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Abstract

Let eij be the number of edges in a convex 3–polytope joining
the vertices of degree i with the vertices of degree j. We prove that
for every convex 3-polytope there is 20e3,3 + 25e3,4 + 16e3,5 + 10e3,6 +
6 2

3
e3,7+5e3,8+21

2
e3,9+2e3,10+162

3
e4,4+11e4,5+5e4,6+12

3
e4,7+51

3
e5,5+

2e5,6 ≥ 120; moreover, each coefficient is the best possible. This result
brings a final answer to the conjecture raised by B. Grünbaum in 1973.
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1. Introduction and Statement of Results

This note deals with connected planar maps. We use standard terminology
and notation of graph theory, see e.g. Ore [16]. We recall, however, more
specialized notions. A plane map is called normal if it contains neither
vertices nor faces incident with less than 3 edges. Notice, however, that
both loops and multiple edges can appear in a normal plane map. By the
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Steinitz’s theorem (see e.g. Grünbaum [11], Jucovič [13]) convex 3-polytopes
are distinguished among all planar maps by the property that their graphs
are 3-connected. The degree of a face ω is the number of edges incident
to ω where each cut-edge is counted twice. Similarly, each loop contributes
2 to the degree of the incident vertex. Vertices and faces of degree i are
called i-vertices and i-faces, respectively. Let ei,j(M) = ei,j be the number
of edges in a planar map M which join i-vertices and j-vertices. Recall that
a convex 3-polytope is called simplicial if all its faces are 3-gons.

An excellent theorem of Kotzig [14] (see also [1,3,6,7,8,13,15,]) states
that every convex 3-polytope contains an edge of the weight (i.e., the sum of
degrees of its endvertices) at most 13; in other words

∑
i+j≤13 ei,j > 0. This

Kotzig’s result was further developed in various directions, see e.g. Borodin
[1,2,3], Grünbaum [6,7,8], Grünbaum and Shephard [9], Ivančo [10], Ivančo
and Jendrol’ [11], Jucovič [12,13], Zaks [17].

Grünbaum [8] has brought an idea that a relation of the type
∑

i+j≤13 αi,jei,j ≥ 1 should hold for each convex 3-polytope (αi,j denotes
the coeficient at eij) and has conjectured that the following holds for every
simplicial convex 3-polytope

20e3,3 + 15e3,4 + 12e3,5 + 10e3,6 + 62
3e3,7 + 5e3,8 + 31

3e3,9 + 2e3,10

+ 12e4,4 + 7e4,5 + 5e4,6 + 4e4,7 + 22
3e4,8 + 2

3e4,9

+ 4e5,5 + 2e5,6 + 1
3e5,7

+ 12e6,6 ≥ 120.

Jucovič [12] proved that for each simplicial convex 3-polytope there is

20e3,3 + 25e3,4 + 16e3,5 + 10e3,6 + 62
3e3,7 + 5e3,8 + 21

2e3,9 + 2e3,10

+ 20e4,4 + 11e4,5 + 5e4,6 + 6e4,7 + 5e4,8 + 3e4,9

+ 8e5,5 + 2e5,6 + 2e5,7 + 2e5,8 ≥ 120.

Later on Jucovič, in [13], proved that this inequality holds for all convex
3-polytopes.

For a wider class of planar maps which also includes convex
3-polytopes Borodin [3] has obtained.

Theorem 1. For each normal planar map there holds

40e3,3 + 25e3,4 + 16e3,5 + 10e3,6 + 62
3e3,7 + 5e3,8 + 21

2e3,9 + 2e3,10

+ 162
3e4,4 + 11e4,5 + 5e4,6 + 12

3e4,7

+ 51
3e5,5 + 2e5,6 ≥ 120;

(1)

moreover, each coefficient of this inequality is the best possible.
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In the same paper Borodin [3] proves that for simplicial convex 3-polytopes
(1) is the best possible if we put α3,3 = 20 instead of α3,3 = 40. For other
results of this type see Borodin [1,2,3], Borodin and Sanders [5], Jucovič
[13].

The main purpose of the present note is to give a final answer to the
above mentioned conjecture by Grünbaum [8]. We prove the following

Theorem 2. For each convex 3-polytopes there holds

20e3,3 + 25e3,4 + 16e3,5 + 10e3,6 + 62
3e3,7 + 5e3,8 + 21

2e3,9 + 2e3,10

+ 162
3e4,4 + 11e4,5 + 5e4,6 + 12

3e4,7

+ 51
3e5,5 + 2e5,6 ≥ 120;

(2)

moreover, each coefficient of this inequality is the best possible.

2. Proof of Theorem 2

We prove our Theorem 2 in a dual form. It is well known that the dual of
a 3-connected planar map is also 3-connected, see e.g. Ore [16, Chapter 3]
and, due to Steinitz’s theorem, it is also true for convex 3-polytopes. It is
easy to check that the dual of a normal map is again normal.

For the purposes of this proof an edge h is called an (i, j)-edge when it
is incident with an i-gon and a j-gon. Let gi,j(M) = gij denote the number
of (i, j)-edges in a map M . If Md is the dual to a normal map M , then
clearly eij(M

d) = gij(M). Let V (M), E(M) and F (M) denote the set of
vertices, edges and faces of the map M , respectively.

The proof is by contradiction. Replace eij with gij in the left part of (2)
and denote it by

∑
. We want to prove that for every 3-connected planar M

there is
∑

(M) ≥ 120. Suppose M be a counterexample having a minimum
number of faces.

To obtain a contradiction we are going to look for a suitable configura-
tion in M which will be changed locally to obtain a new 3-connected plane
map M∗ with

∑
(M∗) ≤

∑
(M) < 120 and with a fewer number of faces

than in M . During this transformation of the map M into M∗ some edges
and vertices of M are deleted, some edges change their types (an edge is of
the type (i, j) if it is an (i, j)-edge) and some new edges and vertices can
appear in M∗.

Asociate with an (i, j)-edge h of the map M the charge α(h, M) = αij ,
where αij is as in (2) or αi,j = 0 for i = 3, j ≥ 11 or i = 4, j ≥ 8 or
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i = 5, j ≥ 7 or i ≥ 6, j ≥ 6. Hence
∑

(M) =
∑

h∈E(M) α(h, M). Let
∆(h) = α(h, M) − α(h, M∗).
Since every 3-connected plane map is also normal Theorem 1 yields
g3,3(M) 6= 0, i.e., M contains a (3, 3)-edge h0 = uv. Denote by s and t

the vertices incident to triangles incident with h0 and different from u and
v, see Figure 1. Let h1 = us, h2 = sv, h3 = vt and h4 = ut be edges of M .
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To finish our proof several cases have to be considered

Case 1. deg u ≥ 4 and deg v ≥ 4.

1.1. Let deg s = 3 or deg t = 3. The required map M∗ is obtained by delet-
ing the edge h0 from M , i.e., M∗ = M − h0. Because M is 3-connected and
at least one of the vertices s and t is a 3-vertex also M∗ is 3-connected. We
can easily see that |F (M∗)| = |F (M)| − 1 and ∆(

∑
) =

∑
(M)−

∑
(M∗) =

α(h0, M) +
∑4

i=1(α(hi, M) − α(hi, M
∗)) = α3,3 +

∑4
i=1 ∆(hi) ≥ 20+

4 · (−5) = 0. The last inequality is due to the fact that if a (3, k)-edge
h is transformed into a (4, k)-edge, its charge always decreases or is the
same except of the case k = 3. We also refer to the fact that ∆(hi) ≥ −5
for any edge hi ∈ E(M).

1.2. deg s ≥ 4 and deg t ≥ 4. In this case we transform M into M∗ as
shown in Figure 2. We delete the edge h0 from M and split the vertex t of
M into two new vertices t1 and t2 such that we obtain, in M∗, deg t1 = 3 and
deg t2 = deg t − 1. (The reason for this transformation of M into M∗ is to
preserve 3-connectivity also in M∗.) Let h′, h1, h2, h3 and h4 be edges and ω1

and ω2 be faces of M∗ as depicted in Figure 2. Without loss of generality we
can assume that 4 ≤ deg ω1 ≤ deg ω2. Put ∆∗ =

∑
x∈E(M)−{h0,h3,h4} ∆(x).

Then we have |F (M∗)| = |F (M)| − 1 and ∆(
∑

) = α(h0, M) + ∆(h3) +
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∆(h4) + ∆∗ − α(h′, M∗) ≥ 0. To check it use α(h0, M) = α3,3 = 20 and for
the values ∆(h3),∆(h4), α(h′, M∗) and ∆∗ see Table 1 below. To count ∆∗

we also refer to the fact that g3,3(M) ≤ 5 (because M is a counterexample)
and consider the ”worst” case.
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Case 2. deg u = 3 and deg v ≥ 4.

Let w be a face incident to the edges h1 and h4, see Figure 1.

2.1. If deg w = 3 then M∗ is obtained by removing the vertex u from M , i.e.
M∗ = M−{u}. We have ∆(

∑
) = α(h0, M)+α(h1, M)+α(h4, M) = 60 > 0

and |F (M∗)| = |F (M)| − 2.

2.2. Let deg w = k ≥ 4. If we delete the vertex u from M and then insert a
new edge h∗ = st we obtain a required map M∗, M∗ = M − {u} + {h∗}. In
this case |F (M∗)| = |F (M)| − 1 and we can check that ∆(

∑
) = α(h0, M) +

α(h1, M) + α(h4, M) − α(h∗, M∗) + ∆̃ ≥ 0. To see it, take α(h0, M) =
α3,3 = 20 and the values α(h1, M), α(h4, M), α(h∗, M∗) and ∆̃ from the
Table 2 below; here ∆̃ =

∑
∆(g), where the sum is taken over all edges g

incident to the face ω, g 6= h1, h4. Note that during this transformation the
edge g changes its type (n, k) into the type (n, k − 1) and in the counting
we consider the worst case, that is ∆̃ ≥ (k − 2)(α3,k − α3,k−1).

Case 3. deg u = deg v = 3.

This assumption leads immediately to the graph of the tetrahedron or to a
2-connected planar map. In both cases we get a contradiction.

The proof that a 3-connectivity of M implies a 3-connectivity of M∗ is
easy and is left to the reader.
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The coefficient α3,3 = 20 cannot be improved as we can see from the tetra-
hedron. The above mentioned examples by Borodin [3] also show the im-
possibility to improve the other coefficient αi,j in Theorem 2.

Table 1

deg ω1 deg ω2 ∆(h3) ∆(h4) α(h′, M∗) ∆∗ ≥

4 4 31
3 31

3 162
3 −10

4 5 31
3 14 11 −20

4 6 31
3 11 5 −20

4 7 31
3 81

3 12
3 −20

4 ≥ 8 31
3 ≥ 0 0 −20

5 5 14 14 51
3 −10

5 6 14 11 2 −10

5 ≥ 7 14 ≥ 0 0 −10

≥ 6 ≥ 6 ≥ 0 ≥ 0 0 −10

Table 2

deg ω d(h1, M) d(h4, M) d(h∗, M∗) ∆̃ ≥

4 25 25 20 2 · (−81
3)

5 16 16 25 3 · (−9)

6 10 10 16 4 · (−6)

7 62
3 62

3 10 5 · (−31
3)

8 5 5 62
3 6 · (−12

3)

9 21
2 21

2 5 7 · (−21
2)

10 2 2 21
2 8 · (−1

2)

11 0 0 2 9 · (−2)

≥ 12 0 0 0 0
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