
Faculty of Mathematics and Computer Sciences

Master’s Thesis

Music Similarity Analysis Using the Big
Data Framework Spark

Submitted in partial fulfillment of the requirements for the degree

Master of Science (M.Sc.)

Computer Science

presented by: Johannes Schoder

born: 3rd September 1994, Gera

ID: 169197

course of studies: M.Sc. Computer Science

supervisors: Prof. Dr. Martin Bücker, Ralf Seidler

date of approval: 17th May 2019

date of submission: 23rd September 2019



Zusammenfassung

Ein parametrisierbares Empfehlungssystem, basierend auf dem Big Data Framwork

Spark, wird präsentiert. Dieses berücksichtigt verschiedene klangliche Eigenschaften

der Musik und erstellt Musikempfehlungen basierend auf den persönlichen Vorlieben

eines Nutzers. Das implementierte Empfehlungssystem ist voll skalierbar. Mehr Lieder

können dem Datensatz hinzugefügt werden, mehr Rechner können in das Computer-

cluster eingebunden werden und die Möglichkeit andere Audiofeatures und aktuellere

Ähnlichkeitsmaße hizuzufügen und zu verwenden, ist ebenfalls gegeben. Des Weiteren

behandelt die Arbeit die parallele Berechnung der benötigten Audiofeatures auf einem

Computercluster. Die Features werden von dem auf Spark basierenden Empfehlungs-

system verarbeitet und Empfehlungen für einen Datensatz bestehend aus ca. 114000

Liedern können unter Berücksichtigung von acht verschiedenen Arten von Audiofeatures

und Abstandsmaßen innerhalb von zwölf Sekunden auf einem Computercluster mit 16

Knoten berechnet werden.



Abstract

A parameterizable recommender system based on the Big Data processing framework

Spark is introduced, which takes multiple tonal properties of music into account and is

capable of recommending music based on a user’s personal preferences. The implemented

system is fully scalable; more songs can be added to the dataset, the cluster size can be

increased, and the possibility to add different kinds of audio features and more state-of-

the-art similarity measurements is given. This thesis also deals with the extraction of

the required audio features in parallel on a computer cluster. The extracted features are

then processed by the Spark based recommender system, and song recommendations for

a dataset consisting of approximately 114000 songs are retrieved in less than 12 seconds

on a 16 node Spark cluster, combining eight different audio feature types and similarity

measurements.



Contents

Abbreviations iv

List of Figures v

List of Tables vii

List of Code Snippets viii

1 Introduction 1

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Music Information Retrieval and Big Data 4

2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Audio Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Fourier Transformation . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Mel Frequency Cepstral Coefficients . . . . . . . . . . . . . . . . 7

2.2.3 Other Audio Features . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 MIR Toolkits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Low-Level Audio Feature Extraction . . . . . . . . . . . . . . . 11

2.3.2 Music Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Melody / Pitch Extraction . . . . . . . . . . . . . . . . . . . . . 12

2.4 Music Similarity Measurements . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Timbre Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Pitch Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Note Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.4 Rhythm Based . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.5 Metadata Based / Collaborative Filtering . . . . . . . . . . . . 15

2.4.6 Genre Specific Features . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.7 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Data Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

i



2.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.2 Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.3 Music Similarity with Big Data Frameworks . . . . . . . . . . . 28

3 Similarity Analysis 29

3.1 Timbre Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Euclidean Distance . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Single Gaussian Model . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 Gaussian Mixture Models and Block-Level Features . . . . . . . 31

3.1.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Melodic Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Chroma Features Pre-Processing . . . . . . . . . . . . . . . . . 34

3.2.2 Similarity of Melodic Features . . . . . . . . . . . . . . . . . . . 38

3.2.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Rhythmic Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Beat Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Rhythm Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 Rhythm Histogram . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.4 Cross-Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Implementation 49

4.1 Underlying Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Audio Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Test Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Feature Extraction Performance . . . . . . . . . . . . . . . . . . 50

4.3 Big Data Framework Spark . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Feature Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.4 Distance Computation . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.5 Distance Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.6 Combining Different Measurements . . . . . . . . . . . . . . . . 71

4.3.7 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.8 Possible Improvements and Additions . . . . . . . . . . . . . . . 80

ii



5 Results 81

5.1 Objective Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Feature Correlation and Distance Distribution . . . . . . . . . . 81

5.1.2 Cover Song Identification . . . . . . . . . . . . . . . . . . . . . . 86

5.1.3 Genre Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.4 Rhythm Features . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Subjective Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Beyond Genre Boundaries . . . . . . . . . . . . . . . . . . . . . 92

5.2.2 Personal Music Taste . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Summary 94

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

References 97

A Appendix 103

A.1 Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.2 Spotipy Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.3 CD Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B Appendix - Private Music Collection 107

iii



Abbreviations

BH Beat Histogram

BPM Beats Per Minute

BRP Bucketed Random Projection

DAG Directed Acyclic Graph

DCT Discrete Cosine Transformation

DF Spark DataFrame

DFT Discrete Fourier Transform

DTW Dynamic Time Warping

ESA Explicit Semantic Analysis

FFT Fast Fourier Transformation

FMA Free Music Archive

GMM Gaussian Mixture Model

HDFS Hadoop Distributed File System

HPCP Harmonic Pitch Class Profiles

HT Hyperthreading

JS divergence Jensen Shannon divergence

JVM Java Virtual Machine

KL divergence Kullback-Leibler divergence

LSH Locality-Sensitive Hashing

MFCC Mel Frequency Cepstral Coefficients

MIDI Musical Instrument Digital Interface

MIR Music Information Retrieval

MP Mutual Proximity

MSD Million Song Dataset

RDD Resilient Distributed Dataset

RH Rhythm Histogram

RP Rhythm Pattern

SKL Symmetric Kullback-Leibler divergence

SQL Structured Query Language

TF-IDF Term Frequency - Inverse Document Frequency

UDF User Defined Function

YARN Yet Another Resource Negotiator

iv



List of Figures

1.1 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Example spectrograms linear (a) and log-scaled (b) . . . . . . . . . . . 6

2.2 Example spectrograms of a logarithmic frequency sweep . . . . . . . . . 7

2.3 MFCCs of a logarithmic frequency sweep . . . . . . . . . . . . . . . . . 7

2.4 Spectrogram of a guitar (a) and piano (b) sample . . . . . . . . . . . . 8

2.5 MFCCs of a guitar (a) and piano (b) sample . . . . . . . . . . . . . . . 8

2.6 MFCCs mean and standard deviation of a guitar (a) and piano (b) sample 9

2.7 Melodic and timbral features of the song Layla by Eric Clapton . . . . 9

2.8 Rhythm features of the song Layla by Eric Clapton . . . . . . . . . . . 10

2.9 Original scores, Rachmaninoff (a) and Beethoven (b) . . . . . . . . . . 12

2.10 Pitch extraction with Aubio . . . . . . . . . . . . . . . . . . . . . . . . 12

2.11 Pitch extraction with Melodia . . . . . . . . . . . . . . . . . . . . . . . 13

2.12 MIDI transcription Für Elise . . . . . . . . . . . . . . . . . . . . . . . . 13

2.13 Genre distribution of songs in various datasets . . . . . . . . . . . . . . 18

2.14 Extracted pitches, Spotify API (Spotipy) . . . . . . . . . . . . . . . . . 20

2.15 Million Song Dataset genre distribution [44, p. 6] . . . . . . . . . . . . 21

2.16 MapReduce algorithm [54] . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.17 Spark cluster scheme (according to [51, p. 46]) . . . . . . . . . . . . . . 24

2.18 Spark application UI examples taken from the recommender system . . 25

3.1 Construction noise, first 100 song recommendations based on Musly

toolkit (JS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Chroma feature examples . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Band-pass filtered audio, Sia - Chandelier . . . . . . . . . . . . . . . . . 35

3.4 Thresholded chroma features, Sia - Chandelier . . . . . . . . . . . . . . 36

3.5 Processed chroma features, Sia - Chandelier . . . . . . . . . . . . . . . 36

3.6 Workflow chroma feature extraction . . . . . . . . . . . . . . . . . . . . 37

3.7 Processing step 3 of chroma features in detail . . . . . . . . . . . . . . 38

3.8 1D cross-correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



3.9 2D cross-correlation of beat-aligned and key-shifted chromagrams (audio

snippets) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10 2D cross-correlation of beat-aligned chromagrams (Sia / Pvris - Chandelier) 43

3.11 Filtered cross-correlation (high-pass) . . . . . . . . . . . . . . . . . . . 43

3.12 Beat histogram examples . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.13 Rhythm pattern examples . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.14 Rhythm pattern extraction procedure as suggested by [70] . . . . . . . 46

3.15 Rhythm histogram examples . . . . . . . . . . . . . . . . . . . . . . . . 47

3.16 Detected onset examples (30 second song snippets) . . . . . . . . . . . 48

4.1 Performance of various toolkits on a single computer . . . . . . . . . . 55

4.2 Feature extraction of the FMA dataset on the ARA-cluster (performance) 57

4.3 Feature file sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Workflow Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Lazy evaluation and caching optimization . . . . . . . . . . . . . . . . . 69

4.6 Performance depending on the #Executors spawned . . . . . . . . . . . 73

4.7 Performance of different feature types . . . . . . . . . . . . . . . . . . . 74

4.8 Performance ARA, full workload, (MFCC + Notes + RP) . . . . . . . 75

4.9 Performance ARA, full workload, (JS + Chroma + RP) . . . . . . . . 75

4.10 Workflow of Merged DF approach . . . . . . . . . . . . . . . . . . . . . 76

4.11 Performance of two subsequent song requests, all features . . . . . . . . 77

4.12 Performance of descending importance filter and refine, all features . . 78

4.13 Performance depending on #Executors (36 CPU cores each) . . . . . . 80

5.1 Feature space example . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Correlation matrix, 95 random songs, 19 genres (5 each), 1517-Artists . 82

5.3 Cumulative distributions of distances . . . . . . . . . . . . . . . . . . . 83

5.4 Impact of SKL scaling on the weighted sum . . . . . . . . . . . . . . . 84

5.5 Correlation of features depending on SKL scaling . . . . . . . . . . . . 84

5.6 Scatter matrix, correlation 95 songs, 19 genres (5 each), 1517-Artists . 85

5.7 Genre recall rate on 1517-Artists dataset . . . . . . . . . . . . . . . . . 88

5.8 Scatter matrix, distances 1 random Rock&Pop song, 1517-Artists, 4 genres 89

5.9 Scatter matrix, distances 1 random Electronic song, 1517-Artists, 4 genres 90

5.10 Scatter plots rhythm features / BPM for random Rock&Pop and Classical

songs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.1 Distances 1 random song (Soundtrack), 5 genres (10 songs each) . . . . 103

vi



List of Tables

2.1 Number of songs in different music datasets . . . . . . . . . . . . . . . 19

4.1 Selected music datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Cover recognition rate - Top 1 . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Cover recognition rate - Top 5 . . . . . . . . . . . . . . . . . . . . . . . 87

vii



List of Code Snippets

2.1 MATLAB code for estimating similarities based on MFCCs . . . . . . . 11

2.2 Example cluster configuration Python . . . . . . . . . . . . . . . . . . . 26

2.3 Lazy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Librosa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Essentia standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Essentia streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Essentia streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Parallel Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Mpi4py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Slurm *.sbatch file for feature extraction with Essentia on the ARA-cluster 56

4.8 Notes preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 Rhythm patterns preprocessing . . . . . . . . . . . . . . . . . . . . . . 60

4.10 Euclidean distance DF . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.11 Filter for requested song . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.12 Euclidean distance RDD . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.13 Bucketed Random Projection . . . . . . . . . . . . . . . . . . . . . . . 63

4.14 Cross-correlation scipy . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.15 Cross-correlation numpy . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.16 Jensen-Shannon-like divergence . . . . . . . . . . . . . . . . . . . . . . 65

4.17 Kullback-Leibler divergence . . . . . . . . . . . . . . . . . . . . . . . . 66

4.18 Levenshtein DataFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.19 Levenshtein RDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.20 Spark lazy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.21 Minimum and maximum aggregation separate . . . . . . . . . . . . . . 70

4.22 Minimum and maximum aggregation optimized . . . . . . . . . . . . . 71

4.23 Cluster setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

viii



1. Introduction

The idea originated from Dr. T. Bosse from the Chair for Advanced Computing at the

Friedrich Schiller University in Jena. When proposing the idea for a master’s thesis

with the topic of ”Music similarity measurement using genre-specific features” by using

different guitar play styles in modern-day metal music, he jokingly said that he would

also like to know how metal music compares to construction building noise. The idea is

actually not so groundless, considering that most people would agree on the fact that

metal music is often described as noise by people not used to listening to genres like

death and black metal. While refining the original idea of the theme for this master’s

thesis and during the first tests, it became apparent, that while there is a lot of research

in the area of music similarity for single aspects of music like melody, timbre, or rhythm

and even for a few fixed combinations thereof, there was no attempt made yet, to build a

parameterizable system combining various of these features in a Big Data environment.

With music streaming services like Spotify, Amazon Music, Deezer or Tidal and music

sharing websites like SoundCloud, access to millions of songs is given. To explore this

humongous amount of data, the need for music recommender systems rises. SoundCloud

Go+, the streaming service of SoundCloud alone gives access to more than 150 million

songs [1]. Obviously, the streaming platforms are aware of these challenges. When

using services like ”[...] Spotify Radio, iTunes Radio, Google Play Access All Areas and

Xbox Music. Recommendations are typically made using (undisclosed) content-based

retrieval techniques, collaborative filtering data or a combination thereof.” [2, p. 9]

But music similarity is not well defined. This is one of the first problems while dealing

with this topic. It is a rather subjective value that can differ from listener to listener.

Two tracks could be considered as ”similar” when they are equal in tempo, loudness,

melody, instrumentation, key, rhythm mood, lyrics, or a combination of more than a

few of these features.

1



1.1 Objectives

The target of this thesis is to propose a transparent music similarity recommendation

system based on various weighted aspects of the music instead of a fixed combination.

Applying different weights to different features allows similarity retrieval methods to

search for different kinds of similarities, empowering the user to decide which aspects

are most important to the user and returning song recommendations based on the

user’s preferences. E.g., weighting the tempo and beat of a song more than melodic

similarity allows the creation of playlists for workout and sport, while melodic/ timbre,

etc. similarities allow searching for similar songs from musical subgenres.

The usage of a Big Data framework such as Spark allows the creation of a parameterized

similarity definition. Various aspects of the music could easily be merged and taken

into consideration when calculating the musical distance between two different pieces.

This offers a more diverse music recommendation system than already existing ones.

To do this, a lot of different features are required and have to be extracted from the

audio data first. Content (e.g., audio features) and context (e.g., listener behavior) data

can then be fed into a Big Data framework to speed up operations. For this thesis,

however, the focus lies on content-based data only.

Context-based collaborative-filtering techniques, which take the listening behavior of

other users into consideration, in combination with Big Data frameworks are already

well researched. But this thesis is meant to propose a user-centered recommenda-

tion engine, relying on musical properties of the songs only. By solely relying on the

musical features of the songs, no biasing due to the popularity of artists is to be expected.

1.2 Outline

The thesis is structured into four main issues, pictured in Figure 1.1. These different

problems are resolved throughout the chapters of the thesis.

First of all, a lot of music data is required. In Chapter 2, different scientific datasets

and sources for audio files are evaluated. It also explains the basics of music information

retrieval (MIR) and gives a short overview of different similarity measurements based

on different audio features and aspects of the music. In the last section of this chapter

an introduction to Big Data frameworks is given and the choice of Spark as the Big

Data processing framework is explained.

In Chapter 3, multiple algorithms and approaches for the computation of similarity

between timbral, melodic and rhythmic features are evaluated and selected.

Chapter 4 explains the implementation of the feature extraction process in parallel on a

2



Evaluation of the Results

Similarity Estimation

Feature Extraction

Data Aggregation

Figure 1.1: Structure of the thesis

cluster and the implementation of the recommender system with Spark.

In Chapter 5 the resulting song recommendations are proposed and evaluated, and lastly

Chapter 6 summarizes all results and provides an outlook for possible enhancements.

3



2. Music Information Retrieval and

Big Data

The field of music information retrieval is a large research area combining studies in

computer science like signal processing and machine learning with psychology and

academic music study. To get started, a brief overview is given in the next section

providing the most important information about publicly available datasets, MIR

toolkits, and different approaches to music similarity using various audio features. An

overview over Big Data frameworks is included as well. More in-depth information

about selected metrics is given in Chapter 3.

2.1 Terminology

To clarify the usage of a few terms throughout this thesis (especially later in Section 4.3),

the following list provides an overview of the terms used.

• song request

• distance

• similarities

The term ”song request” describes the song title passed to the recommendation engine

to estimate the similarities.

The terms ”similarities” and ”distances” are used synonymously in this thesis because

all the similarity estimations are based on distances between feature vectors of different

feature types (𝑥 and 𝑦), following the equation

sim(𝑥, 𝑦) =
1

𝑑(𝑥, 𝑦)
. (2.1)

The smaller the distance 𝑑(𝑥, 𝑦) between the audio features of two songs 𝑥 and 𝑦 is, the

greater the similarity sim(𝑥, 𝑦) between these songs gets.

4



2.2 Audio Features

This section provides a short overview of commonly used audio features in MIR,

including:

• Discrete Fourier Transform

• Mel Frequency Cepstral Coefficients

• Chroma features

• Pitch curve

• Onsets

• Beats

These audio features are the starting point for the later following calculation of the

distances between songs.

2.2.1 Fourier Transformation

Most of the algorithms for audio data analysis start with switching from the time

domain to the frequency domain by performing a discrete Fourier transform (DFT) as

described in the equation

𝑋𝑙 =
𝑁⊗1
∑︁

𝑛=0

𝑥𝑛 ≤ 𝑒⊗ 2·Þ·𝑖
𝑁

≤𝑙≤𝑛, 𝑙 = 0, 1, ..., 𝑁 ⊗ 1 (2.2)

and then computing the power spectrum

♣𝑋𝑙♣ =
√︁

Re(𝑋𝑙)2 + Im(𝑋𝑙)2, 𝑙 = 0, 1, ..., 𝑁 ⊗ 1. (2.3)

The value 𝑁 resembles the frame/window size, 𝑥𝑛 is the 𝑛th input amplitude in the

frame ranging from 0 to 𝑁 ⊗1, and 𝑙 is an integer also ranging from 0 to 𝑁 ⊗1 (as many

frequency values are computed per frame as discrete-time values are in the window).

Sampling a song with length 𝑡 in seconds by a sample rate 𝑓𝑠 results in

𝐾 = 𝑓𝑠 ≤ 𝑡 (2.4)

data points 𝑥 in an audio file. Considering a sample rate 𝑓𝑠 = 44, 1𝑘𝐻𝑧 (usual CD

sample-rate) and the length of a song of about 𝑡 = 180𝑠, the time domain contains

𝐾 = 7938000 data points usually with 16-bit resolution for mono-channel audio,

following Equation (2.4).

Calculating a DFT with a window size of 𝑁 = 1024 samples and a hop size of 512

samples, the full resulting spectrogram would contain 𝑁𝑓𝑣 = 11627 frames with 1024

5



amplitude values per frame for a 3 minute example song sampled with 44.1kHz, according

to [2, p. 56]:

𝑁𝑓𝑣 = 1.5 ≤ (
44100 samples/s

1024 samples/frame
) ≤ 𝑡 (2.5)

The hop size determines how many discrete-time values are skipped between the

computation of each DFT frame. In the example with a hop size of 512 and a window size

of 1024 the various frames overlap by 50%, resulting in the factor 1.5 in Equation (2.5).

As an example, figure 2.1(a) shows the resulting spectrogram (spectrum of frequencies

over time) of the first bars of the song Layla by Eric Clapton recorded on an electric

guitar.

(a) Spectrogram (b) Log-scaled spectrogram

Figure 2.1: Example spectrograms linear (a) and log-scaled (b)

Since the human ear perceives sound in a non-linear fashion, a logarithmic (see Fig-

ure 2.1(b)) or mel scale is more suitable to represent different pitches. For example,

the note A4 is perceived at a frequency of 440Hz, the A note of next octave (A5) is

at 880Hz and the next one is at 1600Hz and so on. The mel scale was introduced to

resemble the non-linear human perception of frequency [2, pp. 53f]. The conversion

between a frequency 𝑓 in Hz and 𝑚 in mel is given by

𝑚 = 1127 ≤ ln(1 +
𝑓

700
). (2.6)

The high dimensionality of the spectrogram is a problem for machine learning appli-

cations and music similarity tasks, as computation based on vectors with such a high

dimensionality on larger datasets would require excessive computational power, e.g.,

for real-time applications. To further reduce the dimensionality of the feature vector

resulting from the DFT, a possible approach in MIR would be to calculate the so-called

Mel Frequency Cepstral Coefficients (MFCCs) [2, pp. 55ff].

6



2.2.2 Mel Frequency Cepstral Coefficients

Of all features presented in this chapter, the MFCC is the hardest one to grasp because

of its abstract nature and hardly visible relatedness to musical aspects of audio files like

pitch or rhythm. This section gives a brief overview of the computation of the MFCC

as stated in [2, pp. 55ff]. Figure 2.2 shows the magnitude spectrum of a logarithmic

frequency sweep signal as an example for better understanding.

(a) Spectrogram with linear frequency axis
(b) Spectrogram with logarithmic frequency
axis

Figure 2.2: Example spectrograms of a logarithmic frequency sweep

First of all the magnitude spectrum is transformed to the mel scale following Equa-

tion (2.6) by assigning each frequency value to a mel band. Doing this, dimensionality

reduction can be achieved by assigning multiple frequency values to one of typically 12

to 40 mel bands. The resulting vectors are then fed into a discrete cosine transformation

(DCT) resulting in the MFCCs for each frame:

𝑋𝑘 =
𝑄⊗1
∑︁

𝑞=0

𝑥𝑞 cos

⎟

Þ

𝑄
(𝑞 +

1

2
)𝑘

⟨

, 𝑘 = 0, 1, ..., 𝑄 ⊗ 1 (2.7)

where 𝑄 denotes the amount of mel bands.

(a) MFCC high resolution (b) MFCC 13 bands scaled

Figure 2.3: MFCCs of a logarithmic frequency sweep

Figure 2.3(a) shows the resulting MFCCs with a high resolution of 1024 mel bands.

7



This is not what would be done in a usual application, because this is nearly as high-

dimensional as the original spectrogram. In comparison, Figure 2.3(b) shows the MFCC

reduced to 13 mel bands. To better visualize the MFCCs, all values are typically scaled

to have a standard deviation of 1 and a mean value of 0 per band in the plots. To

describe a tone, three moments can be used according to [3, pp. 15f]:

• tonal intensity perceived as loudness

• tonal quality perceived as the pitch

• timbre or tonal color

MFCCs were found to be suited to represent the timbral attributes of music [2, pp. 55

ff]. Looking at an example melody line played on an electric distorted guitar and a

piano, distinct differences can be seen in Figure 2.4.

(a) Guitar (b) Piano

Figure 2.4: Spectrogram of a guitar (a) and piano (b) sample

Due to the physical properties of a string, every note played consists of the main

frequency (the actually played note) and harmonic overtones because of the way a

string, e.g. in a piano, vibrates and the wooden body resonates.

(a) Guitar (b) Piano

Figure 2.5: MFCCs of a guitar (a) and piano (b) sample

Typically the harmonics of a piano consist of the main key, the same key a few octaves

higher and major thirds and fifths of the octave. Depending on the instrument, these

harmonics decay faster or slower or do not appear at all. An electrically amplified guitar

8



amplifies these overtones as well, which is visible in Figure 2.4(b). These differences

in timbre are also visible when looking at the MFCCs in Figure 2.5. This time the

MFCC plots are pictured without the previously mentioned scaling. Additionally, the

mean value and standard deviation of the MFCCs indexed from 4 to 13 are pictured in

Figure 2.6. This calculation of statistical summaries of the MFCC features reduces the

dimensionality of the MFCC features and is later explained in more detail in Section 3.1.

Although both times the exact same melody is played in the same tempo, the MFCC

features vary due to the different timbral properties of the instruments.

(a) Guitar (b) Piano

Figure 2.6: MFCCs mean and standard deviation of a guitar (a) and piano (b) sample

2.2.3 Other Audio Features

As another, better comprehensible, and higher-level set of features, the chromagram

represents the melodic and harmonic properties of a song. The chroma plot shows the

distribution of the different pitches mapped to the various semi-tones in one octave (see

Figure 2.7(b)).

(a) MFCC (b) Chroma Features

Figure 2.7: Melodic and timbral features of the song Layla by Eric Clapton

The mapping can be done with the help of binning strategies on the spectral repre-

sentation or with special non-uniform filter banks [3, p. 153]. The chroma values of

9



each time frame are then normalized to one by the strongest dimension. So if all values

are close to one, it is most likely that there will be only noise or silence at that frame

in the recording, as depicted in the first few frames (0 to around 0.75 seconds) in

Figure 2.7(b). The chromagram has one significant downside because it is reduced to

one octave and thus can not represent the melody of a song to its full extent. The

chromagram and the extraction of melody information from chroma features is further

evaluated in Section 3.2.

Figure 2.8(a) shows the pitch curve of the recording. None but the most dominant

frequencies are shown. Pitches below a certain threshold are filtered out. In contrast to

the chromagram the pitch curve provides information over the whole spectrum and is

not limited to one octave. These pitch curves can be used to estimate and transcribe

musical notes from audio data as presented in Section 2.3.3.

The low-level rhythmic features of a song include the estimation of the overall tempo,

beats, and onset events. The plot in Figure 2.8(b) depicts the onsets (blue) and esti-

mated beats (red dotted lines) in the first few seconds from the guitar recording of the

song Layla by Eric Clapton. The onsets resemble, e.g., detected note events and note

changes. The onset detection is described in [3, pp. 412 ff] and most of the toolkits

presented in the next section include methods for onset detection.

(a) Pitch (b) Rhythm / beat

Figure 2.8: Rhythm features of the song Layla by Eric Clapton

2.3 MIR Toolkits

This section provides a short overview of available toolkits for MIR, note extraction,

and similarity estimation between songs. Some of the toolkits are used in Chapter 4 for

the extraction and pre-processing of the audio features.

10



2.3.1 Low-Level Audio Feature Extraction

To extract audio features like the ones presented in Section 2.2 (MFCCs, chromagram,

beats, onsets) a wide variety of toolkits is publicly available and a few are presented

in [4]. The YAAFE toolkit [5] is capable to extract a lot of different audio features like

energy, MFCC, or loudness directly into the Hierarchical Data Format (*.h5) making

it ideal for Big Data frameworks to use. It can be used with C++, Python [6], or

MATLAB [7].

The Essentia toolkit [8] is fairly similar to YAAFE, extending it by the calculation of

rhythm descriptors, bpm, etc. It can also be used with C++ and Python.

The Librosa Toolkit provides similar functionality [9] as Essentia. It is user-friendly,

well-documented, and can be used from within a Jupyter-Notebook [10], allowing rapid

prototyping and testing of different algorithms. Most of the plots in this chapter were

created using librosa. Code snippets for the extraction of low-level features with Essentia

and librosa are given in Section 4.2 as well as a performance analysis of both.

2.3.2 Music Similarity

The MIR Toolkit [11] is a toolbox for MATLAB. A port to GNU Octave [12] is also

available [13]. The Code Snippet 2.1 is all it takes to compute a similarity matrix based

on MFCC features, but the calculation is rather slow.

mydata = cell(1, numfiles);

for k = 1: numfiles

myfilename = sprintf(’%d.wav’, k);

mydata{k} = mirmfcc(myfilename);

close all force

endfor

simmat = zeros(numfiles ,numfiles);

for k = 1: numfiles

for l = 1: numfiles

simmat(k, l) = mirgetdata( ...

mirdist(mydata{k}, ...

mydata{l}));

endfor

endfor

Code Snippet 2.1: MATLAB code for estimating similarities based on MFCCs

An other easy way to test state-of-the-art music similarity algorithms is to use the

open-source toolkit Musly [14]. It is based on statistical models of MFCC features and

calculates the similarities between songs very quickly, supporting OpenMP acceleration.

11



It automatically extracts the features it requires from the audio files. To compare the

extracted features and calculate the distances, it implements the method introduced by

Mandel-Ellis [15] and a timbre based improved version of the Mandel-Ellis algorithm

using a Jensen-Shannon-like divergence [16]. More details and a re-implementation of

some of the features from this toolkit are presented in Section 3.1.

2.3.3 Melody / Pitch Extraction

(a) Für Elise [17] (b) Rachmaninoff prelude in C# minor [18]

Figure 2.9: Original scores, Rachmaninoff (a) and Beethoven (b)

To test the various pitch extraction toolkits, one piece by Rachmaninoff and one

composed by Beethoven was used. Figure 2.9(a) shows the first five bars of Beethoven’s

Bagatelle in A Minor (”Für Elise”). Two bars of Rachmaninoff’s Prelude in C# minor

can be found in Figure 2.9(b).

(a) Für Elise Aubio pitch (b) Rachmaninoff prelude Aubio pitch

Figure 2.10: Pitch extraction with Aubio

The first toolkit tested is called ”aubio” [19]. The result can be seen in Figure 2.10(a)

and Figure 2.10(b). The upper subplot shows the waveform of the first few seconds

of each piece. The second subplot figures the estimated pitch with green dots. If the

12



pitch is zero, then no pitch can be estimated, most likely because the associated frame

contains silence. The blue dots resemble the estimated pitches where the confidence

(shown as the blue graphs in the third subplot) is above a certain threshold (orange lines

in the third subplots). The other melody extraction tool is called ”Melodia” [20], which

is available as a VAMP plugin and can be used together with the ”Sonic Visualiser” [21].

The results are shown in Figure 2.11(a) and 2.11(b). The purple line resembles the

estimated pitch; however, there are unwanted jumps between different octaves of the

harmonics.

(a) Für Elise Melodia pitch (b) Rachmaninoff Melodia pitch

Figure 2.11: Pitch extraction with Melodia

Music related information, e.g, about note length, tempo, etc., would typically be stored

digitally into standard MIDI (Musical Instrument Digital Interface) files [3, p. 180].

Unfortunately, the conversion from the extracted pitches to MIDI notes does not work

flawlessly. It is apparent in Figure 2.12 that the transcription does not work accurately

enough, even for a classical music piece with only one instrument. Figure 2.12(a) shows

the output of a Python script using the Melodia VAMP plugin to calculate a MIDI

file containing the main melody line, and Figure 2.12(b) shows the transcribed MIDI

notes from Aubio. The detected melody lines are jumping between different octaves,

and finding the right threshold for the separation between silence and detected notes

turns out to be problematic as well.

(a) Für Elise Melodia MIDI
(b) Für Elise Aubio MIDI

Figure 2.12: MIDI transcription Für Elise

13



2.4 Music Similarity Measurements

This section gives an introduction to the possibilities of the estimation of similarities

based on the proposed audio features. Selected metrics and similarity measurements

are selected and will be later evaluated in Chapter 3.

2.4.1 Timbre Based

The proposed approach by Dominik Schnitzer [22], creator of the Musly toolkit in-

troduced earlier, is to take MFCCs as low-level features and then compute statistical

features like mean, standard deviation, and covariances of the different MFCCs to reduce

dimensionality before computing similarities. Another example for the computation

of approximate nearest neighbors was published in the paper titled ”Large-scale music

similarity search with spatial trees” by Brian McFee and Gert Lanckriet [23].

A selection of different timbre based similarity measurements is evaluated later in

Section 3.1.

2.4.2 Pitch Based

One proposed approach by Matija Marolt in 2006 is to take mid-level melodic represen-

tations of audio files like the chromagram instead of high-level features like sheet music

or low-level features like Gaussian mixture models of MFCCs, to compute the similarity

between songs [24]. A more detailed analysis of this topic is given in Section 3.2.

2.4.3 Note Based

For comparing musical pieces by their symbolic representation (notes, tablatures, etc.),

different text retrieval methods can be used. MIDI files as a digital representation

of notes are a good starting point. For example Xia (et. al) uses a variation of the

Levenshtein distance measurement to compute similarities between MIDI files [25]. The

problem with notation based algorithms is that there are not many datasets available

containing audio and MIDI information. As shown in Section 2.3.3, the automatic

transcription of notes from raw audio does not work flawlessly. There is still ongoing

research to automatically annotate musical notes with the help of neural networks (for

example [26]). In Section 3.3 an attempt to extract note information as text features

from chromagrams and calculating the similarity by using the Levenshtein distance is

shown and evaluated.

14



2.4.4 Rhythm Based

Rhythm based music similarity algorithms use timing information of various events

as a baseline. For example low-level features like the onset and beat data from the

plot in Figure 2.8(b) could be used as a starting point for rhythmic similarity retrieval.

As an example, Foote (et. al) introduced a feature called the ”beat spectrum” for the

computation of rhythmic similarities [27]. Other more recent or advanced approaches

make use of the rhythm histogram, beat histogram, and rhythm patterns later evaluated

in Section 3.3.

2.4.5 Metadata Based / Collaborative Filtering

Most of the research that combines the field of music information retrieval with Big

Data frameworks relies on data based on the listening behavior of many users of, e.g.,

music streaming platforms. In 2012 the Million Song Dataset (MSD) Challenge was

brought to the MIR community. Researchers were challenged to give a list of song

recommendations based on a large set of user data, the Million Song Dataset (see

Section 2.5.1 for more details on the dataset). As an example, if user X listens a lot to

artist A and B and user Y listens mostly to artist A and C, then user X could probably

like artist C as well. These kinds of collective listening behavior based recommendations

are called ”collaborative filtering” and are pretty common in large music streaming

services, although not necessarily representing direct musical similarity. [2, pp. 192f]

Recommendation systems based on collaborative filtering tend to propose commonly

well-known artists rather than not so well-known ones, possibly biasing the resulting

recommendation. On the other hand, these kinds of similarity algorithms can work very

fast and efficient in a Big Data environment. The usage of annotations and metadata

information like genre and artist based recommendations are common as well. The

recommendation of songs based on lyrics and also hybrid recommendation systems that

combine lyrics, metadata, and collaborative filtering are also possible.

However, all of these recommendation strategies are not directly based on musical

features and are, therefore, not evaluated further throughout this thesis. But they are a

possible addition for a hybrid recommendation engine for future research. An example

using user-based collaborative filtering is the paper ”Design and Implementation of

Music Recommendation System Based on Hadoop” [28].

2.4.6 Genre Specific Features

The impact of the choice of parameters for similarity measurements on different music

subgenres was evaluated by Gulati (et al.) for Indian art music (Carnatic and Hindustani

15



music) [29]. They state: ”We evaluate all possible combinations of the choices made at

each step of the melodic similarity computation [...]. We consider 5 different sampling

rates of the melody representation, 8 different normalization scenarios, 2 possibilities

of uniform time-scaling and 7 variants of the distance measures. In total, we evaluate

560 different variants” [29, p. 3]. This evaluation showed that the choice of features

and parameters for music similarity measurement is a critical point. ”Sampling rates do

not have a significant impact for Hindustani music, but can significantly degrade the

performance for Carnatic music.” [29, p. 3]. So using different kind of feature sets and

parameters for the recommendation of songs from different genres could be an option

but would go beyond the frame of this thesis.

As another idea, e.g., in Rock, Pop and Metal music, the analysis of different guitar

playing techniques would be beneficial. Guitar tablature extraction [30] toolkits could be

used to extract information, whether the guitar in a song is, for instance, mostly picked

or strummed or if there are hammer-on, pull-off, side bending, or tapping techniques

used. In classical music, the play style of the string section of an orchestra could be

taken into consideration (staccato, pizzicato, etc.). These kinds of information could

be used as a baseline for song recommendations. However, there is no MIR toolkit

available for the estimation of play styles, so this idea would have to be evaluated in

future research.

2.4.7 Selection

In this thesis, music similarity measurements based on three different types of features

are evaluated. The first is based on MFCCs to represent timbral features of the songs

and therefore offering a set of features to make recommendations that are similar in

tone color and should be able to give recommendations inside the boundaries of different

genres. The second is based on chroma features and note information to provide a

measurement of melodic similarity. Utilizing these features targets the detection of

cover versions. The third set of features is based on the rhythmic properties of a song.

This should enable the recommendation of songs with the same tempo and rhythmic

structure, and possibly also enable the recommendation of songs within the same genre.

The usage of MIDI files is not considered further due to the rather poor performance of

automatic score extraction tools for songs with multiple instruments and melody lines,

and the lack of datasets containing MIDI and audio files. Also, the melodic component

of the songs is already represented by the chroma features, although that limits the

representation to one or at most very few octaves.

Collaborative filtering is left out because it does not necessarily represent the musical

features and properties but instead the personal taste of other people. Additionally, it

is left out because no fitting dataset with the required information and matching music

16



files was found (see Section 2.5).

Lastly, genre-specific features are also not an option because this field is not very

well-researched yet, and the development of algorithms and the extraction of features

would go beyond the scope of this thesis.

2.5 Data Aggregation

To evaluate the music similarity algorithms and metrics, a lot of music data is needed.

This section provides an overview of publicly available sources for audio data. A selection

from which the audio features are extracted is given in Section 4.2.1.

2.5.1 Datasets

Free Music Archive

The largest dataset is the Free Music Archive (FMA) consisting of 106733 different

songs totaling an amount of nearly one terabyte of music data from a variety of different

music genres [31] (see Figure 2.13(a)). There is also a lot of metadata like genre tags

available for most of the songs.

Private Music Collection

The private music collection used in this work consists mainly of metal music. The

music was legally purchased; all rights belong to the respective owners. Therefore this

dataset can not be published alongside this thesis. But the private music collection is

fully cataloged, and the according PDF file is in the appendices. The distribution of

different songs per genre for this dataset is listed in Figure 2.13(b).

Additionally, a private recording dataset was used, consisting of ambient recordings and

self-produced music. Most of these files are available on SoundCloud [32].

Because music recommendations are always related to personal taste and the per-

ception of the quality of the results may differ, the inclusion of the private music

collection is necessary to enable a subjective evaluation of the results from the developed

recommendation engine.

1517-Artists and Musicnet

Other sources of music are the Musicnet dataset [33] and the 1517-Artists dataset [34].

The Musicnet dataset includes 330 pieces of classical music with musical note values and

positions as annotations and the 1517-Artists dataset contains 3180 songs of multiple

genres (see Figure 2.13(c)).

17



MedleyDB

For a melody or pitch based similarity analysis, multitrack datasets could provide useful

data, because the pitch estimation can be done instrument by instrument. There are,

e.g., the MedleyDB [35] (see Figure 2.13(d)) and MedleyDB2 [36] datasets, as well as

the Open Multitrack Dataset [37] currently consisting of 593 multitracks in which the

MedleyDB dataset is already included, leaving 481 other tracks for analysis.

Covers80

For cover song detection analysis, the covers80 dataset is available [38] containing

eighty original songs predominantly from the musical genres rock and pop and 84 cover

versions. These cover versions tend to differ significantly from the original in musical

style, rhythm, and timbre.

Overview and Other Sources

(a) FMA [31, p. 4]

(b) Private music collection

(c) 1517-Artists
(d) MedleyDB [35, p. 2]

Figure 2.13: Genre distribution of songs in various datasets

The music sources and amounts of songs used for the task at hand are listed in Table 2.1.

18



dataset #songs features

FMA 106.733 -
private 8.484 -

1517-Artists 3.180 -
Maestro 1.184 MIDI (piano sheet music)
musicnet 330 note annotation

Open Multitrack Testbed 593(481) multitracks
covers80 164 80 originals + 84 covers
MedleyDB 122 multitracks
MedleyDB2 74 multitracks

Table 2.1: Number of songs in different music datasets

2.5.2 Alternatives

Spotify API

Another way of getting music samples, audio features, and metadata could be by using

the Spotify API [39]. The downside of using the Spotify API is that no packed and

ready to use test dataset containing the relevant features is available. Therefore, for

scientific purposes, a test dataset would have to be created first. Using a small Python

library named Spotipy [40], the available information can be accessed very easily.

Appendix A.2 lists a small script, that is able to download all audio features and analysis

data from selected songs in a playlist that contain a preview URL to a 30-second audio

snippet. The audio features and analysis data is saved as a JSON file containing

information about:

• acousticness

• danceability

• instrumentalness

• liveness

• loudness

• speechiness

• valence

• predicted key

• tempo

• pitch

• tempo

• timbre information

• beats and bars

19



In Figure 2.14(a) the returned chroma features (using the script in Appendix A.2) of the

piano piece ”Für Elise” by Beethoven are shown and Figure 2.14(b) shows the beginning

of the piece in more detail, including green dots that resemble estimated bar markings.

The blue dots represent the note values of one octave. That means they can resemble

a value between zero and eleven with 0 representing the key C and 11 representing a

B. The Spotify API actually returns a chroma feature value for every single one of the

semi-tones per segment, with one segment being a section of samples that are relatively

uniform in timbre and harmony. But in the plots, only the most dominant key per

segment is shown to visualize the main melody line.

(a) Für Elise Spotify pitch (b) Für Elise detail

Figure 2.14: Extracted pitches, Spotify API (Spotipy)

Together with the 30-second audio sample from which more features like MFCCs could

be extracted, Spotipy could provide all the information needed to build a large dataset

for MIR. However, the terms and conditions explicitly prohibit crawling the Spotify

service. As stated by the Spotify ”Terms and Conditions of Use”, section 9 (User

guidelines):

”The following is not permitted for any reason whatsoever:

[...]

12. “crawling” the Spotify Service or otherwise using any automated means (including

bots, scrapers, and spiders) to view, access, or collect information from Spotify or the

Spotify Service” [41]

Therefore a larger dataset based on the Spotify API can not be created without the risk

of legal infringements. One could argue that there was a difference between data mining

and data crawling and for small datasets these restrictions may not apply. Spotify states

that by creating an algorithmically generated playlist similar to the ”Discover Weekly”

playlists one may encounter legal problems if using such features commercially [42].

However it does not prohibit the usage for non-commercial cases.

Upon an initial request, the Spotify API developer team did not respond and therefore

in this thesis the Spotify API will not be used to create a test dataset. Without further

reaching out to Spotify, using the Spotify API to create a test dataset is not an option.

20



Million Song Dataset

Another outstanding and very large dataset is the Million Song Dataset (MSD) [43]. It

contains a large set of metadata per track as well as a lot of supplementary datasets,

like the tagtraum genre annotation (Figure 2.15) [44] and the Last.fm dataset [45]. In

addition to that, the Echo Nest API dataset contains a lot of additional audio features

like pitch, loudness, energy, and danceability to name just a few [46]. Another addition

is the SecondHandSongs Dataset [47], containing a list of cover songs in the Million

Song Dataset.

Figure 2.15: Million Song Dataset genre distribution [44, p. 6]

Due to the fact that the Spotify API [39] also works with audio features from the Echo

Nest [48], the MSD could be used in a Big Data environment to simulate the work with

Spotify data, without the need of mining the actual data. The MSD was already used

with Big Data frameworks for music similarity retrieval based on metadata and user

information (see [23]). Although the MSD does not contain any audio files in the first

place, 30-second samples could be gathered through simple scripts from 7digital.com

when the dataset was made publicly available. Unfortunately, 7digital does not offer the

download of the 30-second sample files any longer, which makes this dataset impractical

for this thesis, because missing audio features like MFCCs can not be computed from

the audio files itself.

2.6 Big Data

After evaluating different data sources presenting various methods to extract and

process different audio features, the following section describes the data analysis with

Big Data processing frameworks like Apache Spark [49] and Hadoop [50]. Most of the

basic information on Hadoop and Spark in the next few sections are taken from the

21



book ”Data Analytics with Spark using Python” by Jeffrey Aven, which gives a very

comprehensible and practical introduction to the field of Big Data processing with

PySpark [51].

2.6.1 Hadoop

With the ever-growing availability of huge amounts of high-dimensional data, the need

for toolkits and efficient algorithms to handle these grew over the past years. One key

to handle Big Data problems is the use of parallelism.

Search engine providers like Google and Yahoo firstly ran into the problem of using

”internet-scale” data in the early 2000s when faced with the problem of storing and

processing the ever-growing amount of indexes from documents on the internet. In 2003,

Google presented their white paper called ”The Google File System” [52]. MapReduce

is a programming paradigm introduced by Google as an answer to the problem of

internet-scale data and dates back to 2004 when the paper ”MapReduce: Simplified

Data Processing on Large Clusters” was published [53].

Doug Cutting and Mike Cafarella worked on a web crawler project called ”Nutch”during

that time. Inspired by the two papers Cutting incorporated the storage and processing

principles from Google, leading to what we know as Hadoop today. Hadoop joined the

Apache Software Foundation in 2006. The MapReduce programming paradigm for data

processing is the core concept used by Hadoop. [51, p. 6]

Hadoop is a scalable solution capable of running on large computer clusters. It does

not necessarily require a supercomputing environment and is able to run on clusters

of lower-cost commodity hardware. The data is stored redundantly on multiple nodes

with a configurable replication factor defining how many copies of each data chunk are

stored redundantly on other nodes. This enables an error management where faulty

operations can simply be restarted.

Hadoop is based on the idea of data locality. In contrast to the usual approach, where

the data is requested from its location and transferred to a remote processing system or

host, Hadoop brings the computation to the data instead. This minimizes the problem

of data transfer times over the network at compute time when working with very

large-scale data / Big Data. One prerequisite is that the operations on the data are

independent of each other. Hadoop follows this approach called ”shared nothing”, where

data is processed locally in parallel on many nodes at the same time by splitting the

data into independent, small subsets without the need for communication with other

nodes. Additionally, Hadoop is a schemaless (schema-on-read) system which means

that it is able to store and process unstructured, semi-structured (JSON, XML), or well

structured data (relational database). [51, p. 7]

To make all this possible, Hadoop relies on its core components YARN (Yet Another

22



Resource Negotiator) as the processing and resource scheduling subsystem and the

Hadoop Distributed File System (HDFS) as Hadoop’s data storage subsystem.

MapReduce

Figure 2.16 shows the basic scheme of a MapReduce program.

In
p
u
t
d
a
ta

Input Map

Input Map

Input Map

Input Map

Results

Tuples
⟨𝑘, 𝑣⟩ Reduce

Tuples
⟨𝑘, 𝑣⟩ Reduce

Tuples
⟨𝑘, 𝑣⟩ Reduce

Figure 2.16: MapReduce algorithm [54]

In the first stage, the input data is split into chunks and distributed over the nodes of

a cluster. This is usually managed by a distributed file system like the HDFS. One

master node stores the addresses of all data chunks.

The data is then fed into the mappers which operate on the input data and finally

transforms the input into key-value tuples.

In an intermediate step the key-value pairs are usually grouped by their keys before

being fed into the reducers. The reducers apply another method to all tuples with the

same key.

The amount of key-value pairs at the output from all mappers divided by the number

of input files is called ”replication rate” (𝑟). The highest count of values for one key

being fed into a reducer can be denoted as 𝑞 (reducer size). Usually, there is a trade-off

between a high replication rate 𝑟 and small reducer size 𝑞 (highly parallel with more

network traffic) or small 𝑟 and larger 𝑞 (less network traffic but worse parallelism due

to an overall smaller reducer count).

2.6.2 Spark

Hadoop as a Big Data processing framework has a few downsides compared to other,

newer options like Spark. The Spark project was started in 2009 and was created

as a part of the Mesos research project. It was developed as an alternative to the

implementation of MapReduce in Hadoop. Spark is written in the programming language

Scala [55] and runs in Java Virtual Machines (JVM) but also provides native support

23



for programming interfaces in Python, Java and R. One major advantage compared to

Hadoop is the efficient way of caching intermediate data to the main memory instead

of writing it onto the hard drive. While Hadoop has to read all data from the disk and

writes all results back to the disk, Spark can efficiently take advantage of the RAM

available in the different nodes, making it suitable for interactive queries and iterative

machine learning operations. To be able to offer these kinds of in-memory operations

Spark uses a structure called ”Resilient Distributed Dataset” (RDD). [51, p. 13]

Figure 2.17 shows the simplified architecture of a compute cluster running Spark.

Master

Driver

Memory Memory Memory Memory Memory

Cluster Manager

SparkSession (SparkContext, SparkConf)

Executor 1 Executor 2 Executor 3 Executor 4 Executor 5

Task 1 Task 2 Task 3 Task 4 Task 5

Task 6 Task 7 Task 8

Main Program

Master Node

Cluster Manager

Switch

Worker Nodes

Executors

Figure 2.17: Spark cluster scheme (according to [51, p. 46])

The core components of a Spark application are the Driver, the Master, the Cluster

Manager, and the Executors. The Driver is the process to which clients submit their

applications. It is responsible for the planning and execution of a Spark program and

returns status logs and results to the clients. It can be located on a remote client or

on a node in the cluster. The SparkSession is created by the Driver and represents a

connection to a Spark cluster. The SparkContext and SparkConf as child objects of the

SparkSession contain the necessary information to configure the cluster parameters, e.g.,

the number of CPU cores and memory assigned to the Executors and the number of

Executors that get spawned overall on the cluster. Up until version 2.0, entry points for

24



Spark applications included the SparkContext, SQLContext, HiveContext, and Stream-

ingContext. In more recent versions these were combined into one SparkSession object

providing a single entry point. The execution of the Spark application is scheduled, and

directed acyclic graphs (DAG) are created by the Spark Driver. The nodes of these

DAGs represent transformational or computational steps on the data. These DAGs can

be visualized using the Spark application UI typically running on port 4040 of the Driver

node. The Spark application UI is a useful tool to improve the performance of Spark

applications and for debugging, as it also gives information about the computation time

of the distinct tasks within a Spark program. [51, pp. 45ff]

(a) Event timeline

(b) DAG

Figure 2.18: Spark application UI examples taken from the recommender system

Two examples of information provided by the Spark application UI are shown in Fig-

ure 2.18, with Figure 2.18(a) showing the event timeline for a poorly optimized code

snippet, where a single collect operation takes multiple minutes. Figure 2.18(b) gives

an example of an optimized DAG. The Workers are the nodes in the cluster on which

the actual computation of the Spark DAG tasks takes place. As defined within the

SparkConf, the Worker nodes spawn a finite or fixed number of Executors that reserve

CPU and memory resources and run in parallel. The Executors are hosted in JVMs on

the Workers. Finally, the Spark Master and the Cluster Manager are the processes that

monitor, reserve and allocate the resources for the Executors. Spark can work on top of

25



various Cluster Managers like Apache Mesos, Hadoop, YARN, and Kubernetes. Spark

can also work in standalone mode, where the Spark Master also takes control of the

Cluster Managers’ tasks. If Spark is running on top of a Hadoop cluster, it uses the

YARN ResourceManager as the Cluster Manager, and the ApplicationMaster as the

Spark Master. The ApplicationMaster is the first task allocated by the ResourceManager

and negotiates the resources (containers) for the Executors and makes them available

to the Driver. [51, pp. 49 ff]

When running on top of a Hadoop installation, Spark can additionally take advantage

of the HDFS by reading data directly out of it.

Cluster Configuration and Execution

There are multiple options of passing a Spark programm to the cluster. The first one

is to use a spark shell e.g. by calling pyspark when working with the Spark Python

API or spark-shell for use with Scala. If the interactive option of using a spark shell

is chosen, a SparkSession is automatically created and exited once the spark shell

gets closed. Alternatively the Spark application can be passed to the cluster directly,

using spark-submit application.py -options (Python). As mentioned previously, the

configuration of the Spark cluster can be changed. This can either be done by using a

cluster configuration file (e.g. spark-defaults.conf), by submitting the parameters as

arguments passed to pyspark, spark-console or spark-submit, or by directly setting the

configuration properties inside the Spark application code (see Code Snippet 2.2)

1 confCluster = SparkConf().setAppName("MusicSimilarity Cluster")

2 confCluster.set("spark.executor.memory", "1g")

3 confCluster.set("spark.executor.cores", "1")

4 sc = SparkContext(conf=confCluster)

5 sqlContext = SQLContext(sc)

6 spark = SparkSession.builder.master("cluster").appName("MusicSimilarity").'

getOrCreate()

Code Snippet 2.2: Example cluster configuration Python

In the code snippet, each Executor gets 1GB of RAM and 1 CPU core assigned by

setting the according parameters in the confCluster object. The SparkContext is saved

into the object sc and sqlContext contains the SQLContext object.

26



Spark Advantages

For this thesis, the programming language of choice is Python. With its high-level

Python API, Spark applications can access commonly known and widely used Python

libraries such as Numpy or Scipy. It also contains its own powerful libraries like the

Spark ML library for machine learning applications or GraphX for the work with large

graphs.

Spark can be used in combination with SQL (e.g., the Hive project) and NoSQL Systems

like Cassandra and HBase. Spark SQL enables the transformation of RDDs to well

structured DataFrames. The DataFrame concept is later used in Section 4.3.

One other important concept Spark uses is its lazy evaluation or lazy execution. Spark

differentiates between data transformations (e.g. filter(), join(), and map()) and

actions (e.g. take() or count()). The actual processing and transformation of data is

deferred until an action is called.

1 chroma = sc.textFile("features.txt").repartition(repartition_count)

2 chroma = chroma.map(lambda x: x.split(’;’))

3 chroma = chroma.filter(lambda x: x[0] == "OrbitCulture_SunOfAll.mp3")

4 chroma = chroma.count()

Code Snippet 2.3: Lazy evaluation

In the example Code Snippet 2.3 a text file "features.txt" gets read into an RDD chroma

and repartitioned into repartition_count blocks. The map() transformation splitting

the feature vectors and the filter() transformations that searches for a specific file

ID are only executed once the count() action is called. Only then a DAG is created

together with logical and physical execution plans and the tasks are distributed across

the Executors. The lazy evaluation allows Spark to combine as many operations as

possible which may lead to a drastic reduction of processing stages and data shuffling

(data transferred between Executors) and thus reducing unnecessary overhead and

network traffic. But the lazy execution has to be kept in mind during debugging and

performance testing. [51, p.73] Another important part of Spark is its ability to process

streaming data. While Hadoop is good at batch processing very large datasets but

rather slow when it comes to iterative tasks on the same data due to its persistent

write operations to the hard drive, Spark outperforms Hadoop with its capability to

use RDDs and the main memory during iterative tasks. With Spark streaming the

possibility to process data streams, e.g., from social networks, in real-time is given.

The combination of batch- and stream-processing methods is called ”Lambda architec-

ture” in data science literatur. It describes a data-processing architecture consisting of

a Batch-Layer, a Speed-Layer for real-time processing and a Serving-Layer managing

27



the data [56, pp. 8f]. Spark offers the possibility to take care of both, batch- and

stream-processing jobs. Combined with other frameworks like the Apache SMACK

stack (Spark, Mesos, Akka, Cassandra, and Kafka), Spark offers plenty possibilities for

high-throughput Big Data processing [57, p. 5].

This thesis preliminary focuses on batch processing and finding similar items. But the

possibility to pass song titles in real-time to Spark and getting recommendation lists of

similar songs in a few seconds in return could be a long-term goal of future work.

2.6.3 Music Similarity with Big Data Frameworks

The similarities can be calculated as ”one-to-many-items” similarities. That means that

for only one song at a time the similarities to all other songs have to be calculated. This

is the approach investigated in this thesis. The other option would be to pre-calculate

a full similarity matrix (All-pairs similarity). But looking at large-scale datasets with

millions of songs, this would take a considerable amount of time. A combination of both

approaches would be to calculate the similarities for one song request at a time but

store these similarities into a sparse similarity matrix once they got computed to speed

up subsequent requests of the same songs. But this is beyond the scope of this thesis.

Given the short introduction to Big Data frameworks, the decision to use Spark for the

computation of the similarities between audio features can be justified as follows.

The computation of the ”one-to-many-item” similarity follows the shared nothing ap-

proach of Spark. All of the features from different songs are independent of each other,

and the distances can be computed in parallel. Only the scaling of the result requires an

aggregation of maximum and minimum values. And to return the top results, a means of

sorting has to be performed. But apart from these operations that require data shuffling,

all the features can be distributed on a cluster and the similarity to one broadcasted

song can be calculated independently, following the data locality principle. This offers a

fully scalable solution for very large datasets. Additionally, Spark enables efficient ways

to cache the audio feature data into the main memory. Under the prerequisite that the

sum of all features from all songs fit into the main memory of the cluster, interactive

consecutive song requests could be answered without the need of reading the features

from the hard drive every time. One limitation is that Spark itself is unable to read

and handle audio files. The feature extraction itself has to be performed separately, and

only the extracted features are loaded into the cluster and processed with Spark. The

feature extraction process is later described in Section 4.2.

28



3. Similarity Analysis

This chapter introduces and evaluates different similarity measurements for timbral,

melodic, and rhythmic features of music data. It explains the feature extraction, pre-

processing and similarity estimation between different songs based on the different

feature types.

3.1 Timbre Similarity

This section focuses on different similarity measurements and metrics based on MFCCs.

Mel Frequency Cepstral Coefficients have already been introduced in Section 2.2.2 as a

feature to describe timbre.

3.1.1 Euclidean Distance

To further reduce the dimensionality of the original MFCC features, a statistical

summarization can be calculated. For each of the mel bands (13 in this case to reduce

dimensionality) the mean and standard deviation over all frames are calculated, resulting

in a vector of 13 mean values, a 13 by 13 covariance matrix (13≤(13⊗1)
2

covariance values,

because of the triangular shape - the upper triangle contains the covariances and the

main diagonal contains the variances) and 13 variances. These vectors are not dependent

on the length of the actual song. [2, pp. 51ff]

Using such a model, the distance between two songs can be calculated using the 𝐿𝑝

distance as in equation

𝑑(𝑥, 𝑦) = ♣♣𝑥 ⊗ 𝑦♣♣𝑝 =

⎠

𝑛
∑︁

𝑖=1

♣𝑥𝑖 ⊗ 𝑦𝑖♣
𝑝

⎜
1

𝑝

, (3.1)

where 𝑥 and 𝑦 are the 𝑛-dimensional feature vectors of two different musical pieces.

Usually, the Euclidean (𝐿2) or the Manhattan (𝐿1) distance would be used in real-world

scenarios [2, p. 58]. This very basic metric of timbre similarity has been refined and

improved over the past years.

29



3.1.2 Single Gaussian Model

Symmetric Kullback-Leibler Divergence

The second approach was first proposed by Mandel and Ellis in 2005 [15] and is briefly

summarized in [2, pp. 65f].

Assuming two musical pieces 𝑃 and 𝑄 are given, after computing the mean value of

each MFCC (resulting in the vectors Û𝑃 and Û𝑄) and the covariance matrix of the

different MFCC vectors (Σ𝑃 and Σ𝑄), the Kullback-Leibler divergence (KL divergence)

can be calculated as follows, with tr(≤) being the trace (i.e., the sum of the diagonal of a

matrix), 𝑑 being the dimensionality (number of MFCCs) and ♣Σ𝑃 ♣ being the determinant

of Σ𝑃 [2, pp. 65f].

KL(𝑃 ♣♣𝑄) =
1

2
[log

♣Σ𝑃 ♣

♣Σ𝑄♣
+ tr(Σ⊗1

𝑃 Σ𝑄) + (Û𝑃 ⊗ Û𝑄)𝑇 Σ⊗1
𝑃 (Û𝑄 ⊗ Û𝑃 ) ⊗ 𝑑] (3.2)

As a second step the result has to be symmetrized [22, p. 44]:

𝑑𝑆𝐾𝐿(𝑃, 𝑄) =
1

2
(KL(𝑃 ♣♣𝑄) + KL(𝑄♣♣𝑃 )) (3.3)

This approach is one of the two available similarity metrics in the Musly [14] toolkit (see

Section 2.3). It can be simplified and written as a closed form according to Schnitzer [22,

p. 44]:

𝑑𝑆𝐾𝐿(𝑃, 𝑄) =
1

4
(tr(Σ𝑃 Σ⊗1

𝑄 ) + tr(Σ𝑄Σ⊗1
𝑃 ) + tr((Σ⊗1

𝑄 Σ⊗1
𝑃 )(Û𝑃 ⊗ Û𝑄)2) ⊗ 2𝑑) (3.4)

Jensen-Shannon-Like Divergence

The second available similarity method in the Musly toolkit by Schnitzer is using

the Jensen-Shannon divergence (in a slightly adapted way). ”The Jensen-Shannon

(JS) divergence is another symmetric divergence derived from the Kullback-Leibler

divergence. To compute it, a mixture 𝑋𝑚 of the two distributions is defined” [22,

p. 43]. ”To use the Jensen-Shannon divergence [...] to estimate similarities between

Gaussians, an approximation of 𝑋𝑚 as a single multivariate Gaussian can be used [...]

This approximation of 𝑋𝑚 is exactly the same as the left-type Kullback-Leibler centroid

of the two Gaussian distributions [...]” [22, p. 45]

Û𝑚 =
1

2
Û𝑃 +

1

2
Û𝑄 (3.5)

Σ𝑚 =
1

2
(Σ𝑃 + Û𝑃 Û𝑇

𝑃 ) +
1

2
(Σ𝑄 + Û𝑄Û𝑇

𝑄) ⊗ Û𝑚Û𝑇
𝑚 (3.6)

30



JS(𝑃, 𝑄) =
1

2
log♣Σ𝑚♣ ⊗

1

4
log♣Σ𝑃 ♣ ⊗

1

4
log♣Σ𝑄♣ (3.7)

Mutual Proximity

After calculating a similarity matrix for all songs, Musly normalizes the similarities with

mutual proximity (MP) [16]. This method aims to reduce the effect of a phenomenon

called ”hubness”, which appears as a general problem of machine learning in high-

dimensional data spaces. ”Hubs are data points which keep appearing unwontedly often

as nearest neighbors of a large number of other data points.” [22, p. 66].

Schedl and Knees state: ”To apply MP to a distance matrix, it is assumed that the

distances 𝐷𝑥,𝑖=1..𝑁 from an object 𝑥 to all other objects in the data set follow a certain

probability distribution; thus, any distance 𝐷𝑥,𝑦 can be reinterpreted as the probability

of 𝑦 being the nearest neighbor of 𝑥, given the distance 𝐷𝑥,𝑦 and the probability

distribution 𝑃 (𝑥) [...] MP is then defined as the probability that 𝑦 is the nearest

neighbor of 𝑥 given 𝑃 (𝑥) and 𝑥 is the nearest neighbor of 𝑦 given 𝑃 (𝑦)” [2, p. 80]

Resulting in:

𝑃 (𝑋 > 𝐷𝑥,𝑦) = 1 ⊗ 𝑃 (𝑋 ⊘ 𝐷𝑥,𝑦) (3.8)

MP(𝐷𝑥,𝑦) = 𝑃 (𝑋 > 𝐷𝑥,𝑦 ∩ 𝑌 > 𝐷𝑥,𝑦). (3.9)

3.1.3 Gaussian Mixture Models and Block-Level Features

Another, more compute-heavy distance measurement would make use of Gaussian

Mixture Models (GMMs) of MFCCs. As Knees and Schedl state, ”Other work on

music audio feature modeling for similarity has shown that aggregating the MFCC

vectors of each song via a single Gaussian may work almost as well as using a GMM

[...] Doing so decreases computational complexity by several magnitudes, in comparison

to GMM-based similarity computations” [2, p. 65]. Therefore, the usage of GMMs is

not further considered in this thesis.

The last method mentioned, but not implemented in this thesis for timbral similarity

uses block-level features as proposed by Seyerlehner [58] and described in short by

Knees and Schedl [2, p. 67]. Instead of using single frames and summarizing them into

statistical or probabilistic models, block-level features use larger, e.g., multiple-second

long, audio frames. Features like fluctuation patterns (later introduced in Section 3.3.2)

and spectral patterns (containing timbre information) are computed for these larger

blocks of frames.

31



3.1.4 Validation

For this thesis, the symmetric Kullback-Leibler (SKL) divergence, the Jensen-Shannon-

like (JS) divergence and the Euclidean distance are chosen and tested. There is always

a trade-off between the complexity and functionality of distance computing algorithms.

A re-implementation of block-level features remains left open for future research due to

its rather compute heavy nature.

Using the Musly toolkit, a first evaluation using the symmetric KL divergence is pre-

sented in this section. The feature extraction and distance calculation can also be

done in Python using the librosa library, and a re-implementation of the Mandel-Ellis

approach was tested as well.

Genre Recall Rate / Construction Noise

In general, a good measurement for the efficiency of timbre similarity algorithms is the

ability to recommend songs of the same genre. Alternatively, the example proposed by

Dr. Bosse from the introduction was tested (see Chapter 1). Comparing a construction

noise sound sample with the private music collection containing mostly metal, rock, pop,

classical and hip hop music, the following six best results based on the JS divergence

were returned in descending order:

1. Ziegenmühlen Session - Down On The Corner (Folk Musik)

2. While She Sleeps - The Divide (Metalcore)

3. Delain - Mother Machine (Live) (Symphonic Metal)

4. Within Temptation - Sanctuary (Intro Live) (Symphonic Metal)

5. Without A Martyr - Medusa’s Gaze (Death Metal)

6. 100 Meisterwerke der Klassik - Orpheus In The Underworld (Orphée aux enfers) -

Can-Can (Live At Grosser Saal, Musikverein) (Klassik)

Figure 3.1 show the distribution of the genres of 100 most similar songs compared to

the construction noise sample.

Using an extended dataset consisting of the private music collection, private field

recordings, the full FMA dataset, and the musicnet data, the following results could be

achieved:

1. Born Pilot - Birds Fell (FMA, Electronic, Noise)

2. mrandmrsBrian - sun is boring (FMA, Avant-Garde, field recordings)

3. steps in snow (private field recording)

4. Sawako - Paris Children (FMA, field recordings)

5. Jeremy Gluck and Michael Dent - Olivier (FMA, Ambient Electronic)

32



Figure 3.1: Construction noise, first 100 song recommendations based on Musly toolkit
(JS)

Especially the second test shows, that the timbre based recommendations are able to

recommend similar sounding audio files by returning mostly music containing ambient

noises once these were included to the dataset.

Different Recordings and Cover Versions

Another experiment was to get the most similar songs to the famous ’Rondo alla

Turca’ by Mozart. The recording used as a starting point was taken from the CD ”100

Meisterwerke der Klassik” and has a length of 3:33 minutes. This piece by Mozart

appears overall four times in the dataset and is recorded by different pianists. Every

recording has a different length as listed in the following overview of the recordings by

CD.

• 100 Meisterwerke der Klassik (3:33)

• Piano Perlen (3:30)

• The Piano Collection - Disk 18 (3:28)

• Mozart Premium Edition - Disk 31 (4:29)

The top ten most similar songs to the 3 minutes and 33 seconds version are listed below,

and the recognized cover versions are underlined:

1. Mozart - Concert No. 10 for 2 Pianos and Orchestra in E Flat Major, KV 365 - 2.

Andante

2. Schubert - Sonata in B Flat, D. 960 - III. Scherzo (Allegro vivace con delicatezza)

3. Albeniz - Iberia, Book I - Evocación

4. Mozart Sonate Nr. 11 in A-Dur, K. 33 - Mozart - Alla Turca Allegretto (3:28)

5. Beethoven - Bagatellen Op 119 -Allemande in D major

6. Mozart - Rondo No. 1 in D Major, K. 485

33



7. Mozart - Sonata For Piano No. 8 KV 310 A Minor - Allegro Maestoso

8. Sonata For Piano No. 16 KV 545 C Major - Rondo: Allegretto

9. Mozart Sonate Nr. 11 in A-Dur, K. 33 - III. Tuerkischer Marsch (3:30)

10. Mozart - Piano Sonata No. 13 in B flat major, K. 333 (K. 315c): Allegretto

grazioso

The interesting conclusion is that only two out of the three other versions were considered

as most similar songs. The other recording was not even in the top 30 list of the most

similar songs. However, the recommendations are all from the same genre (classical

music). The inability to detect cover versions was also observable for other songs in the

dataset like Serj Tankians song ”Lie Lie Lie” from the CD ”Harakiri” (just to give an

example). This is probably due to the usage of MFCCs valuing the timbre of the music

predominantly instead of the pitches and melody movements.

3.2 Melodic Similarity

As presented in Section 2.3.3, there are tools for the extraction of the pitch curve of the

main melody line in a song. However, in polyphonic music these kinds of algorithms

struggle to get reasonable results. In musical genres like Metal with distorted instruments

it is hardly possible to get good results. In conclusion, the main pitch-line extraction

and the following conversion of a song with multiple concurrent audio tracks to MIDI

using up-to-date open-source toolkits does not produce very reasonable results as shown

in 2.3.3. Another possible representation of melodic features is the transformation of

the structural information to graphs, as Orio and Roda did [59].

But a better, and also widely used approach is to use chroma features.

3.2.1 Chroma Features Pre-Processing

Chroma features, as described in Section 2.2.1, are a good and lower-dimensional way

to describe the melody of a song. Most MIR toolkits already offer functions to extract

the chromagram from audio files. The plots in this chapter were created using the

Essentia [8] and librosa [60] toolkits. The reduction of dimensionality however, comes

with a loss of information, especially which octaves the notes are played in. In addition

to the pure computation of the chroma features, some pre- and post-processing steps

were implemented and tested and will be presented throughout in this chapter.

First of all, Figure 3.2 shows the chromagram plots from two different recordings of the

first thirty seconds of the song ”Chandelier”. Figure 3.2(a) shows the original version

sung by the artist Sia and Figure 3.2(b) shows the features of a cover version by the

band Pvris. In the last third of each sample the chroma features seemingly get noisier.

34



(a) Chroma features Sia - Chandelier (b) Chroma features Pvris - Chandelier

Figure 3.2: Chroma feature examples

At these timings in both songs, the bass and drum begin to play. To reduce the impact

of rhythm elements over the melodic voice and instrument lines, the audio signal was

filtered with a high-pass filter with a cut-off frequency at 128Hz (nearly equal to C3

Key) and secondly by a low-pass filter with a cut-off frequency at 4096Hz (C8 Key).

This limits the frequency range to about 5 octaves. In Figure 3.3, the filter frequencies

and the original audio signals are visualized in blue color, and the filtered audio signal

is green. The spectrogram before and after filtering the audio signal is also shown.

(a) High-pass filter (b) Low-pass filter

(c) FFT band-pass filter Sia (d) Band-pass filtered chromagram

Figure 3.3: Band-pass filtered audio, Sia - Chandelier

In the chromagram of the band-pass filtered audio signal, the last 10 seconds look cleaner

and the melody line is more distinct from the rest in comparison to the chromagram of

the unfiltered audio in Figure 3.2.

The next step is to calculate the most dominant note value for each timeframe. Since

the chromagram normalizes every timeframe to the maximum note value, the most

dominant note is always assigned to value 1. The closer the rest of the notes are to 1,

the more likely the timeframe contains silence. If only a few values are close to 1, a

chord or harmony is played. To filter out silence the sum over all note values of every

timeframe is calculated and if this sum is twice as high as the average sum of notes of

35



the whole song, the frame is considered as silence. Otherwise, the most dominant pitch

is set to a fixed value while the rest of the notes are set to zero.

Usually only the most dominant pitch is needed to extract the main melody, but

sometimes the main melody is superimposed by other accompanying instruments. To

prevent this, the second most dominant pitches can also be taken into consideration

if their values are greater then a specific threshold. The result is shown in Figure 3.4

with a threshold of 0.8.

(a) Single most dominant note only (b) First two most dominant notes

Figure 3.4: Thresholded chroma features, Sia - Chandelier

After that, a beat tracking algorithm is applied to the song and the count of appearances

of each note between two beats is calculated. The notes that appear the most between

two beats are then set to 1, while the rest is set to 0 for each section between two beats.

This beat-alignment serves to make the similarity measurement invariant to the overall

tempo of the song. Even if the cover of a song is played with half the tempo of the

original song, the melody segment of each bar is still the same as in the faster original

version.

(a) Beat-aligned chromagram, unfiltered, Pvris (b) Beat-aligned chromagram, filtered, Pvris

(c) Beat-aligned chromagram, unfiltered, Sia (d) Beat-aligned chromagram, filtered, Sia

Figure 3.5: Processed chroma features, Sia - Chandelier

Figure 3.5 shows the different beat-aligned features of both example songs with band-

36



pass filtered audio and unfiltered audio. The red lines resemble the detected beat events.

Another option would be to separate the frames between the beats in even smaller

sections. This would result in a better resolution of the melodic movement but at the

same time increase the length of the data vectors that have to be compared to each

other. The last processing step is to key shift the chroma features to make the similarity

analysis key invariant. One way to do so would be to estimate the key in which each

song is played and then shift all chroma features to the same base key, e.g., C Major

or A Minor. Due to the structure of the chroma features, this can easily be done by

assigning all estimated notes a new value a few keys higher or lower and thus shifting

the whole song by a few semitones. The whole workflow to extract the chroma features

for this thesis is shown in Figure 3.6.

6) key shifting

5) beat alignment

4) extract most
dominant pitches

3) detect silence

2) calculate chromagram

1) filter audio (band-pass)

Figure 3.6: Workflow chroma feature extraction

Another consideration is to use the original chromagram without the extraction of only

the most dominant keys and thus leaving the processing step 4 out. This means a

possible tradeoff between accuracy and computation time. The results for the example

song by Sia do not show a major impact as can be seen in Figure 3.7. In this thesis,

step 4 will be used in an attempt to get rid of the pitches of the accompaniment from

the main melody line.

37



(a) Using full chromagram (b) Using most dominant pitches

Figure 3.7: Processing step 3 of chroma features in detail

3.2.2 Similarity of Melodic Features

In this section, two completely different approaches to measure the melodic similarity

between two songs will be presented. The first one as proposed by [61] or [25], uses text

retrieval methods to compare the chroma features of two songs and the second evaluates

the usage of cross-correlation of beat-aligned chromagrams as a signal processing

approach [62] and [63]

Text Retrieval

One possibility to process the chromagrams and to estimate the similarity between the

melodic features of different songs is to handle the pre-processed chromagrams as texts

consisting of note values. Due to the extraction of only the main melody line in our

feature vector, there is only one note for every detected beat. This main melody line gets

converted into a vector of subsequent notes and the resulting vector is converted into a

string. The beat- and pitch-alignment done in the previous steps makes the features

relatively time- and key invariant. One problem that remains is the different length of

the various feature vectors. Xia (et al) [25] mentions that this is indeed a problem when

using the Levenshtein distance (also known as the edit-distance) to compute similarities.

The Levenshtein distance between the first 𝑖 characters of a string 𝑆 and the first 𝑗

characters of 𝑇 can be calculated as:

lev𝑆,𝑇 (𝑖, 𝑗) =

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

max(𝑖, 𝑗), if min(𝑖, 𝑗) = 0

min(

lev𝑆,𝑇 (𝑖 ⊗ 1, 𝑗) + 1,

lev𝑆,𝑇 (𝑖, 𝑗 ⊗ 1) + 1, else,

lev𝑆,𝑇 (𝑖 ⊗ 1, 𝑗 ⊗ 1) + 1(𝑆𝑖 ̸=𝑇𝑗)

)

(3.10)

38



with 1(𝑆𝑖 ̸=𝑇𝑗) being the indicator function equal to 0 when 𝑆𝑖 = 𝑇𝑗 and equal to 1

otherwise, following [25, p. 7].

In their paper, Xia (et al.) use MIDI files instead of chroma features, but both contain

information about the melody of songs. An adaption to chroma features is not an issue,

because they can also easily be interpreted as simple strings. They also made some

adjustments to Equation 3.10 to be able to handle musical information. [25, pp. 7ff]

For example to get rid of the problem of various lengths between the songs, they only

took the first 200 and the last 200 notes of every song because it could be observed that

cover songs tend to share more common notes in the beginning and at the end of each

song.

Due to the fact that this thesis has no actual note information from MIDI files but

rather short lists of estimated main pitches from the beat-aligned chroma features, most

of the feature vectors are already smaller than 200 notes. Therefore the implemented

algorithm does not split the vectors. This tends to favor cover songs that share the

same length.

Englmeier (et al.) uses a more advanced text information retrieval technique called

”TF-IDF weights” (term frequency - inverse document frequency) and explicit semantic

analysis (ESA). ”The TF-IDF weight is a measure which expresses the meaning of a term

or a document within a collection of documents.” [61, p. 186] To do so, ”audio words”

have to be created from the song database by splitting the audio signal into snippets,

creating chroma features and clustering them with the k-means algorithm. The centroids

are then added to a database. These audio words can then be evaluated using the TF-

IDF weights and ESA. Although their approach looks promising, a re-implementation

of their algorithms would exceed the frame of this thesis.

Cross-Correlation

Another possibility to handle the extracted chroma features is to view them as ordinary

discrete time signals and creating opportunities to apply classical signal processing

algorithms. For this approach, the pre-processing steps laid out in Figure 3.6 can

be simplified by skipping steps 3 and 4 and possibly even step 6, as explained later,

resulting in beat-aligned chromagrams as shown in Figure 3.10(a) and 3.10(b).

Ellis and Poliner use the cross-correlation in their 2007 published paper [63]. Serra (et

al.) also references the work of Ellis and Poliner and discusses different weak points and

influences of processing steps like beat tracking and key transposition to the overall

performance of this similarity measurement. They also discuss and improve another

approach called ”dynamic time warping” (DTW) further in their paper [62]. The focus

of this thesis is set on the cross-correlation method. Given two discrete-time signals 𝑥[𝑛]

and 𝑦[𝑛] the cross-correlation between both signals 𝑘[𝑛] = (𝑥 ⋆ 𝑦)[𝑛] can be denoted as

39



follows:

𝑘[𝑛] = (𝑥 ⋆ 𝑦)[𝑛] =
∞
∑︁

𝑚=⊗∞

𝑥[𝑚]𝑦[𝑚 ⊗ 𝑛]. (3.11)

For two two-dimensional input matrices 𝑋 with the dimensions 𝑀 by 𝑁 and 𝑌 as a

𝑃 by 𝑄 matrix the cross-correlation result is a matrix 𝐶 of size 𝑀 + 𝑃 ⊗ 1 rows and

𝑁 + 𝑄 ⊗ 1 columns. Its elements are given by the equations [64]:

𝐶(𝑘, 𝑙) =
𝑀⊗1
∑︁

𝑚=0

𝑁⊗1
∑︁

𝑛=0

𝑋(𝑚, 𝑛)𝑌 (𝑚 ⊗ 𝑘, 𝑛 ⊗ 𝑙) (3.12)

with

⊗ (𝑃 ⊗ 1) ⊘ 𝑘 ⊘ 𝑀 ⊗ 1 (3.13)

⊗ (𝑄 ⊗ 1) ⊘ 𝑙 ⊘ 𝑁 ⊗ 1. (3.14)

The bar over 𝑌 denotes complex conjugation (in this case 𝑌 is a matrix with real values

only). An example for the one-dimensional cross-correlation is shown in Figure 3.8

and the full two-dimensional cross-correlation of two songs is depicted in Figure 3.9

and 3.10. Ellis and Poliner did not transpose the songs in the pre-processing step to

Figure 3.8: 1D cross-correlation

match the keys of both audio files. Instead, they calculated the full cross-correlation for

all 12 possible transpositions and chose the best one. As input matrices, they averaged

all notes of the chroma features per beat and additionally scaled them to have unit

norm at each time slice (beat frame). In the original paper, the cross-correlation is

normalized by the length of the shorter song segment to bind the correlation result

to an interval between 0 and 1. But in a later published work from Ellis and Cotton,

this step was left out as it seemingly resulted in slightly worse detection ratios of cover

songs [65]. Additionally, they filtered the result of the cross-correlation with a high-pass

40



filter. ”We found that genuine matches were indicated not only by cross-correlations of

large magnitudes, but that these large values occurred in narrow local maxima in the

cross-correlations that fell off rapidly as the relative alignment changed from its best

value. To emphasize these sharp local maxima, we choose the transposition that gives

the largest peak correlation then high-pass filter that cross-correlation function with

a 3dB point at 0.1 rad/sample” [63, p. 3]. The later published paper also states that

changes to the filter parameters improved the cover song recognition rate further [65].

However, the exact values, e.g., for the cutoff frequency were not given. Accordingly, in

this thesis, the older parameters for the filter are used.

Serra (et al.) also discusses the effects of different pre-processing steps that improve the

algorithm even further and they note that a higher chroma resolution of 3 octaves gives

better results. Also, the key detection and transposition before the cross-correlation

gives slightly worse results in comparison to the method Ellis and Poliner used.

In this thesis, a version where the songs are all key aligned before the cross-correlation

was tested to reduce the computation time overhead when estimating the similarities

on a cluster. In summary, the implementation in this thesis is similar to the approach

by Ellis and Poliner [63], but some of the steps from the newer paper [65] leave some

space for further improvements.

The chroma features are beat aligned, averaged per beat, and normalized to unit

length as well. Additionally, all chroma features are transposed to a common key

(A in this case) in the pre-processing step. The full cross-correlation according to

Equation (3.12) including ”key shifts” with zero padding at the edges by letting 𝑘

run from ⊗(𝑃 ⊗ 1) ⊘ 𝑘 ⊘ 𝑀 ⊗ 1 is shown in Figures 3.9 and 3.10. But due to the

previously already performed key shift during the pre-processing steps and the fact that

both input matrices share the same amount of rows (12, one per semi-tone), the full

cross-correlation is not necessary and computation time can be saved by altering the

computation according to Equation (3.15) resulting in a vector 𝐶 with the correlation

results without additional key-shifting

𝐶(𝑙) =
𝑀⊗1
∑︁

𝑚=0

𝑁⊗1
∑︁

𝑛=0

𝑋(𝑚, 𝑛)𝐻(𝑚, 𝑛 ⊗ 𝑙) (3.15)

⊗ (𝑄 ⊗ 1) ⊘ 𝑙 ⊘ 𝑁 ⊗ 1 (3.16)

or even faster without calculating the edges of the matrix (without zero-padding).

0 ⊘ 𝑙 ⊘ 𝑁 ⊗ 𝑄 (3.17)

This simplified version relies on an accurate key detection of the songs during the

pre-processing. The post-processing step from Ellis and Poliner, more precisely the

41



high-pass filtering of the result was also implemented.

Figure 3.9 shows two beat aligned, key-shifted and per beat averaged chroma features of

two short guitar audio samples and their cross-correlation results. The most interesting

row of the cross-correlation matrix is the middle row marked with the B key on the

y-axis, where both chromagrams are aligned.

(a) Beat-aligned chromagram sound1
(b) Beat-aligned chromagram sound1 key-
shifted

(c) Beat-aligned chromagram sound2 key-
shifted

(d) Cross-correlation

Figure 3.9: 2D cross-correlation of beat-aligned and key-shifted chromagrams (audio
snippets)

In Figure 3.10 the cross-correlation of the song ”Chandelier” by singer Sia and covered

by Pvris are shown in 3.10(c) and in contrast to this the cross-correlation of ”Chandelier”

with the song ”Rock you like a Hurricane” by The Scorpions is shown (Figure 3.10(d)).

Due to the previous key shifting, plot 3.10(c) shows the maximum peak right in the

center row. Originally, the version by Sia is detected to be written in C sharp and

the cover version in F sharp, but both songs are shifted to the A key during the

pre-processing step.

The unrelated songs result in much smaller correlation values, especially when looking at

the middle row of the matrix (marked with the F key on the y-axis in figure 3.10(d)), but

also if the songs were transposed additionally even then they would not correlate well,

but this is also related to the zero-padding when additional key-shifts are performed. In

contrast to this, the cover songs have multiple visible peaks in the center row. The row

with the maximum correlation value is extracted, and the resulting plot shows that the

cover songs do correlate much better than the unrelated songs (3.11(a) and 3.11(b)). The

center rows of the cross-correlation matrices from Figure 3.10 are separately pictured in

Figure 3.11. After applying the high-pass filter to the extracted row with the maximum

42



(a) Chandelier, Pvris (b) Chandelier, Sia

(c) Cross-correlation of cover songs (d) Cross-correlation of unrelated songs

Figure 3.10: 2D cross-correlation of beat-aligned chromagrams (Sia / Pvris - Chandelier)

correlation value, the peaks in 3.11(a) when cross-correlating the cover songs are clearly

visible compared to the unrelated songs. An interesting detail that can be pointed out

is that the song structure is also visible in plot 3.11(c) with clearly visible recurring

peaks when the refrain is repeated.

(a) Cross-correlation of cover songs (b) Cross-correlation of unrelated songs

(c) Cover songs filtered (d) Unrelated songs filtered

Figure 3.11: Filtered cross-correlation (high-pass)

3.2.3 Validation

A good measurement for the efficiency of a melodic similarity algorithm is the ability

to find cover songs, remixes, and different recordings of the same song. Chapter 5.1.2

evaluates the cover song recognition rate of the implemented recommender system.

43



3.3 Rhythmic Similarity

This chapter provides an overview of some of the possibilities for computing music

similarity by focusing on rhythmic features of different songs.

Nearly every MIR toolkit provides an extraction tool for the beats per minute (BPM)

and thus the tempo of each song. The most trivial solution of computing very low-level

rhythmic similarities is by sorting and comparing songs only by their main tempo (BPM).

There are certainly far better and more accurate solutions. This chapter presents some

of the most promising approaches to compute rhythm similarities regarding the applica-

bility in a Big Data framework.

3.3.1 Beat Histogram

One possible similarity measurement is, e.g., the usage of beat histograms as proposed

by Tsanetakis and Cook [66]. The Essentia toolkit offers methods to extract the beat

histogram. The different detected BPMs are normalized to 1. If a song changes its

tempo, then multiple peaks can be seen. Figure 3.12 shows the beat histograms of

(a) Rock You Like A Hurricane, Scorpions (b) Rock You Like A Hurricane, Knightsbridge

(c) Behind Space, 94’ version (d) Behind Space, 99’ version

Figure 3.12: Beat histogram examples

the song ”Rock you like a hurricane” by the Scorpions (Figure 3.12(a)) and covered

by Knightsbridge(Figure 3.12(b)) as well as two different versions of the song ”Behind

Space” from the Swedish metal band In Flames, one is sung by Stanne Mikkels in 1994

(Figure 3.12(c)) and the second version was recorded with Anders Friden as the vocalist

44



in 1999 (Figure 3.12(d)). The 1994 version changes its tempo in the outro of the song,

and the tempo change can be seen in the histogram in Figure 3.12(c) as a second large

peak around 120 BPM. Similarities between two beat histograms can be computed

using the Euclidean distance. Gruhne (et al.) further improved beat histograms and

suggested an additional post-processing step before calculating the similarity between

songs with the Euclidean distance. They found that logarithmic re-sampling of the lag

axis of the histogram and cross-correlation with an artificial rhythmic grid improves the

performance of this similarity measurement further (see [67, p. 182]). This thesis does

not use the additional re-sampling.

Another paper that is just mentioned here (one of the older ones from 2002) uses the

beat spectrum as a feature [27] to compute similarities.

3.3.2 Rhythm Patterns

A more state-of-the-art feature is the so-called rhythm pattern, also known as fluctuation

patterns, evaluated by Lidy and Rauber in [68] for instance. To extract these features, the

rp extractor library for Python [69] was made publicly available by the TU Vienna [70].

Figure 3.13 shows the extracted rhythmic patterns of the previously mentioned songs

”Rock you like a Hurricane”and ”Behind Space”. The similarities of the different versions

from the same songs are quite visible, while at the same time substantial differences

between the different songs are recognizable.

(a) Rock You Like A Hurricane, Scorpions (b) Rock You Like A Hurricane, Knightsbridge

(c) Behind Space, 94’ version (d) Behind Space, 99’ version

Figure 3.13: Rhythm pattern examples

The x-axis represents the frequency bands converted to the Bark-scale (a scale repre-

senting the human auditory system comparable to the mel scale from Equation (2.6)),

and the y-axis represents the modulation frequency index representing the modulation

frequencies up to 10Hz (around 600 BPM). The Bark of a frequency 𝑓 can be determined

45



using the equation

Bark = 13 arctan(0.00076𝑓) + 3.5 arctan((𝑓/7500)2). (3.18)

The algorithm to extract rhythm patterns, rhythm histogram, and statistical spectrum

descriptors measuring the variations over the critical frequency bands, can be seen in

Figure 3.14.

Audio Signal

Pre-Processing

Power Spectrum (STFT)

Critical Bands (Bark scale)

Equal Loudness (Phon)

Specific Loudness Sens. (Sone) Statistical Spectrum Descriptor ⊃ SSD

Modulation Amplitude (FFT) Rhythm Histogram ⊃ RH

Fluctuation Strength Weighting

Filtering / Blurring Rhythmic Patterns ⊃ RP

Figure 3.14: Rhythm pattern extraction procedure as suggested by [70]

In conclusion, the rhythm patterns basically represent the BPM of various frequency

bands. To compare two different songs the Euclidean distance between the vectorized

rhythm pattern matrices can be calculated as Pampalk suggests [71, p. 40].

Pohle, Schnitzer (et al.) [72] later refined fluctuation patterns into onset patterns, e.g.,

by using semitone bands instead of fewer critical bands to detect onsets. This thesis

however, focuses on fluctuation-/ rhythm patterns extracted with the rp extractor

library.

3.3.3 Rhythm Histogram

A more simplistic and lower-dimensional feature coming with the rp extract toolkit is

the rhythm histogram. ”The Rhythm Histogram features we use are a descriptor for

general rhythmics in an audio document. Contrary to the Rhythm Patterns and the

Statistical Spectrum Descriptor, information is not stored per critical band. Rather,

the magnitudes of each modulation frequency bin of all 24 critical bands are summed

46



up, to form a histogram of ”rhythmic energy” per modulation frequency. The histogram

contains 60 bins which reflect modulation frequency between 0 and 10 Hz.” [68, p. 3].

The difference between rhythm histogram and the earlier in Section 3.3.1 mentioned

beat histogram appears to be the beat histogram focusing on the basic tempo of the

whole song while the rhythm histogram takes all frequency bands and therefore the sub-

rhythms of single instruments into account. Figure 3.15 shows the rhythm histograms

of four example songs.

(a) Rock You Like A Hurricane, Scorpions (b) Rock You Like A Hurricane, Knightsbridge

(c) Behind Space, 94’ version (d) Behind Space, 99’ version

Figure 3.15: Rhythm histogram examples

3.3.4 Cross-Correlation

Estimating the onset strength as introduced in section 2.2.3, averaging it per beat and

creating a discrete-time signal for each song is another possibility. Similar to the chroma

features, the cross-correlation of these discrete-time onset features could be used as a

similarity measurement, following Equation 3.11.

Looking at the extracted onset features of the Song ”Behind Space” by In Flames (sung

by Anders Frieden 99’ and Stanne Mikkels 94’) in Figure 3.16, one can see that the

quality of these signals is greatly dependent on the underlying beat extraction and

onset detection algorithms. As an example, the librosa toolkit struggles to detect

beats in the first 10 seconds of the song ”Behind Space” recorded in 1999. Also, this

representation seems to contain a lot less valuable and comparable information in

contrast to fluctuation patterns. In conclusion, this approach is discarded and not

further considered and tested in this thesis.

47



(a) Rock You Like A Hurricane, Scorpions (b) Rock You Like A Hurricane, Knightsbridge

(c) Behind Space, 94’ version (d) Behind Space, 99’ version

Figure 3.16: Detected onset examples (30 second song snippets)

3.4 Summary

After evaluating various options of similarity measurements for different aspects of

music (timbre, rhythm, and melody), all of the chosen approaches that are implemented

in the next chapters are summarized in this section.

The chosen similarity metrics for timbre similarity are:

• Euclidean Distance

• symmetric Kullback-Leibler divergence

• Jensen-Shannon-like divergence

For the computation of the melodic similarities, two different similarity metrics are

chosen:

• Levenshtein Distance

• cross-correlation on full beat aligned and per beat averaged chroma features, key

shifted to A

Three different similarity measurements are chosen for the rhythm features:

• Euclidean distance between beat histograms

• Euclidean distance between rhythm histograms

• Euclidean distance between rhythm patterns

48



4. Implementation

The implementation consists of two separate parts. The first contains the feature

extraction and preparation of data from the audio files. The results are stored into

feature files. In the second part, these feature files then have to be processed with the

Big Data framework Spark to compute the similarities between songs.

Both parts are implemented in Python and can be executed on computer clusters.

The source code can be found on the CD in the appendices and it can be pulled from

GitHub [73]. Details for the usage of the Python scripts are also documented there.

4.1 Underlying Hardware

The first tests were performed on a single PC with 4 CPU cores (8 with HT) (Intel

Core i7-3610QM CPU, 2.30GHz × 4) running Spark 2.4.0.

The cluster tests were performed on the ARA-cluster of the Friedrich Schiller University

in Jena. It offers 16 compute-nodes for Spark applications with 36 CPU-cores (Dual

Socket, 2 x Intel Xeon ”Scalable” 6140, 2.30 GHz x 18) per node (72 with HT), and

192GB of RAM. The cluster’s Spark partition is running with an older version of Spark

(1.6.0). The ARA-cluster also offers a larger ”Skylake” partition with 152 compute-nodes

of which 36 were used to extract the audio features with. The hardware of these nodes

is the same as in the Spark partition of the cluster.

4.2 Audio Feature Extraction

So far, the required audio features as well as toolkits to extract those features from

the audio data have been described and selected in Chapter 2. In Section 2.5, different

sources for audio files have been presented. Section 3.1, 3.2, and 3.3 presented algorithms

to pre-process the low-level features and use these to compute similarities. This section

focuses on the selection of fitting datasets and the performance of the feature extraction

and pre-processing software implementation.

49



4.2.1 Test Datasets

A lot of data is needed to test the algorithms in a Big Data environment, so the Free

Music Archive with its over 106000 songs is a good option for performance tests. It has

to be kept in mind, that the genre distribution in the FMA dataset is quite one sided.

Most of the songs are tagged as experimental, electronic, and rock. Also, this dataset

may not be representative for actual popular music, a lot of the songs are live recordings

with poor audio quality. The 1517-Artists dataset offers 19 different genres with songs

relatively evenly distributed. For an objective evaluation of the proposed algorithms,

e.g., by genre recall, this dataset is ideal. For cover song detection, the covers80 dataset

is included as well. The last source used in this thesis is the private music collection.

This collection is biased towards metal music, but due to the match with personal taste,

it enables a subjective evaluation of the results from the implemented recommender

system. In conclusion that adds up to about 117000 songs for performance tests, from

which in the end 114210 could be used (see Section 4.2.2 for the details on the dropout),

and about 11500 songs for a detailed evaluation of the algorithms in this thesis and the

quality of the recommendations. As mentioned in Section 2.5.1, all albums from the

private music collections are catalogued as well, and the associated document is in the

appendices.

FMA 106.733 Songs
private 8484 Songs

1517-Artists 3180 Songs
covers80 164 Songs (80 originals + 84 covers)

Table 4.1: Selected music datasets

4.2.2 Feature Extraction Performance

After evaluating the different features in the last three chapters, this section only

discusses the performance of the feature extraction process without going too much into

the details of the code for feature pre- and post-processing, like the note estimation

from the chroma features and the calculation of statistic features from the MFCCs.

These additional steps were already explained in-depth in the previous chapters and

are therefore left out here. The full code is in the appendices.

Librosa

For most of the plots in Chapter 2, the Python toolkit librosa was used because of

its ease of use and very good documentation. The following code example shows the

50



necessary steps to extract the most important features like MFCC, chromagram, beats,

and onsets.

1 path = (’music/guitar2.mp3’)

2 x, fs = librosa.load(path)

3 mfcc = librosa.feature.mfcc(y=x, sr=fs, n_mfcc=12)

4 onset_env = librosa.onset.onset_strength(x, fs, aggregate=np.median)

5 tempo, beats = librosa.beat.beat_track(onset_envelope=onset_env,sr=fs)

6 times = librosa.frames_to_time(np.arange(len(onset_env)), sr=fs, hop_length= '

512)

7 chroma = librosa.feature.chroma_stft(x, fs)

Code Snippet 4.1: Librosa

First of all an audio file is read into the variable x and the sample rate fs is returned

by librosa.load(path). This audio file is then passed to librosa.feature.mfcc() for the

extraction of the MFCCs, librosa.onset.onset_strength() for the onsets, and librosa.

feature.chroma_stft() to extract the chromagram. The onsets are also used to detect

the beats and their time signatures in the song.

When extracting features from batches of audio files, the librosa library turned out to

be very slow. For a tiny dataset of 100 songs, the extraction of just the mean, variance,

and covariance of the MFCCs and the estimated notes from the chromagram took

about 53 minutes on a single computer (1 CPU core used). For larger datasets like the

1517-Artists dataset, the feature extraction process would have taken about 28 hours

and over 940 hours for the FMA dataset.

Essentia

Moffat (et al.) [4] compare different Audio feature extraction toolboxes and show

that Essentia is a much faster alternative to librosa due to the underlying C++ code

and provides even more features, but it is a bit less well documented and requires

more effort for the implementation at the same time. In the end, the code to extract

the necessary features had to be rewritten for the usage of Essentia due to the slow

performance of librosa. Essentia offers two different ways to handle audio files. The

first one is to use the Essentia standard library. It provides similar methods as librosa

and uses an imperative programming style. The audio file has to be read, sliced and

pre-processed manually. The second way is to use Essentia streaming. Basically, a

network of connected algorithms is created, and they handle and schedule the ”how and

when” of the execution whenever a process is called. The melodic and timbral features

and the beat histograms are computed with Essentia. Only the rhythm patterns and

rhythm histograms are computed in a separate step, as stated below.

51



Essentia Standard

In the final code for the audio feature extraction, the computation of the MFCCs and

beat histogram is done with the Essentia standard library, because it offers a fast and

easy way to implement the basic feature extraction tasks (see Code Snippet 4.2).

1 audio = es.MonoLoader(filename=path, sampleRate=fs)()

2 hamming_window = es.Windowing(type=’hamming’)

3 spectrum = es.Spectrum()

4 mfcc = es.MFCC(numberCoefficients=13)

5 mfccs = numpy.array([mfcc(spectrum(hamming_window(frame)))[1] for frame in es.'

FrameGenerator(audio, frameSize=2048, hopSize=1024)])

6 rhythm_extractor = es.RhythmExtractor2013(method="multifeature")

7 bpm, beats, beats_confidence, _, beats_intervals = rhythm_extractor(audio)

8 peak1_bpm, peak1_weight, peak1_spread, peak2_bpm, peak2_weight, peak2_spread, '

histogram = es.BpmHistogramDescriptors()(beats_intervals)

Code Snippet 4.2: Essentia standard

Again at first an audio file is read into the variable audio by calling es.MonoLoader

(filename=path, sampleRate=fs)(). This audio file is then split into frames by the

es.FrameGenerator() for the following extraction of the MFCCs with mfcc(spectrum(

hamming_window(frame)))[1] for each frame. For the beat extraction the audio data gets

passed to rhythm_extractor().

Essentia Streaming

The Essentia streaming library is used to calculate the chroma features. It eases up

filtering with high- and low-pass filters. The audio signal is passed through various

processing stages and ultimately results in the chroma features of the band-pass filtered

audio signal. In Code Snippet 4.3 the different stages get set up, e.g., the filter parameters

are set by calling ess.HighPass(cutoffFrequency=128) and ess.LowPass(cutoffFrequency

=4096). The audio file is read by calling ess.MonoLoader().

1 loader = ess.MonoLoader(filename=path, sampleRate=44100)

2 HP = ess.HighPass(cutoffFrequency=128)

3 LP = ess.LowPass(cutoffFrequency=4096)

4 framecutter = ess.FrameCutter(frameSize=frameSize, hopSize=hopSize, silentFrames'

=’noise’)

5 windowing = ess.Windowing(type=’blackmanharris62’)

6 spectrum = ess.Spectrum()

7 spectralpeaks = ess.SpectralPeaks(orderBy=’magnitude’, magnitudeThreshold'

=0.00001, minFrequency=20, maxFrequency=3500, maxPeaks=60)

52



8 hpcp = ess.HPCP()

9 hpcp_key = ess.HPCP(size=36, referenceFrequency=440, bandPreset=False, '

minFrequency=20, maxFrequency=3500, weightType=’cosine’, nonLinear=False, '

windowSize=1.)

10 key = ess.Key(profileType=’edma’, numHarmonics=4, pcpSize=36, slope=0.6, '

usePolyphony=True, useThreeChords=True)

11 pool = essentia.Pool()

Code Snippet 4.3: Essentia streaming

In Code Snippet 4.4 the audio file gets passed through the various stages. At first it gets

filtered with a high- and low-pass filter, resulting in a band-pass filter operation. Then

the signal gets split into frames and the chromagram (harmonic pitch class profiles,

HPCP) gets extracted and stored into chroma.

1 loader.audio >> HP.signal

2 HP.signal >> LP.signal

3 LP.signal >> framecutter.signal

4 framecutter.frame >> windowing.frame >> spectrum.frame

5 spectrum.spectrum >> spectralpeaks.spectrum

6 spectralpeaks.magnitudes >> hpcp.magnitudes

7 spectralpeaks.frequencies >> hpcp.frequencies

8 spectralpeaks.magnitudes >> hpcp_key.magnitudes

9 spectralpeaks.frequencies >> hpcp_key.frequencies

10 hpcp_key.hpcp >> key.pcp

11 hpcp.hpcp >> (pool, ’tonal.hpcp’)

12 essentia.run(loader)

13 chroma = pool[’tonal.hpcp’].T

Code Snippet 4.4: Essentia streaming

Essentia Performance

The calculation with the Essentia streaming and standard library for 100 songs took

less than a third of the time librosa needed. This is a significant improvement, however

the Essentia library uses only one CPU core so that performance was further improved

by using the Parallel Python and mpi4py library.

Parallel Python

Parallel Python is a Python module that enables the execution of Python code in

parallel. On a single PC, multiple CPU cores get parts of the full filelist and compute

the features fully in parallel (see Code Snippet 4.5).

53



1 job_server = pp.Server()

2 job_server.set_ncpus(ncpus)

3 jobs = [ ]

4 for index in xrange(startjob, parts):

5 starti = start+index*step

6 endi = min(start+(index+1)*step, end)

7 jobs.append(job_server.submit(parallel_python_process, (index, filelist[starti'

:endi],1,1,1,1,1)))

8 gc.collect()

9 times = sum([job() for job in jobs])

10 job_server.print_stats()

Code Snippet 4.5: Parallel Python

The computation time takes on average approximately 18.6 seconds per song and

processor core (assuming ideal data balancing).

time =
#songs

#CPUs
≤ 18.6𝑠 (4.1)

Using 4 CPU cores for 100 songs, the overall processing time could be reduced to about

465 seconds. Parallel Python also opens up the possibility to use a cluster instead of a

single-node PC.

For convenience, every processor gets a batch of files instead of single songs. For

every batch, different output files for the various features are created. The batch size

determines the overall size of these feature-files. As an example, a batch size of 400

songs was chosen for the 1517-Artists dataset, which means four CPUs had to process

two batches, resulting in eight different output files with the chroma feature files being

the largest with about 25MB per file.

One problem that appeared when using Parallel Python was that the main memory

usage increased over time. Neither explicit usage of the garbage collector nor the

deletion of unwanted objects also could solve that problem. After processing a few

hundred songs the processes eventually ran out of memory and had to be restarted.

By replacing Parallel Python with mpi4py, this problem could later be solved (see

Section 4.2.2).

Rp extractor

For the extraction of the rhythm patterns and rhythm histogram features as described

in Section 3.3, the ”rp extractor” tool provided by the TU Wien was used. Although

running in parallel on all CPU cores on a single node, the extraction of the features

from 100 songs took about 344 seconds.

54



Performance on a Single PC

The performance of the different MIR toolkits is shown in Figure 4.1.

0 20 40 60 80 100 120
0

500

1,000

1,500

2,000

2,500

3,000

#songs

ti
m
e
in

s
Essentia parallel (4 cores)

rp extract (4 cores)
Essentia
librosa

Figure 4.1: Performance of various toolkits on a single computer

In summary, the estimated time for the feature extraction of larger datasets on a single

computer based on the performance measurements was extrapolated and is listed below,

leading to the conclusion that the features for the full dataset including the FMA

dataset can only be extracted with the help of a computer cluster.

Estimated feature extraction times

• 3h24min - 1517-Artists - Essentia parallel, single-node, 4 CPU cores

• 3h54min - 1517-Artists - rp extract

• 9h06min - private dataset - Essentia parallel, single-node, 4 CPU cores

• 10h24min - private dataset - rp extract

• (125h - all datasets - Essentia parallel, single-node, 4 CPU cores)

• (143h - all datasets - rp extract)

Performance on a Cluster with mpi4py

For the extraction of the features from the audio files of the FMA dataset on the com-

puter cluster of the Friedrich Schiller University in Jena (the ”ARA-cluster”), Parallel

Python had to be replaced with mpi4py (see Code Snippet 4.6). Mpi4py provides Python

bindings for the Message Passing Interface standard (MPI) [74]. Every compute-process

gets a rank number and recognizes the overall count of processes. With these two values,

the file list of all audio files is split, and each process only processes its respective data.

The audio files were stored in a parallel cluster file system called ”beegfs” [75]. Similar

55



to the implementation using Parallel Python, every process stores the results in separate

output files, each of them containing batches of 25 songs.

1 comm = MPI.COMM_WORLD # get MPI communicator object

2 size = comm.size # total number of processes

3 rank = comm.rank # rank of this process

4 status = MPI.Status() # get MPI status object

5 files_per_part = 25

6 start = 0

7 last = len(filelist)

8 parts = (len(filelist) / files_per_part) + 1

9 step = (last - start) / parts + 1

10 for index in xrange(start + rank, last, size):

11 if index < parts:

12 starti = start+index*step

13 endi = min(start+(index+1)*step, last)

14 parallel_python_process(index, filelist[starti:endi])

Code Snippet 4.6: Mpi4py

All audio files larger than 25MB were filtered out of the FMA dataset in advance, to

avoid memory overflows, still leaving 102813 songs out of the 106733 songs to process.

A total of 36 compute nodes were used. Every node had 192GB of RAM and 36 CPU

cores (72 using hyper-threading (HT)). To increase the available memory per CPU core,

only 18 CPU cores per node were used. So, overall, 648 processes were spawned. During

the computation of the audio features with Essentia, 1 out of the 648 processes ran

out of memory, so only 102793 out of the 102813 songs were processed in the end. For

performance tests, this does not make a big difference, but for future work the feature

extraction script should be adapted accordingly.

The ARA-cluster is managed with the help of the Slurm Workload Manager [76]. To

submit the Essentia feature extraction script to the cluster, the following Slurm *.sbatch

file was used to configure the cluster:

#!/bin/bash

#SBATCH --partition=s_standard

#SBATCH --time =08:00:00

#SBATCH -n 648

#SBATCH -N 36

#SBATCH --ntasks -per -node =18

#SBATCH --mem -per -cpu =10000

srun -n $SLURM_NTASKS --mpi=openmpi python mpi4py_ara_features.py

Code Snippet 4.7: Slurm *.sbatch file for feature extraction with Essentia on the

ARA-cluster

56



Figure 4.2 shows the performance of the feature extraction on the ARA-cluster. The

extraction of the features took between 1439 seconds (fastest process) and 1950 seconds

(slowest). With better balancing and messaging between the processes, the tasks could

be distributed in a way where idle tasks take parts of the file list from other tasks that

are still processing.

For the extraction of the rhythm features with the rp extract tool, the script of the TU

Wien was adapted for usage with mpi4py as well. The same amount of processes gets

spawned on the cluster (648), but each of the processes is able to make use of two CPU

cores plus HT. The fastest process finished after 1657 seconds and the slowest one took

1803 seconds.

ess slowest ess fastest rp slowest rp fastest
0

10

20

30

40

32.5

23.98

30.05

27.62

ti
m
e
in

m
in

Feature extraction process

Figure 4.2: Feature extraction of the FMA dataset on the ARA-cluster (performance)

Total Amount of Songs

Due to the above-mentioned filtering of audio files larger than 25MB, the out-of-memory

error of one process executing the Essentia task, and since the rhythm pattern extraction

script does not handle some audio file formats like Ogg Vorbis, not all features from all

songs could be extracted. So, in the end, the overall count of songs from the datasets

listed in Table 4.1 where all features could be obtained is 114210.

4.3 Big Data Framework Spark

After all features are extracted, the next step is to load the feature files into the HDFS.

57



4.3.1 Feature Files

For the about 114000 songs all feature files sum up to about 11.2 GB (see Figure 4.3).

Large streaming platforms like Spotify give access to about 50 million songs in their

databases [77]. At this scale, the feature files would sum up to approximately 5 TB.

*.chroma *.rp *.bh *.mfcckl *.mfcc *.notes *.rh *.files

0

2

4

6

8
7.4

2.6

0.32 0.32
0.18 0.17 9.8 · 10

−2
5 · 10

−3

fi
le

si
ze

in
G
B

Size in GB

Figure 4.3: Feature file sizes

To calculate the distances based on timbral features, for each song the mean and variance

vectors and covariance matrix has to be computed from the MFCCs. These are stored

in two different output text files:

• out.mfcc (containing mean vector (length 𝑏), variance vector (size 𝑏) and vectorized

upper triangular covariance matrix (length 𝑏≤(𝑏+1)
2

))

• out.mfcckl (containing mean vector (length 𝑏) and full covariance matrix (size

𝑏 ≤ 𝑏)

The amount of mel bands chosen is 𝑏 = 13. The second *.mfcckl file is created to dispose

of the necessity to rearrange the covariance matrix inside the Big Data framework and

reduce the computation time when a similarity estimation request is processed. To

even further safe storage space the variance vector from the *.mfcc files could have

been left out. These variance values are already stored within the main diagonal of the

covariance matrix (as mentioned in Section 3.1.1) and left within the triangular matrix,

leading to 𝑏≤(𝑏+1)
2

instead of 𝑏≤(𝑏⊗1)
2

values stored in the features files.

The melodic features are stored in two different output text files. The vector length is

dependent on the numbers of detected beats 𝑛:

• out.notes (containing the estimated original key, the scale and a list of most

dominant key per beat, key-shifted to the A key (size 𝑛))

58



• out.chroma (full beat-aligned and key-shifted chromagram, containing a 12 × 𝑛

matrix)

The rhythm features are stored in three different output text files:

• out.bh (containing the estimated overall bpm and a vector for the beat histogram

normalized to one (size 250))

• out.rh (containing a vector for the rhythm histogram extracted with rp extract

(size 60))

• out.rp (containing a vectorized matrix for the rhythm patterns extracted with

rp extract (size 24 × 60))

An additional file containing a list of all song names is stored as

• out.files

4.3.2 Workflow

Although multiple different implementations were tested to evaluate the fastest and

most efficient way to compute the similarities, all of these different approaches follow

the same basic steps. These are presented in Figure 4.4.

5) return result

4) joining results

3) distance scaling

2) distance computation

1) data prepara-
tion and caching

Figure 4.4: Workflow Spark

The following sections explain the various stages in more detail, also giving more details

over a few subtle differences between the different implemented and tested approaches

like the usage of RDDs, single DataFrames for each feature or one large DataFrame

containing all features.

59



4.3.3 Data Preparation

The features are stored into many small text files as described in Section 3.4. Due

to the fact that the features were extracted in parallel and in batches of only a few

songs, each of the feature files only contains the features of a small number of songs.

As many small files are inefficient to process with Spark, all files containing the same

feature type are merged to one large file, before being loaded into the HDFS [51, p.

153]. By loading larger files into the HDFS, partitioning into data blocks is performed

according to the standard parameters of the HDFS (e.g. 128 MB partitions). Additional

repartitioning on the cluster is later performed with Spark by using the rdd.repartition

(repartition_count) command. Finally, to work with the features a few transformations

have to be performed on the data. The extracted note values are stored as lists of

integers for example, each representing a certain note. To compare them using the

Levenshtein distance, the lists are converted into strings (see Code Snippet 4.8).

1 chroma = sc.textFile("features/out[0-9]*.notes").repartition(repartition_count)

2 chroma = chroma.map(lambda x: x.split(’;’))

3 chroma = chroma.map(lambda x: (x[0], x[1], x[2], x[3].replace("0",’A’).replace("'

1",’B’).replace("2",’C’).replace("3",’D’).replace("4",’E’).replace("5",’F’).'

replace("6",’G’).replace("7",’H’).replace("8",’I’).replace("9",’J’).replace('

"10",’K’).replace("11",’L’))).map(lambda x: (x[0], x[1], x[2], x[3].replace('

’,’,’’).replace(’ ’,’’)))

4 df = spark.createDataFrame(chroma, ["id", "key", "scale", "notes"])

Code Snippet 4.8: Notes preprocessing

All the other features are stored as lists of floats and have to be converted into vectors.

1 from pyspark.mllib.linalg import Vectors

2 list_to_vector_udf = udf(lambda l: Vectors.dense(l), VectorUDT())

3 rp = sc.textFile("features[0-9]*/out[0-9]*.rp").repartition(repartition_count)

4 rp = rp.map(lambda x: x.split(","))

5 kv_rp = rp.map(lambda x: (x[0].replace(";","").replace(".","").replace(",","").'

replace(" ",""), list(x[1:])))

6 rp_df = spark.createDataFrame(kv_rp, ["id", "rp"])

7 rp_df = rp_df.select(rp_df["id"],list_to_vector_udf(rp_df["rp"]).alias("rp"))

Code Snippet 4.9: Rhythm patterns preprocessing

The Spark ML library and the older MLlib library offer sparse and dense vectors as

data types. The only feature type that contains a lot of zeros, where sparse vectors

could improve performance, is the beat histogram. Compared to other features like

the chromagram, the beat histogram vectors are relatively small, with a length of only

200 values, so all lists including the beat histograms are converted to dense vectors

60



by calling Vectors.dense(). An example is given for the rhythm pattern features in

Code Snippet 4.9. The data is read out of the HDFS into an RDD and repartitioned

with sc.textFile("feaures.txt").repartition(repartition_count). The repartitioning is

optional but improves the overall performance (see Section 4.3.7). After the execution

of the pre-processing steps, the RDD can be converted into a Spark SQL DataFrame

by calling spark.createDataFrame(rdd), to ease up the access to data and improve code

readability. The features can then be accessed via column names instead of the RDD

indices.

For performance tests, three different kinds of implementations were tested. The first

one merges all audio features into one large DataFrame in the beginning and persists

this to the main memory. The second implementation uses single DataFrames for

each feature set, and the third uses RDDs instead of DataFrames. The results of the

performance analysis of DataFrames vs. RDDs are given in Section 4.3.7.

4.3.4 Distance Computation

After the data preparation, the similarities between a requested single song and all other

songs in the database can be calculated. The code differs slightly when RDDs instead

of DataFrames are used. As already mentioned, the full source code is attached in the

appendices on the included CD and can be checked out from GitHub [73]. Most of the

following code examples were written for the usage with DataFrames. The examples for

usage with RDDs are annotated accordingly.

Euclidean Distance

1 from scipy.spatial import distance

2 from pyspark.sql import functions as F

3 distance_udf = F.udf(lambda x: float(distance.euclidean(x, comparator_value)), '

FloatType())

4 result = feature_vec_df.withColumn(’distances’, distance_udf(F.col(’features’)))

5 result = result.select("id", "distances").orderBy(’distances’, ascending=True)

6 result = result.rdd.flatMap(list).collect()

Code Snippet 4.10: Euclidean distance DF

The Euclidean distance is used as a metric to compute the distances between vectors of

beat histograms, rhythm histograms, rhythm patterns, and MFCCs, making it the most

versatile distance measurement introduced in this thesis. To compute the Euclidean

distance in Spark, a user-defined function (UDF) gets declared (see Code Snippet 4.10).

This UDF is then applied to all elements of the ’features’ column. Inside the UDF,

61



the Euclidean distance is computed using Python’s scipy library. The comparator_value

variable contains the feature of the requested example song to which the distances

are calculated. Assuming that all features were merged into one large DataFrame

(fullFeatureDF) and cached to the main memory, the comparator_value can be found by

filtering the DataFrame for the requested song’s ID (e.g., the pathname of the original

song).

1 song = fullFeatureDF.filter(fullFeatureDF.id == songname).collect()

2 comparator_value = song[0]["mfccEuc"]

Code Snippet 4.11: Filter for requested song

When working with RDDs instead of DataFrames, the computation of the distances

between the feature vectors is performed with a map() instead of a UDF (see Code

Snippet 4.12).

1 resultRP = rp_vec.map(lambda x: (x[0], distance.euclidean(np.array(x[1]), np.'

array(comparator_value))))

Code Snippet 4.12: Euclidean distance RDD

Bucketed Random Projection

As an alternative to the Euclidean UDF, Spark offers an implementation of a locality-

sensitive hashing (LSH) family for the Euclidean distance called ”Bucketed Random

Projection” (BRP). The Spark API documentation describes the idea behind LSH: ”The

general idea of LSH is to use a family of functions (“LSH families”) to hash data points

into buckets, so that the data points which are close to each other are in the same

buckets with high probability, while data points that are far away from each other

are very likely in different buckets” [78]. The BRP projects the feature vectors 𝑥 onto

a random unit vector 𝑣 and portions the projected result into hash buckets with the

bucket-length 𝑟, resulting in the equation

ℎ(𝑥) =
⎥

𝑥 ≤ 𝑣

𝑟

⌋︂

. (4.2)

”A larger bucket length (i.e., fewer buckets) increases the probability of features being

hashed to the same bucket (increasing the numbers of true and false positives).” [78] The

method model.approxNearestNeighbors(dfA, key, k) searches for the k nearest neighbors

of dfA to the key, but the Spark API documentation mentions that, ”Approximate near-

est neighbor search will return fewer than k rows when there are not enough candidates

in the hash bucket.” [78] This means that the smaller (and therefore more precise) the

62



bucket length is, the fewer nearest neighbors get returned by this function. This is

problematic when searching for the nearest neighbors of different feature sets because

the resulting distances calculated from the different kinds of features have to be joined

to get the resulting similarities as a combination of different distance measurements

(see Section 4.3.6). If the BRP only returns a handful of nearest neighbors, the overall

distances to all the other songs can not be determined.

Due to the fact that the ARA-cluster is running with PySpark version 1.6.0 and the

Bucketed Random Projection was introduced later with PySpark version 2.2.0, the

algorithm could only be tested on the single-node test platform using Code Snippet 4.13,

where it performed worse than the naive Euclidean implementation from Code Snip-

pet 4.10 on a dataset consisting of about 11500 songs. Whether the BRP outperforms

the naive approach on a cluster with larger datasets could be investigated further.

1 from pyspark.ml.feature import BucketedRandomProjectionLSH

2 brp = BucketedRandomProjectionLSH(inputCol="features", outputCol="hashes", seed'

=12345, bucketLength=100.0)

3 model = brp.fit(feature_vec_df)

4 comparator_value = Vectors.dense(comparator[0])

5 result = model.approxNearestNeighbors(feature_vec_df, comparator_value, '

feature_vec_df.count()).collect()

6 rf = spark.createDataFrame(result)

7 result = rf.select("id", "distCol").rdd.flatMap(list).collect()

Code Snippet 4.13: Bucketed Random Projection

Cross-Correlation

As laid out in Section 3.2, there are different options to calculate the cross-correlation

of the beat-aligned chroma features. The chroma features are already key-shifted to a

common key, but the possibility to perform a full 2D-cross-correlation with additional

key-shifting as explained in Equations (3.12), (3.13), and (3.14) still exists. Due to the

fact that the computation of the cross-correlation already takes the longest time, even

without additional key-shifting (see Section 4.3.7), the implementation on the cluster

and in Code Snippet 4.15 calculates the simplified cross-correlation (Equations (3.15)

and (3.17)). Whether or not the results are compromised because of that is left open

and requires further investigation.

The cross-correlation was used to detect cover songs on the same dataset Ellis and

Cotton used in their paper [65]. The results are presented in Section 5.1.2. There

are some differences in the resulting recommendations compared to the original paper.

These can be explained with the different underlying beat tracking, different filter

parameters, and a few improvements that are left out compared to the implementation

63



of Ellis [65] as mentioned in Section 3.2.1.

1 corr = scipy.signal.correlate2d(chroma1, chroma2, mode=’valid’)

Code Snippet 4.14: Cross-correlation scipy

Concerning the actual implementation of the cross-correlation, two different libraries

were tested. Code Snippet 4.14 shows the cross-correlation function coming with the

scipy library.

1 from scipy.signal import butter, lfilter, freqz, correlate2d, sosfilt

2 import numpy as np

3 def cross_correlate(chroma1, chroma2):

4 length1 = chroma1_par.size/12

5 chroma1 = np.empty([12, length1])

6 length2 = chroma2_par.size/12

7 chroma2 = np.empty([12, length2])

8 if(length1 > length2):

9 chroma1 = chroma1_par.reshape(12, length1)

10 chroma2 = chroma2_par.reshape(12, length2)

11 else:

12 chroma2 = chroma1_par.reshape(12, length1)

13 chroma1 = chroma2_par.reshape(12, length2)

14 correlation = np.zeros([max(length1, length2)])

15 for i in range(12):

16 correlation = correlation + np.correlate(chroma1[i], chroma2[i], "same")

17 #remove offset to get rid of initial filter peak (highpass filter jump 0-20)

18 correlation = correlation - correlation[0]

19 sos = butter(1, 0.1, ’high’, analog=False, output=’sos’)

20 correlation = sosfilt(sos, correlation)[:]

21 return np.max(correlation)

22 distance_udf = F.udf(lambda x: float(cross_correlate(x, comparator_value)), '

DoubleType())

23 result = df_vec.withColumn(’distances’, distance_udf(F.col(’chroma’)))

24 result = result.select("id", "distances").orderBy(’distances’, ascending=False)

25 result = result.rdd.flatMap(list).collect()

Code Snippet 4.15: Cross-correlation numpy

The parameter mode=’valid’ when using scipy, determines whether or not additional

key shifting is included. The ’valid’ option already includes additional key-shifting

but without zero-padding. Other options would be mode=’same’(no key-shifting) and

mode=’full’ (with zero-padding).

The other variant is shown in Code Snippet 4.15. It uses the numpy library. Although

64



numpy only offers a 1D-cross-correlation function, which had to be nested inside a

for-loop to get the 2D-cross-correlation, performance tests showed that the numpy

version was faster than the scipy version by orders of magnitude. Calculating and

scaling the distances of the chroma features from one song to about 114000 other songs

took about 22 seconds with numpy and approximately 725 seconds with scipy on the

ARA-cluster.

Jensen-Shannon-Like Divergence

While computing the Jensen-Shannon-like divergence, for some of the MFCC features,

a problem with negative determinants was encountered. Because the logarithm of

negative numbers is not defined, no similarity for these features could be calculated.

Schnitzer mentioned a problem with ”skyrocketing values of determinants, which lead

to inaccurate results” [22, p.45]. He proposed a solution by using the sum of the

upper triangular matrix of the Cholesky decomposition to compute the logarithm of

the determinant of the covariance matrix in Equation (3.7). This approach was also

considered for the encountered issue mentioned above but ultimately did not work out

because of the covariance matrices causing the error not being positive definite.

1 import numpy as np

2 def jensen_shannon(vec1, vec2):

3 #preprocessing: splitting vec1 and vec2 into mean1, mean2, cov1 and cov2

4 mean_m = 0.5 * (mean1 + mean2)

5 cov_m = 0.5 * (cov1 + mean1 * np.transpose(mean1)) + 0.5 * (cov2 + mean2 * np.'

transpose(mean2)) - (mean_m * np.transpose(mean_m))

6 div = 0.5 * np.log(np.linalg.det(cov_m)) - 0.25 * np.log(np.linalg.det(cov1)) '

- 0.25 * np.log(np.linalg.det(cov2))

7 if np.isnan(div):

8 div = np.inf

9 return div

10 distance_udf = F.udf(lambda x: float(jensen_shannon(x, comparator_value)), '

DoubleType())

11 result = df_vec.withColumn(’distances’, distance_udf(F.col(’features’)))

12 result = result.filter(result.distances_js != np.inf)

13 result = result.select("id", "distances").orderBy(’distances’, ascending=True)

14 result = result.rdd.flatMap(list).collect()

Code Snippet 4.16: Jensen-Shannon-like divergence

Because no immediate solution to that problem was found, the rows where this issue

appears just get filtered out by setting the distance to np.inf and later dropping these

rows. This problem seems to appear for about 5-10% of the distances calculated with

65



the Jensen-Shannon divergence. Further investigation to solve this problem would be

necessary. An example is given in Code Snippet 4.16.

Symmetric Kullback-Leibler Divergence

When implementing the symmetric Kullback-Leibler divergence a few interesting ob-

servations were made. First of all, this metric seems to be prone to outliers. While

only very few distances get disproportionately large (around 106), most of the distances

lie between 0 and 100. The large outliers lead to problems when scaling the resulting

distances to an interval between 0 and 1 (see Section 4.3.5 and 5.1.1). As a temporary

solution all distances larger than a certain threshold get filtered out.

Secondly when using the FMA dataset a few of the songs returned an error, where

the covariance matrix could not be inverted. These songs get filtered out as well. The

example code for the calculation of distance using DataFrames can be seen in Code

Snippet 4.17.

1 import numpy as np

2 def symmetric_kullback_leibler(vec1, vec2):

3 #preprocessing: splitting vec1 and vec2 into mean1, mean2, cov1 and cov2

4 try:

5 d = 13

6 div = 0.25 * (np.trace(cov1 * np.linalg.inv(cov2)) + np.trace(cov2 * np.'

linalg.inv(cov1)) + np.trace((np.linalg.inv(cov1) + np.linalg.inv(cov2)) '

* (mean1 - mean2)**2) - 2*d)

7 catch:

8 div = np.inf

9 print("ERROR: NON INVERTIBLE SINGULAR COVARIANCE MATRIX\n")

10 return div

11 distance_udf = F.udf(lambda x: float(symmetric_kullback_leibler(x, '

comparator_value)), DoubleType())

12 result = df_vec.withColumn(’distances’, distance_udf(F.col(’features’)))

13 #thresholding for outliers

14 result = result.filter(result.distances <= 100)

15 result = result.select("id", "distances").orderBy(’distances’, ascending=True)

16 result = result.rdd.flatMap(list).collect()

Code Snippet 4.17: Kullback-Leibler divergence

After implementing this similarity measurement in Spark, some tests and comparisons

to the results of the Musly toolkit [14] were done. While overall the genre recall is quite

good (see Section 5.1.3) and the results seem reasonable, they do differ from the ones

returned by Musly. These differences could be explained with the choice of only 13 mel

bands during the computation of the MFCCs in this thesis compared to the 25 bands

66



in Musly [14] and some other decisions like omitting the normalization with mutual

proximity (Section 3.1.2). The same applies for the Jensen-Shannon-like divergence.

Levenshtein Distance

Spark already offers a function for the computation of the Levenshtein distance if

the feature vectors are stored in a DataFrame. The Levenshtein distance can then

be computed between two columns for all rows. Code Snippet 4.18 shows a minimal

example.

1 from pyspark.sql.functions import levenshtein

2 df_merged = featureDF.withColumn("compare", lit(comparator_value))

3 df_levenshtein = df_merged.withColumn("word1_word2_levenshtein", levenshtein(col'

("notes"), col("compare")))

4 df_levenshtein.sort(col("word1_word2_levenshtein").asc()).show()

Code Snippet 4.18: Levenshtein DataFrame

As an alternative for the RDD based variant of the Spark application, the Python

wrapper [79] for the C/C++ library ”edlib” [80] was used. During initial tests, when

experimenting with a naive implementation of the Levenshtein distance using a Python

function with numpy, immense performance issues were encountered. Due to the

underlying C/C++ code of the edlib the computation of the Levenshtein distance in

Code Snippet 4.19 performes comparably well as the Spark-native DataFrame equivalent

and offers a good alternative.

1 import edlib

2 def naive_levenshtein(seq1, seq2):

3 result = edlib.align(seq1, seq2)

4 return(result["editDistance"])

5 #...

6 resultNotes = notes.map(lambda x: (x[0], naive_levenshtein(str(x[1]), str('

comparator_value)), x[1], x[2]))

Code Snippet 4.19: Levenshtein RDD

Lazy Evaluation and Data Caching

As described in Section 2.6.2, Spark’s main advantage is its ability to use the main

memory of the nodes in a cluster to safe intermediate data without the need of writing

it back to the disk. However Spark does not automatically cache the data. RDDs

and DataFrames have to be explicitly assigned to the main memory, by either calling

persist() (optionally with the parameter storageLevel=StorageLevel.MEMORY_ONLY_SER) or

67



cache() and even then Spark only takes this as a suggestion. If not enough main memory

is available, the data is still written onto the hard drives.

As introduced in Section 2.6.2, Spark also uses an optimization technique called ”lazy

evaluation” that differentiates between transformations on data and actions. The cache()

and persist() commands both do not count as actions. Instead they are executed only

when an actual action on the data is called. This has to be kept in mind when optimizing

Spark applications and evaluating the performance by measuring execution times. The

Code Snippet 4.20 gives a short example.

1 import time

2 #...

3 featureDf = preprocess_features().persist() #p3

4 print(featureDf.first()) #l4

5 tic1 = int(round(time.time() * 1000))

6 neighbors = get_distances(songname, featureDf).persist() #p6

7 neighbors = neighbors.orderBy(’scaled_dist’, ascending=True).persist() #p7

8 neighbors.show()

9 neighbors.toPandas().to_csv("neighbors.csv", encoding=’utf-8’)

10 neighbors.unpersist()

11 tac1 = int(round(time.time() * 1000))

12 time_dict[’time: ’]= tac1 - tic1

13 print time_dict

Code Snippet 4.20: Spark lazy evaluation

The function preprocess_features() is a function, where the chroma features get read

into RDDs, pre-processed, repartitioned, and converted into a DataFrame. The function

get_distances() calculates all distances between the song belonging to the ID songname

and the other 114209 songs in the database. Within this function, the results are then

scaled to an interval between 0 and 1 by dividing all distances by their maximum

value. The result is stored in the DataFrame neighbors and after that, two actions are

performed subsequently on this result. The first (show()) prints the 20 nearest neighbors

to the standard output (e.g., the pyspark shell). The second action (toPandas().to_csv())

prints the whole list of all 114210 distances into a *.csv file.

In a simple experiment, the impact of ineffective caching and the impact of the lazy

evaluation on time and performance tests is shown. The results are plotted in Figure 4.5.

The first bar (labeled with ”opt”) shows the print time_dict output when executing the

full code from Code Snippet 4.20. In the second bar (labeled with ”p6”), the persist()

command in line 6 got removed. Due to the fact that the scaling of the distances inside

the function get_distances() requires an action on the data stored in neighbors but the

results are no longer persistent in the cache, this part of the code has to be executed

twice (in line 6 and again in line 7). For the third bar (labeled with ”p7”), the persist()

68



command in line 7 is removed as well. The result neighbors is no longer stored in the

main memory, and every time an action requires the results of this DataFrame, it has

to be recalculated which is the case for both actions in line 8 and line 9 in the code

example.

When further removing the print command in line 4, the lazy evaluation no longer

executes line 3 before starting to measure the time in line 5 because the action first()

is no longer executed on the DataFrame. Instead, line 3 gets called later, when

get_distances() is executed, because only then an action on the featureDf DataFrame

is called for the first time. This is shown in the bar labeled with ”l4”. Up until

this point, the original featureDf still gets persisted to the main memory but if the

persist() command in line 3 gets removed as well in the last test labeled with ”p3”,

preprocess_features() has to be executed every time the featureDf is needed.

opt p6 p7 l4 p3
0

20

40

60

80

100

37.53

44.31

65.5

77.6

89.85

ti
m
e
in

s

performance

Figure 4.5: Lazy evaluation and caching optimization

In summary, finding the correct way of caching the data is a tricky task. Writing

everything into the main memory is no solution because then the cluster will run out

of memory eventually. As a rule of thumb, the best way to persist data is to cache it

every time more than one subsequent action is performed on it.

That means that especially in this application in the area of music similarity, all

pre-processed features have to fit into the main memory of the cluster to speed up

consecutive song requests.

4.3.5 Distance Scaling

To combine different distance measurements into one combined distance, the various

results from different kinds of features have to be rescaled to avoid biasing the overall

distance. The easiest way is to subtract the minimum min(𝑑) from all distances 𝑑 and

69



to divide by the difference between the maximum max(𝑑) and the minimum distance,

as described in the equation

𝑑′ =
𝑑 ⊗ min(𝑑)

max(𝑑) ⊗ min(𝑑)
. (4.3)

The minimum distance should always be the self-similarity of the requested song with

a value of 0. But in the implementation of the symmetric Kullback-Leibler distance,

this is not always the case. Sometimes the self-similarity is just very close to zero.

The analysis of the distances in Section 5.1.1 also shows that, e.g. the Levenshtein

distances and cross-correlation results are unevenly distributed over the unit interval

[0, 1]. Dropping the self-similarity out of the distance vector and rescaling it afterwards

with a new minimum distance unequal to zero could solve this, but was not tested in

this thesis. A second issue was already mentioned in Section 4.3.4, where outliers tend

to bias the results. These can get filtered out before rescaling the distances. This is

further evaluated in Section 5.1.1.

Another option to rescale the features, laid out by Sebastian Stober in [3, pp. 543ff],

but not implemented in this thesis, would be to rescale all distances to have a mean

value of 1 by using

𝑑′ =
𝑑

Û𝑓

, (4.4)

and by dividing the distances 𝑑 by the mean distance Û𝑓 . Outliers should be detected

and removed before calculating the mean distance. A better way to rescale the data

could be evaluated in future research.

Implementation-wise the aggregation of the minimum and maximum value went through

different tests.

1 max_val = result.agg({"distances": "max"}).collect()[0]

2 max_val = max_val["max(distances)"]

3 min_val = result.agg({"distances": "min"}).collect()[0]

4 min_val = min_val["min(distances)"]

Code Snippet 4.21: Minimum and maximum aggregation separate

During the first tests, the aggregation of minimum and maximum value were performed

separately (see Code Snippet 4.21). This turned out to be very inefficient because

the data had to be accessed multiple times. An improved version, shown in Code

Snippet 4.22, only uses one action to gather minimum and maximum value, which

improved the overall performance significantly. Another alternative would be the usage

of the df.describe() function for DataFrames. For the implementation using RDDs

the rdd.stats() function was used, returning minimum, maximum, mean, and variance

values all at once.

70



1 from pyspark.sql import functions as F

2 aggregated = result.agg(F.min(result.distances),F.max(result.distances))

3 max_val = aggregated.collect()[0]["max(distances)"]

4 min_val = aggregated.collect()[0]["min(distances)"]

Code Snippet 4.22: Minimum and maximum aggregation optimized

4.3.6 Combining Different Measurements

To finally compute the overall similarity of what Stober calls the facet distances (the

different distances computed using different feature sets) in [3, pp. 543ff], the weighted

arithmetic mean of the previously scaled facet distances is calculated by using the

equation

dist =

∑︀𝑀⊗1
𝑚=0 𝑤𝑚 ≤ 𝑑𝑚
∑︀𝑀⊗1

𝑚=0 𝑤𝑚

(4.5)

given 𝑀 different distances 𝑑1, 𝑑2, ..., 𝑑𝑚 and weights 𝑤1, 𝑤2, ..., 𝑤𝑚. In this thesis, only

binary weights were tested by either including a facet distance with a weight of one or

just leaving it out of the overall similarity by setting its weight to zero. The impact of

different weights is left open for future research.

4.3.7 Performance

Cluster Configuration

The first optimization step was to alter the spark cluster configuration for the ARA-

cluster, as described in Section 2.6.2. The cluster configuration in the Code Snippet 4.23

turned out to perform well compared to other test configurations. The cluster is config-

ured in a way where between 16 and up to 32 Executors are spawned with each Executor

requesting as many CPU cores and memory resources as possible. The repartition_count

variable is used with the repartition() method during the data preparation stage to

evenly distribute all chunks of feature files across the cluster.

With the help of the spark.dynamicAllocation parameters, the number of Executors

spawned can be determined [51, p. 153]. While normally the Executors are spawned

and then retained for the life span of the application, dynamic allocation allows Spark

to free resources of idling Executors and to then reassign the pertinent system resources.

It should be mentioned that normally spark.shuffle.service.enabled should also be set

to true when the dynamic allocation is used, and an external shuffle service should be

configured to avoid the loss of shuffle data in case an Executor gets deleted. During

the tests this option was disabled, though. This should not be a problem because

71



the dynamic allocation is only used to ensure that a certain fixed minimum amount

of Executors is spawned. With this configuration, no more than 16 Executors can

be spawned anyway because of the missing resources on the ARA-cluster, so for this

configuration, the Executors never actually get killed and no shuffling data gets lost.

1 confCluster = SparkConf().setAppName("MusicSimilarity Cluster")

2 confCluster.set("spark.driver.memory", "64g")

3 confCluster.set("spark.executor.memory", "64g")

4 confCluster.set("spark.driver.memoryOverhead", "32g")

5 confCluster.set("spark.executor.memoryOverhead", "32g")

6 #confCluster.set("yarn.nodemanager.resource.memory-mb", "196608")

7 confCluster.set("spark.yarn.executor.memoryOverhead", "4096")

8 confCluster.set("spark.driver.cores", "32")

9 confCluster.set("spark.executor.cores", "32")

10 #confCluster.set("spark.shuffle.service.enabled", "True")

11 confCluster.set("spark.dynamicAllocation.enabled", "True")

12 #confCluster.set("spark.dynamicAllocation.initialExecutors", "16")

13 #confCluster.set("spark.dynamicAllocation.executorIdleTimeout", "30s")

14 confCluster.set("spark.dynamicAllocation.minExecutors", "16")

15 confCluster.set("spark.dynamicAllocation.maxExecutors", "32")

16 confCluster.set("yarn.nodemanager.vmem-check-enabled", "false")

17 repartition_count = 32

Code Snippet 4.23: Cluster setup

The Spark driver program is executed on the ARA-cluster login-node on which also

software from other clients runs, possibly influencing the results of the performance

tests.

Fine-tuning the cluster settings is a tricky task. Increasing the number of Executors

also increases the additional overhead of managing the Executors and shuffling the data,

while on the other side more unique tasks are being distributed over the compute nodes.

To get a performant cluster configuration, various other cluster settings were tested.

Increasing the repartition_count and the amount of Executors spawned (with fewer

resources each) seemingly increased the overhead and network traffic on the cluster

without reducing the overall computation time. Increasing the repartition_count while

keeping the Executors the same size as in the Code Snippet turned out to be slower as

well.

Although each node on the ARA-cluster has 36 CPU cores, only 32 cores were assigned

to each Executor because this turned out to perform just a little bit better when

calculating the similarities for only one song in the first tests. Therefore the cluster

configuration was set as described in the Code Snippet 4.23 for the following tests in

72



this section, to keep the tests comparable to each other.

Later, when calculating the similarities on already cached feature data for consecutive

song requests, 36 cores per Executor performed slightly better than 32 cores. Increasing

the CPU core count to 72 per Executor performed far worse.

20 40 60 80 100 120 140 160 180 200 220 240 260
12

14

16

18

20

22

24

#Executor

ti
m
e
in

s

song request on cached feature DF

Figure 4.6: Performance depending on the #Executors spawned

Figure 4.6 shows the execution time of one full song request for all features on all 114210

songs on an already cached large DataFrame containing all of the different features (this

approach is explained more detailed later on, see Figure 4.10). The x-axis shows the

numbers of Executors that are spawned on the cluster. Since there are limited resources

on the cluster, the number of CPU cores assigned to each Executor decreases when

more Executors get spawned. In total there are 576 cores on 16 nodes, so the number of

CPU cores per Executor can be calculated as #CPUs = 576
#Executors

. The available main

memory per node (192GB) is split equally. The large DataFrame is cached and split in

twice as many parts as Executors are spawned. Thus each Executor has to handle two

data chunks.

Differences Between the Feature Types

Due to the different complexity of the various similarity measurements and metrics, the

time needed to calculate the distances between all songs and a single requested song

73



differs for the various feature types. The computation time for all feature types (with

respect to the lazy evaluation as described in Section 4.3.4) is pictured in Figure 4.7.

rp rh bh skl js mfcc notes chroma

0

10

20

0.99
0.5 0.58

1.31
0.65 0.61

3.1

5.27

23.38

3.51

6.79

9.53

6.21 6.48

10.85

26.16

ti
m
e
in

s

distances only
data preparation + distances + scaling

Figure 4.7: Performance of different feature types

The blue bars figure the computation time required to compute the distances between

one requested song and all 114210 songs in the dataset without loading the data and

without scaling. That means the features are already stored in the main memory.

The measured times for the whole computation of the similarities for each feature

set, including the data time taken for pre-processing and the scaling of the results to

the unit interval, are shown in the red bar. The plot shows the importance of proper

caching for fast response times. The labels on the x-axis represent the different distance

measurements and are used further throughout this thesis, mainly in different plots.

• rp (rhythm patterns, Euclidean distance)

• rh (rhythm histogram, Euclidean distance)

• bh (beat histogram, Euclidean distance)

• skl (MFCCs, symmetric Kullback-Leibler divergence)

• js (MFCCs, Jensen-Shannon-like divergence)

• mfcc (MFCCs, Euclidean distance)

• notes (notes, Levenshtein distance)

• chroma (beat-aligned chromagram, cross-correlation)

Data Representation

Figure 4.8 and 4.9 show the performance of three different approaches on the ARA-

cluster for different combinations of features (see caption).

For the approach annotated with ”Merged DF” all features are pre-processed, joined

and stored in one large DataFrame that then gets repartitioned across all nodes and

74



cached into the main memory. The idea behind this approach is to reduce shuffling

operations during the computation of similarities by bringing all feature types of the

same songs to the same compute nodes. The downside of this method is a higher initial

workload that has to be endured during the pre-processing stage.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

≤105

0

20

40

60

#songs

ti
m
e
in

s

Merged DF
DF
RDD

Figure 4.8: Performance ARA, full workload, (MFCC + Notes + RP)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

≤105

0

20

40

60

#songs

ti
m
e
in

s

Merged DF
DF
RDD

Figure 4.9: Performance ARA, full workload, (JS + Chroma + RP)

Once the pre-processing of the features is done, the similarities between the songs are

computed, and the results are stored in new, smaller DataFrames, one for each feature

type. Due to the previous joining of feature data by their song IDs, repartitioning, and

caching, the distances of the same songs but for different feature types are in theory

calculated on the same node, reducing unnecessary shuffling operations during the

compute time. The resulting small DataFrames containing the facet distances of one

feature set are then joined by song IDs once all similarities are computed. Then the

joined results are scaled using only one agg() call for all feature types (see Section 4.3.5),

and the combined distances are summed up and sorted. Figure 4.10 shows the adapted

75



workflow (original, see Figure 4.4) of this approach.

data preparation many DFs (features)

join and repartition single DF (features)

distance computation single DF (features) + many DFs (distances)

join results single DF (features) + single DF (distances)

scale results & combine single DF (features) + single DF (distances)

sort and return result single DF (features)

Figure 4.10: Workflow of Merged DF approach

The second approach annotated with ”DF”also uses DataFrames, but stores the different

pre-processed feature types in separate smaller DataFrames instead. This increases

data shuffling during the computation of the similarities but has less initial overhead

during the pre-processing stage.

The third approach does not use DataFrames at all but uses single RDDs for the

pre-processed features instead. This approach has no additional overhead during the

pre-processing stage, but the code is harder to read, and the workload during the

computation of the similarities is also higher.

Each of the timespans measured in Figure 4.8 and 4.9 cover the full workflow, including

data pre-processing, calculating, scaling, and combining all similarities for a single

song request. The plots show the time required to compute the similarities for that

single requested song for growing datasets starting from 163 (covers80) to 114210 songs

(all datasets combined). Unsurprisingly the Merged DF approach performed relatively

poorly compared to the other approaches due to its initial overhead. The next section

will show this poor performance balanced out when presenting the performance on the

calculation of subsequent song requests on the same, already cached and pre-processed

features.

Performance of Subsequent Song Requests

In contrast to the performance analysis from the last section, Figure 4.11 shows the

time measured to process two subsequent song requests. That means that the second

consecutive song request is able to use the already pre-processed and cached feature

data.

76



The plots annotated with ”Merged DF total”, ”DF total” and ”RDD total” depict the

overall computation time including the pre-processing and the handling of both song

requests. The other graphs show the computation time of only the second song request

on persisted data, including calculation of distances, scaling, and join operations of the

different result-types.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

≤105

0

20

40

60

80

100

120

140

#songs

ti
m
e
in

s

Merged DF total
DF total
RDD total

Merged DF 2nd song
DF 2nd song
RDD 2nd song

Figure 4.11: Performance of two subsequent song requests, all features

The results show that the pre-merged DataFrame approach performs best, returning

the 20 nearest neighbors for the second song request in about 16 seconds and 14 seconds

when using 36 cores per Executor (as mentioned in Section 4.3.7).

Descending Importance Filter and Refine

To improve performance even further, a filter and refine method was tested. The

similarities are computed for one feature set at a time, and all songs to which the

distance is larger than the mean value of these distances get filtered out of the feature

DataFrame. From the thinned-out dataset, another less important feature set is chosen,

and this is repeated until all feature sets were used. The implementation is based on

the ”Merged DF” approach described and pictured in Figure 4.10 earlier, but with a

few changes applied. After all features are pre-processed, joined and repartitioned, this

large feature DataFrame gets cloned and persisted to the main memory as well. It is

important that the cluster has enough main memory available to cache the full feature

77



DataFrame twice. The first feature set is chosen, distances are calculated and appended

to the cloned version of the full feature DataFrame. Then the column with the original

features gets dropped out of the cloned DataFrame to free some memory. In the next

step, all rows of the DataFrame where the freshly calculated distances are larger than a

certain threshold (the mean value of the distance column in this case) get dropped out of

the DataFrame, drastically reducing the size of all feature sets remaining. When using

the mean value, about half of the songs get dropped out of the DataFrame, reducing

the problem size for the next feature set to half the size. This is also the reason why

the data had to be copied in-memory because now the clone can be altered and thinned

out without impacting the original DataFrame. Copying of the data on the other hand,

is an additional overhead and requires more memory.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

≤105

0

10

20

30

40

#songs

ti
m
e
in

s

Merged DF
DF
RDD

Filter chroma first
Filter bh first

Figure 4.12: Performance of descending importance filter and refine, all features

When looking at the results in Figure 4.12, it shows that the filter and refine method

scales very well with increasing sizes of the dataset. The plots show the performance of

full song requests (all feature types) on already cached feature DataFrames or RDDs.

The graphs of the filter and refine tests include the necessary time to create a copy of

the cached feature DataFrames, so the additional overhead is taken into account. The

order of filter operations in the filter chain for the plot labeled with ”Filter chroma first”

is:

chroma ⊃ (js ⊃ skl ⊃ mfcc) ⊃ rp ⊃ rh ⊃ bh ⊃ notes

and bh ⊃ rh ⊃ notes ⊃ rp ⊃ (js ⊃ skl ⊃ mfcc) ⊃ chroma for the plot labeled with

78



”Filter bh first”. The order of the different filter and refine operations is very important.

When searching for cover songs for example, the cross-correlation and the Levenshtein

distance should be calculated at the very beginning of the filter chain or otherwise the

cover songs could be filtered out during the first stages. When running a simple test

with the song ”Für Elise” by Beethoven that appears three times in the full dataset, the

filter and refine method starting with the chroma features was still able to detect one

alternative recording as the top recommendation and the other recording was placed as

recommendation number 14, scoring even higher than in a test without the filter and

refine method because other non-matching songs got filtered out.

Admittedly, the computation of the cross-correlation between chroma features is the

most compute-intensive one; for performance reasons, it would be better to start with a

distance measurement like the Euclidean distance of the beat histograms. Later when

the more demanding computations follow the data set is already thinned out. This is

also the reason this approach is called ”descending importance filter and refine” in this

thesis because the client, who requests the song recommendations, has to define which

aspect is most important to him (speed, melody, rhythm, timbral features or cover song

detection), before choosing an order for the filter chain (descending importance). The

results get better the further the application progresses in the filter chain (filter and

refine).

Cluster Size

The runtime and its dependencies on cluster configuration, size of the input dataset,

and implementation details were presented in the previous Sections. With about twelve

seconds response time for the filter and refine method and 14 seconds for the merged

DataFrame approach on 16 compute nodes, and for 114000 songs, the runtime is rea-

sonably fast but not yet fast enough for real-time processing.

To simulate the impact of growing cluster sizes in Figure 4.13, the cluster configuration

was changed from 1 up to 16 Executors spawned, each reserving 36 CPU cores (the

maximum number of available cores on one node (without HT)) and 64GB (+ 32GB

overhead) of main memory. To do this, the parameters of the dynamic allocation were

changed. When setting the minimum Executor count above 16 without there being

enough resources on the cluster, the Spark Driver only spawns as many as it is able to

(16 on the ARA-cluster with 36 CPU cores/Executor). As a test algorithm, the merged

DataFrame approach (repartitioned in 32 chunks) with two subsequent song requests

was chosen. The computation time of the second song request for all feature-sets is

shown in Figure 4.13.

79



0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

#Nodes

ti
m
e
in

s
Song request

Figure 4.13: Performance depending on #Executors (36 CPU cores each)

4.3.8 Possible Improvements and Additions

Spark offers a few other, interesting alternatives to compute similarities that are only

mentioned here and not further evaluated. The so-called ”DIMSUM all-pairs similarity”

(Dimension Independent Similarity Computation using MapReduce) is a MapReduce

algorithm to compute full similarity matrices (”all-pairs” similarity instead of the ”one-

to-many-items” similarity implemented here) and could be of interest as well.

Also, an implementation of the TF-IDF weights is already part of the Spark framework,

possibly enabling a future addition of the melodic similarity computation using the

mentioned approach in Section 3.2.2. The Alternating Least Squares algorithm to

perform collaborative filtering (see Section 2.4.5) would be an interesting addition.

Although this thesis only focuses on audio features, a future additional implementation

of metadata and listening behavior information could provide valuable information.

80



5. Results

In this chapter, the results concerning the quality of the recommendations are shown.

An attempt to quantify the results and the quality of the recommendations is made

by choosing objective tests like genre recall and cover song recognition. The second

part comprises some subjective impressions, including personal taste and listening

preferences.

5.1 Objective Evaluation

At first, for the objective, scientific evaluation, the resulting distances are analyzed and

visualized in Section 5.1.1. To evaluate the quality of the resulting song recommendations

returned by the Spark application, some tests were made. As mentioned in Section 3.2.3,

a way of evaluating the quality of the melodic similarities is the ability to recognize

cover songs. This will be examined in Section 5.1.2. To test the quality of the timbre

and rhythm based distances, the genre recall rate is examined in Section 5.1.3. Another

indicator of the quality of rhythm features is the ability to recommend songs around

the same BPM count (see Section 5.1.4).

5.1.1 Feature Correlation and Distance Distribution

This section evaluates the results from the similarity analysis to determine how the

distances from different feature sets correlate with each other, and how they are

distributed over the unit interval [0, 1]. To analyze this, a test dataset consisting of

distances returned by the Spark application had to be created. Ninety-five songs (five

songs from every genre) were randomly chosen from the 1517-Artists dataset, and the

distances to all other songs of the 1517-Artists dataset were calculated. The dataset

contains 3180 songs evenly distributed over 19 different genres (see Figure 2.13(c)).

Sampling of distances from different genres is vital for the analysis of the distribution

of distances. Distances and their distribution vary, depending on where in the feature

space the actual song is located. A song taken from the edge of the distribution of the

feature space will end up with different distances than a song taken from the center. To

81



Figure 5.1: Feature space example

demonstrate this, Figure 5.1 shows a minimal example. While the distances from songs

tagged with ”Metal” to the songs tagged with ”Rock” and ”Classical” are about the

same, the distances from a song taken off the Classical genre to the ”Rock” or ”Metal”

songs are different in this example. The Rock songs are twice as far from the Classical

songs than from the Metal songs.

Figure 5.2 shows the correlation between the distances from the various feature types.

The eight different distances for each song pair are summed up into one new combined

distance (following Equation (4.5) with all weights 𝑤 = 1). This combined distance

is labeled as ”agg” in the following plots. Unsurprisingly the various rhythm features

correlate well with each other and the JS and SKL features do so as well. The melodic

features on the other hand are only weakly correlated.

Figure 5.2: Correlation matrix, 95 random songs, 19 genres (5 each), 1517-Artists

The correlation of a feature type with the overall distance is a sign of the impact of

the feature type on the overall distance from the weighted sum. But because not all

82



distances are equally distributed over the unit interval, different feature types have

different impacts on the sum of distances. This problem was already mentioned in

Section 4.3.5 and Section 4.3.4. Figure 5.3 shows how the distances are distributed

with the cumulative histograms over the unit interval. It is apparent that especially the

cross-correlation distances are not evenly distributed. In Section 4.3.5, a few proposals

were already given as to how this problem could be solved in the future.

(a) cumulative distribution 1 (b) cumulative distribution 2

(c) cumulative distribution 3 (d) cumulative distribution 4

Figure 5.3: Cumulative distributions of distances

As mentioned in Section 4.3.4, the SKL divergence was also prone to outliers and had

shortcomings when scaling distances to the unit interval. The solution was to filter out

all song pairs with an SKL divergence larger than a certain threshold before scaling

the distances. If this filter operation is left out, nearly all distances calculated with the

symmetric Kullback-Leibler divergence are close to zero after the scaling. The impact

can be seen in Figure 5.4 and Figure 5.5. If the outliers are not filtered, the correlation

between the unfiltered SKL distances and the combined distance from the weighted sum

(”agg”) decreases significantly (see Figure 5.5). Interestingly also the correlation between

the Jensen-Shannon-like divergence and the combined distance (”agg”) is decreasing.

A possible explanation could be that the SKL and JS distances are highly correlated,

but due to the bad scaling, the SKL has no impact on the overall distance. The results

from the JS divergence alone are not able to impact the weighted sum of the combined

83



(a) SKL unscaled (b) SKL scaled

Figure 5.4: Impact of SKL scaling on the weighted sum

distance in the same way both features together could.

(a) SKL unscaled (b) SKL scaled

Figure 5.5: Correlation of features depending on SKL scaling

Finally, Figure 5.6 shows the full scatter plot matrix of the various distances for the 95

song sample from different genres to visualize the correlation and distribution of the

distances. The main diagonal shows the histograms of the distances from the respective

unique feature-sets. It shows that besides the chroma features all feature types correlate

well with the weighted sum of all features. The strong correlation between the rhythm

patterns and rhythm histograms as well as the Jense-Shannon-like divergence and the

symmetric Kullback-Leibler divergence for all genres is clearly visible in the scatter

plots.

84



Figure 5.6: Scatter matrix, correlation 95 songs, 19 genres (5 each), 1517-Artists

85



5.1.2 Cover Song Identification

As mentioned in Section 3.1.4, purely MFCC based recommender systems lack the

capacity to detect cover songs. Melody based similarity algorithms like the cross-

correlation approach by Ellis and Poliner (see Section 3.2.2) and the approach using the

Levenshtein distance by Xia (et al.) in Section 3.2.2, were primarily implemented to

detect cover songs. Running the first tests on the full dataset consisting of 114210 songs,

the Spark implementation was able to find the cover of ”Rock you like a Hurricane” by

the Scorpions and covered by Knightsbridge as the top recommendation when using

the cross-correlation.

The application was also able to find an alternative recording of the piece ”Für Elise”

cover as a top recommendation in over 114210 songs, even when using the filter and

refine algorithm (starting with chroma features) presented in Section 4.3.7.

As a third example the famous ”Rondo Alla Turca (Allegretto)” also known as the

Turkish March by Mozart was tested. This song was also used in Section 3.1.4 where the

capacity of the Musly toolkit to detect cover songs was tested. Two different versions

were detected as the top results, and the fourth recommendation even listed a variation

of the original song theme. For this test, a combination of js, chroma, and rp features

was used. The top five results are listed below.

Song request: 100 Meisterwerke der Klassik - Mozart - Alla Turca (Allegretto) (private

collection), JS + RP + CHROMA

1. Piano Perlen / Mozart - Türkischer Marsch (private collection)

2. FRITZ STEINEGGER - RONDO ALLA TURCA KV 331 (1517-Artists)

3. 136071 (2Kutup - We Shall Cuddle Up And Sleep) (FMA dataset)

4. Sean Bennett - Variations on the Turkish March (1517-Artists)

5. Mozart - Fantasie in D minor (1517-Artists)

Although the private music collection contains two additional versions of this song (see

Section 3.1.4), the other versions could not be detected because the rp extract tool

failed during the extraction of the features from these songs due to file format issues.

In a second test, the rhythm patterns were left out and only js and chroma features

were used. The six top recommendations are again listed below:

Song request: 100 Meisterwerke der Klassik - Mozart - Alla Turca (Allegretto) (private

collection), JS + CHROMA

1. Mozart Collection / CD31 / KV331-3 Alla turca allegretto (private collection)

2. Piano Collection / CD25 - Mozart - Alla Turca Allegretto (private collection)

86



3. Piano Perlen / Mozart - Türkischer Marsch (private collection)

4. FRITZ STEINEGGER - RONDO ALLA TURCA KV 331 (1517-Artists)

5. 136071 (2Kutup - We Shall Cuddle Up And Sleep) (FMA dataset)

6. Sean Bennett - Variations on the Turkish March (1517-Artists)

In a third request where only the Jensen-Shannon-like divergence was tested to de-

tect the alternative recordings, the first alternative recording appeared as the 13th

recommendation. This confirmed the presumption that timbral features and the Jensen-

Shannon-like divergence nor the symmetric Kullback-Leibler divergence are appropriate

for cover song recognition.

But there are also song requests where the cross-correlation fails to detect the cover

song, one example being the song Chandelier by Sia and its cover version by Pvris that

was used in Section 3.2.1 to explain the computation of the chroma features.

To further quantify the ability to detect cover songs after the promising first tests,

the covers80 dataset introduced in Section 2.5.1 was loaded onto the cluster. The

80 ”A-versions” songs were passed to the Spark application as song requests, and the

resulting nearest neighbors were analyzed.

features detected covers

chroma 30

chroma + notes 27

chroma + skl 26

chroma + notes + rp 24

chroma + rp 22

chroma + skl + rp 22

chroma + mfcc 19

chroma + js + rp 17

chroma + js 17

notes 17

chroma + mfcc + rp 15

all 15

notes + rp 13

mfcc + notes + rp 7

rp 7

mfcc + js + skl 3

Table 5.1: Cover recognition rate - Top 1

features detected covers

chroma 33

chroma + notes 31

chroma + notes + rp 30

chroma + skl 29

chroma + rp 29

chroma + skl + rp 26

chroma + mfcc + rp 24

notes 23

all 23

chroma + mfcc 22

chroma + js + rp 22

chroma + js 21

notes + rp 19

rp 15

mfcc + notes + rp 14

mfcc + js + skl 10

Table 5.2: Cover recognition rate - Top 5

Table 5.1 counts the appearance of the ”B-version” songs as the first recommendations

87



while Table 5.2 lists the count of the recommended cover versions in the top five results,

when using different combinations of feature sets. As expected, the approaches using

melodic similarity features perform best. The combination of different timbre based

features performs worst. Interestingly the distances based on rhythm patterns also

detect some cover songs.

Although 30 out of 80 detected cover songs does not seem like a surprisingly good hit

rate at first and is not quite as good as the results from the original paper, it has to be

mentioned that most of the cover versions in the cover80 dataset differ significantly from

the original recordings in musical style, instrumentation, rhythm and even genre from

the original recordings. These differences in musical style were also mentioned in the

original paper from Ellis and Cotton [65, p. 3]. As an interesting side note it has to be

mentioned that the detected cover versions of the ”chroma-” and ”notes-only” requests

were mostly the same. Aside from two songs, the chroma feature cross-correlation

approach detected all of the cover songs that the Levenshtein distance also detected.

So in conclusion, the cross-correlation is more precise but also more compute heavy.

5.1.3 Genre Similarity

Another way to quantify the quality of the distances and therefore the quality of the

music recommendations is to measure the genre recall rate. In a simple test on the

1517-Artists dataset, five classical songs are passed to Spark, and the nearest neighbors

based on rhythm and timbre features (skl, js, mfcc, rp, rh, and bh) are calculated. Then

the genres of the top ten recommendations from all five song requests are analyzed.

The result is pictured in Figure 5.7(a).

(a) 1517-Artist classical recommendations (b) 1517-Artist rock recommendations

Figure 5.7: Genre recall rate on 1517-Artists dataset

Although not all recommendations are classical songs, the recommended other genres

like New Age, Wold, Folk and Jazz music are closely related to classical music. Not a

88



single song from more ”modern” genres like Hip-Hop, Rock & Pop, Electronic & Dance

or Reggae appears. The same was tested with five songs from the Rock & Pop genre

(see Figure 5.7(b)). The results are scattered across 16 out of 19 different genres from

1517-Artists dataset. A possible explanation for this is, that the songs annotated with

”Rock & Pop” in this dataset come from a wider variety of sub-genres. When taking a

closer look at the dataset, it shows that, e.g., Metal songs are also tagged as Rock &

Pop.

Figure 5.8: Scatter matrix, distances 1 random Rock&Pop song, 1517-Artists, 4 genres

To investigate the impact of different feature types on the overall recommendations and

to visualize the distribution of distances for different genres, another test was performed.

For single song requests, all distances to the songs from a subset of the 1517-Artists

dataset containing the genres ”Classical”, ”Hip-Hop”, ”Electronic & Dance” and ”Rock

& Pop” were computed. Figure 5.8 shows the scatter matrices of all distances from

one song request taken from the genre Rock & Pop. The different distances of the

recommendations are colored by the genre of the recommended song. On the main

89



diagonal the Kernel Density Estimation of the respective feature type is shown. One

interesting detail that should be pointed out is that the JS distance alone is unable to

distinguish between Rock/Pop songs and Hip-Hop songs but is able to separate between

classical music and the rest. On the other hand, the rhythm patterns alone can not

separate classical music from rock and pop. But when both feature types are combined,

all three genres can be separated. The scatter plot of the distances from the rhythm

patterns and Jensen-Shannon-like divergence in combination shows three clusters of

songs belonging to different genres. The fourth genre, ”Electronic & Dance” however

can not be separated from hip-hop songs no matter what feature-set is used. But it has

to be kept in mind that all these distances are distances coming from a song request of

the Rock/Pop genre.

Figure 5.9: Scatter matrix, distances 1 random Electronic song, 1517-Artists, 4 genres

As mentioned in Section 5.1.1 and visualized in Figure 5.1, the distribution of the

distances varies depending on where in the feature space the song request is located.

Apparently the songs of the Hip-Hop and Electronic/Dance genre are on average all

about the same distance away from the requested Rock/Pop song. When requesting a

90



song from the genre Electronic/Dance, the distribution of the distances look entirely

different (see Figure 5.9). The ”agg” - plots represent the weighted sum of all features

combined (also including cross-correlation and Levenshtein distances not shown in

the plots). After the combination of all feature types, the returned results primarily

recommend other Rock & Pop songs in Figure 5.8 and Electronic & Dance songs in

Figure 5.9.

When using only one feature type, the Spark recommendation engine would not be able

to separate all four of the different genres from each other. Only due to the combination

of different rhythmic and timbral features an overall satisfying list of recommendations

can be retrieved.

5.1.4 Rhythm Features

(a) BPM - BH (Rock&Pop) (b) BPM - RP (Rock&Pop)

(c) BPM - AGG (Rock&Pop) (d) BPM - AGG (Classical)

Figure 5.10: Scatter plots rhythm features / BPM for random Rock&Pop and Classical
songs

Another critical requirement for the recommendation engine is the ability to obtain

songs that are about the same tempo. To investigate the capabilities of the rhythm

features, Figure 5.10 shows the resulting distances of two song requests performed

91



on the 1517-Artists dataset. The scatter plots show that the beat histogram and the

rhythm patterns are closely related to the overall BPM of the songs. The ”agg” value

(the weighted sum) includes all eight different feature types, so the overall impact

of the rhythm features on the recommendations can be seen. All in all, the Spark

recommendation engine is more likely to recommend songs that have similar BPM

when rhythm features are included in the weighted sum. The classical song request in

Figure 5.10(d) also shows that the overall distances are not exclusively dominated by

the BPM but rather slightly influenced.

5.2 Subjective Evaluation

This section includes the personal opinion and music taste of the author. Although

these results are not ”scientific”, music taste is something personal and judging music

recommendation solely from an objective perspective would be the wrong approach

for this thesis. The core strength of this Spark-based recommender system is that its

parameters can be used to personalize the music recommendations.

5.2.1 Beyond Genre Boundaries

The main reason for the choice of the topic of this thesis was that recommender systems

as they come with streaming platforms like Spotify tend to value the music context

information over music content. For example, the ”Song Radio”- option coming with

Spotify stays in the boundaries of genres and is heavily influenced by other people’s

listening behavior. Although this is not necessarily a bad thing, this thesis tried to

focus directly on the timbral, rhythmic, and melodic properties. As a result, songs from

other genres are recommended as can be seen in the following example. When searching

for the nearest neighbors of the ”Prelude in C- Sharp Minor (Op. 3 No. 2)” by the

Russian composer Sergei Rachmaninoff based on the Euclidean distance of MFCCs, the

following results were returned:

1. Klassik/Rachmaninoff - Piano Concerto No2 In C Minor Op18-1 Moderato

2. Klassik/Liszt - Piano Concerto No 1 in E flat major S124(LWH4) Allegro maestoso

3. Klassik/Brahms - Piano Sonata No2 in F sharp minor Op2 - III Scherzo allegro

4. Metal&Rock/Steve Moore - Intro & Credits

5. Klassik/Liszt - Piano Concerto No 1 in E flat major S124(LWH4) Allegro animato

The ”Metal & Rock” recommendation seems out of place at first glance, but when

taking a closer look, the recommended song is called ”Intro & Credits” and it is not a

typical Metal song. When listening to it, some similarities are recognizable; it is a calm,

92



dark instrumental piece made of synthesizer sounds. The primarily requested Prelude

is a dark piano piece. Of course, this is just one example, and the recommendation is

arguably not perfect. In general some of the timbre based recommendations seem out of

place. This might be due to the choice of 13 MFCC bands over 25 as the Musly toolkit

uses, or potentially there are some unnoticed issues with the implementation left, which

would have to be investigated in future work. But as also stated in Section 5.1.3, the

overall performance concerning the genre recall rate is reasonably good aside from a

few outliers.

5.2.2 Personal Music Taste

As a last side note on personal music taste, a song request using one of my favorite

songs was made. As already mentioned, my private music collection was a part of this

thesis. To retain some kind of reproducibility the whole collection is documented, and

the pertinent list of albums and songs is on a document on the CD in the appendix. On

the last pages of this document, there is also a list containing my personal song favorites

in the metal music genre. One of these songs was chosen, and recommendations were

calculated for the private music collection. The song is called ”The Art Of Dying” by the

band Gojira. The recommendations based purely on rhythm patterns are listed below.

Another track from my personal list of favorite song appears as a recommendation.

• Numenorean - Adore

• Shylmagoghnar - Transience

• Amon Amarth - The Last Stand Of Frej

• Delain - We Are the Others

• Ensiferum - Descendants Defiance Domination

This could be an indication that my taste in music is closely related to the rhythmic

properties of the music. An idea for future research could be to reverse engineer a user’s

musical taste by looking at a list of favorite songs. The information which songs a user

likes the most is already available to all streaming platforms because most likely the

songs a user listens to the most are also the best liked songs. Spark could be used

to calculate the similarities between these favorite songs of a user and analyze the

distances. Whether or not these songs are more similar in rhythm, melody or timbre

could enhance the parametrization of a recommender engine and further personalize

music recommendations by adapting the weights of a recommendation engine.

Of course, the field of personalized music recommendation is an already existing one,

but maybe the addition of Spark and Big Data opportunities of using audio content

instead of contextual information and collaborative filtering could enhance these existing

systems.

93



6. Summary

In this last chapter, the results of this thesis are summarized and a short outlook on

open tasks and possibilities for future work are given.

6.1 Conclusion

Looking back at the content of this thesis, Chapter 2 provided an overview of the field of

music information retrieval. Different high- and low-level audio features were explained,

and various ways to measure the similarities between audio files based on the audio

features were introduced. Additionally, a short introduction to Big Data frameworks,

especially Apache Spark and Hadoop was given, and different audio data sources were

gathered. Chapter 3 presented ways to extract and pre-process timbre, rhythm, and

melodic features from audio files. Multiple algorithms for calculating the distances

between the extracted features were given. With the theoretic knowledge from the first

chapters, the implementation could be planned. Data was collected; over 1TB of music

files containing 114000 different songs were aggregated.

In the first part of the implementation, the necessary audio features were extracted and

pre-processed (e.g., by extracting the melody from chroma features) in parallel using

MPI on a computer cluster, paving the way for the usage with the Big Data processing

framework Spark. The features were loaded into the HDFS of a cluster, and multiple

similarity measurements were implemented, tested, evaluated, and improved using the

Spark framework. With Spark, multiple approaches (RDD, DataSet, Filter and Refine,

Cluster Configurations) were tested, and the runtime was measured. The resulting

distances were presented, analyzed, and visualized.

The final application handles the recommendation of songs similar to a song request

by computing the distances based on melodic, rhythmic and timbral properties of the

music. The recommendations are parameterized, giving the user the option to prioritize

different aspects of the music. The system is scalable. More songs can be added, the

cluster size can be increased, and the possibility to add different kinds of audio features

and more state-of-the-art similarity measurements is also given.

94



6.2 Performance

The extraction of the features on a single PC would have taken approximately 258 hours

for about 100000 songs using the Essentia toolkit. By using a computer cluster with

648 concurrent threads and Mpi4py the computation time could be reduced to about

half an hour (32 minutes and 30 seconds). This is approximately 476 faster than on a

single PC core. The extraction of the rhythm patterns and rhythm histograms with the

rp extractor tool provided by the TU Wien for the same number of songs takes about

the same amount of time on the ARA-cluster (also parallelized with Mpi4py).

The computation of similarities using the Big Data framework Spark on a 16 node

computer cluster takes approximately 14 seconds for all of the 8 features types combined.

This processing duration could be reduced to about 12 seconds by using a filter and

refine method. It can also be reduced by using only subsets of the features types.

6.3 Outlook

There are still a few minor flaws, especially when looking at the implementation of

the symmetric Kullback-Leibler divergence and the Jensen-Shannon divergence and

the scaling of the distances. The different starting points for possible future research

were laid out during the whole thesis and are summarized here. First of all the file

format issues with *.wav and *.ogg audio files when using the rp extract tool from

the TU Wien should be fixed to allow the computation of all features from all the

songs of a dataset (see Section 4.2.2). The next step would be to re-evaluate the

Jensen-Shannon-like divergence and the symmetric Kullback-Leibler divergence and

fix the issues with outliers. The issues with non-invertible or non-singular covariance

matrices should be investigated as well (see Section 4.3.4). The proposed enhancements

by Schnitzer [22] of reducing the hubness with mutual proximity and by using more

mel bands for the computation of the MFCCs might also be sufficient to improve the

quality of recommendations (see Section 3.1.2). Scaling of the different features could

be improved in a way where all features are evenly distributed over the unit interval

(see Section 4.3.5).

Tests of the performance on larger clusters and with more songs would be critical to

assess the scaling of the problem. An implementation of the Spark streaming abilities

to enable real-time computation of similarities instead of using batch-processing jobs

would be the next logical step if the objective was to develop a system able to run with

music streaming platforms. When evaluating the genre recall rate with Spark, an issue

with the garbage collection running out of memory after about 40 subsequent song

95



requests was encountered and should be fixed first.

As another way of improving the presented Spark application, more state-of-the-art

similarity measurements like block-level features (Section 3.1.3) or the TF-IDF weights

(Section 3.2.2) for melodic similarity could be added. The most promising enhancement

for the developed recommendation engine in this thesis would be the addition of genre

and metadata information, genre-specific features, collaborative filtering, and lyrics (see

Section 2.4.5). All the contextual music information that would typically be processed

by a Big Data framework was not included in this thesis but could significantly enhance

recommendations. Most streaming services already have all the information needed like

user’s listening behavior or audio metadata available. Services like Spotify are already

using Spark for collaborative filtering so the Spark application presented in this thesis

could be added and integrated into running streaming systems. A last suggestion for

future enhancements is to investigate the proposal from Section 5.2.2 of personalized

music recommendation based on the audio feature similarities of a user’s favorite songs

made available by the Big Data framework.

96



References

[1] SoundCloud Go+ tracks, url: https://blog.soundcloud.com/2017/03/27/

soundcloudliveinthenetherlands/.

[2] Knees, P. and Schedl, M., Music Similarity and Retrieval, An introduction to

web audio- and web-based strategies, Springer, 2016, isbn: 9783662497203.

[3] Weihs, C. et al., Music Data Analysis: Foundations and Applications, 1st, New

York: Chapman and Hall/CRC, 2016, isbn: 1498719562, 9781498719568, url:

https://doi.org/10.1201/9781315370996.

[4] Moffat, D., Ronan, D., and Reiss, J., An Evaluation of Audio Feature Extraction

Toolboxes, in: Nov. 2015, doi: 10.13140/RG.2.1.1471.4640.

[5] Mathieu, B. et al., YAAFE, an Easy to Use and Efficient Audio Feature Extraction

Software. In: Jan. 2010, pp. 441–446.

[6] Python, url: https://www.python.org.

[7] MATLAB, url: https://de.mathworks.com/help/matlab/index.html.

[8] Bogdanov, D. et al., ESSENTIA: an Audio Analysis Library for Music Information

Retrieval, in: International Society for Music Information Retrieval Conference

(ISMIR’13), 2013, pp. 493–498.

[9] Mandel, M. I. and Ellis, D. P. W., LABROSA’s audio music similarity and

classification submissions, in: Music Information Retrieval Information Ex-

change (MIREX), 2007.

[10] Jupyter, url: https://jupyter.org/index.html.

[11] Lartillot, O. and Toiviainen, P., MIR in Matlab (II): A Toolbox for Musical

Feature Extraction from Audio, in: Proceedings of the 8th International Con-

ference on Music Information Retrieval, ISMIR 2007, Vienna, Austria, Septem-

ber 23-27, 2007.

[12] Eaton, J. W. et al., GNU Octave version 4.2.0 manual: a high-level interactive

language for numerical computations, in: 2016, url: http://www.gnu.org/

software/octave/doc/interpreter/.

97

https://blog.soundcloud.com/2017/03/27/soundcloudliveinthenetherlands/
https://blog.soundcloud.com/2017/03/27/soundcloudliveinthenetherlands/
https://doi.org/10.1201/9781315370996
https://doi.org/10.13140/RG.2.1.1471.4640
https://www.python.org
https://de.mathworks.com/help/matlab/index.html
https://jupyter.org/index.html
http://www.gnu.org/software/octave/doc/interpreter/
http://www.gnu.org/software/octave/doc/interpreter/


[13] Hartmann, M. A., A port of MIRToolbox for Octave, in: 2016, url: https:

//github.com/martinarielhartmann/mirtooloct.

[14] Schnitzer, D., Audio Music Similarity, url: http://www.musly.org/index.

html.

[15] Mandel, M. I. and Ellis, D. P. W., Song-level features and support vector machines

for music classification, in: Proceedings of the 6th International Conference on

Music Information Retrieval, ISMIR, 2005.

[16] Schnitzer, D. et al., Using Mutual Proximity to Improve Content-Based Audio

Similarity. In: Jan. 2011, pp. 79–84.

[17] Für Elise, url: https://upload.wikimedia.org/wikipedia/commons/a/a9/

BH_116_Vergleich.png.

[18] Prélude cis-Moll (Rachmaninow), url: https://upload.wikimedia.org/

score/5/m/5m046ksmmlpu0s4xbwna50qx9nmoh8v/5m046ksm.png.

[19] Brossier, P. et al., aubio/aubio: 0.4.8 (Version 0.4.8), in: 2018, url: http://

doi.org/10.5281/zenodo.1494152.

[20] Salamon, J. and Gómez, E., Melody Extraction from Polyphonic Music Signals

using Pitch Contour Characteristics, in: IEEE Transactions on Audio, Speech

and Language Processing, 20(6):1759-1770, 2012.

[21] Cannam, C., Landone, C., and Sandler, M., Sonic Visualiser: An Open Source

Application for Viewing, Analysing, and Annotating Music Audio Files, in:

Proceedings of the ACM Multimedia 2010 International Conference, Firenze,

Italy, 2010, pp. 1467–1468.

[22] Schnitzer, D., Dealing with the Music of the World: Indexing Content-Based

Music Similarity Models for Fast Retrieval in Massive Databases, 1st ed. PhD

thesis, 2012, isbn: 9781477494158.

[23] McFee, B. and Lanckriet, G., Large-scale music similarity search with spatial

trees, in: ISMIR ’11, url: http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.226.5060.

[24] Marolt, M., A Mid-level Melody-based Representation for Calculating Audio

Similarity, in: ISMIR 2006, 7th International Conference on Music Information

Retrieval, Victoria, Canada, 8-12 October 2006, 2006.

[25] Xia, G. et al., MidiFind: Similarity Search and Popularity Mining in Large

MIDI Databases, in: Oct. 2013, pp. 259–276, isbn: 978-3-319-12975-4, doi:

10.1007/978-3-319-12976-1_17.

98

https://github.com/martinarielhartmann/mirtooloct
https://github.com/martinarielhartmann/mirtooloct
http://www.musly.org/index.html
http://www.musly.org/index.html
https://upload.wikimedia.org/wikipedia/commons/a/a9/BH_116_Vergleich.png
https://upload.wikimedia.org/wikipedia/commons/a/a9/BH_116_Vergleich.png
https://upload.wikimedia.org/score/5/m/5m046ksmmlpu0s4xbwna50qx9nmoh8v/5m046ksm.png
https://upload.wikimedia.org/score/5/m/5m046ksmmlpu0s4xbwna50qx9nmoh8v/5m046ksm.png
http://doi.org/10.5281/zenodo.1494152
http://doi.org/10.5281/zenodo.1494152
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.226.5060
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.226.5060
https://doi.org/10.1007/978-3-319-12976-1_17


[26] Kim, J. et al., Crepe: A Convolutional Representation for Pitch Estimation, in:

Apr. 2018, pp. 161–165, doi: 10.1109/ICASSP.2018.8461329.

[27] Foote, J., Cooper, M., and Nam, U., Audio Retrieval by Rhythmic Similarity,

in: Proceedings of the International Conference on Music Information Retrieval,

2002, pp. 265–266.

[28] Yufeng, Z. and Xinwei, L., Design and Implementation of Music Recommendation

System Based on Hadoop, in: Second International Conference of Sensor Net-

work and Computer Engineering (ICSNCE 2018), 2018, doi: 10.2991/icsnce-18.

2018.36..

[29] Gulati, S., Serra, J., and Serra, X., An evaluation of methodologies for melodic

similarity in audio recordings of Indian art music, 678-682, in: 2015, doi: 10.

1109/ICASSP.2015.7178055..

[30] Erkut, C. et al., Extraction of Physical and Expressive Parameters for Model-Based

Sound Synthesis of the Classical Guitar, in: Audio Engineering Society Conven-

tion 108, 2000, url: http://www.aes.org/e-lib/browse.cfm?elib=9224.

[31] Defferrard, M. et al., FMA: A Dataset For Music Analysis, in: 2016, arXiv:

1612.01840 [cs.SD].

[32] Soundcloud bqpd, url: https://soundcloud.com/bq_pd.

[33] Thickstun, J., Harchaoui, Z., and Kakadetitle, S. M., Learning Features of

Music from Scratch, in: International Conference on Learning Representations

(ICLR), 2017, url: https://arxiv.org/abs/1611.09827.

[34] Seyerlehner, K., 1517-Artists Dataset, 2010, url: http://www.seyerlehner.

info/index.php?p=1_3_Download.

[35] Bittner, R. et al., MedleyDB: A Multitrack Dataset for Annotation-Intensive

MIR Research, in: 15th International Society for Music Information Retrieval

Conference, 2014.

[36] Bittner, R. et al., MedleyDB 2.0: New Data and a System for Sustainable Data

Collection, in: New York, NY, USA: International Conference on Music Infor-

mation Retrieval (ISMIR-16), 2016.

[37] Man, B. D., Mora-Mcginity, M., and Reiss, J. D., The Open Multitrack Testbed,

in: In 137th Convention of the Audio Engineering Society, 2014.

[38] Ellis, D. P. W., The ”covers80” cover song data set, in: 2007, url: available:

http://labrosa.ee.columbia.edu/projects/coversongs/covers80/.

[39] Spotify API, url: https://developer.spotify.com/documentation/.

99

https://doi.org/10.1109/ICASSP.2018.8461329
https://doi.org/10.2991/icsnce-18.2018.36.
https://doi.org/10.2991/icsnce-18.2018.36.
https://doi.org/10.1109/ICASSP.2015.7178055.
https://doi.org/10.1109/ICASSP.2015.7178055.
http://www.aes.org/e-lib/browse.cfm?elib=9224
http://arxiv.org/abs/1612.01840
https://soundcloud.com/bq_pd
https://arxiv.org/abs/1611.09827
http://www.seyerlehner.info/index.php?p=1_3_Download
http://www.seyerlehner.info/index.php?p=1_3_Download
available: http://labrosa.ee.columbia.edu/projects/coversongs/covers80/
available: http://labrosa.ee.columbia.edu/projects/coversongs/covers80/
https://developer.spotify.com/documentation/


[40] Spotipy - a Python client for The Spotify Web API, url: https://github.

com/plamere/spotipy.

[41] Spotify Terms and Conditions of Use, url: https://www.spotify.com/lt/

legal/end-user-agreement/plain/#s9.

[42] Spotify Commercial Restrictions, url: https://developer.spotify.com/

legal/commercial-restrictions/.

[43] Bertin-Mahieux, T. et al., The Million Song Dataset, in: Proceedings of the

12th International Conference on Music Information Retrieval (ISMIR 2011),

2011.

[44] Schreiber, H., Improving Genre Annotations for the Million Song Dataset, in:

Proceedings of the 16th International Society for Music Information Retrieval

Conference (ISMIR), pages 241-247, Málaga, Spain, Oct. 2015.

[45] Last.fm dataset, the official song tags and song similarity collection for the

Million Song Dataset, url: http://labrosa.ee.columbia.edu/millionsong/

lastfm.

[46] The Echo Nest Taste profile subset, the official user data collection for the

Million Song Dataset, url: http://labrosa.ee.columbia.edu/millionsong/

tasteprofile.

[47] SecondHandSongs dataset, the official list of cover songs within the Million

Song Dataset, url: http://labrosa.ee.columbia.edu/millionsong/secondhand.

[48] The Echo Nest, url: http://the.echonest.com/.

[49] Zaharia, M. et al., Apache Spark: A Unified Engine for Big Data Processing,

in: Commun. ACM 59.11 (Oct. 2016), pp. 56–65, issn: 0001-0782, doi: 10.

1145/2934664.

[50] Apache Hadoop, url: https://hadoop.apache.org/.

[51] Aven, J., Data Analytics with Spark Using Python, 1st, Addison-Wesley Pro-

fessional, 2018, isbn: 013484601X, 9780134846019.

[52] Ghemawat, S., Gobioff, H., and Leung, S.-T., The Google File System, in:

vol. 37, Dec. 2003, pp. 29–43, doi: 10.1145/945445.945450.

[53] Dean, J. and Ghemawat, S., MapReduce: Simplified Data Processing on Large

Clusters, in: vol. 51, Jan. 2004, pp. 137–150, doi: 10.1145/1327452.1327492.

[54] MapReduce, url: https://commons.wikimedia.org/wiki/File:Mapreduce.

png.

[55] Scala, url: https://www.scala-lang.org/.

100

https://github.com/plamere/spotipy
https://github.com/plamere/spotipy
https://www.spotify.com/lt/legal/end-user-agreement/plain/#s9
https://www.spotify.com/lt/legal/end-user-agreement/plain/#s9
https://developer.spotify.com/legal/commercial-restrictions/
https://developer.spotify.com/legal/commercial-restrictions/
http://labrosa.ee.columbia.edu/millionsong/lastfm
http://labrosa.ee.columbia.edu/millionsong/lastfm
http://labrosa.ee.columbia.edu/millionsong/tasteprofile
http://labrosa.ee.columbia.edu/millionsong/tasteprofile
http://labrosa.ee.columbia.edu/millionsong/secondhand
http://the.echonest.com/
https://doi.org/10.1145/2934664
https://doi.org/10.1145/2934664
https://hadoop.apache.org/
https://doi.org/10.1145/945445.945450
https://doi.org/10.1145/1327452.1327492
https://commons.wikimedia.org/wiki/File:Mapreduce.png
https://commons.wikimedia.org/wiki/File:Mapreduce.png
https://www.scala-lang.org/


[56] Quinto, B., Next-Generation Big Data : A Practical Guide to Apache Kudu,

Impala, and Spark, Berkeley, CA: Apress, 2018, isbn: 978-1-4842-3147-0, doi:

10.1007/978-1-4842-3147-0.

[57] Estrada, R. and Ruiz, I., Big Data SMACK : A Guide to Apache Spark, Mesos,

Akka, Cassandra, Springer Science+Business Media, 2016, isbn: 978-1-4842-

2174-7, doi: 205310.1007/978-1-4842-2175-4.

[58] Seyerlehner, K. and Schedl, M., Block-Level Audio Features for Music Genre

Classification, 2009.

[59] Orio, N. and Rodà, A., A Measure of Melodic Similarity based on a Graph

Representation of the Music Structure, in: 10th International Society for Music

Information Retrieval Conference (ISMIR 2009), 2009, pp. 543 –548.

[60] McFee, B. et al., LibROSA: Audio and Music Signal Analysis in Python, in:

Proceedings of the 14th Python in Science Conference, pp. 18–24, doi: DOI:

10.25080/Majora-7b98e3ed-003.

[61] Englmeier, D. et al., Musical similarity analysis based on chroma features and

text retrieval methods, in: Datenbanksysteme für Business, Technologie und

Web (BTW 2015) - Workshopband, ed. by Ritter, N. et al., Bonn: Gesellschaft

für Informatik e.V., 2015, pp. 183–192.

[62] Serra, J. et al., Chroma Binary Similarity and Local Alignment Applied to

Cover Song Identification, in: 16 (Sept. 2008), pp. 1138 –1151, doi: 10.1109/

TASL.2008.924595.

[63] P.W. Ellis, D. and E. Poliner, G., Identifying ‘Cover Songs’ with Chroma

Features and Dynamic Programming Beat Tracking, in: vol. 4, May 2007, pp. IV–

1429, doi: 10.1109/ICASSP.2007.367348.

[64] Mathworks, xcorr2, url: https://www.mathworks.com/help/signal/ref/

xcorr2.html.

[65] P W Ellis, D. and Cotton, C., The 2007 LabROSA cover song detection system,

in: (Jan. 2007), doi: DOI:10.7916/D8959SXK.

[66] Tzanetakis, G. and Cook, P., Musical Genre Classification of Audio Signals, in:

IEEE Transactions on Speech and Audio Processing 10 (Aug. 2002), pp. 293

–302, doi: 10.1109/TSA.2002.800560.

[67] Gruhne, M., Dittmar, C., and Gärtner, D., Improving Rhythmic Similarity

Computation by Beat Histogram Transformations. In: ISMIR, Jan. 2009, pp. 177–

182.

101

https://doi.org/10.1007/978-1-4842-3147-0
https://doi.org/2053 10.1007/978-1-4842-2175-4
https://doi.org/DOI: 10.25080/Majora-7b98e3ed-003
https://doi.org/DOI: 10.25080/Majora-7b98e3ed-003
https://doi.org/10.1109/TASL.2008.924595
https://doi.org/10.1109/TASL.2008.924595
https://doi.org/10.1109/ICASSP.2007.367348
https://www.mathworks.com/help/signal/ref/xcorr2.html
https://www.mathworks.com/help/signal/ref/xcorr2.html
https://doi.org/DOI:10.7916/D8959SXK
https://doi.org/10.1109/TSA.2002.800560


[68] Lidy, T. and Rauber, A., Evaluation of Feature Extractors and Psycho-Acoustic

Transformations for Music Genre Classification. In: ISMIR, Jan. 2005, pp. 34–

41.

[69] Audio Feature Extraction, url: https://github.com/tuwien-musicir/rp_

extract.

[70] Audio Feature Extraction - Rhythm Patterns, url: http://www.ifs.tuwien.

ac.at/mir/audiofeatureextraction.html.

[71] Pampalk, E., Computational Models of Music Similarity and their Application

in Music Information Retrieval, PhD thesis, 2006.

[72] Pohle, T. et al., On Rhythm and General Music Similarity. In: 10th Interna-

tional Society for Music Information Retrieval Conference (ISMIR’09), Jan.

2009, pp. 525–530.

[73] Schoder, J., MusicSimilarity-Spark, url: https://github.com/oObqpdOo/

MusicSimilarity-Spark.

[74] mpi4py, url: https://pypi.org/project/mpi4py/.

[75] beegfs, url: http://www.beegfs.io/content/latest-release/.

[76] Slurm Workload Manager, url: https://slurm.schedmd.com/documentation.

html.

[77] Spotify company info, url: https://newsroom.spotify.com/company-info/.

[78] Locality Sensitive Hashing, url: https://spark.apache.org/docs/2.4.0/

ml-features.html#lsh-operations.

[79] edlib, url: https://github.com/Martinsos/edlib.

[80] Šošić, M. and Šikić, M., Edlib: a C/C++ library for fast, exact sequence alignment

using edit distance, in: bioRxiv (2016), doi: 10.1101/070649, eprint: https:

//www.biorxiv.org/content/early/2016/08/23/070649.full.pdf, url:

https://www.biorxiv.org/content/early/2016/08/23/070649.

102

https://github.com/tuwien-musicir/rp_extract
https://github.com/tuwien-musicir/rp_extract
http://www.ifs.tuwien.ac.at/mir/audiofeatureextraction.html
http://www.ifs.tuwien.ac.at/mir/audiofeatureextraction.html
https://github.com/oObqpdOo/MusicSimilarity-Spark
https://github.com/oObqpdOo/MusicSimilarity-Spark
https://pypi.org/project/mpi4py/
http://www.beegfs.io/content/latest-release/
https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/documentation.html
https://newsroom.spotify.com/company-info/
https://spark.apache.org/docs/2.4.0/ml-features.html#lsh-operations
https://spark.apache.org/docs/2.4.0/ml-features.html#lsh-operations
https://github.com/Martinsos/edlib
https://doi.org/10.1101/070649
https://www.biorxiv.org/content/early/2016/08/23/070649.full.pdf
https://www.biorxiv.org/content/early/2016/08/23/070649.full.pdf
https://www.biorxiv.org/content/early/2016/08/23/070649


A. Appendix

A.1 Feature Analysis

Scatter Matrix, 1 Song (Soundtack) from 50 (5 genres) song sample in Figure A.1

Main diagonal = Kernel Density Estimation

Figure A.1: Distances 1 random song (Soundtrack), 5 genres (10 songs each)

103



A.2 Spotipy Data Extraction

from __future__ import print_function

from spotipy.oauth2 import SpotifyClientCredentials

import json, sys, spotipy, time, os.path

import requests, urllib

import matplotlib.pyplot as pl

import h5json, scipy

import numpy as np

from scipy.spatial import distance

reload(sys)

sys.setdefaultencoding(’utf8’)

client_credentials_manager = SpotifyClientCredentials()

sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager)

if len(sys.argv) > 1:

uri = sys.argv[1]

else:

uri = ’spotify:user:bqpd:playlist:5oF8D71X38WwzeRUdyvpmd’

username = uri.split(’:’)[2]

playlist_id = uri.split(’:’)[4]

playlist = sp.user_playlist(username, playlist_id)

results = sp.user_playlists(username, limit=50)

playlist_length = playlist[’tracks’][’total’]

path = os.getcwd()

path = path + "/crawled_data"

playlist_name = playlist[’name’]

directory = path + "/" + playlist_name

if not os.path.exists(directory):

os.makedirs(directory)

t_start = time.time()

f_feat = open(path + "/" + playlist_name + "/featurevector.txt","w")

f_feat.write("Features: \n")

f_feat.close()

feat_vec = []

feat_num = []

feat_name = []

for num in range(0, playlist_length, 100):

results = sp.user_playlist_tracks(username, playlist_id, limit=100, offset=int(num

))

tracks = results

for i, item in enumerate(tracks[’items’]):

track = item[’track’]

track_id = str(track[’id’])

path = os.getcwd()

104



path = path + "/crawled_data"

artist = str(track[’artists’][0][’name’])

songtitle = str(track[’name’])

artist = artist.replace("/", "")

songtitle = songtitle.replace("/", "")

artist = artist.replace("$", "")

songtitle = songtitle.replace("$", "")

number = i + num

name = str(number) + " - " + artist + " - " + songtitle

directory = path + "/" + playlist_name + "/" + name

prev_url = track[’preview_url’]

if not prev_url == None:

if not os.path.exists(directory):

os.makedirs(directory)

filename = directory + "/" + artist + " - " + songtitle + ".mp3"

urllib.urlretrieve(prev_url, filename)

tid = ’spotify:track:’ + track[’id’]

analysis = sp.audio_analysis(tid)

with open(directory + "/" + songtitle + ’_analysis.json’, ’w’) as outfile:

json.dump(analysis, outfile)

outfile.close()

segments = analysis["segments"]

bars = analysis["bars"]

beats = analysis["beats"]

tid = str(tid)

features = sp.audio_features(tid)

with open(directory + "/" + songtitle + ’_features.json’, ’w’) as outfile:

json.dump(features, outfile)

outfile.close()

acousticness = features[0][’acousticness’]

danceability = features[0][’danceability’]

energy = features[0][’energy’]

instrumentalness = features[0][’instrumentalness’]

liveness = features[0][’liveness’]

loudness = features[0][’loudness’]

speechiness = features[0][’speechiness’]

valence = features[0][’valence’]

feat_vec.append(scipy.array([acousticness, danceability, instrumentalness,

liveness, loudness, speechiness, valence]))

else:

print("no url - entry: " + artist + " - " + songtitle)

print(track_id + "\n")

t_delta = time.time() - t_start

print ("features retrieved in %.2f seconds" % (t_delta,))

dist = distance.euclidean(feat_vec[0], feat_vec[1])

105



A.3 CD Contents

Feature Extraction Code

• mpi4py ara features.py

• mpi4py ara files.py

• mpi4py ara rhythm.py

• *.sbatch files

Spark Recommender Code

• spark ara df.py (unique DataFrames approach)

• spark ara filter refine.py (single merged DataFrame approach)

• spark ara mergeddf.py (filter and refine approach)

• spark ara rdd.py (single RDDs approach)

PDFs

• PDF private music collection

• digital copy of this thesis

106



B. Appendix - Private Music Col-

lection

107



Private Music Collection

Johannes Schoder

January 21, 2020



Contents

1 Metal 112

1.1 Melodic Death Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
1.2 Technical Death Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
1.3 Death Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
1.4 Deathcore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
1.5 Metalcore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
1.6 Folk Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
1.7 Doom, Gothic, Stoner, etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
1.8 Black Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
1.9 Alternative Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
1.10 Thrash Metal, Oldschool & others . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
1.11 Rock, Punk, Ska etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
1.12 Atmospheric & Nonmetal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
1.13 Buckethead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
1.14 Symphonic Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
1.15 Power Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
1.16 Progressive Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
1.17 Bandcamp Discoveries & Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
1.18 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

2 Non-Metal 193

2.1 Electronic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
2.2 Hip Hop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
2.3 Indie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
2.4 Orchestral & Instrumental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
2.5 Pop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
2.6 Reggae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
2.7 Soundtrack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
2.8 Klassik & Jazz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
2.9 Other Albums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
2.10 Cover & Mixtape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
2.11 Free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
2.12 Hip Hop & R’n’B Mixtapes von Mixtapemonkey . . . . . . . . . . . . . . . . . . . 206

3 Single Songs 208

3.1 Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
3.2 Rock & Pop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
3.3 Klassik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
3.4 DEMO Google Drive/ Facebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
3.5 Kostenlose Songs von Youtube etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
3.6 Kostenlose Songs von Bandcamp etc. . . . . . . . . . . . . . . . . . . . . . . . . . . 220

109



4 Guitar Backing Tracks 221

4.1 Death Culture Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.2 GuitarHero0650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.3 Arthur Sowinski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.4 Tore Fagerheim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

5 Personal Favorites 223

5.1 Albums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.2 Songs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224



Album covers removed to prevent copyright infringements, replaced by:
http://www.publicdomainfiles.com/show_file.php?id=13528072212039

Chapter 1 and Chapter 2 Contains: artists, album name, year, and favorite songs on the al-
bum (except for a few albums in Chapter 2 that are only listed without favorite tracks)
Chapter 3 and Chapter 4 contain single purchased songs instead of albums.
Chapter 5 contains a list of overall favorite songs and albums.

111



1. Metal

1.1 Melodic Death Metal

In Flames

Lunar Strain & Subter-
ranean (1994)

• Behind Space
• Lunar Strain
• Everlost (Pt. I & II)
• In Flames
• Dreamscape
• Starforsaken

The Jester Race (1996)

• Moonshield
• The Jester’s Dance
• Lord Hypnos
• Acoustic Medley
• December Flower

Whoracle (1997)

• Episode 666
• Gyroscope
• Whoracle
• Worlds Within The

Margin
• Jester Script Transfig-

ured
• Dialogue With The

Stars
• Morphing Into Primal
• Jotun Colony (1999)

• The New World
• Ordinary Story
• Zombie Inc.
• Colony
• Pallar Anders Visa
• Resin

Clayman (2000)

• Pinball Map
• Bullet Ride
• Only For The Weak
• Sattelites and Astro-

nauts
• Suburban Me
• Clayman
• Square Nothing

Reroute To Remain
(2002)

• Trigger
• Cloud Connected
• Reroute To Remain
• Black & White
• Metaphor
• Free Fall

112



Soundtrack To Your Es-
cape (2004)

• Dead Alone
• My Sweet Shadow
• The Quiet Place

Used And Abused
(DVD) (2005)

• Dead Alone
• My Sweet Shadow
• The Quiet Place

Come Clarity (2006)

• Leeches
• Take This Life
• Come Clarity
• Scream
• Crawling Through

Knives
• Our Infinite Struggle

A Sense Of Purpose
(2008)

• Alias
• The Chosen Pessimist
• Disconnected
• I’m The Highway
• The Mirror’s Truth
• Move Through Me

Sounds Of A Play-
ground Fading (2011)

• Sounds Of A Play-
ground Fading

• All For Me
• Deliver Us
• Ropes
• Enter Tragedy
• Where The Dead

Ships Dwell
• The Puzzle

Siren Charms (2014)

• Everything’s Gone
• Paralyzed
• When The World Ex-

plodes
• Siren Charms
• Rusted Nail

Battles (2016)

• The End
• Battles
• Us Against The World
• Wallflower
• Here Until Forever
• Save Me

Sounds From The Heart
Of Gothenburg (2016)

• The Chosen Pessimist

113



Down, Wicked & No
Good (2017)

• Hurt

I, The Mask (2019)

• I, The Mask
• I Am Above

Dark Tranquillity

The Gallery (1993)

• Punish My Heaven
• Edenspring
• Lethe
• Mine Is The Grandeur
• ... Of Melancholy

Burning

Fiction (2007)

• The Lesser Faith
• Terminus
• Misery’s Crown
• Focus Shift
• The Mundane And

The Magic

Where Death Is Most
Alive (2009)

• Yesterworld/ Punisch
My Heaven

• The Treason Wall
• Therein
• Final Resistance
• Focus Shift
• The Lesser Faith
• Edenspring
• Insanity’s Crescendo
• Misery’s Crown

Construct (2013)

• For Broken Words
• The Science Of Noise
• Apathetic

Atoma (2016)

• Forward Momentum
• Encircled
• Atoma
• The Pitiless

The Absolute (Single
2016)

• The Absolute
• Time Out Of Place

114



Be’lakor

Vessels (2016)

• The Smoke Of Many
Fires

• Grasping Light

Parius

The Eldritch Realm
(2018)

• Eldritch

Amon Amarth

Once Sent From The
Golden Hall (1997)

• Victorious March

The Avenger (1999)

• The Last With Pagan
Blood

115



Fate Of Norns (2004)

• The Pursuit Of
Vikings

• Valkyries Ride

With Oden On Our Side
(2006)

• Cry Of The Black
Birds

• Runes To My Memory
• With Oden On Our

Side

Twilight Of The Thun-
der God (2008)

• Guardians Of As-
gaard

• Tattered Banners And
Bloody Flags

• Twilight Of The
Thunder God

• Varyags Of Mikla-
gaard

Surtur Rising (2011)

• The Last Stand Of
Frej

• Live Without Regrets
• Destroyer Of The Uni-

verse

Deceiver Of The Gods
(2013)

• As Loke Falls
• Deceiver Of The Gods
• We Shall Destroy

Jomsviking (2016)

• Raise Your Horns
• One Thousand Burn-

ing Arrows
• The Way Of Vikings
• One Against All

At The Gates

Slaughter Of The Soul
(1995)

• Slaughter Of The Soul
• Blinded By Fear
• Under A Serpent Sun
• Cold

At War With Reality
(2015)

• At War With Reality
• The Head Of The Hy-

dra

116



To Drink From The
Night Itself (2018)

• To Drink From The
Night Itself

• The Mirror Black

Orbit Culture

Odyssey (2013)

• Wildfire
• Odyssey

In Medias Res (2014)

• Blacksphere
• Kalabalik
• Obscurity

Rasen (2016)

• Sun Of All
• Svartport
• I, The Wolf
• Wings Of Dragons
• Rasen
• Dawn Of Light
• The Haste To The

Pyre
• The Umbilical Chord

Redfog (2018)

• See Through Me
• The Newborn One

Raunchy

Death Pop Romance
(2006)

• This Legend Forever
• Remembrance
• Persistance

Wasteland Discotheque
(2014)

• Somewhere Along
The Road

• Somebody’s Watching
Me

117



Numenorean

Adore (2019)

• Regret
• Coma
• Adore

Omnium Gatherum

Beyond (2013)

• New Dynamic
• The Unknowing

Grey Havens (2016)

• Ophidian Sunrise
• These Grey Havens
• The Pit
• Skyline

The Burning Cold
(2018)

• Driven By Conflict

Wolfheart

Constellation Of The
Black Light (2018)

• Breakwater
• Warfare

118



Gormathon

Following The Beast
(2014)

• Remember

Nekrogoblikon

Welcome To Bunkers
(2018)

• The Many Faces Of
Dr. Hubert Malbec

Amorphis

Under The Red Cloud
(2015)

• Bad Blood
• White Night
• Death Of A King

119



Bloodred Hourglass

Where The Oceans Burn
(2015)

• Where The Sinners
Crawl

• Perdition
• Valkyrie

Heal (2017)

• Quiet Complaint

Insomnium

One For Sorrow (2011)

• One For Sorrow
• Inertia
• Through The Shadow

Weather The Storm
(Single 2011)

• Weather The Storm

Winter’s Gate (2016)

• Winter’s Gate

120



Soilwork

The Panic Broadcast
(2010)

• Let This River Flow

The Ride Majestic
(2015)

• The Ride Majestic
(Aspire Angelic)

• Death In General
• Whirl Of Pain

Mors Principium Est

Embers Of A Dying
World (2017)

• Masquerade
• Reclaim The Sun

Parasite Inc.

Time Tears Down (2013)

• The Pulse Of The
Dead

121



Meadows End

Sojourn (2016)

• Heathens’ Embrace

Arch Enemy

War Eternal (2014)

• No More Regrets
• You Will Know My

Name
• War Eternal
• Stolen Life

As The Stages Burn
(2017)

• Bloodstained Cross
• Nemesis
• Yesterday Is Dead

And Gone
• Ravenous

Will To Power (2017)

• The World Is Yours
• A Fight I Must Win
• Reason To Believe

Children Of Bodom

Skeletons In The Closet
(2009)

• Lookin’ Out My Back
Door

• She Is Beautiful
• Somebody Put Some-

thing In My Drink

Holiday At Lake Bodom
(2015)

• Needled 247
• Are You Dead Yet
• Everytime I Die
• I’m Shipping Up To

Boston
• Jessie’s Girl

122



Shylmagoghnar

Emergence (2014)

• I Am The Abyss
• Emergence
• Edin In Ashes

Transience (2018)

• The Chosen Path

In Mourning

Afterglow (2016)

• The Lighthouse
Keeper

Deadlock

Hybris (2016)

• Ein Deutsches Re-
quiem

• Berserk

123



1.2 Technical Death Metal

Cattle Decapitation

The Anthroprocene Ex-
tinction (2015)

• Manufactured Extinct

Kardashev

The Almanac (Instru-
mental) (2018)

• Beside Cliffs and
Chasms

Cytotoxin

Gammageddon (2017)

• Chernopolis

124



Nile

What Should Not Be
Unearthed (2015)

• Call To Destruction

Ophidius

The Way Of The Voice
(2016)

• The Calling
• Fo Sivaas

Obscura

Omnivium (2011)

• Vortex Omnivium
• Ocean Gateways

125



Solipsismo

Sangre Antigua (2017)

• 8C2
• Reyes Y Dioses
• Violenta Transfusion

Aephanemer

Know Thyself (2014)

• Alive
• Resilience

Memento Mori (2016)

• Unstoppable

Aether

Tale Of Fire (2016)

• Tale Of Fire
• Last Battle

126



Aetheric

Serpents Beneath The
Shrine (2017)

• By Death Posessed

Aronius

Truth In Perception
(2014)

• Disillusionment I
• Truth In Perception

Fallujah

Nomadic (2013)

• The Dead Sea

127



Irreversible Mechanism

Infinite Fields (2015)

• The Betrayer Of Time

Psygnosis

Neptune (2017)

• Psygnosis Is Shit

Transience

Temple (2015)

• Skirmish

128



1.3 Death Metal

Lamb Of God

Sacrament (2006)

• Redneck
• Walk With Me In Hell

Gojira

From mars to sirius
(2005)

• Global Warming
• Flying Whales

The Way of All Flesh
(2008)

• Oroborus
• The Art of Dying

L’ Enfant Sauvage
(2012)

• L’Enfant Sauvage
• The Gift Of Guilt
• Born In Winter
• Mouth Of Kala

Magma (2016)

• Low Lands
• The Shooting Star
• Magma

129



Deserted Fear

Dead Shores Rising
(2017)

• The Fall Of Leaden
Skies

• Open Their Gates
• Towards Humanity

Death

Symbolic (1995)

• Without Judgement
• Symbolic

Six Feet Under

Graveyard Classics IV
- The Number Of The
Priest (2016)

• Genocide

130



1.4 Deathcore

Thy Art Is Murder

The Depression Session
(Split 2016)

• They Will Know An-
other

• Du Hast

Fit For An Autopsy

The Depression Session
(Split 2016)

• Flatlining
• The Perfect Drug

The Acacia Strain

The Depression Session
(Split 2016)

• Sensory Deprivation
• Black Hole Sun

Gravebloom (2017)

• Worthless
• Gravebloom
• Cold Gloom

131



Whitechapel

This Is Exile (2008)

• Possession

Suicide Silence

Suicide Silence (2017)

• Don’t Be Careful You
Might Hurt Yourself

Faith In Ruin

Anathema (2016)

• Newest Dark Power
• The Polygon

132



1.5 Metalcore

Heaven Shall Burn

Iconoclast I. - The Final
Resistance (2008)

• Endzeit
• Black Tears
• Atonement

Invictus (2010)

• Given in Death

Veto (2013)

• Beyond Redemption
• Hunters Will Be

Hunted
• Godiva
• Fallen

Wanderer (2016)

• Passage Of The Crane
• The Cry Of Mankind
• Prey To God
• Corium
• Save Me
• They Shall Not Pass

While She Sleeps

This Is The Six (2012)

• Satisfied In Suffering
• The Chapel
• Seven Hills
• This Is The Six
• False Freedom

Brainwashed (2015)

• Our Legacy
• Four Walls

You Are We (2017)

• Hurricane
• Steal The Sun
• Revolt

So What (2017)

• Elephant
• Anti-Social

133



Architects

Holy Hell (2018)

• Holy Hell
• Doomsday
• A Wasted Hymn

Daybreaker (2012)

• These Colours Don’t
Run

• Even if you win,
you’re still a rat

• Blood Bank
• Cracks In The Earth
• Of Dust And Nations
• The Bitter End

The Amity Affliction

Let The Ocean Take Me
(2014)

• Pittsburgh

This Could Be Heart-
break (2016)

• I Bring The Weather
With Me

• This Could Be Heart-
break

August Burns Red

Sleddin’ Hill (2012)

• O Come, O Come,
Emanuel

Winter Wilderness
(2018)

• Winter Wilderness

134



Copia

Epoch (2017)

• Never Forget

Moments

Clarity (EP) (2016)

• Keepsake
• Clarity
• Cardinal Closure

Northlane

Node (2015)

• Ohm
• Weightless
• Ra
• Soma

135



Caliban

(2016)

• Paralyzed
• brOKen
• Crystal Skies

Annisokay

The Lucid Dreamer
(2012)

• Sky
• Monstercrazy
• Day To Day Tragedy

Trivium

Silence In The Snow
(2015)

• Silence In The Snow

136



Rise Of The Northstar

Demonstrating My
Saiya Style (2012)

• Demonstrating My
Saiya Style

• Home Is For The
Heartless

Parkway Drive

Deep Blue (2010)

• Wreckage
• Home Is For The

Heartless
• Alone

Atlas (2012)

• Wild Eyes

The Browning

Isolation (2016)

• Disconnect
• Pure Evil
• Isolation

137



Bring Me The Horizon

Sempiternal (2013)

• Sempiternal
• Shadow Moses

Thats The Spirit (2015)

• Happy Song
• Doomed

1.6 Folk Metal

Eluveitie

Slania & Evocation -
The Arcane Metal Ham-
mer Edition (2009)

• Gray Sublime Archon
• Inis Mona
• The Arcane Dominion
• Omnos
• Slania (Folk Medley)

Everything Remains (As
It Never Was) (2010)

• Thousandfold
• Everything Remains

As It Never Was
• Nil
• Kingdom Come Un-

done

Origins (2014)

• The Silver Sister
• Carry The Torch
• The Nameless
• From Darkness
• The Call Of The

Mountains
• King

Evocation II Pantheon
(2017)

• Catvrix
• Epona
• Lvgvs
• Antvmnos
• Artio

138



Finntroll

Nifelvind (2010)

• Solsagan
• Under Bergets Rot
• Ett Norrskensdad

Finsterforst

Zerfall (2019)

• Zerfall
• Weltenbrand
• Ecce Homo

Korpiklaani

Voice Of Wilderness
(2005)

• Spirit Of The Forest
• Journey Man
• Beer Beer

Noita (2015)

• Ämmänhauta
• Lempo
• Pilli On Pajusta

Tehty
• Sahti

139



Skalmöld

Skalmöld & Sinfoni-
uhljomsveit Islands
(2013)

• Hel
• Aras
• Midgardsormur
• Kvadning

Vögguvisur Yggdrasils
(2016)

• Vanaheimur
• Alfheimur

Equilibrium

Turis Fratyr (2005)

• Der Sturm
• Turis Fratyr
• Met
• Heimdalls Ruf
• Die Prophezeihung
• Nordheim

Armageddon (2016)

• Eternal Destination
• Prey
• Born To Be Epic

Cellar Darling

This Is The Sound
(2017)

• Avalanche

140



Saltatio Mortis

Wachstum Über Alles
(2013)

• Wachstum Über Alles

Solstafir

Svartir Sandar (2011)

• Fjara

Otta (2014)

• Lagnaetti
• Otta

In Extremo

Quid Pro Quo (2016)

• Lieb Vaterland,
Magst Ruhig Sein

• Sternhagelvoll
• Pikse Palve
• Roter Stern
• Flaschenteufel

141



Tyr

Valkyrja (2013)

• Blood Of Heroes
• The Lay Of Our Love

Arkona

Decade Of Glory (2013)

• Yarilo
• Goi, Rode, Goi
• Slavsia, Rus
• Rus
• Liki Bessmertnykh

Bogov
• Stenka Na Stenku

Yav (2014)

• Yav’

Ensiferum

One Man Army (2015)

• Two Of Spades
• Neito Pohjolan
• Axe Of Judgement
• Cry For The Earth

Bounds

142



Fejd

Eifur (2010)

• Gryning
• Eifur
• Yggdrasil

Trolldom (2016)

• Bed För Din Själ
• Härjaren

Heidevolk

Velua (2015)

• Winter Woede
• Urth

Alestorm

Live At The End Of The
World (2013)

• Shipwrecked

143



Cellar Darling

Challenge (Single 2016)

• Challenge Me
• Fire, Wind & Earth

Grai

In The Arms Of Mara
(2014)

• In The Arms Of Mara

Helengard

Firebird (2017)

• Fall Rue
• Summer Feast

144



1.7 Doom, Gothic, Stoner, etc.

Paradise Lost

Draconian Times (1995)

• Enchantment
• Hallowed Land

Faith Divides Us - Death
Unites Us (2009)

• Last Regret
• Faith Divides Us -

Death Unites Us

Tragic Illusion 25 (The
Rarities) (2013)

• Last Regret
• Faith Divides Us -

Death Unites Us

The Plague Within
(2015)

• Beneath Broken
Earth

• No Hope In Sight
• Victim Of The Past
• Sacrifice The Flame

Opeth

Blackwater Park (2001)

• The Leaper Affinity
• Dirge For November
• The Drapery Falls

The Roundhouse Tapes
(2008)

• Bleak
• Blackwater Park
• Night And The Silent

Water

145



Katatonia

Sanctitude (2015)

• Teargas
• A Darkness Coming
• Idle Blood
• Undo You

Alunah

Awakening The Forest
(2014)

• Light Of Winter

Pet The Preacher

The Cave And The Sun-
light (2014)

• Let Your Dragon Fly

146



Lacrimas Profundere

Antiadore (2013)

• Antiadore

1.8 Black Metal

Vindland

Hanter Savet (2016)

• Morlusenn

Uada

Devoid Of Light (2016)

• Devoid Of Light
• Black Autumn, White

Spring

147



Zeal And Ardor

Stranger Fruit (2018)

• Built On Ashes
• Don’t You Dare
• Row Row

Der Weg Einer Freiheit

Finisterre (2017)

• Aufbruch

Ultar

Kadath (2016)

• Nyarlathotep
• Azathoth

148



Realm Of Wolves

Oblivion (2018)

• Ignifer

Harakiri For The Sky

III: Trauma (2016)

• The Traces We Leave

Ultha

The Inextricable Wan-
dering (2018)

• Cyanide Lips

149



Mgła

Exercises in futility
(2015)

• Exercises in futility IV

The Spirit

Sounds From The Vor-
tex (2018)

• The Clouds Of
Damnation

Carach Angren

This Is No Fairytale
(2015)

• When Crows Tick On
Windows

• There’s No Place Like
Home

150



Borknagar

Winter Thrice (2016)

• The Rhymes Of The
Mountain

Agrypnie

Aetas Cineris (2013)

• Erwachen
• Trümmer Aetas

Cineris
• Asche

Behemoth

Evangelion (2009)

• Ov Fire And The Void

I Loved You At Your
Darkest (2018)

• Wolves ov Siberia

151



Belzebubs

Blackened Call (2018)

• Blackened Call
• Maleficarum - The

Veil of the Moon
Queen, Pt. I

Celtic Frost

Morbid Tales (1984)

• Into The Crypts Of
Rays

Cradle Of Filth

Hammer Of The
Witches (2015)

• Blackest Magick In
Practice

152



Enslaved

Vertebrae (2008)

• The Watcher

Hypothermia

Skogens Hjaerta (2010)

• Skogens Hjärta

In Tenebriz

As The Spring Uncovers
Pain (2017)

• Pale Forest
• As The Spring Un-

cover Pain

153



Moonspell

Extinct (2015)

• Extinct
• Breathe (Until We

Are No More)

Primordial

The Gathering Wilder-
ness (2005)

• The Coffin Ships

Wode

Wode (2017)

• Trails Of Smoke
• Plagues Of Insomnia

154



Baise Ma Hache

F.E.R.T (2018)

• Délivrance

1.9 Alternative Metal

Kvelertak

Kvelertak (2010)

• Fossegrim
• Mjod
• Blodtorst

Meir (2013)

• Apenbaring
• Kvelertak
• Spring Fra Livet
• Trepan
• Nekrokosmos

Nattesferd (2016)

• Heksebrann

155



System Of A Down

System Of A Down
(1998)

• Sugar
• Soil

Toxicity (2001)

• Toxicity
• Chop Suey
• Aerials
• Deer Dance
• Needles
• Prison Song

Steal This Album (2002)

• Innervision
• I-E-A-I-A-I-O
• Pictures
• Highway Song

Mezmerize (2006)

• B.Y.O.B.
• Lost In Hollywood
• Old School Hollywood
• Sad Statue
• Radio/ Video
• Violent Pornography

Hypnotize (2006)

• Soldier Side
• Hypnotize
• Lonely Day
• She’s Like Heroin

Storaged Melodies

• Feel Good
• Starlit Eyes

Nothing More

Nothing More (2014)

• This Is The Time
(Ballast)

• Jenny

156



Tempel

Tempel (2018)

• Fortress

Alter Bridge

Fortress (2013)

• Addicted To Pain
• Bleed It Dry
• Calm The Fire
• Lover

Avenged Sevenfold

Nightmare (2010)

• Nightmare

The Stage (2016)

• The Stage
• Exist
• Roman Sky
• God Damn
• Paradigm

157



Diablo Blvd

Zero Hour (2017)

• Sing From The Gal-
lows

• Life Amounts To
Nothing

Disturbed

The Sickness (2000)

• Down With The Sick-
ness

Immortalized (2015)

• The Light
• The Sound Of Silence

Five Finger Death Punch

The Wrong Side of
Heaven and the Righ-
teous Side of Hell,
Volume 1 (2013)

• Wrong Side Of
Heaven

• Watch You Bleed
• Lift Me Up
• Aywhere But Here

Got Your Six (2015)

• Jekyll And Hyde
• Got Your Six
• My Nemesis
• Wash It All Away
• Diggin’ My Own

Grave
• Boots And Blood

158



Lindemann

Skills In Pills (2015)

• Fish On
• Yukon

Steh Auf (EP)(2019)

• Steh Auf

Linkin Park

Hybrid Theory (2000)

• In The End
• Pushing Me Away
• One Step Closer
• Papercut
• With You

Minutes To Midnight
(Deluxe) (2007)

• Bleed It Out
• No More Sorrow
• Leave Out All The

Rest

New Divide (Single
2009)

• New Divide

159



Mastodon

Blood Mountain (2006)

• Sleeping Giant
• Circle Of Cysquatch

Once More Ŕound The
Sun (2014)

• High Road
• The Motherload
• Asleep In The Deep

Pain

Cynic Paradise (2008)

• Follow Me
• Don’t Care
• Have A Drink On Me

Coming Home (2 Disk)
(2016)

• Call Me
• Coming Home
• Natural Born Idiot
• Shut Your Mouth
• Same Old Song
• Dirty Woman
• The Great Pretender

Rammstein

Videos 1995-2012 (2012)

• Seemann
• Du Hast
• Haifisch
• Keine Lust
• Rosenrot
• Sonne
• Ich Tu Dir Weh

160



Raubtier

Skriet Fran Vildmarken
(2010)

• Skriet Fran Vild-
marken

• En Hjältes Väg
• Himmelsfärds-

kommando
• Lebensgefahr
• Hulkovius Rex
• Achtung Panzer
• Världsherravälde

Baersaerkagang (2016)

• Bärsärkagang
• Genom Allt
• Hymn

Rest, Repose

Sleep City (EP 2015)

• Sleep City

Scars On Broadway

Scars On Broadway
(2008)

• Insane
• Funny

Dictator (2018)

• Lives
• Guns Are Loaded

161



Serj Tankian

Elect the Dead (2007)

• Lie Lie Lie
• Saving Us
• Sky Is Over
• Empty Walls
• Feed Us
• Praise The Lord And

Pass The Ammunition

Elect the Dead Sym-
phony (2010)

• Lie Lie Lie
• Saving Us
• Sky Is Over
• Empty Walls
• Feed Us

Imperfect Harmonies
(2010)

• Left Of Center

Harakiri (2012)

• Harakiri

Orca (2013)

• Act III - Delphinus
Capensis

Stepfather Fred

Hello Larry Brown?
(2014)

• Caroline
• Hello
• Fuck

Unplugged and Hand-
made (2015)

• Caroline

162



Volbeat

The Strength The
Sound The Songs
(2005)

• Always. Wu
• I Only Wanna Be

With You
• Caroline #1
• Caroline Leaving
• Rebel Monster

1.10 Thrash Metal, Oldschool & others

ACDC

Live At Donington
(1992)

• Thunderstruck
• Hells Bells
• T.N.T.
• Highway To Hell

Deep Purple

Perfect Strangers (1984)

• Perfect Strangers
• A Gypsy’s Kiss
• Knocking At Your

Back Door

163



Dire Straits

Sultans Of Swing (1998)

• Sultans Of Swing
• Lady Writer

Airbourne

Black Dog Barking
(2013)

• Live It Up
• Back In The Game
• Ready To Rock

Ghost

Meliora + Popestar EP
(2016 & 2017)

• He Is
• Square Hammer
• From The Pinnacle To

The Pit

164



Halestorm

Into The Wild Life
(2015)

• Amen
• I Am The Fire

Iron Maiden

From Fear to Eternity
(2011)

• Fear Of The Dark
• Blood Brothers
• Paschendale

The Book of Souls
(2015)

• Death Or Glory
• The Book Of Souls

Judas Priest

Turbo (1986)

• Turbo Lover

Painkiller (1990)

• Painkiller
• Night Crawler

Single Cuts (2011)

• Painkiller
• Before The Dawn

Firepower (2018)

• Lightning Strike

165



Kreator

Phantom Antichrist
(2012)

• Your Heaven, My Hell
• Phantom Antichrist
• Civilisation Collapse

Metallica

Metallica (1991)

• Enter Sandman
• The Unforgiven
• Nothing Else Matters

S & M (1999)

• Master Of Puppets
• The Call Of The

Ktulu
• Nothing Else Matters
• One

Death Magnetic (2008)

• The Day That Never
Comes

• The Unforgiven III.
• My Apocalypse

Motörhead

You’ll Get Yours (2010)

• Ace Of Spades

166



Pantera

Cowboys from Hell
(1990)

• Cemetery Gates

Saxon

Crusader (1984)

• Crusader
• A Little Bit Of What

You Fancy
• Just Let Me Rock
• Do It All For You

Van Halen

Diver Down (1982)

• (Oh) Pretty Woman
• Dancing In The

Streets
• Little Guitars
• Cathedral
• Hang ’em High

167



1.11 Rock, Punk, Ska etc.

Anathema

Internal Landscapes -
The Best Of 2008-2018
(2018)

• Springfield

Billy Talent

Billy Talent II (2006)

• Devil In A Midnight
Mass

• Fallen Leaves
• Red Flag
• Surrender
• Worker Bees

Dead Silence (2012)

• Viking Death March
• Lonely Road To Abso-

lution
• Surprise Surprise
• Hanging By A Thread

Green Day

American Idiot (2004)

• Wake Me Up When
September Ends

• American Idiot
• Boulevard Of Broken

Dreams

168



Sum 41

Chuck (2004)

• Pieces

The Offspring

Rise and Fall, Rage and
Grace (2004)

• You’re Gonna Go Far
Kid

• Kristy, Are You Doing
Okay

Rise Against

Siren Song of the
Counter Culture (2004)

• Paper Wings
• Blood To Bleed

The Sufferer & The Wit-
ness (2006)

• Prayer Of The
Refugee

• Under The Knife

Appeal to Reason (2008)

• Long Forgotten Sons
• Savior
• Hero Of War

Endgame (2011)

• Make It Stop
(September’s Chil-
dren)

• Satellite
• Wait For Me
• Architects

169



Long Forgotten Songs
(2013)

• Death Blossom
• Everchanging

The Black Market
(2014)

• I Don’t Want To Be
Here Anymore

• People Live Here

Wolves (2017)

• The Violence

Anti-Flag

The General Strike
(2012)

• Broken Bones

American Fall (2017)

• American Attraction
• When The Wall Falls
• Digital Blackout

Dropkick Murphys

The Meanest Of Times
(2007)

• The State Of Mas-
sachusetts

170



Buster Shuffle

Our Night Out (2009)

• At The Bank
• Me, Myself & I
• I’m Into You

Pvris

White Noise (2014)

• St. Patrick
• My House

Audioslave

Audioslave (2002)

• Like A Stone

171



Stone Sour

Audio Secrecy (2010)

• Say You’ll Haunt Me

Red Hot Chili Peppers

Greatest Hits (2003)

• Californication
• By The Way
• Scar Tissue

Various

Raid The Arcade -
Armada Book Inspired
Soundtrack (2018)

• T.N.T.
• Black Betty
• Another One Bites

The Dust

172



Pink

Sober (Single 2008)

• Sober

Ledger

Ledger EP (2018)

• Not Dead Yet

1.12 Atmospheric & Nonmetal

Wardruna

Runaljod - Gap Var Gin-
nunga (2009)

• Heimta Thurs
• Hagall
• Kauna

Runaljod - Yggdrasil
(2013)

• Rotlaust Tre Fell
• Solringen
• Sowelu
• Helvegen

173



Runaljod - Ragnarok
(2016)

• Wunjo
• Raido
• Odal
• UruR
• Perto

Einar Selvik & Ivar Bjørnson

Hugsja (2018)

• WulthuR
• Nordvegen

If These Trees Could Talk

The Bones of a Dying
World (2016)

• The Giving Tree
• Berlin
• Solstice

174



A Light In The Dark

Vanished (2016)

• I Tried To Forget
• Vanished

Imperfect (Split 2017)

• Uncertain

Kauan

Aava tuulen maa (2009)

• Valveuni
• Fohn

Live Pirut & Sorni Nai
(2017)

• Pirut
• Sorni Nai

Skyforest

Unity (2016)

• Autumnal Embrace
• A Graceful Spirit
• Reminiscence

175



Ulvesang

Ulvesang (2015)

• Litherpoan
• Two Rivers

1.13 Buckethead

March of the Slunks
(2012)

• Magellan’s Maze

Hold Me Forever (2014)

• N
• Y
• C

Lightboard (2016)

• Lightboard

176



1.14 Symphonic Metal

Nightwish

From Wishes To Eter-
nity (2001)

• Walking In The Air
• Wanderlust
• Elvenpath

Once (2004)

• Wish I Had An Angel
• Nemo
• Kuolema Tekee

Taiteilijan
• Planet Hell

Highest Hopes (2005)

• Sleeping Sun
• Bless The Child
• Wishmaster

End Of An Era (2006)

• High Hopes
• Slaying The Dreamer
• Over The Hills And

Far Away
• Ever Dream
• Dark Chest Of Won-

ders

Epica

The Divine Conspiracy
(2007)

• Never Enough
• The Divine Conspir-

acy

Retrospect - 10th An-
niversary (2013)

• Introspect
• Quietus
• Sensorium
• Serenade Of Self-

Destruction
• Storm The Sorrow

The Quantum Enigma
(2014)

• The Essence Of Si-
lence

• Canvas Of Life
• Natural Corruption
• Victims Of Contin-

gency
• The Second Stone

177



Within Temptation

Let Us Burn (2014)

• Candles
• Iron
• Ice Queen
• Faster
• Sinead
• Stand My Ground
• And We Run

EvaneScence

Fallen (2003)

• My Immortal
• Bring Me To Life
• Going Under
• Everybody’s Fool
• Hello

Beyond The Black

Lost in Forever (2016)

• Lost In Forever
• Night Will Fade

178



Blackbriar

We’d Rather Burn
(2018)

• I’d Rather Burn

Delain

Interlude (2013)

• Breathe On Me
• Such A Shame
• Are You Done With

Me
• We Are The Others

A Decade Of Delain
(2017)

• Fire With Fire

Indica

A Way Away (2010)

• Precious Dark
• In Passing
• Scissor, Paper, Rock

179



Wildpath

Disclosure (2015)

• Hollow
• Disclosure

Apocalyptica

Plays Metallica (1996)

• Bittersweet

Apocalyptica (2005)

• The Unforgiven

1.15 Power Metal

Blind Guardian

Somewhere Far Beyond
(1992)

• The Bards Song (In
The Forest)

• Ashes To Ashes
• The Quest For

Tanelorn

Imaginations Through
the Looking Glass
(2004)

• A Past & Future Se-
cret

• Bright Eyes
• Imaginations From

The Other Side
• I’m Alive
• Mordred’s Song
• The Last Candle
• And Then There Was

Silence

180



At the Edge of Time
(2010)

• Sacred Worlds
• Tanelorn (Into The

Void)
• Ride Into Obesession

Memories of a Time to
Come (2012)

• And Then There Was
Silence

• Valhalla
• Somewhere Far Be-

yond
• Mirror Mirror

Beyond the Red Mirror
(2015)

• Distant Memories
• Miracle Machine
• Grand Parade

Sabaton

The Art of War (2008)

• Swedish Pagans
• 40:1
• The Art Of War
• Ghost Division

Coat of Arms (2010)

• Uprising
• Coat Of Arms

Heroes (2014)

• To Hell And Back
• Night Witches
• Resist And Bite

The Last Stand (2016)

• Sparta
• Shiroyama

181



The Great War (2019)

• Attack Of The Dead
Man

• The Red Baron

Helloween

Unarmed (2010)

• Future World
• If I Could Fly
• Perfect Gentleman
• Dr. Stein

Ride the Sky (2016)

• Future World
• I Want Out
• Dr. Stein

Powerwolf

Blessed & Possessed
(2015)

• Blessed And Pos-
sessed

• Armata Strigoi
• Sacramental Sister

182



Dragonforce

Inhuman Rampage
(2005)

• Through The Fire
And The Flames

Gloryhammer

Space 1992: Rise of the
Chaos Wizards (2015)

• Universe On Fire
• Legend Of The Astral

Hammer

Hammerfall

No Sacrifice, No Victory
(2009)

• Any Means Necessary
• My Shanora

183



Pentakill

Smite And Ignite (2014)

• Deathfire Grasp

II: Grasp of the Undying
(2017)

• Mortal Reminder

1.16 Progressive Metal

Animals As Leaders

Weightless (2011)

• Weightless
• New Eden

Earthside

A Dream in Static
(2015)

• A Dream In Static
• Skyline
• The Closest I’ve Come

184



Polyphia

Renaissance (2016)

• Culture Shock
• Euphoria
• Bittersweet

Dream Theater

Dream Theater (2013)

• Along For The Ride
• The Enemy Inside

Sarah Longfield

Par Avion (2012)

• Sea

185



Master Boot Record

C:
>COPY . A: V () (2017)

• DEV.NFO

1.17 Bandcamp Discoveries & Sampler

Distant Dream

It All Starts From Pieces
(2017)

• Timeless Colors
• A Touch Of The Sky

Shadow Universe

The Unspeakable World
(2017)

• Pulsar

186



Cloudkicker

Let Yourself Be Huge
(2011)

• You And Yours
• It’s Inside Me, And

I’m Inside It

Earth Science

Flares (EP) (2011)

• Whiskey Tango Fox-
trott

Hope For Heroes

Turnaround (2014)

• The Room
• Turnaround

187



Where The Good Way Lies

Nineteen Fourteen
(2016)

• Shadow March

Dirtwire

Dirtwire (2012)

• Hunter’s Harp
• Amphibian Circuits

Lulacruza

Orcas (2015)

• Una Resuena
• Lagunita

188



Doublestone

Wingmakers (2013)

• Wingmakers

Thenightyouleft

The Woods (2015)

• Of A Demon In My
View

Relapse Records

Relapse Sampler (2015)

• Myrkur - Mordet

Relapse Sampler (2016)

• Myrkur - Onde Born

Relapse Sampler (2017)

• Myrkur - Ulvinde

189



Willowtip

Willowtip Sampler
(2018)

• Necrophagist - Muti-
late The Stillborn

Naturmacht Productions

Naturmacht Compila-
tion Vol. I (2009)

• Agael - Legend

Naturmacht Compila-
tion Vol. III (2010)

• Cold Empire - Of
Woods and Trees

Naturmacht Compila-
tion Vol. III (2012)

• Æðra - Horizon

190



Neckbeard Deathcamp

White Nationalism is
for Basement Dwelling
Losers (2018)

• The Fetishization ov
Asian Women Despite
a Demand for a Pure
White Race

Rys

Legacy (2017)

• Legacy
• Unease

The Circle Pit Compilation

The Circle Pit Compila-
tion II - Part One (2018)

• Humanity’s Last
Breath - Harm

• Orbit Culture - Saw

The Circle Pit Compila-
tion II - Part Two (2018)

• For Giants - Big Sky

191



The Circle Pit Compi-
lation II - Part Three
(2018)

• Winter’s Gate - The
Exile

The Circle Pit Compi-
lation II - Part Four
(2018)

• Voidspawn - Pyrrhic

1.18 Noise

Frontierer

Orange Mathematics
(2015)

• Cascading Dialects

192



2. Non-Metal

Most of the albums listed below are just listed (artist and album name) without favorite songs.

2.1 Electronic

• Wintergatan - Wintergatan

• Detektivbyran - Wemland

• Gorillaz - Demon Days

• DEF CON 25 - The Official Soundtrack

• Favourite Hardstyle Music

• The Grand Sound - Trance

2.2 Hip Hop

• Alligatoah - Triebwerke

• Watsky - Cardboard Castles

• Jan Böhmermann - Ich Hab Polizei

• The Jazz Hop Café - Jazz Hop #3

• Chillhop Records - Chillhop Essentials - Fall 2017

2.3 Indie

• Eivor - Room

• Pomme - En cavale

2.4 Orchestral & Instrumental

• Adrian von Ziegler - Starchaser

• Adrian von Ziegler - The Celtic Collection

• An Evening In Rivendell

• A Night in Rivendell

193



• Havasi - Symphonic II.

• Two Steps From Hell - Classics I

• Two Steps From Hell - Classics II

• Wim Mertens - Struggle For Pleasure

• Yann Tiersen - Goodbye Lenin

2.5 Pop

• Abba - 18 Hits

• Abba - Waterloo

• EAV - Best Of

• Rock’n’Pop - Christmas

• Sarah Brightman - A Winter Symphony

• The Dome 43

• The Dome 50

• The Dome 49

• Gregorian - Masters Of Chant Chapter VI

2.6 Reggae

• Damian Marley - Welcome To Jamrock

2.7 Soundtrack

• Dreamfall Chapters

• Dreamfall

• Endless Legend

• Gothic 2

• Der Herr Der Ringe - Die Gefährten

• Der Herr Der Ringe - Die Zwei Türme

• Der Herr Der Ringe - Die Rückkehr Des Königs

• Der Hobbit - An Unexpected Journey

• Der Hobbit - Desolation Of Smaug

• Der Hobbit - Battle Of The Five Armies

• Leinwandträume

• Mass Effect 2

194



• Mass Effect 3

• Outlander

• Shadowrun Hong Kong

• The Banner Saga

• The Witcher 3

• Transistor

• Whiplash

• Game Of Thrones - Season 6

• Flesh And Bone (Adam Crystal)

• Diamond City Radio - Music Inspired by Fallout 4

195



2.8 Klassik & Jazz

• 100 Meisterwerke der Klassik

• Bach - Toccata & Fuge

• Buddy Rich - Blues Caravan

• David Garret - Rock Symphonies

• Keith Jarret - Creation

• Lang Lang - Liszt

• Lang Lang - Live in Vienna

• Ludovico Einaudi - Divenire

• Ludovico Einaudi - Elements

• Magic Moments - In The Spitit Of Jazz

• Marcin Patrzalek - Hush

• Orgelsax - Concerto Europeo

• Orgelsax - Ich öffne die Tür weit am Abend

• Piano Collection (25 CDs)

• Piano Nocturnes

• Piano Perlen

• Piano Poesie

• Schöne Weihnacht

• Sommernacht

• Swing With Cicero

• The New Sound Of Classic

• Träumerei

• Zia - Many And Great Are Thy Things

2.9 Other Albums

Bloodhound Gang

Show Us Your Hits
(2010)

• Uhn Tiss Uhn Tiss
Uhn Tiss

196



L’Orchestra Cinématique

Epic Christmas (2017)

• Oh Come Oh Come
Emmanuel

Hans Zimmer

Live In Prague (2017)

• Interstellar Medley

Ivan Torrent

Reverie - The Compila-
tion Album(2014)

• Forbidden Love

197



Eddie Van Der Meer

Cover Songs #7 (2017)

• New Rules

Divinity Original Sin 2

Divinity Original Sin 2
(2017)

• Main Theme

Rundfunktanzorchester Ehrenfeld & Jan Böhmermann

Neo Magazin Royale:
Live in Concert (2016)

• Baby Got Laugenge-
bäck

198



Polizistensohn aka Jan Böhmermann

Recht Kommt EP (2018)

• Recht Kommt

Dua Lipa

Be The One (EP) (2015)

• Last Dance

Aurora

Running With The
Wolves (EP)(2015)

• Runaway

199



Twenty One Pilots

Blurryface (2015)

• Ride
• Stressed Out

Paramore

That’s What You Get
(2008)

• That’s What You Get

Kontra K

Aus Dem Schatten Ins
Licht (2015)

• Erfolg Ist Kein Glück
• Spring
• Kampfgeist 2

200



Bliss N Eso

Off The Grid(2017)

• Tear The Roof Off
• Moments

K.I.Z

Sexismus Gegen Rechts
(2009)

• Selbstjustiz
• Halbstark
• Das System (Die

kleinen Dinge) (feat.
Sido)

Watsky

Nothing Like The First
Time (2012)

• Wounded Healer
• IDGAF

201



Pertubator

The Uncanny Valley
(2016)

• Sentinent

Parov Stelar

The Paris Swing Box
(2010)

• Booty Swing

Stranger Things

Stranger Things: Mu-
sic From The Netflix
Original Series (Double
Vinyl) (2017)

• Runaway
• Rock You Like A Hur-

ricane
• Africa

202



Mitch Murder

Selection 5 (2018)

• The Line

Danger Mode

Activation (2015)

• High Velocity

OSC

Girls On Bike (2017)

• Boys Fall Easy

203



Zenon Records

Selections 2018 (2018)

• The Waters of Lethe

Merkaba Music

100th Compilation
(2019)

• Deep Space

Evan Marc + Steve Hillage

Dreamtime Submersible
(208)

• Theta Phase

204



2.10 Cover & Mixtape

Game Of Thrones

Catch The Throne
(2014)

• Born to Rule

Catch The Throne II
(2015)

• White Walker
• Soror Irrumator
• Loyalty

Vladimir Zelentsov

Guitar Covers And More
(2015)

• Freestyler

2.11 Free

Two Bears High-Fiving

Button Mashing (Instru-
mental Album) (2013)

• Into The Wilderness

VGMashup (2012)

• Common - Testify
(Tales of Vesperia)

205



Button Mashing (2013)

• Rakim - Guess Who’s
Back (Persona 4 -
Corner of Memories)

3-1 (2013)

• Childish Gambino -
Firefly (Darksiders II)

Four Leaf Hova (2014)

• Moment of Clarity
(Wiosna)

Katy Scary (2014)

• Wide Awake (Please
Love Me...Once More)

2.12 Hip Hop & R’n’B Mixtapes von Mixtapemonkey

Chiddy Bang - The Swelly Express
Kid Cudi - Dat Kid From Cleveland
Kid Cudi - Kid Named Cudi
Kid Cudi - Rap Hard
Tech N9ne - Bad Season
Chance The Rapper - Acid Rap
Chance The Rapper - Coloring Book
Childish Gambino - STN MTN
Drake - So Far Gone
Frank Ocean - Nostalgia Ultra
Gucci Mane - Trapology
G-Unit - The Lost Flash Drive
Jayden Tilley - Youngblood
Lil Dicky - So Hard
Lil Uzi Vert - Lil Uzi Vs The World
Tupac - Tupac Duets
Wiz Khalifa - Kush Oj
Wiz Khalifa - Kush Oj 7 Year Anniversary EP
Angel Haze - Classick
Cardi B - Gangsta Bitch Music Vol 1
Cassie - Rocka Bye Baby
Georgia Reign - DopeboyzLuvMe
Honey Cocaine - Thug_Love
Iggy Azalea - Glory EP
Jhene Aiko - Sailing Souls
Kamaiyah - A Good Night In The Ghetto
Kehlani - Cloud 19
Keke Palmer - Keke Palmer

206



Khrystal - QLC
Kreayshawn - Young Rich Flashy
Lexii Alijai - feelless
Marsha Ambrosius - Late Nights Earlier Mornings
Mila J - Covergirl
Mila J - Milaulongtime
Mila J - Westside
Shanell - 4 Christmas
Shanell - Midnight Mimosas
Telana - New Age Soul
Tennille - 10FDOOM
Tennille - A Bronx Tale
Tinashe - Amethyst
Tinashe - BlackWater
Tinashe - In Case We Die
Tinashe - Reverie
Tink - Winters Diary 4

207



3. Single Songs

3.1 Metal

8Kids - Kann mich jemand hören
A Day To Remember - All I Want
Alex Schmeia - Hide and Seek
Alex Schmeia - Mayhem
Alex Schmeia - Reborn
Alex Schmeia - Too Late
Alex Starbard - D Minor Backing Track
Alex Starbard - Reflections
Alien Weaponry - Holding My Breath
All That Remains - The Thunder Rolls
All That Remains - What If I Was Nothing
Alyona Vargasova - Journey Through the Milky Way
Ambleside - Dear Mother
Amon Amarth - Crack the Sky
Amorphis - Bad Blood
Amorphis - House Of Sleep
Amorphis - The Bee
Amorphis - White Night
Amorphis - Wrong Direction
Anathema - Springfield
Andy James - The Wind That Shakes the Heart
Angel Vivaldi & Andy James - Wave of Synergy
Ankor - Rockstar (Cover)
Any Given Day - Arise
Arch Enemy - The World Is Yours
Architects - Doomsday
Architects - Even If You Win, You’re Still A Rat
Architects - Holy Hell
Architects - These Colours Don’t Run
Archspire - Remote Tumour Seeker
Arthur Sowinski - Sad Backing Track in D Minor
Arthur Sowinski - Sad Backing Track in E Mino
As I Lay Dying - 94 Hours
As I Lay Dying - An Ocean Between Us
As I Lay Dying - My Own Grave
As I Lay Dying - The Sound Of Truth
As I May - No Way Back
At The Gates - Slaughter of the Soul
At The Gates - To Drink from the Night Itself
Auri - Night 13

208



Avenged Sevenfold - This Means War
Bad Religion - 21st Century (Digital Boy)
Bad Religion - Fuck You
Baroness - Shock Me
Beartooth - In Between
Behemoth - Chant For Ezkaton 2000 E.V.
Behemoth - God Dog
Behemoth - O Father O Satan O Sun!
Behemoth - Ov Fire And The Void
Being As An Ocean - This Loneliness Won’t Be the Death of Me
Be’Lakor - Countless Skies
Be’Lakor - The Smoke Of Many Fires
Belphegor - Baphomet
Beyond The Black - Night Will Fade
Black Label Society - A Love Unreal
Blessthefall - Open Water [feat. Lights]
blink-182 - Adam’s Song
blink-182 - I Miss You
blink-182 - She’s Out Of Her Mind
blink-182 - What’s My Age Again
Bloodred Hourglass - Where the Sinners Crawl
Bombus - I Call You Over
Bring Me The Horizon - Shadow Moses
Bring Me The Horizon - Sleepwalking
Brutus - Fire
Brutus - Sugar Dragon
Brutus - War
Buckethead - Big Sur Moon
Buckethead - Coma
Buckethead - Soothsayer (dedicated to Aunt Suzie)
Buckethead - Waiting Hare
Burning Witches - Black Widow
Caliban - This Oath
Callejon - Snake Mountain (Live)
Callejon - Utopia
Carach Angren - Charles Francis Coghlan
Catamenia - The Forests of Tomorrow
Children Of Bodom - Are You Dead Yet
Children Of Bodom - Needled 24-7
Civil War - Tombstone
Code Orange - Bleeding In The Blur [Explicit]
Code Orange - Forever
Cradle Of Filth - Blackest Magick In Practice
Cradle Of Filth - Heartbreak And Seance
Crown The Empire - Memories Of A Broken Heart
Cytotoxin - Abysm Nucleus
Dark Fortress - Ylem
Dark Tranquillity - The Science of Noise
Dawn Of Disease - Ascension Gate
Deep Purple - Sometimes I Feel Like Screaming
Deftones - My Own Summer (Shove It)
Delain - Fire With Fire
Der Weg Einer Freiheit - Letzte Sonne
Deserted Fear - Open Their Gates

209



Dethklok - Awaken
Devin Townsend Project - Deadhead (Live)
Diablo Blvd - Sing From The Gallows
Dick Dale - Miserlou
Die Apokalyptischen Reiter - Auf und nieder
Die Apokalyptischen Reiter - Der Rote Reiter
Dimmu Borgir - Gateways
Dool - Vantablack
Draconian - Stellar Tombs
Dropkick Murphys - Rose Tattoo
Dropkick Murphys - The State of Massachusetts
Echosmith - Tell Her You Love Her
Eisbrecher - Miststück
Eisregen - Elektro Hexe
Eisregen - Panzerschokolade
Eldamar - The Border Of Eldamar
Elevated Jam Tracks - Atmospheric Metal Ballad - G Minor
Elevated Jam Tracks - Wild Majestic Metal - E Minor
Eluveitie - Epona
Eluveitie - Neverland
Eluveitie - Rebirth
Emperor - I Am The Black Wizards
Equilibrium - Blut im Auge
Escape The Fate - Broken Heart
Evarose - All The Things She Said
Evarose - Flatline
Evergreen Terrace - Chaney Can’t Quite Riff Like Helmet’s Page Hamilton
Fallujah - Sanctuary
Fit For An Autopsy - Absolute Hope Absolute Hell
Fit For An Autopsy - Black Mammoth
Fit For An Autopsy - When the Bulbs Burn Out
Five Finger Death Punch - I Refuse
Fjoergyn - What a wonderful world
Foo Fighters - The Pretender
Frantic Amber - Soar
Frog Leap Studios - Africa Outro
Gary Moore - The Loner
Ghost - Dance Macabre
Ghost - Ghuleh Zombie Queen
Ghost - He Is
Ghost - Jigolo Har Megiddo
Ghost - Miasma
Ghost - Pro Memoria
Ghost - Rats
Gojira - Clone
Gojira - Space Time
Gojira - Oroborus
Grimner - Eldhjärta
Haggard - Awaking the Centuries
Halestorm - Black Vultures
Halestorm - Love Bites (So Do I)
Hatebreed - Honor Never Dies
Honeymoon Disease - Higher
Hungry Lights - Fothcrah

210



Hypocrisy - Eraser
Icon For Hire - Get Well
Icon For Hire - Make a Move
Immortal - All Shall Fall
In Extremo - Liam (Gälische Version)
In Flames - I Am Above
In Flames - (This Is Our) House
In Flames - We Will Remember
Infected Rain - Orphan Soul
Insomnium - Inertia
Insomnium - Through The Shadow
Ithilien - Walk Away
J.B.O. - Panzer Dance
Jinjer - Just Another
Joe Satriani - Midnight
Kardashev - Iota
Kmac2021 - The Ting Goes Djent
Knorkator - Alter Mann
Knorkator - Ding Inne Schnauze
Knorkator - Liebeslied
Knorkator - Rette Sich Wer Kann
Knorkator - Warum
Knorkator - Wir Werden Alle Sterben
Korpiklaani - Henkselipoika
Korpiklaani - Ieva’s Polka
Korpiklaani - Rauta
Kreator - Satan Is Real
Kvelertak - Heksebrann
Lacuna Coil - Blood, Tears, Dust
Leprous - The Price
Lifelover - Androider
Lifelover - Kärlek, Becksvart Melankoli (Love, Pitch Black Melancholy)
Lord Of The Lost - Morgana
Make a Change... Kill Yourself - Sjælefred
Make Them Suffer - Save Yourself
Mechina - Progenitor
Melodic Metal Backing Track - E Minor (Extended Version)
Meshuggah - Bleed
Meshuggah - Future Breed Machine
Metallica - Call Of Ktulu
Metallica - Master Of Puppets
Metallica - Moth Into Flame
Michalina Malisz - Martyr
Minor Threat - Out of Step
MOL - Bruma
Mono Inc. - The Banks Of Eden
Montreal - Auf der faulen Haut
Mr Hurley und die Pulveraffen - Ach ja
Muse - Stockholm Syndrome
Music Is Win - Every Guitar Technique in One Solo
Music Is Win - I Wrote This Song in 60 Minutes
Myrkur - Ulvinde
Nachtblut - Antik
Nanowar Of Steel - Norwegian Reggaeton

211



Ne Obliviscaris - Painters of the Tempest, Pt. 2 (Triptych Lux)
Nekrogoblikon - We Need a Gimmick [Explicit]
Nightwish - While Your Lips Are Still Red
Noctem - Eidolon
Nothing More - Don’t Stop
Nothing More - This Is The Time (Ballast)
Numenorean - Adore
Numenorean - Regret
Numenorean - Coma
Obscurity - Bergischer Hammer
Omnium Gatherum - Nail
Omnium Gatherum - New Dynamic
Omnium Gatherum - New World Shadows
Omnium Gatherum - Soul Journeys
Omnium Gatherum - Watcher Of The Skies
Orbit Culture - Halloween Theme by John Carpenter
Orphaned Land - Like Orpheus
Papa Roach - Help
Parasite Inc. - The Pulse of the Dead [Explicit]
Parkway Drive - A Deathless Song (feat. Jenna McDougall)
Parkway Drive - Horizons
Parkway Drive - Idols and Anchors
Parkway Drive - Prey
Parkway Drive - Shadow Boxing
Parkway Drive - Smoke ’Em If You Got ’Em
Parkway Drive - Wishing Wells
Perkele - Heart Full of Pride
Petur Ben - Svarthamar
Pieter Daarth Project - R.D.F.
Pieter Daarth Project - Touching The Void
Pink Floyd - Hey You
Pixies - Where Is My Mind
Powerwolf - Demons Are A Girl’s Best Friend
Primordial - Wield Lightning to Split the Sun
Prophets Of Rage - Unfuck The World [Explicit]
Rage Against The Machine - Know Your Enemy (Remastered)
Rage Of Light - I Can, I Will
Rammstein - Frühling In Paris
Raubtier - Lat Napalmen Regna
Raunchy - Somewhere Along The Road
Rings Of Saturn - The Macrocosm
Rise Of The Northstar - Demonstrating My Saiya Style
Rise Of The Northstar - What The Fuck
Rivers Of Nihil - The Silent Life
Rob Scallon - Rain (Live & Acoustic)
Rotting Christ - The Raven
Royal Republic - Underwear
Sabaton - The Attack Of The Dead Men
Saor - Guardians
Satyricon - K.I.N.G.
Satyricon - Mother North
Satyricon - Phoenix
Satyricon - The Infinity Of Time And Space
Scars On Broadway - Lives

212



Semisonic - Closing Time
Shylmagoghnar - I Am the Abyss
Sick Of It All - Step Down
Slayer - Raining Blood (Album Version)
Soilwork - Distortion Sleep
Soilwork - Rejection Role
Soilwork - Tongue
Steve Vai - For the Love of God (Live)
Stick To Your Guns - Amber
Storm Seeker - Destined Course
Suamenlejjona - Mahtisonni
Sum 41 - Pieces
Sum 41 - Sick Of Everyone
Sum 41 - Still Waiting
Sum 41 - With Me
Swallow The Sun - Firelights
Swallow The Sun - With You Came the Whole of the World’s Tears
Swiss und Die Anderen - Kuhle Typen feat. Die Atzen
Ten Second Songs - Chop Suey
The Agonist - Take Me To Church
The Amity Affliction - I Bring The Weather With Me
The Amity Affliction - Pittsburgh (No Intro)
The Amorettes - Talk Nerdy to Me
The Oath - Silk Road
The Ocean - Permian The Great Dying
The Offspring - Self-Esteem
The Offspring - You’re Gonna Go Far Kid
The Picturebooks - I Need That Oooh
The Pretty Reckless - House on a Hill
Thirty Seconds To Mars - A Beautiful Lie
Thousand Leaves - Kissing the Tears
Thundermother - It’s Just A Tease
Thy Art Is Murder - Death Squad Anthem
Tribulation - Nightbound
Tribulation - The Lament
Trivium - Beyond Oblivion
Trivium - The Crusade
Trivium - The Heart From Your Hate
Turisas - Rasputin
Van Halen - Hot For Teacher
Varg - Rotkäppchen
Venues - We Are One
Vitalism - Gradus
W.A.S.P. - Miss You
Waxx - Turn Up
We Butter The Bread With Butter - Ohne Herz
While She Sleeps - Elephant
Wither Away - Hazel Eyes
Wolfheart - Routa, Pt.2
Wolfheart - The Hunt
Woods Of Ypres - I Was Buried In Mount Pleasant Cemetery
Year Of The Goat - Avaritia
Yngwie Malmsteen - Arpeggios From Hell (Bonus)
Zeal And Ardor - Built on Ashes

213



Zeal And Ardor - Don’t You Dare
Zeal And Ardor - Fire of Motion

3.2 Rock & Pop

257ers - Auseinanda
257ers - Holland
257ers - Warum
Adrian von Ziegler - Ótroðinn
Against The Current - Another You (Another Way)
Against The Current - Legends Never Die
Alan Walker - Faded
Alex Cameron - Big Enough
Alicia Keys - Empire State of Mind (Part II) Broken Down
Aliotta Haynes Jeremiah - Lake Shore Drive
Alligatoah - Du bist schön
Alligatoah - Lass liegen
Amy Winehouse - Fuck Me Pumps
Anavae - Are We Alone
Andrey Vinogradov - Medieval Tune
Anna Burch - 2 Cool 2 Care
anna RF - Why
anna RF feat Naadistan - Tum Hi Ho
Archive - Bullets
Audio88 - Direkter Vergleich
Audio88 - Ein Besserer Mensch
Audio88 & Yassin - Die Erde ist eine Scheide
Audio88 & Yassin - Halleluja
Audio88 & Yassin - Gnade (feat. Nico KIZ)
Audio88 & Yassin - Regenschirm
Audio88 & Yassin - Rettet die Wale und so
Audio88 & Yassin - Schellen
Audio88 & Yassin - Über Liebe
Aurora - The Seed
Azedia - Thunder & Lightning
Bag Raiders - Shooting Stars
Band Maid - the non-fiction days
Beatsteaks - L auf der Stirn (feat. Deichkind)
Bestie - Excuse Me
Billie Eilish - bad guy
Billie Eilish - bury a friend
Billie Eilish - lovely
Billie Eilish - ocean eyes
Billie Eilish - when the party’s over
Billy Joel - Uptown Girl
Birdy - Wings
Bliss n Eso - Tear The Roof Off (feat. Watsky)
Bloodhound Gang - Along Comes Mary
Bob Dylan - Blowin’ in the Wind
Bob Marley - No Woman, No Cry
Bonnie Tyler - Total Eclipse of the Heart
Boy - Little Numbers

214



Camila Cabello - Havana
Camilla Cabello - Something’s Gotta Give
Cantina Band Ringtone
Caravan Palace - Lone Digger
Casper - Im Ascheregen
Cat Stevens - Father And Son
Chiddy Bang - Opposite Of Adults
Childish Gambino - This Is America
Chris Rea - Driving Home For Christmas
Cocktail Shakers - Girl from Petaluma
Coolio - Gangsta’s Paradise
Corey Hart - Sunglasses At Night
Crashing Atlas - Ascend
Cuelebre - Fodder for the Raven
Daft Punk - Within
David Bowie - Life On Mars
David Guetta - Memories (Feat. Kid Cudi)
Dead Sara - Weatherman
Deichkind - Bück dich hoch
Deichkind - Denken Sie groß
Deichkind - Der Flohmarkt ruft [feat. Herr Spiegelei]
Deichkind - Die Welt ist fertig
Deichkind - Hauptsache nichts mit Menschen
Deichkind - Leider geil
Deichkind - Mehr als lebensgefährlich
Deichkind - Porzellan und Elefanten
Deichkind - Richtig Gutes Zeug
Deichkind - So’ne Musik
Deichkind - Wer Sagt Denn Das
Dendemann - Stumpf Ist Trumpf 3.0
Dexter - Dies das (feat. Audio88 & Yassin)
Diamante - Had Enough
Die Antwoord - Ugly Boy
Dire Straits - Sultans Of Swing
Dorothy - Down To The Bottom
Dr. Dre - Still D.R.E. [feat. Snoop Dogg]
Dynatron - Pulse Power
Dzivia - Uźniasieńnie
Dzivia - Voryva
Earth Wind And Fire - September
EAV - Fata Morgana
Eddie Van Der Meer - Unravel - Tokyo Ghoul OP 1
Electric Light Orchestra - Mr. Blue Sky
Elise Trouw - Burn
Elvis - Can’t Help Falling in Love
Eminem - Lose Yourself
Eminem - Not Afraid
Ennio Morricone - The good, the bad and the ugly
Era - Ameno (Album Version)
Eric Clapton - Layla
Eric Clapton - Layla (Live in San Diego)
E.S. Posthumus - Unstoppable
Estas Tonne - The Song of the Butterfly
Estas Tonne - The Song of the Golden Dragon

215



Euriell - City of the Dead
Faber - Wem du’s heute kannst besorgen
First To Eleven - New Rules
Fleurie - Hurricane
Florence + The Machine - Jenny of Oldstones (Game of Thrones)
Fools Garden - Lemon Tree
Fort Minor - Remember the Name
Fort Minor - Where’d You Go
Fytch - In These Shadows (feat. Carmen Forbes)
Fytch - Winter Wind (feat. Carmen Forbes)
Game Of Thrones - The Night King
Game Of Thrones - The Rains Of Castomere
Garmarna - Herr Mannelig
Gary Jules - Mad World (feat. Michael Andrews)
George Michael - Careless Whisper
Globus - Diem Ex Dei
Globus - Preliator
Gotye - Somebody That I Used To Know
Grissini Project - No Time for Caution
Grissini Project - Lilium
Grits - Here We Go
Grits - Ooh Ahh (My Life Be Like)
Grossstadtgeflüster - Fickt-Euch-Allee [Explicit]
Grossstadtgeflüster - Weil das morgen noch so ist
Guns N’ Roses - November Rain (Album Version)
Gunship - Dark All Day (feat. Tim Cappello & Indiana)
Gute Arbeit Originals - CtrlShift Sommer
GZUZ - Warum
Haiyti - Sunny Driveby
Halflives - Burn
Halocene - Good for You
Halsey - Heaven In Hiding
Hans Zimmer - Davy Jones
Holly Mae Henry - More Than Nothing
Hunger Games - Everybody Wants To Rule The World (feat Lorde)
Hunger Games - Safe & Sound [feat. The Civil Wars & Taylor Swift]
Hunger Games - The Hanging Tree [feat. Jennifer Lawrence]
Inglebirds - Wadadadang
Ice Cube - It Was A Good Day
Imagine Dragons - Warriors
Jim Pandzko feat. Jan Böhmermann - Menschen Leben Tanzen Welt
Joe Cocker - You Can Leave Your Hat On
John Butler - Ocean
John Denver - Take Me Home, Country Roads
John Lennon - Imagine
Jon Lajoie - Everyday Normal Guy
José Gonzales - Crosses
Juju & Said - Berliner Schnauze
Kilez More - Alles Bleibt Gleich (feat. Die Bandbreite & Morgaine)
K.I.Z - Abteilungsleiter Der Liebe
K.I.Z - Fremdgehen (Album Version)
K.I.Z - Glück gehabt
Kadebostany - Early Morning Dreams (Kled Mone Remix)
Kid Cudi - Mojo So Dope

216



Kid Cudi - Mr. Rager
Kid Cudi - Pursuit Of Happiness
Kid Cudi - Soundtrack 2 My Life
Kid Cudi - Up Up & Away
Kitty Pryde - Okay Cupid
KIZ - Glück gehabt
Kollegah - Einer von Millionen (feat. Motrip)
Kontra K - Erfolg ist kein Glück
Kontrust - The Butterfly Defect
Kraftklub - Dein Lied
La Casa Del Papel - Bella Ciao
Laboratorium Pieśni - Sztoj pa moru
Lana Del Rey - Born To Die (Album Version)
Larkin Poe - Sea of Faces
Leo - Africa (feat. Hannah Boulton & Rabea Massaad)
Logic - 1-800-273-8255
Logic - Ballin
Lord Of The Rings - The Battle Of The Pelennor Fields
Luca Stricagnoli - Now We Are Free
Maitre Gims - J’me tire
Malukah - I Follow the Moon
Marcin Przybyłowicz - Lullaby Of Woe
Marcin Przybyłowicz - Wolven Storm (English)
Marina - To Be Human
Markus Junnikkala - Even Death May Die
Marshmello & Anne-Marie - Friends
Marteria - Kids (2 Finger an den Kopf)
Martin Garrix - Animals (Original Mix)
Marvin Gaye - Ain’t No Mountain High Enough
MediMeister - Prince of Obermehl-Air
Medimeisterschaften Bonn - BonnAmour
Medimeisterschaften Bonn - Napoleon Bonnerparty
Medimeisterschaften Freiburg - #Nurkittel
Medimeisterschaften Göttingen - Swinging Heart
Medimeisterschaften Jena - Jenandertaler
Medimeisterschaften Rostock - Woodstock Peace & Love
Men at Work - Down Under
Merrigan - The Golden Hill
Metro Last Light - Behind the Red Curtain
Metro Last Light - Echoes of the Past
Metro Last Light - Reminiscence
Metro Last Light - The Farewell
Metro Last Light - Vessel of Sin
MGMT - Kids
Michael Jackson - They Don’t Care About Us
Miike Snow - Genghis Khan
Möchtegang - Gf___t letscht Nacht
Möchtegang - So andersch
Money Boy - Swaghetti Yolonese
Monty Python - Always Look On The Bright Side Of Life
Morgaine - Für Eine Bessere Welt
Morlockk Dilemma - Der Elfenbeinturm (feat. Audio88)
Morlockk Dilemma & Hiob - Bastard Homosapiens
Morlockk Dilemma & Hiob - Kapitalismus Jetzt

217



Mr. Big - Wild World
NF - Let You Down
NF - The Search
Nirvana - Smells Like Teen Spirit
Ö La Palöma Boys - Ö La Palöma
Of Monsters And Men - Little Talks
OK KID - Gute Menschen
Omnia - Fee Ra Huri
Omnimar - Boom Boom
Omnimar - Reason
Orgonite - Habibi Yaeni
Orgonite - Hamsa Xamca
Orgonite - Xamca
Otava Yo - Cossacks Lezginka
Owen Dennis - Gary vs. David
Owl City - Fireflies
Pale Waves - Television Romance
Patty Gurdy - Gurdy’s Green
Patty Gurdy - Gurdy’s Green
Patty Gurdy - The Longing (Storm Seeker Cover)
Peter Gundry - Don’t Wake Me Just Yet
Pink Floyd - Another Brick In The Wall, Pt. 2
Polizistensohn - Blasserdünnerjunge macht sein Job
Post Malone - Congratulations
Princess Chelsea - Cigarette Duet
Prinz Pi - Kompass ohne Norden
Puddles Pity Party - Where Is My Mind
Pvris - Chandelier
Queen - Bohemian Rhapsody
Radiohead - Creep
Redbone - Come and Get Your Love (Single Edit)
Red Hot Chili Peppers - Dark Necessities
Red Hot Chili Peppers - Snow (Hey Oh)
Regular Show - Garys Synthesizer
Romano - Immun
Romano - Köpenick
Rummelsnuff - Bratwurstzange (Remix von Lord Of The Lost)
Scandal - Departure
Schandmaul - Dudelzack
Scott McKenzie - San Francisco
SDP - Merkste selber, wa!
Selena Gomez - Hands To Myself
Shireen - Umai
Sia - Chandelier
Sido - Der Tanz [feat. K.I.Z]
Sido - Spring rauf
Sigrid - Strangers
Silver - Wham Bam Shang-A-Lang
Silver Convention - Fly Robin Fly
Simon And Garfunkel - Scarborough Fair
Sina - Twenty-One Eleven (Feat. Mark Moody)
Skillet - Awake And Alive (Album Version)
SSIO - Schon wieder Sonntag
Stefan Raab - Wir Kiffen!

218



Stromae - Papaoutai
Sunflower Bean - I Was A Fool
Syd Matters - Obstacles
Taylor Davis - Fake Love
Taylor Davis - Game Of Thrones Theme
TeraBrite - Confident
Terabrite- The Greatest
The Animals - House of the Rising Sun
The Beach Boys - Wouldn’t It Be Nice (Stereo Mix)
The Beatles - Hey Jude
The Beatles - While My Guitar Gently Weeps (Remastered)
The Buggles - The Plastic Age
The Clash - Should I Stay or Should I Go
The HU - Yuve Yuve Yu
The HU - Wolf Totem
The Jackson 5 - I Want You Back (SPK Mix)
The Jackson 5 - I Want You Back
The Oath - Silk Road
The Pineapple Thief - The Final Thing on My Mind
The Proclaimers - I’m Gonna Be (500 Miles)
The Red Army Choir - National Anthem of the Ussr
The Regrettes - Seashore [Explicit]
The Rolling Stones - Paint It Black
The Walking Dead - The Parting Glass
The XX - Intro
Tina Guo - Wonder Woman Main Theme
Tobias Rauscher - Still Awake
Tonight Alive - Breakdown
Trailerpark - Sterben kannst du überall [Explicit]
Trove Lo - Habits
twenty one pilots - Car Radio
twenty one pilots - Friend, Please
twenty one pilots - Heathens
twenty one pilots - Ride
Vikings - Floki Appears to Kill Athelstan
Ville Valo & Natalia Avelon - Summer Wine
Wagakki Band - Strong Fate
Wallows - Scrawny
Watsky - Whoa Whoa Whoa
Waxx & Pomme - Hotline Bling
Wild Arms - Into The Wilderness
Yes - Roundabout (Remastered Version)
Yung Larry - Lauch
Zugezogen Maskulin - Alle gegen Alle
Zugezogen Maskulin - Plattenbau O.S.T
Zugezogen Maskulin - Was für eine Zeit

3.3 Klassik

Albert Schönberger - O du fröhliche (Freie Orgelimprovisation)
Alice Sara Ott - Prélude in D Flat Major (Raindrop), Op.28, No.15
Ernst-Erich Stender - Improvisation über O du fröhliche

219



John Keys - O Come O Come Emmanuel (Veni Emmanuel) (Organ)
Liszt - Totentanz
Orchestre Montreal - Saint-Saens Danse Macabre, Op.40, R.171
Parley Belnap - Festive Trumpet Tune (David German)
Prélude in G minor, Op. 23 5 Alla marcia
Rachmaninoff - Idil Biret - Op. 3 No. 2. Prelude in C-Sharp Minor
Rachmaninoff - Morceaux de fantaisie, Op. 3 No. 2 in C-Sharp Minor, Prelude
Rachmaninoff - The Isle of the Dead, Op. 29
Rachmaninov - Prélude in C sharp minor Op.3 No.2
Tatyana Ryzhkova - Dreams of a Russian Summer (Dedicated to Tatyana Ryzhkova)
Valentina Lisitsa - Beethoven Piano Sonata No.14 In C Sharp Minor, Op.27 No.2 - Moonlight - 3.
Pr
Yuja Wang - Saint-Saens Danse macabre, Op.40

3.4 DEMO Google Drive/ Facebook

Kardashev - Neverbreath (DEMO Album)

3.5 Kostenlose Songs von Bandcamp etc.

son kas - Wasserleichentreiben
MediMeister - Prince of Obermehl-Air
Witt Lowry - Kindest Regards
Witt Lowry - Go Big or Go Home ft. Trippz Michaud
Witt Lowry - Rescue
Witt Lowry - Wake Up
Witt Lowry - Youth
Witt Lowry - Witty’s Acapella
Witt Lowry - Move On
Witt Lowry - Used To You
Witt Lowry - I Could Be
Witt Lowry - Dinner For Two
Witt Lowry - Higher Ground
Witt Lowry - Lay Here
Witt Lowry - Leave ft. Trippz Michaud
The Doo - Ascend
The Doo - Eclipse
The Doo - Horizons

220



4. Guitar Backing Tracks

4.1 Death Culture Studio

*https://www.youtube.com/channel/UC5i2WkUKnkAp5_fHTuNyrrQ

DEATH METAL DRUM TRACK #5
DEATH METAL DRUM TRACK #4
DEATH METAL DRUM TRACK #3
DEATH METAL DRUM TRACK #2
DEATH METAL DRUM TRACK #1
HEAVY METAL DRUM TRACK #1

4.2 GuitarHero0650

*https://www.youtube.com/channel/UCZiOxGzuoDlyWVdpMoP4O6g

Melodic Metal Backing Track - E Minor (Extended Version)
Metalcore Backing Track - D Minor
Metalcore Backing Track #2 - D Standard
Rock Metal #1 - C

4.3 Arthur Sowinski

*https://sowinskibackingtracks.bandcamp.com

Arthur Sowinski - Sad Backing Track in D Minor
Arthur Sowinski - Sad Backing Track in E Minor

4.4 Tore Fagerheim

*https://metalguitarstuff.bandcamp.com

Metal Guitar Stuff - Backing Tracks - How To Impress Girls With The Guitar - TABS
Metal Guitar Stuff - Backing Tracks - How To Impress Girls With The Guitar 2 - TABS
Metal Guitar Stuff - Backing Tracks - Into The Void - TABS
Metal Guitar Stuff - Backing Tracks - Last Chance
Metal Guitar Stuff - Backing Tracks - Original Song - Desecreation - TABS
Metal Guitar Stuff - Backing Tracks - Original Song - Ruins

221



Metal Guitar Stuff - Backing Tracks - The Fallen EP
Metal Guitar Stuff - Backing Tracks - A Minor 170 BPM Metal - Rock - Guitar Backing Track
Metal Guitar Stuff - Backing Tracks - Challenges
Metal Guitar Stuff - Backing Tracks - Challenges (Extended Edition)
Metal Guitar Stuff - Backing Tracks - Departure
Metal Guitar Stuff - Backing Tracks - E minor - B phrygian - Intermediate Level Backing Track
Metal Guitar Stuff - Backing Tracks - Mechanical Malfunction
Metal Guitar Stuff - Backing Tracks - Stading Ground
Metal Guitar Stuff - Backing Tracks - The Uprising
Tore Fagerheim - A Minor - Metal Guitar Backing Track
Tore Fagerheim - A Minor Power Ballad Clean Version
Tore Fagerheim - A Minor Power Ballad Guitar Backing Track
Tore Fagerheim - B Minor - Metal Guitar Backing Track
Tore Fagerheim - B Minor Melodic Death Metal - Melodeath Guitar Backing Track
Tore Fagerheim - B Minor Modern Metal Guitar Backing Track -7 String-
Tore Fagerheim - D Minor Metalcore Killswitch Engage Style Backing Track
Tore Fagerheim - E Minor - Heavy Rock - 80s Metal Guitar Backing Track
Tore Fagerheim - E Minor - Heavy Rock - Metal Guitar Backing Track
Tore Fagerheim - E Minor 80’s Power Ballad Guitar Backing Track - Hard Rock Metal -
Tore Fagerheim - E Minor Acoustic Power Ballad Guitar Backing Track
Tore Fagerheim - E Minor Epic Power Ballad Guitar Backing Track
Tore Fagerheim - E Minor Guns N’ Roses Style Guitar Backing Track
Tore Fagerheim - E Minor Modern - Classic Metal Guitar Backing Track
Tore Fagerheim - E Minor Modern Metal Sad Guitar Backing Track
Tore Fagerheim - E Minor Sad Guitar Backing Track Acoustic Ballad

222



5. Personal Favorites

5.1 Albums

1. Orbit Culture - Rasen

2. In Flames - Whoracle

3. Heaven Shall Burn - Wanderer

4. Raunchy - Wasteland Discotheque

5. Gojira - From Mars To Sirius

6. Dark Tranquillity - The Gallery

7. Uada - Devoid Of Light

8. Eluveitie - Origins

9. Raubtier - Skriet Vran Vildmarken

10. Amon Amarth - Surtur Rising

11. Kvelertak - Meir

12. Vindland - Hanter Savet

13. Finntroll - Nifelvind

14. Equilibrium - Turis Fratyr

15. Gormathon - Following The Beast

16. Blind Guardian - Imaginations Through The Looking Glass (DVD)

17. Linkin Park - Minutes To Midnight

18. Nightwish - End Of An Era (DVD)

19. Epica - Retrospect (DVD)

223



5.2 Songs

1. Orbit Culture - Sun Of All

2. In Flames - The New World

3. Heaven Shall Burn - Beyond Redemption

4. Gojira - The Art Of Dying

5. Raunchy - Somewhere Along The Road

6. Dark Tranquillity - Punish My Heaven

7. Amon Amarth - The Last Stand Of Frey

8. Kvelertak - Apenbaring

9. Gormathon - Land Of The Lost

10. Fit For An Autopsy - Flatlining

11. Architects - Holy Hell

12. Cattle Decapitation - Manufactured Extinction

13. At The Gates - Slaughter Of The Soul

14. Paradise Lost - Beneath Broken Earth

15. Moonspell - Extinct

16. Mol - Bruma

17. Vindland - Morlusenn

18. Amorphis - House Of Sleep

19. Numenorean - Regret

20. Year Of The Goat - Avaritia

21. Satyricon - Phoenix

22. Solstafir - Fjara

23. Uada - Devoid Of Light

24. Shylmagoghnar - I Am The Abyss

25. Fjoergyn - What A Wonderful World

26. Be’lakor - The Smoke Of Many Fires

27. Raubtier - En Hjältes Väg

28. Omnium Gatherum - Ophidian Sunrise

29. Insomnium - One For Sorrow

30. Lindemann - Steh Auf

31. Soilwork - The Ride Majestic (Aspire Angelic)

32. Sabaton - Midway

224



33. Kardashev - Beside Cliffs and Chasms

34. Bloodred Hourglass - Times We Had

35. While She Sleeps - Revolt

36. Cytotoxin - Chaos Chascade

37. Rings Of Saturn - Macrocosmos

38. Parkway Drive - Idols and Anchors

39. Tempel - Afterlife

40. Diablo Blvd. - Sing From The Gallows

41. Pieter Daarth Project - Touching The Void

42. Rivers Of Nihil - The Silent Life

43. Hypocrisy - Eraser

44. Pain - Shut Your Mouth

45. Mors Principium Est - Masquerade

46. Parasite Inc. - The Pulse Of The Dead

47. Tribulation - The Lament

48. Trivium - The Crusade

49. Blackbriar - I’d Rather Burn

50. Eluveitie - Neverland

51. Skalmold - Vanaheimur

52. Korpiklaani - Ämmänhauta

53. Mono Inc. - The Banks Of Eden

54. Carach Angren - When Crows Tick On Windows

55. Behemoth - Chant for Ezkaton 2000 e.v.

56. Rotting Christ - The Raven

57. Avenged Sevenfold - This Means War

58. Callejon - Snake Mountain

59. Ghost - From The Pinnacle To The Pit

60. Finntroll - Under Bergets Rot

61. Cradle Of Filth - Blackest Magick In Pracktice

62. If These Trees Could Talk - Berlin

63. Billy Talent - Cure For The Enemy

64. Green day - Boulevard Of Broken Dreams

65. Sum41 - We’re All To Blame

225



66. Blink182 - I Miss You

67. Five Finger Death Punch - Wrong Side Of Heaven

68. The Offspring - You’re Gonna Go Far Kid

69. Linkin Park - What I’ve Done

70. System Of A Down - Soldier Side

71. Blind Guardian - The Bards Song

72. Evanescence - My Immortal

73. Nightwish - Over The Hills And Far Away

74. Within Temptation - Candles

75. Epica - The Essence Of Silence

76. Rise Against - Paper Wings

77. Equilibrium - Blut Im Auge

78. Fejd - Bed För Din Själ

79. In Extremo - Liam

80. Rammstein - Seemann

81. Lord Of The Lost - Morgana

82. Mechina - Progenitor

83. Devin Townsend Project - Deadhead

84. Death - Without Judgement

85. Deep Purple - Perfect Strangers

86. Lacrimas Profundere - Antiadore

87. Dawn Of Disease - Ascension Gate

88. Belzebubs - Blackened Call

89. Alter Bridge - Cry Of Achilles

90. Volbeat - Always, wu

226



Declaration of Authorship

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect

sources used are acknowledged as references. This thesis was not previously presented

to another examination board and has not been published in German, English or any

other language. The author has no objections to make the present master’s thesis

available for public use in the University Archives.

Jena, Sunday 22nd September, 2019

Johannes Schoder

227


	Abbreviations
	List of Figures
	List of Tables
	List of Code Snippets
	Introduction
	Objectives
	Outline

	Music Information Retrieval and Big Data
	Terminology
	Audio Features
	Fourier Transformation
	Mel Frequency Cepstral Coefficients
	Other Audio Features

	MIR Toolkits
	Low-Level Audio Feature Extraction
	Music Similarity
	Melody / Pitch Extraction

	Music Similarity Measurements
	Timbre Based
	Pitch Based
	Note Based
	Rhythm Based
	Metadata Based / Collaborative Filtering
	Genre Specific Features
	Selection

	Data Aggregation
	Datasets
	Alternatives

	Big Data
	Hadoop
	Spark
	Music Similarity with Big Data Frameworks


	Similarity Analysis
	Timbre Similarity
	Euclidean Distance
	Single Gaussian Model
	Gaussian Mixture Models and Block-Level Features
	Validation

	Melodic Similarity
	Chroma Features Pre-Processing
	Similarity of Melodic Features
	Validation

	Rhythmic Similarity
	Beat Histogram
	Rhythm Patterns
	Rhythm Histogram
	Cross-Correlation

	Summary

	Implementation
	Underlying Hardware
	Audio Feature Extraction
	Test Datasets
	Feature Extraction Performance

	Big Data Framework Spark
	Feature Files
	Workflow
	Data Preparation
	Distance Computation
	Distance Scaling
	Combining Different Measurements
	Performance
	Possible Improvements and Additions


	Results
	Objective Evaluation
	Feature Correlation and Distance Distribution
	Cover Song Identification
	Genre Similarity
	Rhythm Features

	Subjective Evaluation
	Beyond Genre Boundaries
	Personal Music Taste


	Summary
	Conclusion
	Performance
	Outlook

	References
	Appendix
	Feature Analysis
	Spotipy Data Extraction
	CD Contents

	Appendix - Private Music Collection

