defects with a circular or quadratic shape in
x-y-direction.

Another inverse method, the Landweber iteration has been adapted for the use of
It also used the approximate forward solution. The same experimental setup as
for the minimum norm estimation with Tikhonov-Phillips-regularization and elastic net
regularization has been investigated. The estimation of the defect sizes is comparable to
the results with the minimum norm estimation, but deeper defects are estimated above
the correct depth. The main advantage compared to minimum norm estimation with
Tikhonov-Phillips-regularization and elastic net regularization is that the computation
time is reduced as only one iteration step was necessary in the adapted Landweber
iteration.

Due to the diverging results of defect depth estimation and due to the restriction
of approximate forward solution to regular shaped defects with uniform extension, a
comparison of the defect reconstruction performance between the approximate forward
solution and extended area approach was carried out. It was investigated whether the
more computational demanding extended area approach gives better reconstruction re-
sults in terms of defect depth and extensions estimation. For that purpose, specimen of
stacked aluminum sheets with cylindrical and cuboidal defects have been investigated
by the goal-function-scanning methods: diameter-depth scan and length-width-depth
scan. It turned out that for experimental [LIFE] data, with approximate forward solution,
the defect depth was estimated above the correct one for deeper defects similarly to
the results with the adapted Landweber iteration. Further, the defect diameter of the
cylindrical shaped defect was partly estimated too large. In contrast, with extended area
approach the correct diameter and the correct defect depths have been determined. The
investigation of a cuboidal defect with non-uniform extensions showed that the extended
area approach gave better estimation of the length and the width of the defect.

In summary, it can be stated that the defect depth estimation showed dependencies

on the inverse method and on the accuracy of the forward solution. With the use of
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extended area approach as forward solution an improvement in defect reconstruction
performance could be achieved. However, the extended area approach is optimized for
the symmetry scanning line above a defect. It is also defined for regular shaped defects,
despite non-uniform defect extensions are possible. The extended area approach is an
iterative forward solution which excludes the fast linear inverse methods. Both forward
solutions assume a single defect far away from the specimen edges.

In order to minimize the restrictions regarding the defect shape and location, a novel
forward solution approach, referred to as single voxel approach, was developed. The
principle idea is to calculate the defect response signal of single defect once in
advance by a numerical simulation method. The defect response signal of a defect is then
calculated as a superposition of all that belong to the defect. The superposition
principle represents a linearization. Thus, the single voxel approach is capable for linear
inverse methods. The novel forward solution has been compared to numerical simulations
based on the finite element method by the normalized root mean square error (NRMSE]).
Various defect sizes and shapes at different depths have been investigated. The single
voxel approach showed across all simulations values <2.5 % compared to <8 %
for the extended area approach and <12 % for the approximate forward solution.

The previous work showed that the estimation of the defect depth from a 2D mea-
surement [LEE] signal remains a challenging task. Previously, the depth was estimated
by realizing defect reconstruction separately for each conducting layer of the specimen
under investigation. The layer with the smallest corresponding indicated the
defect depth. In[LEFEl the defect response signals of a small defect near the top surface
of the specimen and a larger and deeper defect can be similar. This leads to similar
[NRMSEE, aggravating the depth estimation. In consequence, a novel principle, referred
to as velocity dependent was developed. It uses the motion-evoked skin effect,
which alters the defect response signals of defects at different depths at a high velocity
in different ways. The developed principle uses a high velocity (v — 10m/s) in compar-
ison to a low velocity (v = 0.1m/s). The corresponding shifts and amplitude changes
of the defect response signals are used to determine the defect depth. The principle has
been successfully tested on simulated data sets with defects of various sizes, shapes and
depths.

To conclude, the presented further development of forward solutions and inverse
methods within the framework of and contributes to the ongoing development
in the field of NDEL
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8.2 Outlook

A major upcoming task might be the experimental validation of the velocity dependent
for that purpose the existing experimental setup has to be modified.

The principle of the developed forward solution single voxel approach could be used in
further applications of [LFEl other fields of nondestructive evaluation or further research
areas that require to solve inverse problems and are characterized by high computational
demands for an accurate forward solution.

Beside the presented inverse methods, further approaches might be interesting in
future investigations. In the field of minimum norm estimation, the total variation reg-
ularization [96] could be an appropriate regularization method for By minimizing
the total variation additionally to minimizing the data term unwanted details like noise
should be suppressed and edges are kept.

Additionally, the existing methods could be further developed for the reconstruction
of multiple defects with similar or varying conductivity values.

Another different direction could be the estimation of the defect properties from [LFE]
measurements by means of artificial neuronal networks and machine learning, which
are already used in other fields of nondestructive evaluation, e.g. in [ECEl [145-148],
ultrasonics [149,/150] or thermography [151]. This approach would be of special interest
if a [LFE] setup is brought into industry. The important features of the defect response
signals could be determined as input for the neuronal network. It would be trained for the
given setup with a wide range of possible defects. After the computational demanding
training phase, the actual estimation of defect properties would be in the range of a few

seconds.
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