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Abstract

Clean metal as well as Cgo-terminated tips of an atomic force microscope probe the interaction with
Cgo molecules adsorbed on Cu(111) and Pb(111). The force measurements unveil a monotonic shift of
the point of maximum attraction with the bias voltage. The conventional superposition of long-range
van der Waals and electrostatic forces with short-range Pauli repulsion does not reproduce the shift.
By phenomenologically including bias-dependent relaxations of the electrode geometry in the
analytical expression for the short-range force the experimental data can qualitatively be described.

1. Introduction

The measurement of forces between atoms and molecules that are on the verge of forming a chemical bond
belongs to the fascinating capabilities of an atomic force microscope (AFM). For instance, approaching the force
sensor into the Pauli repulsion distance range where the orbital overlap between the atomic probe and a
molecule is significant enables imaging of the molecular skeleton [ 1-3]. Another example is the manipulation of
matter at the atomic scale, which involves the intentional movement of single atoms and molecules across a
surface using the scanning probe. The required lateral forces were previously determined in AFM

experiments [4].

Atand close to chemical-bond distances adhesive forces can induce relaxations of the atomic electrode
geometry [5—14]. Mechanical hysteresis [15, 16] or even fracture of the electrode material [10] may be the
response to these strong forces. Such atomic relaxations represent the elementary processes in friction and cause
dissipation and wear [17]. It was further demonstrated that atom rearrangements in single-atom and single-
molecule junctions have a profound impact on electron transport across the junction [18-20]. Indeed, the
number and transmission of transport channels depend on the actual junction geometry of atomic [21] and
molecular [22] contacts. Moreover, orientations and conformations of adsorbed molecules matter in the
conductance of the ballistic transport junction [23-25], induce multilevel conductance variations [26, 27] and
changes in Andreev reflection for normal-metal-superconductor contacts [28]. The controlled atom-by-atom
modification of electrodes was demonstrated to yield order-of-magnitude changes in the junction conductance
[29, 30]. Magnetoresistive [31-37] and spin valve [38, 39] effects were likewise reported to be influenced by the
actual relaxed junction geometry.

Consequently, ample interest is directed towards atomic relaxations in junctions with ultimate dimensions
and towards the underlying forces. Here, a combination of scanning tunnelling microscope (STM) and AFM
experiments are presented that unravel an unexpected shift of the point of maximum attraction between two Cg
molecules with the bias voltage applied across the molecular junction. The prototypical junctions investigated
consist of a Cgg-terminated metal tip and a C¢y molecule adsorbed on Cu(111). A similar shift is present for a
clean metal tip and Cyy adsorbed on Pb(111). The superposition of long-range van der Waals and electrostatic
attraction with short-range Pauli repulsion does not reproduce the monotonic variation of the contact point. A
qualitative description of the experimental observations is achieved by phenomenologically considering voltage-
dependent relaxations of the electrode geometry.

©2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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2. Experiment

Distance-dependent force measurements were performed with a combined STM-AFM operated in ultrahigh
vacuum (10~ Pa) and at low temperature (5.5 K). PtIr tips attached to the free prong of a quartz tuning fork,
which is referred to as the gPlus configuration [40], with resonance frequency /29 kHz and quality factor
~55 000 served as force probes. For measuring the tunnelling current a separate wire is connected to the tip,
similar to previous assemblies [ 1, 41—43]. Simultaneous distance-dependent current and force data were
acquired using alow gain (10°—10° V A™") of the transimpedance amplifier. The entailed bandwidths of
500-200 kHz exceed the resonance frequency of the tuning fork and its higher harmonics. This setup and
operation mode ensure the absence of cross-talk between the tunnelling current and the AFM signal [43].

Prior to the experiments the AFM tip had been prepared ex situ by focused ion beam milling to ensure a well
defined macroscopic shape of the apex. I situ, the tips were prepared by field emission on and indentation into
the substrate surfaces, which presumably led to coating of the tip with substrate material and microscopic
changes of the tip apex. The tips were further prepared by the transfer of a single tip apex atom to the surface
[10,11, 16, 19, 20]. Such tips are particularly stable, give rise to submolecular contrast in STM images of C¢p and
reliably show the signature of the Cu(111) Shockley surface state and the Bardeen—Cooper—Schrieffer energy gap
of Pb(111) in spectra of the differential conductance (dI/dV'). Due to this in situ preparation protocol the tips are
likely terminated by a pyramidal cluster, as previously demonstrated by calculations for Cu(111) [10] and
Pb(111) [16]. Termination of the tip apex with a single Cso molecule was routinely achieved by applying
previously reported procedures [30, 44]. The orientation of the tip apex molecule was determined by imaging
atomic protrusions on the surface [30, 45, 46].

Cu(111)and Pb(111) surfaces were prepared by Ar" bombardment and annealing. C¢, molecules (purity:
99.95%) were sublimated from a heated Ta crucible onto the surfaces at room temperature. Ordered Cq
superstructures on Cu(111) were obtained after annealing the Cgy-covered surface at 400-500 K.

The vertical force, F, was calculated from the measured resonance frequency variation, Af, using different
deconvolution methods [47, 48], which led to virtually identical results. Distance z = 0 pm in force
spectroscopy experiments is defined as the z position of the vertical force minimum at bias voltage V.= 0 V.
Tunnelling (Contact) ranges span distances z < 0 pm (z > 0 pm). STM images of the sample surfaces were
recorded in the constant-current mode with Vapplied to the sample and processed using WSXM [49]. Spectra of
dI/dVwere acquired by modulating the dc bias voltage with an ac signal (10 mV (root-mean-square), 500 Hz)
and measuring the first harmonic of the current response with a lock-in amplifier.

3. Results and discussion

In previous AFM experiments the tip—sample distance was varied and the resonance frequency change of the
oscillating tuning fork simultaneously measured at a fixed bias voltage for various systems [44, 50-55]. The
resulting force variation is of the Lennard—Jones (L]) type that reflects the superposition of long-range van der
Waals and electrostatic attraction and short-range Pauli repulsion. In particular, the force minimum signals the
onset to chemical contact [44]. Additional forces have to be considered in the presence of magnetic materials
[36, 56], ionic crystals or polar molecules [57, 58], and semiconducting surfaces [59].

The present experiments are in part motivated by a previous report on the voltage tuning of vibrational
mode energies in single-molecule junctions [60]. A voltage-dependent shift of Cg, vibrational energies was
observed in simultaneous transport and surface-enhanced Raman spectroscopy experiments and rationalized in
terms of a bias-driven charging of the molecule [60]. Concomitantly with the charging intramolecular as well as
molecule—electrode chemical bonds are modified, which has direct impact on bond strengths and, thus, on
forces that are required to induce structural relaxations. Therefore, force spectroscopy has been applied here to
Ceojunctions for a wide range of negative and positive bias voltages.

Figure 1 presents an illustration of the STM-AFM junction used in the experiments. A Cgo molecule
terminates a pyramidal tip apex and contacts a C, molecule adsorbed on the substrate surface. The distances
introduced in figure 1 will be explained in the following.

Figure 2 summarizes representative results obtained for a junction comprising a Cgo-terminated PtIr tip and
Ceoadsorbed ona Cu(111) surface (figure 2(a)). In total, ten different tips were used for force measurements on
ten Cgo molecules for each individual tip. STM images of Cgp-covered Cu(111) acquired with a Cgp-terminated
tip show a hexagonal arrangement of the molecules in single-layer islands (figure 2(b)). The trefoil-like
submolecular pattern indicates a specific Cgq orientation, where a C hexagon is exposed to the vacuum. In
accordance with previous observations [61] and calculations [62, 63] these patterns are due to the next-to-lowest
unoccupied molecular orbital. In addition, the STM data of figure 2(b) are compatible with a C¢, orientation at
the tip apex that exposes a C hexagon to the sample surface [63]. The inset to figure 2(b) shows an STM image of
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Figure 1. Sketch of a C—Cg junction with definition of distances. Distance z = 0 pm is defined as the point of maximum Cyo—Cgo
attraction and referred to as z.. Intervals z < 0 pmand z > 0 pm define, respectively, tunnelling and contact ranges. For estimating
van der Waals forces the Cgo-terminated tip is approximated as a metal sphere a distance £ apart from a metal continuum (grey shaded
area). Distance &, denotes the distance between point-like particles in the Lennard—Jones potential (see text).
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Figure 2. STM and AFM data for a junction comprising a Cgo-terminated PtIr tip and a single Cgo molecule on Cu(111). (a) Sketch of
the junction configuration. (b) STM image of Cg,-covered Cu(111) acquired with a Cgp-terminated tip (1.5 V, 0.1 nA,

4.1 x 4.1 nm?). The grey scale ranges from 0 pm (black) to 100 pm (white). Individual C¢o molecules appear with a trefoil-like
submolecular pattern. The asterisk indicates the center of a Cy molecule above which Af(z) data were recorded. Inset: STM image of a
Cgo-terminated tip using an atomic protrusion on Cu(111) (=2 V, 50 pA,2.2 x 2.2 nm?). The same grey scale asin (b) is used. (c) Af
as a function of zat the indicated bias voltages. The lower data set is vertically offset by —1 Hz. The feedback loop had been disabled at
1.5V, 0.1 nA prior to data acquisition. (d) F calculated from the data shown in (c). The lower data set is vertically offset by —0.1 nN.
Minima of Foccur at z. and are indicated by squares. (e) z. as a function of V with indicated slope (Ovz.) of the linear fit (solid line) to
the data. The error bars for z. result from the uncertainty in determining the force minimum using voltage-dependent force data.
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the tip apex that was obtained by scanning the Cq,-terminated tip across an atomic protrusion on Cu(111). The
trefoil-like structural motif corroborates the Cgy hexagon orientation at the tip apex.

Af(z) data (distance zis defined in figure 1) were recorded for C¢, molecules embedded in an island. To this
end, after positioning the tip atop the center of an adsorbed Cyo molecule (asterisk in figure 2(b)) the feedback
loop was disabled at the same current and sample voltage for all spectra, followed by the retraction of the tip to
the same initial position and ramping the bias voltage to the desired value. Af(z) in tunnelling and contact
ranges was then acquired by applying a linear voltage ramp to the z piezoceramic actuator hosting the probe.
Figure 2(c) shows a representative evolution of Affor the indicated bias voltages. Surprisingly, the minimum of
Afdepends on the bias voltage.

The resulting vertical force (figure 2(d)) resembles the evolution of L]-type forces, which is in accordance
with previous experimental reports [44, 55]. The force trace exhibits a minimum at z, which signals the onset to
molecule-molecule contact. Obviously, z. depends on the bias voltage, which reflects the observed shift for Af.
The force at contact, F. =~ —280 pN at0.15 V, is in agreement with findings reported previously for C¢,—Ceg
contactson Cu(111) [44].

To explore the bias voltage dependence of the minimum of F, z_ is plotted for bias voltages ranging from
—0.8to 1.1 Vin figure 2(e). The scattering of the data in figure 2(e) may be attributed to the uncertainty of the
lateral tip position above Cgp, which was previously estimated as ~210% of the Cq, diameter [44]. A systematic
analysis of a possible dependence of z.(V') on the lateral tip position atop Cgo was not performed in this study.
More remarkably, an essentially linear increase of z. from &~ —60 pm at —0.8 V to ~95 pmat 1.1 V is observed
giving rise to a slope of 9y z. ~ 63 pm V"' A weak quadratic component of z.(V') may be due to electrostatic
forces (vide infra). Since the z.(V') behaviour is dominated by the linear term, the linear variation shall be
elucidated in the following. Figure 2(e) shows that the onset to contact is shifted by more than 150 pm towards
larger z.. As will be discussed below, this shift does not reflect deformations of the Cg( cage since it exhibits a high
mechanical stiffness [64]. Rather, relaxations of the tip—Cgo and Cgo—substrate distances are more likely. For
different microtips that were obtained by in situ tip preparation dy z. varied between 60 and 95 pm V. Some
tips gave rise to negligible z. shifts, i.e. Oy z. ~ 0, which will be discussed at the end of the article.

It was further noticed that Cgo molecules that are differently hybridized with Cu(111) behaved similarly in
force spectroscopy experiments. The different Ce, species are due to the coexistence of unreconstructed and
reconstructed surface regions, which occur in the course of annealing the Cg-covered surface [65]. In
reconstructed regions, 7 Cu atoms are removed below each adsorbed Cgo molecule [65], which gives rise to a
partial embedding of Ce into the substrate surface and an enhanced coordination with Cu atoms compared to
Cgo on unreconstructed Cu(111).

In order to explore whether the findings reported for Co—Cgg junctions (figure 2) are of general character,
additional experiments were performed with clean Ptlr tips and Cgy adsorbed on Pb(111) (figure 3(a)), i.e. for
markedly different junctions. Cgy molecules on Pb(111) arrange in a hexagonal array, as depicted in the STM
image in figure 3(b). In addition to the molecular superstructure a moiré pattern is visible as the periodic
modulation of the apparent height of C4o molecules. For clarity the unit cell of the moiré lattice is indicated by
the dashed lozenge. The moiré periodicity, 4.55 £ 0.24 nm, is in agreement with one of the previously reported
higher-order commensurate structures [66].

Bias-dependent force measurements were performed on individual Cyy molecules residing inside molecular
islands, analogously to the aformentioned experiments for Cgy on Cu(111). The same number of tips and
molecules were explored as in the case of Cu(111). Figures 3(c) and (d) depict the resulting evolution of,
respectively, Afand F. Again, the minima of Afand, thus, F depend on the bias voltage. The minimum z,
exhibits an essentially linear increase with the bias voltage (figure 3(e)), gradually shifting from ~ —53 pm at
—1.4 Vto=60 pmat 1.2 V. The linear fit (solid line in figure 3(e)) to the data exhibits a slope of
Ovz. ~ 43 pm V™! Therefore, the onset to contact is shifted by more than 100 pm towards the molecule in the
probed Vrange, which is in accordance with the findings for C¢—Cgp junctions (figure 2).

The monotonic shift of z. with Vis remarkable since, as will be demonstrated next, it is not described by the
superposition of long-range van der Waals and electrostatic together with short-range Pauli forces using
conventional expressions for these forces. To see this, long-range and slowly varying van der Waals forces, Fy 4w,
were derived from the interaction energy E,qw = —HR/(6£) (H: Hamaker constant) [67] between a metallic
sphere of radius R and a semi-infinite metal, a distance £ from the sphere (figure 1). In addition, the attractive
part of the L] interaction energy, Ej = ¢[(£,, /&) — 2 - (&,,/£)°] (e: depth of the L] potential well),
contributes to the van der Waals forces. The L] interaction energy likewise contains the short-range repulsive
part thatis responsible for the Pauli force. E;j considers the interaction of two point-like particles with
equilibrium distance &, (figure 1). The point-like particle representing the C4o molecule was positioned 0.7 nm
above the metal surface, which corresponds to the molecular diameter. The electrostatic force, F,|, between a
spherical tip and a semi-infinite planar sample was inferred from the energy E.] = meoR(V — ch)2 In€& (gp:
vacuum permittivity, V,: contact voltage) [68]. V., was extracted from the bias voltage evolution of the vertical

4



10P Publishing

NewJ. Phys. 21 (2019) 103041 JBrand etal

5_I T
TI\T OF 02V
. 3
o,_"* . S5F
.:... L i
- .' ,'o . .
- s D
.‘ o _ .. T T
" = 0.2V -
- - =z 04+
o’ 4 =
o Y S RY
." e
-

—4I00 —2I00
z (pm) V (V)

Figure 3. STM and AFM data for a junction comprising a PtIr tip and a single Cg, molecule on Pb(111). (a) Sketch of the junction
configuration. (b) STM image of Cgo-covered Pb(111) (30 mV, 10 pA, 13 x 13 nm?). The grey scale ranges from 0 pm (black) to

100 pm (white). Individual molecules appear as circular protrusions that are arranged in a hexagonal lattice. The apparent height of
Cgo molecules is modulated due to a moiré superstructure whose unit cell is indicated as a dashed line. (c) Resonance frequency
variation, Af, as a function of piezo displacement, z, for the indicated bias voltages. The lower data set is vertically offset by —4 Hz. The
feedback loop had been disabled at 1.5 V, 12 pA prior to data acquisition. (d) Vertical force, F, calculated from the data shown in (c).
The lower data set is vertically offset by —0.1 nN. Minima of F occur at z. and are indicated by squares. (e) z. as a function of V. The
slope (Ovz.) of the linear fit (solid line) is indicated. The error bars for z. result from the uncertainty in determining the force
minimum using voltage-dependent force data.

force, F(V') (not shown). In order to facilitate comparison with experimental data, a piezo displacement z s
calculated from the electrode separation { via z = §_, — & with £_ the distance at maximum attraction
forV=0V.

The Cgo—Cep interaction was modelled by the L] potential owing to its significantly better agreement with
experimental data than obtained for the Girifalco potential [69]. Indeed, using the Girifalco potential that was
originally conceived for the interaction between two free Cgo molecules gives rise to considerable deviations
from experimental data. Most likely, the Cgo—tip and Cyp—surface hybridization and concomitant charge transfer
render the Girifalco potential a less appropriate description of the metallic C4,—Cgo contact presented here. A
better agreement between force data and the Girifalco picture was previously reported for Cgp-terminated tips
and Cgg adsorbed on Si(111) [70], which hints at the nearly free-molecule character on a semiconductor surface.
Moreover, z.(V) is similar for Cgy-terminated tips (figure 2(e)) and metal tips (figure 3(e)) that are presumably
terminated by a single atom, which corroborates the deviation of Cgy adsorbed to the metal tip from its free-
molecule state and further justifies the use of the L] potential.

The modelling of the Cgy molecule as a metallic sphere in the expression of van der Waals and electrostatic
interactions certainly represents an approximation. The metallic or dielectric nature of a Cso molecule was
debated in several works with contradictory conclusions [71-73]. In the present case, the metal-sphere
approximation is appropriate since F(V') recorded for a wide range of tip-surface distances covering tunnelling
to contact exhibits parabolic behaviour, which is expected for the electrostatic force between a metal sphere and
a semi-infinite metal. The similar behaviour of z.(V') for Cy,-terminated tips and metal Ptlr tips (vide supra)
further supports the metallic character of the Cqj tip.

Forces due to permanent and induced molecular dipoles were not considered since their contribution to the
total force Fis negligible. In simulations based on density functional theory (not shown), Cgo was adsorbed with
a Chexagon on a 4-layer Cu(111) slab modelling the substrate and on a triangular Cu cluster adsorbed to a
4-layer Cu(111) slab serving as a tip. Permanent dipoles due to charge transfer processes were calculated as
~1.5D (1D = 1 Debye = 3.3356 - 1072° Cm) for Cgo adsorbed on Cu(111) and ~1.8 D for Cgy on the tip ata
distance between the facing C hexagons of 0.6 nm. Near contact, i.e. at a mutual C hexagon distance of 0.25 nm,
the dipoles decreased to 1.2 D for C4g on Cu(111) and to 221.3 D for Cgq on the tip due to reorganization of the
accumulated charge at chemical-bond distances. Considering the molecules as point dipoles at distances 0.6 nm
and 0.25 nm led to dipole—dipole forces of, respectively, 4 - 10 >nNand 3 - 10> nN, which are two orders of
magnitude lower than the measured total force. The induced dipole at 1 V may be estimated by using the
experimentally determined polarizability of isolated Cgq (0.076 5 nm?) [74], which yields an electric dipole
moment of 0.2 D being even lower than the permanent dipole. Dipole moments of metal tips, which are
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Figure 4. Calculated Fyj, Fe), Fyqw, Fior for (a) 0.6 V and (b) —0.6 V assuming a rigid junction geometry. Parameters entering into the
underlying interaction energies are based on experimental values: V,, = 0.2V, {,, = 0.9 nmande = 1.1 eV,R = 10 nm [77],

H = 1 eV [78] (see text for the analytical expressions of interaction energies). The squares indicate minima of Fy,, at z. (c) zc asa
function of V. (d) Close-up view of (c) showing the parabolic response of z.(V') to electrostatic forces.

Table 1. Parameters and references used for the force simulations shown in figures 4 and 5.

R (nm) &m (nm) H(eV) e(eV) Vep (V) a(pm V™)
10 0.9 1.0 1.1 0.2 30
Reference [771 This work [78] This work This work This work

relevant to the PtIr—Cg, contacts, were previously demonstrated to be on the order of several Debyes below 10 D
[75, 76]. Therefore, resulting dipole—dipole forces are still much smaller than the total force.

The superposition, Fio, = Fyqw + Fe + Frj, is plotted as a function of zin figure 4(a) for 0.6 V and in
figure 4(b) for —0.6 V. F,,, was calculated for bias voltages between —1.5 and 1.5 V leading to the z. evolution
presented in figure 4(c). Table 1 summarizes the parameters used for the simulations in figures 4 and 5. z.
depends weakly and in a non-monotonic way on V deviating from the experimentally observed evolution
(figures 2(e), 3(e)). The close-up view of z.(V') in figure 4(d) shows a parabola-like behaviour with a minimum at
~0.2 V, which reflects the response to the electrostatic force that is proportional to (V' — Vg,)* with measured
Vep &~ 0.2'V. Consequently, the superposition F,qw + Fe + Fyjusing conventional expressions for the
individual forces fails in describing bias-dependent force data.

In identifying possible origins for the observed bias voltage dependence of z. several scenarios were excluded.
First, Cg is a non-polar molecule with a high polarizability [74, 79]. Therefore, the electric field across the
Ces0—Ceo junction polarizes the molecules giving rise to induced dipole moments. However, dipole—dipole forces
are negligible in the present setup (vide supra). Second, variations in Af(z) may be induced by high sample
resistances on the order of 100 MS2 [59]. For the presented Cqo—Cgp (PtIr—Cg) contacts a resistance of ~600 k<2
(=60 k(2) was measured, which is nearly 3 (4) orders of magnitude lower than the resistances relevant to
appreciable Af[59]. Therefore, this scenario is excluded as well. Third, electron wind forces that are due to
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Figure 5. Like figure 4, considering voltage-dependent relaxations of the junction geometry in Fy;by & + o V(o = 30 pm V).

momentum transfer from transported electrons to ions [80] exhibit a complex energy dependence, as previously
demonstrated by calculations for a single-molecule junction [81]. The linear shift of z. with V'is not compatible
with this complicated energy dependence and, hence, cannot be rationalized in terms of electron wind.

In the following, junction relaxations depending on the bias voltage are considered. To this end, a bias-
dependent electrode separation, £ + «a V, is phenomenologically included in the L] interaction energy. This
suggestion is motivated by a previous density functional theory (DFT) study that revealed new equilibrium
positions and orientations of Cy in an external electric field [82]. DFT also demonstrated the linear dependence
of the distance between a negatively charged oxygen atom and the supporting graphene sheet on the external
electric field [83]. In addition, it was shown on theoretical grounds that a current flowing across nanometre-
sized objects induces the non-equilibrium population of electronic states with a concomitant weakening of
intramolecular bonds that leads to a deformation of the molecular object [60, 84, 85].

Figure 5 summarizes the calculated results considering voltage-dependent relaxations in Fy . In contrast to
the assumption of a rigid junction geometry (figure 4) the position of the force minimum, z. (squares in
figures 5(a), (b)), varies considerably with the bias voltage (figure 5(c)). Using« = 30 pm V' leads to a
monotonic evolution of z. with V (figure 5(c)) in a distance range comparable with the experimental
observations (figures 2(e), 3(e)). A linear component with slope ~63 pm V"' dominates the monotonic increase
of z.with V.

The suggested bias-dependent relaxations may intuitively be understood by considering charge transfer
processes. It was previously shown that adsorption of Cgo on Cu and Pb surfaces leads to electron transfer from
the substrate to the molecule [65, 86—89]. Therefore, in PtIr—Cg, junctions the negatively charged Cqo adsorbed
on Pb(111) is attracted to (repelled from) the positively (negatively) charged sample at positive (negative) bias
voltage. This simple picture is consistent with the bias voltage evolution of z. in these junctions.

In the case of Cqp-terminated tips the aforementioned picture does not directly hold, in the following sense.
Assuming similarly charged Cgo molecules at the tip and on the surface as well as taking into account smaller
tip—Cgp than Cgp—substrate interactions [44] would lead to similar z. at negative and positive bias voltage, which
is not in agreement with the observation (figure 2(e)). Therefore, the assumption of similarly charged Ce

7



10P Publishing

NewJ. Phys. 21 (2019) 103041 JBrand etal

400
200
2 ot
> I I I I I
S T T T T T
= | (b)
©
501 -
LUMO+1
(0] = 1 1 1 1 1
-2 -1 0 1 2
V (V)
Figure 6. Spectra of dI/dV acquired atop clean Cu(111) with Cgo-terminated tips exhibiting a (a) large and (b) small z shift with the
bias voltage. Signatures of the Cgo lowest unoccupied molecular orbital (LUMO) and LUMO + 1 are visible at negative bias voltage.
Feedback loop parameters: (a) 2 V, 500 pA; (b) 2 V, 40 pA.

molecules may not be applicable. The comparison of dI/dV spectra of Cg,-terminated tips with non-zero

(Ovz. > 0, figure 6(a)) and negligible (O z. = 0, figure 6(b)) z. variations helps clarify this issue. Spectroscopic
features appearing at negative bias voltage correspond to unoccupied states of Cg at the tip. In particular, the
lowest unoccupied molecular orbital (LUMO) is more than 1 eV below the Fermi energy (Eg, V = 0 V) for
Ceo-terminated tips with 0y z. > 0 (figure 6(a)). In contrast, Cgo-terminated tips with the LUMO spectroscopic
signature much closer to Eg (figure 6(b)) exhibit a weak shift (Oyz. & 0) at most. The vicinity of the C4o LUMO
to Epis a measure for the extent of the charge transfer between the molecule and the metal substrate it is adsorbed
on [90]. In particular, Cgp tips with Oy z. > 0 (Ovz. =~ 0) represent Cgo molecules that received a comparatively
low (high) amount of charge from the metal tip. Therefore, Cso molecules at the tip with Oy z. > 0 (figure 6(a))
are less susceptible to the electric field in the junctions and behave in a similar manner as observed for the clean
Ptlr tip. Cgo molecules subject to larger charge transfer (figure 6(b)) exhibit a stronger displacement in the
electric field and give rise to a reduced z shift. The larger charge transfer may be related to C4o adsorption at
rather blunt tip regions, which involves more tip atoms than in the case of sharper tips.

4. Conclusions

The point of maximum attraction in single-molecule contacts has been explored by distance-dependent force
measurements and is subject to the bias voltage across the junction. Structural relaxations of the electrode
atomic geometry induced by the electric field between tip and sample acting on partially charged molecules can
account for the experimental observations. The presented findings are relevant to chemical reactions in external
fields at the single-molecule level.
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