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Abstract
Cleanmetal as well as C60-terminated tips of an atomic forcemicroscope probe the interactionwith
C60molecules adsorbed onCu(111) and Pb(111). The forcemeasurements unveil amonotonic shift of
the point ofmaximumattractionwith the bias voltage. The conventional superposition of long-range
van derWaals and electrostatic forces with short-range Pauli repulsion does not reproduce the shift.
By phenomenologically including bias-dependent relaxations of the electrode geometry in the
analytical expression for the short-range force the experimental data can qualitatively be described.

1. Introduction

Themeasurement of forces between atoms andmolecules that are on the verge of forming a chemical bond
belongs to the fascinating capabilities of an atomic forcemicroscope (AFM). For instance, approaching the force
sensor into the Pauli repulsion distance rangewhere the orbital overlap between the atomic probe and a
molecule is significant enables imaging of themolecular skeleton [1–3]. Another example is themanipulation of
matter at the atomic scale, which involves the intentionalmovement of single atoms andmolecules across a
surface using the scanning probe. The required lateral forces were previously determined inAFM
experiments [4].

At and close to chemical-bond distances adhesive forces can induce relaxations of the atomic electrode
geometry [5–14].Mechanical hysteresis [15, 16] or even fracture of the electrodematerial [10]may be the
response to these strong forces. Such atomic relaxations represent the elementary processes in friction and cause
dissipation andwear [17]. It was further demonstrated that atom rearrangements in single-atom and single-
molecule junctions have a profound impact on electron transport across the junction [18–20]. Indeed, the
number and transmission of transport channels depend on the actual junction geometry of atomic [21] and
molecular [22] contacts.Moreover, orientations and conformations of adsorbedmoleculesmatter in the
conductance of the ballistic transport junction [23–25], inducemultilevel conductance variations [26, 27] and
changes in Andreev reflection for normal-metal–superconductor contacts [28]. The controlled atom-by-atom
modification of electrodes was demonstrated to yield order-of-magnitude changes in the junction conductance
[29, 30].Magnetoresistive [31–37] and spin valve [38, 39] effects were likewise reported to be influenced by the
actual relaxed junction geometry.

Consequently, ample interest is directed towards atomic relaxations in junctions with ultimate dimensions
and towards the underlying forces. Here, a combination of scanning tunnellingmicroscope (STM) andAFM
experiments are presented that unravel an unexpected shift of the point ofmaximumattraction between twoC60

molecules with the bias voltage applied across themolecular junction. The prototypical junctions investigated
consist of a C60-terminatedmetal tip and aC60molecule adsorbed onCu(111). A similar shift is present for a
cleanmetal tip andC60 adsorbed on Pb(111). The superposition of long-range van derWaals and electrostatic
attractionwith short-range Pauli repulsion does not reproduce themonotonic variation of the contact point. A
qualitative description of the experimental observations is achieved by phenomenologically considering voltage-
dependent relaxations of the electrode geometry.
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2. Experiment

Distance-dependent forcemeasurements were performedwith a combined STM-AFMoperated in ultrahigh
vacuum (10−9 Pa) and at low temperature (5.5 K). PtIr tips attached to the free prong of a quartz tuning fork,
which is referred to as the qPlus configuration [40], with resonance frequency≈29 kHz and quality factor
≈55 000 served as force probes. Formeasuring the tunnelling current a separate wire is connected to the tip,
similar to previous assemblies [1, 41–43]. Simultaneous distance-dependent current and force data were
acquired using a low gain (104—106 V A–1) of the transimpedance amplifier. The entailed bandwidths of
500–200 kHz exceed the resonance frequency of the tuning fork and its higher harmonics. This setup and
operationmode ensure the absence of cross-talk between the tunnelling current and theAFM signal [43].

Prior to the experiments the AFM tip had been prepared ex situ by focused ion beammilling to ensure awell
definedmacroscopic shape of the apex. In situ, the tipswere prepared by field emission on and indentation into
the substrate surfaces, which presumably led to coating of the tip with substratematerial andmicroscopic
changes of the tip apex. The tips were further prepared by the transfer of a single tip apex atom to the surface
[10, 11, 16, 19, 20]. Such tips are particularly stable, give rise to submolecular contrast in STM images of C60 and
reliably show the signature of theCu(111) Shockley surface state and the Bardeen–Cooper–Schrieffer energy gap
of Pb(111) in spectra of the differential conductance (dI/dV ). Due to this in situ preparation protocol the tips are
likely terminated by a pyramidal cluster, as previously demonstrated by calculations for Cu(111) [10] and
Pb(111) [16]. Termination of the tip apexwith a single C60molecule was routinely achieved by applying
previously reported procedures [30, 44]. The orientation of the tip apexmolecule was determined by imaging
atomic protrusions on the surface [30, 45, 46].

Cu(111) and Pb(111) surfaces were prepared byAr+ bombardment and annealing. C60molecules (purity:
99.95%)were sublimated from a heatedTa crucible onto the surfaces at room temperature. OrderedC60

superstructures onCu(111)were obtained after annealing theC60-covered surface at 400–500 K.
The vertical force, F, was calculated from themeasured resonance frequency variation,Δf, using different

deconvolutionmethods [47, 48], which led to virtually identical results. Distance z=0 pm in force
spectroscopy experiments is defined as the z position of the vertical forceminimumat bias voltageV=0 V.
Tunnelling (Contact) ranges span distances z<0 pm (z>0 pm). STM images of the sample surfaces were
recorded in the constant-currentmodewithV applied to the sample and processed usingWSXM [49]. Spectra of
dI/dVwere acquired bymodulating the dc bias voltagewith an ac signal (10 mV (root-mean-square), 500 Hz)
andmeasuring thefirst harmonic of the current responsewith a lock-in amplifier.

3. Results and discussion

In previous AFMexperiments the tip–sample distancewas varied and the resonance frequency change of the
oscillating tuning fork simultaneouslymeasured at afixed bias voltage for various systems [44, 50–55]. The
resulting force variation is of the Lennard–Jones (LJ) type that reflects the superposition of long-range van der
Waals and electrostatic attraction and short-range Pauli repulsion. In particular, the forceminimum signals the
onset to chemical contact [44]. Additional forces have to be considered in the presence ofmagneticmaterials
[36, 56], ionic crystals or polarmolecules [57, 58], and semiconducting surfaces [59].

The present experiments are in partmotivated by a previous report on the voltage tuning of vibrational
mode energies in single-molecule junctions [60]. A voltage-dependent shift of C60 vibrational energies was
observed in simultaneous transport and surface-enhanced Raman spectroscopy experiments and rationalized in
terms of a bias-driven charging of themolecule [60]. Concomitantly with the charging intramolecular aswell as
molecule–electrode chemical bonds aremodified, which has direct impact on bond strengths and, thus, on
forces that are required to induce structural relaxations. Therefore, force spectroscopy has been applied here to
C60 junctions for a wide range of negative and positive bias voltages.

Figure 1 presents an illustration of the STM-AFM junction used in the experiments. AC60molecule
terminates a pyramidal tip apex and contacts a C60molecule adsorbed on the substrate surface. The distances
introduced in figure 1will be explained in the following.

Figure 2 summarizes representative results obtained for a junction comprising a C60-terminated PtIr tip and
C60 adsorbed on aCu(111) surface (figure 2(a)). In total, ten different tips were used for forcemeasurements on
tenC60molecules for each individual tip. STM images of C60-coveredCu(111) acquiredwith aC60-terminated
tip show a hexagonal arrangement of themolecules in single-layer islands (figure 2(b)). The trefoil-like
submolecular pattern indicates a specificC60 orientation, where aC hexagon is exposed to the vacuum. In
accordancewith previous observations [61] and calculations [62, 63] these patterns are due to the next-to-lowest
unoccupiedmolecular orbital. In addition, the STMdata offigure 2(b) are compatible with aC60 orientation at
the tip apex that exposes aChexagon to the sample surface [63]. The inset tofigure 2(b) shows an STM image of
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Figure 1. Sketch of a C60–C60 junctionwith definition of distances. Distance z=0 pm is defined as the point ofmaximumC60–C60

attraction and referred to as zc. Intervals z<0 pmand z>0 pmdefine, respectively, tunnelling and contact ranges. For estimating
van derWaals forces the C60-terminated tip is approximated as ametal sphere a distance ξ apart from ametal continuum (grey shaded
area). Distance ξmdenotes the distance between point-like particles in the Lennard–Jones potential (see text).

Figure 2. STMandAFMdata for a junction comprising aC60-terminated PtIr tip and a single C60molecule onCu(111). (a) Sketch of
the junction configuration. (b) STM image of C60-coveredCu(111) acquiredwith aC60-terminated tip (1.5 V, 0.1 nA,
4.1×4.1 nm2). The grey scale ranges from0 pm (black) to 100 pm (white). Individual C60molecules appear with a trefoil-like
submolecular pattern. The asterisk indicates the center of a C60molecule abovewhichΔf (z) datawere recorded. Inset: STM image of a
C60-terminated tip using an atomic protrusion onCu(111) (−2 V, 50 pA, 2.2×2.2 nm2). The same grey scale as in (b) is used. (c)Δf
as a function of z at the indicated bias voltages. The lower data set is vertically offset by−1 Hz. The feedback loop had been disabled at
1.5 V, 0.1 nA prior to data acquisition. (d) F calculated from the data shown in (c). The lower data set is vertically offset by−0.1 nN.
Minima of F occur at zc and are indicated by squares. (e) zc as a function ofVwith indicated slope ( zV c¶ ) of the linear fit (solid line) to
the data. The error bars for zc result from the uncertainty in determining the forceminimumusing voltage-dependent force data.
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the tip apex that was obtained by scanning theC60-terminated tip across an atomic protrusion onCu(111). The
trefoil-like structuralmotif corroborates the C60 hexagon orientation at the tip apex.

Δf (z) data (distance z is defined infigure 1)were recorded for C60molecules embedded in an island. To this
end, after positioning the tip atop the center of an adsorbedC60molecule (asterisk infigure 2(b)) the feedback
loopwas disabled at the same current and sample voltage for all spectra, followed by the retraction of the tip to
the same initial position and ramping the bias voltage to the desired value.Δf (z) in tunnelling and contact
rangeswas then acquired by applying a linear voltage ramp to the z piezoceramic actuator hosting the probe.
Figure 2(c) shows a representative evolution ofΔf for the indicated bias voltages. Surprisingly, theminimumof
Δf depends on the bias voltage.

The resulting vertical force (figure 2(d)) resembles the evolution of LJ-type forces, which is in accordance
with previous experimental reports [44, 55]. The force trace exhibits aminimumat zc, which signals the onset to
molecule–molecule contact. Obviously, zc depends on the bias voltage, which reflects the observed shift forΔf.
The force at contact, Fc≈−280 pN at 0.15 V, is in agreement withfindings reported previously for C60–C60

contacts onCu(111) [44].
To explore the bias voltage dependence of theminimumof F, zc is plotted for bias voltages ranging from

−0.8 to 1.1 V infigure 2(e). The scattering of the data infigure 2(e)may be attributed to the uncertainty of the
lateral tip position aboveC60, whichwas previously estimated as≈10%of theC60 diameter [44]. A systematic
analysis of a possible dependence of zc(V ) on the lateral tip position atopC60was not performed in this study.
More remarkably, an essentially linear increase of zc from≈−60 pmat−0.8 V to≈95 pm at 1.1 V is observed
giving rise to a slope of∂Vzc≈63 pm V–1. Aweak quadratic component of zc(V )may be due to electrostatic
forces (vide infra). Since the zc(V ) behaviour is dominated by the linear term, the linear variation shall be
elucidated in the following. Figure 2(e) shows that the onset to contact is shifted bymore than 150 pm towards
larger zc. Aswill be discussed below, this shift does not reflect deformations of theC60 cage since it exhibits a high
mechanical stiffness [64]. Rather, relaxations of the tip–C60 andC60–substrate distances aremore likely. For
differentmicrotips thatwere obtained by in situ tip preparation zV c¶ varied between 60 and 95 pm V–1. Some
tips gave rise to negligible zc shifts, i.e. z 0V c¶ » , whichwill be discussed at the end of the article.

It was further noticed that C60molecules that are differently hybridizedwithCu(111) behaved similarly in
force spectroscopy experiments. The different C60 species are due to the coexistence of unreconstructed and
reconstructed surface regions, which occur in the course of annealing theC60-covered surface [65]. In
reconstructed regions, 7Cu atoms are removed below each adsorbedC60molecule [65], which gives rise to a
partial embedding of C60 into the substrate surface and an enhanced coordinationwithCu atoms compared to
C60 on unreconstructed Cu(111).

In order to explore whether thefindings reported for C60–C60 junctions (figure 2) are of general character,
additional experiments were performedwith clean PtIr tips andC60 adsorbed on Pb(111) (figure 3(a)), i.e. for
markedly different junctions. C60molecules on Pb(111) arrange in a hexagonal array, as depicted in the STM
image infigure 3(b). In addition to themolecular superstructure amoiré pattern is visible as the periodic
modulation of the apparent height of C60molecules. For clarity the unit cell of themoiré lattice is indicated by
the dashed lozenge. Themoiré periodicity, 4.55±0.24 nm, is in agreementwith one of the previously reported
higher-order commensurate structures [66].

Bias-dependent forcemeasurements were performed on individual C60molecules residing insidemolecular
islands, analogously to the aformentioned experiments for C60 onCu(111). The same number of tips and
molecules were explored as in the case of Cu(111). Figures 3(c) and (d) depict the resulting evolution of,
respectively,Δf and F. Again, theminima ofΔf and, thus, Fdepend on the bias voltage. Theminimum zc
exhibits an essentially linear increase with the bias voltage (figure 3(e)), gradually shifting from≈−53 pmat
−1.4 V to≈60 pmat 1.2 V. The linear fit (solid line infigure 3(e)) to the data exhibits a slope of

z 43 pm VV c
1¶ » - . Therefore, the onset to contact is shifted bymore than 100 pm towards themolecule in the

probedV range, which is in accordancewith thefindings for C60–C60 junctions (figure 2).
Themonotonic shift of zc withV is remarkable since, as will be demonstrated next, it is not described by the

superposition of long-range van derWaals and electrostatic together with short-range Pauli forces using
conventional expressions for these forces. To see this, long-range and slowly varying van derWaals forces, FvdW,
were derived from the interaction energy EvdW=−HR/(6ξ) (H: Hamaker constant) [67] between ametallic
sphere of radiusR and a semi-infinitemetal, a distance ξ from the sphere (figure 1). In addition, the attractive
part of the LJ interaction energy, E 2LJ m

12
m

6e x x x x= -[( ) · ( ) ] (ε: depth of the LJ potential well),
contributes to the van derWaals forces. The LJ interaction energy likewise contains the short-range repulsive
part that is responsible for the Pauli force. ELJ considers the interaction of two point-like particles with
equilibriumdistance ξm (figure 1). The point-like particle representing theC60molecule was positioned 0.7 nm
above themetal surface, which corresponds to themolecular diameter. The electrostatic force, Fel, between a
spherical tip and a semi-infinite planar sample was inferred from the energy E R V V lnel 0 cp

2pe x= -( ) (ε0:
vacuumpermittivity,Vcp: contact voltage) [68].Vcp was extracted from the bias voltage evolution of the vertical
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force, F(V ) (not shown). In order to facilitate comparisonwith experimental data, a piezo displacement z is
calculated from the electrode separation ξ via z c,0x x= - with c,0x the distance atmaximumattraction
forV=0 V.

TheC60–C60 interactionwasmodelled by the LJ potential owing to its significantly better agreementwith
experimental data than obtained for theGirifalco potential [69]. Indeed, using theGirifalco potential that was
originally conceived for the interaction between two free C60molecules gives rise to considerable deviations
from experimental data.Most likely, the C60–tip andC60–surface hybridization and concomitant charge transfer
render theGirifalco potential a less appropriate description of themetallic C60–C60 contact presented here. A
better agreement between force data and theGirifalco picturewas previously reported for C60-terminated tips
andC60 adsorbed on Si(111) [70], which hints at the nearly free-molecule character on a semiconductor surface.
Moreover, zc(V ) is similar for C60-terminated tips (figure 2(e)) andmetal tips (figure 3(e)) that are presumably
terminated by a single atom,which corroborates the deviation of C60 adsorbed to themetal tip from its free-
molecule state and further justifies the use of the LJ potential.

Themodelling of theC60molecule as ametallic sphere in the expression of van derWaals and electrostatic
interactions certainly represents an approximation. Themetallic or dielectric nature of a C60molecule was
debated in several workswith contradictory conclusions [71–73]. In the present case, themetal-sphere
approximation is appropriate since F(V ) recorded for awide range of tip-surface distances covering tunnelling
to contact exhibits parabolic behaviour, which is expected for the electrostatic force between ametal sphere and
a semi-infinitemetal. The similar behaviour of zc(V ) for C60-terminated tips andmetal PtIr tips (vide supra)
further supports themetallic character of the C60 tip.

Forces due to permanent and inducedmolecular dipoles were not considered since their contribution to the
total force F is negligible. In simulations based on density functional theory (not shown), C60 was adsorbedwith
aChexagon on a 4-layer Cu(111) slabmodelling the substrate and on a triangular Cu cluster adsorbed to a
4-layer Cu(111) slab serving as a tip. Permanent dipoles due to charge transfer processes were calculated as
≈1.5 D (1 D=1 Debye=3.3356·10−30 Cm) for C60 adsorbed onCu(111) and≈1.8 D forC60 on the tip at a
distance between the facingChexagons of 0.6 nm.Near contact, i.e. at amutual C hexagon distance of 0.25 nm,
the dipoles decreased to≈1.2 D forC60 onCu(111) and to≈1.3 D for C60 on the tip due to reorganization of the
accumulated charge at chemical-bond distances. Considering themolecules as point dipoles at distances 0.6 nm
and 0.25 nm led to dipole–dipole forces of, respectively, 4·10−3 nN and 3·10−3 nN,which are two orders of
magnitude lower than themeasured total force. The induced dipole at 1 Vmay be estimated by using the
experimentally determined polarizability of isolatedC60 (0.076 5 nm

3) [74], which yields an electric dipole
moment of≈0.2 D being even lower than the permanent dipole. Dipolemoments ofmetal tips, which are

Figure 3. STMandAFMdata for a junction comprising a PtIr tip and a single C60molecule on Pb(111). (a) Sketch of the junction
configuration. (b) STM image of C60-covered Pb(111) (30 mV, 10 pA, 13×13 nm2). The grey scale ranges from0 pm (black) to
100 pm (white). Individualmolecules appear as circular protrusions that are arranged in a hexagonal lattice. The apparent height of
C60molecules ismodulated due to amoiré superstructure whose unit cell is indicated as a dashed line. (c)Resonance frequency
variation,Δf, as a function of piezo displacement, z, for the indicated bias voltages. The lower data set is vertically offset by−4 Hz. The
feedback loop had been disabled at 1.5 V, 12 pAprior to data acquisition. (d)Vertical force, F, calculated from the data shown in (c).
The lower data set is vertically offset by−0.1 nN.Minima of F occur at zc and are indicated by squares. (e) zc as a function ofV. The
slope ( zV c¶ ) of the linearfit (solid line) is indicated. The error bars for zc result from the uncertainty in determining the force
minimumusing voltage-dependent force data.
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relevant to the PtIr–C60 contacts, were previously demonstrated to be on the order of several Debyes below 10 D
[75, 76]. Therefore, resulting dipole–dipole forces are stillmuch smaller than the total force.

The superposition, Ftot=FvdW+Fel+FLJ, is plotted as a function of z in figure 4(a) for 0.6 V and in
figure 4(b) for−0.6 V. Ftot was calculated for bias voltages between−1.5 and 1.5 V leading to the zc evolution
presented infigure 4(c). Table 1 summarizes the parameters used for the simulations infigures 4 and 5. zc
dependsweakly and in a non-monotonic way onV deviating from the experimentally observed evolution
(figures 2(e), 3(e)). The close-up view of zc(V ) infigure 4(d) shows a parabola-like behaviourwith aminimumat
≈0.2 V,which reflects the response to the electrostatic force that is proportional to V Vcp 2-( ) withmeasured
Vcp≈0.2 V. Consequently, the superposition FvdW+Fel+FLJ using conventional expressions for the
individual forces fails in describing bias-dependent force data.

In identifying possible origins for the observed bias voltage dependence of zc several scenarios were excluded.
First, C60 is a non-polarmolecule with a high polarizability [74, 79]. Therefore, the electric field across the
C60–C60 junction polarizes themolecules giving rise to induced dipolemoments. However, dipole–dipole forces
are negligible in the present setup (vide supra). Second, variations inΔf (z)may be induced by high sample
resistances on the order of 100MΩ [59]. For the presented C60–C60 (PtIr–C60) contacts a resistance of≈600 kΩ
(≈60 kΩ)wasmeasured, which is nearly 3 (4) orders ofmagnitude lower than the resistances relevant to
appreciableΔf [59]. Therefore, this scenario is excluded aswell. Third, electronwind forces that are due to

Figure 4.Calculated FLJ, Fel, FvdW, Ftot for (a) 0.6 V and (b)−0.6 V assuming a rigid junction geometry. Parameters entering into the
underlying interaction energies are based on experimental values:Vcp=0.2 V, ξm=0.9 nm and ε=1.1 eV,R=10 nm [77],
H=1 eV [78] (see text for the analytical expressions of interaction energies). The squares indicateminima of Ftot at zc. (c) zc as a
function ofV. (d)Close-up view of (c) showing the parabolic response of zc(V ) to electrostatic forces.

Table 1.Parameters and references used for the force simulations shown infigures 4 and 5.

R (nm) ξm (nm) H (eV) ε (eV) Vcp (V) α (pm V–1)

10 0.9 1.0 1.1 0.2 30

Reference [77] This work [78] This work This work This work
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momentum transfer from transported electrons to ions [80] exhibit a complex energy dependence, as previously
demonstrated by calculations for a single-molecule junction [81]. The linear shift of zc withV is not compatible
with this complicated energy dependence and, hence, cannot be rationalized in terms of electronwind.

In the following, junction relaxations depending on the bias voltage are considered. To this end, a bias-
dependent electrode separation, ξ+αV, is phenomenologically included in the LJ interaction energy. This
suggestion ismotivated by a previous density functional theory (DFT) study that revealed new equilibrium
positions and orientations of C60 in an external electricfield [82]. DFT also demonstrated the linear dependence
of the distance between a negatively charged oxygen atom and the supporting graphene sheet on the external
electric field [83]. In addition, it was shownon theoretical grounds that a currentflowing across nanometre-
sized objects induces the non-equilibriumpopulation of electronic states with a concomitant weakening of
intramolecular bonds that leads to a deformation of themolecular object [60, 84, 85].

Figure 5 summarizes the calculated results considering voltage-dependent relaxations in FLJ. In contrast to
the assumption of a rigid junction geometry (figure 4) the position of the forceminimum, zc (squares in
figures 5(a), (b)), varies considerably with the bias voltage (figure 5(c)). Usingα=30 pm V–1 leads to a
monotonic evolution of zc withV (figure 5(c)) in a distance range comparable with the experimental
observations (figures 2(e), 3(e)). A linear componentwith slope≈63 pm V–1 dominates themonotonic increase
of zc withV.

The suggested bias-dependent relaxationsmay intuitively be understood by considering charge transfer
processes. It was previously shown that adsorption of C60 onCu and Pb surfaces leads to electron transfer from
the substrate to themolecule [65, 86–89]. Therefore, in PtIr–C60 junctions the negatively chargedC60 adsorbed
on Pb(111) is attracted to (repelled from) the positively (negatively) charged sample at positive (negative) bias
voltage. This simple picture is consistent with the bias voltage evolution of zc in these junctions.

In the case of C60-terminated tips the aforementioned picture does not directly hold, in the following sense.
Assuming similarly chargedC60molecules at the tip and on the surface as well as taking into account smaller
tip–C60 thanC60–substrate interactions [44]would lead to similar zc at negative and positive bias voltage, which
is not in agreementwith the observation (figure 2(e)). Therefore, the assumption of similarly chargedC60

Figure 5. Like figure 4, considering voltage-dependent relaxations of the junction geometry in FLJ by ξ+αV (α=30 pm V–1).
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moleculesmay not be applicable. The comparison of dI/dV spectra of C60-terminated tipswith non-zero
( z 0V c¶ > ,figure 6(a)) and negligible ( z 0V c¶ » ,figure 6(b)) zc variations helps clarify this issue. Spectroscopic
features appearing at negative bias voltage correspond to unoccupied states of C60 at the tip. In particular, the
lowest unoccupiedmolecular orbital (LUMO) ismore than 1 eVbelow the Fermi energy (EF,V=0 V) for
C60-terminated tips with z 0V c¶ > (figure 6(a)). In contrast, C60-terminated tips with the LUMOspectroscopic
signaturemuch closer toEF (figure 6(b)) exhibit a weak shift ( z 0V c¶ » ) atmost. The vicinity of the C60 LUMO
toEF is ameasure for the extent of the charge transfer between themolecule and themetal substrate it is adsorbed
on [90]. In particular, C60 tips with z 0V c¶ > ( z 0V c¶ » ) represent C60molecules that received a comparatively
low (high) amount of charge from themetal tip. Therefore, C60molecules at the tip with z 0V c¶ > (figure 6(a))
are less susceptible to the electric field in the junctions and behave in a similarmanner as observed for the clean
PtIr tip. C60molecules subject to larger charge transfer (figure 6(b)) exhibit a stronger displacement in the
electric field and give rise to a reduced zc shift. The larger charge transfermay be related toC60 adsorption at
rather blunt tip regions, which involvesmore tip atoms than in the case of sharper tips.

4. Conclusions

The point ofmaximumattraction in single-molecule contacts has been explored by distance-dependent force
measurements and is subject to the bias voltage across the junction. Structural relaxations of the electrode
atomic geometry induced by the electric field between tip and sample acting on partially chargedmolecules can
account for the experimental observations. The presented findings are relevant to chemical reactions in external
fields at the single-molecule level.
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